
Diplomarbeit

Adaptive Inlining and On-Stack Replacement in a

Java Virtual Machine

ausgeführt am

Institut für Computersprachen
Arbeitsbereich für Programmiersprachen und Übersetzerbau

der Technischen Universität Wien

unter der Anleitung von

Ao.Univ.Prof. Dipl.-Ing. Dr.tech. Andreas Krall

durch

Edwin Steiner
Hietzinger-Kai 127/2/38

1130 Wien

6. Februar 2007

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Abstract

Method inlining is a well-known and effective optimization technique for
object-oriented programs. In the context of dynamic compilation, method
inlining can be used as an adaptive optimization in order to eliminate the
overhead of frequently executed calls.

This work presents an implementation of method inlining in CACAO, a
just-in-time compiler for Java. On-stack replacement is used for installing
optimized code and for deoptimizing code when optimistic assumptions of
the optimizer are broken by dynamic class loading.

Three inlining heuristics are compared using empirical results from a set
of benchmark programs. A type-based algorithm for the elimination of local
subroutines is described.

Kurzfassung

Methoden-Inlining ist eine bekannte und wirkungsvolle Technik für die Op-
timierung objekt-orientierter Programme. Im Zusammenhang mit dynami-
scher Übersetzung kann Methoden-Inlining als adaptive Optimierung ver-
wendet werden, um den Mehraufwand von häufig ausgeführten Methoden-
aufrufen zu vermeiden.

Diese Arbeit stellt eine Umsetzung von Methoden-Inlining in CACAO
vor, einem just-in-time Übersetzer für Java. Das Ersetzen von Methoden
im Aufrufstapel ermöglicht die Installation von optimiertem Maschinencode
und das Rückgängigmachen von Optimierungen, wenn optimistische Annah-
men des Optimierers durch dynamisches Nachladen von Klassen ungültig
werden.

Drei Heuristiken für Methoden-Inlining werden anhand empirischer Mes-
sungen an einem Satz von Benchmarkprogrammen verglichen. Ein typen-
basierter Algorithmus zum Entfernen lokaler Unterprogramme wird beschrie-
ben.

Acknowledgements

First, I want to thank my family for their support throughout my education.

I also thank Prof. Andreas Krall, for giving me the opportunity to work on
the CACAO project.

Special thanks go to the members of the CACAO Team, in particular to
Dipl.-Ing. Christian “TWISTI” Thalinger, for a long time of joyful coopera-
tion.

Contents

1 Introduction 4
1.1 Inlining . 4
1.2 Adaptive Optimization . 5
1.3 Replacement . 5
1.4 The CACAO Virtual Machine 6
1.5 Overview . 6

2 Related Work 7
2.1 Method Inlining . 7

2.1.1 Effectiveness of Inlining 7
2.1.2 Inlining Heuristics . 8
2.1.3 Devirtualization . 9
2.1.4 Guarded Inlining . 9
2.1.5 Preexistence-based Inlining 9
2.1.6 Inlining Trials . 10
2.1.7 Unexpected Side Effects of Inlining 10

2.2 Local Subroutines . 11
2.3 Adaptive Optimization Frameworks 11
2.4 On-Stack Replacement . 12

3 Adaptive Optimization Framework 13
3.1 Modules . 13
3.2 Compiler Passes . 14
3.3 Adaptive Recompilation . 16
3.4 Intermediate Representation 17

3.4.1 Liveness Information 19
3.4.2 Local Variables Mapping 19
3.4.3 Invariant Instruction ID 20
3.4.4 Comparison of Quadruple Code and Stack Represen-

tation . 20

1

CONTENTS 2

4 Method Inlining 22
4.1 Placement of the Inlining Transformation 22
4.2 Inlining Mechanism . 23

4.2.1 The Inlining Tree . 23
4.2.2 Building the Inlining Tree 23
4.2.3 Determining Currently-monomorphic Methods 24
4.2.4 Inlining Decisions . 25
4.2.5 Estimating Costs . 27
4.2.6 Estimating Benefits 27
4.2.7 Phase Changes . 27
4.2.8 Inlining Budget . 28
4.2.9 Inlining Prolog . 28
4.2.10 Inlining Epilog . 29
4.2.11 Code Rewriting . 29
4.2.12 Avoiding Basic Block Boundaries 30
4.2.13 Cross-class and Cross-package Inlining 31
4.2.14 Exception Handling 31
4.2.15 Building Stack Traces 33
4.2.16 Null Pointer Checks 35
4.2.17 Synchronized Methods 35
4.2.18 Argument Handling 36
4.2.19 Effects on Local Register Allocation 36

4.3 Recording Assumptions . 37

5 Local Subroutine Inlining 38
5.1 Introduction . 38
5.2 Implications of Local Subroutines 39

5.2.1 Control-flow Graph . 39
5.2.2 Verification of Local Subroutines 39
5.2.3 Effects on On-Stack Replacement 39

5.3 Elimination of Local Subroutines 40
5.3.1 Type-based Specialization Approach 40
5.3.2 Code Expansion . 40

6 Code Replacement 43
6.1 Requirements of Adaptive Optimization 43
6.2 Requirements of Exact Garbage Collection 43
6.3 Replacement Strategies . 44
6.4 Replacement of Future Invocations 45

6.4.1 Eager Replacement of Dynamically Dispatched Methods 45
6.4.2 Eager Replacement of Statically Bound Methods . . . 46
6.4.3 Lazy Replacement of Future Invocations 46

6.5 On-Stack Replacement . 47
6.5.1 Execution State . 47

CONTENTS 3

6.5.2 Source State . 48
6.5.3 Partial Source States 48
6.5.4 Native Frames . 49
6.5.5 Replacement Points 50
6.5.6 Replacement Traps . 51
6.5.7 Countdown Traps . 53
6.5.8 Location of Replacement Points 53
6.5.9 Compilation Units . 55
6.5.10 Mapping Replacement Points 55
6.5.11 Recovering the Source State 57
6.5.12 Rebuilding the Execution State 58
6.5.13 Dealing with Stack Expansion 59

7 Testing 62
7.1 Testing Inlining . 62
7.2 Debugging the Inlining Transformation 63
7.3 Testing On-Stack Replacement 63

8 Results 64
8.1 Comparison of Inlining Heuristics 64

8.1.1 Aggressive Depth-first Inlining 64
8.1.2 Aggressive Breadth-first Inlining 65
8.1.3 Knapsack Heuristics 65

8.2 Number of Executed Method Calls 65
8.3 Code Size . 66
8.4 Recompilations . 67

9 Summary 72

Chapter 1

Introduction

Modern programming languages offer sophisticated abstraction mechanisms
to the programmer. Important examples are subroutines, classes, virtual
methods, and synchronization constructs. The challenge for a language
implementation is to support these abstractions with as little overhead as
possible, so programmers can make unrestricted use of language features and
maintain good programming style, instead of caring about implementation
details.

In parallel to the evolution of programming languages, the underlying
run-time systems have to provide more advanced features. The Java [21] run-
time system—implemented in form of a Java virtual machine [27]—for ex-
ample, provides exceptions, automatic garbage collection, multiple threads
of execution, synchronization mechanisms, and dynamic linking. In such an
environment, classical program optimizations often have to be modified in
order to still be applicable and effective.

1.1 Inlining

Each abstraction mechanism introduces new challenges for the language
implementation. Subroutines, for example, allow the programmer to factor
programs into small units of functionality. Object-oriented programming
styles in particular favor lots of very small subroutines (called methods in this
context) and frequent, deeply nested calls. The language implementation
does not only have to minimize the call overhead. Subroutine boundaries
severely limit the scope available to optimizations, decreasing their benefits.

An important technique for addressing these problems is inlining. Inlin-
ing refers to replacing subroutine calls with a modified version of the body
of the called subroutine. This effectively reverts the abstraction introduced
by the programmer, eliminating call overhead, and providing larger scopes
for subsequent optimization. There are, however, several issues which com-
plicate inlining: First, inlining is not without costs. Excessive inlining can

4

CHAPTER 1. INTRODUCTION 5

greatly increase compiled code size, deteriorating compile time and runtime
performance. Thus, the need arises to make good inlining decisions, select-
ing only the most beneficial sites for inlining.

Another complication is caused by polymorphic calls that must be dis-
patched at runtime. The receivers of such calls cannot be determined at
compile time, making straight-forward inlining impossible.

Finally, recursive calls obviously cannot be inlined in a simple manner.

1.2 Adaptive Optimization

Heterogeneous computing platforms make it appealing to distribute software
in portable source code or intermediate (bytecode) form. This, however,
requires time-consuming compilation on each platform, or interpretation at
the cost of performance. Techniques like just-in-time compilation are used
to reconcile the conflicting aims of responsiveness and performance.

In the presence of dynamic linking, parts of the program code may only
become available during execution of the program. This precludes the use
of classic whole-program optimizations. However, it is possible to modify
optimizations such that they act upon preliminary results obtained at run-
time. In order to guarantee correctness, such speculative optimization must
be supplemented by mechanisms that track the assumptions made during
optimization and take proper measures as soon as any assumption becomes
invalid—for example due to new code being dynamically loaded.

Compiling parts of the program at runtime opens new possibilities for
optimization: Adaptive optimization refers to analyzing the behavior of the
running program and optimizing the most frequently executed code based
on the collected data. In this context, recompilation is used to create more
efficient code that replaces already compiled code, as soon as enough profile
data is available.

1.3 Replacement

Replacing program code during runtime poses great challenges for a virtual
machine. Particular difficulties arise with on-stack replacement, i.e. replac-
ing the code of methods that are currently activated (“on the stack”). Nev-
ertheless, on-stack replacement is an attractive technique. It allows timely
replacement of methods that execute for a very long time. Additionally
it enables, for example, speculative optimizations like inlining currently-
monomorphic calls without paying the runtime cost of guard code to protect
the optimized call sites.

CHAPTER 1. INTRODUCTION 6

1.4 The CACAO Virtual Machine

The techniques described in this work have been implemented in CACAO
[25], a Java Virtual Machine providing just-in-time compilation for several
processor architectures. In addition to code generators for i386, x86 64,
alpha, MIPS, MIPS32, PowerPC, PowerPC 641, ARM, and SPARC 641,
CACAO provides bytecode verification, a full implementation of dynamic
class loading and linking, and exact garbage collection1.

1.5 Overview

The remainder of this work is organized as follows: Chapter 2 summarizes
related work on inlining, on-stack replacement, local subroutines, and adap-
tive optimization in general. Chapter 3 describes the adaptive optimization
framework implemented in the CACAO virtual machine. Chapter 4 first
gives an overview of method inlining and then deals with specific problems
and how they were solved in CACAO. Chapter 5 discusses local subroutines
and presents an approach for eliminating them. Chapter 6 deals with code
replacement in a virtual machine using recompilation, including a detailed
description of on-stack replacement as implemented in CACAO. Chapter 7
briefly discusses how CACAO’s inlining and on-stack replacement code has
been tested. Chapter 8 presents empirical results that were obtained with
the CACAO implementation. Finally, Chapter 9 summarizes the results.

1currently in development parallel to this work

Chapter 2

Related Work

A large amount of research has been done in the field of adaptive opti-
mization in general and into effective inlining in particular. This chapter
discusses some related work in this area.

2.1 Method Inlining

Inlining (also known as procedure integration and unfolding) has been a well-
known program transformation for over three decades [2]. Consequently
there is a large body of work about its effectiveness, implementation and
consequences. The following sections give an overview of related work on
selected topics.

2.1.1 Effectiveness of Inlining

Inlining can be counted among the most effective optimizing program trans-
formations for a variety of programming languages, with examples of exe-
cution time improvements of 5 to 28% [30] for CLU1, 15% [14] for C code,
24% [6] for intermediate code, and 10 to 44% [23] or up to 40% [4] for Java
programs.

Scheifler [30] gave an early analysis of the effectiveness of inlining sub-
stitution for structured programming languages. Scheifler already observed
that most of the benefit from inlining does not come from the elimina-
tion of call overhead, but from opening more possibilities for down-stream
optimizations—a statement which is still valid today.

Inlining can both significantly decrease and increase the execution time
of programs, depending on the program and the selection of inlining sites.
Most papers assume that the degradation of performance observed in some
cases is due to the expansion of compiled code size caused by inlining. How-
ever, a detailed analysis by Davidson and Holler [14] showed that this effect

1a structured programming language

7

CHAPTER 2. RELATED WORK 8

is generally overestimated. In some cases code size was increased by a factor
of 3 to 8 without any impact on execution speed. On average inlining also
slightly improved the cache performance of programs. Davidson and Holler
demonstrated that the effects of inlining on register save and restore over-
head and on the quality of register allocation are responsible for most of the
performance deterioration.

2.1.2 Inlining Heuristics

Making optimal inlining decisions, even if the whole program is known to
the compiler, is an intractable problem [30]. On the other hand, bad inlining
decisions can have significant costs in terms of compiled code expansion and
increased compile time, while delivering little or no benefit. Consequently
there has been a lot of research into inlining heuristics that try to select the
most profitable calls to inline while limiting code expansion.

Scheifler [30] showed that inlining can be viewed as a variant of the
NP-complete knapsack problem [1]. He proposed a greedy algorithm that
selects the inlining option with the highest ratio of expected executions to
code size increase. The algorithm repeats until code expansion reaches a
given threshold.

Arnold, Fink, Sarkar, and Sweeney conducted a comparative study [4]
of inlining heuristics. They demonstrated that the effectiveness of inlining
rises with the precision of available profile data. In particular, heuristics
based on a dynamic call graph with edge weights proved to outperform all
algorithms using coarser data, even if given much narrower limits for code
expansion.

Ishizaki et al. [23] reported that inlining only very small methods gave
performance improvements to within 15% of the peak performance, while
increasing compilation time by only 6% on average. On the other hand, in
order to obtain the peak performance, an increase of compile time by up to
50% had to be accepted.

As Davidson and Holler [14] demonstrated, code size should not be the
only concern of inlining heuristics. For example, inlining a rarely called
method in a method that is frequently entered can significantly increase
the number of register saves and restores performed, thereby deteriorating
performance. This problem could be addressed by better placement of save
and restore instructions [11]. Otherwise2, inlining should be limited to fre-
quently traversed edges of the call graph, even if the increase in code size
would be small.

Given a set of inlining heuristics, an important problem is how to choose
the parameters of these heuristics in order to obtain the best performance
on a given target architecture. Cavazos and O’Boyle [8] developed a genetic

2The CACAO compiler always places register save and restore instructions in the
method prolog and epilog, respectively.

CHAPTER 2. RELATED WORK 9

algorithm for off-line tuning that can automatically find parameters yielding
good performance for a given set of benchmark programs.

2.1.3 Devirtualization

Object-oriented languages typically make use of dynamically dispatched vir-
tual methods in order to support polymorphism. Virtual methods present
great challenges to an optimizing compiler. As the receiver of a virtual call is
not known during static analysis, all possible receivers must be considered.
This decreases the precision of static analysis and makes inlining virtual
calls impossible. However, not all call sites of virtual methods are truly
polymorphic. The purpose of devirtualization is to identify virtual call sites
that can be proven to be monomorphic and turn them into statically bound
calls. Even if the call site is polymorphic, i.e. there are multiple receiver
types, there may still be only a single target method that can be statically
bound.

Dean, Grove, and Chambers proposed class hierarchy analysis [16] (CHA)
as a means to limit the set of potential receivers of virtual calls.

Zaks, Feldman, and Aizikowitz demonstrated [32] how Java’s security
mechanism of sealed packages can be used to devirtualize calls in the pres-
ence of dynamic loading.

Lee et al. reported [26] that in the Java programs of the SPECjvm98
benchmark suite, about 85% of virtual calls are monomorphic and about
90% have a single target method.

2.1.4 Guarded Inlining

Guarded inlining techniques can be used to inline methods that cannot be
proven to be monomorphic. In this case, test code is generated before the
inlined code to check the receiver of the call. There are several interpre-
tations of guarded inlining: Dean [17] proposed exhaustive class testing for
the case that all possible receivers can be inlined. He described singleton
class tests and subclass tests that can be used to classify receivers.

Detlefs and Agesen proposed the method test [18] as a refinement of the
class test for guarded inlining.

Arnold and Ryder introduced thin guards [5] in order to further reduce
the cost of guarded inlining.

2.1.5 Preexistence-based Inlining

Detlefs and Agesen suggested preexistence-based inlining [18] as a way to
perform direct speculative inlining without the need for on-stack replace-
ment. The authors report that in a set of benchmarks 40% of all virtual call
sites could be proven to have preexisting receivers using a simple invariant

CHAPTER 2. RELATED WORK 10

arguments analysis. Their results also showed that direct inlining can im-
prove performance substantially compared to guarded inlining (up to over
38% for the SPECjvm98 mtrt benchmark).

2.1.6 Inlining Trials

One of the problems of heuristically guided inlining is that the resulting
code may be less efficient than the original, because the applied heuristics
underestimated the resulting code size, or overestimated the benefits of fol-
lowing optimizations. On the other hand profitable inlining opportunities
may be wasted because the down-stream benefits are underestimated.

Dean and Chambers [15] propose inlining trials as a remedy for this
problem. With inlining trials, inlining is experimentally performed and the
inlined code is optimized in the context of its caller. Only then does the
compiler assess costs and benefits and decide whether to keep the inlined
version, or discard it. The results of inlining trials are stored in a persis-
tent database, so future compilations can reuse the data to guide inlining
decisions. A downside of inlining trials is that they require rather complex
monitoring of the information used for optimizing the inlined code. The re-
sults obtained by Dean and Chambers suggest that inlining trials are more
effective for saving compilation time and code size rather than improving
execution time.

2.1.7 Unexpected Side Effects of Inlining

Cooper, Hall, and Torczon point out [13] that inlining can have unexpected
side effects that deteriorate the performance of the compiled code, because
the inlining transformation looses information about the original shape of the
program. However, the example they provide depends on an idiosyncrasy
of the FORTRAN 77 standard that has no counterpart in the Java lan-
guage. Generally the problem is that information about restrictions which
the language imposes at subroutine boundaries are lost in the inlining trans-
formation and thus cannot be used by subsequent optimizations. To the au-
thor’s knowledge this problem does not occur with Java bytecode, at least
not beyond information that standard analysis techniques can recover. In
particular, bytecode verification is performed before method inlining, so all
static guarantees [27] on Java bytecode can be established. However, some
difficulties that are outlined in later sections of this work (e.g. the effects of
inlining on a näıve register allocator and the need for explicit null pointer
checks) can be regarded as instances of this fundamental issue.

CHAPTER 2. RELATED WORK 11

2.2 Local Subroutines

The Java Virtual Machine [27] supports local subroutines in order to reuse
code within a method. Local subroutines increase the complexity of control-
flow and data-flow analysis of the bytecode, and pose challenges for the
bytecode verifier.

Freund [20] has given statistical evidence that local subroutines are not
very effective in reducing the size of Java bytecode. For example, he reports
that the savings by local subroutines in the JDK 1.1.5 amount to only 0.02%
of total bytecode size.

Coglio developed a type-based technique [12] for verifying local subrou-
tines. This technique has been implemented in the CACAO verifier. It is
also used as the basis for local subroutine elimination in CACAO.

2.3 Adaptive Optimization Frameworks

Several frameworks for dynamic compilation and adaptive optimization of
Java code have been developed. These frameworks can be coarsely divided in
two classes: on the one hand there are compile-only frameworks which use a
fast baseline compiler for generating the initial code for all invoked methods,
and one or more optimizing compilers for recompiling frequently executed
code. On the other hand there are mixed-mode systems that employ an
interpreter to execute most of the program and only compile hot methods.

The Jalapeño Virtual Machine [3] developed by Burke et al. was the first
[7] compile-only system for dynamic optimizing compilation of Java code.

The Java HotSpot Server Compiler [28] uses a mixed-mode approach for
executing Java code. HotSpot employs method-entry and backward-branch
counters to select hot methods for compilation. On-stack replacement is
used for deoptimization and for replacing long-running methods (see the
following section).

Suganuma et al. [31] developed another mixed-mode framework that
provides a three-level optimizing compiler, a lightweight continuous sam-
pling profiler, and an instrumenting profiler. Their instrumenting profiler
allows dynamic installation and de-installation of profiling code at method
entries by code patching.

On a general level, all of these frameworks have some components in com-
mon: Some kind of profiling system to collect data, a database to store col-
lected data and optimization decisions, a controller, the actual compiler(s),
and a mechanism for installing newly compiled code and (optionally) unin-
stalling obsolete code.

CHAPTER 2. RELATED WORK 12

2.4 On-Stack Replacement

On-stack replacement was first described by Chambers and Ungar in the con-
text of deferred compilation in the Self-91 compiler [10]. Hölzle, Chambers
and Ungar subsequently used on-stack replacement for debugging optimized
code via deoptimization [22]. The interrupt points defined by the authors
are analogous to the replacement points used in this paper.

In his PhD Thesis [9] Chambers described scope descriptions and byte
code mappings created by the SELF Compiler in order to facilitate deopti-
mization. He also presented dependency links as a means to record assump-
tions and perform selective code invalidation.

The Java HotSpotTM Server Compiler [28] uses on-stack replacement
to convert natively compiled frames to interpreter frames when either an
uncommon trap is reached, or class loading invalidates assumptions made
during compilation. In HotSpot, on-stack replacement is also used for re-
placing methods with long-running loops after recompilation. In this case
HotSpot compiles the method with a special entry point at the target of a
backward branch, so control can be transfered from the interpreter to native
code during execution of the loop.

Fink and Qian implemented and evaluated [19] on-stack replacement in
the Jikes RVM. Their design compiles a specialized version of the method
for each activation that is replaced. Each version has a specialized prologue
prepended to the original bytecode that sets up local variables and the stack
and then jumps to the current program counter. An advantage of this
scheme is that it requires minimal changes to the underlying compilers and
that it may provide additional opportunities for optimization. On the other
hand more compiled code has to be generated.

Chapter 3

Adaptive Optimization

Framework

Adaptive optimization refers to the application of optimization techniques
at runtime by monitoring the behavior of the running program and using
the collected data to guide optimization decisions. Several parts of a virtual
machine have to cooperate to make adaptive optimization possible. This
chapter briefly describes the modules that are responsible for profiling, re-
compilation, and optimization in the CACAO virtual machine. It also gives
an overview of the intermediate representation used in CACAO and points
out how the intermediate representation accommodates particular needs of
the inliner and the replacement mechanism.

3.1 Modules

In order to provide adaptive optimizations, several modules of the virtual
machine must work together. Figure 1 shows the most important modules
and how they interface with each other.

JIT compiler The module responsible for compiling bytecode to machine
code. See section 3.2 for the internal structure of the compiler.

code repository This module manages the generated machine code, in-
cluding the invalidation of obsolete code.

method database This is where properties of methods and assumptions
about methods are kept.

replacement mechanism This module performs replacement of old ver-
sions of compiled code with new versions, including on-stack replace-
ment. The replacement module also provides services to the garbage
collector, like setting traps, reading the source state, and writing back
a modified source state.

13

CHAPTER 3. ADAPTIVE OPTIMIZATION FRAMEWORK 14

linker The linker determines object layout, performs method overwriting,
and builds the virtual method and interface tables.

profiler The profiler conducts measurements in order to find hot spots in
the program, and for providing other modules with data to base opti-
mization decisions on.

inliner This is a separate pass in the compiler that performs the inlining
transformation. The inliner is depicted as a module in order to empha-
size its separation from other parts of the compiler and to clearly show
its interaction with the method database. (Other compiler passes are
also modules in their own right, but were left out from Figure 1 to
avoid cluttering the diagram.)

GC The exact garbage collector interfaces with the replacement mecha-
nism for setting GC traps, finding live objects in the source state, and
redirecting references after compaction.

architecture layer This module bundles architecture-dependent functions
needed by the replacement mechanism.

3.2 Compiler Passes

In CACAO the baseline compiler and the optimizing compiler operate on
the same intermediate representation. The compilers also share code for
common passes like bytecode parsing and stack analysis. Compared to the
baseline compiler, the optimizing compiler performs additional optimization
passes, including inlining and SSA-based optimizations, and it uses a more
sophisticated register allocator1. Figure 2 shows the sequence of passes for
the baseline and optimizing paths.

parser The parser transforms the Java bytecode into the more stream-lined
intermediate instruction format. Other functions of the parser are:
finding basic block boundaries, creating a bytecode-PC-to-basic-block
mapping, and calculating the local variable renaming.

stack analysis This pass performs an abstract interpretation of the inter-
mediate code in order to transform the stack-based data-flow into a
data-flow using temporary variables. Stack analysis also does local
subroutine elimination and resolving of branch targets to basic block

1At the time of this writing the linear scan register allocator was not available in
CACAO, yet, so the result of the inlining transformation was passed on to simplereg as
depicted by an extra arrow in Figure 2.

CHAPTER 3. ADAPTIVE OPTIMIZATION FRAMEWORK 15

Figure 1: Modules of the adaptive optimization framework

references. In order to generate rather good code even in the base-
line compiler, stack analysis also performs some fast peep-hole opti-
mizations for instructions with constant operands, pre-colors argument
registers, and performs some basic copy elimination for local variables
[24].

type checker The type checker performs type inference to obtain precise
type information for intermediate variables. Compatibility of types is
checked as a required part of Java bytecode verification [27]. The type
information derived in this step can be used by subsequent optimiza-
tions.

inlining This pass performs the inlining transformation.

SSA transformation This pass splits local variables in order to transform
the intermediate representation into SSA form.

CHAPTER 3. ADAPTIVE OPTIMIZATION FRAMEWORK 16

optimization Various optimizations can be performed on the IR. Some
optimizations depend on the intermediate representation in SSA form:

• copy propagation

• dead code elimination

Other optimizations can be used independently from SSA form:

• if-conversion

• basic block reordering

register allocation This pass assigns hardware registers or stack locations
to the intermediate variables. CACAO provides two register allocators:
simplereg, a fast and simple local register allocator [24], and LSRA,
a linear scan register allocator [29].

replacement point (RP) generation The locations of replacement points
are determined and the necessary data structures are created.

code generator The code generator finally emits machine code for the
compilation unit.

3.3 Adaptive Recompilation

As the optimizing compiler has higher compile time and can produce larger
code (by inlining) than the baseline compiler, it should only be used for code
that is executed frequently enough to amortize these costs. CACAO uses
instrumentation of the code generated by the baseline compiler in order to
select methods for which recompilation is likely to be profitable.

The sequence of states and transitions that a method can go through in
CACAO is as follows:

baseline + counters The baseline compiler generates code for the method
and inserts countdown traps (see Section 6.5.7) in order to trigger re-
compilation after a certain number of method entries or loop itera-
tions. The majority of methods does never reach this threshold (see
Chapter 8).

full instrumentation2 When a method triggers a countdown trap, it is
recompiled with instrumentation code for creating a dynamic pro-
file of the method, including execution counts for each basic block.
Countdown traps are used to limit the time the code runs with full
instrumentation.

2This state is currently not used in CACAO but will likely be added in future versions.

CHAPTER 3. ADAPTIVE OPTIMIZATION FRAMEWORK 17

Figure 2: Compiler passes

optimization When the instrumented code triggers recompilation, it is
recompiled by the optimizing compiler. The optimized code contains
no intrusive instrumentation.

sampling In future versions of CACAO it is planned that a sampling pro-
filer will continuously inspect which methods are running. The sam-
pling profiler can detect optimized methods that contribute signifi-
cantly to execution time and select them for repeated recompilation
at higher optimization levels.

3.4 Intermediate Representation

The JIT compiler uses a unified data structure to transfer the intermediate
representation from one compiler pass to the next.

The intermediate representation has the following main components:

• the variable array,

• the basic block list.

CHAPTER 3. ADAPTIVE OPTIMIZATION FRAMEWORK 18

The variable array keeps the type and other information for each vari-
able. Note that these internal variables do not have a one-to-one correspon-
dence with bytecode variables. There are two kinds of variables:

• local variables—these can be referred to by all basic blocks,

• block variables—these are local to the basic block that defines them.
With respect to block variables the intermediate representation is in
SSA form.

For each variable the IR stores:

• the basic type—int, long, float, double, returnAddress, or reference,

• at most one of:

– allocation info (register number or stack offset),

– constant value (e.g. for returnAddresses after local subroutine
elimination.

• a flag indicating whether the variable must be saved across calls.

Basic blocks in the IR are not terminated by method calls or PEIs. Each
basic block in the IR contains:

invars An array of block variable indices that are live-in at the basic block
start.

outvars An array of block variable indices that are live-out at the basic
block end.

instructions The array of intermediate instructions making up the body
of the block.

The intermediate instructions are stored in an extended variant of quadru-
ple code. Each intermediate instruction contains:

• the opcode,

• source operands, which may be:

– up to three variable indices,

– an argument count and a pointer to an array of variable indices,
or

– a single variable index and a long-size constant.

• special constant operands: Free source operand slots are used to hold
special constant operands, e.g. the field reference of a GETFIELD in-
struction.

CHAPTER 3. ADAPTIVE OPTIMIZATION FRAMEWORK 19

• a destination operand, which may be:

– a variable index, or

– a branch target, or

– a pointer to an array of branch targets (for TABLESWITCH), or

– a pointer to an array of value/branch target pairs (for LOOKUPSWITCH).

• flag bits

• the source line number

3.4.1 Liveness Information

Some passes of the compiler require information on live variables. In par-
ticular the creation of replacement points (see Section 6.5.5) needs to know
the set of live variables at certain points in the program, namely:

• at basic block starts,

• at call sites,

• at other instructions that can indirectly cause calls into native or Java
code, for example through patchers3.

At basic block starts the set of live variables is taken to be the union
of all local variables and the invars of the basic block. As soon as a more
sophisticated liveness analysis for locals is available, the invars array can be
re-defined to not only refer to block variables but to all live-in variables at
basic block start.

At call sites all local variables and the arguments of the call are con-
sidered live. In addition each call instruction keeps a list of block variables
that live through the call. (Initially these are the variables for operand stack
slots “below” the argument slots.)

3.4.2 Local Variables Mapping

In order to achieve unified treatment of local and stack variables, CACAO
renames the untyped local variables of Java bytecode to typed intermediate
variables. The optimizing compiler performs further renaming and splitting
of local variables to transform code into SSA form. Still, on-stack replace-
ment must be able to map variables in a way that is completely independent
from any optimizations and code transformations (see Section 6.5.2).

3In CACAO, code patching is used to handle unresolved method/field/class references.
In such cases a call to a patcher function is installed at the unresolved instruction. The
patcher performs the resolving of the reference and replaces the call to itself with the final
code for the resolved instruction.

CHAPTER 3. ADAPTIVE OPTIMIZATION FRAMEWORK 20

To provide a stable mapping of the intermediate variables back to the
variables of the bytecode, the IR is augmented with a javalocals array for
each basic block start. This array is indexed by the Java bytecode local
variable index and contains the index of the intermediate variable that rep-
resents this bytecode variable at the given program point.

3.4.3 Invariant Instruction ID

Replacement requires a reliable way of identifying program points within
a method. Thus the intermediate representation must provide a mapping
of intermediate instructions back to the original bytecode positions.4 More
specifically, what we need is an identifier for program locations that is in-
variant with regard to any optimizations performed on the intermediate
representation, and that is unique for any instruction that can become the
site of a replacement point (see 6.5.5).

CACAO currently provides such an identifier as follows: During parsing
of the bytecode, the intermediate instructions are numbered sequentially.
As parsing does not perform any optimizations, this numbering is invariant
for a given method and isomorphic to the bytecode position. All subse-
quent program transformations preserve this identifier when transforming
an instruction.

The plan for future development is to label immediate instructions with
the bytecode index of the original bytecode instruction, so a general map-
ping from intermediate instructions to bytecode indices—and consequently a
mapping from machine code positions to bytecode indices and source lines—
can be obtained.

3.4.4 Comparison of Quadruple Code and Stack Represen-

tation

Previous versions of CACAO used an IR based on a representation of the
operand stack, in contrast to the new IR using explicit variable operands.
For code generation both representations are largely equivalent, as the stack-
based IR can be regarded as a kind of quadruple code with implicit source
operands. There are, however, some trade-offs in choosing one representa-
tion over the other. The stack-based IR has some advantages:

• The top-of-stack—and thus the whole operand stack—is known at each
intermediate instruction, so the set of live variables5 can be obtained
at each instruction without augmenting the IR in any way.

4As explained in the rest of the paragraph, for replacement the mapping need not really
map to meaningful bytecode indices, although such a mapping is useful in other respects,
for example when implementing JVMTI functionality.

5Actually a conservative approximation thereof is obtained, unless dead stores are
detected.

CHAPTER 3. ADAPTIVE OPTIMIZATION FRAMEWORK 21

• Instructions taking a variable number of arguments can be expressed
naturally.

On the other hand, a stack-based IR has significant disadvantages, which
ultimately led to the explicit quadruple code being chosen:

• Local variables and stack variables have fundamentally different rep-
resentation, so their treatment cannot be unified.

• Instructions which copy or reorder stack slots (e.g. SWAP and DUP X1)
are very cumbersome to represent. In particular there is no such thing
as a generic MOVE instruction, which is often needed in program trans-
formations.

• The stack model binds instructions very tightly to each other, even if
they have no data-dependencies. Re-arranging instructions, for exam-
ple during inlining, requires a highly complex relocation of the stack
elements.

These points were deemed significant reasons for implementing a quadru-
ple code IR which provides:

• unified representation of local and stack variables as indices into a
single variable array,

• generic MOVE and COPY instructions6 which enable the elimination of
all complex SWAP and DUP-variants in an early stack analysis pass (see
Section 3.2),

• simple cloning and relocation of instructions.

6MOVE and COPY are differentiated by the simplereg allocator: MOVE ends the life range
of its source argument, COPY does not. For all other purposes these instructions are
identical.

Chapter 4

Method Inlining

This chapter describes the implementation of method inlining in CACAO’s
optimizing compiler.

4.1 Placement of the Inlining Transformation

Regarding the placement of the inlining transformation with respect to other
passes and optimizations of the compiler, there are two basic choices:

1. Performing inlining as part of the bytecode reading stage,

2. performing inlining on the intermediate representation at a later stage.

Both approaches have their advantages. Inlining as part of the bytecode
reading stage has the advantage that several analysis steps in the following
stages can be performed naturally on the inlined code, so there is no need
to revise the results later. Examples are:

• determining basic block boundaries,

• deciding whether the method under compilation is a leaf method,

• stack analysis (stack slots living through the call site being inlined are
handled naturally).

On the other hand implications of inlining can severely complicate the
stages following bytecode reading, especially in a VM like CACAO that
performs verification on the intermediate representation.

Making inlining a separate pass on the IR can thus have significant
advantages:

• separation of concerns—all code required for method inlining resides
in a single pass,

22

CHAPTER 4. METHOD INLINING 23

• other passes of the compiler can be easily shared between the baseline
compiler and the optimizing compiler,

• inlining can potentially use more information for inlining decisions and
for generating good inlined code.

As previous attempts to implement inlining at the bytecode reading stage
proved to be excessively intrusive in CACAO, and sharing code between
baseline and optimizing compiler was an important criterion, the choice was
made to separate out the inlining mechanism to an independent pass over
the IR (see Figure 2). Within another framework, the assessment of the
trade-offs mentioned above could well lead to a different decision.

4.2 Inlining Mechanism

The input to the inlining mechanism is the intermediate representation of
a method—subsequently called the root method—possibly augmented with
profiling information. The output is an intermediate representation of the
root method in which selected INVOKE instructions have been replaced by
inlined code (which in turn may include inlined code of nested callees).

4.2.1 The Inlining Tree

A central data structure used internally by the inlining mechanism is the
inlining tree. The root node of this tree represents the root method. Each
child node represents a call in the root method that will be inlined. These
inline nodes can in turn have child nodes for nested inlining.

The inlining mechanism is largely divided in two passes:

1. building and decorating the inlining tree

2. traversing the inlining tree and writing the resulting IR

4.2.2 Building the Inlining Tree

Building the inlining tree is a recursive process: The compiler starts to it-
erate over the intermediate representation of the root method. For each
INVOKE instruction, the compiler checks if the call could be inlined. Neces-
sary conditions therefore are:

1. The method reference of the instruction has been resolved.

2. The result of the resolution is a monomorphic or currently-monomorphic
call site.

The call site is known to be monomorphic, if any of the following is true:

CHAPTER 4. METHOD INLINING 24

• the method is declared static,

• the method is declared final,

• the method is declared private,

• the method is invoked via INVOKESPECIAL.

If any of these conditions is true, the call site is guaranteed to have
only one receiver for all future invocations. Otherwise, the compiler tries to
determine if the call site is currently-monomorphic, i.e. there is exactly one
implementation of the method at the current time.

A currently-monomorphic method can become polymorphic if dynamic
class loading adds a class defining another implementation of the method.

4.2.3 Determining Currently-monomorphic Methods

CACAO uses a simple conservative algorithm to determine whether a method
is currently-monomorphic: Every loaded method has two flags:

IMPLEMENTED signals whether the method currently has an imple-
mentation,

MONOMORPHIC signals whether the method is currently monomor-
phic.

When a method is loaded, the MONOMORPHIC flag is initialized to true.
The IMPLEMENTED flag is initialized to false for abstract methods, and to
true for other methods.

In addition, each method has a pointer to the method it overwrites,
which is initialized to NULL on loading.

When the linker determines that method S directly overwrites method
G, Algorithm 1 is used to update the flags of the (in)directly overwritten
methods. Thus, a method can make the state transitions:

not implemented→ monomorphic→ multiple implementations

The linker maintains the invariant that if a method S (indirectly) over-
writes a method M , then:

state(G) ≥ state(S)

where states are ordered as follows:

not implemented < monomorphic < multiple implementations

CHAPTER 4. METHOD INLINING 25

Algorithm 1 Algorithm for updating the MONOMORPHIC and IMPLEMENTED

flags

Input:
G: the overwritten (more general) method
S: the overwriting (more specific) method

Algorithm:
S->overwrites← G

if S is IMPLEMENTED and S 6= <init>:
while G 6= NULL:

if G is IMPLEMENTED:
if G is not MONOMORPHIC:

terminate the algorithm
end if
clear MONOMORPHIC flag of G

break-assumption(monomorphic(G))
else

set IMPLEMENTED flag of G

end if
S ← G

G← G->overwrites

end while
end if

4.2.4 Inlining Decisions

When the compiler has determined whether a call site can be inlined, it must
decide whether the call site should be inlined. In order to make these inlining
decisions, three heuristic algorithms have been implemented in CACAO:

• a depth-first algorithm for aggressive inlining,

• a breadth-first algorithm for aggressive inlining,

• a variation of the greedy heuristics used for approximately solving the
Knapsack problem.

Aggressive Depth-first Inlining

When the depth-first algorithm finds a call site that can be inlined, it inserts
the corresponding node into the inlining tree, parses the callee, and enters a
recursive analysis of the callee’s code. Only two conditions limit the building
of the inline tree:

CHAPTER 4. METHOD INLINING 26

• Call sites below a certain depth from the root node are not inlined.
For the experimental results given in Chapter 8 a maximum inlining
depth of 3 was used.

• When code expansion reaches a certain limit, inlining is stopped. For
the results in Chapter 8, inlining was stopped when the resulting code
would have had more than ten times as many basic blocks as the
original root method. The final inlining tree used was the tree before
adding the callee that crossed this threshold.

A variation of this scheme was also implemented, in which inlining is
completely cancelled for a root method if the code expansion threshold is
reached. So the root method is either left unchanged, or all monomorphic
call sites down to the maximum inlining depth are inline expanded. As can
be seen in Chapter 8, this variation caused much less overall code expansion
than the one described above, with comparable execution times in some
cases. However, there were also benchmarks for which this all-or-nothing
variation performed significantly worse.

Aggressive Breadth-first Inlining

The breadth-first algorithm first inlines all possible call sites in the root
method. After that it inlines the call sites in the previously inlined callees.
The algorithm iterates, inlining call sites at a certain depth only after all
candidate call sites at lower depths have been inlined. Inlining stops when
code expansion—either measured as the increase in intermediate instructions
or the increase in basic blocks—reaches a threshold.

Knapsack Heuristics

In contrast to the aggressive heuristics, another algorithm was implemented
that tries to select only inlining candidates with an attractive ratio of ex-
pected benefit to expected cost of inlining. The algorithm is a variant of the
greedy heuristics used to approximately solve the Knapsack problem: The
algorithm starts with a certain inlining budget and at each step selects the
call site for inlining that has the highest ratio of benefit to cost of all candi-
dates fitting within the budget. The costs of the selected site are subtracted
from the budget. Then the selected callee is parsed and all of the contained
call sites that could be inlined are added to the set of candidate call sites.
The algorithm iterates until there is no candidate left that fits within the
remaining budget.

The hardest problem when implementing this algorithm is calculating
good estimates of the benefits and costs of inlining a call site.

CHAPTER 4. METHOD INLINING 27

4.2.5 Estimating Costs

CACAO assumes that the costs of inlining are proportional to the size of
the callee’s bytecode minus a small constant:

c = max(Nbytes − c0, 0) (4.1)

The constant c0 models the code size reduction by eliminating the method
call. In practice this means that callees below a certain size will always be
inlined. The max function clips costs at zero to avoid inflating the inlining
budget by subtracting negative costs. (While negative costs would model the
elimination of the call more accurately, experiments yielded better results
with clipping at zero than without.)

More complex estimates were tried—for example by taking the number
of local variables of the callee into account. However, none of the tested
variations improved results over 4.1.

4.2.6 Estimating Benefits

The benefits of inlining a call site can be assumed to be roughly proportional
to the number of future executions of this site. This number, of course, has
to be extrapolated from data collected in the past.

As Arnold, Fink, Sarkar, and Sweeney demonstrated [4], a dynamic call
graph with edge counters can provide good guiding for inlining decisions.
Currently, however, CACAO does not collect such detailed profile data.
One possibility would be to use the countdown field of each method to get
a coarse estimate of the node counter. (For methods without loops the
number would be exact.) However, for reasons discussed in the following
section, method counters turned out to be quite useless for guiding inlining
decisions in the current framework. Thus the final algorithm used to obtain
the results in Chapter 8 assumes all call sites to have the same execution
frequency.

4.2.7 Phase Changes

During development of the knapsack heuristics, it turned out that using
method counters to estimate execution frequency yielded worse results than
using no profile information at all. The reason for this can be found in
program phase changes and the way they influence the adaptive optimization
system.

For example assume a method M that contains first a loop of ten thou-
sand iterations initializing a data structure and then a loop of one million
iterations working on this data structure. M will be recompiled with opti-
mization under the following conditions:

• The method M is active while a countdown-trap is activated.

CHAPTER 4. METHOD INLINING 28

• M itself or its callee are determined to be hot methods.

The initialization loop in M is very likely to trigger recompilation. At
this point the following work loop has not even run once, so the methods
called in the work loop may well have their counters at zero. Thus inlining
would favor the initialization loop over the work loop, although the latter
will subsequently execute one hundred times as many iterations.

4.2.8 Inlining Budget

An important parameter of the knapsack heuristics is the initial inlining
budget for the root method. The CACAO implementation uses a constant
inlining budget. The value was balanced for the best average effectiveness
of inlining over the range of tested programs. However, no budget value
yielded optimal results for all programs. This indicates that an adaptively
chosen budget could further improve the effectiveness of the algorithm. Ex-
periments were also conducted with an inlining budget proportional to the
original size of the root method, but results were inferior to those obtained
with a constant budget. As a future improvement, the parameters of the al-
gorithm could be automatically tuned off-line (as demonstrated by Cavazos
and O’Boyle [8]) to eliminate guesswork.

For the results shown in Chapter 8 the budget was set to 100 bytes of
bytecode size. Combined with a c0 (see equation 4.1) of 16 bytes this yielded
good results on average.

Further experiments were conducted with additional limits on inlining,
for example by stopping inline expansion at a certain maximum depth or
code expansion factor. None of these additional constraints improved the
results.

4.2.9 Inlining Prolog

Before the intermediate code of the inlined callee is copied into the IR of
the caller, the inliner emits a special piece of code called the inlining prolog.
The inlining prolog has several functions:

1. Performing a null pointer check for the this pointer of instance meth-
ods.

2. Copying the arguments to the callee’s variables.

3. Saving the this pointer of the callee (for some synchronized instance
methods—see Section 4.2.17).

4. Entering a monitor (for synchronized methods).

CHAPTER 4. METHOD INLINING 29

The inlining prolog also contains the special INLINE START instruction
at the start and the INLINE BODY instruction at the end. These instructions
serve as markers for later compiler passes.

4.2.10 Inlining Epilog

After the intermediate code of the callee, the inliner emits the inlining epi-
log. This code performs a MONITOREXIT for synchronized methods. It also
contains the special INLINE END instruction that serves as a marker for later
compiler passes.

4.2.11 Code Rewriting

Inserting the intermediate code of the callee into the caller mostly means
just copying the instruction structures. For dynamically allocated arrays
referenced by the instructions, copies have to be placed in newly allocated
memory. The only data that cannot be cloned in this straight-forward way
are the references to variables and branch targets in the intermediate in-
structions. For variables, the inliner uses a variable translation map, briefly
called the varmap. This array is indexed by the variables’ indices used in
the unmodified callee and contains the indices to replace them with in the
resulting code.

References to branch targets must be mapped to locations in rewritten
code. This is achieved by mapping references to basic blocks in the original
intermediate code to the corresponding basic blocks in rewritten code. For
these purposes the inliner maintains a table mapping from “old” basic blocks
to “new” basic blocks. Whenever the rewriting of a block starts, the block
is entered in this table. For each branch target the inliner tries to find its
translation in the table. If the destination block has not yet been translated,
the reference is recorded in a list of unresolved block references. When
the rewriting of an inlining node is complete, the inliner resolves all block
references and removes the entries from the list.

A special block reference entry is used for RETURN instructions in the
inlined callee: The RETURN instruction in inlined bodies is translated to a
GOTO to the inlining epilog. Since the epilog block has not yet been generated
at that time, a special return reference is inserted in the block reference list.
These return references are resolved when the epilog block is created.

Local Variable Coloring

When using inlining in conjunction with the simple register allocator (see
Section 4.2.19), it is important to keep the total number of local variables
low. The simplereg allocator considers all locals to be live over the whole
method body and allocates them after the temporary registers. This leads

CHAPTER 4. METHOD INLINING 30

to most local variables ending up on the stack, safe for a small number that
can be kept in callee-saved registers.

In order to keep the number of local variables low, the CACAO inliner
translates local variable indices as follows: Every inline node is assigned a
local variable offset. The offset for the root method is zero. When the inline
tree is traversed, the offset of each node is set to the offset of its parent node
plus the number of local variables used in the parent’s code. In this way,
inlined code sections that are not nested can use the same variable indices.
When the compiler back-end is upgraded to linear scan register allocation,
reusing variable indices will no longer be necessary.

4.2.12 Avoiding Basic Block Boundaries

The scope of some optimizations is limited to one basic block at a time. Also,
local register allocators like CACAO’s simplereg algorithm only perform
well if little data is passed across basic block boundaries. Consequently the
inlining mechanism should try to avoid introducing additional basic block
boundaries where possible.

A basic block boundary at the start of an inlined callee (after the inlining
prolog) is needed, if any of the following conditions is true:

• The callee contains a branch to its entry point.

• The entry point marks the start of an exception handler range, or is
the start of an exception handler.

• The callee is synchronized. In this case we need to generate an excep-
tion handler covering the whole inlined body, so this is related to the
second point.

A basic block boundary is needed at the end of an inlined callee (before
the inlining epilog), if any of the following conditions is true:

• The callee has multiple exits.

• The callee has an exit that is not the last instruction of the method
body.

• The end of the callee marks the end of an exception handler range.
This is always the case for synchronized callees (see above).

The CACAO inliner separately checks these conditions for the start and
the end of the inlined callee and merges the callee with the inlining prolog
or inlining epilog, respectively, if possible.

CHAPTER 4. METHOD INLINING 31

4.2.13 Cross-class and Cross-package Inlining

When inlining a method of one class in a method of another class, the VM
must take some particular issues into consideration. The semantics of some
JVM instructions [27] are defined with respect to the current class, i.e. the
class defining the method being executed. Examples of semantics involving
the current class are:

• access checks are based on the notion of the current class

• calls to protected methods require a special check involving the cur-
rent class

• the resolving algorithm specified for the INVOKESPECIAL instruction
depends on the current class

CACAO solves these issues as follows:

• Methods, fields and class references that can be resolved lazily (i.e.
without requiring any further class loading) are resolved and access
checked before inlining, so the current method and class are obvious.

• For each reference that cannot be resolved lazily during compilation,
CACAO creates a special data structure that records all data necessary
for resolving the reference later, including the method (and thereby
class) that originally contained the reference. This information is not
touched by inlining, and so the correct current class can be used when
the reference is actually resolved.

4.2.14 Exception Handling

The inlining mechanism must guarantee that the behavior of programs that
throw exceptions is not modified by method inlining. In particular the
following properties of JVM exception handling must remain valid:

1. When an exception is thrown, the VM first searches all exception han-
dlers of the current method that cover the current PC in the specified
order. If a matching handler is found, execution continues with the
handler. Otherwise the current method activation is unwound, and
the search repeats with the exception handlers that cover the call site
in the calling method.

2. When an unhandled exception causes the unwinding of a synchronized
method, the corresponding monitor is released.

CHAPTER 4. METHOD INLINING 32

Internally exception handlers are recorded in exception tables. Each ex-
ception entry holds the start address and the end address of the handled
code range, the address of the handler, and the type of exception objects
that the handler catches. When an exception is thrown, the run-time sys-
tem gets the exception table for the compilation unit in which the exception
occurred. The exception entries are then searched in order for the first
matching entry.

It turns out that the first property mentioned above is quite easy to
achieve by taking advantage of the ordered processing of exception entries:
During inlining the exception tables of the calling method and the inlined
methods must be combined to an exception table for the whole compilation
unit. We insert the individual tables into the resulting table in topological
order with respect to the inlining tree. This means that any exception entry
of an inline node N occurs earlier in the resulting table than any entry of
the calling node M . The order of entries within individual tables remains
unchanged.

Listing 1 shows some example source code for multi-level inlining. The
corresponding inlining tree is displayed in Figure 3, assuming that all calls
except the one to foo are inlined. Table 1 shows the order of exception
entries for the resulting method one.

Listing 1 Example methods
1 void one() {

2 two();

3 dos();

4 }

5
6 synchronized void two() {

7 three();

8 tres();

9 three();

10 }

11
12 void dos() {

13 }

14
15 void three() {

16 foo();

17 }

18
19 void tres() {

20 }

CHAPTER 4. METHOD INLINING 33

Listing 2 Example inlining result
void one()

{

synchronized { // two

{ // three-1

foo();

}

{ // tres

}

{ // three-2

foo();

}

}

{ // dos

}

}

handlers of “three-1”

handlers of “tres”

handlers of “three-2”

handlers of “two”

MONITOREXIT-handler for “two”

handlers of “dos”

handlers of “one”







y

direction of processing

Table 1: Exception handler entries for method “one” after inlining

4.2.15 Building Stack Traces

In order to build stack traces with line number information, the VM must
maintain a mapping from positions in compiled code to the source line num-
bers. As method inlining has to be a transparent optimization, the stack
traces created by a program must be invariant with respect to method in-
lining.

CACAO takes the following basic approach to mapping line numbers:
For each compilation unit the compiler creates a line number table containing
two columns: the first column holds the machine code position, the second
column holds the corresponding line number. Whenever the current source
line number changes during code generation, an entry is added to the table,
recording the current machine code position and the new source line number.
The resulting table is sorted by machine code position and each entry (pi, li)
means that the machine code positions from pi up to, but not including,
pi+1 (or the end of the compilation unit for the last entry) have source line
number li.

CHAPTER 4. METHOD INLINING 34

one

two dos

three-1 tres three-2

Figure 3: Example inlining tree for the compilation of “one”

Inlining requires some extensions of the line number table. When a stack
trace is built for a position in an inlined method body, the virtual machine
must be able to determine the name of the inlined method and the position
of the (eliminated) call site. For this purpose the code generator inserts
special markers into the line number table whenever it encounters the start
or the end of an inlined method body.

Figure 4 shows the structure of the table for an inlined call in source
line x. The body of the inlined method has source lines m to n. The start
marker is identified by the special line number −2 and points to the start
of the inlined code. The end marker (identified by the special line number
−1) encodes the source line of the inlined call, a reference to the method
that has been inlined, and the address of the start of the inlined code.

Figure 4: Line number table with inlining markers

When a stack trace needs to be built, CACAO iterates over the stack
frames and searches the line number table of each frame for a line containing
the current PC. The search moves backwards through the line number table

CHAPTER 4. METHOD INLINING 35

and selects the first entry for which pi ≤ PC.
An inlined method body first appears to the backward search algorithm

like a negatively numbered line covering the code of the inlined body. If
the PC is determined to be inside this code range, the algorithm recurses
to find responsible source lines inside the inlined body. After the recursion
returns—and thus all entries for lines inside the callee have been added to
the stack trace—an entry with the source line of the inlined call is added to
the stack trace and the algorithm terminates.

4.2.16 Null Pointer Checks

The semantics of the INVOKEVIRTUAL and INVOKEINTERFACE instructions de-
mand that the instance argument is checked, and a NullPointerException

is thrown if the instance is null.
CACAO implements this check efficiently by relying on the MMU (mem-

ory management unit) hardware: In order to perform dynamic dispatch,
INVOKEVIRTUAL and INVOKEINTERFACE instructions need to load the vftable
pointer from the object instance. Since the vftable pointer resides in the
object header, an attempt to read the vftable pointer from a null instance
is guaranteed to trigger a segmentation fault. The signal handler of the
thread then constructs and throws the required NullPointerException.

For inlined calls the dynamic dispatch has been eliminated. Thus, in
order to maintain correct semantics, we must perform an explicit null pointer
check for inlined calls to instance methods.

INVOKESPECIAL instructions always need the explicit null pointer check,
whether the instruction is inlined or not. The compiler can, however, elim-
inate the null pointer check for calls to <init> methods, as the static con-
straints on Java bytecode guarantee that instance initializers are only called
for references to uninitialized objects, which can never be null.

4.2.17 Synchronized Methods

The CACAO inliner handles synchronized methods in a similar way as Java
compilers deal with the

synchronized (obj) {

...

}

construct: A special exception handler (with catch type any) is created
to protect the inlined method body, including any exceptions handlers of
the inlined method. When invoked, this exception handler performs the
following steps:

1. Save the exception object in a local variable.

CHAPTER 4. METHOD INLINING 36

2. For instance methods, fetch the this pointer of the inlined method.
For static methods, take the java.lang.Class object of the method’s
class.

3. Perform a MONITOREXIT operation on the retrieved reference.

4. Throw the saved exception object.

The this pointer of instance methods can be read from the (bytecode)
local variable 0, provided the value of this variable is not modified in the
callee. In the more general (but uncommon) case of writes to local variable 0,
a separate local variable must be created for synchronization which receives
a copy of the this pointer in the inlining prolog.

4.2.18 Argument Handling

When a method is inlined, the inlining prolog must copy the actual argu-
ments of the call to the variables representing the formal arguments in the
callee. In order to make this more efficient, the inliner could analyze the
use of the formal arguments in the callee and, for example, directly replace
read-only arguments with the actual argument variables. A similar opti-
mization could be done for the return value of an inlined method. However,
these optimizations can be viewed as limited special cases of copy propaga-
tion. In the spirit of separation of concerns, the CACAO inliner just inserts
straight-forward MOVE instructions in the prolog and epilog code and leaves
the optimization of the argument passing to a subsequent copy elimination
pass (see Section 3.2).

4.2.19 Effects on Local Register Allocation

One of the register allocators available in CACAO is a simple local allocator,
called simplereg, that works in three steps on a method [25, 24]:

1. Allocate the interface variables. These are the variables holding the
contents of the Java stack at basic block boundaries.

2. For each block, allocate the block-local temporary variables, assuming
interference with all interface variables used or defined in this block.

3. Allocate the local variables of the method, assuming interference with
all interface variables and block-local variables.

Characteristics of this algorithm are:

• Introducing an interface variable greatly increases register pressure
on block-local variables, as each block-local variable is assumed to
interfere with each interface variable.

CHAPTER 4. METHOD INLINING 37

• Local variables are very likely to be spilled, since they are allocated in
the final step.

Since inlining tends to increase the number of values that are live at
block boundaries and the number of local variables per compilation unit, we
may expect a degradation of register allocation when using simplereg on
the results of the inline transformation.

For an empirical assessment, the numbers of variables allocated to reg-
isters where compared for the javac benchmark of the SPECjvm98 suite.
In code compiled by the baseline compiler, about 73% of all variables were
allocated to registers. In code recompiled by the optimizing compiler it was
only 63%. These numbers confirm that simplereg is not well suited for the
optimizing back-end. Better results may be expected with the linear scan
register allocator, which is currently being developed.

4.3 Recording Assumptions

When speculative inlining is performed, the compiler records the assump-
tions made in the method database. Thus assumptions can be tracked and
invalidated when they become false because of new classes being dynamically
loaded.

For every loaded method the method database keeps a list of assump-
tions. When a currently-monomorphic call to the method m is inlined,
the compiler records the assumption monomorphic() in m’s assumption list.
The empty parentheses illustrate that this assumption has no further pa-
rameters. The system could be easily extended to assumptions depending on
parameters. For example if a call to method m is determined to be currently-
monomorphic for a statically inferred receiver type T , the compiler would
record the assumption monomorphic(T).

For each assumption the following data is kept:

• the kind of assumption, e.g. monomorphic,

• parameters of the assumption (currently none),

• the context of the assumption, i.e. the root method of the compilation
unit which depends on the assumption.

When the linker overwrites a method such that multiple implementations
become defined, it checks if any recorded monomorphic assumptions are
violated. Methods that depend on broken assumptions are put on a work
list. When linking is done, and before the new class can be used by Java
code, the code of all methods on the work list is invalidated.

Chapter 5

Local Subroutine Inlining

5.1 Introduction

In order to allow code reuse within Java methods, and thereby decrease byte-
code size, Java supports the notion of local subroutines. Local subroutines
are defined by special semantics of the JSR, ASTORE, and RET instructions
[27]:

1. The JSR D instruction pushes the address of the following instruction
onto the operand stack and then jumps to the given destination D. The
stack slot created by JSR has the special primitive type returnAddress.

2. The ASTORE Li instruction can be used to pop a returnAddress value
off the stack and store it in the local variable Li.

3. Finally, the RET Li instruction returns to the returnAddress contained
in the local variable Li.

The code executed after the JSR but before the return to the instruction
following the JSR is called a local subroutine. Thus the notion of a local
subroutine is defined dynamically. While there are certain static constraints
on JSR and RET instructions, there are no statically well-defined boundaries
between the code making up a local subroutine and “surrounding” code.
Also the JSR and RET instructions are not required to be properly nested.

An important feature of local subroutines that is explicitly required by
the JVM specification [27] is that a local subroutine be polymorphic with
respect to the types of local variables not used in the subroutine. As a
consequence, there may be points in a method where the basic type1 of a
local variable cannot be determined statically.

1Here, “basic type” refers to the distinction between integer, float, double, reference,
and returnAddress types.

38

CHAPTER 5. LOCAL SUBROUTINE INLINING 39

5.2 Implications of Local Subroutines

Local subroutines have implications for many parts of the virtual machine.
The following sections list some areas in which complexity is increased by
the presence of local subroutines.

5.2.1 Control-flow Graph

As the target of a RET instruction is determined dynamically, the control-flow
graph must contain edges from the RET to every possible target. Multiple
JSR instructions to the same local subroutine introduce control-flow merges.
Thus local subroutines reduce the precision of the control-flow graph, as
the graph will often represent many paths that can never be taken during
program execution.

5.2.2 Verification of Local Subroutines

Local subroutines significantly complicate bytecode verification because of
their effect on the control-flow graph and the requirement that types of
unused local variables may not be merged at entry to the local subroutine.

Coglio [12] developed an elegant technique for verification of local sub-
routines that solves these problems. CACAO performs local subroutine
elimination based on Coglio’s technique, as will be described in section 5.3.1.

5.2.3 Effects on On-Stack Replacement

The semantics of the JSR and RET instructions interfere with on-stack re-
placement. Before jumping to its target, the JSR instruction pushes the
address of the following instruction onto the operand stack. This return-
Address value is later used as the target of a RET instruction. If on-stack
replacement of the method occurs after the JSR but before the RET instruc-
tion, the returnAddress value will refer to a position in invalidated code and
the RET instruction will subsequently load this invalid program counter.

Several approaches could be taken to solve this problem:

• The JSR instruction could be changed to store an integer label iden-
tifying the following instruction, and RET would use a jump table to
calculate the target address from this integer.

• On-stack replacement could translate live returnAddress values to the
corresponding addresses in replacement code.

• On-stack replacement could keep invalidated code in memory and
patch all possible targets of RET instructions with jumps to the corre-
sponding positions in replacement code.

CHAPTER 5. LOCAL SUBROUTINE INLINING 40

Obviously these are all rather complex workarounds and it would be
preferable to eliminate local subroutines in order to avoid these problems
altogether.

5.3 Elimination of Local Subroutines

Local subroutine elimination is not performed as an optimization in its own
right, but for its large down-stream benefits. A significant source of com-
plexity is removed when subsequent compiler passes do not have to deal
with the intricacies of local subroutines. The following section describes the
technique used for eliminating local subroutines in CACAO.

5.3.1 Type-based Specialization Approach

One effective way of handling local subroutines [12] is to treat each return
address i that is created by a JSR to address j as an instance of a special
type Ri,j. The compiler can then perform abstract interpretation of the
bytecode (or of the intermediate representation, as is the case in CACAO)
using special merging rules for the family of returnAddress types:

Ri1,j1 ⊔Ri2,j2 =⊥ for j1 6= j2

Ri1,j1 ⊔Ri2,j2 = not merged for j1 = j2 ∧ i1 6= i2
Ri1,j1 ⊔ T =⊥ for any non-returnAddress type T

The first row enforces the static guarantee on Java bytecode that the
control-flow of two distinct local subroutines j1 and j2 may not be merged
to a single RET instruction.

The last row derives from the fact that returnAddress types are assignment-
incompatible with all other JVM types.

The middle row is the key to local subroutine elimination: When a stack
slot or a local variable contains different—but compatible— returnAddress
values along the control-flow edges reaching a basic block, then we do not
merge these types. Instead we duplicate the basic block and create special-
ized versions for each combination of returnAddress types that stack slots
and local variables may have at the entry to this block.

This way, when we reach a RET Lk instruction, and the local variable Lk

has type Ri,j at this point, we know that the RET instruction will return to
address i, and we can thus replace RET Lk with GOTO i. (If Lk is of any other
type, a VerifyError is thrown.)

5.3.2 Code Expansion

One problem with the type-based specialization approach is that it can lead
to exponential code expansion in some cases. These cases do not occur in

CHAPTER 5. LOCAL SUBROUTINE INLINING 41

code created by Java compilers but they are easy to construct manually.
The example code in Listing 3 causes the creation of over one million (410)
basic blocks.

This code expansion problem is not restricted to the type-based special-
ization approach, but it occurs with any algorithm that eliminates JSR and
RET by replacing them with GOTO instructions.

Two approaches for dealing with such cases would be:

• Retaining local subroutines and falling back to the baseline compiler
in cases where code expansion reaches a certain threshold.

• Transforming local subroutines to compiler-generated methods. This
approach would require significant changes to the virtual machine in-
frastructure, however, as the generated methods would have to be
completely transparent to the executing program.

CHAPTER 5. LOCAL SUBROUTINE INLINING 42

Listing 3 Bytecode causing exponential code expansion with JSR elimina-
tion

1 jsr s1

2 jsr s1

3 jsr s1

4 jsr s1

5 return

6
7 s1:

8 astore 1

9 jsr s2

10 jsr s2

11 jsr s2

12 jsr s2

13 ret 1

14
15 s2:

16 astore 2

17 jsr s3

18 jsr s3

19 jsr s3

20 jsr s3

21 ret 2

22
23 ; ...

24
25 s10:

26 astore 10

27 iinc 0 1

28 ret 10

29

Chapter 6

Code Replacement

6.1 Requirements of Adaptive Optimization

The requirements on the replacement mechanism when used for adaptive
optimizations can be summarized as follows:

installing code Newly compiled versions of methods must be installed to
replace older versions. As the new versions are usually better opti-
mized, the replacement should happen as soon as possible. An im-
portant case are methods that are rarely entered or left but contain
frequently executed loops. Such methods should be replaced on-stack,
i.e. while they are activated.

invalidating code When code optimized on preliminary assumptions be-
comes invalid, this code must be replaced before it can create an in-
consistent program state. This requires replacement traps that can be
set at the start of invalidated code regions.

re-allocation of values Old and new versions of code may differ in the
allocations of variables. For example, one version may keep a value in
a register, while another version puts the same value on the stack.

re-grouping of stack frames By changing inlining decisions, the group-
ing of source-level frames into machine-level stack frames can change.
The replacement mechanism must be able to translate in both direc-
tions between code that performs a machine-level call, and code that
is inlined within the same compilation unit.

6.2 Requirements of Exact Garbage Collection

Exact garbage collection has several requirements that overlap with features
of the replacement mechanism:

43

CHAPTER 6. CODE REPLACEMENT 44

• Program execution must be suspended at certain safe points where all
live references can be exactly determined.

• The garbage collector must be able to set GC traps at safe points in
other threads in order to trigger their suspension.

• If the garbage collector performs compaction, it needs a way for redi-
recting references to the new locations of objects.

These requirements, however, are not a subset of the requirements of
replacement for adaptive optimization. There are several areas where exact
garbage collection increases the demands on the replacement mechanism:

GC traps To ensure timely garbage collection, GC traps must be instal-
lable at all points where execution can leave a method. This includes
all invocations and the method exit.

source state The garbage collector needs the full set of live references.
This means that all frames on the stack must be examined. Thus
the recovering of the source state may not stop at intermediate stack
frames of native code, as is the case for replacement.

redirecting references While replacement after recompilation is concerned
with changing the allocation of values, a compacting GC changes the
values of references. The new values need to be written back to reg-
isters and stack frames. This update must also be performed for the
full stack of each thread, so stack frames beneath invocation of native
code must also be processed.

6.3 Replacement Strategies

As soon as we make use of recompilation, replacing old code with new ver-
sions becomes an issue. We can distinguish two basic kinds of demands
requiring code replacement:

• A piece of code was recompiled because it has become invalid. In this
case we must ensure timely replacement of the old code.

• A method has been recompiled to a more optimized version, though
the old code is still valid. In this case we should replace the old code
as soon as possible in order to get better performance.

Independently we can classify the replacement strategy on how we want
to deal with existing references to old code:

CHAPTER 6. CODE REPLACEMENT 45

• Eager replacement : We replace all references to the old code at once,
no matter whether, or when, these references would be used in the
future.

• Lazy replacement : References to old code may remain in existence
indefinitely, but we take measures that stale references are updated in
time when they are used.

This distinction is important if we plan to release memory used by old
code. In this case we can only use eager replacement strategies.

6.4 Replacement of Future Invocations

When a method is recompiled, all future invocations of this method should
use the newly compiled version of its code. In fact, if the method is recom-
piled because the current version became invalid, future invocations must
use the new code, so that the program’s state does not become inconsistent.
The actions necessary to redirect future invocations depend on whether calls
to the method are dispatched dynamically or statically. Note that this is
not a property of the method itself, but of each individual call site, as some
calls to a virtual method may be bound statically, while others are not.

6.4.1 Eager Replacement of Dynamically Dispatched Meth-

ods

In CACAO virtual calls are dispatched using virtual method tables. Each
class has a virtual method table containing the entry points of all meth-
ods implemented by the class, or inherited from superclasses. In addition
each class can have a number of interface method tables. Every interface
is assigned a unique integer index, starting with zero. For each class that
implements one or more interfaces, the maximum index of these interfaces
is determined. The class gets an interface table that can be indexed up to
this maximum value. For each implemented interface, this table holds a
pointer to an interface method table. The interface method table contains
the entry points of the methods implementing the interface. Note that these
are always methods that also occur in the virtual method table of the class.

When the code of a virtual method is replaced, the VM must update
the entry point stored in the virtual method tables of the defining class and
of all classes that inherit the method, and in all interface method tables of
those classes that refer to this method.

There are two basic approaches for updating the entry points:

1. Traverse the class hierarchy of the defining class and its subclasses
moving from less derived to more derived classes. For each class,

CHAPTER 6. CODE REPLACEMENT 46

search the method tables for entries referring to the old entry point
and update them. The traversal can be terminated at each class that
overwrites the method being replaced.

2. For each method, keep a list of the method table entries referring to
this method. When the method is replaced, iterate over this list and
update the table entries.

We are facing a speed/memory trade-off between these approaches. The
second approach avoids checking any table entries that are not related to the
method being replaced. On the other hand it requires additional memory
for each loaded method.

An important problem with both approaches is synchronization. We
must take care that neither concurrent changes to the class hierarchy, nor
concurrent replacements of methods can interfere.

6.4.2 Eager Replacement of Statically Bound Methods

The entry points of statically bound methods appear as constants in the
compiled code of their callers. Thus we cannot redirect all future calls by
changing any single value. The following approaches come to mind:

• Whenever the compiler binds a method statically, it could record the
position of the call site in a list associated with the method. To redirect
future calls to the method we could then iterate over this list and
update all existing call sites to the new entry point.

• We could install a jump to the new entry point at the start of the old
code. This way calls to the old entry point would be redirected to the
new code. However, the cost of the additional jump would have to be
payed each time the call site is used.

6.4.3 Lazy Replacement of Future Invocations

Instead of updating all references as soon as new code becomes available,
we can implement a lazy replacement strategy: A trap is set at the start of
the old code that triggers the following actions:

1. The return address is read in order to find the position of the calling
code.

2. In the case of an instance method, the instance argument is deter-
mined.

3. The call site is inspected, and depending on the type of call the data
used for dispatch is modified:

CHAPTER 6. CODE REPLACEMENT 47

• For statically bound calls, the destination address of the call is
updated.

• For a virtual class method call, the method’s entry in the virtual
method table is updated.

• For an interface method call, the method’s entry in the interface
method table is updated.

This is very similar to the mechanism that CACAO already uses to im-
plement lazy compilation. The compiler stubs that are initially installed to
trigger compilation are replaced with the compiled code by patching stat-
ically bound calls and updating method table entries in the way described
above.

6.5 On-Stack Replacement

In the context of on-stack replacement it is fundamental to distinguish two
different representations of program state:

1. the machine-level state, hereafter called the execution state, which
depends on compiler optimizations,

2. the source-level state, hereafter called the source state—a represen-
tation that is independent of any optimizations used. The source-level
state is the state that would have been created by interpreting the
unmodified bytecode of the program up to the current point. Thus all
optimizations that preserve the semantics of the program are transpar-
ent with respect to the source-level state. This allows the source-level
state to serve as a common ground for translating state between dif-
ferently optimized versions of the same program.

The following sections give detailed definitions of these concepts.

6.5.1 Execution State

We define the execution state to be the machine-level snapshot of a thread
at a certain time. The execution state of a thread comprises:

• the current values of the CPU registers,

• the contents of the machine stack of this thread.

CHAPTER 6. CODE REPLACEMENT 48

6.5.2 Source State

The source state of a thread comprises the currently active stack frames of
the Java virtual machine stack. (Our notion of source frame is equivalent
to the JVM scope descriptor in [19].) For each source-level stack frame the
following data are given:

• the currently executing method,

• the bytecode position within this method,

• the types and values of local variables that are currently live in the
frame,

• the types and values of the operand stack slots that are currently live
in the frame,

• the object that the method synchronizes on, if any.

The most important property of the source state is that at any given
point in the execution of the program the source state is independent of
any past optimization decisions. In other words, all optimizations are trans-
parent with regard to the source state. Thus when we revert optimization
decisions at some point, program correctness is guaranteed if we replace the
current execution state by a new execution state corresponding to exactly
the same source state.

In order to be able to recreate an execution state from the source state,
we also need the following information:

• the values of all saved registers before the activation of the bottom-
most stack frame of the source state,

• the value of the stack pointer at this time.

6.5.3 Partial Source States

When replacing a compiled method—as opposed to finding the GC root
set—we are usually not interested in the full source state down to the first
stack frame activated within the thread. For example, it is not feasible to
relocate the stack frames of native methods, so it makes no sense to traverse
them when deriving the source state. Thus we just derive the source state
down to the lowest stack frame we want to replace, and record the values
of the saved registers and the stack pointer at this point, so we are able to
build the new execution state from this point upwards, while leaving the
machine stack below unchanged.

CHAPTER 6. CODE REPLACEMENT 49

6.5.4 Native Frames

Typically the outermost Java method has been invoked by native code.
However, there are also invocations of native code interspersed with invo-
cations of Java code on the stack. We call the activation records of native
code native frames. Native frames provide natural boundaries for on-stack
replacement. We do not know the layout of native frames, so we cannot
relocate them. (Even if we knew the layout, there could still be references
to variables in the native frame from other native code, so relocation would
still be impossible.)

However, to fulfill the requirements of the exact garbage collector, the
replacement mechanism must provide support for traversing through na-
tive frames. For all stack frames below the innermost native frame, only
restricted functionality is provided:

• The layout1 of stack frames may not be changed. This also precludes
mapping to other versions of code.

• Only reference values2 may be read out and written back.

When a native frame is traversed while recovering the source state, saved
registers pose a problem: Method activations above the native frame may
keep values in saved registers. The native code is responsible for either pre-
serving or saving these registers, but we do not know whether or where the
values have been saved on the stack. However, the exact garbage collector
requires that:

• all live reference values can be determined,

• live references can be redirected during compaction.

To fulfill the first requirement, we must be able to find the values of
saved registers. Thus before any invocation of native code, all general-
purpose saved registers must be copied to a structure of known layout. The
second requirement demands that when execution returns from native code,
the values in this structure must be copied back to the saved registers. (The
native code itself guarantees that saved registers are restored to their value
at the time of invocation. However, because of GC compaction, these might
not be the appropriate values any more.)

In order to build correct stack traces, CACAO already does special book-
keeping for calls into native code: Whenever control is transferred from

1Theoretically we must only require the size of the stack frames between native frames
to remain unchanged. Practically this precludes any changes to the stack frame layout.

2Technically the restriction is: only values that can be kept in general-purpose registers.
See the following discussion of saved registers.

CHAPTER 6. CODE REPLACEMENT 50

JIT-compiled code to native code, a piece of generated wrapper code cre-
ates a stackframeinfo structure recording the values of PC, stack pointer,
and PV3 at the invocation. For supporting the exact GC, we augment
this structure with slots to store the callee-saved general-purpose registers.
Callee-saved floating-point registers are not included, as the garbage collec-
tor does not need to read or change their values, and saving them would
incur additional runtime costs.

6.5.5 Replacement Points

A replacement point is a position in compiled code where we have sufficient
information to reconstruct the source state from the execution state taken
at this point. We will hereafter use the term replacement point to refer to
both the actual compiled code position and the data structure associated
with this position that is needed for the transformations between execution
state and source state. The VM needs to store the following data for each
replacement point to make this transformation possible:

• the machine code position of this point,

• the method that contains the source position for this point,

• the bytecode index of the source position,

• the type and allocation of live local variables,

• the type and allocation of live stack slots,

• whether the code at this point is synchronized on a Java object, and
where to find this monitor object (the register or stack slot position),

• if this point is within an inlined method body, a reference to the re-
placement point corresponding to the start of the inlined body within
the calling method.

• match conditions and rules for extracting values as described in sec-
tion 6.5.10, if this replacement point is not uniquely identified by the
method and the bytecode index.

We call a replacement point P mappable if it is guaranteed that all
compiled versions of the containing method will have a replacement point
corresponding to the same program point as P . Replacement points used
for switching between differently compiled versions of a method must be
mappable. Replacement points that are only used for GC traps are not

3The PV register contains the procedure value, i.e. the entry point of the currently
executing compilation unit.

CHAPTER 6. CODE REPLACEMENT 51

required to be mappable. (For example, GC traps located at method exits
have no counterpart in compilation units that inline this method.)

Figure 5 visualizes how a replacement point captures the allocation of
live ranges at a call site. Notice that a replacement point at a call site has two
aspects, depending on how it is reached during replacement: If execution
is trapped at the point of invocation, all variables reaching the call site
are live, including the arguments to the call. If, on the other hand, the
replacement point is reached in the course of unwinding activation records,
only the variables living through the call are guaranteed to be live. This has
important consequences for the instance argument of non-static methods:
When such a method is active while a replacement point is reached, there
is no guarantee that there is a live variable referring to the object instance
of this invocation.

Figure 6 shows the equivalent replacement points in the case that the
call site has been inlined.

Figure 5: Replacement points and live ranges at a call site

6.5.6 Replacement Traps

Once we have replacement points available, the question arises how to trigger
replacement when a certain replacement point is reached. For this purpose
we introduce replacement traps. A replacement trap is a modification of the
machine code at a replacement point that causes the thread to depart from
normal control-flow and enter the replacement mechanism. If it is possible

CHAPTER 6. CODE REPLACEMENT 52

Figure 6: Replacement points and live ranges with inlining

to set a replacement trap at a replacement point, we call the point trappable.
There are several ways that replacement traps can be realized:

• By patching a branch instruction into the code, or

• by modifying the target of an already existing branch, or

• by patching an instruction into the code that triggers a hardware ex-
ception.

CACAO implements replacement points by writing an unconditional
branch instruction into the existing code. The target of the branch instruc-
tion is the corresponding replacement stub. The replacement stub is a small
piece of code that is prepared for each replacement point when the method is
compiled. The stub calls the replacement-out function of the architecture-
dependent layer with a reference to the replacement point that was reached
as an argument. This architecture-dependent function is responsible for sav-
ing all CPU registers and filling an execution state structure. Finally it calls
the architecture-independent entry point of the replacement system.

In future versions of CACAO it is planned to use hardware exceptions for
triggering replacement traps. This would remove the need for replacement
stubs.

CHAPTER 6. CODE REPLACEMENT 53

6.5.7 Countdown Traps

A special kind of replacement traps are countdown traps, which are used for
instrumenting code generated by the baseline compiler. For a countdown
trap, the compiler generates code to decrement a counter variable and a
conditional branch. If the counter becomes negative, the conditional branch
transfers control to the replacement stub and thus activates the replacement
system. Otherwise, executions proceeds normally.

Each method has an associated counter variable that is initialized to a
fixed threshold. The baseline compiler sets countdown traps at the method
entry and at the targets of all backward branches using this counter variable.
Thus, if a method is frequently entered or contains a frequently executed
loop, the replacement system will be activated for this method, which allows
recompilation of the method to more optimized code.

6.5.8 Location of Replacement Points

The program locations where the compiler must create replacement points
are determined by the sum of all requirements on the replacement mecha-
nism. These requirements can be summarized in the following groups:

• timely replacement after recompilation,

• re-grouping of stack frames for inlining,

• guaranteed replacement of invalidated code,

• requirements of the exact garbage collector.

Additionally replacement points must satisfy some conditions:

• Non-GC replacement points must be mappable.

• At GC replacement points it must be possible to recover the full source
state.

The notion of timely replacement needs to be defined more precisely.
We will speak of timely replacement if the following property holds: After
a compilation unit C is marked for replacement, each thread will execute
each instruction in C at most once before entering the replacement mecha-
nism. Note that a thread may execute an arbitrary number of instructions
outside of C, or block for an unlimited amount of time, before entering the
replacement mechanism, without breaking this property.

A natural choice to guarantee timely replacement is to place replacement
points:

• at method entry,

CHAPTER 6. CODE REPLACEMENT 54

• at the target of each backward branch (including exception handlers
causing control-flow to move backwards)

Proof: At the time t0 a compilation unit C is marked for replacement, C

can be either active or not active in a thread T . If C is inactive, T can only
execute an instruction within C if it enters C first. As there is a replacement
point at the entry point, this case cannot lead to timely replacement being
violated. In the case of C being active in T , let pt denote the maximum PC
of all instructions of C executed after t0, but before t. Let tx denote the
earliest point in time at which timely replacement is validated for C, where
tx > t0. In order to violate timely replacement at tx, the program counter
at that time must have a value of PC(tx) ≤ ptx As no replacement point
in C has been reached by the time tx, we know that the subsequence of the
PC(t) lying within C with t0 ≤ t ≤ tx does not contain the entry point of C

and that it is monotonically rising. Thus PC(tx) > ptx , which contradicts
our assumptions. �

Guaranteed replacement of invalidated code requires that there is a re-
placement point at the start of each code section that can become invalid.
(More precisely, we must require that from the time of invalidation of a code
section S, no thread may enter S without reaching a replacement point in
the same compilation unit first. So we assume that if a thread T is within
S at the time of invalidation, T may complete the current execution of S

without any harm to program correctness.)
Since the exact garbage collector needs full source states, we must de-

mand the following: Whenever a thread T triggers a collection, or reaches a
replacement trap, each activation on the stack of T has been invoked from
a replacement point.

Location general replacement inlining GC

back branches yes no yes
calls no some yes
inline start lazy some yes
method entry lazy no no
method exit no no yes

Table 2: Locations of required replacement/GC points

Table 2 summarizes where replacement points are needed: Timely re-
placement generally requires replacement points at backward branches and—
if lazy replacement is used—at method entries and at the start of inlined
bodies (so the method entry points are mappable.) Inlining requires re-
placement points at speculatively inlined call sites and at the corresponding
non-inlined call sites for deoptimization. The exact garbage collector re-
quires replacement points at method exits and at all points where stack

CHAPTER 6. CODE REPLACEMENT 55

frames are created. Replacement points at the start of inlined bodies are
needed, too, in this case, as each replacement point only describes the part
of stack frame used by the containing inlined section.

6.5.9 Compilation Units

In a VM supporting recompilation it is necessary to distinguish between
a method as defined within a class, and the compiled code representing
this method. The former is unique over the lifetime of the class, while
the latter changes when the method is recompiled, and there may even be
different compiled versions of one method in use at a time. While the unit
of compilation usually is a method, inlining produces compilation units that
also contain compiled inlined bodies of other methods.

In CACAO a compilation unit is represented by a structure called code-
info. Each codeinfo contains:

• a reference to the root method,

• the machine code entry point,

• the size of the machine code of this compilation unit,

• the list of replacement points in this compilation unit.

6.5.10 Mapping Replacement Points

One requirement for obtaining the source state is that the position of any
replacement point in the compiled code can be mapped to the corresponding
position in the bytecode, which is part of the source state. Vice versa, when
creating the execution state for the replacement code, the VM must be able
to map this position in the bytecode back to a replacement point in the new
compiled version. These mappings can be hard to obtain, since transforma-
tions that the compiler performs may break the one-to-one correspondence
of bytecode positions to native code positions.

For example, local subroutine elimination (see Chapter 5) and loop un-
rolling can lead to multiple native code positions corresponding to a single
bytecode position. The underlying principle of these transformations is that
state which is held in local variables by the original bytecode is encoded
into the native program counter. In order to correctly derive the full source
state, the VM must reconstruct the values of these local variables from the
value of the native program counter.

On the other hand there may be transformations mapping several byte-
code positions to a single native code position.

We need to take several measures to obtain unambiguous mappings of
replacement point positions:

CHAPTER 6. CODE REPLACEMENT 56

1. The internal representation must provide a way to find the original
bytecode index for every intermediate instruction that may become
the site of a replacement point.

2. If multiple replacement points Pi share the same original bytecode
index, the following must hold:

• For each of the Pi there is a match condition Ci on the values
of live stack slots and local variables, such that for each possible
combination of values exactly one of the conditions Ci is true,
thereby selecting the corresponding replacement point Pi.

• For each of the Pi the VM stores the information necessary to
extract values of stack slots and local variables that have been
encoded into the program counter at the point Pi.

Example 1. Consider a simple case of JSR elimination: The program
in Listing 4 is transformed into the program in Listing 5. This would lead
to the replacement points in Table 3.

Listing 4 Replacement point in a local subroutine
1: JSR 10

2: JSR 10

3:

...

10: ASTORE L2

11: <replacement point> (bytecode index 11)

12: RET L2

Listing 5 Replacement points after JSR elimination
1: GOTO 20

2: GOTO 30

3:

...

20: NOP

21: <replacement point P1> (bytecode index 11)

22: GOTO 2

...

30: NOP

31: <replacement point P2> (bytecode index 11)

32: GOTO 3

Example 2. Another interesting case arises with loop unrolling. The
loop in Listing 6 is unrolled four times, as shown in Listing 7. This gives
rise to the replacement points listed in Table 4.

CHAPTER 6. CODE REPLACEMENT 57

Point Bytecode Index Condition Values

P1 11 if L2 = ret2 L2 = ret2
P2 11 if L2 = ret3 L2 = ret3

Table 3: Replacement points after JSR elimination

Listing 6 Replacement point in a loop
for (L2 = 0; L2 < 4*n; ++L2) {

<replacement point P>

...

}

6.5.11 Recovering the Source State

When a replacement point has been reached, we first take a snapshot of the
current execution state. Then we can recover the source state of the thread
using an iterative algorithm similar to the creation of a stack trace, or the
unwinding of the stack in the course of an exception.

For visualizing the algorithm it is useful to imagine the (partially re-
covered) source state on top of the execution state, and between them as a
dividing line the representation frontier. Initially the source state is empty,
and the execution state is a full snapshot of the current thread. The algo-
rithm now recovers one source frame after the other, with each step adding
to the source state and shrinking the execution state by pushing the repre-
sentation frontier “down” towards the bottom of the stack.

Note that while the execution state shrinks conceptually, the actual stack
contents are not modified at this point.

Figure 2 shows the algorithm in detail. The functions referred to have
the following semantics:

pop-native-frame(E,I) Removes the native frame described by I from

Listing 7 Replacement points in an unrolled loop
for (L’ = 0; L’ < n; ++L’) {

<replacement point P0>

...

<replacement point P1>

...

<replacement point P2>

...

<replacement point P3>

...

}

CHAPTER 6. CODE REPLACEMENT 58

Point Bytecode Index Condition Values

P0 11 if L2 ≡ 0(mod4) L2 = 4L′

P1 11 if L2 ≡ 1(mod4) L2 = 4L′ + 1
P2 11 if L2 ≡ 2(mod4) L2 = 4L′ + 2
P3 11 if L2 ≡ 3(mod4) L2 = 4L′ + 3

Table 4: Replacement points after loop unrolling

the execution state E and returns the remaining execution state and
a native source frame.

in-java-code(E) Checks if execution state E has a PV value corresponding
to a Java method.

get-code(E) Returns the compilation unit that is active in the given exe-
cution state E.

find-replacement-point(E,C) Finds the replacement point in compila-
tion unit C that corresponds to the current program counter in exe-
cution state E.

read-source-frame(E,C,P) Recovers a source frame from execution state
E. C is the current compilation unit, P is the replacement point that
the program counter is at.

find-inline-start(C,P) Finds the replacement point at the start of the
innermost inlined region containing the replacement point P in com-
pilation unit C.

find-caller(E,C) Find the compilation unit that called the active compi-
lation unit C in execution state E.

pop-activation-record(E,C) Remove the activation record of the active
compilation unit C from execution state E. Returns the reduced exe-
cution state.

6.5.12 Rebuilding the Execution State

When we have successfully recovered the source state, we must now perform
the dual operation of building up a new execution state representing the
same source state in the context of the modified optimization decisions we
are switching to. We rebuild the execution state for one source frame at a
time, each step adding to the execution state and shifting the representation
frontier “upwards” until all frames of the source state have been encoded
into the new execution state.

CHAPTER 6. CODE REPLACEMENT 59

Figure 3 shows the algorithm for rebuilding the execution state. The
functions referred to have the following semantics:

push-native-frame(E,F) Push the native frame F onto the execution
state E. This function does not actually manipulate any stack con-
tents, as the layout of the native frame is unknown. Instead, registers
in the execution state are updated, and the values of saved registers
are written to the stack frame info referred by frame F .

push-activation-record(E,F,P) This function mimics the stack effects of
a method call and the subsequent saving of callee-saved registers.

get-target-replacement-point(F) Returns the replacement point to which
frame F has been mapped.

write-source-frame(E,F,P) Write the values given in source frame F to
the registers and stack locations in execution state E using the allo-
cation info of replacement point P .

6.5.13 Dealing with Stack Expansion

Stack frames of the original code and the recompiled code can differ in
size. Thus when rebuilding the execution state, the rewritten stack can
require more space than the original stack. This poses a problem for the
replacement system, as it rewrites the stack of the current thread and thus
would overwrite its own stack while rebuilding the execution state.

To avoid this problem CACAO uses a safe stack area during replacement:
Before the new execution state is created, CACAO allocates a memory block
to serve as a temporary stack area. All necessary info for rebuilding the
execution state is copied from local variables (which are unsafe) to this
memory block. Then a function of the architecture layer is called. This
function switches to the safe stack area and calls the function for building
the execution state. Afterwards, the stack is switched back to the normal
stack area of the thread—which now contains the new execution state—and
the safe stack area is freed.

CHAPTER 6. CODE REPLACEMENT 60

Algorithm 2 Algorithm for recovering the source state

Input:
E: execution state
P : initial replacement point
C: codeinfo containing P

I: innermost stack frame info of current thread
Output:

E: residual execution state
S: source state

Algorithm:
S ← ()
while (P 6= NULL) ∨ (I 6= NULL):

if P = NULL :
(E,F)← pop-native-frame(E, I)
F ← F : S

I ← I->prev

if in-java-code(E):
C ← get-code(E)
P ← find-replacement-point(E,C)

end if
else

F ← read-source-frame(E,C,P)
S ← F : S

if P is within an inlined body:
P ← find-inline-start(C,P)

else
C ′ ← find-caller(E,C)
if no caller was found:

return (S,E)
E ← pop-activation-record(E,C)
C ← C ′

P ← find-replacement-point(E,C)
end if

end if
end while
return (S,E)

CHAPTER 6. CODE REPLACEMENT 61

Algorithm 3 Algorithm for rebuilding the execution state

Input:
E: residual execution state
S: source state

Output:
E: execution state
P : target replacement point

Algorithm:
P ← NULL
Pparent ← NULL

while S 6= ():
F ← head(S)
S ← tail(S)
if F is a native frame:

E ← push-native-frame(E,F)
P ← NULL
Pparent ← NULL

else
if Pparent = NULL :

E ← push-activation-record(E,F, P)
end if
P ← get-target-replacement-point(F)
E ← write-source-frame(E,F, P)
if P is at an inlined call site:

Pparent ← P

else
Pparent ← NULL

end if
end if

end while
return (E,P)

Chapter 7

Testing

Recompilation and adaptive inlining are designed to be applied to the rela-
tively small set of hot methods of a program. Thus it is hard for regression
tests to cover significant parts of the involved code. This chapter briefly
discusses how CACAO’s inlining and replacement code have been tested.

7.1 Testing Inlining

In order to independently test method inlining, we would like to have special
test configurations:

• A configuration that separates inlining from recompilation. Inlining
will be applied for all compiled methods in this case.

• A configuration in which inlining does not need on-stack replacement.
In contrast to the previous item this requires that either no speculative
inlining is done, or the test cases are selected such that no deoptimiza-
tion will be necessary.

In order to provide these configurations, debug builds of CACAO have
the following command line options:

-ia inline transform all compiled methods,

-ip be pessimistic, i.e. do not apply speculative inlining

-ix apply speculative inlining, but abort with an error message if an as-
sumption is broken, instead of triggering recompilation.

As CACAO includes a type-inferring verifier that operates on the inter-
mediate representation, the verifier can be used to check the results of the
inlining transformation: During development a slightly modified version of
the verifier was run over the IR after inlining. In this way, bugs causing the
inliner to produce code that violates type-safety were reliably exposed.

62

CHAPTER 7. TESTING 63

7.2 Debugging the Inlining Transformation

For debugging purposes it is of great advantage to narrow down the set of
transformed methods. The difficulty of finding a compiler bug usually rises
with the size of the compilation unit exposing the bug. Thus a develop-
ment option was built into CACAO to only use the result of the inlining
transformation if it is below a certain number of intermediate instructions.
By running large test cases while gradually increasing this threshold, it was
possible to observe most initial bugs of the inlining transformation in the
smallest case that triggered them. This greatly simplified the debugging
process.

7.3 Testing On-Stack Replacement

For testing on-stack replacement, the compiler was configured to activate
all replacement traps in a method as soon as it has been compiled and to
recompile methods using the baseline compiler when a replacement trap is
triggered. In this way every called method is replaced at least once. Most
methods are replaced more often, as they are on the stack when methods
called by them trigger their replacement traps.

One problem with this testing scheme is that source and target code
of a replacement typically have identical stack layout and register alloca-
tion (as they are both produced by the baseline compiler, only at different
times during program execution). To make the tests more significant, code
was written to overwrite stack contents and registers in the execution state
between recovering the source state and building the new execution state.
This way the new execution state only contains values that were translated
by the replacement system, and none that accidentally remained in place
during the translation.

Chapter 8

Results

This chapter reports experimental results obtained with CACAO and the
SPECjvm98 benchmark suite using adaptive inlining.

8.1 Comparison of Inlining Heuristics

The programs of the SPECjvm98 benchmark suite were executed with re-
compilation triggered by countdown traps. Hot methods were recompiled
with inlining and without instrumentation code. The benchmarks were also
run with recompilation done by the baseline compiler (no inlining). The
purpose of the latter runs, in which recompilation was only used to remove
instrumentation code, was to separately measure the overhead introduced
by the countdown traps (see Table 5).

Tables 5, 6, 7, and 8 summarize the results1. Times are the minimum
execution times2 of 20 runs each. The standard deviation of each sample is
given in parentheses.

Figure 7 visualizes the relative execution time of each benchmark pro-
gram for all heuristics.

8.1.1 Aggressive Depth-first Inlining

As Table 5 shows, depth-first heuristics performed well for compress and
mtrt, improving execution time by 8.6% and 15% respectively. However, for
mpegaudio performance got slightly worse, although over 80% of executed
method calls were eliminated (see Table 9). In this case, side effects of

1Note that these benchmark runs were not executed according to the SPECjvm98
specifications and thus do not represent valid SPEC results.

2Real-time measurements were used rather than user time, as—contrary to
expectations—elapsed real-time proved to be statistically much more stable on the system
used. Examination of the reported user and system time values suggests that the system
tends to overestimate system time in some cases which leads to outliers with artificially
reduced user time.

64

CHAPTER 8. RESULTS 65

inlining seem to degrade code quality. The large number of eliminated calls,
however, indicates that even in this case the potential benefits of inlining
could be great. Better performance may be expected when the linear scan
register allocator and full copy elimination are available in CACAO.

The downside of aggressive depth-first inlining is severe expansion of
compiled code size (see Table 13). Thus a version of depth-first inlining was
implemented that completely cancels inlining for a root method if the code
expansion threshold is reached. (The rationale being that partial depth-first
inlining yields very unbalanced inlining trees, so one could expect its benefits
to be rather small, anyway.) As to be expected, this change reduces code
expansion significantly (see Table 14). The modified algorithm, however,
yields bad results for two benchmarks. In the case of javac execution time
increases by significant five percents compared to the unoptimized case.
Clearly, a more sophisticated solution is needed to limit code expansion.

8.1.2 Aggressive Breadth-first Inlining

Aggressive breadth-first inlining was implemented in order to obtain more
balanced inlining trees than those built by depth-first inlining. For the
results presented in Table 7, expansion of intermediate code was limited to
a factor of five. This translates to a maximal expansion of compiled code
by approximately the same factor (Table 15 shows a maximum factor of
4.6 to 8.3 over all methods). For some benchmarks, breadth-first inlining
yielded performance better than or comparable to depth-first inlining with
less code expansion. Total code expansion is still high, though, especially
for javac, which also becomes slower than the baseline version by over 4%.
So breadth-first inlining is not generally superior to depth-first inlining.

8.1.3 Knapsack Heuristics

The knapsack algorithm was the only algorithm that improved execution
time for all benchmarks in the SPECjvm98 suite. As can be seen in Table 8,
the variance of the achieved speedups is very large, with improvements rang-
ing from 0.8% to 18.2%. The knapsack heuristics eliminated on average over
72% of executed method calls (somewhat less than aggressive depth-first in-
lining which eliminated over 76%). In the worst case still more than 46% of
calls could be eliminated. This indicates that we may expect further perfor-
mance improvements with an improved compiler back-end using linear scan
register allocation and copy elimination.

8.2 Number of Executed Method Calls

Figure 8 shows how effective the various heuristics were in reducing the
dynamic number of executed calls for each benchmark. Tables 9, 10, 11,

CHAPTER 8. RESULTS 66

benchmark baseline inlining change3 instrumentation change3

compress 8.29 (0.05) 7.58 (0.05) -8.6% 8.31 (0.02) +0.2%
jess 7.06 (0.03) 7.01 (0.05) -0.7% 7.12 (0.02) +0.8%
db 17.77 (0.02) 17.12 (0.03) -3.7% 17.79 (0.03) +0.1%
javac 10.54 (0.09) 10.11 (0.49) -4.1% 10.77 (0.08) +2.2%
mpegaudio 8.97 (0.04) 9.05 (0.07) +0.9% 9.00 (0.02) +0.3%
mtrt 6.14 (0.03) 5.19 (0.04) -15 % 6.15 (0.09) +0.2%
jack 7.09 (0.04) 6.94 (0.02) -2.1% 7.20 (0.01) +1.6%

Table 5: Benchmark execution time results, depth-first heuristics, all times
in seconds

benchmark baseline adaptive inlining change4

compress 8.29 (0.05) 7.60 (0.04) -8.3%
jess 7.06 (0.03) 7.08 (0.04) +0.3%
db 17.77 (0.02) 17.34 (0.06) -2.4%
javac 10.54 (0.09) 11.08 (0.23) +5.1%
mpegaudio 8.97 (0.04) 8.92 (0.05) -0.6%
mtrt 6.14 (0.03) 5.27 (0.04) -14 %
jack 7.09 (0.04) 6.96 (0.09) -1.8%

Table 6: Benchmark execution time results, depth-first heuristics with can-
celling, all times in seconds

and 12 contain the detailed results. The second column of each table gives
the number of calls performed without any optimization, the third column
gives the number of calls performed with adaptive inlining. The numbers
show that adaptive inlining could in all cases reduce the number of calls
significantly. In the case of compress, only 0.05% of the original number
of calls was performed when using aggressive depth-first inlining.

8.3 Code Size

For each recompiled method the change of code size relative to the code
generated by the baseline compiler was measured. Tables 13, 14, 15, and 16
show the frequency distribution of the expansion factor, and its geometric
mean and maximum. Note that these factors refer to individual recompiled
methods and not to total code size change. An interesting observation is that
in many cases, inlining does not increase the size of the compiled code at all,
and quite often even reduces it. The reason for this can probably be found in
the object-oriented programming style used with Java that favors very small
methods, for example getter/setter methods containing a single statement,
and empty initializers. Code size expansion—while for some benchmarks

CHAPTER 8. RESULTS 67

benchmark baseline adaptive inlining change5

compress 8.29 (0.05) 7.63 (0.06) -8.0%
jess 7.06 (0.03) 6.82 (0.10) -3.4%
db 17.77 (0.02) 17.10 (0.13) -3.8%
javac 10.54 (0.09) 10.99 (0.41) +4.3%
mpegaudio 8.97 (0.04) 8.93 (0.09) -0.4%
mtrt 6.14 (0.03) 5.18 (0.07) -16 %
jack 7.09 (0.04) 6.99 (0.07) -1.4%

Table 7: Benchmark execution time results, breadth-first heuristics, all times
in seconds

benchmark baseline adaptive inlining change6

compress 8.29 (0.05) 7.74 (0.02) -6.6%
jess 7.06 (0.03) 6.77 (0.04) -4.1%
db 17.77 (0.02) 17.21 (0.02) -3.2%
javac 10.54 (0.09) 10.35 (0.17) -1.8%
mpegaudio 8.97 (0.04) 8.84 (0.04) -0.8%
mtrt 6.14 (0.03) 5.02 (0.03) -18.2%
jack 7.09 (0.04) 6.77 (0.01) -4.5%

Table 8: Benchmark execution time results, knapsack heuristics, all times
in seconds

and heuristics rarer than reduction—still dominates on the whole.
If support for releasing unused compiled code would be implemented,

the code expansion factors could effectively become smaller, because in cases
where all calls to a method get inlined, the compilation unit for this root
method could be released.

Tables 13, 14, 15, and 16 also display total code size change for each
benchmark. These numbers take into account that memory used by obsolete
code is currently not freed in CACAO, and so both the original instrumented
compilation unit and the recompiled code are included in the total. Thus
total code size changes are much higher than the code expansion caused by
inlining itself.

8.4 Recompilations

The number of recompilations was counted for each benchmark. Tables 17,
18, 19, and 20 list the total number of methods compiled by the baseline
compiler for each benchmark and the number of recompilations. The base-
line numbers vary slightly between different heuristics, as in some cases

CHAPTER 8. RESULTS 68

compress
jess

db
javac

mpegaudio
mtrt

jack

execution time (%)

0

20

40

60

80

100

no inlining df df-cancel breadth knapsack

Figure 7: Relative execution times with inlining

compress
jess

db
javac

mpegaudio
mtrt

jack

executed calls (%)

0

20

40

60

80

100
no inlining df df-cancel breadth knapsack

Figure 8: Relative number of executed calls

some methods are only ever executed inline and thus are “hidden” from the
baseline compiler.

CHAPTER 8. RESULTS 69

benchmark calls (unopt) calls (opt) change
compress 226048394 80640 -99.96%
jess 122933993 52627260 -57.2%
db 169932836 19858738 -88.3%
javac 114616271 55612081 -51.5%
mpegaudio 109847865 20932623 -80.9%
mtrt 287453574 12301007 -95.7%
jack 100086803 38001762 -62.0%

Table 9: Number of calls executed, depth-first heuristic

benchmark calls (unopt) calls (opt) change
compress 226048394 94151 -99.95%
jess 122933993 88324901 -28.2%
db 169932836 20019251 -88.2%
javac 114616271 72892305 -36.4%
mpegaudio 109847865 16260550 -85.2%
mtrt 287453574 12665017 -95.6%
jack 100086803 46260565 -53.8%

Table 10: Number of calls executed, depth-first heuristic with cancelling

benchmark calls (unopt) calls (opt) change
compress 226048394 19894348 -91.2%
jess 122933993 51566905 -58.1%
db 169932836 19927446 -88.3%
javac 114616271 62437784 -45.5%
mpegaudio 109847865 40245402 -63.4%
mtrt 287453574 31774462 -88.9%
jack 100086803 50991866 -49.1%

Table 11: Number of calls executed, breadth-first heuristic

benchmark calls (unopt) calls (opt) change
compress 226048394 19820463 -91.2%
jess 122933993 41290870 -66.4%
db 169932836 42328511 -75.1%
javac 114616271 61399060 -46.4%
mpegaudio 109847865 35472405 -67.7%
mtrt 287453574 14139733 -95.1%
jack 100086803 34712346 -65.3%

Table 12: Number of calls executed, knapsack heuristic

CHAPTER 8. RESULTS 70

factor compress jess db javac mpegaudio mtrt jack
≤ 0.2 0.0% 1.5% 1.1% 0.6% 0.0% 0.0% 0.8%
≤ 0.5 0.0% 1.5% 1.1% 5.7% 0.0% 4.6% 1.5%
≤ 1.0 38.1% 32.3% 37.6% 38.9% 41.1% 47.7% 30.4%
≤ 2.0 14.3% 16.2% 12.9% 16.5% 17.7% 13.8% 10.3%
≤ 5.0 19.0% 17.2% 25.8% 23.9% 17.7% 16.2% 27.8%
≤ 10.0 23.8% 21.2% 16.1% 11.0% 13.5% 11.5% 20.2%
> 10.0 4.8% 10.1% 5.4% 3.4% 9.9% 6.2% 9.1%

geometric mean 2.3 2.3 2.0 1.6 2.1 1.6 2.5
maximal 13.3 25.4 19.0 20.7 100.5 24.2 19.9

total size (unopt) 325631 430249 338241 622537 641378 384626 497758
total size (opt) 493914 1076228 534004 1811068 978867 803793 1136084

change +52% +139% +58% +191% +53% +109% +128%

Table 13: Code size change through inlining and recompilation, depth-first
heuristics

factor compress jess db javac mpegaudio mtrt jack
≤ 0.2 0.0% 1.0% 1.1% 0.6% 0.0% 0.0% 1.2%
≤ 0.5 0.0% 2.0% 1.1% 5.7% 0.0% 4.3% 2.0%
≤ 1.0 53.5% 66.0% 48.4% 52.3% 48.2% 56.5% 55.1%
≤ 2.0 9.3% 9.4% 16.5% 15.2% 19.9% 14.5% 7.5%
≤ 5.0 16.3% 9.4% 18.7% 18.7% 14.2% 11.6% 16.9%
≤ 10.0 18.6% 9.4% 11.0% 6.6% 10.6% 8.0% 12.2%
> 10.0 2.3% 3.0% 3.3% 0.9% 7.1% 5.1% 5.1%

geometric mean 1.8 1.3 1.5 1.3 1.8 1.3 1.6
maximal 10.1 17.6 13.4 15.7 100.9 24.4 19.6

total size (unopt) 325631 430249 338241 623335 653269 384988 498192
total size (opt) 412478 646024 430261 1301556 888638 686833 807462

change +27% +50% +27% +109% +36% +78% +62%

Table 14: Code size change through inlining and recompilation, depth-first
heuristics with cancelling

factor compress jess db javac mpegaudio mtrt jack
≤ 0.2 0.0% 0.5% 0.0% 0.9% 0.0% 0.0% 0.8%
≤ 0.5 0.0% 2.5% 2.0% 5.7% 2.7% 3.8% 2.3%
≤ 1.0 40.5% 34.8% 36.4% 36.3% 43.8% 51.9% 32.4%
≤ 2.0 9.5% 15.2% 18.2% 22.1% 19.9% 14.7% 17.2%
≤ 5.0 50.0% 43.9% 41.4% 33.7% 32.9% 27.6% 45.0%
≤ 10.0 0.0% 3.0% 2.0% 1.4% 0.7% 1.9% 2.3%
> 10.0 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

geometric mean 1.8 1.7 1.6 1.4 1.4 1.2 1.7
maximal 4.6 5.5 5.5 8.3 6.3 5.5 6.1

total size (unopt) 327371 429822 338382 620997 653582 385209 498691
total size (opt) 410809 712198 443547 1403373 824384 603767 912318

change +26% +66% +31% +126% +26% +57% +83%

Table 15: Code size change through inlining and recompilation, breadth-first
heuristics

factor compress jess db javac mpegaudio mtrt jack
≤ 0.2 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
≤ 0.5 0.0% 1.1% 0.0% 5.9% 0.0% 0.9% 2.0%
≤ 1.0 29.3% 23.2% 26.2% 29.4% 44.0% 35.3% 25.5%
≤ 2.0 41.5% 24.7% 31.0% 31.0% 32.0% 37.9% 25.5%
≤ 5.0 29.3% 40.5% 34.5% 27.9% 21.3% 22.4% 38.7%
≤ 10.0 0.0% 8.9% 6.0% 4.9% 1.3% 2.6% 5.9%
> 10.0 0.0% 1.6% 2.4% 0.9% 1.3% 0.9% 2.5%

geometric mean 1.5 2.0 1.8 1.5 1.4 1.5 1.9
maximal 3.7 24.1 12.5 16.8 13.0 12.2 20.0

total size (unopt) 327376 429301 338273 620963 653582 385663 498019
total size (opt) 375996 640347 422720 1163337 794648 534157 802259

change +15% +49% +25% +87% +22% +39% +61%

Table 16: Code size change through inlining and recompilation, knapsack
heuristics

CHAPTER 8. RESULTS 71

benchmark methods recompiled replacements

compress 769 42 (6%) 61
jess 1250 198 (16%) 310
db 804 93 (12%) 141
javac 1574 653 (42%) 1363
mpegaudio 947 141 (15%) 234
mtrt 908 130 (14%) 201
jack 1019 263 (26%) 549

Table 17: Number of recompilations, depth-first heuristics

benchmark methods recompiled replacements

compress 773 45 (6%) 67
jess 1254 208 (17%) 311
db 805 99 (12%) 152
javac 1586 670 (42%) 1382
mpegaudio 950 142 (15%) 239
mtrt 932 138 (15%) 217
jack 1025 261 (25%) 521

Table 18: Number of recompilations, depth-first heuristics with cancelling

benchmark methods recompiled replacements

compress 772 42 (5.4%) 61
jess 1246 198 (16%) 321
db 803 99 (12%) 159
javac 1571 662 (42%) 1412
mpegaudio 949 146 (15%) 232
mtrt 920 156 (17%) 259
jack 1024 262 (26%) 503

Table 19: Number of recompilations, breadth-first heuristics

benchmark methods recompiled replacements

compress 770 41 (5%) 59
jess 1240 190 (15%) 328
db 802 84 (11%) 142
javac 1534 555 (36%) 1170
mpegaudio 949 150 (16%) 246
mtrt 905 116 (13%) 214
jack 1016 204 (20%) 467

Table 20: Number of recompilations, knapsack heuristics

Chapter 9

Summary

Current virtual machines use dynamic compilation and adaptive optimiza-
tion in order to deliver high performance while keeping compilation times
low. A framework for adaptive optimization has been implemented in the
CACAO virtual machine, using instrumentation and on-stack replacement.

The baseline compiler of CACAO instruments code with counters that
trigger the recompilation of hot methods. On-stack replacement is then
used to install optimized versions of hot methods. If assumptions made by
the optimizer are broken by dynamic class loading, on-stack replacement is
invoked again to undo optimizations that have become invalid.

Method inlining has been implemented as a pass in the optimizing com-
piler. The inliner supports several heuristics for making inlining plans. Of
the implemented heuristics, a variant of the greedy knapsack algorithm
proved to yield the best overall performance. Improvements of execution
time up to 18% were achieved for the SPECjvm98 benchmark suite. As
adaptive inlining could on average eliminate over 70% of executed calls, fur-
ther improvements can be expected when the linear scan register allocator
is available in CACAO.

An algorithm for eliminating local subroutines has been presented. The
algorithm works by representing return addresses as types and specializing
basic blocks with respect to these types. All uses of JSR and RET instructions
that conform to the JVM specification can be handled.

On-stack replacement has been implemented in CACAO in order to al-
low replacing the code of active methods. The replacement mechanism can
switch between unoptimized and optimized code in both directions and be-
tween different optimized versions. Stack frames can be combined or split,
as replacement translates between inlined and non-inlined method calls.

Promising directions for future work are: guiding inlining with more
precise profiling data, using inter-procedural type analysis, and creating
replacement points on demand to reduce memory consumption.

72

Bibliography

[1] A. Aho, J. Hopcroft, and J. Ullman. The Design and Analysis of Com-
puter Algorithms. Addison–Wesley, Reading, MA, 1974.

[2] F. E. Allen and J. Cocke. A catalogue of optimizing transformations. In
R. Rustin, editor, Design and Optimization of Compilers, pages 1–30.
Prentice-Hall, 1971.

[3] Matthew Arnold, Stephen Fink, David Grove, Michael Hind, and Pe-
ter F. Sweeney. Adaptive optimization in the Jalapeño JVM. ACM
SIGPLAN Notices, 35(10):47–65, October 2000.

[4] Matthew Arnold, Stephen Fink, Vivek Sarkar, and Peter F. Sweeney.
A comparative study of static and profile-based heuristics for inlining.
In DYNAMO ’00: Proceedings of the ACM SIGPLAN workshop on
Dynamic and adaptive compilation and optimization, pages 52–64, New
York, NY, USA, 2000. ACM Press.

[5] Matthew Arnold and Barbara G. Ryder. Thin guards: A simple and
effective technique for reducing the penalty of dynamic class loading.
Lecture Notes in Computer Science, 2374:498–524, 2002.

[6] Andrew Ayers, Richard Schooler, and Robert Gottlieb. Aggressive in-
lining. In PLDI ’97: Proceedings of the ACM SIGPLAN 1997 con-
ference on Programming language design and implementation, pages
134–145, New York, NY, USA, 1997. ACM Press.

[7] Michael G. Burke, Jong-Deok Choi, Stephen Fink, David Grove,
Michael Hind, Vivek Sarkar, Mauricio J. Serrano, V. C. Sreedhar,
Harini Srinivasan, and John Whaley. The Jalapeño dynamic optimizing
compiler for Java. In JAVA ’99: Proceedings of the ACM 1999 confer-
ence on Java Grande, pages 129–141, New York, NY, USA, 1999. ACM
Press.

[8] John Cavazos and Michael F. P. O’Boyle. Automatic tuning of inlining
heuristics. In SC ’05: Proceedings of the 2005 ACM/IEEE conference
on Supercomputing, page 14, Washington, DC, USA, 2005. IEEE Com-
puter Society.

73

BIBLIOGRAPHY 74

[9] Craig Chambers. The Design and Implementation of the SELF Com-
piler, an Optimizing Compiler for Object-Oriented Programming Lan-
guages. PhD thesis, 1992.

[10] Craig Chambers and David Ungar. Making pure object-oriented lan-
guages practical. In Norman Meyrowitz, editor, Proceedings of the Con-
ference on Object-Oriented Programming Systems, Languages, and Ap-
plications (OOPSLA), volume 26, pages 1–15, New York, NY, 1991.
ACM Press.

[11] Fred C. Chow. Minimizing register usage penalty at procedure calls. In
PLDI, pages 85–94, 1988.

[12] Alessandro Coglio. Simple verification technique for complex Java byte-
code subroutines. Concurrency - Practice and Experience, 16(7):647–
670, 2004.

[13] Keith D. Cooper, Mary W. Hall, and Linda Torczon. Unexpected side
effects of inline substitution: a case study. ACM Lett. Program. Lang.
Syst., 1(1):22–32, 1992.

[14] Jack W. Davidson and Anne M. Holler. Subprogram inlining: A study
of its effects on program execution time. IEEE Transactions on Software
Engineering, 18(2):89–102, February 1992.

[15] Jeffrey Dean and Craig Chambers. Towards better inlining decisions
using inlining trials. In LFP ’94: Proceedings of the 1994 ACM confer-
ence on LISP and functional programming, pages 273–282, New York,
NY, USA, 1994. ACM Press.

[16] Jeffrey Dean, David Grove, and Craig Chambers. Optimization of
object-oriented programs using static class hierarchy analysis. Lecture
Notes in Computer Science, 952:77–101, 1995.

[17] Jeffrey A. Dean. Whole-program optimization of object-oriented lan-
guages. PhD thesis, University of Washington, 1996.

[18] David Detlefs and Ole Agesen. Inlining of virtual methods. Lecture
Notes in Computer Science, 1628:258–277, 1999.

[19] Stephen J. Fink and Feng Qian. Design, implementation and evalu-
ation of adaptive recompilation with on-stack replacement. In CGO
’03: Proceedings of the international symposium on Code generation
and optimization, pages 241–252, Washington, DC, USA, 2003. IEEE
Computer Society.

[20] Stephen N. Freund. The costs and benefits of Java bytecode subrou-
tines. In Formal Underpinnings of Java Workshop at OOPSLA, 1998.

BIBLIOGRAPHY 75

[21] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java
Language Specification, Second Edition. Addison Wesley, 2000.

[22] Urs Hölzle, Craig Chambers, and David Ungar. Debugging optimized
code with dynamic deoptimization. In PLDI ’92: Proceedings of the
ACM SIGPLAN 1992 conference on Programming language design and
implementation, pages 32–43, New York, NY, USA, 1992. ACM Press.

[23] Kazuaki Ishizaki, Mikio Takeuchi, Kiyokuni Kawachiya, Toshio Sug-
anuma, Osamu Gohda, Tatsushi Inagaki, Akira Koseki, Kazunori
Ogata, Motohiro Kawahito, Toshiaki Yasue, Takeshi Ogasawara,
Tamiya Onodera, Hideaki Komatsu, and Toshio Nakatani. Effective-
ness of cross-platform optimizations for a Java just-in-time compiler.
In OOPSLA ’03: Proceedings of the 18th annual ACM SIGPLAN con-
ference on Object-oriented programing, systems, languages, and appli-
cations, pages 187–204, New York, NY, USA, 2003. ACM Press.

[24] Andreas Krall. Efficient JavaVM just-in-time compilation. In Jean-Luc
Gaudiot, editor, International Conference on Parallel Architectures and
Compilation Techniques, pages 205–212, Paris, 1998. North-Holland.

[25] Andreas Krall and Reinhard Grafl. CACAO — A 64-bit JavaVM just-
in-time compiler. Concurrency: Practice and Experience, 9(11):1017–
1030, 1997.

[26] Junpyo Lee, Byung-Sun Yang, Suhyun Kim, Kemal Ebcioğlu, Erik Alt-
man, Seungil Lee, Yoo C. Chung, Heungbok Lee, Je Hyung Lee, and
Soo-Mook Moon. Reducing virtual call overheads in a Java VM just-
in-time compiler. SIGARCH Comput. Archit. News, 28(1):21–33, 2000.

[27] T. Lindholm and F. Yellin. The Java Virtual Machine Specification.
Addison-Wesley, 1996.

[28] Michael Paleczny, Christopher A. Vick, and Cliff Click. The Java
HotSpotTM server compiler. In JavaTM Virtual Machine Research and
Technology Symposium. USENIX, 2001.

[29] Massimiliano Poletto and Vivek Sarkar. Linear scan register alloca-
tion. ACMTOPLAS: ACM Transactions on Programming Languages
and Systems, 21, 1999.

[30] Robert W. Scheifler. An analysis of inline substitution for a structured
programming language. Commun. ACM, 20(9):647–654, 1977.

[31] Toshio Suganuma, Toshiaki Yasue, Motohiro Kawahito, Hideaki Ko-
matsu, and Toshio Nakatani. A dynamic optimization framework for a
Java just-in-time compiler. In OOPSLA ’01: Proceedings of the 16th

BIBLIOGRAPHY 76

ACM SIGPLAN conference on Object oriented programming, systems,
languages, and applications, pages 180–195, New York, NY, USA, 2001.
ACM Press.

[32] Ayal Zaks, Vitaly Feldman, and Nava Aizikowitz. Sealed calls in Java
packages. In OOPSLA ’00: Proceedings of the 15th ACM SIGPLAN
conference on Object-oriented programming, systems, languages, and
applications, pages 83–92, New York, NY, USA, 2000. ACM Press.

