
Diplomarbeit

Diagnosis of CAN-based Legacy
Applications in the

Time-Triggered Architecture

ausgeführt zum Zwecke der Erlangung des akademischen Grades
eines Diplomingenieurs der Technischen Informatik

unter der Leitung von

O. Univ. Prof. Dr. phil. Hermann Kopetz

und

Dipl.-Ing. Dr. techn. Roman Obermaisser

als verantwortlich mitwirkender Assistent

Institut für Technische Informatik 182

durchgeführt von

Florian Schüller
Matr.-Nr. 9925146

Breitenfurterstraße 114b/173
1120 Wien

Wien, im März 2007

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Abstract

The Controller Area Network (CAN) is the most widespread network proto-
col in the automotive domain of today’s world. CAN has gained wide accep-
tance because of its flexibility and the low cost of hardware with CAN support.
In the automotive domain it is used for control applications as well as for di-
agnostic purposes, comfort functions and other applications. Several protocols
and software layers (e.g. TP2.0, KWP2000, DEH etc.) have been developed
to be able to handle especially the complex diagnostic functions in cars. They
include security mechanisms, flashing functions, and many more. Also, in the
past few years more and more safety-related functions have been integrated in
modern cars using CAN. Famous representatives are the airbag, the Anti-lock
Brake System (ABS), the Electronic Stability Control (ESC) and so on. This
trend shows us that more and more even safety-critical applications are going
to be controlled by electronic devices in the future.

To handle the communication needs of future safety-critical applications (e.g.
X-by-wire) a time-triggered (TT) technology will be used. The Time-Triggered
Protocol (TTP) for example is a famous representative which facilitates the
creation of dependable distributed embedded real-time systems. It is success-
fully used for example in the avionic domain for applications which have to be
ultra-reliable. Nevertheless, for non safety-critical applications, it is important
to reuse existing CAN hardware and software to preserve the existing invest-
ments in diagnostic equipment and the diagnostic know-how which has been
gathered for several years now. The huge investment in legacy equipment also
makes a solution attractive which reuses most of this hardware.

In this thesis, we show that it is possible to use the existing diagnostic tester
hardware to diagnose not only CAN-based Electronic Control Units (ECUs) but
also time-triggered ECUs. Another aspect of this work is to demonstrate that
it is possible to use the “Hersteller Initiative Software” (HIS)-CAN interface
to emulate CAN for the complete diagnosis software stack which is used today.
The stack was provided by a major European carmaker for our work. Another
important goal in this work is to show that it is possible to provide additional
diagnostic information (e.g. membership) using the same diagnostic equipment
as for CAN. By utilizing a Time-Triggered Protocol (TTP), which provides
error containment in the time domain, we also tackle the trouble not identified
(TNI) phenomenon which exists in CAN.

i

Kurzfassung

In der Automobilindustrie ist das Controller Area Network (CAN) das am
weitesten verbreitete Kommunikationprotokoll. CAN hat breite Anwendung
gefunden aufgrund der Flexibilität und der niedrigen Kosten von Hardware die
CAN unterstützt. Im Auto wird CAN für Regelungen, Diagnosefunktionen,
Komfortfunktionen und einige andere Anwendungen genutzt. Ausserdem wur-
den viele unterschiedliche CAN-basierende Protokolle und Softwareschichten
(z.B. TP2.0, KWP2000, DEH usw.) entwickelt um die notwendigen komplexen
Diagnosefunktionen zu realisieren. Die Diagnosefunktionen umfassen Sicher-
heitsmechanismen, Programmierfunktionen und vieles mehr. In den letzten
Jahren sind mehr und mehr sicherheitsrelevante Funktionen, unter der Ver-
wendung von CAN, in das Automobil integriert worden. Bekannte Vertreter
sind der Airbag, das Antiblockiersystem (ABS), das Elektronisches Stabilitäts
Programm (ESP) u.v.m.. Dieser Trend zeigt uns, dass in Zukunft immer mehr
auch sicherheitskritische Anwendungen durch elektronische Bauteile gesteuert
werden.

Um die Voraussetzungen an das Kommunikationssystem einer sicherheitskri-
tischen Anwendung der Zukunft zu erfüllen, wird eine zeitgesteuerte Architek-
tur Verwendung finden. Das zeitgesteuerte Protokoll TTP ist ein gutes Beispiel
für ein zuverlässiges Bussystem das eine Implementierung von verteilten einge-
betteten Systemen ermöglicht. In der Flugzeugindustrie wird TTP schon erfol-
greich für sicherheits-kritische Anwendungen genutzt. Für Automobilhersteller
ist es sehr wichtig bestehende Hardware und Software aus Kostengründen weit-
erzuverwenden. Auch das Diagnoseequipment und das Know-How zur Diag-
nose stellen eine große Investition dar, die es zu bewahren gilt. Durch diese
Investitionen werden Lösungen bevorzugt, die diese Resourcen in größtem Maße
weiterverwenden.

In dieser Arbeit wird gezeigt, dass es möglich ist existierende Diagnose-
hardware nicht nur für CAN-basierte Steuergeräte sondern auch für zeitges-
teuerte Steuergeräte zu verwenden. Der “Hersteller Initiative Software” (HIS)-
CAN Interfacestandard kann verwendet werden, um den kompletten existieren-
den Diagnosestack an ein zeitgesteuertes Netzwerk anzubinden. Eines der
wichtigsten Ziele dieser Arbeit ist aber die Visualisierung der erweiterten Diag-
nosemöglichkeiten (z.B. Membership) mit dem selben Diagnoseequipment wie
für CAN. Mit der Verwendung von TTP, dass eine strikte Unterteilung der
Zeit beinhaltet, wollen wir auch das TNI Phänomen in Angriff nehmen, dass
bei CAN existiert.

ii

Contents

1 Introduction 1
1.1 Structure Of Work . 3

2 Basic Concepts 4
2.1 Diagnosis In The Automotive Domain 4
2.2 Integration Of Legacy Applications 5
2.3 Intellectual Property . 5
2.4 Event-Triggered vs Time-Triggered 6

2.4.1 Event-Triggered Communication 6
2.4.2 Time-Triggered Architecture 7

2.5 Gateway . 10
2.6 Two Level Design . 11
2.7 TTP-OS . 11

3 System Model 13
3.1 Architectures And Protocols . 14

3.1.1 Controller Area Network (CAN) 15
3.1.2 Time-Triggered Protocol Class C (TTP/C) 16
3.1.3 CAN Emulator . 18
3.1.4 TP2.0 . 19
3.1.5 SDS . 22
3.1.6 KWP2000 . 23
3.1.7 DEH . 27

3.2 Model Features . 27
3.2.1 Hardware Emulation . 28
3.2.2 Software Emulation . 30

4 Implementation 32
4.1 Legacy Application . 33

4.1.1 User Application Layer 34
4.1.2 DEH Layer . 34
4.1.3 SDS Layer . 35
4.1.4 KWP2000 Layer . 37
4.1.5 TP2.0 Layer . 37
4.1.6 CAN Interface . 39

4.2 Prototype Setup . 39
4.3 Integration of the CAN Emulator 41
4.4 Two Level Design . 43

iii

4.4.1 Cluster Level . 43
4.4.2 Node Level . 44

4.5 Added Diagnostic Features . 45

5 Validation 52
5.1 Validation Of Standard CAN Hardware 52

5.1.1 Test case 1: Direct CAN Connection 53
5.1.2 Test case 2: Direct CAN Connection - Lever State 53

5.2 CAN Hardware Compatibility 54
5.2.1 Test case 3: Heterogeneous Devices 55

5.3 CAN Tunneling . 55
5.3.1 Test case 4: Tunneled Connection 56
5.3.2 Test case 5: Tunneled Connection - Lever State 57
5.3.3 Test case 6: Tunneled connection - Diagnosis 1 57
5.3.4 Test case 7: Tunneled connection - Diagnosis 2 58

5.4 Legacy Application Diagnosis 58
5.4.1 Test case 8: Parking Aid 59
5.4.2 Test case 9: Parking Aid - Diagnosis 1 60
5.4.3 Test case 10: Parking Aid - Diagnosis 2 60
5.4.4 Test case 11: Parking Aid - Diagnosis 3 61
5.4.5 Test case 12: Parking Aid - Diagnosis 4 61
5.4.6 Test case 13: Parking Aid - Diagnosis 5 62

5.5 Timing Analysis . 62
5.5.1 Latency Figures . 64

6 Conclusion 70

7 Acronyms 72

Bibliography 75

iv

List of Figures

2.1 A cluster cycle with N nodes and two TDMA rounds 9

3.1 I/O interfaces of a node in our model and the associated layers . 13
3.2 Dominant and recessive bits on a CAN network 15
3.3 The standard CAN-Message Frame 16
3.4 TP2.0 - General Message Structure 21
3.5 TP2.0 - Data Message Structure 22
3.6 TP2.0 - Dynamic Channel Setup 22
3.7 KWP2000 flow diagram . 24
3.8 KWP2000 - Basic Message Structure 26
3.9 Simple abstration Model . 29
3.10 Model using dependable a Network 30

4.1 Call graph of the demo application provided by Audi. 33
4.2 DEH - DTC configuration code 36
4.3 SDS Service ’Read Data By Local Identifier’ 38
4.4 Overview of our demo setup . 40
4.5 Detailed software layering of all demonstration nodes 41
4.6 Header file parameters for CAN Emulator (cluster level) 42
4.7 Header file parameters for CAN Emulator (node level) 42
4.8 Can Emulator data structure storing one CAN message 43
4.9 The cluster schedule of the demo application 44
4.10 Task Schedule for the third demo node ”EPH” 46
4.11 C Code for sending membership status into DEH layer 47
4.12 Screenshot of diagnostic tester showing a DTC on TTP hardware 48
4.13 Frame statuses during simulated cable break 49
4.14 Cable break detection algorithm for the bus topology 50
4.15 Sample diagnostic tester output during cable break 51

5.1 Standard CAN communication 54
5.2 Controlling a TTP ECU with a legacy CAN ECU 56
5.3 Tunneling CAN messages and diagnostic messages 58
5.4 Legacy application diagnosis . 59
5.5 Cable break diagnosis using legacy tester hardware 62
5.6 Latency: Tester to Steering Column (Best Case) 66
5.7 Latency: Tester to Steering Column (Worst Case) 66
5.8 Latency: Steering Column to Tester (Best Case) 67
5.9 Latency: Steering Column to Tester (Worst Case) 67

v

5.10 Latency: Tester to Parking Aid (Best Case) 68
5.11 Latency: Tester to Parking Aid (Worst Case) 68
5.12 Latency: Parking Aid to Tester (Best Case) 69
5.13 Latency: Parking Aid to Tester (Worst Case) 69

vi

List of Tables

5.1 Test case 1: Direct CAN Connection 53
5.2 Test case 2: Direct CAN Connection - Lever State 53
5.3 Test case 3: Heterogeneous Devices 55
5.4 Test case 4: Tunneled Connection 56
5.5 Test case 5: Tunneled Connection - Lever State 57
5.6 Test case 6: Tunneled connection - Diagnosis 1 57
5.7 Test case 7: Tunneled connection - Diagnosis 2 58
5.8 Test case 8: Parking Aid . 59
5.9 Test case 9: Parking Aid - Diagnosis 1 60
5.10 Test case 10: Parking Aid - Diagnosis 2 60
5.11 Test case 11: Parking Aid - Diagnosis 3 61
5.12 Test case 12: Parking Aid - Diagnosis 4 61
5.13 Test case 13: Parking Aid - Diagnosis 5 62
5.1 Network Latencies . 63

vii

1 Introduction

In today’s cars many functions are controlled electronically like control ap-
plications or comfort functions. Even safety-enhancing functions are already
available in new cars like the Anti-lock Brake System (ABS) or the Electronic
Stability Control (ESC). In the past years these safety-related applications
have been widely introduced. It is obvious that the next steps for the future
are towards safety-critical applications like steer-by-wire or brake-by-wire.

The current communication system used in the majority of the cars is the
event-triggered CAN. It is a cheap communication system and much know-
how has been gathered in the past years. However it is not the best choice
for the implementation of dependable distributed embedded real-time appli-
cations, because does not support media redundancy, atomic broadcasts and
some more[25]. Safety-critical systems require a reliable, fault-tolerant net-
work which a time-triggered communication system fulfills [37][26][3][4][7][18,
chapter 2][18, subsection 4.4][22].

Time-triggered protocols also facilitate the establishment of fault isolation by
partitioning the network in the time domain which is beneficial for improved di-
agnosis. Partitioning also is a necessity in creating integrated safety-critical sys-
tems [37]. In this work we focus on the Time-Triggered Protocol / C (TTP/C)
which has already been successfully used for ultra-dependable systems e.g. in
the avionic domain.

Introducing a new network protocol is usually linked with high development
costs. To reduce this costs we try to reuse as much as we can from the invest-
ment in the legacy communication system. We try to reuse hardware, software
and diagnosis know how with our model. By using standardized interfaces
we avoid internal changes in the applications which is very important while
focusing on the problem of Intellectual Property (IP).

Numerous works focus on the migration of event-triggered systems to time-
triggered systems whereas this work addresses several aspects of the diagnosis
of CAN-based applications on top of a Time-Triggered Architecture (TTA).
The search for diagnosis improvements of the existing CAN was inspired by
the existence of the trouble not identified (TNI) problem. Approaches like
media redundancy and fault isolation lead to the conclusion that TTP/C has
advantages in diagnosis.

1

1 Introduction

In this work we want to make use of additional diagnosis features available
on TTP/C. We combine these features with legacy software in a prototype
setup. We want to show that it is possible to reuse existing software and hard-
ware while migrating to a dependable communication system. Besides reusing
legacy hardware and software in the car we want to show that the existing
diagnostic tester hardware available in every garage is able to interact with
CAN-based ECUs as well as time-triggered ECUs. This is a very important
issue to avoid equipping every garage with new diagnostic hardware because of
a new communication system.

2

1 Introduction 1.1 Structure Of Work

1.1 Structure Of Work

In Chapter 2 “Basic Concepts” concepts used in the remainder of the the-
sis including diagnosis in the automotive domain, the problem of intellectual
property, event-triggered and time-triggered architectures are described. They
are the fundamentals for understanding this work.

Chapter 3 “System Model” describes the architecture, protocols and stan-
dards used within our model in detail and how they are integrated. It also con-
tains different views of our model including the concept of Linking Interfaces
(LIFs).

Chapter 4 “Implementation” elaborates on the implementation of a proto-
type setup. It illustrates the use of our model applied to a demonstration
showing its features on real hardware. Topics like “CAN Emulation”, the
“Two Level Design of a TTA” and the “Added Diagnostic Features” are the
most important here.

Chapter 5 “Validation” tests all properties of our model and confirms our
preconditions for hardware and software compatibility. It contains detailed test
descriptions of our implementation as well as the investigation on the temporal
properties of our setup.

3

2 Basic Concepts

In this chapter fundamental topics related to diagnosis, legacy applications,
time-triggered and event-triggered architectures are briefly summed up. This
will give an overview to understand the system model and its implementation.

2.1 Diagnosis In The Automotive Domain

In todays cars up to 70 ECUs improve traveling comfort or increase safety [8].
These units may also have malfunctions and it should be possible to determine
the exact cause of the malfunction. In this section the diagnosis of malfunctions
or errors concerning electronic parts of a car is addressed.

Present day cars are equipped with an On-Board Diagnostics (OBD) system.
This system detects errors and either stores them for the inspection or shows
them to the driver if the error is severe or influencing the behavior of the car.
At the beginning of OBD systems, errors have been signaled using Malfunction
Indicator Lights (MILs). In modern cars all type of information including errors
are displayed on Liquid Crystal Displays (LCDs).

Each ECU in a modern car is able to detect local errors for each ECU.
Correlating the errors reported by each ECU to find the real problem source is
still a big problem today and will be discussed later. Each error has a specific
identification number and is called Diagnostic Trouble Code (DTC) in the
automotive domain. These errors are stored in the ECU and can be retrieved
together with the information whether this error is permanent or transient[38].
Usually one fault (e.g. short circuit of the communication bus) causes more
than one DTC so it is very important to save for example the mileage when
the error occurred to be able to analyze possible correlations of DTCs.

The “freeze frame” table stores additional information about the current
status of the car at the instant when an error occurs. Information like the
mileage, the time-stamp and environmental values within the freeze frame allow
only an expert to correlate error messages and determine the real source of the
error.

The basic concept of detecting errors, storing this information and revealing
it during an inspection is the same for all vehicle manufacturers.

4

2 Basic Concepts 2.2 Integration Of Legacy Applications

During the car inspection the mechanic connects the diagnosis tester to the
car and is able to retrieve the DTCs. This is done using special protocols
which are often a mixture of standards and manufacturer specific adaptations.
Important protocol standards are ISO-9141[27], J1850[16] and the Keyword
Protocol 2000 (KWP2000)[38].

2.2 Integration Of Legacy Applications

Focusing on the diagnosis and integration of legacy applications leads to the
need for defining what we call “integration of legacy applications”. Usually
legacy application or sometimes called “legacy code” is meant to be unsup-
ported or unmaintained code. This wording originates from the development
of newer platforms where the code should be executed from now on. These
newer platforms are introduced, e.g., because they are faster, more reliable or
more advanced. The drawback usually is the incompatibility to the old code.
In our case the code is neither unsupported nor old but we tried to migrate
the code to a completely different architecture and hardware platform. The
reason why we call the CAN-applications “legacy-applications” is that a time-
triggered system is a more suitable approach for dependable, fault-tolerant and
predictable control systems. Several texts suggest to use a TTA for safety-
critical systems like drive-by-wire or brake-by-wire [7] [23] [6].

2.3 Intellectual Property (IP)

The approach discussed in this work talks about software integration and
migration. The title of our work contains the word “legacy” which leads us
directly to this topic. “Legacy Application” implies that the software already
exists and it is very probable that this software source code is not owned by
the car manufacturer or the data-bus manufacturer. The source code is usually
“owned” by a third party firm which means that it is protected by copyrights,
patents etc. as listed in [5]. This also means that the car manufacturer who
usually is responsible for merging all mechanic and electronic parts to a car
has no access to the source code of these applications. Migrating or integrating
software, however forces you to have at a detailed description of the interfaces
used by adjacent modules or software layers. The standards used in the au-
tomotive domain are very often not self-contained but include the freedom for
each manufacturer to enrich or adapt these standards. Obtaining these descrip-
tions, including the manufacturer specific adaptations, is somtimes difficult or
impossible for externals for business rivalry reasons. It is then also not possible

5

2 Basic Concepts 2.4 Event-Triggered vs Time-Triggered

to develop software for several car manufacturer Because of that, the topic of
“intellectual property” is one of the most important issues when talking about
software migration and integration.

Sharing source code, signing business cooperation contracts and Non-
Disclosure Agreements (NDAs) are not the best solution to protect the IP of
a company. The solution proposed, and finally also used in this work is based
on layered software and standarized interfaces between these layers. The idea
of standardizing all layers used in an automobile is for example developed and
pushed by automotive open system architecture (AUTOSAR)[13] since 2003.
As we want to replace the network of an existing electronic system a stan-
dardized network interface has to be the link between the two systems. The
HIS-Standard[1] is the standard that separates the software layers in our work.
When strictly adhering to the standard it is possible to develop software layers
separately and composing them afterwards. Intellectual Property (IP) is now
assured and as the older software parts already match the HIS-Standard no
change to the code has to be done to switch the networks.

2.4 Event-Triggered vs Time-Triggered

The decision whether to use an event-triggered or a time-triggered commu-
nication is non trivial and mainly depends on the constraints deduced from
the system specification. This section is going to introduce the advantages and
disadvantages of both communication techniques to get an idea of the strengths
of both approaches[18, section 4.4].

2.4.1 Event-Triggered Communication

Event-triggered communication is probably the most widely used communi-
cation technique as it is intuitive, more flexible and easier to implement than
time-triggered communication. Event-triggered communication can be found
not only in the automotive domain but in several other domains like the world
of the Personal Computers (PCs). Event-triggered architectures are used in
environments where communication needs to be very flexible, should have a
low average latency and high bandwidth. The idea in Event-Triggered (ET)
communication is that an action or a data transmission is activated on a signif-
icant change of state or another input. All other nodes can react on this event
appropriately. However these events are not synchronized and one can not
predict if two or more messages caused by events will collide on the common
communication medium. Depending on the network load each participating

6

2 Basic Concepts 2.4 Event-Triggered vs Time-Triggered

node of the event-triggered architecture is able to use the available bandwidth
of the network when needed. During low network load flashing of nodes and
retrieval of big chunks of data can be done seamlessly on one network during
normal operation.

The disadvantages like increased latency during increased network load are
the same as it is known from the Ethernet. A very important representa-
tive of the event-triggered paradigm in the automotive world is the Con-
troller Area Network (CAN) [31][12]. The CAN is of special importance for
this work because is it the start of our migration process of improving diag-
nosis. It contains a simple but powerful medium access control mechanism
“bit arbitration” implementing a Carrier Sense Multiple Access with Collision
Avoidance (CSMA/CA) algorithm. It is in contrast to the Carrier Sense Multi-
ple Access with Collision Detection (CSMA/CD) algorithm which just detects
collisions and retries the transmission after some random interval, e.g. Ether-
net. The “bit arbitration” described in detail in Section 3.1.1 avoids collisions
and prioritises messages to improve the data integrity of important communi-
cation channels between nodes.

2.4.2 Time-Triggered Architecture

The Time-Triggered Architecture (TTA) [4][20][18][3] is a network archi-
tecture suitable for creating high dependable distributed embedded real-time
systems. This architecture has advantages concerning the reliability of the
communication while losing some runtime flexibility and throughput of event-
triggered approaches. In this section the most important features are summa-
rized to get an idea of the possible application range where you can make use
of the TTA and to be able to understand our work.

By using a time-triggered architecture a global time at a given precision is
provided and kept synchronized among all nodes. An exact definition of global
time and how it works, can be found in [18, chapter 3]. Another very important
feature of the TTA is that all nodes judge each other if they operate as expected
or not. This property of the TTA enables it to determine whether a node is
faulty or not, referring to the TTA’s fault hypothesis [4]. It is significant that all
nodes have the same rating of all other nodes because this “global view” of the
network enables a robust implementation of fail-silent behaviour and a more
exact diagnosis of faulty nodes or network connections than in other networks
like the standard CAN. If a node is judged to be faulty by the majority of
the nodes it can be forced not to disturb the communication of the others for

7

2 Basic Concepts 2.4 Event-Triggered vs Time-Triggered

example using a busguardian. This information about the “global view” is also
called the “membership”.

The nodes (or often called ECUs in the automotive domain) are connected
by a network which is based on a transmission strategy called Time Division
Multiple Access (TDMA). In this strategy time is divided into “cluster cycles”
which consist of one or more “TDMA-rounds”. In each “TDMA-round” every
node has its dedicated “round slot” on the common network. In each slot
a “frame” is embedded which contains, for example, the payload. It is very
important that each node can receive the messages from all other nodes to
be able to create the membership. The “TDMA-rounds” can contain different
types of information sent by the nodes but the information is repeated every
“cluster cycle”. The allocation of the slots to the nodes is the same in each
“TDMA-round” [20]. It is also possible to switch between several cluster cycle
definitions e.g. other messages transmitted, longer round slot for a specific
node to gain bandwidth and so on. These different cluster cycles are named
“operational modes”. The previously described combined information is called
“cluster schedule”. The common boundary between the host computer and
the communication controller within a node is called Communication Network
Interface (CNI). In the CNI all messages are stored and read at a priori known
instants to cleanly separate the host computer from network communication.

Each ECU maintains1 three important parameters:

• Operational mode ([20])

• Current global time

• Membership vector

The union of these is called Controller state (C-state). They indicate if (oper-
ational mode, membership vector) and when (global time) a node is allowed to
send which information. To be able to create a global time and a global view
of the network this C-state has to be synchronized with all other nodes. This
is done with the “I-frames”. I-frames are normal TTP/C frames which don’t
contain user defined values but the C-state of the sending node so all nodes
can get a synchronous time and view of the network.

An example of a cluster schedule is shown in Figure 2.1. Here you can see a
cluster cycle consisting of two TDMA rounds. In the first TDMA round each
node sends an I-frame and in the second the data is sent.

1in the communication controller

8

2 Basic Concepts 2.4 Event-Triggered vs Time-Triggered

Figure 2.1: A cluster cycle with N nodes and two TDMA rounds

The send and receive instants of all nodes participating in the system are
calculated in advance to satisfy all response times and all bandwidth needs
of all nodes in the system. These send and receive instants are stored in the
“Message Descriptor List” (MEDL) on each node.
The node’s tasks are also scheduled in advance, so the whole system can guar-
antee timely delivery of it’s output.

To guarantee that every node participating in this network sends at its as-
signed time slot, an independent hardware extension, called “bus guardian”,
is available for each node. At first it just reads the Message Descriptor
List (MEDL) and listens to the network communication. The “bus guardian”
is now able to connect the node’s send-wires to the network only if the node
is allowed to send, according to the cluster schedule described above. The bus
guardian is either on the node itself or preferably on the replicated star center
to maximize failure independence.

While developing a TTA it is important to stick to the “two level design
approach”[4, Chapter VI] to guarantee composability. The first design phase
is called the “architecture design”, the second is the “component design”. In

9

2 Basic Concepts 2.5 Gateway

the architecture design phase the interfaces between the nodes of the TTA
network are defined exactly and thus also the network interfaces of all nodes.
In the second phase, the component design phase, all node specific tasks are
completed like the task schedule. The separation of the development into two
phases makes it possible for the TTA to offer independent development of the
nodes connected to the same bus while offering composablilty [19].

2.5 Gateway

The integration of legacy hardware or legacy software implies the use of
gateways. That’s why the term “gateway” has to be described in detail within
this work. The term gateway has multiple definitions, but we focus mainly on
the communication based definition of a gateway.

Gateway: (n) A network participant that provides automated inter-
faces to another network or system using different message formats
and/or communications protocols. A gateway may contain protocol
translators (for message standards), and signal or medium transla-
tors, as necessary, to provide system interoperability. Gateways re-
quire mutually acceptable administrative procedures to handle gate-
way functions between networks, such as information management
rules, command and control rules, and reporting responsibility rules.

Gateway definition from [9] inspired by [10]

The protocol translator of a gateway usually has some criteria whether to
allow a package of information to pass through or not. This “selective redirec-
tion” is often simply called “filter”. Medium translators can range from only
a different physical layer, e.g. Ethernet over a copper wire or over fiber optic
cable, up to different application layers, e.g. a software emulating a POP3
account while reading mail from a web-mail application.
A gateway is usually a network node equipped for interfacing with two net-
works that use different protocols. To establish this connection a gateway may
consist of protocol translators, impedance matching devices, rate converters,
fault isolators, or signal translators.
The last important feature a gateway can have, and which has to be mentioned
in this work, is the “fault isolation”. For example if in one network a physical
damage leads to too high voltage on the communication medium and blocks
all communication, the network on the other side of the gateway should not be
bothered by this fault.

10

2 Basic Concepts 2.6 Two Level Design

2.6 Two Level Design

The two level design approach [4, Chapter VI] is an easy way of seperating
network protocol design parameters from node development. This strict sep-
aration enables independant node development while the composability of the
nodes is guaranteed.
The two levels are

• cluster design and

• node design.

The cluster design incorporates specification of the number of TDMA rounds
contained in a cluster cycle, TDMA round length, messages available on the
bus, number of nodes connected to the bus, linkage which message is sent by
which node, and some more. The output of the cluster design is called “cluster
schedule”. With this cluster schedule the communication between all nodes
in this cluster is defined and the node design can be started. Considerations
what the cluster has to control and what bandwidth is needed for this cluster
to work are also done in this design level.

In the node design, according to the messages a node has to send on the bus,
the tasks which calculate or process the messages on the bus are scheduled.
The timestamps of the access to sensors and other inputs and outputs can also
be determined because of thoughts which are the preliminaries to programming
the tasks. For example the ABS ECU is going to use values like the speed of
the car and the speed of the wheels to calculate the brake force, or directly
control the brake force with an attached actuator. These definitions can be
fixed in the very early design and the implementation of the node’s tasks can
then be done independently.

2.7 TTP-OS

TTP-OS is a light weight operating system developed by TTTech specifically
designed for fault-tolerant real-time applications. It provides time-triggered
pre-emptive task scheduling and is compatible with OSEKtime[14]. On lowest
thread priority the so called ’background hook’ is running. It is not recom-
mended to run tasks inside the background hook because it’s not guaranteed
that the background hook is called and it’s not determined how often it is
called. During development it is sometimes easier to use the background hook

11

2 Basic Concepts 2.7 TTP-OS

for testing or debugging purposes as this is the only repeated task which does
not need scheduling in advance. Running event-triggered applications in the
background hook is possible but not recommended. More on that in chapter 4.

All tasks are scheduled in advance so each task has its predefined time slot
where it is allowed to run in. A task execution which takes longer than its
reserved time slot provokes a deadline violation. A deadline violation usually
causes a node to restart and continue normal operation. This mechanism pro-
vided by the TTP-OS prevents tasks from blocking other tasks or the whole
node. This functionality is very useful during development and will not occur
during runtime if the tasks are correctly implemented.

12

3 System Model

In the following sections all parts of the system model are described in de-
tail. All features of a node described by our system model are visualised in
Figure 3.1. The possible interactions for the tasks with the outside world and
the connecting parts of the figure are described in the next few paragraphs.
The dark grey layers of the figure are hardware parts while the white layers
are software parts. The light grey layers describe interfaces (see Section 2.4.2)
implemented by shared memory.

Figure 3.1: I/O interfaces of a node in our model and the associated layers

On the most left side of Figure 3.1 there are the I/O control functions and
the interconnected peripheral. These functions are controlled directly by the
application or some with a small driver simplifying the access. Some possible
examples of these I/O functionalities are:

13

3 System Model 3.1 Architectures And Protocols

• Light Emitting Diodes (LEDs)

• Electric motor(s)

• Serial communication

• LCD display

Our system model needs to have a CAN controller for native CAN access to
the outside world. This will be very important later for the creation of gate-
ways between the event-triggered CAN world and the time-triggered TTP/C
world. A standard CAN driver by TTTech is available for this hardware and
no detailed description is needed for our system model. General description of
event-triggered communication can be found in Section 2.4.1.

Native TTP/C access can be used for all sorts of communication which needs
to be fail operational. The interaction with the Fault Tolerant Unit (FTU)-CNI
is conceptually simple and needs no explanation here. Details can be found in
Section 2.4.2.

Emulated CAN is any communication originally developed for a CAN net-
work. It is tunnelled through TTP/C to use features like dependability and
media redundancy. See Section 3.1.3 for more on this part.

The stack marked with the diagnostics bubble is a special, layered software
originally developed for CAN diagnosis. It can be ported within our model to
run on TTP/C. Details on this software can be found in the Sections 3.1.4 and
following.

The most right part, the operating system, provides the basics to run our
application. It is discussed in detail in Section 2.7.

3.1 Architectures And Protocols

There are several protocols which have to be mentioned and described in
connection with this work. They are fundamentals when working in the au-
tomotive domain focusing on software by Audi and TTAs respectively. To
understand the protocols better keep Figure 3.1 in mind while reading on. It
is also important that in the automotive domain a node of a network is usually
called ECU which is going to be the term used in this work, too.

14

3 System Model 3.1 Architectures And Protocols

Node 1 sends
0 1

Node 2 sends
0 0 0
1 0 1

On a CAN network
0 is the dominant bit while
1 is the recessive bit. The bold printed
bits are the received bits if node 1 and
node 2 transmit their bit at the same
instant

Figure 3.2: Dominant and recessive bits on a CAN network

3.1.1 Controller Area Network (CAN)

The Controller Area Network (CAN) is a field bus system which is heavily
used in the automotive industry to reduce the complexity of the cabling in a
car. It is also used in automation industry in various fields.

CAN is a lightweight protocol to be able to create very small, robust and
cheap ECUs communicating with each other. CAN is usually built upon a
bus topology but other topologies, like a star, are possible, too. The medium
is accessed using the CSMA/CA strategy. To avoid collisions, a technique is
used which is called “bit arbitration” which is described later. The bits are
transferred using the Non Return to Zero (NRZ) line code. CAN offers a wide
range of transmission rates from 10kBd up to 1MBd. Usual transmission rates
are 125kBd and 500kBd in the automotive domain.

There are two standards called “CAN 2.0A” and “CAN 2.0B”. The main
difference is that “CAN 2.0B” has an Message identification number of 29bits
in contrast to the 11bits used in “CAN 2.0A”. In this work only “CAN 2.0A”
(also called “standard CAN”1) is needed.

Bit Arbitration is the technique to avoid collisions and respect message pri-
orities. It relies on the fact that all CAN messages have a unique Identifier (ID)
defining the priority, the content and the sender of the message distinctly. It is
also very important that the ID is sent first (see Figure 3.3). When using NRZ
it is possible to detect collisions and implicitly define priorities because the bit
value “0” is dominant and overrules the bit value “1” which is recessive (see
Figure 3.2). A message with a low identifier has higher priority and blocks the
bus for all messages with a higher identifier which are tried to be sent at the
same instant. With bit arbitration collisions are detected by the sender which
tries to transmit the message with the lower priority.

1CAN 2.0A is called “standard”-CAN; CAN 2.0B is called “extended”-CAN

15

3 System Model 3.1 Architectures And Protocols

Abbreviations

SOF - Start Of Frame
RTR - Remote TRansmission bit
IDE - IDentifier Extention bit
RES - REServed (“r0”)
DLC - Data Length Code
CRC - Cyclic Redundancy Check
ACK - ACKnowledgement delimiter
EOF - End Of Frame
IFS - Intermission Frame Space

Figure 3.3: The standard CAN-Message Frame

A standard CAN frame is assembled as shown in Figure 3.3. The length of
the “Data” block in a CAN message can be 0 to 64 bits in steps of 1 byte.
The length is stored in the Data Length Code (DLC) which only needs to be
4bits wide to cover the value range 0-8 bytes. The Acknowledge (ACK) bit is
set to confirm the reception of a CAN Frame or to signal a damaged frame.
If more than one ECU acknowledges a frame at the same instant a dominant
failure-indicating ACK bit (0) overrules a recessive flawless reception indication
(1).

A closer description of the CAN protocol can be found in [24] while the
standard for the CAN protocol is defined in ISO 11898 ([31], [12]).

3.1.2 Time-Triggered Protocol Class C (TTP/C)

The Time-Triggered Protocol Class C (TTP/C) is the advanced time-
triggered protocol, in contrast to the more simple version TTP/A which is
used for low data rates and simple sensors sending measure values only. TTP/C
should operate on two replicated communication channels to guarantee perfect
communication even if one channel fails. These channels are called “channel
A” and “channel B” further on. It is possible to use only one channel but
not useful for safety-critical systems. As the name TTP/C already reveals, the
protocol is time-triggered and uses a cyclic transmission schedule as medium
access strategy (TDMA). This avoids collisions on the medium, the timeli-
ness of messages and the bandwidth can be guaranteed. The bus speeds for
asynchronous communication available for TTP/C range from 500kBit/s up to

16

3 System Model 3.1 Architectures And Protocols

5MBit/s to provide enough bandwidth for all applications. Faster bus speeds
are already in development. The specification of the current TTP/C can be
found at the homepage of the TTA-Group[15].

The membership is a basic feature of TTP/C - see [18, chap6.4]. It is the
implementation of the global state of the TTA every node is able to access. The
membership indicates whether a node is valid or not. This validity contains
communication failures or other node failures detectable e.g. in the CRC of
the protocol. With this membership every node has the same judgement of the
other nodes which enables fail-silent behaviour and can be used in diagnostics
easily. Each node having the same view of communication failures also helps
pinpointing a failure. Besides the membership a program can get a status
information of each frame received on each channel. This status information
for each single received frame is named “frame status”.

The TTP/C we use here is shipped with replica deterministic algorithms
([18, chap5.6]) implemented in a layer called “Fault-Tolerant Communication
Layer (FT-COM)”. This ensures that if a function is replicated on more than
one node, for safety reasons, all other nodes that read the output of these
nodes (which might be different) use the same combined value for their further
calculations. Values can be different because of measurement errors or because
of a faulty node.

Two additional features increase the reliability of communication in a TTP/C
network. The bus guardian is an independent hardware which enables the send-
ing wires of the communication controller only in its predefined sending slot.
This avoids an erroneous communication controller from disturbing regular
communication. This is called fail silent behaviour of a Fault Containment
Unit (FCU). The second feature is the life-sign which the Central Processing
Unit (CPU) has to send the communication controller periodically to indicate
that it is still working. A blocked or crashed CPU causes the communication
controller to go to passive mode (stops sending TTP/C frames) which indicates
a malfunction to all other nodes.

17

3 System Model 3.1 Architectures And Protocols

Topologies

The recommended topologies for TTAs are

• bus topology and

• star topology

The advantage of the bus topology is that you need less wires and money
as not all ECUs need to be directly connected to a “center”, although the
communication is still safe. The advantage of the star topology is that here the
bus guardians are collected in the star center and thus located in some distance
to the ECU it self. It should be used for ultra dependable systems. As the
communication channels of a TTP/C bus is replicated the star centers are also
replicated not to form a single point of failure. In our work the bus topology
is preferred because there is no need for a separated star center.

3.1.3 CAN Emulator

The idea of the CAN Emulator is to provide an interface for legacy CAN
applications to run them on a TTP/C cluster. It is our LIF between the
TTA and a legacy CAN application. One of the biggest problem here is that
CAN applications usually are event-triggered. Riezler writes in his Diploma
thesis [36] about this problem of writing a CAN driver for event-triggered soft-
ware based on a TTA. Many approaches to tunnel or combine ET traffic with a
TT network already exist because of the different features these medium access
methods provide [25]. However none of them have a CAN driver interface to
easily port legacy CAN applications into a TTA.

As the CAN Emulator is a time-triggered application while legacy CAN
applications are not Riezler developed three possibilities to schedule the event-
triggered CAN application on the TTA. The options to run a legacy CAN
application on a TTA with the CAN Emulator are to

• schedule the CAN application tasks in separate new time-triggered task.
This is extremely simple for the CAN Emulator as no a access conflicts
can arise because all tasks run serialized.

• execute the CAN application tasks in the background hook2

• execute the CAN application tasks in hardware or software interrupts

2see Section 2.7

18

3 System Model 3.1 Architectures And Protocols

While the user is able to choose between these three options, scheduling the
legacy CAN application in a separate time-triggered task is by far the best
choice when developing a TTA. Then timeliness is guaranteed and the hard
deadlines still hold. (see [2] and Section 2.4.2)

The other options the CAN Emulator offers to the programmer are only
for the ease of porting and the reduction of costs while migrating any event-
triggered legacy application into a non-fail-safe TTA. They are not mentioned
in this work any longer.

In Figure 3.1 you can see that the CAN Emulator uses the fault tolerant layer
to communicate via TTP/C so all features concerning reliability and delivery
guarantees can be derived from the TTA. When the buffers and bandwidth
is configured accordingly even the transmission duration can be determined
independent of the network load.

3.1.4 TP2.0

As the CAN Bus is only able to transmit 8 bytes in one CAN-Packet the
network layer has to segment the data for the CAN network if more data needs
to be sent in a row. This segmentation, which is standardized in ISO 15765-
2[33], is harmonized with the segmentation called Unacknowledged Segmented
Data Transfer (USDT). USDT is defined in the OSEK-COM specification[14].
Besides these two standards, Transport Protocol 2.0 (TP2.0)3 is an extended
and proprietary version of the ISO 15765-2. This modified version (TP2.0) is
a proprietary protocol made by Audi and VW. A difference of TP2.0 to the
standard is the extension that the protocol has an acknowledgment and an error
recovery using a retry mechanism. The abbreviation ASDT for “Acknowledged
Segmented Data Transfer” is sometimes used to point out the acknowledgment
feature of TP2.0.

TP2.0 is a master-slave communication protocol capable of sending con-
nectionless messages and establishing a communication channel between the
master and the slave ECU to transfer data. The reception of each packet or
a block of packages has to be acknowledged to guarantee delivery. It is also
possible to interrupt running data transfers.

3TP2.0 is also called VWTP for “Volkswagen Transport Protocol”

19

3 System Model 3.1 Architectures And Protocols

The protocol also introduces timeouts which have to be met while answering
to a request. Several timeouts and retry times are defined in TP2.0 while for
this work it is only interesting that a TP2.0 master usually gets an answer in
about 50ms on a normal CAN bus and the timeout value for an answer is 500
ms. These values are very large so they will not be violated with our model
(more on this in Section 5.5).

To be more flexible with TP2.0 it is possible to create dynamic channels
using two CAN-identifier groups called:

• opening identifier
used for connectionless communication (broadcast messages) and to es-
tablish a dynamic communication channel between two ECUs.

• channel identifier
dynamic CAN-identifier used for connection setup, data transfer, ac-
knowledgment etc.

Connectionless messages are distinguished by the opcode (see Figure 3.4).
With them it is possible to initiate the following actions and receive an answer
if needed.

• clear the DTC-memory of an ECU

• cause the ECU not to send any CAN message until the master sends a
message to resume normal mode

• the button test. ECUs which have buttons connected to them store the
information if every button was pressed after the start of the button test.
The result can be read out by the “state information retrieval” used in
Chapter 5

• enter energy saving mode

• initiate a dynamic channel

Each ECU in a CAN network using TP2.0 has a unique “one-byte TP2.0
identification address”, in this chapter called “destination”. The opening CAN-
identifier for each ECU is fixed and calculated as

opening CAN-identifier = <offset> + <destination>

The offset is a manufacturer specific constant. As the CAN-identifier is also the
priority of the message it is possible to set the priority of the TP2.0 messages
in the system with the offset.

20

3 System Model 3.1 Architectures And Protocols

The TP2.0 general message structure on the opening identifier using 7 bytes
payload of a CAN frame.

CAN-byte #1 #2 #3 #4 #5 #6 #7
TP2.0 Destination Opcode Parameters

Figure 3.4: TP2.0 - General Message Structure

The channel identifier is defined dynamically by the participating ECUs.

Dynamic Channel Setup

In this work the dynamic channel of TP2.0 is very important because
KWP2000 uses this channel to transfer data from the diagnostic tester to the
ECU and backwards.

To initiate a dynamic channel the master sends a channel setup message using
its opening identifier (Figure 3.4). One of the parameters is the CAN-id the
master is going to use for sending packets to the slave (channel identifier). The
slave confirms this request on its opening identifier and tells the master which
CAN-id the slave is going to use as channel identifier. Once this information
is exchanged master and slave switch to their channel identifier and continue
communication there (Figure 3.5). On the channel identifier the “connection
setup” is used to acknowledge the CAN-ids used as channel identifier and the
“block size”. The block size is the number of data packets after which the slave
needs to send an acknowledge to the master.

A usual dynamic channel setup without errors is depicted in Figure 3.6.

21

3 System Model 3.1 Architectures And Protocols

An important TP2.0 message on the channel identifier: The Data Message
can contain up to 7 Data bytes

CAN-byte #1 #2 #3 #4 #5 #6 #7 #8
TP2.0 TPCIa D / - D / - D / - D / - D / - D / - D / -

aTransport Protocol Control Information Byte - contains

• Acknowledge request flag

• end of message indicator flag

• sequence number

Figure 3.5: TP2.0 - Data Message Structure

Figure 3.6: TP2.0 - Dynamic Channel Setup

3.1.5 SDS

SDS is the abbreviation for “Standard Diagnosis Services” whereas the ac-
cording standard (ISO 14229) is called Unified Diagnostic Services (UDS)4 in
the latest revision [30]. The Abbreviation Standard Diagnostic Services (SDS)
is used in this document because it is used by Audi in all libraries and sources,
which deal with this standard and its subordinate standard ISO 14230.

The ISO 14229 specifies generic diagnosis services and services which allow
the diagnostic tester to control non-diagnostic message transmissions. In this
standard the services and their parameters are specified but not the numerical
values of the service identifiers and the values of the parameters. The specific
values are defined in ISO 14230 and in manufacturer specific documents.

4in the first editions in 1998 the ISO14229 was named “Diagnostic services specification”.

22

3 System Model 3.1 Architectures And Protocols

The services specified in the standard are subdivided into the following six
units:

• Diagnostic management functional unit
contains functions for controlling diagnostic sessions, security and reading
ECU identification.

• Data transmission functional unit
contains functions for retrieving data like sensor values or internal vari-
ables, and functions for sending data to the ECU to set transmission
related parameters. For example maximum number of responses to send,
in case of an answer with multiple responses.

• Stored data transmission functional unit
contains functions to retrieve the DTCs and freeze frame data stored in
the ECU.

• Input/Output Control functional unit
contains functions to control peripherals of the ECU with the diagnostic
tester.

• Remote activation of routine functional unit
contains functions to initiate remote function calls and retrieve their re-
sults.

• Upload/Download functional unit
contains functions to download and upload any kind of data.

The specification of these services is the basis of the Keyword Protocol 2000
(KWP2000).

3.1.6 KWP2000

Keyword Protocol 2000 (KWP2000) [28][29] is a master/slave protocol pro-
viding functionality for diagnosis information retrieval, updating ECU firmware
and special development functions. It uses a request - answer scheme to poll
data or acknowledge the execution of a requested function. The services for

23

3 System Model 3.1 Architectures And Protocols

Figure 3.7: KWP2000 flow diagram

this protocol are defined in ISO 14229 described in Section 3.1.5.

The Keyword Protocol 2000 (KWP2000) is defined in the standard ISO 14230
called “Road vehicles – Diagnostic systems – Keyword Protocol 2000” which is
separated into four parts:

ISO 14230-1 Physical layer

ISO 14230-2 Data link layer

ISO 14230-3 Application layer

ISO 14230-4 Requirements for emission-related systems

This standard assumes that the communication is done via the “K-Line”5

which is a single cable serial communication bus. In newer cars the KWP2000

5optional an “L-Line” in addition to the “K-Line” is possible too, which is used for initial-
ization only

24

3 System Model 3.1 Architectures And Protocols

protocol is on top of CAN instead of the “K-Line”. Here, roughly said, the
physical layer is replaced by CAN (with TP2.0). That’s why in this paper only
Part 2[28] and Part 3[29] of this standard are relevant.

The basic communication protocol can be depicted as in Figure 3.7. It shows
the diagnostic tester (master) sending requests with a special “keyword” (=Ser-
vice Identification byte (SId)) and the ECU (slave) responding to it. Some ser-
vices, like updating the program flash, may also initiate a session and require
more than one request and its (positive or negative) answer.

ISO 14230 Part 2: Data Link Layer

This part of the ISO 14230 standard contains the message structure (Fig-
ure 3.8) and basic services which are needed for communication (all other ser-
vices are defined in ISO 14230-3).

The message structure is depicted in Figure 3.8 and uses the following ab-
breviations:

Fmt Format byte
Defines the format of the header. Tgt, Src and Len are optional. The
length of the payload is stored here, too, in case of a payload smaller
than 64 bytes. If the header contains the length byte, the length is stored
there.

Tgt Target address byte
The virtual KWP address of the target (receiver).

Src Source address byte
The virtual KWP address of the source (sender).

Len Length byte
The length is stored here if the source and target addresses are used.

SId Service Identification byte
Specifies the semantic of the contents stored in the current message.

The KWP2000 message header always includes the format byte which con-
trols the existence of the following header bytes. The Service Identification
byte (SId) specifies the requested service. It may be followed by parameters
and data depending on the selected service. The services and their parame-
ters are defined in ISO 14229. The specific values of the service identifiers are

25

3 System Model 3.1 Architectures And Protocols

Header Data bytes Checksum
Fmt Tgta Srca Lena Sld Data CS

max. 4 byte max. 255 byte 1 byte

aoptional, depending on format byte

Figure 3.8: KWP2000 - Basic Message Structure

defined in ISO 14230-3 for diagnostic services and in ISO 14230-2 for commu-
nication related services. Some SId ranges in the standard are marked to be
defined by manufacturer specific documents.

Communication related services specified in ISO 14230-2 are

• StartCommunication

• StopCommunication

• AccessTimingParameter

The first two services contact a specific ECU to start or stop a KWP2000
communication. The third service listed here is able to retrieve or change
communication timing or timeout parameters.

ISO 14230 Part 3: Application Layer

Part 3 contains the ISO OSI layer 7 including

• byte-encoding and hexadecimal values for the service identifiers

• byte-encoding for the parameters of the diagnostic service requests and
responses

• hexadecimal values for the standard parameters

The services which have to be or can be implemented without specific values
of the identifiers are standardized in ISO 14229.

26

3 System Model 3.2 Model Features

3.1.7 DEH

The “Diagnostic Event Handler” is a software layer, in this form provided by
Audi, which does the handling of the background information needed for the
SDS/KWP2000 layers. It contains the failure memory (DTCs) and also handles
the entries of this memory. There is a customizable form of debouncing included
in this layer so the application only has to provide some state variables and the
rest of the diagnosis is up to this layer.

An error can occur

• once

• several times, including arbitrary intervals of correct behavior (sometimes
called sporadic occurrence)

• continuously or

• never.

Dependent on the interval between the sporadic occurrences of an error it
might be useful not to report this error if it occurs rarely. Dependent on
the type of error and the usecase the programmer can decide for each error
separately how often or how fast an error may occur before reported. This
behavior is called debouncing.

This is one of the most important functionality of this layer. The Diagnostic
Event Handler (DEH) layer is also able to put an error to a passive state if it
did not occur for a specific period of time. This is also part of the debouncing.

The DEH layer also handles the freeze frame table (Section 2.1). Each error
can be configured whether the DEH layer should store a freeze frame containing
the current state of the car (eg. mileage) at the instant of the occurrence.

3.2 Model Features

Our work focuses the enrichment of the commonly used event-based CAN
applications with safety advantages of the time-triggered protocol TTP/C. To
replace the CAN with an emulated CAN running on top of a TTA two common
interfaces are needed to be able to reuse existing hardware and software. To
reuse existing CAN software a CAN Emulation layer is needed and to reuse

27

3 System Model 3.2 Model Features

existing hardware a CAN gateway is needed to connect the legacy hardware
with the TTP/C network. A dependable network would be provided for any of
the safety-critical applications one would want to have in a future car[11][17].
The possible features one could be able to use in the future with a TTA installed
in a car, range from steer-by-wire over assisted braking towards complete drive-
by-wire or automated driving.

Our model can be interpreted as simply two emulation concepts. They are
explained in detail in the next sections. The model expands the dependabil-
ity of this distributed control system. It can be abstracted in just one cloud
like in Figure 3.9. This figure shows an abstraction of the model. This sim-
ple figure which is compatible with CAN on software and on hardware level
through LIFs[21] can be extended to get a more detailed view on our model.
This extended model is depicted in Figure 3.10. Here you can see that the
model is compatible to the legacy CAN software and the CAN hardware. The
most interesting point, however, is that CAN diagnosis algorithms, using the
software layers described in the last sections, still work with CAN hardware
and CAN software. Because of the fact that the whole system is now a TTA
even some diagnostic advantages, like the membership (see 4.5), can be utilised
with common diagnosis tools. With this model it is possible to get diagnosis
information from a TTP-Node using CAN diagnosis hardware. In Figure 3.10
the TTP bus is of course meant to be a replicated communication system on
two separated bus lines. These two lines are not depicted here for the sake of
simplicity.

The model supports IP because of the HIS CAN driver interface for legacy
software. With this clear interface development of the ECU hardware, the
operating system and the communication driver can be totally separated from
the actual ECU functionality and this third party software can be linked into
the ECU easily.

An idea of a possible diagnosis improvement which can be realized with this
model is the membership service of TTP/C. With the membership it can
be determined which node is not synchronized or connected to the network,
without the need for a special test procedure like querying all ECUs separately
and waiting for an answer from each of them. More on that in Chapter 4.

3.2.1 Hardware Emulation

In this model hardware emulation refers to the creation of a physical CAN
interface compatible to ISO 11898 [32]. With this interface it is possible to

28

3 System Model 3.2 Model Features

Figure 3.9: Simple abstration Model

connect legacy CAN hardware to the new network. It is very important and
economically advantageous to be compatible with CAN hardware as it will
not be necessary to replace all ECUs with a TTA. This hardware compati-
bility enables the reuse of CAN ECUs and the garage tester hardware, too.
The hardware emulation is realized in this model by implementing a gateway
between the TTP/C and the CAN protocol.

Gateway In our case the gateway has two important features. It is a

• protocol translator and a

• fault isolator.

The translation needed here should read CAN frames from a physical CAN-
bus and transfer them onto the TTP/C Bus. The Application Programming
Interface (API) of the CAN Emulator can be used here, so the gateway soft-
ware only has to translate the CAN packages from the CAN Emulator to the
hardware CAN driver which is just another CAN driver concerning the API.

By the fact that this gateway is a self-contained ECU faults are isolated. The
second reason why this gateway is a fault isolator is that in a TTA error frames
are not needed and therefore not forwarded by the gateway. In some cases error
frames can disturb CAN communication[34] but not TTP/C communication
with this gateway.

29

3 System Model 3.2 Model Features

Figure 3.10: Model using dependable a Network

3.2.2 Software Emulation

In Figure 3.10 the dashed box separates the components (including software
and hardware parts) of the time-triggered architecture from the parts of the
event-triggered world (or here the CAN world). The interconnections between
the two worlds are on the one hand the CAN connections depicted by black
lines connected to the CAN-Device and the CAN-Diagnosis unit, on the other
hand there is the HIS interface. With the HIS interface it is possible to reuse
a CAN legacy software in the TTA.

30

3 System Model 3.2 Model Features

This feature of the model is called software emulation because this interface
emulates a CAN network for the migrated software. It abstracts the commu-
nication network and the fact that the software is running on a time-triggered
architecture. Using this HIS interface event-triggered software including all al-
gorithms and communication procedures need no adaptation to the new com-
munication hardware. As shown in Figure 3.10, additionally you can easily
benefit from the fact that the software is now running on a TTA. It is de-
scribed in Section 3.1.2 and Section 4.5 that it is possible to extract useful
information like the “membership” from the network and use it to improve
diagnostics. This additional information about the state of the network can
be gathered easily by legacy CAN-Diagnosis units. The grey arrows visualise
the path of the diagnosis information from either a legacy software running on
the TTA, a legacy hardware device connected through a gateway or a native
TTP/C node to the CAN-Diagnosis unit.

31

4 Implementation

Investigating on the feasibility of diagnosis of CAN-based legacy applications
in the TTA presumes a real legacy application to work with. In cooperation
with TTTech it was possible to get an application from Audi which perfectly
meets all demands for a prototype usable in this work. It is a software contain-
ing CAN communication, the diagnosis stack for the diagnostic tester and the
DEH layer. In the following sections we describe a prototype containing this
legacy software with extended diagnostic features.

At first the legacy application delivered by Audi was analysed to ensure all
operating system and driver calls are satisfied in the new TTP environment. We
created a prototype setup for the integration of the previously analysed legacy
application. The CAN emulation layer was configured and compiled with the
prototype source code. Afterwards the TTA schedule was to be created. The
CAN emulation layer has a big impact on the network schedule because no
other TTP/C messages are needed in our cluster. The TTA was created with
the two level design approach as already described in Section 2.6. At that point
the basis to add new diagnostic features was completed.

The prototype setup is built up out of three nodes to show the different
interfaces of the model. It has four requirements listed below.

1. Demonstrating the reasonable small adaptation effort which is needed to
port a CAN based legacy application to run on the TTA using the CAN
Emulation layer.

2. Showing the hardware compatibility to CAN1 based hardware. This is
one of the most important requirement because of the economic need of
car manufacturers to reuse existing garage hardware to save costs.

3. Testing and demonstrating the basic functionality of the CAN Emu-
lation layer by tunnelling CAN Messages sent by the Schaltermodul
Lenksäule (ger.) (SMLS)2 through the TTP/C bus and visualizing them.

4. The gain of diagnostic precision which can be easily used even with hard-
ware and software designed only for CAN. A nice example is the diag-
nostic tester in our prototype setup which is able to use features of the
TTP/C network while not knowing what TTP/C is.

1according to ISO 11898[31]
2The SMLS is the ECU on the steering column including all levers and buttons like the

right and left turn indicator lever

32

4 Implementation 4.1 Legacy Application

Figure 4.1: Call graph of the demo application provided by Audi.

4.1 Legacy Application

To show the integration of a legacy application a source code was needed
preferably directly from a car manufacturer, to get a realistic view of the adap-
tation effort needed to migrate from an event-trigged system to a time-triggered
one. Audi provided a demonstration code of the diagnosis stack including all
important software layers and functionality to communicate with the diagnostic
tester. This software will be called “original code” henceforth, while the final
version of our prototype code will be called “demo application”. Audi made
the original code available for this project for research purposes only. After the
analysis of the original code we concluded Figure 4.1 to be the call graph of
the software. In the following this figure will be described in detail from the
top to the bottom. The modified legacy application was adapted to emulate
the ECU ’Parking Aid’.

33

4 Implementation 4.1 Legacy Application

4.1.1 User Application Layer

In Figure 4.1 on the top you can see the user application layer with the cyclic
calls of the main loop executing the lower layers. This call graph originates from
the intended use of the original application which is a usual Event-Triggered
(ET) CAN-ECU (in contrast to the TTA used here). The user application layer
contains the main ECU functionality like a control logic or code for operating
sensors and actuators. Since Audi provided the code relevant for diagnosis this
application layer only contained the loop executing the lower software layers.

4.1.2 DEH Layer

The DEH layer is an Audi specific software which stores errors and does
debouncing on the errors signalled by the application.

The DEH layer is part of the application layer of the OSI model but separated
from the user application layer in Figure 4.1 because it is generic code used in
many Audi ECUs. Each detectable error or important incidence is mapped to a
Diagnostic Trouble Code (DTC) which is also called ’event’ in the code. Inside
the DEH layer these events can be configured to determine when and how the
error should be remembered and reported. The querying of these events is then
made with the diagnostic tester in the garage. An event configured in this layer
can have the following parameters:

DTC Standardised diagnostic trouble code which this event is mapped to. This
value is referenced directly by the diagnostic tester in the garage.

EventParameter With this parameter the so called debouncing can be con-
figured. This parameter has two possible values: ’time debounced’ or
’event debounced’. If an event is time debounced it only gets active if
the event is present during the specified time period (see below). If an
event is debounced it only gets active if the error is reported more than
a specified number of times (see below).

EventSymPrio Configures how the event is displayed on the diagnostic tester.

QualEvent This value is either the time span in seconds or the number of
repetitions an event has to be present to be reported.

DeQualEvent This value is either the time span in seconds or the number of
repetitions an event has to be absent after being present for the length
of ’QualEvent’ to be reported as a sporadic event.

34

4 Implementation 4.1 Legacy Application

LampParameter If a lamp is directly connected to the ECU, it can be lit with
this parameter in case of an error.

IndexFFrameTable The ’Freeze Frame’ referred here is a snapshot of the cur-
rent values of a set of predefined parameters. If a valid index is defined
here the whole set of predefined parameter values is stored when the
event occurs. These values can be involved in the search for the cause of
the event. Typical parameters are the current speed of the vehicle, the
mileage or the date and time, all mesured at the point in time when the
event occurred.

A code snippet of such a DTC configuration is shown in Figure 4.2. The
Application solely has to tell the DEH layer if the event occurs or not. This is
done with global variables as shown in Figure 4.11.

4.1.3 SDS Layer

The SDS layer contains the functionality specified in ISO14229[30]. These
are services an ECU has to provide to be able to communicate with the di-
agnostic tester. In ISO14229 only the services are defined not the underlying
communication protocol (see 3.1.5). In the case of our prototype not all services
standardised in ISO14229 are needed and therefore not all are implemented.
For the prototype, specific functionality had to be added to this layer so that
the diagnostic tester is able to recognize the ECU and retrieve interesting infor-
mation, like the ECU description. The service ’Start Diagnostic Session’ was
already implemented by Audi and no changes had to be made.

While gathering diagnostic information about an ECU the first service which
really transfers node specific data is ’Read ECU Identification’. Custom identi-
fication strings are sent to the diagnostic tester. Some strings and their values
in our prototype ECU are

Audi Part Number ’6M1234357Y0’

Part Number ’12345678912’

System description ’TTT-PowerDiagNode’

All these values are transferred to the diagnostic tester which then shows
them to the engineer. You can see how this information is shown on the diag-
nostic tester on the upper right corner of the picture 4.12.

35

4 Implementation 4.1 Legacy Application

typedef struct

{

tDEH_DTC DTC; /* Diagnostic Trouble Code */

uint8_t EventParameter; /* time or cycle/erase/chg state detect*/

uint8_t EventSymPrio; /* faulttype and priority */

tDEH_QualET QualEvent; /* time or cycle for defect detection */

tDEH_QualET DeQualEvent; /* time or cycle for defect detection */

tDEH_LampInfos LampParameter; /* Parameter to control a warning lamp */

uint8_t IndexFFrameTable; /* index for Freeze Frame Table */

} tDEH_EventPathParameter;

[...]

tDEH_EventPathParameter

DEH_EventPathParameter[DEH_MAX_NUMBER_OF_EVENTPATHS]=

{

/* DEH_EVENT_1.DTC: "Benutzer 2 defekt" */

{0x07EC,

/* DEH_EVENT_1.EventParameter */

DEH_TIME_DEBOUNCED,

/* DEH_EVENT_1.EventSymPrio: symptom = E; priority = 3; */

0x3E,

/* DEH_EVENT_1.QualEvent: 0x0100 cycles */

0x0100,

/* DEH_EVENT_1.DeQualEvent: 0x0010 cycles */

0x0010,

/* DEH_EVENT_1.LampParameter: event is connected to lamp 1; */

/* flashing NOT active */

0x08,

/* DEH_EVENT_1.IndexFFrameTable: first position in the table */

DEH_FreezeFrameTable */

0x00},

[...]

};

Figure 4.2: DEH - DTC configuration code

With the SDS service ’Start Routine By Local Identifier’ the diagnostic tester
retrieves the information which functionality is supported by the target ECU.
Here the answer message was adjusted in such way as that the diagnostic tester
knows that the service ’Read Data By Local Identifier’ is supported.

The service ’Read Data By Local Identifier’ was now implemented to produce
TTP specific information which can lead to a possible error. In the code in
Figure 4.3 you can see that two local identifier are supported.

36

4 Implementation 4.1 Legacy Application

The first identifier selects the displaying of the membership of the three
other3 nodes in the cluster. The problem now was that the diagnostic tester
is not aware of TTP-membership. That’s why we used the feature that it can
display the terms ’WARM’4 or ’KALT’5. The diagnostic tester now shows the
term ’WARM’ if a node has the membership and ’KALT’ if it has not.

The second identifier reveals the new diagnostic feature which pinpoints the
location of a cable break. It is described in Section 4.5.

4.1.4 KWP2000 Layer

The KWP2000 standard ISO14230 is split up into four parts which are:

• Part 1: Physical layer

• Part 2: Data link layer

• Part 3: Application layer

• Part 4: Requirements for emissions-related systems

In our case only the data link layer and the application layer needed to be
implemented. The physical layer is replaced by TP2.0 and CAN communication
or in our case CAN-tunnelling. In the original prototype code from Audi the
data link layer was already implemented which includes the message structure
and the communication specific services (see 3.1.6).

4.1.5 TP2.0 Layer

As described in Section 3.1.4 this layer is able to segment the data for the
KWP2000 layer to fit into CAN messages. To use this layer for our prototype
some adjustments had to be done. The original code was not exactly compatible
to the HIS CAN driver interface which is necessary for the underlying CAN
emulation layer. For example the function call CanInterruptDisable needs
the parameter ’channel handle’ in the HIS CAN driver interface whereas in
the driver used by the original code no parameter was necessary. The channel
handle is used to distinguish between several CAN channels. In our case only
one channel is used so this parameter can be set to 0 on all appearances.

3other than the one which is currently under investigation
4’WARM’ - german word for warm
5’KALT’ - german word for cold

37

4 Implementation 4.1 Legacy Application

tSDS_Status DiagService_21(tSDS_RxTxBuffer* pBuffer,

tSDS_RxTxBufferLen* bufferLen) {

char s[100];

switch (pBuffer[0]) { //local Identifier

case 1:

pBuffer[1] = 0x0A; //display type: Warm/Kalt

pBuffer[2] = (test_diag_membership[6] == ’1’? 1:3);

pBuffer[3] = 2;

pBuffer[4] = 0x0A; //display type: Warm/Kalt

pBuffer[5] = (test_diag_membership[7] == ’1’? 1:3);

pBuffer[6] = 2;

pBuffer[7] = 0x0A; //display type: Warm/Kalt

pBuffer[8] = (test_diag_membership[8] == ’1’? 1:3);

pBuffer[9] = 2;

*bufferLen = 10;

break;

case 2:

pBuffer[1] = 0x5F; //Type: long text

if (cableDamageA || cableDamageB) {

pBuffer[2] = 40; //number of chars

sprintf(&pBuffer[3], "Cable break @ TTP/C-CH_%c between %d

and %d ", (cableDamageA?’A’:’B’),

cableDamageLow, cableDamageHigh);

*bufferLen = 43;

} else {

pBuffer[2] = 23; //number of chars

sprintf(&pBuffer[3], "No cable break detected ");

*bufferLen = 26;

}

break;

default:

pBuffer[1] = 0x5F; //Type: long text

pBuffer[2] = 21; //number of chars

sprintf(&pBuffer[3], "Service not available ");

*bufferLen = 24;

return SDS_SERVICE_FINISH_AN_AVAILABLE;

}

return SDS_E_OK;

}

Figure 4.3: SDS Service ’Read Data By Local Identifier’

38

4 Implementation 4.2 Prototype Setup

In this layer two values have to be defined which determine how the ECU
should respond and what type of ECU this is. These are the TP2.0 address
and the CAN Id.

The TP2.0 address specifies the type of the ECU. In our case the TP2.0
address is set to 0x2D which defines the ECU to be the parking aid (EPH).

To communicate with the diagnostic tester the CAN driver has to accept the
CAN id 0x332 for TP2.0 layer.

These parameters have to be configured in the CAN emulation layer as this
is the layer next to TP2.0 (see Figure 3.1).

4.1.6 CAN Interface

Now the most important choice we had to make was whether to run the
demo application either in a separate time-triggered task, in the background
hook of the TTP-OS or in some interrupts. This is the first decision one has
to make when integrating a ET software into an a priori scheduled TTA. As
this original code had a cyclic task which was triggered by a periodic alarm the
first possibility listed here, which is offered by CAN Emulator, seemed to be the
best and simplest choice. This is because the periodic alarm used in the legacy
application behaves like a time-triggered task. The internal functionality of the
legacy application also depended on the periodic execution, because of some
internal counters.

4.2 Prototype Setup

In Figure 4.4 you can see the basic structure of our prototype setup. The
Tester, located in the lower left corner of the figure is the certified diagnostic
tester, which is available in every Audi garage. It is the main tool to pinpoint
or even repair faults in the electric system of a car. It is directly connected to
the CAN-Gateway which is usually connected to all available CAN subsystems
of the car. Here the CAN-gateway is just connected to the so-called “comfort
CAN” because the other CAN subsystems are not needed in this small proto-
type. As shown in the figure, the CAN-gateway transforms the messages from
high-speed CAN, which is necessary for the tester, to low-speed CAN, which
is necessary for the SMLS and therefore also for the TTP-CAN gateway which
simulates the CAN bus connected to the SMLS.

39

4 Implementation 4.2 Prototype Setup

Figure 4.4: Overview of our demo setup

The three TTP nodes have the following functions:

1. The first node has two purposes: On the one hand it translates low-
speed CAN messages from the CAN-gateway to the CAN emulating TTP-
cluster. On the other hand it visualizes some functions controlled by the
SMLS with the red car on the left side of Figure 4.4.

2. The second node shows that conventional CAN hardware can be con-
nected to TTP-CAN gateways to send CAN messages through a TTA
instead of a CAN network.

3. The last node has a particular importance to this work. It contains the
nearly unmodified software stack from Audi (see Figure 4.5) which shows
that migrating CAN legacy software to a TTP/C node is possible and
it shows the advantages you can get from this migration. It is named
“Parking Aid” because it responds to the tester as the parking aid which
is installed in some modern cars. In our demonstration it has no external
functionality like sound generation or blinking lights like usual parking
aids.

40

4 Implementation 4.3 Integration of the CAN Emulator

Figure 4.5: Detailed software layering of all demonstration nodes

4.3 Integration of the CAN Emulator

The CAN emulator source and configuration is split according to the two
level design of a TTA like our model. The detailed description of the CAN
Emulator is in [35] while in this chapter only the changes which have to be
made for this prototype setup are given.

On cluster level the sources6 of the CAN Emulator have to be included and
in the header files parameters like in Figure 4.6 have to be set to configure

6as there was no need for a library until now we just have to use the sources

41

4 Implementation 4.3 Integration of the CAN Emulator

HIS CAN Driver Specification compliant defines

#define C_ENABLE_TRANSMIT_QUEUE

#define C_SINGLE_RECEIVE_CHANNEL

#define C_ENABLE_DYN_TX_DLC

#define C_ENABLE_DYN_TX_ID

#define C_ENABLE_RECEIVE_FCT

#define C_ENABLE_DYN_TX_OBJECTS

#define C_DISABLE_RECEIVE_FCT

#define C_DISABLE_ECU_SWITCH_PASS

[...]

Define for CAN Emulator

#define CAN_EMU_NUM_NODES 3

Figure 4.6: Header file parameters for CAN Emulator (cluster level)

HIS CAN Driver Specification compliant defines

#define CAN_EMU_CURRENT_NODE 3

#define CAN_EMU_SEND_BUFFER_SIZE 8

#define CAN_EMU_RECEIVE_BUFFER_SIZE 24

Figure 4.7: Header file parameters for CAN Emulator (node level)

the behavior. The HIS CAN Driver Specification describes which parameters
you can set to enable or disable parts of the driver [35]. For the internal CAN
Emulator buffers only the property CAN_EMU_NUM_NODES has to be set to the
number of nodes in the TTP/C network using the CAN Emulator Driver.

On node level, three defines have to be set to configure the CAN Emulator
(shown in Figure 4.7). These are which node number the current node is,
how many send buffers are reserved on the TTP/C bus for this node and how
many buffers the CAN Emulator has to reserve for all incoming messages of
other nodes using the CAN Emulator. These parameters can be derived from
the need of bandwidth and the length of the cluster cycle. Details on these
parameters can be found in Section 4.4. Enhancements that these parameters
are generated automatically by special tools is planned for future versions.

42

4 Implementation 4.4 Two Level Design

/* can message structure */

struct s_can_msg {

/* header storing 16 bit ID, 8 bit DLC and 8 bit CAN_NR */

ubyte4 header;

/* data1 storing 4 databytes */

ubyte4 data1;

/* data1 storing 4 databytes */

ubyte4 data2;

};

typedef struct s_can_msg ts_can_msg;

Figure 4.8: Can Emulator data structure storing one CAN message

4.4 Two Level Design

The next step after the assembling of the demo was to build a cluster schedule
and the node schedules for three TTP/C nodes. This is done with the TTTech
tools TTP-Plan7 and TTP-Build8. These tools enable seamless integration of
the cluster and its nodes to a TTA.

4.4.1 Cluster Level

In this design step network parameters have to be defined which are com-
mon for all nodes. Once they are defined the node development can be done
independently.

In this demo the only communication is the CAN tunneling. No other ap-
plications are running and communicating on this TTP/C bus. The goal was
to achieve at least the bandwidth and and at most the latency of a CAN-bus.
The minimum latency of a CAN-bus can not be reached because of the time-
triggered architecture using a cluster cycle length of 4ms but the latency needed
for our standard software stack can be satisfied. The CAN emulator needs the
size of the data type ts_can_msg reserved on the bus for each emulated CAN
message which is going to be sent on the TTP/C bus. The documentation of
the CAN emulator [35] or the include files of the CAN emulator reveal that the
data type is defined as in Figure 4.8.

7with TTP-Plan the cluster level can be designed
8with TTP-Build the node level can be designed

43

4 Implementation 4.4 Two Level Design

To have at least the same bandwidth as the high-speed CAN (500kbps), 8
CAN message objects are reserved on the TTP/C bus for each node. While
using a cluster cycle of 4ms to have a good response, the real data throughput
without any overhead would be: 48000bit/s. These calculations presume 3
Nodes, each sending 8 CAN messages encapsulated in TTP/C messages per
cluster cycle.

Figure 4.9: The cluster schedule of the demo application

4.4.2 Node Level

At the node level all parameters are defined which are node specific. The
parameters defined in this level also have to meet all constraints of the cluster
level to support composability with all other nodes. In a TTA tasks are sched-
uled before runtime to guarantee timeliness. This is done with the program
TTP-Build. In our case we need nodes that have a similar task schedule to
the nodes of the CAN world. The difference here is that in a TTA nodes are
not supposed to keep running if the network is not available but they usually
just reboot as this is done very quickly. In case of network unavailability nodes
usually go to a safe state, reboot and try to reintegrate. In the CAN world

44

4 Implementation 4.5 Added Diagnostic Features

the nodes keep operating and give their best effort even without any commu-
nication. Time-Triggered Protocol Operating System (TTP-OS), which our
nodes run with, supports mode changes to create an application running with
or without network communication.

The two application modes are created for each node to keep the node run-
ning independent of network availability.

• sync_mode contains all tasks which are activated while the TTP/C net-
work is available

• drift_mode contains all tasks which are activated while the TTP/C net-
work is not available

The third node (Einparkhilfe (ger.) (EPH) node) of the demo has a task
schedule defined on the node level (Figure 4.10) where you can easily see that
the sync_mode contains the can_emu tasks for the communication while both
modes contain the KWP2000_task running the KWP2000 diagnosis stack han-
dling. This would be the behaviour on a CAN network.

4.5 Added Diagnostic Features

There are more features beside the membership and the frame status one
could be able to use to enhance diagnosis or pinpoint a faulty node or cable in
a TTA like a replicatively calculated value. In this demo only the membership
of each node is used to gain some interesting diagnosis features. The first is
a basic one where the membership is just forwarded to the DEH layer and
sent to the tester on demand. In the code sample Figure 4.11 it can be seen
that the check of node 2 which has to be saved in a special variable (here
uApplMsg01MsgBuffer) which is read by the DEH layer. This check, if the
node is faulty or not, is of course done by another node except node 2. With
this information a faulty node can be detected and displayed on the diagnostic
tester. The arguments for TTPC_MEMBERSHIP_IS_VALID() are the location of
the current membership information in the RAM and the node index on with
the membership information should be returned. This node index is the node
number minus one because the information is stored in an array which starts
with 0 in ANSI C.

A dependable assembly of a TTP/C network works on two replicated bus
lines which are locally seperated from each other. Therefore four connectors

45

4 Implementation 4.5 Added Diagnostic Features

• Task Schedule for ’sync_mode’

– Task ’FT_Task_sync_mode_0’
receives TTP/C messages from the communication controller

– Task ’can_emu_IO’
handling the sending and receiving of encapsulated CAN messages
on the TTP/C bus.

– Task ’can_emu_member’
simulation of the acknowledgment messages of the CAN bus based
on the membership of the TTP/C bus (see [35] for details).

– Task ’FT_Task_sync_mode_1’ sends the TTP/C messages to the
communication controller

– Task ’KWP2000_task’
diagnosis request handling using the software stack from Audi.

– Task ’FT_Task_sync_mode_2’
updates the TTP/C controller life sign (see 3.1.2 for details)

– Task ’mode_change_0’
mode change handling

– Task ’mode_change_1’
time synchronization and second part of mode change handling

• Task Schedule for ’drift_mode’

– Task ’FT_Task_drift_mode_0’
updates the TTP/C controller life sign (see 3.1.2 for details)

– Task ’drift_task’
Debug task and mode change request operations.

– Task ’KWP2000_task’
diagnosis request handling using the software stack from Audi. In
drift_mode the software now just does error collection of internal
errors.

– Task ’FT_Task_drift_mode_1’
updates the TTP/C controller life sign (see 3.1.2 for details)

– Task ’mode_change_drift_0’
mode change handling

– Task ’mode_change_drift_1’
time synchronization and second part of mode change handling

Figure 4.10: Task Schedule for the third demo node ”EPH”

46

4 Implementation 4.5 Added Diagnostic Features

if (TTPC_MEMBERSHIP_IS_VALID(au4VectorMembership, 2 - 1)) {

uApplMsg01MsgBuffer = APPL_MSG0X_EVENT_FALSE_START_VALUE;

} else {

uApplMsg01MsgBuffer = APPL_MSG0X_EVENT_TRUE_START_VALUE;

}

Figure 4.11: C Code for sending membership status into DEH layer

are installed in the demo to simulate a cable break or disconnect. With these
connectors the TTP/C Channel A can be disconnected between node 1 and
node 2 or between node 2 and node 3. The same is possible with Channel B.
When problems occur on one of the two bus lines one frame status bit is zero
while the corresponding bit of the second line is one. This information can be
abstracted as “bus communication error” either on channel A or channel B. As
a matter of fact there are no DTCs expressing this because in the usual CAN
world there is no channel A or channel B. Therefore the DTCs for “comfort
CAN-High-Line defective” and “comfort CAN-Low-Line defective” are used.
The mechanic has to differ if it’s a TTP ECU or a CAN ECU. Then he knows
if the CAN-High line is addressed or the TTP channel A. In Figure 4.12 you
see a screenshot of the diagnostic tester showing such an error for a TTP ECU.
In the upper right corner the model (in this demo it’s TTT-PowerDiagNode) of
the ECU is shown so a mechanic should know that this ECU uses TTP com-
munication in stead of CAN communication. These are the only disadvantages
one has while using CAN software on top of TTP hardware.

When using a bus architecture a simple algorithm (Figure 4.14) can even de-
termine where the single cable disconnect is located. The algorithm is changed
for readability. The variable breaktype specifies the branching whether the
frame status is good on both bus lines before or after the break. This distinc-
tion is implicitly done by the membership agreement algorithm and influenced
by the clique avoidance. As precondition we have the single fault hypothesis
so the algorithm only has to detect one break. The information is then stored
in a special variables (here uApplMsg05MsgBuffer and uApplMsg06MsgBuffer)
which are read by the DEH on demand.

The code in Figure 4.14 just detects where on the bus the frame status
information changes from “both buses work” to “only one bus works”. This
change is depicted in a sample scenario in Figure 4.13. The code would end in

47

4 Implementation 4.5 Added Diagnostic Features

Figure 4.12: Screenshot of diagnostic tester showing a DTC on TTP hardware

this scenario with the variables

cableDamageA = 0

cableDamageB = 1

cableDamageLow = n + 1

cableDamageHigh = n + 2

The Information created with

sprintf(&pBuffer, "Cable break @ TTP/C-CH_%c between %d and %d ",

(cableDamageA?’A’:’B’), cableDamageLow, cableDamageHigh);

is then shown on the diagnostic tester when searching for a malfunction in the
system. This sample is shown in Figure 4.15. The most interesting thing here
is that all nodes which contain this detection algorithm report the same error
because of the global state of the TTA.

48

4 Implementation 4.5 Added Diagnostic Features

Figure 4.13: Frame statuses during simulated cable break

49

4 Implementation 4.5 Added Diagnostic Features

cableDamageA = 0; cableDamageB = 0; breaktype = 0;

if (TTPC_MEMBERSHIP_IS_VALID(au4VectorMembership, 0)) {

cableDamageLow = -1;

cableDamageHigh = -1;

for (i = 1; i <= NUMBER_OF_NODES; i++) {

if ((!frame_status(’a’, i)) ^ (!frame_status(’b’, i))) {

if (breaktype == 0) breaktype = 1;

if (!frame_status(’a’, i)) cableDamageA = 1;

if (!frame_status(’b’, i)) cableDamageB = 1;

if (breaktype == 2) {

cableDamageHigh = i;

break;

} else {

cableDamageLow = i;

}

}

if (frame_status(’a’, i) && frame_status(’b’, i)) {

if (breaktype == 0) breaktype = 2;

if (breaktype == 1) {

cableDamageHigh = i;

break;

} else {

cableDamageLow = i;

}

}

}

if (cableDamageA) {

uApplMsg05MsgBuffer = APPL_MSG0X_EVENT_TRUE_START_VALUE;

} else {

uApplMsg05MsgBuffer = APPL_MSG0X_EVENT_FALSE_START_VALUE;

}

if (cableDamageB) {

uApplMsg06MsgBuffer = APPL_MSG0X_EVENT_TRUE_START_VALUE;

} else {

uApplMsg06MsgBuffer = APPL_MSG0X_EVENT_FALSE_START_VALUE;

}

}

Figure 4.14: Cable break detection algorithm for the bus topology

50

4 Implementation 4.5 Added Diagnostic Features

Figure 4.15: Sample diagnostic tester output during cable break

51

5 Validation

In this chapter our integrated system for TT and CAN-based applications is
validated by performing tests covering the complete range of functionality the
previously described prototype setup is offering. The tests are separated into
four groups which reflect the main steps to integrate and diagnose CAN-based
legacy applications in the TTA.

Each test is described in a sub-section starting with the term “Test Case”.
Each of them has the same prerequisites if not mentioned to be different.

• All components have to be cabled corresponding to the setup in Figure 4.4
(called “standard cabling” henceforth)

• All components have to be connected to a power source

• The VAS diagnostic tester has to be turned on

At the beginning of each test the VAS diagnostic tester has to be in the
“initial state” which is defined as the screen where you can see the diagnosis
button (“Fahrzeug-Eigendiagnose”) on the upper right corner. The ignition
switch1 has to be in the state “ignition on”.

The test groups are:

1. Validating usage of standard CAN hardware

2. Showing the legacy hardware compatibility of the implementation

3. Testing tunneling of basic CAN messages and diagnostic messages
through TTP from a CAN ECU

4. Reading standard and advanced diagnostic messages from a TTP ECU
which is running a ported legacy application

5.1 Validation Of Standard CAN Hardware

This scenario shows standard CAN communication and CAN diagnosis. This
illustrates, mainly for public demonstrations, that the used CAN parts in the
prototype are not modified, nor damaged and can operate in the usual way.
This scenario is depicted in Figure 5.1. The used communication channel is
highlighted.

1the car key

52

5 Validation 5.1 Validation Of Standard CAN Hardware

5.1.1 Test case 1: Direct CAN Connection

Test case: 1
Precondition: The CAN cables from the SMLS have to be connected

with the CAN cables from the little black gateway2.
Now the diagnostic tester has a direct connection to the
SMLS through the gateway. The used communication
channel is depicted in Figure 5.1.

Test procedure: On the diagnostic tester the diagnosis button (“Fahr-
zeug-Eigendiagnose”) is pressed and the list entry
“16 - Lenkradelektronik” has to be selected subse-
quently.

Result: No error message.

As no error message occurred but a list including the items “02 - Fehler-
speicher abfragen” and “08 - Messwerteblock lesen” the test succeeded. Now
it is assured than the CAN communication channel is working between the
diagnostic tester and the SMLS as well as the SMLS is working sufficiently.

5.1.2 Test case 2: Direct CAN Connection - Lever State

Test case: 2
Precondition: Test case 1
Test procedure: To read state information the special list entry

“08 - Messwerteblock lesen” has to be selected. Now
the section “1” of the state information has to be se-
lected and confirmed with the “Q”3-button.

Result: No error message. Lever state visible.

If no error message occurs within this test you are able to see the lever
positions on the diagnostic tester. Any change of the indicator lever or the
dipped beam lever of the steering column will instantly change the diagnostic
tester’s screen. For example the indicator lever position causes the tester to
show either the word “right” or “left”.

3“Q” here means acknowledge (quittieren - ger.) and is in total contrast to the english
“quit”

53

5 Validation 5.2 CAN Hardware Compatibility

Figure 5.1: Standard CAN communication

5.2 CAN Hardware Compatibility

The CAN hardware compatibility is tested in the following experiment ex-
plicitly while in the other sections of this chapter it is implicitly tested, too.
CAN hardware compatibility means that a legacy CAN ECU can be connected
to the prototype and is able communicate with it concerning the physical layer
and the CAN protocol. This communication is highlighted in Figure 5.2.

54

5 Validation 5.3 CAN Tunneling

5.2.1 Test case 3: Heterogeneous Devices

Test case: 3
Precondition: Standard cabling
Test procedure: Changing lever positions on the steering column.
Result: The red prototype car’s LEDs light up according to the

lever positions on the steering column.

The SMLS is sending its control signals

• turn left

• turn right

• headlamp flasher and

• windshield wiper (four different operation modes)

through CAN and TTP/C to the red prototype car. This red car is directly
controlled by a custom software running on the TTP/C node one. This demon-
strates also a possible interaction between legacy hardware and a TTP/C node.
The red car has seven LEDs which are able to visualize the control signals orig-
inating from the ECU “SMLS”.

5.3 CAN Tunneling

Basic tunneling shows that normal CAN messages can be tunneled through
TTP/C without problems. In the prototype this is achieved by the same pro-
cedure as described in Section 5.1. The lever positions and the diagnostic
messages from the SMLS can be queried by the tester. The big difference here
is that the CAN communication is broken up into two parts (compare Fig-
ures 5.1 and 5.3). Instead of the CAN communication the CAN frames are
transferred into the TTA and back again by two gateways. These gateways
are called “Lighting System” and “Steering Column” in all figures. This com-
munication tunneling is highlighted in Figure 5.3. This assembly shows the
backward compatibility of our system.

55

5 Validation 5.3 CAN Tunneling

Figure 5.2: Controlling a TTP ECU with a legacy CAN ECU

5.3.1 Test case 4: Tunneled Connection

Test case: 4
Precondition: Standard cabling
Test procedure: On the diagnostic tester the diagnosis button (“Fahr-

zeug-Eigendiagnose”) is pressed and the list entry
“16 - Lenkradelektronik” has to be selected subse-
quently.

Result: No error message.

As no error message occurred but a list including the items “02 - Fehlerspe-
icher abfragen” and “08 - Messwerteblock lesen” the test succeeded. Now it is
assured than the CAN communication channel is working between the diagnos-
tic tester and the SMLS as well as the SMLS and the two gateways “Lighting
System” and “Steering Column” are working sufficiently.

56

5 Validation 5.3 CAN Tunneling

5.3.2 Test case 5: Tunneled Connection - Lever State

Test case: 5
Precondition: Test case 4
Test procedure: To read state information the special list entry

“08 - Messwerteblock lesen” has to be selected. Now
the section “1” of the state information has to be se-
lected and confirmed with the “Q”4-button.

Result: No error message. Lever state visible.

If no error message occurs within this test you are able to see the lever
positions on the diagnostic tester. Any change of the indicator lever or the
dipped beam lever of the steering column will instantly change the diagnostic
tester’s screen coherently. It is also shown that continuous transmissions of
data are tunneled fluently even with a rather big delay in contrast to ordinary
CAN transmissions. (see Section 5.5)

5.3.3 Test case 6: Tunneled connection - Diagnosis 1

Test case: 6
Precondition: Test case 4
Test procedure: The list entry ”‘02 - Fehlerspeicher abfragen”’ has to

be selected.
Result: No error message and a notification about the number

of detected errors.

Several DTCs like sporadic communication failure can be displayed on the
tester when querying diagnostic information by selecting “02 - Fehlerspeicher
abfragen”. As the connection was interrupted between the last test group
and the current the display now shows an error message about an sporadic
communication failure.

4“Q” here means acknowledge (quittieren - ger.) and is in total contrast to the english
“quit”

57

5 Validation 5.4 Legacy Application Diagnosis

5.3.4 Test case 7: Tunneled connection - Diagnosis 2

Test case: 7
Precondition: Standard cabling.
Test procedure: On the diagnostic tester the diagnosis button

(“Fahrzeug-Eigendiagnose”) is pressed and the list en-
try “05 - Fehlerspeicher l̈ı¿1

2
chen” has to be selected

subsequently. This causes the SMLS to delete all en-
tries of its error memory.

Result: After the confirmation to delete all entries of the error
memory in the left upper corner the Text “Fehlerspe-
icher gel̈ı¿1

2
cht” and “0 Fehler erkannt” appear.

In this test it is shown that the communication is working through the tun-
neling and that the SMLS is deleting it’s error entries out of it’s flash memory
flawlessly.

Figure 5.3: Tunneling CAN messages and diagnostic messages

5.4 Legacy Application Diagnosis

Here the main feature of the prototype is illustrated. To be able to show
legacy application diagnosis the tester has to be back in the initial state either

58

5 Validation 5.4 Legacy Application Diagnosis

by several back button pushes if some of the tests above have been done or by
powering on the device.

5.4.1 Test case 8: Parking Aid

Test case: 8
Precondition: Standard cabling.
Test procedure: After pressing the diagnosis button (“Fahrzeug-

Eigendiagnose”) the parking aid ECU (“76 - Ein-
parkhilfe”) has to be picked from the list.

Result: The term ’TTT-PowerDiagNode’ appears in the upper
right corner of the tester.

This indicates that the communication between the tester and the ported
legacy diagnosis application is working (see Figure 5.4). From the diagnostic
tester’s point of view the TTP/C ECU now acts as a usual CAN ECU where
diagnosis information can be gathered.

Figure 5.4: Legacy application diagnosis

59

5 Validation 5.4 Legacy Application Diagnosis

5.4.2 Test case 9: Parking Aid - Diagnosis 1

Test case: 9
Precondition: Test case 8
Test procedure: The list entry ”‘02 - Fehlerspeicher abfragen”’ has to

be selected.
Result: No error message and a notification about the number

of detected errors which is 0 in this test. (“0 Fehler
erkannt” (ger.))

Several DTCs like sporadic communication failure can be displayed on the
tester when querying diagnostic information by selecting “02 - Fehlerspeicher
abfragen”. A special DTC which can appear on the tester is “Komfort CAN H-
Leitung defekt” in the next test case.

5.4.3 Test case 10: Parking Aid - Diagnosis 2

Test case: 10
Precondition: Test case 8
Test procedure: The power supply of the 2nd ECU is disabled for about

6 seconds. Afterwards the TTP/C channel B is dis-
connected between the 2nd and the 3rd ECU. Now the
TTP/C channel A between the 2nd and the 3rd ECU is
disconnected for about 6 seconds. Finally the list entry
“02 - Fehlerspeicher abfragen” is selected on the garare
tester

Result: A list of error messages (containing “Komfort CAN H-
Leitung defekt”) matching to the actions of the test
procedure.

In this test the need for disconnecting the power supply and the TTP/C
cable for about 6 seconds originates from the debouncing algorithm explained
in Section 3.1.7. If disconnection is much shorter than this amount of time the
DEH layer is configured to ignore it as if it was only a “sporadic” error. This
test shows that the DEH layer works as expected.

When reading the error messages on the diagnostic tester the skilled me-
chanic now knows that while querying a TTP node - indicated by the term
“TTT-PowerDiagNode” in the right upper corner - there is no “CAN high”
line connected to it. The reason is derived from the limited number of possible

60

5 Validation 5.4 Legacy Application Diagnosis

DTCs. When this TTP node informs you about an error on the “CAN high”
line the TTP/C channel B is addressed, so there is a communication problem
on the TTP/C channel B (Figure 4.12). This case is depicted in Figure 5.5.

5.4.4 Test case 11: Parking Aid - Diagnosis 3

Test case: 11
Precondition: Test case 10
Test procedure: On the diagnostic tester click the left arrow to go back

to the selection of diagnostic features. Then choose the
entry of state information retrieval “08 - Messwerte-
block lesen” and select section “2”. Confirm the section
“2” with the “Q” button.

Result: Special error message about the cable break discovered
in the test case 10.

We still have the disconnected channel as depicted in Figure 5.5. On the
screen of the diagnostic tester the information “Cable break TTP/C-CH B
between 2 and 3” appears (Figure 4.15). This exact localisation of the cable
break (or disconnect) is possible because the information is retrieved via the
replicated TTP/C channel A and the exact position can be derived from the
frame status bits and the fact that we have a bus architecture.

5.4.5 Test case 12: Parking Aid - Diagnosis 4

Test case: 12
Precondition: Test case 8
Test procedure: Disconnect the power supply of ECU 2. Choose the en-

try of state information retrieval “08 - Messwerteblock
lesen” and select section “1”. Confirm the section “1”
with the “Q” button.

Result: Keywords cold (“KALT”) and warm (“WARM”)

The keywords cold (“KALT”) and warm (“WARM”) represent the member-
ship of the participating TTP/C notes. As there is no membership in the CAN
protocol the terms cold and warm have to represent this information.

61

5 Validation 5.5 Timing Analysis

Figure 5.5: Cable break diagnosis using legacy tester hardware

5.4.6 Test case 13: Parking Aid - Diagnosis 5

Test case: 13
Precondition: Test case 8
Test procedure: Choose the entry of state information retrieval

“08 - Messwerteblock lesen” and select section “3”.
Confirm the section “3” with the “Q” button.

Result: The text “Service not available”.

This last test simply shows that the EPH ECU only supports the state
information blocks “1” and “2”. All other should produce the test “Service not
available” on the diagnostic tester’s screen. It demonstrates the correctness of
this specific function inside the EPH.

5.5 Timing Analysis

A very important value in communication systems for real-time applications
is the latency. It is the time one message needs from one node to the other
including all communication overhead. On a legacy CAN network this time
is mainly affected by the arbitration algorithm and only a little by physical

62

5 Validation 5.5 Timing Analysis

P
P

P
P

P
P

P
P

P
from

to
Diagnostic Tester Steering Column Parking Aid

Diagnostic BC 0 ms 3.67 ms 4.83 ms
Tester WC 0 ms 7.59 ms 8.76 ms

Steering BC 4.58 ms 0 ms no comm.
Column WC 8.50 ms 0 ms no comm.
Parking BC 7.29 ms no comm. 0 ms

Aid WC 7.29 ms no comm. 0 ms

Table 5.1: Network Latencies

properties like cable length, terminating resistor, edge sharpness etc.. On low
or medium network load it is usually very small. When talking about timeouts
in a higher software layer (like in TP2.0) the collisions on a CAN network are
relevant because they may add an unpredictable value to the time one messages
needs to arrive at the receiver. In general the latency is small enough to fulfill
the required timeouts in all cases.

In a time-triggered network the latency is mainly influenced by the send
instant in relation to the cluster cycle. It can be determined a priori when
the cluster schedule and the task schedule of each participating node is fixed.
As our tasks are only executed once in a cluster cycle it is obvious that the
latency is a multiple of our cluster cycle (4ms) plus some time derived from the
scheduled task activation instants. The Figures 5.6 to 5.13 depict this latency.

The latency values are very important to legacy CAN applications because
they have timeouts while waiting for an answer. The communication system has
to guarantee that the timeout restrictions are not violated. When comparing
the latency times given in table 5.1 with the TP2.0 timeout of 500ms then
there is enough time left for the computations requested by the TP2.0-master,
which also have to take place during this timeout (see Section 3.1.4).

In this section all latencies are described which are related to a TP2.0 com-
munication channel in our prototype. These are

• diagnostic tester communicating with SMLS (both directions)

• diagnostic tester communicating with ECU (both directions)

In table 5.1 the latencies are shown. As no ECU is communicating with
oneself the values in the diagonal are zero. The cells containing the term “no
comm.” indicate that the corresponding ECUs do not communicate with each
other directly.

63

5 Validation 5.5 Timing Analysis

The values in the table differ because the latency depends on the used send
slot in the cluster cycle and the exact execution instants of the tasks which are
calculated by TTP-Build. The only values which are the same are the Worst
Case (WC) and the Best Case (BC) latencies from the “Parking Aid” to the
“Diagnostic Tester”. That’s because in this case there is no temporal variety of
the sending instant as the sending task is time-triggered. All other values are
different because the initial CAN message can arrive at an arbitrary instant.

The Figures 5.6 to 5.13 show how the values are calculated. Each row in
these pictures shows one cluster cycle (lasting 4ms). If more than one cluster
cycle is needed for a message to arrive they are numbered on the left hand side.
(At least parts of two cluster cycles are needed in all cases.) The boxes with
the bold borders are tasks or actions executed on one of the three participating
time-triggered ECU of the prototype. On which ECU the message is on its
way to the target is marked with the curly brackets on the right. The temporal
positions of the tasks in the cluster cycle are predefined by TTP-Build.

5.5.1 Latency Figures

Below the following paragraphs all figures containing the latency analysis
can be found. A detailed description is only given for the first figure as the
others are analogous.

In Figure 5.6 the communication starts on the left upper corner with the
Tester trying to send a CAN message to the Steering Column. At first the
message is sent on the CAN-Bus between the Tester and the Lighting System.
It arrives at the CAN-receive-buffer of the Lighting System, just before the
execution of the CanEmuIO task (Best Case (BC)). The CanEmuIO task reads
out this buffer and the message is transferred to another task which transmits
the message on the TTP/C network in the slot where the Lighting System is
allowed to send. Now the message “leaves” the Lighting System and arrives at
the Steering Column Gateway. This is visualized with the curly brackets on
the right. The curly brackets also show that e.g. the two boxes “CanEmuIO
Task” are not the same task as they are on different nodes.

On the Steering Column Gateway the TTP/C Buffer, containing the message
from the Tester, is read by the CanEmuIO task and transferred to a task which
actually sends the message on the CAN bus between the Steering Column
Gateway and the SMLS. Finally, after about 3.67 ms the message reaches its
destination.

64

5 Validation 5.5 Timing Analysis

The Worst Case (WC) of this communication path, shown in Figure 5.7, is
that the Tester sends the CAN-message just after the CanEmuIO task examines
the CAN-receive-buffers and the message resides in the buffer for nearly 4ms
additionally.

As the boxes in the figures have to contain a description it may look as if
the transmission lasts longer than in the Table 5.1.

65

5 Validation 5.5 Timing Analysis

Figure 5.6: Latency: Tester to Steering Column (Best Case)

Figure 5.7: Latency: Tester to Steering Column (Worst Case)

66

5 Validation 5.5 Timing Analysis

Figure 5.8: Latency: Steering Column to Tester (Best Case)

Figure 5.9: Latency: Steering Column to Tester (Worst Case)

67

5 Validation 5.5 Timing Analysis

Figure 5.10: Latency: Tester to Parking Aid (Best Case)

Figure 5.11: Latency: Tester to Parking Aid (Worst Case)

68

5 Validation 5.5 Timing Analysis

Figure 5.12: Latency: Parking Aid to Tester (Best Case)

Figure 5.13: Latency: Parking Aid to Tester (Worst Case)

69

6 Conclusion

In the automotive domain CAN is the most widely used event-triggered com-
munication protocol. It is suitable and efficiently used for comfort functions
as well as motor control and safety enhancing functions in a car. A better ap-
proach for safety-critical applications would be a time-triggered one, because
of properties like dependability and better fault isolation.

The Time-Triggered Protocol / C (TTP/C) is a well known representative
of a network protocol suitable for Time-Triggered Architectures (TTAs). It is
used for the creation of ultra-dependable systems for highly dependable dis-
tributed embedded real-time applications for example in avionic and railway
applications.

The idea of this work was to reuse diagnosis equipment and software devel-
oped for CAN while gaining advantages from a time-triggered protocol. We
use standardized layers and interfaces to allow the transfer of a legacy CAN
application into a Time-Triggered Architecture (TTA). Our prototype setup
also enables the usage of legacy hardware to save costs while migrating to a
time-triggered system in order to increase safety and reliability of the commu-
nication subsystem. Thereby, the garage tester is able to query legacy CAN
ECUs as well as time-triggered TTP/C ECUs.

Our integrated system for TT and CAN-based applications improves diag-
nosis by layering the Event-Triggered (ET) CAN communication on top of the
dependable TTP/C. This has been demonstrated using the diagnostic pro-
tocol stack of a major European carmaker. Mechanisms facilitating better
diagnosis are available in this TT protocol like media redundancy, fault isola-
tion and global time. Besides that the model separates legacy hardware and
software from the communication subsystem using Linking Interfaces (LIFs).
This avoids the need for internal changes of legacy hardware or software when
migrating to the time-triggered system. This property is also very important
when focusing on the problem of Intellectual Property (IP).

In the implementation chapter it is shown that it is possible to migrate an
existing legacy CAN application with a reasonable amount of changes into
a TTA. Improvements on diagnosis are shown together with this migration.
One of the diagnosis improvements utilizes the membership mechanism of the
TTP/C which helps to pinpoint nodes which are e.g. not synchronized with
the other nodes.

70

6 Conclusion

It is possible to merge a TTA with a legacy CAN network to increase de-
pendability, improve diagnosis and save costs by reusing hardware and software.
Even the whole diagnosis stack used in today’s CAN ECUs can be migrated
easily using our model. Safety-critical functions can be implemented and ex-
isting software and hardware can still be used to save money and continue to
benefit from the experiences available on CAN.

71

7 Acronyms

ABS Anti-lock Brake System

ABS Antiblockiersystem

ACK Acknowledge

API Application Programming Interface

AUTOSAR automotive open system architecture

BC Best Case

CAN Controller Area Network

CNI Communication Network Interface

CPU Central Processing Unit

CSMA/CD Carrier Sense Multiple Access with Collision Detection

CSMA/CA Carrier Sense Multiple Access with Collision Avoidance

C-state Controller state

DEH Diagnostic Event Handler

DLC Data Length Code

DTC Diagnostic Trouble Code

ECU Electronic Control Unit

EPH Einparkhilfe (ger.)

ESC Electronic Stability Control

ESP Elektronisches Stabilitäts Programm

ET Event-Triggered

FCU Fault Containment Unit

FT-COM Fault-Tolerant Communication Layer

FTU Fault Tolerant Unit

HIS “Hersteller Initiative Software”

72

7 Acronyms

ID Identifier

IP Intellectual Property

ISO International Organization for Standardization

KWP2000 Keyword Protocol 2000

LCD Liquid Crystal Display

LED Light Emitting Diode

LIF Linking Interface

MEDL Message Descriptor List

MIL Malfunction Indicator Light

NDA Non-Disclosure Agreement

NRZ Non Return to Zero

OBD On-Board Diagnostics

OSEKtime OSEK/VDX Time-Triggered Operating System

PC Personal Computer

SDS Standard Diagnostic Services

SId Service Identification byte

SMLS Schaltermodul Lenksäule (ger.)

TDMA Time Division Multiple Access

TNI trouble not identified

TP2.0 Transport Protocol 2.0

TT time-triggered

TTA Time-Triggered Architecture

TTP Time-Triggered Protocol

TTP/A Time-Triggered Protocol / A

TTP/C Time-Triggered Protocol / C

73

7 Acronyms

TTP-OS Time-Triggered Protocol Operating System

UDS Unified Diagnostic Services

USDT Unacknowledged Segmented Data Transfer

WC Worst Case

74

Bibliography

[1] Volkswagen AG. HIS/Vector CAN Driver Specification, August 2003. Ver-
sion 1.0.

[2] N. Audsley, K. Tindell, and A. Burns. The end of the line for static cyclic
scheduling? In Fifth Euromicro Workshop on Real-Time Systems, pages
36 – 41, 1993. ISSN: 1068-3070.

[3] G. Bauer and H. Kopetz. Transparent redundancy in the time-triggered
architecture. In Proceedings of the International Conference on Dependable
Systems and Networks (DSN 2000), NY, USA, pages 5–13, June 2000.

[4] G. Bauer and H. Kopetz. The Time-Triggered Architecture. In Proceedings
of the IEEE Special Issue on Modeling and Design of Embedded Software,
Oct. 2002.

[5] Berreth, Christensen, O’Connor, Johnson, and Kindness. Methods for
protecting intellectual property. In Northcon/96, pages 419–424, 1996.
ISBN: 0-7803-3277-6.

[6] R. Birgisson, J. Mellin, and S.F. Andler. Bounds on test effort for event-
triggered real-time systems. In Sixth International Conference on Real-
Time Computing Systems and Applications. RTCSA ’99, pages 212 – 215,
13-15 Dec. 1999.

[7] V. Claesson, C. Ekelin, and N. Suri. The Event-Triggered and Time-
Triggered Medium-Access Methods. In ISORC’03, 2003. ISBN: 0-7695-
1928-8.

[8] A. Deicke. The electrical/electronic diagnostic concept of the new 7 series.
In Convergence International Congress & Exposition On Transportation
Electronics, SAE, Oct. 2002.

[9] D.S. Dodge. Gateways - 101. In IEEE Military Communications Confer-
ence, 2001. MILCOM 2001., pages 532–538, oct 2001.

[10] D.S. Dodge and S. David. Gateways, A Necessary Evil? In Simulation
Interoperability Standards Organization (SISO) Fall Simulation Interoper-
ability Workshop, September 2000.

[11] B. Hedenetz and R. Belschner. Brake-by-wire without Mechanical Backup
by Using a TTP-Communication Network. In SAE World Congress, De-
troit Michigan., 1998.

75

Bibliography Bibliography

[12] The homepage for all CAN related topics by Robert Bosch GmbH.
http://www.can.bosch.com. Internetaddress.
Related to this work is the free CAN-specification available on this page
at: http://www.can.bosch.com/docu/can2spec.pdf.

[13] Homepage of the Automotive Open System Architecture.
http://www.autosar.org.

[14] The homepage of the joint project OSEK/VDX. http://www.osek-vdx.org.
Internetaddress.

[15] Homepage of the TTA-Group, a group for exchanging cross-industry ex-
perience with TTP. TTP Specification 1.1. http://www.ttagroup.org.

[16] SAE Standard J-1850 Class B Data Communications Network Interface.
http://www.sae.org.

[17] R. Isermann, R. Schwarz, and S. Stolzl. Fault-tolerant drive-by-wire sys-
tems. In IEEE Control Systems Magazine, pages 64–81, October 2002.

[18] H. Kopetz. Real-Time Systems. Kluwer Academic Publishers, 1997.

[19] H. Kopetz and G. Bauer. The time-triggered architecture. IEEE Special
Issue on Modeling and Design of Embedded Software, January 2003.

[20] H. Kopetz and G. Grünsteidl. TTP - A Time-Triggered Protocol for
Fault-Tolerant Real-Time Systems. In Proceedings of the 23rd Interna-
tional Symposium on Fault-Tolerant Computings, 1993.

[21] H. Kopetz and N. Suri. Compositional Design of RT Systems: A Concep-
tual Basis for Specification of Linking Interfaces. In Sixth IEEE Interna-
tional Symposium on Object-Oriented Real-Time Distributed Computing,
ISORC 03, 2003.

[22] J.C. Laprie, A. Avižienis, and B. Randell. Fundamental concepts of de-
pendability, 2001.

[23] R. Maier. Event-Triggered Communication On Top Of Time-Triggered
Architecture. In Digital Avionics Systems Conference, 2002.

[24] N. Navet. Controller Area Network [automotive applications]. Potentials,
IEEE, pages 12 – 14, Oct-Nov 1998. ISSN: 0278-6648.

[25] R. Obermaisser. CAN Emulation in a Time-Triggered Environment. In
Proceedings of the 2002 IEEE International Symposium on Industrial Elec-
tronics (ISIE), volume 1, pages 270–275, 2002.

76

http://www.can.bosch.com
http://www.autosar.org
http://www.osek-vdx.org
http://www.ttagroup.org
http://www.sae.org

Bibliography Bibliography

[26] R. Obermaisser. Event-Triggered and Time-Triggered Control Paradigms.
Springer, 2005.

[27] http://www.iso.org. ISO 9141 - Road vehicles - Diagnostic systems - Re-
quirements for interchange of digital information, 1989.

[28] http://www.iso.org. ISO 14230-2 - Road vehicles - Diagnostic systems -
Keyword Protocol 2000 - Part 2: Data link layer, 1999.

[29] http://www.iso.org. ISO 14230-3 - Road vehicles - Diagnostic systems -
Keyword Protocol 2000 - Part 3: Application layer, 1999.

[30] http://www.iso.org. ISO 14229 - Road vehicles - Diagnostic systems - Part
1: Diagnostic services, 2001.

[31] http://www.iso.org. ISO 11898 - Road vehicles – Interchange of digital
information – Controller Area Network (CAN) for high-speed communi-
cation, 2003.

[32] http://www.iso.org. ISO 11898-1 - Road vehicles - Controller Area Net-
work (CAN) - Part 1: Data link layer and physical signalling, 2003.

[33] http://www.iso.org. ISO 15765-2 - Road vehicles - Diagnostics on Con-
troller Area Networks (CAN) - Part 2: Network layer services, 2003. Trans-
port Protocol.

[34] S. Punnekkat, H. Hansson, and C. Norström. Response time analy-
sis under errors for can, 2000. Märlardalen University, Sweden. ISBN
0-7695-0713-1/00.

[35] D. Riezler. Funktionsbeschreibung CAN Emulator. Technical report, TT-
Tech Computer AG, 2002.

[36] D. Riezler. Integrating CAN-based Legacy Applications in the TTA. Mas-
ter’s thesis, Technical University Vienna, 2004.

[37] J. Rushby. A Comparison of Bus Architectures for Safety-Critical Embed-
ded System, 2003. NASA Langley Research Center.

[38] VW-Konzernlastenheft. KeyWord Protokoll 2000 - Rahmenbeschreibung
der Dienste auf der K-Leitung, 2000.

77

http://www.iso.org
http://www.iso.org
http://www.iso.org
http://www.iso.org
http://www.iso.org
http://www.iso.org
http://www.iso.org

	Introduction
	Structure Of Work

	Basic Concepts
	Diagnosis In The Automotive Domain
	Integration Of Legacy Applications
	Intellectual Property
	Event-Triggered vs Time-Triggered
	Event-Triggered Communication
	Time-Triggered Architecture

	Gateway
	Two Level Design
	TTP-OS

	System Model
	Architectures And Protocols
	Controller Area Network (CAN)
	Time-Triggered Protocol Class C (TTP/C)
	CAN Emulator
	TP2.0
	SDS
	KWP2000
	DEH

	Model Features
	Hardware Emulation
	Software Emulation

	Implementation
	Legacy Application
	User Application Layer
	DEH Layer
	SDS Layer
	KWP2000 Layer
	TP2.0 Layer
	CAN Interface

	Prototype Setup
	Integration of the CAN Emulator
	Two Level Design
	Cluster Level
	Node Level

	Added Diagnostic Features

	Validation
	Validation Of Standard CAN Hardware
	Test case 1: Direct CAN Connection
	Test case 2: Direct CAN Connection - Lever State

	CAN Hardware Compatibility
	Test case 3: Heterogeneous Devices

	CAN Tunneling
	Test case 4: Tunneled Connection
	Test case 5: Tunneled Connection - Lever State
	Test case 6: Tunneled connection - Diagnosis 1
	Test case 7: Tunneled connection - Diagnosis 2

	Legacy Application Diagnosis
	Test case 8: Parking Aid
	Test case 9: Parking Aid - Diagnosis 1
	Test case 10: Parking Aid - Diagnosis 2
	Test case 11: Parking Aid - Diagnosis 3
	Test case 12: Parking Aid - Diagnosis 4
	Test case 13: Parking Aid - Diagnosis 5

	Timing Analysis
	Latency Figures

	Conclusion
	Acronyms
	Bibliography

