

Benchmarking of Middleware
Systems

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Informatik

eingereicht von

Bernhard Löwenstein
Matrikelnummer 9726426

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung:
Betreuerin: Ao.Univ.Prof. Dipl.-Ing. Dr. eva Kühn

Mitwirkung: Univ.Ass. Dipl.-Ing. Mag. Richard Mordinyi

Wien, 28.10.2008
 (Unterschrift Verfasser) (Unterschrift Betreuerin)

Technische Universität Wien

A-1040 Wien ▪ Karlsplatz 13 ▪ Tel. +43 (0)1 58801-0 ▪ http://www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

http://www.tuwien.ac.at/

Page 2

Abstrakt
In der heutigen IT-Welt sind viele unterschiedliche Middlewaresysteme verfügbar.
Oftmals verkünden die Anbieter solcher Anwendungen, dass ihr Produkt die beste
Performance und Skalierbarkeit aufweist, und überhaupt das Beste von allen sei.

Diese Arbeit veranschaulicht, wie man die Performance und Skalierbarkeit
unterschiedlicher Middlewaresysteme auf realistische Art und Weise messen und
vergleichen kann. Die Benchmarks dazu werden anhand einiger maßgeschneiderter
Testfälle durchgeführt.

Der erste Teil der Arbeit gibt eine ausführliche Einführung in die Begriffe Benchmark,
Performance, Skalierbarkeit und Middleware und präsentiert drei verschiedene
Middlewarekonzepte: eXtensible Virtual Shared Memory (XVSM), JavaSpaces und Java 2
Plattform, Enterprise Edition (J2EE).

Im zweiten Teil werden einige Benchmarkszenarien für die zugehörigen Systeme
MozartSpaces, GigaSpaces eXtreme Application Platform (XAP) und JBoss Application
Server (AS) definiert und durchgeführt. Die Ergebnisse ihrer Ausführung werden
anschließend visualisiert und interpretiert.

Page 3

Abstract
In today's IT world many different middleware systems are available. Often, the
vendors of such applications proclaim that their product offers the best performance
and scalability and actually is the best of all.

This work demonstrates how to evaluate and compare the performance and scalability
of different middleware systems in a realistic manner. The benchmarks for this purpose
are implemented via several customized test cases.

The first part of the work gives a detailed introduction into the terms benchmark,
performance, scalability and middleware and presents three different middleware
concepts: eXtensible Virtual Shared Memory (XVSM), JavaSpaces and Java 2 Plattform,
Enterprise Edition (J2EE).

In the second part, several benchmark scenarios are defined and implemented for the
associated systems MozartSpaces, GigaSpaces eXtreme Application Platform (XAP) and
JBoss Application Server (AS). The results of their execution are visualized and
interpreted thereafter.

Page 4

Table of Contents
1 Introduction...9
2 Related Work ...11
3 Terms and Definitions...13

3.1 Benchmark..13
3.1.1 Definitions ..13
3.1.2 Tools..13

3.2 Performance..17
3.2.1 Definitions ..17
3.2.2 Metrics ...18
3.2.3 Criteria ...18
3.2.4 Procedure...18

3.3 Scalability..19
3.3.1 Definitions ..19
3.3.2 Classifications ...21
3.3.3 Metrics ...23
3.3.4 Criteria ...26
3.3.5 Challenges..26
3.3.6 Procedure...27

3.4 Middleware..29
3.4.1 Definitions ..29
3.4.2 Characteristics ..30
3.4.3 Classifications ...32
3.4.4 Concepts ..33
3.4.5 Systems ...40

4 Benchmarks ...43
4.1 Preface ...43

4.1.1 Benchmark Suite ...43
4.1.2 Middleware Configurations ...47
4.1.3 Machine Configurations..48
4.1.4 Software Versions ...52
4.1.5 Metrics and Diagrams ..52
4.1.6 Operations..54

4.2 Serial Benchmarks ...55
4.2.1 Write..55
4.2.2 Shift ...59
4.2.3 Read ..62
4.2.4 Take ..66
4.2.5 Destroy ..69

4.3 Concurrent Benchmarks ...72
4.3.1 Write..73
4.3.2 Shift ...76
4.3.3 Read ..79
4.3.4 Take ..83
4.3.5 Destroy ..87

4.4 Block Benchmarks..90
4.4.1 Write + Read + Take/Destroy ..90

5 Knowledge Transfer..96
5.1 TripCom – Triple Space Communication... 96

Page 5

5.2 Lectures Learned ...97
5.2.1 Communication ...97
5.2.2 Concurrency ...98
5.2.3 Interfaces ...98
5.2.4 Documentation..99

6 Evaluation and Conclusion... 100
7 References... 103
8 Appendix ... 106

8.1 Benchmarks .. 106
8.1.1 Serial Benchmarks... 106
8.1.2 Concurrent Benchmarks ... 125
8.1.3 Block Benchmarks ... 156

Page 6

Table of Abbreviations

API Application Programming Interface
AS Application Server

CMP Container Managed Persistence
CPU Central Processing Unit
EJB Enterprise JavaBeans
FIFO First In, First Out
GB Gigabyte
GHz Gigahertz
IT Information Technology

J2EE Java 2 Plattform, Enterprise Edition
JMS Java Message Service
JMX Java Management Extensions
JVM Java Virtual Machine
LIFO Last In, First Out
MB Megabyte

MBit/s Megabit per Second
OS Operating System

RAM Random Access Memory
RMI Remote Method Invocation
RPC Remote Procedure Call
SBC Space Based Computing
TPM Transaction Processing Monitor
TSC Triple Space Communication
VSM Virtual Shared Memory
XAP eXtreme Application Plattform

XVSM eXtensible Virtual Shared Memory

Page 7

Table of Figures
Figure 1: Functionality of Apache JMeter... 14
Figure 2: Example of Gnuplot Diagram..15
Figure 3: Example of Loadunit Diagram ..17
Figure 4: Linear, Sub-linear and Super-linear Scalability ... 22
Figure 5: Vertical and Horizontal Scaling ...22
Figure 6: Model of Scalability Framework ..25
Figure 7: Example of UML Sequence Diagram..28
Figure 8: Positioning of Middleware ..30
Figure 9: 3-tier Architecture ...31
Figure 10: Architecture of XVSM...34
Figure 11: Operations in JavaSpaces...36
Figure 12: Architecture of J2EE ..38
Figure 13: Session Façade Pattern..39
Figure 14: Architecture of GigaSpaces XAP..41
Figure 15: Architecture of JBoss AS ..42
Figure 16: Design of Benchmark Suite for J2EE ... 44
Figure 17: Workflow in Benchmark Suite...47
Figure 18: Middleware Configuration and Execution Time ... 48
Figure 19: Serial Benchmark with Embedded Middleware System.............................. 49
Figure 20: Serial Benchmark with Remote Middleware System 50
Figure 21: Concurrent or Block Benchmark with Remote Middleware System 51
Figure 22: Performance Diagram in Summary..52
Figure 23: Performance Diagram in Detail ...53
Figure 24: Scalability Diagram in Detail ...54
Figure 25: Scalability Diagram in Summary..54
Figure 26: Expected Performance Diagram of Serial/Write Scenario........................... 56
Figure 27: Performance Diagram in Summary of Serial/Write Scenario 56
Figure 28: Performance Diagram in Detail of Serial/Write Scenario (1)....................... 57
Figure 29: Performance Diagram in Detail of Serial/Write Scenario (2)....................... 58
Figure 30: Performance Diagram in Detail of Serial/Write Scenario (3)....................... 59
Figure 31: Expected Performance Diagram of Serial/Shift Scenario............................ 60
Figure 32: Performance Diagram in Summary of Serial/Shift Scenario........................ 60
Figure 33: Performance Diagram in Detail of Serial/Shift Scenario (1)........................ 61
Figure 34: Performance Diagram in Detail of Serial/Shift Scenario (2)........................ 61
Figure 35: Expected Performance Diagram of Serial/Read Scenario 62
Figure 36: Performance Diagram in Summary of Serial/Read Scenario....................... 63
Figure 37: Performance Diagram in Detail of Serial/Read Scenario (1) 64
Figure 38: Performance Diagram in Detail of Serial/Read Scenario (2) 65
Figure 39: Performance Diagram in Detail of Serial/Read Scenario (3) 66
Figure 40: Expected Performance Diagram of Serial/Take Scenario 67
Figure 41: Performance Diagram in Summary of Serial/Take Scenario 67
Figure 42: Performance Diagram in Detail of Serial/Take Scenario (1) 68
Figure 43: Performance Diagram in Detail of Serial/Take Scenario (2) 68
Figure 44: Performance Diagram in Detail of Serial/Take Scenario (3) 69
Figure 45: Expected Performance Diagram of Serial/Destroy Scenario 70
Figure 46: Performance Diagram in Summary of Serial/Destroy Scenario 70
Figure 47: Performance Diagram in Detail of Serial/Destroy Scenario (1) 71
Figure 48: Performance Diagram in Detail of Serial/Destroy Scenario (2) 71

Page 8

Figure 49: Performance Diagram in Detail of Serial/Destroy Scenario (3) 72
Figure 50: Expected Scalability Diagram of Concurrent/Write Scenario....................... 74
Figure 51: Scalability Diagram in Summary of Concurrent/Write Scenario 74
Figure 52: Scalability Diagram in Detail of Concurrent/Write Scenario (1)................... 75
Figure 53: Scalability Diagram in Detail of Concurrent/Write Scenario (2)................... 76
Figure 54: Expected Scalability Diagram of Concurrent/Shift Scenario........................ 77
Figure 55: Scalability Diagram in Summary of Concurrent/Shift Scenario.................... 78
Figure 56: Scalability Diagram in Detail of Concurrent/Shift Scenario 79
Figure 57: Expected Scalability Diagram of Concurrent/Read Scenario 80
Figure 58: Scalability Diagram in Summary of Concurrent/Read Scenario................... 81
Figure 59: Scalability Diagram in Detail of Concurrent/Read Scenario (1) 82
Figure 60: Scalability Diagram in Detail of Concurrent/Read Scenario (2) 83
Figure 61: Expected Scalability Diagram of Concurrent/Take Scenario 85
Figure 62: Scalability Diagram in Summary of Concurrent/Take Scenario 85
Figure 63: Scalability Diagram in Detail of Concurrent/Take Scenario (1) 86
Figure 64: Scalability Diagram in Detail of Concurrent/Take Scenario (2) 86
Figure 65: Expected Scalability Diagram of Concurrent/Destroy Scenario 88
Figure 66: Scalability Diagram in Summary of Concurrent/Destroy Scenario 88
Figure 67: Scalability Diagram in Detail of Concurrent/Destroy Scenario (1) 89
Figure 68: Scalability Diagram in Detail of Concurrent/Destroy Scenario (2) 89
Figure 69: Expected Scalability Diagram of Block Scenario.. 92
Figure 70: Scalability Diagram in Summary of Block Scenario.................................... 93
Figure 71: Scalability Diagram in Detail of Block Scenario (1).................................... 94
Figure 72: Scalability Diagram in Detail of Block Scenario (2).................................... 95
Figure 73: Architecture of TripCom...96
Figure 74: Communication Issues of Remote Operation Execution............................. 97
Figure 75: Synchronous and Asynchronous Remote Operation Execution 98

Page 9

1 Introduction
In the context of this thesis the performance and the scalability of different middleware
systems, namely MozartSpaces, GigaSpaces XAP and JBoss AS, will be measured and
compared among each other. For doing so, a new approach will be considered and
evolved, because so far there is no method available for comparing these systems or
only parts of them. The aim of this work is to get a feeling of the strengths and
weaknesses of these technologies and to enable the identification of the systems' room
for improvement.

In chapter 3, definitions for benchmark, performance, scalability and middleware will be
given and topics associated with these terms will be discussed. Since the concepts of
performance and scalability are often not clearly distinguished in the literature, this
work will offer a precise differentiation between these terms. The diverse middleware
concepts of XVSM, JavaSpaces and J2EE will also be introduced as well as their
associated systems.

Another important task is finding metrics as simple as possible, which allow the
measuring of the performance and the scalability of a middleware system. Such a
metric can be seen as a function, to which the test case and the benchmarked
middleware system are handed over and that returns an objective indicator after the
execution of the test. Comparing different products among each other is always only
possible on the basis of such a measured value.

Furthermore, the common denominator of all benchmarked systems must be found, on
the basis of which the benchmarks can be executed. Due to the differences between
the investigated middleware concepts, only properties can be benchmarked which are
common in all technologies. Indeed, the selection of such a high-level approach is
suboptimal, but there is no alternative that will make such different concepts
comparable.

Tools, which support the implementation of the benchmarks, will also be introduced
and analysed regarding their usability. They may simplify the development and also the
execution of the individual scenarios.

In chapter 4, the implementation of the benchmarks will be prepared, the designed
scenarios will be executed and the results will be visualized and interpreted. Fulfilling
these points will be the lion's share of this work.

It is of particular importance for this work that the selected test cases will be significant
and will cover the established use cases. To make the benchmarks traceable, a precise
definition of the scenarios will be required. And not only the test cases, but also the
used middleware configuration and used test environment must be described
accurately.

In addition to the selection of adequate test cases, it will also be relevant that the ideal
environment is located, in which the benchmarks are executed. In the majority of cases
middleware is applied in a distributed environment, and that must be taken into
account in the design of the benchmarks. So, an adequate test environment, namely
concerning hardware and software, must be set up.

Page 10

For the real testing of performance and scalability, a software application will be
designed and implemented, which encapsulates the test cases and enables the
execution of the devised scenarios. This benchmark tool will only use the public and
standardized interfaces of the different middleware technologies, namely XVSM
(MozartSpaces), JavaSpaces (GigaSpaces XAP) and J2EE (JBoss AS). The advantage of
this procedure is that it also allows the testing of other middleware systems that are
based on these concepts.

Another important thing is to make the execution of the benchmarks fast and simply
repeatable, so that they can be performed after each source modification by the
developers. Testing the performance and scalability of a system should not be a unique
thing, but go with the whole process. So it is desirable that a way for the automatic
execution of the benchmarks can be found.

Of particular significance will also be that the test results are clearly represented and
that the relevant information can be obvious at a glance. Finding a tool, which
visualizes the measured data and generates the charts automatically, would be ideal,
because this saves work and time and simplifies handling.

In chapter 5, the achieved knowledge will be transferred to the development of
TripCom. This is a middleware system, which is currently in development and follows a
new approach, namely the Triple Space Communication (TSC). Some lectures learned
by the implementation of the benchmarks may be interesting for the implementation of
this system, too.

Page 11

2 Related Work
This chapter gives a survey of papers that deal with issues similar to the topics
discussed in this work.

A procedure for measuring TripCom's performance is presented in [1]. It uses a
performance model for evaluating the system's performance and informs also about the
problems using this approach. The approach is presented in chapter 3.2.4 of this work.

[2], [3], [4], [5], [6] and [7] give definitions for the term scalability and discuss related
topics. They allow a clear differentiation between performance and scalability and can
be looked up in chapter 3.3.1.

Different classifications are introduced in [2], [5], [6] and [8]. Chapter 3.3.2 gives an
overview of these diverse categorizations.

Miscellaneous metrics for measuring the scalability of a system are presented in [7], [9]
and [10]. Of particular importance is the metric in [9] which is based on the calculation
of the efficiency value and is presented in chapter 3.3.3.1. It provides the basis for the
advanced metric used later in this work. The metric in [10] rates the productivity of a
system and evaluates the system's scalability on basis of this value. Chapter 3.3.3.2
introduces this metric to the reader. [7] even goes a step further and defines a
scalability framework which can be used for benchmarking a system's scalability. This
metric is given in chapter 3.3.3.3 of this work.

[6], [11] and [12] provide recommended procedures for measuring a system's
scalability. The former work proposes seven steps – starting with the identification of
the critical use cases and ending with the presentation of the results – for such
measurements. The entire approach is presented to the reader in chapter 3.3.6.

An insight into middleware and definitions for this term are provided in [13], [14] and
[15]. These papers introduce the reader to the concept of middleware which is defined
as the software layer between the operating system (OS) and the applications. Chapter
3.4.1 of this work summarizes the core information.

[16] and [17] present different classifications for middleware which can be looked up in
chapter 3.4.3.

The concepts of XVSM, JavaSpaces and J2EE and their belonging systems
MozartSpaces, GigaSpaces XAP and JBoss AS are described on different websites and
papers with various focuses. So, finding an adequate source for its needs should easily
be possible for the interested reader. Corresponding resources are listed below at the
references, if necessary.

[18] discusses approaches, results and experiences in connection with middleware
benchmarking and is a key work in this field. It identifies the incomparableness of the
benchmark results as one of the largest problems in this field of study. That difficulty
results from the fact that most developers use their own test suite for evaluating their
system's performance and scalability. All attempts of standardization failed because of
the diversity of available middleware systems. Furthermore, the paper distinguishes

Page 12

between benchmarks that give support in the design phase and benchmarks that
evaluate the performance and scalability of a middleware system. As future prospect
the establishment of a common knowledge base is formulated.

[19] deals with performance tests concerning the Tuple Space technology. The paper
presents a framework called Space bEnchmarking and TesTing moduLEs (SETTLE)
which supports the execution of Tuple Space benchmarks. Moreover, it describes and
demonstrates a method for measuring the throughput and response time of a local
JavaSpace which is concurrently accessed. Also, an approach for identifying the worst-
case performance of a JavaSpace is shown.

The focus of [20] is on the performance and scalability of Enterprise JavaBeans (EJB).
It compares five diverse EJB implementations – from stateless session beans to the
session façade pattern using remote/local interfaces – of the same project and
measures the throughput with two different EJB containers, namely JBoss and JOnAS,
thereof. The work shows that the performance and scalability of a J2EE application
depends both on the concrete implementation as well as on the EJB container.

The activities presented at [21] and [22] should also not be forgotten. The first work,
SPECjAppServer2004, allows that an application server based on the J2EE platform can
be subjected to a standardized benchmark. The relevant components of such an
application server are tested thoroughly and their performance is evaluated. The
second work, SPECjbb2005, rates the entire server – from hardware over operating
system to Java environment – with regard to performance, partly scalability. However,
both are inappropriate as tools for the implementation and execution of individual test
cases.

Finally, the ACM Workshop on Software and Performance (WOSP) and the Computer
Measurement Group (CMG), which are active in this scope, too, should also be
mentioned with its journals and proceedings published at [23] and [24].

Page 13

3 Terms and Definitions
The following chapter provides different definitions of benchmark, performance,
scalability and middleware. It also explains topics associated with these terms.

3.1 Benchmark
Basically, a benchmark enables the comparison of two or more systems, perhaps only
parts of them, on basis of objective indicators. The term itself comes from the
economy.

3.1.1 Definitions
A general and an IT-specific definition should be sufficient to gain an understanding of
the term benchmark.

At [25] the following general definition of benchmark can be found:

• A standard by which something is evaluated or measured.

• A surveyor's mark made on some stat ionary object and shown on a map; used as
a reference point.

In connection with computer science benchmark is described at [26] as follows:

In computing, a benchmark is the act of running a computer program, a set of
programs, or other operat ions, in order to assess the relat ive performance of an
object, normally by running a number of standard tests and tr ia ls against i t . The
term, benchmark, is a lso mostly ut i l ized for the purposes of e laborat ly-designed
benchmarking programs themselves. Benchmarking is usual ly associated with
assessing performance character ist ics of computer hardware, for example, the
f loat ing point operat ion performance of a CPU, but there are c ircumstances when
the technique is also appl icable to software. Software benchmarks are, for example,
run against compi lers or database management systems.

Benchmarks provide a method of comparing the performance of var ious subsystems
across different chip/system architectures.

3.1.2 Tools
Below, there is a summary of free available tools which assist in the implementation
and the execution of benchmarks. Most of them are written in Java. All tools have been
tested with regard to functionality and application for this work.

3.1.2.1 Apache JMeter
Apache JMeter released at [27] enables the organization and execution of distributed
load tests on a server, network or object. The target system, that is to be examined, is
requested by several slaves that are distributed over different computers. The slaves
can be controlled by the testing person via a central master, which has a graphical user
interface available. For the communication between the master and its slaves Remote
Method Invocation (RMI) is used.

Page 14

Figure 1: Functionality of Apache JMeter

Even if Apache JMeter provides an interesting and sophisticated environment for the
execution of distributed load tests, it will not be used. The reason is that running the
benchmarks without the use of any tool will be simpler and above all sufficient in this
work.

3.1.2.2 Faban
Faban released at [28] supports in the development and running of benchmarks. It
consists of a harness and the driver framework. The former allows the automatic
execution of test cases which were generated using the associated framework. Via this
driver framework the lifecycle of an implemented benchmark can be controlled. The
test results are given by throughput and response time and can be visualized over the
whole test period in form of charts.

Benchmarks which are supposed to run with Faban must be implemented on the basis
of the driver framework. This facilitates the implementation after a certain induction
phase, but also commits fully to this system. Since the effort for the familiarization with
this tool is higher than the benefits of its use, it will not be used for the implementation
of the benchmarks.

3.1.2.3 Gnuplot
Gnuplot released at [29] allows the graphical representation of functions and data via
script and command line. It generates two- or three-dimensional plots that can be
saved in various formats. The tool was originally written for Unix, but meanwhile it is
available for many other platforms.

Below is an example of a Gnuplot script which uses data points from several files for
the chart generation:

#!/gnuplot

set terminal gif
set output "chart.gif"

Page 15

set size 2/3., 2/3.
set grid
set key left top box lw 2
set xlabel "Write Operations"
set ylabel "Execution Time [ms]"

plot 'fifo.dat' t " FIFO" with linespoints,\
 'key.dat' t " KEY" with linespoints,\
 'lifo.dat' t " LIFO" with linespoints,\
 'linda.dat' t " LINDA" with linespoints,\
 'random.dat' t " RANDOM" with linespoints,\
 'vector.dat' t " VECTOR" with linespoints

The generated diagram for this Gnuplot script and the transferred data is displayed in
the following:

Figure 2: Example of Gnuplot Diagram

It should be obvious that Gnuplot is not really a benchmark tool, but it is useful for the
automated generation of charts. In this work it will be used for exactly that purpose.

3.1.2.4 JAMon
JAMon released at [30] is an application programming interface (API) which provides
methods for monitoring the runtime behaviour of Java applications. By adding a few
additional lines of code, several statistical data can be requested and displayed.

A handicap of this tool is that for the export of statistical data no methods are finished,
yet. But the main disadvantage of JAMon is that milliseconds instead of nanoseconds
are used for time resolution. Since tests have been demonstrated that this is not
sufficient, this tool cannot be used in this work.

3.1.2.5 JBento
JBento released at [31] is a toolkit that supports benchmarking a system's performance
and provides methods for measuring, analysing results and converting results into
charts.

Page 16

The description of JBento sounds promising. However, since the entire documentation
is available currently only in Japanese language, using this tool is unthinkable at
present.

3.1.2.6 jMonit
jMonit released at [32] represents a monitoring toolkit that works similar to JAMon. The
architecture of jMonit is made up of three layers, namely the instrumentation,
computation and formatting layer. Each layer has its own function.

In contrast to JAMon, useful methods for the export of the collected data are available
and nanoseconds are used for time resolution. Nevertheless, the benefits resulting from
the usage of this toolkit are ultimately too low.

3.1.2.7 JPerf
JPerf released at [33] is based on the JUnit framework and allows the evaluation of
performance and scalability of a system. It uses threads for simulating concurrent
access and returns the throughput.

The use of a narrow interface makes JPerf easy to integrate and universally applicable.
However, the JUnit structure does not fit for the purpose of this work, which is why it
will not be used for the implementation of the benchmarks.

3.1.2.8 JUnitPerf
JUnitPerf released at [34] allows the user to define limits for the execution time of
existing JUnit test cases. The compliance with these bounds can be tested in an
automated way. Even the behaviour under load – a specified number of competing
users execute the same test case simultaneously – can be tested using JUnitPerf.

This tool is well-suited to ensure a priori defined performance and scalability
requirements. However, for exclusive measurement of these values as demanded in
context with this work, it is inappropriate.

3.1.2.9 Loadunit
Loadunit released at [35] also works on basis of JUnit test cases. It is generally more
powerful than JUnitPerf. For instance, it provides such features like the generation of
realistic test data and graphical representation of throughput versus users and
performance versus users.

Page 17

Figure 3: Example of Loadunit Diagram

As for the two benchmark tools before, which were also based on JUnit, the structure of
Loadunit prevents its use in this work.

3.1.2.10 p-unit
p-unit released at [36] corresponds approximately to the structure and scope of
services with Loadunit.

Therefore, it should be clear why this tool is also not applied for the implementation of
the benchmarks.

3.2 Performance
Performance itself is always associated with the execution of a particular activity in a
certain period of time. The technical term performance comes from physics, where it is
called power.

3.2.1 Definitions
The physical definition at [37] already provides a good approximation for the term in
computer science:

In physics, power is the rate at which work is performed or energy is transmitted,
or the amount of energy required or expended for a given unit of t ime. As a rate of
change of work done or the energy of a subsystem, power is:

P = W / t

where P is power, W is work and t is t ime.

A definition of performance with regard to computer science can be found at [38]:

Computer performance is character ized by the amount of useful work accompl ished
by a computer system compared to the t ime and resources used.

Depending on the context, good computer performance may involve one or more of
the fo l lowing:

Page 18

• Short response t ime for a given piece of work

• High throughput (rate of processing work)

• Low ut i l izat ion of computing resource(s)

• High avai labi l i ty of the computing system or appl icat ion

For the purpose of limitation, in this work the term performance is always used in
connection with speed. That means it is only relevant how quickly a task is finished.

3.2.2 Metrics
For evaluating the performance of a system, or only a part of it, two quite simple
metrics are sufficient:

• Measure the time, how long the execution of a specified number of actions will

take. As an objective indicator for all compared systems a duration, which is called
execution time, is delivered. Under certain conditions it is referred to as response
time.

• Measure the number of actions that can be performed within a specified time. As
an objective indicator for all compared systems a number is delivered, which is
usually referred to as throughput.

3.2.3 Criteria
The criteria regarding performance are always dependent on the specific investigation
and cannot be determined a priori.

In connection with middleware systems simple operations such as reading and writing
of a large number of records for different system configurations (with or without
caching, with or without replication, with or without transactions, with or without
distribution) are essential.

[2] even goes a step further and limits the evaluation to the number of transactions per
second or the number of transferred bytes per second.

3.2.4 Procedure
For the evaluation of TripCom’s performance [1] proposes the following seven steps,
which may be also suitable for the assessment of other middleware systems:

1. Define component performance models

2. Review of component performance models

3. Define system performance model

4. Review of system performance model

5. Analysis of interdependences between component's and system performance

6. Build performance functions

7. Analyse results with respect to performance definition used, i.e. determine
performance

Page 19

A problem of this approach is that for realistic results fine-granular and complex models
are necessary, whose evaluation can be often very time-consuming. For this reason the
paper recommends the implementation of real experiments – the execution of the
components in a representative operating environment with simultaneous time
measurement – instead of elaborate simulation modelling.

3.3 Scalability
The behavior of a system, possibly even a part of it, in connection with an increasing
problem size is basically for scalability. The term is an IT-specific one.

3.3.1 Definitions
There is no precise definition for the term scalability. Therefore, several explanations
are quoted to enable an orientation.

At [39] the following definition of scalability can be found:

In telecommunicat ions and software engineering, scalabi l i ty is a desirable property
of a system, a network, or a process, which indicates its abi l i ty to either handle
growing amounts of work in a graceful manner, or to be readi ly enlarged. For
example, i t can refer to the capabi l i ty of a system to increase tota l throughput
under an increased load when resources (typical ly hardware) are added.

Scalabi l i ty, as a property of systems, is general ly di f f icult to def ine and in any
part icular case i t is necessary to def ine the speci f ic requirements for scalabi l i ty on
those dimensions which are deemed important. It is a highly s ignif icant issue in
electronics systems, database, routers, and networking. A system whose
performance improves after adding hardware, proport ional ly to the capacity added,
is sa id to be a scalable system. An algor ithm, design, networking protocol, program,
or other system is said to scale i f i t is suitably eff ic ient and pract ical when appl ied
to large s ituat ions (e.g. a large input data set or large number of part ic ipat ing
nodes in the case of a distr ibuted system). If the design fa i ls when the quant ity
increases then it does not scale.

This means that scalability deals with the behaviour of a system while increasing the
computational requirements and the available resources at the same time. A system,
which offers optimal scalability, provides the same performance for the n-fold problem
size and the n-fold resources as the reference system.

An explanation of the term in connection with performance provides [3]:

We def ine performance as:

• The response t ime seen by a user under normal working condit ions.

• The cost of the system per user; a representat ion of the hardware requirements
of the system.

We consider scalabi l i ty to be a measure of how these change as the system size is
increased – for example, by adding more users.

No further definition, but a clear differentiation to the term performance can be found
in [4]:

Page 20

Scalabi l i ty is frequently associated with performance and, at t imes, the terms are
erroneously used interchangeably. Performance, in our opinion, can be an indicator
of scalabi l i ty only when the stakeholder ’s interests are performance indexes, such
as throughput and execut ion t ime. Otherwise, performance is s imply another
requirement to be met by the system, l ike message rel iabi l i ty, memory usage and
other metrics associated with software qual i t ies. For this reason, we bel ieve that
the scalabi l i ty of a system should be seen in the context of i ts requirements.

Scalability in relation to distributed systems is explained in [5]. Therefore, the ability of
good scaling must be taken into account in the design phase already:

A system is said to be scalable i f i t can handle the addit ion of users and resources
without suffer ing a not iceable loss of performance or increase in administrat ive
complexity. Scale has three components: the number of users and objects that are
part of the system, the distance between the farthest nodes in the system, and the
number of organizat ions that exert administrat ive control over pieces of the system.

If a system is expected to grow, i ts abi l i ty to scale must be considered when the
system is designed. Naming, authent icat ion, author izat ion, account ing,
communicat ion, and the use of remote resources are al l affected by scale. Scale
a lso affects the user 's abi l i ty to easi ly interact with the system.

Additional understanding can be achieved referring to the explanation of the term in
[2], which allows the adjustment of a system for rising problem size only to a limited
extent:

Scalabi l i ty is the capacity to address addit ional users or transact ions by adding
resources without fundamental ly a lter ing the implementat ion architecture or
implementat ion design.

That scalability is a quality factor of today's systems is shown to the reader in [6]:

Scalabi l i ty is one of the most important qual i t ies of today’s software appl icat ions.
As businesses grow, the systems that support their funct ions also need to grow to
support more users, process more data, or both. As they grow, i t is important to
maintain their performance (responsiveness or throughput). Poor performance in
these appl icat ions often translates into substantia l costs.

[7] deals with the relevance of scalability in the development of distributed systems.
The importance of scalability is justified in consequence of the frequent change of the
environment in which such a system runs:

A major problem in the development of these distr ibuted information systems, is
that we cannot assume that the environment in which the system is to operate wi l l
remain the same over t ime. This means that developers must take into account that
the system should be easy to adapt to meet requirements that are unknown dur ing
the development process. At best, such unknown requirements are formulated
imprecisely. One part icular ly fuzzy requirement is that the information system
should be scalable.

Based on these explanations, the reader should be able to evolve an idea for the term
scalability. It is important to understand that there is indeed a significant connection
between performance and scalability, but each of these terms stands for something
different.

Page 21

3.3.2 Classifications
There are different approaches to classify scalability. Some of them are listed below.

3.3.2.1 Numerical / Geographical / Administrative
A classification by numerical, geographic and administrative aspects is given in [5]:

• Numerical dimension: This category deals with the number of users, objects and

services which participate in the system.

• Geographical dimension: This category gives attention to the spatial distribution of
the system.

• Administrative dimension: This category concerns with the number of
organizations that control the system or parts of it.

Each of these categories brings along its own problems and has different effects on the
individual components of a distributed system. To get a grip on the difficulties the
techniques of replication, distribution and caching are introduced. In addition to these
three concepts, which make the construction of scalable distributed systems possible in
the first place, best practices are shown.

3.3.2.2 Linear / Sub-linear / Super-linear
In [6] a classification is done according to how the behaviour of the capacity changes
by adding additional processors compared to only one. Depending on that, the terms of
linear, sub-linear and super-linear scalability are distinguished:

• Linear scalability: Increasing the number of processors to n results in a throughput

that is n times the capacity with one processor. From this it follows that doubling
the number of processors will double the system's throughput.

• Sub-linear scalability: Increasing the number of processors to n results in a
throughput that is less than n times the capacity with one processor. From this it
follows that doubling the number of processors will not double the system's
throughput.

• Super-linear scalability: Increasing the number of processors to n results in a
throughput that is more than n times the capacity with one processor. From this it
follows that doubling the number of processors will more than double the system's
throughput.

Page 22

Figure 4: Linear, Sub-linear and Super-linear Scalability

It should still be noted that in the context of distributed systems the multiplication of
system resources should not only be restricted to processors. Choosing a more general
approach is useful.

3.3.2.3 Vertical / Horizontal
[2] distinguishes between two different scaling methods for the addition of resources.
One possibility is providing more resources in one server machine, the other is making
more server machines available. Depending on that, the used scaling method is called
vertical or horizontal:

• Vertical scaling: The system's performance is improved by adding more hardware

resources on a single server. This method is commonly referred to as scaling up.

• Horizontal scaling: The system's performance is improved by making additional
servers available. This method is commonly referred to as scaling out.

Figure 5: Vertical and Horizontal Scaling

It is important to put on record that the use of these two procedures with the same
application leads to different results. Furthermore, the elimination of problematic
positions can raise new bottlenecks. Both statements, each with an example, are
demonstrated in [40].

Page 23

3.3.2.4 Load / Space / Space-time / Structural / Distance /
Speed/Distance
Another approach for the classification of scalability can be found in [8]. Thereby, each
system and each system component features several attributes at the same time:

• Load scalability: A system is referred to as being load scalable if it functions well

under light, moderate and heavy load through efficient utilization of the available
resources.

• Space scalability: A system or application is referred to as being space scalable if
increasing the number of objects does not result in oversized growth of its
memory requirements.

• Space-time scalability: A system is referred to as being space-time scalable if the
algorithms and data structures which were used for the implementation function
well, independent of the problem size.

• Structural scalability: A system is referred to as being structurally scalable if its
implementations and standards do not limit the systems functionality in case of
increasing objects.

For systems, whose nodes are distributed over long distances, two further scaling
methods are distinguished:

• Distance scalability: An algorithm or protocol is referred to as being distance

scalable if it functions well for both short and long distances.

• Speed/Distance scalability: An algorithm or protocol is referred to as being
speed/distance scalable if it functions well for both short and long distances, with
low and high speeds.

According to this, the algorithms and protocols are characterized by their changing of
behaviour as a result of different distances and speeds.

3.3.3 Metrics
For making the scalability of a system measurable and comparable, it requires a metric.
Some of these methods are introduced below.

3.3.3.1 Speedup → Efficiency
A simple metric to rate the scalability of a system is presented in [9]:

Let time(n, x) be the time that a machine with n processors needs to execute a
program with problem size x.

If such a program is executed on a machine with n processors, then the speedup in
comparison to a machine with only one processor can be formally expressed as follows:

speedup(n, x) = time(1, x) / time(n, x)

The ratio between the speedup and the number of processors returns a value for the
efficiency. In formulas that relation can be expressed as follows:

Page 24

efficiency(n, x) = speedup(n, x) / n = time(1, x) / (time(n, x) · n)

According to this metric, a system is called scalable, if and only if for all algorithms, any
number of processors n and any problem size x efficiency(n, x) = 1 holds.

If this strict restriction, that hardly permits scalable systems, is toned down, then this
method provides a simple way to estimate the scalability of a system and to make
different systems comparable among each other.

3.3.3.2 Throughput / Response Time / Costs → Productivity
[10] describes why the metric above based on efficiency is not sufficient for distributed
systems without adaption. Among other things it is argued that the size of a distributed
system cannot only be reduced to the number of processors – it is more complex. From
this it follows that size in a distributed system becomes a multidimensional concept. The
greater variety of communication mechanisms also brings up new problems, which
must not be ignored, either.

Now, the new approach includes throughput and response time as productivity factors.
The proposed metric is based on the productivity and is formally defined for a scaling
factor k as follows:

Let λ(k) be the throughput of responses per second, let f(k) be the response time per
response on average, which was calculated via quality of service, and let C(k) be the
ongoing costs to ensure the required throughput. Then, productivity can be expressed
in formulas as follows:

F(k) = λ(k) · f(k) / C(k)

If the calculated productivity values for two different scaling factors k1 and k2 are set in
relation, then the desired scale value is returned, which informs about the scalability of
the system:

ψ(k1, k2) = F(k1) / F(k2)

3.3.3.3 Attributes / Resources / Costs → Conditions
[7] provides a formal framework for evaluating the scalability of a distributed
application:

According to the underlying model, such an application is made up of several
cooperating programs that run on different machines and use a common database. The
environment of a distributed application is divided into the following four areas: client,
development, administration and execution.

Page 25

Figure 6: Model of Scalability Framework

Now, different attributes Attr1, ..., AttrN are associated with the client environment.
Then, an instance of the client environment is formally defined by the vector a = 〈a1,
..., aN〉. For example, such attributes can be the number of clients, the number of client
requests or the transferred data between the applications.

In analogy to the client environment different resources Res1, ..., ResN are associated
with the execution environment. Formally, an instance of the execution environment is
defined by the vector r = 〈r1, ..., rN〉. For example, the number of a certain resource can
be an entry of this vector.

In the next step, the performance function PerfA(a, r) is defined for the distributed
application, which returns a numerical value. A low value represents poor performance
and a high value indicates good performance. Also, it is expected that increasing an
attribute results in performance degradation and that increasing a resource leads to
better performance. Formally, this can be expressed as follows:

ΔPerfA / Δa ≤ 0 and ΔPerfA / Δr ≥ 0

The cost function Cost(r) describes the costs of the resource capacities given by r, and
CostA(a, r) returns the costs for the realisation of the performance PerfA(a, r).
Furthermore, rmin(a) expresses the resources needed to implement PerfA(a, r) with
minimal costs.

Now, let A be a distributed application, whose execution in the reference environment
with the attributes aref and resources rref = rmin(aref) causes minimal costs, and let aref 〈i :
a〉 be the vector with the ith component. Moreover, let δ(a) be a function which
expresses an accepted performance degradation in relation to the problem size, and let
γ(a) be a function which limits the maximum costs.

Then, the application A is called scalable, if and only if the following three conditions
hold:

1. A can accommodate values aref[i] < a ≤ amax

Page 26

2. ∀aref[i] < a ≤ amax ∃r:: PerfA(aref, rref) – PerfA(aref 〈i : a〉, r) ≤ δ(aref 〈i : a〉)

3. ∀aref[i] < a ≤ amax:: CostA(aref 〈i : a〉, rmin(aref 〈i : a〉)) ≤ γ(aref 〈i : a〉)

Based on this formal framework particular metrics can be defined. Depending on the
problem size, such a metric tolerates a predetermined decrease of performance and
also considers the accumulated costs.

3.3.4 Criteria
[3] analyses a distributed system in regard to performance and scalability. Thereby, the
following four important criteria are identified which influence the scalability of a
distributed system.

3.3.4.1 System Design
Poor scalability results often from crude system design. Therefore, it is reasonable to
always scrutinize and analyse the system design during scalability investigations.
Furthermore, it is important that considerations regarding to scalability must already be
done in the design phase, because the later a change in design must take place, the
larger the effort to do so.

3.3.4.2 Communications
The communication over a network is often the main reason for poor performance of a
distributed system. It should be noted that the delivery of large messages takes longer
than of short ones and that doubling the number of messages also doubles the
demands on the network. Thus, it is necessary to examine whether a network can meet
the communication demands if the number of users reaches the maximum.

3.3.4.3 Data Input/Output
The required time for the input/output operations is also not negligible. Therefore, it is
recommended to represent and analyse all of these operations. If a problem is
diagnosed in the test phase, then eventually the deficit can be addressed faster.

3.3.4.4 Computational Requirements
It is relatively easy to detect problems related to communication and data input/output,
but it is difficult to estimate the computational and memory requirements for each
specific function. That results from the fact that the development of a function can
happen in various ways at a higher level. Above all, it is quite difficult to assess the
seriousness of such scaling problems correctly.

3.3.5 Challenges
The building of scalable distributed systems poses several challenges to their designers.
[41] returns the following issues for this purpose:

• Controlling the cost of physical resources

• Controlling the performance

• Preventing software resources running out

• Avoiding performance bottlenecks

Page 27

These aspects are explained in more detail below.

3.3.5.1 Controlling the Cost of Physical Resources
The expansion of a system for achieving the demands should always be feasible with
reasonable costs. In general, for a scalable system with n users the amount of physical
resources should not exceed Ο(n).

3.3.5.2 Controlling the Performance
Algorithms with hierarchical structures scale better than those with linear. However,
even such algorithms cause a loss of performance if problem size increases. This loss
should be at most Ο(log n) – equivalent to the access time on hierarchical structures –
for a set of data with size n.

3.3.5.3 Preventing Software Resources Running Out
In most cases, estimating the demands for years in advance is very difficult to
accomplish. An over-compensation for future growth may be even worse than the
adaptation of the system on occasional demands.

3.3.5.4 Avoiding Performance Bottlenecks
Algorithms should be decentralized to avoid performance bottlenecks. For shared
resources, which are accessed frequently, the concepts of caching and replication
should be used.

3.3.6 Procedure
For measuring the scalability of a system [6] defines seven steps, which are described
in more detail below:

1. Identify critical use cases

2. Select representative scalability scenarios

3. Determine scalability requirements

4. Plan measurement studies

5. Perform measurements

6. Evaluate data

7. Present results

In [11] the assessment of scalability is introduced in a similar way for an e-business
application. In particular, the process character is highlighted. Therefore, it is not
sufficient to evaluate the scalability of an application only once in the test phase.
Considerations about scalability should be fully integrated into the entire product life
cycle – from planning to maintenance.

3.3.6.1 Identify Critical Use Cases
In the first step, the typical use cases, which are most commonly performed, must be
identified, because they play a decisive role. Use cases that are not often called, but
require many resources, are also important. Overall, the critical use cases represent
only a small subset of all possible.

Page 28

3.3.6.2 Select Representative Scalability Scenarios
In the second step, the main scenarios for scalability in relation to the identified critical
use cases must be selected. It is important to note that not all possible scenarios are
significant for the scalability tests. Again, it is useful to select the scenarios, which often
take place or rather demand many resources during execution.

For the purpose of documentation the use of Unified Modeling Language (UML) is
recommended. Typically, sequence diagrams are used for illustrating the links and
flows:

Figure 7: Example of UML Sequence Diagram

3.3.6.3 Determine Scalability Requirements
In the third step, accurate, quantitative and measurable requirements regarding
scalability must be defined. Only those allow the selection of a meaningful scale
strategy. There are different ways to express these requirements, but one must make
sure that they are quantifiable and measurable. Vague descriptions do not help. The
conditions, under which the required performance can be achieved, must also be
specified.

3.3.6.4 Plan Measurement Studies
In the fourth step, the bottlenecks related to resources must be identified, because they
push the measurements. Afterwards, four different configurations for each scaling
strategy have to be considered. Next, a generator, which brings the system up into a
representative system state, must be developed. Also, the system parameters have to
be determined in detail. It makes sense to use adequate tools for the implementation of
the measurements. At this step, the selection of such tools can be performed, because
all system parameters are known. The documentation of the test plan, in order to make
the measurements retraceable and repeatable, is the final task.

3.3.6.5 Perform Measurements
In the fifth step, the measurements are performed and the results are collected and
documented. In order to be able to clearly assign the results to the development stages
the date and time must always be saved to the benchmarks. Furthermore, the
configuration data as well as the version numbers of the software products have to be
recorded.

Page 29

While executing the experiments the following points should also be taken into account:

• The number of competing users in the system should be increased steadily.

• The maximal throughput can be determined by increasing the number of
competing users while measuring the throughput at every point. If the total
throughput no longer rises or even falls, the maximum throughput has been
reached.

• The individual experiments should always take long enough so that a stable state
is reached. That is the only chance to obtain a representative value for a
measurement.

• For demonstrating the reproducibility of the test results, the individual experiments
should always be repeated several times.

3.3.6.6 Evaluate Data
In the sixth step, the measured data must be evaluated. Thereby, it must be checked
whether the requirements defined in the third step hold. In addition, the best scaling
strategy is selected.

3.3.6.7 Present Results
In the seventh and last step, the results must be presented to the stackholders.
Recommendations in terms of scalability should be distributed. In any case, the
identified, specified and measured data from the steps above have to be expressed in
written form.

3.4 Middleware
Today, the realization of large and distributed software projects is unthinkable without
the use of middleware. Even if middleware is a commonly used term, an introduction to
this IT-specific concept will be explained in this chapter.

3.4.1 Definitions
In the literature the first definition of middleware can be found in [13] written in 1970.
Therein, the term middleware is defined as follows:

Computer manufacturer ’s software which has been tai lored to the part icular needs
of an instal lat ion.

In 1972, a still common definition of middleware was published in [14]. This article
gives the following definition:

A comparat ively new term middleware was introduced because, as some systems
had become uniquely complex, standard operat ing systems required enhancement or
modif icat ion; the programs that effected this were cal led middleware because they
came between the operat ing system and the appl icat ion programs.

Finally, the concept of middleware becomes popular in computer science due to [15].
The term middleware services is described as quoted below:

To help solve customers ’ heterogeneity and distr ibut ion problems, and thereby
enable the implementat ion of an information ut i l i ty, vendors are offer ing distr ibuted

Page 30

system services that have standard programming interfaces and protocols. These
services are cal led middleware services, because they s it " in the middle", in a layer
above the OS and networking software and below industry-specif ic appl icat ions.

In connection with a distributed system [42] provides a brief, but meaningful definition
of the searched term:

In a distr ibuted computing system, middleware is def ined as the software layer that
l ies between the operat ing system and the appl icat ions on each site of the system.

Now, the reader should have a sufficient idea of the concept of middleware and be able
to understand the following remarks.

3.4.2 Characteristics
[15] lists fundamental properties and requirements which are characteristic for
middleware services. These characteristics can be summarized as follows and are
discussed in more detail below:

• Middleware services are multi-purposed and distributed services which are always

positioned between the platforms and the applications.

• Middleware services are defined by their APIs and protocols and support at least a
standard API and a standard protocol or at least a published one.

• Middleware services are available in different implementations which allow the
execution on multiple platforms.

The previous definitions show the reader already quite plainly, where middleware in a
computer system is located, namely between applications and platforms. This context
can be illustrated as follows:

Figure 8: Positioning of Middleware

The applications access the middleware and their provided services via interfaces. Thus,
each middleware is defined by the APIs and the protocols it supports. To minimize the

Page 31

dependencies on the different platforms, middleware is not directly set up on the
platforms, but uses interfaces itself. That ensures the portability of middleware as well
as their services.

Therefore, middleware is a system that acts as a broker between applications, whereby
the complexity of these applications and their infrastructure is hidden. It can also be
seen as a protocol at a higher layer, which enables decoupled software components the
exchange of data. On this account, middleware is a key technology for the
implementation of distributed systems.

Today, a common model for the realization of large information systems is the 3-tier
architecture. Since each tier can be divided in further layers, the term n-tier or multi-tier
architecture has been established for this model. Each layer can be understood as a
separate sub-system that implements one of the aspects of a system, namely data
presentation, data processing and data storage. While system components can
communicate within a layer freely, the communication between components of different
layers is subjected to strict guidelines.

Figure 9: 3-tier Architecture

In relation to this architecture model, middleware is mainly located in the logic tier.
There it provides the most commonly required services for the implementation of
distributed systems as well as a runtime environment for the business objects. In this
context, such a system is often referred to as application server. The integration of the
user-defined business objects into an application server – this procedure is called
deployment – is performed using well-defined interfaces.

However, from the point of view of a developer the use of middleware systems makes
sense only if efficient services can be used for their implementation. An overview of
issues, for which a middleware system should provide corresponding services, gives
[43]:

• Communication facilities

• Naming

Page 32

• Persistence

• Distributed transactions

• Security

3.4.3 Classifications
There are several approaches for the classification of middleware systems. Some of
these are presented in the following.

3.4.3.1 Transactional / Procedural / Message-oriented / Object-
oriented
[16] distinguishes between transactional, procedural, message-oriented and object-
oriented middleware and describes them as follows:

• Transactional middleware: This middleware, also referred to as Transaction

Processing Monitor (TPM), supports the use of distributed synchronous
transactions. One of the main tasks of such a monitor is the coordination of the
transactional requests between the clients and the processing servers.

• Procedural middleware: This middleware, also referred to as Remote Procedure
Call (RPC), enables the invocation of functions in different address spaces.
Normally, the called functions are executed on a computer that is different from
the one that hosts the calling program. Many operating systems support this type
of middleware, but the implementations are often incompatible.

• Message-oriented middleware: This middleware uses messages for
communication. A differentiation can be made between message queuing and
message passing. Message queuing is an indirect communication model, because
all communication partners use queues for sending and receiving messages.
Message passing is a direct communication model. Here, the information is sent
directly to the interested participants. The best-known variant of this middleware
type is the publish-subscribe model.

• Object-oriented middleware: This middleware extends the concept of RPC by
adding object-oriented aspects such as inheritance, object references and
exceptions.

For all of these categories the referenced article lists typical products and deals with the
issues network communication, coordination, reliability, scalability and heterogeneity.
Furthermore, it explores the advantages and disadvantages for each middleware class
and gives advices for the use.

3.4.3.2 Distributed Tuples / Remote Procedure Calls / Message-
oriented / Distributed Object
Another classification is presented in [17] which differentiates four categories of
middleware:

• Distributed tuples: This middleware is currently the most popular one. Such tuples

represent the abstraction of data which are managed by distributed relational
databases. Using the Structured Query Language (SQL), which is based on the set
theory and predicate calculus, allows the manipulation of these tuples. In addition,

Page 33

a distributed relational database provides the abstraction of a transaction. For end-
to-end resource management of client queries, server-side process management
and managing multi-database transactions TPMs are used.

• Remote procedure calls: as procedural middleware above

• Message-oriented middleware: as message-oriented middleware above

• Distributed object middleware: as object-oriented middleware above

In comparison to the previous classification only the first category, the distributed
tuples, is newly introduced. The remaining three categories correspond to the last three
in chapter 3.4.3.1 and differ from them only marginally.

3.4.3.3 Communication-oriented / Application-oriented / Message-
oriented
Finally, the categorization of middleware systems published at [44] is given. This
alternative distinguishes between the following three types:

• Communication-oriented middleware: The main focus is on the abstraction of

network programming. RPC, Java RMI and Web Services are listed as examples.

• Application-oriented middleware: In addition to the communication mainly the
support of distributed applications takes centre stage. As examples Common
Object Request Broker Architecture (CORBA), J2EE and .NET are mentioned.

• Message-oriented middleware: This category does not use method and function
calls, but is based on the exchange of messages. The message format is specified
by the middleware system and the message exchange can happen in synchronous
and asynchronous way. The asynchronous variant uses queues, in which the
producers put messages and from which the consumers take messages. As a
result of this procedure the system components become completely decoupled, so
that the error rate of the system decreases. An example for that category is Java
Message Service (JMS).

3.4.4 Concepts
Next, the middleware concepts are described in detail, which are relevant in this work.
Please note that these are only a few of many existing concepts.

3.4.4.1 eXtensible Virtual Shared Memory
The concept of eXtensible Virtual Shared Memory was developed by the Space Based
Computing Group of the Institute of Computer Languages at the Vienna University of
Technology.

First, the concept of Virtual Shared Memory (VSM) is presented, because XVSM is based
on it. VSM is described at [45] as a shared data space for the communication and
collaboration of several autonomous software components called peers. The concept of
VSM is well-known from parallel computing.

In contrast to conventional middleware concepts this approach pursues a new goal.
Since the peers use a shared virtual data space to interact among each other, they are
only loosely coupled and the way of thinking is changed from client-server to peer-to-

Page 34

peer. Due to these changes the building of more stable and scalable systems is made
possible. The paradigm of VSM is also known as Space Based Computing (SBC).

XVSM expands the concept of VSM, so that the functionality of the basic system can be
extended, if required, through the usage of aspects. Hence, XVSM is also called
programmable VSM. The expandability offers immense possibilities for someone who
uses such a system.

Now, XVSM can be adapted by everyone in such a manner that it satisfies the user's
demands. If necessary, new pluggable components can be added to the system,
existing components can be replaced by others and components that are no longer
needed can be removed. Time is over, when a user had to handle a lot of functionality,
and therefore complexity, which is not needed. Another advantage is that the
dependency on individual vendors decreases, because components from different
suppliers can be used in this middleware.

Figure 10: Architecture of XVSM

From a technical point of view, the container is the basic part of XVSM. A container –
there can also be several instances of it – represents the shared virtual data space and
is responsible for managing the entries which can be structured Linda tuples or
serializable objects. Each container is accessible via a Uniform Resource Locator (URL)
which enables the access via the Internet. In addition, for each container the maximum
number of entries can be limited.

For managing the entries in a container or rather for retrieving entries from a container
the following coordinators and selectors are available, which are described in detail in
[46]:

Page 35

• Random

• First In, First Out (FIFO)

• Last In, First Out (LIFO)

• Key

• Vector

• Linda

A peer can execute five operations in connection with a container:

• write: This operation inserts an entry into the container. If the container reaches

the maximum number of entries, then this operation blocks.

• read: This operation reads an entry from the container using a selector. If no
relevant entry can be found, then this operation blocks.

• take: This operation reads and at the same time removes an entry from the
container using a selector. If no relevant entry can be found, then this operation
blocks.

• shift: This operation inserts an entry into the container. If the container reaches
the maximum number of entries, then an existing entry is replaced.

• destroy: This operation removes an entry from the container using a selector. If no
relevant entry can be found, then this operation blocks.

These actions can also be performed in form of bulk operations. This means that
through one invocation more than one entry is manipulated or retrieved. Furthermore,
the container supports implicit and explicit transaction handling.

In addition, aspects can be defined on each container, so that on the occurrence of a
specific event user-defined actions can be executed.

With regard to the classifications above the basic system of XVSM belongs to the
category of distributed tuples. In view of the expandability of XVSM this concept holds
the potential to become an application-oriented middleware.

3.4.4.2 JavaSpaces
JavaSpaces was specified by Sun Microsystems based on the concepts of Linda and
defined within the context of Jini. Therefore, short descriptions of these two
technologies will be given at the beginning.

[47] characterizes Linda as coordination and communication model for parallel
processes that operate on objects which are stored in and retrieved from a VSM. Such
objects are called tuples and the associated VSM is referred to as Tuple Space. The
model is implemented as coordination language and provides primitive operations for
the transfer of tuples.

Page 36

Jini which stands for "Jini is not initial" is explained at [48] as service-oriented
architecture that defines a programming model on the basis of Java technology. It
allows the construction of secure and distributed systems that are scalable, evolvable
and flexible.

However, the main focus here is on JavaSpaces, and not on Linda or Jini. Therefore,
the following introduction based on [49] informs about the essentials of this middleware
concept:

JavaSpaces defines a model which enables the exchange of objects in a distributed Java
application. A JavaSpace can be considered as a form of VSM, which allows a client to
write objects into the space and to read or take objects from the space. Furthermore, a
client can register an event listener with the space to be notified about the occurrence
of certain events.

Figure 11: Operations in JavaSpaces

From a technical point of view, the JavaSpace is the central component. In such a
space, all serializable objects can be stored, which implement a specific interface and
offer public fields and a public constructor. Due to these restrictions such entries are
suitable as communication objects only. The concept, that each entry has a unique
identifier, is not supported innately.

The clients use the lookup service, which provides a central registry of services
available, to get a reference on a JavaSpace. Also, each client can register its
JavaSpace with this service so that other clients can access it. However, it should be
noted that this is only one possibility to share a space between several clients.

In connection with a JavaSpace five operations can be executed by a client:

• write: This operation inserts an entry into the space.

• read: This operation reads an entry from the space using a template for selection.
If no relevant entry can be found, then this operation blocks until the passed
timeout is reached.

• readIfExists: as read operation, but without blocking

Page 37

• take: This operation reads and at the same time removes an entry from the space
using a template for selection. If no relevant entry can be found, then this
operation blocks until the passed timeout is reached.

• takeIfExists: as take operation, but without blocking

• notify: This operation registers an event listener with the space.

Depending on the JavaSpaces implementation, there are different possibilities to keep
the entries:

• Hold the entries in the memory of a Java Virtual Machine (JVM).

• Hold the entries in the memory of a cluster of several JVMs.

• Store the entries in synchronous or asynchronous way in a persistent memory
such as a file or a database.

Of course, the concept of JavaSpaces supports transactions. It uses the transaction
mechanism of Jini, which deals with distributed transactions including two-phase
commit. In order to participate in a transaction the client has to pass a reference of the
transaction object to the method. The transaction manager is responsible for controlling
the transactions. A reference on it usually is available via the lookup service.

An unusual feature of JavaSpaces is the usage of leases, as is customary in Jini. If
required, the life time of an entry as well as the validity of a transaction can be defined
by such a lease. After the expiration of the deadline the entry is removed from the
space, or rather the transaction is rolled back.

Referring to the categorizations above JavaSpaces belongs also to the distributed
tuples.

3.4.4.3 Java 2 Platform, Enterprise Edition
The concept of Java 2 Platform, Enterprise Edition – recently, the name Java Platform,
Enterprise Edition (Java EE) has been established – was developed and published by
Sun Microsystems. Following, a brief introduction to J2EE inspired by [50] is presented
to give the reader an overview about this concept.

J2EE is a specification that defines a standard for enterprise solutions through a
component-based development model on the basis of a powerful set of APIs. The figure
below gives an architectural overview of J2EE.

Page 38

Figure 12: Architecture of J2EE

Each J2EE application is composed of components. These are self-contained functional
software units which are written in Java and must be compiled as usual. The
components can communicate among each other and have to comply with the J2EE
specification which provides the following types of components:

• Applets, Application clients: These are client components that run on the client.

• JavaServer Pages (JSP), Servlets: These are web components that run on the
server.

• Enterprise JavaBeans: These are business components that run on the server.

In order to simplify the development of such components, the J2EE specification defines
various containers which provide underlying services such as security, transaction
management, Java Naming and Directory Interface (JNDI) lookups and remote
connectivity. To take advantage of the containers’ services, the components must be
assembled and deployed into such a container. Only then the components get access to
the provided services via the corresponding APIs. Therefore, a container acts as an
interface between the component and the platform specific functionalities.

Well, this should be sufficient information to get an overview of J2EE. Following, only a
few words about EJB, because this concept will be of importance below.

The EJB components, or enterprise beans, symbolize and encapsulate the business logic
in a J2EE application. The structure and body of such a component is given by the
specification, so the developer can concentrate on implementing the business
functionalities. Of course, EJB components can invoke one another.

Page 39

There are three kinds of enterprise beans:

• Entity beans: These components represent and model the non-transient data of

the system. The persistence of the data can be managed either by the developer,
referred to as Bean Managed Persistence (BMP), or by the EJB container, referred
to as Container Managed Persistence (CMP).

• Session beans: These components represent the business logic and model the
processes of the system. J2EE differentiates between stateless and stateful session
beans.

• Message-driven beans: These components establish the asynchronous
communication to the EJB technology. JMS provides the basis for that.

For the design of a J2EE application based on EJB components, [51] advises the
following approach, which is known under the name of session façade:

To minimize the dependencies of a client on the underlying business logic as well as to
avoid unnecessary network traffic, the client should never access an entity bean
directly. All the client actions should rather be encapsulated by one or more session
beans. This session façade hides the complexity of the business logic from the client
and provides a service interface for it. So the client depends only on this service
interface. That has not only the advantages listed above, but also simplifies the
development and the maintenance of such an application.

Figure 13: Session Façade Pattern

According to the foregoing classifications, the J2EE specification defines an application-
oriented middleware concept.

Page 40

3.4.5 Systems
After the description of the concepts, in this chapter the systems that implement these
paradigms will be presented.

3.4.5.1 MozartSpaces
MozartSpaces released at [52] is the Java based reference implementation of the XVSM
concept which was introduced in chapter 3.4.4.1. Its intuitive API enables easy use of
this middleware system as the following code example demonstrates:

ICapi capi = new Capi();

URI site = new URI("tcpjava://mssrv01.complang.tuwien.ac.at:4321");
ContainerRef cref = capi.lookupContainer(null, site, null);

AtomicEntry entry = new AtomicEntry<String>("Hello Space!");
capi.write(cref, 0, null, entry);

capi.shutdown(null, true);

Several XVSM extensions such as replication, improved transaction support, distributed
sessions as well as deployment and visualization tools for the configuration are
currently in development for this middleware system. Also, new APIs for JavaSpaces,
JavaScript, JMS, Python and Scheme are in integration for expanding the use of
MozartSpaces.

3.4.5.2 GigaSpaces eXtreme Application Platform
GigaSpaces XAP released at [53] introduces the virtualization on the level of
middleware.

In contrast to traditional middleware systems, where data, messaging and service
implementations are centralized, GigaSpaces XAP visualizes these tiers and replaces
them by a virtual one. It is designed to operate in a "cloud" which distributes the
underlying implementations on a cluster of several physical servers.

Page 41

Figure 14: Architecture of GigaSpaces XAP

For applications using GigaSpaces XAP as a platform the middleware system appears as
a centralized server. On demand, multiple applications can share the same containers
and environment. This enables the building of loosely coupled service architectures. All
supported APIs, languages and logical tiers are provided with a shared cluster for
transaction semantics, distributed state management, reliability and scalability.

GigaSpaces XAP supports, implements and even extends the concept of JavaSpaces
which was introduced in chapter 3.4.4.2. Applications can use the corresponding API for
getting access to the platform. The behaviour of the middleware can be configured and
does not need to be implemented, which is advantageous.

3.4.5.3 JBoss Application Server
JBoss AS released at [54] is an application server that fully complies with the J2EE
concept which was introduced in chapter 3.4.4.3 and provides a highly flexible service-
oriented architecture on which developers can build their own products.

The application server is made up of several modules. This principle allows the
extension and adaption of this middleware system according to the users' requirements.
The modularization is achieved by the use of Java Management Extensions (JMX), an
excellent tool for the integration of software. JMX provides a framework that allows the
user to integrate modules, containers and plug-ins. JBoss AS uses JMX as an integration
bus, into which the different JBoss modules plug in. These are declared as MBean
services and can be administered using JMX. The figure above gives a survey of the
JBoss modules.

Page 42

Figure 15: Architecture of JBoss AS

All in all, JBoss AS provides plenty of functionalities required by enterprise solutions and
enables the implementation and execution of powerful J2EE applications on its basis.

Page 43

4 Benchmarks
In the following chapter the environment and the different benchmark scenarios which
describe the particular test cases and allow an estimation of the system’s performance
and scalability will be specified. Furthermore, the results of their executions will be
presented as well as their interpretations.

4.1 Preface
Issues associated with the implementation of benchmarks will be discussed below.

4.1.1 Benchmark Suite
The execution of the benchmark scenarios is carried out using a custom-built software
tool written in Java, the benchmark suite. It can be used for measuring the
performance of certain test cases with different middleware systems and on the basis of
these measurements appropriate scalability studies can be performed. The tutorial and
the source code of this software tool including the scenarios below are available at [52].

The benchmark suite is made up of different applications which encapsulate the various
test cases. Depending on which middleware technology will be benchmarked and what
kind of benchmark will be executed, the user must select one of the following
applications for benchmark implementation:

• Serial benchmark for XVSM (MozartSpaces)

• Concurrent benchmark for XVSM (MozartSpaces)

• Block benchmark for XVSM (MozartSpaces)

• Serial benchmark for JavaSpaces (GigaSpaces XAP)

• Concurrent benchmark for JavaSpaces (GigaSpaces XAP)

• Block benchmark for JavaSpaces (GigaSpaces XAP)

• Serial benchmark for J2EE (JBoss AS)

• Concurrent benchmark for J2EE (JBoss AS)

• Block benchmark for J2EE (JBoss AS)

The different types of benchmarks can be described as follows:

• Serial benchmarks: A defined number of a particular operation is executed in

series. This corresponds to the scheme that one client accesses a server.

• Concurrent benchmarks: A defined number of a particular operation is executed
concurrently by a defined number of threads. This corresponds to the scheme that
several clients access a shared server.

• Block benchmarks: A defined number of a particular operation block is executed
concurrently by a defined number of threads. This also corresponds to the scheme
that several clients access a shared server.

The benchmark suite supports the following concepts and systems:

Page 44

• XVSM (MozartSpaces): The container can be addressed in both embedded and
remote mode. In addition, implicit or explicit transaction mechanism can be
selected. Except for aspect-oriented methods, all operations are supported. All
coordinators listed in chapter 3.4.4.1 are available.

• JavaSpaces (GigaSpaces XAP): The access to the space can also be realized in
embedded or remote mode. Furthermore, either a transient or a persistent scheme
can be used. For storing the entries permanently, the database engine H2 released
at [55] is used. In connection with transactions, the testing person has the choice
between none and explicit transactions. Except for notification, all operations can
be benchmarked.

• J2EE (JBoss AS): The application server can be accessed in remote mode only. For
emulating the established operations of XVSM and JavaSpaces, a session façade
pattern is used. The operations create, find and remove can be executed via a
stateless session bean, which operates on entity beans using CMP. All data are
made persistent in the default database, namely Hypersonic SQL, which is
provided by the application server and released at [56]. This persistence mode has
been selected, because J2EE applications typically use databases for holding the
entity beans' state. Again, one can select between none and explicit transactions.

Figure 16: Design of Benchmark Suite for J2EE

Regarding the implementation, only the standard APIs of the concepts are used in the
benchmark suite, which ensures that other middleware systems, based on these
concepts, can easily be integrated. From this it follows that native system calls are not
applied.

Page 45

Each of these applications is adaptable to individual needs of the user via command line
arguments or rather configuration file. This enables the definition and specification of
individual and useful benchmark scenarios. As a representative for all applications the
usage of the serial benchmark for XVSM (MozartSpaces) is given below:

USAGE:
 org.xvsm.benchmarks.BenchmarkSerial {arguments}
 org.xvsm.benchmarks.BenchmarkSerial {property-file}

ARGUMENTS:
 -datafile {string}
 -containertype EMBEDDED|REMOTE
 -containeruri {string}
 -containersize {integer}
 -coordinatortype FIFO|KEY|LIFO|RANDOM|VECTOR
 -transactiontype EXPLICIT|IMPLICIT
 -atomicentrytype INTEGER|STRING
 -atomicentrysize {integer}
 -iterations {integer}
 -operationnumber {integer}
 -operationtype DESTROY|READ|SHIFT|TAKE|WRITE
 -monitorreset {boolean}

The following pseudo code demonstrates the connection between the arguments
transactiontype, iterations, operationnumber, operationtype and monitorreset:

FOR i = 1 TO iterations DO

 IF monitorreset = true THEN
 resetMonitor()
 END IF

 startMonitor()

 IF transactiontype = explicit THEN
 beginTransaction()
 END IF

 FOR o = 1 TO operationnumber DO
 executeOperation(operationtype)
 END FOR

 IF transactiontype = explicit THEN
 commitTransaction()
 END IF

 stopMonitor()

 logMonitor()

END FOR

This means that a particular operation is repeated as often as defined. Such an
operation block can be embedded in a transaction. The needed time is measured by a
monitor whose counter is resettable, if required, and then logged into the data file. This
procedure represents a single iteration. The total number of iterations can be set by the
user, too.

With some test cases there are specific things to consider:

Page 46

• XVSM (MozartSpaces) with Key or Linda coordinator, JavaSpaces (GigaSpaces

XAP), J2EE (JBoss AS): New entries are always inserted with a unique key. The
natural numbers, starting at 0 and increased by 1, are used as identifiers.

• XVSM (MozartSpaces) with Vector coordinator: New entries are always appended
after the last entry of the vector.

• XVSM (MozartSpaces) with Key, Vector or Linda selector, JavaSpaces (GigaSpaces
XAP), J2EE (JBoss AS): The keys or rather indices used for reading, taking or
destroying entries are calculated in such a way that the accesses are evenly
distributed over all data.

The execution of such a benchmark application returns a commented data file with the
number of operations (x-dimension) and the associated execution times (y-dimension).
Here is an example of such a data file:

==
BENCHMARKSERIAL - XVSM [MozartSpaces]
==

--
Configuration
--
datafile=random.dat
containertype=EMBEDDED
containeruri=tcpjava://localhost:4321
containersize=-1
coordinatortype=RANDOM
transactiontype=IMPLICIT
atomicentrytype=INTEGER
atomicentrysize=1
iterations=10
operationnumber=10000
operationtype=WRITE
monitorreset=false
spacespropertyfile=null

--
Data
--
0 0
10000 1316
20000 2370
30000 3389
40000 4410
50000 5446
60000 6455
70000 7480
80000 8497
90000 9540
100000 10627

To make sure that each individual benchmark scenario will return realistic data, the test
cases are repeated exactly three times, which results in three data files. These files are
processed by another application of the benchmark suite, the data processor. It reads
all data from these three files and writes the minimum execution time for each number
of operations into a new data file. This procedure ensures that each benchmark
scenario delivers representative values. In case of scalability investigations, the data

Page 47

processor also provides suitable methods for generating data files in an adequate
format.

USAGE:
 org.xvsm.tools.DataProcessor {mode} {infile1} {infile2} ... {infileN} {outfile}

MODE:
 -d generate data file
 -n generate n-fold file
 -p generate performance histogram file
 -s generate scalability histogram file

Finally, the chart is generated on basis of the processed data. The visualization of the
data is done by using Gnuplot which was introduced in chapter 3.1.2.3.

In summary, the workflow for the implementation of a benchmark scenario, based on
the benchmark suite, can be illustrated as follows:

Figure 17: Workflow in Benchmark Suite

4.1.2 Middleware Configurations
The number of possible configurations for each middleware system is enormous. Thus,
a reasonable and representative subset of these configurations must be selected.

Depending on the benchmark scenario, the criteria listed below are used in variation:

• XVSM (MozartSpaces):

o Container types: embedded, remote

o Persistence types: transient

o Transaction types: implicit, explicit

o Coordinator/Selector types: Random, FIFO, LIFO, Key, Vector, Linda

• JavaSpaces (GigaSpaces XAP):

o Space types: embedded, remote

Page 48

o Persistence types: transient, persistent

o Transaction types: none, explicit

• J2EE (JBoss AS):

o Container types: remote

o Persistence types: persistent

o Transaction types: none, explicit

Principally, the execution time of the operations depends on the mode used for
accessing the container or space. Also, the persistence mode plays a decisive role. An
embedded container or space with transient data management results in fast execution
times. The converse configuration, namely remote container or space with persistent
data management, leads to worse performance. The whole relation is given by the
following figure:

Figure 18: Middleware Configuration and Execution Time

Furthermore, the default configurations of the middleware systems are modified only
slightly. This means that each system is nearly executed as delivered by its vendor.

If the systems are accessed remotely, the server instance of MozartSpaces is started by
the Java class org.xvsm.server.Server, GigaSpaces XAP is launched with embedded
Mahalo via the script gsInstance and JBoss AS is called via the script run. All systems
are run with the JVM options –server, -Xms256 and -Xmx1024.

4.1.3 Machine Configurations
The number of potential machine configurations and network structures is almost
endless. In this work three arrangements are distinguished. Depending on the
corresponding benchmark scenario, different layouts for the central processing unit
(CPU), different sizes of random access memory (RAM) and also different operating
systems are employed.

It must be noted that the processing power of a machine powered by a CPU with 2
cores is not the same as of a machine powered by 2 separate CPUs. The general rule is

Page 49

that such a machine has at most the 1.5-fold computing power. The following table
gives an overview about the relations:

Processors Cores per Processor Processing Power
1 1-fold 1
2 1.5-fold
1 2-fold 2
2 3-fold

4.1.3.1 Configuration (1)
In the event that a serial benchmark accesses the middleware in embedded mode, both
applications run within the same JVM and, of course, on the same machine.

Figure 19: Serial Benchmark with Embedded Middleware System

The machine is then composed in such a way:

• Machine:

o CPU: 2 processors, each with 2 cores activated (2x Dual-Core AMD Opteron
2210 with 1.8 GHz, 1 MB Cache)

o RAM: 3 GB

o OS: Windows Vista

o Architecture: x86

4.1.3.2 Configuration (2)
It is also imaginable that a serial benchmark calls the middleware remotely. In this case
the two applications run within different JVMs and on different machines.

Page 50

Figure 20: Serial Benchmark with Remote Middleware System

The machines and the intermediate network are then realized as follows:

• Machine1:

o CPU: 1 processor with 2 cores activated (Dual-Core AMD Opteron 2210 with 1.8
GHz, 1 MB Cache)

o RAM: 4 GB

o OS: Linux

o Architecture: x86

• Machine2:

o CPU: 2 processors, each with 2 cores activated (2x Dual-Core AMD Opteron
2210 with 1.8 GHz, 1 MB Cache)

o RAM: 3 GB

o OS: Windows Vista

o Architecture: x86

• Network:

o Protocol: Ethernet

o Bitrate: 100 MBit/s

4.1.3.3 Configuration (3)
The third and last case is that the execution of a benchmark is based on threads which
access the middleware system remotely. Each thread represents a client. This approach
takes place during concurrent and block benchmarks. Here, of course, the two
applications run again within different JVMs and on different machines.

Page 51

Figure 21: Concurrent or Block Benchmark with Remote Middleware System

Since such benchmarks target on the measurement of scalability, there are different
versions for the machines' realizations:

• Machine1:

o CPU: 1 processor with 2 cores activated (Dual-Core AMD Opteron 2210 with 1.8
GHz, 1 MB Cache)

o RAM: 4 GB

o OS: Linux

o Architecture: x86

• Machine2 (Variant A 1-fold Processing Power):

o CPU: 1 processor with only 1 core activated (Dual-Core AMD Opteron 2210 with
1.8 GHz, 1 MB Cache)

o RAM: 1 GB

o OS: Windows Vista

o Architecture: x86

• Machine2 (Variant B 2-fold Processing Power):

o CPU: 2 processors, each with only 1 core activated (2x Dual-Core AMD Opteron
2210 with 1.8 GHz, 1 MB Cache)

o RAM: 2 GB

o OS: Windows Vista

o Architecture: x86

• Machine2 (Variant C 3-fold Processing Power):

o CPU: 2 processors, each with 2 cores activated (2x Dual-Core AMD Opteron
2210 with 1.8 GHz, 1 MB Cache)

o RAM: 3 GB

o OS: Windows Vista

o Architecture: x86

• Network:

o Protocol: Ethernet

o Bitrate: 100 MBit/s

Page 52

4.1.4 Software Versions
In the following a survey of the version numbers of the software products used in
connection with the benchmark implementation is given:

• Operation Systems:

o SUSE Linux 2.6.18.2-34-bigsmp

o Microsoft Windows Vista Business 6.0 (Build 6001: Service Pack 1)

• Java Environment:

o Java SE Runtime Environment 1.6.0_07-b06

o Java Hotspot Client/Server VM 10.0-b23

• Middleware Systems:

o MozartSpaces 1.0-alpha (Build 3221)

o GigaSpaces XAP Community 6.5.0-GA (Build 2352)

o JBoss AS 4.2.3.GA

• Benchmark Tools:

o BenchmarkSuite 1.0-alpha (Build 3221)

o Gnuplot 4.2.3

4.1.5 Metrics and Diagrams
The metrics and diagrams which are used for rating and illustrating the performance
and scalability of the middleware systems by the benchmark scenarios are described
subsequently.

4.1.5.1 Performance
For testing the middleware systems' performance the first metric, described at chapter
3.2.2, is used. This metric returns the total execution time for each middleware
configuration per benchmark scenario. These values can be presented in a bar diagram:

Figure 22: Performance Diagram in Summary

Page 53

For the reason that not only the total execution time is determined, but also
intermediate measurement points are logged, execution time in relation to the number
of operations can be illustrated in a diagram, too:

Figure 23: Performance Diagram in Detail

4.1.5.2 Scalability
For testing the middleware systems' scalability the metric, described in chapter 3.3.3.1,
is used with the following adaptions:

• The computing power of a system is not only defined by the number of

processors, but instead a general approach is introduced: Now, the n-fold
computing power is realized by n-fold resources, and not only by n-fold
processors.

• Furthermore, the ratio between the time required for executing a problem on a
machine and the time required for executing the quasi-same problem, but with n-
fold problem size, on the quasi-same machine, but with n-fold resources, returns
the efficiency of a system. This context can be expressed in formulas as follows:

 efficiency(n, x) = time(1, x) / time(n, n · x)

A benchmark scenario, which targets on scalability investigations, executes each test
case three times, namely with 1-fold, 2-fold and 3-fold problem size using the
corresponding machine configurations described above. This results in three values for
the execution time, which are ideally equal and can be displayed side by side in form of
bars. Such a diagram enables the user to estimate the scalability of the systems at a
glance.

Page 54

Figure 24: Scalability Diagram in Detail

The average value of the efficiencies gives also information about a system's scalability
and enables the comparison between the middleware systems on the basis of absolute
measures. It is calculated for the procedure described above in the following way:

efficiency(x) = (time(1, x) / time(2, 2 · x) + time(1, x) / time(3, 3 · x)) / 2

However, this average value should be taken with a pinch of salt. Especially, in case
that the efficiency(3, x) is much smaller than the efficiency(2, x), there is a risk of
exponential growth. So, the value shows a trend of the system's scalability, but that is
it.

All calculated average values can be presented together in the form of a bar diagram.
Such a chart allows to compare the systems' scalability at a glance:

Figure 25: Scalability Diagram in Summary

4.1.6 Operations
The scenarios' descriptions use synonyms for the operations to simplify matters. The
following table gives a survey of the relations between the operations:

Synonym XVSM
(MozartSpaces)

JavaSpaces
(GigaSpaces XAP)

J2EE
(JBoss AS)

write write write create
shift shift – –

Page 55

read read read
readIfExists

find

take take take
takeIfExists

–

destroy destroy – remove

All operations are executed using entries as parameters, which are composed of a
string with 10 characters. In Java, this fact corresponds with String(10).

4.2 Serial Benchmarks
First the operations will be executed in series and the execution time will be measured.
The serial benchmarks rate the performance only. All scenarios will be carried out
without explicit transactions and use implicit transactions or none, if supported, instead.
The containers or rather spaces will be accessed both embedded, if supported, and
remotely.

The following table gives a survey of the middleware configurations which are tested by
the serial benchmarks:

Middleware Container/
Space

Persistence Transaction Coordinator/
Selector
Random

FIFO
LIFO
Key

Vector

embedded

Linda
Random

FIFO
LIFO
Key

Vector

XVSM (MozartSpaces)

remote

transient implicit

Linda
transient embedded
persistent
transient

JavaSpaces (GigaSpaces XAP)

remote
persistent

none –

J2EE (JBoss AS) remote persistent none –

Note that the parameters used for executing the serial benchmark scenarios via the
benchmark suite are mentioned in detail in chapter 8.1.1 of the appendix.

4.2.1 Write

4.2.1.1 Scenario
60 iterations, each with 1K write operations, are performed. Altogether, 60K write
operations are executed on the container or rather space. Since no records are deleted,
the container or rather space is filled with more and more entries. The monitor is not
reset between the passes. This means that the durations are summed up and that the
last value represents the execution time for 60K write operations in series. The
maximum number of entries which can be written into the container is not limited.

Iteration Entries Operations Entries

Page 56

(before) (measured) (after)
1 0 1K write 1K
2 1K 1K write 2K
...
n 1K · (n – 1) 1K write 1K · n
...
59 58K 1K write 59K
60 59K 1K write 60K

TOTAL 60K write

4.2.1.2 Expectance
Writing new entries into the container or rather space will be done with relatively
constant execution time for each pass. Therefore, the visualization of the measured
data will show a straight line:

Figure 26: Expected Performance Diagram of Serial/Write Scenario

4.2.1.3 Results

Figure 27: Performance Diagram in Summary of Serial/Write Scenario

Page 57

MozartSpaces shows mean performance for writing entries into an embedded container,
but poor performance in connection with a remote container.

By contrast, GigaSpaces XAP impresses with excellent write performance. Writing
entries into an embedded space with transient data management is executed very fast.
Interestingly, the used type of persistence looses ground if a remote space is accessed.

JBoss AS also shows an excellent performance, given that this middleware system is
accessed remotely and the entries are made durable persistent in a database.

Figure 28: Performance Diagram in Detail of Serial/Write Scenario (1)

The progressions of the performance curves are nearly the same, except for the LIFO
coordinator. MozartSpaces needs approximately 7.5K write operations, until it reaches
its performance optimum. After that, the write performance is nearly linear.

Page 58

Figure 29: Performance Diagram in Detail of Serial/Write Scenario (2)

The use of a remote container in connection with MozartSpaces results in curve
linearities. The best performance is shown by the FIFO coordinator, the worst by the
Linda coordinator.

Page 59

Figure 30: Performance Diagram in Detail of Serial/Write Scenario (3)

For these benchmarked systems entries are written into a space or rather container
with linear performance as well. In particular, JBoss AS shows an absolute linear curve
progression. This diagram demonstrates also, that both systems reach their operating
maximum faster than MozartSpaces.

4.2.2 Shift

4.2.2.1 Scenario
This scenario corresponds with the previous one, but now shift operations instead of
write operations are performed. In addition, the container is limited to 1K entries. This
implicates that the number of entries in the container remains constant.

Iteration Entries
(before)

Operations
(measured)

Entries
(after)

1 0 1K shift 1K
2 1K 1K shift 1K
...
n 1K 1K shift 1K
...
59 1K 1K shift 1K
60 1K 1K shift 1K

TOTAL 60K shift

JavaSpaces (GigaSpaces XAP) and J2EE (JBoss AS) do not support shift operations,
which is why this benchmark scenario cannot be executed with these technologies.

Page 60

4.2.2.2 Expectance
The execution time for shifting new entries will also be constant, which results in a
straight line as graph:

Figure 31: Expected Performance Diagram of Serial/Shift Scenario

4.2.2.3 Results

Figure 32: Performance Diagram in Summary of Serial/Shift Scenario

It is no surprise that shifting entries with the same coordinator consumes more time
than writing entries into the container. The reason for this is that in addition to the data
insertion, often existing data must be accessed and destroyed.

Page 61

Figure 33: Performance Diagram in Detail of Serial/Shift Scenario (1)

The curve progressions for shifting entries are nearly the same as for writing entries.

Figure 34: Performance Diagram in Detail of Serial/Shift Scenario (2)

Page 62

The performance diagram for the shift operations on a remote container also
corresponds with the related write diagram above. Again, the FIFO coordinator shows
the best and the Linda coordinator shows the worst performance.

4.2.3 Read

4.2.3.1 Scenario
There are 60 iterations, each with 1K write and 1K read operations. The monitor
measures the time for the read operations only and is not reset. So, writing entries to
the container or rather space has the purpose of test preparation only. It increases the
number of entries in the container or rather space for each pass. The last value
provides the duration needed for the execution of 60K read operations in series. A
container limit is not set.

Iteration Entries
(before)

Operations
(preparatory)

Entries
(after/before)

Operations
(measured)

Entries
(after)

1 0 1K write 1K 1K read 1K
2 1K 1K write 2K 1K read 2K
... ... … …
n 1K · (n – 1) 1K write 1K · n 1K read 1K · n
... ... … …
59 58K 1K write 59K 1K read 59K
60 59K 1K write 60K 1K read 60K

TOTAL 60K read

4.2.3.2 Expectance
The execution time will increase with each pass in consequence of filling the container
or rather space with more and more entries. The visualized data will show a curve that
slightly grows upwards:

Figure 35: Expected Performance Diagram of Serial/Read Scenario

Page 63

4.2.3.3 Results

Figure 36: Performance Diagram in Summary of Serial/Read Scenario

In MozartSpaces, the performance of the read operations depends highly on the used
selector. Interestingly, in comparison with the other selectors the Linda selector has
worst performance with an embedded container, but best performance with a remote
one.

The benchmarks show also, that the execution times for read and readIfExists are very
similar in GigaSpaces XAP.

JBoss AS impresses with superb performance compared to its competitors.

Page 64

Figure 37: Performance Diagram in Detail of Serial/Read Scenario (1)

As it was expected before the implementation of the benchmarks, reading entries from
an embedded container takes place, only with the Linda and the Random selector. The
other selectors offer linear progression with respect to their performance. Due to the
fact that the read operations with Linda selector are based on pattern matching, the
execution time is fundamentally greater than with the other selectors.

Page 65

Figure 38: Performance Diagram in Detail of Serial/Read Scenario (2)

On the other hand, if the entries are read from a remote container, the Linda selector
offers the best performance by far. This results from more efficient implementation of
this selector. Reading entries from a remote container with another selector than Linda
leads to extremely poor performance. Due to the strict curve linearity, it can be
assumed, that the cause of this insufficiency is not the real read access, but most
probably it is the transaction and communication overhead.

Page 66

Figure 39: Performance Diagram in Detail of Serial/Read Scenario (3)

For reading entries from a space of GigaSpaces XAP the benchmark results present the
curve progressions as expected. The pairwise arrangement of the graphs for the read
and the corresponding readIfExists operation can be clearly recognized.

JBoss AS plays out its strength, namely that the business logic is located and executed
in the middleware system itself. Thereby, the communication overhead is reduced to a
minimum, which results in excellent performance.

4.2.4 Take

4.2.4.1 Scenario
The container or rather space is filled with 60K entries initially. Afterwards, 60 iterations
are performed, each with 1K take operations. In the wake of that the container or
rather space becomes emptier and emptier as time goes by. The monitor is not reset
between the passes. Therefore, the last value represents the duration for executing 60K
take operations in series. A limit for the maximum number of entries in the container is
not set.

Iteration Entries
(before)

Operations
(measured)

Entries
(after)

1 60K 1K take 59K
2 59K 1K take 58K
...
n 1K · (61 – n) 1K take 1K · (60 – n)
...
59 2K 1K take 1K

Page 67

60 1K 1K take 0
TOTAL 60K take

J2EE (JBoss AS) does not support take operations, which is why this benchmark
scenario cannot be executed with this technology.

4.2.4.2 Expectance
Since the number of entries in the container or rather space decreases with each pass,
the execution time for the take operations will become shorter and shorter. This
context, illustrated in a diagram, will evolve to a curve that slightly falls downwards in
comparison with linear growth:

Figure 40: Expected Performance Diagram of Serial/Take Scenario

4.2.4.3 Results

Figure 41: Performance Diagram in Summary of Serial/Take Scenario

The benchmark results for taking entries from the container or rather space are nearly
the same as for reading entries. So, the interpretations above are also valid for this
benchmark scenario and further comments can be omitted.

Page 68

Figure 42: Performance Diagram in Detail of Serial/Take Scenario (1)

Figure 43: Performance Diagram in Detail of Serial/Take Scenario (2)

Page 69

Figure 44: Performance Diagram in Detail of Serial/Take Scenario (3)

4.2.5 Destroy

4.2.5.1 Scenario
This scenario complies with the previous one, but it uses destroy operations instead of
take operations.

Iteration Entries
(before)

Operations
(measured)

Entries
(after)

1 60K 1K destroy 59K
2 59K 1K destroy 58K
...
n 1K · (61 – n) 1K destroy 1K · (60 – n)
...
59 2K 1K destroy 1K
60 1K 1K destroy 0

TOTAL 60K destroy

JavaSpaces (GigaSpaces XAP) does not support destroy operations, which is why this
benchmark scenario cannot be executed with this technology.

4.2.5.2 Expectance
Here, with each iteration the execution time for the destroy operations will become
shorter and shorter. The curve progression will be similar to the previous one.

Page 70

Figure 45: Expected Performance Diagram of Serial/Destroy Scenario

4.2.5.3 Results

Figure 46: Performance Diagram in Summary of Serial/Destroy Scenario

The benchmark results for destroying entries are very similar to the measurements for
reading and taking entries. This means that the interpretations above are valid for this
benchmark scenario, too.

Page 71

Figure 47: Performance Diagram in Detail of Serial/Destroy Scenario (1)

Figure 48: Performance Diagram in Detail of Serial/Destroy Scenario (2)

Page 72

Figure 49: Performance Diagram in Detail of Serial/Destroy Scenario (3)

4.3 Concurrent Benchmarks
Next, the operations will be executed in parallel by several clients, simulated by
threads, and the total time for all clients will be measured. The concurrent benchmarks
investigate the scalability of the systems. Because of that each test case is executed in
three different variants. Again, all scenarios forgo explicit transactions and, this time, all
middleware systems are accessed in remote mode only.

The table below sums up the middleware configurations, which are tested by the
concurrent benchmarks:

Middleware Container/
Space

Persistence Transaction Coordinator/
Selector
Random

FIFO
LIFO
Key

Vector

XVSM (MozartSpaces) remote transient implicit

Linda
transient JavaSpaces (GigaSpaces XAP) remote
persistent

none –

J2EE (JBoss AS) remote persistent none –

Note that the parameters used for executing the concurrent benchmark scenarios via
the benchmark suite are mentioned in detail in chapter 8.1.1 of the appendix.

Page 73

4.3.1 Write

4.3.1.1 Scenario
A defined number of threads is executed concurrently, each thread performs 1K write
operations on the container or rather space. The hardware configuration, used for the
implementation, depends on the variant of the test case. The monitor measures the
total execution time, beginning with the first and ending with the last write operation.
The maximum number of entries which can be written into the container is not limited.

Variant A 1-fold Problem
20 threads perform a total of 20K write operations and the hardware configuration,
referred to as Variant A 1-fold Computing Power above, is used.

Thread Entries
(before)

Operations
(measured)

Entries
(after)

1 1K write
2 1K write
... ...
n 1K write
... ...
19 1K write
20

0

1K write

20K

TOTAL 20K write

Variant B 2-fold Problem
40 threads perform a total of 40K write operations and the hardware configuration,
referred to as Variant B 2-fold Computing Power above, is used.

Thread Entries
(before)

Operations
(measured)

Entries
(after)

1 1K write
2 1K write
... ...
n 1K write
... ...
39 1K write
40

0

1K write

40K

TOTAL 40K write

Variant C 3-fold Problem
60 threads perform a total of 60K write operations and the hardware configuration,
referred to as Variant C 3-fold Computing Power above, is used.

Thread Entries
(before)

Operations
(measured)

Entries
(after)

1 1K write
2 1K write
... ...
n 1K write
... ...
59 1K write
60

0

1K write

60K

TOTAL 60K write

Page 74

4.3.1.2 Expectance
The scalability of the systems will be moderate. Therefore, the visualization of the three
measured execution times will result in the following chart:

Figure 50: Expected Scalability Diagram of Concurrent/Write Scenario

4.3.1.3 Results

Figure 51: Scalability Diagram in Summary of Concurrent/Write Scenario

All middleware systems show moderate scalability regarding concurrent write
operations.

Page 75

Figure 52: Scalability Diagram in Detail of Concurrent/Write Scenario (1)

The differences between the measured execution times and the calculated efficiencies
are insignificant for all coordinators. Due to the fact that the efficiency values of the 3-
fold problem are worse than of the 2-fold problem, non-linear scalability must be
expected.

Page 76

Figure 53: Scalability Diagram in Detail of Concurrent/Write Scenario (2)

Writing entries into a space of GigaSpaces XAP with 3-fold problem size results in
efficiency values that stand for poor scalability. The analysis of this problem presents
that the test design is inadequate for this test case, because the machine running the
benchmark suite does not put enough pressure onto the middleware system. So, more
than one test client machine would be necessary. However, this is the only test case
with such a characteristic. For this reason the test design is not changed belated.

The calculated efficiencies for JBoss AS are akin, which signifies a constant, linear
behaviour in matters of scalability.

4.3.2 Shift

4.3.2.1 Scenario
This scenario corresponds with the previous one, but now shift operations are
performed. In addition, the container size is limited to 1K entries, which implicates that
it must be shifted.

Variant A 1-fold Problem
20 threads perform a total of 20K shift operations and the hardware configuration,
referred to as Variant A 1-fold Computing Power above, is used.

Thread Entries
(before)

Operations
(measured)

Entries
(after)

1 1K shift
2 1K shift
...

0

...

1K

Page 77

n 1K shift
... ...
19 1K shift
20 1K shift

Total 20K shift

Variant B 2-fold Problem
40 threads perform a total of 40K shift operations and the hardware configuration,
referred to as Variant B 2-fold Computing Power above, is used.

Thread Entries
(before)

Operations
(measured)

Entries
(after)

1 1K shift
2 1K shift
... ...
n 1K shift
... ...
39 1K shift
40

0

1K shift

1K

TOTAL 40K shift

Variant C 3-fold Problem
60 threads perform a total of 60K shift operations and the hardware configuration,
referred to as Variant C 3-fold Computing Power above, is used.

Thread Entries
(before)

Operations
(measured)

Entries
(after)

1 1K shift
2 1K shift
... ...
n 1K shift
... ...
59 1K shift
60

0

1K shift

1K

TOTAL 60K shift

JavaSpaces (GigaSpaces XAP) and J2EE (JBoss AS) do not support shift operations,
which is why this benchmark scenario cannot be executed with these technologies.

4.3.2.2 Expectance
The scalability of the shift operations will be moderate, but better as for the previous
scenario.

Figure 54: Expected Scalability Diagram of Concurrent/Shift Scenario

Page 78

4.3.2.3 Results

Figure 55: Scalability Diagram in Summary of Concurrent/Shift Scenario

It is no surprise that the values in the scalability diagram of concurrent shift operations
are very similar to the measured and calculated values before.

Page 79

Figure 56: Scalability Diagram in Detail of Concurrent/Shift Scenario

From the diagram above it follows that non-linear scalability must be expected for this
scenario, too.

4.3.3 Read

4.3.3.1 Scenario
In preparation for this scenario the container or rather space is filled with a defined
number of entries. After that, a defined number of threads performs 1K read operations
on the container or rather space each. Again, the used hardware configuration depends
on the variant of the test case. The monitor measures the total execution time for all
read operations. The maximum number of entries which can be added to the container
is not limited.

Variant A 1-fold Problem
20 threads perform a total of 20K read operations and the hardware configuration,
referred to as Variant A 1-fold Computing Power above, is used.

Thread Entries
(before)

Operations
(measured)

Entries
(after)

1 1K read
2 1K read
... ...
n 1K read
... ...
19 1K read
20

20K

1K read

20K

Page 80

TOTAL 20K read

Variant B 2-fold Problem
40 threads perform a total of 40K read operations and the hardware configuration,
referred to as Variant B 2-fold Computing Power above, is used.

Thread Entries
(before)

Operations
(measured)

Entries
(after)

1 1K read
2 1K read
... ...
n 1K read
... ...
39 1K read
40

40K

1K read

40K

TOTAL 40K read

Variant C 3-fold Problem
60 threads perform a total of 60K read operations and the hardware configuration,
referred to as Variant C 3-fold Computing Power above, is used.

Thread Entries
(before)

Operations
(measured)

Entries
(after)

1 1K read
2 1K read
... ...
n 1K read
... ...
59 1K read
60

60K

1K read

60K

TOTAL 60K read

4.3.3.2 Expectance
The execution time will increase extremely with growth of the problem size. The
differences between the bars in the diagram will be essential larger than before:

Figure 57: Expected Scalability Diagram of Concurrent/Read Scenario

Page 81

4.3.3.3 Results

Figure 58: Scalability Diagram in Summary of Concurrent/Read Scenario

The assumption above comes true only for some of the middleware configurations. The
scalability regarding concurrent read operations in MozartSpaces depends on the used
selector. Using the Random or the Linda selector results in poor scalability, but the
remaining selectors meet the ordinary requirements.

By contrast, the calculated efficiencies for the benchmarked GigaSpaces XAP
configurations are nearly indistinguishable. The values indicate also that this
middleware system does not scale well in relation to concurrent read operations.

As before, the benchmark results offer good scalability of JBoss AS for this scenario.

Page 82

Figure 59: Scalability Diagram in Detail of Concurrent/Read Scenario (1)

The serial benchmarks have already shown performance deficits of the Random and
Linda selector in comparison with the other selectors. These drawbacks also seem to
have an adverse effect on these selectors' scalability behaviour. The remaining selectors
lead to a scalability that is much better.

Page 83

Figure 60: Scalability Diagram in Detail of Concurrent/Read Scenario (2)

The diagram shows that the efficiency of GigaSpaces XAP in connection with this
scenario decreases nearly linear with increasing problem size. Accordingly, the 2-fold
problem has an efficiency of circa 1/2 and the 3-fold problem has an efficiency of circa
1/3. This behaviour characterizes poor scalability.

By contrast, JBoss AS impresses with pretty constant and satisfying efficiency values,
which means that concurrent reading of entries scales well.

4.3.4 Take

4.3.4.1 Scenario
Again, the container or rather space is filled initially with a defined number of entries.
After that a defined number of threads is executed. Thereby, each thread performs 1K
take operations on the container or rather space. The hardware configuration depends
on the test case's variant. The monitor times the duration for all take operations. A
container limit is not set.

Variant A 1-fold Problem
20 threads perform a total of 20K take operations and the hardware configuration,
referred to as Variant A 1-fold Computing Power above, is used.

Thread Entries
(before)

Operations
(measured)

Entries
(after)

1 1K take
2 1K take
...

20K

...

0

Page 84

n 1K take
... ...
19 1K take
20 1K take

TOTAL 20K take

Variant B 2-fold Problem
40 threads perform a total of 40K take operations and the hardware configuration,
referred to as Variant B 2-fold Computing Power above, is used.

Thread Entries
(before)

Operations
(measured)

Entries
(after)

1 1K take
2 1K take
... ...
n 1K take
... ...
39 1K take
40

40K

1K take

0

TOTAL 40K take

Variant C 3-fold Problem
60 threads perform a total of 60K take operations and the hardware configuration,
referred to as Variant C 3-fold Computing Power above, is used.

Thread Entries
(before)

Operations
(measured)

Entries
(after)

1 1K take
2 1K take
... ...
n 1K take
... ...
59 1K take
60

60K

1K take

0

TOTAL 60K take

J2EE (JBoss AS) does not support take operations, which is why this benchmark
scenario cannot be executed with this technology.

4.3.4.2 Expectance
The scalability will be insufficient, because the costs for taking an entry increase
extremely with the number of entries in the container or rather space.

Page 85

Figure 61: Expected Scalability Diagram of Concurrent/Take Scenario

4.3.4.3 Results

Figure 62: Scalability Diagram in Summary of Concurrent/Take Scenario

The scalability diagrams for taking entries concurrently from the container or rather
space does not differ from that for reading entries. Consequently, the previous
interpretations apply also to this scenario, so no additional comments are necessary
here.

Page 86

Figure 63: Scalability Diagram in Detail of Concurrent/Take Scenario (1)

Figure 64: Scalability Diagram in Detail of Concurrent/Take Scenario (2)

Page 87

4.3.5 Destroy

4.3.5.1 Scenario
This scenario complies with the previous one, but now destroy operations are
employed.

Variant A 1-fold Problem
20 threads perform a total of 20K destroy operations and the hardware configuration,
referred to as Variant A 1-fold Computing Power above, is used.

Thread Entries
(before)

Operations
(measured)

Entries
(after)

1 1K destroy
2 1K destroy
... ...
n 1K destroy
... ...
19 1K destroy
20

20K

1K destroy

0

TOTAL 20K destroy

Variant B 2-fold Problem
40 threads perform a total of 40K destroy operations and the hardware configuration,
referred to as Variant B 2-fold Computing Power above, is used.

Thread Entries
(before)

Operations
(measured)

Entries
(after)

1 1K destroy
2 1K destroy
... ...
n 1K destroy
... ...
39 1K destroy
40

40K

1K destroy

0

TOTAL 40K destroy

Variant C 3-fold Problem
60 threads perform a total of 60K destroy operations and the hardware configuration,
referred to as Variant C 3-fold Computing Power above, is used.

Thread Entries
(before)

Operations
(measured)

Entries
(after)

1 1K destroy
2 1K destroy
... ...
n 1K destroy
... ...
59 1K destroy
60

60K

1K destroy

0

TOTAL 60K destroy

JavaSpaces (GigaSpaces XAP) does not support destroy operations, which is why this
benchmark scenario cannot be executed with this technology.

Page 88

4.3.5.2 Expectance
The scalability will be insufficient, too, because the costs for destroying an entry
increase extremely with the number of entries in the container or rather space also in
this case.

Figure 65: Expected Scalability Diagram of Concurrent/Destroy Scenario

4.3.5.3 Results

Figure 66: Scalability Diagram in Summary of Concurrent/Destroy Scenario

For the concurrent destroying of entries the scalability diagrams are very similar as for
reading and taking entries. Therefore, the interpretations above hold true for this
benchmark scenario, too.

Page 89

Figure 67: Scalability Diagram in Detail of Concurrent/Destroy Scenario (1)

Figure 68: Scalability Diagram in Detail of Concurrent/Destroy Scenario (2)

Page 90

4.4 Block Benchmarks
Finally, selected operation sequences will be executed by a defined number of threads,
which simulate the clients and will run concurrently. Again, the total time for all clients
will be measured. This type of benchmark evaluates the systems' scalability too. Each
test case will be executed under three different circumstances. Now, all operation
blocks will be embedded in explicit transactions. All middleware systems will be
accessed remotely.

The following table gives a survey of the middleware configurations which are tested by
the block benchmarks:

Middleware Container/
Space

Persistence Transaction Coordinator/
Selector
Random

FIFO
LIFO
Key

Vector

XVSM (MozartSpaces) remote transient explicit

Linda
transient JavaSpaces (GigaSpaces XAP) remote
persistent

explicit –

J2EE (JBoss AS) remote persistent explicit –

Note that the parameters used for executing the block benchmark scenario via the
benchmark suite are mentioned in detail in chapter 8.1.2.2 of the appendix.

4.4.1 Write + Read + Take/Destroy

4.4.1.1 Scenario
10 iterations are performed, which are synchronized and run in series accordingly. At
the beginning of each pass a defined number of threads is started. Each thread creates
a new explicit transaction, executes 100 write, 100 read and 50 take operations on the
container or rather space and commits its transaction. Since J2EE (JBoss AS) does not
support the taking of entries, destroy operations are used instead. Again, the hardware
configuration depends on the test case. The monitor is not reset and measures the time
for the execution of all operations. The container size is not limited.

Variant A 1-fold Problem
20 threads perform a total of 20K write, 20K read and 10K take or rather destroy
operations during 10 iterations. The costs for the transaction handling must be added.
The hardware configuration, referred to as Variant A 1-fold Computing Power above,
is used.

Iteration Threads Entries
(before)

Operations per Thread
(measured)

Entries
(after)

1 20 0 beginTransaction
100 write + 100 read + 50 take/destroy

commitTransaction

1K

2 20 1K beginTransaction
100 write + 100 read + 50 take/destroy

commitTransaction

2K

… … … … …

Page 91

n 20 1K · (n – 1) beginTransaction
100 write + 100 read + 50 take/destroy

commitTransaction

1K · n

… … … … …
9 20 8K beginTransaction

100 write + 100 read + 50 take/destroy
commitTransaction

9K

10 20 9K beginTransaction
100 write + 100 read + 50 take/destroy

commitTransaction

10K

20K write
20K read

10K take/destroy

TOTAL

200 beginTransaction
200 commitTransaction

Variant B 2-fold Problem
40 threads perform a total of 40K write, 40K read and 20K take or rather destroy
operations during 10 iterations. The costs for the transaction handling must be added.
The hardware configuration, referred to as Variant B 2-fold Computing Power above,
is used.

Iteration Threads Entries
(before)

Operations per Thread
(measured)

Entries
(after)

1 40 0 beginTransaction
100 write + 100 read + 50 take/destroy

commitTransaction

2K

2 40 2K beginTransaction
100 write + 100 read + 50 take/destroy

commitTransaction

4K

… … … … …
n 40 2K · (n – 1) beginTransaction

100 write + 100 read + 50 take/destroy
commitTransaction

2K · n

… … … … …
9 40 16K beginTransaction

100 write + 100 read + 50 take/destroy
commitTransaction

18K

10 40 18K beginTransaction
100 write + 100 read + 50 take/destroy

commitTransaction

20K

40K write
40K read

20K take/destroy

TOTAL

400 beginTransaction
400 commitTransaction

Variant C 3-fold Problem
60 threads perform a total of 60K write, 60K read and 30K take or rather destroy
operations during 10 iterations. The costs for the transaction handling must be added.
The hardware configuration, referred to as Variant C 3-fold Computing Power above,
is used.

Iteration Threads Entries
(before)

Operations per Thread
(measured)

Entries
(after)

1 60 0 beginTransaction 3K

Page 92

100 write + 100 read + 50 take/destroy
commitTransaction

2 60 3K beginTransaction
100 write + 100 read + 50 take/destroy

commitTransaction

6K

… … … … …
n 60 3K · (n – 1) beginTransaction

100 write + 100 read + 50 take/destroy
commitTransaction

3K · n

… … … … …
9 60 24K beginTransaction

100 write + 100 read + 50 take/destroy
commitTransaction

27K

10 60 27K beginTransaction
100 write + 100 read + 50 take/destroy

commitTransaction

30K

60K write
60K read

30K take/destroy

TOTAL

600 beginTransaction
600 commitTransaction

4.4.1.2 Expectance
The scalability for this scenario will be moderate, maybe insufficient. The uncertainty
results from the questionable behaviour of the read and take or rather destroy
operations.

Figure 69: Expected Scalability Diagram of Block Scenario

Page 93

4.4.1.3 Results

Figure 70: Scalability Diagram in Summary of Block Scenario

The concurrent execution of the operation sequences returns diverse average
efficiencies. While the scalability of MozartSpaces for this scenario depends highly on
the used coordinator and selector, GigaSpaces XAP shows nearly the same scalability
behaviour for both transient and persistent data management.

Page 94

Figure 71: Scalability Diagram in Detail of Block Scenario (1)

MozartSpaces scales well with the Key coordinator and selector. If the Random or Linda
coordinator and selector are used, the execution of the operation sequences can even
be considered halfway satisfactory, and the calculated efficiencies are reasonably okay.
But using FIFO, LIFO or Vector as coordinator and selector results in disastrous
performance and scalability measurements. The analysis of this problem gives a
reasonable explanation for this mismatch. The use of explicit transactions in connection
with these coordinators and selectors has the effect that the operation sequences are
executed strictly in series. This means that each thread locks the container in exclusive
mode for the execution of its operation sequence, and that is very expensive. In other
words, any parallelism is eliminated and as a result of this, the systems' performance
and scalability collapse.

Page 95

Figure 72: Scalability Diagram in Detail of Block Scenario (2)

The benchmark results for using GigaSpaces XAP or rather JBoss AS are not really
surprising, because they are just the continuation of the measured and calculated
values above.

Page 96

5 Knowledge Transfer
In this chapter the body of acquired knowledge will be transferred for supporting the
development of TripCom.

5.1 TripCom – Triple Space Communication
TripCom released at [57] is a middleware system, which is currently in development
and pursues a new approach, the Triple Space Communication. The project is funded
by the European Commission and implemented by nine partners, among others the
Vienna University of Technology, from seven European countries.

TSC is a communication paradigm for anonymous and asynchronous information
exchange between machines. It joins the concepts of Web Services, Semantic Web and
Tuple Space with the aim that this technology will become the web for machines, like
HyperText Markup Language (HTML) became the web for humans. A short overview is
given by the following figure:

Figure 73: Architecture of TripCom

The concept of TSC is strongly influenced by the Semantic Web technology and extends
the tuples so that Resource Description Framework (RDF) triples can be processed.
Furthermore, this technology enhances the primitive operations to support the special
features of semantic tuples and, in addition, it uses inference for matching.

One of the benefits of TSC is its high degree of autonomy. In [58], the following four
types are distinguished:

• Time autonomy: There are no time dependencies between the data provider and

the reader. All participants can access the triple space for writing and reading data
whenever they want.

• Location autonomy: Storing data in the triple space is performed in such a manner
that the triple space's repository and the storage of the data provider or reader
remain independent. This is accomplished by passing the triples to and from the
triple space always by value and in a specified format.

Page 97

• Reference autonomy: The communication between the data provider and the
reader can be carried out through the triple space without knowing each other.
Writing and reading data can be carried out in anonymous way.

• Data schema autonomy: A particular data format based on RDF triples is used for
the data exchange. All data written to and read from the triple space offer this
data format. Through this approach the data provider and the reader become
independent in regard to the format of their data.

5.2 Lectures Learned
Now, the experiences and the knowledge gained during the implementation of the
performance and scalability benchmarks will be summarized with regard to the
development of TripCom.

5.2.1 Communication
The benchmarks with remote container or rather space demonstrate that the
performance of a middleware system depends highly on the implementation of the
communication layer. Dividing the execution of a remote operation into its individual
parts and measuring their particular durations shows that communication issues, and
not the execution of the real operation on the callee, require a good deal of the time.

Figure 74: Communication Issues of Remote Operation Execution

Since the domain of TripCom in the majority of cases will be a distributed environment,
communication plays a fundamental role for the development of TripCom. The high
degree of autonomy, as described above, effects an additional increasing of the
communication demands, because the distributed spaces must communicate with each
other.

So, it is very important that TripCom will provide efficient communication protocols.
Furthermore, the transferred data volume will have to be reduced to a minimum and
the transmission of needless data will have to be avoided. The use of caching and
replication will also make a contribution to reach the required performance level.
However, using replication raises the transmission of data again.

Another conclusion of the benchmarks' implementation is that it may be advantageous
to move the execution of the business logic onto the machine, where the data are
located, because doing so reduces the communication demands enormously. JBoss AS

Page 98

pursues this policy and scales well. But maybe this approach conflicts with the
TripCom's concept.

5.2.2 Concurrency
A middleware system is almost always a multi-user system, in which concurrent access
and shared resources are a matter of course. These issues must be considered during
design and development of TripCom right from the beginning.

The results of the block benchmarks with the FIFO, LIFO and Vector coordinators and
selectors in MozartSpaces show that accessing the container in exclusive mode
implicates disastrous performance and scalability. So, whenever it is possible, the
locking of resources in exclusive mode should be prevented in TripCom. If this is not
possible, it should be reflected, if this feature is really essential.

Furthermore, the call of remote procedures in asynchronous way, if procurable, also
speeds up the systems' performance, because the operations need not be executed
instantly and the system can handle such calls more flexible. Sometimes, only a part of
an operation can be executed asynchronously, but even so, the performance of the
middleware system will increase. For this reason, it is important that TripCom will
pursue a multi-threaded design from the beginning.

Figure 75: Synchronous and Asynchronous Remote Operation Execution

The support of transactions is another important issue in a middleware system. But
sometimes the execution of operations in a non-transactional environment is sufficient
for fulfilling the requirements. The performance of MozartSpaces is adversely affected
by its transaction management, because each operation which is called without explicit
transaction is executed within an implicit transactional context. So, it will be a desirable
feature of TripCom to support the execution of operations in a non-transactional
environment, because this speeds up system's performance.

5.2.3 Interfaces
All benchmarked middleware systems impressed with support and efficient
implementations of established APIs. This allows the solid and simple use of these

Page 99

middleware systems. Therefore, the support of popular APIs will be important for the
acceptance and pervasion of TripCom.

5.2.4 Documentation
Software products without adequate documentation are designated to fail concerning
their market penetration. GigaSpaces XAP and JBoss AS provide an excellent
documentation, which simplifies their application enormously.

By contrast, the tutorials and papers currently available for MozartSpaces are rather
insufficient, which sometimes makes it difficult to use this middleware system. But it
could be observed that new documentation for MozartSpaces was published
continuously.

TripCom's documentation should be sufficient, complete and, of course, faultless.

Page 100

6 Evaluation and Conclusion
Many definitions and related topics for benchmark, performance, scalability and
middleware have been discussed in the first part of this work. The versatile definitions
of performance and scalability should allow a clear differentiation of these terms. Once
again, it should be noted that performance measurements are indeed a precondition for
benchmarking the scalability of a system, but the concepts per se are standing for
something different. Showing this was of particular importance, because it is a
precondition for the understanding of the further work.

For measuring and comparing the performance and scalability rather simple metrics
were used, which was not disadvantageous belatedly. It was useful to give up on rating
the whole system and to benchmark only the performance and scalability of individual
test cases. The performance was measured by timing the execution time. The
evaluation of the scalability was performed by calculating the efficiency, which is the
ratio between the time required for executing a problem on a machine and the time
required for executing the quasi-same problem, but with n-fold problem size, on the
quasi-same machine, but with n-fold resources. Each benchmark scenario, which
targeted on scalability, was executed with 1-fold, 2-fold and 3-fold problem size and the
average efficiency value was calculated thereof. But rating the scalability of a test case
by its average efficiency presents a non-satisfying approach, because this method
sweeps important information under the carpet. Especially, in case that the efficiency
for the 3-fold problem size is much smaller than for the 2-fold problem size, there is a
risk of exponential growth. However, this does not emerge from the calculated average
value. On the other hand, the diagrams allow the comparison of the separate efficiency
values, even if this method is more difficult and unpractical. So, an ideal solution could
not be found.

Furthermore, the middleware concepts of XVSM, JavaSpaces and J2EE were introduced
as well as the belonging systems, namely MozartSpaces, GigaSpaces XAP and JBoss AS.
The choice of J2EE (JBoss AS) seemed unpassable in the beginning. But finally, the
selection of the benchmarked concepts and systems turned out to be suitable. Adding
the diverse concept of J2EE to the two similar SBC concepts enabled the winning of
interesting and valuable insights. In addition, the comparison of such unequal
middleware technologies was one of the innovations of this work.

Due to the differences between the middleware concepts, the functionalities had to be
reduced to a common denominator. This was accomplished by selecting the overlapping
operations such as write, shift, read, take and destroy as benchmark criteria. This was a
good approach, even if the high-level approach allowed the comparison of only such
functionalities that all concepts provide. The implemented scenarios – the operations
were executed in series, in parallel and blockwise in operation sequences – might
appear to be simple, but they covered all established use cases and showed the
systems' strengths and weaknesses. For more detailed benchmarks, it would have been
necessary to come to an agreement about a fixed middleware concept. Indeed, this
would allow low-level tests, but then only systems based on this concept could be
compared.

The description of the test cases and visualization of the test results has succeeded. So,
the multiple adaptions for the improvement of these issues paid off. The performance

Page 101

and scalability of a middleware configuration with regard to a test case is obvious at a
glance.

The benchmarks showed that the performance and scalability of MozartSpaces depends
highly on the used coordinator and selector. Both can be rated in summary as poor
compared with the other two systems. Fortunately, as a result of the benchmarks the
performance of this middleware in connection with some test cases could be improved
considerably. Some of the deficits, which were identified by the benchmarks, could be
fixed by the developers and the correction effected a significant improvement of
performance. Among others, the execution of MozartSpaces' operations on a remote
container could speed up by factor 2.5. But also the stability of this middleware system
could be enhanced in consequence of some error corrections after the concurrent
benchmarks. Looking at the results reveals, thanks to the clear representation, further
room for improvement. For example, the performance of some remote operations in
MozartSpaces with certain coordinators and selectors is still insufficient. This problem
should be fixed rapidly. Moreover, locking entries in connection with an explicit
transaction should be analysed, too, because the block benchmarks identified certain
imperfections. In support of MozartSpaces must be noted that this system is still not as
long as the other two systems in development.

GigaSpaces XAP's performance and scalability was dependent on the executed
operations and can be classified in summary as mean. Writing entries into a space
performed and scaled well, however the read and take operations took place in a non-
satisfactory manner. The execution of concurrent write operations in connection with
GigaSpaces XAP highlighted the limits of the selected test design. It demonstrated that
using only one test client machine in connection with remote tests might not always be
enough.

JBoss AS impressed with excellent performance and scalability. This application server
played out its strength, namely that the business logic is located and executed in the
middleware system itself, so that the communication overhead is reduced to a
minimum. Also, it benefited from additional computing resources most of all
benchmarked technologies, which resulted in constant efficiency values for all problem
sizes.

At the end of this work, the experiences and the knowledge gained during the
implementation of the performance and scalability benchmarks were transferred to the
development of TripCom, a middleware system following the TSC approach. Thereby,
the importance of communication, concurrency, interfaces and documentation for
middleware was highlighted once again. Since there was no stable prototype of
TripCom available, this middleware system could not be benchmarked.

As a result of this work a powerful benchmark suite for XVSM (MozartSpaces),
JavaSpaces (GigaSpaces XAP) and J2EE (JBoss AS) as well as a working test
environment that allows the automated execution of the benchmark scenarios, remains
in addition to the actual benchmark results. Therefore, the repetition of the benchmarks
will be possible at the push of a button and will generate updated diagrams. This allows
a fast and simple performance and scalability inspection of an advanced product
version.

Page 102

Furthermore, the developed benchmark suite enables the creation of own scenarios.
The loose coupling of the components, which was worth one's weight in Gold, offers
many possibilities. And based on the present work self-acting should be simple, because
mostly it will be sufficient to copy an adequate scenario and adapt it.

More time and effort could have been invested in finding the ideal configuration of each
middleware system. Perhaps, some scalability problems of GigaSpaces XAP would have
been got under control. However, getting a feeling for the strengths and weaknesses of
the benchmarked systems was more important than getting a concrete value for each
test case. And this aim seems to have been accomplished successfully.

Finally, some issues should be reflected, which can be benchmarked in further works.
Consider the fact that the following catchwords are by far not complete and should only
be a motivation for the reader:

• Aspects

• Notifications

• Transactions (including rollbackTransaction)

• Bulk operations

• Entries with different data types

• Several containers or rather spaces concurrently

• Replicated or clustered containers or rather spaces

Page 103

7 References
[1] R. Krummenacher, E. Simperl, D. Foxvog, V. Momtchev, D. Cerizza, L. Nixon, D.

Cerri, B. Sapkota, K. Teymourian, P. Obermeier, D. Martin, H. Moritsch, O.
Shafiq, D. De Francisco. Towards a Scalable Triple Space. Technical Report, EU
FP6-02732 TripCom, March 2008.

[2] N. Stoodley. Business Intelligence System Scalability – A Primer. Technical Paper,
Crystal Decisions Incorporated, 2002.

[3] A.-L. Burness, R. Titmuss, C. Lebre, K. Brown, A. Brookland. Scalability
Evaluation of a Distributed Agent System. Distributed Systems Engineering 6,
1999.

[4] L. Duboc, D. Rosenblum, T. Wicks. A Framework for Modelling and Analysis of
Software Systems Scalability. Proceedings of the 28th International Conference
on Software Engineering, May 2006.

[5] B. Neuman. Scale in Distributed Systems. Readings in Distributed Computing
Systems. IEEE Computer Society Press, Los Alamitos (USA), 1994.

[6] L. Williams, C. Smith. QSEM: Quantitative Scalability Evaluation Method. PerfX
and Performance Engineering Services, 2005.

[7] M. Van Steen, S. Van der Zijden, H. Sips. Software Engineering for Scalable
Distributed Applications. Proceedings of the 22nd International Computer
Software and Applications Conference, 1998.

[8] A. Bondi. Characteristics of Scalability and Their Impact on Performance.
Proceedings of the 2nd International Workshop on Software and Performance,
Ottawa (CAN), 2000.

[9] M. Hill. What is Scalability? ACM SIGARCH Computer Architecture News, Volume
18, Issue 4, December 1990.

[10] P. Jogalekar, M. Woodside. Evaluating the Scalability of Distributed Systems.
IEEE Transactions on Parallel and Distributed Systems, Volume 11, Issue 6,
Pages 589-603, June 2000.

[11] B. Shea. Avoiding Scalability Shock: Five Steps to Managing Performance of E-
Business Applications. Software Testing and Quality Magazine, May/June 2000.

[12] C. Smith, L. Williams. Best Practices for Software Performance Engineering.
Proceedings of the 29th International CMG Conference, Dallas (USA), 2003.

[13] A. Chandor. Dictionary of Computers. Penguin Books, 1970.

[14] B. Jenkins. Developments in Computer Auditing. Accountant 537, 1972.

[15] P. Bernstein. Middleware: A Model for Distributed System Services.
Communications of the ACM, Volume 39, Issue 2, Pages 86-98, 1996.

[16] H. Pinus. Middleware: Past and Present a Comparison. Seminar Paper, Darmstadt
University of Technology (GER), Software Technology Group, 2004.

[17] D. Bakken. Middleware. Encyclopedia of Distributed Computing, Kluwer Academic
Press, 2003.

Page 104

[18] P. Brebner, E. Cecchet, J. Marguerite, P. Tuma, O. Ciuhandu, B. Dufour, L.
Eeckhout, S. Frenot, A. Krishna, J. Murphy, C. Verbrugge. Middleware
Benchmarking: Approaches, Results, Experiences. Concurrency and Computation,
Volume 17, Issue 15, Pages 1799-1806, December 2005.

[19] D. Fiedler, K. Walcott, T. Richardson, G. Kapfhammer, A. Amer, P. Chrysanthis.
Towards the Measurement of Tuple Space Performance. ACM SIGMETRICS
Performance Evaluation Review, Volume 33, Issue 3, Pages 51-62, December
2005.

[20] E. Cecchet, J. Marguerite, W. Zwaenepoel. Performance and Scalability of EJB
Applications. ACM SIGPLAN Notices, Volume 37, Issue 11, Pages 246-261,
November 2002.

[21] http://www.spec.org/jAppServer2004/ (last visited: 2008-10-10)

[22] http://www.spec.org/jbb2005/ (last visited: 2008-10-10)

[23] http://portal.acm.org/browse_dl.cfm?linked=1&part=series&idx=SERIES850&coll
=ACM&dl=ACM&CFID=6015312&CFTOKEN=39760032 (last visited: 2008-10-10)

[24] http://www.cmg.org (last visited: 2008-10-10)

[25] http://en.wiktionary.org/wiki/benchmark (last visited: 2008-10-10)

[26] http://en.wikipedia.org/wiki/Benchmark_(computing) (last visited: 2008-10-10)

[27] http://jakarta.apache.org/jmeter/ (last visited: 2008-10-10)

[28] http://faban.sunsource.net (last visited: 2008-10-10)

[29] http://www.gnuplot.info (last visited: 2008-10-10)

[30] http://jamonapi.sourceforge.net (last visited: 2008-10-10)

[31] http://jbento.sourceforge.net (last visited: 2008-10-10)

[32] http://jmonit.sourceforge.net (last visited: 2008-10-10)

[33] http://sourceforge.net/projects/jperf/ (last visited: 2008-10-10)

[34] http://www.clarkware.com/software/JUnitPerf.html (last visited: 2008-10-10)

[35] http://loadunit.sourceforge.net (last visited: 2008-10-10)

[36] http://p-unit.sourceforge.net (last visited: 2008-10-10)

[37] http://en.wikipedia.org/wiki/Power_(physics) (last visited: 2008-10-10)

[38] http://en.wikipedia.org/wiki/Computer_performance (last visited: 2008-10-10)

[39] http://en.wikipedia.org/wiki/Scalability (last visited: 2008-10-10)

[40] L. Williams, C. Smith. Web Application Scalability: A Model-Based Approach.
Proceedings of the Computer Measurement Group, Las Vegas (USA), December
2004.

[41] G. Coulouris, J. Dollimore, T. Kindberg. Distributed Systems – Concepts and
Design. Addison-Wesley, 2001.

[42] http://middleware.objectweb.org (last visited: 2008-10-10)

http://www.spec.org/jAppServer2004/
http://www.spec.org/jbb2005/
http://portal.acm.org/browse_dl.cfm?linked=1&part=series&idx=SERIES850&coll=ACM&dl=ACM&CFID=6015312&CFTOKEN=39760032
http://portal.acm.org/browse_dl.cfm?linked=1&part=series&idx=SERIES850&coll=ACM&dl=ACM&CFID=6015312&CFTOKEN=39760032
http://www.cmg.org/
http://en.wiktionary.org/wiki/benchmark
http://en.wikipedia.org/wiki/Benchmark_(computing)
http://jakarta.apache.org/jmeter/
http://faban.sunsource.net/
http://www.gnuplot.info/
http://jamonapi.sourceforge.net/
http://jbento.sourceforge.net/
http://jmonit.sourceforge.net/
http://sourceforge.net/projects/jperf/
http://www.clarkware.com/software/JUnitPerf.html
http://loadunit.sourceforge.net/
http://p-unit.sourceforge.net/
http://en.wikipedia.org/wiki/Power_(physics)
http://en.wikipedia.org/wiki/Computer_performance
http://en.wikipedia.org/wiki/Scalability
http://middleware.objectweb.org/

Page 105

[43] A. Tanenbaum, M. Van Steen. Distributed Systems – Principles and Paradigms.
Prentice Hall, 2002.

[44] http://de.wikipedia.org/wiki/Middleware (last visited: 2008-10-10)

[45] E. Kühn. Virtual Shared Memory for Distributed Architectures. Nova Science
Publishers, 2001.

[46] M. Wittmann. XVSM Tutorial. Diploma Thesis, Vienna University of Technology
(AUT), E185/1, Space Based Computing Group, 2008.

[47] http://en.wikipedia.org/wiki/Linda_(coordination_language) (last visited: 2008-10-10)

[48] http://www.jini.org (last visited: 2008-10-10)

[49] G. Löffler. Java in Space. Java Magazin – Internet & Enterprise Technology,
Issue 2, February 2004.

[50] E. Jendrock, J. Ball, D. Carson, I. Evans, S. Fordin, K. Haase. The Java EE 5
Tutorial – Third Edition. Addison-Wesley, 2006.

[51] D. Alur, J. Crupi, D. Malks. Core J2EE Patterns – Best Practices and Design
Strategies. Pearson Education, 2001.

[52] http://www.mozartspaces.org (last visited: 2008-10-10)

[53] http://www.gigaspaces.com (last visited: 2008-10-10)

[54] http://www.jboss.org (last visited: 2008-10-10)

[55] http://www.h2database.com (last visited: 2008-10-10)

[56] http://www.hsqldb.org (last visited: 2008-10-10)

[57] http://www.tripcom.org (last visited: 2008-10-10)

[58] C. Bussler. A Minimal Triple Space Computing Architecture. Proceedings of the
2nd WSMO Implementation Workshop, Innsbruck (AUT), June 2005.

http://de.wikipedia.org/wiki/Middleware
http://en.wikipedia.org/wiki/Linda_(coordination_language)
http://www.jini.org/
http://www.mozartspaces.org/
http://www.gigaspaces.com/
http://www.jboss.org/
http://www.h2database.com/
http://www.hsqldb.org/
http://www.tripcom.org/

Page 106

8 Appendix
This chapter provides additional information for the reader. Due to the high degree of
detail, it has been outsourced to the appendix.

8.1 Benchmarks
In the following the used parameters for executing the different scenarios via the
benchmark suite are mentioned.

8.1.1 Serial Benchmarks

8.1.1.1 Write

MOZARTSPACES EMBEDDED (Random)
org.xvsm.benchmarks.BenchmarkSerial
 -datafile mozartspaces-embedded-random.dat
 -containertype EMBEDDED
 -coordinatortype RANDOM
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -iterations 60
 -operationnumber 1000
 -operationtype WRITE
 -monitorreset false
 -spacespropertyfile spaces-local.prop

MOZARTSPACES EMBEDDED (FIFO)
org.xvsm.benchmarks.BenchmarkSerial
 -datafile mozartspaces-embedded-fifo.dat
 -containertype EMBEDDED
 -coordinatortype FIFO
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -iterations 60
 -operationnumber 1000
 -operationtype WRITE
 -monitorreset false
 -spacespropertyfile spaces-local.prop

MOZARTSPACES EMBEDDED (LIFO)
org.xvsm.benchmarks.BenchmarkSerial
 -datafile mozartspaces-embedded-lifo.dat
 -containertype EMBEDDED
 -coordinatortype LIFO
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -iterations 60
 -operationnumber 1000
 -operationtype WRITE
 -monitorreset false
 -spacespropertyfile spaces-local.prop

MOZARTSPACES EMBEDDED (Key)
org.xvsm.benchmarks.BenchmarkSerial
 -datafile mozartspaces-embedded-key.dat
 -containertype EMBEDDED

Page 107

 -coordinatortype KEY
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -iterations 60
 -operationnumber 1000
 -operationtype WRITE
 -monitorreset false
 -spacespropertyfile spaces-local.prop

MOZARTSPACES EMBEDDED (Vector)
org.xvsm.benchmarks.BenchmarkSerial
 -datafile mozartspaces-embedded-vector.dat
 -containertype EMBEDDED
 -coordinatortype VECTOR
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -iterations 60
 -operationnumber 1000
 -operationtype WRITE
 -monitorreset false
 -spacespropertyfile spaces-local.prop

MOZARTSPACES EMBEDDED (Linda)
org.xvsm.benchmarks.BenchmarkSerial
 -datafile mozartspaces-embedded-linda.dat
 -containertype EMBEDDED
 -coordinatortype LINDA
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -iterations 60
 -operationnumber 1000
 -operationtype WRITE
 -monitorreset false
 -spacespropertyfile spaces-local.prop

MOZARTSPACES REMOTE (Random)
org.xvsm.benchmarks.BenchmarkSerial
 -datafile mozartspaces-remote-random.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype RANDOM
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -iterations 60
 -operationnumber 1000
 -operationtype WRITE
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

MOZARTSPACES REMOTE (FIFO)
org.xvsm.benchmarks.BenchmarkSerial
 -datafile mozartspaces-remote-fifo.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype FIFO
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10

Page 108

 -iterations 60
 -operationnumber 1000
 -operationtype WRITE
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

MOZARTSPACES REMOTE (LIFO)
org.xvsm.benchmarks.BenchmarkSerial
 -datafile mozartspaces-remote-lifo.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype LIFO
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -iterations 60
 -operationnumber 1000
 -operationtype WRITE
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

MOZARTSPACES REMOTE (Key)
org.xvsm.benchmarks.BenchmarkSerial
 -datafile mozartspaces-remote-key.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype KEY
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -iterations 60
 -operationnumber 1000
 -operationtype WRITE
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

MOZARTSPACES REMOTE (Vector)
org.xvsm.benchmarks.BenchmarkSerial
 -datafile mozartspaces-remote-vector.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype VECTOR
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -iterations 60
 -operationnumber 1000
 -operationtype WRITE
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

MOZARTSPACES REMOTE (Linda)
org.xvsm.benchmarks.BenchmarkSerial
 -datafile mozartspaces-remote-linda.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype LINDA
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -iterations 60
 -operationnumber 1000

Page 109

 -operationtype WRITE
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

GIGASPACES XAP EMBEDDED (transient)
net.jini.space.benchmarks.BenchmarkSerial
 -datafile gigaspaces-embedded-transient.dat
 -spacetype EMBEDDED-TRANSIENT
 -transactiontype NONE
 -atomicentrytype STRING
 -atomicentrysize 10
 -iterations 60
 -operationnumber 1000
 -operationtype WRITE
 -monitorreset false

GIGASPACES XAP EMBEDDED (persistent)
net.jini.space.benchmarks.BenchmarkSerial
 -datafile gigaspaces-embedded-persistent.dat
 -spacetype EMBEDDED-PERSISTENT
 -transactiontype NONE
 -atomicentrytype STRING
 -atomicentrysize 10
 -iterations 60
 -operationnumber 1000
 -operationtype WRITE
 -monitorreset false

GIGASPACES XAP REMOTE (transient)
net.jini.space.benchmarks.BenchmarkSerial
 -datafile gigaspaces-remote-transient.dat
 -lookupserviceurl jini://192.168.123.70:4162
 -spacetype REMOTE
 -spacename mySpaceTransient
 -transactiontype NONE
 -atomicentrytype STRING
 -atomicentrysize 10
 -iterations 60
 -operationnumber 1000
 -operationtype WRITE
 -monitorreset false

GIGASPACES XAP REMOTE (persistent)
net.jini.space.benchmarks.BenchmarkSerial
 -datafile gigaspaces-remote-persistent.dat
 -lookupserviceurl jini://192.168.123.70:4162
 -spacetype REMOTE
 -spacename mySpacePersistent
 -transactiontype NONE
 -atomicentrytype STRING
 -atomicentrysize 10
 -iterations 60
 -operationnumber 1000
 -operationtype WRITE
 -monitorreset false

JBOSS AS
javax.enterprise.benchmarks.BenchmarkSerial
 -datafile jboss.dat
 -namingproviderurl jnp://192.168.123.70:1099
 -transactiontype NONE

Page 110

 -atomicentrytype STRING
 -atomicentrysize 10
 -iterations 60
 -operationnumber 1000
 -operationtype CREATE
 -monitorreset false

8.1.1.2 Shift

MOZARTSPACES EMBEDDED (Random)
org.xvsm.benchmarks.BenchmarkSerial
 -datafile mozartspaces-embedded-random.dat
 -containertype EMBEDDED
 -containersize 1000
 -coordinatortype RANDOM
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -iterations 60
 -operationnumber 1000
 -operationtype SHIFT
 -monitorreset false
 -spacespropertyfile spaces-local.prop

MOZARTSPACES EMBEDDED (FIFO)
org.xvsm.benchmarks.BenchmarkSerial
 -datafile mozartspaces-embedded-fifo.dat
 -containertype EMBEDDED
 -containersize 1000
 -coordinatortype FIFO
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -iterations 60
 -operationnumber 1000
 -operationtype SHIFT
 -monitorreset false
 -spacespropertyfile spaces-local.prop

MOZARTSPACES EMBEDDED (LIFO)
org.xvsm.benchmarks.BenchmarkSerial
 -datafile mozartspaces-embedded-lifo.dat
 -containertype EMBEDDED
 -containersize 1000
 -coordinatortype LIFO
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -iterations 60
 -operationnumber 1000
 -operationtype SHIFT
 -monitorreset false
 -spacespropertyfile spaces-local.prop

MOZARTSPACES EMBEDDED (Key)
org.xvsm.benchmarks.BenchmarkSerial
 -datafile mozartspaces-embedded-key.dat
 -containertype EMBEDDED
 -containersize 1000
 -coordinatortype KEY
 -transactiontype IMPLICIT
 -atomicentrytype STRING

Page 111

 -atomicentrysize 10
 -iterations 60
 -operationnumber 1000
 -operationtype SHIFT
 -monitorreset false
 -spacespropertyfile spaces-local.prop

MOZARTSPACES EMBEDDED (Vector)
org.xvsm.benchmarks.BenchmarkSerial
 -datafile mozartspaces-embedded-vector.dat
 -containertype EMBEDDED
 -containersize 1000
 -coordinatortype VECTOR
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -iterations 60
 -operationnumber 1000
 -operationtype SHIFT
 -monitorreset false
 -spacespropertyfile spaces-local.prop

MOZARTSPACES EMBEDDED (Linda)
org.xvsm.benchmarks.BenchmarkSerial
 -datafile mozartspaces-embedded-linda.dat
 -containertype EMBEDDED
 -containersize 1000
 -coordinatortype LINDA
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -iterations 60
 -operationnumber 1000
 -operationtype SHIFT
 -monitorreset false
 -spacespropertyfile spaces-local.prop

MOZARTSPACES REMOTE (Random)
org.xvsm.benchmarks.BenchmarkSerial
 -datafile mozartspaces-remote-random.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -containersize 1000
 -coordinatortype RANDOM
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -iterations 60
 -operationnumber 1000
 -operationtype SHIFT
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

MOZARTSPACES REMOTE (FIFO)
org.xvsm.benchmarks.BenchmarkSerial
 -datafile mozartspaces-remote-fifo.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -containersize 1000
 -coordinatortype FIFO
 -transactiontype IMPLICIT
 -atomicentrytype STRING

Page 112

 -atomicentrysize 10
 -iterations 60
 -operationnumber 1000
 -operationtype SHIFT
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

MOZARTSPACES REMOTE (LIFO)
org.xvsm.benchmarks.BenchmarkSerial
 -datafile mozartspaces-remote-lifo.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -containersize 1000
 -coordinatortype LIFO
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -iterations 60
 -operationnumber 1000
 -operationtype SHIFT
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

MOZARTSPACES REMOTE (Key)
org.xvsm.benchmarks.BenchmarkSerial
 -datafile mozartspaces-remote-key.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -containersize 1000
 -coordinatortype KEY
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -iterations 60
 -operationnumber 1000
 -operationtype SHIFT
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

MOZARTSPACES REMOTE (Vector)
org.xvsm.benchmarks.BenchmarkSerial
 -datafile mozartspaces-remote-vector.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -containersize 1000
 -coordinatortype VECTOR
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -iterations 60
 -operationnumber 1000
 -operationtype SHIFT
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

MOZARTSPACES REMOTE (Linda)
org.xvsm.benchmarks.BenchmarkSerial
 -datafile mozartspaces-remote-linda.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -containersize 1000
 -coordinatortype LINDA

Page 113

 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -iterations 60
 -operationnumber 1000
 -operationtype SHIFT
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

8.1.1.3 Read

MOZARTSPACES EMBEDDED (Random)
org.xvsm.benchmarks.BenchmarkSerial
 -datafile mozartspaces-embedded-random.dat
 -containertype EMBEDDED
 -coordinatortype RANDOM
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -iterations 60
 -operationnumber 1000
 -operationtype READ
 -monitorreset false
 -spacespropertyfile spaces-local.prop

MOZARTSPACES EMBEDDED (FIFO)
org.xvsm.benchmarks.BenchmarkSerial
 -datafile mozartspaces-embedded-fifo.dat
 -containertype EMBEDDED
 -coordinatortype FIFO
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -iterations 60
 -operationnumber 1000
 -operationtype READ
 -monitorreset false
 -spacespropertyfile spaces-local.prop

MOZARTSPACES EMBEDDED (LIFO)
org.xvsm.benchmarks.BenchmarkSerial
 -datafile mozartspaces-embedded-lifo.dat
 -containertype EMBEDDED
 -coordinatortype LIFO
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -iterations 60
 -operationnumber 1000
 -operationtype READ
 -monitorreset false
 -spacespropertyfile spaces-local.prop

MOZARTSPACES EMBEDDED (Key)
org.xvsm.benchmarks.BenchmarkSerial
 -datafile mozartspaces-embedded-key.dat
 -containertype EMBEDDED
 -coordinatortype KEY
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -iterations 60

Page 114

 -operationnumber 1000
 -operationtype READ
 -monitorreset false
 -spacespropertyfile spaces-local.prop

MOZARTSPACES EMBEDDED (Vector)
org.xvsm.benchmarks.BenchmarkSerial
 -datafile mozartspaces-embedded-vector.dat
 -containertype EMBEDDED
 -coordinatortype VECTOR
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -iterations 60
 -operationnumber 1000
 -operationtype READ
 -monitorreset false
 -spacespropertyfile spaces-local.prop

MOZARTSPACES EMBEDDED (Linda)
org.xvsm.benchmarks.BenchmarkSerial
 -datafile mozartspaces-embedded-linda.dat
 -containertype EMBEDDED
 -coordinatortype LINDA
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -iterations 60
 -operationnumber 1000
 -operationtype READ
 -monitorreset false
 -spacespropertyfile spaces-local.prop

MOZARTSPACES REMOTE (Random)
org.xvsm.benchmarks.BenchmarkSerial
 -datafile mozartspaces-remote-random.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype RANDOM
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -iterations 60
 -operationnumber 1000
 -operationtype READ
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

MOZARTSPACES REMOTE (FIFO)
org.xvsm.benchmarks.BenchmarkSerial
 -datafile mozartspaces-remote-fifo.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype FIFO
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -iterations 60
 -operationnumber 1000
 -operationtype READ
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

Page 115

MOZARTSPACES REMOTE (LIFO)
org.xvsm.benchmarks.BenchmarkSerial
 -datafile mozartspaces-remote-lifo.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype LIFO
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -iterations 60
 -operationnumber 1000
 -operationtype READ
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

MOZARTSPACES REMOTE (Key)
org.xvsm.benchmarks.BenchmarkSerial
 -datafile mozartspaces-remote-key.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype KEY
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -iterations 60
 -operationnumber 1000
 -operationtype READ
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

MOZARTSPACES REMOTE (Vector)
org.xvsm.benchmarks.BenchmarkSerial
 -datafile mozartspaces-remote-vector.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype VECTOR
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -iterations 60
 -operationnumber 1000
 -operationtype READ
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

MOZARTSPACES REMOTE (Linda)
org.xvsm.benchmarks.BenchmarkSerial
 -datafile mozartspaces-remote-linda.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype LINDA
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -iterations 60
 -operationnumber 1000
 -operationtype READ
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

Page 116

GIGASPACES XAP EMBEDDED (read, transient)
net.jini.space.benchmarks.BenchmarkSerial
 –datafile gigaspaces-embedded-read-transient.dat
 -spacetype EMBEDDED-TRANSIENT
 -transactiontype NONE
 -atomicentrytype STRING
 -atomicentrysize 10
 -iterations 60
 -operationnumber 1000
 -operationtype READ
 -monitorreset false

GIGASPACES XAP EMBEDDED (read, persistent)
net.jini.space.benchmarks.BenchmarkSerial
 –datafile gigaspaces-embedded-read-persistent.dat
 -spacetype EMBEDDED-PERSISTENT
 -transactiontype NONE
 -atomicentrytype STRING
 -atomicentrysize 10
 -iterations 60
 -operationnumber 1000
 -operationtype READ
 -monitorreset false

GIGASPACES XAP EMBEDDED (readIfExists, transient)
net.jini.space.benchmarks.BenchmarkSerial
 –datafile gigaspaces-embedded-readifexists-transient.dat
 -spacetype EMBEDDED-TRANSIENT
 -transactiontype NONE
 -atomicentrytype STRING
 -atomicentrysize 10
 -iterations 60
 -operationnumber 1000
 -operationtype READ-IF-EXISTS
 -monitorreset false

GIGASPACES XAP EMBEDDED (readIfExists, persistent)
net.jini.space.benchmarks.BenchmarkSerial
 –datafile gigaspaces-embedded-readifexists-persistent.dat
 -spacetype EMBEDDED-PERSISTENT
 -transactiontype NONE
 -atomicentrytype STRING
 -atomicentrysize 10
 -iterations 60
 -operationnumber 1000
 -operationtype READ-IF-EXISTS
 -monitorreset false

GIGASPACES XAP REMOTE (read, transient)
net.jini.space.benchmarks.BenchmarkSerial
 -datafile gigaspaces-remote-read-transient.dat
 -lookupserviceurl jini://192.168.123.70:4162
 -spacetype REMOTE
 -spacename mySpaceTransient
 -transactiontype NONE
 -atomicentrytype STRING
 -atomicentrysize 10
 -iterations 60
 -operationnumber 1000
 -operationtype READ
 -monitorreset false

Page 117

GIGASPACES XAP REMOTE (read, persistent)
net.jini.space.benchmarks.BenchmarkSerial
 -datafile gigaspaces-remote-read-persistent.dat
 -lookupserviceurl jini://192.168.123.70:4162
 -spacetype REMOTE
 -spacename mySpacePersistent
 -transactiontype NONE
 -atomicentrytype STRING
 -atomicentrysize 10
 -iterations 60
 -operationnumber 1000
 -operationtype READ
 -monitorreset false

GIGASPACES XAP REMOTE (readIfExists, transient)
net.jini.space.benchmarks.BenchmarkSerial
 -datafile gigaspaces-remote-readifexists-transient.dat
 -lookupserviceurl jini://192.168.123.70:4162
 -spacetype REMOTE
 -spacename mySpaceTransient
 -transactiontype NONE
 -atomicentrytype STRING
 -atomicentrysize 10
 -iterations 60
 -operationnumber 1000
 -operationtype READ-IF-EXISTS
 -monitorreset false

GIGASPACES XAP REMOTE (readIfExists, persistent)
net.jini.space.benchmarks.BenchmarkSerial
 -datafile gigaspaces-remote-readifexists-persistent.dat
 -lookupserviceurl jini://192.168.123.70:4162
 -spacetype REMOTE
 -spacename mySpacePersistent
 -transactiontype NONE
 -atomicentrytype STRING
 -atomicentrysize 10
 -iterations 60
 -operationnumber 1000
 -operationtype READ-IF-EXISTS
 -monitorreset false

JBOSS AS
javax.enterprise.benchmarks.BenchmarkSerial
 -datafile jboss.dat
 -namingproviderurl jnp://192.168.123.70:1099
 -transactiontype NONE
 -atomicentrytype STRING
 -atomicentrysize 10
 -iterations 60
 -operationnumber 1000
 -operationtype FIND
 -monitorreset false

8.1.1.4 Take

MOZARTSPACES EMBEDDED (Random)
org.xvsm.benchmarks.BenchmarkSerial
 -datafile mozartspaces-embedded-random.dat
 -containertype EMBEDDED
 -coordinatortype RANDOM

Page 118

 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -iterations 60
 -operationnumber 1000
 -operationtype TAKE
 -monitorreset false
 -spacespropertyfile spaces-local.prop

MOZARTSPACES EMBEDDED (FIFO)
org.xvsm.benchmarks.BenchmarkSerial
 -datafile mozartspaces-embedded-fifo.dat
 -containertype EMBEDDED
 -coordinatortype FIFO
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -iterations 60
 -operationnumber 1000
 -operationtype TAKE
 -monitorreset false
 -spacespropertyfile spaces-local.prop

MOZARTSPACES EMBEDDED (LIFO)
org.xvsm.benchmarks.BenchmarkSerial
 -datafile mozartspaces-embedded-lifo.dat
 -containertype EMBEDDED
 -coordinatortype LIFO
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -iterations 60
 -operationnumber 1000
 -operationtype TAKE
 -monitorreset false
 -spacespropertyfile spaces-local.prop

MOZARTSPACES EMBEDDED (Key)
org.xvsm.benchmarks.BenchmarkSerial
 -datafile mozartspaces-embedded-key.dat
 -containertype EMBEDDED
 -coordinatortype KEY
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -iterations 60
 -operationnumber 1000
 -operationtype TAKE
 -monitorreset false
 -spacespropertyfile spaces-local.prop

MOZARTSPACES EMBEDDED (Vector)
org.xvsm.benchmarks.BenchmarkSerial
 -datafile mozartspaces-embedded-vector.dat
 -containertype EMBEDDED
 -coordinatortype VECTOR
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -iterations 60
 -operationnumber 1000
 -operationtype TAKE

Page 119

 -monitorreset false
 -spacespropertyfile spaces-local.prop

MOZARTSPACES EMBEDDED (Linda)
org.xvsm.benchmarks.BenchmarkSerial
 -datafile mozartspaces-embedded-linda.dat
 -containertype EMBEDDED
 -coordinatortype LINDA
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -iterations 60
 -operationnumber 1000
 -operationtype TAKE
 -monitorreset false
 -spacespropertyfile spaces-local.prop

MOZARTSPACES REMOTE (Random)
org.xvsm.benchmarks.BenchmarkSerial
 -datafile mozartspaces-remote-random.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype RANDOM
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -iterations 60
 -operationnumber 1000
 -operationtype TAKE
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

MOZARTSPACES REMOTE (FIFO)
org.xvsm.benchmarks.BenchmarkSerial
 -datafile mozartspaces-remote-fifo.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype FIFO
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -iterations 60
 -operationnumber 1000
 -operationtype TAKE
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

MOZARTSPACES REMOTE (LIFO)
org.xvsm.benchmarks.BenchmarkSerial
 -datafile mozartspaces-remote-lifo.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype LIFO
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -iterations 60
 -operationnumber 1000
 -operationtype TAKE
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

Page 120

MOZARTSPACES REMOTE (Key)
org.xvsm.benchmarks.BenchmarkSerial
 -datafile mozartspaces-remote-key.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype KEY
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -iterations 60
 -operationnumber 1000
 -operationtype TAKE
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

MOZARTSPACES REMOTE (Vector)
org.xvsm.benchmarks.BenchmarkSerial
 -datafile mozartspaces-remote-vector.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype VECTOR
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -iterations 60
 -operationnumber 1000
 -operationtype TAKE
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

MOZARTSPACES REMOTE (Linda)
org.xvsm.benchmarks.BenchmarkSerial
 -datafile mozartspaces-remote-linda.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype LINDA
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -iterations 60
 -operationnumber 1000
 -operationtype TAKE
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

GIGASPACES XAP EMBEDDED (take, transient)
net.jini.space.benchmarks.BenchmarkSerial
 –datafile gigaspaces-embedded-take-transient.dat
 -spacetype EMBEDDED-TRANSIENT
 -transactiontype NONE
 -atomicentrytype STRING
 -atomicentrysize 10
 -iterations 60
 -operationnumber 1000
 -operationtype TAKE
 -monitorreset false

GIGASPACES XAP EMBEDDED (take, persistent)
net.jini.space.benchmarks.BenchmarkSerial
 –datafile gigaspaces-embedded-take-persistent.dat
 -spacetype EMBEDDED-PERSISTENT

Page 121

 -transactiontype NONE
 -atomicentrytype STRING
 -atomicentrysize 10
 -iterations 60
 -operationnumber 1000
 -operationtype TAKE
 -monitorreset false

GIGASPACES XAP EMBEDDED (takeIfExists, transient)
net.jini.space.benchmarks.BenchmarkSerial
 –datafile gigaspaces-embedded-takeifexists-transient.dat
 -spacetype EMBEDDED-TRANSIENT
 -transactiontype NONE
 -atomicentrytype STRING
 -atomicentrysize 10
 -iterations 60
 -operationnumber 1000
 -operationtype TAKE-IF-EXISTS
 -monitorreset false

GIGASPACES XAP EMBEDDED (takeIfExists, persistent)
net.jini.space.benchmarks.BenchmarkSerial
 –datafile gigaspaces-embedded-takeifexists-persistent.dat
 -spacetype EMBEDDED-PERSISTENT
 -transactiontype NONE
 -atomicentrytype STRING
 -atomicentrysize 10
 -iterations 60
 -operationnumber 1000
 -operationtype TAKE-IF-EXISTS
 -monitorreset false

GIGASPACES XAP REMOTE (take, transient)
net.jini.space.benchmarks.BenchmarkSerial
 -datafile gigaspaces-remote-take-transient.dat
 -lookupserviceurl jini://192.168.123.70:4162
 -spacetype REMOTE
 -spacename mySpaceTransient
 -transactiontype NONE
 -atomicentrytype STRING
 -atomicentrysize 10
 -iterations 60
 -operationnumber 1000
 -operationtype TAKE
 -monitorreset false

GIGASPACES XAP REMOTE (take, persistent)
net.jini.space.benchmarks.BenchmarkSerial
 -datafile gigaspaces-remote-take-persistent.dat
 -lookupserviceurl jini://192.168.123.70:4162
 -spacetype REMOTE
 -spacename mySpacePersistent
 -transactiontype NONE
 -atomicentrytype STRING
 -atomicentrysize 10
 -iterations 60
 -operationnumber 1000
 -operationtype TAKE
 -monitorreset false

Page 122

GIGASPACES XAP REMOTE (takeIfExists, transient)
net.jini.space.benchmarks.BenchmarkSerial
 -datafile gigaspaces-remote-takeifexists-transient.dat
 -lookupserviceurl jini://192.168.123.70:4162
 -spacetype REMOTE
 -spacename mySpaceTransient
 -transactiontype NONE
 -atomicentrytype STRING
 -atomicentrysize 10
 -iterations 60
 -operationnumber 1000
 -operationtype TAKE-IF-EXISTS
 -monitorreset false

GIGASPACES XAP REMOTE (takeIfExists, persistent)
net.jini.space.benchmarks.BenchmarkSerial
 -datafile gigaspaces-remote-takeifexists-persistent.dat
 -lookupserviceurl jini://192.168.123.70:4162
 -spacetype REMOTE
 -spacename mySpacePersistent
 -transactiontype NONE
 -atomicentrytype STRING
 -atomicentrysize 10
 -iterations 60
 -operationnumber 1000
 -operationtype TAKE-IF-EXISTS
 -monitorreset false

8.1.1.5 Destroy

MOZARTSPACES EMBEDDED (Random)
org.xvsm.benchmarks.BenchmarkSerial
 -datafile mozartspaces-embedded-random.dat
 -containertype EMBEDDED
 -coordinatortype RANDOM
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -iterations 60
 -operationnumber 1000
 -operationtype DESTROY
 -monitorreset false
 -spacespropertyfile spaces-local.prop

MOZARTSPACES EMBEDDED (FIFO)
org.xvsm.benchmarks.BenchmarkSerial
 -datafile mozartspaces-embedded-fifo.dat
 -containertype EMBEDDED
 -coordinatortype FIFO
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -iterations 60
 -operationnumber 1000
 -operationtype DESTROY
 -monitorreset false
 -spacespropertyfile spaces-local.prop

MOZARTSPACES EMBEDDED (LIFO)
org.xvsm.benchmarks.BenchmarkSerial
 -datafile mozartspaces-embedded-lifo.dat

Page 123

 -containertype EMBEDDED
 -coordinatortype LIFO
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -iterations 60
 -operationnumber 1000
 -operationtype DESTROY
 -monitorreset false
 -spacespropertyfile spaces-local.prop

MOZARTSPACES EMBEDDED (Key)
org.xvsm.benchmarks.BenchmarkSerial
 -datafile mozartspaces-embedded-key.dat
 -containertype EMBEDDED
 -coordinatortype KEY
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -iterations 60
 -operationnumber 1000
 -operationtype DESTROY
 -monitorreset false
 -spacespropertyfile spaces-local.prop

MOZARTSPACES EMBEDDED (Vector)
org.xvsm.benchmarks.BenchmarkSerial
 -datafile mozartspaces-embedded-vector.dat
 -containertype EMBEDDED
 -coordinatortype VECTOR
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -iterations 60
 -operationnumber 1000
 -operationtype DESTROY
 -monitorreset false
 -spacespropertyfile spaces-local.prop

MOZARTSPACES EMBEDDED (Linda)
org.xvsm.benchmarks.BenchmarkSerial
 -datafile mozartspaces-embedded-linda.dat
 -containertype EMBEDDED
 -coordinatortype LINDA
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -iterations 60
 -operationnumber 1000
 -operationtype DESTROY
 -monitorreset false
 -spacespropertyfile spaces-local.prop

MOZARTSPACES REMOTE (Random)
org.xvsm.benchmarks.BenchmarkSerial
 -datafile mozartspaces-remote-random.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype RANDOM
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10

Page 124

 -iterations 60
 -operationnumber 1000
 -operationtype DESTROY
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

MOZARTSPACES REMOTE (FIFO)
org.xvsm.benchmarks.BenchmarkSerial
 -datafile mozartspaces-remote-fifo.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype FIFO
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -iterations 60
 -operationnumber 1000
 -operationtype DESTROY
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

MOZARTSPACES REMOTE (LIFO)
org.xvsm.benchmarks.BenchmarkSerial
 -datafile mozartspaces-remote-lifo.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype LIFO
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -iterations 60
 -operationnumber 1000
 -operationtype DESTROY
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

MOZARTSPACES REMOTE (Key)
org.xvsm.benchmarks.BenchmarkSerial
 -datafile mozartspaces-remote-key.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype KEY
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -iterations 60
 -operationnumber 1000
 -operationtype DESTROY
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

MOZARTSPACES REMOTE (Vector)
org.xvsm.benchmarks.BenchmarkSerial
 -datafile mozartspaces-remote-vector.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype VECTOR
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -iterations 60
 -operationnumber 1000

Page 125

 -operationtype DESTROY
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

MOZARTSPACES REMOTE (Linda)
org.xvsm.benchmarks.BenchmarkSerial
 -datafile mozartspaces-remote-linda.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype LINDA
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -iterations 60
 -operationnumber 1000
 -operationtype DESTROY
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

JBOSS AS
javax.enterprise.benchmarks.BenchmarkSerial
 -datafile jboss.dat
 -namingproviderurl jnp://192.168.123.70:1099
 -transactiontype NONE
 -atomicentrytype STRING
 -atomicentrysize 10
 -iterations 60
 -operationnumber 1000
 -operationtype REMOVE
 -monitorreset false

8.1.2 Concurrent Benchmarks

8.1.2.1 Write

MOZARTSPACES (Random)
org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-random-1fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype RANDOM
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 20
 -iterations 1
 -operationnumber 1000
 -operationtype WRITE
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-random-2fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype RANDOM
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 40
 -iterations 1

Page 126

 -operationnumber 1000
 -operationtype WRITE
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-random-3fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype RANDOM
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 60
 -iterations 1
 -operationnumber 1000
 -operationtype WRITE
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

MOZARTSPACES (FIFO)
org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-fifo-1fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype FIFO
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 20
 -iterations 1
 -operationnumber 1000
 -operationtype WRITE
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-fifo-2fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype FIFO
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 40
 -iterations 1
 -operationnumber 1000
 -operationtype WRITE
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-fifo-3fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype FIFO
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 60
 -iterations 1
 -operationnumber 1000
 -operationtype WRITE

Page 127

 -monitorreset false
 -spacespropertyfile spaces-remote.prop

MOZARTSPACES (LIFO)
org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-lifo-1fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype LIFO
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 20
 -iterations 1
 -operationnumber 1000
 -operationtype WRITE
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-lifo-2fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype LIFO
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 40
 -iterations 1
 -operationnumber 1000
 -operationtype WRITE
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-lifo-3fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype LIFO
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 60
 -iterations 1
 -operationnumber 1000
 -operationtype WRITE
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

MOZARTSPACES (Key)
org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-key-1fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype KEY
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 20
 -iterations 1
 -operationnumber 1000
 -operationtype WRITE
 -monitorreset false

Page 128

 -spacespropertyfile spaces-remote.prop

org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-key-2fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype KEY
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 40
 -iterations 1
 -operationnumber 1000
 -operationtype WRITE
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-key-3fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype KEY
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 60
 -iterations 1
 -operationnumber 1000
 -operationtype WRITE
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

MOZARTSPACES (Vector)
org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-vector-1fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype VECTOR
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 20
 -iterations 1
 -operationnumber 1000
 -operationtype WRITE
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-vector-2fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype VECTOR
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 40
 -iterations 1
 -operationnumber 1000
 -operationtype WRITE
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

Page 129

org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-vector-3fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype VECTOR
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 60
 -iterations 1
 -operationnumber 1000
 -operationtype WRITE
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

MOZARTSPACES (Linda)
org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-linda-1fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype LINDA
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 20
 -iterations 1
 -operationnumber 1000
 -operationtype WRITE
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-linda-2fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype LINDA
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 40
 -iterations 1
 -operationnumber 1000
 -operationtype WRITE
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-linda-3fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype LINDA
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 60
 -iterations 1
 -operationnumber 1000
 -operationtype WRITE
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

GIGASPACES XAP (transient)
net.jini.space.benchmarks.BenchmarkConcurrent

Page 130

 -datafile gigaspaces-transient-1fold.dat
 -lookupserviceurl jini://192.168.123.70:4162
 -spacetype REMOTE
 -spacename mySpaceTransient
 -transactiontype NONE
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 20
 -iterations 1
 -operationnumber 1000
 -operationtype WRITE
 -monitorreset false

net.jini.space.benchmarks.BenchmarkConcurrent
 -datafile gigaspaces-transient-2fold.dat
 -lookupserviceurl jini://192.168.123.70:4162
 -spacetype REMOTE
 -spacename mySpaceTransient
 -transactiontype NONE
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 40
 -iterations 1
 -operationnumber 1000
 -operationtype WRITE
 -monitorreset false

net.jini.space.benchmarks.BenchmarkConcurrent
 -datafile gigaspaces-transient-3fold.dat
 -lookupserviceurl jini://192.168.123.70:4162
 -spacetype REMOTE
 -spacename mySpaceTransient
 -transactiontype NONE
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 60
 -iterations 1
 -operationnumber 1000
 -operationtype WRITE
 -monitorreset false

GIGASPACES XAP (persistent)
net.jini.space.benchmarks.BenchmarkConcurrent
 -datafile gigaspaces-persistent-1fold.dat
 -lookupserviceurl jini://192.168.123.70:4162
 -spacetype REMOTE
 -spacename mySpacePersistent
 -transactiontype NONE
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 20
 -iterations 1
 -operationnumber 1000
 -operationtype WRITE
 -monitorreset false

net.jini.space.benchmarks.BenchmarkConcurrent
 -datafile gigaspaces-persistent-2fold.dat
 -lookupserviceurl jini://192.168.123.70:4162
 -spacetype REMOTE
 -spacename mySpacePersistent
 -transactiontype NONE
 -atomicentrytype STRING

Page 131

 -atomicentrysize 10
 -threads 40
 -iterations 1
 -operationnumber 1000
 -operationtype WRITE
 -monitorreset false

net.jini.space.benchmarks.BenchmarkConcurrent
 -datafile gigaspaces-persistent-3fold.dat
 -lookupserviceurl jini://192.168.123.70:4162
 -spacetype REMOTE
 -spacename mySpacePersistent
 -transactiontype NONE
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 60
 -iterations 1
 -operationnumber 1000
 -operationtype WRITE
 -monitorreset false

JBOSS AS
javax.enterprise.benchmarks.BenchmarkConcurrent
 -datafile jboss-1fold.dat
 -namingproviderurl jnp://192.168.123.70:1099
 -transactiontype NONE
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 20
 -iterations 1
 -operationnumber 1000
 -operationtype CREATE
 -monitorreset false

javax.enterprise.benchmarks.BenchmarkConcurrent
 -datafile jboss-2fold.dat
 -namingproviderurl jnp://192.168.123.70:1099
 -transactiontype NONE
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 40
 -iterations 1
 -operationnumber 1000
 -operationtype CREATE
 -monitorreset false

javax.enterprise.benchmarks.BenchmarkConcurrent
 -datafile jboss-3fold.dat
 -namingproviderurl jnp://192.168.123.70:1099
 -transactiontype NONE
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 60
 -iterations 1
 -operationnumber 1000
 -operationtype CREATE
 -monitorreset false

8.1.2.2 Shift

MOZARTSPACES (Random)
org.xvsm.benchmarks.BenchmarkConcurrent

Page 132

 -datafile mozartspaces-random-1fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -containersize 1000
 -coordinatortype RANDOM
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 20
 -iterations 1
 -operationnumber 1000
 -operationtype SHIFT
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-random-2fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -containersize 1000
 -coordinatortype RANDOM
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 40
 -iterations 1
 -operationnumber 1000
 -operationtype SHIFT
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-random-3fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -containersize 1000
 -coordinatortype RANDOM
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 60
 -iterations 1
 -operationnumber 1000
 -operationtype SHIFT
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

MOZARTSPACES (FIFO)
org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-fifo-1fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -containersize 1000
 -coordinatortype FIFO
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 20
 -iterations 1
 -operationnumber 1000
 -operationtype SHIFT
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

Page 133

org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-fifo-2fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -containersize 1000
 -coordinatortype FIFO
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 40
 -iterations 1
 -operationnumber 1000
 -operationtype SHIFT
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-fifo-3fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -containersize 1000
 -coordinatortype FIFO
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 60
 -iterations 1
 -operationnumber 1000
 -operationtype SHIFT
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

MOZARTSPACES (LIFO)
org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-lifo-1fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -containersize 1000
 -coordinatortype LIFO
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 20
 -iterations 1
 -operationnumber 1000
 -operationtype SHIFT
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-lifo-2fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -containersize 1000
 -coordinatortype LIFO
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 40
 -iterations 1
 -operationnumber 1000
 -operationtype SHIFT

Page 134

 -monitorreset false
 -spacespropertyfile spaces-remote.prop

org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-lifo-3fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -containersize 1000
 -coordinatortype LIFO
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 60
 -iterations 1
 -operationnumber 1000
 -operationtype SHIFT
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

MOZARTSPACES (Key)
org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-key-1fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -containersize 1000
 -coordinatortype KEY
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 20
 -iterations 1
 -operationnumber 1000
 -operationtype SHIFT
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-key-2fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -containersize 1000
 -coordinatortype KEY
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 40
 -iterations 1
 -operationnumber 1000
 -operationtype SHIFT
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-key-3fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -containersize 1000
 -coordinatortype KEY
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 60
 -iterations 1

Page 135

 -operationnumber 1000
 -operationtype SHIFT
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

MOZARTSPACES (Vector)
org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-vector-1fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -containersize 1000
 -coordinatortype VECTOR
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 20
 -iterations 1
 -operationnumber 1000
 -operationtype SHIFT
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-vector-2fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -containersize 1000
 -coordinatortype VECTOR
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 40
 -iterations 1
 -operationnumber 1000
 -operationtype SHIFT
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-vector-3fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -containersize 1000
 -coordinatortype VECTOR
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 60
 -iterations 1
 -operationnumber 1000
 -operationtype SHIFT
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

MOZARTSPACES (Linda)
org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-linda-1fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -containersize 1000
 -coordinatortype LINDA
 -transactiontype IMPLICIT
 -atomicentrytype STRING

Page 136

 -atomicentrysize 10
 -threads 20
 -iterations 1
 -operationnumber 1000
 -operationtype SHIFT
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-linda-2fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -containersize 1000
 -coordinatortype LINDA
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 40
 -iterations 1
 -operationnumber 1000
 -operationtype SHIFT
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-linda-3fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -containersize 1000
 -coordinatortype LINDA
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 60
 -iterations 1
 -operationnumber 1000
 -operationtype SHIFT
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

8.1.2.3 Read

MOZARTSPACES (Random)
org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-random-1fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype RANDOM
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 20
 -iterations 1
 -operationnumber 1000
 -operationtype READ
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-random-2fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype RANDOM

Page 137

 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 40
 -iterations 1
 -operationnumber 1000
 -operationtype READ
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-random-3fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype RANDOM
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 60
 -iterations 1
 -operationnumber 1000
 -operationtype READ
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

MOZARTSPACES (FIFO)
org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-fifo-1fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype FIFO
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 20
 -iterations 1
 -operationnumber 1000
 -operationtype READ
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-fifo-2fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype FIFO
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 40
 -iterations 1
 -operationnumber 1000
 -operationtype READ
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-fifo-3fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype FIFO
 -transactiontype IMPLICIT
 -atomicentrytype STRING

Page 138

 -atomicentrysize 10
 -threads 60
 -iterations 1
 -operationnumber 1000
 -operationtype READ
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

MOZARTSPACES (LIFO)
org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-lifo-1fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype LIFO
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 20
 -iterations 1
 -operationnumber 1000
 -operationtype READ
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-lifo-2fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype LIFO
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 40
 -iterations 1
 -operationnumber 1000
 -operationtype READ
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-lifo-3fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype LIFO
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 60
 -iterations 1
 -operationnumber 1000
 -operationtype READ
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

MOZARTSPACES (Key)
org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-key-1fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype KEY
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10

Page 139

 -threads 20
 -iterations 1
 -operationnumber 1000
 -operationtype READ
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-key-2fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype KEY
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 40
 -iterations 1
 -operationnumber 1000
 -operationtype READ
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-key-3fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype KEY
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 60
 -iterations 1
 -operationnumber 1000
 -operationtype READ
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

MOZARTSPACES (Vector)
org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-vector-1fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype VECTOR
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 20
 -iterations 1
 -operationnumber 1000
 -operationtype READ
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-vector-2fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype VECTOR
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 40
 -iterations 1

Page 140

 -operationnumber 1000
 -operationtype READ
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-vector-3fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype VECTOR
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 60
 -iterations 1
 -operationnumber 1000
 -operationtype READ
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

MOZARTSPACES (Linda)
org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-linda-1fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype LINDA
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 20
 -iterations 1
 -operationnumber 1000
 -operationtype READ
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-linda-2fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype LINDA
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 40
 -iterations 1
 -operationnumber 1000
 -operationtype READ
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-linda-3fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype LINDA
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 60
 -iterations 1
 -operationnumber 1000
 -operationtype READ

Page 141

 -monitorreset false
 -spacespropertyfile spaces-remote.prop

GIGASPACES XAP (read, transient)
net.jini.space.benchmarks.BenchmarkConcurrent
 -datafile gigaspaces-read-transient-1fold.dat
 -lookupserviceurl jini://192.168.123.70:4162
 -spacetype REMOTE
 -spacename mySpaceTransient
 -transactiontype NONE
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 20
 -iterations 1
 -operationnumber 1000
 -operationtype READ
 -monitorreset false

net.jini.space.benchmarks.BenchmarkConcurrent
 -datafile gigaspaces-read-transient-2fold.dat
 -lookupserviceurl jini://192.168.123.70:4162
 -spacetype REMOTE
 -spacename mySpaceTransient
 -transactiontype NONE
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 40
 -iterations 1
 -operationnumber 1000
 -operationtype READ
 -monitorreset false

net.jini.space.benchmarks.BenchmarkConcurrent
 -datafile gigaspaces-read-transient-3fold.dat
 -lookupserviceurl jini://192.168.123.70:4162
 -spacetype REMOTE
 -spacename mySpaceTransient
 -transactiontype NONE
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 60
 -iterations 1
 -operationnumber 1000
 -operationtype READ
 -monitorreset false

GIGASPACES XAP (read, persistent)
net.jini.space.benchmarks.BenchmarkConcurrent
 -datafile gigaspaces-read-persistent-1fold.dat
 -lookupserviceurl jini://192.168.123.70:4162
 -spacetype REMOTE
 -spacename mySpacePersistent
 -transactiontype NONE
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 20
 -iterations 1
 -operationnumber 1000
 -operationtype READ
 -monitorreset false

net.jini.space.benchmarks.BenchmarkConcurrent

Page 142

 -datafile gigaspaces-read-persistent-2fold.dat
 -lookupserviceurl jini://192.168.123.70:4162
 -spacetype REMOTE
 -spacename mySpacePersistent
 -transactiontype NONE
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 40
 -iterations 1
 -operationnumber 1000
 -operationtype READ
 -monitorreset false

net.jini.space.benchmarks.BenchmarkConcurrent
 -datafile gigaspaces-read-persistent-3fold.dat
 -lookupserviceurl jini://192.168.123.70:4162
 -spacetype REMOTE
 -spacename mySpacePersistent
 -transactiontype NONE
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 60
 -iterations 1
 -operationnumber 1000
 -operationtype READ
 -monitorreset false

GIGASPACES XAP (readIfExists, transient)
net.jini.space.benchmarks.BenchmarkConcurrent
 -datafile gigaspaces-readifexists-transient-1fold.dat
 -lookupserviceurl jini://192.168.123.70:4162
 -spacetype REMOTE
 -spacename mySpaceTransient
 -transactiontype NONE
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 20
 -iterations 1
 -operationnumber 1000
 -operationtype READ-IF-EXISTS
 -monitorreset false

net.jini.space.benchmarks.BenchmarkConcurrent
 -datafile gigaspaces-readifexists-transient-2fold.dat
 -lookupserviceurl jini://192.168.123.70:4162
 -spacetype REMOTE
 -spacename mySpaceTransient
 -transactiontype NONE
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 40
 -iterations 1
 -operationnumber 1000
 -operationtype READ-IF-EXISTS
 -monitorreset false

net.jini.space.benchmarks.BenchmarkConcurrent
 -datafile gigaspaces-readifexists-transient-3fold.dat
 -lookupserviceurl jini://192.168.123.70:4162
 -spacetype REMOTE
 -spacename mySpaceTransient
 -transactiontype NONE
 -atomicentrytype STRING

Page 143

 -atomicentrysize 10
 -threads 60
 -iterations 1
 -operationnumber 1000
 -operationtype READ-IF-EXISTS
 -monitorreset false

GIGASPACES XAP (readIfExists, persistent)
net.jini.space.benchmarks.BenchmarkConcurrent
 -datafile gigaspaces-readifexists-transient-1fold.dat
 -lookupserviceurl jini://192.168.123.70:4162
 -spacetype REMOTE
 -spacename mySpacePersistent
 -transactiontype NONE
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 20
 -iterations 1
 -operationnumber 1000
 -operationtype READ-IF-EXISTS
 -monitorreset false

net.jini.space.benchmarks.BenchmarkConcurrent
 -datafile gigaspaces-readifexists-transient-2fold.dat
 -lookupserviceurl jini://192.168.123.70:4162
 -spacetype REMOTE
 -spacename mySpacePersistent
 -transactiontype NONE
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 40
 -iterations 1
 -operationnumber 1000
 -operationtype READ-IF-EXISTS
 -monitorreset false

net.jini.space.benchmarks.BenchmarkConcurrent
 -datafile gigaspaces-readifexists-transient-3fold.dat
 -lookupserviceurl jini://192.168.123.70:4162
 -spacetype REMOTE
 -spacename mySpacePersistent
 -transactiontype NONE
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 60
 -iterations 1
 -operationnumber 1000
 -operationtype READ-IF-EXISTS
 -monitorreset false

JBOSS AS
javax.enterprise.benchmarks.BenchmarkConcurrent
 -datafile jboss-1fold.dat
 -namingproviderurl jnp://192.168.123.70:1099
 -transactiontype NONE
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 20
 -iterations 1
 -operationnumber 1000
 -operationtype FIND
 -monitorreset false

Page 144

javax.enterprise.benchmarks.BenchmarkConcurrent
 -datafile jboss-2fold.dat
 -namingproviderurl jnp://192.168.123.70:1099
 -transactiontype NONE
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 40
 -iterations 1
 -operationnumber 1000
 -operationtype FIND
 -monitorreset false

javax.enterprise.benchmarks.BenchmarkConcurrent
 -datafile jboss-3fold.dat
 -namingproviderurl jnp://192.168.123.70:1099
 -transactiontype NONE
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 60
 -iterations 1
 -operationnumber 1000
 -operationtype FIND
 -monitorreset false

8.1.2.4 Take

MOZARTSPACES (Random)
org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-random-1fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype RANDOM
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 20
 -iterations 1
 -operationnumber 1000
 -operationtype TAKE
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-random-2fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype RANDOM
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 40
 -iterations 1
 -operationnumber 1000
 -operationtype TAKE
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-random-3fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321

Page 145

 -coordinatortype RANDOM
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 60
 -iterations 1
 -operationnumber 1000
 -operationtype TAKE
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

MOZARTSPACES (FIFO)
org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-fifo-1fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype FIFO
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 20
 -iterations 1
 -operationnumber 1000
 -operationtype TAKE
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-fifo-2fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype FIFO
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 40
 -iterations 1
 -operationnumber 1000
 -operationtype TAKE
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-fifo-3fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype FIFO
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 60
 -iterations 1
 -operationnumber 1000
 -operationtype TAKE
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

MOZARTSPACES (LIFO)
org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-lifo-1fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype LIFO

Page 146

 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 20
 -iterations 1
 -operationnumber 1000
 -operationtype TAKE
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-lifo-2fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype LIFO
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 40
 -iterations 1
 -operationnumber 1000
 -operationtype TAKE
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-lifo-3fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype LIFO
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 60
 -iterations 1
 -operationnumber 1000
 -operationtype TAKE
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

MOZARTSPACES (Key)
org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-key-1fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype KEY
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 20
 -iterations 1
 -operationnumber 1000
 -operationtype TAKE
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-key-2fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype KEY
 -transactiontype IMPLICIT
 -atomicentrytype STRING

Page 147

 -atomicentrysize 10
 -threads 40
 -iterations 1
 -operationnumber 1000
 -operationtype TAKE
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-key-3fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype KEY
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 60
 -iterations 1
 -operationnumber 1000
 -operationtype TAKE
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

MOZARTSPACES (Vector)
org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-vector-1fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype VECTOR
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 20
 -iterations 1
 -operationnumber 1000
 -operationtype TAKE
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-vector-2fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype VECTOR
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 40
 -iterations 1
 -operationnumber 1000
 -operationtype TAKE
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-vector-3fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype VECTOR
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 60

Page 148

 -iterations 1
 -operationnumber 1000
 -operationtype TAKE
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

MOZARTSPACES (Linda)
org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-linda-1fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype LINDA
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 20
 -iterations 1
 -operationnumber 1000
 -operationtype TAKE
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-linda-2fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype LINDA
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 40
 -iterations 1
 -operationnumber 1000
 -operationtype TAKE
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-linda-3fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype LINDA
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 60
 -iterations 1
 -operationnumber 1000
 -operationtype TAKE
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

GIGASPACES XAP (take, transient)
net.jini.space.benchmarks.BenchmarkConcurrent
 -datafile gigaspaces-take-transient-1fold.dat
 -lookupserviceurl jini://192.168.123.70:4162
 -spacetype REMOTE
 -spacename mySpaceTransient
 -transactiontype NONE
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 20
 -iterations 1

Page 149

 -operationnumber 1000
 -operationtype TAKE
 -monitorreset false

net.jini.space.benchmarks.BenchmarkConcurrent
 -datafile gigaspaces-take-transient-2fold.dat
 -lookupserviceurl jini://192.168.123.70:4162
 -spacetype REMOTE
 -spacename mySpaceTransient
 -transactiontype NONE
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 40
 -iterations 1
 -operationnumber 1000
 -operationtype TAKE
 -monitorreset false

net.jini.space.benchmarks.BenchmarkConcurrent
 -datafile gigaspaces-take-transient-3fold.dat
 -lookupserviceurl jini://192.168.123.70:4162
 -spacetype REMOTE
 -spacename mySpaceTransient
 -transactiontype NONE
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 60
 -iterations 1
 -operationnumber 1000
 -operationtype TAKE
 -monitorreset false

GIGASPACES XAP (take, persistent)
net.jini.space.benchmarks.BenchmarkConcurrent
 -datafile gigaspaces-take-persistent-1fold.dat
 -lookupserviceurl jini://192.168.123.70:4162
 -spacetype REMOTE
 -spacename mySpacePersistent
 -transactiontype NONE
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 20
 -iterations 1
 -operationnumber 1000
 -operationtype TAKE
 -monitorreset false

net.jini.space.benchmarks.BenchmarkConcurrent
 -datafile gigaspaces-take-persistent-2fold.dat
 -lookupserviceurl jini://192.168.123.70:4162
 -spacetype REMOTE
 -spacename mySpacePersistent
 -transactiontype NONE
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 40
 -iterations 1
 -operationnumber 1000
 -operationtype TAKE
 -monitorreset false

net.jini.space.benchmarks.BenchmarkConcurrent
 -datafile gigaspaces-take-persistent-3fold.dat

Page 150

 -lookupserviceurl jini://192.168.123.70:4162
 -spacetype REMOTE
 -spacename mySpacePersistent
 -transactiontype NONE
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 60
 -iterations 1
 -operationnumber 1000
 -operationtype TAKE
 -monitorreset false

GIGASPACES XAP (takeIfExists, transient)
net.jini.space.benchmarks.BenchmarkConcurrent
 -datafile gigaspaces-takeifexists-transient-1fold.dat
 -lookupserviceurl jini://192.168.123.70:4162
 -spacetype REMOTE
 -spacename mySpaceTransient
 -transactiontype NONE
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 20
 -iterations 1
 -operationnumber 1000
 -operationtype TAKE-IF-EXISTS
 -monitorreset false

net.jini.space.benchmarks.BenchmarkConcurrent
 -datafile gigaspaces-takeifexists-transient-2fold.dat
 -lookupserviceurl jini://192.168.123.70:4162
 -spacetype REMOTE
 -spacename mySpaceTransient
 -transactiontype NONE
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 40
 -iterations 1
 -operationnumber 1000
 -operationtype TAKE-IF-EXISTS
 -monitorreset false

net.jini.space.benchmarks.BenchmarkConcurrent
 -datafile gigaspaces-takeifexists-transient-3fold.dat
 -lookupserviceurl jini://192.168.123.70:4162
 -spacetype REMOTE
 -spacename mySpaceTransient
 -transactiontype NONE
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 60
 -iterations 1
 -operationnumber 1000
 -operationtype TAKE-IF-EXISTS
 -monitorreset false

GIGASPACES XAP (takeIfExists, persistent)
net.jini.space.benchmarks.BenchmarkConcurrent
 -datafile gigaspaces-takeifexists-transient-1fold.dat
 -lookupserviceurl jini://192.168.123.70:4162
 -spacetype REMOTE
 -spacename mySpacePersistent
 -transactiontype NONE
 -atomicentrytype STRING

Page 151

 -atomicentrysize 10
 -threads 20
 -iterations 1
 -operationnumber 1000
 -operationtype TAKE-IF-EXISTS
 -monitorreset false

net.jini.space.benchmarks.BenchmarkConcurrent
 -datafile gigaspaces-takeifexists-transient-2fold.dat
 -lookupserviceurl jini://192.168.123.70:4162
 -spacetype REMOTE
 -spacename mySpacePersistent
 -transactiontype NONE
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 40
 -iterations 1
 -operationnumber 1000
 -operationtype TAKE-IF-EXISTS
 -monitorreset false

net.jini.space.benchmarks.BenchmarkConcurrent
 -datafile gigaspaces-takeifexists-transient-3fold.dat
 -lookupserviceurl jini://192.168.123.70:4162
 -spacetype REMOTE
 -spacename mySpacePersistent
 -transactiontype NONE
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 60
 -iterations 1
 -operationnumber 1000
 -operationtype TAKE-IF-EXISTS
 -monitorreset false

8.1.2.5 Destroy

MOZARTSPACES (Random)
org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-random-1fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype RANDOM
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 20
 -iterations 1
 -operationnumber 1000
 -operationtype DESTROY
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-random-2fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype RANDOM
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 40
 -iterations 1

Page 152

 -operationnumber 1000
 -operationtype DESTROY
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-random-3fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype RANDOM
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 60
 -iterations 1
 -operationnumber 1000
 -operationtype DESTROY
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

MOZARTSPACES (FIFO)
org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-fifo-1fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype FIFO
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 20
 -iterations 1
 -operationnumber 1000
 -operationtype DESTROY
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-fifo-2fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype FIFO
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 40
 -iterations 1
 -operationnumber 1000
 -operationtype DESTROY
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-fifo-3fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype FIFO
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 60
 -iterations 1
 -operationnumber 1000
 -operationtype DESTROY

Page 153

 -monitorreset false
 -spacespropertyfile spaces-remote.prop

MOZARTSPACES (LIFO)
org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-lifo-1fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype LIFO
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 20
 -iterations 1
 -operationnumber 1000
 -operationtype DESTROY
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-lifo-2fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype LIFO
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 40
 -iterations 1
 -operationnumber 1000
 -operationtype DESTROY
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-lifo-3fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype LIFO
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 60
 -iterations 1
 -operationnumber 1000
 -operationtype DESTROY
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

MOZARTSPACES (Key)
org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-key-1fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype KEY
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 20
 -iterations 1
 -operationnumber 1000
 -operationtype DESTROY
 -monitorreset false

Page 154

 -spacespropertyfile spaces-remote.prop

org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-key-2fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype KEY
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 40
 -iterations 1
 -operationnumber 1000
 -operationtype DESTROY
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-key-3fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype KEY
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 60
 -iterations 1
 -operationnumber 1000
 -operationtype DESTROY
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

MOZARTSPACES (Vector)
org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-vector-1fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype VECTOR
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 20
 -iterations 1
 -operationnumber 1000
 -operationtype DESTROY
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-vector-2fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype VECTOR
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 40
 -iterations 1
 -operationnumber 1000
 -operationtype DESTROY
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

Page 155

org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-vector-3fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype VECTOR
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 60
 -iterations 1
 -operationnumber 1000
 -operationtype DESTROY
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

MOZARTSPACES (Linda)
org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-linda-1fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype LINDA
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 20
 -iterations 1
 -operationnumber 1000
 -operationtype DESTROY
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-linda-2fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype LINDA
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 40
 -iterations 1
 -operationnumber 1000
 -operationtype DESTROY
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

org.xvsm.benchmarks.BenchmarkConcurrent
 -datafile mozartspaces-linda-3fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype LINDA
 -transactiontype IMPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 60
 -iterations 1
 -operationnumber 1000
 -operationtype DESTROY
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

JBOSS AS
javax.enterprise.benchmarks.BenchmarkConcurrent

Page 156

 -datafile jboss-1fold.dat
 -namingproviderurl jnp://192.168.123.70:1099
 -transactiontype NONE
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 20
 -iterations 1
 -operationnumber 1000
 -operationtype REMOVE
 -monitorreset false

javax.enterprise.benchmarks.BenchmarkConcurrent
 -datafile jboss-2fold.dat
 -namingproviderurl jnp://192.168.123.70:1099
 -transactiontype NONE
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 40
 -iterations 1
 -operationnumber 1000
 -operationtype REMOVE
 -monitorreset false

javax.enterprise.benchmarks.BenchmarkConcurrent
 -datafile jboss-3fold.dat
 -namingproviderurl jnp://192.168.123.70:1099
 -transactiontype NONE
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 60
 -iterations 1
 -operationnumber 1000
 -operationtype REMOVE
 -monitorreset false

8.1.3 Block Benchmarks

8.1.3.1 Write + Read + Take/Destroy

MOZARTSPACES (Random)
org.xvsm.benchmarks.BenchmarkBlock
 -datafile mozartspaces-random-1fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype RANDOM
 -transactiontype EXPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 20
 -iterations 10
 -operationnumbers 100,100,50
 -operationtypes WRITE,READ,TAKE
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

org.xvsm.benchmarks.BenchmarkBlock
 -datafile mozartspaces-random-2fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype RANDOM
 -transactiontype EXPLICIT
 -atomicentrytype STRING

Page 157

 -atomicentrysize 10
 -threads 40
 -iterations 10
 -operationnumbers 100,100,50
 -operationtypes WRITE,READ,TAKE
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

org.xvsm.benchmarks.BenchmarkBlock
 -datafile mozartspaces-random-3fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype RANDOM
 -transactiontype EXPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 60
 -iterations 10
 -operationnumbers 100,100,50
 -operationtypes WRITE,READ,TAKE
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

MOZARTSPACES (FIFO)
org.xvsm.benchmarks.BenchmarkBlock
 -datafile mozartspaces-fifo-1fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype FIFO
 -transactiontype EXPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 20
 -iterations 10
 -operationnumbers 100,100,50
 -operationtypes WRITE,READ,TAKE
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

org.xvsm.benchmarks.BenchmarkBlock
 -datafile mozartspaces-fifo-2fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype FIFO
 -transactiontype EXPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 40
 -iterations 10
 -operationnumbers 100,100,50
 -operationtypes WRITE,READ,TAKE
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

org.xvsm.benchmarks.BenchmarkBlock
 -datafile mozartspaces-fifo-3fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype FIFO
 -transactiontype EXPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 60

Page 158

 -iterations 10
 -operationnumbers 100,100,50
 -operationtypes WRITE,READ,TAKE
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

MOZARTSPACES (LIFO)
org.xvsm.benchmarks.BenchmarkBlock
 -datafile mozartspaces-lifo-1fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype LIFO
 -transactiontype EXPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 20
 -iterations 10
 -operationnumbers 100,100,50
 -operationtypes WRITE,READ,TAKE
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

org.xvsm.benchmarks.BenchmarkBlock
 -datafile mozartspaces-lifo-2fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype LIFO
 -transactiontype EXPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 40
 -iterations 10
 -operationnumbers 100,100,50
 -operationtypes WRITE,READ,TAKE
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

org.xvsm.benchmarks.BenchmarkBlock
 -datafile mozartspaces-lifo-3fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype LIFO
 -transactiontype EXPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 60
 -iterations 10
 -operationnumbers 100,100,50
 -operationtypes WRITE,READ,TAKE
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

MOZARTSPACES (Key)
org.xvsm.benchmarks.BenchmarkBlock
 -datafile mozartspaces-key-1fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype KEY
 -transactiontype EXPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 20
 -iterations 10

Page 159

 -operationnumbers 100,100,50
 -operationtypes WRITE,READ,TAKE
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

org.xvsm.benchmarks.BenchmarkBlock
 -datafile mozartspaces-key-2fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype KEY
 -transactiontype EXPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 40
 -iterations 10
 -operationnumbers 100,100,50
 -operationtypes WRITE,READ,TAKE
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

org.xvsm.benchmarks.BenchmarkBlock
 -datafile mozartspaces-key-3fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype KEY
 -transactiontype EXPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 60
 -iterations 10
 -operationnumbers 100,100,50
 -operationtypes WRITE,READ,TAKE
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

MOZARTSPACES (Vector)
org.xvsm.benchmarks.BenchmarkBlock
 -datafile mozartspaces-vector-1fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype VECTOR
 -transactiontype EXPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 20
 -iterations 10
 -operationnumbers 100,100,50
 -operationtypes WRITE,READ,TAKE
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

org.xvsm.benchmarks.BenchmarkBlock
 -datafile mozartspaces-vector-2fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype VECTOR
 -transactiontype EXPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 40
 -iterations 10
 -operationnumbers 100,100,50
 -operationtypes WRITE,READ,TAKE

Page 160

 -monitorreset false
 -spacespropertyfile spaces-remote.prop

org.xvsm.benchmarks.BenchmarkBlock
 -datafile mozartspaces-vector-3fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype VECTOR
 -transactiontype EXPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 60
 -iterations 10
 -operationnumbers 100,100,50
 -operationtypes WRITE,READ,TAKE
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

MOZARTSPACES (Linda)
org.xvsm.benchmarks.BenchmarkBlock
 -datafile mozartspaces-linda-1fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype LINDA
 -transactiontype EXPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 20
 -iterations 10
 -operationnumbers 100,100,50
 -operationtypes WRITE,READ,TAKE
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

org.xvsm.benchmarks.BenchmarkBlock
 -datafile mozartspaces-linda-2fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype LINDA
 -transactiontype EXPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 40
 -iterations 10
 -operationnumbers 100,100,50
 -operationtypes WRITE,READ,TAKE
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

org.xvsm.benchmarks.BenchmarkBlock
 -datafile mozartspaces-linda-3fold.dat
 -containertype REMOTE
 -containeruri tcpjava://192.168.123.70:4321
 -coordinatortype LINDA
 -transactiontype EXPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 60
 -iterations 10
 -operationnumbers 100,100,50
 -operationtypes WRITE,READ,TAKE
 -monitorreset false
 -spacespropertyfile spaces-remote.prop

Page 161

GIGASPACES XAP (transient)
net.jini.space.benchmarks.BenchmarkBlock
 -datafile gigaspaces-transient-1fold.dat
 -lookupserviceurl jini://192.168.123.70:4162
 -spacetype REMOTE
 -spacename mySpaceTransient
 -transactiontype EXPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 20
 -iterations 10
 -operationnumbers 100,100,50
 -operationtypes WRITE,READ,TAKE
 -monitorreset false

net.jini.space.benchmarks.BenchmarkBlock
 -datafile gigaspaces-transient-2fold.dat
 -lookupserviceurl jini://192.168.123.70:4162
 -spacetype REMOTE
 -spacename mySpaceTransient
 -transactiontype EXPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 40
 -iterations 10
 -operationnumbers 100,100,50
 -operationtypes WRITE,READ,TAKE
 -monitorreset false

net.jini.space.benchmarks.BenchmarkBlock
 -datafile gigaspaces-transient-3fold.dat
 -lookupserviceurl jini://192.168.123.70:4162
 -spacetype REMOTE
 -spacename mySpaceTransient
 -transactiontype EXPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 60
 -iterations 10
 -operationnumbers 100,100,50
 -operationtypes WRITE,READ,TAKE
 -monitorreset false

GIGASPACES XAP (persistent)
net.jini.space.benchmarks.BenchmarkBlock
 -datafile gigaspaces-persistent-1fold.dat
 -lookupserviceurl jini://192.168.123.70:4162
 -spacetype REMOTE
 -spacename mySpacePersistent
 -transactiontype EXPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 20
 -iterations 10
 -operationnumbers 100,100,50
 -operationtypes WRITE,READ,TAKE
 -monitorreset false

net.jini.space.benchmarks.BenchmarkBlock
 -datafile gigaspaces-persistent-2fold.dat
 -lookupserviceurl jini://192.168.123.70:4162
 -spacetype REMOTE

Page 162

 -spacename mySpacePersistent
 -transactiontype EXPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 40
 -iterations 10
 -operationnumbers 100,100,50
 -operationtypes WRITE,READ,TAKE
 -monitorreset false

net.jini.space.benchmarks.BenchmarkBlock
 -datafile gigaspaces-persistent-3fold.dat
 -lookupserviceurl jini://192.168.123.70:4162
 -spacetype REMOTE
 -spacename mySpacePersistent
 -transactiontype EXPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 60
 -iterations 10
 -operationnumbers 100,100,50
 -operationtypes WRITE,READ,TAKE
 -monitorreset false

JBOSS AS
javax.enterprise.benchmarks.BenchmarkBlock
 -datafile jboss-1fold.dat
 -namingproviderurl jnp://192.168.123.70:1099
 -transactiontype EXPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 20
 -iterations 10
 -operationnumbers 100,100,50
 -operationtypes CREATE,FIND,REMOVE
 -monitorreset false

javax.enterprise.benchmarks.BenchmarkBlock
 -datafile jboss-2fold.dat
 -namingproviderurl jnp://192.168.123.70:1099
 -transactiontype EXPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 40
 -iterations 10
 -operationnumbers 100,100,50
 -operationtypes CREATE,FIND,REMOVE
 -monitorreset false

javax.enterprise.benchmarks.BenchmarkBlock
 -datafile jboss-3fold.dat
 -namingproviderurl jnp://192.168.123.70:1099
 -transactiontype EXPLICIT
 -atomicentrytype STRING
 -atomicentrysize 10
 -threads 60
 -iterations 10
 -operationnumbers 100,100,50
 -operationtypes CREATE,FIND,REMOVE
 -monitorreset false

	1 Introduction
	2 Related Work
	3 Terms and Definitions
	3.1 Benchmark
	3.1.1 Definitions
	3.1.2 Tools
	3.1.2.1 Apache JMeter
	3.1.2.2 Faban
	3.1.2.3 Gnuplot
	3.1.2.4 JAMon
	3.1.2.5 JBento
	3.1.2.6 jMonit
	3.1.2.7 JPerf
	3.1.2.8 JUnitPerf
	3.1.2.9 Loadunit
	3.1.2.10 p-unit

	3.2 Performance
	3.2.1 Definitions
	3.2.2 Metrics
	3.2.3 Criteria
	3.2.4 Procedure

	3.3 Scalability
	3.3.1 Definitions
	3.3.2 Classifications
	3.3.2.1 Numerical / Geographical / Administrative
	3.3.2.2 Linear / Sub-linear / Super-linear
	3.3.2.3 Vertical / Horizontal
	3.3.2.4 Load / Space / Space-time / Structural / Distance / Speed/Distance

	3.3.3 Metrics
	3.3.3.1 Speedup (Efficiency
	3.3.3.2 Throughput / Response Time / Costs (Productivity
	3.3.3.3 Attributes / Resources / Costs (Conditions

	3.3.4 Criteria
	3.3.4.1 System Design
	3.3.4.2 Communications
	3.3.4.3 Data Input/Output
	3.3.4.4 Computational Requirements

	3.3.5 Challenges
	3.3.5.1 Controlling the Cost of Physical Resources
	3.3.5.2 Controlling the Performance
	3.3.5.3 Preventing Software Resources Running Out
	3.3.5.4 Avoiding Performance Bottlenecks

	3.3.6 Procedure
	3.3.6.1 Identify Critical Use Cases
	3.3.6.2 Select Representative Scalability Scenarios
	3.3.6.3 Determine Scalability Requirements
	3.3.6.4 Plan Measurement Studies
	3.3.6.5 Perform Measurements
	3.3.6.6 Evaluate Data
	3.3.6.7 Present Results

	3.4 Middleware
	3.4.1 Definitions
	3.4.2 Characteristics
	3.4.3 Classifications
	3.4.3.1 Transactional / Procedural / Message-oriented / Object-oriented
	3.4.3.2 Distributed Tuples / Remote Procedure Calls / Message-oriented / Distributed Object
	3.4.3.3 Communication-oriented / Application-oriented / Message-oriented

	3.4.4 Concepts
	3.4.4.1 eXtensible Virtual Shared Memory
	3.4.4.2 JavaSpaces
	3.4.4.3 Java 2 Platform, Enterprise Edition

	3.4.5 Systems
	3.4.5.1 MozartSpaces
	3.4.5.2 GigaSpaces eXtreme Application Platform
	3.4.5.3 JBoss Application Server

	4 Benchmarks
	4.1 Preface
	4.1.1 Benchmark Suite
	4.1.2 Middleware Configurations
	4.1.3 Machine Configurations
	4.1.3.1 Configuration (1)
	4.1.3.2 Configuration (2)
	4.1.3.3 Configuration (3)

	4.1.4 Software Versions
	4.1.5 Metrics and Diagrams
	4.1.5.1 Performance
	4.1.5.2 Scalability

	4.1.6 Operations

	4.2 Serial Benchmarks
	4.2.1 Write
	4.2.1.1 Scenario
	4.2.1.2 Expectance
	4.2.1.3 Results

	4.2.2 Shift
	4.2.2.1 Scenario
	4.2.2.2 Expectance
	4.2.2.3 Results

	4.2.3 Read
	4.2.3.1 Scenario
	4.2.3.2 Expectance
	4.2.3.3 Results

	4.2.4 Take
	4.2.4.1 Scenario
	4.2.4.2 Expectance
	4.2.4.3 Results

	4.2.5 Destroy
	4.2.5.1 Scenario
	4.2.5.2 Expectance
	4.2.5.3 Results

	4.3 Concurrent Benchmarks
	4.3.1 Write
	4.3.1.1 Scenario
	Variant A (1-fold Problem
	Variant B (2-fold Problem
	Variant C (3-fold Problem

	4.3.1.2 Expectance
	4.3.1.3 Results

	4.3.2 Shift
	4.3.2.1 Scenario
	Variant A (1-fold Problem
	Variant B (2-fold Problem
	Variant C (3-fold Problem

	4.3.2.2 Expectance
	4.3.2.3 Results

	4.3.3 Read
	4.3.3.1 Scenario
	Variant A (1-fold Problem
	Variant B (2-fold Problem
	Variant C (3-fold Problem

	4.3.3.2 Expectance
	4.3.3.3 Results

	4.3.4 Take
	4.3.4.1 Scenario
	Variant A (1-fold Problem
	Variant B (2-fold Problem
	Variant C (3-fold Problem

	4.3.4.2 Expectance
	4.3.4.3 Results

	4.3.5 Destroy
	4.3.5.1 Scenario
	Variant A (1-fold Problem
	Variant B (2-fold Problem
	Variant C (3-fold Problem

	4.3.5.2 Expectance
	4.3.5.3 Results

	4.4 Block Benchmarks
	4.4.1 Write + Read + Take/Destroy
	4.4.1.1 Scenario
	Variant A (1-fold Problem
	Variant B (2-fold Problem
	Variant C (3-fold Problem

	4.4.1.2 Expectance
	4.4.1.3 Results

	5 Knowledge Transfer
	5.1 TripCom – Triple Space Communication
	5.2 Lectures Learned
	5.2.1 Communication
	5.2.2 Concurrency
	5.2.3 Interfaces
	5.2.4 Documentation

	6 Evaluation and Conclusion
	7 References
	8 Appendix
	8.1 Benchmarks
	8.1.1 Serial Benchmarks
	8.1.1.1 Write
	MOZARTSPACES EMBEDDED (Random)
	MOZARTSPACES EMBEDDED (FIFO)
	MOZARTSPACES EMBEDDED (LIFO)
	MOZARTSPACES EMBEDDED (Key)
	MOZARTSPACES EMBEDDED (Vector)
	MOZARTSPACES EMBEDDED (Linda)
	MOZARTSPACES REMOTE (Random)
	MOZARTSPACES REMOTE (FIFO)
	MOZARTSPACES REMOTE (LIFO)
	MOZARTSPACES REMOTE (Key)
	MOZARTSPACES REMOTE (Vector)
	MOZARTSPACES REMOTE (Linda)
	GIGASPACES XAP EMBEDDED (transient)
	GIGASPACES XAP EMBEDDED (persistent)
	GIGASPACES XAP REMOTE (transient)
	GIGASPACES XAP REMOTE (persistent)
	JBOSS AS

	8.1.1.2 Shift
	MOZARTSPACES EMBEDDED (Random)
	MOZARTSPACES EMBEDDED (FIFO)
	MOZARTSPACES EMBEDDED (LIFO)
	MOZARTSPACES EMBEDDED (Key)
	MOZARTSPACES EMBEDDED (Vector)
	MOZARTSPACES EMBEDDED (Linda)
	MOZARTSPACES REMOTE (Random)
	MOZARTSPACES REMOTE (FIFO)
	MOZARTSPACES REMOTE (LIFO)
	MOZARTSPACES REMOTE (Key)
	MOZARTSPACES REMOTE (Vector)
	MOZARTSPACES REMOTE (Linda)

	8.1.1.3 Read
	MOZARTSPACES EMBEDDED (Random)
	MOZARTSPACES EMBEDDED (FIFO)
	MOZARTSPACES EMBEDDED (LIFO)
	MOZARTSPACES EMBEDDED (Key)
	MOZARTSPACES EMBEDDED (Vector)
	MOZARTSPACES EMBEDDED (Linda)
	MOZARTSPACES REMOTE (Random)
	MOZARTSPACES REMOTE (FIFO)
	MOZARTSPACES REMOTE (LIFO)
	MOZARTSPACES REMOTE (Key)
	MOZARTSPACES REMOTE (Vector)
	MOZARTSPACES REMOTE (Linda)
	GIGASPACES XAP EMBEDDED (read, transient)
	GIGASPACES XAP EMBEDDED (read, persistent)
	GIGASPACES XAP EMBEDDED (readIfExists, transient)
	GIGASPACES XAP EMBEDDED (readIfExists, persistent)
	GIGASPACES XAP REMOTE (read, transient)
	GIGASPACES XAP REMOTE (read, persistent)
	GIGASPACES XAP REMOTE (readIfExists, transient)
	GIGASPACES XAP REMOTE (readIfExists, persistent)
	JBOSS AS

	8.1.1.4 Take
	MOZARTSPACES EMBEDDED (Random)
	MOZARTSPACES EMBEDDED (FIFO)
	MOZARTSPACES EMBEDDED (LIFO)
	MOZARTSPACES EMBEDDED (Key)
	MOZARTSPACES EMBEDDED (Vector)
	MOZARTSPACES EMBEDDED (Linda)
	MOZARTSPACES REMOTE (Random)
	MOZARTSPACES REMOTE (FIFO)
	MOZARTSPACES REMOTE (LIFO)
	MOZARTSPACES REMOTE (Key)
	MOZARTSPACES REMOTE (Vector)
	MOZARTSPACES REMOTE (Linda)
	GIGASPACES XAP EMBEDDED (take, transient)
	GIGASPACES XAP EMBEDDED (take, persistent)
	GIGASPACES XAP EMBEDDED (takeIfExists, transient)
	GIGASPACES XAP EMBEDDED (takeIfExists, persistent)
	GIGASPACES XAP REMOTE (take, transient)
	GIGASPACES XAP REMOTE (take, persistent)
	GIGASPACES XAP REMOTE (takeIfExists, transient)
	GIGASPACES XAP REMOTE (takeIfExists, persistent)

	8.1.1.5 Destroy
	MOZARTSPACES EMBEDDED (Random)
	MOZARTSPACES EMBEDDED (FIFO)
	MOZARTSPACES EMBEDDED (LIFO)
	MOZARTSPACES EMBEDDED (Key)
	MOZARTSPACES EMBEDDED (Vector)
	MOZARTSPACES EMBEDDED (Linda)
	MOZARTSPACES REMOTE (Random)
	MOZARTSPACES REMOTE (FIFO)
	MOZARTSPACES REMOTE (LIFO)
	MOZARTSPACES REMOTE (Key)
	MOZARTSPACES REMOTE (Vector)
	MOZARTSPACES REMOTE (Linda)
	JBOSS AS

	8.1.2 Concurrent Benchmarks
	8.1.2.1 Write
	MOZARTSPACES (Random)
	MOZARTSPACES (FIFO)
	MOZARTSPACES (LIFO)
	MOZARTSPACES (Key)
	MOZARTSPACES (Vector)
	MOZARTSPACES (Linda)
	GIGASPACES XAP (transient)
	GIGASPACES XAP (persistent)
	JBOSS AS

	8.1.2.2 Shift
	MOZARTSPACES (Random)
	MOZARTSPACES (FIFO)
	MOZARTSPACES (LIFO)
	MOZARTSPACES (Key)
	MOZARTSPACES (Vector)
	MOZARTSPACES (Linda)

	8.1.2.3 Read
	MOZARTSPACES (Random)
	MOZARTSPACES (FIFO)
	MOZARTSPACES (LIFO)
	MOZARTSPACES (Key)
	MOZARTSPACES (Vector)
	MOZARTSPACES (Linda)
	GIGASPACES XAP (read, transient)
	GIGASPACES XAP (read, persistent)
	GIGASPACES XAP (readIfExists, transient)
	GIGASPACES XAP (readIfExists, persistent)
	JBOSS AS

	8.1.2.4 Take
	MOZARTSPACES (Random)
	MOZARTSPACES (FIFO)
	MOZARTSPACES (LIFO)
	MOZARTSPACES (Key)
	MOZARTSPACES (Vector)
	MOZARTSPACES (Linda)
	GIGASPACES XAP (take, transient)
	GIGASPACES XAP (take, persistent)
	GIGASPACES XAP (takeIfExists, transient)
	GIGASPACES XAP (takeIfExists, persistent)

	8.1.2.5 Destroy
	MOZARTSPACES (Random)
	MOZARTSPACES (FIFO)
	MOZARTSPACES (LIFO)
	MOZARTSPACES (Key)
	MOZARTSPACES (Vector)
	MOZARTSPACES (Linda)
	JBOSS AS

	8.1.3 Block Benchmarks
	8.1.3.1 Write + Read + Take/Destroy
	MOZARTSPACES (Random)
	MOZARTSPACES (FIFO)
	MOZARTSPACES (LIFO)
	MOZARTSPACES (Key)
	MOZARTSPACES (Vector)
	MOZARTSPACES (Linda)
	GIGASPACES XAP (transient)
	GIGASPACES XAP (persistent)
	JBOSS AS

