
Software Pipelining in a
C-Compiler

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur
im Rahmen des Studiums

Diplomstudium Informatik

eingereicht von

Benedikt Lukas Huber
Matrikelnummer 0025355

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung:
Betreuer: ao.Univ.Prof.Dipl.-Ing.Dr.techn. Andreas Krall

Wien, 14.10. 2008
(Unterschrift Verfasser/in) (Unterschrift Betreuer/in)

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43/(0)1/58801-0 http://www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Abstract

Very long instruction word (VLIW) processors exploit instruction level

parallelism (ILP) to reduce the execution time of programs by issuing multi-

ple operations in parallel. Since scheduling�especially parallelization�has

to be done entirely by the compiler sophisticated algorithms are necessary

to utilize the available resources e�ciently.

Software pipelining is a scheduling technique to increase the ILP in ba-

sic block loops by overlapping the execution of consecutive iterations. The

software pipelining heuristic we implemented for the LLVM compiler in-

frastructure is called swing modulo scheduling (SMS). SMS creates dense

schedules while keeping register pressure and compile time low.

Zusammenfassung

Very long instruction word (VLIW) Prozessoren nutzen instruction level

paralellism (ILP) um die Ausführungszeit von Programmen zu verkürzen,

indem sie mehrere Operationen zeitgleich verarbeiten. Da das Scheduling,

insbesondere die Parallelisierung, ausschlieÿlich vom Compiler durchgeführt

wird, sind durchdachte Algorithmen notwendig um die zur Verfügung ste-

henden Ressourcen e�zient zu nutzen.

Software pipelining ist eine Technik um ILP in Basic-Block-Schleifen zu

erhöhen, indem die Ausführung von aufeinanderfolgenden Iterationen über-

lappt wird. Die Software-Pipelining-Heuristik, die wir für die LLVM Compiler-

Infrastruktur implementiert haben, heiÿt swing modulo scheduling (SMS).

SMS erzeugt dichte Schedules und scha�t es die Anzahl der nötigen Register

und die Compile-Zeit niedrig zu halten.

2

Acknowledgments

The development was supported by the Christian Doppler Forschungsgesellschaft
and ON DEMAND Microelectronics.

3

Contents

1 Introduction 6
1.1 Motivation . 6

2 Software Pipelining 9
2.1 Terminology . 11
2.2 Modulo Scheduling . 16
2.3 Comparison to other Modulo Scheduling techniques 26
2.4 Swing Modulo Scheduling . 27

3 The LLVM Compiler Infrastructure 29
3.1 Intermediate representation . 29
3.2 Extended hardware description for VLIW 30

4 Implementation 31
4.1 Finding suitable basic blocks . 32
4.2 Computation of the dependence graph 34

4.2.1 Loop carried dependences 35
4.3 Minimum initiation interval . 37

4.3.1 Resource MII . 38
4.3.2 Recurrence MII . 38

4.4 Computation of node properties . 39
4.5 Ordering of the nodes . 41
4.6 Scheduling . 44
4.7 Creation of prolog, kernel and epilog 45

4.7.1 Insertion of bu�er registers 46
4.7.2 Updating the branch condition 47

4.8 Regaining SSA form . 47
4.8.1 Renaming and how to �nd the right operands 48
4.8.2 Introducing new phi nodes 48
4.8.3 Final steps . 49

4.9 Example . 51

5 Evaluation 63
5.1 The CHILI architecture . 63
5.2 Results . 63

6 Related Works 71

7 Future work 73
7.1 Incorporating VLIW hardware description into tablegen 73

4

7.2 Analysis of array accesses . 73
7.3 Optimize circuit �nding algorithm 74
7.4 Variable trip count . 74
7.5 Unrolling and modulo variable expansion 74

8 Summary 75

5

1 Introduction

Software Pipelining is a scheduling technique for very long instruction word (VLIW)
processors. Being a loop scheduling technique or cyclic scheduling technique it
tries to maximize the throughput of a given loop by increasing the instruction
level parallelism (ILP) thus utilizing the available resources of the processor more
e�ciently. This is achieved by starting the next iteration of a loop before the
preceding has �nished and thus executing parts of two or more adjacent iterations
in parallel.
As programs spend most of their time inside of loops it is of crucial impor-

tance for the overall execution time of the application program to �nd an e�cient
schedule for loop bodies, i.e. a schedule with a minimized number of clock cycles.

1.1 Motivation

Due to the inability of arbitrarily increasing the clock speed of processors one way
to enlarge the amount of data that can be processed in a given time span is to issue
more than one computation at a time. This strategy is called parallel execution
in contrary to sequential execution where one instruction after the other is carried
out. There are a number of approaches to parallelize computation.
For example vector processing also referred to as single instruction multiple data
(SIMD) where the same operation is applied to a number of independent operands
simultaneously. This technique is often applied in the �eld of high-performance
computing, but also graphic processing units found in game consoles and home
computers make use of vector processing to render 3D graphics. Vector processing
can yield signi�cant performance gains. However it is limited to certain specialized
domains.
A more versatile example is thread level parallelism (TLP) where multiple se-

quential threads execute at the same time on di�erent processing units. This
form of parallelism is rather coarse grained as the individual threads run relatively
independently from each other. Again TLP can only lead to reduced execution
time if it is possible to split a program into threads which has to be done by the
programmer.
The most �ne grained form of parallelism is instruction level parallelism (ILP). In

this case the program is analyzed in order to determine which particular operations
can execute in parallel.

VLIW

The main characteristic of the very long instruction word (VLIW) design philoso-
phy for micro processors lies in the emphasis of explicit ILP. The term originates

6

from the fact that one instruction word actually encodes more than one operation.
Explicit ILP means that the programmer, respectively the compiler has to provide
the information which operations are executed in parallel. As the processor does
not incorporate any hardware features for dependence analysis, this information
has to be computed at compile time. The selection of the set of operations that
is carried out at a given clock cycle is called scheduling. The di�culty is to utilize
the resources that the processor provides as good as possible while respecting the
dependencies of the operations and the constraints that are imposed by the hard-
ware or the instruction encoding. To guarantee that these constraints are met and
all dependencies are respected is the responsibility of the programmer respectively
the compiler.
That is one of the main distinguishing features of VLIW machines as opposed

to super scalar processors, which also exploit ILP. Super scalar machines o�er
additional logic to analyze dependencies in a sequential stream of scalar operations
to determine which operations can safely be issued in parallel without violating
any dependencies. Of course this dependence analysis is limited to a certain scope,
on the other hand the dispatch unit of a super scalar machine has a lot of runtime
information about the program that can be used, for example to predict branches.
At compile time this kind of information can only be given in the form of pro�ling
data.
In VLIW processors the ILP is exposed in the architecture and all scheduling

issues are left to the compiler, thus shifting complexity from the processor to the
compiler. I.e. to trade less complexity in the hardware for more complexity in the
software.
The slogan for the VLIW design philosophy is

If you can do it in software, do it in software! [FFY05]

This exposure of architectural details makes binary compatibility hard to maintain
over VLIW processor generations as almost every change in the architecture is
re�ected in the instruction set. Hence programs have to be recompiled to run for
instance on a newer generation of processor, only so called source compatibility
[FFY05] is o�ered. However this once again emphasizes the preference of software
over hardware in VLIW.

Embedded Systems

The reduced hardware complexity is the main motivation for the use of VLIW pro-
cessors. As a rule of thumb one can say that less hardware complexity yields less
transistors on the chip, what again implies less silicon area needed for implementa-
tion. This in turn produces a lower price per item which is of crucial importance for
large volume production. That is the reason why VLIW processors are especially

7

of interest in the realm of embedded systems where production costs outweigh the
costs of development because of the large number of manufactured pieces. Less
transistors also reduce the heat dissipation in the chip and consequently it can be
run at higher clock rates.
Embedded micro processors can be found in a wide variety of consumer products

as part of micro controllers that are for example integrated into washing machines
or microwave ovens.
With the arrival of digital media devices like digital cameras or MP3 players the
demand for higher computing power has risen, as those devices contain digital sig-
nal processors (DSP) that run the computational intensive decoders and encoders.
Due to their properties VLIW processors are a reasonable choice to implement
those DSPs. Another attribute of embedded systems is that the software which
runs on them does not change very frequently and is most often used only for a
single purpose. So these programs are highly optimized towards a given platform.
As programs spend most of their time inside of loops one promising optimiza-
tion is to keep the loop bodies as small and e�cient as possible by exploiting as
much parallelism as possible. One technique that targets this problem is Software
Pipelining.

8

2 Software Pipelining

Structure of a Compiler

The structure of a compiler can be divided into the machine independent front end
and the machine dependent part, the back end.

Front end

The front end is responsible for the programming language speci�c analysis and
transformations. It examines the program from a very high level point of view.
The most important tasks of the front end are lexical and syntactical analysis.
Further more in programming languages where a static type system is present
the front end ensures compliance to this type system. As it only depends on
the programming language the front end of the compiler can be reused for a wide
variety of processors. The output of the front end in turn is a machine independent
and programming languages independent representation of the program, that is
semantically equivalent to the original source program.
This stage is called intermediate representation (IR) and forms the connecting

link between the front end and the back end of the compiler. There are a number of
possible layouts of this IR that all have di�erent properties, however they all have
in common that they decompose the program into very fundamental operations.
Normally the IR assumes an in�nite number of registers that are used for the
register operands called pseudo registers.

Back end

The back end is responsible for the generation of machine code which is speci�c to
the machine language and independent of the programming language. The most
important steps to generate machine code are instruction selection, scheduling and
register allocation.

Instruction selection maps IR operations or sequences of IR operations on opera-
tions that are actually part of the target language and are semantically equivalent.
To achieve an e�cient selection the compiler tries to prefer operations that are
cheap on the target architecture in terms of resource usage as there is in general
more than one mapping from the IR to the actual machine program.
In the case of VLIW architectures this is normally done ignoring any paralleliza-
tion opportunities as they are handled by the scheduling phase. The selection
process also ignores the proper number of physical registers the architecture o�ers
and uses pseudo registers as operands.

9

During register allocation the compiler attempts to map pseudo registers on
machine registers. As there is an in�nite number of pseudo registers available, the
intermediate program before register allocation can contain a number of di�erent
register operands that exceeds the number of machine registers available. Register
allocation tries to reuse machine registers of operations that are independent of
each other. Where this is not possible it inserts spill code to write the operands
into the memory and load them to registers when needed. Spilling in general de-
grades performance as the memory system is very slow compared to register access
so places where spill code is inserted have to be selected very carefully.

The phase in which the compiler decides when a certain operation has to be
issued in the target program is called scheduling. A correct schedule must not
violate any data dependencies. To make a schedule as e�cient as possible the
compiler has to take into account attributes of the processor's pipeline. For ex-
ample, the compiler must try to �ll delay slots if present. A delay slot occurs if
for example a jump instruction does not take e�ect immediately after the cycle
the instruction was issued but some cycles later. Thus o�ering the possibility to
schedule instructions after the jump instruction that however will be executed be-
fore the jump e�ectively takes place. Also important to consider is the behavior
of the memory system.
Scheduling is the part of a VLIW compiler that di�ers the most from a compiler
without explicit notion of parallelism. The scheduler in a VLIW compiler has more
freedom of placing the operations in the schedule as it not only has to decide the
sequence of operations but also which operations can be safely executed in parallel.
This adds to the complexity of the scheduling problem as one strives to uncover
as much parallelism as possible.
A scheduling algorithm can consider the whole program which is called scheduling
on a global scope. Or it can consider only parts of the program like traces or basic
blocks which is called a local scope. Where the former may theoretically lead to an
optimal schedule the latter is more feasible as global scheduling in general tends
to be costly due to its computational complexity. Scheduling algorithms that ex-
amine loops in the control �ow graph (CFG) are called cyclic or loop scheduling
techniques. Software pipelining falls in this category.

Phases are not independent from each other. And it is also possible to change the
order in which they are carried out. For example the scheduling can be done before
register allocation or after. If scheduling is performed before register allocation
one speaks of a pre pass scheduler in the other case of a post pass scheduler. This
problem is called phase ordering problem.
A pre pass scheduler has more freedom of placing the operations that can lead to
a better schedule. On the other hand it may increase the minimum number of

10

necessary registers called register pressure. This in turn can lead to spilling which
again decreases performance. Register pressure in general is increased because the
more ILP the compiler achieves the more registers are live at the same time thus
reducing the possibility of reusing physical registers.

2.1 Terminology

The jargon in the realm of VLIW processors is di�erent from the one used in the
�eld of RISC machines and may lead to confusion.

Operation

An operation is the most basic unit of computation. It more or less corresponds to
a RISC instruction. On a VLIW processor more than one operation can be issued
in parallel if the machines resources and the instruction encoding allow it.

Nop

The special operations that does nothing useful for the computation is called Nop
which stands for no operation. In VLIW processors Nops are explicit in the pro-
gram. Since they do nothing the goal of many optimizations, especially in the
scheduler is to reduce their number. Unfortunately in many cases Nops are in-
evitable when for example the result of an operation is not available immediately
and no other useful and independent operations are at hand. Also instruction
words where parallelization is not possible have to be ��lled up� with Nops. The
responsibility of the scheduler is to ful�l all dependences and constraints and re-
duce the number of Nops. On the other hand, a schedule with more Nops may
nonetheless perform better than an aggressively optimized one due to cache e�ects.

Instruction vs. Bundle

A set of operations that is executed in parallel is called instruction or group. A
bundle is the set of operations that is encoded in the same VLIW. These operations
do not have to be independent and are not necessarily executed in parallel, this
depends on the binary encoding scheme used. Often however a bundle corresponds
to an instruction.
For the scheduler only the creation of instructions by putting together operations
is of interest as the �nal encoding into VLIWs is done by the assembler.

11

Register Liveness

A register is said to be live between the point of its de�nition and its �nal use
before the next rede�nition or if there is no rede�nition from the last de�nition to
the �nal use. This interval is called live range.

s1 r0 = r1 + r2

s2 r1 = r0 << 2

s3 r5 = r6 + 28

s4 r4 = r0 | 1

s5 r8 = 128

s6 r0 = r9 + r10

s7 jump (. label10)

Listing 1: Liveness example

In the example r0 is live from s0 until s4. A new live range starts at s6.
The number of registers that are live at the same time can never exceed the

number of physical registers available. In such situations the register allocator
has to insert spill code which in general leads to decreased performance. Many
parallelization techniques such as software pipelining are known to increase register
pressure, thus the programmer has to be careful how to apply these techniques.
Often VLIW processors have a large number of general purpose registers to help
parallelizing the programs, but register pressure still remains a problem.

Resource Constraint

Constraints that are caused by the hardware architecture are called resource con-
straints. Since the architecture o�ers only a limited set of resources, such as
load-store units or arithmetic-logic units (ALUs), the scheduler can only place
the operations into time slots where the necessary resources are available. Re-
source constraints are the main reason why parallelization fails even though all
data dependences are met. To address all resource constraints the scheduler needs
a detailed description of the available resources and the behavior and resource
usage of all operations.

Data Dependence Graph (DDG)

A DDG is a directed graph that represents data dependences in a program. It is
an important part of the input for every scheduling algorithm. The nodes of a
DDG are individual operations of a program or a part of a program. The edges
represent the dependences between the operations. These dependences impose
constraints on the order the operations can be scheduled without altering the result

12

in an unwanted way. In particular they impose constraints on the possibilities of
parallelizing operations. A number of di�erent dependences can occur.

• True dependences arise if one operation needs the result of an earlier op-
eration as an operand. The true dependence is also called read after write
(RAW) dependence. An example for a true dependence is:

s1 r0 = r1 + r2

s2 r3 = r0 + r3

Operation s1 needs the result r0 of operation s0.

• Anti dependences are those dependences that represent the fact that a operand
has to be read before it is overwritten. Another name for this dependence is
also write after read (WAR) dependence.

s1 r0 = r1 + r2

s2 r2 = r3 + r4

Operation s1 overwrites register r2 which is an operand of s0. Thus creating
a WAR dependence since the two operations can not switch places without
altering the result.

• Output dependences occur when two operations write to the same location.
They are also called write after write (WAW) dependences.

s1 r0 = r1 + r2

s2 r0 = r3 + r4

After both operations r0 should contain the return value of s1 thus it is not
possible to exchange the position of these operations.

• Control dependences are caused by jumps in the control �ow.

s1 r0 = r1 + r2

s2 jump (. label12)

If jump operations have a delay slot it is also possible to put s0 after s1
depending on the size of the delay slot.

All of these dependences can also occur with memory operands. Alias analysis can
determine if a potential dependence between memory accesses exists or not, i.e.
whether there has to be an edge in the DDG or not.
The edges of the DDG are normally labeled with the minimal delay the source node
must be scheduled before the destination node. This value can also be negative
for example in the case of control dependences if there is a delay slot.
There can also be more than one edge between two nodes. The scheduler must
then of course satisfy all of them, i.e. take care of the most rigid dependence.

13

s1 .loop:

s2 r1 = r1 + r3

s3 r4 = r4 + 1

s4 if (r1 > 100) jump (.loop)

r1 = r1 + r3

r4 = r4 + 1

if (r1 > 100)jump (.loop)

1

1

Figure 1: A simple loop containing recurrences.

Initiation Interval (II)

The II [Lam88] is the number of cycles that elapse between the initiations of two
subsequent iterations in a software pipelined loop. Algorithms try to minimize the
II.

Recurrence

Recurrences are inter iteration dependences in a loop. A more formal term for
recurrence is loop carried dependence. They occur for example when an operation
reads a result that is de�ned in an earlier iteration of the loop, a RAW depen-
dence. All other forms of dependences can of course also cause a recurrence. Often
recurrences are caused by memory accesses since with the absence of proper alias
information it is safer to assume a dependence. The number of iterations between
the read and the de�nition is called iteration distance. This value is often also a
label on the edge. The name recurrence comes from its representation in the DDG
which is a loop.
Often the name cycle is used, but this term can be mistaken with the meaning of
clock cycle. Recurrences are the main reason besides resource constants for the in-
crease of the II. In the example 1 the operations s0 and s1 depend on the previous
iteration hence the iteration distance is 1.

Stage

The body of a loop that is going to be software pipelined is divided into disjunct
sets of consecutive operations. These sets are called stages. Stages do not have

14

to be of the same length. However, since all stages are overlapped in the kernel
shorter stages have to be expanded to the II. This is the reason why in general
the latency of one iteration is reduced. Software pipelining tries to maximize the
throughput of a loop and not to speed up the individual iterations. How the stages
are formed depends on the algorithm.

Kernel

The code that forms the steady state of a software pipelined loop is called kernel. It
is the part of the schedule that runs repeatedly. Software pipelining algorithms are
designed to optimize the kernel as in general it is the part the loop spends the most
of its time. The kernel consists of the individual stages of the consecutive iterations
that are overlapped. All operations of the original loop body are contained in the
kernel thus the pressure on the instruction cache does not rise signi�cantly, at least
for the iterative part of the software pipelined schedule. In some circumstances and
depending on the hardware architecture copy operations may have to be inserted
in the kernel which increase the code size compared to the original loop. The II
is the length of the kernel since with every kernel iteration a new iteration of the
original loop is started.

Prolog

Kernel

Epilog

Figure 2: Parts of a software pipelined loop.

Prolog and Epilog

The kernel per se is not semantically equivalent with the original loop. There has
to be initialization code in the prolog to �ll the pipeline. The epilog that runs
after the kernel empties the pipeline in an analogous way. This additional code
increases the code size of software pipelined loops compared to the original. Both
the prolog and the epilog are executed only once. Since prolog and epilog are
linear code not containing cycles they can be scheduled using traditional acyclic
scheduling algorithms.

15

Stage Count (SC)

The stage count is the number of stages a loop body is divided. The stage count is
of importance for the construction of prolog and epilog and in turn for the resulting
code size. It plays a role for the register pressure because registers may be live
over more iterations of the kernel and need to be bu�ered.

2.2 Modulo Scheduling

The name software pipelining reminds of the technique of pipelining instructions
in RISC processor. This technique splits the execution of instructions into stages
and gains e�ciency by overlapping some stages of subsequent instructions. Thus
starting the execution of an instruction before the preceding one has �nished and
that way performing some stages of di�erent instructions simultaneously. Software
pipelining takes this idea and applies it to loops.

Since programs spend most of their time executing loops much e�ort goes into
their optimization. Optimization for VLIW processors in general means optimal
use of ILP. The problem is that schedulers which try to �nd opportunities for paral-
lelization work better on larger regions of code where they have greater possibilities
to �nd independent operations. A single basic block often is too small to exhibit
a lot of parallelism. To �nd more parallelism many scheduling algorithms in the
realm of VLIW consider larger regions like traces [Fis81], superblocks [HMC+95],
hyperblocks [MLC+92], and treegions [HBC98].
Pro�ling data is needed to form the regions, since one tries to optimize the

common case, which often leads to penalties for execution paths that are taken
less frequently. The penalties arise from compensation code that has to be inserted.

The problem with those region scheduling techniques is that they only work on
acyclic regions and thus are not applicable to loops. One approach to enlarge the
region for the scheduler in loops is loop unrolling. This technique duplicates the
loop body a number of times thus allowing the scheduler to operate on a larger
block of code. The number of the loop body's duplications is called unrolling
factor. The scheduling algorithm applied to the enlarged loop body in turn is an
acyclic one that does not take recurrences into account. Loop unrolling reduces
the overhead caused by a loop since one iteration of the unrolled loop corresponds
to more than one iteration of the original loop so less jumps are taken. The
duplication of the loop body increases the code size and thus the pressure on the
instruction cache. If the number of iterations, the trip count is not divisible by
the unrolling factor the original loop body has to be run some iterations until
the modulus is 0. This is called preconditioning. Due to the duplication of the

16

loop body some inter iteration dependences become normal dependences inside
the basic block thus allowing to schedule the loop such that parts of consecutive
iterations overlap and this increases the ILP. We assume a load delay of one cycle
in the example showing the principle.

s1 .loop:

s2 r1 = port32[r7] // Load operation

s3 r7 = r7 + 4 // Increase array pointer

s4 r2 = r2 + r1

s5 r4 = r4 + 1 // Increase induction variable

s6 port32[r8] = r2 // Store operation

s7 r8 = r8 + 4 // Increase array pointer

s8 if (r4 != 99) jump (.loop)

The loop body can be scheduled with an unrolling factor of three such that a part
of three consecutive iterations is run in parallel. The example assumes a VLIW
processor that can execute up to four operations simultaneously. A conditional
jump counts as two operations. There are no other restrictions on the placement
of operations. The syntax of the example writes operations that run in parallel�
i.e. operations that are part of the same instruction�enclosed between braces and
terminated by a semicolon. Nops are left out for clarity 1. When the read and
the de�nition of one register are part of the same instruction then all reads are
�nished before the de�nition takes place.

.loop:

// iteration i iteration i+1 iteration i+2

{ r1 = port32[r7] ; ; ; ;}

{ r7 = r7 + 4 ; ; ; ;}

{ r2 = r2 + r1 ; r1 = port32[r7] ; ; ;}

{ r4 = r4 + 1 ; r7 = r7 + 4 ; ; ;}

{ port32[r8] = r2 ; r2 = r2 + r1 ; r1 = port32[r7] ; ;}

{ r8 = r8 + 4 ; r4 = r4 + 1 ; r7 = r7 + 4 ; ;}

{ ; port32[r8] = r2 ; r2 = r2 + r1 ; ;}

{ ; r8 = r8 + 4 ; r4 = r4 + 1 ; ;}

{ ; ; port32[r8] = r2 ; ;}

{ ; ; r8 = r8 + 4 ; ;}

{ if (r4 != 99) jump (.loop) ; ; ;}

Listing 2: Unrolled loop

The number of jumps is reduced by the factor three further more, the execution
time of three iterations is reduced to 11 opposed to 3 · 7 = 21 in the original loop
due to overlapping of iterations. Two out of three iteration are initiated before the
previous has �nished. However every third iteration must �nish before the next
iteration starts. Software pipelining tries to achieve a schedule that continuously
overlaps iterations without holes. Moreover the example shows that the trip count

1This notation is very similar to the CHILI's assembler language.

17

has to be a multiple of three because the branch condition is checked only every
three iterations. To exploit even more ILP output anti dependences can be resolved
with the renaming of registers with the consequence of increased register pressure.
Like software pipelining loop unrolling allows the parallel execution of di�erent

loop iterations and may lead to noteworthy speedups. Moreover it is possible to
combine both techniques to achieve even higher ILP. Again increased code size
may destroy all performance gains due to cache misses.

Software pipelining also analyzes inter iteration dependences to �nd a compact
schedule. This is the reason why the DDG that is used as input for software
pipelining is not an acyclic graph but contains recurrences that represent loop
carried dependences. The predominant approach to software pipelining is modulo
scheduling. Modulo scheduling is a family of software pipelining algorithms that
try to form a loop without a previous scheduling pass. Another way are code
motion techniques that try to improve an existing schedule by moving operations
across the back edge of the loop [CLG].
Modulo scheduling tries to �nd a pattern of operations that is, if executed re-

peatedly, equivalent to the original loop. This pattern is the steady state or kernel.
Every iteration of the kernel initiates a new iteration of the original loop. Once the
kernel is found the prolog and epilog can be constructed since they are multiple
partial duplications of the kernel. The prolog is necessary preconditioning code to
reach the steady state. It starts all iterations that are not started in the kernel.
The prolog �lls the pipeline. The epilog on the other hand �nishes iterations that
have not been �nished by the kernel yet. It empties the pipeline. The goal is to
�nd a kernel that is as short and as e�ciently scheduled as possible. Normally
this is done by �rst estimating a minimum initiation interval (MII), that is a lower
bound for all initiation intervals hence a lower bound for all kernel lengths. This
estimation has to take into account the available resources and the structure of
the DDG, especially the recurrences. If the MII is estimated too low a lot of un-
necessary computations will be made during compilation. On the other hand, if
the MII is estimated too high there could be a kernel with an II that is lower than
the MII thus wasting an opportunity for optimization. In general it is better to
underestimate the MII.
Then the algorithm tries to place all operations of the original loop inside the

kernel without violating dependences and without demanding more resources than
are available. If that fails the II is increased by one and scheduling is tried again.
This is repeated at the latest until the II reaches the length of the original loop,
because then modulo scheduling cannot provide any improvements and the original
loop is used instead.
Analogous to the pipelining technique in processors, loop bodies are split into

stages. These stages of subsequent iterations are then executed in parallel. This

18

Estimate MII

Construct kernel

Kernel found? Increase II

II still feasible?

Success Fail

No

Yes

Yes

No

Figure 3: Modulo scheduling strategy [CLG]

is best shown using an example.

In the simpli�ed example of �gure 42 the loop body consisting of the operations
A through I is divided into three stages, the stage count (SC) is three. This way it
is possible to overlap the execution of three consecutive iterations of the loop and
to exploit ILP. The initiation interval (II) is four thus one iteration of the kernel
takes four clock cycles. Even though one stage only consists of two operations that
could �nish after two cycles it has to be expanded using Nops to also correspond
to the II. The stage of three operations is handled in an analogous way.
The simple example assumes that an acyclic scheduler was not able to �nd any

parallelization possibilities which is easily possible if for example every operation
depends on the result of the preceding one. Also assuming that the parallelization
of the stages does not violate any recurrences and that the machine is able to
execute three or more operations in parallel one can see, that the kernel is only
four clock cycles long compared to the original loop with a loop body of length
9. Given a su�ciently large trip count (TC) this leads to a great reduction of
execution time. Even though the time needed for one iteration in the pipelined
loop is greater than in the original, 12 compared to 9 cycles, the throughput of
the kernel is greater. This is why the trip count is important. Software pipelining
optimizes the throughput of a loop not the time necessary for one iteration. The

2This �gure is similar to the one used to explain software pipelining in the lecture [BE08].

19

A

B

C

D

E

F

Nop

G

H

I

A

B

C

D

E

F

G

H

I

A

B

Nop

Nop

C

D

E

F

G

H

I

Prolog

Kernel

Epilog

A

B

C

D

E

F

G

H

I

Software pipelinedOriginal loop

Figure 4: How the iterations are overlapped in modulo scheduling.

total time spent in the software pipelined loop is

(SC − 1) · II · 2︸ ︷︷ ︸
prolog and epilog

+ (TC − SC + 1) · II︸ ︷︷ ︸
kernel

This formula holds only if the prolog and the epilog are not further optimized by
an acyclic scheduler which would be possible as they are formed of straight line
code.
If we assume a trip count of 10 iterations the original loop would take

10 · 9 = 90

cycles to complete. The software pipelined version would only need

(3− 1) · 4 · 2 + (10− 3 + 1) · 4 = 16 + 32 = 48

20

cycles.
The loop overhead caused by jumps is not signi�cantly reduced by software pipelin-
ing because the number of jumps that are taken by kernel iterations is only reduced
by SC − 1 compared to the original loop. Normally it is possible to use the delay
slot of jump operations for operations of previous stages and that way using the
available clock cycles of the delay slot.

Restrictions

The example shows a single basic block loop without control �ow. That is, there
are no branches or subroutine calls inside the loop body. Most software pipelining
algorithms without extensions work on single basic block loops. The same ap-
proach was chosen for the scheduler that we implemented for this thesis. Single
basic block loops are easily recognized in the control �ow graph because every
basic block that is the successor of itself is a single basic block loop. Basic block
loops are per de�nition also innermost loops since the basic block does not contain
branches or jumps it cannot contain loops.
This restriction disquali�es a lot of loops that can be handled by software pipelin-

ing, however many loops that do time-consuming computations are basic block
loops and for those software pipelining can bring good improvements.

Furthermore the example shows how the code size is increased which may lead
to decreased performance in the instruction cache if the working set of operations
does not �t into the cache and cache misses are inevitable. One can see that the
code of the loop body exists three times because of the stage count of three. Most
of the additional code is contributed by the prolog and the epilog, which both are
only executed once. The loop kernel consists of the same operations as the origi-
nal loop, hence if the iteration count is large enough the e�ects of the instruction
cache decreases as the kernel is not bigger than the original loop. In more realistic
examples there would be some additional operations in the kernel, they do not
have large consequences on the code size though. The code size multiplies by the
stage count compared to the original loop.

A further requirement for the loop to be suitable for software pipelining is that
the trip count in general has to be loop invariant. That is, the information of how
often the loop body is going to be executed has to be available before the loop is
entered. The trip count has to be independent of the computation done inside the
loop. However, it does not have to be a compile time constant even though a trip
count that is known at compile time of course also satis�es the condition.
The reason for this restriction is that the number of kernel iterations is smaller

than the trip count of the original loop. Thus the branch condition of the kernel's

21

branch has to be adapted adequately. Since the kernel runs SC − 1 iterations
less the branch from the kernel to the epilog has to be taken earlier. If the branch
condition is not adapted, that is it remains the same as in the original loop, SC−1
iterations are started that would never be executed in the original loop. If those
additional iterations cause any side e�ects, which is normally the case, the result
of the loop is altered. This can only be done if all but the �nal stage do not have
any side e�ects, in this case the epilog can be left out altogether.
Another reason why the trip count has to be known is that it must not be too

low. The TC must at least be equal to the SC. The problem is again that iterations
would be started that should not be executed. If the TC is small the e�ects of the
increase in code size are predominant and the overhead of prolog and kernel may
outweigh the advantages gained by modulo scheduling. For the case that the TC
is smaller than the SC the program has to conditionally branch to a not software
pipelined version of the loop. Since the SC is not too big a totally unrolled version
would be possible. This again contributes to the code size.

Another problem is the increased register pressure. Often more than one copy
of a register is necessary to prevent that values are overwritten too early.
This can be shown in another example.

r10 =

Nop

= r10

r10 =

Nop

= r10

i i + 1

Ai

Di

Ai+1

Di+1

Figure 5: The problem of live ranges.

The modulo scheduled loop has a stage count of two and an initiation interval
of three. The problem that is depicted in this example is that the operation Di

of iteration i has to read the register r10 that is de�ned by the operation Ai also
of iteration i. In this version however, this is not possible because operation Ai+1

of the next iteration rede�nes the register r10 thus overwriting the value Ai is

22

supposed to read. The live range of r10 is four thus the rede�nition in a later
iteration happens before the read of the current iteration.
This situation is not uncommon in modulo scheduling and happens every time

a live range of a register exceeds the initiation interval. There is a number of
possible solutions to remedy this problem.

One way is to increase the initiation interval by loop unrolling such that no live
range of a register is greater than the II. This technique is called modulo variable
expansion. Again loop unrolling contributes to the code size which is undesirable.
Especially in the kernel it is important that the working set of operations �ts into
the instruction cache. Of course it increases also the number of necessary registers.
It also changes the one to one relation that every kernel iteration also initiates one
iteration of the original loop. If the trip count is not divisible by the unrolling
factor preconditioning is needed. This code again enlarges the code. Also the en-
largement of the loop body complicates the DDG the modulo scheduling algorithm
has to work with.

The solution chosen in the system we implemented is the introduction of copy
operations to break the live ranges of registers into intervals less than or equal
to the II. This technique also increases register pressure and needs the necessary
resources available for the introduction of the copy operations. The answer to the
problem of �gure 5 using the copying technique is depicted in �gure 6.

r10 =

r11 = r10

= r11

r10 =

r11 = r10

= r11

i i + 1

Ai

Di

Copy operation Ci

Ai+1

Di+1

Ci+1 Copy operation

Figure 6: Shortening live ranges with copy operations.

Now the live ranges of r10 and r11 are both reduced to 2 which is lower than
the II thus no unwanted overwriting occurs. The price we had to pay is that

23

an additional register was needed increasing register pressure. The number of
additional copies of a register with live range LR is at least⌊

LR

II

⌋
The copy operations have to be placed in such a way that no live range is greater
than the II. If the available resources are not enough for example there is no place
to schedule all the copy operations the II has to be increased. Normally this is not
necessary since copy operations typically require only one cycle and do not need
a lot of resources.

A hardware feature that solves the problem of overlapping live ranges which
can be found in some VLIW processors are rotating register �les. Using rotating
register �les every register is replaced by an array of registers that can be addressed
using a base pointer and an o�set. Now renaming does not have to be done by copy
operations but by simply augmenting the base pointer. All registers are renamed
at once. The reading operation only needs the negative o�set, that is the number
of IIs that pass between de�nition and use. At every kernel iteration the base
pointer is augmented and no copying and renaming is necessary. Augmenting and
o�set follow a modulo semantic such that the register array appears like a cyclic
bu�er.
Rotating register �les can also be used to handle trip counts that are not loop

invariant. It can be used to make register de�nitions of iterations that should not
have been executed �undone� by simply decreasing the base pointer by SC − 1.
After that the current registers hold the values of the iteration where the branch
condition became true and the branch was taken. Again this code does not have
an epilog and the program is continued right after the kernel. This works only
if the operations that are undone cannot cause exceptions since they work with
operands that were not intended in the �rst place. Also unintentional memory
store operations are not prevented by rotating register �les.
Rotating register �les do not increase register pressure from the point of view of

register allocation. Of course they add complexity to the hardware of the register
�le and the number of real physical registers increases. They are only addressed in
another way, not just by the register name but by base register and o�set. Another
disadvantage is that modulo scheduling using rotating register �les only works if
the stage count is not greater than the number of instances the register �le can
hold for every register. Normally however the SC is rather small.

If-conversion

One drawback of software pipelining is that it can only handle loops without
internal control �ow. The technique called if-conversion can help to enlarge the

24

BB1

BB2 BB3

BB4

BB1
if (p) BB2
if (¬p) BB3
BB4

If-conversion

Figure 7: Transformation of the CFG with if-conversion

body of basic block loops or form basic block loops out of code that contains
control �ow. If-conversion needs a hardware feature called predicated execution.
Fortunately this is very common in VLIW architectures. Predicated execution
means that some or all operations can have an additional predicate as an operand
that can be either true or false. Predicated execution can make the e�ects of
a predicated operation undone or suppress its execution if the predicate turns
out to be false. This feature can be used to turn control dependences into data
dependences and to make larger basic blocks. The simplest version of if-conversion
turns diamond like structures in the control �ow graph into a single basic block
and supplies all operations of the two branches with a predicate.
If-conversion helps not only to �nd more opportunities for software pipelining

but also exposes more ILP for acyclic schedulers because the control �ow graph
is simpli�ed and the scope examined is increased. On architectures with large
jump delay slots it also reduces the number of jumps and helps to create denser
schedules. A simple example for if-conversion, assuming a jump delay slot of two
cycles:

s1 r1 = r7 - 3

s2 if (r1 < 0) jump (. labelT)

s3 Nop

s4 Nop // last cycle of the delay slot

s5 r4 = 20

s6 jump (. labelExit)

s7 Nop

s8 Nop // last cycle of the delay slot

s9 .labelT:

s10 r4 = 10

s11 .labelExit

s12 r5 = r4 + 30

Listing 3: Without if-conversion

s1 r1 = r7 - 3

s2 if (r1 < 0) r4 = 10 // conditional move

25

s3 if (r1 >= 0) r4 = 20

s4 r5 = r4 + 30

Listing 4: If-converted

The true block and the false block have been merged into one thus eliminating
control �ow and reducing the e�ects of the jump delay slot. The construction
algorithm for the DDG has to be aware of predication and has to include the
additional edges. In the example of listing 4 there must be RAW edges from
both s1 and s2 to s3. It is obvious that if conversion should be applied before
software pipelining to exploit its bene�ts. On many architectures the predicate
can be computed independently from the predicated operation o�ering even more
freedom for scheduling. On the other hand full predication is rather uncommon
and normally only some operations o�er a predicated version.

2.3 Comparison to other Modulo Scheduling techniques

Since optimal modulo scheduling is not feasible due to its complexity and long
compile time many heuristics have been developed. In general they follow the
strategy depicted in �gure 3 however they di�er in various ways:

• The method the operations are placed in the schedule.

• The method register pressure is reduced.

• The order in which operations are put into the schedule.

• Whether an operation can be unscheduled and rescheduled, i.e. backtracking
is applied.

Iterative Modulo Scheduling

Iterative modulo scheduling (IMS) was proposed in [Rau94]. Operations are put
into the partial schedule taking into account the operations that are already in
the partial schedule, the height in the DDG, and the recurrences they belong to.
The operations are scheduled always as early as possible. If no feasible time slot is
found some operations are taken out of the partial schedule and will be rescheduled
later, i.e. backtracking occurs.
IMS does not feature any heuristics to reduce register pressure. A comparative

study [CLG] showed that IMS produces schedules with a small II, however register
requirements and compilation time is higher compared to other techniques.

26

Slack Modulo Scheduling

Slack modulo scheduling was presented in [Huf93]. The terms �slack� means the de-
gree of freedom an operation o�ers to the scheduler depending on the predecessors
and the successors already placed in the partial schedule. The priority function for
the operation selection is based on the slack. Like swing modulo scheduling�the
technique used in our system described in section 2.4�slack modulo scheduling has
a bidirectional approach for placing operations into the partial schedule. Depend-
ing on predecessors and successors a heuristic determines whether an operation is
scheduled as early as possible or as late as possible. This measure helps to reduce
the live intervals of registers and thus register pressure. If no place is found for an
operation the algorithm uses limited backtracking.
The study [CLG] showed that slack modulo scheduling leads to schedules with

low register requirements however compared to other techniques the II tends to be
longer.

Integrated Register Sensitive Iterative Software Pipelining

Integrated Register Sensitive Iterative Software Pipelining (IRIS) tries to keep the
the II low while minimizing the register requirements. Like slack modulo schedul-
ing it uses a combined bottom-up and top-down approach for placing the opera-
tions to keep register pressure low. The priority function used for the node selection
is the same height-based as in IMS. Like IMS backtracking is also applied in IRIS.
According to [CLG] IRIS produces schedules of good schedules at the cost of

increased compilation time and register requirements.

2.4 Swing Modulo Scheduling

Swing modulo scheduling (SMS) is a modulo scheduling technique that focuses
on reducing unnecessary register pressure while generating near optimal schedules
[Llo96] in terms of initiation interval and stage count. It is a heuristic approach
with fairly low computational cost keeping compilation time low. Like all modulo
scheduling algorithms it constructs the kernel of the loop pipelined schedule not de-
pending on previous scheduling. One distinguishing feature of SMS is its awareness
of register live ranges. This is attained by dealing with the most critical recurrences
in the DDG earlier and scheduling dependant operations closely together. Unlike
other modulo scheduling algorithms SMS works without backtracking, that is no
scheduling decision is ever undone. This helps to reduce computational complexity.
Before scheduling the order in witch the operations are scheduled is determined.
This order is of essential importance since every scheduled operation also reserves
the necessary resources that are then no more available. If scheduling is not pos-

27

sible due to resource con�icts the II is incremented by one like in other modulo
scheduling algorithms. The scheduling order of the operations is independent from
the II thus it needs to be computed only once in advance which also contributes
to reducing computational complexity. The basic steps of SMS are

• Computation and analysis of the DDG

• Ordering of the nodes

• Scheduling

• Construction of prolog, kernel, and epilog.

The complexity of the algorithm is strongly in�uenced by the structure of the
DDG, because to determine the scheduling order the DDG has to be inspected for
recurrences. Every recurrence can contribute to the II. The name swing is drawn
from the fact that the ordering of the nodes is done in alternating up and down
sweeps across the DDG. Also the scheduling itself is done in corresponding up
and down movements. We felt that SMS accommodates the CHILI architecture
which does not o�er rotating register �les due to the reduction of necessary copy
operations which can reduce the quality of the schedule.

28

3 The LLVM Compiler Infrastructure

LLVM stands for low level virtual machine. It is a compiler infrastructure that
allows for multi-stage optimization of programs [Lat02]. Multi-stage means that
it is not only a static compiler but also features link time optimization and opti-
mization at run time. The advantage is that also pro�ling information gathered
during the use of the program can be incorporated into the optimizations. For
optimizations that are too complex to be carried out at runtime the possibility
of re-optimizing a program o�-line exists, for example when the user's computer
would be idle. However we made only use of the static compiler to implement
modulo scheduling. The basic steps in the static compiler are the following.
A front end translates the source language into LLVM's intermediate represen-

tation language. This intermediate representation is target and source language
independent. Most of the optimizations incorporated in LLVM are carried out
on this intermediate representation. After that, the intermediate representation
is mapped to a machine dependent representation that resembles the actual ma-
chine language and uses almost only operations of the target machine's instruction
set. The modulo scheduler works on this representation of the program. Finally a
printing pass generates the assembler �les.
LLVM optimizations and analyzes are implemented as passes regarding basic

blocks or functions. Since many passes depend on each other LLVM takes care
that the individual passes are run in the right order. It also makes sure that
information that is invalidated by a pass is updated timely before it is needed
again. Every pass can specify which information it needs and which information
it invalidates.

3.1 Intermediate representation

The machine independent intermediate representation used by LLVM is inspired by
assembly languages used for RISC machines. Most operations are in three address
code, i.e. they have two reading operands and one result. Memory accesses are
done explicitly by load and store operations. LLVM provides an in�nite number of
typed virtual registers. Operations are polymorphic such that a single operation
can work with various operand types. For example �oating point multiplication
has the same opcode as integer multiplication. The semantics of an operation is
determined by its opcode and the type of its operands [Lat02].
A distinguishing feature of LLVM's intermediate representation is the use of

static single assignment form (SSA form) for its code representation. A program
is in SSA form if every virtual register is de�ned exactly once before it is read. This
simpli�es dependence analysis and other analysis and optimization passes. As a
consequence every operation that de�nes a register creates a new virtual register.

29

To handle control �ow special operations are used, so called phi nodes. Phi nodes
reside at the beginning of every basic block that has more than one predecessor
in the control �ow graph. Every phi node has as many reading operands as the
block has predecessors. The phi nodes select the incoming values according to the
predecessor the control �ow comes from and assign them to a new virtual register.
SSA form is kept up until register allocation. After register allocation only the

limited number of physical registers is available making rede�nitions of registers
inevitable. Even after instruction selection the program is still in SSA form. Af-
ter instruction selection the program is in a target dependent form containing
operations of the target language, however phi nodes are still in the program.
This is the representation the modulo scheduler works on.

3.2 Extended hardware description for VLIW

Unfortunately LLVM does not include explicit support for VLIW architectures.
There is no notion of parallel execution. Thus there is no way to tell the scheduler
that an operation can be scheduled in the same cycle as another one even if the
necessary resources are available. The time slot acts like a unique resource that can
only be reserved by one operation. In VLIW architectures resources are typically
duplicated a number of times. For example there can be two load-store units.
That means a load operation can either use the �rst or the second load-store unit,
one can say there are two versions of the load operation.
In LLVM every operation has exactly one version. We solved this problem

by supplying a resource model independent from LLVM's that features all the
characteristics needed. The modulo scheduler depends only on this model. To
specify parallelism we included a special operation that does nothing but signify
the end of a VLIW instruction. That is for example, four operations enclose
between two of the special operations are meant to be executed in parallel.

30

4 Implementation

The modulo scheduler is implemented as a so called �machine function pass� in
the LLVM infrastructure. I.e. the pass works on the scope of the whole function.
Nevertheless it schedules basic blocks only. The pass is located before register
allocation such that dependences that can by avoided by register renaming do not
occur, thus allowing to exploit more parallelism. I.e. anti and output dependences
appear only between memory accesses. Those dependences cannot happen between
register operands since the program in this intermediate representation is still in
SSA form thus every register is de�ned only once. SSA form is destroyed only
shortly before register allocation therefore the modulo scheduler has to make sure
that the program is still in SSA form after it has �nished. Many subsequent passes
depend on the program being in SSA form and would not work otherwise. For
example the liveness analysis that follows directly needs a program in SSA form.
We do this by �rst substituting all phi operations by copy operations, hence

destroying SSA form. The copy operations de�ne the same registers as the phi
operations, but the operand that is copied corresponds to the phi node's back edge
operand. This is possible since the kernel has exactly two predecessors namely the
prolog and the kernel. Then the modulo scheduling is done like on any other basic
block, not depending on SSA form. The description of the algorithm in [Llo96]
does not use SSA form. Finally SSA form is regained by inserting phi operations
and renaming of operands. The modulo scheduling pass tries to postpone any
transformations and changes to the original function as long as possible to only
invalidate informations of previous analysis passes if it is sure that modulo schedul-
ing is possible. Otherwise it does not alter the function and the control �ow graph
thus ensuring that computations do not have to be repeated unnecessarily.

Curtailments

As mentioned in 3.2 LLVM does not have any notion of parallelism thus we en-
countered di�culties to do the whole modulo scheduling before register allocation
because many passes run afterwards. It was also impossible to schedule the branch
instruction the way it would be in the target program, namely also accounting for
the delay slot. In an LLVM program the branch operation has always to be the
last one in the basic block.
The solution was to output the operations the modulo scheduler issued to one

VLIW instruction in sequential order. Thanks to the SSA form no unnecessary
dependences are introduced. After register allocation the basic blocks are sched-
uled by the normal list scheduler, hence the modulo scheduling pass can be seen as
a preconditioning for the acyclic scheduler. The schedules produced are di�erent
from the ones found in the modulo scheduling pass, however similar in quality

31

since the preconditioning exposes more ILP to the acyclic list scheduler. As soon
as LLVM also explicitly supports VLIW architectures the pass can run without
the help of the list scheduler.
We also implemented a version of the modulo scheduler that runs after register

allocation, when the intermediate representation is not in SSA form anymore, the
algorithm does not depend on the SSA form anyway. The disadvantage is that
WAW and WAR dependences have been introduced by the register allocator, the
advantage is that the modulo scheduler can run instead of the list scheduler for
modulo schedulable loops, hence it outputs the exact schedule it �nds, including
instructions and delay slots. Another advantage is that in our system the if-
conversion pass runs also after register allocation making more candidates for
modulo scheduling available.

4.1 Finding suitable basic blocks

Swing modulo scheduling works on single basic block loops. In the control �ow
graph those basic blocks are immediate successors of themselves, i.e. they have a
back edge that is both an outgoing edge and an ingoing one.
The problem is that LLVM generates programs where this kind of basic blocks

is very rare. LLVM substitutes the direct back edge by an additional jump opera-
tion which forms a new basic block such that the loop consists of two basic blocks
instead of one. This is called to break a critical edge and is useful for other passes.
However it prevents modulo scheduling if not some preconditioning is done. To
make the loop suitable for modulo scheduling the CFG has to be changed slightly.

First the CFG is examined whether the basic bock in question has exactly two
successors. This can be done by using the control �ow information LLVM provides.
If one of the successors is the basic block itself no further transformations are nec-
essary. Otherwise if one of the successor basic blocks only consists of a jump back
to the top of the loop it is possible that a single basic block loop can be formed by
some transformations. Furthermore the successor block consisting of a single jump
operation must have exactly one predecessor and exactly one successor which is the
loop body. If these conditions are met a single basic block loop can be constructed.

There are two kinds of loops that can be found in many LLVM programs which
are disguised single basic block loops. One case is when the fall through path is
only taken at loop exit. Then the back edge consists of a jump out of the loop and
a jump back to the top.
This can be repaired by simply exchanging the jump target of the loop's branch

condition to the label corresponding to the loop instead of the intermediate jump.
The basic block that consists of a single jump operation can be safely deleted

32

afterwards as it is not reachable anymore due to the fact that it only had the loop
body as a predecessor. This situation is shown in �gure 8.

.loop:

// Code

// that forms

// the loop body

// ..

if (condition)

jump (.back)

// Code that is

// executed after

// the loop.

.back:

jump (.loop)

fall through

jump target

.loop:

// Code

// that forms

// the loop body

// ..

if (condition)

jump (.loop)

// Code that is

// executed after

// the loop.

fall through

Before Transformation After Transformation

Figure 8: Broken back edge in the CFG with jump

The slightly more complicated case is when the loop's branch condition is met
it does not jump back to the head of the loop but out of the loop. That means
that the fall through path is taken in every iteration except the last one. The
fall through block in this case must be the one with the single jump back to the
loop. Therefore the condition of the loop's branch has to be negated, which is
possible with help of a LLVM function, and the jump target has to be set to be
the loop. Furthermore the jump target of the fall through block has to be set to
the original jump target of the loop. The single jump operation can not simply be
deleted because it is not sure, that the exit block is placed right after the loop in
the program. This situation and its solution is shown in �gure 9.
Then LLVM's CFG has to be updated accordingly. One draw back is that these

transformations can invalidate some earlier analysis passes even if it turns out that
modulo scheduling is not possible at all.
After ensuring that the loop is a single basic block loop, some other conditions

have to be met for the loop to be suitable for modulo scheduling. The loop body
must not contain inline assembly code or function calls. In general it must only

33

.loop:

// Code

// that forms

// the loop body

// ..

if (condition)

jump (.exit)

.exit

// Code that is

// executed after

// the loop.

jump (.loop)

fall through

jump target

.loop:

// Code

// that forms

// the loop body

// ..

if (NOT condition)

jump (.loop)

jump (.exit)

.exit:

// Code that is

// executed after

// the loop.

fall through

jump target

Before Transformation After Transformation

Figure 9: Broken back edge in the CFG with fall through block

contain one branch operation at the end. For modulo scheduling the trip count
must be loop invariant. This is checked in the branch condition. All operands
but the induction variable have to be loop invariant. The easiest case is when
the induction variable is simply compared to an immediate constant. Thanks
to LLVM's standard transformation of loops one can assume, that the induction
variable is a register which is incremented once every iteration by one. This is
important when we have to update the branch condition. Only loops with exactly
one branch operation at the end that is associated with the trip count can be
handled. Further more it is checked if the loop is an innermost loop additionally
by using LLVM's loop analysis information. If all these conditions are met the loop
can be modulo scheduled. The scheduling passes of the loops are independent from
each other so we save every suitable basic block loop in a work list and schedule
one after the other.

4.2 Computation of the dependence graph

Since we do not know in advance whether modulo scheduling will be successful
the whole algorithm will be carried out on a copy of the basic block which can
be discarded if the algorithm fails to �nd a valid schedule. This working copy is

34

changed from the original loop in such a way that all phi operations are substituted
by copy operations. The registers which are de�ned are the same as the registers
that are de�ned by the phi operations, the register operands read are the ones
corresponding to the back edge of the phi operations. This is necessary as phi op-
erations have to be scheduled at the beginning of a basic block in LLVM. However
the modulo scheduling algorithm regards phi operations as normal operations and
would not necessarily schedule them at the beginning of the basic block.
After this step the program is not in SSA form anymore, nevertheless we can

still be sure that every register is only de�ned exactly once inside the loop body.
SSA form will be regained after modulo scheduling was successful by renaming of
operands and insertion of phi operations.
The dependence analysis which constructs the DDG works with this transformed

loop. Our straight forward implementation of the dependence analysis which also
�nds loop carried dependences consists of two backward passes over the loop body.
It is a slight adaption of the very common DDG construction algorithm found in
acyclic schedulers. This analysis conservatively sets all iteration distances greater
than 0 to one. To exploit more ILP further analysis of memory accesses would be
necessary. It collects all de�nitions and uses of registers and memory accesses and
inserts the adequate edges. Since every register is only de�ned once there can only
be RAW dependences between operations that only have register operands. This
helps to keep the DDG simple. Memory accesses can have also WAR and WAW
dependences if one of the operations involved is a store operation. The result of
the algorithm is a directed graph where every node corresponds to an operation
of the program. Edges represent a dependence and are labeled with the iteration
distance and the type of the dependence�RAW, WAW or WAR. The dependence
type is important to compute the minimum delay of the depending operations.
Dependences that do not cross iteration boundaries have a distance of 0, these are
intra iteration dependences.

4.2.1 Loop carried dependences

Loop carried dependences also known as recurrences emerge when a value de�ned
in a former iteration is read or its register of memory cell is overwritten. This
is very common in loops, for example if the sum of all array entries is computed
the intermediate results are read and updated iteratively. The iteration distance
between register de�nitions and uses can at most be one, since the register would
be overwritten in every iteration.
Memory accesses can have iteration distances greater than one as it is possible to

read for example a memory cell that was de�ned more than one iteration ago which
would result in a RAW dependence. To �nd out such connections it is necessary
to analyze the memory access behavior of a loop, how array pointers are moved

35

for dst← 0 to 1 do

forall instructions i in reverse order do
U ← uses of i;
D ← de�nitions of i;
// insert the edges

forall d ∈ D do

if def[d] ∧ d is not a register operand then
insert WAW edge from i to def[d] with distance dst;

end

forall p ∈ uses[d] do
insert RAW edge from i to p with distance dst;

end

end

forall u ∈ U do

if def[u] ∧ u is not a register operand then
insert WAW edge from i to def[u] with distance dst;

end

end

// update the data structures

forall d ∈ D do

if dst = 0 then
def[d] ← i;

else
def[d] ← unde�ned;

end

uses[d] ← ∅;
end

if dst = 0 then

forall u ∈ U do
insert i into uses[u];

end

end

end

end
Algorithm 1: Construction of the DDG

36

and other aliasing information. This is not implemented in this system, and thus
recurrences in the DDG all have iteration distance one, which is a conservative
assumption. It is save to underestimate the iteration distance since a value that
was de�ned more than one iteration ago is still de�ned one iteration ago. It can
result in a loss of ILP, however iteration distances of one are found very frequently
in programs and thus we believe the e�ect is not very large. Furthermore the ILP
is determined mostly by the smallest iteration distance of any recurrence. Edges
with an iteration distance do not necessarily have to form recurrences, but those
edges do not impose any constraints on the ILP.
The DDG construction algorithm considers recurrences in its second pass. In

the second pass the data structures are updated such that only dependences are
found that range across the iteration boundary.

4.3 Minimum initiation interval

Once the DDG is constructed a starting point for the modulo scheduling algorithm
can be computed. The MII[Rau94] is a lower bound for the II and in turn the �rst
length of a kernel that is tried for scheduling. The MII is a�ected by two factors:
the available resources and the most critical recurrence in the DDG.
The resource minimum initiation interval (ResMII) is limited by the resource

usage of the loop to be scheduled and the resources available in the processor
like arithmetic-logic units or load-store units. It is obvious that even if all data
dependences would allow it, parallelization is only possible if there are enough
resources available necessary for the operations executed in parallel.
The recurrence minimum initiation interval (RecMII) is the number of cycles

that is necessary to satisfy all loop carried dependences between iterations. For
example if an operation reads a value de�ned in the previous iteration the reading
operation cannot be scheduled before the computation of the value has �nished.
This form of RAW dependence frequently arises from operations with a high la-
tency, like load operations.
The MII must not be smaller than either the ResMII or the RecMII thus

MII = max(RecMII,ResMII)

To compute the exact value of the MII requires a lot of complex computation and
thus one settles with an estimation that tries to be as close as possible. If the MII
is overestimated the modulo may �nd a solution faster which results in a reduced
compilation time. It may, however, generate kernel that is larger than it needs to
be resulting in wasted performance. On the other hand an underestimated MII
leads to more futile scheduling attempts which results in increased compilation
time. We feel that in SMS underestimating the MII is better since the algorithm

37

itself is not computationally complex and it does not incorporate backtracking.
Thus some failed scheduling attempts are acceptable while �nding the smallest
possible kernel.

4.3.1 Resource MII

To compute the ResMII a description of the available resources of the machine
and a description of the resource usage of each operation of the loop is necessary.
A simple estimation of the resources that the loop body needs is to sum up all
resource claims of all operations and divide it by the total number of available
resources. This is the way chosen in our implementation since the CHILI provides
every functional unit four times in parallel. To re�ne the estimation it is possible
to separate the needed resources by their type, for example ALUs or load-store
units. Then the most critical resource type determines the ResMII.

ResMII = maxt∈T

(⌈∑
i∈P needs(i, t)

number(t)

⌉)
Where T is the set of di�erent resource types, P the set of operations forming

the program, needs(i, t) the number of cycles operation i needs resource of type t
and number(t) the number of instances of a resource of type t.

4.3.2 Recurrence MII

A circuit in the DDG signi�es that an operation depends on the invocation of the
same operation in an earlier iteration. In this circuit there must be at least one
edge with a distance greater than 0. The distinction between the terms latency
and delay and the description of the term elementary circuit is necessary.

Latency is the number of clock cycles an operation needs before its result is avail-
able. The latency of an operation o is written latency(o) or λo.

Delay is the minimum number of clock cycles that must pass between two depen-
dent operations. When the operation succ depends on the operation pred,
that is there exists an edge in the DDG pointing from pred to succ, at least
delay(pred, succ) clock cycles have to pass between pred and succ. The delay
depends on the type of dependence.

• RAW: latency(pred)

• WAR: 1− latency(succ)
• WAW: 1 + latency(pred)− latency(succ)

38

Theses formulae show that for WAR and WAW dependences the delay also
can be negative, which means that the depending operation actually can be
scheduled before the one it depends on.

Elementary circuit in an directed graph is a path through the graph that starts
and ends in the same vertex and which does not visit any vertex on the
circuit more than once [Rau94].

The clock cycles that pass between the two invocations of the operation must be
long enough to meet all delays along every elementary circuit that can be found
in the DDG. This is expressed in the following inequation.
Let c be an elementary circuit of the DDG then delay(c) is the sum of all delays

along c. Further let distance(c) be the sum of all distances along c.

delay(c)− II · distance(c) ≤ 0

must be true for all elementary circuits c [Rau94]. Hence the initiation interval
has to be chosen accordingly. Using this inequation and the set of all elementary
circuits C the RecMII can be expressed as

RecMII = maxc∈C

(⌈
delay(c)

distance(c)

⌉)

The DDG has to be analyzed to �nd all elementary circuits. The MII of every
recurrence is computed and the recurrences are saved in a sorted list from high
MII to low MII. The recurrence responsible for the RecMII, that is the most crit-
ical recurrence, corresponds to the critical path that is given priority in acyclic
schedulers. In SMS the recurrence is prioritized accordingly. Hence SMS seems
promising compared to acyclic scheduling whenever the critical path is long com-
pared to the MII.

4.4 Computation of node properties

To determine the order in which the operations are scheduled, some properties of
every node have to be computed according to their position in the DDG. All these
properties have to be computed only once and can be used at every scheduling
attempt.

• δu,v is the iteration distance on the DDG edge from the node u to the node
v. It means that the operation v of iteration I depends on operation u of
iteration I − δu,v.

• λv describes the latency of operation v.

39

• Suc(v) is the set of all direct successors of v in the DDG.

• Pred(v) analogously is the set of all predecessors of v in the DDG.

For every operation in the DDG �ve properties are computed. To avoid cycles
during the computation of the node properties one back edge of every recurrence
is ignored, thus gaining an acyclic graph. The properties are computed as follows:

• ASAPu stands for �as soon as possible� and de�nes the earliest clock cycle
the operation u can possibly be scheduled.
if Pred(u) = ∅ then

ASAPu ← 0;
else

ASAPu ← max(ASAPv + λv − δv,u ·MII)∀v ∈ Pred(u);
end

• ALAPu stands for �as late as possible� and de�nes the latest clock cycle the
operation u can possibly be scheduled.
if Suc(u) = ∅ then

ALAPu ← max(ASAPv)∀v ∈ Suc(u);
else

ALAPu ← min(ALAPv − λv − δu,v ·MII)∀v ∈ Suc(u);
end

• MOVu is the mobility of operation u. It describes the number of clock cy-
cles u can be scheduled in, that is the freedom the scheduler has to put the
operation into the schedule. The more critical the operation is, the smaller
is the value.
MOVu ← ALAPu − ASAPu;

• Du is called the depth of operation u in the DDG. It depends on how far the
operation is from the top of the DDG.
if Pred(u) = ∅ then

Du ← 0;
else

Du ← max(Dv + λv)∀v ∈ Pred(u);
end

• Hu is called the height of operation u in the DDG. It depends on how far
the operation is from the bottom of the DDG.

40

if Suc(u) = ∅ then
Hu ← 0;

else
Hu ← max(Hv + λu)∀v ∈ Pred(u);

end

4.5 Ordering of the nodes

One of the most distinguishing features of SMS compared to other software pipelin-
ing techniques is how the order in which the operations are put into the schedule is
determined. The ordering algorithm produces a list of operations. The scheduling
algorithm takes this list and tries to �nd a suitable time slot for every operation
starting with the �rst one in the list. Obviously the more operations that are
in the partial schedule the more di�cult it becomes to �nd an appropriate time
slot since every operation creates new scheduling constraints that have to be met.
This is why operations with less freedom for the scheduler are placed more towards
the front of the list such that they are handled earlier than operations with more
freedom. The ordering of nodes tries to achieve two goals.
It tries to give priority to operations with a low MOV value, that is operations

that give the scheduler less freedom to �nd an appropriate time slot. This helps
to keep the II and the stage count low.
The other goal is reducing register pressure by keeping live ranges low. This is

achieved by scheduling each operation close to its predecessors and successors. To
make this possible the operations are ordered such that no operation is put into
the schedule after both its predecessors and successors. Recurrences obviously vi-
olate this principle since one operation of every recurrence has to be handled after
successors and predecessors.

The ordering algorithm consists of two parts. The �rst one creates a partial
order, that is a list of mutually disjunct sets of operations, to give priority to the
more critical recurrences. Hence it addresses primarily the �rst goal of the order-
ing. The �rst set of the partial order is the most critical recurrence, that is the
one with the highest RecMII. If there are recurrences with the same RecMII chose
any. The second set in the list contains the second critical recurrence and all nodes
that lie on a path between this recurrence an any node already in the partial order.
This is repeated until all recurrences are in the partial order. The operations not
handled so far are grouped by their connected components and appended to the
partial order. The pseudo code of this procedure can be found in [Lat05], L | v
appends a value v to a list L.

41

P ← Empty list of sets of operations;
RL← All recurrences;
while RL 6= ∅ do

R← Recurrence with highest RecMII ∈ RL;
RL← RL \R;
if P = ∅ then

P ← P | R;
else

A← all operations that are already in any set of P ;
R← R \ A;
C ← all operations that lie on a connecting path between R and A;
P ← P | (R ∪ C);

end

end

N ← operations that are not already in any set of P ;
forall connected components C ∈ N do

P ← P | C;
end

Algorithm 2: Partial ordering of operations

The second part creates the �nal order of operations placing adjacent operations
of the DDG next to each other in the list. It takes the partial order of the �rst part
ordering one set after the other. Hence enforcing the second goal of the ordering
to place an operation close to its predecessor respectively successor to keep live
ranges short.
The algorithm starts with the node with the highest ASAP value of the set with

the highest priority. It then visits all ancestors in an bottom-up manner, nodes
with higher depth have priority over nodes with lower depth. If two nodes with
equal depth are found the one with less mobility is chosen. Once all ancestors
are in the list the direction is switched to top-down and the descendants of the
already inserted nodes are visited. Now the height determines the priority. These
upward-downward sweeps are repeated until all nodes of the set are in the list.
Then the next set is dealt with in the same way. The initial direction depends on
whether there are predecessors or successors already in the list. This is repeated
until all nodes of all sets are in the list. The sets Pred_L(O) and Suc_L(O) are
de�ned as follows:

Pred_L(O) = {v | ∃u ∈ O where v ∈ Pred(u) and v 6∈ O}

Suc_L(O) = {v | ∃u ∈ O where v ∈ Suc(u) and v 6∈ O}

The pseudo code can be found in [Llo96]. For every recurrence one back edge is

42

ignored to gain an acyclic graph, similar to the computation of the node proper-
ties. Like the node attributes the order of the nodes remains the same throughout
every scheduling attempt, thus it only has to be computed once.

P ← partial order of nodes;
O ← Empty list of operations;
foreach set of nodes S ∈ P do

if Pred_L(O) 6= ∅ and Pred_L(O) ⊆ S then
R← Pred_L(O) ∩ S;
order← bottom-up;

else if Suc_L(O) 6= ∅ and Suc_L(O) ⊆ S then
R← Suc_L(O) ∩ S;
order← top-down;

else
R← {One node with highest ASAP ∈ S};
order← bottom-up;

end

repeat

if order = top-down then

while R 6= ∅ do
v ← Element of R with highest Hv

if more than one, choose node with lowest MOVu;
O ← O | v;
R← (R \ {v}) ∪ (Suc(v) ∩ S);

end

order← bottom-up;
R← Pred_L(O) ∩ S;

else

while R 6= ∅ do
v ← Element of R with highest Dv

if more than one, choose node with lowest MOVu;
O ← O | v;
R← (R \ {v}) ∪ (Pred(v) ∩ S);

end

order← top-down;
R← Suc_L(O) ∩ S;

end

until R = ∅ ;
end

Algorithm 3: Final ordering of operations

43

4.6 Scheduling

The actual scheduling phase examines the operations in the order computed in the
previous step and tries to �nd a time slot depending on the available resources and
the nodes that are already in the partial schedule. One operation after the other is
inserted until either all operations are scheduled or we encounter a situation where
one operation cannot be scheduled without violating a dependence. In this case
we increase the II, clear the partial schedule and start anew, as depicted in �gure
3. No backtracking is made, i.e. no scheduling decision is ever undone.
The reservation of the resources are entered in the so called modulo reservation

table. Like a reservation table for acyclic scheduling it holds entries for the re-
source requirements of all operations in the partial schedule and when they are
needed. However the resources are reserved not only for the stage the operation is
scheduled in but for all stages. The resource needs are computed modulo the II,
hence the name.

The algorithm tries to schedule adjacent operations of the DDG as closely as
possible together, thus the search direction for a free time slot depends on which
neighbors have already been scheduled. There are four situations that can occur:

• If an operation u has neither a predecessor nor a successor in the partial
schedule the scheduler scans the partial schedule in forward direction from
Early_startu to Early_startu + II − 1 in order to �nd a free time slot.
Where Early_startu = ASAPu.

We observed that this step also produces valid schedule if the search is carried
out in backward direction, i.e. from Early_startu +II−1 to Early_startu.
This version normally works better if the modulo scheduling is done as a
preconditioning for the acyclic scheduler. Otherwise it does not degrade the
result.

• If an operation u has only predecessors in the partial schedule it is scheduled
as soon as possible in forward direction fromEarly_startu to Early_startu+
II − 1.

Early_startu = maxv∈PSP (u)(tv + λv − δv,u · II) where PSP (u) is the set of
predecessors of u that are already in the partial schedule, tv is the time slot
where v is scheduled, λv is the latency of v and δv,u is the iteration distance
from v to u.

• Analogously if an operation u has only successors in the partial schedule it
is scheduled as late as possible in backward direction from Late_startu until
Late_startu − II + 1.

44

Late_startu = minv∈PSS(u)(tv − λu + δu,v · II) where PSS(u) is the set of
all successors of u that are already in the partial schedule.

• If an operation u has both predecessors and successors in the partial sched-
ule the scheduler searches for a free time slot in forward direction from
Eartly_startu until min(Late_startu, Early_startu + II − 1). This can
only happen for one node in each recurrence.

In our implementation we use a slight modi�cation where the search direction
is the same as the search direction of the last node that was inserted.

The absolute values for the time slot tu that are used in the algorithm like
ASAP , Early_start and Late_start can be expressed in terms of stages and
cycles as follows:

cycleu = tu mod II

stageu =
⌊
tu
II

⌋
It is easily possible that an operation is scheduled in a stage with a negative

number. This is no problem. To normalize the schedule, i.e. make the earliest
stage have number 0, we simply add the absolute value of the earliest negative
stage number to all stage numbers. The semantics will remain the same only the
stage numbers are di�erent. Often it is easier to work with the schedule if it is
guaranteed that the earliest stage has number 0.
The branch has to be treated specially. All resources for the branch operation

have to be reserved in advance for the cycle the branch operation is going to be
scheduled. If the architecture has a branch delay of n cycles the operation has
to by scheduled in cycle II − 1 − n. Of course the II has to be greater than the
branch delay slot. When all other operations are scheduled the branch operation
is �nally inserted in the desired cycle. The stage for the branch must be the very
last stage.
We know the cycle for the branch operation in advance but not the stage. If

the branch operation depends on an operation that is scheduled in the last stage
and a cycle greater or equal the one intended for the branch, a new stage has to
be created only for the branch operation. This may not be optimal for the stage
count but does not a�ect the steady state. It increases the code size of prolog and
epilog, however.

4.7 Creation of prolog, kernel and epilog

The schedule found in the previous step corresponds to the kernel, the steady state.
This schedule can also be used to create the prolog and the epilog by copying
operations adequately. As described earlier, the prolog has to �ll the pipeline,

45

and the epilog �nishes iterations that have not been �nished by the kernel. Both
prolog and epilog consist of SC − 1 partial copies of the kernel that are scheduled
consecutively. The construction is like unrolling the kernel schedule SC − 1 times
and selecting only the appropriate operations.
For the prolog the �rst partial copy contains only operation from kernel stage

0. The next partial copy contains operations from the kernel stages 0 and 1, and
so on. The last partial copy of the kernel in the prolog contains operations from
the kernel stages 0 . . . SC − 2.
The epilog is formed in a similar way. The �rst partial copy of the kernel in the

epilog contains operations from the kernel stages 1 . . . SC − 1. The next partial
copy contains operations from the kernel stages 2 . . . SC − 1, and so on. The last
partial copy of the kernel in the epilog contains only operations from kernel stage
SC − 1.
Only the kernel consists of all the operations of the original loop. The prolog

consists of possibly multiple copies of all but the last stage, the epilog contains
operations of all stages but stage 0. The branch operation is not included in the
epilog.

4.7.1 Insertion of bu�er registers

As depicted in �gure 6 it may be necessary to insert copy operations into the al-
ready �nished schedule to prevent that values are prematurely overwritten. This
can be done in the kernel before the construction of prolog and epilog. For the
construction of the prolog and epilog copy operations are not regarded di�erent
to normal operations. Normally copy operations are simple operations that only
take one clock cycle to �nish, hence it should be possible to �nd a place where
the scheduler can put them, except for very dense kernel schedules. Also thanks
to the reduction of live ranges in SMS it should not be necessary to insert a large
number of copy operations. Since the copy operations are inserted after the actual
scheduling the quality of the schedule is not degraded, however, if the scheduler
does not �nd a place to put the copy operation the schedule has to be discarded
and the scheduler has to retry with an incremented II. Nevertheless the register
pressure is increased.

The algorithm is straight forward. All live ranges inside the kernel are analyzed.
Especially taking into account live ranges that reach across stage boundaries. Then
copy operations are inserted such that no live range exceeds the II and the operands
are updated appropriately. That is the reading operand of the reading operation
is set to the register de�ned by the copy operation.
When a register is found that is live from operation d to operation r and the

live range exceeds the II, then the scheduler scans for a free time slot for the copy

46

operation c from td + II backwards to td + latency(d). The reading operand of r
has to be set the register de�ned by c.
For very long live ranges possibly more that one copy operation has to be in-

serted, but this only rarely occurs.

4.7.2 Updating the branch condition

Since the number of kernel iterations is smaller than the number of iterations in
the original loop the branch condition in the kernel has to be adapted such that it
takes the branch to the epilog correctly. The last SC − 1 iterations are �nished in
the epilog. LLVM runs a pass that converts counted loops such that the induction
variable is always incremented by one. If the iteration count is a compile time
constant the corresponding immediate operand in the branch operation has to be
reduced by SC−1. If a register contains the iteration count its value also has to be
decremented by SC − 1 before entering the modulo scheduled loop, by inserting
a subtraction operation. In this case modulo scheduling is only possible if the
register holding the iteration count is not updated inside the loop, thus it is loop
invariant. Finally the jump target is set to the top of the kernel.

4.8 Regaining SSA form

For the modulo scheduling pass that runs before register allocation it is necessary
to reconstruct SSA form, that was destroyed by scheduling. Many passes that
run after the modulo scheduling pass depend on the program to be in SSA form,
especially the register allocator. Modulo scheduling destroys SSA form in several
ways. First of all the phi nodes are substituted by copy operations such that the
same algorithm can be used for basic blocks that are in SSA form and basic blocks
that are not. In LLVM phi nodes have to be at the beginning of a basic block.
Secondly in the prolog and the epilog one register is de�ned multiple times because
multiple copies of the same operation are inserted. The di�culty is to place the
phi nodes right and to update the operands in the operations.
Every virtual register has to be de�ned exactly once before its �rst use. This is

also true for the prolog and the epilog where multiple copies of the operations and
therefore also multiple de�nitions of the same register exist. To solve this we de�ne
a new virtual register every time we �nd a de�nition except for registers de�ned
in the very last iteration such that the �nal results are written to the original
registers. This is why multiple virtual representatives of the same register exist.
To establish SSA form in the kernel additional phi nodes have to be inserted

since the kernel has two predecessors, the kernel itself and the prolog. Thus every
new phi node has two operands that are read, one for the back edge and one for
the edge coming from the prolog.

47

There are SC new names and the original name for every register de�ned inside
the loop, i.e. SC+1 representatives of one original virtual register. We simply scan
prolog, kernel, and epilog top down and replace every de�nition of a virtual register
by a new virtual register and save the new name in the map of representatives.
The key is the original register, the value is the representative. If the register
de�nition occurs in the last iteration we simply insert the original name as the
representative.
If a register is de�ned by a phi node of the original loop the map of representa-

tives is initialized with the phi node's register operand corresponding to the back
edge. I.e. the �rst representative of the back edge register is the register itself.
This needs to be done even though the working copy of the loop does not incorpo-
rate phi nodes since they have been replaced by copy operations. The reason for
this initialization is the way we determine the kernel's phi nodes.

4.8.1 Renaming and how to �nd the right operands

We scan the instructions of prolog, kernel, and epilog top-down. First all uses in the
instruction are handled then the de�nitions. When we encounter a use of register
r we replace it by r's current representative. That is always the representative of
r's last de�nition. This works because no live range exceeds the II. After all uses
in the instruction are handled all register de�nitions are replaced by new virtual
registers. If register r is replaced by the new virtual register v we make v the
current representative of r.

4.8.2 Introducing new phi nodes

After all renamings in the prolog have been made the phi nodes for the kernel are
inserted. We put a phi node to the top of the kernel for every register that has
a representative at this point, i.e. after the renamings of the prolog but before
the renamings of the kernel have been made. This is the reason why we need to
initialize the map of representatives according to the original loop's phi nodes, to
not forget registers that are de�ned in the last stage. The reading phi operands
corresponding to the prolog are the current representatives, the ones de�ned in
the prolog. Every phi node de�nes a new virtual register, which then becomes the
new representative. While the renamings in the kernel take place the operands
corresponding to the kernel's back edge are left blank.
After all renamings in the kernel have been made the remaining phi node

operands corresponding to the kernel's back edge are �lled in. If the phi node
de�nes register r's representative the phi node's back edge operand is r's current
representative after the renamings of the kernel, but before the renaming of the
epilog.

48

4.8.3 Final steps

The last step in making the program conform to LLVM again we have to remove
the representation of parallelism. This is done by putting the individual operations
an instruction contains in a sequential order leaving out the Nops.
Then we put the branch operation to the end of the kernel's basic block.
To update the control �ow graph we make all predecessors of the original loop

predecessors of the prolog and all successors of the original loop successors of the
epilog. We put the original loop's phi nodes to the top of the prolog. The phi nodes
are adapted such that they de�ne a new virtual register and the register operands
for the loop's back edge are deleted. Then all uses of these back edge operands in
the prolog and the kernel's phi nodes are replaced by the newly de�ned registers.
Then it is save to delete the original loop.

49

renamings← empty map;
forall phi nodes h of the original loop do

u← register corresponding to the back edge in h;
renamings[u] ← u;

end

for block ∈ {prolog, kernel, epilog} do
if block = kernel then

// In the kernel we have to insert new phi nodes.

// So far they have only the

// operands that are defined in the prolog.

forall registers r ∈ renamings do
n← new virtual register ;
insert new phi node de�ning n and reading renamings[r] at the
beginning of the kernel;
renamings[r] ← n;

end

end

foreach instruction i ∈ block do
Replace old register names with new ones: Algorithm 5;

end

if block = kernel then
// Now we fill in the back edge operands of the phi nodes.

forall phi nodes h in the kernel do
r ← register de�ned by h;
o← register that r represents;
back edge operand of h ← renamings[o];

end

end

end
Algorithm 4: Rename registers to regain SSA form.

50

forall operations o ∈ i do
forall register uses u in o do

replace u renamings[u];
end

end

forall operations o ∈ i do
forall de�nitions d in o do

if o is in the last iteration then

// We use the original name.

newname ← d;
else

newname ← new virtual register;
end

replace u with newname;
renamings[d] ← newname;

end

end
Algorithm 5: Replace the register de�nitions and uses in instruction i.

4.9 Example

The exact way swing modulo scheduling works is best illustrated by using a simple
program containing a loop that is feasible for modulo scheduling as an example.
The C program of listing 5 in fact contains two loops that can be modulo scheduled,
however in the example we concentrate only on the second one. The �rst loop is
only to initialize the arrays with some values.
The VLIW target architecture to which the program is compiled has the follow-

ing characteristics 3:

• 4 identical pipelines in parallel, every resource is available four times.

• Regular operations take 1 clock cycle and use one ALU.

• Multiplications take 3 clock cycles. They use one ALU for one cycle and one
Multiplier for 3 cycles.

• Loads take at least 4 cycles, if more, the pipeline stalls.

• Branches take 5 clock cycles, i.e. they have a branch delay slot.

• The conditional branch needs two ALUs for one clock cycle.

3These are characteristics of the CHILI processor.

51

s1 #define N 1000

s2 int main() {

s3 int a[N];

s4 int b[N];

s5 int i = 0;

s6 int di = 0;

s7 int *d = &di;

s8 int result = 0;

s9 /* Fill the arrays with

s10 * arbitrary values. */

s11 for (i = 0; i < N; ++i) {

s12 a[i] = i;

s13 b[i] = i + 20;

s14 }

s15 i = 0;

s16 for (i = 0; i < N; ++i) {

s17 *d += a[i] * b[i];

s18 result += *d;

s19 }

s20 return result;

s21 }

Listing 5: C program used in the example.

LLVM's front end translates the C program into its intermediate representation
and does some transformations. Then instruction selection maps the machine in-
dependent operations from the intermediate representation to machine dependent
operations that are basically the operations found in the target machine's instruc-
tion set. The program is still in SSA form and there is still no notion of parallelism,
i.e. it is still a sequential program. This is the point where modulo scheduling
takes place. Since register allocation has not been done yet the program contains
virtual registers. The loop we are going to modulo schedule this in LLVM's ma-
chine dependent representation is depicted in listing 6:

s1 %reg1026 <def > = PHI %reg1037 , mbb <bb.bb15_crit_edge ,0x1586080 >, %reg1031 ,

mbb <bb15 ,0x159c590 >

s2 %reg1027 <def > = PHI %reg1037 , mbb <bb.bb15_crit_edge ,0x1586080 >, %reg1030 ,

mbb <bb15 ,0x159c590 >

s3 %reg1028 <def > = PHI %reg1037 , mbb <bb.bb15_crit_edge ,0x1586080 >, %reg1029 ,

mbb <bb15 ,0x159c590 >

s4 %reg1038 <def > = SHL_REG_IMM %reg1026 , 2

s5 %reg1039 <def > = ADD_REG_IMM %r61 , <fi#0>

s6 %reg1040 <def > = ADD_REG_IMM %r61 , <fi#1>

s7 %reg1041 <def > = LOAD_REG_REG %reg1040 , %reg1038

s8 %reg1042 <def > = LOAD_REG_REG %reg1039 , %reg1038

s9 %reg1031 <def > = ADD_REG_IMM %reg1026 , 1

s10 %reg1043 <def > = MUL_REG_REG %reg1042 , %reg1041

s11 %reg1029 <def > = ADD_REG_REG %reg1043 , %reg1028

s12 %reg1030 <def > = ADD_REG_REG %reg1029 , %reg1027

s13 JUMP_LAB_CRI %reg1031 , 1, 1000, mbb <bb15 ,0x159c590 >

Listing 6: The original loop

The loop is in SSA form and contains phi nodes s1, s2, and s3. The labels for the

52

basic blocks signify which register is read according to the control �ow. Basic block
mbb<bb.bb15_crit_edge,0x1586080> denotes the loop's predecessor and basic block
mbb<bb15,0x159c590> is the loop itself. s4, s5, and s6 are address computations, s9
updates the induction variable. The jump operation s13 takes the jump as long
as register %reg1031�the induction variable�is not equal to 1000. The parameter
1 signi�es 6=.
Since we do not know whether modulo scheduling will be possible we make a

working copy of the basic block and replace the phi nodes with copy operations.
The registers read by the copy operations are the ones corresponding to the back
edge. After that, the program is not in SSA form anymore, however every register
is still de�ned only once inside the basic block.

s1 %reg1026 <def > = MOV_REG %reg1031

s2 %reg1027 <def > = MOV_REG %reg1030

s3 %reg1028 <def > = MOV_REG %reg1029

s4 %reg1038 <def > = SHL_REG_IMM %reg1026 , 2

s5 %reg1039 <def > = ADD_REG_IMM %r61 , <fi#0>

s6 %reg1040 <def > = ADD_REG_IMM %r61 , <fi#1>

s7 %reg1041 <def > = LOAD_REG_REG %reg1040 , %reg1038

s8 %reg1042 <def > = LOAD_REG_REG %reg1039 , %reg1038

s9 %reg1031 <def > = ADD_REG_IMM %reg1026 , 1

s10 %reg1043 <def > = MUL_REG_REG %reg1042 , %reg1041

s11 %reg1029 <def > = ADD_REG_REG %reg1043 , %reg1028

s12 %reg1030 <def > = ADD_REG_REG %reg1029 , %reg1027

s13 JUMP_LAB_CRI %reg1031 , 1, 1000, mbb <bb15 ,0x159c590 >

Listing 7: The working copy that will be scheduled

Construction of the DDG

The next step is to construct the data dependence graph with algorithm 1. The
resulting DDG is shown in �gure 10. The edge labels denote the iteration distance
and the type of the dependence. On edges with a delay is greater than 1, the delay
is also displayed. Since there are only reading memory accesses there are only true
dependences.

RecMII

There are 3 elementary circuits in the DDG:

• s1 0−→ s9
1−→ (s1)

• s3 0−→ s11
1−→ (s3)

• s2 0−→ s12
1−→ (s2)

53

DDG

s13: JUMP_LAB_CRI %reg1031, 1, 1000, mbb<bb15,0x159c590>

s12: %reg1030<def> = ADD_REG_REG %reg1029, %reg1027

s2: %reg1027<def> = MOV_REG %reg1030

1, RAW0, RAW

s11: %reg1029<def> = ADD_REG_REG %reg1043, %reg1028

1, RAW

s3: %reg1028<def> = MOV_REG %reg1029

1, RAW0, RAW

s10: %reg1043<def> = MUL_REG_REG %reg1042, %reg1041

0, RAW, delay = 3

s9: %reg1031<def> = ADD_REG_IMM %reg1026, 1

0, RAW

s1: %reg1026<def> = MOV_REG %reg1031

1, RAW0, RAW

s4: %reg1038<def> = SHL_REG_IMM %reg1026, 2

0, RAW

s8: %reg1042<def> = LOAD_REG_REG %reg1039, %reg1038

0, RAW, delay = 4

s7: %reg1041<def> = LOAD_REG_REG %reg1040, %reg1038

0, RAW, delay = 4

s6: %reg1040<def> = ADD_REG_IMM %r61, <fi#1>

0, RAW

s5: %reg1039<def> = ADD_REG_IMM %r61, <fi#0>

0, RAW 0, RAW 0, RAW

Figure 10: DDG

The recurrences in this example are rather simple. They all contain only 2
operations and every recurrence c has a delay(c) of 2 and a distance(c) of 1. To
make the inequation

delay(c)− II · distance(c) ≤ 0

true the II must be at least 2, hence the RecMII is 2.

ResMII

Our resource model has 8 di�erent resources: four ALUs and four multipliers.
All regular operations need one ALU for 1 cycle. The multiply operations need
additionally one multiplier for 3 clock cycles, which makes a total of 4 resource
claims. The jump operation needs 2 ALUs. Over all the resource needs of the
whole loop used for the estimation of the ResMII is 11 · 1 + 1 · 4 + 1 · 2 = 17.

ResMII =
⌈
17

8

⌉
= 3

54

Table 1: Node properties form the example

ASAP ALAP MOV D H
s1 0 0 0 0 16
s2 0 9 9 0 1
s3 0 8 8 0 2
s4 1 1 0 1 9
s5 0 1 1 0 9
s6 0 1 1 0 9
s7 2 2 0 2 8
s8 2 2 0 2 8
s9 1 9 8 1 1
s10 6 6 0 6 4
s11 9 9 0 9 1
s12 10 10 0 10 0
s13 2 10 8 2 0

However since the branch takes 5 clock cycles the MII must be set to 5 since an
iteration of the loop cannot be shorter than the time the branch needs.

MII = 5

Loop unrolling would be a method to increase the MII while simultaneously in-
creasing the available parallelism. This way a MII that is smaller than the jump
latency can be avoided without losing e�ciency. The kernel's code size is increased,
however.

Node properties

To compute the node properties we ignore one back edge in every recurrence to
gain an acyclic dependence graph. In our case we ignore every back edge.
The properties are computed as described in section 4.4. Table 1 shows the

values for the example loop.

Partial ordering of the nodes

The partial order starts with all nodes in the most critical recurrence. Since
all recurrences in the example have the the same latency we can start with any
of them. We start with recurrence s1 0−→ s9

1−→ (s1). Hence the �rst set in
the partial order is {s1, s9}. The next set in the partial order contains the next

55

critical recurrence and all nodes that lie between any node of this recurrence and
any node already in the partial order according to the DDG. We chose recurrence
s3

0−→ s11
1−→ (s3). The additional nodes are s7, s8, s10, and s4. Thus the second

set is {s3, s4, s7, s8, s10, s11}. The next set consists only of the third recurrence as
there are no connecting nodes that lie between the new recurrence and the nodes
already in the partial order. The third set is {s2, s12}. As there are no recurrences
left all other sets are the remaining connected components. The order in which
they are inserted does not matter. All other connected components only consist
of one operation.
We gained the partial order:

po = 〈{s1, s9}, {s3, s4, s7, s8, s10, s11}, {s2, s12}, {s13}, {s6}, {s5}〉

Ordering of the nodes

Once we have the partial order, one set after the other will be examined to deduce
the �nal order in which the operations will be put into the schedule. Again we
ignore one back edge in every recurrence to gain an acyclic graph.
We start with the node with the highest ASAP value in the �rst set: s9. The

next one is the second node in the �rst set since there are only two nodes. The
order so far is o = 〈s9, s1〉.
Now we examine the second set {s3, s4, s7, s8, s10, s11}. There is one node in

the set adjacent to the nodes already in the order: s4. It is a successor of s1
thus the direction is top-down. The next operations in top-down direction are s7
and s8. Because they have the same attributes it does not matter which one we
take �rst. We take s8. The order so far is o = 〈s9, s1, s4, s8〉. The next node
in top-down direction is s10 which has a lower H value than s7. Thus we take
s7 �rst then s10. We continue in top-down direction and append s11. The order
so far is o = 〈s9, s1, s4, s8, s10, s7, s11〉. Since we ignore the back edge there are
no successors in the set left thus we have to switch direction to bottom-up. In
bottom-up direction we �nd only one more node namely s3 and the second set is
complete. The order so far is o = 〈s9, s1, s4, s8, s10, s7, s11, s3〉
The remaining sets are handled in the same way and we get the �nal order in

which the operations are put into the schedule

o = 〈s9, s1, s4, s8, s10, s7, s11, s3, s12, s2, s13, s6, s5〉

Scheduling

Scheduling the operations is carried out in the order determined by the previous
step. Since the MII is 5 the �rst II we try for the kernel is also 5. First we reserve
all necessary resources for the branch operations, because the cycle where it will be

56

scheduled is known in advance. The stage however is not know until the schedule
is complete. The cycle for the branch b is II − delay(b) = 0.
We use the same notation for the program as in the loop unrolling example of

section 2.2. For the scheduling phase we use use an unfolded notation, that is we
write the individual stages separately. In the �nal program they will be combined
to a dense schedule for the kernel.

The �rst operation to be scheduled is s9. Since the partial schedule is empty
there are neither predecessors nor successors in the partial schedule. In pre pass
version where we only use the modulo scheduler as a preconditioning step for
the list scheduler we chose the backwards direction in this case. We look for a
suitable time slot from Early_start+II−1 to Early_start where Early_start =
ASAP = 1. All resources except the ones reserved for the branch are free so we
can put s9 into time slot 5 which corresponds to cycle 0 of stage 1. Note that we
put the operation not to the beginning of the instruction since these resources are
already occupied by the branch instruction which will also be scheduled to cycle
0.

// *** stage 0 ***

{ ; ; ; ;} // 0

{ ; ; ; ;} // 1

{ ; ; ; ;} // 2

{ ; ; ; ;} // 3

{ ; ; ; ;} // 4

// *** stage 1 ***

{ ; ; %reg1031 <def > = ADD_REG_IMM %reg1026 , 1 ; ;} // 5

{ ; ; ; ;} // 6

{ ; ; ; ;} // 7

{ ; ; ; ;} // 8

{ ; ; ; ;} // 9

The next node is s1. s9 is both predecessor and successor of s1 in the partial
schedule. The last direction was backwards thus we look for a free time slot be-
tweenmin(Late_start, Early_start+II−1) = min(4, 5) = 4 and Early_start =
1 and put the operation in time slot 4 which is cycle 4 of stage 0.

// *** stage 0 ***

{ ; ; ; ;} // 0

{ ; ; ; ;} // 1

{ ; ; ; ;} // 2

{ ; ; ; ;} // 3

{ %reg1026 <def > = MOV_REG %reg1031 ; ; ; ;} // 4

// stage 1

{ ; ; %reg1031 <def > = ADD_REG_IMM %reg1026 , 1 ; ;} // 5

{ ; ; ; ;} // 6

{ ; ; ; ;} // 7

{ ; ; ; ;} // 8

{ ; ; ; ;} // 9

57

We continue to schedule the remaining nodes in the list based on the predecessors
and successors in the partial schedule as described in section 4.6 without inserting
the branch operation.
After all operations are placed we have a schedule with a SC of 4. Finally we

put the branch operation to the cycle we determined in advance, in our case 0,
of the last stage, stage 3. So far no unresolvable resource con�ict has occurred.
The next step is to analyze the live ranges. We �nd that the branch operation s13
scheduled in cycle 0 of stage 3 reads register %reg1031 which is de�ned by operation
s9 scheduled in cycle 0 of stage 1. The distance between the two operations is
2 ∗ II hence we need at least one copy operation to split this live range into two
intervals of length II. This copy operation would be scheduled into cycle 0 of stage
2. Unfortunately all ALUs of cycle 0 are already occupied by operations of the
various stages thus we have to use two copy operations to split the live range. This
also means that we need two more virtual registers which increases the register
pressure. We insert the �rst copy operation %reg1065<def> = MOV_REG %reg1031 into
cycle 3 of stage 1 and the second %reg1066<def> = MOV_REG %reg1065 into cycle 3
of stage 2. Finally we update the branch operation to read %reg1066 instead of
%reg1031.
Modulo scheduling was successful with II = 5, no unresolvable resource con�icts

occurred. The unfolded schedule of the individual stages is depicted in listing 4.9:

// *** stage 0 ***

{ ; ; ; ;} // 0

{ ; ; ; ;} // 1

{ ; ; ; ;} // 2

{ ; ; ; ;} // 3

{ %reg1026 <def > = MOV_REG %reg1031 ;

;

%reg1040 <def > = ADD_REG_IMM %r61 , <fi#1> ;

%reg1039 <def > = ADD_REG_IMM %r61 , <fi#0> ;} // 4

// *** stage 1 ***

{ ;

;

%reg1031 <def > = ADD_REG_IMM %reg1026 , 1 ;

%reg1038 <def > = SHL_REG_IMM %reg1026 , 2 ;} // 5

{ %reg1042 <def > = LOAD_REG_REG %reg1039 ,% reg1038 ;

%reg1041 <def > = LOAD_REG_REG %reg1040 , %reg1038 ;

;

;} // 6

{ ; ; ; ;} // 7

{ ;

%reg1065 <def > = MOV_REG %reg1031 ; // Inserted copy

;

;} // 8

{ ; ; ; ;} // 9

// *** stage 2 ***

{ ; ; ; ;} // 10

{ ;

;

58

%reg1043 <def > = MUL_REG_REG %reg1042 , %reg1041 ;

%reg1028 <def > = MOV_REG %reg1029 ;} // 11

{ ; ; ; ;} // 12

{ %reg1027 <def > = MOV_REG %reg1030 ;

;

%reg1066 <def > = MOV_REG %reg1065 ; // Inserted copy

;} // 13

{ ;

%reg1029 <def > = ADD_REG_REG %reg1043 , %reg1028 ;

;

;} // 14

// *** stage 3 ***

{ JUMP_LAB_CRI %reg1066 , 1, 1000, mbb <bb15 ,0x159d050 > ;

;

;} // 15

{ ; ; ; ;} // 16

{ %reg1030 <def > = ADD_REG_REG %reg1029 , %reg1027 ;

;

;

;} // 17

{ ; ; ; ;} // 18

{ ; ; ; ;} // 19

The kernel's �nal schedule is dense and contains very few Nops:

{ JUMP_LAB_CRI %reg1066 , 1, 1000, mbb <bb15 ,0x159d050 > ;

%reg1031 <def > = ADD_REG_IMM %reg1026 , 1 ;

%reg1038 <def > = SHL_REG_IMM %reg1026 , 2 ;}

{ %reg1042 <def > = LOAD_REG_REG %reg1039 , %reg1038 ;

%reg1041 <def > = LOAD_REG_REG %reg1040 , %reg1038 ;

%reg1043 <def > = MUL_REG_REG %reg1042 , %reg1041 ;

%reg1028 <def > = MOV_REG %reg1029 ;}

{ %reg1030 <def > = ADD_REG_REG %reg1029 , %reg1027;

;

;

;}

{ %reg1027 <def > = MOV_REG %reg1030 ;

%reg1065 <def > = MOV_REG %reg1031 ;

%reg1066 <def > = MOV_REG %reg1065 ;

;}

{ %reg1026 <def > = MOV_REG %reg1031 ;

%reg1029 <def > = ADD_REG_REG %reg1043 , %reg1028 ;

%reg1040 <def > = ADD_REG_IMM %mreg127 , <fi#1> ;

%reg1039 <def > = ADD_REG_IMM %mreg127 , <fi#0> ;}

Creating prolog and epilog

As described in section 4.7 the prolog and epilog consist of consecutive partial
copies of the kernel. In the example there will be 3 partial copies of the kernel in
the prolog and the epilog since the SC = 4.
The prolog is constructed as follows: The �rst copy of the kernel contains only

operations of stage 0, the next of stage 0 and stage 1 the last copy of the kernel
in the prolog contains operations from the stages 0, 1, and 2.
The epilog is constructed analogously: The �rst copy of the kernel contains

operations of the kernel stages 1, 2, and 3, the next copy contains operations

59

of the stages 2 and 3. The last copy contains only operations of stage 3 but
without the branch instruction. Then we update the operand of the kernel's branch
operation that determines the trip count. We have to decrement the constant
by 3 as the last 3 iterations are �nished in the epilog. We change operation
JUMP_LAB_CRI %reg1066, 1, 1000, mbb<bb15,0x159d050> to JUMP_LAB_CRI %reg1066, 1,

997, mbb<bb15,0x159d050>

Reconstructing SSA form

To reconstruct SSA form prolog, kernel, epilog are traversed top-down and all
register de�nitions are replaced by new virtual registers such that no register is
de�ned twice. These new names are saved in a lookup table corresponding to the
register replaced. The lookup table is initialized by the back edge operands of the
original loop's phi nodes.
In the same pass register uses are updated such that they read the right virtual

register. The name of the register read is always the last representative in the
list. The initialization of the renaming map based on the original loop's back edge
operands is:

original representative
%reg1029 %reg1029

%reg1030 %reg1030

%reg1031 %reg1031

Starting with the top of the prolog we encounter the �rst operation %reg1026<def>

= MOV_REG %reg1031. We �nd the reading operand's representative %reg1031 and
replace it. In fact this is not a replacement but it does not make a di�erence in the
algorithm. Uses for which we do not �nd a representative in the map are left as
they are. This happens for the next two operations we encounter %reg1040<def> =

ADD_REG_IMM %r61, <fi#1> and %reg1039<def> = ADD_REG_IMM %r61, <fi#0>. All uses
in the instruction are handled thus we can replace the de�nitions with new virtual
registers.
{ ; ; ; ;} // 0

{ ; ; ; ;} // 1

{ ; ; ; ;} // 2

{ ; ; ; ;} // 3

{ %reg1067 <def > = MOV_REG %reg1031 ;

;

%reg1066 <def > = ADD_REG_IMM %r61 , <fi#1> ;

%reg1065 <def > = ADD_REG_IMM %r61 , <fi#0> ;} // 4

The renaming map is updated:

60

original representative
%reg1026 %reg1067

%reg1029 %reg1029

%reg1030 %reg1030

%reg1031 %reg1031

%reg1039 %reg1065

%reg1040 %reg1066

We continue in the prolog: The next two operations we encounter are %reg1031<def>
= ADD_REG_IMM %reg1026, 1 and %reg1038<def> = SHL_REG_IMM %reg1026, 2 . Both
read %reg1026 thus we have to replace the operand according to the lookup ta-
ble by %reg1067. After that, we exchange the de�nitions and enter them in the
map.
{ ; ; ; ;} // 0

{ ; ; ; ;} // 1

{ ; ; ; ;} // 2

{ ; ; ; ;} // 3

{ %reg1067 <def > = MOV_REG %reg1031 ;

;

%reg1066 <def > = ADD_REG_IMM %r61 , <fi#1> ;

%reg1065 <def > = ADD_REG_IMM %r61 , <fi#0> ;} // 4

{ ;

;

%reg1069 <def > = ADD_REG_IMM %reg1067 , 1 ;

%reg1068 <def > = SHL_REG_IMM %reg1067 , 2 ;} // 5

The updated map of representatives:
original representative
%reg1026 %reg1067

%reg1029 %reg1029

%reg1030 %reg1030

%reg1031 %reg1069

%reg1038 %reg1068

%reg1039 %reg1065

%reg1040 %reg1066

We continue this procedure until we reach the kernel. The insertion of the phi
node is described using as an example the representative of register %reg1040. By
the time we reach the kernel the representative of this register is %reg1086. Thus
we create a new virtual register %reg1097 and the new phi node without a back
edge operand %reg1097<def> = PHI %reg1086, mbb<bb15,0x15aa400> and insert it to
the top of the kernel. Then we make %reg1097 the new representative of %reg1040.
After the renamings of the kernel the current representative of %reg1040 is %reg1040.

This register is de�ned in stage 0. Stage 0 of the kernel is part of the last iteration
thus the representative and the register are the same. Finally we can �ll in the

61

phi node's back edge operand and get the complete phi node: %reg1097<def> = PHI

%reg1086, mbb<bb15,0x15aa400>, %reg1040, mbb<bb15,0x15a8c40>. This procedure is
done for all registers that have a representative after all renamings in the prolog
are made and before the renamings in the kernel.
Then we continue the renaming procedure in the epilog analogous to the prolog

and the kernel.

62

5 Evaluation

5.1 The CHILI architecture

The CHILI is developed by On Demand Micro Electronics. Its main application
area is mobile multimedia processing with a focus on video decoding such as H264
and MPEG. Two CHILI cores are incorporated in On Demand's multimedia chip
SVENm which is a system on chip designed for multi-format video decoding and
image processing.
The CHILI is a four way VLIW architecture featuring four identical pipelines in

parallel. I.e. up to four operations can be issued per clock cycle. It has 64 general
purpose registers each with a length of 32 bits. The CHILI o�ers no �oating
point capabilities since they are not needed in the area of application. However
it features SIMD extensions and special operations for video processing such as
multiply accumulate, sum of absolute di�erences, population count, leading 0s,
leading 1s, clip, align etc.
Predicated execution is o�ered for many operations, unfortunately not for mem-

ory load and store. The test of the predicate and the operation are executed in
parallel thus conditional operations use two VLIW slots.
Each pipeline has 11 stages. Regular instructions take one clock cycle, multipli-

cation takes 3 cycles. Loads take at least four cycles but can take up to 40.
A distinguishing characteristic of the CHILI are the large branch delays. A

branch takes 5 cycles, i.e. it has a delay slot of 4 cycles. This means that up to 16
operations can be issued between the branch operation and the point where the
branch is taken. This leads to the phenomenon that for short loops the majority
of the operations are actually scheduled after the branch operation. The branch
operation must reside in the �rst VLIW slot. Like other conditional operations
the conditional branch uses two VLIW slots.

5.2 Results

All results are gathered using On Demand's cycle accurate CHILI simulator. As a
micro benchmark suite we used the sample loops found in [Ogr04]. The loops are
short and suited for software pipelining as they are single basic block loops. They
contain memory accesses and integer arithmetics but no �oating point arithmetics.
The loops of the example are the only ones that are software pipelined. The
numbers also include initialization code for the arrays that is not software pipelined
even though it could be. The di�erences in code size and execution time are only
caused by the software pipelined loop.
We evaluated both versions of the algorithm. The pre pass runs before register

allocation and post pass after register allocation. Even though the pre pass mod-

63

ulo scheduler is in fact only a preconditioning run for the list scheduler it leads to
improvements in execution time.

Table 2 shows the code size of the two software pipelined versions compared to
each other and compared to the version without software pipelining. As expected
the code size is increased by software pipelining. The number of instructions
is increased signi�cantly by software pipelining also the number of nops these
instructions contain. The reason for this is the additional code needed for the
prolog and epilog.
We also observe that the pre pass software pipeliner generates shorter programs

than the post pass software pipeliner. Since the pre pass scheduler in our imple-
mentation is only a preconditioning step for the list scheduler, it is possible for the
list scheduler to optimize the straight line code of prolog and epilog and achieve
denser schedules.
Even though the absolute number of nops is increased by software pipelining the

average number of nops per instruction is decreased in general. This value can be
used as an estimation for the utilization of parallelism. Only test10 shows a higher
number of nops per instruction for both software pipelined versions compared to
the schedule achieved by the list scheduler. For this test case the code size is
increased the most by the post pass modulo scheduler.

1

2

3

without
pre pass
post pass

te
st
00

te
st
01

te
st
02

te
st
03

te
st
04

te
st
05

te
st
06

te
st
07

te
st
08

te
st
09

te
st
10

Figure 11: Nops/instruction

Table 3 depicts information about the code size regarding only the block that
is executed iteratively. I.e. the loop body of the list scheduled loop respectively
the kernel of the software pipelined loop. The number of instructions of the loop
body is equal to the number of clock cycles a loop iteration takes. Since modulo
scheduling mainly focuses on generating dense kernel schedules the number of nops
inside the kernel is of interest. Figure 11 shows a chart representing the average

64

Table 2: Code size

instructions nops nops/instruction
test00 without 50 157 3.14

pre pass 55 160 2.90
post pass 66 202 3.06

test01 without 45 141 3.13
pre pass 50 148 2.96
post pass 71 215 3.02

test02 without 47 149 3.17
pre pass 50 157 3.14
post pass 64 203 3.17

test03 without 47 135 2.87
pre pass 56 144 2.57
post pass 74 216 2.91

test04 without 74 231 3.12
pre pass 82 242 2.95
post pass 97 302 3.11

test05 without 63 189 3.00
pre pass 76 210 2.76
post pass 85 235 2.76

test06 without 63 193 3.06
pre pass 76 202 2.65
post pass 85 249 2.92

test07 without 52 160 3.07
pre pass 61 167 2.73
post pass 77 221 2.87

test08 without 67 205 3.05
pre pass 81 210 2.59
post pass 102 309 3.02

test09 without 68 214 3.14
pre pass 80 217 2.71
post pass 104 326 3.13

test10 without 75 238 3.17
pre pass 120 384 3.20
post pass 166 569 3.42

65

Table 3: Structure of the loop

instructions nops nops/instruction
test00 without 9 26 2.88

pre pass 6 12 2.00
post pass 5 9 1.80

test01 without 9 28 3.11
pre pass 6 14 2.33
post pass 5 9 1.80

test02 without 8 25 3.12
pre pass 6 16 2.66
post pass 5 11 2.20

test03 without 8 18 2.25
pre pass 7 11 1.57
post pass 7 13 1.85

test04 without 7 17 2.42
pre pass 7 14 2.00
post pass 6 12 2.00

test05 without 13 35 2.69
pre pass 10 20 2.00
post pass 7 7 1.00

test06 without 13 37 2.84
pre pass 8 11 1.37
post pass 7 11 1.57

test07 without 10 29 2.90
pre pass 6 9 1.50
post pass 5 6 1.20

test08 without 15 43 2.86
pre pass 7 4 0.57
post pass 10 21 2.10

test09 without 14 41 2.92
pre pass 8 9 1.12
post pass 10 23 2.30

test10 without 24 79 3.29
pre pass 23 71 3.08
post pass 23 74 3.21

66

number of nops per instruction. For all test cases both versions of the software
pipeliner achieve shorter loop bodies than the list scheduler. In many cases the
post pass version creates denser schedules than the pre pass version, however the
lowest number of nops per instruction is achieved by the pre pass version. In
test08 7 instruction contain only 4 nops. Since the pre pass modulo scheduler does
not create the �nal schedule the length of the kernel is not equal to the II. In gen-
eral it is greater as the list scheduler does not account for loop carried dependences.

1

2

3

without
pre pass
post pass

te
st
00

te
st
01

te
st
02

te
st
03

te
st
04

te
st
05

te
st
06

te
st
07

te
st
08

te
st
09

te
st
10

Figure 12: Execution time in 1000 cycles with iteration count 100.

To observe the execution time we ran the same program with 3 di�erent itera-
tion counts: 1000, 100, 30. The execution time in clock cycles is depicted in table
4. In all cases but one the software pipelined programs need fewer clock cycles
than the programs scheduled by the list scheduler. Figure 12 shows the execution
times with iteration count 100. When running the post pass version of test10 with
an iteration count 30 the overhead caused by prolog and epilog outweigh the gain
made in the kernel. With increased iteration count the overhead is compensated.
As expected performance gains increase with higher iteration counts.

Values that are of importance for the modulo scheduling algorithm are depicted
in table 5. In 14 of 22 cases it was was possible to construct a kernel with the
minimum initiation interval. All kernels have a stage count of 3 or 4. We observe
that the recMII and the resMII are often smaller than 5, the latency of a branch
operation. The kernel can not be shorter than this latency. Loop unrolling would
increase the recMII and the resMII while o�ering more ILP hence it can be used to
avoid a MII that is smaller than the latency of the branch operation. Nevertheless
a dense kernel schedule is likely to be found at the cost of an increased code size.
The column �copies� shows the number of additional copy operations that have to

be inserted, i.e. additional registers needed compared to the conventional schedule.

67

Table 4: Execution time

1000 100 30
cycles % cycles % cycles %

test00 without 16026 1626 506
pre pass 13022 81.25 1322 81.30 412 81.42
post pass 12036 75.10 1236 76.01 396 78.26

test01 without 15026 1526 476
pre pass 12022 80.00 1222 80.07 382 80.25
post pass 11041 73.47 1141 74.77 371 77.94

test02 without 15025 1525 475
pre pass 13018 86.64 1318 86.42 408 85.89
post pass 12035 80.09 1235 80.98 395 83.15

test03 without 15025 1525 475
pre pass 14021 93.31 1421 93.18 441 92.84
post pass 14039 93.43 1439 94.36 459 96.63

test04 without 14025 1425 445
pre pass 14019 99.95 1419 99.57 439 98.65
post pass 13037 92.95 1337 93.82 427 95.95

test05 without 20026 2026 626
pre pass 17022 84.99 1722 84.99 532 84.98
post pass 14040 70.10 1440 71.07 460 73.48

test06 without 20026 2026 626
pre pass 15020 75.00 1520 75.02 470 75.07
post pass 14040 70.10 1440 71.07 460 73.48

test07 without 17026 1726 536
pre pass 13021 76.47 1321 76.53 411 76.67
post pass 12041 70.72 1241 71.90 401 74.81

test08 without 22026 2226 686
pre pass 14027 63.68 1427 64.10 447 65.16
post pass 17046 77.39 1746 78.43 556 81.04

test09 without 21026 2126 656
pre pass 15020 71.43 1520 71.49 470 71.64
post pass 17046 81.07 1746 82.12 556 84.75

test10 without 31025 3125 955
pre pass 30025 96.77 3025 96.80 925 96.85
post pass 30071 96.92 3071 98.27 971 101.67

68

Table 5: Modulo scheduling characteristics

SC II MII recMII resMII copies circuits
test00 pre pass 3 5 5 2 2 0 2

post pass 3 5 5 1 2 1 13
test01 pre pass 3 5 5 2 5 0 2

post pass 4 5 5 1 2 3 8
test02 pre pass 3 5 5 2 2 0 1

post pass 3 5 5 1 2 0 11
test03 pre pass 3 7 7 7 2 0 7

post pass 3 7 7 7 2 1 95
test04 pre pass 3 6 6 6 2 0 5

post pass 3 6 6 6 2 1 40
test05 pre pass 3 14 6 6 4 0 8

post pass 3 7 6 6 3 4 435
test06 pre pass 4 6 5 3 3 5 3

post pass 3 7 5 5 3 2 43
test07 pre pass 4 5 5 2 3 2 3

post pass 4 5 5 1 2 3 15
test08 pre pass 4 7 5 4 4 8 3

post pass 3 10 9 9 3 2 70
test09 pre pass 4 6 5 4 4 6 3

post pass 3 10 9 9 3 2 68
test10 pre pass 3 23 23 23 4 0 297

post pass 3 23 23 23 3 1 23440

69

The post pass version needs in general more additional registers. This is because
after register allocation more dependences exist between registers that have to be
resolved by renaming. Thanks to SSA form we can be sure that before register
allocation every register is de�ned exactly once. Thus there cannot be WAW and
WAR dependences between registers. After register allocation these dependences
have to be considered. This fact is also revealed in column �circuits� that shows the
number of elementary circuits in the DDG. The number of circuits is signi�cantly
larger after register allocation. Since we need to compute every elementary circuit
this can lead to problems during compilation. Even a short loop like test10 can
have 23440 circuits.
This results from a DDG containing 16 nodes and 75 edges. To estimate the

recMII only the circuit with the longest latency would be necessary however the
ordering procedure needs all elementary circuits. In the current version we do not
try to simplify the DDG. This may cause that redundant edges exist in the DDG
which increases the number of circuits. I.e. there can be more than one edge
between two nodes in the DDG. For example a WAW edge and a RAW edge. All
dependences between these two nodes are satis�ed if the most crucial dependence
is satis�ed. This is an opportunity to simplify the DDG and reduce the number
of circuits.

70

6 Related Works

Joseph A. Fisher introduced the concept of VLIW machines in [Fis83]. The archi-
tecture tries to achieve high computing power by encoding more than one RISC
like operations in one instruction word and execute them in parallel. All schedul-
ing has to be done by the compiler without the help of additional hardware, which
leads to a lower price for the hardware. To utilize the available parallel hardware
resources e�ciently and to achieve speedups compared to sequential execution the
quality of the scheduler is of great importance. The problem is that the scope of a
single basic block is too limited to o�er enough parallelism to the scheduler such
that the hardware is utilized badly. Fisher had already developed a scheduling
technique called trace scheduling for micro-code compaction [Fis81]. This schedul-
ing technique considers a sequence of basic blocks called a trace to enlarge the
scope and to extract more parallelism. How the traces are formed depends on
pro�ling information since the algorithm tries to favor the common case. Paths
outside the trace on the other hand are degraded since compensation code has to
be included to remain the semantics.
Many other scheduling algorithms have been developed to enlarge the region

the scheduler operates on. Those are for example linear regions like superblocks
[HMC+95], which are similar to traces but with a single entry point or non linear
regions like treegions [HBC98].
All of these scheduling techniques work on acyclic structures, but programs

spend most of their time in loops, thus it seems promising to optimize their exe-
cution. Monica Lam stated in [Lam88] that software pipelining seemed to be an
e�ective method to schedule loops for VLIW architectures.
Rau introduced a heuristic called iterative modulo scheduling [Rau94] which was

the basis for other modulo scheduling algorithms. It became evident that regis-
ter pressure is signi�cantly increased by software pipelining, thus algorithms were
developed that tried to reduce the register requirements. Examples for those algo-
rithms are slack modulo scheduling [Huf93] and iterative register-sensitive software
pipelining [DJG98] which is based on iterative modulo scheduling.
The algorithm implemented for this work also falls into the category of soft-

ware pipelining algorithms reducing register pressure. Swing modulo scheduling
was presented in [Llo96] by Josep Llosa. It achieves good scheduling results while
keeping register pressure low by a sophisticated ordering algorithm for the opera-
tions. Since it does not incorporate backtracking compilation time is low compared
to other software pipelining algorithms.
A comparative study [CLG] showed that swing modulo scheduling performs in

many cases better in terms of compilation time and register requirements than
other software pipelining techniques while achieving near optimal parallelism.
The compiler platform LLVM we implemented the modulo scheduler for was

71

presented by Chris Lattner in [Lat02]. LLVM is a state of the art compiler platform
used in both industry and research.
Tanya Lattner implemented a swing modulo scheduler for LLVM's SPARC back

end [Lat05] that was a good starting point for our implementation. Also Julia
Ogris's' implementation of a slack modulo scheduler [Ogr04] provided valuable
insight into the development of a modulo scheduler.

72

7 Future work

We implemented two versions of the modulo scheduler, one that runs before reg-
ister allocation working on a program in SSA form and a version that runs after
register allocation. Both show improvements, however we feel that an integrated
solution that combines the advantages of both versions would perform better. The
advantage of the pre pass version is that the DDG contains less dependences,
thanks to the SSA form, however the disadvantage is that in LLVM there is only
limited support for VLIW architectures. For example, the branch operation has
to reside at the end of a basic block and it is not possible to �ll branch delay
slots before register allocation. So we had to make the software pipelined schedule
conform to LLVM again and in some cases degrade the quality of the schedule.

7.1 Incorporating VLIW hardware description into tablegen

Tablegen is a utility used in LLVM to generate C++ code from architecture de-
scriptions. Compared to the generated code representing the architecture descrip-
tion, tablegen's input is succinct and tablegen does a lot of work for the program-
mer. Unfortunately tablegen's architecture description language does not provide
constructs to describe VLIW architectures. Important aspects like the number of
parallel resources cannot be expressed. In our implementation we wrote the C++
code describing the CHILI architecture by hand.
It is possible to write back ends for tablegen and introduce new concepts like

parallel resources. This would make specifying the hardware less error prone and
changing architecture details easier.
The target's instruction set is described using tablegen, too. Unfortunately it is

not possible to represent instructions that contain more than one operation. I.e.
the possibility of parallel execution cannot be expressed.

7.2 Analysis of array accesses

Our implementation does not inspect memory accesses very thoroughly. The de-
pendence analysis does not try to �nd out if two memory accesses actually write or
read the same memory cell. It conservatively assumes that they do and introduces
a dependence. This means that memory accesses can be considered dependent
from each other even though they do not access the same memory cell thus intro-
ducing unnecessary dependences.
For intra iteration dependences alias analysis would provide the information

whether it can be guaranteed that two memory accesses are independent from each
other. The analysis for inter iteration dependences must also take into account
that the address of the accessed memory cell depends on the iteration in which the

73

access takes place. A typical case is when a loop accesses every entry in an array,
the pointer to the array is updated every iteration.
Array accesses are the only dependences that can have an iteration di�erence

greater than 1, since registers are updated every iteration. We conservatively set
all iteration di�erences to 1. Further analysis could �nd out for some cases greater
iteration di�erences and thus reducing the RecMII.

7.3 Optimize circuit �nding algorithm

Especially the post pass version of the modulo scheduler is a�ected by the possi-
bly large number of elementary circuits in the DDG. The DDG for the pre pass
version normally has fewer dependences. Since we need every elementary circuit
to calculate the RecMII and for the ordering of the operations, the algorithm that
�nds the elementary circuits, should be e�cient to reduce compilation time.
Additionally the DDG has to be analyzed to eliminate redundant edges.

7.4 Variable trip count

The current version only handles loops with a trip count, that is know at compile
time, i.e. a constant trip counts. Modulo scheduling can also handle trip counts
that are not known at compile time as long as the trip count is loop invariant, i.e.
it is known before the loop is entered. If it cannot be guaranteed that the trip
count is greater or equal to the SC, a copy of the original loop has to be kept,
since a modulo scheduled loop executes at least SC iterations.

7.5 Unrolling and modulo variable expansion

To solve the problem of overlapping live ranges depicted in �gure 5, the cur-
rent version introduces copy operations. Another way of avoiding overlapping live
ranges is called modulo variable expansion. This technique uses loop unrolling to
enlarge the II such that no live range exceeds the II. I.e. �rst loop unrolling is
done and then the unrolled loop is modulo scheduled. The advantage is that no
copy operations have to be inserted and additional ILP can be extracted. An-
other advantage is that the II can be increased such that it is greater or equal to
the jump operation's latency if necessary, since this is the minimum length of the
kernel. Experiments showed that for simple loops the MII is often less than the
jump operation's latency. Unrolling would solve this problem without sacri�cing
e�ciency. The disadvantage is the increased code size in the prolog, the epilog,
and especially the kernel since the working set of operations is increased compared
to the original loop which can lead to instruction cache misses.

74

8 Summary

Software pipelining is a scheduling technique for VLIW architectures that tries to
optimize execution time of basic block loops by overlapping consecutive iterations.
Modulo scheduling is a family of software pipelining algorithms that construct a
kernel containing all operations of the original loop but from di�erent iterations.
The length of the kernel is called the initiation interval. Every kernel iteration
starts a new iteration of the original loop. A prolog has to run before the ker-
nel to reach a state where repeated execution of the kernel is equivalent to the
original loop. The epilog �nishes iterations that have not been �nished by the
kernel. The number of di�erent iterations that are overlapped in the kernel is
called the stage count. The length of the prolog and the epilog depend on the
stage count. Prolog and epilog increase the code size. Software pipelining also in-
creases register pressure since values have to be bu�ered between kernel iterations.
The minimum initiation interval is estimated as a starting value for the initiation
interval. The minimum initiation interval depends on the structure of the data de-
pendence graph, especially the recurrences and the resources available. After every
unsuccessful scheduling attempt the initiation interval is increased until modulo
scheduling is possible or an upper bound is reached.
Swing modulo scheduling is a modulo scheduling heuristic that produces near op-

timal schedules with low register requirements compared to other modulo schedul-
ing techniques. It achieves this by inserting the operations to the kernel in a
sophisticated order. The order depends on the recurrences found in the data de-
pendence graph. This order assure that dependent operations are scheduled closely
together thus reducing live ranges of registers and reducing register pressure.
We implemented the swing modulo scheduling algorithm for the LLVM compiler

framework. The algorithm can run after register allocation which has the advan-
tage that the actual modulo schedule is generated, but additional dependences in
the data dependence graph can degrade the result. We implemented also a ver-
sion that runs before register allocation with the advantage of fewer dependences.
Unfortunately LLVM does not support VLIW architectures such that we have
to change a modulo schedule to con�rm to LLVM's intermediate representation.
The actual scheduling is done after register allocation by the conventional acyclic
scheduler.
Both versions improve execution time for appropriate loops at the expense of

increased code size and sightly increased register pressure.

75

References

[BE08] Florian Brandner and Dietmar Ebner. Compilation Techniques for
VLIW Architectures, 2008.

[CLG] Josep M. Codina, Josep Llosa, and Antonio Gonzalez. A Comparative
Study of Modulo Scheduling Techniques.

[DJG98] Amod K. Dani, V. Janaki, and Ramanan R. Govindarajan. Register-
sensitive software pipelining. In In Procs. of the Merged 12th Interna-
tional Parallel Processing and 9th International Symposium on Parallel
and Distributed Systems, 1998.

[FFY05] Joseph A. Fisher, Paolo Faraboschi, and Cli� Young. Embedded Com-
puting: A VLIW Approach to Architecture, Compilers and Tools. Mor-
gan Kaufmann, 2005.

[Fis81] J.A. Fisher. Trace scheduling: A technique for global microcode com-
paction. Computers, IEEE Transactions on, C-30(7):478�490, July
1981.

[Fis83] Joseph A. Fisher. Very long instruction word architectures and the
eli-512. In ISCA '83: Proceedings of the 10th annual international
symposium on Computer architecture, pages 140�150, Los Alamitos,
CA, USA, 1983. IEEE Computer Society Press.

[HBC98] W.A. Havanki, S. Banerjia, and T.M. Conte. Treegion scheduling for
wide issue processors. High-Performance Computer Architecture, 1998.
Proceedings., 1998 Fourth International Symposium on, pages 266�276,
1-4 Feb 1998.

[HMC+95] Wen-Mei W. Hwu, Scott A. Mahlke, William Y. Chen, Pohua P.
Chang, Nancy J. Warter, Roger A. Bringmann, Roland G. Quellette,
Richard E. Hank, Tokuzo Kiyohara, Grant E. Haab, John G. Holm,
and Daniel M. Lavery. The superblock: an e�ective technique for vliw
and superscalar compilation. pages 234�253, 1995.

[Huf93] Richard A. Hu�. Lifetime-sensitive modulo scheduling. In In Proc. of
the ACM SIGPLAN '93 Conf. on Programming Language Design and
Implementation, pages 258�267, 1993.

[Lam88] Monica Lam. Software pipelinig: An E�ective Scheduling Technique
for VLIW Machines. In Proceedings of the SIGPLAN 88 Conference
on Programming Language Design and Implementation, 1988.

76

[Lat02] Chris Lattner. LLVM: An Infrastructure for Multi-Stage Opti-
mization. Master's thesis, Computer Science Dept., University
of Illinois at Urbana-Champaign, Urbana, IL, Dec 2002. See
http://llvm.cs.uiuc.edu.

[Lat05] Tanya M. Lattner. An Implementation of Swing Modulo Scheduling
with Extensions for Superblocks. Master's thesis, Computer Science
Dept., University of Illinois at Urbana-Champaign, Urbana, IL, June
2005. See http://llvm.cs.uiuc.edu.

[Llo96] Josep Llosa. Swing modulo scheduling: A lifetime-sensitive approach.
In PACT '96: Proceedings of the 1996 Conference on Parallel Archi-
tectures and Compilation Techniques, page 80, Washington, DC, USA,
1996. IEEE Computer Society.

[MLC+92] S.A. Mahlke, D.C. Lin, W.Y. Chen, R.E. Hank, and R.A. Bringmann.
E�ective compiler support for predicated execution using the hyper-
block. Microarchitecture, 1992. MICRO 25., Proceedings of the 25th
Annual International Symposium on, pages 45�54, 1-4 Dec 1992.

[Ogr04] Julia Ogris. Software Pipelining in a DSP C-Compiler. Master's thesis,
Institut für Computersprachen, Abteilung für Programmiersprachen
und Übersetzerbau der Technischen Universität Wien, August 2004.

[Rau94] B. Ramakrishna Rau. Iterative modulo scheduling: an algorithm for
software pipelining loops. In MICRO 27: Proceedings of the 27th an-
nual international symposium on Microarchitecture, pages 63�74, New
York, NY, USA, 1994. ACM.

77

Erklärung

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Arbeit selbstständig
und ohne fremde Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmit-
tel nicht benutzt und die aus anderen Quellen entnommenen Stellen als solche
gekennzeichnet habe.

Wien, am 14. Oktober 2008

Benedikt Huber

78

