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Kurzfassung

Objekterkennung, die Lokalisierung der eigenen Position und das Kartographieren eines
Raumes sind Problemstellungen, die in der Robotik durch den Einsatz eines Bildsensors
gelöst werden können. Ein Roboter namens Tinyphoon wurde im Rahmen dieser Diplomar-
beit mit einem Bilderkennungssystem ausgestattet. Es werden Algorithmen und Methoden
präsentiert, die bei der Implementierung dieses Bilderkennungssystems verwendet wurden,
wodurch es dem Roboter ermöglicht wird, an einem Roboterfussballtunier teilzunehmen.
Das Ziel dieser Arbeit ist es, für eine gegebene Hardware optimale Prozeduren zu finden
und zu entwickeln, um 3D-Informationen aus aufgenommen Bildern zu extrahieren. Diese
3D-Informationen bestehen aus Linien im dreidimensionalen Raum und den Positionsin-
formationen bekannter erkannter Objekte am Spielfeld wie Spielball und Tore. Die dazu
verwendete Hardware basiert auf einen Dual Core DSP mit 256 Kbyte Cache und 32 MB
SDRAM. Zwei Kameras, wie sie auch in kommerziellen mobilen Telefonen eingesetzt wer-
den, sind im Abstand von 30 mm an der Front des Bilderkennungssystems montiert. Durch
die kompakte Bauweise des Roboters ist die Größe des Bilderkennungssystems auf 75 mm
x 75 mm beschränkt.
Die Arbeit besteht aus vier Teilen. Der erste Teil beschäftigt sich mit dem Erkennen von
Kanten und Linien in Bildern. Dabei kommt ein neuer, speziell für eingebettete Systeme
optimierter Linienerkennungsalgorithmus zu Einsatz, welcher auf lokalen und globalen Lin-
ienparametern basiert.
Ein Feature-Based Stereo Vision Algorithm wird im zweiten Teil der Arbeit beschrieben.
Dieser verwendet als Features die im ersten Teil extrahierten Kanten und Linien, um
Tiefeninformationen zu berechnen.
Der dritte Teil beschäftigt sich mit einer auf Farben basieren Bildsegmentierung, um Blobs
zu detektieren. Diese Segmentierung sowie die erkannten Kanten und Linien werden im
letzten Teil genutzt, um Objekte und deren Position zu ermitteln. Als Testumgebung
wird ein Roboterfussballspielfeld verwendet, in dem der Spielball, die Tore, die Roboter
sowie die Linien der Bodenmarkierungen erkannt werden. Sowohl die Tore als auch die
Roboter werden anhand ihrer Farbe erkannt. Des Weiteren wird der Spielball mit Hilfe
eines Kreiserkennungsalgorithmus vermessen. Zudem enthält die Implementierung eine
einfache Rektifizierung. Die vom System erreichte Bildwiederholrate ist abhängig vom
gewählten Bildauschnitt und liegt zwischen 5 Hz und 11 Hz.
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Abstract

A vision sensor mounted on a robot enables the robot to solve problems such as object
detection, self-localization and room-mapping with one sensor. A robot named Tinyphoon
is equipped with a vision system to make it possible for the robot to play robot soccer. This
thesis proposes the work steps and methods used to implement this vision system. The
implementation is realized using a Dual Core DSP with 256Kbyte cache, 32MB SDRAM
and two cameras directly connected to the processor. The cameras are similar to the
one used in common cellular phones and mounted with a base-line length of 30mm. The
mechanical size of the sensor is circular and measures 7.5cm in diameter. The subject of
the author’s master thesis is to select, implement and design fast algorithms for the given
hardware, to extract 3D lines and the positions of known objects.
The work can be divided into four parts. The first part is the implementation of a feature
detection algorithm to find edges and lines. Lines are detected by a new line detection
which is based on local and global line parameters and optimized for embedded systems.
The second part is a feature-based stereo vision algorithm using the edges and lines of
the previous part. A color segmentation with a blob detection is the third part. Objects
in the last part are localized by using blob information and measured by lines and edges.
Therefore, a circle detection is implemented. The detection of rectangular shapes is not
part of this thesis but rectangular objects can be detected by their color. The set of the
extracted objects is known and limited. A robot soccer environment are to be used as a
test field where the game ball, the players, the goals and the landmarks on the playing field
are to be detected. The implementation also includes a simple rectification to compute a
horizontal epipolar line. A self-localization is not part of this master thesis. The system’s
frame rate depends on the area of interest and lies between 5Hz and 11Hz.
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Chapter 1

Introduction

This is an exercise in fictional science, or science fiction, if you
like that better. Not for amusement: science fiction in the service
of science. Or just science, if you agree that fiction is a part of
it, always was, and always will be as long as our brains are only
minuscule fragments of the universe, too small to hold all the facts
of the world but not too idle to speculate about them.

(Valentino Braitenberg, ”VEHICLES”)

Robots are already present in human society [Dau03]. We tell science fiction stories where
robots destroy the world1 or we just use them to clean the pool [SZCL00]. The spectrum
of different robot types ranges from simple plastic dolls, industrial machines, software
programmes in the Internet as well as robots which are driving on other planets like the
Mars Pathfinder 2. The robot discussed in this thesis belongs to the group of autonomous
robot [NM05].
Before an autonomous robot can interact intelligently in its environment it has to sense
its surrounding area, because sensing is a key requirement for all but the simplest mobile
behavior [DJ00]. One common way to do this is the use of optical sensors as in [WJ04],
[BAS+06], [BFD05] and [SWA+02]. [DJ00] writes in his book about vision on mobile
robots:

Given that we see to navigate effortlessly with vision, it seems nat-
ural to consider vision as a sensor for mobile robots.

[DJ00]

1Daleks are famous robots characters (mutants in mechanical shells) in a BBC science fiction series
named Doctor Who which try to “EX-TER-MI-NATE” other life forms and destroy our world.

2The Mars Pathfinder was launched on December 4, 1996, by NASA and landed July 4, 1997, on the
surface of Mars [http://www.nasa.org].
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CHAPTER 1. INTRODUCTION 5

This master thesis discusses the methods and the implementation of a vision sensor with
a stereo camera set for an autonomous soccer-playing robot named Tinyphoon. Figure
1.1 shows two Tinyphoon robots with a vision sensor mounted on top. The two cameras
of the vision sensor are placed nearly parallel in the aluminium chassis under the vision
board. Those cameras produce a considerable amount of data which lies in the standard
resolution of 320x240 pixels at 300Kbyte per image pair. The problem is how to reduce
this amount of data to a usable set of information to represent the context of scene in the
image. Additionally the reduction of information must be done within a time limit so that
the robot can react to changes in the information.
The presented vision sensor reduces the information received from the images to a set
of detected objects in the soccer environment. Objects like game ball, robots and the
goals are detected by the vision sensor. These objects are first detected by their color and
then measured by shape. Hence, 3D lines are detected with a feature-based stereo vision
algorithm. Those 3D lines can be used to recognize landmarks on the playing field. This
set of information (objects and lines) allows the Tinyphoon robot to interact autonomously
on a robot soccer playing field. All computation necessary for the detection is done on
the embedded hardware on the robot. Therefore, the mechanical size of the vision sensor
fits into the fundamental part of the robot which is 7.5cm×7.5cm. The frame rate of the
system lies between 5Hz and 20Hz.
The following section describes the motivation behind this thesis. Section 1.2 gives an
overview of the robot and the role of the vision system as a unit on the robot. The
requirements on the vision systems with the chosen solution are described briefly in Section
1.3. Current related work is presented in Section 1.4. A section about the objective of the
thesis followed by the contributions to the scientific community concludes this chapter.

Figure 1.1: The Tinyphoon robot.
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1.1 Motivation

FIRA3 and RoboCup4 are two organizations intended to promote robot soccer. They
attempt to provide a standard problem where wide ranges of technologies must be combined
and integrated. Robot soccer builds one of these problem domains. Solutions which are
designed for such problem domains are also of interest to the current industry and scientific
community. This can be seen in the countless published papers and books on this topic.
Another non neglectable point is the fun joy working in a team to create a robot.
The two robot soccer organizations can be distinguished by their famous leagues. FIRA is
famous for the MiroSot League where small robots in a size of 7.5cm×7.5cm play remotely
controlled by a centralized strategy with cameras above the playing field. RoboCup’s most
famous league is the Four-Legged League. Figure 1.2 shows on the left side a MiroSot
league and on the right side a Four-Legged League playing. The Four-Legged League uses
commercial robots like the Sony Aibo5 while the MiroSot robots are designed by their
teams. FIRA and RoboCup claim that in the future there will be a league where humans

[Taken from http://www.fira.net] [Taken from http://www.robocup2006.org]

(a) MiroSot league (FIRA) (b) Four-Legged League (RoboCup)

Figure 1.2: Two different leagues of different organizations.

will play against robots. But there are currently only a few leagues in which robots play
autonomously.

- Four-Legged League (RoboCup)

- Mid-Size League (RoboCup)

- RoboSot League (FIRA)

3Federation of International Robot-soccer Association, founded in 1997. Details can be found at
www.fira.net.

4RoboCup Federation, founded in 1993. Details can be found at www.robocup.org.
5Details about the Sony Aibo robot can be found at http://www.sony.com.
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- Humanoid League (RoboCup and FIRA)

- Simulation League (RoboCup and FIRA)

Discussions are going on about playing in the Small-Size league of RoboCup and in the
MiroSot league of FIRA autonomously. The benefit would be that the development of
a more realistic hardware in terms of energy consumption and size will be driven. The
new FIRA league will be named AMiroSot (autonomous MiroSot). [KDB+06] describes
possible hardware and rules for an AMiroSot league. The motivation in the presented work
is to implement a vision system algorithm based on the current Tinyphoon to prepare the
robot for AMiroSot. Of course there is not only the vision system present on the robot.
The other units must also be designed, integrated and tested. The next section will present
the different units on the robot and their purposes.

1.2 System Overview / The Robot

This section covers briefly the role of the vision unit on the robot and gives the reader an
overview of the units integrated on the robot. A detailed description of the hardware and
the communication and relation between them can be found in Section 5.1.
The Tinyphoon robot has in its current version three units [NRB+06].

Motion Unit: Controls the wheels and collects information from sensors like gyro, accel-
eration and magnetic field sensors.

Strategy - WMR (World Model Repository) - Reasoning Unit: This unit repre-
sents the brain of the robot, decisions of what the robot should do next based on the
sensor inputs, and the history of the last actions made here. This unit will be named
in the following text Strategy Unit.

Vision Unit: Detects objects on the playing field by using two CCD (charge-coupled
device) cameras.

All three units must interact so that the robot can fulfill its goal, which is to play robot
soccer. Based on the sensor information from the motion unit and the vision unit, the
strategy unit decides to which position the robot should move next. This position is sub-
mitted to the motion unit which sees that the robot reaches the coordinates received. The
task of the vision sensor is to extract 3D information of simple geometric structures which
is related to the information desired. Those geometric structures are 3D lines related to
the landmarks on the playing field, spheres related to the game ball and rectangles related
to the goals and the robots.
The dataflow of the implemented vision system is shown in Figure 1.3. Two images are
taken at the same time and processed in parallel. Every core rectifies its image, segments
it and performs an edge detection on it. The detected blobs are then used to localize
structures in the image of related known objects. A blob in the color of the game ball is
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used to find the circle related to the sphere. The exact position and size of a structure is
computed by using a shape detection algorithm. (Example: A yellow blob represents the
game ball therefore a circle shape detection will be applied in and around the blob). The
implementation in this thesis does not include a rectangle shape detection but it provides
a general interface to detect objects which can easily be enhanced to different types of
shape detections. A circle shape detection is currently the only one implemented. Rectan-
gle shapes are detected only by their color. All detected objects are verified by using the
detected objects from the second image as reference.
The system also provides 3D lines for a localization estimation. These lines are generated
by a feature-based stereo algorithm. The location estimation itself is not part of this the-
sis.
The Tinyphoon robot is able to move at 3 m/s but at the moment there are no vision
systems on the market which are small enough and capable of processing the image infor-
mation fast enough to travel controlled at such a speed. Even the work presented in this
master thesis will only work for a traveling speed around 0.15m/s.

1.3 Requirements and Solutions

The requirements are classified into functional and non-functional requirements. The func-
tional requirements describe the obvious problems of the system fulfilling its task. The
non-functional requirements specify criteria to judge the operation of the system.

1.3.1 Functional Requirements

The vision system is designed for a mobile autonomous robot which is able play robot
soccer in the AMiroSot League. Therefore the system must be capable of:

Detecting spherical, colored objects to recognize the game ball.

Detecting rectangular, colored objects to recognize players and goal.

Detecting 3D lines to recognize the landmarks on the ground for self-localization.

1.3.2 Non-Functional Requirements

The robot travel speed depends strongly on the vision system speed and its object detection
rate. The quality of the system can therefore be measured by:

Frame rate and/or object detection rate: because tests and comparison [BAS+06] to
other systems showed that a frame rate between 5Hz and 15Hz is necessary to play
robot soccer.
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Figure 1.3: Overview of the dataflow on the vision system.

Accuracy: The system should give at least an indication of how successfully a seen object
was detected.

Insensible to brightness changes: Even if the rules of the AMiroSot league propose
strict conditions for the environment. The system should be insensitive to lighting
changes. Experiences from the RoboWorld6 showed that the audience and the other
playing fields next to the environment disturb the lighting conditions during the
game.

Simple to use: The vision system should have a clearly defined interface so that it can
be used on different robots or machines.

Size, energy and costs are also critical criteria. But the hardware is already given and

611th FIRA RoboWorld Cup in Dortmund 30th July - 3rd June 2006.
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those properties can only be changed minimally by the implementation in this master
thesis.

Problems with the frame rate are caused in the DSP (Digital Signal Processor) controller
used. Table 1.1 shows a comparison of the DSP7 used in the implementation and a current
state-of-the-art x86 processor8. We see that the performance of the DSP is at least five
times slower as the performance of the x86 processor. Additionally, the DSP has no
floating point unit which causes, for every function call like tan(), tan2() or sqrt(),
extra processor cycles to emulate a floating point operation with integer operations.

Processor x86 DSP x86
DSP

Processor clock rate
(Access speed to the cache)

2660 MHz 600 MHz x4.4

Cache 2048 Kbyte 256 Kbyte x8

Front Side Bus clock rate
(Access speed to the SDRAM)

1066 MHz 133 MHz x8

SDRAM >512 MB 32 MB x16

Power consumption ≈ 65 Watt ≈ 2 Watt x32

Floating points unit yes no

Table 1.1: Comparison of a x86 processor with the DSP used in the implementation.

1.3.3 Solutions to Functional Requirements

Image processing algorithms are already available in libraries like OpenCV 9 but these
libraries are designed to work on a x86 platform. The vision unit of the Tinyphoon robot
is not based on a PC. It uses instead a DSP Core Module which has low energy consumption
around 2 Watts [MON04] and a physical size of 36x32mm.
The functional requirements are fulfilled using the following techniques.

The Hough-transformation for circles to detect the game ball.

A segmentation algorithm like Rosenfeld [RP66] to find colored objects

A line detection based on local and global parameters 10 to find lines.

A feature-based stereo vision to estimate the 3D location of detected lines.

Alternative techniques which were not used in the implementation because of their com-
putation and memory intensive behaviors are:

7Analog Devices Blackfin ADSP-BF561 Dual Core DSP 600Mhz [Ana05].
8Intel Core 2 Duo Processor E6700 2.66GHz [Int06].
9OpenCV is an open-source computer vision library developed by Intel.

10Local and global line parameters are described in Section 2.2.1.
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A Hough-transformation for lines [DH72] to detect lines.

A SVM (Support Vector Machine) [LW04] to classify/segment the images.

1.3.4 Solutions to Non-Functional Requirements

The following list describes strategies to solve the non-functional problems discussed in
Section 1.3.2.

A higher frame rate can be reached by taking care of the processor’s resources and the
listed strategies.

• Avoiding slow operations
Exact results of floating point operations are in cases where results are used in
comparisons not needed. Example: In the case that the longest vector should
be selected, the actual length is not of interest. Therefore a comparison of two
vectors could be substituted with (1.1), where no floating point operation is
needed. √

a2
0 + b2

0 <
√

a2
1 + b2

1 ≡ (|a2
0|+ |b2

0|) < (|a2
1|+ |b2

1|) (1.1)

• Simplification
Image distortions and other inaccurate measurements during a detection algo-
rithm are coursing tolerances. Floating numbers can be too precise so that the
normal C/C++ floating point operation sqrt() can be replaced by a fix point
square root function based on longhand division [Tur94]. The radian which is a
SI11 supplementary unit could also be transformed to a system with a domain
of 8-bit values. This allows fast comparisons and saves memory. Example: An
angle could be represented with a value between 0x00h and 0xFFh instead of
between −π and +π.

• Pre-computation
The use of a lookup table reduces the cycles for a complex mathematical op-
eration for the cycles used for memory access. A domain of discreet values for
angles with integers instead of floating point numbers would benefit from such
tables.

• Image processing algorithms
The image processing algorithms have to be designed so that random SDRAM
accesses are minimized. This can be achieved by using DMA controllers and
optimized data structures. Functions which access the same data for processing
like image segmentation and edge detection can be merged into one function to
save additional SDRAM accesses.

11The International System of Units (abbreviated SI from the French language name Système Interna-
tional d’Unités).
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Detection on different levels. Objects should be detected by their color and structure.
This also includes an accuracy indicator which gives points for every positive test.

The YUV-Color format 12 separates the chroma and the luma channel. [BAS+06]
showed successful results on different lightning contrition with this format.

1.4 State of the Art

Similar applications can primarily be found in the field of robot soccer, because the need
to detect objects on the playing field is essential for robot soccer. But a combination of
a ball detection system and a stereo system was only proposed in two papers, [NBM04]
and [SPV05]. [NBM04] describes an embedded ball detection stereo system where the two
extracted spheres from the left and the right image are primarily used to raise the accuracy
of the detection. The application in [NBM04] was used for robot soccer. A similar but
more complex implementation is proposed in [SPV05] where the system is based on a PC
and not for robot soccer.
Most robots of the FIRA Middle Size League are using omnivision cameras to find the
objects on the playing field and to localize themselves [YYL05]. But the middle size league
robots are big enough to hold a PC for processing on the robot. There are also reports
of systems with a combination of an omnivision camera and a “normal” camera in the
front [KYY05]. The use of an omnivision system for the Tinyphoon robot is not an option
because it would be to large. The related work can be split into two main groups: stereo
vision and ball-detection applications.

1.4.1 Stereo Vision Applications

Most embedded stereo implementations take advantage of two programmable chip types,
Field-Programmable Gate Arrays (FPGAs) and/or DSPs. One of the first reported stereo
systems was developed at IRNIA 13 and it was implemented for both DSP and FPGA
hardware in 1993 [BBH03]. The system worked with an image size of 256x256 and was
able to compute a frame rate of 3.6 frames per second (fps). Darabiha proposed in [DRM03]
a vision hardware based on an FPGA which is able to compute 30 frames per second at a
resolution of 256 x 360 pixel. It also produces depth maps like [CD97]. Unlike [DRM03]
and [CD97], [Kon97] used a DSP where he reached a frame rate of 8 fps at 180 x 160 pixel
but the system included also a kind of calibration. The most equivalent implementation
is reported by [Ent05]. He used a feature-based stereo vision but implemented it on a PC.
Reports of more stereo systems can be found in [Kon97] and [BBH03]. [LB03] and [IYT92]
propose stereo vision systems with omnivision cameras of different types.

12The YUV-Color format will be discussed in Section 2.3.4.
13The French National Institute for research in computer science and control
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1.4.2 Ball Detection Applications

A usual strategy for finding objects is to find a color14 blob15 related to the object’s color.
[KYY05] used such a blob detection on his middle-size robot to recognize the ball with
an omnivision camera connected to a PC. [JD02] also used the ball color but he designed
a smaller system integrated to a PDA with a frame rate of 2.5-3.5Hz and the PDA was
also used to control the robot. [RRN02] implemented his system based on the object color
on embedded hardware and reached a frame rate of up to 16Hz but with low accuracy.
[MON04] used hardware similar to the one in this thesis and reached a frame rate of 60Hz
but also with low accuracy. [BAS+06] used the same hardware with a single-core Blackfin
DSP CM-BF533 in his implementation to integrate a system with higher accuracy with
a frame rate between 5Hz and 20Hz. The object color was used to get a rough idea in
which area the shape detection should be applied to measure the exact dimensions of the
detected object.

1.5 Objective of This Thesis

The goal of this thesis is to design a feature-based stereo algorithm and a ball detection
algorithm for given vision hardware on the Tinyphoon robot. The algorithm should take
care of the processor’s architecture to reach a frame rate high enough to play robot soccer.
A frame rate between 5 and 15Hz depending on the processed image size should be reached.

1.6 Contributions

The contributions for the scientific community are firstly in the field of electronic engineer-
ing, and secondly in the field of computer science.
The proposed work proves that a low energy consuming (2Watts) embedded stereo vision
hardware can be created on a small space (75mmx75mm). This is of interest for the elec-
tronic engineering community.
The contribution to the computer science community is the development of:

• A scan line based canny edge detector for embedded systems with DMA-Controllers
which works without floating point operations.

• A memory optimized line detection which works in linear time.

• A general concept of detecting known objects in images based on color and shape.

14Color includes, in this case black, and white.
15Blobs are described in Section 2.3.5.
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• A new filter to detect edges related to colored circles. This filter optimizes the Hough
transformation for circles.

1.7 Structure

Chapter 2 presents fundamental concepts of image processing and feature extraction which
are used in implementation. Camera properties and calibration techniques are discussed in
Chapter 3. The estimation of distances to seen objects or lines are described with different
techniques in Chapter 4. A detailed description of the hardware used and the software im-
plementation is described in Chapter 5. Results to experiments on the developed algorithm
are presented in Chapter 6 followed by the conclusion with a discussion.



Chapter 2

Image Features

[Figure taken from [PB99]]

Image features are described in [TV98] as special parts of an image which correspond to
interesting elements of the scene. Therefore, the purpose of the vision system defines which
elements are interesting. The purpose of our vision system is to recognize elements related
to objects from a robot soccer environment in the image and to estimate their location in
a second step. This chapter will cover the theoretical background to allow the reader to
understand the approaches used to terminate the position of the projection from the game
ball, the goals and the landmarks in the image. The estimation of the location of an object
on the playing field will be discussed in Chapter 4.
The basic idea of detecting interesting elements in the implementation is to first deter-
minate the location of the element in the image by its color and to then verify and/or
measure it by its shape. Therefore, the chapter discusses detection methods of detecting
shapes like lines and circular arcs and techniques to segment images in colored areas.
The chapter starts with different edge detectors followed by curve detectors to find lines
and circular arcs. Section 2.3 describes techniques to segment images and how to deal with

15
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noise by segmentation. The description of the YUV-Color format and a blob detection
algorithm concludes this chapter.

2.1 Edges

Image features can be ordered in a hierarchy. On a basic level we have edges, and based
on these we have geometric structures like lines or curves, followed by objects and so on.
This section will focus on the extraction of edge elements in images.
Edge elements, or edges, can be described as areas in the image where the pixel value
undergoes a sharp change in its surrounding neighborhood. The properties of an edge
element are described in the following list and Figure 2.1.

Figure 2.1: Edges and the properties of an edge.

• Edge Position
Position of the edge in the image with x and y coordinates

• Edge Normal (Edge Gradient)
A vector looking towards the intensity change.

• Edge Direction
A vector perpendicular to the edge normal.

The detection of edges works in two steps: first an edge detection, which is then followed
by the edge localization. The edge detection builds the first derivation over an image
area. The desired edge is localized where the first derivation forms a peak or by the zero
crossing of the second derivative. These two steps are necessary because we are dealing
with natural images. A brightness change of an edge of interest does not occur between
two pixels (Figure 2.2.a). Instead, the change occurs smoothly over many pixels. Figure
2.2.b shows the first derivation and 2.2.c the zero crossings of the second derivation.
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There are many algorithms known to detect edges in images like Sobel, Shift & Difference,
Frei & Chen, Roberts, Perwitt and Laplace Enhancer. Details and more methods can be
found in [Bax94, PB99, TV98].

2.1.1 Sobel Operator

The Sobel Operator approximates the intensity changes ∂I
∂x

and ∂I
∂y

by applying two different

operators sx and sy on an image area a (2.1),(2.2). The partial derivation makes it possible
to compute the edge gradient ∇I and edge direction (2.3), (2.4). The actual edge location
can be estimated by applying a nonmaximum suppression described in Section 2.1.4.

sx =

 −1 0 1
−2 0 2
−1 0 1

 , sy =

 1 2 1
0 0 0

−1 −2 −1

 (2.1)

∆Ix =
∑

sx · a ≈ ∂I
∂x

, ∆Iy =
∑

sx · a ≈ ∂I
∂y (2.2)

|∇I| =
√

∆I2
x + ∆I2

y (2.3)

∇Iα = arctan 2 (∆Iy, ∆Ix) (2.4)

The computation of the partial derivatives with the operator can be simplified in the case
of the Sobel operator. The symmetry in the operator allows us to store the result of one
multiplication of one row (sy) and/or column (sx) to reuse it only by changing the sign to
increase the performance.

2.1.2 Frei & Chen Operator

Other similar gradient-based solutions like the Sobel operator are using different operators.
Frei & Chen has similar operators (2.5) like the Sobel, but the

√
2 allows a better gradient

approximation with the cost of a higher computational complexity.

sx =

 −1 0 1

−
√

2 0
√

2
−1 0 1

 , sy =

 1
√

2 1
0 0 0

−1 −
√

2 −1

 (2.5)

2.1.3 Laplace Operator

Unlike the operators named before, the Laplace operator ∇2f (2.6) directly computes the
second derivation. Because of that, the edge direction gets lost.

∇2f = 〈∂
2f

∂x2
,
∂2f

∂y2
〉 (2.6)
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The implementation of a Laplace operator can be done by a kernel with the size of m×m.
Such a kernel with the size of 3× 3 is shown in (2.7). 0 1 0

1 −4 1
0 1 0

 (2.7)

Unlike other operators like Sobel, this operator is an omnidirectional operator. This means
there is only one operator necessary to find edges, while on the Sobel, Frei & Chen or
Roberts at least two operators are involved.
It is notable that the Laplace operator is sensitive to noise. A combination between a
Gaussian (2.8) and the Laplace operation can work against this problem and is named
Laplacian of Gaussian Filter (LoG) (2.9). This function is also known by the name Mexican
Head.

g(x, y, σ) = exp−x2 + y2

2σ2
(2.8)

LoG(x, y, σ) =

(
x2 + y2 − 2σ2

σ4

)
exp

(
−x2 + y2

2σ2

)
(2.9)

2.1.4 Canny Edge Detector

A combination of filters and operations to extract edges is the Canny Edge Detector [Can86]
which uses a Gauss operator, a Sobel operator, a nonmaximum suppression and a hysteresis
threshold. Figure 2.2 shows all major steps in the canny edge detector.

1. The image will be smoothed by applying a Gauss operator with zero mean and
standard derivation. This is necessary because the following Sobel operator is sensible
to noise [PB99].

2. By applying the Sobel edge operator, a gradient vector ∇I can be computed for every
pixel looking toward the brightness change.

3. An edge with a gradient length |∇I| under a threshold τe will be removed.

4. The nonmaximum suppression eliminates edges where at least one neighbor in the
edge direction has a bigger gradient length than |∇I|.

5. The hysteresis threshold groups connected edges1 with a |∇I| > τl and removes a
group if there is no edge in the group with |∇I| > τh.

1Connected edges will be described in Section 2.3.2.
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(a) Source (b) First derivation (d) Second derivation (c) Hysteresis threshold

Figure 2.2: Canny edge detection in different processing stages.

2.1.5 Summary

Natural images taken by cameras are noisy because of imperfect fabrications of camera
lenses and the optical sensor. According to [PB99], the canny edge filter is the best
choice for natural images. The Gaussian parameter σ should be taken as a free parameter
estimated by using experimental results. The output of the canny edge detector can be
used as input for the following described curve and shape detection to find lines and circles
in images.

2.2 Curves and Shapes

Detected edges provide the foundation for the methods in this section. Curves and shapes
are directly related to the underlying edges in the image. This section is divided into two
parts. The first deals with straight lines and the next one with circles followed by a brief
summary.

2.2.1 Straight Lines

If we are speaking about lines we have to distinguish between lines and line segments.
A line is an infinitely thin, infinitely long, perfectly straight curve [Ste02]. A line can
be represented in a two-dimensional Cartesian coordinate system in the so called Slope-
Intercept Form with slope m and y-intercept b shown in the equation (2.10).

y = mx + b (2.10)

A line segment is a part of a line that is bounded by two end points and contains every
point on the line between its end points [Ste02]. Normally a line segment is described by
two points.
The presented strategies to extract lines can be grouped into two classes:

• Edge transformation or global parameters
Edge properties are transformed into a Parameter Space where the space axes rep-
resent the properties of a line. Every point in such a space represents a line. A
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maximum in the parameter space represents a potential candidate for a line in the
image coordinate system. [DH72] was one of the first to document a line detection
based on Hough transformation, which is named after the related 1962 patent of Paul
Hough.

• Edge grouping or local parameters
Edges on a line have shared characteristics including the gradient direction. If con-
nected edges with similar characteristics are grouped together, statistical methods
can be used to determinate if such a group forms a line segment. [Hor73, BHR86,
CB03, Ent05] are using this advantage in their line detectors.

Hough Transformation

The Hough transformation (HT) describes a way to detect lines and simple curves in
binary images. The gradient direction or the edge strength is not needed to perform this
algorithm. The detection of the line can be performed in two steps. The input is an edge
image which can be generated by a canny edge detector.

1. Transformation
Every edge E(ximg, yimg) in the image represents a curve in the parameter space. The
parameter space represents a system where the axes are the properties of the curve
to detect, in our case, the properties of a line. As we know, a line can be represented
in different ways, therefore the parameter space is different for every representation.
A simple way to represent a line is by its slope m and y-intercept b in slope-intercept
form (2.10). The curve of an edge in the < m, b > parameter space will be in this
case a line L (2.11).

L = {(m, b)|yimg = mximg + b} (2.11)

The curve would be a sinusoid S (2.12) if we would use the properties ρ and θ for
the < ρ, θ > parametric space of a line in the polar system (Figure 2.3). ρ stands for
the distance and θ for the angle of the edge E(ximg, yimg) to the origin.

S = {(ρ, θ)|ρ = ximgcos(θ) + yimgsin(θ)} (2.12)

Figure 2.11 shows a source image with edges and the related < ρ, θ > parameter
space.

2. Peak search
An intersection of two or more curves on one point P occurs in the Hough space if
the related edges are on the same line in the image. A peak will be the result of a line
in the parameter space and this peak can be detected by using different algorithms
like in [Dav92]. The transformation back to the image coordinates depends on the
chosen parametric space.
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Figure 2.3: The left image shows a line with a slope of m = 1 and b = 0. The right image
represents a parameter space with ρ and θ as axes. The sinusoids S1− S7 are the related
curves to the edges E1 − E7 in the source image. P45◦,0 points to the intersection which
describes the line of the source image in polar coordinates.

A line can have infinite plus or minus m and b values. Therefore a < m, b > parameter space
deals with the risk of loosing intersections. This is the reason why most implementations
use the < ρ, θ > parameters space.
Another finite parameter space is the one used by the Muff Transformation. It uses the
two points where the line would intersect with the rectangle image plane (Figure 2.4).
Normally the detection of a line is not sufficient. We attempt to find the line segment on
the line which matches the line segment shown in the image by the edges. This can be
detected by searching the last occurrence of an edge on the detected line. Algorithms to
terminate the endpoints of a line are proposed in [TV98] and are not further described
here.

Burns

The Burns algorithm groups edges by their gradient orientation in so-called line-support
regions. The actual localization of the line itself is then terminated by using the gradient
strengths of the edges in the line-support-regions. Unlike other papers, [BHR86] defines
a line with a start and an endpoint like a line segment but he also adds attributes like a
width and a contrast to the line. The input of the Burns algorithm is an edge image with
all gradient information of every pixel such us the output of a Sobel edge detector. The
algorithm can be described in the following steps.
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Figure 2.4: Line properties of the muff transformation. A line Li will be described by two
Points Ai and Bi. A and B are presenting the position on the perimeter of the image
plane.

1. Grouping edges into line-support-regions by the gradient orientation.
[BHR86] used predefined intervals with 8 or 16 partitions to classify edges, Figure
2.5.b. He also showed how a grouping can be accomplished using overlapping parti-
tions because a natural line tends to lie across partitions.

2. Planar fit on the ramp of the change in the intensity surface.
An approximation of a plane to the ramp of the intensity surface is done in a line-
support region. The intensity change in a line-support region can be described by
a plane ramp overlayed with noise, shown in Figure 2.5.c. [BHR86] tries to remove
the noise in the ramp by using a least-square function and to fit then a plane, Figure
2.5.d.

3. Extraction of the line attributes.
The line attributes can now be extracted by the location and orientation of the planar
fit from the last step as well as the length, contrast and width, Figure 2.5.e. The
location and orientation is determined by using a second plane which intersects the
planar fit at the average height of the intensity surface, Figure 2.5.f.

4. Filtering lines
Depending on the user, not all extracted lines are of interest. Texture lines are
normally buried in short lines while long lines mostly represent depth edges.

2.2.2 Circles

Extracting circular features are common features for location estimation [SRTSB92]. We
have to distinguish between the detection of circular arcs and filled circles. The detection
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(a) Source (b) Line-support region (c) Intensity surface

(d) Ramp (e) Planar fit (f) Line
[Figures and comments are taken from [BHR86]]

Figure 2.5: Typical line approximation using the burns algorithm. (a) Source image. (b)
Regions produced by a connected-components algorithm with two line-support-regions.
(c) Surface plot of an edge-intensity profile. (d) Planar model of the line obtained by
a least-squares fit weighted by gradient magnitude. (e) The straight line is obtained by
the intersection of a weighted planar fit with a horizontal plane representing the average
intensity. (f) The resulting straight line overlaid on the set of pixels making up the line-
support region.

of a filled circle can be reduced to the problem of detecting a circular arc but not vice versa.
Therefore, blob2-based detections for filled circles cannot be applied for circular arcs.

Circular Arcs

The description how to detect edges describing an arc curve is widely circulated ([KBS75],
[Kie92], [IHL99]and [BAS+06]). Using the Hough transformation is the most popular tech-
nique for detecting such arcs. The first versions [DH72] and [KBS75] used a parametric
space with three axis while later versions [IHL99] and [BAS+06] used an optimized algo-
rithm by splitting the problem into two parts. [IHL99] presented in his work the following

2Blobs will be described in Section 2.3.
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two steps to detect circular arcs.

1. Detection of the circle center
This is performed by finding a peak caused by the intersection of lines drawn toward
the center. The line to the center can be found as a normal to a virtual line between
connected edges.

2. Detection of the circle radii.
The Radius Histogram, which represents all involved edges of the last step with their
distance to the detected center is used to find the radius.

[BAS+06] used the gradient direction in the first step to define the line direction. This
reduced the complexity but made the algorithm sensitive to noise.

Filled Circles

Another popular approach in machine vision for detecting circular, filled shapes is to use
the pixel area of a blob. Such detection is fast but not accurate. The accuracy could be
increased if the radius of the filled circle would be known. This is normally the case in an
automatic visual inspection (AVI) system. We have to be aware that only the area size of
a blob will be compared to a circle, therefore other shapes can also fulfill this property of
equation (2.13). If Pa is close to one, the probability increases that the pixel area of this
blob will be a circle of the radius r.

Pa =
(r2 × π)

blob.pixelcount
(2.13)

2.2.3 Summary

The Hough transform is the widest spread line detection algorithm on PC platforms but
the memory consuming parameter space and the read and write access make the Hough
transformation on an embedded system slow compared to other local line detectors [CB03].
Even optimized implementations, where the Hough transformation takes care of local prop-
erties, are not as good on memory weak-systems as a grouping algorithm. A combination
of the Burns algorithm [BHR86] and the local lines algorithm of Climer [CB03] lays the
foundation idea for the implementation described in this thesis. The algorithm constructed
functions scan-line-based in linear time like [CB03] and uses local features to group edges
to lines as in [BHR86]. The algorithm will be described later in Section 5.2.2.
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2.3 Image Segmentation

The robot soccer rules define unique colors for the game ball, the goals, the landmarks
and the two playing teams. The detection of such uniquely colored areas in the image can
be used to recognize objects from the soccer environment. Image segmentation algorithms
are techniques to recognize such areas.
Jarvis describes the process of the image segmentation in the following way:

Segmentation is the process by which data are grouped into nono-
verlapping, meaningful components. In the context of image pro-
cessing, segmentation concerns the grouping of pixels into dis-
jointed, homogenous regions, which are hopefully consistent with
distinguishing the essential objects and/or their components in the
image.

R. A. Jarvis in [BH99] regarding image segmentation

This section focuses on image segmentation for detecting interesting parts of the image
by using simple operations to group and distinguish pixels in the image, based on their
color. Therefore, this section starts with algorithms on binary images. The first subsection
describes the opening and closing operations for removing noise in binary images followed
by a description for defining connectivity between pixels. The subsection 2.3.4 discusses
the YUV color format used in the implementation and how the previous algorithms for
binary images can be extended for color images. Blobs are then described, including how
they are used to store the information extracted using the segmentation algorithm. A short
summary concludes this section.

2.3.1 Open and Closing

Let us examine on a binary image where a pixel describes the detection of an interestingly
colored object. The occurrence of a single pixel alone does not confirm the existence of the
object of interest in the scene. The single pixel can be caused by reflections in the scene or
by noise. The probability that the pixel is related to an interesting object increases if the
pixel is surrounded by other pixels with the same value. An opening operation removes
single-pixel object anomalies by applying an erosion operation (2.14) followed by a dilation
operation (2.15). The closing function fills single-pixel gaps and is the inverse sequence of
the opening operation, e.g. a dilation followed by an erosion.

ai,j =

{
1 , if ai,j = 1 and for all neighbors |k=i+1

k=i−1|
l=j+1
l=j−1 ak,l = 1

0 , else
(2.14)
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For all neighbors |k=i+1
k=i−1|

l=j+1
l=j−1 ak,l =

{
1 , if ai,j = 1

0 , else
(2.15)

Both opening and closing sequences can be applied multiple times to extend the effect.
The closing sequence will fill bigger gaps with multiple applications and the opening will
remove bigger spikes in the binary image. Figure 2.6 shows a source image with single pixel
anomalies on the left side and on the right side the image after a closed and an opened
operation where all single pixel anomalies have been removed. Details on this topic can be
found in [Bax94].

(f) Source (b) Closed then opened

Figure 2.6: Combination of the dilation and erosion operation sequences.

2.3.2 Connectivity

Before we are able to find connected areas related to an object in the image, we have to
define when a pixel is a part of a connected area. The implementation therefore uses an
eight-pixel neighborhood to define such areas.
Let us describe the eight-pixel neighborhood using a binary image represented by a m× n
matrix with the entries ai,j with (0 ≤ i ≤ m, 0 ≤ j ≤ n). Two pixels ai,j and ak,l

are neighbors if max(|i| − |k|, |j| − |l|) = 1. Hence, two pixels are connected if they are
neighbors and have the same value ai,j = ak,l, [RP66]. The next subsection describes how
connected components can be detected in images.

2.3.3 Determining Connected Components

[RP66] described in 1966 how to find connected components called segments of a binary
image in a scan line based algorithm. The algorithm scans line by line over the image and
decides whether a pixel ai,j belongs to a segment or not. The output is an image where
every pixel is labeled with a value corresponding to which connected component the pixel
belongs. Only four neighbors of the pixel are necessary to mark the pixel with a label.
The basic steps of the algorithm are as follows:



CHAPTER 2. IMAGE FEATURES 27

1. We start with an empty label index in the lookup table and scan every pixel ai,j of
the image from the left to the right, line by line. The target image b is also blank at
the beginning.

2. If ai,j > 0,

• and no neighbor bi+1,j−1, bi,j−1, bi−1,j−1 and bi−1,j is labeled then label in bi,j

with a new label and add this label to the lookup table with equal index and
value,

• and if only one label type occurs in the neighborhood bi+1,j−1, bi,j−1, bi−1,j−1

and bi−1,j, then label in bi,j with the same label as the occurrence in the neigh-
borhood, (Figure 2.7.b shows this processing step.)

• and if two different label types A and B occur in the neighborhood bi+1,j−1,
bi,j−1, bi−1,j−1 and bi−1,j then label bi,j with label A and change all occurrences
of the label B in the target image from the current and last line to A as well
as the occurrence of B to A in the value row of the lookup table. Figure 2.7.b
shows this processing step. (Info: Three label types in the neighborhood are
not possible.)

3. Rename all labels in the target image b with the corresponding value entry from the
lookup table.

Thus far, we have discussed algorithms for binary images in these sections. The next
subsection introduces us to the YUV color format and how the segmentation algorithm
can be applied to images with color information.

2.3.4 YUV Color Format

The YUV color format is the format provided by the cameras in the implementation. In
brief, a YUV image is the extension of a gray image with two more channels of color
information. It was first used to keep old monochrome TVs compatible with the new color
TVs. PAL3 and NTSC4 use similar YUV Formats. Y represents the luminance of the gray
image, U and V the chrominance. But, in fact, it is a little bit more complex, because a
human eye is more sensitive to the green colors5, therefore the transformation from a YUV
color format to a RGB format is done with the equation (2.17) instead of (2.16) [NH04].
(2.18) defines the chroma components.

Y = R + G + B (2.16)

3PAL (phase-alternating line) is analog television system in use in Europe except France, Australia,
part of Africa, South-America and Asia.

4NTSC (National Television System(s) Committee) is the analog television system in use in the United
States, Canada, Japan, South Korea, the Philippines, and some other countries, mostly in the Americas

5Details to the visible color spectrum of humans can be found at www.wikipedia.com under the keyword
“Visible spectrum”.
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(a) The bi,j will simply be marked with the same label as bi,j−1. No changes in the lookup table.

(b) The bi,j had neighbors with different labels. The label 2 was removed from the right side of
the lookup table and from the line pixel array bi−1,j to bi,j−1. The tiny numbers in the left

upper corners show the state before the labels were removed.

Figure 2.7: Two cases of the Rosenfeld segmentation algorithm.

Y = 0.299 ·R + 0.587 ·G + 0.114 ·B (2.17)

U = B − Y
V = R− Y

(2.18)

A certain color can therefore be defined as an angle between U and V. Color segmentation
can be described as a sequential or a parallel execution of methods proposed in Section
2.3.3 on distinct color information. This can be done on the color channels or if a pixel
is defined by a numerically distinct number of classes. Figure 2.8 shows segmentation by
colors where the segmentation was applied on a red color and a color like brown. Figure
2.8.b shows the connected component detected as gray areas. Blobs are shown as rectangles
in Figure 2.8.c which are discussed in the next subsection.
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2.3.5 Blobs

The information extracted by the segmentation algorithm can be stored in blobs. A blob
can be seen as a brief description of an image segment. It holds limited information about
the related segment, including:

• blob.rec, blob.pos
Borders of the segment as a rectangle and its position

• blob.pixcount
Number of pixels in the related segment

• blob.cc
Color Center of Mass (2.19) and (2.20).

blob.ccx =
Σ(of all x pixel coodinates)

blob.pixcount
(2.19)

blob.ccy =
Σ(of all y pixel coodinates)

blob.pixcount
(2.20)

A threshold is used to cut out segments under and above a certain size. The size of a
segment is directly related to the pixel count blob.pixcount of a blob. Therefore, thresholds
can be used to remove unwanted segments. Figure 2.8.c shows detected blobs where the
center of a blob is marked with + and the color center of mass with ×. We can also see
that not all segments were used to create blobs because their sizes were below the threshold
of the minimum pixel count.

(a) Source (b) Segments (c) Blobs

Figure 2.8: A segmented image with the related blobs.

2.3.6 Summary

This section provided an overview of the topic image segmentation for detecting colored
areas in images. We presented the closing and opening operation sequences for removing
noise in binary images and the Rosenfeld algorithm to find connected components. The
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extension of the segmentation algorithm to the YUV color format was described because
this format is then also used in the implementation.
Together with the previous Section 2.2, this chapter represented techniques on how to
locate objects like the game ball as a blob in the image and how to measure them by their
shape.



Chapter 3

Camera Systems

You have been weighed,
you have been measured,
you have been found wanting

(Brian Helgeland, “A Knight’s Tale ”)

This chapter describes the geometric constraints of simple pinhole camera systems up
to non-coplanar stereo vision systems with calibration techniques. It starts with the
geometry of monocular systems followed by their calibration methods. Then stereo
systems in a coplanar and a non-coplanar form are described. The chapter ends with a
discussion about rectification and a summary.

3.1 Camera Geometry

This section describes the relation between objects in the world and their projection on an
image plane.

3.1.1 Pinhole Camera

A pinhole camera is a camera without a lens. The light passes through a small hole and
projects an inverted image on a wall behind the hole. Figure 3.1 shows a schematic of a
pinhole camera. The sharpness and brightness of the projection depends on the size of
the pinhole. A bigger pinhole causes a less sharper but brighter image. If the origin of
the camera is placed at the pinhole, the size x of a projected vector on the image plane
can be described with the equation (3.1). In the same way, y can be computed (3.2) in
three-dimensional space. It can be seen by looking at the schematic view in Figure 3.2

31
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Figure 3.1: Pinhole Camera
[http://en.wikipedia.org/ GNU Free Documentation License]

that a virtual image plane can be drawn in front of the pinhole camera. This image plane,
unlike the projection behind the pinhole is not inverted. The non-inverted projection on
the virtual image plane is sometimes used to simplify the schematic.

Figure 3.2: Pinhole Camera Scheme

x′ = −x = f
X

Z
(3.1)

y′ = −y = f
X

Z
(3.2)

We do know now how to compute where a three-dimensional point P = (X,Y, Z) will be
projected on the image plane p = (x, y). But if we assume that the image plane will be
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replaced by a CCD chip, we must establish some more properties. Once the CCD chip is
placed at its position, it can happen that the optical axis does not pass through the origin
of the chip. Hence, we want to represent the point p = (x, y) in pixel units and not in an
SI system. For that we must introduce more variables.

• sx, sy

Effective size of a pixel in a horizontal and a vertical direction in an SI prefix (mil-
limeter).

• ox, oy

Coordinates in pixels where the image plane intersects the optical axis.

• ximg, yimg

Position of a point p in pixel units.

Now the point pimg = (ximg, yimg) in pixels can be computed using the equations (3.3) and
(3.4)

ximg = − x

sx

+ ox (3.3)

yimg = − y

sy

+ oy (3.4)

3.1.2 Camera with a Thin Lens

A camera with a thin lens allows more light arrays to enter the camera than one with a
pinhole. If we consider a point P not too far from the optical axis, a thin lens will focus
all light arrays from P to a point p shown in Figure 3.3. A pinhole camera would only
allow light rays to pass through the point O. Because of that, a pinhole camera has an
impractically long exposure time.
An image plane placed normal to the optical axis through the point p in a camera model
with a lens would show a sharp projection of the point P . If the image plane is placed
nearer or further away from the lens, the projection would become blurred, but as long as
the blurring is smaller than the resolution of the image sensor, the projection will still be
received as a sharp image.
Important equations to compute properties are the Fundamental Equation for Thin Lenses
described in equation (3.5) and the Field of View (3.6). The field of view depends on the
usable diameter of the lens d which can vary in its physical size.

1

Ẑ
+

1

ẑ
=

1

f
(3.5)

tan ω =
d

2f
(3.6)
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Figure 3.3: Lens Camera Scheme

The use of lenses causes distortions. In particular cameras with a large field of view, strong
radial distortions are created. Those distortions become stronger at the border of an image
and are non-existent at the image center. κ1 and κ2 describe those displacements in the
equations (3.5, 3.8 and 3.9) where xd and yd are the distorted points and r represents the
distance to the center.

x = xd(1 + κ1r
2 + κ2r

2) (3.7)

y = yd(1 + κ1r
2 + κ2r

2) (3.8)

r2 = x2
d + y2

d (3.9)

Emanuele Trucco described in his book the use of the distortion variables κ2 and κ1 with
the following statement:
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Since they (κ2 and κ1) are usually very small, radial distortion is
ignored whenever high accuracy is not required in regions of the
image, or when the peripheral pixels can be discarded. If not, as
κ1 � κ2, κ2 is often set equal to 0, and κ1 is the only intrinsic
parameter to be estimated in the radial distortion model.

[TV98] about κ2 and κ1

3.1.3 Intrinsic and Extrinsic Parameter

The intrinsic and extrinsic parameters describe the transformation between the 3D world
coordinate system and the 3D camera coordinate system and then to the 2D system on
the image plane as shown in Figure 3.4. The translation T and rotation R between the
world system and camera system can be realized with a translation and a rotation matrix
named Extrinsic Matrix Mext (3.10). The Intrinsic Matrix (3.11) characterizes the camera
geometry with the properties of f, sx, sy, ox, oy, κ2 and κ1. But as [TV98] already men-
tioned, the distortions κ2 and κ1 are only relevant for high accuracy computations. The
following models only describe camera systems without distortions. (3.12) and (3.13) are
finally used to compute the 2D coordinates on the image plane.

Figure 3.4: Schematic view of intrinsic and extrinsic parameters
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Mext =

 r11 r12 r13 Tx

r21 r22 r23 Ty

r31 r32 r33 Tz

 =

 R>
1 Tx

R>
2 Ty

R>
3 Tz

 (3.10)

Mint =

 −f/sx 0 ox

0 −f/sy oy

0 0 1

 (3.11)

 x1

x2

x3

 = MintMext


Xw

Yw

Zw

1

 (3.12)

ximg = x1

x3

yimg = x2

x3

(3.13)

3.2 Camera Calibration

The idea of a camera calibration is to find the intrinsic and extrinsic parameters by taking
images of scenes where certain properties are known or able to be extracted. [Zha00]
divides calibration techniques into two groups.

• Three-dimensional, reference object-based calibration:
The techniques use a calibration pattern or an object. Depending on the technique
and the calibration object, one or multiple images from different known or unknown
positions must be taken. Object-based calibration techniques can be very accurate
and effective [Zha00] but they suffer from complicated recalibrations if the setup
changes.

• Self-calibration:
A camera with unknown internal parameters takes images in a continues stream of
a static scene. A calibration object is not necessary [Har94]. [PKG99] posted in
his paper a technique which is also able to deal with uncalibrated zooming/focusing
cameras. Obtained results of self-calibration techniques are not that reliable because
many parameters must be estimated [Zha00].

All techniques are used to solve the following equations (3.14), (3.15) for all points in the
field of view of the camera.

ximg = ox + fx
r11Xw + r12Yw + r13Zw + Tx

r31Xw + r32Yw + r33Zw + Tz

(3.14)

yimg = oy + fy
r21Xw + r22Yw + r23Zw + Tx

r31Xw + r32Yw + r33Zw + Tz

(3.15)
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From the mathematical point of view, the calibration problem can again be classified into
two classes.

• Linear techniques
like [LT87] which are fast to compute but less accurate than nonlinear techniques.

• Nonlinear techniques
Many techniques were published in the last decades like [Har94], [Gan84] and [Tsa86].
Some of them [Zha00], have even taken care of the radial distortions.

If the camera setup does not change, a calibration has to be done only once because the
intrinsic and extrinsic parameters do not change. Exceptions are systems where the camera
changes their parameters because of moving parts like a zoom, auto focus or also because
of the heat created by the internal electronic components. The generation of a lookup table
simplifies the handling of further images as long as the properties are not changed. This
allows generation of calibrated images in linear time.

3.3 Stereo Camera Vision

A stereo vision system enables the estimation of the position of a point by triangulation
using two cameras. Triangulation is, in fact, the easiest part. The bigger problem is to
find the corresponding points for the triangulation. Such problems are already covered
in many books and papers [TV98, BBH03] and it is named the correspondence problem.
The discussion of such will start with the simple part, the stereo vision geometry and the
triangulation.

3.3.1 Two Coplanar Pinhole Cameras

A simple stereo vision setup is to mount two monocular cameras with the same intrinsic
parameters parallel to each other. Figure 3.5 shows the schematic of such a simple stereo
vision system in 2D. A point P in the field of view of both cameras projects on to the left
image plane the point pl and on the right image the corresponding point pr. The location
of the point P can then be computed if the distance between the two centers of projection
(T = Or − Ol) is known as well as the Effective Focal Length f . Equations (3.16) and
(3.17) describe the position of the point P . T is also known as Baseline and the difference
between xr and xl is named Disparity d = xr − xl.

Z = f
T

d
(3.16)

X = Z
xl

f
(3.17)
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Figure 3.5: Schematic view of a stereo vision system with two coplanar pinhole cameras.

3.3.2 Epipolar Geometry

In this section, we want to describe how the search for a corresponding point can be
minimized. First, we can say if we do not have any information about the geometry that
the corresponding point pr to a point pl can be anywhere in the image. If we have a
coplanar camera system like in Section 3.3 the two corresponding points must lie on the
same vertical position on the image plane. In this way, the search can be restricted to
a single line but most of the time we must handle systems where the cameras are not
mounted coplanar. The solution for that problem can be found in the epipolar geometry
shown in Figure 3.6. The epipolar geometry describes a plane which passes through the
optical centers of the cameras, 0l and 0r, and the point P observed in the 3D world.
The intersection of the plane πp with the image planes creates two lines which are called
Epipolar Lines. Therefore, the corresponding points for a point P in the image plane must
lie on the epipolar lines. Hence, we can see that if the point P changes its position, the
Epipolar Plane πp rotates around the axis created by 0l and 0r and passes through the
points el and er called epipoles which are always on the epipolar line. As a result of the
epipolar geometry, we can say that even if the cameras are not coplanar, the search for a
corresponding point can be restricted to a single line.

3.3.3 Essential and Fundamental Matrices

Figure 3.6 illustrates the Epipolar constrains. Now we will examine the mathematical size
of the epipolar geometry. Our objective is to describe the epipolar line in a formula. Before
we can start, we must introduce some new variables.
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Figure 3.6: Epipolar geometry.

• ~Pl =
−−→
OlP and ~Pr =

−−→
OrP

Vectors to the point observed in the 3D World from the camera centers.

• ~el =
−−→
Olel and ~er =

−−→
Orer

Vectors to the epipoles from the camera center.

• ~pl =
−−→
Olpl and ~pr =

−−→
Orpr

Vectors to the point on the image plane corresponding to P .

• p̄l and p̄r

Corresponding points to P on the image plane in image coordinates.

• ul and ur

Describes the lines along the epipolar lines.

• ūl and ūr

Corresponding lines to ul and ur but in image coordinates.

We assume that all camera properties like intrinsic and extrinsic matrices are known. The
vector ~Pl can be transformed to ~Pr by a rotation R and translation ~T (3.19). Therefore
the cross product must be zero (3.19). This constraint is also known as the Coplanarity
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Constraint. The cross product in a normal R3 can also be written as pure matrix multipli-
cation (3.20). We can now simplify (3.19) to (3.23) by replacing the cross product (3.21)
and defining E (3.22). E is the Essential Matrix. Therefore, we can use (3.1) and (3.2)
to calculate the vectors to the corresponding points on the image plane (3.24) and also
identify the intersection with the image plane ur (3.25).

Pl = Z
xl

f
(3.18)

(R> ~Pr)
> ~T × ~Pl = 0 (3.19)

~T × ~Pl = S ~Pl =

 0 −Tz Ty

Tz 0 −Tx

−Ty Zx 0

 Px

Py

Pz

 (3.20)

(R> ~Pr)
>S ~Pl = 0 (3.21)

E = RS (3.22)

~Pl

>
E ~Pl = 0 (3.23)

~pl
>E~pl = 0 (3.24)

~ur
>E~pl (3.25)

The Fundamental Matrix, like the essential matrix, enables us to recover the full epipolar
geometry. It can be recovered using information of corresponding points in the images. No
knowledge about the extrinsic and intrinsic parameters is necessary. One famous algorithm
used to perform this is the Eight-point Algorithm [Har97] which solves the problem based
on a linear equation via a Single Value Decompression (SVD). Unlike the essential matrix
he fundamental matrix is based on pixel coordinates and not on camera coordinates. The
relation between the fundamental and the essential matrix is given by (3.26).

F = Mint−T
r EMint−1

l (3.26)
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The other properties of the fundamental matrix are the same with the restriction that the
system is based on the pixel coordinates (3.27) and (3.28).

p̄l
>F p̄l = 0 (3.27)

ūr = F p̄l (3.28)

3.4 Rectification

The rectification of a stereo image pair is the process of transformation on the images in
such a way that the pairs of conjugate epipolar lines become collinear and parallel to one
of the image axes, usually the horizontal one [TV98]. A rectified image pair therefore has
the same geometrical properties as an image pair of a coplanar pinhole stereo system.
After we find such a transformation, this transformation can be combined with the camera
calibration to create a lookup table which calibrates and rectifies an image at once. This
lowers the complexity of finding correspondences because we only need to search only in a
horizontal line instant on a computed line ur which is different for every point pl (3.28).
Figure 3.7 shows an unrectified and rectified image pair.

3.5 Summary

This chapter showed the basic geometric constraints of monocular and stereo camera sys-
tems: the relation of a point in the image with the corresponding point in the 3D world and
how this relation is described by the intrinsic matrix and extrinsic matrix. The epipolar
geometry with the essential matrix and the fundamental matrix is covered in the Section
3.3.3. Finally, the rectification was discussed regarding how it can support the search for
correspondences in stereo images.
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(a) Not rectified image pair

(b) Rectified image pair

Figure 3.7: This figure shows two image pairs where the lower one is rectified. Correspon-
dences must be found in the image (a) on the epipolar line going cross the image while in
the lower pair (b) the epipolar lines are horizontal and the camera distortions are removed.



Chapter 4

3D Vision

The biggest eye can never see as much as two eyes.

(A saying)

There are different ways how 3D information can be drawn from monocular and stereo
vision systems. Depth information can be computed in monocular systems from shading,
texture, motion and from geometric knowledge of the environment. This chapter discusses
the background for the techniques used in the implementation. Shape from shading or
texture are not discussed in this master thesis but further reading can be found in [TV98].
The first part will focus on monocular systems while the second part discusses creating a
depth map based on the stereo image information, and finally a summary concludes this
chapter.

4.1 Geometric Knowledge of the Environment

If the intrinsic parameter of the camera system and the objects in the surrounding area
are known, the distance to an object can be estimated only by its size or position in the
image.
An object model represents the known properties of an object in the world. Such properties
can be the color, size and the relative position to the ground. The size is defined as a radius
or a diameter in the case of a sphere and the width, height and depth are used to describe a
box. Another important parameter is the anchor point or the origin from which the object
is described. This anchor point is important because when we are speaking of the position
of the object, we refer to the anchor point of the object. The anchor for a spheric object
is defined by its center. We will place the anchor point for a rectangle and boxes in their
object centers.

43
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4.1.1 Known Object Size

Spheres are especially suitable to determinate their distance by their detected size in the
image [SRTSB92], because a spherical object projects a circular arc on the image plane
which is easy to detect (Section 2.2.2). The object size in the image is directly related to
the distance from the object to the camera (4.1). d represents the distance from the object
to the camera, f the focal length, sobj the measured size of the object in the image and
smodel the known object model size. Figure 4.1 shows the projection of an object on the
image plane. We are interested in the vector rworld. This vector can be computed after d
is solved using equations (4.2) and (4.3).

sobj

f
=

smodel

d
(4.1)

rimg =
√

f 2 + x2
img (4.2)

rimg

f
=

rworld

d
(4.3)

Figure 4.1: Shows the relation between object size and the projected size of the object.

We assumed that in this section a sphere projects a circle onto the image plane. This is
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only the case if the sphere lies on the optical axes of the camera. Otherwise, it will project
an ellipsoid on the image plane. But the aberrance for a circle in our case is minimal so
that we can assume that a sphere always projects a circle onto the image plane. Details
and solutions to the sphere’s localization estimation can be found in [SRTSB92].

4.1.2 Known Relative Position to the Floor

If the camera angle αcamera to the floor as well as the mounted height of the camera h are
known, the distance d to an object can be computed if (a) the object lies on the floor or
(b) the relative position of the object hr to the floor is known. Figure 4.2 shows how such
a situation appears. If the projection of the point P with < xp, yp > is detected in the

Figure 4.2: Show the triangulation of an object if the environment is known and the object
size not.

image, the angle αobject can be computed using equation (4.4) and hence the distance d to
the object by equation (4.5)

αopject = arctan

(
yp

f

)
+ αcamera (4.4)

d =
h− hr

tan αopject

(4.5)
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4.2 Stereo Vision

Estimating the distance of a certain point seen in both images of a stereo system was
already discussed in Section 3.3. It was also mentioned that the bigger problem lies in
determination of the correspondences between two pixels.

4.2.1 Correspondences

[BBH03] published an overview over techniques to solve the correspondence problem. He
divided the techniques into two groups: the local and the global methods. Local Methods
are determine correspondences by observing information in the neighborhood of the pixel
that is involved in the current search. Global Methods use the underlying information from
scan lines (epipolar lines) or the entire image to find correspondences. Figure 4.3 shows in
the upper figures a scan line going horizontal through the images and in the lower figures
a graph which represents the intensity value of the gray image under the scan line. The
bright shadows next to the curves in the lower figure show the intensity of the scan line
from the opposite scan line.
Brown describes in the following citation the benefits and problems with global and local
properties when solving the correspondence problem.

Local methods can be very efficient, but they are sensitive to local,
ambiguous regions in images. Global methods can be less sensitive
to these problems since global constraints provide additional support
for regions difficult to match locally. However, these methods are
more computationally expensive.

[BBH03] about local and global methods

Since global methods take more effort to compute they are not used in the implementation
and are not further discussed. Local techniques can be classified into two more groups: the
Correlation-Based Methods and the Feature-Based Methods.

Correlation-Based Methods

The idea of a correlation-based method is to find for a small image patch a correspond-
ing patch in the other image. The correlation-based methods are also called Area-Based
Methods. There are functions known to compare two areas for similarity or sameness.
Hirschmüller compared in his work in 2001 [Hir01] different standard correlation meth-
ods in terms of real-time capability on standard PC hardware. Let I1 and I2 represent
intensities in two windows. u, v and d are described in Figure 4.2.1.
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Figure 4.3: The upper image pair shows a scan line through two rectified images. The
lower ones show the intensity value of the underlaying pixels of the scan line.

• Normalized Cross Correlation (NCC) normalizes the mean and variance to make the
correlation insensitive to radiometric gain and bias (4.6).

NCC =

∑
u,v I1(u, v)− Ī1) · (I2(u + d, v)− Ī2))√∑
u,v(I1(u, v)− Ī2)2 · (I2(u + d, v)− Ī2)2)

(4.6)

• Sum of Squared Differences (SSD) is simpler to compute but not normalized and
therefore sensitive to distortions (4.7).

SSD =
∑
u,v

(I1(u, v)− I2(u + d, v))2 (4.7)

• Normalized SSD is an extended version of SSD with a normalization (4.8).

Normalized SSD =
∑
u,v

(
(I1(u, v)− Ī1)∑√

(I1(u, v)− Ī1)2
− (I2(u, v)− Ī2)∑√

(I2(u, v)− Ī2)2

)2

(4.8)
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Figure 4.4: Correlation-Based method. An area will be compared with areas on the epipolar
line in the stereo-related image.

• Sum of Absolute Differences (SAD) represents a modified version of SSD where no
square function is involved to simplify the computation (4.9).

SAD =
∑
u,v

|I1(u, v)− I2(u + d, v)| (4.9)

• Rank. The rank represents the order of the center pixel of the image patch Îu,v

in an ordered list with its neighbors (4.10). Figure 4.2.1 shows a sample of rank
computation.

Rank =
∑

u,v Î1(u, v)− Î2(u + d, v)

Îk(u, v) =
∑

m,n Ik(m, n) < Ik(u, v)
(4.10)

255 40 150
200 162 10
202 140 20

→ 5

Figure 4.5: Example of a rank value computation

• Census. The Census value is a bit-string (8Bit). Every bit represents a connected
neighbor. If one neighbor is bigger than the center the related bit is given the value
of one otherwise zero (4.11). Figure 4.2.1 shows a sample of rank computation.

Census =
∑

u,v Hamming −Distance(Ǐ1(u, v)− Ǐ2(u + d, v))

Ǐk(u, v) = Bit− Stringm,n(Ik(m,n) < Ik(u, v))
(4.11)

The rank and census techniques are insensitive to brightness changes between the images
due to their method of computation. Both rank and census are used on FPGA implemen-
tations because of their simple computation. [BN98] introduced “Ordinal Measures for
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255 40 150
200 162 10
202 140 20

→ 01001011

Figure 4.6: Example of a census value computation.

Image Correspondence” which takes care of internal structures of compared area patches
to minimize correspondence mistakes. The next section will focus on feature-based imple-
mentations.

Feature-Based Methods

Unlike the correlation-based methods, the feature-based methods are searching correspond-
ing features and not corresponding search windows in the other image. The image features
can be edges, lines or other higher level objects like image segments. [DA89] compares
various stereo methods both correlation-based and feature-based, while the feature-based
methods are focused on line features. [BT99] presents an algorithm based on extracted
image segments to compute slanted surfaces. Similar to [DA89], line segments were used
to estimate the lines, 3D orientations and positions in the master thesis [Ent05].
The benefit of a feature-based stereo vision algorithm lies in the smaller amount of data
which must be compared. And the image features can be directly used for further analysis
like finding shapes or structures in the image. Because of this feature-based methods are
faster than correlation-based approaches but at the cost of an incomplete depth map. The
depth information can only be computed on image features and must be interpolated for
the space in-between if necessary as in [BT99].

4.2.2 Occlusion

Dhond divided occlusions in his paper into two groups by using the following definition.

An occluding object is classified as narrow if its pixel-width is nar-
rower than (a) the local support neighborhood used in the spatial
hierarchy for global matching, or (b) the largest disparity difference
between the background and foreground scene objects.

[DA92] definition of narrow occluding objects

The first group (a) of the occlusions defined is shown in Figure 4.7.a. They occur if the
observer views a scene with a 3D structure on it. The second group (b) is presented in
Figure 4.7.b. They occur if the observer looks through a structure onto the scene. Such a
structure can be a fence or a window which creates a scene with background and foreground
objects.
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As long as there are no transparent or occluded areas, every image feature can only be
matched to one corresponding feature in the other image. Disparity outliers in the local
neighborhood or disparity discontinuities can be used to detect occlusions, because in
natural images, the disparity varies nearly smoothly throughout.

(a) (b)

Figure 4.7: Two narrow occluded points P1 and P4, while P1 is the most common one.
The light gray areas mark half-occluded areas, while the dark gray areas are not visible to
both cameras.

Techniques to detect, reduce and model occlusions are known and listed in [BBH03]. The
most common ones are listed here.

• Left-Right Matching
Correspondences are determined from the left to the right side and vice versa. The
differences between the two results are handled as occlusions.

• Depth Map Discontinuities
A discontinuity in the depth map indicates occlusions.

• Multiple Cameras
An additional view reduces the occlusions but increases the complexity

4.3 Summary

This chapter discussed different ways how to extract 3D information out of images. The
first section presented techniques for monocular systems. Only the approaches used in
the implementation like depth estimation in a known environment where discussed. The
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second part of this chapter focused on stereo vision and the different techniques to extract
depth information based on two views of one scene. Related correlation techniques like
global and local methods were also described. The local method were discussed in more
details because the feature-stereo algorithm used in the implementation falls into this
group. The stereo vision section ends with the description of known problems based on
occlusions. Thus far, all fundamental methods for understanding the implementation have
been discussed. The next chapter will describe the actual implementation.



Chapter 5

Implementation

“Let´s start with the three fundamental Rules of Robotics - the three rules
that are built most deeply into a robot’s positronic brain.” In the darkness,

his gloved fingers ticked off each point.
We have: one, robot may not injure a human being, or through inaction,

allow a human being to come to harm.”
“Right!”

“Two,” continued Powell, “a robot must obey the orders given it by human
beings except where such orders would conflict with the First Law.”

“Right!”
“And three, a robot must protect its own existence as long as such protection

does not conflict with the First or Second Laws.”

(I. Asimov, “Runaround” - Powell and Donavan discussing the laws for robotics)

In previous chapters, we talked about methods and techniques to implement a vision
sensor. The topic of this chapter is the implementation of the vision sensor together
with its hardware. The first part describes the hardware used and the second part the
implemented software.

5.1 Hardware

This section covers hardware used by describing the Tinyphoon robot, its vision module
and finally the programming environment.

52
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5.1.1 The Tinyphoon Robot

The Tinyphoon robot was designed as an autonomous robot. The size and also the driv-
ing concept is similar to the robots used in the expected AMiroSot league of the FIRA
organization.

Mechanics: The chassis of the Tinyphoon is made of fiber-reinforced plastics and houses
two DC motors and a rechargeable battery. It is designed to have a very low-lying
center of gravity. The motors can speed up the robot to more than 2.5m/s with an
acceleration of more than 5m/s2. The two high precision encoders on the motors
function with a resolution of 512 steps. This reduces the tolerance to 5mm/m.

Motion Unit: The motion unit is shown on the left side in Figure 5.1. It controls the
motors and is equipped with various sensors: two two-axis acceleration sensors, a
gyro sensor and a magnetic field sensor. A processor from Infineon’s 1 XC series is
used for collecting data from the analog sensors and for recording the movement of
the wheels. The motion control is implemented using an Analog’s Blackfin BF533
processor. The unit is connected via radio to a PC or other robots and with a serial
communication to the Strategy - WMR (World Model Repository) - Reasoning Unit

Strategy - WMR (World Model Repository) - Reasoning: This is the brain of the
robot, decisions what the robot should do next based on the sensor inputs and the
history of the last actions are made here. This unit is connected via serial communi-
cation to the motion and with a Serial Peripheral Interface Bus (SPI) to the vision
unit. The purpose of the WMR is to provide a general interface to the sensor and
to create sensor fusion to verify received information. Currently strategy, WMR and
reasoning are located on one core module. In the next version, this unit will be split
into to physically separate hardware modules.

Vision Unit: The vision unit augments the Tinyphoon robot with stereo vision capability.
Two CMOS cameras with a resolution of up to 640 x 480 pixels are connected via
PPI (Parallel Peripheral Interface) to a dual core DSP. Figure 5.1 in the left image
shows the vision hardware. The unit recognizes structures related to known objects
in the environment. This data is submitted via SPI to the WMR.

Communication: Different strategies for communication are possible. All hardware lay-
ers support CAN and serial communication. The connection to systems like PCs or
other robots are possible via a serial wireless communication. The next version will
also support time-triggered protocols. More details on the communication on mobile
robots can be found in [Kry06].

1www.infineon.com
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Figure 5.1: Left motion module and right, the vision module.

5.1.2 The Vision Module

The vision module on the Tinyphoon robot is equipped with two Blackfin DSP processors.
One of them is a dual core DSP. The dual core DSP is used for image processing. The
second Blackfin hosts the Strategy - WMR - Reasoning unit. Images are taken by two
CCD CMOS cameras[Omn05] and transported via PPI directly into the SDRAM of the
processor. The camera properties like the shutter-speed can be manually defined during
the camera initialization. This is important because of the black background in the test
environment where cameras in auto-mode tend to overexpose.
The mechanical module of the vision system is mounted on a turnable platform to rotate
the system while the robots stays still. The strategy defines the mode for the vision sensor.
The mode defines the thresholds used in the detection. Those thresholds are the camera
settings like shutter-speed, gain2 and camera resolution, as well as the setting defining the
thresholds for the detection. The strategy also submits models of the objects to detect and
is returned the recognized objects. Both mode and models are described in Section 5.2.6

5.1.3 Dual-Core DSP and VisualDSP

The image processing is done on an Analog Devices dual-core DSP [Ana05] mounted on
a core module CM-BF561 [Blu06] from Bluetechnix3. The programming environment Vi-
sualDSP extends the normal ANSI C with processor-specific function calls. Such calls are
then encapsulated in assembler statements and allowed to add or subtract two or in special

2The gain setting can be viewed as the camera’s sensitivity.
3www.bluetechnix.com



CHAPTER 5. IMPLEMENTATION 55

cases even four registers at once in one processor cycle.
The memory management is controlled by the Linker Description File *.ldf. This file
controls where functions and variables are mapped in the memory . This is important
in a dual-core system where, in our case, a three-level-memory must be coordinated and
partially shared between two cores. Figure 5.2 shows the memory structure of the core
module. We can see in this figure the two L1 memory section where one is designated for
each core, the shared internal memory L2 and the external L3 memory named as SDRAM.
The access speed to the SDRAM is limited by the BUS clock rate which is up to ten times
slower than the internal clock rate [Ana05]. The L1 and L2 memories are placed internally
and can be accessed at the processor clock speed. L2 and L3 memory can be addressed
by both cores and can be used to synchronize the cores and/or to exchange data between
them.
Time-relevant program sections are placed in the L1 memory where they can be accessed
at the maximum clock rate. A problem occurs if both cores are trying to write data into
the same memory location in the shared memory. This problem is solved by using shared
variables to synchronize the parallel running programmes if they are writing into shared
memory sections.

Figure 5.2: Memory structure of the CM-BF561 Core Module.
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5.1.4 Summary

This section provided the reader with general information about the robot. The subsection
about the vision module described that the operating mode of the vision system and
the models of objects to detect are defined by the connected strategy unit. Techniques
to use and manage a dual core system were also discussed as well as the programming
environment VisualDSP. The last subsection described how a dual core system synchronizes
data between the cores and the related problems.

5.2 Software

This section covers how the strategies were implemented on the system used and which
variations were made on existing methods to run them in real-time on the DSP. The
segmentation algorithm as well as the edge, blob and line detection were implemented as
a scan-line algorithm which moves only once from the top left to the bottom right, line by
line over the image data. The DMA-Controller was used to implement a ring buffer which
holds only data necessary for processing in the processor fast accessible L1 memory. Every
time the algorithm processes a line, the DMA-Controller moves the results of the last line
into the SDRAM and the next line to process into the ring-buffer in the L1 cache memory.

5.2.1 Edge Detection

The edge detection is based on the canny edge detector. This detector has five internal
steps listed in Section 2.1.4. The first four of them are implemented as shown in Figure
5.3. The DMA-Controller copies an image line into the L1 memory where it will be
first reduced to a gray-scaled image by taking only the Y (chroma) information of the
YUV image. After each processed line, all ring buffers rotate. While the color reduction,
Gaussian, Sobel and non-maxsuppression are in process the last finished line of the non-
maxsuppression will be copied back to the SDRAM and the next one to process will be
copied into the first ring buffer. This is possible because the DMA-Controller can work
without the ALU (Arithmetic Logic Unit) after the controller is initialized and started
[PH98]. The fifth step, the hysteresis threshold, is realized by using a variation of the
Rosenfeld segmentation algorithm of Section 2.3. A segment is in an edge image equal to
a group of connected edges. If we remove all edge groups with a gradient value under the
threshold τh, we have the same effect as at the hysteresis threshold.
The final edges after the hysteresis threshold are stored in a structure shown in Listing
5.1. This structure allows us to hold all edges in the L1 Memory but at the cost of slow
access-speed to random chosen edges. On the other hand this structure enables rapid
access to edges sequentially in a scan-line algorithm which is important for the following
line detection.
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Figure 5.3: Memory management on the edge detection by using the DMA-Controller.

typedef struct {
unsigned char iGrad ient ; // Edge g r a d i e n t
unsigned char iGrad i en tD i r e c t i on ; // Edge d i r e c t i o n w i th v a l u e s between 0 x00 and 0xFF
unsigned short x ; // X p o s i t i o n o f t h e edge

} t EdgeDataElement ;

typedef struct {
unsigned long iEdgeIndex ; // Index to t h e f i r s t edge o f t h e row in ptEdgeData
unsigned short iEdgesInRow ; //Number o f edged in t h e row

} t EdgeDataIndex ;

typedef struct {
unsigned short iWidth ; // Image wid th
unsigned short iHe ight ; // Image h e i g h t
t EdgeDataElement ∗ptEdgeData ; // Po in t e r to t h e f i r s t edge
unsigned short iSizeEdgeData ; // Ava l i a b e memory s i z e a t ptEdgeData
unsigned short iCountEdges ; //Number o f edge s s t o r e d a t ptEdgeData
t EdgeDataIndex ∗ptIndex ; // Po in t e r to t h e array t EdgeDataIndex [ iH e i g h t ]

} t EdgeHdl ;

Listing 5.1: Structure to store an edge image.

5.2.2 Line Detection

The line detection algorithm implemented is based on local and global properties, and
works in three steps.

1. Line Segment Detection:
This step only detects lines which are based on connected edges shown in Figure
5.4.b. It searches for connected edges similarly to how the Rosenfeld algorithm does
in Section 2.3, when seeking connected components but with the addition that an
edge will only be added to a group if it corresponds to a certain threshold with the
average gradient direction. Instead of the lookup table a table of line structures is
used which stores the first and the last occurrence of an edge in the segment as a line
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starting-point or ending-point.
It is important to use only the first edges to build an average gradient direction
value for a threshold to avoid the detection of flat arc-looking curves. The first
occurrence of an edge on a line is stored as the line start-point. Every time the
scan-line algorithm passes an edge, it will check if it lies next to a line end-point and
if the average gradient direction is in the angle range threshold. In this case, it will
then be stored as a new end-point of the line. A special case occurs with lines which
become flat from the right to the left side because of the scan from the left to the
right side. This case can be detected by their average gradient direction. In such
cases We have to compare the edge location with the lines start-point and not with
the lines end-point, and if it matches it has to be stored as a new start-point. The
threshold for these detection steps are:

• Angle range threshold to indicate if an edge matches the current line segment.

• Line min length to remove lines which have an edge-count under this limit.

Before we store the detected segments, we place the line segments start and end
points in a way that all lines have the edge gradient direction looking to a chosen
side relative to the line direction.

2. Local Line Segment Connector:
The local line connector connects line segments from the previous step if the start
and endpoint are in a certain pixel range as well as line direction. This step is shown
in Figure 5.4.c. Used thresholds are:

• Angle range threshold to indicate if two lines are matching.

• Line min gap is the pixel range in which the algorithm searches for a corre-
sponding end point next to a line start point.

3. Global Line Segment Connector:
Global Muff line properties are used to find line segments on the same line to connect.
This is presented in Figure 5.4.d. The Muff line properties represent where a virtual
line in the direction of the detected line segments of the previous step would cross the
border of the image. The Muff space was used to distinguish between line segments
in different directions. The Muff line properties were discussed in Section 2.2.1. Line
segments are therefore connected by satisfying these thresholds:

• Global property range threshold: Range of the maximum allowed differences in
the Muff space.

• Line max gap: Represents the maximum distance which is allowed between two
line segments to connect them.

The probability that a detected line really exists can be computed by the relation of the
detected line length and the underlaying pixels.
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(a) Source edge image (b) After step 1 (d) After step 2 (c) After step 3

Figure 5.4: Implemented line detection in different processing stages

5.2.3 Image Segmentation and Blob Detection

The camera provides a UYVY 4:2:24 color image Iyuv. This image is reduced to 28 colors
plus white and black and represented by 32 bits per pixel Ii32 (5.4). This representation
simplifies the comparison between colors. The edge detection is done in the same function
like the color reduction to avoid two equal accesses to the input image. Most of the
computing power of the controller is used by the edge detection. Equations (5.1) - (5.4)
describe the color transformation of the input image. Y represents the luma, V and U
the chroma information of a pixel in YUV format. Because of the thresholds in (5.2), the
reduced color depends more strongly on the chroma as on the luma information.

b = Y−
√

((V − 128)2 + (U − 128)2) (5.1)

c =


1, if b < εblack

2, if b > εwhite
arctan2i(u,v)

10
+ 3, else

(5.2)

p = 0x00000001h << c (5.3)

Ii32 = |x=width−1
x=1 |y=height−1

y=1 p(Iyuv(x, y)) (5.4)

Ic32 is a noise-reduced version of the image Ii32. An opening operation as the one described
in Section 2.3.2 with a bitwise erosion followed by a bitwise dilation was used to generate
Ic32 from Ii32. A pixel in Ic32 is now a 32-bit value where each bit represents a color and
the zero bit stands for no color information. Blobs are generated by using the Rosenfeld
segmentation algorithm of Section 2.3 and the colors of interest defined by the object
models from the image Ic32. These blobs are then candidates for detected objects as you
can see in Figure 5.7.

4Y sampled at every pixel, U and V sampled at every second pixel horizontally on each line.
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5.2.4 Circle Detection

The circle detection is only applied on the area in and around a blob related to a spherical
object model. The algorithm used is similar to the Hough Transform for Circles described
in Section 2.2.2. But a line Li is only drawn5 for an edge in the blob with predefined
borders toward the gravity center of the blob color blob.cc6. The circle center will then be
represented as a peak where all the lines are intersecting. Equation (5.5) shows the line
equation. We assume that blob.cc will be near the real circle center Cc. Hence it is only
necessary to draw the lines in a small patch around blob.cc. The following two filters are
used to skip edges which do not belong to the circle border.

Li = xi + tan(αi)× yi αi ... gradient direction (5.5)

An edge will be skipped if

• Filter 1:
The edge is overlaid by a color entry
Is32(edge.x, edge.y)⊕ Sc32 > 0
Is32 is a bitwise erosion on Ic32

⊕ .. bitwise AND
Sc32 represents the color of the shape in 32 bit format

• Filter 2:
The edge gradient does not look toward the gravity center of the color
|tan(αi)− arctan(xi − xb/yi − yb)| < εangel

αi ... gradient direction

Filter 1 will remove edges generated by fine structures on the ball which appear on spheres
like golf balls. Golf balls are used in the MiroSot league. The graphs in Figure 5.5 show
how the filters changed the form of the peak in the Hough space corresponding to the
sphere shown in (a) with its edge image (b). We can see that the peak which represents
the circle center becomes clearer visibly by applying the represented filter.

The shape center test Tc is used to judge the detection. Equation (5.6) shows when the Tc

fails.

Tc =


failed, if Σ Edges < εMinEdges

failed, if PeakSize
Σ Edges

< εCenterPeakSize

passed, else

(5.6)

The radius can be detected as a peak in the histogram R. R is indexed by i where i
represents the distances of edges used to the estimated center Cc. Similar to the center
test, Tr will be used to judge the shape measurement. Equation (5.7) shows when the Tr

5The draw function adds the line and will not delete existing lines.
6blob.cc is defined in Section 2.3.5.
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a) Source b) Edge image

c) No filter d) Filter 1: Color-based

e) Filter 2: edge direction based f) Filter 1 and 2

Figure 5.5: The graphs (c) - (f) show peaks formed by the lines Li in the Hough space
corresponding to the sphere of figure (a) and (b) with different filters applied.
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fails.

Tr =


failed, if Σ PeakSize < εMinPeak

failed, if PeakSize
Σ Edges

< εRadiusPeakSize

passed, else

(5.7)

5.2.5 Rectification

Matlab7 was used to calibrate the cameras and to create lookup tables for the rectification.
Section 3.4 shows how images can be rectified by using a preprocessed lookup table. Matlab
includes a vision library which generates eight lookup tables per image. The functions for
generating those tables are claib gui for finding the camera properties and stereo gui

for generating rectified images. Matlab names the tables index 1 left - index 4 left.
Those tables contained the information to where a pixel should be moved from the source
image to the calibrated target image and the tables mulit 1 left - mulit 4 left con-
taining the a scale factor for every pixel moved. The tables are in the size of the image
width × the image height. The result of four lookup tables is a smooth image. The im-
plementation on the target system uses only one of the generated lookup tables to reduce
the processing time caused by random SDRAM access. The result is a rectified image but
less smoother than the Matlab-rectified ones. Figure 5.6 shows two rectified images where
the top one was created by the Matlab rectification and the bottom one by the algorithm
on the DSP with only one lookup table per image.

5.2.6 Object Detection

The implemented object detection can be used for different types of objects like rectangles,
spheres, boxes and so on. But the aim in this thesis was to build a general detection concept
and to implement detection for spherical objects. Other shaped objects are currently only
detected by their color.
Figure 5.7 shows the implemented general interface for detecting objects. Objects are
defined in an object model with their dimension and color. The detection concept is based
on different tests where every test result affects for the accuracy of the detection. A positive
test votes that the object belongs the the current model. In the first step, the object colors
are used to segment the image and to find blobs. The dimension test is used to remove
small or unformed blobs. (Example: A blob with a small height and long width will not
be used even if the color indicates a relation to a model). The area test tries to match the
blob area with the related model shape. Section 2.2.2 shows such a test for circles. The
next two processing steps are then used to measure the shape of the object and its center.
If a blob passes all tests, a related object will be stored with its position in the object
history. If the detection fails on a test, the object will be stored with a lower accuracy.

7www.mathworks.com
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(b) Rectified with four lookup tables and four intensity scale lookup tables per image

(b) Rectified with one lookup table per image

Figure 5.6: Two rectification techniques by using one or four lookup tables.

The accuracy indicates then how many properties of the detected objects can be used. An
accuracy under a certain threshold indicates that only the estimated direction to the object
can be used. The mode and settings define thresholds on the detection and the camera
properties like resolution and the threshold for the dimension test.
We can see in Figure 5.8 that not all spheres are detected with their size but the direction
to them was estimated. This gives the world model repository on the robot the possibility
to complete or verify its current world model.
The distance to an object is estimated by its size and appearance in the image. Both
techniques are discussed in Section 4.1.1 and Section 4.1.2. The distance estimation by
the relative position to the floor is of high interest for rectangles because the shape in the
image changes strongly with the point of view.
The stereo system is used to verify the detection and to raise the accuracy of a detection.
If the object was seen in both images, the average between them is used to create the final
object for the object history. The object history is transmitted via SPI after every cycle
to the strategy unit.
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Figure 5.7: Data flow of the object detection. The large arrows mark the input and output.
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Figure 5.8: Left, computer generated test image to detect circles. Right, related edge
image and the detected circles.

5.2.7 3D Lines

The distance to detected lines is estimated by searching the corresponding line in the other
image. The nearest horizontal line with a similar angle is chosen to be the corresponding
line. This was implemented by computing the xm and ym position of the line mi-point. A
corresponding candidate in the other image is a line where the two end-points are above and
below ym. Horizontal and nearly horizontal lines are excluded from the 3D line detection.
The orientation of the line in the three-dimensional space is computed by the disparity d0
and d1 of the line A for the start- and end-point which are therefore defined by (5.8) and
(5.9).

d0 = x0B − x0A (5.8)

d1 = x1B − x1A (5.9)

The disparities are computed by using the slope s of the corresponding line described in
Equation (5.10) - (5.12). This is done because occlusions and/or problems in the line
detection can cut lines into more segments. Therefore, the detected line segments on the
line have, in the two images of the stereo set, different start- and end-points but the line
equation is still the same. Figure 5.9 shows a line in the three-dimensional space and its
projection on the left and right image plane. The gray shadow in the left image represents
a copy of the line in the right image.

s =
x1B − x0B

y1B − y0B

(5.10)

d0 = (s ∗ (y1A − y0B) + x0B)− x0A (5.11)

d1 = (s ∗ (y1A − y1B) + x0B)− x1A (5.12)
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The actual position in SI units is computed by using the equations (3.16) and (3.17) of
Section 3.3.1.

Figure 5.9: A 3D line and its corresponding projections in the left and right image.

5.2.8 3D Edges

Next to the 3D lines there are also 3D edges computed to detect undefined obstacles in
the driving direction. We assumed that the images are rectified and searched only in the
horizontal epipolar line for a corresponding edge with the edge gradient direction. The
nearest matching edge has always been chosen as the corresponding edge. In addition
thresholds were used for a minimum and maximum disparity.

5.2.9 Summary

We covered the implementation of the vision system. The result of the vision system can
be used to find the goal, the robots and the game ball by using the result of the object
detection. The 3D lines provide the basis for a self localization based on the lines on the
playing field as well as for detecting rectangular structures.
Unexpected objects can be avoided by using the cloud of 3D edges. The stereo system on
one hand is used to extract 3D lines and edges and on the other hand to verify the detected
objects on their second appearances in the other image. The next chapter will talk about
the results based on the implementation described in this chapter.
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Results

”If it doesn’t fit, get a bigger hammer.”

(Richard A. May)

Results in this chapter present the capability of the implemented vision sensor. Section
6.1 to 6.3 discuss tests on images of synthetic and arranged real scenes. Those images
are used to test the line detection, the feature-based stereo vision, the blob and the ball
detection. Section 6.4 focus on the detection of objects on the playing field in the test
environment. Therefore, images were taken in real situations in order to discuss different
problems like lighting conditions and hidden objects. The usability of the vision data for
a self localization is shown in Section 6.5. Timing results of the algorithm conclude this
chapter followed by a summary.

6.1 Line Detection

Let us compare the line detection algorithm with the Hough transform line detection
algorithm of Matlab 7.0.11. We used a white image with black rectangles to find problems
in the detection of lines in certain angles. Figure 6.1 shows the black rectangles rotated in
π
8
-angle steps and the detected lines of the implemented algorithm as well as lines detected

by the Matlab algorithm. We can see in Figure 6.1.b that all lines were detected by the
implemented line detection algorithm but not by Matlab algorithm in Figure 6.1.c. The
reason why the line segment 4-4 in Figure 6.1.c has not been detected in this scenario is
found in the Matlab function houghpeaks. Houghpeaks searches in the Hough space for a

1The code for the Matlab line detection used was provided by the Matlab help in the chapter Image
Processing Toolbox User’s Guide to find lines in an image.

67
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given number of maximum peaks which are related to lines. In our case, the value was set
to 16. Tests showed that 16 was the best value to detect lines in the test image without a
double detection of a line.

(a) Source image (b) Implemented line detection (c) Matlab line detection

Figure 6.1: Line detection test on a 2D image with rectangles in different angles.

The Table 6.1 shows the start x0, y0 and end x1, y1 point of each line caused by the black
rectangles in Figure 6.1.a. The “Difference” column represents the difference between the
original line segment x0, y0 − x1, y1 and the detected line segment x́0, ý0 − x́1, ý1 by using
the Equation (6.1).

Difference =
√

(x0 − x́0)2 + (y0 − ý0)2,
√

(x1 − x́1)2 + (y1 − ý1)2 (6.1)

The “Average” row in Table 6.1 indicates the average mismatch in pixels. We can see that
the quality of implemented line detection is with a 2.11-pixel average difference minimally
better than the average difference of the Matlab line detection with a value of 2.21 pixels.
Another benefit in the implemented line detection algorithm is the correct detection of the
line direction. The start point of the lines are marked with a dot in the implemented line
detection algorithm in Figure 6.1.b and with a red cross in Matlab algorithm in Figure
6.1.c. The detected lines should be oriented in a loop around the rectangle. This is the
case in the implemented line detector but not in the Matlab line detection.
Figure 6.2 shows real and synthetic images with the implemented algorithm on the left and
the Matlab line detection on the right. We see in images in Figure 6.2 that the implemented
algorithm performs better on short lines than the Hough transform algorithm of Matlab.
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Implemented line detection Matlab line detection
Line Original line Detected line Difference Detected line Difference

1-3 25,16 - 104,16 26,17 - 103,17
√

2,
√

2 27,17 - 104,17
√

5, 1

1-2 104,16 - 104,95 105,20 - 105,95
√

18, 1 105,18 - 105,95
√

5, 1

1-3 104,95 - 25,95 102,97 - 26,96
√

8,
√

2 99,97 - 31,67
√

29,
√

40

1-4 25,95 - 25,16 25,95 - 24,19 0,
√

10 26,95 - 26,18 1,
√

5
Average 1.93 pixel - 2.55 pixel

2-1 205,11 - 277,41 206,12 - 276,41
√

2, 1 207,12 - 276,40
√

5,
√

2

2-2 277,41 - 248,113 277,43 - 249,113
√

4, 1 277,47 - 250,112
√

4, 1

2-3 248,113 - 175,84 246,114 - 178,87
√

5,
√

18 247,114 - 177,86
√

2,
√

8

2-4 175,84 - 205,11 175,83 - 203,13 1,
√

8 176,81 - 204,13
√

10,
√

5
Average 1.96 pixel - 2.04 pixel

3-1 71,123 - 127,179 73,126 - 127,179
√

13, 0 71,124 - 128,180 1,
√

2

3-2 127,179 - 71,235 123,185 - 72,236
√

52, 1 128,180 - 73,235
√

2,
√

4

3-3 71,235 - 15,179 70,236 - 15,181
√

2,
√

4 71,235 - 17,181 0,
√

8

3-4 15,179 - 71,123 15,179 - 67,125 0,
√

20 17,178 - 71,124
√

4,
√

1
Average 2.46 pixel - 1.48 pixel

4-1 239,126 - 273,198 240,128 - 273,198
√

5, 0 240,128 - 273,190
√

5,−
√

64

4-2 273,198 - 201,232 272,200 - 202,232
√

5, 1 273,199 - 202,232 1− 1

4-3 201,232 - 167,160 200,232 - 168,162 1,
√

5 200,230 - 169,161
√

5−
√

5

4-4 167,160 - 239,126 168,160 - 238,128 1,
√

5 - -
Average 2.12 pixel - 2.78 pixel
Average 2.11 pixel - 2.21 pixel

Table 6.1: Errors of the implemented line detection algorithm.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.2: Results of the implemented line detection algorithm and the Matlab Hough
transform line detection algorithm. The left column presents the results of the implemented
line detection and the right column the results of the Matlab line detection.
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6.2 Line Based Stereo Vision Algorithm

The performance of the line-based stereo vision system on vertical lines is shown in this
section. Synthetic and non-synthetic images have been used to test the algorithm. The
synthetic images were created with 3ds max 2 with boxes in different distances to the
camera. The left and right border of these boxes were used as vertical lines for the test.
The setup for the synthetic images used two virtual parallel cameras with a focal length of
311mm and a base line length of 30mm. The real images were taken by the robot in the
RoboSot league soccer environment. Baseline length and focal length were measured by the
calibration algorithm of Matlab3. The images showed after the rectification a focal length
of 386mm and a base line length of 30.47mm. For the synthetic images, no calibration was
necessary because the cameras were already placed coplanar in the virtual environment.
The test images are shown in Figure 6.3. We see in the images a box placed between
the optical center of the two cameras of the stereo camera system. The distance of the
box to the camera setup varies between 250mm on the top left image to 1000mm at the
bottom right image. The distances are listed in column dr in the Table 6.2. The Table
6.2 includes three columns for the real and three columns for the synthetic images. The
column dleft represents the measured distance to the left border detected as a line on the
box. davr stands for the average of distance between the left and right lines and the column
|100·(dr−davr)

dr
| represents the absolute error of the real distance in percentages.

Real Data Synthetic Data

dr [mm] dleft[mm] davr [mm] |100·(dr−davr)
dr

|[%] dleft[mm] davr [mm] |100·(dr−davr)
dr

|[%]

250 220 228 8.8 252 253 1.2
300 280 282 6 301 307 2.33
350 342 333 4.86 352 347 0.86
400 428 407 1.75 407 404 1.25
450 519 494 9.78 569 496 10.22
500 582 567 13.6 586 594 18.80
600 805 801 33.34 691 704 17.33
700 - - - 812 794 13.43
800 - - - - - -
1000 - - - - - -

Table 6.2: 3D line detection error related to Figure 6.3.

We see in Table 6.2 that lines beyond a distance of 500mm cause errors higher than 10%
of the real distance to the line. Lines beyond 700mm are not always detected with depth
information.
Figure 6.4 shows the distance to a line in relation to the detected disparity and the

23ds max is a software product to create photo-realistically synthetic scene. Details can be found at
www.discreet.com and www.autodesk.com

3Matlab 7.0.1 provides a function called stereo gui to rectify and calibrate stereo image pairs.
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(a) Real images

(b) Synthetic images

Figure 6.3: Test images for evaluating the 3D line accuracy.

distance aberrance if the disparity is detected incorrectly. We also see in Figure 6.4 that
an incorrect detection in the line’s disparity causes a non-linear distance error. This
error increases indirectly proportional to the disparity. The relative error on an incorrect
disparity detection is printed in the two discontinuous lines in Figure 6.4.
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Figure 6.4: Distance in relation to a given disparity value

6.3 Object Detection

The detection of objects in the surrounding area of the robot is one of the essential func-
tional requirements. The goal and the game ball must be detected if they are in the field of
view of the vision system. Recognizing the game ball and estimating its position is essential
to play robot soccer. The detection of the directions to the goals allows a rudimentary self-
localization to find the playing direction of the robot soccer game. The following section
presents results of the position estimation of the game ball and of the direction estimation
toward the goals.

6.3.1 Ball Detection

Tests have been performed to find the accuracy of the game ball detection on synthetic and
real images. A game ball, in this case a yellow tennis ball, is placed in front of the robot in
different distances. Figure 6.5.a shows real images taken by the robot on the playing field.
Focal length and baseline distance are the same as in Figures 6.3 of Section 6.2. The nine
images of synthetic data in Figure 6.5.b represent the same scene as in the real images,
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but they are generated using a different focal length in 3ds max. The exact distances to
the ball are printed in Table 6.3, where the rows in Table 6.3 correlate in order with the
images in Figure 6.5.

(a) Real images

(b) Synthetic images

Figure 6.5: Test images for evaluating the accuracy of the object detection algorithm.

In Figure 6.5 we see that the ball appears smaller in the synthetic images (b) than in the
real images (a). The shorter focal length in the synthetic camera causes this effect. This
is the reason why the ball has not been detected beyond 800mm in the synthetic images
but has been recognized in the real images. Two images from the left and right camera
are used to estimate the distance to the ball.
dright and dleft represents the distance estimated by the right and left camera. dr in
Table 6.3 represents the real distance of the object. The detected distance of the ball
to the camera can be found in the columns dleft and dright. The fourth and seventh
column represent the difference to the real ball in percent by using the average distance
davr =

dleft+dright

2
between the left and the right detection in the images of the stereo vision

system. The distance estimation is sufficient enough to measure the distance between
ball (6cm in diameter) and camera up to 800mm with an error less than 10% of the real
distance.
A distance of up to 800mm is enough for the robot to plan its next task as long as the
direction to the ball can be estimated.
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Real Data Synthetic Data

dr [mm] dleft [mm] dright [mm] |100·(dr−davr)
dr

|[%] dleft[mm] dright[mm] |100·(dr−davr)
dr

|[%]

300 295 282 3.83 290 287 3.83
400 399 374 3.38 407 398 0.62
500 515 483 0.2 502 480 1.8
600 589 579 2.67 586 592 1.83
700 727 610 4.5 711 667 1.57
800 824 724 3.25 829 778 0.44
900 - 827 8.11 - - -
1000 - 965 3.5 - - -
1100 - - - - - -

Table 6.3: Object detection error related to Figure 6.5.

6.3.2 Blob Detection

This section discusses the results on the direction estimation to colored objects. The
implemented shape detection algorithm is limited to circular shapes, but the vision system
is able to recognize objects also by their color. The implementation includes a general
interface for detecting objects even if shape detection for this object is not implemented.
The detection is then only based on the object color. Figure 6.6 shows different possible
objects in the robot soccer environment which are detected by their color. All robots have
to wear colored marks on their body. This colored mark is detected also by the system
as well as the soccer goals. We see on the images in Figure 6.6 that the shape has not

(a) (b)

Figure 6.6: Test images for evaluating colored object detection

been detected but the direction to the object was recognized and drawn as a box. The
boxes in the images are related to the detected blob with its center marked with a “+” and
the related direction to the object marked with a “×” which represents the color center
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of mass4. Figure 6.6.a also shows a common problem for the detection of blobs. The
reflections of the robot’s color mark on the playing field has caused an incorrect detection
of a blob with the same color as the mark on the robot. But the world model repository5

filters objects which appear on physically impossible places. A reflection of a ball or the
refection of the robots color mark indicates objects with an estimated position under the
playing field. Such reflected objects are filtered by the world model repository.

6.4 Objects on the Playing Field

Presented in this section are results of real images taken by the robot during a game. For
this reason, a rectangle shape detection algorithm which is not discussed but implemented
is used to find and measure rectangles in the image. This algorithm finds the corresponding
border lines of a detected rectangle. The related lines of a rectangle are than delivered
to the world model repository. Figure 6.7 shows a scene where the game ball lies next to
the goal. The ball was detected and measured as well as the goal. The half viewed circle
landmark on the floor in Figure 6.7.b causes a problem. The circle appears as a line in
the detection. Circular landmarks exhibit general problems in the detection because of
the camera position on the robot which is only 12cm above the ground and views at 10◦

downwards. A circular landmark appears generally as flat ellipse segments because of the
camera position on the robot.
The goal line has been detected correctly. Lines drawn in light and dark blue mark the
detected goals on the left and the right side. The detected bottom line is colored in red.
The shown cyan box represents the finally goal object recognized in Figure 6.7.c.
On the left side above the goal is a blob which does not belong to the playing field but we
see on the “5” that its assignment to a model failed because of the blob’s deformed shape
or blob dimension6.

(a) (b) (c)

Figure 6.7: Detected blob on the background and goal borders.

4Color center of mass is described in Section 2.3.5.
5The world model repository is described in Section 5.1.1.
6Blob dimension and shape test is discussed in Section 5.2.4.
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Wrong camera settings like shutter speed, gain and black/white balance produce a faulty
color blob detection. Figure 6.8 shows the first image taken after the camera initialized
with correct camera settings. The camera needs five to ten images to respond to the
initialized setting. Therefore, the first images of the camera after a camera initialization
are, because of this effect, not usable for the object detection algorithm presented. We see
in the source image (a) in Figure 6.8 the drift toward yellow in the color spectrum. This
effect becomes clearer in the blob detection in Figure 6.8.c. Nearly half of the playing field
was detected there as a blob referring to the yellow goal.

(a) (b) (c)

Figure 6.8: Camera initialization problem

A detected robot is shown in Figure 6.9. A distance estimation to the robot at the detected
width of the colored mark is not possible because the robot diameters are only defined with
a maximum value. The game rules determine that the colored mark on a robot must be
visible from all sites starting from 7cm to 12cm above the ground. Thus, the detected
bottom and/or top line of the rectangle are useable features. The detected height of the
mark on the robot and/or the position of the top or bottom line of the mark in the image
are used for an estimation of the robot’s location.
Another problem is seen in Figure 6.9. The detection of the left border line of the color
mark of the robot is longer than the actual mark. The structure of the background7

interferes with the detection of the border line.

(a) (b) (c)

Figure 6.9: Player detection by its colored mark

7Background means in this case the viewed structure which does not belong to the playing field.



CHAPTER 6. RESULTS 78

Figure 6.10 shows two problems: one with the ball detection and another one with the
edge detection. First is the ball detection problem. We see in the bottom row of the
images that the detection of the circular object (game ball) was not correct. One robot
hides more than half of the game ball. This causes problems in the detection. The radius
is wrong because edges in the surrounding area are detected as part of the circular shape.
Normally, if the surrounding edges are not detected as part of a circle, the algorithm
will fail at the shape/circle center test8 and the algorithm will mark the object with low
detection accuracy. A low accuracy indicates that only the estimated direction to the
object is usable. This information is essential for the world model repository. Figure 6.10.c
shows a correct detection of the game ball.

(a) (b) (c)

(d) (e) (f)

Figure 6.10: Hidden ball.

The second problem occurs on the edge detection in images (c) and (f) in Figure 6.10. The
edge detection failed with the right robot on the right border of the color mark. Figure 6.11
shows the problem in detail. The reason lies in the luma information9 in this area which,
in this case, does not change between the red and the yellow color. A visible change for
the human eye in this area is only based on the chroma information. The edge detection,
which is based on the luma information, does not find the obvious edge for us humans.
This effect has been observed in many cases on red and yellow objects on the side facing
the window side of the laboratory which could not be darkened.
Stuctures on the game ball are the reasons why the detection of the sphere fails in Figure
6.12. One league of the FIRA robot soccer community uses a yellow tennis ball as the

8The shape center test was discussed in Section 5.2.4.
9The luma and chroma information of a YUV image is described in Section 2.3.4.
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Figure 6.11: Edge detection problem.

game ball. The typical structure or fabrication line on the tennis ball separates the blob,
which belongs to the ball, into two parts. The circle detection searches only in a limited
area around the blob for a circular arc and fails. The results shown are two blobs related
to the ball model with low detection accuracy.
The Figure 6.12 shows a welcome feature for a non jet-implemented landmark recognition.
White lines on the playing field are detected with two lines going in opposite directions.
This attribute is usable in the next version of the implementation to associate lines to
landmarks. We have to be careful with this feature because as we see in Figure 6.7, the
line detection fails on flat circular arcs. A second line in the opposite direction is missing
if the landmarks are far away like in Figure 6.14. An object which is too close to the

(a) (b) (c)

Figure 6.12: Goal seen from a sharp angle.

camera appears in another color or is too brightly. This effect is seen in Figure 6.13. The
color on the top of the spheres appears too brightly. Therefore, the top of the ball is not
detected as a known area. Even if the blob is detected correctly we face another problem.
The circle shape detection will fail because only a part of the game ball is visible in the
image. A solution to this problem has not yet implemented. Figure 6.14 shows a problem
if the goal is seen from a sharp angle. The distance estimation to the goal by its size10

fails. The projection of the goal in the image is not rectangular. But the detected bottom
line allows us to estimate the position because we know the camera position relative to the

10Distance estimation by known object size is discussed in Section 4.1.1
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(a) (b) (c)

Figure 6.13: Goal seen from a sharp angle.

playing field. We can use the technique discussed in Section 4.1.2 to estimate the goal’s
position. An additional error causes the assumption in the implementation that the goal is
a rectangle. This is not true, because the goal is a box which is open on two sides. For this
reason, the vision system has been designed to deliver, on a rectangle detection, not only
the estimated position of the rectangle to the world model repository, it also submits the
direction to the detected border lines. These inputs are then used in the case of a detected
goal to estimate the robot’s location by using a particle filter. Further discussions on the
particle filter and other localization methods can be found in [FT06].

(a) (b) (c)

Figure 6.14: Goal seen from a sharp angle.

6.5 Self-Localization

The simulation done in [Deu07] uses a particle filter where the split information of an
object in object features (goal post and goal bottom line) is used for self localization.
Figure 6.15 shows the localization process in time[Deu07]. Data from odometry and vi-
sion are used for the localization. Gray dots in Figure 6.15 are particles where each one
represents the probability that the robots reside on this location on the playing field. The
final location (red dot on the end of the red line) is estimated by a weighted average of all
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particles where the particle probability is the weight.
Figure 6.15.a shows a swarm of particles denoting possible locations of the robot, according
to previously done estimation in combination with the current vision sensor data (right
goal post). The swarm is shaped like a comet’s tail because the goal post feature is only
detected with its direction. In the next step, the bottom line of the goal is detected addi-
tionally to the goal post which is seen in Figure 6.15.b. The swarm concentrates on a small
area close to the real position. This increase of quality is not only because two features
are visible but also because the distance to the bottom line of the goal is known.

(a) (b)

Figure 6.15: Particle filter of the self localization.
Images are taken from [Deu07]

6.6 Timing

Tests have been done on images taken by the robot in the playing field. The processing
time for an image depended on the chosen area of interest11. The average processing time
of images shown in the last sections was at 220ms (4.5Hz) on a resolution and an area
of interest of 320x240pixels. The Table 6.4 shows the runtime of the algorithm on the
robot with the processing time in every processing step for real images. The following list
describes the functions printed in the first column of Table 6.4:

• Figure: Describes to which image the timings belong in this thesis.

• Edge detection: Includes the process to find edges with the canny edge detector
and the process to reduce the image to 32 colors.

• Open & Closing: Process to reduce noise (see Section 2.3.1).

• Line detection: Process to find lines and depth information based on lines.

11Area of interest: This area represents an area in the image where the detection will be applied.
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• Shape detection: Process to detect rectangles and circles near blobs.

• Object detection: Process to verify the detected objects with the information from
the second camera.

Figure 6.7 6.10 top row 6.13 Average
Edge detection 89 ms 89 ms 85 ms ≈ 87 ms (40 %)
Open & Closing 26 ms 26 ms 27 ms ≈ 26 ms (12 %)
Blobs detection 70 ms 75 ms 60 ms ≈ 68 ms (30 %)
Line detection 20 ms 22 ms 15 ms ≈ 19 ms (9 %)
Shape detection 19 ms 18 ms 18 ms ≈ 18 ms (8 %)
Object detection 1 ms 1 ms 1 ms ≈ 1 ms (>1 %)
Processing time: 225 ms (4.3Hz) 231 ms (4.3Hz) 206 ms (4.9Hz) ≈ 220 ms (4.5Hz)

Table 6.4: Timing of the algorithm.

We see that 40% of the processing has been used by the edge detection. The edge detection
is the process that needs most of the processing time because of the read operations for the
image on the SDRAM12. The SDRAM accesses are the reason for the processing time of
the open & closing operation (12%) and the blob detection (30%). The detection results of
the edge and blob detection are stored in the L1 memory which is more quickly accessible
than the SDRAM [PH98]. The line and shape detection benefits from the access speed of
the L1 memory which is shown in the average processing time of 19ms and 18ms (9% and
8% of the total processing time).
The edge, open & closing and blob detection always process the whole area of interest.
Therefore, the processing time of these functions varies slightly with the context of the
image. Line and shape detection are related to the viewed scene especially the shape
detection. Their processing time varies with the context of the image as we see in the row
“line detection” in Table 6.4. The circle detection showed, on test images with more than
one game ball, a significantly longer processing time. The change in the processing time
changed linearly for every ball on the playing field. The rectangle detection showed only
slight changes on the processing time if more rectangles were present in the image.
The frame rate could nearly be tripled in tests where the resolution has been reduced to
160x120 pixels. It was approximated around 12 Hz but the quality of the object detection
decreased. Tests have also been performed with a resolution of 360x240 pixel and a limited
area of interest to 300x200 pixels around the center. In these particular case the frame
rate increased into a level above 5 Hz.

12A SDRAM read operation is around ten times slower than a read operation on the L1 memory. Details
can be found in Section 5.1.3.
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6.7 Summary

This chapter points out that requirements of the system, as specified in Section 1.3.1, have
been fulfilled. Colored spherical objects like the game ball and colored blobs related to the
game goals are detected by the vision systems. This was shown in the results in Section
6.3. It was also shown in Section 6.2 that the feature-based stereo vision system is able
to provide 3D lines for a not yet implemented landmark detection within 500mm in the
viewing direction. Experiments in Section 6.4 on real images from robots on the playing
field demonstrate problems in real soccer game situations.
An example of a self-localization simulation presented the usability of the vision data
together with the odometry in order to estimate the robot’s position on the playing field.
The average frame rate of 4.5Hz lies under the desired frame rate of 5Hz, but tests in
Section 6.6 illustrated that a frame rate up to 12Hz is reachable with changes in the area
of interest.



Chapter 7

Conclusion

“The significant problems we face cannot be solved at the same level of
thinking we were at when we created them.”

(Albert Einstein)

This Chapter presents a discussion to show relationships among observed facts in the
context of this thesis. Additionally, a final section poses ideas for future work in computer
vision on embedded systems.

7.1 Discussion

Is the Tinyphoon robot able to play robot soccer with the presented vision sensor? That is
the essential question we would like to discuss in this section. The presented frame rate of
5Hz is at the limit of the proposed requirements. A realistic game where the robot should
fight state-of-the-art robots with vision systems above the playing field (MiroSot League
and Middle-Size League) will end with a fiasco for the Tinyphoon robot. The game ball
speed (in MiroSot up to 60km/h) makes the vision sensor unusable. The shutter speed of
the camera and the processing time is too slow. But the new proposed league, AMiroSot,
is an environment where the robot can face enemies with similar problems. The result will
be a game with a slow average traveling speed (≈0.15m/s) of the robots in the AMiroSot
league.
The Tinyphoon robot already showed, at the FIRA World championship 2006 at Dortmund
in the RoboSot league, that it is capable of matching other robots of his kind.
The results presented of the object detection are good enough to allow the robot to localize
itself and to find the game ball as well as to detect other robots on the playing field.

84
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The results of the object detection showed us that the usage of a stereo vision system
increased the detection accuracy of objects. A game ball was detected within 800mm with
an error less than 10% to the real distance.
A feature-based stereo vision system detects lines in three-dimensional space. Those 3D
lines can be used in a next version of the implementation to detect landmarks on the
playing field.
Problems are still present and reported in this thesis. Lighting conditions and reflections
are only some of the reported problems. But none of them conclusively prohibited the
robot from playing robot soccer.

7.2 Future Work

Additional shape detection algorithms are major issues for future implementations. Cur-
rently, goals and marks on robots are only detected as colored objects. An implementation
of a box detection algorithm would raise the field of application.
The rectification lookup table in this thesis is used to rectify the two images of a stereo
camera set. But as we saw in Section 5.2.5, the image quality suffers from the rectifica-
tion. A suggestion is to apply the object and line detection algorithm on the unrectified
images and then to rectify only the extracted features for the 3D line extraction and object
verification.
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