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Introduction

Meta-analysis is a tool to synthesize information from multiple primary studies of

similar design [63] which, even though first attempts have been made over a century

ago [52], has only recently seen wider dissemination in practical research [54]. The

number of meta-analyses performed has considerably increased over the last years,

which may be explained by the ever increasing number of primary studies [14],

the advancement in methodology, and the availability of comprehensive guidelines

and software packages opening the field of meta-analysis to a larger community

of researchers and practitioners alike. Although the number of published meta-

analyses has risen from about 400 in the year 2000 [39] to about 2300 in 2006

[63] and meta-analytic papers are among the most cited in their respective fields

[50], the number of methodological papers has remained more or less constant with

about 10 publication per year [63].

During the course of clinical research in the field of psychiatry, meta-analyses on

the treatment of depression [8, 19, 35, 36, 44, 45, 61, 64, 69, 70], schizophrenia

[9, 15, 34, 41, 40, 42, 59] and bipolar disorder [16] were studied, prompting the

need for more thorough investigation of statistical procedures employed in meta-

analytic research scenarios. Various efforts of professional associations to establish

more coherent procedures and improve the overall quality of meta-analytic research

[46] have accompanied the development of meta-analytic methodology ever since

its introduction to the scientific community. Still, problems and inconsistencies

abound [21] and hamper the ability of both producers and consumers of meta-

analyses to perform and correctly interpret meta-analytic datasets. This has even

lead to the point where it has been argued that the majority of meta-analytic

findings in clinical research may be false [29].
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Indeed, the meta-analytic setting adds to the already well-known potential pitfalls

of basic statistical methods employed in clinical research [5] several new aspects

to consider during generation of the research question, data collection, analysis,

and interpretation. Among these are the questions whether meta-analysis is an

adequate tool, whether meta-regression can and should be employed [66], how to

address data quality issues like publication bias and heteroscedasticity, whether a

common effect size of primary studies can be assumed, and how to define this effect

size in the first place.

Some of the issues raised by meta-analytic problems can adequately be identified

and dealt with, e.g. heterogeneity of true effect sizes between primary studies,

others can be identified, but there exists no canonical solution in current modeling

approaches. Examplary for the latter stand publication bias and heteroscedasticity

in meta-regression. This situation lends itself to the exploration of robust methods

in the meta-analytic context. However, due to the scarcity of robust methods

for weighted data, robustness is difficult to achieve in meta-analysis. In particular,

there is no established method of robust regression on weighted data, making robust

meta-regression currently impossible.

Important problems arising in meta-analysis are highlighted by re-analysis of a

published dataset on clinical efficacy of second-generation anti-depressant medi-

cation. Consecutively, a first approach to robust meta-regression is presented in

the form of a newly developed estimator, termed meta.lts, based on the least

trimmed squares (LTS) estimator. Its properties were discussed and demonstrated

on several simulated datasets.

Various caveats encountered during the course of the meta-analytic investigations

were documented, a special focus was set on illustrating issues of meta-regression,

and the usefulness of meta.lts as a robust meta-analytic tool was demonstrated.
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Methods

1 Meta-Analytic Methods

1.1 Fixed-Effect Models

1.1.1 General Idea

The idea of meta-analysis is to synthesize the results of multiple primary stud-

ies using quantitative statistical methods. Thus, it will be first considered using

tools already established for simple analyses using the results of primary studies as

individual observations. One obvious difference between the two is that in meta-

analysis results of the primary studies are only estimates rather than measurements

of a true effect size θ and thus subject to a certain amount of variability. Usually,

this variability is asserted in the primary studies and reported in the form of mea-

sures of precision which in meta-analysis are used to improve the quality of overall

results.

Most of the currently employed methods in meta-analysis can be labeled as either

fixed-effect or random-effects models. The fixed-effect model assumes that a true

effect size θ is common to all n primary studies and that the deviation of the

location estimates θ̂i of the i-th study is due to its sampling error εi only.

θ̂i = θ + εi i = 1, . . . , n (1)

However, the confidence one can put into these estimates depends on their respec-

tive precisions. Those can be explained by two factors—variances within primary

studies and their sample sizes. The larger the sample size and the smaller the
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within-study variability, the higher the estimation accuracy of the true effect size

by a single study.

In order to use reported information about the precision of the primary studies

location estimates in the calculation of the overall effect size and its variability can

be weighted accordingly. Commonly, the studies are weighted proportionally to

their precision—that is, the inverse of the variance [71]

Wi =
1
S2
i

(2)

where S2
i denotes the sample variance of the estimate of the true effect size by the

i-th study.

The estimate of the true effect size can be computed as the weighted mean of the

effect sizes of the individual studies (cf. [72])

θ̂ =
∑k

i=1Wiθ̂i∑k
i=1Wi

. (3)

and the variance of θ̂ can be estimated by

S2
θ̂

=
1∑k

i=1Wi

. (4)

This model provides a compelling interpretation: if the variances within the pri-

mary studies are homogeneous, the fixed-effect estimate of the true effect size is

equivalent to an estimate of the effect size using a pooled sample of all the primary

studies’ data points.

1.1.2 Underlying Assumptions

The main assumption of fixed-effect models is that the true effect size is the same

across all the primary studies. In particular, this would be the case if all primary
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studies had drawn their samples from the same population, in which case the fixed

effect model provides the optimal estimate. On the other hand, this assumption

precludes the possibility that the primary studies differ in (possibly unknown)

covariates that have an influence on the effect size.

Note that homogeneity of variances is not a prerequisite for valid application of

a fixed-effect model, since this is taken into account by the weighting procedure.

Independence of errors, however, is necessary for unbiased effect size estimation in

the fixed-effect model, as well as normal distribution for the calculations presented

above to be applied correctly.

1.1.3 Problems

In practical meta-analysis, studies usually come from distinct sources. While they

share several key characteristics allowing for quantitative synthesis, almost always

there are relevant differences in sample properties between the studies, e.g. differ-

ences in study populations, treatment, design and execution [18]. Consequently,

it cannot be assumed that all the individual samples share a common effect size,

which means that the application of a fixed-effect model is not justified. Differ-

ent methods of assessing heterogeneity between studies exist [53, 25], and including

information on between study variation in the analytic process leads to the random-

effects model.

1.2 Random-Effects Models

1.2.1 General Idea

The inhomogeneity of studies encountered in practical meta-analysis is addressed

by random-effects models. Instead of assuming a common true effect size for all

studies the effect sizes θi of the n different studies are taken to follow a distribution
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of true effect sizes with mean µ and variance σ2. Thus, the goal of the analysis is

not to estimate a single true effect size common to all studies, but the distribution

of true effect sizes [27]. Interesting statistics to be derived naturally include the

expected value of the distribution, but it should not be forgotten that other metrics

might be just as relevant.

In this model, two sources of variability can be identified—variance due to the dis-

tribution of true effect sizes σ2 and variance due to sampling error σ2
εi

. Accordingly,

the overall variance can be partitioned to reflect these two sources. The model em-

ployed allows for the effect size estimator θ̂i of the i-th study to be formulated

as

θ̂i = θi + εi εi ∼ N(0, σ2
εi

) (5)

θi = µ+ δi δi ∼ N(0, σ2). (6)

The variance of the effect size estimations can then be partitioned in true variation

in effect sizes and sampling error.

Var(θ̂i) = σ2 + σ2
εi

(7)

These differences to fixed-effect models manifest in different weighting of the studies

compared to fixed-effect models. This will be discussed in more detail later on.

1.2.2 Underlying Assumptions

Random-effects models assume the true effects of the primary studies to be different

but drawn from a common distribution in contrast to fixed-effect models which

assume that all studies share a common effect size. For modeling purposes it

makes no difference whether the variation between true effect sizes is due to (not

11



explicitely modeled) covariates or entirely random. If such covariates exist, there

is of course a distinct interest in modeling them. For this purpose meta-regression

can be employed.

The data points within the primary studies, however, are explicitly considered to be

sampled from different distributions. Therefore, both location and scale parameters

of these distributions can vary between studies.

1.2.3 Difference in Weighting Compared to Fixed-Effect Models

Since every primary study included in a random-effects model describes its own

sampling population, it contains unique information about the distribution of the

true effect sizes and cannot be replaced by information of other studies, however

precise those might be.

To reflect the uniqueness of information of even the smaller studies, these are

assigned relatively more weight than in fixed-effect models, while larger and more

precise studies are assigned relatively less weight. One might say that the weights

are more homogeneous. Weights are assigned analogously to equation (2). However,

the variance in random-effects models is composed of between-studies variation of

true effect sizes τ2 and within-study sampling errors σ2
i . Thus, the weight assigned

to the i-th primary study is

Ui =
1

S2
i + T 2

(8)

where T 2 and S2
i denote estimates of τ2 and σ2

i respectively. S2
i is usually reported

by the primary studies, and only in few cases has to be imputed. τ2, in contrast,

has to be estimated by the meta-analyst. A method commonly employed is the

DerSimonian and Laird [11] method:

T 2 =
Q− ν
C

(9)
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where

Q =
k∑
i=1

Wiθ̂
2
i −

(∑k
i=1Wiθ̂i

)2

∑k
i=1Wi

, (10)

ν = k − 1, (11)

where k denotes the number of studies,

C =
k∑
i=1

Wi −
∑k

i=1W
2
i∑k

i=1Wi

, (12)

and Wi denotes the weights as computed in the fixed-effect model in equation (2).

The mean µ of the true effect sizes is estimated by

µ̂ =
∑k

i=1 Uiθ̂i∑k
i=1 Ui

, (13)

and the variance of µ̂ is estimated by

S2
µ̂ =

1∑k
i=1 Ui

. (14)

These estimates take into account both the between-studies variance and the sam-

pling error and thus provide realistic results in the most common situation in meta-

analysis, where different studies are sampled from different populations and/or

under different circumstances (e.g. different investigators, institutions, etc.).

1.2.4 Improvements

Unlike the fixed-effect model, the random-effects model has sparked various at-

tempts to improve it [63]. While the general theory of the random-effects model is

not restricted to specific distribution families, the DerSimonian and Laird estimator

for τ2 assumes normal distribution of true effect sizes.
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This approach has two fundamental drawbacks: on one hand the assumption of

normal distribution is not always correct, on the other hand, even when normal

distribution can correctly be assumed, the DerSimonian and Laird estimator is not

the statistically optimal estimator [10] and has been shown to introduce potentially

considerable bias [7]. Notably, even before publication of the orignal DerSimonian

and Laird estimator [11], a better estimator had beed presented by Paule and

Mandel [51], but unfortunately, maybe due to its lack of an explicit formula, it has

not reached widespread use in the meta-analytic research community.

The Paule and Mandel estimator is defined as

T 2
PM =

Q̃−B
C̃

(15)

where

Q̃ =
k∑
i=1

W̃iθ̂
2
i , (16)

B =
k∑
i=1

W̃iS
2
i −

∑k
i=1 W̃

2
i S

2
i∑k

i=1 W̃i

, (17)

and

C̃ =
k∑
i=1

W̃i −
∑k

i=1 W̃
2
i∑k

i=1 W̃i

. (18)

It thus bears a resemblence to the DerSimonian and Laird estimator, but instead of

using Wi as computed in the fixed-effect model in equation (2), alternative weights

W̃i are used which are defined as

W̃i =
1

τ2 + S2
i

. (19)

Because the τ2 are needed to calculate the weights in the formula, there is no

explicit solution, but instead an iterative algorithm is needed. This is done by

numerically solving the equation
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F (τ2) =
k∑
i=1

W̃

(∑k
i=1 W̃iθ̂i∑k
i=1Wi

)2

− (k − 1) = 0 (20)

with respect to τ2. Because F (·) is strictly monotonic decreasing, this formula has

a unique solution if and only if F (0) ≥ 0, which can be computed iteratively, using

τ2
0 = 0 as starting value for τ2. Accordingly, if F (0) < 0, equation (20) has no

solution, and T 2
PM is set to zero.

The Paule and Mandel estimator can be regarded as being better than the Der-

Simonian and Laird estimator mainly for two reasons. First, it does not require

the assumption of normal distribution, and second, if normal distribution can be

assumed, it has even been proven to be the restricted maximum likelihood esti-

mator, and thus, in this sense, statistically optimal. The only advantage of the

DerSimonian and Laird estimator is the availability of an explicit solution. If an

iterative computation is feasible, however, there is no sound reason not to employ

the Paule and Mandel estimator.

As a matter of fact, an algorithm for iterative computation actually is available

and, due to the increase in computational power since 1982—when it has originally

been published—the estimator can sensibly be employed today.

Even if an explicit formula is needed, a two step DerSimonian and Laird estimator

[10], which gives solutions closer to the (maximum likelihood) optimum, can be

used. This estimator is calculated by

T 2
DL2 =

[∑k
i=1W

*
i

(
θ̂i − µ̂

)2
]
−
[∑k

i=1W
*
i S

2
i −

Pk
i=1(W *

i )2
S2

iPk
i=1W

*
i

]
∑k

i=1W
*
i −

Pk
i=1W

2
iPk

i=1W
*
i

(21)

with µ̂ as in equation (13) and
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W *
i =

1
T 2

DL + S2
i

. (22)

While this two-step DerSimonian and Laird estimator leads to a better solution, it

still bears the drawback of requiring the normality assumption.

All three estimators presented can be formulated as special cases of the general

method-of-moments estimator for τ2 [33]

T 2
MM =

[∑k
i=1Ai

(
θ̂i −

Pk
i=1 Aiθ̂iPk
i=1 Ai

)2
]
−
[∑k

i=1AiS
2
i −

Pk
i=1 A

2
iS

2
iPk

i=1 Ai

]
∑k

i=1Ai −
Pk

i=1 A
2
iPk

i=1 Ai

(23)

The actual estimator resulting from this definition is determined by the choice of

Ai, underlining the above mentioned similarity between the Paule and Mandel and

the DerSimonian and Laird estimators. The former results from using the weights

Ai = W̃i in equation (23), whereas the latter results from setting Ai = Wi:
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T 2
DL =

[∑k
i=1Wi

(
θ̂i −

Pk
i=1Wiθ̂iPk
i=1Wi

)2
]
−
[∑k

i=1WiS
2
i −

Pk
i=1W

2
i S

2
iPk

i=1Wi

]
∑k

i=1Wi −
Pk

i=1W
2
iPk

i=1Wi

(24)

=

[∑k
i=1Wiθ̂

2
i − 2

∑k
i=1Wi

(
θ̂i

Pk
j=1Wj θ̂jPk
j=1Wj

)
+
∑k

i=1

(
Wi

(Pk
j=1Wj θ̂jPk
j=1Wj

)2
)]

C

−

∑k
i=1

1
S2

i
S2
i −

Pk
i=1

„
1

S2
i

«2

S2
iPk

i=1
1

S2
i


C

(25)

=

[∑k
i=1Wiθ̂

2
i − 2

Pk
j=1Wj θ̂jPk
j=1Wj

∑k
i=1Wiθ̂i +

(Pk
j=1Wj θ̂jPk
j=1Wj

)2∑k
i=1Wi

]
C

−

[∑k
i=1 1−

Pk
i=1

1

S2
iPk

i=1
1

S2
i

]
C

(26)

=

[∑k
i=1Wiθ̂

2
i − 2(

Pk
i=1Wiθ̂i)2Pk

i=1Wi
+ (

Pk
i=1Wiθ̂i)2Pk

i=1Wi

]
− (k − 1)

C
(27)

=

[∑k
i=1Wiθ̂

2
i −

(
Pk

i=1Wiθ̂i)2Pk
i=1Wi

]
− ν

C
(28)

=
Q− ν
C

(29)

�

Besides these method-of-moments estimators, more general methods have been pro-

posed that do not assume normal distribution of the means of the primary studies.

One of them is the non-parametric maximum likelihood approach by Aitkin [2].

Unfortunately, this estimator has not yet reached the state of practical application

and has never been employed in a real meta-analysis.
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1.3 Meta-Regression

As explained in the previous section some of the between-studies variance may be

explained by study-level covariates. Meta-regression is a tool to assess the relation

between one or more study-level covariates and the observed effect size in a study.

1.3.1 The Idea of Meta-Regression

In analogy to classical regression analysis, where the variance of the dependent

variable is partitioned into variance that can be explained by regressors and resid-

ual variance, meta-regression partitions the between-studies variance of effect sizes

into variance that can be explained by study-level covariates and residual variance

[66]. As in the estimation of effect sizes it is appropriate to take into account

the differences in precision of the studies. This can be accomplished by weighting

the studies in meta-regression. With this in mind most of the tools of classical

regression can be employed.

1.3.2 Random-Effects vs. Fixed-Effect Models

In principle, both fixed-effect and random-effects models can be used for meta-

analysis. A fixed-effect model in meta-analysis means that the true effect size

dependent on the covariates is common for all primary studies and the residual

variance is sampling error only.

Conversely, the random-effects model assumes that there is no common effect size

for all studies, but the true effect sizes of the individual studies follow a distribution

whose location parameter is dependent on the covariates [4]. Again, the random-

effects model is more realistic than the fixed-effect model in practical meta-analysis

since in general, while it can be assumed that the primary studies share common
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characteristics necessary for joint analysis, their true effect sizes still reveal differ-

ences that cannot be explained by known covariates.

The main difference in calculation between the two types of models manifests in

different weighting—in random-effects models, the weights are more homogeneous

than in fixed-effect models (cf. section 1.2.3).

1.3.3 Model Assumptions

The principal assumptions of linear regression are independence, normal distribu-

tion, and homoscedasticity of residuals. In general, it can be said that all three also

apply to meta-regression. Some specific aspects, however, should be highlighted for

meta-regression.

Independence, for instance, is certainly necessary in meta-regression. A priori, it

seems reasonable to assume it in meta-analysis because the data points represent

studies conducted more or less independently from each other. In practice, it is

difficult to assess the exact extent of dependencies between studies. For once, it

can be taken for granted that researchers conducting primary studies already know

the results of previous studies in the same field, possibly imposing a limitation on

the independence assumption. Furthermore, multiple studies in the same field may

be conducted by the same or related investigators, at the same locations or under

circumstances introducing dependencies in any other way.

The assumption of normal distribution of the residuals is also inherited by meta-

regression from OLS. In addition, the DerSimonian and Laird estimator for between

studies variance also assumes normal distribution. The most important sources of

violation of this assumption in practical meta-analysis is probably publication bias.

Publication bias is the effect that studies underperforming the expectations or the

bulk of available studies are sometimes omitted from publication. This leads to an

asymmetric and thus not normal distribution of residuals.
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While inhomogeneous variances within the different studies are less problematic in

overall effect size estimation, this is not the case in meta-regression. Heteroscedas-

ticity is as much of a problem in meta-regression as it is in ordinary least squares

(OLS) regression since the former are directly based on the latter. In addition, in

meta-regression studies with low weights (low precision) can gain unrequited influ-

ence if their covariate levels are in a range of high between-studies variance. This

can occur in covariate ranges where all studies are of low weight, e.g. because only

few observations in these ranges can be obtained at the level of individual studies.

1.3.4 Data Quality Issues

In addition to possible violations of model assumptions as discussed above, other

aspects of data quality also influence the overall character of the data and in par-

ticular the adequacy of certain modeling approaches. Prominent among these are

the presence of outliers in general, heterogeneous quality of individual studies in

meta-analysis [30], and incorrect data points due to errors in the data acquisition

and transmission processes in particular.

Heterogeneity between the quality of individual observations is of particular interest

in meta-analysis. Each data point originates from a different primary study and

thus may substantially differ from other studies in the quality of the study itself,

in the reporting of the results [56], and in the acquisition of data for the purpose of

meta-analysis. While some aspects such as differences of within-study variation of

effect sizes between the primary studies are taken into account by the meta-analytic

methods, others such as loss of precision due to data extraction methods are harder

to evaluate. In particular, some meta-analyses use data obtained directly from

the authors of the primary studies and data extracted by measuring of figures in

published papers with a ruler. This approach is problematic, especially since there

is no established method of modeling the resulting differences in data reliability.
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Another problem especially pertinent in meta-analysis is data integrity. Typing

and related errors can occur at different levels from primary study execution to

publishing to retrieving of data by meta-analysts. Since data extraction is often

performed by hand from published articles, human error is of special relevance in

the context of meta-analysis.

2 Robustness

2.1 General Idea

The estimators discussed, like all statistical models, are based on some model as-

sumptions. Among these are randomness, independence, and normal distribution.

On one hand, these assumptions allow to draw valid conclusions, and justify the

calculations presented above. On the other hand, under certain circumstances,

even small violations of the assumptions can corrupt the conclusions.

In practice, the situation always deviates from the ideal situation to some degree

and it is important to check model assumptions. However, the nature of these

deviations can be complex. Three cases will be considered in detail.

First, individual data points can simply be wrong (typing errors, transmission

errors, measuring errors, etc.). Second, some of the data points, although correct

in principle, could be inhomogeneous with respect to the majority of the sample.

These are referred to model outliers. Third, the index by which the effect sizes are

measured might introduce a bias which cannot simply be removed at the level of

meta-analysis, and thus the influence of this bias should be limited by the statistical

methodology. In the context of parametric models, these three cases are dealt with

in different ways, including the so called robust statistical methods.

The most common way to address the issue of incorrect data points is to identify

and discard them from the analysis. However, while there are some unambiguous
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situations, in general, on the basis of the reported data alone, it is impossible to

clearly label data points as correct or incorrect. Such points may or may not have

a distorting influence on the results. If they do, robust methods can contain their

influence.

In contrast to the concept of incorrect data points, the concept of model outliers is

only meaningful in the context of a specific statistical model. But having chosen a

specific model, any outliers with respect to this model are always identifiable. In

non-robust models, outliers of this kind might easily distort the results, and thus

lead to invalid conclusions. Robust methods are by nature all but immune to this

source of distortions.

The third case is hardest to grasp. First of all, whether an index introduces a

bias depends on the nature of the problem. As an example, both HAMD score

reduction and response rates (encouraged by Melander et al. [45]) are meaningful

indices of antidepressant efficacy but might lead to different conclusions (cf. figure

6). Second, the nature of the influence of index choice is very hard to assess. If

possible, taking this into account during the modeling phase is the best way of

handling it. However, sometimes this cannot be done. Thus, it is desirable to

reduce the potential influence of bias by way of robust statistical analysis.

To sum up, in all three cases described, methods of robust statistics help to im-

prove data analysis. In the next sections, outliers occuring in meta-analysis will

be grouped into two categories discussed seperately: outliers in the space of actual

data points and outliers in the weight space due to inaccurate estimation of their

variance. But first, two measures of robustness will be introduced.

22



2.2 Breakdown Point

The breakdown point of a statistical estimator T is defined as the smallest amount

of contamination y1, . . . , yn sufficient to arbitrarily distort its result on any sample

x1, . . . , xn, with n going to infinity. In formal terms, this can be written as

ε∗(T ) = lim
n→∞

sup
{x1,...,xn}∈<n

min

{
k

n
; max
I⊆{1,...,n},|I|≤k

sup
{y1,...,yn}∈<n

|T (z1, . . . , zn)| =∞

}
(30)

where

zi =


xi if i /∈ I

yi if i ∈ I
(31)

2.3 Influence Function

In order to assess the robustness of an estimator it is important to be able to

measure the impact of a small amount of contamination of the sample on the

estimator. The tool to employ here is the influence function of an estimator T at

a location x which can be defined as

IF(x;T, F ) = lim
n→∞

T
((

1− 1
n

)
F + 1

nδx
)
− T (F )

1
n

(32)

where F denotes a distribution function and δx the Dirac-measure in x.

2.4 Extensions for Meta-Analytic Settings

Both the breakdown point and the influence function are defined for unweighted

data only. For use on weighted data, as in meta-analysis, a generalization is neces-

sary. However, defining the two measures of robustness in this context is far from

trivial.
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The influence function, at first glance, seems easier to adapt: the infinitesimal

contamination of data can be defined as a contamination with infinitesimally small

weight, which can be written as

IF(x;T, F ) = lim
w/n→0

T ((1− w/n)F + w/nδx)− T (F )
w/n

(33)

In contrast, a generalization of the breakdown point does not immediatly come to

mind. Several options are to be considered, including using a proportion of weights

instead of a proportion of data points. This definition, however, might lead to

problems, since with weighted data, even when the number of observations goes to

infinity, it cannot be outruled that the majority of the weights is held by a finite

number of observations. Thus, the limit as proposed in equation (30) cannot be

interpreted meaningfully on weighted data since it is possible that almost all of the

observations carry only negligible weight.

3 Robust Meta-Regression

3.1 The Weighted Ordinary Least Squares Estimator

The dominant approach to meta-regression is based on the Ordinary Least Squares

(OLS) estimator to model the linear relationship between a p-dimensional regressor

x = (1, x1, . . . , xp)> and a dependent random variable y by

y = β>x + ε. (34)

with ε ∼ N(0, σ2I). The regression coefficients β = (β0, β1, . . . , βp)> are estimated

from a sample of size n, composed of
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X = (1,x1,x2, . . . ,xp) =



1 x11 x12 . . . x1p

1 x21 x22 . . . x2p

...
...

...
. . .

...

1 xn1 xn2 . . . xnp


(35)

and

y =



y1

y2

...

yn


. (36)

by minimizing the sum of the squared residuals

n∑
i=1

r2i (β) (37)

with r2i (β) being the i-th squared residual, i.e.

r2i (β) = yi − β0 −
p∑
j=1

xijβj . (38)

It is thus an optimization of the target function

β̂ = argmin
β

n∑
i=1

r2i (β). (39)

In meta-regression, a weighted version of this estimator (wOLS) is used, with weight

wi assigned to the i-th observation, leading to
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β̂ = argmin
β

n∑
i=1

wir
2
i (β). (40)

The solution can be calculated using the closed form

β̂ =
(
X>WX

)−1
X>Wy (41)

where W is the matrix of weights in the form

W =



w1 0 . . . 0

0 w2 . . . 0
...

...
. . .

...

0 0 . . . wn


. (42)

Despite the wide application of wOLS and its elegant closed form solution, its

breakdown point of 0 sparks interest in other, more robust estimators.

3.2 The Least Trimmed Squares Estimator

Following the idea of fitting the model to the majority of the data and downweight-

ing outliers, the LTS estimator [57] is based on the OLS estimator, but instead of

fitting the model to all data points, a subset is selected such that the sum of squared

residuals of an OLS estimation within this subset is minimal. The target function

can be written as

β̂LTS = argmin
β

h∑
i=1

(r2(β))(i) (43)

Here, only part of the ordered squared residuals r2(β)(i) are used for the opti-

mization. More specifically, the regression line is fitted to the h/n proportion of
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the data points with the smallest squared residuals. Conversely, a proportion of

α = 1 − h/n is ignored in the fitting process, hence the estimator is termed as

α-trimmed. The choice of h determines breakdown point and efficiency of the

estimator and is bounded by

⌈n
2

⌉
≤ h ≤ n (44)

where d·e denotes the ceiling function.

There is no explicit formula for computing this estimator, instead, an iterative

algorithm is used. More recently, an efficient implementation of LTS regression

even for large datasets has been introduced [58], making this estimator a practical

choice for robust regression. However, the utility of LTS in meta-regression is

limited by the lack of adaptation to weighted data.

3.3 The meta.lts Estimator

The meta.lts estimator adds to the classic LTS estimator by introducing an im-

plementation of weighting adapted to meta-analysis (cf. code listing meta.lts).

The basic principle remains the same as in classic LTS, but weights are used in a

number of steps of the algorithm. First and most obvious is the use of weighted

least squares in the estimation of the regression model on the chosen subset of data

in each step. Let

r̃2i (β) = wir
2
i (β) (45)

be the weighted squared residuals and r̃2(i)(β) the ordered weighted squared resid-

uals. The target function of meta.lts is thus
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β̂meta.lts = argmin
β

h∑
i=1

r̃2(i)(β) (46)

Apparently, the only difference of the final version of meta.lts, as presented here,

to the classic LTS estimator is the use of the weights wi in the target function.

Still, the use of weighting in LTS estimation is not limited to this. There are

several other parts of the algorithm where the use of weighting was considered and,

ultimately, implemented. First, it was chosen to trim the largest weighted rather

than unweighted squared residuals. Second, weights were involved in determining

the proportion of data points to be trimmed, i.e., the choice of h, which will be

explained in section 3.3.2. And third, weights were taken into account to improve

the suitability of the initial sample as a starting point for the iterative search of

the optimal solution.

3.3.1 Weighted Residual Ordering

A basic aspect of the meta.lts estimator is that, just as in the case of the classic

LTS estimator, the data points with the highest squared residuals are excluded

from the estimation of the regression model. In the context of weighted data, the

question arises whether the raw squared residuals or rather the weighted squared

residuals should be ordered for subsequent trimming.

In practice, using weighted squared residuals means that the probability to include

studies with higher weights is increased compared to the model using raw squared

residuals. At first glance, this might seem to introduce a bias towards studies with

lower weights. However, it merely counteracts the tendency of outliers with high

weights to mask their influence on the model estimation.

Furthermore, using raw squared residuals would introduce an inconsistency between

subset selection and model estimation on the selected subset by using different
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target criteria. Thus, using weighted squared residuals for the ordering leads to a

more consistent overall model.

3.3.2 Weighted Trimming

When it comes to excluding a certain number of data points, either a proportion of

absolute numbers of studies or of weights could be used. As a tentative approach,

the former was implented (cf. code listing meta.lts.unweighted) with a choice of

h as in LTS presented in formula (44). Since in meta-analysis, weights are regarded

as proportional to the evidence provided by the individual studies excluding a fixed

number of studies can lead to high variation in the proportion of available evidence

actually taken into account. Taking this into consideration, it might be more

appropriate to use a fixed amount of evidence, regardless of how many data points

this corresponds to. The corresponding choice to trim away a certain proportion α

of weights was implemented in the final version of meta.lts (as presented in code

listing meta.lts). In this version, termed α-trimmed meta.lts, h was defined as

h = max

j :
j−1∑
i=1

w̃(i) < (1− α)
n∑
j=1

wj

 (47)

where α ∈ [0, 0.5] is the trimming parameter and w̃(i) the weight corresponding to

r̃2(i), that is, the i-th element of the weight vector ordered by ascending weighted

squared residuals.

How exactly to determine the amount of evidence provided by each observation

depends on whether a fixed-effect or random-effects model is used, as explained in

section 1. Both models can be incorporated into a meta-regression using meta.lts

by using the appropriate weights in the analysis.
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3.3.3 Initialization

Being an iterative algorithm, the initialization of meta.lts can have a profound

influence on the result. As a consequence, calculations are performed using different

starting configurations to increase the probability of finding the optimal solution.

Further improvement can be achieved by choosing them to be contextually adequate

instead of purely random.

In the case of meta.lts, to find a conductive initial regression model, p+ 1 points

(p being the number of covariates) are selected randomly from the whole dataset

using weighted sampling. Through these points, a first regression hyperplane is

drawn and the resulting model is used for calculating initial residuals for all data

points. Subsequently, a first subset is chosen using the methods described above.

4 Analysis and Simulations

4.1 A Real Dataset

A recent meta-analysis on the efficacy of anti-depressant medication analyzed 35

studies of different drug types. The dataset of this paper was of special interest

because it included both published and unpublished studies, relevant data were

available without explicit request and the presence of outliers made it particularily

suited for application of robust methods.

4.1.1 Structure

The dataset consists of 35 studies conducted on the efficacy of 4 drugs of 2 different

types: the Selective Serotonin Reuptake Inhibitors (SSRI) Fluoxetine and Paroxe-

tine with 5 and 16 primary studies respectively and the Serotonin-Norepinephrine

Reuptake Inhibitors (SNRI) Venlafaxine and Nefazodone with 6 and 8 primary
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studies. For each of the primary studies, available data included number of partic-

ipants, mean Hamilton Depression Rating Scale (HDRS or HAMD) baseline score,

mean HAMD change, Cohen’s d, and a 95% confidence interval for the Cohen’s d,

all of those for both drug and placebo groups seperately.

The goal of the study was to establish a relation of baseline severity and anti-

depressant efficacy. In this context, it is worth noting that the mean HAMD base-

line scores for both drug and placebo groups ranged from approximately 23 to 30

except for one outlying Fluoxetine study with a mean baseline score of 17. The

mean change in HAMD scores varied in the range of 3 to 11 in the placebo groups

and 6 to 14 in the drug groups. The numbers of participants in the placebo groups

were between 10 and 163 and those in the drug groups between 13 and 403. For

more details cf. tables 1, 2, and 3).

4.1.2 Methods Used

Methods applied to the example dataset included several linear models, using both

fixed-effect and random-effects approaches. Analyses were performed on the com-

plete dataset as well as on subsets. Two different effect size measures for the

dependent variable were compared. The estimation of a mean effect size was con-

ducted using a random-effects model and the result illustrated by a forest plot

[3].

4.2 Simulated Data

4.2.1 Different Groups

A sample dataset consisting of three distinct groups was generated. One group

consisting of 40 observations with high weights constituted the most meaningful

subset of the data and were considered to represent the true relationship to be
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modeled. Two different groups of 30 lower weighted observations each were added

as outliers. The important point was that the combined weights of the outlier

groups did not exceed those of the main group for the meta.lts estimator to

detect the latter as representative for the relationship to be modeled.

This dataset was utilized for two purposes. Firstly, the dependency of meta.lts

results on the type of initialization algorithm was assessed. Secondly, possible

improvements of initialization by weighted sampling was examined. Lastly, a com-

parison was established between OLS, LTS and meta.lts regression performance.

4.2.2 Breakdown Point

To illustrate the conceptual differences between the breakdown points of OLS,

classic LTS and meta.lts regression, datasets consisting of a group of data points

with homogeneous weights and three points with excessively high weights were

generated. On this dataset, OLS, LTS, meta.lts without weighted trimming,

meta.lts without weighted sampling, and final meta.lts models were calculated.

In particular, the effect of the outliers in weight space was explored.

4.2.3 Publication Bias

Finally, simulations to assess the practical problem of publication bias were per-

formed. As explained above, publication bias describes the effect that underper-

forming studies sometimes remain unpublished. This can lead to an overestimation

of the studied effects.

Multiple scenarios were considered. In all of them, 15 points with large weights and

85 points with low weights were generated according to a linear model where the

residual variance of each point was proportional to its weight. To model publication

bias, data points with negative residuals were considered as unpublished and thus
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excluded from the model with a probability increasing with the absolute value of

their residuals.

The scenarios were set apart by using different true linear model parameters as

well as introducing varying amounts of heteroscedasticity into the model. The

latter was studied because of its frequent occurence in real datasets. First, ho-

moscedastic datasets were simulated such that the publication bias constituted the

only violation of the meta-analytic model assumptions. Second, heteroscedasticity

was introduced by increasing the residual variance proportially to the independent

variable. Third, the residual variance was set to be inversely proportional to the

independent variable. And last, it was proportional to the squared values of the in-

dependent variable. All of these were simulated with various slopes—both positive

and negative—of the true linear relationship.

On the resulting datasets, the performance of weighted OLS, LTS and meta.lts

were compared.
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Difference Between Drug and Placebo Groups
ID Label Drug HAMD Score Difference Cohen’s d Difference

Value SD Value SD
1 19 Fluoxetine 7.00 12.31 0.81 0.41
2 25 Fluoxetine -1.60 12.18 -0.20 0.40
3 27 Fluoxetine 2.60 13.51 0.27 0.13
4 62 (mild) Fluoxetine 0.07 8.00 -0.03 0.18
5 62 (moderate) Fluoxetine 3.13 11.11 0.41 0.18
6 203 Venlafaxine 4.50 11.56 0.55 0.15
7 301 Venlafaxine 4.45 11.12 0.57 0.26
8 302 Venlafaxine 3.02 14.47 0.29 0.22
9 303 Venlafaxine 0.21 11.26 0.03 0.22

10 313 Venlafaxine 1.51 11.64 0.19 0.18
11 206 Venlafaxine 9.40 14.85 1.02 0.27
12 03A0A-003 Nefazodone 1.57 12.04 0.23 0.22
13 03A0A-004A Nefazodone 0.00 10.76 0.00 0.19
14 03A0A-004B Nefazodone 1.90 11.46 0.24 0.19
15 030A2-004/0005 Nefazodone 0.16 10.88 0.04 0.23
16 030A2-0007 Nefazodone 2.50 12.37 0.31 0.22
17 CN104-002 Nefazodone 2.60 11.24 0.33 0.25
18 CN104-005 Nefazodone 4.00 11.22 0.50 0.21
19 CN104-006 Nefazodone 1.10 10.52 0.14 0.22
20 01-001 Paroxetine 3.00 11.43 0.37 0.45
21 02-001 Paroxetine 5.50 13.66 0.58 0.25
22 02-002 Paroxetine 5.10 12.48 0.57 0.30
23 02-003 Paroxetine 2.50 14.75 0.24 0.29
24 02-004 Paroxetine 5.10 9.60 0.75 0.36
25 03-001 Paroxetine 6.10 9.59 0.91 0.31
26 03-002 Paroxetine 1.80 9.94 0.26 0.29
27 03-003 Paroxetine -0.10 11.87 -0.01 0.30
28 03-004 Paroxetine 3.70 11.04 0.47 0.31
29 03-005 Paroxetine 5.90 14.21 0.58 0.26
30 03-006 Paroxetine 6.10 11.53 0.74 0.27
31 PAR 09 Paroxetine 0.90 10.11 0.14 0.20
32 UK 06 Paroxetine -0.20 9.70 0.14 0.41
33 UK 12 Paroxetine 2.40 10.74 0.37 0.55
34 UK 09 Paroxetine 4.30 14.33 0.31 0.37
35 PAR 07 Paroxetine 2.20 15.50 0.21 0.59

Table 1: Overview of the example dataset.
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ID N Baseline HAMD Change Cohen’s d
HAMD Score Mean SD Score SD Confidence Interval

1 22 28.6 12.5 8.68 1.44 0.33 0.79 2.09
2 18 26.2 7.2 8.67 0.83 0.30 0.24 1.41
3 181 27.5 11 9.57 1.15 0.10 0.96 1.34
4 299 17 5.89 5.77 1.02 0.07 0.88 1.16
5 297 24.3 8.82 7.81 1.13 0.07 0.98 1.27
6 231 25.6 11.2 8.18 1.37 0.09 1.19 1.55
7 64 25.4 13.9 7.85 1.77 0.20 1.36 2.17
8 65 25 11.9 10.26 1.16 0.17 0.84 1.49
9 69 23.6 10.1 7.95 1.27 0.16 0.94 1.59

10 227 25.7 11 8.21 1.34 0.09 1.16 1.52
11 46 28.2 14.2 9.79 1.45 0.22 1.02 1.89
12 101 25.4 9.57 8.32 1.15 0.13 0.90 1.41
13 153 23.4 8.9 7.61 1.17 0.11 0.97 1.38
14 156 25.3 11.4 8.09 1.41 0.11 1.18 1.63
15 74 23.4 10 7.63 1.31 0.16 0.99 1.63
16 175 25.7 12.3 8.66 1.42 0.11 1.20 1.63
17 57 23.3 10.8 7.94 1.36 0.19 0.99 1.73
18 86 24.5 12 7.95 1.51 0.16 1.20 1.83
19 80 23.8 10 7.46 1.34 0.16 1.03 1.65
20 24 28 13.5 8.08 1.67 0.34 0.99 2.34
21 51 26.6 12.3 9.61 1.28 0.19 0.89 1.66
22 36 25 10.9 8.86 1.23 0.23 0.78 1.69
23 33 28.6 9.7 10.43 0.93 0.21 0.50 1.35
24 36 28.9 12.7 6.79 1.87 0.29 1.29 2.44
25 40 24.9 10.8 6.75 1.60 0.25 1.11 2.09
26 40 24.9 8 7.02 1.14 0.21 0.72 1.55
27 41 25.7 9.9 8.39 1.18 0.21 0.76 1.59
28 37 27.6 10.4 7.82 1.33 0.23 0.86 1.79
29 40 26.1 10 10.10 0.99 0.20 0.60 1.39
30 39 29.7 9.1 8.20 1.11 0.21 0.69 1.52
31 403 25.2 9.1 7.11 1.28 0.07 1.15 1.41
32 19 23.7 6 6.19 0.97 0.31 0.38 1.57
33 19 22.8 9.1 7.40 1.23 0.33 0.57 1.88
34 20 26.8 8.8 11.00 0.80 0.28 0.26 1.35
35 13 30.5 13.1 10.92 1.20 0.42 0.38 2.03

Table 2: Data for the drug groups in the primary studies.
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ID N Baseline HAMD Change Cohen’s d
HAMD Score Mean SD Score SD Confidence Interval

1 24 28.2 5.5 8.73 0.63 0.24 0.17 1.10
2 24 25.8 8.8 8.54 1.03 0.27 0.50 1.56
3 163 28.2 8.4 9.55 0.88 0.09 0.69 1.06
4 56 17.4 5.82 5.54 1.05 0.17 0.71 1.38
5 48 24.3 5.69 7.90 0.72 0.17 0.39 1.05
6 92 25.3 6.7 8.17 0.82 0.12 0.58 1.06
7 78 24.6 9.45 7.88 1.20 0.15 0.91 1.50
8 75 24.4 8.88 10.21 0.87 0.14 0.60 1.14
9 79 24.6 9.89 7.98 1.24 0.15 0.94 1.54

10 75 25.4 9.49 8.25 1.15 0.15 0.85 1.45
11 47 28.6 4.8 11.16 0.43 0.16 0.12 0.74
12 52 25.9 8 8.70 0.92 0.17 0.59 1.26
13 77 23.5 8.9 7.61 1.17 0.15 0.88 1.47
14 75 25 9.5 8.12 1.17 0.15 0.87 1.47
15 70 24 9.84 7.75 1.27 0.16 0.94 1.59
16 47 26.4 9.8 8.83 1.11 0.19 0.74 1.49
17 57 23.1 8.2 7.96 1.03 0.17 0.70 1.36
18 90 23.3 8 7.92 1.01 0.13 0.75 1.27
19 78 23.5 8.9 7.42 1.20 0.15 0.90 1.49
20 24 27.4 10.5 8.08 1.30 0.30 0.71 1.88
21 53 25.9 6.8 9.71 0.70 0.16 0.39 1.01
22 34 24.9 5.8 8.79 0.66 0.19 0.27 1.04
23 33 28.9 7.2 10.43 0.69 0.20 0.29 1.08
24 38 27.3 7.6 6.79 1.12 0.21 0.70 1.54
25 38 24.8 4.7 6.81 0.69 0.19 0.33 1.06
26 40 25.6 6.2 7.05 0.88 0.19 0.50 1.26
27 42 27 10 8.40 1.19 0.21 0.78 1.60
28 37 27 6.7 7.79 0.86 0.20 0.46 1.25
29 42 26.8 4.1 10.00 0.41 0.16 0.08 0.73
30 37 28.7 3 8.11 0.37 0.17 0.02 0.71
31 51 24.5 8.2 7.19 1.14 0.18 0.77 1.50
32 22 24.2 6.2 7.47 0.83 0.27 0.31 1.35
33 10 22.3 6.7 7.79 0.86 0.44 0.00 1.73
34 21 25.5 4.5 9.18 0.49 0.24 0.01 0.97
35 12 28.3 10.9 11.01 0.99 0.41 0.19 1.79

Table 3: Data for the placebo groups in the primary studies.
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Results

5 Real Dataset

5.1 Extension of Original Analysis

5.1.1 Quadratic Model

The first model was calculated along the lines taken by Kirsch et al. [36] and is

similar to model 1b in the paper. It includes both linear and quadratic terms of

the baseline HAMD severity, the group as a dummy variable (0 for placebo vs.

1 for drug) and interaction between group and baseline severity. The results are

summarized in R output 1. The values calculated do not exactly correspond to

those in the paper, one reason being omissions in the reporting by Kirsch et al.

In addition, inspection of figure 1 in comparison with the corresponding figure in

the paper showed a discrepancy between the data reported in the table 1 and the

points plotted in figures 2 and 3 by Kirsch et al. [36]. The points in question are

highlighted in figure 1 by the use of different colors.

Besides the differences noted, figure 1 qualitatively replicates the results reported

in the paper, in particular that the “improvement from baseline operated as a ∩-

shaped curvilinear function in relation to baseline severity, with those at the lowest

and highest levels experiencing smaller gains, whereas those in-between experienced

larger gains” [36].
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Figure 1: Mean standardized improvement as a function of initial severity and treatment group as

reported by Kirsch et al. [36] in figure 2. Blue and light blue points represent placebo groups, red

and orange points represent drug groups. The area of the plotted points is proportional to their

weight in the fixed effect model. Light blue and orange indicate points plotted according to data

as reported in table 1 by [36] that do not correspond exactly to points plotted in figure 2 by [36].

The red and blue lines represent prediction of d score for drug and placebo groups based on the

model presented in R output 1.

5.1.2 Confidence Intervals

In figure 1, high variance of Cohen’s d scores (cf. section 5.2.2) can be observed,

in particular when compared to the variance explained by the model. Figure 2

shows the same model as figure 1 with added 95% confidence bands. Note that
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R output 1 Quadratic model analogous to model 1b in Kirsch et al. [36].

lm(formula = d ~ group + baseline + I(baseline^2) + group:baseline,
weights = w)

Residuals:
Min 1Q Median 3Q Max

-2.70312 -0.93918 0.04522 1.04329 2.40091

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.334039 1.270684 -0.263 0.7935
group -1.113263 0.515794 -2.158 0.0346 *
baseline 0.160888 0.101398 1.587 0.1174
I(baseline^2) -0.004353 0.002060 -2.113 0.0384 *
group:baseline 0.057050 0.020442 2.791 0.0069 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.217 on 65 degrees of freedom
Multiple R-squared: 0.5208, Adjusted R-squared: 0.4913
F-statistic: 17.66 on 4 and 65 DF, p-value: 7.41e-10

considering the confidence bands, the direction of the true curve at the extreme ends

of the baseline severity scores cannot clearly be identified. Furthermore, at baseline

severity levels of 20–30, where all but one studies are located, the confidence bands

show that both true curves cannot be distinguished from straight lines, in particular

from a horizontal line in case of the drug group.

Following this observation, the next model considered was a purely linear model

as seen in figure 3. In analogy to figure 3 by Kirsch et al., a linear model was also

fitted to all data points but the one with a mean baseline HAMD score of 17. Both

models can be compared in figure 3, the model incorporating all data points being

shown in orange and dark blue and the model without the outlier (analogous to

figure 3 in the paper) in red and light blue. Both models were plotted with their

respective confidence bands. These do not support any difference between the two

models on the placebo groups. Considering the drug groups, the regression line
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of the model without the outlier is more horizontal and lies within the confidence

bands of the model that includes the outlier for HAMD baseline scores of 23 to

over 30 and outside the confidence bands for baseline scores under 23.
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Figure 2: Same as figure 1 with 95% confidence bands added.
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Figure 3: Linear least squares regression of mean standardized improvement as a function of initial

severity and treatment group using fixed effect weights. Red and light blue lines correspond to

regression excluding the outlying study with the baseline HAMD score of 17. Note that the red

and light blue lines correspond to the regression lines in figure 3 by [36] with minor variations due

to the data inconsistencies highlighted in figure 1. The area of the plotted points is proportional

to their weight in the fixed effect model.

5.1.3 Random Effects

The next step to a more formally correct model was to apply random effects weight-

ing instead of the fixed effects weights used in the previous section. The results are

summarized in the R output 2 and in figure 4. Compared to the fixed effect model,

in the random effects model the weights are smaller and more homogeneous.
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R output 2 Linear model using random effects weights.

lm(formula = d ~ group + baseline + group:baseline,
weights = w.random.effects)

Residuals:
Min 1Q Median 3Q Max

-1.635963 -0.500561 0.004967 0.606901 1.706309

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.86720 0.39693 2.185 0.03246 *
group 1.29473 0.59584 2.173 0.03338 *
baseline 0.01574 0.01566 1.005 0.31854
group:baseline -0.06474 0.02344 -2.762 0.00744 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.8072 on 66 degrees of freedom
Multiple R-squared: 0.4268, Adjusted R-squared: 0.4007
F-statistic: 16.38 on 3 and 66 DF, p-value: 4.621e-08

The regression lines of the placebo groups are similar to those of the fixed effect

model, while those of the drug groups are slightly more horizontal. For both groups,

the confidence bands are wider. As a consequence, for placebo and for drug groups,

the regression lines of the models with and without the outlier remain within the

confidence bands of each other. Therefore, there is no statistical evidence of the

models being different.
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Figure 4: Similar to figure 3, but using weights according to a random effects model. The area

of the plotted points is proportional to their weight in the random effects model. Note that in

contrast to the fixed effect model as shown in figure 3 the regression line for the drug group using

the model without the outlier remains well within the confidence band of the model including the

outlier, illustrating the smaller influence of large studies in the random effects model.

5.2 Other Analyses

5.2.1 Forest Plot

The forest plot, a commonly used method to illustrate the estimation of the mean

effect size, in this case (see figure 5) shows the differences between the drug and

placebo groups of each study. Here, due to the extremely high variance estimates it
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cannot support a significant difference between drug and placebo treatment. The

high variance observed is inherent to the effect size measure employed and limits

the precision of any assessment of difference between groups.

Other effect size measures, in particular response rates (cf. Melander et al. [45]),

might yield better results. However, response rates could not be used in the analysis

here since this would require either their direct publication or the availability of

individual patient data (IPD).

Mean effect size Standard deviation 95% confidence interval
2.70 1.93 -1.10 6.48

Table 4: Mean effect size and scale estimation of the random effects model.

drug.change − placebo.change

S
tu

dy
 R

ef
er

en
ce

−30 −20 −10 0 10 20 30 40

Summary

Figure 5: Forest plot of the differences in HAMD change between drug and placebo groups. Grey

lines represent 95% confidence intervals based on the (conservative) estimation of the variance of

the difference as the sum of the variances of the HAMD changes of the two groups. Note that the

weights used correspond to the weights of the fixed effect model since the between-studies variance

pales in comparison to the large within-study variances. The DerSimonian and Laird estimator

for τ2 yields a negative result and T 2 is thus set to 0.

44



5.2.2 Different Effect Size Measures

The two effect size measures reported were raw HAMD scores and Cohen’s d.

Figure 6 shows a direct comparison between the models resulting from the use

of these different effect size measures. Despite the close relationship between the

two, Cohen’s d being the normalized mean HAMD score change, the models results

show different relationships between the baseline HAMD scores and their respective

effect sizes within each group.

While in the drug groups Cohen’s d was constant over all observed baseline scores,

raw HAMD change increased at higher levels of baseline. On the other hand, in

the placebo groups, high baseline scores lead to lower values of d scores, but had

no influence on raw HAMD change. Although these differences occur only as a

consequence of data presentation, they might induce discordant interpretation of

the relation between result of treatment and baseline HAMD score and effect size

choice is thus to be handled with care.
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Figure 6: Linear least squares regression of mean standardized improvement (left) and absolute

improvement in HAMD scores (right) as a function of initial severity and treatment group using

random effect weights. Note how the percieved influence of baseline severity changes substantially

when using different effect size measures. Regression lines and 95% confidence bands for models

including and excluding the outlying study.
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5.2.3 Groupwise Analysis

In general, data aggregation is a factor that can strongly influence the results of

statistical analysis. In particular, it is problematic when aggregating data to a level

that does not allow for meaningful interpretation anymore. Accordingly, such data

cannot be used as a covariate in regression analysis.

In regression, aggregating data into groups is particularily dangerous when the

variance within the groups is large in relation to the variance between groups. When

doing so, most of the relevant information on the covariance between independent

and dependend variables is effectively eliminated. Fitting a meaningful regression

model is thus made practically impossible.

The effect of the above can be high, even to the point of completely reversing the

results. To illustrate this, simulated data in figure 7 show a reversal of slope in

regression induced by data aggregation.
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Figure 7: Simulated data demonstrating the potential reversal of percieved trend when aggregating

data. The dashed red, green and blue lines represent the regression lines within the respective

subgroups while the solid black line corresponds to the regression of the aggregated data (the

solid red, green and blue points represent the respective group means). Note that while all of the

subgroups show the same upwards trends, the aggregation reverses the slope.
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A related problem is that of jointly modeling heterogeneous groups of data points as

being drawn from one homogeneous population. Information on differences between

groups is thus lost, possibly leading to corrupted regression results. As an example,

in figure 8 the different models resulting from regression grouped by active agent

of the study can be seen. Note that in contrast to the pooled regression model in

figure 4 where the regression line of the drug group is horizontal, the individual

regression lines of drug groups in 8 all have positive slopes.

Considering figure 8, one might be tempted to identify a marked distinction between

the regression lines of the SSRI and SNRI subgroups. It should be noted, however,

that on one hand these differences are not significant, and on the other hand, to

draw inferences about patient level covariates in a study level analysis is principally

flawed (this will be discussed in more detail in section 7.2). In short, the relationship

observed here should be considered as coincidental.
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Figure 8: Individual regression lines for subgroups of studies using the same active agent. Squares

represent drug groups, circles represent placebo groups, their respective sizes being proportional

to their weights in random effect analysis. Solid lines represent regression of drug groups, dashed

lines the corresponding regression of placebo groups.
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6 Simulations

6.1 Three Groups

6.1.1 Initialization

The first simulation result concerns the assessment of the influence of weighting on

the initialization of meta.lts. The black lines in figure 9 show the initial models of

all iterations, the green line shows the final model. The plot on the left shows the

result using unweighted sampling, the plot on the right weighted sampling. Using

weighted sampling, a greater proportion of the initial models lie in the vicinity of

the final model.
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Figure 9: Improvement of starting configurations using weighted sampling (right) compared to

unweighted sampling (left).
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Figure 10: Comparison of OLS (red), LTS (blue) and meta.lts (green) regression models on

simulated data.

6.1.2 Three Estimators

Figure 10 compares final results of OLS, LTS (with h = n/2) and meta.lts (with

α = 1/2) regression on a simulated dataset comprising three groups with different

weights (cf. section 4.2.1). The meta.lts regression line is closest to the group

with high weights, while the other two are drawn towards the groups with smaller

weights.
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6.2 Weight Space Outliers
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Figure 11: Illustration of the complexity of the concept of the breakdown point on weighted data.

The meta.lts regression line (green) is drawn to the three heavyweight points with the majority

of the weights in the left plot, and to the majority of data points in the right plot.

The two plots in figure 11 show the effect of outliers in weights space on the

meta.lts regression estimate in cumulated datasets consisting of a group of data

points with homogeneous weights and three points with excessively high weights.

The meta.lts regression line in the left plot drawn in green is fitted only to the

three heavyweight points, downweighting the rest of the data. Conversely, in the

right plot, where only the location of the 60 data points with a cumulative weight

of less than 1/1000 of the total weights has changed, the regression line is fitted to

the 60 points with a very small proportion of weights. Furthermore, it can be seen

that at least one of the initial regression lines was drawn through two of the three

heavyweight points, thus ruling out the possibility of the result being purely due

to initialization issues.
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6.3 Publication Bias

6.3.1 Homoscedastic Case

Three types of models were fitted to a simulated dataset of 100 data points with

varying weights and residual variances proportional to these weights. Representing

publication bias, observations with negative residuals were excluded from the model

fitting with probability of omission increasing with higher absolute residual values.

All three types of models that were fitted show essentially the same estimates of

intercept and slope (see figure 12). The two estimates using weights—OLS and

meta.lts—had approximately the same variance of their slope estimate while the

LTS estimator which did not use the weights had a higher variance. The median

of the estimates of all three types of models on 1000 simulated datasets matches

the true slope (see figure 13).
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Figure 12: Comparison of OLS (red line), LTS (blue) and meta.lts (green) estimation on simulated

homoscedastic data with publication bias. The red points are considered as unpublished and are

thus not included in the fitting of the regression models.
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Figure 13: Comparison of OLS, LTS and meta.lts estimates of the slope vs. true slope on simu-

lated homoscedastic data with publication bias.

6.3.2 Heteroscedastic Case

In analogy to the simulation of homoscedastic data, 1000 datasets for the het-

eroscedastic case were also created. Heteroscedasticity was induced by increasing

residual variance proportionally to the independent variable. Again, the three types

of models were fitted. In contrast to the homoscedastic case, results varied between

the different models.

As expected from a theoretical point of view, the OLS estimator is the most strongly

influenced by the bias (figure 14). Its slope estimate is substantially higher than

the true slope in the great majority of the simulated datasets (figure 15). The

LTS estimator also overestimated the slope, albeit less so. Still, more than three

quarters of the simulated datasets resulted in an estimate above the true slope.

The meta.lts estimator, finally, most consistently delivered the estimates closest
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to the true slope. Even so, the deviation of the median of the estimates from the

true slope was statistically significant.

To examine the influence of different patterns of heteroscedasticity, several other

simulations were performed. A selection of four cases is presented (figure 16). In

the top left subfigure, the case of linearily increasing residual variance as described

above is shown, the true slope was set to 0.5 instead of 1. To the right, a negative

slope was considered. In the bottom left subfigure, instead of variance increasing

with higher values of the independent variable, it was simulated as increasing with

lower values. The last subfigure, at the bottom right, shows the case of residual

variance increasing proportionally to the square of the independent variable.
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Figure 14: Comparison of OLS (red line), LTS (blue) and meta.lts (green) estimates on simulated

heteroscedastic data with publication bias. The red points are considered as unpublished and are

thus not included in the fitting of the regression models.
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Figure 15: Comparison of OLS, LTS and meta.lts estimates of the slope vs. true slope on simu-

lated heteroscedastic data
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Figure 16: Comparison of influence of different slopes and types of heteroscedasticity.
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Discussion

7 Example Dataset

7.1 Data Quality

The present study dealt with three main aspects of meta-analysis: data quality,

choice of model and model fitting. Furthermore, it presented a new estimator

for meta-regression and performed simulations to further determine its properties.

First, aspects of data quality will be discussed, in particular how to deal with false

data points as well as imputation, and existing guidelines will be highlighted.

Data quality is of utmost importance in statistical analysis. Even in the most

assiduously performed research, problems regarding data quality cannot completely

be outruled. Sources of low data quality include technical problems in general,

transmission errors, low precision of measurement instruments, and others. In

meta-analysis in particular, the quality of the different primary studies might vary

considerably and effectively cannot be influenced by the meta-analyst.

To incorporate measures of study quality into meta-analysis, methods based on the

calculation of a quality score and downweighting of low quality studies have been

presented [68]. However, it has been shown that approaches of this kind are not

robust and, far from improving overall results, actually introduce additional bias

[17, 32]. This leads to the conclusion that genuine robust statistical methods are

pertinent.
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7.1.1 False Data Points

Even the seemingly trivial possibility of typing errors is a relevant practical problem.

Indeed, such a situation can be found in [36], where four data points in the figures

in the paper do not match the data reported in the corresponding table. This can

be seen in figure 1. Although this does not in any relevant way seem to influence the

results of the particular analysis presented, it stresses the point that data quality

issues have to be dealt with at every level of statistical analysis.

Failing to effectively handle data quality issues properly might entail distorted and

even qualitatively different results. Because of their ability to inherently deal with

contaminated data, the use of robust statistical methods should be encouraged.

Unfortunately, robust methods, which might provide a sensible way to deal with

these problems, like the proposed meta.lts estimator, are not yet widely available

in software packages for meta-analysis.

7.1.2 Imputation

When synthesising data from primary studies, meta-analysts are often confronted

with incomplete reporting. Thus, the need for data imputation arises [28, 56].

This often concerns the standard deviations of the effect sizes reported by primary

studies. Missing standard deviations are of particular concern in meta-analysis

since the assignment of weights depends on this information. It has been shown

that, in general, imputing standard deviations can lead to higher quality of overall

analysis [13].

The methods used for imputation, however, should be documented in meta-analytic

reporting and the data points actually imputed should be marked as such. This

procedure guarantees that the analyses performed can be retraced and the amount
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of influence of—as well as potential bias introduced by—the imputation method

can be assessed.

7.1.3 Established Guidelines

There are several important sets of guidelines, most prominently the internationally

recognized guidelines by PRISMA (formerly known as QUOROM), and expert

opinions stressing more specific aspects of meta-analysis. The most important

points of the PRISMA Statement are how to assess data quality, how to identify

primary studies used or excluded, and structure of the reporting of meta-analysis.

In order to allow the reader to assess data quality, a high level of transparency

should strongly be encouraged. Three aspects can be stressed on this behalf: the

process of data generation should be documented extensively (cf. QUOROM guide-

lines [46], PRISMA guidelines [47, 43]), imputed data should clearly be identified

and the imputation process explained, and finally the data used in the calculation

should be made available to the reader without the necessity of explicit requests.

This last point is particularily important (cf. section ) since the need for explicit

requests hampers double-checking of findings by peers and thus reduces the overall

quality of scientific research.

On the other side, consensus guidelines for the reporting of primary studies have

been published, focusing especially on their suitability for future meta-analysis.

The CONSORT statement [48, 49] established checklists of essential elements that

should be reported to allow the reader to assess the reliability and relevance to the

study results. A similar checklist was compiled by the STARD initiative [6] with a

focus on potential bias and generalizability of studies of diagnostic accuracy.
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7.2 Appropriate Model

At the beginning of any meta-analysis arises the question of whether to just de-

termine a common or mean effect size or even further to assess the influence of

covariates on effect size variation between studies. The choice of a model depends

on the research question to be answered by the meta-analysis. Furthermore, the

availability and quality of data may restrict the possibility to answer certain ques-

tions. In the case of a planned regression analysis, it is important to discriminate

between covariates more or less common for all patients in a primary study, these

are termed study-level covariates, and those covariates representing distinct prop-

erties of the individual subject, these are termed patient-level covariates.

Irrespective of whether the analysis to perform is a simple effect size estimation

or meta-regression, meta-analysts must choose between a fixed-effect or random-

effects approach to model a common or mean effect size of all primary studies.

The difference between the two is that in the fixed-effect model all primary studies

are considered to have a common effect size whereas in the random-effects model

effect sizes may differ. Instead of modeling a common effect size, the random-effects

model determines the mean of a distribution of effect sizes.

In general, it is appropriate to choose random-effects modeling. It can rarely be

assumed that all studies involved share the exact same effect size unless they were

all performed by the same institution, the same investigator, at the same time and

place, on the same population etc. [1]. It should explicitly be discouraged to test

for homogeneity of effect sizes and confuse the failure of the test to reject the null

hypothesis with evidence that the effects are homogeneous [26] and subsequently

use a fixed-effect model, since the power of such tests is generally very low [23, 31],

in particular when one study make up a large proportion of the total information

[22]. Instead, whether to employ a fixed-effect or random-effects model should

solely be decided on grounds of a priori knowledge to avoid bias in the results [24].
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An important limiting factor in meta-analysis is the availability of data appropriate

for the planned analysis. As mentioned above, some research questions can only be

treated adequatly on data of high granularity, e.g. individual patient data (IPD)

as opposed to study means and variances. However, quite often only aggregated

data are available [63] or collecting individual patient data may be uneconomical

relative to the research question under consideration [62] and, as can be seen in

figure 7, trends in IPD can be obfuscated by aggregation. While this means that

analyses pertaining to individual patient properties cannot adequatly be performed

on aggregated data, it does not imply that the use of aggregated data must a

priori be seen as a problem. Whether the level of granularity is adequate for the

analysis depends on the research question, therefore it is pertinent to clearly define

the latter before starting the actual analysis. In meta-regression, this means that

data aggregated to study level has the most appropriate granularity to explain

between-study variance (cf. [20]) whereas IPD is necessary to explain between-

patient variance [38].

Similar to the question whether to use IPD or study-level data is whether to com-

monly analyze all data points or take into account subgroups of the data. As can

be seen in figures 8 and 4, individual analyses of subgroups can fundamentally

change the percieved relation between independent and dependent variables. On

one hand, seperately analyzing groups leads to smaller sample sizes in each group

and therefore reduces precision of estimation and power of statistical tests, on the

other hand, seperate analysis can be indispensable if the groups behave differently.

It is self-evident that the use of different effect size measures leads to different re-

sults. The nature of this difference, however, may not be clear from the outset.

Therefore, it is important to impartially consider the different possibilities and eval-

uate which aspects of the data are highlighted by the different effect size measures.

In this context, it might even be reasonable to juxtapose different results obtained

in this manner, despite the risk of data dredging usually involved in analyzing one
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set of data in different ways. An example for this procedure can be seen in figure

6.

Various criteria can be summoned to justify the choice of a certain effect size

measure. Some criteria might arise from the clinical context (response rates vs.

remission rates), others from mathematical considerations. In the example of an-

tidepressant efficacy, it is worth noting that HAMD scores are ordinally scaled,

and thus regression on these is formally incorrect. Despite this, resulting models

might sometimes provide insightful interpretations, but in general, it is preferable

to choose a mathematically correct model by employing a suitable effect size mea-

sure. If no such measure is immediately available, it can often be obtained by

transformation of the available data (even of ordinally scaled data).

Ultimately, there is no right effect size measure common for all meta-analyses.

Rather, the choice of effect size should be determined taking into consideration the

context in general and the field of research in particular. It might be helpful to

consider the choices of effect size measures employed in earlier literature published

on the subject matter.

7.3 Data Dredging

Data dredging is a common problem in meta-analysis [67]. One of the reasons

might be a lack of discrimination between exploratory data analysis and inferential

statistics. Two main goals of exploratory analysis are generation of hypotheses and

validation of model assumptions for subsequent inferential statistics. Inferential

statistics, in contrast, deals with testing hypotheses.

Commonly, a certain amount of exploratory analysis is an integral part of any sta-

tistical analysis, primarily to generate hypotheses by inspecting different aspects of

the data, and secondly to check model assumptions based on visual impression. In

meta-analysis, however, using exploratory analysis in the first sense is problematic
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because of the difficulties involved in testing on an independent sample hypotheses

generated in this manner [67]. This would require new data, which can be hindered

by prohibitive cost, ethical issues (convincing results regarding efficacy of some

treatment may prohibit withholding this treatment from patients, thus eliminating

the possibility to recruit participants for a new study), or in some cases even be

wholly impossible (e.g. if the year of the study is a covariate). Nonetheless, even

in meta-analysis, exploratory analysis can be justified as far as validation of model

assumptions is concerned, and furthermore in some cases even be employed in hy-

pothesis generation if due diligence is taken to avoid data dredging, an example

being generation of hypotheses where testing with a single new study is tractable.

Inferential statistics are used to determine, by means of statistical tests, whether

the data support a predetermined null hypothesis or not. In contrast to exploratory

analysis where it is perfectly acceptable to examine a multitude of different mod-

els, when using multiple models in inferential statistics, adjustments for multiple

testing must be employed. Since this adjustment lowers the power of tests, it ad-

visable to keep the number of tests low by a priori eliminating implausible models.

Second, the use of excessively complex models, tending towards overfitting, can

also give an impression of relationships between variables, thus opening the path

to overinterpretation and data dredging. A third pitfall possibly leading to data

dredging is using models without due consideration of their assumptions, among

which commonly are independence, normal distribution and homoscedasticity of

residuals.

Even after the formal analysis itself, data dredging can occur during interpretation

of results [37]. To avoid this, the reliability of the data should be assessed, the pro-

cess of choosing and fitting the models should be made transparent and thoroughly

discussed. To this end, regression diagnostics, especially plots, should be used. Fur-

thermore, the plethora of available tools to aid the consumer of meta-analysis in

interpretation, such as confidence bands in graphs and other information regarding
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the stability of results (cross validation, bootstrapping, etc.), should be employed

wherever possible.

8 Robust Estimation

8.1 Existing Methods

8.1.1 Assessment of Heterogeneity

Three methods to calculate the between study variance τ2 have been presented:

the one-step [11] and two-step [10] DerSimonian and Laird estimators as well as

the Paule and Mandel [51] estimator.

The one-step DerSimonian and Laird estimator, which is the most widely employed

random-effects estimator in clinical research, is problematic because of its assump-

tion of normality and lack of robustness. Furthermore, its only advantage over the

other two estimators lies in its easy computability, which nowadays has become all

but irrelevant. Even when its model assumptions are not violated in any way it is,

from several points of view, not the best estimator available [60].

The two-step DerSimonian and Laird estimator, under favorable conditions, leads

to better results than the one-step version. Still, conserving the main properties of

the one-step estimator, it basically has the same problematic model assumptions

and lack of robustness.

Finally, the Paule and Mandel estimator has no such restrictive model assumptions

and yields better results under normality, that is, the only case where the other

two estimators could correctly be applied at all. Therefore, out of these three, it is

the estimator that should be used in practice. Still, it is far from perfect since it is

not robust against outliers and low data quality.
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8.1.2 Correcting for Publication Bias with Trim and Fill

The methodological literature is rife with attempts to deal with publication bias.

Among these, a method termed trim and fill [12] has gained popularity, not least

because it is based on the funnel plot, a widely used graphical tool to reveal the

presence of publication bias. The latter is a scatter plot, relating sample sizes (or

similar measures of study precision) to the reported effect sizes. The variances of

these effect sizes are expected to be higher with lower study sample size (precision),

and the pattern of the plot should be symmetric as long as there is no publication

bias.

Trim and fill tries to deal with publication bias by imputing artificial data, com-

pensating for any asymmetry in the funnel plot. The number of artificial data

points added is chosen to reflect the presumed number of unobserved studies. One

method to estimate this number is

L+
0 =

⌈
4Tn − n(n+ 1)

2n− 1

⌉
(48)

where Tn is the Wilcoxon statistic

Tn =
n∑
i=1

I[µ̂,∞)(θ̂i)Ri (49)

with Ri being the rank of the i-th observation in the sample (|θ̂i − µ̂|)i=1,...,n with

µ being calculated as in equation (13). The estimation is repeated iteratively, in

each step removing the most extreme L+
0 positive observations from the totality of

studies until the algorithm converges. Then, L+
0 studies are imputed by mirroring

the L+
0 most extreme positive ones with respect to the estimated mean effect size

[65].
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The trim and fill method, however, like the funnel plot on which it is based, assumes

the effect sizes of the individual studies coming from the same distribution, and

does not allow for either heterogeneity as assumed in the random effects model or

differences in effect sizes due to covariates. Both of these lead to the possibility of

assymmetry in the funnel plot even in absence of publication bias. The application

of trim and fill would thus impute datapoints that were not missing in the first

place.

Futhermore, problems can arise if the sample sizes are not random, but rather the

result of power analysis. In this case, the a priori expectation of high effect sizes

leads to smaller studies and thus an asymmetry in the funnel plot resulting from the

correlation between effect size magnitude and sample size. As in the case described

above, trim and fill is not appropriate.

These considerations have been confirmed by Terrin et al. via simulation studies

on publication bias correction methods in the presence of heterogeneity [65].

8.2 The meta.lts Estimator

To date, the common methodology to fit meta-regression models is weighted OLS.

A problem with wOLS, however, is its lack of robustness or stability against outliers

and data errors, both in the data and the weight space. In the non-weighted case,

a multitude of robust estimators is available, among them the commonly used

LTS estimator. Still, there is no commonly known robust regression estimator for

weighted data. As a consequence, it would be sensible to extend an already tried

and tested robust estimator for use with weighted data. This is, however, not a

trivial task due to the interrelationship of residuals and weights in the optimization

process.

Because of the possibility of efficient implementation, LTS was chosen as the es-

timator to extend for the meta-regression scenario. This approach also bears the
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advantage that the influence of weights can immediatly be inherited from the wOLS

estimator, all the while preserving the robustness of LTS. As intended by the idea

of meta-analytic modeling the use of weights conveys smaller variance of the esti-

mator. The special appeal of the meta.lts estimator is not only combining the

individual advantages of wOLS and LTS, but in particular to provide a robustness

concept adapted to the meta-analytic setting.

8.2.1 Design Choices

The central question about design choices is where and how to use weighting in an

extended version of the original LTS algorithm. The primary focus was not only

to adaptLTS to weighted data, but more specifically to the meta-analytic setting.

There are several distinct parts of the algorithm where weights can be taken into

account. First, the regession line that, in the original LTS estimator, is fitted to

a part of the data using OLS is, in meta.lts, fitted using wOLS. This implies

that, when the proportion to be trimmed is set to zero, the meta.lts estimator

corresponds to the wOLS estimator just as LTS corresponds to OLS. Second, the

LTS algorithm involves ordering the data by the size of the squared residuals, and at

this point, it might be considered to use weighted squared residuals in the weighted

case. Third, instead of trimming an α-proportion of the number of data points, an

α-proportion of the weights could be used. The latter was implemented in the final

version of meta.lts.

Two important design considerations were to find a balance between the influence of

the weights and the influence of the squared residuals in the fitting of the regression

line. Skewing this balance towards the weights might lead to the regression line

being fitted to a very small proportion of actual data points, whereas tipping the

balance in favor of the number of observations would devalue the confidence put

into the higher-weighted data points in the meta-analytic model.
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Using weighted squared residuals in the process of ordering the data points for

trimming is, unlike using wOLS to fit the regression line, not the only choice im-

mediately coming to mind. In practice, it has the effect of increasing the tendency

to trim away higher weighted points due to their higher priority in the weighted

ranking. At first sight, this seems counter-intuitive because in the meta-analytic

setting, the higher weighed points are considered as the most reliable. Nonethe-

less, it was chosen in the final implementation due to two factors. First, using

unweighted squared residuals would lead to conflicting target functions between

the fitting of the regression line itself and the selection of data points to fit the line

to. This would entail inconsistency of the model, possibly resulting in instability

of the estimator. Second, it serves to reduce the existing bias against the trimming

of higher weighted data points introduced by the weighting of the least-squares

estimation that pulls the regression line towards these points, thus reducing their

squared residuals and consequently their probability to be trimmed when using

unweighted residual ordering.

Once an ordering of the data points is achieved, the actual trimming can then be

performed in two ways. Either a fixed proportion of the number of data points or

of the sum of the weights can be used for the fitting of the regression line. Both

approaches have advantages and disadvantages and whether to trim one way or

the other is not a clear-cut decision in the design of a robust estimator for meta-

regression on the basis of LTS. When using the first method, a fixed number of

data points can be guaranteed to be used in the model fitting process. These,

however, might be of low weight, and thus carry only a relatively small part of

the overall evidence as defined in the meta-analytic framework. In contrast, when

trimming a proportion of the sum of weights, the model is fitted to the majority

of the available evidence. But then, the data points retained might constitute a

minority of the total number of data points, which is not in itself undesirable, but

might lead to instable model estimation if this minority is too small a proportion of
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all data points. Nonetheless, the central importance of weights in the interpretation

of the meta-analytic model leads to a preference to fit the model to the majority of

the weights rather than of the number of data points. Therefore, this option was

chosen in the implementation of the meta.lts estimator. As an interesting venue

for future work, the ambiguity of this decision might be resolved in part by finding

a middle way, e.g. retaining both a minimum proportion of weights and of data

points.

Another difficult question in the design of the estimator was the initialization. Since

meta.lts uses an iterative algorithm, choice of a good initial model is important to

find the global optimum. Four ideas were taken into consideration. First, random

α-trimmed subsets were used as initial sample for wOLS estimation. This often

lead to the finding of only local minima of the target function, even when large

numbers of initial samples were computed. As an attempt to start with a model

supposedly closer to the global optimum, it was then considered using classic LTS

estimations as starting values. This, however, also lead to local minima, since the

global minimum of the LTS target function is not necessarily close to the global

optimum of the meta.lts target function. Already close to the final implementation

was the third attempt which randomly selected two points as support for a line used

as starting direction for the first iteration. A final improvement upon this could

be achieved by using weighted sampling in the selection of the initial data points,

which increases the probability of starting the first iteration in a direction close to

the final solution constituting the global optimum.

8.2.2 Application of meta.lts

In the meta-analytic setting, due to data quality issues, heteroscedasticity inher-

ent in many datasets, and the risks of publication bias and data dredging, robust

estimation is highly desirable. However, when employing robust methods, one has
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to bear in mind the strengths and weaknesses of robust estimation, which are pri-

marily that the robust estimators discard some of the information but in exchange

lead to more stable estimates. The presented meta.lts method in particular has,

compared to classical robust estimators, the drawback of the complex issues in-

volving the breakdown point, but in contrast to the latter makes efficient use of

information on study precision represented by the weights.

When using meta.lts, weights can be calculated according to any meta-analytic

modeling approach, in particular the fixed-effect or random-effects models. In most

practical cases, it is recommended to use the random-effects weighting due to its

realistic assessment of between-study variance and more robust results.

9 Simulation

9.1 Scenarios

The simulations performed in this study belong to three distinct scenarios. The first

two were designed to highlight theoretical properties of the meta.lts estimator,

and the third was meant as a more practical example about the common problems

of heteroscedasticity and publication bias.

In the first scenario, each dataset was generated from three distinct distributions

representing three groups of data points, such that one of the groups with less

than half of the data points comprised more than half of the total weight. This

simulation highlighted the main property of meta.lts to fit a model to the majority

of weights, rather than number of data points. The difficulties in initialization were

illustrated, as well as the advantages of weighted sampling to find an initial model

matching the structure of the subset of observations with the majority of weights.

Furthermore, this dataset allowed a comparison of meta.lts with wOLS and LTS
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to showcase the advantage of the former in using weights in datasets containing

outliers.

The second simulation shows the influence of outliers in weight space rather than in

data space. Similarly to the first simulation, it was not meant to replicate a prac-

tical case but rather illustrate the complexity of accurately defining a breakdown

point for weighted data. The conflict between the majority of data points and the

majority of weights is accentuated by the spatial disparity of the two groups.

The third example was motivated by practical considerations and designed to show

the influence of publication bias in the context of heteroscedastic data, a compex yet

realistic scenario. Heteroscedasticity is encountered in real meta-analytic settings,

as seen in the example dataset, often occuring on the basis of reduced availability

of subjects in extreme groups and the resulting high variance in the necessarily

small studies on these groups. Publication bias, as explained in section 4.2.3, is

all the more relevant on heteroscedastic data because of the increasing likelihood

of studies remaining unpublished where variance of results is high. The problem is

further aggravated by the necessity of pharmaceutical companies to submit several

independent positive findings regarding the efficacy of a newly developed drug to

comply with drug approval procedures in many countries. On the other hand,

the recently established practice of registering every pharmaceutical study before

execution is likely to alleviate the problem in the future. Regardless of future

change, however, meta-analyses have to deal with it and the simulations show how

different estimators cope with these sources of bias.

9.2 Properties of meta.lts

Two distinct theoretical properties of meta.lts illustrated by the simulations were

choice of initialization and measures of robustness in the context of weighted data.

As discussed above, the selection of a meta.lts starting model is optimized with
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respect to the majority of weights. When two points are selected with weighted

sampling as opposed to non-weighted sampling, the probability of finding a direc-

tion corresponding to the inherent structure of data points is increased. Figure 9

shows the initial configurations with dotted lines and demonstrates the improve-

ment achieved by the use of weighted sampling: in the right subfigure, a larger

proportion of the initial regression lines are situated close to the global optimum.

The issue of the breakdown point is, as mentioned in section 2.4, a more complex

one. When an estimator is designed to be fitted to the majority of weights instead

of the majority of data points, the classical concept of the breakdown point in-

evitably yields a breakdown point of zero. Majorities of number of data points and

weights can be mutually exclusive and therefore if one wants to catch the idea of a

breakdown point, the classical definition cannot be applied. Instead, a breakdown

point must be defined as a minimal proportion of weights needed to arbitrarily

distort the estimator. However, the simulations showed that the presence of three

points with the majority of weights does not necessarily attract the regression line.

9.3 Comparison

The simulation on data with publication bias examined differences between the

three estimators considered in homoscedastic and heteroscedastic case. In absence

of heteroscedasticity, no relevant difference can be seen between wOLS, LTS and

meta.lts, and the robustness of the latter two was of no importance. The only

observed difference concerned the variance of the estimates, the weighted estimators

achieving a higher precision than LTS.

The situation was entirely different when heteroscedasticity was introduced. Vi-

olation of the model assumptions of least-squares optimization lead to a marked

distortion of the wOLS estimates, while the robust estimates by LTS and meta.lts

were less adversely influenced. A comparison of the robust estimators not only

71



replicates the difference in variance as seen in the homoscedastic case, but also a

significantly better estimation of the true slope by meta.lts in the median.

The precise forms in which heteroscedasticity was introduced had no relevant in-

fluence on the general pattern of results, besides an exacerbation of the distorting

effect on the estimates with increasing heteroscedasticity.

10 Conclusions

10.1 Robustness in Meta-Regression

The distinction between fixed-effect and random-effects models was introduced (sec-

tion 1) as well as the idea of robustness (section 2), and the usefulness of robust

methods in meta-regression was established (section 3). A new estimator for robust

meta-regression was presented (section 3.3) and compared with classical methods

on real (section 5) and simulated datasets (section 6). Overall, the results presented

encourage further examination and development of the meta.lts estimator.

10.2 Potential Problems of meta.lts

To date, the meta.lts estimator cannot unconditionally be recommended for use

in clinical research, mainly because its formal properties are not fully understood

yet. In spite of the positive results provided by the simulations presented here,

a comprehensive theory on the breakdown point for weighted data is needed to

conclusively answer these open questions. Furthermore, a consensus on the extent

of trimming is necessary for wider acceptance by clinical researchers of robust

methods in general and meta.lts in particular.
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10.3 Outlook

Besides the above mentioned theoretical considerations on robustness in the context

of weighted data, future work on this topic might include efficient implementation

and integration into widely disseminated software packages, in particular R (www.r-

project.org) [55]. This would not only include the creation of a dedicated package

but also the adaptation of the interface to the generally accepted standards of the

respective environment.

Furthermore, an implementation of the meta.lts estimator on a multivariate set-

ting should certainly be considered. In clinical research practice, meta-analysis

on multivariate data is still rare due to the novelty of the meta-analytic concept

and because the prohibitively low number of data points available in many of to-

day’s research questions makes untenable the examination of a multitude of covari-

ates. However, due to increasing automation—and therefore data generation—in

medicine, this can realistically be expected to change in the future.
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Code Listings

‘meta.lts‘ <-
function (x, y, weights = rep(1, length(y)), alpha = 1/2, nsamp = 100,

iter = 100, do.plot = TRUE, ...)
{

if (!is.vector(x) | !is.vector(y) | !is.vector(weights)) {
error("x, y, and wt must be vectors")

}
h = ceiling(length(y) * (1 - alpha))
global.optimum = Inf
if (do.plot) {

plot(x, y, cex = pmax(1, sqrt(weights)/10), pch = 19)
}
for (i in 1:nsamp) {

starting.sample = sample(1:length(y), 2, prob = weights)
starting.model = lm(y ~ x, subset = starting.sample)
if (do.plot) {

abline(starting.model, lty = 3)
}
y.hat = predict(starting.model, data.frame(x = x))
residuals.squared = (y.hat - y)^2
residuals.squared.order = order(residuals.squared)
best <- residuals.squared.order[1:h]
for (j in 1:iter) {

mod = lm(y ~ x, weights = weights, subset = best)
y.hat = predict(mod, data.frame(x = x), weights = weights)
residuals.squared = weights * (y.hat - y)^2
residuals.squared.order = order(residuals.squared)
cs = cumsum(weights[residuals.squared.order])
in.local.best = c(TRUE, (cs < sum(weights) * (1 -

alpha))[1:(length(cs) - 1)])
if (sum(residuals.squared[residuals.squared.order[in.local.best]])

< sum(residuals.squared[best])) {
best <- residuals.squared.order[in.local.best]

}
else {

break
}

}
if (sum(residuals.squared[best]) < global.optimum) {

global.optimum = sum(residuals.squared[best])
res = list(model = mod, best = best, x = x, y = y,

weights = weights, alpha = alpha, nsamp = nsamp,
iter = iter)

}
}
if (do.plot) {

abline(res$model, col = 2, lwd = 2)
}
return(res)

}
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‘meta.lts.unweighted‘ <-
function (x, y, weights = rep(1, length(y)), alpha = 1/2, nsamp = 100,

iter = 100, do.plot = TRUE, ...)
{

if (!is.vector(x) | !is.vector(y) | !is.vector(weights)) {
error("x, y, and wt must be vectors")

}
h = ceiling(length(y) * (1 - alpha))
global.optimum = Inf
if (do.plot) {

plot(x, y, cex = sqrt(wt), pch = 19)
}
for (i in 1:nsamp) {

starting.sample = sample(1:length(y), 2, prob = weights)
starting.model = lm(y ~ x, subset = starting.sample)
if (do.plot) {

abline(starting.model, lty = 3)
}
y.hat = predict(starting.model, data.frame(x = x))
residuals.squared = (y.hat - y)^2
residuals.squared.order = order(residuals.squared)
best <- residuals.squared.order[1:h]
for (j in 1:iter) {

mod = lm(y ~ x, weights = weights, subset = best)
y.hat = predict(mod, data.frame(x = x), weights = weights)
residuals.squared = weights * (y.hat - y)^2
residuals.squared.order = order(residuals.squared)
in.local.best = 1:h
if (sum(residuals.squared[residuals.squared.order[in.local.best]])

< sum(residuals.squared[best])) {
best <- residuals.squared.order[in.local.best]

}
else {

break
}

}
if (sum(residuals.squared[best]) < global.optimum) {

global.optimum = sum(residuals.squared[best])
res = list(model = mod, best = best, x = x, y = y,

weights = weights, alpha = alpha, nsamp = nsamp,
iter = iter)

}
}
if (do.plot) {

abline(res$model, col = 2, lwd = 2)
}
return(res)

}
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