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Kurzfassung

Individualisierung macht auch vor Produktionsprozessen nicht Halt. Diese miissen immer flexibler
und rekonfigurierbarer gestaltet sein. Deswegen miissen Produktionslinien hohe Anpassbarkeit
aufweisen. Eine Moglichkeit, um die auftretenden Herausforderungen zu l6sen, stellt der sogenan-
nte ” Wurftransport-Ansatz” dar. Dabei werden die zu transportierenden Giiter von einer Station
zur nachsten geworfen, statt mit Forderbandern transportiert zu werden. Die vorliegende Arbeit
basiert auf diesem Ansatz und greift die Frage nach der Prognose der Flugbahn auf. Diese ist
eine Grundvoraussetzung, um erfolgreich Objekte zu fangen, da der Fangmechanismus rechtzeitig
in die richtige Position gebracht werden muss. In dieser Arbeit werden zur Prognose der End-
position gemessene Positionsdaten verwendet. Die Positionsdaten werden dabei mit Hilfe eines
Stereokamerasystems ermittelt. Ein Vergleich verschiedener mathematischer Vorhersagemodelle
fiir die Flugbahn an Hand verschiedener Faktoren (Bildaufnahmefrequenz, Auflésung) ist ebenfalls
Teil dieser Arbeit. Auf die Abhéngigkeit der Prognosegenauigkeit von der Bildaufnahmefrequenz
und der Auflésung der Bilder wird dabei speziell eingegangen. Zuletzt wird diejenige Losung
vorgestellt, welche im Vergleich am besten geeignet scheint. Dabei handelt es sich um ein verein-
fachtes Modell, welches auf der Flugphysik basiert und die prazisesten Vorhersagen ermoglicht.
Es zeichnet sich durch eine ausgezeichnete Stabilitat der Prognose und gute Skalierbarkait im
Bezug auf Aufnahmefrequenz und Auflésung der Kamera aus.

Abstract

Flexible production is one of the key factors to pay account to the needs for individual products.
Besides the flexibility of the productions systems for industrial production themself also the
transportation systems need to be flexible, fast and easily reconfigurable. Transport-by-throwing
is one suitable approach where goods are thrown from one station to the next station. This work
deals with the prediction of the flight trajectory which is necessary to enable reliable catching.
The prediction is based on measured positions of the object in the early flight phase. The setup
and realization of such a position acquisition system, consisting of two cameras, is presented.
Three prediction models are introduced and their prediction accuracy is analyzed and compared.
In addition the dependency of the prediction accuracy on the frame rate and resolution of the
vision system is discussed. The model based on simplified flight physics shows the best prediction
accuracy and also scales well when changing frame rate or resolution of the stereo vision system.
Increasing resolution is found to be superior to increasing frame rate within the same bandwidth
envelope.
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1 Introduction

Modern welfare in the western world has increased the demand for more individuality. Ranging
from individual-exotic holidays to an individual life-style, people use every possible way to set
themselves apart from the crowd. Every manufacturer and service provider has to adapt to this
situation and the wide range of similar but not exactly identical products offered shows how deep
this demand has already influenced the market. In the field of service providers this behavior
requires a more and more individual treatment of customers while the effects on the manufacturers
are not only influencing the employees but also the production lines. Years ago machines and
robots were introduced to increase the output of a production line. In the long term this has
leveled the quality of the end products as every single production step which is repeatedly done
by a machine is more exact than a human could do. In 1914, when Henry Ford [9] introduced the
conveyor belt first in car manufacturing, humans were doing their fraction of the whole production
process for every car during their shift. Today robots have replaced them — but they still only do
one small manufacturing step twenty four hours a day. The demand for more individual products
had and will have a big influence on this as well. More personalalized products demand a flexible
manufacturing process. A flexible manufacturing process requires flexible production lines with
flexible machines and robots. But the key to this process of individualization is that the backbone
for the manufacturing process, the transportation system, has to be more flexible and individual
as well.

1.1 Motivation

In current production halls the more than 200 years old idea of Oliver Evans [10] to use continuous
transport systems like a conveyor belt is widely used. In some cases also transport carts or trollies
are employed. A common attribute of both systems is that they cannot be reconfigured very fast.
Conveyor belts are heavy and require a lot of space as well. Changing their routes requires a
complete production stop of the facility along this transport system for the time of rerouting and
reconfiguring. This also means costs for the operator of the facility. In times of individualization
different products or similar products with small varieties have to be produced within one facility,
if possible on one production site/line. However, long production breaks have to be avoided in
order to keep the facility at a high load and the final price of the product low. Arising from this
request, fast reconfigurable transportation systems have to be found. The transportation system
of the future is able to handle every object on its own. Reconfiguration time is close to zero
and the order of processing on different working stations can be changed in order to provide a
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possibility for load balancing. A suitable solution for this requirements is a transportation system
which is based on throwing and catching. Assembly stations could be equipped with a throwing
and catching device and handle each piece individually. Fieldbusses would serve as a backbone for
communication but the tasks of throwing and especially catching have to be solved decentralized
in a distributed architecture, where each assembly station has to catch the piece thrown towards
it on it’s own.

1.2 Problem Statement

In the proposed transportation system the task of transportation is divided into throwing and
catching. These two tasks can be processed on their own but finally the crucial attributes of a
transportation system are speed, reliability and drop out rate. In order to achieve or surpass
common transportation systems in theses regards both components of the system have to be
optimized. The throwing system should throw all objects towards the same position at the
catching device. This would lead to a minimal moving range of the catching device and minimize
the mechanical requirements for the positioning of the catching device. Due to different leverages
like local air flow, different air density, different flying properties of thrown objects and so on
even a perfect throwing system’s variation of the interception position at the catching system
would still be big enough to demand the tracking of the thrown object and a precise prediction of
the interception position. This circumstance puts focus on the tracking and interception position
prediction system. The tasks of these systems is to observe the thrown object through out the
flight and to position the catching device in a position to catch the workload. This interception
position prediction has to work through out the flight of the object in order to position the
catching device early improve gradually with the time of observation. This also avoids spikes
in the necessary force to move the catching device. The requirements for the prediction system
are low cost, suitable-high precision, object independent application. The early stage of work
in this field of research invalidates the last requirement of object independancies the object
thrown in though out all the work presented is a tennis ball. This alliation simplifies the task
in many domains while the main task of object tracking and interception position prediction
can be processed extensive. In order to evaluate the process of prediction the accuracy and the
temporal progress of the interception position has to be benchmarked. This on one hand can
be achieved by using a gantry robot and a simple catching device [FBWW™107] and judging the
system based on the catching rate of the device. A second possibility is to develop a object
position detection [DBP09] system which leads to a higher quality of evaluation information
as not only the binary information (object caught/object not caught) is available but also the
deviation between the predicted interception position and the real position of the object in the
catching plane is obtainable.

1.3 Proposed Methodology

The problem outlined requires two semi-independent systems: the prediction system and the
verification system. Both can be developed and optimized on their own but only their interaction
allows feasible research for the given task.

The prediction system has to be designed and realized. A binocular vision system serves as the
input sensor. In analogy to hunters in nature who also use two eyes track their haul, this approach
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might lead to a higher prediction accuracy than a monocular approach [BFKO08]. The selection
of suitable cameras that also allow to downscale the system in terms of frame rate and image
resolution is necessary. Downscaling is necessary in order to determine the lowest cost setup for a
given accuracy requirement. This stereo vision system has to be calibrated — also in relation to
the verification system. Image acquisition of both cameras has to be done synchronous and the
moving tennis ball has to be identified in each frame of both cameras. The center of the ball has
to be localized in each picture and the information of both cameras has to be merged in order
to obtain the related position of the ball in space. Based on the sequence of the ball positions a
suitable trajectory has to be fitted into the measured data and the prediction of the future flight
trajectory has to be done. This prediction has to start as early as possible and should be refined
over time.

This verification system has to designed and realized similar to the prediction system. Possible
designs have to be developed and evaluated. The decision between different options has to be
based on the ubiquitous application of the systems, the accuracy of the system, the operation
complexity and the costs. Also the work to embed it into the prediction system and their inter-
action have to be taken into account.

Finally the quality of the interception position prediction has to be metered. This task closely
interferes with the verification system. A verification system based on a gantry robot with a catch-
ing device only delivers binary information about the prediction system (object caught/object
not caught) but is more similar to the goal application. A verification system which outputs the
deviation of the optimal interception position from the predicted interception position offers a
countinous metering range on contrary. This higher quality of information can lead to a better
benchmarking of the prediction algorithm. It even enables the selection of a suitable catching
device in case the maximum catching range is known. Passive [FBWWT07]] or active catching
devices [NI05] might be used depending on the required quality and available budget in a final
application.

As the cost for such a system influences the usage in real world to a great extend a performance
scaling analysis will be the final part of the work. The quality of the interception position predic-
tion depending on various factors like frame rate, image resolution and so on will be examined.
The goal is to find optimal factor combinations while keeping the hardware costs for the system
as low as possible.

The main focus of this work is to find answers to the following two questions:

1. Are there benefits of using two cameras compared to the binocular approach by Barteit
[BFKO08] and what magnitude are the benefits of?

2. How do different models for the flight trajectory influence the prediction accuracy?
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The task of catching or intercepting is very common in nature. Predators hunt their food. Similar
humans perform multiple throws and catches in sports. Tennis stars like Roger Federer are said
to have a especially good hand-eye coordination and even a special vision technique [7]. Nature
has worked the task of catching and trajectory prediction out very well.

Artificial catching has to be divided into multiple sub—challenges. First, a suitable sensor has to
deliver information about the actual trajectory of the flying object. In case of the human these
are the two eyes (compare Figure 2.1). The comparable technical approach is a stereo vision
system, used for the task in the work described here. In order to extract the information about
the balls trajectory the images delivered by the two cameras have to be processed. The moving
ball has to be recognized and the center position calculated. The state of the art of this part will
be the topic of the first subsection.

Central Processing Unit

Vision Sensors

Commands to Actuators

Figure 2.1: The human way. Modified from [AENOG6]

The second challenge is to predict the future trajectory of the ball. In nature this very complex
task is achieved by learning over many years. Basically the neural net inside the brain (figure
2.1) and it’s environment learns from every single catch by using the tactile information of the
catching device (hand) as a feedback for the prediction. Since many functions in humans, includ-
ing this one, are by far not known completely, the human as an archetype for the solution is not
suitable. Artificial ways to predict the touchdown position of a flying object will be in focus of
the second subsection.

The topic of the final subsection will be the evaluation of the predicted interception position. As
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mentioned above in nature this information is the key information for improving the intercep-
tion positions prediction. This information is the feedback of the information loop an closes it.
Available work about possible solutions will be discussed there.

Before going into the detailed subsections similar task that were already goal of research have
to be noted: [AENO06], [HS91], [MHMO4], [MMO02b], [RA02], [NI0O5]. All experiments on catching
described are based on a small scale of less than one meter down to some millimeters of catch-
ing range [NI05] with active [NI0O5], [RA02] and autonomous catching robots [RA02]. Different
strategies as ”gaining angel of gaze” [MHMO4], [MMO02b] or strategies miming the human way to
catch [KSOI99], [MMO02a] are used to achieve the task of catching. This work will be referenced
throughout the whole chapter and the used methods and their alternatives will be described.

2.1 Vision Systems and Object Detection

Vision systems are widely used nowadays. Starting from simple low resolution photos, image
acquisition has improved in quality and moved away from separated images to series of images
- videos. The information obtained has developed from apparitional memories to real measured
data. Improvements in optics and video processing have enabled this. An interesting example
is the ”*Hawk Eye”’ used in Grans Slam Tennis matches in order to support the chair umpire
and the linesmen [4]. Methods to extract information from videos are reviewed in the following
sections. The task of obtaining the position from the video data is divided into sub-problems and
alternatives dealing with them are reviewed.

2.1.1 Moving Object Detection

Basically, detecting moving objects (segmentation) in video data acquired with fixed cameras
can be done by two different principles. One possibility is to consider the difference between two
adjacent frames (adjacent frame difference - AFD) above a certain threshold [GWO07], [TKBM99].
As the actual difference between to adjacent frames equals all the changes between the two im-
ages, objects that disappeared as well as objects that appeared newly in the field of view will
be detected. One major drawback of this method lies in the sensitivity towards the outdated
information which is also called ghosting and foreground aperture (Figure 2.2). On the other

Figure 2.2: AFD-segmentation-example: Ghosting in case of a moving tennis ball;
outdated ball on the left, actual ball on the right.
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hand this method is not sensitive to slow changes of the background and doesn’t need a lot of
calculation power. In order to overcome the drawbacks of simple adjacent frame differencing
different enhancements using more information about the background have been made [MMNO06].
By using more information, the disadvantage of ghosting has been minimized but on the other
hand the advantage of simple calculation hast been lost as well.
The second principle of detecting motion is to primary build up the background model from a
number for frames and to compare the actual acquired frame with the background model. Differ-
ent ways to build up the background model have been developed and reviewed [Pic04], [BJET08].
The approaches available range from simple approaches with limited memory requirements and
maximized speed to more sophisticated approaches developed in order to achieve the highest
possible accuracy under any circumstances [Pic04] and have their advantages and disadvantages.
Overall no perfect system is said to exists [TKBM99]. A huge advantage compared to adjacent
frame differencing is the lapse of ghosting and foreground aperture (Figure 2.3).

The most simple version of this method is to compare (subtract) the actual frame to a back-

Figure 2.3: BM-segmentation-example: No ghosting in case of a moving tennis ball.

ground frame [BJE'08] which is not containing any objects to be detected. After this operation
the individual pixels can be classified as background and foreground via an threshold operation.
The calculation effort is minimal but the downside is that the threshold level has to be set manual.
A compromise between a low threshold which implies high sensitivity also regarding to noise and
low noise liability with a higher threshold has to be made.

One very common approach to build up such a background model with it’s parameters automati-
cally is the Running Gaussian Average [BJET08], [Pic04]. A probability density function for each
pixel of the frame considering the last n pixel’s values is obtained cumulative. In each following
frame the pixels which lie outside a certain interval around the probability density function are
classified as belonging to foreground or a moving objects. By changing the adaption rate the
background models sensitivity for background changes or noise in the picture can be altered. In
case of a higher adaption rate also small changes which should be recognized as foreground will
be suppressed. Drawbacks are lying in the necessary calculation power and storage requirements.
Many more sophisticated background models are available [Pic04], [BJET08], [TKBM99]. Their
application in this domain is impossible as the calculation demands are to high. The knowledge
about the shape of the thrown tennis ball and it’s symmetric properties enable the use of fast
and simple object detection algorithm.
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2.1.2 Edge Detection

The relevant information which has to be extracted out of each image is the position of the tennis
balls center. Acquiring this information out of the detected motion demands considering the
shape of the object and possible sources of error. In case of a perfect recognition of the tennis
ball in the frame the center of the ball lies on the extension of the ray between the cameras focal
point and the balance point of the recognized shape in the image plane [SHB07, 12], [AENO06].
Calculating the balance point from the motion image is very simple: it is equal to the mean of
all the pixels belonging to the ball. This simplicity causes some problems. In case other pixels
than the ones belonging to the tennis ball are classified as foreground an error is introduced. This
error can be minimized by optimizing the motion detection algorithm but it can not be excluded
totally.

In order to minimize the impact of this error source a more complex processing algorithm of
the motion image can be used. It is based on edge detection and hough transformation (Section
2.1.3). The task of edge detection is to locate changes in the intensity function [SHB07]. Changes
in intensity are related to surface normal discontinuities, depth discontinuities, highlights, surface
texture and shadows or illumination discontinuities. They also appear in the first and second
derivate of the intensity function along a specific line of the image [GW07, 703]. Special filters
called edge detectors make use of this property. These filters can be divided into three categories:
Operators approximating derivates of the image using differences, operators based on the zero-
crossing of the image function second derivative and operators which attempt to match an image
function to a parametric model of edges [SHB07]. Common basic edge detectors of the first
category are Roberts operator pair, Laplace operator, Prewitt operator pair and Sobel operator
pair. Related example filter masks are shown below (Table 2.1 and 2.2).

110 011
-1 -110

Table 2.1: Roberts operator pairs

0110 11171 ;1101 1121 -1107-1
11411 00O -1]0 1 0010 2210 2
0110 -1 -1 -1 -1]0 1 -1-2 -1 -1(0] 1

Table 2.2: 323 Laplace (single), 323 Prewitt and 323 Sobel operator pairs

Above mentioned filter masks, excluding the Laplace operator, are grouped pairs. Each of the
two masks is sensitive to intensity changes in diagonal direction orthogonal of the sensitivity
direction of the other mask. This architecture enables it not only to detect edges but by merging
the information of both masks also the direction of the edge can be calculated. While the Roberts
operator has a high sensitivity to noise due to its small size, the Laplace operator responds to
some edges twice.

0[0]-1101]0

0-1]-2|-1]0
-1(-2116|-2]-1
0O-1]-2|-1]0

0[0]-1101]0

Table 2.3: 525 discrete approximation of LOG operator (Mexican hat)
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Operators of the second group which make use of the second derivates zero-crossing are the
Marr-Hildreth edge detector, the Laplacian of Gaussian (LOG) operator and Canny edge de-
tectors [SHBO7]. The LOG is based on a 2D Gaussian distribution and is calculated by using
the Laplacian operator on the 2D Gaussian distribution. A 5x5 discrete approximation of the
convolution mask is shown in Table 2.3. Due to its shape this edge detector is also referred as
Mexican hat.

The Canny edge detection algorithm differs from all prior mentioned operators. Edge detection
based on Canny algorithm is not only based on a simple convolution with a specific operator.
Instead it consists of 4 steps (modified from [SHB07] and [GW07]):

1. Convolve an image with a Gaussian filter.

2. Compute the gradient magnitude and angle images.

3. Apply non-maxima suppression to the gradient magnitude image.
4

. Use double thresholding and connectivity analysis to detect and link edges.

It is obvious that the Canny algorithm does not only deal with the local information (3x3, 5x5
pixel environment or similar+) like the prior mentioned operators. This edge detection algorithm
uses the information of the whole image in order to detect the (if possible) closed loops of edges
[SHBO7]. This attribute separates the Canny algorithm from the other mentioned as the task of
edge linking is usually very tough. The excellent detection of the Canny algorithm is essential
in situations of high complexity. Figure 2.4 compares LOG (dark grey) and Canny (light grey)
edge detection in two simple cases. The left image shows the detected edge in case the ball is far
away from the camera at low light and the right image shows the detected edge when the ball is
close to the camera and at high light.

Figure 2.4: Comparison of LOG (dark gray line) and Canny (light gray line) edge detection applied to
two acquired images of a tennis ball

2.1.3 Hough Transformation

As mentioned in chapter 2.1.2 the second step for the extraction of the tennis balls center in the
image is to process the edge map with Hough transformation [HV62]. Hough transformation is
used to detect geometrical shapes via their parameters. A coordinate system is introduced into
the image in order to classify the shapes. By example all points on a line satisfy the equation
y = a*x + b which can be rewritten as b = —z % a +y where each pair of related points (x;,y;) of
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one line has the same parameters a and b. One problem arising by using the parameters a and
b is that a approaches infinity as the line approaches vertical direction. In order to cope with
this the representation of the line is changed to x * cos(0) + y * sin(f) = p with the parameters
f and p where 6 represents the direction of the line and p the distance from the origin. These
parameters are again the same for all points of a single line. In case the line’s equation is not
given and has to be found the property of similar parameters p and 8 for points belonging to a
line is used. A parameter space is introduced and for each detected point of an edge map the
possible combinations of # and p are noted. Each of these combinations is used as a vote for this
line parameter. After processing all the pixels of the edge map the parameter space consists of
votes for all possible lines based on the edge map. All the pixels lying on the same line voted for
the parameter combination representing this line. A local maximum in the parameter space for
the lines property manifests this. Searching the local maxima of the parameter space leads to the
most probable lines in the image.

The same procedure is also possible for geometric shapes of higher complexity. As the complexity
increases also the parameters necessary to represent the object increase. Circles by example are
represented by three parameters, their radius and the two coordinates of their center. Elipsoides
are represented by four parameters, their center coordinates, the alignment angle and their prin-
cipal axes length. As the number of parameters increase the parameter space increases and the
complexity of the Hough transformation grows exponential. Due to this ways to decrease the
number of parameters are searched.

In case of circle detection a known radius leads to a reduction to a two parameter problem for
example. Other ways to reduce the complexity is the usage of edge detectors which output the
direction of the edge (compare 2.1.2). As the line of a circle is orthogonal to the radial direc-
tion in every point the information about the direction of the edge in the related pixel can be
used to plot the line on which the center of the circle must be. This simplifies the problem of
circle detection again to a problem of two parameters. However, due to errors in edge direction
detection (quantization errors) not even the parameter lines of the Hough transformation of a
perfect circled edge map cross in one point. In case of erroneously detected edges this behavior
is even boosted. The influence of the size-limited edge detection operators is minimized with the
approach to determine the direction of the radial line in one point post and separated from the
edge detection [SPV05]. The proposed methodology uses the final (loop-closed and filtered) edge

Figure 2.5: Example window along the edge line (727 pizel)

map of an image to detect the circles in the image. The errors due to wrong detected edge points
and errors caused by the small size of the edge detector and the related quantization error are
minimized by using a separate window around each pixel of the detected edge (compare Figure
2.5 for an example of such a window). For each quadratic window of uneven side length the
containing edge is examined. If the edge segment equates a straight line, the the pixel is not
used for determination of the circle as the line segment is not a valid segment of a circle. In
case the segment equates an arc the two extreme pixels are used to determine the direction of
the radial line which is then registered in the parameter space similar to the methods described
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above. This modification of the Hough transformation leads to better and more accurate results.
Still not all the radial lines intersect in the same point. Figure 2.6 shows the parameter space.

Figure 2.6: Parameter space

Also the detected edge, which is basis for the Hough transformation, is plotted. Figure 2.7 shows
the regions within the square in Figure 2.6 in detail. The circle around the knoll in the middle is
the related detected edge in the square in Figure 2.6.
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Figure 2.7: Detailed view of the parameter space
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2.2 Trajectory Prediction

Predicting the future has always been a challenge for mankind. Predicting the future trajectory
of a flying object is a very well researched field. One main driving force for this is the military
application in form of ballistics. The prediction is always based on a known set of parameters
of a model on which the trajectory calculation is based. Different related models take different
forces that influence the flight into account. As the number and complexity of considered forces
increases, also the calculation complexity of the trajectory increases. The first part of this section
is focused on the forces that influence the flight [5] and introduces common models. The second
subsection will deal with ways to find the ideal trajectory for a given set of positions.

2.2.1 Models for Trajectory Calculation

In order to calculate or estimate the behavior of a given object the objects behavior is observed
first. Then a model for the behavior is introduced and the accuracy of the model is validated by
comparing experimental results with calculation of the model. If the model does not describe the
behavior well enough the model is refined. Basically all physical laws are built up on this and in
case unexplainable behavior is found new models are searched.

This is also valid for the calculation of trajectories. The main forces that are used to model the
flight of a small projectile are shown in Table 2.4 [5].

’ Mass Forces \ Aerodynamic Forces ‘
Gravity Drag
Coriolis Force Lift
Centrifugal Force Magnus

Pitch Damping
Transversal Magnus

Table 2.4: Forces influencing an objects flight

The most simple model is a model only taking the gravity into account. Calculation based on this
model can be done in each spatial direction separately. The equations in case of an 3D system
and alignment of the z-axis with the direction of the force of gravity are

vz (t) = vg0 (2.1)
vy(t) = vyo
'Uz(t) =v,0+g*xt

where v;y equates the initial velocity in direction 7 and g equates the acceleration by gravity. The
resulting position as a function of time in each direction (z(t), y(t), z(t)) are

x(t) = 2o+ vg0 * t (2.4)
y(t) =yo + Vyo * t
2(t) = 20 +va0 xt + g t*

This model is suitable for very slow movements. When dealing with higher object velocities the
aerodynamic drag force F has a significant influence. The model for the drag is a quadratic one
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and the equation describing the drag force on a moving object is

vV prey kA

2
2.7
v e (27)

which is depending on the velocity v, the air density p, the air drag coefficient ¢y and the cross
section surface of the object A. This force is nonlinear dependent on the velocity and therefor it

is not possible to consider the spatial coordinates separately. The flight trajectory is described
by

A
V:—%*\v\*v (2.8)
g=10,9,0] (2.9)
a=v+g (2.10)

= /; a* dt (2.11)

t
p= po—i—/ v ok dt (2.12)

t t A
P=P0+/ [Vo-i-/ (g—p*cw**|v|*v>*dt]*dt (2.13)
7=0 =0 2*m

where p is the position in 3D space, g is the gravity constant g put into a vector where the
alignment of g is considered. 0 as index expresses the initial value of this variable. Due to the
nonlinear properties the velocity can only be computed iterative as no closed solution exists. In
order to enable this computation Equation 2.11 is approximated with

k
v:vo—l—Za(n*t)*At (2.14)
n=0
A
a:g—ﬂ%%%—*M*v (2.15)

and Equation 2.13 is approximated by

k
p:po—l—Zv(n*t)*At (2.16)
n=0

Where At is the time interval between two calculations. The smaller the time step At is the
smaller the errors the better the model resembles the real flight. As a, v and p have to be
calculated for each instant it is more effective to calculate all three variables in one step for each
instant recursive. This results in the following equations for the calculating the models trajectory

a; = |v | s« kx [vy? (2.17)
A

kzﬁggg— (2.18)

Vitl = Ve +ag x dt (2.19)

Pi+1 = Pt + Ve x dt (2.20)

With the air density p, object air drag coefficient ¢y, cross section surface A, object mass m
and object velocity v. Nonlinearity of this model and the property that the flight can not be
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described for each spatial coordinate separately complicates the application of this model in case
the initial parameters of the flight (v and cyy) are not known. Estimating these parameters from
a set of measured flight positions of a thrown object is very hard as the initial parameters have to
be approximated and the positions can only be calculated afterwards. After comparison of these
calculated positions with the measured ones the applicability of these set of initial parameters
can be evaluated.

Based on the model described above it is also possible to separate the movement along the spacial
directions [BFKO08] which introduces small errors but simplifies trajectory calculation. Therefore
the movement along each direction is described by the following equations in case gravity is
aligned with the y-direction:

by = —k 2 k)2 (2.21)
|vz|
by = =k —L %02 4 g (2.22)
vy
by = —kx 2 k0 (2.23)
v, |

Using this separated model for the flight introduces an error as the influence of the air drag
is nonlinear. This error is in scope in Section 4.3 The magnitude of the error depends on the
proportion between the velocity components. In case the movement is aligned with one spatial
direction no error is introduced. Due to gravity this circumstance is only valid for a movement
in direction of gravity. As this is not the case in general this error has to be considered.

2.2.2 Fitting the Trajectory into the Measured Data

Compared to the military aspect of trajectory (and impact position) forecast mentioned in the
introduction of this subsection the problem of finding the impact position in this particular
case differs by the fact that the initial launching (velocity, position) parameters are not known.
Information about the flight of the thrown object is only available throughout the flight. This
fact demands that the prediction is based on the measured positions over time or that the impact
position prediction is based on initial parameters which still are derived from the position of the
object over time.

The number of positions acquired through out the flight is by far greater than the order of the
polynomial model used or the number of parameters used to describe the flight trajectory. Due
to this it is generally not the case that the fitted trajectory corresponds with the determined
positions exactly. A trajectory minimizing the related error function has to be found. One
common error function [LS86] is shown in Equation 2.24 where E(p) is the error function which
is dependand on the found polynomial (p(z;)) and related data (f;).

N
E(p) = [p(x:) — £ (2.24)
i=0
This approach was named method of least squares by Lagrange and is widely used for fitting-
tasks. Algorithms to solve this minimization problem are available for linear as well as nonlinear
problems. Linear and nonlinear in this regard means that the coefficients of the equation chosen
to model the data is linear (or nonlinear) in the coefficients. While the linear least square ap-
proach is used for fitting the polynomial model presented in Section 4.1 the nonlinear leas square
approach is used for fitting the spatial separated model presented in Section 4.3.
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2.3 Prediction Accuracy Determination

Taking a look at the target application of the trajectory prediction the goal is to establish a fast
and reliable transportation system (compare Chapter 1). The natural quality measure for such
a system is the catching or drop rate. Factors affecting this parameter are the throwing device,
thrown object, catching device and prediction algorithm. As the prediction algorithm is one of
the influencing factors the catching rate can be used to evaluate it’s applicability. In order to
establish this a catching device [FBWW™07] and positioning equipment similar to a gantry robot
[BFKO8] is necessary. Figure 2.8 shows these two components used by Barteit. Based on this

- ) ?

f

/

- )

Vs

QU

Figure 2.8: Catching device and positioning equipment (gantry robot); Source: Barteit [DBP09]

equipment the binary information caught/not caught can be used to calculate the catching rate.
The remaining influence factors are the throwing device, thrown object and catching device.
As only the catching device is not required to throw an object excluding it’s influence on the
evaluation results in a higher dependency on the prediction algorithm. Also Barteit (in [DBP09)])
states that metering the prediction algorithm based on the catching rate is not well suited to
outline the precision of the prediction as an increased size of the catching device easily improves
the catching rate. He also presents a way to use a ensemble of light barriers and a video camera
(Figure 2.9) to determine the position of a thrown object within a pre-defined plane and calls it
a non-invasive position detection. Downsides of this method are that the behavior of the light
barriers can not be modeled simply and that the lag of the optical system introduces a further
error. Another downside is that a tennis ball passing through the detection plane between two
light barriers is detected later as the ball needs to move further through the frame in order to be
detected. The final accuracy of this system is estimated by 1 mm. The system used as position
verification system in this work is similar to the one used by Barteit but does not allow the thrown
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Figure 2.9: Camera used to detect trajectories interception with a plane; Source: Barteit [DBP09]

object to pass through the measuring plane thus it is an invasive position detection. The system
used is described in detail in Section 5.1.
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3 Setup for Video-Based Feature Extraction

This chapter deals with the setup of the equipment used to predict the interception position. The
environment for the prediction consists of a throwing device and a position verification system.
These two systems build the base for the research and experiments regarding the prediction. The
sensor system used for acquiring the necessary data to predict the future flight of the tennis ball
consists of a stereo vision system based on two separate cameras. This stereo vision system is
described in detail in the following Subsection 3.1. Using image data from cameras to measure
objects positions or sizes requires calibration of the vision system. Out of this calibration data the
positions of the two cameras relating to each other is extracted and the properties of the cameras
(lenses and image sensor) are determined. Section 3.2 deals with this calibration in detail and as
the calibration of the verification system described in Section 5.1 is done simultaneously based
on the same data also Section 5.1.2 deals with this topic.

Feature extraction of the image data (Section 3.3) as well as stereo triangulation (Section 3.4)
close this chapter.

Prior to dealing with the further details of the setup the external parameters have to be clarified.
The distance between the throwing device and the position detection plane is set to equal 3 m
in order to allow comparison of the prediction results with prior-done, cooperative work [BFKOS§]
based on a monocular approach. The velocity of the ball as a second parameter has to be
approximately 10 m/s. Variation of this velocity is desired in order to check the prediction
algorithms usability in a broader range. A hand operated throwing device which is shown in
Figure 3.1 fulfills these requirements and is used for the work described in the next chapters.

Figure 3.1: Simple throwing device

Basic informations about the flight parameters of the thrown ball and the throwing device permit
to start with the description of the vision system in detail in the following section.
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3.1 The Stereo Vision System

Vision systems offer a cost-effective way to acquire a huge amount of versatile of data. Extracting
the information of interest on the other hand is a tough task. Prior to this extraction the camera
has to be positioned appropriately.

Different requirements on the main attributes (frame rate, resolution, interface, price) are dis-
cussed. Also the selection of a suitable lens, containing a discussion of advantages and disadvan-
tages of different focal lengths, will be topic of subsection 3.1.2.

The basic coordinate system also called world coordinate system is introduced in Figure 3.2. In

Catching plane

image sensor

T \

Throwing device

Area sensor

Figure 3.2: World coordinate system

order to align the x- and y-axis of the verification system with the x- and y-axis of the world
coordinate system and respect the orthogonal property the the z-axis of the world coordinate
system has to point away from the throwing device.

3.1.1 Camera Position Discussion

Basically stereo vision systems can be classified in divergent, parallel and convergent vision sys-
tems. This classification takes the direction of the optical axes in account. A main difference
is lying in the overlapping visual field which is shown in Figure 3.3. Judging from Figure 3.3 a

Figure 3.3: Divergent, parallel and convergent visual fields
divergent system can be excluded from further discussion as a overlapping of the visual field is

necessary for the tracking of the ball as the information of the right and the left picture have to
be merged into a 3D position information. Parallel systems have the advantage that keystone
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distortions which occur when using divergent or convergent vision systems do not occur [11].
Keystoning is related to the twist between the two optical sensors of the vision system. It is spe-
cially a disadvantage when stereo vision systems are used to create distortion free 3D images. In
the context of this work where the center of an spheric object has to be obtained from the image
data this effect can be neglected. When discussing the lateral distance between the two cameras
the later application of stereo triangulation (Chapter 3.4) has to be taken into account. The basic
concept is that two light rays from an object feature to the respective cameras are intersected
(Figure 3.4). With known camera positions the position of the object feature can be determined.

Figure 3.4: Resulting measurement error for three different lateral camera distances

The angle between the two light rays has an influence on the impact of small measurement or
digitalization errors. Figure 3.4 illustrates three different camera distances and the impact of a
small miss measurement of one ray’s direction. The best error rejection is accomplished when the
rays intersect at an angle of 90 degrees [SSLO1]. Moving from a two-dimensional model in Figure
3.4 to a three-dimensional model, which resembles the target application, it is obvious that the
movement of the ball along the more than 3 m long trajectory makes it impossible for a fixed
camera setup to fulfill this condition. It is still possible to incorporate this condition in a different
way.

By projecting the ball position onto the xy-plane, which is equal to the catching plane, the prior
mentioned condition can be fulfilled again. This means that the cameras x- and y-cooridnate
are related in a way that the cameras focal points and the expected position projection form a
perpendicular triangle. As the projection of the balls position onto the catching plane moves and
the accuracy in the final flight phase is more significant than in the early flight phase the cameras
are related to the expected impact position of the ball, which is determined by averaging over
multiple throws.

This conclusion fixes the position of the cameras in two dimensions (x-position and y-position are
related) but still raises the question about the position in the z-direction. When taking Figure 3.3
into account a position behind the catching plane (positive z-coordinate) leads to a visual field
which contains the ball during the complete flight, maximizes the visual field and as a result also
the time of observation. Keeping the application in mind a catching device has to be positioned
in the catching plane in order to catch the thrown object. If this movement is in the area of the
visual field of the camera it might influence the object detection and disturb the interception po-
sition detection. Positioning the cameras in the caching plane is realistic for the goal application
as the area behind the catching plane (seen from the objects origin) will most probably be used
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to process the object.

The final mounting positions of the cameras are shown in Figure 3.5. As the cameras are mounted
approximately 370 mm above the average impact position on the plane the distance between both
cameras is approximately 750 mm in order to obtain the orthogonal ray intersection rule described
above. The exact positions and relation of the two cameras obtained during the camera calibra-
tion and used for stereo triangulation is presented in Table 3.8 for full resolution and Table 3.10
for halve resolution.

Figure 3.5: Camera positions

3.1.2 Camera and Optics Selection

A broad range of industrial cameras (Figure 3.6) is available commercially. Models differ by

Figure 3.6: Sample industrial camera
their main properties, namely color space, frame rate and triggering, resolution, interface, optical

interface and price. These properties and their influence on the attainment of the task set up in
Section 1.2 are discussed below.
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One key advantage of a color camera for using it to obtain the position of a thrown tennis ball is
that the color of the tennis ball significantly differs from usual backgrounds. The intense yellow
allows better recognition of the ball than in a black/white image. The downside on the other
hand lies in the triple amount of data which has to be transfered from the camera to the host
system. Interface bandwidth constraints limit the product of frame rate, resolution and color
information.

Cameras with frame rates ranging from 20 to more than 1000 frames per second are available.
Using higher frame rates increases the information density (in this context the number of frames
per throw) but the bandwidth requirements as well. The theoretical bandwidth limit of cameras
connected to the USB Bus is 40 MB/s which is the net bandwidth of the USB 2.0 specified 480
Mb/s.

Another attribute influencing the bandwidth requirements of the camera interface is the image
resolution. Industrial cameras with resolutions of up to 2560 x 1920 pixels are available commer-
cially. Multiple techniques are used to reduce the native resolution of a camera. One common
way is by consideration of an area of interest only which reduces the field of view by the same
magnitude as the resolution. The number of pixels per meter at a given distance from the camera
is not influenced at all, only a subsection of the native sensor pixels is read out. Another common
way to reduce the resolution is called binning. The combination of information from multiple
pixels is used to capture an image at lower resolution. The field of view is not altered in this case
but the number of pixels per meter at a given distance is reduced by the same factor as the reso-
lution. The third common way for resolution reduction is subsampling. Some pixels are skipped
during sensor read-out and the remaining pixels information is sent to the host system. Similar
to binning the field of view is not altered but the resolution is changed. Resolution reduction
enables to study the impact of the resolution on the prediction result.

For synchronous stereo image acquisition a common trigger mode is necessary. Using an external
hardware trigger allows synchronous acquisition as well as small step frame rate scaling analysis
(Section 5.2.2).

Selecting a suitable image resolution also has to be done based on the trade-off between inter-
face bandwidth, price and information density on the other hand. In relation with the interface
bandwidth also the higher price of higher resolution and/or higher frame rate cameras has to be
mentioned. Also the selection of the lens has to be considered here. The combination of the lens
with the sensor has to ensure that the size of the tennis ball on the throwing device as well as in
the final part of the flight is a reasonable number of pixels.

Industrial standard interfaces are USB, Firewire, Ethernet, Cameralink and many more. These in-
terfaces differ by their maximum bandwidth, price, usability for streaming applications like video
transmission. USB is by far the most common interface but has downsides regarding streaming
applications as well as the maximum bandwidth. Firewire is more video-oriented but the market
penetration regarding industrial cameras is very low. This results in a limited amount of choices
of Firewire cameras. Ethernet interface is a common interface for communication applications
and also used for industrial video transmission. Advantages in regards of the bandwidth are
countered by disadvantages in cost and the fact that similar priced Ethernet versions of USB
cameras use the same internals and have similar bandwidth restrictions as USB cameras.
Regarding the optical interface two types dominate the industrial market. These are C and CS
interfaces. CS-mount offers small size and lower wight but also lower light sensitivity. The range
of available C-mount lenses outnumbers the number of CS-mount offers. For low focal lengths
(lower than 6 mm) only the smaller CS-mount objectives are available.

Based on the arguments presented above the pEye UI-1220SE-M-GL cameras was chosen to build
up the stereo vision system. The main properties of the camera are shown in Table 3.1. After
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Color space monochrome
Interface USB 2.0
Resolution 752 x 480 pixel
Resolution reduction binning
Sensor size 1/37
Maximum frame rate 87 fps
Focal length ~ 6 mm

Trigger sources

Software, Hardware

Lens interface

CS-mount

~ 440

Price (EUR)

Table 3.1: Properties of the selected puEye UI-1220SE-M-GL

selecting the cameras for the stereo vision setup the lenses can be selected. The main parameter
of a lens is the focal length which influences the relation of object size, object distance and image
size. Other parameters are the distortion, supported sensor size, maximum aperture and many
more. Based on the image size of the used camera (Table 3.1) the field of view of lenses with
different focal lengths are shown in Table 3.2. These data is based on a working distance of 3 m

Focal length | angle of aperture | min. observable z-distance Ball size
(mm) (°) (mm) (pixels on TD)
4,2 64,8 193 138
6 44,1 448 282
6,5 40,5 507 330
8 32,7 670 501
8,5 30,7 720 566

Table 3.2: Impact of different focal lengths on image size and field of view

and a camera position 370 mm above and with 370 mm lateral displacement from average impact
position in case the ball impacts on this average position. The left boundary of the right cameras
field of view is aligned with the left border of a 500 mm wide window including the throwing
device. This is valid for the right boundary of the right camera with the right border respective.
Increasing distortion with decreasing focal length also has to be considered. A 6 mm Pentax lens
was chosen and is used for both cameras throughout the presented work. This lens offers a large
field of view (up to ~ 450 mm from the impact position detection plane) and a suitable number
of pixels of the tennis balls image at it’s largest distance from the camera (in 3 m distance at the
throwing device). Lens specific properties are shown in Table 3.3.

Name H612A(KP)
Category 1/27
Focal Length 6 mm
Mount C
Weight 125 g
Price EUR 159

Table 3.3: Pentax 6 mm focal length lens specification
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3.1.3 Software-Interface, Triggering and Illumination

The reference software "uEye Demo” provided by IDS allows to access all parameters of the
camera. Starting with the specification of the USB Bus and the pixel clock as a main attribute.
This pixel clock equals the bandwidth the cameras uses to send image information. The limiting
factor is the USB Master the camera is connected with. In case of the used PC workstation
(detailed specification in Table 3.4) which is based on the AMD Phenom X4 processor and AMD

Mainboard ASUS M3A78-T
Chipset AMD 790GX
CPU AMD Phenom X4 9750
RAM 4 GB DDR2 1066
HDD 3x Western Digital Caviar Blue 80GB RAIDO
Graphics ATT HD 3300 (primary)
ATT X1650 (secondary)
Operating system Windows XP Professional SP 3
uEye Software uEye 3.32

Table 3.4: Specification of the used PC workstation

790GX Chipset the pixel clock could be set up to 39 MHz which is 1 MHz short of the maximum
which also means that 39 MB/s of the theoretical maximal 40 MB/s are used. This could only
be achieved after each of the two cameras was connected to one of the two separate USB-root
hubs. Also automatic CPU throttling (AMD Cool’'n’Quiet) had to be disabled on the board in
order to maximize the available bandwidth on the USB-bus. A screenshot of the software is
shown in Figure 3.7. The screenshot shows a live image acquisition and the camera interface

[& e el ' "B’Erﬂ]
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' uEye Demo - U 22xch - ID: 1 - SerlNo.: 4002707332 X
Tigger | Input/Output | HDR AES /AGC | AwB Miscellaneous
Info Camera Image Size Format Calor Hardware LUT
Tiring

Camera peak bandwidth: 45.2 MB/s
Camers average bandnidth: 31.3MBs
Sensor (max. bandwidth) 38.0 MP/s

Fivel clack TE =
Dlptimum 5y, 0 MHz

Auto pivel clock test periad (5] |5
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[CJHeld 0082 ms 1273 me

Raw 8 (752 x 480) Frames: 78650 Display: 76215 Faled: 1 Recon: 0 Transfer: OK FPS: 78,51

Figure 3.7: Sample screenshot of IDS "uEye Demo” software

properties. Other main parameters which were set up in the software are shown in Table 3.5.
Triggering of both cameras has to be synchronous. The only possibility to do so is to trigger both
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Exposure time (ms) 0.415
Master gain 1.0
Triggering Hardware (rising edge)
Pixel format Direct raw data (Y8) / Hardware

Table 3.5: Camera setup - video parameters

cameras by hardware as shown in Table 3.5. Due to problematic hardware interfacing addition
external hardware is used to trigger both cameras. This hardware consists of a ATMEL STK-500
starter-kit and a AT90L.S4433 microcontroller to execute the triggering. The software running
on the microcontroller allows to select frame rates of 50, 60, 70, 80, 100, 120, 140 and 160 fps.
Two different versions are used to ensure a high accuracy over a range of 50 to 80 fps and 100 to
160 fps respective. By pressing a button an individual impulse is output to the cameras and the
reference background image is acquired (compare Section 3.3.1). Pressing the button for a second
time starts the continuous impulse output at the preset frame rate / frequency. The starter-kit
including the cabling using specific trigger connectors [3] provided by IDS is shown in Figure 3.8.
For both cameras one instance of this dialog is started an the individual files created. After

Figure 3.8: Starterkit and trigger wires

putting both instances in the recording mode first the reference frame is recorded and afterwards
the video acquisition is started. If the USB bus is saturated and frames are dropped the number
of dropped frames is displayed in the dialog. Only video data without dropped frames was used
for the evaluation of the prediction algorithm presented in Chapter 4.

By using addition light (4x 500 W floodlights, compare Figure 3.5) usage of the short exposure
time of 415 us (Table 3.5) is possible. Motion blur effects are invisible and negligible. Sample
images captured with the right and left camera are shown in Figure 3.9. Based on these images
the feature extraction described in Section 3.3 is done and the center of the ball in the image is
detected. Stereo triangulation (Section 3.4) leads to the position of the ball in space which is the
basis for the prediction algorithms (Section 4) to work on. But prior to the further processing
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Figure 3.9: Right and left sample image

of the information the stereo vision setup has to be calibrated in order to obtain the parameters
necessary to use it for spacial measurements.

3.2 Camera Calibration

Using cameras to meter object’s sizes or object’s positions requires knowledge of the parameters
of the cameras. Parameters of the camera model are called intrinsic parameters [2]. The internal
parameters of the model used in the Camera Calibration Toolbox for Matlab [2] are:

e Focal length
e Principal point
e Skew coefficient

e Distortions
while the extrinsic parameters are:

e Rotations

e Translations

The intrinsic parameters describe the relations between the objects in the visual field of the
camera and the resulting image. Extrinsic parameters describe the relation between separate
coordinate systems with reference to the camera internal coordinate system (aligned with the
plane of the image sensor) by using a rotation and a translation operation. Extrinsic parameters
are also used to describe the relation between the two cameras of the stereo vision setup.

In order to determine these parameters the Camera Calibration Toolbox for Matlab [2] is used.
This toolbox, similar to other toolboxes available, calculates these parameters based on a num-
ber of images taken from a reference calibration sheet (shown in Figure 3.10). Looking like a
chessboard, the calibration sheet allows to extract the corners of the pattern in the image au-
tomatically. Based on the four extreme corners in combination with the known dimensions of
the pattern (compare Figure 3.12) and the extracted corners (compare Figure 3.13) in the image
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Figure 3.10: Calibration sheet

the relation of the calibration sheet to the camera is calculated. The first calibration step is
initialization which is followed by nonlinear optimization. The nonlinear optimization minimizes
the total reprojection error (in the least squares sense) over all calibration parameters [2]. There
are 9 intrinsic parameters (2 for focal length, 2 for principal point, 5 for distortions, skew is not
calculated) and 6 extrinsic for each calibration sheets. In order to minimize the error of this
calculation a larger number of images of the calibration sheet in different positions has to be
used. This first calibration step which is done for each camera separately yields in the intrinsic
parameters of the camera and the extrinsic parameters of each of the 67 calibration sheets. Gra-
dient descent optimization is used to find the optimal set of 411 parameters.

Merging two calibration sets based on images of the respective calibration sheets as seconds step
of the calibration results in optimized intrinsic parameters of both cameras (as the additional
information of the second camera is used to minimize errors) and the extrinsic parameters of
the two cameras related to each other. Also this information is obtained by gradient descent
optimization and is the key to use a stereo vision setup to measure dimensions or positions of
objects.

Following the calibration of the stereo vision system is described in detail based on the full res-
olution. For the scaling analysis presented in Section 5.2.2 a second calibration for the reduced
resolution of 286 x 240 pixel is necessary. The result of this second calibration are presented in
Section 3.2.2.

3.2.1 Calibration at Full Resolution (572 x 480)

The quality of the calibration is one important factor on the measurement results acquired by a
stereo vision setup. If more calibration sheets are used the parameters of the vision setup can be
calculated more exact. But not only the number of calibration images is the key to a high quality
result. The positions and rotations of the calibration sheets in the visual field of the cameras
have to be as variable as possible in order to extract the parameters on a large set of data.
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In order to speed up the acquisition of the calibration images two calibration sheets were used per
picture. Each picture was then used twice for the calibration, once based on the right calibration
sheet, the other time on the left sheet. As the images of the calibration sheet of the left and right
camera have to be related both images were taken at the same instant via the hardware trigger of
the cameras. Figure 3.11 shows the related right and left image of two calibration sheets. Overall,

Figure 3.11: Set of related calibration images

images of 67 calibration sheets in different positions were taken for the camera calibration. 56
of them were similar to the images shown in Figure 3.11 while 11 images were especially used to
calibrate the verification system as well. This extended calibration is topic of Chapter 5.1 and
especially Section 5.1.2. These 11 images can be considered like the remaining 56 images at this
stage.

The corner extraction function of the calibration toolbox demands the user to manually select the
four extreme corners of the calibration pattern. Within a window of selectable size the toolbox
searches for the corner. Inputing the the number of squares along each direction results in lattice
drawn on the calibration sheet. This lattice is shown in Figure 3.12 and purely based on the four

Figure 3.12: Lattice of corner extraction

extreme corners and the number of squares along each direction. As a second step each local
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window around the crosses of the lattice (in Figure 3.12) are processed and the real corner of the
calibration pattern is found. These real corners are shown in Figure 3.13.

Figure 3.13: Extracted corners

The displacement between the real corners and the corners of the lattice the position of the cali-
bration sheet in relation to the camera is calculated. The result of this calculation for the image
presented in Figure 3.13 and Figure 3.12 is shown in Figure 3.14. Repeating these steps for all the

Extrinsic parameters (camera—centered)

100
E o
> -100 -1000
~*o0 0 Vo< -200
100°
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Figure 3.14: Relation of the calibration sheet to the camera

images of the calibration pattern results in a dataset containing all the positions of the patterns

related to the camera.

The intrinsic parameters of the left and right (processed exactly like the left camera) camera
extracted are shown in Table 3.6. The numerical errors presented are approximately three times
the standard deviations (for reference). The separate sterco calibration function of the Camera
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Left camera

Right camera

Focal Length
(Numerical errors)

[ 1036.44268 1032.95088 |
(£ [5.23336 5.43448 ])

[1022.05361 1019.83780 ]
(+ [ 4.61866 4.75193 ])

Principal point
(Numerical errors)

[412.10509 254.37995 |
(£ [10.16412 9.78845 |)

[392.06675 245.59170 |
(£ [ 9.19424 8.40561 |)

[0.00000 ]

(£ [ 0.00000 ])
[—0.21793 0.19177 0.00000 ]
(£ [ 0.01402 0.07958 0.00000 ]
[0.00050 0.00220]

(£ [0.00141 0.00151])

Skew
(Numerical errors)
Radial distortion
(Numerical errors)
Tangential distortion
(Numerical errors)

[0.00000 ]

(< [ 0.00000 ))
[—0.20737 0.26752 0.00000 ]
(£ [ 0.01675 0.11394 0.00000 |
[0.00126 0.00193 |
([ 0.00177 0.00193 |

Table 3.6: Intrinsic parameters of left and right camera at full resolution

Calibration Toolbox for Matlab allows to merge the two calibration sets into a common calibration
for both cameras. The positions and rotations of the 59 camera calibration patterns are used to
calculate the translation and rotation of the two cameras relating each other. Also the calibration
of each individual camera is refined as the calibration pattern position information acquired by
the second camera is used as well. Figure 3.15 shows the merged calibration of both cameras.
Table 3.7 presents the refined intrinsic parameters after the stereo calibration. The main result

Extrinsic parameters

300

Y (mm)

0 Z (mm)

X (mm)
Figure 3.15: Extrinsics of the stereo vision system

of the stereo calibration process are the external parameters of the stereo vision system. These
parameters (rotation vector, and translation vector of the right camera with respect to the left
camera) are shown in Table 3.8. Calculating the absolute distance between both cameras based
on the translation vector presented in Table 3.8 results in 718.1 mm. Since it is not possible to
measure the distance between the two focal points of the camera, only an approximate measure-
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Left camera

Right camera

Focal Length
(Numerical errors)

[ 1025.28304 1025.33307 |
(£ [1.07529 1.16229 ])

[1031.19881 1029.85177 ]
(+ [ 1.08098 1.09165 ])

Principal point
(Numerical errors)

[ 381.88962 263.95085 |
(£ [ 4.75023 3.09774 ])

[391.69785 250.41588 |
(£ [ 4.60140 2.46275 ])

Skew
(Numerical errors)
Radial distortion
(Numerical errors)
Tangential distortion
(Numerical errors)

[0.00000 ]
(< [ 0.00000 ))

[ —0.17337 0.02097 0.00000 |
(= [ 0.00992 0.06372 0.00000 |
[0.00073 —0.00032 |
(= [ 0.00059 0.00080

[0.00000 |
(£ [ 0.00000 ])
[—0.19688 0.10876 0.00000 |
(£ [ 0.00863 0.05218 0.00000 |
[0.00091 0.00059]
(+£ [0.00041 0.00072])

Table 3.7: Refined intrinsic parameters of left and right camera after stereo calibration at full resolution

Rotation vector
(Numerical error)
Translation vector
(Numerical error)

[ 0.00561 0.68419 0.44573 |
(£ [ 0.00417 0.00522 0.00116 ])
[ —658.22332 —132.96479 254.48412 |
(£ [ 1.07866 0.57657 2.55960 |

Table 3.8: Extrinsic parameters (position of right camera wrt left camera) of the stereo vision system at
full resolution

ment of the distance between both cameras is possible. This results in a estimated distance of
720 mm which means that the result of 718.1 mm is plausible.

3.2.2 Calibration at Halve Resolution (286 x 240)

The scaling analysis presented in Section 5.2.2 compares prediction results based on the full
resolution of 572 x 480 pixel with results based on a reduces resolution of 286 x 240 pixel. This
resolution reduction is done on the camera on hardware level and based on binning (compare
Section 3.1.2). As lower resolution cameras are available for a lower price their usability shall
be examined. Another advantage of the lower resolution is the higher frame rate at which the
camera is able to operate.

In order to provide realistic results for the prediction based on the lower resolution also the
calibration has to be done at lower resolution. Quantization errors of the calibration are bigger
if the camera resolution is lower and this is also valid for a decreased resolution. The calibration
is done exactly like the calibration at full resolution. The final calibration results are presented
in Table 3.9. and Table 3.10. The positions of both cameras were not changed between the
calibration at full and at halve resolution but it was not done consecutively. This also means
that the extrinsic parameters of both calibrations should be nearly identical which is also the case
(compare Table 3.8 and Table 3.10). Comparing the results of the calibration at full resolution
(Table 3.7 and Table 3.8) with the results at halve resolution shows that the decreased resolution
yields in small differences. Intrinsic values for focal length and principal point should be exact
the halve of the values in case of full resolution which is not the case. Still the discrepancy is
minor. The difference in the extrinsic parameters is minor as well. For comparison the distance
between the two cameras focal point is determined with 717.9 mm compared to 718.1 mm in case
of full resolution.
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Left camera

Right camera

Focal Length
(Numerical errors)

512.45225 512.84476
+ [ 0.65581 0.70583 ]

514.81884 514.88947
+ [ 0.64409 0.64786 ]

Principal point

[ ]
( )
[194.51067 126.75595 ]
(£ [ 2.73538 1.42494 ))
[0.00000 ]

(£ [ 0.00000 ])
[—0.19670 0.10606 0.00000 |
(= [ 0.00990 0.05739 0.00000 |
[0.00058 0.00049)]

(< [0.00051 0.00087])

[ ]
( )
[191.95978 137.66740 |
(+ [ 2.85776 1.89180 ))
[0.00000 ]

(< [ 0.00000 ))
[—0.17389 0.01075 0.00000 ]
(£ [ 0.01504 0.11237 0.00000 |
[0.00095 0.00069 ]

(£ [ 0.00076 0.00096 ]

(Numerical errors)
Skew
(Numerical errors)
Radial distortion
(Numerical errors)
Tangential distortion
(Numerical errors)

Table 3.9: Refined intrinsic parameters of left and right camera after stereo calibration at halve resolution

Rotation vector
(Numerical error)
Translation vector
(Numerical error)

[ —0.00259 0.68639 0.44953 |
(£ [ 0.00485 0.00601 0.00149 ])
[ —658.26997 —133.46864 253.43374 |
(£ [ 1.33864 0.65798 3.02970 |

Table 3.10: Extrinsic parameters of the stereo vision system at halve resolution

3.3 Feature Extraction

In the context of this work, feature extraction deals with determination of the tennis balls center in
the image. In order to obtain this task the moving tennis ball has to be detected in the image and
the balls center calculated. The first task is topic of the following subsection. The implementation
of the ball detection based on a simple background subtraction including a threshold detection
of changed image information will be presented as well as the more advanced following edge
detection based on the resulting image. Further processing of result of this edge detection, the
edge image, which is used to determine the midpoint is topic of Subsection 3.3.2. This center
calculation is based on Hough transformation (compare Section 2.1.3) and allows also precise
computation of the center in case parts of the ball have not be extracted from the image.

3.3.1 Ball Extraction and Edge Detection

Different techniques of feature extraction of moving objects exist as stated in Section 2.1.1. For
the presented task the usage of a background model outclasses alternate frame differencing due to
the lapse of ghosting and the relatively constant background and illumination. A single captured
image without the ball on the throwing device is used as most simple background model. In
order to deal with long term instabilities of the background the background image is captured for
each throw directly before the ball is thrown. This is also possible in the target application as a
catching station has to be notified about request of an origin station before the actual throw can
take place. Acquiring the background image is implemented in the triggering hardware (compare
Section 3.1.3). A sample background image of the left camera is shown in Figure 3.16.
Subsequently to the capturing of the background image the images of the actual flight of the ball
are acquired. An example series of image is shown in Figure 3.17. Each of the flight-images is
processed in the same manner. First the background image is subtracted and the absolute value
of the difference is stored. This operation is done on the gray scale image delivered from the
camera and results in an image that only contains the differences to the background image. As
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Figure 3.17: Series of images captured during the flight; note ball at the bottom of each image

the tennis ball is moving inside the visual field of the camera the altering of the optical properties
result in a detection of the ball. Due to noise in the image acquisition on the image sensor
and small illumination changes also the other pixel of the image, which are not related to the
tennis ball, contain nonzero data. In order to reject this noise a constant threshold is used to
clip each pixel either to completely black (if below the threshold) or white if its value is above
the threshold. The information loss of the black/white image in comparison to the gray scale
image does not affect the further processing as it only the the center of the tennis ball is of
interest and the different brightness of the bails areas does not need to be considered. Sample
pictures including the difference image as well as the images past the threshold operation with
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different thresholds (ranging from 3 to 70 of 255) are shown in Figure 3.18. In case the difference

Figure 3.18: 1) 3x Boosted difference image and images after the threshold operation with a threshold
of 2)3 3)18 4)30 5)50 6)70

between the background image and the ball in the image is smaller than the threshold, the pixels
of the ball which are similar to the background are not detected as part of the ball. This effect
mainly occurs on bright background in case the ball is close to the flood lights and the image is
locally overexposed. Two types of errors result. The first is a error of the balls contour while the
seconds results in holes in the ball. Sample images of both types are shown in Figure 3.19. This

Figure 3.19: 1)Holes in case of similar foreground/background brightness 2)Shape error
error influences the detection of the balls center in case only a simple averaging of all the balls

pixel position is used. Also other movements inside the visual field of the camera would result
in erroneous determination of the center position. In order to reject this error sources Hough
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transformation is used to calculate the center of the ball in the image (Section 3.3.2). As Hough
transformation only works on edge images these edge images have to be obtained. Different
operators were introduced in Section 2.1.2 and the operation used in this case is the Laplacian of
Gaussian (Table 2.3) as it offers a good compromise between calculation time and quality of the
resulting edge image. Using the Canny algorithm (Section 2.1.2) results in a longer computation
time while the result in this simple environment is of comparable quality to using the LOG
algorithm (compare Figure 2.4 in Section 2.1.2). Some sample edge images are shown in Figure
3.20. The edge detection algorithm is working on black/white images which are obtained by using
a threshold of 18 (compare Figure 3.18) which is also used through out this work as it offers a
good compromise between detection errors and low shape alternation. The first two images also
show the edge image based on the images presented in Figure 3.19. These edge images are the

1 . »

Figure 3.20: Sample edge images based on: 1-2) Figure 3.19 (1-2) 3-6) Figure 3.17 (2-5)

input to the Hough transformation which is topic in the following subsection which concludes the
section of feature extraction.

3.3.2 Center Calculation

As already mentioned in the previous section Hough transformation is used to determine the
midpoint of the tennis ball in the image as this center position is the input information for the
stereo triangulation described in the following Section 3.4. Hough transformation is generally a
method that allows information merging. In this case the balls edge information in pixels can be
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transformed into information about the midpoint and the radius of the ball. While the radius is
not relevant for this application, the center is of great interest, especially an accurate determi-
nation of the center even if the edge detection image is erroneous. The advanced version used
(modified from [SPV05]) is build specific to detect circles or arcs and rejects straight lines.
While most of the algorithm used is similar to the presented algorithm, differences are found in
the refusal of edge parts as well as in the lines of possible centers. While it is suggested to simply
count the edge pixels in the window and use the window if the number of pixels equals the size
of the window in pixels the implemented algorithm also tests if both extremes of the arc touch
the sides of the window which suppresses circles smaller than the window.

The second modification regarding the drawing of the radial line to the accumulator is that the
whole line is drawn which is in contrast to drawing the line only towards the direction of concav-
ity as suggested [SPV05]. This is a trade-off between performance of drawing the line and the
complexity to determine the direction of concavity.

Figure 3.21 shows the filtered accumulator space of some sample images. A simple 7z7 filter of
equal weights is used as filter operator. The center detection is based on the images shown in
Figure 3.20. The black dot in each images is the detected position of the tennis balls center.

Figure 3.21: Filtered accumulator images with base edge map and calculated center (black dot). Images
corresponding to Figure 3.20

w
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For better comparison with the real image, Figure 3.22 shows the detected edge as well as the
calculated center position of the tennis ball in the base images. It is easy to see that the auto-

Figure 3.22: Base images with superimposed edge image and detected center (white dot). Images corre-
sponding to Figure 3.20 and Figure 3.21

matic center calculation also works very well for erroneous edge images of the ball. Even if other
(moving) objects are in the visual field of the camera the center of the ball is still measured with
a high accuracy. The only downside of using Hough transformation is the increased amount of
processing required. In this non real-time environment this cost is not important while it might
be in the final application. As (parallel) processing power is constantly increasing this limitation
is also not crucial for the target application especially as Hough transformation is a task which
can easily be parallelized.
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3.4 Stereo Triangulation

After acquiring the positions of the tennis ball in both cameras frames the 2D position information
of both cameras has to be transformed into a 3D information by merging both 2D informations.
This is done by stereo triangulation which is based on the intersection of the rays from both
determined midpoints through the focal points of the related camera. As the positions of the
cameras is obtained via the previous done calibration (compare Section 3.2) the intersection of
the rays delivers the position of the tennis ball (compare Section 3.1.1).

Since the tennis ball is a round object, the usage of the midpoint does not introduce any errors as
the projection into both cameras image planes does not distort the shape of the object and the
2D center of the image of the ball is aligned with the 3D center of the ball. Stereo triangulation
is available as one feature of the Camera Calibration Toolbox for Matlab [2]. The version imple-
mented also calculates the influence of the lens distortion and eliminates the errors based on the
lens parameters obtained in the calibration (compare radial and tangential distortion in Table
3.7 and Table 3.9). Depending on the frame rate the cameras, the number of positions acquired
during the flight of the ball varies from 13 to 64. A sample diagram of the positions obtained
during a flight captured with 70 fps is shown in Figure 3.23. The coordinate systems used to
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Figure 3.23: Determined positions during a flight captured with 70 fps

display the flight positions in Figure 3.23 is the world coordinate system introduced in Figure
3.2. This means that the coordinates are already transformed in to the world coordinate system
by using the translation and rotation information determined in Section 3.2. A set of a complete
series of throws is shown in Figure 3.24. All the throws captured at 70 fps and used for the
prediction (Chapter 4 and Section 5.2) are presented. Based on this set of positions the further
flight trajectory of the tennis ball is predicted. From Figure 3.24 the approximate deviation of the
impact position can be estimated at 2002150 mm which clarifies the requirement for an universal
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Figure 3.24: Determined positions during multiple flight captured with 70 fps

prediction algorithm. A discussion of prediction models and the resulting prediction algorithms
will be topic of the next section.
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4 Interception Position Prediction
Algorithms

In order to catch an object a catching device (in human context the hand) has to be positioned
properly. This positioning has to take place before the object has reached that certain position.
Predicting the flight is necessary for this. One main advantage of a good early prediction of
the flight is that the catching device can be positioned at the predicted interception position
early which limits the amount of energy necessary for this task and mechanical wear as slower
movement is possible.

As mentioned in Section 2.2.1, predicting the flight is based on information about the previous
positions of the thrown object. The parameters of the model used for the further prediction have
to be chosen suitable to the existing positions in order to obtain the prediction based on this
model parameters. Since this task can be generally seen as line fitting, the first model introduced
in the following Subsection 4.1 is based on polynomial line fitting using a polynomial function
of second order for each of the spatial directions. On contrary both other models presented
(Section 4.2 and Section 4.3) are based on the physics of the tennis balls flight. Both of them
take air drag (quadratic model) and gravity into account. Due tot he nonlinear property of the
air drag the flight trajectory has to be calculated iteratively based on the initial velocity v and
the drag coefficient ¢,,. The fitting to the measured data is still similar to fitting functions into
the measured positions as it is based on the euclidean distance between measured positions and
the calculated positions of the model. Monte Carlo simulation is used in order to choose from
multiple launch parameters. Initial parameters are derived from the measured positions. As the
computation complexity of this model is suspected to be very high a third model is introduced.
Considering the movements in each spatial direction separately enables to calculate the functions
which describe the flight for each dimension. This again enables line fitting but still considers the
physics of the flight. The error introduced by independent axis consideration will be discussed as
well.

Section 4.4 compares the three models presented and also examines the time needed to calculate
the prediction of the impact position. This time in relation to the prediction accuracy is a good
measurement for a models efficiency. Prediction results obtained by these three models as well
as a detailed discussion of the efficiency will be topic of the following Chapter 5.
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4.1 Polynomial Line Fitting

The polynomial model is not based on on any physical background as mentioned in the introduc-
tion of this chapter. A second order model is used which is based on the Equations 4.1 for each
spatial direction.

p(t) = po + v *t+axt? (4.1)

Fitting the model for the known positions of the ball is done by determining the best suiting
constants position p, velocity v and acceleration a. Optimal parameter determination is done
based on the linear least square approach (compare Section 2.2.2). Outliners are suppressed by
Bisquare weights [8].

The reason for choosing a second order model over a model of higher order (37, 4*", ...} is that the
second order model is less sensitive to measurement errors while models of higher orders are. This
behavior is found based on a dataset of 20 predictions at a frame rate of 70 fps. Table 4.1 compares
the prediction results based on the second order and the third order model. The deviation in Table

deviation
order || upper 95 % bound [ max
ond 9.96 mm 15.66 mm
3rd 48.39 mm 32.16 mm

Table 4.1: Comparison of prediction results based on polynomial model of second and third order

4.1 is calculated as euclidean distance between the predicted and the measured impact position of
the tennis ball on the plane and the distribution used is the Rayleigh distribution. More details
on the evaluation and characterization of the prediction data is presented in Section 5. This short
insertion is only made to ground the choice of the second order model. Another small advantage
of the second order model over the third order model is lying in the faster computation time
which might be important in a real time environment.

As the general precision of the position acquisition via the stereo vision system is considered to
improve as the ball moves closer to the camera the positions in the final flight phase a weighted
higher in order to influence the trajectory fitting more. The weights used are shown in Table 4.2.
Since accuracy of the position calculation increases over flight time also the importance (and thus

’ Indexes (rounded up) H Weights ‘

L--- 1
ﬂ..3.2*”2f1 g
2 3

2?;" 1---n—-1 8
n 1

Table 4.2: Weights used to account increased position acquisition accuracy as ball moves towards the
vision system, number of positions acquired: n

the weight) of the position in increasing. The reduced weight of the last position is done because
the final position is frequently based on images where parts of the ball are outside the visual field
of at least one camera and thus the position calculation accuracy is reduced. The set of weights

presented in Table 4.2 obtains this and was found as best suiting weights out of an small number
of sets.
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A graphical illustration of the polynomial model applied to a sample set of measured positions of
the ball is shown in Figure 4.1, Figure 4.2 and Figure 4.3 for each of the three spatial directions.
This model fits the data well and looking at the y-direction in Figure 4.2 also shows the typical

X (mm)

210 Il Il Il
5 10 15 20 25

captured frame

Figure 4.1: Polynomial model applied to a sample set of ball positions in x-direction (ots measured
positions, line modeled flight trajectory)

150 . . .
5 10 15 20 25

captured frame

Figure 4.2: Polynomial model applied to a sample set of ball positions in y-direction (dots measured
positions, line modeled flight trajectory)

parabolic shape known from a trajectory without taking the air drag into account. The parabolic
shape is upside down due to the coordinate system introduced in Figure 3.2 in Section 3.1. What
has to be noted is the change of the flight direction displayed in Figure 4.1. Using the polynomial
model allows the ball to move with a changing sign of the movement in x-direction. This is
in contrast to both physical based models as both do not consider the Magnus force (compare
Section 2.2.1) which can have this effect on the movement. The change of movement direction
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Figure 4.3: Polynomial model applied to a sample set of ball positions in z-direction(dots measured
positions, line modeled flight trajectory)

is only modeled in y-direction due to gravity. Air drag can only slow movements down but not
influence the trajectory in the way which is shown in Figure 4.1.

4.2 Physical Model

Contrary to the model presented in the previous chapter, this model is based on flight physics.
The forces which are taken into account are gravity and air drag (compare Table 2.4 of Section
2.2.1). While gravity is a constant force on the tennis ball, air drag depends on the movement
of the ball. The direction air drag is directed exactly opposed the direction of the movement
and the magnitude of the force depends on the velocity of the ball quadratically. This relation is
shown in Equations 4.2 to 4.4 [5]. The used symbols are: force due to air drag Fg,.4, air drag
coefficient ¢y, cross section surface of the tennis ball A, air density p, velocity v, acceleration
due to air drag ag.qq, mass of tennis ball m and for simplification the air drag factor k.

Forag = —cw * A x g * V2 (4.2)
F
Adrag = drag :—cW*A*2fm*v2:—k:*v2 (4.3)

k=cwx Ax (4.4)

2*xm

Due to the nonlinearity of the air drag the force cannot be considered for each spatial direction
independently. Furthermore, no function solving this equation can be found which yields in the
fact that the flight trajectory for this model can only be calculated iterative. The calculation of
the flight is based on the Equations 4.5 to 4.9 (compare Section 2.2.1). Equation 4.5 is the base
for Equations 4.8 and 4.9 which are necessary as no closed solution for the Equation 4.5 exists.
This means that the future velocity v (¢ + At) can only be calculated based on the actual velocity
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v(t).
t
v(t)=v(0)+gxt— / k* vidr (4.5)
7=0
2xm
g =1[0,9,0]

v(t+ At) = v(t) + (adgrag(t) + g) * At
p(t+ At) = p(t) + v(t) x At

The main parameters of this calculation are similar to the ones presented in Section 4.1, namely
positions p, velocity v and acceleration a. In addition this model uses the gravity vector g which
consists of two zero elements in x- and z-direction and g in the y-direction as the world coordinate
system (Figure 3.2) has the y-axis aligned wit the direction of the gravity. The time between
two calculation steps is called At. Iterative calculation is based on a step by step approach
by calculating the future parameters out of the actual ones. The calculation time step At has
major impact on the calculation precision. The smaller the calculation time step, the better the
accuracy. In order to optimize the accuracy further without decreasing At furthermore Equation
4.9 is replaced by

v(t) +v(t+ AL

p(t+ At) =p(t) + 5

At (4.10)

which equals a parallelogram approximation compared to the lower sum used in Equation 4.9.
In order to fit this iterative calculated model into the measured data, Monte Carlo algorithm is
used. This is necessary as no function describes the trajectory derived from the Equations 4.5
to 4.10. Normal fitting can not be used. In order to find a well suiting trajectory a set of initial
parameters (which are the initial velocity v(0) and k£ which includes the air drag coefficient ¢,
the cross section A and the atmosphere density p) has to be tested against each other and the
best one has to be picked. Evaluation and comparison of different initial parameter sets is also
based on the least square algorithm. The sum of the Euclidean distances between the measured
ball positions and the predicted ones has to be minimized in order to find the optimal parameter
set which includes the initial position of the tennis ball pg, the initial velocity of the tennis ball
vg, the air drag factor k£ and the magnitude and direction of gravity g. Overall this results in
10 degrees of freedom for this model. As for each set of parameters the whole flight has to be
calculated iteratively this algorithm is computation intense and time consuming. Application of
this model in a real-time environment is heavily dependent on computation power but this model
can deal as a reference for testing derived models like the one presented in the following Subsection
4.3. In order to find a really well suiting set of initial parameters the first round of parameter
selection can be followed by further round where the best parameter set of the previous round
is supplemented by small bound random numbers multiple times and each of the resulting set is
again tested against each other in order to find a more precise fitting set of initial parameters. In
order to avoid finding a local minimum the magnitude of the random variation in combination
with the number of parameter sets per calculation round is accordant. In addition the weighted
number of positions considered for the calculation is also taken into account. Individual acquired
positions far off the predicted trajectory are suppressed if their distance to the predicted position
is more than 130 mm.

A graphical illustration of the physical model applied to the same sample set of measured positions
of the ball as the ones used in Figure 4.1, Figure 4.2 and Figure 4.3 is shown in Figure 4.4, Figure

42



Interception Position Prediction Algorithms

234

5 10 15 20 25
captured frame

Figure 4.4: Iterative model applied to a sample set of ball positions in x-direction (red measured positions,
line modeled flight trajectory)

4.5 and Figure 4.6 for each of the three spatial directions. In contrast to the polynomial model this
approach does not allow the velocity in x-direction to change its sign which is shown in Figure
4.1 of the previous Subsection 4.1 while in Figure 4.4 the flight is predicted to move towards
the negative x-direction through out the flight as the positions with a higher frame number
are considered as more accurate as the ball is closer to the cameras. Another difference to the
previous model can be seen in Figure 4.5 where the model does not fit the first measured positions
exactly. Similar to the movement in x-direction this behavior occurs out of the fact that no set
of parameters for the predefined trajectory suits all the positions well and suiting the positions
in the later phase of the throw which are considered to be more precise and thus relevant. This
prioritization is done by using unequal weights (compare Table 4.2) for the positions obtained
which allow to specify the relevance of each individual position for the finally found trajectory.
The movement in y-direction of the model equates the measured ball positions very well in the

150

5 10 15 20 25
captured frame

Figure 4.5: Iterative model applied to a sample set of ball positions in y-direction (dots measured posi-
tions, line modeled flight trajectory)
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second halve of the flight. The discrepancy in the first halve of the flight results out of the higher
weighting of the later positions as well as the flight trajectory which is predefined due to the
physical characteristics considered.

Regarding the computation time of this model the selection of the final set of initial parameters
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Figure 4.6: Iterative model applied to a sample set of ball positions in z-direction(dots measured posi-
tions, line modeled flight trajectory)

(20 round with 100 parameter sets each) takes 3 minutes and 24 seconds time on the work station
use (compare 3.4). Due to this fact this model will only be used as a reference in the final
Chapter 5. Using this model in the target application is also viable as the calculation of the 100
trajectories per simulation round can easily be done in parallel on supporting hardware. This
might also be possible on general purpose graphic processing units which feature a huge number
of simple execution cores.

4.3 Spatial Separated Physical Model

While the model described in the previous subsection is very accurate the big disadvantages are
lying in the computation complexity in order to select a suitable set of initial parameters and
also the complexity to calculate the actual flight trajectory. This drawbacks are tried to be
eliminated by separating the spatial directions from each other. Due to the nonlinearity of the
air drag an error is introduced. Figure 4.7 illustrates the introduced error transparently. While
both velocities vi and vo have the same components (va; and vy) the resulting forces due to air
drag Fy and Fy differ in their spatial components (F2; and Fp) by F3. As illustrated the error
depends on the proportion between the velocity in different directions. As the main movement
of the ball occurs along the z-direction the influence of this systematic error might be a good
trade-off versus the expected smaller computation demands this model offers.

Each of the directions has to be considered on its own and the equations appropriate to the model
(considering air drag and gravity similar to the model presented in Subsection 4.2) have to be
derived and a function solving the equation has to be fit into the measured positions. This again
can be done by using optimization but in contrast to the polynomial model (Section 4.1) this the
time nonlinear least square algorithm has to be used. Similar to the other two models, weights
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Figure 4.7: Error introduced due to consideration of each spatial direction separately

are also used here in order to give priority to the final flight phase. The weights used are the
same for all models and are presented in Table 4.2.

The equations valid for the movement along the x-axis are Equation 4.11 and 4.12 as the only
influence on this movement in this model is the air drag.

Ve = —k x 02

(4.11)
(4.12)

k=cw*Ax
* M

Deriving the solution of this equation is done in Equations 4.13 to 4.19 where the differential
equation is solved in general.

by = —k % v2 (4.13)
% =k (4.14)
/7@323:_]{:*7_ (4.15)
0 Yz
1 T
—— | =—k=x71 4.
< @x>0 ( 16)
1 1
w0 nl) —k*T (4.17)
1 1
()~ 0a(0) +kxT (4.18)
op(r) = —— (4.19)

In order to minimize the computation amount further the resulting velocity v, is used to calculate
the position of the ball according to this model in general. This is shown in Equations 4.20 to
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4.22.
t t 1
z(t) = xo +/ v (T)dT = 200 +/ —————dr (4.20)
0 0 m + kxT
1
x(t) :x0+%*ln(1+k*t*vxo) (4.21)

k=cwx*Ax (4.22)

2xm
This is finally the function used to model the movement in x-direction. The parameters of this
solution are initial position zg, the initial velocity v,, and k (including air density, cross section
area and air drag coefficient of the ball). Applying this result to the same dataset as for both
previous models yields in Figure 4.8. Comparing Figure 4.8 to Figure 4.1 and Figure 4.4 shows
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Figure 4.8: Separated model applied to a sample set of ball positions in x-direction (dots measured
positions, line modeled flight trajectory)

that the separated model also does not allow the velocity in x-direction to change it’s sign (similar
to the iterative model in Figure 4.4). The fitted function clearly differs from the polynomial model
as well as the physical model in the area where the future flight is predicted (right from the last
dot in Figure 4.1, Figure 4.4 and Figure 4.8). While the fact that the direction of the velocity is
similar with the iterative as well as the separated model the predicted velocities of both models
in the final flight phase have opposite signs. This has a major impact on the prediction of the
impact position on the interception plane.

Also for the movement in z-direction, the air drag has to be considered only. The base for
deriving the function to fit into the measured positions are Equations 4.23 and 4.24 which resemble
Equations 4.11 and 4.12.

v, = —k* 02 (4.23)

kE=cwxAx (4.24)

*xm
Following the same calculation steps as presented in Equations 4.13 to Equations 4.22 the corre-
sponding solution for the z-position is shown in Equation 4.25.

(1) :zo—l—%*ln(l—i—k*t*vz(O)) (4.95)
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Using the model on the sample position acquired results in Figure 4.9. In this direction this
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Figure 4.9: Separated model applied to a sample set of ball positions in z-direction (dots measured
positions, line modeled flight trajectory)

model does also fit the measured data very well.
Considering the movement along the y-axis results in a more complex equation as air drag and
gravity have to be taken into account which is shown in Equations 4.26 and 4.27 for the ascending

phase of the flight.

by=kxv,+g (4.26)

k=cwx*Ax
2%xm

The air drag force changes it’s direction as the ball reaches the dead and as as this happens
also the air drag changes it’s sign. The valid equation for the descending flight phase is given in
Equation 4.28 and Equation 4.29.

by =—k*v) +g (4.28)

k=cw* Ax
2%xm

Obtaining the solutions for this equations is more complex as both are inhomogeneous differential
equations. First focus is set on solving Equation 4.28. Equations 4.30 to 4.38 present the main
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steps to obtain a solution for Equation 4.28.

—k*vz—i—g
o
l—g*vg g
T dvy
T B, 9T
/0\19*1)5
I,
/\/g d7u2:7 g*k‘*TWithu2:E*v§anddu: ﬁ>|<dvy
o l-w g g
1 —1 \/
(Q*Zn(z+1> =—\/g*xkxT
k k
. \ﬁ*u(r)ﬂ . \/i*v(O)—l
5>x<ln Z ! —E*ln Z; =—\gxkx*xT
\/;*vy(T)—l \/;*vy(0)+1

k
1 **'U(T)—l
~xln M =—\/gxkx(T+1)

2 \/5 * vy (1) + 1
q 1_ €2>t<\/ng>k(7'+7'0)

Uy(T) == E * 1+ eQ*«/g*k*(T—‘rTg)

vy(T):\/i*tanh< g*k* T+7'0>
)

(4.30)
(4.31)

(4.32)

(4.33)

(4.34)

(4.35)

(4.36)

(4.37)

(4.38)

The corresponding steps for the ascending flight phase (based on Equation 4.26) are shown in

Equation 4.39 to 4.46.

ﬁy:k*vg—i—g

Uy _y
k 2 -
g*vy—l-l
T dv,

= * T
/0 S*fug—i-l g
d k k

/\/g 2u = g*k*TWithuzz—*vganddu: — kT
0 us+1 g g

(arctcm(x))a/‘ET =\/gxkxT

arctan <\/; * vy(7'> — arctan <\/; * vy(0> =\/gxkxT
g g
vy (1) = \/z x tan (W * T + arctan(\/g * 1@(0))
g

vy (1) = \/g x tan (W * (T + To)>

(4.39)
(4.40)

(4.41)

(4.42)

(4.43)

(4.44)

(4.45)

(4.46)

Both basic equations Equation 4.26 as well as Equation 4.28 describe the same physical relations.
This is also the case with Equation 4.38 and Equation 4.46. One solution can be converted into
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the other by using the complex tan and tanh function, exchanging g with —g based on Equation
4.47

tanh(i* x) =i *tan(x) (4.47)
Due to the real flight physics the final result of both equations will be real (not complex) again.
This also enables to consider only one of both equations and use it for the whole flight phase.
Also in this case the solution for the velocity v, is used to determine the function which describes

the position y(t) over time. The necessary steps are shown in Equation 4.52 based on Equation
4.38.

vy(T) = \/g * tanh (2 «\/g*kx (T + 7‘0)) (4.48)
y(t) = yo + /Ot vy (T)dT = yo + /Ot \/g* tanh (2 s \/gx k(1T + 7'0)) dr (4.49)

inh
using /tanh(u)du = / Mdu = In|cosh(u)| + C (4.50)
and the property that cosh(u) > 0 (4.51)

(4.52)

1 cosh(\/g x k * (t — to)
)=+ g+ )

cosh(/g * k * tg)

This is the final solution of Equation 4.26 and Equation 4.28 which is fit into the acquired positions
of the tennis ball. The complex calculation of this model has the advantage that functions for
each of the three spatial directions are found. The fitting of the found functions to the measured
data is fast and simple. Also the property that Equation 4.26 and Equation 4.28 result in the
same solution (Equation 4.52) was expected.

Figure 4.10 shows the application of the model on the sample data set. The measured positions
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Figure 4.10: Separated model applied to a sample set of ball positions in y-direction (dots measured
positions, line modeled flight trajectory)

are very well modeled with the function derived.
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4.4 Discussion

The main difference of the three prediction models presented lies in matching the movement in
x-direction. While there is no visible difference in both other directions (compare Figure 4.2, Fig-
ure 4.5 and Figure 4.10 or Figure 4.3, Figure 4.6 and Figure 4.9 respective) Figure 4.11 compares
all three models applicability to describe the movement in x-direction. In all cases where the
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Figure 4.11: Comparison for prediction in x-direction; polynomial model: dashed line, physical model:
sold line, separated model dotted line

x-component of the balls velocity changes direction only the polynomial model is able to describe
the position during the whole flight accurately. Both physical based models show drawbacks here.
The reason for this behavior is that no force resulting in such a movement was considered when
developing those models. Only the Magnus force (compare Table 2.4) results in such a curved
trajectory. This force requires spin of the flying object which was not considered to be significant.
Review of the video data has confirmed this assumption. The flying ball is rotating around its
vertical axis with a rotation speed of up to 1500 rotations per minute. The design of the throwing
device (Figure 3.1), based on a rotational spring, is the reason for this behavior.

Another attribute differentiating the models is the time it takes to calculate the prediction based
on the measured positions. For the polynomial model as well as the separated model this is the
optimization time in particular while the time for calculating the prediction based on the physical
model consists of the actual calculation of the trajectories as well as the time to select the optimal
initial parameter set. Table 4.3 compares this attribute of all models. In order to show the calcu-
lation times sensitivity to the number of positions Table 4.3 is presenting the average calculation
time for 20 predictions at 70 and 160 fps. Also the average number of position measured at each

Model time in milliseconds
Frame rate (fps) 70 160
Average number of positions || 14.05 36.25
Polynomial model 1012 1607
Physical model 4241 4508
Separated model 4779 4635

Table 4.3: Average computation time
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frame rate are presented. The polynomial model has the lowest computation time at both frame
rates which is approximately only the quarter of the calculation time of both other models. It is
interesting to note that the calculation time increases by 60 % for the polynomial model when
going from 70 to 160 fps while the physical models computation time is only increasing by less
than 7 % and the computation time for the separated model does decreases by approximately 3 %.
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5 Interception Position Validation and
Prediction Results

Based on the setup of the stereo vision system (Chapter 3) and the prediction algorithms pre-
sented in Chapter 4 this section presents the results of the prediction. However, before the focus
lies on the validation system used to determine the real impact position. Different possible re-
alizations with their advantages and downsides are discussed and the selection of one system
established. Using a catching robot for verification would demand a real-time prediction system.
In this case the predicted position has to be available at the time the tennis ball intersects with
the plane of the catching robot. If the calculated interception position is only available later this
information is useless. Here, a verification system which does not raise real-time requirements is
used. Using a sensor which detects the impact position of the tennis ball on a plane allows to
process the acquired data (tennis ball positions and the tennis balls intersection position with the
plane) after the flight. This systems calibration, which expands the camera calibration, topic of
Section 3.2, is in focus in Subsection 5.1.2.

Finally the prediction results of the three models presented in Chapter 4 are discussed in Sub-
section 5.2. Each of the algorithms is applied to multiple sets of throws and the deviation of the
predicted interception position to the real impact position on the interception plane is recorded.
Their applicability, advantages and disadvantages are presented.

Finally, the frame rate and resolution scaling analysis (Section 5.2.2) points out how the main
parameters of the video system (frame rate and resolution) influence the prediction accuracy.
This subsection will close this chapter.

5.1 Position Validation

In order to evaluate the prediction models and algorithms presented above a verification system
is necessary. This verification system is used to measure the real position of the ball when passing
the assumed catching range of the catching robot. Most gantry robots are similar to the one used
by Barteit [BFK08] and move within one plane.

Different methods of measuring the position of the ball in space at an instant or within one plane
exist. One possibility is to use a touch system while the other is to use an image sensor like a
camera or a set of multiple cameras. Using a touch system is limited to objects like the tennis
ball, non-flexible objects would demolish the touch system. Furthermore the mechanical wear has
to be considered. Touch systems based on resistive and capacitive properties are widely available
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in the size which is necessary to cover the impact area of the tennis ball.

Capacitive touch systems can not be used with objects like the tennis ball as they need finger
input and are based on the concept of a changing charge due to the finger dip.

Resistive touch systems on the other hand are usable with any input object and thus they are also
usable for detecting the tennis balls impact position. The mechanical wear of a resistive touch
systems is a disadvantage on the other hand.

Another emerging touch system technology is Dispersive Signal Technology (DST) that is based on
the propagation of waves on a glass substrate. A digital signal processor evaluates the information
from four piezoelectric sensors in the corners and calculates the origin of the wave which is the
point the touch system was touched. Devices based on DST are available from 32 ” on and offer a
resolution of 16384 by 16384 with a position detection error of less than 1 %. DST Touch systems
also underly no mechanical wear as long as the glass substrate is not breaking. Pricewise the
costs of a DST touch system are equivalet to the costs of a resisitve touch system of the same
size with only few options for resisitve touch systems at the size of 32”.

Infrared frames also have the feature that they do not underly any mechanical wear and they
even can be used with non-flexible objects as the objects can be thrown through the frame and
land on soft surface behind the frame. What refuses to use infrared frames is the low scan
rate of commercially available models. Building an infrared frame especially for the purpose of
the position detection similar to the frame used by Barteit [DBP09] has the downside of the
complicated handling and the build up costs.

Using an image sensor or a set of images sensors like a video camera or a photo camera for
the position determination is also possible. In case of using a photo camera the triggering is
very important, in case of using a video camera this requirement does not need to be regarded.
Due to the high velocity of the ball the small discrepancies of the triggering may result in big
measurement errors. This is also valid for the video option - between two frames of a standard
video (25 fps) the ball thrown with 10 m/s moves 0.4 m. Only using high speed cameras results
in an accurate position detection. Still, processing of the video data is necessary to obtain the
exact impact position and the costs of a high speed camera systems are magnitudes above the
price of a touch system. A triggered photo camera system including the trigger hardware on the
other hand is available for the equivalent costs of a touch system.

The previous mentioned approaches to detect the position of the ball on the plane can be grouped
into invasive (touch systems) and noninvasive position detection methods. Invasive methods are
characterized by the interruption of the flight due to the sensor. This has the downside of the
mechanical forces on the thrown object and the sensor. While invasive methods are suitable for a
thrown tennis ball and therefore selected here, the usage in future research with different objects
is very limited. The following subsection will elaborate on the environment and the usage of the
touch system.

5.1.1 Invasive Position Detection

The verification system for the interception position prediction is based on a 32 7 DST touch
system and is an invasive position detection system. Furthermore, the system is working inde-
pendently of the interception position prediction. This allows to process the video data after
the real interception point has already been determined and eliminates real-time requirements.
Processing the same input data from the camera setup multiple times while tuning the prediction
algorithm is enabled by this.

In order to put the DST touch system in position aluminum sheaths are used. These sheaths
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offer a good expandability for future work. The supporting frame for the DST touch system,
including also the mounting base for the cameras (compare Section 3.1) as well as for the addi-
tional floodlights, is shown in Figure 5.1. The touch systems main properties are presented in

|

Figure 5.1: DST touch system mounting base

Table 5.1 [1]. The properties listed in Table 5.1 are provided by 3M, the manufacturer of the

Input Method Finger and stylus input

Accuracy Reportet coordinates are withinl.0 % of true position
Active Area 727.15 x 408.05 mm

Resolution (h x v) 16384 x 16384 (maximum resolution)

Response Time 20 ms for tap input

Minimum Touch Impact | 50 mN*s

Glass Thickness 2.2 mm (£0.2 mm)

Table 5.1: Properties of the DST touch system

touch System [1]. While the minimum touch impact is referenced no numbers are given for the
maximum touch impact force. A advertisement video shows the DST touch system withstanding
the impact of a steel ball weighting 0.45 kg dropped from 1.3 m height which equals the energy of
5.8 J. Comparing this to the energy of a tennis ball thrown with 10 m/s, which equals less than
3 J (depending on the weight which is allowed between 56.7 g and 58.5 g), allows the conclusion
to use the DST touch system for the measurement of the balls impact position.

The accuracy of the DST touch system when using it to detect the impact position of the tennis
ball was tested by applying chalk onto the ball previous to throwing it onto the touch system.
The prepared ball leaves an imprint on the glass substrate plate which center is touched with
a specially built marking tool shown in Figure 5.2. The accuracy determined through multiple
throws (distance between the reported position of the ball impact and the reported position of
the marking tools input) is below 6 mm. While this is not excellent it still allows the usage of the
DST touch system as verification system because other methods offer the same level of accuracy
with a more complicated handling or at higher costs [DBP09]. Parts of the reported error might
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I —

Figure 5.2: Marking tool with bolt used to touch the touch system

also be systematic as the verification of the DST touch system usability check was not done on a
large number of samples.

5.1.2 Calibration

Similar to the calibration of the stereo vision setup presented in Section 3.2 also the verification
system has to be calibrated. The position of the DST touch system in relation to the stereo vision
system has to be determined and the DST touch system on it’s own has to be calibrated. The
second part of the calibration is done by using a large scale calibration sheet similar to the one
shown in Figure 3.10 in Section 3.2. The four extreme corners were used to extract the relation
between the real dimensions on the DST touch system and the pixels on the screen the touch kit
is mapped to. The PC workstation (Table 3.4 in Section 3.1.3) offers three independent monitor
interfaces. Two of them are used for Monitors while the third one uses a dummy connector [6].
The resolution on this dummy screen is set at 1600x1200 and the resulting resolution of the DST
touch system is shown in Table 5.2.

To complete the calibration, the position of the touch system in relation to the vision system

Horizontal | 0.428 mm/pixel
Vertical | 0.321 mm/pixel

Table 5.2: DST touch system resolution

has to be determined. For this task also nine calibration sheets are used (compare Section 3.2.1).
These nine calibration sheets are mounted onto a bracket and fixed on the touch system. The
bracket is shown in Figure 5.3. The bracket allows to establish a relation between positions on
the touch system and positions in the visual field of the stereo vision system which is necessary
as the visual field does not contain the touch system at all. As the position of the calibration
sheet on the bracket is known the camera positions in the "world coordinate system” (Figure
3.2) can be determined. One key attribute that made this calibration possible is the transparent
calibration sheet on the bracket. It is necessary as both cameras are on the contrary side of the
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Figure 5.3: Bracket used for touch sysem calibration

calibration sheet (compare Figure 5.3). For this sheet the calibration pattern is printed onto a
overhead foil which is then stiffened by two 0.3 mm thick transparent sheets. In order to provide
enough contrast for the automatic corner extraction white planes were used as background for
each calibration image. A sample set of calibration images is shown in Figure 5.4. As both

Figure 5.4: Sample set of calibration images used for the touch system calibration

cameras take the picture from the opposite side the extracted corners by the standard calibration
had to be reordered in order to allow the merging of calibrations for the stereo calibration. The
automatic extraction function only works on images taken from the same side as it orders the
extracted corners automatically. During the stereo calibration these images are suppressed if
the corner information from both images is not related. The merged information about the 9
calibration images used to calibrate the touch system is shown in Figure 5.5. Determination of
the related positions in the world coordinate system uses the contact point of the bracket with
the touch system. This position is marked, the bracket removed and the position extracted by
a marking tool shown in Figure 5.2 of the previous Subsection 5.1.1. This tool allows to aim
for the position through the pipe installed into the styrofoam. After the tool is aligned a bolt
is used to touch the touch system multiple times. The foam applied on the styrofoam ensures
that the mechanical attributes of the touch system are not altered. The average position of the
touches is then used as the origin of the bracket. Flexible mounting of the transparent calibration
sheet on the bracket allows the sheet to swing free and align vertical due to gravity. Information
about the vertical direction on the touch system is extracted in a similar way - a weight on
a thread is used. Based on this the positions of all corners in the ”"world coordinate system”
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Figure 5.5: Nine calibration sheets mounted on the bracket in the camera coordinate system

are known. As the position information is also available in the camera coordinate system the
rotation and translation between both coordinate systems can be calculated. This calculation
has the goal to minimize the sum of all the distances between points in the ”world coordinate
system” and the related rotated and translated points of in the camera coordinate system. This
is an optimization operation (compare Section 2.2.2). As both the rotation and the translation
have to be determined the resulting operation is not linear. As no special timing requirements are
valid a Monte Carlo algorithm is used to solve the optimization problem. 500 random rotations
and 50 random translations are computed for 30 times with decreasing magnitude. First both
sets of positions are standardized by subtracting the average of all positions of one set. This first
step allows to start with selecting the best rotation, and afterwards search the best translation.
The best fitting combination of the first iteration is stored and the second set is used to refine
it. In each iteration the best additional rotation and translation is searched and the resulting
set is stored. Table 5.3 presents the result of this calibration. A graphical representation of the

Rotation vector [0.01082 —2.43803 1.40402]
Standardized translation vector [0.28138 0.01515 0.051228]
Avg. camera coordinates [203.55178 725.68757 81.97302]
Avg. world coordinates [354.71029 136.37394 —645.00000]

Table 5.3: Rotation and translation of the touch system related to the cameras

calibration is shown in Figure 5.6. The translation vector shown in Table 5.3 is only valid if
the averages are removed in each coordinate system. Summarizing both operations is possible
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Figure 5.6: Comparison of corners in the average removed ”world coordinate system” and the related
rotated and translated corners in the camera coordinate system

by using the following equations results in one translation and one rotation which is similar to
the rotation in Table 5.3. Symbols used are: coordinates in the world coordinate system X o114,
coordinates in the camera coordinate system X qmera, respective average coordinates X orig and
Xeamera, standardized translation vector Transyg and the resulting translation vector Trans.
Table 5.4 presents the resulting rotation and translation vectors.

X’world = Rot * (Xcamera - Xca;ne'ra) + baerorld + Tmnsstd
Xworld = ROt * Xcamera + Xworld - Rot * XCCLT)’LETG, + Transstd
Xuworld = Rot * Xcamera + Trans + Transgyq

~ N N
o o Ot Ot
N I I
S N N N

Trans = Xyorid — Rot % Xcamera

Rotation vector [0.01082 —2.43803 1.40402]
Translation vector | [691.6957 —199.7772 —54.6963]

Table 5.4: Rotation and translation of the touch system related to the cameras
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5.2 Results

The quality measure of the prediction model and the related prediction algorithms is the deviation
of the predicted impact position from the real/measured impact position. This final Section of
Chapter 5 deals with the prediction results and the related deviation of the three models presented
in Chapter 4 at frame rates of 50, 60, 70, 80 fps at full resolution and 50, 60, 70, 80, 100, 120, 140, 160
fps at halve resolution. First a detailed comparison of the prediction models at a frame rate of
60 fps and full resolution is shown in Subsection 5.2.1. The deviation of the prediction error in
horizontal and vertical direction as well as the overall prediction error will be in focus of this
section.

A comprehensive analysis of the prediction accuracies dependency on frame rate and resolution
is presented in the second subsection (Section 5.2.2). The discussion of this dependency enables
selection of a specific vision system for a required prediction accuracy.

5.2.1 Prediction Model Comparison
A overview of the prediction result is presented in Figure 5.7 for all models at 60 fps and full
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Figure 5.7: Prediction result at a frame rate of 60 fps; Detected impact positions: circle, prediction
models: 4+ polynomial, square physical, x separated
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resolution. Related impact positions and prediction positions are connected by lines in order to
enhance readability. The horizontal (Ax) and vertical (Ay) prediction error of the polynomial
model is presented in Figure 5.8. Key properties of this prediction error is that the horizontal

-20 -10 0 10 20 -20 -10 0 10 20
AXx (mm) Ay (mm)

Figure 5.8: Histogram of horizontal error (Az) and vertical error (Ay) of prediction based on the poly-
nomial model

prediction error (Ax) has a bias close to zero (compare Table 1 in the Appendix). The bias
of the vertical prediction error on the other hand is &~ 10 mm. The variance in x-direction is
smaller than in y-direction. This also means that the polynomial model (on average) describes
the movement in x-direction better than the movement in y-direction. Figure 5.9 presents both

-20 -10 0 10 20
Ax (mm) Ay (mm)

Figure 5.9: Histogram of horizontal error (Ax) and vertical error (Ay) of prediction based on the physical
model

error deviation histograms for the iterative model. Both of these error have a significant bias of
~ 6 mm in x-direction and ~ —10 mm in y-direction (compare Table 2 in the Appendix). Also the
variance of both errors is bigger in comparison to the errors of the polynomial model. Prediction
erros based on the separated model are shown in Figure 5.10. Similar to the prediction based on
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Figure 5.10: Histogram of horizontal error (Az) and vertical error (Ay) of prediction based on the
separated model

the polynomial model also the bias of the prediction error in horizontal direction is close to zero
(=~ 2.7 mm; refer Table 3 in the Appendix). In addition also the bias of the vertical prediction is
only approximately halve compared to both other models (&~ 5.5 mm). The horizontal variance
is comparable to the polynomial model but smaller than when using the physical model. Vertical
variance on the other hand is about double the size of both other models.

The spatial prediction error deviation of all models can be approximated by Gaussian distribution
based on the shape on the histograms. This allows to model the overall prediction error (distance
between the predicted and the measured impact position) by Rayleigh distribution and simplifies
the comparison of the three models based on the overall error. The histogram of the overall error
is shown in Figure 5.11. Judging from the histograms the separated model has the lowest overall

Polynomial Model Physical Model Separated Model

0 10 20 30 0 10 20 30 0 10 20 30
Ar (mm) Ar (mm) Ar (mm)

Figure 5.11: Histogram of overall error (Ar) of prediction for all prediction model

error of the three models. This is backed up by the parameters of the Rayleigh distribution used
to model the distribution of the error. The three upper limits of the 99 % error band are 33.49
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mm for the polynomial model, 43.79 mm for the physical model and 28.10 mm for the separated
model. This is not only the case for this specific frame rate and resolution combination. Also on
average over all 640 calculated predictions the separated model shows a &= 5 mm better prediction
result when comparing the upper error band limit.

5.2.2 Frame Rate and Resolution Scaling Analysis

While the prior shown results were presented in order to give a detailed overview over the predic-
tion results of each individual model, this section will deal with the relation between prediction
accuracy and resolution as well as frame rate. The figures presented below all show the upper
limit of the 99% error band of the overall prediction error r for different frame rates and res-
olutions. To minimize the impact of random errors only datasets based on the same input are
compared. Such datasets based on the same video data are the halve resolutions low speed data
(50, 60,70,80) with respect to the high speed data (100,120,140, 160) as well as the low speed
data at full resolution with respect to the simulated halve resolution. Simulated halve resolution
in this context means that video resolution is downscaled on the pc workstation based on the
same binning algorithm that is used by the camera. This results in videos that show the same
flight captured at the original resolution as well as the reduced resolution. Figure 5.12 presents
the prediction errors resulting by the polynomial model. Comparing both resolutions of 576 x

40—

upper bound of 99.5% EB of deviation (mm)

halve
sim. halve

70 80 100 120 full

frame rate resolution

Figure 5.12: 99.5% bound of deviation of prediction based on the polynomial model of all frame rates
and resolutions

480 pixel (full) and 286 x 240 pixel (simulated halve) the full resolution shows a prediction result
better by ~ 5 mm overall. This is because of the higher precision of balls position detection
due to the higher resolution. It is interesting to note that doubling the frame rate at the lower
resolution yields in a average improvement of &~ 5 mm overall as well. The higher number of
positions during the flight of the ball is responsible for this behavior. The numbers presented in
Figure 5.12 are also show in Table 1 in the Appendix.

Figure 5.13 illustrates the prediction accuracy of the physical model over the various frame rate
and resolution combinations. In contrast to Figure 5.12 the physical model shows unexpected
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Figure 5.13: 99.5% bound of deviation of prediction based on the physical model of all frame rates and
resolutions

behavior when reducing the resolution (simulated halve resolution) as the reduced resolution re-
sults in better prediction results with smaller errors. This unexpected result can be explained by
the models sensitivity to errors in initialization of the parameters and only occurs in case of 60
and 80 fps at simulated halve resolution. Taking a look at the comparison of the higher frame
rates at halve resolution, the decreasing prediction error with increased frame rate is illustrated.
On average this error is reduced by ~ 15 mm when doubling the frame rate.

Finally also the results dependent on resolution and frame rate of the spatial separated model
are compared in Figure 5.14. Similar to Figure 5.12 increased resolution as well as frame rate

L 1 1 1 I 7

upper bound of 99.5% EB of deviation (mm)
5
|

halve

T

sim. halve
full

70 80 100

120 140 160

frame rate resolution

Figure 5.14: 99.5% bound of deviation of prediction based on the separated model of all frame rates and
resolutions

decreases the prediction error. Also the simulated halve resolution approves this compared to
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the physical model. Overall this model shows the best prediction results (compare Section 5.2.1).
The gain moving from halve to full resolution is only ~ 2 mm while the gain when doubling the
frame rate is &~ 6 mm on average.
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6 Conclusion and Future Work

In the introduction transport by catching and throwing is stated as one idea to deal with the
rising demand for flexible transportation systems. The presented work is an approach based on
a stereo vision system and dealing with a tennis ball as thrown object. In addition to the two
questions raised in the introduction the Question whether such a system can be used as reliable
transportation system will be answered below. In addition ideas and options to enhance this
approach are discussed in Subsection 6.2.

6.1 Conclusion

In this particular case the question whether the transport by throwing approach is a viable so-
lution for a transportation system can clearly be answered with yes. The prediction accuracy,
dependent on the model used, paired with a gripper offering a catching range between 3 and 6
cm enables the realization of a reliable transportation system over a transportation range of 3
meters. No special high speed cameras are needed to achieve this, two cost effective industrial
cameras paired with a standard PC are sufficient for this accuracy. The real-time constraint is
not considered at this stage but will be discussed below.

A comparison of the three prediction models presented is shown in Figure 6.1. The average

)

I
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upper bound of 99.5% EB of deviation (mm)

polynomial physical

separated

prediction model

Figure 6.1: Predictions average upper 99.5% bound of error band per model
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prediction accuracy (calculated as average of all frame rate and resolutions combinations upper
99.5 % error band) of each model clearly presents a prediction accuracy adavantage for the sep-
arated model. Also the physical model shows a slightly more accurate prediction result than the
polynomial model. This behavior can be explained by the fact that both physics-based models
are less sensitive to small measurment errors of the position acquisition system as the shape of
the trjajectory is predefinded by the forces considered. Considering the fact that both physically
founded models are not able to deal with the impact of spin on the trajectory this result is im-
pressive. This is the answer to the question raised in Section 1.3. The models used to obtain
the trajectory have a significant influence on the prediction accuracy. While the physics based
models are not perfect, they still lead to a more accuracte prediction results despite the fact that
the influence of spin is not modeled at all.

In addition to the pure contemplation of the prediction accuracy also the computation time for
the prediction has to be considered in combination with the accuracy. Figure 6.2 presents this
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Figure 6.2: Prediction efficiency per model; data points in the right lower part of the diagram are high
efficient models, data points in the left upper part less efficient ones

prediction efficiency. Comparison of two models efficiency can easily be done by connection of
ones model representing point with the origin of the diagram. Points lying above or left of this
line (or its extension) represent less efficient models, points below/on the right side of the line
represent more efficient ones. Although only delivering the least accurate prediction result the
polynomial model is the most efficient one when taking the computation time into account. The
separated models calculation time is approximately four times as long as the time for the poly-
nomial model and the better accuracy does not balance this drawback. Also the physical model
shows this calculation time drawback. The degree of this drawback has to be considered with
the fact in mind that none of the models calculation time allows real-time usage in the presented
way. In case the same models and algorithms are implemented on an effective platform, e.g. in
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hardware (FPGA), all models are applicable for real-time environments as well.

Cost effective realization of the transport by throwing approach demands knowledge of the pa-
rameters influencing the interception position prediction accuracy. For a given catching range of
a gripper the required attributes of the prediction system can be derived. One factor influencing
was already presented and the accuracy of different models as well as their efficiency regarding
the calculation time was discussed. Also the parameters of the vision system play a role. Fig-
ure 6.3 presents the benefits when doubling either the image resolution of the camera (in each

improvement of predicition (mm)

o
L

low speed => high speed
low res. => high res.
low res. => high res.; no physical model considered

Figure 6.3: Prediction improvement depending on resolution and frame rate

direction, results in four times the pixel count for the whole image) or doubling the frame rate.
Due to the behavior shown by the physical model also the improvement for both other models is
shown in Figure 6.3. The prediction accuracy improvement when doubling the frame rate bests
the improvement when using higher resolution (not considering the physical model) by ~ 50 %
or 2 mm. This also means that under bandwidth constraints of the camera interface a camera
system offering higher speed at a lower resolution is preferred compared to a lower speed higher
resolution system.

Recalling the second questions raised in Section 1.3 about the improvement when using two in-
stead of one cameras [BFKO08] the prediction accuracy accomplished by Barteit is stated that
the prediction misses the impact position with more than 20 mm occurs in less than 10 % of 45
examinded throws. This prediction accuracy is comparable to the result obtained using two cam-
eras. The upper 90 % error bound at a frame rate of 80 fps (compared to 87 fps used by Barteit)
is 20.7 mm for the separated model. Overall variances of the error bound are significant. The
best accuracy at one frame rate/resolution combination is 11.8 mm (160 fps, halve resolution) for
example while the worst is 28.3 mm (70 fps, halve resolution). A head-to-head comparison using
the same verification system can lead to a significant answer.

6.2 Future Work

One main influence of the prediction result, the weights which are used to give priority to posi-
tions acquired close to the camera in contrast to the positions acquired far off the cameras, have
been left out of scope completely. A suitable set of weights which is equal for all the three pre-
diction models was found and used throughout the work but when experimenting with different
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sets of weights their strong influence on the results became obvious. Further work which includes
systematic analysis of the impact of different weight-sets as well as searching for an optimal set,
possible individual for each prediction model, has a big chance to improve the prediction result
further.

Another decisive aspect was found in the spin which the throwing device puts on the tennis ball.
The Magnus effect, which pays account to the influence of the spin, is not considered in both
models based on the flight physics. Considering the spin as well might lead to a reduction of the
horizontal prediction bias in the physical based models. This demands finding a solution for the
problematic task of measuring the spin. Another possibility to examine the influence of the spin
is to modify or exchange the throwing device in order to minimize the tennis balls rotation.
Also using different objects to throw, by example a ball without hair on the surface could lead
to significant less influence of the spin on the trajectory and thus lead to information about the
relevance to model the spin at all. But not only different balls can be thrown. As the target
application of this transport by throwing approach is a versatile system throwing small boxes,
cans or similar objects is the logical next step. Adaption of the impact position detection system
as well as the object detection and flight modeling has to be done in this case as well. Another
possible approach to deal with multiple shapes of objects to throw is to pack the object into a
round transport container at the origin (or throwing) station, throw the object and unpack the
object at the target (or catching) station again.

In coherence with the physical model further optimization of the fitting algorithm shows promise.
While this model showed the largest prediction error for some combinations of frame rate and
resolution the overall precision was not far off the other models. This means that in case this
outliers of the prediction result can be reduced or excluded at all this model has the chance
deliver more accurate prediction results. The theoretical advantage of the most accurate flight
trajectory description as well as similar computation time to the separated model might mani-
fest in prediction results as well. Another aspect in this context is that all the models are not
fast enough for real time usage at the present stage on the present platform. Moving to a fully
or partly hardware-based implementation is a simple solution for this problem but another in-
teresting approach is to change the way the physical model is implemented at all. Instead of
calculating a huge number of possible flight trajectories during the task of prediction a smaller
set of predefined trajectories might be used and instead of picking the best and vary the initial
parameters a little in order to find an even better fitting trajectory all the predefined trajectories
might be translated and rotated in order to fit the positions calculated best. All the models might
be used for this but the physical model is considered to have to highest potential when using this
approach.

Another way to improve the performance of the prediction is to distribute the calculation over
the different components of the whole system. Even inside the camera the information could be
merged in a way that only the center position of the tennis ball in each captured frame is sent via
the interface to the host system. Frame differencing, edge detection and hough transformation
can be realized by a signal processor or (if the performance is not sufficient) by a number of signal
processors. This approach is similar to the way humans use the information the eye is capturing
each moment. Only the relevant information is sent to the brain, preprocessing is already done
very close to the optical sensor, in this case the human eye.

In case the computation effort can be distributed over the components of the system usage of
more than two cameras is reasonable as well. The effect of the reduced position calculation pre-
cision in case the ball is far off the camera can be countered by installing another pair of cameras
close to the throwing device. Even more than four cameras can be used. Similar to adding more
cameras also the influence of different positions of the cameras used has been left out of scope in
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this work. Different positions might lead to a better prediction result. In addition also different
optics and resulting field of view can be examined.

Also the chronological verification of the impact has not been discussed. In the target application
the catching device has to close the gripper at the right instant in case an active gripper is used.
In case of a passive gripper this requirement disappears. In this context also the development of
the prediction over time has to be mentioned. If accurate interception position is already available
shortly after the object has been thrown the mechanical stress and energy required to position
the catching device accurately in time are minimized which lowers the cost of such a system. This
development of the prediction has also not been examined in here but is a main attribute for the
final application of such a transport by throwing and catching system.

Considering the work presented from a further distance a lot of possible applications are recog-
nizable. Not only transportation for different shaped goods within production facilities can be
done by throwing and catching. Automated rack filling systems in supermarkets can be based on
catching and throwing. The workforce needed to refill the racks can be replaced by number of
autonomous carriers with throwing devices as well as a number of catching robots on the racks.
These carriers throw the goods to the catching robots that grip it and place it on the rack.
Another possible application is a sorting system for parcels. Instead of using systems based on
conveyor belts sorting by throwing and catching is a viable alternative which requires less space
and is more flexible. Basically such a transportation system can be used in every case where
humans would rely on throwing and catching as well.
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Appendix

Polynomical Line Fitting based Results

Prediction errors for each direction (x and y) are presented in histograms in Figure 4 and Figure
5. presents the histograms of the horizontal prediction error for each frame rate and resolution
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Figure 4: Histograms of horizontal deviation; 1°* row simulated halve resolution, 2"¢ row halve resolution,
374 row full resolution and 4*" row halve resolution

examined. For all of the frame rates and resolutions the bias of the error is close to zero. This
can also be seen in Table 1 at the end of this subsection which summarizes all the prediction
errors. For most of the predicted positions the x-coordinate of the impact position is predicted
within 10 mm of the real position. The shape of the histogram also shows that the error of the
prediction in this direction can be modeled by Gaussian distribution. Comparing the 2"¢ and
4*" yow, which are based on the same video data but the results presented in the 2"¢ row only
uses 1 out of two following frames it can be noted that the variance of the error decreases with
increased frame rate. This is also valid for the 1% and 3" row where the error increases as the
resolution is decreased.

Histograms of the vertical deviation are shown in Figure 5.Compared to the deviation in x-
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Figure 5: Histograms of vertical deviation; 1* row simulated halve resolution, 2"¢ row halve resolution,
37? row full resolution and 4** row halve resolution

direction the y-direction shows a bias in the error histograms for all the resolution/frame rate
combinations (Note that zero is not in the middle of the x-axis!). As this error is positive the
predicted impact position is below the real impact position on the catching plane in average
(compare Figure 3.2). The magnitude of this error is of ~ 11 mm overall (compare also Table 1)
and using Gaussian distribution to model it is also feasible. Besides the bias the variation of the
error is larger by a factor 2 — 3 as well. This might be a result the larger number of forces which
influence the flight in this direction. The behavior of decreased prediction accuracy with lowered
resolution or decreased frame rate is also valid for the vertical prediction error.

In order to give a good overview of the prediction results Figure 6 illustrates the spreading of
the overall prediction error which is the deviation of the predicted impact position from the
measured impact position. Compared to the spatial error which includes negative values along
the x-axis this is not the case in the histograms of the overall deviation as this is the absolute
distance between the predicted and the real impact position. As a result Gaussian distribution is
not applicable but Rayleigh distribution suits describing the norm of a vector whose components
are independently distributed by Gaussian distribution which is the case (compare Figure 4 and
Figure 5 in Appendix). As a result of the behavior shown by the components of the error also the
overall error increases with decreased resolution and/or lower frame rate. This error is mainly
influenced by the error of the vertical prediction as the error of the horizontal prediction is smaller
by a magnitude of 2 — 3.

The prediction results based on the polynomial model, topic of Section 4.1, for all frame rates
and both resolutions are presented in Table 1. The used symbols in this table are: average
prediction error in horizontal direction Az, standard deviation of average prediction error in
horizontal direction oaz, 99% error band bounds of the prediction error in horizontal direction,
respective symbols for vertical or y-direction, average overall deviation 7 with the related 99%
error band. The first column of the table shows the frame rate the data is based on while the
second column presents the number of datasets which are used to build up the statistics. The
relevant information which could also be extracted out of the histograms is manifested here in
numbers. The average prediction error in x-direction (horizontal) is below 1 mm for all the 640
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predictions while the standad deviation is ~ 5.5 mm. In contrast to this the mean displacement
of the prediction in y-direction (vertical) is ~ 11 mm with a standard deviation of ~ 8 mm.
Comparing individual datasets is not as feasible as comparing sets which are based on the same
video data. Comparable datasets are the four predictions at full resolution and the four sets of the
simulated halve resolution (which are obtained by reducing the resolutions of the full resolution
images with the same algortih that is used in the cameras for resolution reduction) and the bunch
of lower framerate (50, 60,70, 80) fps at halve resultion in combination with the higher framerate
predictions (above including 100 fps). A detailed graphical reprensentation as well as further
discussion of the influence of framerate and resolution is topic in Section 5.2.2.
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hor. deviation vert. deviation overall deviation

fps n Az ‘ OAz ‘ 99% EB Ay ‘ Ay ‘ 99% EB 7 ‘ 99% EB
Full resolution

50 20 | -0.65 | 2.95 [-8.25 6.96] 11.02 | 5.56 [-3.31 25.36] 8.99 0.90 29.26

60 20 | -2.75 | 7.74 | [-22.69 17.19] | 8.19 8.78 | [-14.43 30.81] | 10.29 | [1.03 33.49

[

[
70 20 | -1.25 | 3.84 | [-11.158.65] | 9.87 | 6.83 | [-7.73 27.46] 8.95 | [0.90 29.15
80 20 | 0.51 | 12.49 | [-31.66 32.68] | 6.78 | 4.58 | [-5.02 18.57] | 10.56 | [1.06 34.38

Simulated halve resolution
50 20 | 2.61 | 5.15 | [-10.66 15.88] | 16.81 | 10.04 | [-9.05 42.67] | 14.43 | [1.45 46.99]
60 20 | -4.18 | 8.47 | [-26.00 17.64] | 10.43 | 10.27 | [-16.02 36.88] | 12.32 | [1.23 40.09
70 20 | -1.41 | 3.67 [-10.87 8.05] 8.50 | 9.62 | [-16.28 33.28 9.49 | [0.95 30.90
80 20 | -0.71 | 12.95 | [-34.06 32.64] | 3.97 | 6.32 | [-12.33 20.26] | 10.58 | [1.06 34.44]

Halve resolution
50 40 | -2.13 | 6.59 | [-19.12 14.85] | 10.54 | 11.61 | [-19.37 40.46] | 12.13 | [1.21 39.47]
60 40 | 0.29 | 3.63 [-9.06 9.64] 14.66 | 9.29 [-9.26 38.59] | 12.54 | [1.26 40.82]
70 40 | 0.36 | 6.89 | [-17.39 18.12] | 13.85 | 10.38 | [-12.89 40.60] | 13.18 | [1.32 42.90]
80 40 | 0.39 | 2.83 [-6.90 7.67] 11.90 | 6.42 [-4.65 28.45] 9.77 | [0.98 31.81]
100 20 | -1.78 | 2.73 -8.81 5.24 10.30 | 6.71 -7.00 27.59 8.99 0.90 29.27
120 20 | -0.39 | 1.92 -5.34 4.56 14.21 | 6.45 -2.42 30.83 11.12 | [1.11 36.20
140 20 | 0.14 | 4.57 | [-11.62 11.91] | 13.67 | 8.17 -7.38 34.72 11.71 | [1.17 38.13
160 20 | -0.30 | 2.00 [-5.46 4.87) 10.82 | 4.39 -0.49 22.12 8.38 0.84 27.27

overall | 640 [ -0.67 | 5.78 | [-15.54 14.21] | 11.09 [ 8.31 [ [-10.31 32.49] [ 11.16 | [1.12 36.33] |

Table 1: Prediction results based on the polynomial model, all numbers in millimeters

Physical Model based Results - 3 pages

The distribution of the error in the spatial directions is shown in Figure 7 and Figure 8. Similar
to the prior section also for the physical model the histogram of the overall error is presented
in Figure 9. Comparing the 2"¢ row with the 4" row it is possible to see the influence of the
doubled frame rate. Also in this case the prediction error decreases with increased frame rate. On
contrary the behavior shown when downscaling the image (1°* and 3¢ row) does show unexpected
behavior as the prediction errors average is smaller when using the downscaled image. This be-
havior is due to individual throws which have a prediction error of up to 100 mm. Examination
of these throws has shown that the problem lies within the initialization of the prediction pa-
rameters. Still the frequent occurrence only in case of the full resolution is not fully clarified and
would otherwise have been corrected. One possible reason is that small changes in the image are
captured on a higher number of pixels in full resolution which might still influence the calculated
position of the tennis ball in space. This assumption could not be verified by comparison of the
calculated positions as bigger prediction errors do not occur at the throws where the variation of
the positions calculated between full and halve resolution is visible.

Similar to Table 1 in the prior section Table 2 shows the results of the prediction based on the
physical model. Symbols in this table are the same as in Table 1. Refer to the first part of
Section 6.2 for detailed description. In comparison to the polynomial model both spatial error
show a bias of &~ 5 mm. As the bias of the x-direction is positive and the bias of the y-direction
is negative all the balls are predicted right above the impact position seen from the throwing
device on average. The bias in horizontal direction can be explained by taking another look at
Figure 4.4 and an examination of the image data which is presented in Figure 3.17. Due to the
fact that the throwing device is based on a leg spring (compare Figure 3.1) the tennis ball is
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rotating during the flight. This results in another force of the tennis ball which is not considered
— the force based on the magnus effect (compare Table 2.4). The rotation direction influences
mainly the balls vertical movement only in the way that the balls trajectory is flying a curve to
the left looking from the throwing device towards the impact position detection plane. This is
also visible in Figure 4.4 where also the the resulting prediction error can be approximated. In
coherence with this behavior also the fact that the final calculated parameter g of this model
was not aligned parallel to the y-axis of the world coordinate system (Figure 3.2) but directed
also a little into the negative x-direction has to be mentioned. The reason for this lies in the fact
that the model tries to fit the data as good as possible and in order to pay account to the curved
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Figure 9: Histograms of overall deviation; 1% row simulated halve resolution, 2" row halve resolution,
37 row full resolution and 4** row halve resolution

trajectory g was calculated in a way to model the curve as well. It is interesting to note that the
vertical bias is smaller than the one of the polynomial model (compare Table 1) which can be
explained by the consideration of all main forces influencing the vertical movement and the fact
that the spin, which is not considered at all, does not influence this movement as the rotation
axis of the ball is aligned with the y-axis.
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hor. deviation vert. deviation overall deviation
fps n Az | ops | 99% EB Ay [ oay | 99% EB r | 99% EB
Full resolution
50 20 5.34 5.96 | [-10.01 20.69] | -8.07 | 7.04 | [-26.20 10.06] | 9.45 | [0.95 30.76]
60 20 3.39 | 10.92 | [-24.74 31.52] | -12.62 | 8.48 [-34.46 9.22] | 13.45 | [1.35 43.79]
70 20 6.11 717 | [[12.37 24.59] | -10.33 | 6.71 [-27.62 6.95] | 10.97 | [1.10 35.70]
80 20 | 13.43 | 20.33 | [-38.94 65.80] | -11.83 | 12.64 | [-44.39 20.73] | 21.13 | [2.12 68.80]

Simulated halve resolution
50 20 | 6.42 | 10.94 | [-21.76 34.61] | -1.64 | 15.42 | [-41.37 38.08] | 14.17 | [1.42 46.12]
60 20 | 4.35 | 6.76 | [-13.07 21.76] | -8.59 | 7.04 [-26.72 9.54] 9.69 | [0.97 31.55
70 20 | 4.75 | 7.03 | [-13.36 22.87] | -5.50 | 15.46 | [-45.32 34.31] | 13.06 | [1.31 42.52
80 20 | 6.30 | 7.81 | [-13.8126.41] | -5.72 | 5.22 [-19.16 7.72] 8.96 | [0.90 29.16]

Halve resolution
50 40 4.15 6.10 | [-11.56 19.86] | -5.23 7.61 | [-24.83 14.38] | 8.36 | [0.84 27.20]
60 40 6.04 | 10.03 | [-19.80 31.88] | -3.81 | 15.22 | [-43.01 35.40] | 13.84 | [1.39 45.00]
70 40 2.12 7.46 | [-17.11 21.34] | -10.08 | 7.57 [-29.57 9.41] | 10.47 | [1.05 34.07]
80 40 5.57 | 6.20 | [-10.40 21.53] | -4.14 7.36 | [-23.11 14.83] | 8.39 | [0.84 27.31]
100 20 4.19 | 4.77 [-8.11 16.49] -2.65 5.28 | [-16.26 10.96] | 6.13 0.61 19.97
120 20 4.45 9.00 | [-18.73 27.63] | -8.21 5.87 [-23.33 6.91] | 10.07 | [1.01 32.77
140 20 3.37 | 5.71 -11.33 18.07] | -7.62 5.90 [-22.82 7.58] 8.27 0.83 26.92
160 20 4.14 5.60 -10.29 18.57] | -2.55 7.83 | [-22.7217.62] | 7.63 0.76 24.83

overall | 640 [ 5.16 | 8.09 | [-15.68 25.99] | -6.39 | 9.23 [ [-30.17 17.39] [ 10.87 | [1.09 35.40] |

Table 2: Prediction results based on the physical model, all numbers in millimeters
Spatial Separated Physical Model based Results - 3 pages

Histograms of the spatial errors are again presented in Figure 10 and Figure 11 in Appendix.
The distribution of the prediction errors for the spatial separated model, presented in Section
4.3, is shown in Figure 12. The spatial separated model shows similar behavior to the polynomial
model as a higher frame rate (compare rows 2 and 4) results in smaller prediction errors and also
increasing the resolution improves the prediction result (15 and 2"¢ row). The overall prediction
error is smaller than the prediction error of the physical model and comparable to the prediction
error of the polynomial model. This is also confirmed by taking a look at the statistics presented
in Table 3. Symbols in this table are the same as in Table 1 and Table 2. Refer to section 6.2
for detailed description. The most interesting fact about this prediction model is that the bias of
the horizontal as well as the vertical prediction is below 2 mm on average. While the standard
deviation of the horizontal error is small as well (3.18 mm) the standard deviation of the vertical
prediction error is 11.2 mm on average. Comparing this numbers to the respective numbers of
both prior presented models the horizontal error standard deviation is the smallest of all model
while the vertical is the largest. The small error of the x-direction error was not expected as
the spin which is suspected for the bias of the physical models prediction is also not included
in this model. The horizontal error on the other hand lies in line with the physical model while
the polynomial model has a smaller standard deviation of only ~ 8 mm on average. Even if the
horizontal errors standard deviation is similar or bigger compared to the other models the overall
error of this model bests the other models (polynomial ~ 11 mm, physical ~ 12 mm) with an
average error of 9.34 mm. The overall stability of this model is significant as the three highest
upper bound of a overall error band are ~ 43 mm, ~ 33 mm and =~ 33 mm compared to ~ 89
mm, ~ 63 mm and ~ 47 mm for the physical model and ~ 43 mm, ~ 41 mm and = 41 mm for
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Figure 10: Histograms of horizontal deviation; 15 row simulated halve resolution, 2% row halve resolu-
tion, 3% row full resolution and 4** row halve resolution
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hor. deviation vert. deviation overall deviation
fps n | Az [oa. | 99% EB Ay | oay | 99% EB r | 99% EB
Full resolution
50 20 | 4.28 | 2.65 | [-2.53 11.10] 1.18 | 10.04 | [-24.69 27.04] | 7.99 | [0.80 25.99]
60 20 | 2.00 | 3.01 [-5.74 9.75] -3.93 | 10.98 | [-32.21 24.35] | 8.63 | [0.86 28.10]
70 20 | 2.68 | 3.59 | [-6.57 11.93] -5.46 | 11.83 | [-35.93 25.01] | 9.74 | [0.98 31.71]
80 20 | 1.13 | 2.07 [-4.20 6.46] -9.71 9.24 | [-33.52 14.10] | 9.63 | [0.96 31.33]

Simulated halve resolution
50 20 | 5.85 | 3.35 -2.78 14.47 4.52 | 11.24 | [-24.42 33.47 9.80 0.98 31.91
60 20 | 1.11 | 4.05 -9.32 11.54 -0.47 | 11.41 | [-29.86 28.92 8.60 0.86 28.00
70 20 | 2.13 | 3.75 | [-7.53 11.79] -5.47 | 12.03 | [-36.46 25.52 9.83 0.98 32.00
80 20 | 0.02 | 3.26 [-8.39 8.43] -11.50 | 8.78 -34.12 11.11] | 10.49 | [1.05 34.15
Halve resolution
50 40 | 0.55 | 4.27 | [[10.45 11.56] | -2.64 | 12.11 | [-33.84 28.56] | 9.28 | [0.93 30.21]
60 40 | 1.80 | 3.26 | [-6.59 10.20] 4.62 | 12.56 | [-27.73 36.97] | 9.82 | [0.98 31.97)
70 40 | 0.50 | 4.72 | [-11.65 12.64] | 10.82 | 14.44 | [-26.37 48.01] | 13.19 | [1.32 42.93]

[ } [ ]

- ] [ ]

80 | 40 | 3.07 | 1.92 | [1.888.02] | 1.39 | 9.58 | [-23.29 26.07] | 7.31 | [0.73 23.79
100 | 20 | 0.56 | 3.17 | [-7.628.73] | -5.79 | 10.44 | [-32.69 21.12] | 8.75 | [0.88 28.47
120 | 20 | 1.28 | 2.45 | [-5.027.58] | 2.25 | 11.01 | [-26.10 30.61] | 8.18 | [0.82 26.63
140 | 20 | 0.46 | 3.33 | [-8.139.05] | 834 | 10.48 | [-18.65 35.32] | 9.76 | [0.98 31.78
160 | 20 | 2.34 | 1.86 | [-2.457.14] | -0.84 | 7.11 | [-19.15 17.47] | 5.48 | [0.55 17.85]

[ overall | 640 [ 1.87 | 3.30 | [-6.64 10.38] | -0.48 | 11.06 [ [-28.96 28.01] [ 9.37 [ [0.94 30.49] |

Table 3: Prediction results based on the separated model, all numbers in millimeters
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