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Start with a basic question, is life simple? Most people, if they think about that

question, will truthfully answer, “no”... Events happen in life that are neither

simple in how they happen, nor in the effects they have.

David Luckham

For my parents.
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Abstract

Today’s business is event-driven. Businesses of all shapes and sizes are driven by

and respond to events. Thus IT-Systems offer a large amount of events, represent-

ing notable activities in complex workflows and business processes, that are the

subject of event analysis. This thesis highlights the necessity for specialized event

analysis tools, explains the relationship to Complex Event Processing (CEP), out-

lines requirements and proposes the EventCloud system.

EventCloud is a generic, offline event analysis tool for Complex Event Process-

ing (CEP) scenarios. EventCloud enables its user to navigate through events, pick

up single events and display their content, discover chains of events and how they

are correlated, and to recognize patterns inside the events. Metrics can be de-

fined to provide insight at a higher level and to measure business performance. It

visualizes business and process developments at the fine-grained level of events.
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1 Introduction

1.1 Importance of Events in Today’s Business

Today’s business is event-driven. Businesses of all shapes and sizes are driven by

and respond to events. To reflect this behavior, we currently see a shift from a

request/response or a pull-based paradigm to a push-based paradigm as proposed

by event-driven architecture (EDA).

NGEs(Next Generation Enterprises) rely on automation, mobility, real-time busi-

ness activity monitoring, agility, and self-service over widely distributed operations

to conduct business [34]. Since Gartner proclaimed the term “zero-latency enter-

prises” [30], enterprises strive to become “real-time” where all notable events of

a business are captured, analyzed and responded to immediately. To enable such

enterprises, current technologies like Data Warehousing (DWH) and Business Intel-

ligence(BI) are not sufficient as they do not provide adequate support for real-time

and closed loop decision-making[15].

Gartner states that events have been underutilized until lately, but are now widely

used in business application as they allow to optimizing business processes by cut-

ting costs and improving responsiveness [31]. This follows to a new generation of

emerging software that act on low-level (business) events and generates higher-

level, complex events to sense opportunities, business situations and exceptions,

and perform, if needed, accurate adjustment actions.

The term Complex Event Processing (CEP) was coined by Luckham in [22] and

defines a set of technologies to process large amounts of events and utilize these
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events to monitor, steer and optimize the business in real-time. CEP is a core en-

abler for business activity monitoring (BAM) solutions that monitor the relevant

business events for changes and indicate opportunities or problems to business an-

alysts.

While CEP solutions offers considerable advantages for enterprises and allows them

to come closer to the goal of zero-latency, CEP also brings along new complexity

in the IT-landscape of a company. In this thesis I will concentrate on the immense

importance of the data processed by a CEP system: the events. Business events,

that are the input for CEP, as well as action events that are triggered by the CEP

must be stored and collected for later analysis and retrieval to answer questions

and gain insight into the enterprise’s business operations.

1.2 Complex Event Processing

Complex Event Processing (CEP) introduces an enhanced analysis view on busi-

ness processes and allows new approaches for business intelligence solutions. Event

streams processed in real-time can be used to sense and respond immediately to

current business situations and to take advantage of time-sensitive business oppor-

tunities.

CEP is applied in many areas with large amounts of real-time data where the

delay to take an action must be reduced to a minimum. CEP allows to minimize

all three types of latency introduced by [13] - data latency, analysis latency and

decision latency - as all three steps can be executed by CEP solutions automati-

cally. Typical application areas are stock trading applications, fraud detection and

monitoring complex business processes.

CEP applications generate additional knowledge from a stream of fine-grained

events by analyzing related events and calculating data for a higher level view,

sometimes called a “complex event”. A system implementing CEP must process

large amounts of events from multiple streams in real-time and therefore requires

9



Figure 1.1: Use CEP to minimize latency to react on business event [13]

a high degree of performance. High availability as well as QoS is needed to provide

a 24*7 infrastructure for real-time event processing. Besides this technical aspect,

and at least equally important for the successful integration of CEP software,

highly specialized domain expertise is necessary to properly implement complex

use cases within a CEP software.

Many different software architectures were proposed to meet the technical require-

ments of event stream processing. Continuous queries [2] and event stream pro-

cessing (ESP) [6] [1] coming from the area of active databases were introduced,

event pattern languages [23] and rule engines based on events were created, as

well as the Sense and Response paradigm for event processing [15]. Schiefer and

McGregor propose in [29] an architecture which correlates events of a business

process and applies user-defined functionality on them.

While Complex Event Processing needs a technically mature software architecture

and was the scope of many research projects, domain experts are still needed to

adopt a CEP solution in a specific business area to really utilize the power of CEP.

Therefore CEP projects are not trivial to implement: domain experts first need
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to transform domain knowledge into complex queries and rules in the language of

the CEP software before they can be applied continuously on the stream of events

during runtime. It becomes clear that CEP is only significant if its domain-specific

configuration allows a business to perform better than without CEP.

Once a CEP is configured for an use case, it is very likely to degenerate to a

black box. If it was properly set up the system can provide added value for the

case, however this can dramatically shift over time since business processes are

clearly subject to change. Input events change and business rules for the event

stream may no longer be accurate. Maybe there are better rules than the ones

currently applied to the event stream or even worse: important event patterns that

have a revenue for an use case have been completely overlooked.

1.3 Requirements for an Event Analysis Tools

Tools are needed not only to monitor existing CEP applications but also to an-

alyze events offline to get better insight into a business in order to optimize the

CEP configuration since adaptive business solutions are only manageable if the

business operations stay transparent. [22] describes these Analysis Tools as a core

functionality of the CEP infrastructure. They consume information, such as events

plus additional data, from the CEP solution creating a presentation layer for user

interaction. Following Luckham in [22], an analysis tool for CEP must include

capabilities for:

Display parameters and attributes of an event A user needs to look at the de-

tails of a single event without being overloaded with information of all events.

Represent correlated events By selecting an event, a user asks to show all events

that caused this particular event as well as all events that are caused by

the selected event. Starting from a single event, this facility supports the

exploration and navigation of the event data basis.

Graphical present events, event timelines and event correlation The tool should

provide graphical representations to display single events, their timing rela-
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tionships and their correlation to each other to help a user to understand

how activities happened. Luckham argues that visualization often suggests

hypotheses to users, so they are essential for event analysis.

Search Patterns Searching the large basis of events allows filtering for specific

instances of events and their correlations. The user needs the facility to

retrieve an event result set that matches a given query or pattern. Searching

is needed to retrieve (exceptional) situations that are the scope of further

analysis and investigation.

Drill-down Drill-down from a higher level view to the fine-grained events that

represent the business process must be possible. Higher levels are more easily

understandable, but the drill-down to the low-level allows detailed analysis of

the events aggregated at the higher level.

EventCloud is a generic Event Analysis Tool that can easily be applied on CEP

scenarios. EventCloud enables the user to navigate through events, pick up single

events and display their content, discover chains of events and how they are corre-

lated, and to recognize patterns in the cloud of events. Metrics can be defined to

provide insight at a higher level and to measure business performance. It visualizes

business and process developments at the fine-grained level of events.

1.4 Interaction of Event Analysis and Complex Event

Processing

In Figure 1.2 we see how EventCloud interacts with a CEP application. Different

CEP systems internally handle event processing in different ways. However, they

all have an input stream of events from multiple source systems which represent

relevant, real-world activities in a domain. If a CEP solution uses a complex,

layered architecture it creates internal events used during event processing. An

input event can trigger multiple internal events that are used for decision making

inside the CEP software. These events are usually completely hidden from out-

side the CEP solution. Nevertheless they can be very useful for event analysis,

as internal events can help to trace CEP’s output for a given event input stream,
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because they describe the calculation and decision-making process inside the CEP

software. Finally the CEP software generates some output. This output can be

interpreted as an event, too. The output represents any action such as handling an

exception, generating an email-alert or publishing a new event that is again input

for the CEP software.

Let’s consider examples for the three types of events that might be available in a

stock trading CEP application or an application monitoring a TMS1.

Input Events Real-world events and activities of interest like: StockTick -, Trans-

portStart-, OrderReceived -event etc.

Internal Events Internal Events used inside the CEP solution during the process

of decision finding: SellRecommended -, TransportDelayDetected -event etc.

Output Events Output event representing the observations and decisions the CEP

solution made: SellStock -, AlertTransportDelay-, ModifyTransportRoute-event,

etc.

All this data is available for CEP but only used for event processing and discarded

immediately afterwards. Since events represent complex situations and relevant

activities they should be preserved for analysis task in some form. The goal of

the EventCloud system is to collect these high-quality by-products of CEP (in-

put events, internal events, output events) in the EventCloud repository in such

a way to provide the base for event analyzing. To allow search and analysis of

events, EventCloud must offer complex services like event correlation (Chapter 3),

an event search service with different search levels (Rank1, Rank2 and Rank3 as

described in Section 4.2), metrics on correlated events (Chapter 7) as well as an

intuitive user interface (Section 5.4).

Analysis tools like EventCloud are essential in any phase of a CEP project. Dur-

ing requirement analysis it can be used to analyze the business events currently

available in the domain, how they occur, and how they are related. During devel-

opment of the CEP use case, EventCloud can be applied to validate the results
1Transport Management System
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Figure 1.2: CEP software and EventCloud
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and decisions made by the CEP. Scenarios can be simulated to see if the domain

knowledge is properly mapped into the CEP solution. When the application is

deployed, EventCloud can be used to observe the results delivered, to enhance and

adopt rules, investigate special situations and to gain domain knowledge.

CEP is not necessarily a requirement to use EventCloud. EventCloud may also

be directly applied to a stream of events. In this case, EventCloud correlates

events collected from different sources to allow event analysis. Furthermore, not

all events used with or generated by CEP needs to be added to the EventCloud

as some events may be too fine-grained or redundant and are not useful for event

analysis.
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2 The Need for Event Analysis: A

Motivation

2.1 Medicare Use Case

Rozsnyai presented the Medicare example, a TMS use case for CEP applications,

in [28]. SENACTIVE InTime[9] was used to implement a fully CEP scenario which

evolved from Rozsnyai’s use case description. Figure 2.1 outlines the two event

processing maps implemented in SENACTIVE InTime.

In a nutshell, the use case continuously monitors and steers the stock level of

multiple stores of a company. If a demand arises at a Location A and can’t be ful-

filled locally, the CEP application checks the available stocks in other locations if

they can satisfy the demand. If so, the best transport (e.g. the cheapest transport)

is selected to deliver these goods to Location A in time. The transport is observed

in real-time to detect any exceptional situations and thus respond immediately by

setting corrective actions.

Figure 2.1 shows how the two maps interact. As for a new demand event, the

best transport is selected in map “Storage Management”, map “Transport Moni-

toring” observes this transport for exceptions, and collects metric data like carrier

performance, transport costs and duration. These metrics are applied again in map

“Storage Management” to select the best transport for the next demand event. So

if a carrier causes more and more exceptions over time, it will be unlikely to receive

the assignment for the next transport. In this way SENACTIVE InTime optimizes

the business process by executing decisions always based on real-time information.
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Figure 2.1: Medicare example - as implemented in SENACTIVE InTime
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Figure 1.2 sketches a simplified version of the event processing map “Transport

Monitoring”. TransportStart and TransportEnd events are received as input events1.

For every pair of TransportStart-TransportEnd three conditions are checked:

1. Was the temperature of the transported goods within the allowed interval or

not (Temp Violation Checker)?

2. Was there a loss detected during the transport (Loss Detection)?

3. Was the transport delayed (Transport Delay Detection)?

Each of these conditions creates an internal event that propagates the state of the

transport. The Alert Rules have the domain knowledge on how to proceed with the

various conditions. For example if the transport is delayed then the transport may

be told to accelerate, a second transport which would be faster could be triggered,

or the domain rules could determine that taking no additional action is best. The

Alert Publisher publishes the decision made, triggering actions in the real-world

(output events).

2.2 Analyzing Medicare

2.2.1 Possibilities of OLAP

Once SENACTIVE InTime is set up for the Medicare Example, it runs autonomous

without any direct user interaction. Therefore it does not include a graphical fron-

tend for its calculated results and decisions per se. While a company’s management

is primarily interested in the additional profit the system generates, analysts and

people in charge desire a deeper understanding of the events, the business situa-

tions and the current performance of the business that is supported by the CEP

solution. To fulfill this wish, a graphical OLAP frontend was created to gain more

insight.

Not shown in Figure 1.2 are additional steps that calculate metrics for the ob-

served transports. To allow offline analysis of these transports, a mapping of the
1simplified assumption: additionally we would have more events like DataLoggerRead(for temperature viola-

tion), ShipmentCreated etc. because events will only represent a single activity
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processed events into a relational star schema in a data warehouse(DWH) was

created. Figure 2.2 shows the definition of this schema. The fact table includes

transport information along with flags for the exception states (LossInt, TempVio-

lationInt, DelayedInt) detected by SENACTIVE InTime. Locations, Carriers and

Date are represented as dimensions.

Figure 2.2: OLAP data cube for “Transport Monitoring” [9]

Using OLAP and a user-friendly frontend like Proclarity2 allows analysts to query

the transports monitored by SENACTIVE InTime as shown in Figure 2.3. OLAP

2http://www.proclarity.com/
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allows to slice and dice the data cube to answer complex analytical questions. In

Figure 2.3 we see the result of a simple query which selects the effective and the

planned duration of all transports in the year 2006. By restricting dimension values

and making a drill-down in date hierarchies, the query could easily be modified to

“Select effective duration, planned duration of all transports to London by carrier

‘MegaTrans’ in October 2006”.

Figure 2.3: OLAP query in data cube [9]

2.2.2 Shortcomings OLAP - Need for Event Analysis

Even though OLAP offers a superb facility to query high-dimensional data, the

reference to events has completely disappeared. DWH are data-centric, while CEP
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solutions handle the events of business processes. By mapping the events of a CEP

application into a relational data schema, information about events and their cor-

relations is lost. That constitutes a breach between the world of event processing

and the world of classical data representation. The requirements described in Sec-

tion 1.3 for an event analysis tool are not fulfilled by the DWH, because the events

and their correlations are not viewable by the user. Pattern search is not possi-

ble because the events are split into the fact table and multiple dimensions. The

process steps represented by events such as TransportStart, TransportEnd are not

available in the DWH. Just the overall outcome of an transport is stored as an

entry in the fact table.

Nicholls points out these problems in [24]:

“The challenge here [...] is that data warehouses are data centric,

storing data ready for analysis and reporting, not aligned to the process

at hand.[...] Moreover, since the data warehouse often does not hold

process-state data, let alone real time process state information, it usually

does not have the information you need to make a decision.”, Nicholls [24]

Golfarelli, Rizzi and Cella reason that DWH is appropriate to higher level decisions

and strategies, while lower level decisions need other technologies [10].

“[...] we might say that DWH is used by the top management to under-

stand the enterprise and to define the global strategy, while other tech-

niques must be used by tactical and operational decision-makers to “ab-

sorb” the strategy and make the best decisions for their tasks.”, Golfarelli,

Rizzi, Cella [10]

In this example, questions similar to the following ones can be answered with

OLAP and show the strength of OLAP at querying multidimensional data:

• How many transports have been delayed in 2006?

• Who is the cheapest carrier on the route Rome-Paris?

• What are the average transport costs, the average transport duration per

route?
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• What are the average transport costs with carrier “MegaTrans” on route

Vienna-London within the last 24 hours?

• How does the overall business perform according to the available metrics?

Other analytical questions can’T be easily answered with OLAP queries, especially

questions which strive to understand the incidences in a business process as well as

inside a CEP solution. Examples would be to gain information about the process

of decision-finding, to investigate in a specific transport, or to learn about the

reasons for exceptions. This information is contained in the input events of the

business process and in the internal and output events of the CEP solution, but

partially lost when events are mapped into the relational data representation.

2.2.3 Analyzing Events

Questions will arise that can neither be answered with the CEP solution directly,

as it does not offer facilities for analyzing its behavior, nor with a DWH. An

analysis tool is needed that directly acts on (correlated) events so all information

is available in it’s natural representation. The following questions typically can be

answered with EventCloud:

• Which events and causal chains are related to a certain event? Which

events are related to event TransportStart T2000?

• Which event(s) triggered a certain decision? What were the in-

put events for decision-finding? Why was Transport T2000 accelerated?

(Because the internal DelayDetected -event informed about a delay of 6 hours).

• I know there were process errors on a business case X! What has

happened there? Why was transport T2000 delayed? (Because the event

TransportStart signalizes that the transport has left 8 hours to late).

• What is the value of a metric for a certain business case? What was

the transport duration for transport T2000?

In Chapter 4, an alternative data representation for events is presented which is

the basis for event analysis in EventCloud. It is a document oriented approach
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following the ideas from Information Retrieval and utilizing the concept of event

correlation to enable complex queries and analysis in events. Events can be di-

rectly stored in this data schema to avoid loss of information. With this data

structure, it’s possible to fulfill the requirements described in Section 1.3. Never-

theless OLAP, through its data representation, allows complex query mechanisms

on multidimensional data of which EventCloud is not capable. As we will see in

Chapter 7 again event correlation is used to implement an alternative approach to

provide metric data in the EventCloud system.

While OLAP requires mapping the event data into a relational representation,

EventCloud executes an additional processing step to add events to its data rep-

resentation. The EventCloud system receives events and applies event correlation

and metric calculation on them to create its data basis for event analysis. In

opposite to OLAP, this “loading process” is from the very beginning a real-time

approach. EventCloud follows an event-driven architecture adding events in near

real-time to the data basis.

This preparation step is independent from the event processing in the CEP soft-

ware. For analyzing events, other settings can be relevant than settings applied for

real-time decision making of event streams done by the CEP application. Because

of that event correlation and metric calculation for EventCloud is detached from

the configuration in CEP even if the same events are processed. For example, in

the analysis it is correct to correlate all events that happen for a specific order

(Demand, ShipmentCreated, TransportStart, TransportEnd, ShipmentReceived) to

make the complete order easily traceable, but for a CEP application one would

only correlate TransportStart with TransportEnd to check for a transport delay.

2.2.4 Event Analysis without Complex Event Processing

Even this example suggests that event analysis is only meaningful if a CEP ap-

plication is installed, but that is not always the case. In simpler scenarios, the

business events are not the input for a CEP application but are the direct input

for EventCloud. If no real-time 24*7 event processing is necessary, EventCloud
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can be an accurate tool to analyze complex event scenarios. EventCloud includes

the necessary facilities to exist independent from a CEP solution. For a user of the

frontend, there is no difference if the data is processed directly or received from a

CEP.

2.3 Summary

The first two chapters show the importance of events in today’s business. Emerg-

ing technologies, like CEP, utilize these events to monitor and steer business pro-

cesses. In this chapter we have seen how a use case can be implemented with

a CEP software, bringing the need for a new generation of analysis tools which

handle specifically business events.

Data warehouses are not sufficient to support analysis of business events as impor-

tant information gets lost when events are mapped into a relational schema. To

fulfill the requirements proposed by Luckham [22] other data representations must

be found which focus on events. Through the rest of this thesis I am concerned

with the concepts to create the event analysis tool EventCloud to fulfill these re-

quirements. Chapter will pick up the Medicare example of this chapter to outline

the facilities EventCloud provides for event analysis.

2.4 Definition EventServer vs. EventCloud

To avoid confusion I would like to define two terms that are repeatedly used

throughout the rest of my thesis. The terms EventServer and EventCloud are

used to describe the infrastructure for the proposed event analysis application.

As will be described later, the EventCloud relies on a CEP platform to create

its data representation. This platform is called EventServer and provides real-

time event processing, connectivity to other IT-systems, and system services like

event correlation. Based on this platform, EventCloud implements its own services

to process the events.
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When writing about EventServer, it means exactly the server platform for event

processing. However, the usage of EventCloud depends on the context: first,

EventCloud is a synonym for “event analysis tools” and the idea of these tools,

second, EventCloud sometimes means the user frontend for analyzing events, and

third, EventCloud stands for the whole application stack including EventServer,

EventCloud’s backend functionality on top of the EventServer, and the user fron-

tend.

Hopefully, with this definition, it’s always clear from the context which part of

the described system is being referred to.
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3 An Approach for Event Correlation

One of the main concepts of EventCloud is the concept of event correlation. It

is concerned with setting multiple events that occur at different points in time,

which are of different types, representing different activities into a meaningful re-

lationship.

Event Correlation is the basis for many topics in Complex Event Processing (CEP).

The following chapters will illustrate that EventCloud depends on correlation when

building the data representation and the search indexes for the processed events.

Many other topics in event processing, like pattern detection and rule engines, can

be realized on top of the concept of event correlation. For this reason, EventServer

implements event correlation as a system service, available for use by application

other than EventCloud.

The next chapter will give a detailed description about the concept of event cor-

relation as implemented in the EventCloud system.

3.1 Motivation

With event processing there is always a challenge to get the context for a single

event. While a single event contains almost no information besides the activity

it signalizes, an event is normally just a small part of a complex chain of events

representing a bigger activity. To have an added value from processing events, it’s

necessary to create these chains of events by applying correlation.
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3.1.1 Correlation in a simple Network Protocol

Similar to the network example in [22] I would like to define a simple network

protocol. This example helps to understand the necessity of bringing events which

occur in a large stream of events into relation.

The network protocol has two message types which can interpreted as two types of

events: MESSAGEREQUEST(msgId, DateTime, From, To, Resource) and MES-

SAGESENT(msgId, DateTime, From, To, Data). MESSAGEREQUEST repre-

sents the event that a client has requested a service. MESSAGESENT represents

the event that a server has responded a service request. For simplicity MES-

SAGEREQUEST and MESSAGESENT are the only two event types needed in

this simple network protocol example. The entries in the brackets are event at-

tributes, specifying values for the event type occurrence.

Imagine an event MESSAGESENT(msgID=456, DateTime=2006-05-05T15:00:00,

From=192.168.0.1, To=192.168.0.2, Data=htmlpage) occurs. This event does not

happen without reason. Servers do not send messages if nobody ask for them. Nor-

mally there would have been a matching request by some client, but from the point

of view of the single event MESSAGESENT, you could not make any proposition

about that. The event MESSAGESENT says nothing about other things that

happened before. Maybe this message is sent to synchronize with other servers,

maybe it’s just an alive message. We can not know if we just see the single event.

An event processing system needs more than just events. It needs a possibility

to connect, to relate multiple events to give them more meaning. That’s where

correlation comes into play.

Take a look at the MESSAGEREQUEST and MESSAGESENT events again.

One typical information that is interesting in a network is the Response Time,

i.e. how long did it take until the response for a request arrives. That is an

interesting number but we would not expect that this information is sent along

with an event of a network protocol. It is not a server’s task to calculate this met-
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ric, so there is probably no attribute for this metric in the MESSAGESENT event.

We need to calculate the Response Time on our own. Luckily that’s an easy

calculation:

Listing 3.1: Pseudocode Response Time Calculation
1 MESSAGESENT. DateTime − MESSAGEREQUEST. DateTime where MESSAGEREQUEST. msgId = MESSAGESENT. msgId

For an event processing system, however, it is not as trivial as it seems. Because

event-driven systems like the EventServer always process a single event alone, the

information about other events is not available per se. To solve this simple calcu-

lation, we need to correlate the two event types via their common attribute msgId

and to store this correlation information in some data container, in a “session”.

Doing so allows us to calculate a value as shown in Listing 3.2. A pretty slow

network, but the goal to generate additional knowledge a single event does not

include is fulfilled.

Listing 3.2: Correlate MESSAGEREQUEST and MESSAGESENT to calculate the metric Re-
sponse Time

1 MESSAGEREQUEST
2 msgId=456 ,
3 DateTime=”2006−05−05T15:00:00 ”
4 From=192 .168 .0 .2 ,
5 To=192 .168 .0 .2 ,
6 Resource=index . html
7
8 MESSAGESENT
9 msgID=456 ,

10 DateTime=”2006−05−05T15:00:05 ” ,
11 From=192 .168 .0 .1 ,
12 To=192 .168 .0 .2 ,
13 Data=htmlpage
14
15 ==> ”ResponseTime ” = 5 sek

Correlating these two events with msgId is not the only possible correlation. A

correlation is not tied to a unique identifier like msgId. Imagine another exam-

ple where a history of all MESSAGEREQUEST events from a specific client are

collected. In this case a correlation similar to Listing 3.3 needs to be defined.

Listing 3.3: Pseudocode: Requests by ”Same Client” Correlation
1 MESSAGEREQUEST WITH SAME VALUE fo r MESSAGEREQUEST.From
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Listing 3.4: ”Same Client 192.168.0.2” Correlation
1 MESSAGEREQUEST
2 msgID=456 ,
3 DateTime=”2006−05−05T15:00:05 ” ,
4 From=192 .168 .0 .2 ,
5 To=192 .168 .0 .1 ,
6 Data=htmlpage
7
8 MESSAGEREQUEST
9 msgID=567 ,

10 DateTime=”2006−05−05T15:00:12 ” ,
11 From=192 .168 .0 .2 ,
12 To=192 .168 .0 .1 ,
13 Data=otherpage
14
15 MESSAGEREQUEST
16 msgID=678 ,
17 DateTime=”2006−05−05T15:00:33 ” ,
18 From=192 .168 .0 .2 ,
19 To=192 .168 .0 .25 ,
20 Data=htmlpage

Listing 3.4 shows that the client 192.168.0.2 sent two requests to the server 192.168.0.1,

and later made a request to the server 192.168.0.25.

A correlation can be defined between any number of event types (from a single

event type to any number of event types), on any number of attributes which must

not be a unique identifier for an event type. An event type can participate on any

number of correlations. Correlation is executed on the stream of processed events.

While lots of events are processed, correlation is a particular view on these events

only picking the events relevant for the correlation. Using a database metaphor,

correlation selects those events from a large stream of events that fulfill the given

correlation criteria.

Figure 3.1 shows how correlation can “select” events from a large stream of events.

Independent from when the events occur, they are brought together by correla-

tion. Correlated events share a common correlation session to exchange data or to

calculate additional information like the metric Response Time. Events that are

not correlated to each other have no facility to “communicate”.

3.1.2 Importance for EventCloud

But why is this all important for EventCloud? EventCloud is about searching

and exploring events. One example was already presented: EventCloud will use
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Figure 3.1: Select ”events of interest” within an event stream with the help of correlation

correlation to calculate metrics like Response Time. But EventCloud, as we will

see in the following chapters, also relies heavily on correlation to create an event

search index which allows a user to answer complex search and analysis queries

with EventCloud.

Therefore, I’d like to follow the Medicare example we already saw in Chapter

2. Figure 3.2 shows the four event types, Demand, ShipmentCreated, Transport-

Start and TransportEnd, that will be used throughout the rest of the thesis for

examples of correlation. These four events are correlated via an indirect correla-

tion AllOrderInformation , spanning over all four event types. To realize this

correlation, three conventional correlationsets have been defined: demandToShip-

ment, shipmentInfo and transportInfo.

What’s the idea behind this correlation? Why are these events correlated? In

the Medicare example Demand events arise if some stocks do not have enough

items to fulfill a local demand. Other stocks however may have enough items

in their store to satisfy this demand. The ShipmentCreated event signalizes the

decision that a transport from stock location A should deliver items to stock loca-
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tion B to balance the demand. The TransportEnd and the TransportStart events

represent facts about the actual transport triggered by the ShipmentCreated event.

We see that the correlation represents a complete business case, including all events

of an order, from the Demand event to the actual delivery at TransportEnd. Direct

correlation can not be applied in this case because no attribute of the Demand

event is related to any attribute in the Transport events. Nevertheless, from a

business point of view these events are conjuncted. Fortunately, we can use Ship-

mentCreated to bridge the gap and correlate all four events. Indirect (or“bridged”)

correlation helps to represent these business cases in a single correlation instance

(more in Section 3.2).

Figure 3.2 “Definition” shows the event attributes available with each event type

and how these four types are correlated. Figure 3.2 “Runtime” shows instances for

each event type1 with set values and materialize event correlations. The bridged

correlation “AllOrderInformation” is spanned over all elements of the figure. In a

real-world scenario, there would be hundreds of thousands instances of the cor-

relation “AllOrderInformation” as every new Demand event would create a new

instance of the correlation representing an individual business case.

For EventCloud, we want to exemplarily execute the following three search queries

against the event full-text index. These are simple queries an analyst may exe-

cute against the four event types from Figure 3.2 defined in our example. I will

demonstrate that a single event can’t meet all of the queries. In order to return

meaningful results to the user, I will explain how EventCloud uses event correlation

as a concept for event search.

• ”Madrid”

• ”Madrid and Vienna”

• ”ProductA and MegaTrans and Acceptor=Jane Smith”

1simply called an “event”
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Figure 3.2: Event types correlated via the bridged correlation AllOrderInformation consisting of
the correlationsets demandToShipment, shipmentInfo and transportInfo

We will see that EventCloud depends on correlation to get results for the more

complex queries. But before going into these event search examples, the next

section describes the nomenclature used for event correlation in EventCloud.

3.2 Terms and Definitions

For the rest of the text, a specific nomenclature for the concepts in event processing

needs to be defined. It’s necessary to understand the terms to follow the upcoming

chapters. The nomenclature is, in most parts, taken from SENACTIVE InTime

[9] as they implement similar concepts.

The definitions of correlation work on top of events. It is necessary to first define

exactly what an event is and what parts an event contains.

3.2.1 Event

An event represents a notable activity which just happened. Depending on the

time granularity needed, an activity is signalized by a single event (like MES-
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SAGEREQUEST ) or by multiple events if the activity lasts for some time (like

TransportStart, TransportEnd). An event carries information illustrating the ac-

tivity it represents in its event attributes. Event attributes are also used to correlate

an event with other events. A related definition can be found at [22] and [23].

3.2.2 Event Type

An event type defines how a particular type of event looks like. It’s similar to

the concept of a Class in object oriented languages. During development, event

types of the events that should be represented in the system need to be defined.

During runtime, instances of the defined event types are created which are then

called events.

An event type includes minimally

• A unique name.

• A list of attributes this event stores for the activity it represents.

SENACTIVE InTime includes some extensions on event types that are interesting

to mention:

AllowUnknownAttributes a weak typed events, that can include any additional

attribute at runtime.

Parent Event types similar to object orientation inheritance, it’s possible to ex-

tend event types.

Virtual Event types the attributes of the event types defining the virtual event

type are conjuncted. The virtual event has only attributes that are available

in all event types.

EventCloud only uses a unique name and the definition of the event attributes.

But we see that an elaborate type system can be interesting for complex event

processing. An extended type concept might be interesting in a future version of

EventCloud and can be the area of new research.
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Figure 3.3: EventType declaration and an event at runtime

Figure 3.3 shows the XML-definition of the event type

eventtype://Medicare/TransportStart, having five attributes. In this example, the

event attributes are strongly typed as known from programming languages like

Java. An attribute can be mandatory or not. At runtime, an event can be seen

as an instance of the event type. The attribute fields are “instance variables”

of the event. In this example, we see the event that represents the event type

TransportStart with TransportId=1024. An event is uniquely defined by a GUID in

the events header not shown in 3.3. All event attributes may be implicit identifiers

for this event, but depending on the scenario an event generated in it may not

include any event attribute identifier.

3.2.3 Event Correlation: Correlationset, Correlation Instance and

Correlation Session

The previous section describes the definition of event types. Correlations are also

defined declaratively, on top of the concept of event types. We distinguish be-

tween two types of correlation: the definition of a correlation between event types

is called a Correlationset. A correlationset directly correlates event types. If we

put multiple correlationsets into a relationship it is a Bridged Correlation. Bridged
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Correlation allows indirect correlation of event types.

At runtime, multiple instances of a correlation exist. We call them Correlation

Instances. As a correlationset defines which attribute values of the event types

have to match to relate events, a Correlation Instance represents the correlation

for a specific attribute value. Each Correlation Instance is backed up by a data

container called correlation session.

Correlation session was defined by Schiefer and McGregor in [29] as

“A container with a set of data items that exists for each relationship

between events [...] we define a correlation session CS as a triple of the

form (O, X, A) where O defines the owner, X the correlation expres-

sion and A the correlating event attributes for the session.”, Schiefer and

McGregor [29]

Correlation sessions are comparable to the concept known from HTTP sessions.

Every HTTP request of a user can be seen as an event. Relevant data which is

needed to fulfill later requests (events) is stored in the session. Each further re-

quest of the same user will activate the same session. Simplified, we can say that in

a webserver the relation between multiple requests is defined with the correlation

“same User”. For each user, an own session exists and every request by a user X

always activates the same session Y.

If user X sends a further request, the webserver activates the session depending

on the session identifier sent along with the user request. This example is similar

to what we have seen in Listing 3.4 where the event MESSAGEREQUEST was

correlated over the event attribute msgId.

Following the definition of Schiefer and McGregor[29], a web session can be in-

terpreted as correlation session by:

”O” ... The webserver is the (only) owner of the session. No one else is allowed to

utilize the session
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”X” ... The attribute where to find the session information. Normally this is

the key Cookie: in the HTTP header, or a specific parameter like SessionID

encoded in the URL

”A” ... the value of the key Cookie:, or the actual value of the URL-parameter.

This value points to a specific session.

However, the concept of event correlation defined by [29] provides a broader ap-

proach and offers arbitrary possibilities to define correlations between event types.

Correlationsets give a developer free hand on which event types to correlate and

how, because a meaningful correlation definition always depends on the concrete

scenario a correlation is applied to. As the web sessions is just one use case for cor-

relation, any number of other scenarios are imaginable. EventCloud implements

event correlation to be applicable to any domain.

A correlationset consists of:

• A unique name

• The event types that participate in this correlationset

• The event attributes which have to match

Listing 3.5: Definition of a correlationset for a webserver’s HTTP session
1 <Cor r e l a t i on s e t i d e n t i f i e r=”WebserverSess ion ”>
2 <Corre lat ionTuple>

3 <Corre lat ionData eventtypeUri=”eventtype : //MESSAGEREQUEST”>
4 <XPathSelector>//From</XPathSelector>
5 </Corre lat ionData>

6 </Corre lat ionTuple>

7 </ Co r r e l a t i on s e t>

Listing 3.6: Definition of a correlationset with multiple event types
1 <Cor r e l a t i on s e t i d e n t i f i e r=” t r an spo r t In f o ”>
2 <Corre lat ionTuple>

3 <Corre lat ionData eventtypeUri=”eventtype : //MediCare/TransportStart ”>
4 <XPathSelector>//TransportId</XPathSelector>
5 </Corre lat ionData>

6 <Corre lat ionData eventtypeUri=”eventtype : //MediCare/TransportEnd ”>
7 <XPathSelector>//TransportId</XPathSelector>
8 </Corre lat ionData>

9 </Corre lat ionTuple>

10 </ Co r r e l a t i on s e t>
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Listing 3.5 and Listing 3.6 show two simple examples of correlationsets. For every

event type that should be correlated in the correlationset an entry <Correlation-

Data> has to be defined. The tag <XPathSelector> includes the XPath expression

evaluated on the event to match a correlation session. Currently all correlation-

datas are compared with an EQUALS -operator in EventCloud. This is sufficient

for many cases, however the concept of correlationset is extensible to other corre-

lation operators as well.

At runtime, the values selected by the XPathSelector(s) from an event are called

correlation value. A correlation value points to exactly one correlation session, so

a correlation value is used to retrieve the correct session for a correlated event. For

an event TransportStart with an event attribute TransportId=T2000, according to

Listing 3.6, the correlation session retrieved is uniquely identified by the corre-

lation value transportInfo=T2000. Another event TransportStart with the event

attribute TransportId=T2001 is handled by another correlation instance that is

backed-up by another correlation session identified by the correlation value trans-

portInfo=T2001.

A correlationset can be interpreted as a template for the eventstream of inter-

est during runtime. If an event is processed in EventCloud, the correlation service

looks up which correlationsets the event type of the current event participates.

Next it selects the CorrelationData from the event for the given correlationset. If

a session for this value exists, the session for this correlation instance is returned.

Otherwise a new session is created and then returned.

Figure 3.4 shows how sessions are found through the correlation values selected

from the event attribute. The correlationset with identifier transportInfo is de-

fined in the system as in Listing 3.6. The event TransportStart is processed by

the system. At 1) the correlation value transportInfo=T2000 is selected because

of the correlationset definition. At 2) the correlation service checks if a session for

the correlationset transportInfo with the value ”T2000” already exists. If so, the

session is returned, otherwise a new session is created and returned.
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Figure 3.4: correlation value identifies correlation session at runtime

Later, an event TransportEnd with TransportId=T2000 is processed, and the

correlation service will return the same correlation session object with Session

GUID=123456 as before. Since a session is defined as a data container object,

the session allows an exchange of information across events. We already saw the

implementation of a simple duration metric with the help of correlation, and later

chapters will show how EventCloud makes use of this concept.
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3.2.4 Bridged Correlation

A Bridged Correlation defines an indirect correlation of event types, which could

not be correlated otherwise. Bridged Correlations are one aggregation level higher

than the correlationsets defined previously: Multiple correlationsets together rep-

resent a single bridged correlation.

The goal of a bridged correlation is to correlate events that cannot be correlated

by a single correlationset. A bridged correlation was shown in Figure 3.2. The

Demand and the TransportStart event type have no event attribute in common

to correlate. However via ShipmentCreated an indirect correlation can be built

with the help of the two correlationsets demandToShipment and shipmentInfo. If

additionally the event type TransportEnd and the correlationset transportInfo are

added to the bridged correlation, all four events can be correlated.

Bridged correlations are not automatically created from multiple correlationsets.

Even this inference step would be possible via the event attributes, correlationsets,

as well as bridged correlations, are currently configured by a user manually.

A bridged correlation is said to be weaker than a direct correlation. The De-

mand event is weaker correlated to the TransportEnd event than the Transport-

Start event is. This circumstance is also considered when we build the full-text

search index for EventCloud.

A bridged correlation consists of:

• An unique name

• A list of correlationsets in the Bridged Correlation

Listing 3.7: Definition of a bridged correlation AllOrderInformation over multiple correlationsets
1 <BridgedCorre lat ion i d e n t i f i e r=”Al lOrderInformat ion ”>
2 <Desc r ip t i on>

3 Sample br idged c o r r e l a t i o n from the Medicare example
4 </ Desc r ip t i on>

5 <c o r r e l a t i o n s e t i d e n t i f i e r=”demandToShipment”>
6 <Corre lat ionTuple>
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7 <Corre lat ionData eventtypeUri=”eventtype : //MediCare/Demand”>
8 <XPathSelector>//DemandId</XPathSelector>
9 </Corre lat ionData>

10 <Corre lat ionData eventtypeUri=”eventtype : //MediCare/ShipmentCreated ”>
11 <XPathSelector>//DemandId</XPathSelector>
12 </Corre lat ionData>

13 </Corre lat ionTuple>

14 </ c o r r e l a t i o n s e t>

15 <c o r r e l a t i o n s e t i d e n t i f i e r=”shipmentInfo ”>
16 <Corre lat ionTuple>

17 <Corre lat ionData eventtypeUri=”eventtype : //MediCare/ShipmentCreated ”>
18 <XPathSelector>//OrderId</XPathSelector>
19 </Corre lat ionData>

20 <Corre lat ionData eventtypeUri=”eventtype : //MediCare/TransportStart ”>
21 <XPathSelector>//ShipmentId</XPathSelector>
22 </Corre lat ionData>

23 </Corre lat ionTuple>

24 </ c o r r e l a t i o n s e t>

25 <c o r r e l a t i o n s e t i d e n t i f i e r=” t r an spo r t In f o ”>
26 <Corre lat ionTuple>

27 <Corre lat ionData eventtypeUri=”eventtype : //MediCare/TransportStart ”>
28 <XPathSelector>//TransportId</XPathSelector>
29 </Corre lat ionData>

30 <Corre lat ionData eventtypeUri=”eventtype : //MediCare/TransportEnd ”>
31 <XPathSelector>//TransportId</XPathSelector>
32 </Corre lat ionData>

33 </Corre lat ionTuple>

34 </ c o r r e l a t i o n s e t>

35 </ Br idgedCorre lat ion>

The basic execution of a bridged correlation in EventCloud is very similar to a cor-

relationset. Every bridged correlation returns a correlation session at runtime. An

event activating a (bridged) correlation session always gets a single, independent

session returned. Because of this characteristic, handling bridged correlations at

runtime is more complex than handling simple correlationsets. This point will be

discussed further in Section 3.3.

Figure 3.5: Three independent correlationsets demandToShipment, shipmentInfo and transport-
Info defined (without bridged correlation)

Let’s say the three correlationsets demandToShipment, shipmentInfo and trans-

portInfo are defined without a bridged correlation. So at runtime, after processing

all four events, three different correlation sessions will exist in EventCloud. Every
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correlation session is indicated by a cycle in Figure 3.5. These three correlation

sessions are independent from one another. The Demand event is in no way corre-

lated with the TransportEnd event. Exactly one correlation value points to

every session.

Figure 3.6: Bridged Correlation causes a single session for all four events

We now define a bridged correlation over the three independent correlationsets as

shown in listing 3.7 above. Now, only a single correlation session for the four events

would exist when they are processed. The correlationset shipmentInfo closes the

gap, so it’s possible to correlate events that have obviously something to do with

each other2, but could not be correlated directly. In contrast to simple correla-

tionsets, in this case multiple correlation values point at the bridged correlation

session. So different requests at the correlation service can lead to the same ses-

sion. Figure 3.6 shows that a single correlation session spans over all four events

so the session is the common data container for all four events.

2they all occur in the “Demand causes Transport” episode
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3.3 Bridged Correlation at Runtime

In Section 3.2.4 I argued that a bridged correlation is represented by a single

correlation session. That’s not exactly true during execution. With a bridged

correlation, a Session Merge situation which can occur during runtime must be

transparently managed by the correlation service.

A Session Merge can be defined as:

When not all event types participating in a bridged correlation are

already processed and events arrive in a particular order the bridging

event could cause a Session Merge of two independently existing corre-

lation sessions. This merge has to happen transparently for all requests

because one event can always obtain only one single correlation session

for a specific bridged correlation.

We call an event Bridging Event when multiple correlationsets of a bridged corre-

lation are defined on this event. In the bridged correlation in Figure 3.6 the events

ShipmentCreated and TransportStart are bridging events. It can be seen that these

two events allow to correlate the events Demand and TransportEnd which them-

selves cannot be correlated directly. So ShipmentCreated and TransportStart build

a bridge between them.

ShipmentCreated is a bridging event because of the correlationsets demandTo-

Shipment and shipmentInfo.

TransportStart is a bridging event because of the correlationsets shipmentInfo

and transportInfo.

The order in which the events are processed has an impact on how correlation

needs to work in the background. Because events are received from different, ex-

ternal source systems, no order is guaranteed. If the bridging event is processed

last, some event types of a bridged correlation cannot be correlated in the mean-

time. The bridging event is needed to realize the indirect correlation. Without

the bridging event, parts of the bridged correlation can exist in independent cor-

relation sessions. With the bridging event, these parts can be correlated causing
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a Session Merge.

Four different situations can occur if a session is requested by an event:

Correlation Session does not exist An event causes a correlation session to be

newly created. All event’s correlation values are added to the session.

Simple Merge The correlation session already exists but not all correlation values

of the event are handled by the session yet. Simply add the missing correla-

tion values to the session. This case does not need a session merge. It simply

extends the “responsibility” of a correlation session. As this occurs very fre-

quently during runtime, it must be handled with high performance by the

correlation service.

Complex Merge Different correlation sessions exists for a bridged correlation in

parallel. This can happen when events occur in such an order that they can-

not be correlated until the bridging event occurs. However when the bridging

event occurs, these two sessions have to be merged into a single correlation

session.

This situation is the most complex to handle, yet it does not happen very

often. First, the events must unfortunately be processed in an order so the

bridging event is processed late, and second, if a merge occurs once in a

correlation session, it must not occur again.

Already Merged All merges of a bridged correlationset have already been pro-

cessed. For all further requests on this session by later events, the correlation

session can simply be returned.

Bridged Correlation, as well as normal event correlation, is a commutative oper-

ation. The order in which events are processed has no effects on the resulting

correlation.

f(x, y) = f(y, x)

The function above shows this commutative operation, where x and y are events

processed. The result of an event correlation f is a correlation session. The com-
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mutativity could be expanded to any number of events in the correlation operation

f.

3.3.1 Bridged Correlation Runtime Example

Again take a look at the example with the four event types correlated in the

bridged correlation “AllOrderInformation”(Figure 3.2). Let’s reproduce what hap-

pens if the events are processed in different orders. Be aware that the events are

received by the EventServer from different other IT systems. First, the Demand

event may be received from a statistical analysis software, then TransportStart

and TransportEnd are sent to the system from a carrier’s subsystem, and finally,

ShipmentCreated is generated by a local transport planning software. As different

systems have different configurations, performance, and delays, it’s possible that

events are not received and processed in their natural order. Correlation must

be aware of this problem and in the end has to produce the same result

independent from the order in which events are processed.

Simple Merge

The following sequence of events shows the default behavior of a bridged corre-

lation. A single session expands it’s scope until all event types of the bridged

correlationset participate on the same session at least once.

1. Demand with DemandId=16123 Session AllOrderInformation | demandTo-

Shipment=16123 created

2. ShipmentCreated with DemandId=16123, OrderId=14554 Session AllOrder-

Information | demandToShipment=16123 retrieved and expanded for cor-

relation value shipmentInfo=14554 : AllOrderInformation | demandToShip-

ment=16123 | shipmentInfo=14554

3. TransportStart with OrderId=14554, TransportId=T2000 Session AllOrder-

Information | demandToShipment=16123 | shipmentInfo=14554 retrieved and

expanded for correlation value transportId=T2000 : AllOrderInformation |
DemandToShipment=16123 | shipmentInfo=14554 | transportInfo=T2000
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4. TransportEnd with TransportId=T2000 Session AllOrderInformation | demand-

ToShipment=16123 | shipmentInfo=14554 | transportInfo=T2000 retrieved

During runtime, a single correlation session for the bridged correlation AllOrderIn-

formation exists at all times. The session only extends it’s scope (Simple Merge) as

more correlated events are processed. At time 1) it’s just the correlation session for

all Demand and ShipmentCreated events with DemandId=16123. When at time

2) ShipmentCreated is processed the correlation session 456789 is expanded and

also responsible for the correlationset shipmentInfo for OrderId=14554. At time

3) the same happens for the correlationset transportInfo for TransportId=T2000.

Figure 3.7 shows the situation when TransportStart is processed. From the corre-

lation value shipmentInfo=14554, the event can already activate the session but

for correlation value transportInfo=T2000 no lookup exists. So to allow correla-

tion with future TransportEnd events, the correlation value transportInfo=T2000

needs to point to the session 456789 too. When TransportEnd is processed at

4) it can obtain the session 456789 with correlation value transportInfo=T2000

representing a fully occupied instance of the bridged correlation we have defined.

Figure 3.7: Simple Merge when TransportStart is processed. The correlation value transport-
Info=T2000 is added to the responsibility of session 456789
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Complex Merge

The following event sequence shows the need of a Session Merge with bridged cor-

relations. First a situation is described where two independent correlation sessions

exists during runtime:

1. Demand with DemandId=16123 Session AllOrderInformation | demandTo-

Shipment=16123 with sessionGUID=55555 created

2. TransportStart with OrderId=14554, TransportId=T2000 Session AllOrder-

Information | shipmentInfo=14554 | transportInfo=T2000 with

sessionGUID=65432 created

3. TransportEnd with TransportId=T2000 Session AllOrderInformation | ship-

mentInfo=14554 | transportInfo=T2000 retrieved

At this point we have two sessions at runtime. They exist until the bridging

event is processed. This is the situation shown in Figure 3.8. The Demand event

has created its own session with the correlation value demandToShipment=16123.

TransportStart and TransportEnd have created another session with the correlation

values shipmentInfo=14554 and transportInfo=T2000. The correlation service has

been able to correlate the two transport events through their transport identifier,

but until now it was not possible to correlate them with the Demand event. No

assertion can be done if this Demand event is in anyway related to the two events

in transport T2000. Any other Demand event could be correlated to transport

T2000 as well.

Figure 3.9 shows the Session Merge proceeding when the bridging event Ship-

mentCreated is processed in the fourth step. At 1) the correlation values de-

mandToShipment=16123 and shipmentInfo=14554 are extracted from the event

attributes DemandId and OrderId. With these values, the correlation session is

requested. As two sessions 55555 and 65432 are retrieved, a Session Merge is sig-

nalized at 2). A strategy decides which of the two session will survive and which

session will be merged. At 3) we see that the session 55555 “wins” the merge

and from now on represents the bridged correlation session AllOrderInformation
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Figure 3.8: Bridged Correlation represented by two independent sessions, because bridging event
ShipmentCreated is not processed yet.

Figure 3.9: Bridged Correlation after processing the four events
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| demandToShipment=16123 | shipmentInfo=14554 | transportInfo=T2000. The

correlation values shipmentInfo=14554 and transportInfo=T2000 must be reas-

signed to the merge winner session 55555.

When the ShipmentCreated event is processed, the Demand [DemandId=16123]

event can be ultimately connected with the TransportStart and TransportEnd

event of transport T2000 via the ShipmentCreated [DemandId=16123, OrderId=14554]

event that creates a correlation bridge between these events.

All further requests with one or more of the three correlation values will always

return session 55555, because now all three correlation values point to the same

session. When the ”Session Merge” once happens, the bridged correlation behaves

like every other correlation. A bridged correlation always collapse into a single

correlation session finally.

This complexity arises because it’s unknown in advance which correlation values

the bridged correlation will take at runtime. If a correlation session for demand-

ToShipment=16123 and a correlation session for transportInfo=T2000 exist, they

are in no way related to each other. Until the matching event ShipmentCreated

closes the bridge and allowing to recognize that the events (and thus their corre-

lation sessions) “fulfill” the bridged correlation.

Merging the objects representing the correlation sessions is not a trivial task. Cor-

relation sessions are data containers where a user can store any serializable data.

Data is stored as a key-value pair. If two correlation sessions that are merged

include same keys, a strategy is needed to solve this conflict.

In EventServer, Hashtables must be merged in the session objects. Because du-

plicated keys are not allowed in a Hashtable, the simplest behavior is to throw

an exception if a key occurs in both sessions. However, that’s just the simplest

policy and not sufficient in most situations. For a correlation service, the strategy

to merge session objects should be pluggable to allow executing different policies
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depending on the requirements.

3.4 Related Work - Event Correlation and Event Processing

Early approaches for event correlation have been collected in [26]. Event corre-

lation has its origins in network monitoring applications. Events can represent

problems and/or symptoms of problems in a network. To solve the problem, the

root cause must be found. [37] represents the causal relationships between prob-

lems and symptoms with a causality graph which is used to create codes for the

set of events (symptoms) caused by a problem to identify this problem. Currently

observed symptoms are decoded to determine which problem has the observed

symptoms as its code. The approach is used to quickly correlate involved events

to their root cause. [35] has rule and action types to correlate events and execute

proper reactions. Commercial tools like HP OpenView are available in this area,

but the concept of event correlation is always tied to network events.

However, CEP was introduced to be applicable to any domain. [29] points out the

importance of event correlation in business monitoring. Event correlation allows

to calculate business metrics on top of business process events in near real-time.

This approach fundamentally differs from traditional DWH-concepts with a batch

ETL-process.

The phrase complex event processing(CEP) was coined by David Luckham in [22]

coming from Luckham’s experience with the Rapide event pattern language [23].

On the other hand, there was significant research done in the area of continuous

queries [2] now generating lots of momentum under the name event stream process-

ing(ESP). The research projects Aurora [6], Stanford STREAM [12] and Borealis

[1] are noteworthy. Streambase [32] is a spin-off company of the Aurora project.

Recently the first open source engine, Esper, was published [14].

The projects in the area of ESP implement event processing by executing continu-

ous queries on event streams, similar to the concepts known from active databases
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[25]. All programming logic on eventstreams is executed via user defined queries.

The syntax of these queries is related to SQL statements and was published, for

example, for the TelegraphCQ project [7]. Aurora as well as STREAM use SQL-

like query languages. These query languages execute operations similar to SQL,

including:

SELECT Selects event types, attributes of an event in the eventstream.

WHERE Define conditions for the events that should fulfill the query.

AGGREGATION Min, Max and other aggregations known from SQL are avail-

able.

JOIN Similar to our definition of event correlation, events can be joined via their

attributes.

TIMEWINDOW The queries are executed against the events in a specific (sliding)

timewindow.

Listing 3.8: Definition of the Response Time metric with Esper
1 s e l e c t MESSAGESENT. msgId as MessageId ,
2 (MESSAGESENT. datetime − MESSAGEREQUESTED. datetime ) as ResponseTime
3 from MESSAGESENT,
4 MESSAGEREQUESTED
5 where MESSAGESENT. msgId = MESSAGEREQUESTED. msgId

Listing 3.9: Continuous queries for stock prices
1
2 s e l e c t avg ( p r i c e ) from StockTickEvent . win:t ime (300) where StockTickEvent . symbol=’IBM ’
3
4 s e l e c t symbol , avg ( p r i c e ) as averagePr ice
5 from StockTickEvent . w in : l ength (100)
6 group by symbol

The queries are executed at runtime on the stream of events for every event pro-

cessed, so events (or event data) can be selected from the stream. The idea is to

set on top of the well understood SQL language so people can easily adapt and

reuse their skills. However, by now all these languages are proprietary and there

is only some vendor driven effort to define a common standard [33].

Listing 3.8 shows how the calculation of the metric ResponseTime can be done
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with Esper. The syntax is in this case similar to SQL and very intuitive if one is

familiar with SQL. Even queries that use SQL-extensions are easily understood.

The first query in Listing 3.9 returns the average price of all IBM stock tick event

within the last 300 seconds (with a sliding time window). The second query re-

turns the average price per symbol for the last 100 stock ticks.

Event correlation for the queries is done in the background: as the queries ex-

ecute on time windows and connect multiple events via JOINs, the state of each

query needs to be persisted in the background. This is a very similar concept to

the correlation session defined in Section 3.2.3, except that the session is actively

used as data container, whereas state-handling for continuous queries is done in

the background.

The approach I present in my thesis was published in [29] and follows a differ-

ent concept: instead of doing everything with a SQL-like query language, event

correlation is used to select related events. These correlated events share a com-

mon session container and can be processed by any program code allowing much

more flexibility and expressiveness than SQL-like queries. The concept of event

services will be presented in Chapter 5. An event service can use any programming

language construct to execute its task. This is not quite possible with continuous

queries. The event services that create the EventCloud data representation, and

therefore depend on the Apache Lucene API to create a full-text search index, are

an example for the need of event services in complex event processing.

The concept of direct event correlation was used in SENACTIVE InTime [9]

even before we started developing EventCloud. SENACTIVE InTime heavily re-

lies on event correlation for complex event processing. An event service is allowed

to define a correlationset on its incoming event types. If an event arrives, it ac-

tivates the matching correlation session allowing the event service to retrieve or

store date to/from the session. In comparison to our implementation, the scope

of a correlation definition is defined for a single event services, whereas we define

correlations globally for event types. A correlation session in SENACTIVE InTime
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is always used in a single event service, whereas with EventServer the same session

is used for all event services that process the event. Chapter 5.3 discusses this

design difference in more detail.

In my opinion, ESP and stream languages are just a part of complex event process-

ing. The stream engine (like Esper) is just another event service in our EventServer

system like any other event service. Nevertheless, the beauty of the concept of

declarative queries commands respect. Some parts of this concept were borrowed,

as we will see in Chapter 7, where metrics are declaratively defined on top of

correlated events.
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4 Event Information Retrieval

In Chapter 2, we have seen that a relational schema is not appropriate to represent

events for analysis. I pointed out that it would be better to have a data schema

which directly represents events. This chapter will outline the concept of how

events are organized in EventCloud in a document-oriented data representation

with the help of event correlation. This approach allows querying for (correlated)

events by keywords, building the base for event analysis in the EventCloud fron-

tend.

This chapter covers the concepts behind two essential parts of EventCloud: Event

indexing and event search. To make an event searchable it must be first added

to the data representation and to the full-text index which is used to search for

events. This step is called event indexing. Event search is executed against the

full-text index of the data representation and is the main tool for a user of the

EventCloud frontend to support event analysis.

Event indexing and searching is a concept to which not much attention was paid

until now. The main topics the industry and research focus on are complex event

processing (CEP) and event stream processing(ESP) which primarily deal with

the processing of large event streams in real-time. However, publications on these

topics disregard the large amount of event data that is generated with CEP. Input

events are used by CEP for real-time monitoring and decision making. New events

are generated by CEP showing which decisions have been made as a result of the

input events. All events together show fine grained process data that is not avail-

able in a data warehouse at this level of detail. We are convinced that the event

data is more than a transient during CEP, but is the basis for a new generation of
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analysis tools.

Events offer a large amount of data for search, review and analysis of detailed

information on the finest level of detail. Any relevant activity in a process is rep-

resented by an event reflecting the whole process, if correlation is applied to relate

the process events. EventCloud is set on top of the low level event data and en-

riches the databasis through event correlation, metric calculation and aggregation.

When we started working on EventCloud, we drew a comparison to the internet

search engines. The term “Search” is nowadays closely related to the big players

in the world wide web in such a way that some time was needed to emancipate

the concept of EventCloud from it’s big brothers. Nevertheless, we stayed close to

web search engines in some areas of EventCloud: a simple textbox with minimal

options should be sufficient for complex event search. As will be seen in Chapter

8, we have adhered to this principle.

As time passed, and our knowledge and experience in the area of event search

increased, we realized that in some parts we struggle with problems different than

those of the web search engines. In the literature we found more and more intercon-

nections to the classical areas of Information Retrieval. As Information Retrieval

has evolved during the internet-hype of the last years, a new sub discipline “Web

Information Retrieval” arose. Whereas classical IR provides the foundation, “Web

Information Retrieval” extends the topic around web search engines. Event in-

dexing and searching is a new concept that we need to classify within the area of

information retrieval. To show the interconnections of EventCloud to Web IR, as

well as classical IR, I like to compare what I call “Event Information Retrieval” to

these two existing areas of research in the rest of the chapter.

Baeza-Yates and Ribeiro-Neto characterize Information Retrieval in [3] as

“Information Retrieval(IR) deals with the representation, storage, or-

ganization of and access to information items. The representation and

organization of the information items should provide the user with easy
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access to the information in which he is interested.”, Baeza-Yates, Ribeiro-

Neto [3]

This is a pretty good description of what EventCloud has to deal with. The infor-

mation items within EventCloud are events. Thus EventCloud has to care about

the representation and organization of events in its system. Correlation is one of

the key concepts we use for organizing events. The easy access for a user is a

consequence of the intelligent organization of events in the EventCloud system.

We will see more about this in the subsection 4.1.2.

A second definition accents the importance of searching. This definition is more

affected by web information retrieval, so it points out the concept of searching doc-

uments that can be linked to each other which store meta data and are of different

document types. Because events are connected to other events via correlations,

EventCloud implements features highlighted by this definition:

Information retrieval (IR) is the science of searching for information

in documents, searching for documents themselves, searching for meta

data which describe documents, or searching within databases, whether

relational stand-alone databases or hypertext networked databases such

as the Internet or intranets, for text, sound, images or data.1

4.1 Index & Retrieval Process in EventCloud

Baeza-Yates and Ribeiro-Neto define in [3] a index and retrieval process for IR

systems that I want to compare with the process of event index and retrieval in

EventCloud. We will see that EventCloud follows the same principles with slightly

different characteristics.

4.1.1 Definition of the Input Data

Whereas classical information retrieval systems get their input from relational

databases storing (text-) documents, todays web retrieval system have to follow

1http://en.wikipedia.org/wiki/Information retrieval
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another approach. Search engines have crawlers that scan the Internet to find

interesting documents. Every now and then, these documents are used to build a

new search index replacing the old one.

EventCloud neither retrieves documents from a data store (such as a relational

database, a filesystem), nor does it crawl for information. Rather, we have to

define the channels where events arrive to the EventCloud system. Events are

generated by different IT systems and so must be gathered from different sources

to add them to the EventCloud index. Therefore we have to define adapters where

events are received from the systems where they were generated. EventCloud re-

alizes this requirement by offering interfaces to existing middleware systems like

message queues. Any event-generating system can connect to the message queue

and send its events to EventCloud. If EventCloud is used in association with a

CEP software, the CEP software would send the relevant event that should be

available for analysis to the EventCloud adapters.

EventCloud uses typed events that have a well defined structure, such as the an

event type defined in Figure 3.3, to select specific events that should get indexed.

Event correlation sets these event types into something coherent.

4.1.2 Definition of the Documents - Mapping Events to Documents

Documents are the units of information typically represented in an IR system. If

a document fulfills a search query, it is returned in the resultset. The information

units EventCloud receives are events, so they are utilized as the units of informa-

tion within EventCloud.

In comparison to other documents like books, manuals, emails or webpages, an

event is a very small unit of information. Whereas a book tells a whole story, a

single event only represents a short activity in time storing only data to this spe-

cific activity, and per se no relation to other events is available. So, the simplest

approach is to build a new document for every event and add this document to

the index. The mapping between documents and events is 1:1. However, this is
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not sufficient for all retrieval tasks and will be discussed in more detail in Section

4.2

For example, the TransportStart event, as shown in Figure 3.3, represents a very

significant activity but does not provide information about its relation to other

events, like a matching TransportEnd event. However, most times a background-

story can be told for an event, as it is often caused by other events and is caus-

ing further events. In a complex event processing scenario an event is connected

to numerous other events. We have seen this when I described the meaning of

the bridged correlation AllOrderInformation in Section 3.2.4. Correlated events,

in comparison to single events, tell a story about a business transaction, a cus-

tomer relationship, or some other business process instance. Event Correlation

can be used to build documents of interest on the fly as it is most natural for a

user to search for such business episodes. This is a fundamentally different ap-

proach to classical IR: whereas IR, as well as Web IR, process existing documents,

EventCloud builds it’s own documents. These documents are defined through

(bridged) correlations and allow to coherence events to larger “Documents of cor-

related events”.

So besides documents that only store a single event, we also build correlation-

documents to organize the information items (the events) in a more sufficient way.

That follows the quote from [3] that the organization should support the easy

access to the information items for a user. When users of EventCloud are in-

terested in more than just single events, building larger documents of correlated

events helps them to retrieve relevant data for complex event analysis. Section 4.2

discusses the structure of documents in EventCloud in more detail.

4.1.3 Creation of the Inverted Index

As the documents in EventCloud have been defined in the previous step, they

now can be added to the inverted index. The representation of documents in the

index is shown in Figure 6.3. Because index creation is a complex task, we rely

on available tools specialized for this IR step. Apache Lucene is used to manage
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the full-text index. Chapter 6 discuss the inverted index and the procedure to add

events to it in more detail.

One of the main features of EventCloud is the real-time updates of the inverted

index. Updates are event driven, i.e they are triggered on every new event so the

event’s information is immediately available in the index when the event is pro-

cessed. This means the event, as well as all the documents it affects, is updated

in the index in real-time. In comparison, most IR systems update their index in

periodical cycles, or replace their index with a new revision, like web search en-

gines do. It was a requirement to make EventCloud real-time to distinguish itself

from other analytical tools which always have a gap between the real world and

the data represented in their repositories.

4.1.4 Information Retrieval Model

Different models are known for information retrieval systems. In the literature for

classical IR the Boolean Model, the Vector Model and the Probabilistic Model are

defined. [17] compares and discusses these models.

EventCloud is realized with the Boolean model as it internally uses Apache Lucene.

However, the presented concept of event indexing and searching could also be real-

ized with another model. In opposite to the other two models, the boolean model

works with the method of exact match. A document is in the resultset of a query

if and only if it matches the query exactly. That is the case if all search terms are

found in the document. In Section 4.2 the impacts of the boolean model on the

search results are illustrated.

The boolean model typically allow the operations AND, OR and NOT to be used

with the search terms. By using the Lucene query language2, we have a larger set

of operations available. Search terms are connected with an AND operation if not

provided otherwise.

2http://lucene.apache.org/java/docs/queryparsersyntax.html
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Per se the boolean model does not rank results, but only returns documents which

match the search query in a random order. As this approach is not sufficient, we

have to introduce ranking documents in the resultset. Ranking is a consequence

of the large resultset a query in an IR system potentially returns. As most web

search engines also use the boolean model for their search, they were forced by the

sheer amount of data in the internet to implement complex ranking algorithms.

According to [17], the average user search query in the Internet has a length of 2,6

terms. With this user behavior and the size of todays search indexes, resultsets

without ranking would not make much sense. [17] discuss ranking algorithms for

web search engines.

As the amount of data managed by the EventCloud system increases with ev-

ery new event, EventCloud has to implement ranking, too. However, the ranking

in EventCloud can only partially be compared to ranking algorithms of web search

engines. Events are different to documents in the World Wide Web, but similar to

the concept of hyperlinking, which is the most famous input parameter in Google’s

Pagerank described in [5], event correlation can be used: events are linked to other

events via defined correlations. These events are again correlated to other events.

This perspective on event correlation allows us to span a net of events starting

from a single event. Figure 6.2 demonstrates how a single event is directly and

indirectly linked to multiple others. EventCloud use this characteristic to enhance

the possibilities of event analysis.

At the documents level, which can be a single event or multiple, correlated events,

we rely on the ranking algorithm implemented in Lucene. For the exact formula see

[11]. Additionally - on the conceptional layer of “documents of correlated events” -

we have developed the search levels Rank1, Rank2 and Rank3. These search ranks

are logical consequences of the exact match behavior of the boolean model and

the characteristics of single and correlated events. See Section 4.2 for an in-depth

discussion of this topic.
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4.1.5 User Interface

The user interface is the point of contact for an ordinary user of EventCloud. As

Google and the other popular search engines have created a de facto standard for

search interfaces, we oriented on their user interfaces as shown in Figure 4.1.

Figure 4.1: The EventCloud user interface

The search query is entered in a simple textbox. Additionally, EventCloud offers

some user controls which allow setting filters on the searched event types and cor-

relationsets and specifying a date range for the search query. These filters can just

as well be coded into the search query, however that’s not very handy for novice

users. The resulting documents are displayed in a list ordered by their relevancy.

To retrieve less relevant events, one has to page down to these results. Users are

allowed to specify the search level(s) they want to execute their query against. As

we will see in Section 4.2, each search rank can return different resultsets.

Results in EventCloud can be enriched by metric data calculated during event

processing. This data is displayed along with the detailed events view in the met-

ric view, as we will see in Figure 8.4. Because we realized that metrics on events

becomes an increasingly important topic, we will might detach ourselves from the

search-centric, Google-like user interface in future versions of EventCloud. It’s our

goal to move the metric view to the foreground and let event search only be the
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basis for more analytical features. Because metrics are better understood with

diagrams and charts, there is a need to plug in graphic controls and to provide

high interactivity. With these requirements it is questionable if the next version of

EventCloud will again be implemented as a web application. How future versions

of EventCloud might look like is sketched in Section 5.4.

4.2 Resultset Ranking with Event Correlation: Rank1, Rank2

and Rank3

The previous section discussed how documents of interest are built for Event-

Cloud on the fly with the help of event correlation. An example demonstrated

why correlated events are needed to better understand the circumstances of a

single TransportStart event. This section discusses the reasons why three search

levels, Rank1, Rank2 and Rank3, were introduced in the EventCloud system. The

following section will then present an example which shows the behavior of the

search levels.

EventCloud uses the method of exact match to retrieve the results for a given

query. If every event is represented in a single document, only the events fulfilling

the query are returned in the resultset. Furthermore, every event is isolated from

all other events in the resultset. This may be accurate for some scenarios where a

user wants to obtain a single event by its identifier, but in most cases this behavior

would not be sufficient. A single event is such a small item of information that

complex analysis cannot be done on a single event. Because each event is isolated,

a user can not browse from a selected event to related events.

Until now we know, that events can be connected to each other via event cor-

relation. Correlate events have a relationship with one another. The following

kinds of correlation have been defined in Chapter 3:

Correlationsets All events in a correlationset are directly related. The Trans-

portEnd event is directly correlated to the TransportStart event with the

same transportId.
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Bridged Correlation Events are indirectly correlated via multiple correlation-

sets. They can not be related directly. The TransportStart event is only in-

directly correlated to the Demand event via the Correlationsets shipmentInfo

and demandToShipment

EventCloud interprets these types of correlation to allow a ranking in search query

results. If directly correlated events can fulfill a search query they have a higher

relevancy than indirectly correlated events which can fulfill the same query. Di-

rectly correlated events are strongly coupled, so they fulfill a search query at a

better level than loosely coupled indirectly correlated events.

With this definition the three search levels that exist in the EventCloud system can

be determined. EventCloud internally manages a search index for each of these

levels. Every index holds different documents as it represents different types of

correlations. The technical description for managing rank indexes can be found in

Chapter 6. Each level has its its specific purpose and can be useful depending on

the concrete usage scenario:

Rank1 No correlation is used at all for Rank1. Rank1 is the full-text index

over the processed events where each document in the index represents exactly

one event.

With the method of exact match, a document is returned if all search terms are

found in this document. Because one document in the index is representing ex-

actly one event, a hit would be the perfect match. An event storing all the

search terms a user enters is a direct hit. All search terms are concentrated in

one event which means maximum coupling of the search terms. So a hit in Rank1

rates higher than any hit in Rank2 or Rank3.

It is rather unlikely that a document in Rank1 fulfills a complex query because

a single event holds minimal information. The disadvantage of Rank1 is its low

Recall value. There might be many relevant events for a search query if event

correlation is taken into account, but because only single events are considered it
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is likely that no result will be returned.

Rank2 Event correlation with correlationsets is used for Rank2. Rank2 is the

full-text index over all directly correlated events. Each document in the index rep-

resents a set of events that are correlated via a correlationset, i.e. each instance of

a correlationset is represented as a document in the index.

Fewer events are in this index than in Rank1 because only correlated events are

added to this index. If an event type is not correlated in any correlationset, it

is not available in the Rank2 index. Since an event can participate on multiple

correlations, the event can be stored in multiple documents representing different

correlations.

A document is returned if all search terms are found in one document, mean-

ing that the search terms must be found over directly correlated events. A hit

in Rank2 is rated lower than any hit in Rank1 because the search terms are only

found across multiple events, but rated higher than a hit in Rank3 because search

terms are found in directly correlated events.

Rank3 Bridged correlation is used to create Rank3. Rank3 is the full-text in-

dex over indirectly correlated events. One document in the index represents a set

of events that are indirectly correlated via a bridged correlation across multiple

correlationsets, i.e. each instance of a bridged correlation is represented as a doc-

ument in the index.

Fewer events are in this index than in Rank1 because only indirectly correlated

events are added to this index. If an event type is not correlated in any bridged

correlation, it is not available in the Rank3 index. However, an event can partici-

pate on multiple bridged correlations, therefore the event can be stored in multiple

documents representing different bridged correlations.

A result is returned if all search terms are found in one document. That means
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that the search terms must be found in events that are at least correlated indi-

rectly. Search terms must not be found in events that are directly correlated.

It’s sufficient that the terms are found in events that are related over a bridging

event. A hit in Rank3 is rated lowest, although Rank3 may returns results where

Rank1 and Rank2 are not able to return any hit. This makes Rank3 important

for EventCloud.

4.3 Example for Event Search on Rank1, Rank2 and Rank3

Using the correlation AllOrderInformation from Figure 3.2, we explain the meaning

of the search levels when executing search queries against the EventCloud index.

The following queries should be executed to show the characteristic of each rank:

• “Madrid”

• “Madrid and Vienna”

• “ProductA and MegaTrans and Acceptor=Jane Smith”

Figure 4.2 shows the documents that are available in each search level index. For

this example the four events have been indexed the following way:

• Every event is indexed individually for Rank1 index.

• The correlationsets demandToShipment, shipmentInfo and transportInfo are

used for Rank2. This results into three documents, one instance of each

correlationset.

• The bridged correlation AllOrderInformation is used for Rank3. The four

events can be correlated indirectly, so they are represented in a single docu-

ment.

The different Ranks represent the same events in different ways according to their

interpretation of event correlation. As in Rank1, the mapping“event to document”

is always 1:1, where in Rank2 and Rank3 a single document can hold multiple

events. Because all search terms must be found in a resultset’s document it follows
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that the searchranks must return different resultsets. Rank2 and Rank3 store

less documents than Rank1, thus the documents are bigger and may grow if a

new event arrives. In Rank2, a single event is stored in multiple documents3

(e.g. ShipmentCreated, TransportStart). This redundancy is needed and cannot

be avoided in this approach.

Figure 4.2: The documents in the three search ranks

3this can also happen in Rank3 if an event participates on multiple bridged correlations that are not connected
to each other
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4.3.1 Rank1 - Without Correlation

Rank1 is a simple full-text index over events. This search category is similar to

the search over text documents. If all search terms occur in an event, it is returned

as result. Unfortunately an event, as compared to e.g. a typical .html file, is very

short with little data. This makes it less useful for event search.

Nevertheless, Rank1 is useful for a user of EventCloud searching for a specific

event. If the user knows the right search term, it’s a very efficient way to retrieve

the event in which the user is interested. For a user who wants to search, analyze

and navigate through events, Rank1 is not that useful. As no correlation is ap-

plied, an event is not related to any other event. However in EventCloud Rank1,

searches can be used to retrieve a specific event which is then used to browse to

other, correlated events.

Figure 4.3: Returned results in Rank1 (Correlations are not used)

In Figure 4.3 Rank1 returns the two events Demand and TransportEnd which

include “Madrid” in the resultset. For the two other queries, Rank1 is not able

to return any result. Consider that in a real scenario numerous events with the
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attribute value “Madrid” can exist in the index. Rank1 search is best suited if an

event should be retrieved that is identified by a (nearly) unique identifier.

Rank2 will return the two documents Document 1: demandToShipment|16123 and

Document 3: transportInfo|T2000 because Madrid can be found in these correla-

tions4. Rank3 will return its document because Madrid is found, too. Yet these

results have lower ranks than the results in Rank1.

4.3.2 Rank2 - Directly Correlated Events

Searching over correlationsets gives the user the possibility to search for multiple

terms that occur in directly correlated events. The resultset includes all matching

documents, where each document represents its correlated events.

Figure 4.4 shows that Rank2 will return a result for the query “Madrid and Vi-

Figure 4.4: Returned results in Rank2 (classic correlationsets used)

enna”. Rank1 does not return a result because no event has both search terms.

However, the events TransportStart and TransportEnd which are correlated via

the the correlationset transportInfo with the correlation value transportid=T2000

4because the Demand and TransportEnd participates on these correlations
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fulfill the query together. Document 3: transportInfo|T2000 from Figure 4.2 will

be returned for the Rank2 query. Also the Rank3 document is returned because

the terms Madrid and Vienna can be found in it. Yet the result has a lower rank

than the results from the Rank2 index.

From the user’s perspective, Rank2 may returns False Positives. As the search

terms are only found across correlated events, Rank2 may return documents other

than those the user intended. This is a problem with inexact search queries and

the amount of documents available in event search. EventCloud provides filters to

avoid this problem.

4.3.3 Rank3 - Indirectly Correlated Events

Bridged correlations are a new feature added in this version of EventCloud, hence

Rank3 is a new search concept the previous version of EventCloud does not include.

It is defined as the lowest search rank, but is able to return results where Rank1

and Rank2 cannot recognize the coherencies. Rank3 allows a user to search for

multiple terms that occur in indirectly correlated events. The resultset includes

all matching documents where each document represents its indirectly correlated

events.

With a Rank3 result, the search terms are loosely coupled across the events as

events in a Rank3 document are only correlated via “bridging events”. The chance

that Rank3 results are False Positives is even higher than with Rank2. How-

ever Figure 4.5 shows that the Document 1, representing the bridged correlation

“AllOrderInformation” from Figure 4.2, is returned by the query “ProductA and

MegaTrans and Acceptor=Jane Smith”. The search terms are spread across indi-

rectly correlated events, where the event TransportStart does not hold any search

term, but acts as the bridging event to TransportEnd.

Because Rank1 and Rank2 cannot fulfill the search query with one of their docu-

ments, the Rank3 result is the only, and highest rated, result in the resultset.
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Figure 4.5: Returned results in Rank3 (bridged correlationsets used). The figure shows how the
search terms are found across the events in the correlation.

4.3.4 Conclusion

In EventCloud, the three ranks are used as conceptional ranking of query results.

Documents returned by Rank1 are always rated higher than documents returned

by Rank2. Documents returned by Rank2 are always rated higher than documents

returned by Rank3. The resultset in EventCloud shows first the results of Rank1

search, then the Rank2 results and lastly the Rank3 results. Within each of the

three resultsets, we rely on the Lucene ranking algorithm.

Sometimes users want to execute their query at a specific search level, so the

possibility exists to search in a specific rank. Rank1 can be less than optimal if

a single, generic search term is used. The goal is to transparently use the search

levels to return the best results for a user. Advanced users can use the levels to

immediately retrieve the documents which are relevant to them.
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4.4 Characteristics of Event Information Retrieval

[17] compares Web Information Retrieval with classical Information Retrieval. Fol-

lowing this comparison, a column, Event Information Retrieval, is added for the

approaches described in this chapter and implemented in EventCloud. Table 4.1

shows how Event IR behaves in relation to the these well defined areas of IR.

EventCloud has well defined documents just as classical IR has; no crawling

through an unknown space is needed to obtain relevant documents. The input

events are pushed to the EventCloud system to be indexed. The EventCloud in-

dex is always complete for all processed events and is updated in real-time by every

event.

In classical IR, every document stands on its own. With web retrieval, the link

structure of the web is heavily used to make a relevance ranking. With event

search, the documents are also linked to each other because an event can correlate

to other events in different event correlations. From a single event, a user can

browse to other correlated events (linked documents).

Ranking is needed for Event IR because the amount of events and the simple

query language, potentially cause large resultsets. EventCloud has conceptional

search levels presented in Section 4.2 and a ranking within these levels calculated

by Lucene. Search operations and user interface are purposely built like popular

search engines to allow novice use. EventCloud is primarily relevant for analysts

and experts that need detailed information about a business scenario, so the user

interface may change in future development steps.
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Web IR Event IR Classical IR
Length and granu-
larity of the docu-
ments

Length of the doc-
uments varies, large
documents are often
split

Length of the events
is very short, with
concentrated informa-
tion. As events are
correlated, a single
document representing
this correlation can
grow large. An event
can be represented
in multiple docu-
ments(correlations) in
the system.

Length of the docu-
ments varies within a
range; each document
is represented by a sin-
gle document in the IR
system

Hyperlink structure Documents are linked
to each other

Events are linked to
each other via correla-
tion. Correlation does
not automatically in-
crease the relevance of
an event, but allows
more complex queries.

Normally documents
are not linked. Their
is no necessity to
infer the quality of an
document from it’s
link structure

Size of the dataset Overall data size un-
known. Completely in-
dexing is impossible

Database is growing
with every event. In-
dex is complete for all
event types and corre-
lations that are defined
to be indexed.

Index is complete for
documents that should
be indexed.

User query types Numerous user groups
with different needs

Well defined user
groups with well
defined needs.

Well defined user
groups with well
defined needs.

User Interface Simple user interface,
understood by novice
users

By now simple inter-
face, understood by
novice user. But may
get more complex if
more analytic features
are implemented.

Complex interface;
tutorials and practice
needed

Ranking Relevance ranking be-
cause of the sheer num-
ber of results

Relevance ranking
needed because of
the sheer number of
events generated by
a scenario. Addi-
tional the concept of
Rank1, Rank2 and
Rank3 exist to differ
between the levels of
correlation.

Relevance Ranking
not always necessary.
Well-defined search
queries causes smaller
resultsets.

Search operations Simple search opera-
tions, used by most
users.

Simple search opera-
tions. Some standard
filters to allow user to
narrow their query on
event types, correla-
tionsets.

complex search lan-
guages

Table 4.1: Comparison Web, Event Search, classical IR
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5 Building an Infrastructure for Event

Analysis

5.1 Evolution of the EventCloud System

EventCloud was first introduced in the master thesis of Szabolcs Rozsnyai [28].

Starting in summer 2005, with the development of scenario-examples for Event-

Cloud (see appendix of [28])and going through multiple phases of design and re-

design, Rozsnyai developed a first proof-of-concept prototype of EventCloud.

EventCloud included a web interface giving a user the power to search terms

in events (Rank1), as well as in correlated events (Rank2). The backend server

implementation went through multiple architectures giving a good background on

the topic. Many points from this first implementation were learned which are

discussed in this section, along with conclusions and a presentation of the new

implementation.

5.1.1 EventCloud’s Original ETL Architecture

In a nutshell the original version of EventCloud extracts already correlated events

from a database, splits the events’ attributes, indexes this data to a reverse index

with Apache Lucene and stores the events in the EventCloud database.

Figure 5.1 shows the high level overview of this architecture:

IntimeDb Source Events This database stores all the events EventCloud is able

to index. Therefore, all events plus their correlation information are stored
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Figure 5.1: Old architecture of EventCloud

in this database. EventCloud uses this already available knowledge to build

a valid Rank1 and Rank2 full-text index for these events.

ETL Process The ETL (Extract Transform Load) process is a user triggered pro-

cess to start extracting events from IntimeDb, transforming them (which ba-

sically means splitting event attributes) and loading them into the reverse

full-text index and the EventCloud database. OR-Mapping and the creation

of the full-text index are executed during the ETL-process

HTML Presentation On top of the Service API, a web user interface was created.

The user interface provides the possibility to manage EventCloud (starting

the ETL-process, changing the index location, etc.) and it gives a user the

facility to search through the indexed events.

For a more detailed description, refer to [28], which gives a broader overview on

the architecture as well as the on the technologies used.
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5.1.2 Critics on Architecture

Figure 5.1 shows how the ETL-process takes a central position in the whole picture.

Triggering the ETL-process moves the events from the InTimeDb into the Event-

Cloud system. With the benefit of hindsight, this approach was questioned, as it

is very monolithic and static, if it is sufficient to the requirements of EventCloud.

• The ETL-process depends on the correlation knowledge stored in the In-

TimeDb. The concept of event correlation must be applied before the events

come into the EventCloud system.

• The ETL-process is a heavy weight, inflexible, not easily extendible process.

It executes the following tasks in one big step:

1. Select all events + correlation information from database.

2. Splitting the events attributes.

3. Storing event attributes in EventCloud database.

4. Storing events in Rank1 index.

5. Storing events in Rank2 index.

• The ETL-process is an old fashioned batch-insert job, comparable with a

batch load into a data warehouse. It does not follow an event-driven approach.

With these problems and restrictions in mind, we came up with the following

demands which were to be considered for the new version of EventCloud:

• Implementing an own event correlation service for EventCloud, including new

ideas like bridged correlation (Rank3).

• Do not batch insert data; the system needs to work in real-time. A received

event should be processed immediately. EventCloud should become event-

driven, because this is the most natural way for an event processing system.

• Lightweight “event services” instead of a single heavy weight ETL-process.

• Increase the performance in comparison to the original ETL-process.
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System Service: Event Correlation

As mentioned previously the ETL-process depends on the event information in

the InTimeDb database. InTimeDb was created and filled by the prototype of the

commercial CEP software SENACTIVE InTime:

SENACTIVE InTime includes a system service that implements the idea of corre-

lation (without bridged correlations) as described in Chapter 3. This concept is the

basis for EventCloud’s Rank2 search. When Szabolcs Rozsnyai started developing

EventCloud, he used the SENACTIVE InTime prototype not only for simulating

events, but also to correlate the events that should be indexed in the EventCloud

system. The SENACTIVE InTime prototype processes these events, generates the

event correlation and persists the events and their correlation information to the

InTimeDb. Afterwards EventCloud picks the data from the database to generate

the full-text indexes.

Figure 5.2: InTimeDB stores all events and their correlation. EventCloud extract information to
generate full-text indexes[28]

Every event is stored as a XML representation in table correlatedevents. For every

correlation session in which an event participates, an entry in table correlation-

sets exists. EventCloud takes this information and has an easy task to build the

matching Rank1 and Rank2 full-text index. However, this approach also has major

drawbacks:
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• SENACTIVE InTime prototype is just what it’s called: a prototype. No

further development will be done for this piece of software. It’s a closed-

source, proof-of-concept for the commercial SENACTIVE InTime product

line. EventCloud should not depend on this prototype for such essential parts

as event correlation and Rank2 search (and furthermore Rank3).

• Every event added to the EventCloud system needs to be processed by the

SENACTIVE InTime prototype first. Using two systems for making one task,

namely indexing events for a search index, signalizes something is wrong.

Using two systems makes everything more complicated: two installations,

two places to define events and two places to define correlationsets.

We decided to move system borders: EventCloud should be a system that has all

needed parts on it’s own. The essential correlation service has to be implemented

for EventCloud, including many extensions to realize the new ideas of bridged

correlations. InTimeDb should no longer be required for newer versions of Event-

Cloud. Instead, events should be directly received and executed by EventCloud in

an event-driven way, applying correlation immediately when an event is processed.

This approach gives us a clear cut between SENACTIVE InTime and Event-

Cloud. Nevertheless, SENACTIVE InTime remains a significant tool for research

with EventCloud: the SENACTIVE InTime Simulation Studio allows to generate

events and publish them as event streams. The Simulator is a mighty tool not

only for testing but also for creating (correlated) events for complex event stream

scenarios. The simulator was, for example, used to generate the events in the

Medicare Example discussed in Chapter 8.

Batch Processing of Events

This section is related to the previous one. As system borders were moved, there

was the chance to completely replace the ETL approach. The original architec-

ture did not know when a new event arrived. The implementation was absolutely

not event driven. The SENACTIVE InTime prototype stored events in the In-

TimeDB while EventCloud was waiting. Then the ETL-process was triggered by
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a scheduled job or was forced by the user. One chance would have been to poll the

database if a new event was received to trigger the ETL-process, but that would

not have been very elegant too.

The new EventCloud architecture is completely event-driven. If a new event ar-

rives, it starts its own processing logic as fast as the needed system resources are

available. An event is added to the search index as soon as possible (at least in the-

ory: the problems which arise with this approach will be discussed in Section 6.3.2).

Whereas some can say “it’s not that important that an event is available in the

searchable index in real-time”, it’s an important requirement defined for Event-

Cloud. It’s one of the main points where EventCloud differs from many products

available today. Moving a step forward from the well-known data warehouse batch-

update approach is a crucial point. Making data available in analysis software like

EventCloud, BPM (Business Performance Management [10]) or data warehouses

in near real-time is an essential requirement for modern decision support systems.

Big players, like Microsoft 1, set a course for real-time business intelligence. The

next chapters point out the essential need for an event-driven approach for further

features of EventCloud.

User Defined Event Services

During development of the first version of EventCloud, numerous ideas for Event-

Cloud were developed and it became clear that the current monolithic block“ETL-

process” did not fulfill our requirements.

In the original EventCloud architecture, it was never planned to expand the

“Event Search”capabilities with additional, different features. Therefore the“ETL-

process” was created as a heavy-weight process doing all the indexing and per-

sistence work. However, as time passed, new features for EventCloud emerged:

metrics should be calculated for correlated events to allow a higher level view on

fine-grained events, research for rule-based services on top of (correlated) events

1http://www.microsoft.com/technet/prodtechnol/sql/2005/rtbissas.mspx
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should be done, and the concepts of data mining may be applied on events. Event-

Cloud should be an open architecture allowing to easily implement user defined

functionality.

To fulfill these wishes, the concept of event services is introduced. An event ser-

vice takes one event in its .process()-method and executes the implemented task.

Multiple event services can be executed for an event one after another, so every

event service only needs to implement a defined part of the whole processing logic

for an event.

We realized that the main backend topics of EventCloud, indexing for Rank1,

Rank2 and Rank3, are just three event services we have to implement. Adding

more event services, such as services that calculate metrics, makes EventCloud a

rich platform for many topics related to event processing. To make a clear dis-

tinction between the event processing platform and the event analysis application

created on top of this platform, the platform is called EventServer. Rank1,

Rank2 and Rank3 event services running in EventServer, plus the analysis fron-

tend, are the EventCloud system. So EventCloud is just one application that

can run in the EventServer infrastructure.

A detailed description of EventServer can be found in Section 5.3. More on event

services can be read in Section 5.3.5.

5.1.3 Performance Issues

As the original EventCloud was developed as a proof-of-concept, high performance

was not one of the main goals. As EventCloud should work with a high number

of events in complex scenarios, some tests were performed with the old architecture.

Starting the ETL-Process to index 1000 Events for Rank1 needed up to 20 minutes

at 100 percent CPU utilization. That was unacceptable as this would mean less

than 1 Event per second, whereas our goal was a two-digit number of events per

second for creating all of the indexes: Rank1, Rank2 and Rank3. As the perfor-
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mance numbers on Lucene’s webpage2 suggested a far higher performance, there

was a question about the numbers measured with EventCloud. After doing some

source code review and profiling with JProfiler, the reasons were quickly found:

• Extracting the attributes of every event and inserting them in the Event-

Cloud database cost a lot. Say an event has 10 attributes in average, this

would cause 10 insert statements for every event. As described later, the

same functionality can be implemented for EventCloud without extracting

and storing all attributes as an own entry in the database3.

• The usage of the Apache Lucene API was weak at multiple points: Even

though the ETL-process does a batch job it misuses the Lucene API. Instead

of adding all events to the Lucene index with a single bulk write the following

code was executed:

For every event in the ETL-Run:

1. Create new IndexWriter for the Lucene index.

2. Add a single event to the index.

3. Call IndexWriter.Optimize() on the index.

4. Close IndexWriter.

For every event the Lucene infrastructure is initialized new and IndexWriter.Optimize()

is called each time. However, that does not make any sense when working with

Lucene. According to [11]:

“It’s important to emphasize that optimizing an index only affects the

speed of searches against that index, and does not affect the speed of

indexing.”

It’s getting clear why IndexWriter.Optimize() is a performance bottleneck:

2http://Lucene.apache.org/java/docs/benchmarks.html
3see [28] 4.1 Database and Schemas
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“[..]while optimizing an index, Lucene merges existing segments by

creating a brand-new segment whose content in the end represents the

content of all old segments combined [..] Consequently, just before the

old segments are removed, the disk space usage of an index doubles be-

cause both the combined new unified segment and all the old segments

are present in the index.” [11]

So be aware that calling IndexWriter.Optimize() during a batch insert to the

Lucene index makes no sense. Optimizing the index should happen, if at all,

after the batch insert, because in EventCloud’s ETL-approach it is guaranteed

that the index will not change for a while (until the next ETL-process starts).

To call IndexWriter.Optimize() in an event-driven system, like the new Event-

Cloud approach, is much harder to decide: it’s unpredictable when the next event

arrives that will update the index. So there is no optimal point in time to optimize

an index. This problem is further discussed in Section 6.3.

Opening and closing Lucene’s IndexWriter for every event is useless too. It obtains

and releases a file-lock on the index for every event, even though it’s guaranteed

that only EventCloud requests an IndexWriter in the current configuration. The

right approach must be to create an IndexWriter once in your application and

hold it open as long as possible (i.e. for the duration of the batch job), otherwise

Lucene will spend more time in index locking than in indexing events.

For the new version of EventCloud, it was decided to use the Compass API4 that

encapsulates the complexity of the Lucene API to avoid misuse with the utmost

probability.

5.2 Goals for New Infrastructure

The previous section discussed the lessons learned from the first implementation

of the event search back-end. The architecture and our experience working with
4http://www.opensymphony.com/compass/
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Figure 5.3: ETL-Process needs 95,9%

Figure 5.4: Lucene’s optimize() and database persistence as hotspots
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the topic were limited. Since then, we gained insight on the topic allowing us to

better define our requirements.

Following is a summary of the main goals and benefits of the upcoming imple-

mentation:

Implement Correlation as reusable Service Event correlation, as described in

Chapter 3, is the foundation for EventCloud and other topics on event pro-

cessing. For the new EventServer, an independent, easy to use correlation

service should be implemented. EventCloud suffered from its dependency

on the closed source SENACTIVE InTime product. Implementing an own

correlation service decouples our tool from any other systems.

Rank3 Implementation Hand in hand with the development of the correlation

service, the idea of indirectly correlated events through “bridged correlations”

should be realized. While a correlation is defined between a number of event

types, a bridged correlation consists of multiple correlations to allow relating

events over multiple correlationsets (Section 3.3). Indirect event correlation

leads to an additional search level Rank3 described in section 4.2.

The users of EventCloud should get new power for their event search. While

this idea already existed during development of the first EventCloud, we ini-

tially discarded this feature. Implementing bridged correlation adds new com-

plexity to the correlation service. Obstacles that need to be considered were

described in Section 3.3.

Metrics for Event Search and Analysis We found out during the first Event-

Cloud development that event search may not be sufficient in many analysis

scenarios. The results of an event search are often too fine-grained to sat-

isfy the user requirements even when correlation is applied. As discussed in

Chapter 2, we want to enrich the event search and analysis capabilities with

the calculation of metrics.

More details about metrics, different approaches to implement metrics and
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their implementation in the EventServer can be found in Chapter 7.

New Architecture: EventServer Because of EventCloud’s interconnection with

SENACTIVE InTime and the need for further research required a completely

new architecture for EventCloud. The decision was made to implement a

more generic platform where event indexing and search are just services as

many other’s might be. The following parts were identified:

EventServer the EventServer is a multi-threaded server that receives events

at its adapter, provides system services (like event correlation) and exe-

cutes configurable event services in an event-driven way.

System service System services are services that should be usable from ev-

erywhere in the EventServer. For example, the correlation service is im-

plemented as a system service so every other service in EventServer can

use event correlation.

Event service An event service takes one event, optionally retrieves its corre-

lations and executes the defined process-method. The EventServer knows

for every event received which event service to execute. So Rank1/2/3

index creation for EventCloud will be implemented as event service, while

calculating a Duration metric is just another event service.

Following the approach of event services, the EventServer is a generic

platform which implements any service that might be interesting for some-

body in the area of event processing.

EventCloud Frontend As EventCloud is an analytical tool for users a fron-

tend needs to be implemented. EventCloud’s frontend was simple, clear

and well understood by its users. We want to continue this direction, but

have to extend the GUI on some points to realize the new concepts like

Rank3 and metric data.

New Research With this version of EventCloud, a platform permitting further

research on event processing should be created. EventServer provides a plat-

form allowing everyone to realize their ideas on event processing. EventServer

offers an easy way to deploy specific scenarios and applications that need an

event processing infrastructure.
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5.3 EventServer Architecture

The EventServer is the basis for implementing event indexing for EventCloud as

well as other event processing tasks. The next sections will give an introduction

to the new architecture.

5.3.1 Overview

The EventServer is an IoC5-Container for event processing. Events are received

through an Event Adapter, processed in event services to which the EventServer

offers system services. It is a highly configurable server allowing the exchange or

addition of any system-/event service by implementing interfaces.

Figure 5.5: EventServer architecture overview

5Inversion of Control
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Brief Event Processing Discussion

Events are received on the Event Adapter from different sources. Because events

are normally generated in external IT-systems and received through different chan-

nels like queues, databases or webservices, the events are wrapped in diverse mes-

sage types. Therefore, an event needs to be transformed, according to its event

type definition, by the Event Transformer to map the message into the BaseEvent

object used inside the EventServer.

The transformed event is added to an internal queue observed by the EventDis-

patcher. The EventDispatcher has a thread pool of EventWorker threads. If an

EventWorker thread is free, the EventDispatcher picks the event from the queue

and hands it to the worker. According to the event type, the dispatcher tells the

worker which event services have to be executed with this event.

The EventWorker takes the event and the list of event services and calls the event

services one after another. Event services implement some logic for processing the

event.

Some of the event services make use of the EventServer’s system services when

they process the event. The system services can be looked up in the EventServer

container.

When the EventWorker finished the last event service for a given event it is free

for the next event. If a new event is in the queue the EventDispatcher will assign

it to the worker.

5.3.2 Event Adapter and Event Transformer

The Event Adapter (including the Event Transformer) is the entry point to the

server for every event. Because events occur somewhere in the real world they

have to be forwarded to the EventServer.
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In a typical IT-landscape, events can occur in many places:

• Every state change in a business process is an event.

• Every message in a network.

• Every new email in a mailbox could represent an event.

• A robot parsing webpages could generate events.

Events can occur in many different IT-Systems, at many levels of granularity, with

different frequencies depending on the scenario one is interested in. As a least

common denominator, we decided to implement a JMS adapter for EventServer.

JMS is a standardized queuing system in the Java world, which allows us to be

open for many different systems to receive their events.

However, the EventServer is not tied to the JMS Adapter. In the future, dif-

ferent adapters could be implemented easily. Currently the SENACTIVE InTime

Simulator is used to simulate many of our scenarios. As the Simulator can send

its generated events to a JMS queue ,the JMS Adapter is sufficient for now.

The Event Transformer receives a message representing the event from the Even-

tAdapter. In our case it is a JMS message. This message is transformed to

the internally used object BaseEvent which represents events in the EventServer

System. Using SENACTIVE InTime Simulator, the events are represented by

XML strings. To transform the events back to the Java object used inside of the

EventServer, the transformer has to parse the XML string.

When the transformation is finished, the BaseEvent is put into an internal queue

where it is picked up when the EventDispatcher has free resources to process the

event.

5.3.3 Event Dispatcher

The EventDispatcher distributes an event to an EventWorker.
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Listing 5.1: Event service subscription for the event type TransportStart
1 <EventType typeUri=”even tob j e c t type : //Examples/ Log i s t i c s−SpecialGoods /TransportStart ”>
2 <EventServ i c e sSubsc r ip t i on name=”Index ingSubsc r ip t i ons3 ”>
3 <EventService>EventService Event2DBPers istence</EventService>

4 <EventService>EventServ i c e Execut ionTimeMetr i cCa l cu la t i on t ranspor t In fo</EventService>

5 <EventService>EventService EventRank1Indexing</EventService>

6 <EventService>EventService EventRank2Indexing</EventService>

7 <EventService>EventService EventRank3Indexing</EventService>

8 <EventService>EventServ ice LogPer formanceServ ice</EventService>

9 </ EventSe rv i c e sSubsc r ip t i on>

10 </EventType>

At startup, a configuration file is loaded defining which event service needs to be

executed for a given event type. Listing 5.1 shows the event service subscription

for the TransportStart event type. Within the <EventService>-tags, the service

names as defined in the EventServer IOC container definition are used, so the

EventWorker can retrieve the event services from the EventServer container.

The dispatcher listens to the internal event queue. If an event is available, it

dequeues the event and assigns it to an EventWorker out of its thread pool. The

EventDispatcher looks up the event services which need to be executed according

to the event’s event type and hands the event service names to the worker. Then

the dispatcher again listens to the internal queue.

5.3.4 Event Worker

EventWorkers are very simple. Every EventWorker is executed in a separate

thread. A worker takes a single event and a list of event services from the event

service subscription. Then, the worker calls the .process-method of every event

service in the subscription. After finishing the last .process-method, the worker

waits until the EventDispatcher assigns the next event (which may has another

list of event services attached) to it.

5.3.5 Event Service

By now the infrastructure to process events has been described. Event services

implement the logic one wants to execute in their event processing task. So for

EventCloud services were implemented which can persist and index events. Other

scenarios will require other event services. As event services are pluggable in
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EventServer, other scenarios can be created easily.

Event services process a single event and are event-driven. An event service

can be seen like a Servlet. An event service is always executed on a request, i.e.

its process-method is called if an event should be processed. Like a Servlet, an

event service can obtain sessions to the event’s correlations to“load”a state. Event

services make use of the concept of event correlation as it retrieves states set by

previous events which correlate with the event currently processed. However, cor-

relation is not handled by the event service itself; an event service has to call the

system service correlation service which returns the correlation session for a given

event and a given correlationset defined in the EventServer.

Listing 5.2: The event service interface to implement
1 pub l i c i n t e r f a c e IEventServ ice {
2 pub l i c void prepare ( BaseEvent eventToProcess ) ;
3 pub l i c void proce s s ( BaseEvent eventToProcess ) ;
4 pub l i c void cleanup ( BaseEvent eventToProcess ) ;
5 }

Event services do the real work of event processing. As they are modularly

built, every event service should only fulfill a single purpose to keep the service

lightweight. Whereas EventServer builds the infrastructure for event processing,

everyone can implement their own event service. Just implement the interface

shown in 5.2 and register it in the EventServer’s IoC container.

Currently the following event services have been implemented. They differ in

complexity and internal implementation, but due to their common interface and

the IoC concept, more services could easily be added to the EventServer. Some

of the event services are specific for the EventCloud applications. Others, like

Event2DBPersistence, might be directly reused in other applications.

Event2DBPersistence stores the serialized event in a database.

EventRank1Indexing adds the given event to the Rank1 full-text index.

EventRank2BatchIndexing adds the given, correlated event to the Rank2 full-

text index.
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EventRank3BatchIndexing adds the given, indirect correlated event to the Rank3

full-text index.

ExecutionTimeMetricCalculation calculates a duration metric for a pair of cor-

related events.

LogPerformanceService is a service that calculates the event processing perfor-

mance of the EventServer.

Multiple EventWorkers execute an event service at the same time. As event services

are singletons in the EventServer container, they must be thread safe. From our

experience, most event services can be implemented stateless because states are

stored in the correlation session. Figure 5.7 in Section 5.3.7 shows an example of

how correlation sessions are used to hold states.

5.3.6 System Service

System services are provided by the EventServer, offering services used by event

services or other system services. System services are registered in the EventServer

IoC container. Other services can obtain a reference to them via the container.

The correlation service is an essential system service for complex event pro-

cessing. The event service API offers methods to call the correlation service.

The correlation service encapsulates the whole event correlation complexity, as

described in Chapter 3, from the event services which rely heavily on event corre-

lation. Within the .process method of an event service, the defined correlations for

the currently processed event can be fetched from the correlation service. When

finishing the .process-method, all correlation sessions are returned to and persisted

by the correlation service.

Listing 3.7 shows how event correlations are defined declaratively in the EventServer.

These event correlations are accessible for the event services and can be handled

by the correlation service at runtime. Event services request correlation sessions

by the correlationset identifier and the correlation values of the currently processed
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event. The correlation service has to handle the life cycle of the correlation session

(create, retrieve, persist, invalidate).

Correlationsets (and their runtime representation correlation sessions) are glob-

ally available over all event services within the EventServer. That means that

sessions are event-centered, not “event service”-centered. Sharing sessions over

event services allows communication over event services borders via the session

by storing relevant data into the session. As the event services for an event are

processed one after another, the defined order of execution is of importance if the

event services exchange information via the correlation session.

SENACTIVE InTime follows another approach where every event service has its

own correlationset and so its own correlation sessions. Sessions are always tied to

a single event service. Inter-eventservice communication cannot be done via ses-

sions, it is done by creating new internal events and sending them to the following

event services.

As discussed above, the correlation definitions are globally defined. An event ser-

vice can request the session for a defined correlation from the correlation service

during runtime. For example, the event service ExecutionTimeMetricCalculation

can obtain the correlation session for shipmentInfo(Rank2), transportInfo(Rank2)

and AllOrderInfo(bridged Correlation) when processing an event of the event type

eventtype://MediCare/TransportStart.

Listing 5.3: ICorrelationService Interface
1 pub l i c i n t e r f a c e ICo r r e l a t i onS e r v i c e extends ISystemServ ice
2 {
3
4 pub l i c Cor r e l a t i on s e s s i o n checkOutSession ( St r ing c o r r e l a t i o n S e t I d e n t i f e r ,
5 L i s t<Str ing> co r r e l a t i onVa lu e s ) ;
6
7 pub l i c void checkInSess ion ( Cor r e l a t i on s e s s i o n s e s s i o n ) throws BaseException ;
8 }

The interface of the correlation service is shown in Listing 5.3. The correlation

service is not aware of events at all; it is sufficient to pass the correlationset Iden-

90



tifier and the event’s correlation values to the service to obtain the correlation

session. checkOutSession retuns the session to the caller. Internally this session

is now blocked for other checkouts until checkInSession for this session is called.

This is necessary to ensure that a correlation session is only modified by a single

event at once. As it is possible that multiple event services with different events

want to obtain the same session concurrently the correlation service has to block

such calls until the first request has checked in the session again.

The correlation service implements monitors on session level to ensure correct

concurrent behavior. As event services are highly parallelized the correlation ser-

vice has to take care about the transactional behavior of correlation sessions. A

detailed algorithm of the session retrieval from the correlation service is defined in

Figure 10.1 in the appendix.

Other system services are available in the EventServer. SessionPersistence stores

the correlation sessions into the EventServer database - a service the correlation

service depends on. EventPersistenceService stores the serialized BaseEvent into

the EventServer database.

5.3.7 Event Processing

To clarify the highly parallel way events are processed by the EventServer, refer

to Figure 5.6.

In this example three, Events EventA, EventB and EventC - all of different event

types - are processed concurrently. The events are received and transformed on

the adapter. The EventDispatcher takes these events and assigns every event to a

waiting EventWorker.

As all three events are of different event types, there are different event services

subscribed that should be executed for each event:

EventA should execute the event services Event Database Persistence, Metric
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Figure 5.6: Parallel event processing in EventServer

Calculation and Log Performance Service.

EventB should execute the event services Event Database Persistence, Event

Indexing, Metric Calculation and Log Performance Service.

EventC should execute the event services Event Database Performance Service,

Event Indexing

As every EventWorker is running in its own thread, the scheduling depends on the

JVM6 and is not defined in advance. EventServer has to ensure that every event

is processed independently from other events processed concurrently. The event

services and the system services are singletons in the EventServer container and

are accessed concurrently by EventWorkers.

The picture shows that event services are executed multiple times at once: the

process()-method of Event Database Persistencee is executed in parallel by all

three worker threads. Therefore, the developers of an event service have to ensure
6Java Virtual Machine
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their implementation is thread safe.

The black bars illustrate that the execution time of an event service depends on

what the service does. Whereas event indexing is a rather complex task, calculating

a metric or logging the current throughput are services needing less computation

time.

Figure 5.7: Event service and correlation service interaction

Some of the event services may need to use system services to execute their pro-

cess()-method. Figure 5.7 shows how the ExecutionTimeMetricCalculation event

service needs to call the correlation service to obtain the event’s session to calcu-

late the timespan between two correlated events. The figure describes the following

example:

The service should calculate a metric“Duration”between the event types Trans-

portStart and TransportEnd. These two event types are correlated by the correla-

tionset transportInfo over the event attribute TransportId.
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At time t1 a TransportStart event with TransportId = 1000 is processed by the

ExecutionTimeMetricCalculation event service. The event service calls the corre-

lation service to retrieve the event’s session for correlationset transportInfo with

correlation value 1000. As the correlation session does not exist, it is created by

the correlation service with SessionId 4789. The created session is returned to

the ExecutionTimeMetricCalculation event service. The event service stores the

event attribute DateTime = 2006-01-01 of the TransportStart event under the key

MetricStart in the session. The session is returned to the correlation service.

At time t2, an TransportEnd event with TransportId = 1000 is executed by the

service. The service calls the correlation service to retrieve the event’s session for

correlationset transportInfo with correlation value 1000. The correlation service

returns the existing correlation session with SessionId 4789 to the event service.

The ExecutionTimeMetricCalculation event service selects the DateTime attribute

value of the currently processed TransportEnd event and retrieves the key Met-

ricStart from the session. The event service calculates a duration of 15 days. It

stores this metric under the key Duration in the session.

Other event services processing the TransportEnd event (or other services process-

ing events that correlate with transportInfo|1000 ) can then retrieve the session

and use the metric stored in the session to execute further logic.

5.3.8 Technologies

The implementation of EventServer relies on Java 5.0 and several mature open

source projects. Java 5.0 was applied as it now includes a concurrency library in

the namespace java.util.concurrent which was heavily used for the multi-threaded

environment of EventDispatcher and EventWorker. The Spring Framework7 was

used as the Inversion of Control container for the EventServer configuration. All

parts of the EventServer - EventAdapter, EventServices, SystemServices etc. -

are configurable via the Spring configuration. To set up EventServer for scenarios

7http://www.springframework.org
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other than EventCloud, one has only to modify the Spring configuration and their

application-specific settings.

For the JMS-queue feeding the EventAdapter, two JMS implementations were

tested: ActiveMQ8 and Joram9. Both easily integrate with the JMS access pro-

vided with Spring 2.0. Apache Lucene plus the Compass API were used to create

indexing event services for EventCloud’s Rank1, Rank2 and Rank3.

5.3.9 Future Work: EventServer with Mule

Currently the EventServer is reimplemented with the help of the Enterprise Service

Bus (ESB) Mule10. Relying on Mule offers additional adapters, event routing, high

scalability, etc. out of the box and provides a mature platform for event processing.

The concepts of event services, system services and event correlation are similarly

used in this new architecture. Event processing is done with the help of the SEDA

architecture11.

5.4 EventCloud Frontend

The EventCloud Frontend was build by [28] and introduced in his thesis. I ex-

tended this implementation by adding user controlls for the novel concepts of

Rank3 search and the metric view. EventCloud is a Google-like web frontend with

search controls. An input box allows querying for (correlated) events. The result-

set is displayed, ranked by relevance. Figure 5.8 shows the search options. Over

bridged correlationsets searches in Rank3, over correlationsets in Rank2 and only

events searches in Rank1. Per default all three indexes are searched, so if a user

does not specify a searchrank, results of all indexes are returned. According to the

definition, Rank1 results are listed before Rank2 and Rank3 results.

The original EventCloud frontend was extended to display metrics. As metrics

8http://www.activemq.org
9http://joram.objectweb.org/

10http://mule.mulesource.org/
11http://www.eecs.harvard.edu/ mdw/proj/seda/
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Figure 5.8: Main search view

are calculated on top of correlations (see Chapter 7), the metrics are currently

displayed along with each search result in Rank2 and Rank3. As this is a very

simple approach, further efforts are necessary to integrate charts and diagrams for

metric data.

Navigation between correlated events was introduced to simplify the task of an-

alyzing and exploring events and their relation to each other. Section 8.4 shows

an example how navigation is used to find complex coherences between events.

Section 6.1 illustrates how navigation is done in the backend. For the EventCloud,

frontend event navigation is simply realized via hyperlinks. If a specific event is

selected, all correlations to this event are displayed on a new search result page.

The events are currently displayed in their XML representation, although this is

not very user-friendly. Rozsnyai[28] built a first implementation of a pretty-print

output module for events. A XSLT-approach was developed by SENACTIVE

where the original event XML is transformed to a specific XML-tree format so a

Javascript library allows to pretty print event types (Figure 5.9). Web technolo-

gies like JavaScript and AJAX allow editing of the original resultset so EventCloud

becomes a more sophisticated user interface.

For the next steps, I think it is necessary to create alternative views on the event
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Figure 5.9: SENACTIVE EventAnalyzer: Textview [9]
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resultset as complex event patterns are hard to grasp in the current text view.

Information visualization offers a lot of knowledge to create visualizations for (cor-

related) event data.

Important aspects that visualizations must reflect for event data are:

Time aspect Latest events are often most relevant. So the time aspect, including

interaction with the time like zooming or timewindow selection, is important

to be handled by the visualization

Highlight event correlation In a cloud of events, it is essential to select and/or

highlight correlation instances. As the visualization displays plenty of events,

a user must be able to select specific ones.

Event Aggregation Visualization should collect the fine-grained events to create

a higher aggregation level. Information visualizations like a Newsmap may

be applied on events.

5.4.1 Frontend: Outlook to SENACTIVE EventAnalyzer

SENACTIVE is developing an application similar to the concepts of EventCloud.

Figure 5.10 shows a graphical prototype of this tool which gives an outlook on

future developments. Events are displayed in a novel information visualization

called Event Tunnel. This approach allows the displaying of events, their prop-

erties, their correlation and their occurrence in time within a single view. The

text view, currently implemented in EventCloud, has moved to the background

and is just an alternative to the Event Tunnel visualization. Metrics are a more

prominent feature with a separate chart box.

5.5 Performance

To validate the new EventCloud architecture, performance tests have been exe-

cuted. Short tests with the old ETL-approach indicate that a comparison makes

not much sense. Due to its implementation flaws, discussed in Section 5.1.3, the
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Figure 5.10: SENACTIVE EventAnalyzer: graphical Prototype [9]
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old implementation does not exceed the number of one-event-per-second for event

indexing. Even the new approach has to handle event correlation, realtime event-

processing (in opposite to the batch-insert used before) and a third full-text index

for Rank3, we assume a clearly higher throughput.

EventServer was configured to process the following event services for each event

type:

Event2DBPersistence stores the serialized event in a database.

EventRank1Indexing adds the given event to the Rank1 full-text index.

EventRank2BatchIndexing adds the given, correlated event to the Rank2 full-

text index.

EventRank3BatchIndexing adds the given, indirect correlated event to the Rank3

full-text index.

ExecutionTimeMetricCalculation calculates a duration metric for a pair of cor-

related events.

LogPerformanceService used to log the performance of the test run.

For the performance test, an event simulation was created with SENACTIVE

InTime Simulation Studio. The simulation generates 40000 Events of four different

event types. EventServer was configured to correlate all four events in a bridged

correlation and two of them in an additional direct correlation. The order of the

events in the simulation causes session merges for every forth bridged correlation.

Figure 5.11 shows the throughput for event indexing on a Pentium4 with 2GB

RAM.

The throughput levels of at 19 events per second after 40000 events. This is a ma-

jor improvement, and shows that the new architecture is a step forward. However,

this value is not expected to be the limit of the presented approach. A Java pro-

filer shows 15% of the time is spent in XPath expressions which are used to select

event attributes needed for correlation. Investigating in a faster XPath alterna-

tive, such as another library or selecting event attributes by regular expressions,
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Figure 5.11: EventCloud performance test
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should improve performance. Also, the performance test was more extreme than

most real-world event scenarios. Because all events were published immediately,

the correlation service has to block lots of correlation sessions as multiple events

want to obtain the same session simultaneously. That’s also the reason why the

throughput for the first 10000 events is lower than those afterwards. In many real-

world scenarios session locking is irrelevant because the time between correlating

events, for example a TransportStart and a matching TransportEnd event, are at

least minutes.

Search performance was not explicitly tested, because at the frontend EventCloud

does not differ from any other Apache Lucene query application. The reader may

visit [21] if they are interested in Lucene’s search performance.
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6 Indexing of Correlated Events

“At the heart of all search engines is the concept of indexing: processing

the original data into a highly efficient cross-reference lookup in order to

facilitate rapid searching.”, Gospodnetic, Hatcher [11]

As EventCloud is a tool to make events searchable, it is set in the area of infor-

mation retrieval(IR). Many of the points important to IR are important for event

search and analysis also, as discussed in Chapter 4. However, additional points

arise from the characteristic of events. This chapter describes how the ideas of IR

must be implemented for event indexing and searching. Chapter 4 has described

a document oriented approach to store events for analysis, in the following chap-

ter the implementation of this approach in EventCloud with the help of Apache

Lucene is discussed.

Today, full-text search is a challenge often met in multiple contexts within the

World Wide Web. These includes search-facilities on large websites, search en-

gines or additional services, like Google’s book search, or when there is a need

to make a large number of other documents (like .pdf or .doc) searchable from

desktop search applications on single workstations to business-wide solutions. For

this wide area of requirements, numerous solutions, tools and APIs exist. A good

overview about the tools available can be found in [27].

Full-text indexes were rather not used for analytical applications. This class of

applications rely on the well-defined relational model and its variations, like the

star schema used in OLAP. With EventCloud, we try to go another direction and

implement complex analysis and ad-hoc queries on the basis of a full-text data rep-

resentation. As described in [28], a relational representation of the search ranks
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Rank1, Rank2 and Rank3 causes a major performance issue which directs us to

the document-oriented approach, combined with event correlation, presented in

this chapter.

Information retrieval is split into two major steps which are represented in Event

Information Retrieval for event analysis as well:

Indexing Documents have to be intelligently indexed to make them searchable. So

before a document is searchable, it must be added to the searchtool’s index.

Lots of research has been done to optimize the indexing process and structure.

Full text indexes are often implemented as inverted index of the represented

documents. The index holds the information about which term occurs in

which document to allow a fast lookup. For a full-fledged index, advanced

operations like stemming and stopword elimination must be applied during

the indexing process. A good introduction on this topic can be found in [3]

and [36]

Retrieval Documents should be easily found from the index again. Therefore, an

intelligent result ranking and a powerful query language is essential. The

query language is executed on the full-text index to return search results.

To be able to restrict the resultset returned by a specific query, the query

language must provide boolean operators like AND, OR and NOT, while

sorting results by their relevance is done transparently for the user. As we

learned from the history of the World Wide Web, a search engine experience

is only as good as it’s search results.

It should be clear that information retrieval is a complex topic. As it makes no

sense to reinvent the wheel of information retrieval for event search, we did some

exploration on existing tools which can help us to reach our goals with EventCloud.

In the Java world there is an extraordinary API Apache Lucene [20], which

“provides Java-based indexing and search technology”,[20]
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is an open source tool with a big community and was used in many different areas

like search engines1, desktop applications and webpages2.

Nevertheless, be aware that making document searchable implies some different

conditions than making events and their correlations searchable:

• The documents for indexing are large in comparison to events. The text of

an .html-file will have several Kilobytes up to Megabytes. A single event has

about 1 Kilobyte.

• Events are well structured and concentrate all information in a small amount

of data. Documents are typically unstructured free text.

• The searchresult ranking algorithm is optimized for documents and take at-

tributes like position of search term in document into account. So we have to

question if this is relevant for events and returns meaningful result sets.

• Text documents exist before they get indexed, “event documents” in Rank2

and Rank3 are created on the fly to represent event correlation.

• Documents do not change that often. The content of a webpage may not

change for a long time. In contrast, events occur irregularly in time at a high

rate and the latest events are often the most valuable. To make the most

recent events available in analysis the event index must be real-time.

We decided to use Lucene because of its numerous features we think are reusable

for event indexing and searching with EventCloud. Because events, in their XML-

representation, are not that different from ordinary text documents, Lucene offers

an exciting toolkit to work with. To simplify the usage of Lucene and add addi-

tional features to the Lucene API, the Compass API [8] was used. Compass sets

on top of Apache Lucene implementing extra features like transaction support,

resource mapping and scheduled optimization.

1http://lucene.apache.org/nutch/
2http://wiki.apache.org/jakarta-Lucene/PoweredBy
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6.1 How Correlation and Indexing Work Together

As we saw in Chapter 4, we do not only want to build a simple index on single

events, but rather use the concept of correlation to create a searchable and nav-

igatable “cloud of events” for event analysis. Therefore Chapter 4 defines the

search levels Rank1, Rank2 and Rank3. With information retrieval, a user should

have not only the possibility to retrieve, but also to browse the documents in the

indexed document space. In our case, the documents representing events permit to

browse correlated events that are within the same document and also to navigate

to other, related events.

The following paragraph recaps how things work together:

For our event types, we have defined correlations in the EventServer. When an

event is processed by the EventServer, it can activate the correlation session match-

ing the attribute values used for correlation. We now could store3 the whole event

as XML text into the correlation session. Later, other events are processed which

activate the same correlation session. All these events are stored to this particular

correlation session.

This way a document is created, representing the events of one correlation instance,

which should be searchable. For EventCloud, an event service was implemented

which indexes the correlation instances of the EventServer. The index is updated

every time a correlated event is processed.

The concept of event correlation is used to build documents of interest for

Rank2 and Rank3 on the fly. The user declare, via their correlationset definitions,

in which documents they are is interested for event search and analysis. The event

service in the EventServer builds these documents by using EventServer’s correla-

tion service and adds the documents to the event full-text index.

3we do not really store the whole event in the session; this would blow up the session too much. We store the
event only in the index
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The following example defines a correlationset between TransportStart and Trans-

portEnd :

Listing 6.1: Definition of the correlationset transportInfo
1 <c o r r e l a t i o n s e t i d e n t i f i e r=” t r an spo r t In f o ”>
2 <Corre lat ionTuple>

3 <Corre lat ionData eventtypeUri=”eventtype : //MediCare/TransportStart ”>
4 <XPathSelector>//TransportId</XPathSelector>
5 </Corre lat ionData>

6 <Corre lat ionData eventtypeUri=”eventtype : //MediCare/TransportEnd ”>
7 <XPathSelector>//TransportId</XPathSelector>
8 </Corre lat ionData>

9 </Corre lat ionTuple>

10 </ c o r r e l a t i o n s e t>

Figure 6.1: Documents in the full-text index

If 100 TransportStart events and 100 matching TransportEnd events are processed

for EventCloud, the Rank2 index will contain 100 documents which are searchable.

Every document is identified by the correlation value of the correlation session it

represents. Each will hold two events with correlating values for the attribute

TransportId. If a user now queries the index for some search terms, all document

Ids which match the query will be retrieved. Figure 6.1 shows the 100 documents

available in the index. A search for Madrid and Vienna will retrieve a subset of the

documents in the index. This subset can be the start of a deeper event analysis.
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As described in Chapter 7, additional data, like metrics, will also be stored along

with the documents to support analysis.

Browsing or navigating through the events in EventCloud is an important fea-

ture to realize discovery analysis and exploration as described in Chapter 8. A

user needs to navigate from a specific event to related events. As event correlation

expresses a kind of relation between events, this concept is also capable for brows-

ing.

Figure 6.2: Browse events via correlations: ShipmentCreated event and its directly and indirectly
related events

In Figure 6.2 a user retrieves a single ShipmentCreated event from the index

through a Rank1 query. This event is the starting point for their analysis. To

learn more about the event, the user wants to explore related events. The Ship-

mentCreated event participates on the correlations shipmentInfo and demandTo-

Shipment. Now the user can browse to other events that are related to the original

ShipmentCreated, like the TransportStart event. The TransportStart event is again

correlated with even more events. This way, a user has a facility to browse through

the cloud of events along meaningful, defined paths of correlationsets.
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Figure 6.3 shows the representation of the above example in the full-text in-

Figure 6.3: Index representation of the events and correlations defined in Figure 6.2

dex. Every correlation session is stored in a document. Navigation between events

means navigation between the documents. This can easily be done with the Lucene

query language, the event’s identifier and the knowledge of which event type par-

ticipates on which correlation. The selected ShipmentCreated event has an unique

identifier, and with this identifier the index is queried to return all documents

which include the event. In the figure’s example, that would be the documents

for demandToShipment|16123 and shipmentInfo|14554. These documents include

other events like the TransportStart event, that are directly correlated with the

original ShipmentCreated event. By selecting the TransportStart event from the

shipment|14554 document, the navigation can lead to even more events like Trans-

portEnd in transportInfo|T2000, and so forth.

The described approach allows to build a generic event search and analysis tool.

A user has to define the event types which occur in their system and they have

to define how they are correlated. The rest is done by the EventCloud system: it

takes care of the correlation at runtime and it provides event services which are
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creating and updating the search index. The EventCloud frontend allows event

retrieval, browsing and analytical tasks.

6.2 Realization in EventCloud

As described in chapters 3 and 4, we have defined three levels of event search

representing the different levels of correlation. The three Ranks are managed in

independent full-text indexes:

Rank1 index a simple full-text index over all events that have been processed.

Rank2 index a full-text index over all correlationsets. A document in the index

represents an instance of a correlationset in the EventServer.

Rank3 index a full-text index over all bridged correlations. A document in the

index represents an instance of a bridged correlation in the EventServer.

Each index is managed by its own event service in the EventServer. The Ranks

are separated into three indexes because each Rank needs different fields in the

index and to allow search queries against a specific index. Every index will return

different resultsets for the same search query, as shown in Chapter 4. Correlation

not only allows navigation through the cloud of events, it also answers search

queries that could not be answered by single events.

6.2.1 Rank1 Index

Listing 6.2 shows the Compass definition of the Lucene index for Rank1. A resource

represents a document in the index. Every document has multiple fields (resource-

property) which are stored along with the event.

Listing 6.2: Definition of a Rank1 index in Compass
1 <r e source a l i a s=”event ”>
2 <resource−id name=”guid ”/>

3 <resource−property name=”eventtype ” s t o r e=”yes ” index=”un token ized ” />

4 <resource−property name=”eventtext ” s t o r e=”yes ” index=”token ized ” />

5 <resource−property name=”date ” s t o r e=”yes ” index=”un token ized ” />

6 </ re source>
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For Rank1, the index is very simple to create. Every document in the index

represents a single event that has been processed by the Rank1Indexing event

service in the EventServer. Rank1IndexingService creates a new Lucene document

every time the .process()-method is executed for an event. This document is added

to the index as defined in Listing 6.2:

• Every document is identified by a guid. This guid is equal to the event’s

unique identifier.

• The event type of the event is stored in the field eventtype.

• The full-text of the event is stored in the field eventtext. Search queries are

primarily executed against this document field, while the other fields store

meta information of the event.

• The field date holds the date when the event was processed by the EventServer.

The store=yes attribute defines that the field is stored with the index. This means

when a document is retrieved from the index, the document includes the full-text

of the event, the event type and the date.

Another possibility would be to set store=no. This means the event’s values are

used during indexing to make the event’s content searchable, but if the event is re-

trieved from the index, the fields are empty and only the resource identifier guid is

returned. This way the full-text index will use less disk space, but the event must

be persisted in some other storage for retrieval. To display an event as a result in

EventCloud, the index would first be queried and then an additional round trip to

the “event storage” would be necessary to display the event’s content.

6.2.2 Rank2 and Rank3 Index

In Rank2 and Rank3, a document represents an instance of a correlationset. If

an event causes the creation of a new correlation instance in the EventServer

system, a corresponding new document is generated in the index storing the event’s

content. If a correlation instance is activated by a further processed event in the
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EventServer, the corresponding document in the index is updated by appending

the event’s content.

Listing 6.3: Definition of a Rank2 or Rank3 index in EventCloud
1 <r e source a l i a s=”cor re l a t edEvent s ”>
2 <resource−id name=”guid ”/>

3 <resource−property name=”corre lat ionname ” s t o r e=”yes ” index=”un token ized ” />

4 <resource−property name=”co r r e l a t i o nva l u e ” s t o r e=”yes ” index=”token ized ” />

5 <resource−property name=” s e s s i o n t e x t ” s t o r e=”yes ” index=”token ized ” />

6 <resource−property name=”eventguids ” s t o r e=”yes ” index=”token ized ” />

7 <resource−property name=”updatedate ” s t o r e=”yes ” index=”un token ized ” />

8 <resource−property name=”metr i c s ” s t o r e=”yes ” index=”token ized ” />

9 <resource−property name=”date ” s t o r e=”yes ” index=”token ized ” />

10 </ re source>

The definition for the Rank2 and Rank3 indexes are equal. However they are sep-

arate indexes managed by separate event services for reasons discussed above. Al-

though document definitions are equal, Rank2 stores different document instances

than Rank3. Rank3 stores representations of bridged correlations whereas Rank2

only stores direct correlations. As we have seen in Figure 4.2, Rank2 and Rank3

can store the same events, but they are correlated in different ways. Section 4.2

had described what this means for search queries is:

• Each document is identified by a guid. This guid is equal to the correlation

session identifier in the EventServer.

• The correlationname is the name of the correlationset this document repre-

sents. e.g. transportInfo or AllOrderInformation

• The correlationvalue stores the attribute values for the correlation instance

this document represents. e.g. TransportId=T2000 for the correlationset

transportInfo

• All events that have participated on the correlation instance are stored in the

field sessiontext. This field has the fulltext of all events of the represented

correlation instance. Search queries are primarily executed against this doc-

ument field, while the other fields store meta information of the correlation.

• eventguids stores all event identifiers. This is done for optimization purposes.

• updatedate stores the date this document was last updated.
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• metrics : if additional metrics were stored in the correlation session, these

values are stored in this field. A metric is stored in the format METRIC-

NAME=VALUE. Multiple metrics are stored as a comma separated list in

this field. This approach has two advantages: (1)The metric is stored along

with the Lucene document. If the document is returned as a searchresult,

we immediately have all metric values to this correlation instance without

a further roundtrip to a database (2)metricnames and metricvalues are also

searchable for a user through the Lucene query language.

• date stores all dates of the events in this correlation instance. That’s necessary

to allow date-range queries with Lucene.

While the Rank1 index is straight forward, the index for Rank2 and Rank3 are

more complex to create. Rank1 index is an index where documents are only added.

Every new event generates a new document which is put into the index. Because

no correlation comes into play, Rank1 is easily implemented with Lucene.

The index for Rank2 and Rank3 must update existing documents in the index

as event correlation is mapped into the index. Every event processed in the

EventServer may relate to previous and future events according to the event cor-

relation definition. For each of these correlations, the event activates the matching

correlation session in EventServer and the equivalent “document of interest” in the

index needs to be updated.

The algorithm for Rank2 index event service can be described as:

1. An EventWorker starts executing the process()-method of the Rank2Indexing

event service for EventA.

2. For each correlationset defined on EventA’s event type the correlation service

is called to return the matching correlation session.

a) For the returned correlation session the index is queried.

b) If a document for this correlation session already stored in the index, it

is retrieved. Otherwise a new document is created.
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c) The current event is added to the document. The document including

the new event is indexed and added to the index again.

3. The EventWorker finishes executing the Rank2 indexing event service

Rank3 indexing needs to manage SessionMerge. As described in Section 3.3 a

bridged correlation can cause multiple sessions to be merged during runtime. This

session merge is transparently handled by the correlation service. The information

of a merge must also be forwarded to the Rank3 indexing service to update the

documents in the index according to the session merge.

If a merge needs to happen in the EventServer because of the currently processed

event, the indexing service has to reflect this merge in the Rank3 index, too. The

old documents representing the merged session must be removed and the merged

session needs to be updated in the index. The current implementation of the

EventServer correlation service uses the correlation session to signalize the index-

ing service that a merge has occurred. On a SessionMerge, the correlation service

sets a flag and a list of the merged correlation sessions in the correlation session

that is returned to the Rank3 indexing service. This returned correlation session is

the “winner” of the merge. The list of merged correlation sessions in the returned

correlation session is no longer valid in the EventServer. These correlation sessions

have been merged to the “winner” and removed in the EventServer. For the Rank3

indexing service, this means a session merge always causes multiple documents

in the index to be removed and a single document (that represents the removed

documents plus the event that causes the merge) to be added.

One might ask why we care about this special case. Wouldn’t it be sufficient to

wait until all events of a correlation have been processed and add them afterwards

to the index. We say no: as soon as an event is processed by the EventServer, it

should be available in the search index of EventCloud. The index should be as up

to date as possible. Waiting for all events of a correlation can take hours, up to

days4, or is not possible at all5.
4think about TransportStart and TransportEnd event on an transport between Vienna and London
5If you correlate all Demand events there is never a “last” event
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It is an EventCloud mantra to index an event as soon as it occurs, even if ad-

ditional complexity arises from this circumstance. The added value of real-time

data in an analytical tool like EventCloud is beyond the costs of handling this

complexity.

The algorithm for Rank3 index event service can be described as:

1. An EventWorker starts executing the process()-method of the Rank3Indexing

event service for EventA.

2. For each correlationset defined on EventA’s event type, the correlation service

is called to return the matching correlation session.

a) if a SessionMerge has happened, retrieve all documents representing the

correlation sessions merged. Add the values of all documents to the doc-

ument that has won the merge. Remove the documents from the index

because they no longer represent a correlation session in the system.

b) if no SessionMerge has happened, retrieve the document for this correla-

tion session if it exists, otherwise create a new document.

c) The current event is added to the document. The document including

the new event is indexed and added to the index again.

3. The EventWorker finishes executing the Rank3 indexing event service.

Figure 6.4 shows a document merge in the Rank3 index. The initial situation in

this example is the bridged correlation AllOrderInformation defined in Listing 3.7.

At time 1), the Demand event as well as the TransportStart and the TransportEnd

event have already been processed and added to the Rank3 index, so two indepen-

dent documents exist in the Rank3 index. At time 2), the ShipmentCreated event

is processed in the EventServer. According to the definition of the bridged Corre-

lation AllOrderInformation, the correlation service has to execute a SessionMerge.

This merge is propagated to the Rank3Indexing event service to update its index

correctly according to the SessionMerge.
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Figure 6.4: Document merge in the Rank3 index after a session merge caused by ShipmentCreated
occurred in EventServer

The Rank3Indexing service has to update its document structure now. The two

documents existing at time time 1) need to be merged into a single document rep-

resenting the bridged correlation AllOrderInformation 16123|14554|T2000. Time

3) shows the updated index after the document merge. A single document exists

in the index, holding all four events processed.

6.3 Shortcomings using Lucene

As Lucene covers a lot of background tasks with indexing and searching events,

it also has some shortcomings when used with real time event processing. This

section points out the problems identified during developing the indexing event

services with Lucene.

6.3.1 Missing Update-support for Index Documents

Lucene does not support real Update-statements. It only allows Delete-and-Add

operations. This drawback needs to be handled when developing a Rank2 or Rank3

index.
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Because every new event may participate on an existing correlation instance,

EventCloud permanently has to update the corresponding documents in the index

to provide a real-time index. As no update operation is available, the document

must be retrieved from the index, the single event added, the old document re-

moved from the index, and the new document has to be completely re-indexed to

be added to the index.

Re-indexing the complete document just because a single event has been added

to a correlation is dissatisfying. Imagine a correlation session storing thousands

of events. Adding a single event to this session causes the whole document to be

retrieved, deleted and re-indexed. This could be a major bottleneck.

A good solution for us would be an Append -method in Lucene. The documents in

Rank2 and Rank3 do not change; rather they expand with each additional event.

A new event is appended to the existing “document of events”. This means Lucene

would not have to re-index the complete document, but only index the newly

added event. However it would need some investigation to check if this feature is

possible to implement in Lucene. Currently we are living with this restriction be-

cause Lucene’s indexing performance is fast enough for the implemented scenarios.

However on big documents (i.e. correlating many events in a single session) and

high throughput of events this problem must be kept in mind.

6.3.2 Issues with Real-time Indexing

Lucene allows thread-safe adding of documents to the index. The synchronization

is realized via a file lock that manages access to the index. Before a thread is

allowed adding data to the index it has to obtain the file lock. After finishing, it

releases the file lock.

When I developed the Rank2 and Rank3 indexes, I first made the naive assumption

that every thread immediately adds events to the index with it’s own IndexWriter

instance. When testing the services, TimeOutExceptions were thrown by Lucene
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and performance was down. I realized that the multiple threads were busy obtain-

ing and releasing the file lock and creating an IndexWriter instance but do little

work indexing documents. At some point all threads were waiting for the file lock,

until TimeOutExceptions were thrown after 60 seconds.

I rethought my design and was forced to use a single thread with a single In-

dexWriter to add events to the index. The indexing event service collects multiple

events for indexing when an indexing thread is started to update the index. Nev-

ertheless, this was a fundamental drawback from our goal to reach real-time event

indexing.

To minimize the latency, the following strategies may be applied for starting the

indexing thread:

Number of events indexing thread is always started after a configurable number

of events processed. Setting this value to 1 will lead to real time event index-

ing, however this can cause problems on heavy load. Setting the value to a

high number will cause some kind of batch indexing.6

Time indexing thread is always started after a configurable timespan. So even

if only one event has been processed during the defined timespan it can be

guaranteed that this event is added to the index

Define on event type level : As different event type levels are more or less im-

portant to be added to the index, it may be interesting to define the above

strategies on event type level. If eventtypeA must be available in the index

immediately, one might set “Number of events” to 1 for this event type. For

eventtypeB, it could sufficient to be added to the index within 10 minutes, so

“Time” is set to 600 seconds.

6A higher value potentially allows some optimization. If multiple events update the same document this can be
done at once, instead of doing the update-steps multiple times on the same document
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6.4 Further Topics on Indexing

Because event indexing and search is essential for EventCloud, I would like to

address some further topics that may need additional research. These topics could

be the input for further work on indexing events and are particularly important

for everyone developing event indexing and searching in a large scale environment.

6.4.1 Index Location

Currently the indexes are stored in the file system. However, Lucene allows to

transparently change the location of the index. Existing implementations allow a

Lucene index to be stored in:

RAM the index is stored in the RAM. Indexing and searching are very fast but

the index is not persisted.

FileSystem the index is stored in the file system. That’s what EventCloud cur-

rently implements.

Database the index is stored in a JDBCDirectory.

I made some simple benchmarks and compared them with some figures from

Lucene’s performance tests [21].

- Event as simple XML-Stream with StandardAnalyzer

- .optimize() called once at the end of indexing

- IndexWriter open()/close() every 100 events to flush results to index

- Rank1 simple indexing

- 5400 events

FILESYSTEM(FSDirectory) => 100 events/second

RAM (RAM Directory) => 360 events/Second

As expected, RAMDirectory is much faster than a filesystem index. Unfortunately

it’s not very useful because EventCloud needs the index to be stored persistently
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somewhere. For our requirements, FSDirectory seems fast enough, however some-

one might find scenarios where this is not sufficient. The following ideas should be

considered:

• Use InMemory databases like HSQLDB7. HSQLDB is able to handle data up

to 8GB in main memory. The database can also be persisted to the filesystem.

This way, the speed of the RAMDirectory with the safety of the FSDirectory

could be combined.

• Use RAMDirectory as buffer. Lucene can add an index to an existing index.

RAMDirectory could be used as temporary buffer to add this index later to the

main index stored somewhere in the filesystem. Lucene internally performs a

similar action with the parameter “mergeFactor”.

• Make sure that the indexing location is really a bottleneck for the application.

We experienced that other constructs cost more performance than indexing.

As indexing is just one part of of information retrieval, you have also think about

search performance. The case studies in [11] asserts that searching 4 million doc-

uments can be done in < 100 milliseconds with Lucene.

6.4.2 Optimization

To optimize search performance, Lucene offers an optimize() method. With the

first version of EventCloud some confusion arose with the usage of this method.

Following is a clarification, along with ideas about when to call this method for a

frequently updated full-text index.

To understand optimize() it is suggested to read through [11]. Some interesting

points to mention:

Adding new documents to an unoptimized index is as fast as adding

them to an optimized index.

7http://www.hsqldb.org/
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It’s important to emphasize that optimizing an index only affects the

speed of searches against that index, and doesn’t affect the speed of in-

dexing

optimize() DOUBLES disk space requirements

[11] explains that optimize() only increases the speed of search queries against the

index. Calling optimize() causes Lucene to create a copy of the original index in

the background, so the space requirement is temporarily doubled. Lucene opti-

mizes this copy and then replaces the original index to release the space.

With traditional batch indexing jobs, this is not a big problem as long as enough

disk space (or for RAMDirectoy memory space) is available to optimize the index.

The ideal moment to call optimize() will probably be at the end of the batch in-

dexing job. As the index won’t change until the next batch job, it is reasonable to

optimize the index.

With indexing events we do not have the ideal point in time. Events occur ir-

regularly in time and therefore are added irregularly to the index. Fortunately,

indexing speed is not affected by a fragmented index. However while the index

is optimized, no new events can be added to the index. In this way, optimize()

causes some problems with the goal of real time event indexing.

So what I want to point out is, that the optimize() method has to be used carefully.

It should only be called, if the performance of the search queries is really decreas-

ing. Optionally, Compass offers a ScheduleOptimizer that can be scheduled to run

at specific time windows, for example every Monday at 00:00, which may be a

good approach if the events occur only during business hours. For other scenarios

it is rather hard to grasp when to call optimize().

6.4.3 Boosting Strategies

Every document in a Lucene index can have an individual boost factor set. This

boost factor is used for Lucene’s result ranking calculation. So this boost factor
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allows ranking a document higher in the resultset which otherwise would not be

on top.

As documents are events, or correlated events in our case, we could think about

strategies on how to apply boost on event documents:

Time boosting Recent events (or correlations) are often more interesting than

older ones. To ensure that recent events are on top of the search result, one

can boost these events or reduce the boost of older events.

Type of Document Every document in the index is of a specific event type (or

a specific correlationset). A boost can be applied to a specific event type so

this type is always on top of the search result.

Content of the Document A more elaborate approach would be to look into an

event to set its boost factor. Maybe it is reasonable to add a boost if a specific

event attribute is set or, for correlations, if the number of correlated events

is greater than X, or if a metric has the value Y. This approach depends on

the concrete scenario.

Unfortunately, the boost factor cannot help in every situation. A boost factor is

defined on document level (or field level) in Lucene. However if different users

are interested in different event types or correlationsets, the boost factor is not

adequate. As an alternative, a boost factor strategy based on a user’s profile could

be introduced.

6.4.4 Distributed Indexing Strategies

As a search tool grows, it may need to be distributed and the indexes may need

to be split. Currently, the EventServer and EventCloud with its indexing services

run on a single node creating a separate index for each Rank1, Rank2 and Rank3.

Search queries are executed by the same node against the indexes.

If a high indexing performance is necessary, EventCloud would have to balance

indexing on multiple machines. A simple solution discussed with Lucene is to
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store the index on a network share and make it accessible by all nodes. Another

option would be to split the index in multiple parts on different nodes, where ev-

ery index represents a certain part of the full index. These options provide more

scalability, but many problems known from distributed systems arise. For a user,

it should be transparent whether they access a single index or a distributed one.

A search query executed must always return the same result, independent from

the actual index representation.

It is not simple to run Lucene as a distributed service. Good discussions and

possible solutions can be found on the Lucene mailing list8.

[3] points out two approaches to split inverted index files which come from the

internal structure of inverted files. Document partitioning slices the documents

into multiple subindexes. The query must be executed against each subindex.

Term partitioning slices the indexing terms. So the query evaluation procedure of

each document is distributed. With the Rank indexes in the EventCloud system,

we can even think of different approaches to split the index into subindexes. The

following paragraph gives some suggestions to create proper subindexes.

Approaches for Rank1:

No splitting Currently implemented. All events are stored in a single index.

event type Index is split into subindexes for every event type. One node is re-

sponsible for one event type. This can be helpful if a specific event type needs

much more performance than other types. This event type can be processed

by the fastest machine.

Time Index is split into chunks of time. Every index only stores the events of a

specific time period. After a defined time, a new subindex is created.

Approaches for Rank2 and Rank3:

No splitting Currently implemented. All correlations are stored in a single index.

8http://www.mail-archive.com/Lucene-user@jakarta.apache.org/msg12700.html
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Correlationset Index is split into subindexes for every correlationset. One node

is responsible for one correlationset. This can be helpful if a specific corre-

lationset needs much more performance than other sets. This correlationset

can be processed by the fastest machine.

Time Index is split into chunks of time. Every index only stores the correlated

events of a specific time period. After a defined time, a new subindex is cre-

ated. This approach is rather complicated because some correlation sessions

can last for a long period of time. A strategy would be need to handle the

documents representing these correlations.

Generational Collector

Another more advanced approach is similar to generational garbage collectors in-

troduced by [18]. Every document in a Lucene index is assigned to a generation.

A subindex stores all documents for one generation. Some kind of “Document

Collector” is started from time to time to move a document to another generation,

based on it’s last activation time.

This approach is particularly interesting for correlationset indexing in Rank2 and

Rank3. A correlation session is activated by any number of events. Maybe these

events occur in a short period of time or maybe they occur over a long timespan.

For indexing, this means every document in the index may be updated by the next

event. However, it is quite plausible that a document which has not been updated

for a long period, say one month, will no longer be updated. So an approach would

be to define generations for documents.

Generation 1 A small set of documents representing correlations which have been

activated recently. This includes all new documents.

Generation 2 A larger set of documents representing correlations which have been

activated in the last X minutes.

Generation 3 The largest set of documents representing correlations which have

not been activated within the last X minutes.
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All documents of a generation are stored in their own subindex. This permits defin-

ing a different location for every index as discussed in Section 6.4.1. Documents

which are updated frequently (Generation 1) may be stored in a RAMDirectory,

whereas documents which have not changed for a long time are stored in a file-

based directory.
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7 Metrics for Correlated Events

With the first version of EventCloud a tool was built to search over correlated

events in the first place. However, when we were using the tool, we realized

that for analytical tasks it is necessary to retrieve metrics along with the event

resultset and display them immediately in the EventCloud frontend. As events

include detailed information on the activities they represent, this information is

of limited interest for many usage scenarios. A human user working with our tool

needs to see interesting information immediately, not hidden somewhere in events

(or even scattered over multiple events).

7.1 Metrics with EventServer and EventCloud

With this version of EventCloud, we developed the first approach to integrate

metric data into the event search. The user has the facility to use the EventServer

to implement event services that calculate the metrics which are interesting for

their scenario. When the events are processed by the EventServer, before they get

indexed by the Rank1-, Rank2- and Rank3- indexingservices, other event services

calculate metrics whose results are then added to the index along with the event.

The event service subscription functionality of the EventServer is used to enrich

the events (or more exact the correlation instances) with metrics data before they

are indexed.

Figure 7.1 shows how metric calculation and indexing interact. In the Execution-

TimeMetricCalculation event service, the Duration metric is calculated as shown

in Figure 5.7. The correlation session stores the metric Duration. Because Even-

tRank2Indexing event service activates the same correlation session when process-
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Figure 7.1: Execution of the subscribed event services for a TransportEnd event. Metrics must be
calculated before the execution of the indexing service to be available in the full-text
index.

ing the TransportEnd event, it can access the Duration metric in the session and

add it to the full-text index.

Metrics in EventCloud are typically defined on top of correlationsets. Correla-

tionsets are declared to collect events that are related to each other. By defining a

correlationset in the EventServer, a user creates their own“eventstream of interest”

within the stream of events processed by the EventServer (Figure 3.1). Events that

are correlated during runtime (that activate the same correlation session) establish

the input values for a metric calculation of a correlation instance.

As compared to the first version of EventCloud which only used correlation to cre-

ate searchranks and to make the events navigatable in search, metric calculation is

a second application for event correlation. This should underline the significance

of event correlation. It is an essential concept facilitating complex event processing.

Typical metrics which can be defined with correlated events are:

Duration The timespan between correlated events matters in many ways. We

have seen this metric in the first example on correlation in Chapter 3, as well

as in Figure 5.7.

Average value The average value of an event attribute over all events in a corre-
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lation instance. Typically this can be some kind of cost metric.

Maximal and minimal values The maximal or minimal value of an event attribute

over all events in the correlation instance.

Deviation The deviation of an event attributes from a given value. Interesting,

for example, in stock price calculations.

With the concept of correlation sessions and event services in EventServer it is

straight forward to calculate a typical metric like Duration for a correlation in-

stance:

1. Define a declarative correlationset, correlating the starting event- and the end

event-type

2. Implement an event service:

a) when the starting event is processed: request the correlation session,

select the DateTime attribute of the event and store the value into the

correlation session

b) when the end event is processed: request the correlation session, select

the DateTime value from the correlation session and subtract it from the

end event ’s DateTime. The difference is the metric Duration and can be

stored in the correlation session or published to some other system.

The correlation session is used as temporary storage for the metric calculation.

The attribute values from the events which are necessary for the metric calcula-

tion are stored in the session until all values are available to compute the metric.

Duration metrics typically have a start- and an end-event. The metric is finally

calculated when the end-event is processed. Before that moment, the metric is not

available for this correlation instance. Average metrics are typically available with

the first event that activates a correlation session. Every additional event which

activates the correlation session updates the metric.

By now we have seen how to execute metrics on the level of correlationsets. For ev-

ery correlation instance of a correlationset, the metric is calculated. Since metrics
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Single correlation instance Resultset Defined correlationset
Level 1 Level 2 Level 3

Duration for a specific
correlation instance
transportInfo=100

Average Duration over
all transports in a re-
sultset

Average Duration
on all correlation
instances of correla-
tionset transportInfo

Table 7.1: Levels where metrics are applied in EventCloud

should be meaningfully displayed in the EventCloud frontend, additional require-

ments exist. When a correlation instance is in the result of a search query, we

can simply display all metrics which were calculated for it. However, when a user

performs search queries, they are also interested in the average value of a metric

within the current resultset returned by their query. An example would be the

average duration for all transports which go from ”Vienna to London”. An-

other query needs to know the average duration of all transports from ”Vienna to

London” with carrier ”Mechatrans” delivering ”ProductA”. Because different corre-

lation instances are returned for each of these queries, the average duration metric

will differ for each query.

As a user can execute complex queries that return different resultsets, it is im-

possible to calculate all possible average metrics in advance. The EventCloud

frontend needs to calculate these metrics on the fly depending on the resultset of

the executed search query. Three different levels have been detected where metrics

have to be applied in EventCloud. Table 7.1 shows these levels.

Single correlation instance(Level1) was discussed at the beginning of this chap-

ter. As we have seen, this metric can be calculated during event processing by

event services with the help of event correlation. Resultset(Level2) are metrics

that EventCloud must calculate on the fly from the resultset of a given search

query. Defined correlationset(Level3) is the overall metric for all correlation in-

stances of the defined correlationset. This metric differs from “Metric calculated

from resultset”, except the search query has returned all correlation instances of a

correlationset.
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correlation session From-To Duration
transportInfo=17 Vienna-London 16
transportInfo=25 Vienna-London 20
transportInfo=37 Munich-Vienna 8
transportInfo=45 Vienna-London 17

Table 7.2: Simplified EventCloud index with metric Duration

Single correlation instance Resultset Defined correlationset
For transportInfo=17 :
16h; For transport-
Info=25 : 20h; For
transportInfo=45 : 17h

Average for three
matches in resultset:
17,67h

Average over all trans-
portInfo in the index:
15,25h

Table 7.3: Metrics returned on metric levels for search query “Vienna and London”

Let’s make an example for this definition. Table 7.2 shows a simplified full-text

index for the correlation transportInfo and for each transport the calculated met-

ric Duration. Executing the search query “Vienna and London” against the index

returns the metric data as shown in Table 7.3 for the three levels defined.

In this particular example, the overall metric for the correlationset transportInfo

makes little sense for a user. The average duration over all transportInfo-instances

is not significant because all transport between all locations are aggregated, aver-

aging transport durations between different locations. However, it may be useful

for other scenarios. Calculating the overall metric over a correlationset is currently

done by implementing an event service. This service sums all metrics calculated

in correlation instances of a specific correlationset.

7.2 Implementation with Lucene

As described in Section 6.2.2, metrics are stored along with the correlated events

in the full-text index. If metrics are calculated for a correlation instance, the

corresponding document in the index stores these metrics in a comma separated

key-value list (Figure 7.2).

130



Figure 7.2: Insight into the Lucene Rank3 index. Metrics are stored in the index field <metrics>

If a single document is retrieved from the index, all metric data for this instance

is available immediately for display in the EventCloud frontend. Because of this,

and the fact that metrics are searchable when they are added to the index this

way, we first thought this is a very elegant solution for storing metrics. However,

problems arise with the calculation of average metrics in the resultset.

Lucene calculates an internal hit-list holding the identifiers of the documents

which are returned by the search query. The documents are only loaded into main

memory if one explicitly retrieves them from the index. Because searchtools nor-

mally only show a list of 10 results per page, only 10 documents are loaded from

the index at once. In our case, to calculate an average metric over all documents

in the resultset, all documents (with Lucene you can’t retrieve a single field from

a document) need to be retrieved just to get the metric values. We experienced

that Lucene performs poorly if hundreds of documents have to be loaded into the

main memory. The calculation of the Level2 metric lasts for several seconds.
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We did not make a comparison, but storing the metric data of a correlation in-

stance into a database would probably perform better. This could be easily done

with an additional event service. For further research, a better solution should be

found.

7.3 Limitation of Predefined Metrics

Metric calculation for events is done during event processing before the full-text

index is created. For a user of the EventCloud frontend, these metrics are dis-

played when executing search queries.

In comparison to OLAP, the metrics needs to be defined before event process-

ing as they cannot be applied easily afterwards. With OLAP, new metrics can

always be defined on the data cube. So an analyst can add or modify metrics

while looking at the same data set. Even if all event data is available in the in-

dexes, there is currently no way to create new metrics with EventCloud after event

processing is done. All relevant events would need to be processed again by the

EventServer with the new metric definitions. This action would take time and

reconfiguration of the EventServer it’s not an adequate solution for this problem.

The necessity of predefined metrics is a significant limitation of the current metric

implementation for EventCloud. Further research is needed in this area to find a

more practical solution.

7.4 Declarative Metrics on Correlationsets

As we implemented multiple scenarios with EventCloud, we learned that many

metrics recur in every scenario. As we have implemented event services to cal-

culate the metrics, we made them configurable to potentially reuse these services

in multiple scenarios. Because of EventServer’s configurable architecture, metric

event services can be plugged to the server as needed by a concrete scenario.
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We also learned that this approach is not very handy and is error-prone. A better

approach would be to define the most common metrics for correlationsets with an

XML declaration. Instead of implementing individual event services which need to

be registered in the event service subscription, a system service Metric Calculation

Service calculates metrics at the correlation session checkout.

Figure 7.3: The Metric Calculation Service calculates the Duration metric during session check-
out

Figure 7.3 shows the calculation of the Duration metric with the same result as in

Figure 5.7 but with the help of the metric calculation service. In Figure 5.7, an

extra event service was implemented to calculate the Duration metric, although

metric calculation is only a preparation step for event indexing as described in

Figure 7.1. With this new approach, one can immediately subscribe to the Rank2
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Indexing Service because metric calculation is done in the background during cor-

relation checkout. A user has to define which metrics they are interested in, then

the values are transparently calculated by the metric calculation service. As a

result the number of event services in the event service subscription list should be

reduced and focused to those services needed to solve the event processing tasks

in the concrete scenario (like indexing for EventCloud).

Figure 7.4 shows a metric definition prototype. With this XML schema it is possi-

ble to define metrics declaratively, while at runtime the metric calculation service

uses this definition to actually calculate the metrics. Every metric is identified by

its identifier and references a single correlationset via correlationset identifier. A

metric always returns a single value for the calculation given in the tag <Calcula-

tion>.

Figure 7.4: Declarative metric definition
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Calculation consists of an Expression and multiple Variables. A variable is a value

calculated from an event type in the correlation. We defined the following methods

to calculate a variable:

Average calculates the average value of an event attribute of the specified event

type.

Count counts how often the specified event type has occurred in the session

Deviation calculates deviation of an event attributes from a given value.

Duration calculates the timespan between two event types in the session

ForeCast calculates the forecast for an event attribute of the specified event type

including the event attribute values already occurred in this session

Max, Min, Sum returns the max/min/sum value of an event attribute in this

session.

Value Simply selects an event attribute from the specified event type.

Average, Count, ForeCast, Max, Min and Sum only make sense if an event type

occurs more than once in a correlation instance. An example is the correlation

DataLoggerHistory in Figure 8.1. All DataLoggerRead events of the same Datalog-

gerId are collected in one session. To select the number of DataLoggerRead events

in the session one can define a Count variable.

If the event type is only stored once per correlation instance, one would often

use Value variables to select the value of a specific event attribute.

The Expression tag allows XPath Operators1 to be executed on variables. The

variables are replaced by their current values before the XPath Operations are ex-

ecuted. The result of the expression is returned as the current value of the metric.

Because the metric calculation service will be executed for every session checkout,

the metric is always up to date.

1http://www.w3schools.com/xpath/xpath operators.asp
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Listing 7.1: Simple Metric ShipmentCosts
1 <Metric c o r r e l a t i o n S e t I d e n t i f i e r=”Al lOrderInformat ion ” displayName=”CostOfAShipment ”
2 changeTracking=”Auto” i d e n t i f i e r=”CostsShipment ”>
3 <Desc r ip t i on>Costs o f a shipment</ Desc r ip t i on>

4 <Calcu la t i on>

5 <Express ion>{var1}</Express ion>

6 <Var iab l e s>

7 <Var iab le i d e n t i f i e r=”var1 ”>
8 <Value>

9 <EventObjectDataSelector eventObjectTypeUri=”even tob j e c t type : //TransportEnd ”>
10 <XPathSelector>//Costs</XPathSelector>
11 </EventObjectDataSelector>
12 </Value>

13 </Var iab le>

14 </ Var iab l e s>

15 </ Ca lcu la t i on>

16 </Metric>

Listing 7.1 shows a simple metric selecting only the Costs attribute from the

TransportEnd event. The metric is stored with the identifier CostsShipment for

every session of the correlationset AllOrderInformation.

Listing 7.2: Metric Duration with expression calculation
1 <Metric c o r r e l a t i o n S e t I d e n t i f i e r=”Al lOrderInformat ion ” displayName=”DemandReactionTime”
2 changeTracking=”Auto” i d e n t i f i e r=”DemandReactionTime”>
3 <Desc r ip t i on>

4 Sta r t s r i gh t a f t e r Demand event ge t s in .
5 The c a l c u l a t i o n i s f i n i s h e d i f a matching ShipmentCreated was r e c e i v ed .
6 </ Desc r ip t i on>

7 <Calcu la t i on>

8 <Express ion>{var2} − {var1}</Express ion>

9 <Var iab l e s>

10 <Var iab le i d e n t i f i e r=”var1 ”>
11 <Value>

12 <EventObjectDataSelector eventObjectTypeUri=”even tob j e c t type : //Demand”>
13 <XPathSelector>//DateTime</XPathSelector>
14 </EventObjectDataSelector>
15 </Value>

16 </Var iab le>

17 <Var iab le i d e n t i f i e r=”var2 ”>
18 <Value>

19 <EventObjectDataSelector eventObjectTypeUri=”even tob j e c t type : // ShipmentCreated ”>
20 <XPathSelector>//DateTime</XPathSelector>
21 </EventObjectDataSelector>
22 </Value>

23 </Var iab le>

24 </ Var iab l e s>

25 </ Ca lcu la t i on>

26 </Metric>

Listing 7.2 calculates the duration between the correlated Demand and the Ship-

mentCreated event. The Expression is used to calculate the difference between the

two values. However, we could have used the Duration variable as well to calculate

this metric.

Listing 7.3: Aggregated and filtered Metric Max Costs
1 <Metric c o r r e l a t i o n S e t I d e n t i f i e r=”Al lOrderInformat ion ” displayName=”Max Cost Shipments to London”
2 changeTracking=”Auto” i d e n t i f i e r=”MaxCostsShipmentsLondon ”>
3 <Desc r ip t i on>Max co s t s o f a l l shipment to London</ Desc r ip t i on>

4 <Calcu la t i on aggregationMethod=”Max”>
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5 <Express ion>{var1}</Express ion>

6 <Var iab l e s>

7 <Var iab le i d e n t i f i e r=”var1 ”>
8 <Value>

9 <EventObjectDataSelector xpathF i l t e rExpre s s i on=”// Location=London”
10 eventObjectTypeUri=”even tob j e c t type : //TransportEnd ”>
11 <XPathSelector>//Costs</XPathSelector>
12 </EventObjectDataSelector>
13 </Value>

14 </Var iab le>

15 </ Var iab l e s>

16 </ Ca lcu la t i on>

17 </Metric>

Listing 7.3 shows two advanced concept:

aggregationMethod=”Max” The attribute aggregationMethod calculates metrics

not only on a specific correlation session, but also over all correlation sessions

of a defined correlationset. Thus the aggregated metric stores, in this exam-

ple, the maximum Costs-value in all AllOrderInformation-sessions. Available

aggregations are Average, Max, Min, and Sum.

xpathFilterExpression=”//Location=London” The attribute xpathFilterExpres-

sion restricts the metric calculation to the events that fulfill the given xpathFil-

terExpression. If the metric should only be calculated for specific correlation

instances, a user can define a filter for every variable in their metric.

The example in Listing 7.3 returns the most expensive transport to London. This

metric is not simply defined on a correlation session. With the combination of

aggregationMethod and xpathFilterExpression, this metric is rather somewhere be-

tween Level 2 and 3 as defined in Table 7.1. This metric could also be obtained

by querying EventCloud for all transports to London, and then calculating the

maximal costs in the resultset. Even we believe that EventCloud is the more flex-

ible tool to calculate such queries, a user may need to know a specific metric all

the time. In this case, it is better to predefine the metric and calculate it always

during event processing rather than relying on the on-the-fly metric calculation of

EventCloud.

7.5 Push Metrics: Alerts

Currently we use metrics to beautify and enrich the results returned by Event-

Cloud. Metrics are stored to correlation instances supplying indicators about the
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correlated events in these sessions. Metrics are a passive concept in EventCloud.

They underlay the pull-architecture of EventCloud: only events and metrics a user

explicitly searches for are displayed.

Until now we have focused on this pull-concept. However, with our event-driven

approach, other usages of metrics can be found. In a push-architecture, a metric

could be sent somewhere (to a user, another system, as email, etc.) every time it

gets updated by an event. This way, real-time metrics are available for any other

system or can be directly pushed to a user. [6] calls this principle DBMS-Active,

Human-Passive (DAHP) model, whereas the pull-concept is called Human-Active,

DBMS-Passive (HADP) model. We see the following advantages:

• metrics are not tied exclusively to EventCloud.

• other systems benefit from EventServer’s event-driven, real-time, up to date

metric capabilities.

• push information about the observed event scenario is available in real-time.

In a second step, we can utilize metrics to generate alerts. Metrics can be used to

detect exceptions and unusual states within a scenario if a metric value is over a

given threshold or the metrics are combined with Event-Condition-Action(ECA)

rules. An alert signals to a user that something in the system is out of bounds.

An alert is a push-concept and differs fundamentally from EventCloud which has

its strength in event analysis. Nevertheless, currently a paradigm-shift in business

intelligence from pull to push is taking place. Commercial tools are available un-

der the buzzwords Business Performance Management(BPM) [10] and Business

Activity Monitoring (BAM). Instead of tons of reports generated by business intel-

ligence tools on outdated data, these tools only send relevant information and/or

exceptions to a contact person in real-time. As an example, I’d like to mention

[19] which also offers a free community edition to see this concept on top of event

streams in action.

With EventServer, we have the basis for alerts on metrics. When metrics are
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defined as above, we can easily implement an event service like “if MetricA is

greater 1000 send email”. But lots of event services, coded in Java, will implicitly

code the “alarm-knowledge”. This makes the system hard to configure and main-

tain. Again, it would be nicer to define alerts declaratively with XML on metrics.

Another approach would be to use an existing rule engine that processes the events

and metrics.

7.6 Conclusion

OLAP is the ideal for metric calculation and interaction as it offers all these pos-

sibilities with data drilling in the OLAP cube. As EventCloud uses a completely

different data representation, by representing events and their correlations as doc-

uments, not all concepts of OLAP can be translated to our system. However, the

concept of event correlation provides a powerful basis to calculate metrics for event

analysis.

Many ideas on metric calculation came up during the development of EventCloud.

Maybe the perfect solution is not found yet. However this chapter should give

insight to the current status with metrics in event analysis. Further research in

this area, like the implementation of a declarative metrics service, is desirable for

learning more in this area.
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8 Usage Scenarios for EventCloud

“The user is central to the success of an information retrieval system.”,

Korfhage [16]

We saw the need for a new generation of analysis tools that directly acts on top

of business events in Chapter 2. Until now, the technical requirements and their

implementation have been discussed in detail, so this chapter focuses on usage

scenarios which outline the added value EventCloud provided in complex event

scenarios. The following use cases show the usage of EventCloud in the Medicare

example, introduced in Chapter 2, from a user point of view.

The following stories should illustrate the idea of event search and analyz-

ing and give some insight of the benefits and features the EventCloud system

offers. We demonstrate the advantages of an event analyzing and search tool in

multiple, different situations where they exceed approaches like OLAP, while in

other situations it is still more accurate to apply OLAP.

8.1 Types of Search Queries

In [4], Battelle distinguishes between recovery and discovery search queries. Similar

query categories can be found in EventCloud:

Recover This kind of search means queries where a user knows that some fact (a

relevant result) is out there. They use a search tool to find the location of this

information again. A simple example of this query type is the keyword-search

in a web search engine to retrieve a specific URL. This kind of search is also

referred to as known item search in Information Retrieval(IR) and represents

the basic application of an IR system. The search for (correlated) events can
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be executed in a similar way. If a user is interested in retrieving a specific

event or a specific event correlation instance, they can execute a keyword

search to “recover” this event.

Discover This kind of search means queries where a user thinks there is a relevant

result out there. They explore the search space to find new or additional

information, new connections and relationships that have not been obvious

before. We know this kind of search from our own web experiences where we

navigate through numerous webpages to find the answer to our question. The

Internet supports this feature through hyperlinking. This type of search is

the core essence for event analysis. Discovery can be seen as a retrieval and

browsing task. Whereas a query returns the event that is the starting point

for discovery, the browsing through events via links (represented by event

correlations, see Section 6.1) allows to find additional information.

As EventCloud is a which makes the “web of events” searchable and navigable,

both type of queries have to be supported. For Recover, the relevant events and

correlationsets for the user query must be returned. This implies a relevance

ranking algorithm for the resultset as discussed in 4.2. For Discover, the relevant

events must be returned in the resultset, but additionally the user needs a facility

to navigate through the events along meaningful connections. Connections in

the EventCloud system are event correlations. Figure 6.2 shows how a user can

navigate through events along these defined connections to explore and discover

coherences.

8.2 Definition of the Medicare Example

For the following stories, I use a modified version of the Medicare example which

was introduced by Szabolcs Rozsnyai in [28] and outlined in Chapter 2 to emphasize

the need for event analysis tools. The example describes a TMS1 CEP scenario for

a pharmaceutical company. Every Order and Transport business process execution

instance in the TMS system generates a number of events which are used as input

events for the EventCloud system. Figure 8.1 shows six events described as:
1Transportation Management Systems
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Demand The Demand event represents a demand occurring in one of Medicare’s

stocks.

ShipmentCreated If a demand event needs to be fulfilled from another location’s

stock, a ShipmentCreated event is created2. This event contains information

about the transport that will be executed to satisfy the demand.

TransportStart The TransportStart event represents the actual start of a trans-

port.

TransportEnd The TransportEnd event represents the actual end of a transport.

DataLoggerRead The DataLoggerRead event includes all measuring points of the

datalogger sent along with a transport, so temperature violations during

transports can be detected.

ShipmentReceived The ShipmentReceived event indicates that a transport has

reached its destination. With this event, it is possible to infer whether the

demand was satisfied successfully or not.

EventCloud relies heavily on the concept of event correlation as described in de-

tail in Chapter 3. The correlation diagram in Figure 8.1 illustrates the six event

types, their event attributes and how they could be correlated to each other in

this scenario. Each colored line represents an independent correlationset. We see

that an event can participate on multiple correlations. This makes sense as every

correlation has a different meaning and could be interesting for event analysis. For

example, the “AllOrderInformation” is interesting for event analysis as it allows

to navigate through all process events of a specific “Demand causes Transport”

episode. The correlations “Carrier performance” and “Datalogger History” are in-

teresting for calculating performance metrics for a specific carrier or QoS metrics

for a specific Datalogger3.

For reasons of simplicity only the correlations “AllOrderInformation” (indirect cor-

relation, include all event types), “shipmentInfo” and “transportInfo” are used in
2this decision may be made by a CEP application, so this event can be seen as “output event”
3As all transports a carrier X ever executes are stored in one correlation instance the corresponding correlation

session can become very large
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Figure 8.1: Correlation diagram of the modified Medicare example
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the following examples.

Following are the metrics defined for the correlationset “All Order Information”.

These metrics are calculated in the EventCloud system for every correlation in-

stance, and are available for analysis:

Costs Order The costs of the shipment. Selected the attribute Costs from the

ShipmentReceived event.

Duration Order Timespan of the whole order process in hours. Calculated from

ShipmentReceived.DateTime - Demand.DateTime.

DELAY Delay of shipment in hours. Calculated from ShipmentCreated.LatestDelivery

- ShipmentReceived.DateTime.

LOSS Amount of items lost during transport. Calculated from ShipmentRe-

ceived.Amount - ShipmentCreated.Amount.

COUNT TEMPVIOLATIONS Number of temperature violations logged by Dat-

aLoggerRead.

MAXTEMPVIOLATION Maximal temperature violation outside of the valid in-

terval [-5, 10].

All these metrics are calculated on the three levels described in Chapter 7. Metrics

have different meanings on each level:

Single correlation instance The metric is calculated during event processing for

correlated events, e.g. for every transport. The value can be found in the

EventCloud screenshots under the abbreviation CURR.

Resultset The metric is calculated by EventCloud based on the metrics retrieved

from the Single correlation instances in the resultset of a user query,

such as the average costs for the five transport returned by the search query.

The value can be found in the EventCloud screenshots under the abbreviation

AVGRESULT .
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Defined correlationset The metric is calculated during event processing over all

Single correlation instances of a correlationset, such as the average costs

over all transports. The value can be found in the EventCloud screenshots

under the abbreviation AVG.

This preliminary information should make the following use cases understandable.

This will illustrate how EventCloud works with the event types, correlations and

metrics defined above to answer complex questions the “event analysis”-way.

8.3 Recovery Stories

8.3.1 Data Warehouse-like Usage

On September 1st, Peter Miller was instructed to generate a report about the per-

formance of the carriers “MegaTrans”, “Techtrans” and “TransTrasit” transporting

the product “Tosalumn” between the locations Vienna and London in August.

Whereas this would be a typical query in the DWH, this information is not yet

available in the system. Since a decision who will execute future transports on this

route must be made within the next hours, Peter can’t wait for the next DWH

update.

Peter queries EventCloud. He searches for the terms “Tosalumn Vienna and

London” for August 2006 with the correlationset “AllOrderInformation” to get an

overview over all transports made. In Figure 8.2, 21 transports with all their de-

tailed process events are returned.

Peter is only interested in the overall metrics. He retrieves the following metrics

from the resultset:

Transport OK: 86% 86% of all transports between Vienna and London in August

had no problems. For all transports in the system the average is 89% so

the current value is next to the average and does not indicate extraordinary

problems.
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Figure 8.2: Queryresult in EventCloud: 21 transports returned

146



Costs Order 2697,75 The average order costs on this route are higher, however

that’s not very significant because Peter knows that other routes are longer

and other products are more cumbersome than Tosulumn - so these transports

are also more expensive.

To get individual metrics for the three carriers, he redefines his queries: he adds

the carrier name to the query. Peter Miller starts with the evaluation of carrier

“MegaTrans”.

MegaTrans has taken 7 transports on this route in August. 71% were OK, however

2 transports failed. Shipment “714170” and “860543”(shown in Figure 8.4) both

failed because of temperature violations during the transport. The average costs

for MegaTrans transports were with a value of 2450 below the average on this

route.

At Techtrans, one of its three transports failed on this route. Shipment 137624

failed for multiple reasons. Figure 8.4 shows the data that Peter can analyze for

this shipment. It was delayed, 48 items out of 370 were lost, and multiple temper-

ature violations occurred during the transport. As the metrics give a quick view

that something went wrong, the events representing the process steps during the

shipment give a detailed picture of how things went wrong.

With Transtrasit, all 8 transports went perfectly at an average cost of 2526. Peter

is happy that at least one carrier seems to be a good candidate.

The three missing transports have been executed by carrier SpediTour. For some

reason, the management had not mentioned this carrier. All transports went good,

however the average price of 3445 is notably higher. Peter Miller creates a table

out of the data he retrieved from EventCloud. With this table and a recommenda-

tion for the carrier Transtrasit, he attends to the management meeting and saves

his company money and worries for future transports.

147



Figure 8.3: Metrics for the failed shipment 860543
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Figure 8.4: Shipment 137624: Metrics show exceptions, whereas the detailed events can give you
the exact information (see here for loss and temperature violation [temp should be
between -5 and 10])

Vie-Lon All MegaTrans Techtrans Transtrasit SpediTour
Transports Total 21 - 7 3 8 3
Transports OK 86% 89% 71% 67% 100% 100%
AVG Costs 2698 - 2450 2986 2526 3445

Table 8.1: Metrics for route Vienna - London August 2006
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How EventCloud was used

In the story above, we see a simple usage of EventCloud. Search is restricted to

a specific correlationset and timespan. The correlationset “AllOrderInformation”

stores all the metrics the user is interested in. By refining the query (with the

carrier name), the user can reduce the resultset and receive the metrics on the

resultset-level he is interested in. The detailed event view allows the user to see

exactly why transport exceptions have been detected during the process execution.

Not only is aggregated information available within EventCloud, but the detailed,

fine-grained, process-oriented information in the events can be retrieved.

In future versions of EventCloud it should also be possible for a user to create

reports within EventCloud. Currently, EventCloud simply displays the figures,

but as we see for Table 8.1 a user needs a second tool like Excel to collect, edit

and prepare data for a presentation.

8.3.2 Realtime usage

Sandra Goodman was notified that the transport for OrderId 306717 has been de-

layed. To get some additional background on this transport she wants to contact

the responsible employee for this shipment. She queries EventCloud for the term

“306717”. As a result in Rank3 she gets a single resultset of the correlationset

“AllOrderInformation” as shown in Figure 8.5. She takes a look at the correlated

events, showing her the details of the transport. By now the Demand, the Ship-

mentCreated and the TransportStart event have been processed. No metrics could

have been calculated since they depend on the ShipmentReceived and Datalogger-

Read events. Sandra infers from the current events that the transport is somewhere

stuck between TransportStart.Location Vienna and ShipmentCreated.ToLocation

Munich. Looking at the details, she realizes that TransportStart.DateTime was

delayed to ShipmentCreated.PlannedTransportStart.

From the ShipmentCreated event Sandra gets the responsible contact person, Peter

Jackson. Calling Peter minutes after the delay notification gives Sandra a possi-
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Figure 8.5: Current status of Shipment 306717. The shipment’s correlation instance is available
immediately in EventCloud

bility to replan the transport. Peter tells her that a new transport can be shipped

by plane within one hour. Sandra compares this offer with the planned costs from

the ShipmentCreated event and agrees to the new plan.

How EventCloud was used

As EventServer is indexing the events processed in near real-time, data is im-

mediately available in EventCloud. Event though the events TransportEnd and

ShipmentReceived were not yet received, the current state of the transport is al-

ways available in the search index, although not all metrics can be calculated. The

detailed event view allows a user to dig into the correlated events and extract the

specific information they are interested in.

8.3.3 More Recovery Stories

Steve Moore needs to know why the transport of “Tosalumn” on 7. August 2006

to Vienna has failed. He queries EventCloud for the terms “Tosalumn 07.08.2006

Vienna FAILED”. As a result he gets the Transport 20475 from Paris to Vienna.

The transport actually failed because of a temperature violation. The maximal
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temperature violation of 48 degrees occurred during a timespan of 4 hours.

EventCloud allows inference from multiple search terms to a specific case. The

search and ranking capabilities of EventCloud help to find (correlated) events even

if one does not have exact identifiers for them.

The carrier “Mechatronic” claims he has a performance of 99 OK transports with

the last 100 Transports. Kelly Taylor is asked to validate this statement. She

queries “Mechatronic” and cuts the searchresult to the last 100 transports. The

metric displays 92 transports OK, 8 transports NOT OK. Kelly adds “NOT OK”

to her query and receives exactly 8 transports with detailed information what went

wrong on each of these transports.

EventCloud sets on top of a boolean query language4 and allows search terms to be

combined through logical operators.

8.4 Discover Stories

8.4.1 Search and Navigation

Kathy Jackson has to review Transport 20475 which failed because of tempera-

ture violations. She queries for “Transport 20475” to get a view on the transport.

EventCloud returns the correlation AllOrderInformation that represents this busi-

ness case. The Datalogger 777 has detected three temperature violations of 48

degree Celsius. Kathy clicks at the Datalogger’s identifier to retrieve the history

of this datalogger (she navigates to the correlation set DataLoggerHistory (Figure

8.1)). The history metric shows that the datalogger has detected three tempera-

ture violations in the last transports. Kathy is stunned! She takes a closer look

at the other two transports, 20111 and 20214, and notices that the datalogger

always logged a violation of 48 degree Celsius. Obviously the datalogger is defect,

so Kathy contacts the datalogger department to inspect Datalogger 777!

4see http://lucene.apache.org/java/docs/queryparsersyntax.html
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Figure 8.6: Discovery example: finding an exceptional situation by navigating between correla-
tions.
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Figure 8.6 shows the analysis steps with EventCloud. First the user queries for a

term, like the TransportId 20475. The resultset returns the matching correlation

instance AllOrderInformation for the transport. The user now has a detailed view

on the transport. To navigate from an event of the correlation to other correla-

tions, the user has to click the link “LOOKUP EVENT”. This causes a new query,

returning all correlation instances this specific event participates. In the figure,

one of these correlations is the correlation DataLoggerHistory. The DataLogger-

History correlation collects all events of a specific DataLogger, in this case of the

Datalogger 777 (see Figure 8.1). From the DataLoggerHistory correlation it is

again possible to navigate to other correlations, like to the two transports 20111

and 20214.

How EventCloud was used

Event correlation is used to navigate from a single business case correlation“Trans-

port 20475” via a specific DataloggerRead event to other correlated events. With

the help of correlation the user walks through the cloud of events to find informa-

tion that is not obvious from a single event or even a single case. As the detailed

event data is available in EventCloud the user can detect eye-catching patterns

like the defect of the datalogger.

8.4.2 More Discovery Stories

During the last quarter, 25 transports with loss have been detected on shipments

to London. Paul Smith analyzes these cases. He queries EventCloud for “London

Loss” selecting the last quarter as time range. 25 transports are listed in the result

set. On average, three items have been lost on these transports. After analyz-

ing the first three transports, he realizes that the carrier is always “Transit”. He

navigates to the list of all transports “Transit” made during the last quarter. As

“Transit” is one of the most common carriers, 229 transports are found where 29

were declared as failures. Adding “London” to the current view he gets 35 results,

including the 25 failed transports. Paul realizes that this is a very bad number

and makes further analysis. All of the transports are coming from Rome! He

154



immediately contacts the carrier to tell him about these numbers. When “Transit”

made an internal control of this incidence, an employee has admitted that he has

stolen 105 items during the last quarter.

EventCloud allows an analyst to find new information and exceptional states that

are not simply detected otherwise. With the help of event search and navigation

and through multiple analysis steps the user finds a complex reason for a simple

observation
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9 Conclusion

9.1 Analysis tool for CEP

This thesis discusses the need for tools to analyze and explore business events

as a consequence of the emerging technologies Complex Event Processing (CEP)

and Business Activity Monitoring(BAM). As todays business is event-driven, CEP

gains more and more attention because of its capability to process these events in

real-time by correlating simple events into higher-level, complex events to identify

opportunities, potential problems and exceptions. This allows enterprises to evolve

from today’s reactive behavior to a proactive behavior by sensing current business

situations and actively responding immediately to them. CEP, therefore, needs to

offer a toolset of technologies as described in [22].

CEP solutions have their strength in running 24*7 to process large amounts of

events to proactively handle current business situations. They implement non-

trivial domain-knowledge in the form of continuous queries, rules or user functions

which are applied on the stream of events received. That means CEP applications

run autonomously without user interaction after they are set up for a specific use

case once. CEP automatically generates alerts, adapts the business process and/or

notifies responsible employees.

It is not sufficient to have a CEP solution but to do not have any insight what is

happening inside, or better, why it is happening. From an enterprise perspective,

a CEP is a blackbox that may perform well, or not so well, measurable in numbers

on business performance. However, the person in charge needs to state a reason

for the decisions made by their system, wants to investigate in specific situations
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or wants to find new opportunities.

There is a need to have event analysis tools that support CEP applications and

their users by allowing analysis of the events put into and received from the system.

This tool must provide features which help to understand the business process with

its input events, the decision-finding and the results delivered by the CEP appli-

cation. The tool enables analyzing the processed events offline, detached from the

real-time processing done by the CEP, to allow an analyst (a domain expert) to

draw conclusions, adapt the domain-knowledge of the CEP application, and en-

hance the business process.

EventCloud is proposed as such a generic Analysis Tool for event processing sce-

narios. The EventCloud frontend enables the user to navigate through events, pick

up single events and display their content, discover chains of events and how they

are correlated, and to recognize patterns in the cloud of events. Metrics can be

defined to provide insight at a higher level and to measure business performance.

It visualizes business and process developments at the fine-grained level of events.

9.2 Characteristics of Event Analysis

Chapter 2 described why today’s technologies like OLAP are not sufficient to cre-

ate an event analysis tool. By mapping events into a relational data representation

like a star-schema, information is lost that is included in the original events. Using

a relational schema has drawbacks: as CEP application processes events, mapping

events from CEP to a database is expensive, needs to be done for every CEP sce-

nario separately and still does not include all information. Instead of building a

data oriented schema used by OLAP, the representation should be“event-oriented”

to reflect the business process. It is natural to produce a data schema which di-

rectly represent the events, their occurrence in time and their correlations to each

other.

EventCloud introduces a data schema based on top of events and their corre-
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lations. Chapter 4 describes the concepts of this document oriented approach and

it’s relation to Information Retrieval in detail. Rank1, Rank2 and Rank3 were in-

troduced to represent different levels of event searching to apply relevancy ranking

and to allow non-trivial queries. The data schema was implemented with Apache

Lucene which creates a full-text index over all processed events. EventCloud al-

lows searching and navigating in (correlated) events to answer complex queries

in a large set of events, partly comparable to OLAP analysis and partly offering

new ways of analyzing. The Medicare use cases example in Chapter 8 shows the

opportunities EventCloud offers.

9.3 EventServer and EventCloud

Learning from the previous implementation of EventCloud [28], the architecture

of the EventCloud system has completely changed and improved. It exceeds the

original approach in functionality, design and performance as many things have

been learned since then.

EventCloud now itself has the characteristics of a CEP system as it processes

the events in real-time to produce the event data representation. To make a clear

distinction between event processing and the EventCloud user frontend, I intro-

duced the EventServer. The EventServer is a platform which provides functionality

for implementing CEP applications. EventServer offers essential system services

like event correlation, a multi-threaded architecture for event processing, adapters

to other systems via JMS, and the possibility to implement user functionality for

any event processing task through the concept of event services.

For this reason, the EventCloud backend is simply an application deployed in

the EventServer. The EventCloud backend implements specific event services that

process events in real-time to create the data basis for event analysis. On top of

this data representation, the EventCloud user frontend was implemented to offer

a rich frontend allowing a user-friendly search, analysis and exploration of events.
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Functionality of the EventCloud system was improved by allowing the search in

indirectly correlated events and by adding the concept of metric calculation on

top of correlated events. By extending the original event correlation concept with

indirect correlation to increase the query power of EventCloud, I had to solve

numerous new difficulties which are addressed in this thesis. Metrics on top of

correlated events are a new approach in EventCloud which became possible due to

the architecture of the EventServer. Metrics enrich the search result of EventCloud

and brings it closer to the functionality OLAP offers.

9.4 Future Research

With the EventServer, the infrastructure for arbitrary ideas and applications in

the area of event processing has been created. As it implements the event corre-

lation approach presented in Chapter 3 everybody can implement their own event

services making use of event correlation. We came up with many ideas for event

processing scenarios besides event analysis with EventCloud. One is the obser-

vation of software projects by collecting and correlating events from the different

IT-systems used in software development like version control, bug tracking, and

mailing lists. Another idea regards the detection and visualization of fraud at

telephone companies. Even others go in the direction of event stream processing

and event mining. By using the EventServer it is not necessary to start from zero

with each new project.

EventCloud and the concepts of event analysis have greatly evolved through my

endeavors. Future research needs to concentrate on improving the frontend by

implementing, in addition to the current text-view, ideas from information visu-

alization. Information visualization can help a user to easier navigate events and

visually detect patterns within the large amount of events. SENACTIVE currently

implements a commercial event analysis tool with a focus on visualizing events.

Further research needs to be done in the area of event mining and pattern detec-

tion. While EventCloud helps finding unknown information and, in combination
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with accurate information visualization, suggests hypotheses to the users, we need

to investigate how known methods from data mining and statistics can be applied

on events and their correlations.

9.5 Conclusion

In this thesis the EventCloud system is applied to a complex event processing sce-

nario for the first time. The Medicare use cases example shows the different nature

of event analysis as compared to todays data-oriented approaches like OLAP. As

the underlying data representation differ completely, adequate concepts have been

developed and presented to allow search, analysis and exploration of correlated

business events.

It shows that event analyzing is an essential part of the CEP toolkit. It is the

missing link between real-time event processing, done by CEP applications, and

analysts and domain experts which need to understand, monitor and enhance these

CEP solutions.
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10 Appendix

10.1 Research Topics

Append() Functionality As described in Section 6.3.1 the performance of the cur-

rent implementation suffers from the disability to append events to existing

documents, as Apache Lucene does not offer an accurate functionality for this

requirement. As correlations grow with every event, this is a major limita-

tion. Correlations(Documents) needs to be re-indexed with every new event.

Further research must be done if and how an append-functionality can be

realized.

Extending Query Power Currently the documents (events/correlations) are re-

trieved by a user query if all query terms can be found somewhere in the

document. That is not sufficient for every situations, for example if a user

wants to search for a specific event attribute in a specific event type. Lucene

offers ways to flatten the event XMLs before indexing them. Other full-text

indexes like MS SQL Server 2005 offer XQuery-statements to search for more

than just terms. Additionally not only events, but also metrics should be

searchable for operations like EQUALS, LESS, MORE. This way EventCloud

could retrieve all correlations where the costs are e.g. larger than a given

value.

Managing distributed indexes In Section 6.4.4 multiple approaches were discussed

to create distributed indexes to handle large amounts of event data. These

approaches need to be refined and implemented.

Frontend Section 5.4 has shown in which direction event analysis has developed

with SENACTIVE EventAnalyzer. EventCloud’s web-frontend should evolve
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and generate new ideas how users can be supported in their event analysis

tasks. Visualizing events and their correlation has become a major topic.

Metric calculation In Section 7.4 a reusable event service for generic metric calcu-

lation with XML declarations was described. This is an important service for

the EventServer as it is reusable in many situations, from pull-architectures

like EventCloud to push-architectures like metric alerts described in Section

7.5.

IFS EventServer The reimplementation of the EventServer has already started.

Reusing the concepts of this thesis (event correlation, event services) and

extending them by using an ESB, powerful event routing possibilities, having

numerous adapters and a scalable architecture will provide a mature event

processing platform. An integration of the ESP Esper would be exciting, as

well as a graphical frontend to simplify the management of the server and the

event processing applications.
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Figure 10.1: Pseudocode for EventServer’s correlation service implementation
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