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Kurzfassung

Das Prinzip der Beweiskompositionalität wird durch die Inferenzregel

Schnitt formal vertreten. Beweise einfacher Lemmas können durch die

Schnittregel zusammengesetzt werden, um damit komplexe Theoremen

beweisen zu können. Gentzens Hauptsatz, in welchem die Eliminier-

barkeit der Schnittregel bewiesen wird, ist einer der wichtigsten und

berühmtesten Sätze der Beweistheorie, denn viele nützliche Korollare,

wie zum Beispiel Herbrands Satz und die Teilformeleigenschaft, folgen

aus ihm. Um einige von diesen Korollaren in der Praxis benutzen zu

können, muss man zuerst Algorithmen entwickeln, welche die Schnittin-

ferenzen aus Beweisen wirklich eliminiert. Die Methode CERes zeichnet

sich dabei als eine effiziente und robuste Methode für Schnittelimination

aus.

Diese Dissertation enthält eine generelle Untersuchung von CERes

durch die Entwicklung vieler verschiedenen Varianten, die in zwei Grup-

pen eingeteilt werden können. Varianten der ersten Gruppe sind charak-

terisiert durch Änderungen in der Konstruktion der schnittzugehörigen

Klausenmenge und der Projektionen. Sie nutzen die Möglichkeit aus,

Inferenzen zu permutieren, und benutzen strukturelle Klauselformtrans-

formationen, um die exponentielle Vergrößerung der Klausenmenge zu

vermeiden. Die zweite Gruppe enthält Verfeinerungen des Resolution-

skalküls zum Zwecke der Schnittelimination durch CERes. Die Ver-

feinerungen beschränken die Benutzung der Inferenzregeln des Reso-

lutionskalküls, sodass sich die Varianten in der Mitte, bezüglich kanon-

ischer Refutationen, zwischen unbeschränktem CERes und reduktiven

Schnitteliminationsmethoden bewegen. Deswegen können diese Vari-

anten weiter erklären, wodurch diese zwei anscheinend sehr verschiede-

nen Methoden sich wirklich unterscheiden und trotzdem ähnlich sind.
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Schließlich wird in dieser Dissertation auch gezeigt, wie CERes in

eine Methode für die Einfürung atomarer Schnitte (CIRes) umgewandelt

werden kann. Diese Methode kann Beweise komprimieren, und es wird

vermutet, dass exponentiell kleinere Beweise dadurch erhalten werden

können.



Abstract

The cut rule formally represents the principle of compositionality of

proofs. Proofs of simple lemmas can be composed using the cut rule

to form proofs of more complex theorems. The cut-elimination theorem

(i.e. the completeness of Sequent Calculus without the cut-rule) is one of

the most important and famous theorems of proof theory, mainly because

it leads to many useful corollaries, such as the subformula property and

the midsequent or Herbrand’s theorem. However, in order to exploit

these corollaries in practice, it is often necessary to have algorithms for

the actual elimination of cuts, and CERes stands out as an efficient and

robust cut-elimination method based on the resolution calculus.

This thesis contains a general investigation of CERes through the de-

velopment of several variants of the method, which can be distinguished

in two groups. The first group consists of variants obtained by modify-

ing the construction of cut-pertinent clause sets and projections. They

exploit the possibility of swapping inferences in sequent calculus proofs

and use structural clause form transformation to avoid the exponential

blow-up in the size of the clause sets. The second group consists of re-

finements of the resolution calculus that are specific for cut-elimination

by CERes. A few refinements are defined by increasingly restricting the

applicability of the inference rules of the resolution calculus in such a way

that the variants are intermediary, regarding simulation with respect to

canonic refutations, between the unrestricted CERes and reductive meth-

ods of cut-elimination (i.e. methods based on local proof rewriting rules).

Consequently, this group of variants further clarifies the differences and

similarities between these two kinds of methods, which appear to be so

distinct from each other.
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Furthermore, this thesis shows how CERes can be transformed into

a method of atomic-cut-introduction (CIRes), which is capable of com-

pressing proofs. Asymptotically, an exponential compression in the size

of proofs is conjectured to be achievable by the method.
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Chapter 1

Introduction

1.1 Introduction

Cut-elimination theorems and algorithms that actually perform the elim-

ination of cuts from proofs are among the most prominent results and

techniques of proof theory and of logic in general. Originally devised

as a way to prove consistency [48, 49], cut-elimination also has many

important applications (discussed in Section 3.1).

Gentzen’s demonstration of the cut-elimination theorem implicitly de-

fines a method (described in Chapter 3) that actually eliminates cuts from

proofs. The method is based on certain proof rewriting rules, which

are very convenient for demonstrating the theorem by induction, be-

cause they reduce (hence the name reductive methods) the grade and rank

measures of the proof. However, the use of the method in practice is

jeopardized by the fact that it is unable to exploit redundancies in the

proofs, as it is a very local method, and hence is not very efficient.

Therefore, an alternative and substantially different method of cut-

elimination, known as CERes (Cut-Elimination by Resolution, defined in

detail in Chapter 4), has recently been developed with the aim of being an

efficient method of cut-elimination to be used in practice, and particularly

for the automated analysis and transformation of formalized mathemati-

cal proofs. In contrast to reductive methods, CERes is a global method. It

extracts an unsatisfiable clause set from the whole input proof with cuts,

and refutes it by resolution. The leaf clauses of the resolution refutation

can be replaced by so-called projections, which are cut-free parts of the

input proof. In this way, a normalized proof in which all cuts are atomic

is created.
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6 CHAPTER 1. INTRODUCTION

In spite of its superiority, CERes is constantly under development

and there is still much room for improvement. Among the possible

improvements that were clear at the start of this thesis, refinements of

the resolution calculus specifically for CERes stood out as a main goal

to be pursued. Indeed, experiments with the current implementation

of the method had shown that typical theorem provers working only

with the unrestricted resolution calculus had been unable to refute clause

sets within a reasonable time. The price paid for CERes’s flexibility and

generality is the large search space for unrestricted resolution refutations.

The task of the refinements (defined in Chapter 6) is to allow controlled

restrictions of CERes in order to make refutations easier to find.

In principle there could be many ways for refining the resolution

calculus and restricting CERes. In this thesis, focus lies on defining re-

finements and restrictions such that the restricted CERes methods are,

in a certain sense, intermediary between reductive methods and the un-

restricted CERes. Consequently, Chapter 5 and most of Chapter 6 are

dedicated to comparing CERes with reductive methods. The refinements

could only be developed by understanding the differences and similari-

ties between them, and hence these chapters also contribute to clarifying

the essential ideas behind both methods.

For the technical reason that profile clause sets (developed in [66]) are

more invariant under rank reduction than standard clause sets, its use

had been preferred in this thesis, especially because the proofs of many

theorems in Chapters 5 and 6 become simpler. However, the original

definition of profile clause sets is highly technical and lacks an intuitive

explanation. This served as a motivation to look for more natural ways of

defining the CERes method, which eventually culminated in an approach

that relates construction of clause sets to conjunctive normal form trans-

formations and abandons the operations of union and merge that used to

be employed before (Section 4.2.1). Even if naturality is essentially a mat-

ter of personal taste, at least the approach defined here provides a different

angle to look at and understand how the CERes method works. Moreover

within this approach, it is shown that the optimizations of profile clause

sets correspond to exploiting the possibility of swapping inferences less

redundantly in the input proof (Section 4.4). The investigation of infer-

ence swapping and normalization for clause sets led to the invention of

swapped clause sets (Section 4.3), which behave more uniformly with

respect to inferece swapping than profile clause sets. Furthermore, the

fact that the construction of standard, swapped and profile clause sets is
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analogous to standard conjunctive normal form transformation makes it

evident that these clause sets suffer from the same kind of exponential

blow-up in size. To avoid this problem, structural conjunctive normal

form transformations were investigated, leading to the development of

definitional and swapped definitional clause sets (Sections 4.5 and 4.6).

Other variations (Sections 4.8 and 4.9) of the CERes method were in-

spired by previous experience with Herbrand sequent extraction [95, 94],

for which it is sufficient to eliminate quantifiers from cut-formulas.

Investigations of the behavior of CERes using the more recent vari-

ants of clause sets (i.e. profile and swapped clause sets) together with a

new kind of projection, called O-projection, on proofs of different kinds

led to the realization that the method could be modified to do not cut-

elimination but rather cut-introduction by resolution (CIRes, Chapter 7),

resulting in potential compression of proofs.

Throughout the thesis all the developed and described methods are

compared mostly in a purely qualitative manner. Nevertheless, some

quantitative complexity results comparing sizes of search spaces, proof

normal forms and clause sets are shown in Chapter 8.

In an attempt to make this thesis reasonably self-contained, a brief

chapter containing basic notions of Logic (Chapter 2) is also present.

Moreover, for the non-proof-theorist reader who might wonder if this

technical proof-theoretical work and, more generally, the study of the

cut rule, its elimination and introduction is relevant outside proof theory,

an informal chapter (Chapter 9) discusses and exemplifies the existence,

introduction and elimination of cuts that are implicit in other scientific

disciplines.





Chapter 2

Basics of Logic

As Modern Logic is a very broad and ever expanding field of studies, any

attempt to define it precisely is unlikely to be successful. Nevertheless,

one can easily notice that logicians are usually concerned with syntacti-

cally well-defined languages, whose sentences have meanings (frequently

truth and falsity) depending on interpretations. Furthermore, one of the

main problems in Logic is that of deciding (or trying to decide, as it is

usually an undecidable problem) entailment (�) of a sentence F from a set

of sentences S, deciding whether it holds that, if all sentences of S are

true under some interpretation, then F must also be true under the same

interpretation. As it would be impractical to exhaustively test all possible

interpretations, logicians attempt to prove or derive F from S in formal

calculi. Such calculi must be carefully designed to be sound (i.e. if there is

a proof of F from S, then F is entailed by S) and, if possiblea, complete (i.e.

if F is entailed by S, then there is a proof of F from S).

This thesis is mainly concerned with a language for pure predicate

logic, defined in Section 2.1, and a sequent calculus for this language,

defined in Section 2.2 and known to be sound and complete. Moreover,

the resolution calculus, defined in Section 2.3, is an essential auxiliary

calculus necessary for the technique of transformation of sequent calculus

proofs known as cut-elimination by resolution, which is explained in

Chapter 4 and refined in Chapter 6.

aIt is a consequence of Goedel’s Incompleteness Theorem that a complete calculus is not
always possible [56, 57]
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10 CHAPTER 2. BASICS OF LOGIC

2.1 The Language

The language defined in this section has sentences composed of expressions

that can be distinguished as either terms or formulas inductively defined

over a signature. It is a quite standard language for predicate logic or

first-order logic, so called because, from a type theoretical point of view, its

expressions have types of order smaller or equal to one and quantifications

are allowed on variables of individual type.

Definition 2.1.1 (Signature). The signature of the language consists of:

1. A countably infinite set of variablesV

2. For every n ≥ 0, a countably infinite set of function symbols Fn.

(F �
⋃

n≥0Fn is the set of all function symbols. F0 is the set of

constant symbols).

3. For every n ≥ 0, a countably infinite set of predicate symbols Pn.

(P �
⋃

n≥0Pn is the set of all predicate symbols).

4. The set of propositional connectives {∨,∧,→,¬}

5. The set of quantifiers {∀,∃}

6. The set of parentheses {(, )}

In this thesis, uppercase letters (e.g. A, B, C,. . . , P, Q, R) are used for

predicate symbols; lowercase letters are used either for function symbols

(e.g. a, b, c, . . . , f , g, h,. . . ) or for variables (e.g. x, y, z,. . . ).

Definition 2.1.2 (Terms). The set of terms T is defined as the smallest set

satisfying:

1. V ⊂ T

2. For all n ≥ 0: If f ∈ Fn and t1, . . . , tn ∈ T , then f (t1, . . . , tn) ∈ T .

Definition 2.1.3 (Formulas). The set of formulasB is defined as the smallest

set satisfying:

1. For all n ≥ 0: If P ∈ Pn and t1, . . . , tn ∈ T , then P(t1, . . . , tn) ∈ B.

2. If F ∈ B, then F′ ≡ ¬F ∈ B

3. If F1, F2 ∈ B and ◦ ∈ {∧,∨,→}, then F′ ≡ (F1 ◦ F2) ∈ B

4. If F ∈ B and x ∈ V and Q ∈ {∃,∀}, then F′ ≡ (Qx)F ∈ B
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Formulas of the first base kind above are called atomic. Formulas

constructed inductively according to the three last cases above are called

compound. In such cases, the formulas F1, F2 and F are called direct subfor-

mulas of F′. Inductively, the subformulas of F′ are its direct subformulas,

all the subformulas of its direct subformulas, and F′ itself.

Definition 2.1.4 (Annotated Formula). An annotated formula is a pair (F, l)

where F is a formula and l is an annotation of that formula occurrence (e.g.

a label, a color, or any other structure that could store relevant information

for manipulations of the formula)b.

Definition 2.1.5 (Scope of Quantifiers and Bound and Free Variables). In

a formula F of the form (Qx)F′, with Q ∈ {∀,∃}, F′ is the scope of (Qx). An

occurrence of x in F′ is bound by (Qx) if and only if there is no (Q′x) in F′

such that the occurrence is in the scope of (Q′x). A variable occurrence is

free if and only if it is not bound by any quantifier.

By a suitable renaming of the variable occurrences bound by each

quantifier to new distinct variables, a formula can always be brought

to an equivalent form in which all quantifiers bind different variables

and all the occurrences of each variable are either all bound or all free.

Subsequently, it will be assumed that all formulas are in this form.

Definition 2.1.6 (Sentence). A formula is a sentence if and only if it has no

free variables.

Definition 2.1.7 (Polarity of Formula Occurrences). The polarity of a for-

mula occurrence F′ is defined as follows:

be a direct subformula occurrence of a formula occurrence F with an

assigned polarity p(F) ∈ {positive,negative}. Then:

• If F′ is not a subformula occurrence of any other formula occurrence,

then p(F′) = positive.

• Otherwise, let F be the formula occurrence of which F′ is a direct

subformula occurrence. Then:

– If F ≡ ¬F′ , then p(F′) = p(F).

– If F ≡ (F′ → F′′) , then p(F′) = p(F).

– Otherwise, p(F′) = p(F)

bThe use of labels in proof theory is widespread. I unified treatment of labeled deductive
systems can be found in [45]. Examples of labels used for resolution refinements can be found,
for example, in [80, 44]
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Definition 2.1.8 (Strong and Weak Quantifiers).

Let F � (Qx)F′ be a subformula occurrence. Q is called strong if and only

if (Q,p(F) ∈ {(∀,positive), (∃,negative)}. Otherwise it is called weak.

2.2 Sequent Calculus

The first two variants of sequent calculi were invented by Gentzen [48,

49], and they were called LK, for classical predicate logic, and LJ, for

intuitionistic predicate logic. In this thesis a variant of LK is used, in which

no implicit weakening and no implicit contraction occur in inferencesc.

The reason for this is that contraction and weakening play an important

role in cut-elimination, and the fact that they can only occur explicitly

makes it easier to keep track of their effect on cut-elimination methods

and, consequently, certain proofs in Chapters 4 and 6 turn out to be more

elegant than if they were shown for other variants of LK.

A sequent calculus relies on the notion of sequent, and its proofs are

composed of inferences that operate on sequents according to the infer-

ence rules of the calculus. Formal definitions of these concepts are given

subsequently in this Section.

Definition 2.2.1 (Sequent). A sequent Γ ` ∆ is composed of two multisetsd

of formulas: the antecedent, Γ, and the consequent , ∆. The formulas in the

consequent are assigned positive polarity, and the ones in the antecedent

are assigned negative polarity.

Definition 2.2.2 (Formula Corresponding to a Sequent). The formula cor-

responding to a sequent Γ ` ∆ is:
cSuch a variant sequent calculus is usually called purely multiplicative, following a terminology

from linear logics [52, 53]
dIt is also common to define sequents using sets or lists, instead of multisets. The use of

sets would imply that contractions are implicit, because a set does not state the multiplicity of
its elements. Indeed, contraction inferences would be superfluous, since their premise sequents
would be the same as their conclusion sequents, and the issues of contractions would be transfered
to the quantifier rules, which would have to be modified slightly to implicitly simulate contraction.
A definition using sets would therefore not be convenient for the investigations of this thesis,
exactly because contraction would be implicit. The use of lists would have the advantage of being
conceptually closer to simple and yet efficient implementations,as lists are common data structures
in many computer languages. However, it requires additional structural rules of inference like
exchange or permutation to take care of the correct positioning of formulas. A sequent calculus
using lists for sequents, including a description of cut-elimination by resolution in this calculus,
can be seen in [102] and served as the theoretical basis for the implementation of the method in the
system CERes. As the position of formulas is not relevant in classical predicate logic, however, the
definition via multisets is clearly more convenient for the theoretical investigations of this thesis.
Note, however, that some substructural logics, such as, for example, the logic defined by the Lambek
calculus, do not admit the exchange rule, and hence they do not admit the multiset definition for
sequents.
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F (Γ ` ∆) � ((
∧

Γ)→ (
∨

∆))

Definition 2.2.3 (Substitution). A substitution is a finite set of assignmentse

of terms to variables. If σ ≡ {v1 ← t1, . . . , vn ← tn} is a substitution, then

Fσ is the formula obtained from F by substituting all occurrences of free-

variables v j by the corresponding terms t j.

Definition 2.2.4 (Inference Rules (of the Sequent Calculus LK)). The in-

ference rules of sequent calculus LK are shown belowf:

• The Axiom Rule:

A ` A
axiom

where A is any atomic formulag.

• Propositional Rules:

F1, F2, Γ ` ∆
F1 ∧ F2, Γ ` ∆

∧l
Γ1 ` ∆1, F1 Γ2 ` ∆2, F2

Γ1, Γ2 ` ∆1,∆2, F1 ∧ F2
∧r

F1, Γ1 ` ∆1 F2, Γ2 ` ∆2

F1 ∨ F2, Γ1, Γ2 ` ∆1,∆2
∨l

Γ ` ∆, F1, F2

Γ ` ∆, F1 ∨ F2
∨r

Γ1 ` ∆1, F1 F2, Γ2 ` ∆2

F1 → F2, Γ1, Γ2 ` ∆1,∆2

→l
F1, Γ ` ∆, F2

Γ ` ∆, F1 → F2

→r

eAlternatively, but equivalently, a substitution can be defined as a function from variables to
terms that is different from the identity function only in a finite subset of its domain.

fApart from the rules shown here, there are two kinds of rules that are particularly useful in
the formalization of mathematical proofs. As equality is a very common predicate in mathematics,
it makes sense to have specialized rules to handle it. One approach is to have equality rules that
resemble paramodulation [34], while another complementary approach is to work with deduction
modulo [36, 37]. Cut-elimination by resolution in a sequent calculus with equality rules has been
studied in [102]. Even though, for simplicity, these rules are not used in this thesis, the techniques
developed here could be applied to cut-elimination in a sequent calculus having these rules as well.
Cut-elimination by resolution in a calculus with deduction modulo is currently being investigated
in [103].

gThe axiom rule has many variants. Its conclusion sequent could, for example, have contexts
(i.e. ∆,A ` A,Γ). While this would have the advantage of rendering the weakening rules
superfluous (i.e. eliminable or admissible), it is not appropriate for the goals of this thesis, since
weakening would then be essentially built implicitly in the axiom rule. Another variant consists
of allowing arbitrary atomic formulas in the sequent. This allows more compact and human-
readable proofs but prevents the eliminability of atomic cuts in general [22]. Furthermore, the
restriction that formulas should be atomic could be dropped, but this would obscure investigations
of the complexity of cut-elimination and renders some transformations of proofs impossible (e.g.
Skolemization of proofs would be impossible if formulas containing quantifiers were allowed in
axiom sequents) [10].
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Γ ` ∆, F
¬F, Γ ` ∆

¬l
F, Γ ` ∆
Γ ` ∆,¬F

¬r

• Structural Rules:

– Weakening Rulesh:

Γ ` ∆
F, Γ ` ∆

wl
Γ ` ∆
Γ ` ∆, F

wr

– Contraction Rulesi:

F, F, Γ ` ∆
F, Γ ` ∆

cl
Γ ` ∆, F, F
Γ ` ∆, F

cr

• The Cut Rulej:

Γ1 ` ∆1, F F, Γ2 ` Γ2

Γ1, Γ2 ` ∆1,∆2
cut

The cut rule is an analytic cut-rule iff F is a subformula occurring in

Γ1, Γ2, ∆1 or ∆2.

• (First-order)k quantifier rules:

F{x← t}, Γ ` ∆
(∀x)F, Γ ` ∆

∀l
Γ ` ∆, F{x← α}

Γ ` ∆, (∀x)F
∀r

F{x← α}, Γ ` ∆

(∃x)F, Γ ` ∆
∃l

Γ ` ∆, F{x← t}
Γ ` ∆, (∃x)F

∃r

hThe acceptance of weakening rules is closely related to the fact that the logic considered here
is monotonic [45]. In non-monotonic logics, such as default logic [100, 58] and reasoning under closed
world assumption [99], circumscription [82, 41], negation-as-failure [25], answer set programming
[47], the addition of more information to the knowledge base (i.e. wl) could falsify sentences that
were previously considered true.

iThe acceptance of contraction rules is related to the fact that, in the logic considered here,
sequents are judgments about the relative truth of the formulas that it contains. On other logics,
however, they are seen as judgments about, for example, resources of the kinds expressed by
the formulas, and hence contraction is not accepted because resources cannot be indefinitely
consumed [52]; Other logics that reject contraction are investigated in [101].

jAlthough the cut rule is usually classified as a structural rule, because, as in the case of
weakening and contraction, the logical forms of the formulas are not changed, this is not done in
this thesis, simply because of the special role played by the cut.

kA much harder case for cut-elimination by resolution occurs if inference rules that go beyond
predicate logic and into higher-order logics are added to the calculus, such as rules for quantifiers
over expressions of higher-order types. This has been partially studied in [71, 69] and is still under
investigation in [116, 81].
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For the ∀r and the ∃l rulesl the variable α must not occur in Γ nor in

∆ nor in F. This is the eigenvariable condition.

For the ∀l and the ∃r rules the term t must not contain a variable that

is bound in F.

The sequent below the line of an inference rule is its conclusion, while

the sequents above the line are its premises . An inference rule is nullary,

unary, binary, n-ary if and only if it has, respectively, 0, 1, 2, n premises.

In the inference rules above, the colored formulas are called active

Γ,∆,Γ1,∆1,Γ2,∆2 are multisets of formulas called contexts. The active for-

mulas in the conclusion sequent of a rule, colored in red, are the main

formula of the rule, while the active formulas in the premises, colored in

blue, are the auxiliary formulas.

Definition 2.2.5 (Inference Rules (of the Sequent Calculus LKD)). The

inference rules of the sequent calculus LKD are the rules of the sequent

calculus LK together with the definition rules shown belowm:

• Definition Rules:

F[x1, . . . , xn], Γ ` ∆
P(x1, . . . , xn), Γ ` ∆

∀l
Γ ` ∆, F[x1, . . . , xn]
Γ ` ∆,P(x1, . . . , xn)

∀r

where P is a predicate defined by

P(x1, . . . , xn)↔ F[x1, . . . , xn]

Definition 2.2.6 (Inference). An inference is an instance of an inference

rule.

Definition 2.2.7 (Proof). A proof is a tree of inferences in which every

premise sequent of an inference is a conclusion sequent of another infer-

ence. The last sequent derived by a proof is its end-sequent.

Definition 2.2.8 (Ancestor Relation). For every inference ρ of a proof

ϕ, each auxiliary formula occurrence ωi
a is the immediate ancestor of the

corresponding main formula occurrence ωm. Moreover, every formula

lAccording to Definitions 2.2.1 and 2.1.8, the ∀r and the ∃l always introduce strong quantifiers.
For this reason, they are also called strong quantifier rules. Analogously, the other quantifier rules
introduce only weak quantifiers and are called weak quantifier rules

mThe main advantage of having definition rules lies in the fact that mathematical proofs
frequently define new concepts as a way to structure reasoning. This corresponds to the extension
principle in Logic and can be handled by definition rules or superdeduction rules [17] (essentially
macro-inferences composed of definition rules and propositional rules).
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occurrence ωpc in the context of the premise sequent is also an immediate

ancestor of the corresponding formula occurrence ωcc in the context of

the conclusion sequent. The ancestor relation is the reflexive, transitive

and compatible (with respect to subformulas) closure of the immediate

ancestor relation. The fact that a (sub)formula occurrenceωi is an ancestor

of a (sub)formula occurrence ω j is denoted: ωi ↘ ω j.

Theorem 2.1 (Soundness of the Sequent Calculus).

If F1, . . . , Fn ` F′
1
, . . . , F′m is the end-sequent of a sequent calculus proof,

then {F1 ∧ . . . ∧ Fn} � F′
1
∨ . . . ∨ F′m.

Proof. A detailed proof can be found in [112]. A sketch follows:

By induction on the length of proofs. In the base case, consider a proof

consisting of a single axiom inference. As induction hypothesis, assume

that the theorem holds for the immediate subproofs (which have shorter

lengths, of course) above the last inference, and show that it also holds

for the whole proof no matter the rule (∨r,∧
l, ∀l, cut,. . . ) of which the last

inference is an instance. �

Theorem 2.2 (Completeness of the Sequent Calculus).

If {F1∧ . . .∧Fn} � F′
1
∨ . . .∨F′m, then F1, . . . , Fn ` F′

1
, . . . , F′m is the end-sequent

of a sequent calculus proof.

Proof. Gentzen, in [48], did not prove the completeness of sequent calculus

as stated above, but only the relative completeness with respect to a

Hilbert deduction system [74] and natural deduction, a calculus that was

also defined in [48] and further investigated in [97]. A comprehensive

detailed proof can be found in [112]. �

Remark 2.2.1 (The Meanings of Sequents, Rules and Proofs). By theo-

rems 2.1 and 2.2, the meaning of a sequent is precisely fixed by the used

semantics (i.e. by the entailment or logical consequence relation �). In

predicate logic, the entailment relation satisfies the deduction theorem,

and, therefore, the meaning of a sequent Γ ` ∆ is the same as the meaning

of the formula
∧

Γ→
∨

∆n. In other words, the commas in the antecedent

of a sequent can be seen as conjunctions, the commas in the consequent of

a sequent can be seen as disjunctions, and the sequent symbol (`) can be

seen as implication. In this sense, the rules of sequent calculus can be seen

as operating on subformulas at depth 2 of formulas having a particular

structure.
nOr Γ ` ∆ could be understood as meaning that

∧

Γ ∧
∧

¬∆ is unsatisfiable, in which case
sequent calculus acquires a refutational flavor [35].
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Alternatively, sequents can be seen as rules and rules of the sequent

calculus can be seen as meta-rules generating new (conclusion) rules from

previous (premise) rules [117]. So, the sequentΓ ` F can be read as the rule

that F can be inferred (or “proved”, or “derived”) from the assumptions

Γ. The meaning of cut within this alternative is clear: the left premise

states that the lemma F (assume ∆1 is empty for simplicity) can be inferred

(or “proved”) from Γ1; the right premise states that the lemma, together

with Γ2 can be used to infer (or “prove”) something else ∆2; finally the

conclusion of the cut, which is now seen as a meta-rule, is a rule stating

that ∆2 can be inferred (or “proved”) from the assumptions Γ1 and Γ2.

It is this richness of possible meanings that makes sequent calculus so

convenient for many purposes, including the formalization of mathemat-

ical proofs.

Definition 2.2.9 (Proof Sizes). Letϕ be a proof. Then length(ϕ) denotes the

length ofϕ (i.e. the total number of inferences inϕ), |ϕ|a denotes the atomic

size of ϕ (i.e. the total number of predicate sysmbols occurring in ϕ), and

|ϕ| denotes the symbolic size of ϕ (i.e. the total number of (constant,

function, variable, predicate, connective and quantifier) symbols in ϕ).

2.3 Resolution Calculus

While the sequent calculus presented in the previous section is conve-

nient for the formalization of proofs, it is inadequate for automated proof

search. This inadequacy originates mainly from the fact that the instanti-

ation (considering a bottom-up proof construction) of weakly quantified

variables according to weak quantifier rules is unrestricted. This inade-

quacy led to the development of calculi such as the Resolution Calculus (R)

[104, 80], whose power in proof search essentially stems from restricting

substitutions of variables to most general unifiers. The use of clauses, in-

stead of arbitrary sequents, further eases the search process, as the lack of

logical structure (i.e. all formulas are simply atoms) allows the calculus

to have just two rules of inference: resolution and factoring.

Although resolution deals with sequents in a restricted form (i.e.

clauses), it can be applied in general, because there are transforma-

tions (i.e. CNF-transformations[2]) that transform any formula into a

satisfiability-equivalent set of clauses. These algorithms will not be

described in this thesis, however, as they are not necessary for cut-

elimination by resolution, which extracts clause sets directly from a se-

quent calculus proof.
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Definition 2.3.1 (Clause). A clause is a sequent in which all formulas are

atomico.

Definition 2.3.2 (Generality (for Expressions)). An expression (term, for-

mula, clause, sequent) e1 is more general than (or equally general to) an

expression e2, denoted e1 ≤s e2, if and only if there is a substitution τ such

that (e1)τ = e2
p. A substitution σ1 is more general than (or equally general to)

a substitution σ2 (denoted σ1 ≤s σ2) if and only if there is a substitution τ

such that, for all expressions t, (tσ1)τ = tσ2.

Definition 2.3.3 ((Most General) Unifier). Let F1 and F2 be formulas. If

there is a substitution σ such that F1σ = F2σ, then F1 and F2 are said to be

unifiable and σ is called a unifier for F1 and F2. A unifier σ of F1 and F2 is a

most general unifier if and only if, for any unifier σ′ of F1 and F2, σ ≤s σ
′.

Definition 2.3.4 (Inference Rules (of the Resolution Calculus)). The infer-

ence rules of the Resolution Calculus R are shown below:

• Initial Rule:

Γ ` ∆

• Resolution Ruleq:

Γ1 ` ∆1,A1 A2, Γ2 ` ∆2 r(σ)
Γ1ση, Γ2ση ` ∆1ση,∆2ση

where Γ1 ` ∆1,A1 and A2, Γ2 ` ∆2 do not have any variable in com-

mon, σ is a most general unifier of A1 and A2, and η is a substitution

that renames all variables to globally new fresh ones. The conclusion

of a resolution rule is called a resolvent of its premises.
oHere the definition of clause is based on that of sequent. The reason for this choice is that the

similarity between the cut and resolution rules and the possibility of using a resolution refutation
as a skeleton for a sequent calculus proof (as described in Chapter 4) become more apparent.
However, in the automated deduction community, clauses are more frequently defined as either
sets or multisets or disjunctions (lists) of literals. A comparison of different definitions can be seen
in [80].

pHere it is assumed that the definition of substitutions can be extended in such a way that they
can be applied to any kind of expression possibly containing variables, and not just to formulas
as in Definition 2.2.3.

qThe resolution rule is very similar to the cut rule. Indeed, if σ is the identity substitution,
then the resolution rule is essentially just a cut rule with an atomic cut-formula. Analogously, the
factoring rules are very similar to the contraction rules. The resolution rule is more commonly
defined (e.g. [80]) in a way that implicitly incorporates factoring. The resolution rule described
here, on the other hand, corresponds to the simpler binary resolution rule described in [80], and is
more convenient in the context of this thesis exactly because the correspondence between cut and
resolution rules and contraction and factoring rules becomes simpler.
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• Factoring Rules:

A,A′, Γ ` ∆
Aση, Γση ` ∆ση

fl(σ)
Γ ` ∆,A,A′

Γση ` ∆ση,Aση
fr(σ)

where σ is a most general unifier of A and A′ and η is a substitution

that renames all variables to globally new fresh ones. The conclusion

of factoring rule is called a factor of its premise.

If the rules above are restricted to having the empty substitution, then

they are called propositional resolution and factoring rules (pr, pfl, pfr).

Definition 2.3.5 (Deductions and Refutations). A resolution deduction of

a clause Γ ` ∆ from a set of clauses C is a treer of resolution inferences

(i.e. instances of the inference rules of the Resolution Calculus), in which

every premise clause of an inference is the conclusion clause of another

inference, and the conclusion clauses of initial inferences are instances of

clauses of S. A resolution refutation of a set of clauses C is a resolution

deduction of the empty clause (i.e. `) from C. A resolution deduction

containing only pr, pfl and pfr inferences is called a propositional resolu-

tion deduction. A ground resolution deduction is a propositional resolution

deduction in which no variables occur and all terms are built from the

function symbols occurring in C (i.e. all terms belong to Herbrand uni-

verse of the signature of C).

Definition 2.3.6 (Generality (for Resolution Deductions)). Let δ and δ′ be

resolution deductions of Γ ` ∆ and Γ′ ` ∆′ respectively. δ is more general

than (or equally general to) δ′, denoted δ ≤s δ
′, if and only if Γ ` ∆ ≤s Γ

′ ` ∆′

and, if δ1 and δ2 are immediate subproofs of δ and δ′
1

and δ′2 are immediate

subproofs of δ′, then δ1 ≤s δ
′
1

and δ2 ≤s δ
′
2.

Theorem 2.3 (Refutational Completeness of the Resolution Calculus). If

C is an unsatisfiable set of clauses (i.e. if there is no interpretation under

which all clauses of C are true), then there exists a resolution refutation of

C.

rIt is also common, indeed even more common, to define resolution deductions as lists or
directed acyclic graphs. It is more convenient for proof search and deductions are smaller (e.g.
the size of a refutation of {` P(x); P(x) ` P( f (x)); P( f 2n

(x)) `}) is necessarily O[2n] if the tree format
is used, while it can be O[n] if lists or directed acyclic graphs are used. The reason why trees are
used here is that the method of cut-elimination by resolution needs refutations in the tree format,
so that they can be converted to a sequent calculus proof with atomic cuts.
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Proof. A detailed proof can be found in [80]. It proves firstly a restricted

form of the theorem, for sets of ground clauses and, correspondingly,

ground resolution refutations. This proof relies on the notion of semantic

tree, which is very similar to a tableau calculus [30] having analytic atomic

cut as its only rule. In this sense, the proof can be seen as a relative proof

of completeness with respect to the completeness of this semantic tree

or tableau calculus. The completeness of this semantic tree calculus is

proved semantically, resorting to Herbrand interpretations. The finite

completeness (i.e. that an unsatisfiable set of clauses has a finite closed

semantic tree) depends on Koenig’s lemma [108, 77], a weaker form of

the axiom of choice [108, 119], and is closely related to the property of

compactness [32] that holds for predicate logic.

The general theorem is then obtained by lifting the ground case with

the lifting theorem (Theorem 2.4).

It is also possible to prove the relative completeness of resolution with

respect to the completeness of sequent calculus [39, 3]. �

Lemma 2.1 (Lifting Lemma for the Factoring Rules). Let Γ ` ∆ and Γ′ ` ∆′

be clauses such that Γ ` ∆ ≤s Γ
′ ` ∆′. If Γ′

f
` ∆′

f
is a factor of Γ′ ` ∆′, then

there exists a factor Γ f ` ∆ f of Γ ` ∆ such that Γ f ` ∆ f ≤s Γ
′
f
` ∆′

f
.

Proof. A detailed proof is available in [80]. It consists basically of con-

structing Γ f ` ∆ f from Γ′
f
` ∆′

f
by using, in a reversed way, the substi-

tutions that are given by the assumptions that Γ ` ∆ ≤s Γ
′ ` ∆′ and that

Γ′
f
` ∆′

f
is a factor of Γ′ ` ∆′. It is interesting to note that factors, as defined

here, are necessarily factors of degree 1, as defined in [80], and hence

induction is not necessary in this case. �

Lemma 2.2 (Lifting Lemma for the Resolution Rule). Let Γ1 ` ∆1, Γ2 ` ∆2,

Γ′
1
` ∆′

1
, Γ′2 ` ∆

′
2 be clauses such that Γ1 ` ∆1 ≤s Γ

′
1
` ∆′

1
and Γ2 ` ∆2 ≤s

Γ′2 ` ∆
′
2. If Γ′r ` ∆

′
r is a resolvent of Γ′

1
` ∆′

1
and Γ′2 ` ∆

′
2, then there exists a

resolvent Γr ` ∆r of Γ1 ` ∆1 and Γ2 ` ∆2 such that Γr ` ∆r ≤s Γ
′
r ` ∆

′
r.

Proof. A detailed proof is available in [80]. It is analogous to the proof of

Lemma 2.1. �

Theorem 2.4 (Lifting Theorem). Let C and C′ be sets of clauses such that

C ≤s C′s. Let δ′ be a resolution deduction from C′. Then there exists a

resolution deduction δ from C such that δ ≤s δ
′.

sC ≤s C′ if and only if for every clause c′ of C′ there is a clause c of C such that c ≤s c′
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Proof. A detailed proof is available in [80]. It is a proof by induction on

the size of the deductions, where the base case is trivial, and the inductive

case can be proved with the lifting Lemmas 2.1 and 2.2. �

Definition 2.3.7 (Resolution Refinement). A resolution refinementt replaces

the rules r(σ), fl(σ) and fr(σ) by refined rules rx(σ), fxl
(σ) and fxr(σ) such

that the refined rules are more restricted than the original rules, i.e., if cr

is a resolvent of c1 and c2 according to rx(σ), then cr is also a resolvent of c1

and c2 according to r(σ), and if c f is a factor of c according to fxr(σ) or fxl
(σ),

then c f is also a factor of c according to fr(σ) or fl(σ), but the converses do

not hold.

tDefinition 2.3.7 of resolution refinement is not as general as that in [80]. It roughly coincides
with the definition of resolution refinement operator given in [80]. There are many well known
refinements, such as linear resolution and hyper-resolution, that are not (at least not without an
unnatural use of annotations and labels) considered refinements by the definition given here.
Nevertheless, Definition 2.3.7 is sufficient for the refinements that are described in Chapter 6.





Chapter 3

Cut-Elimination

Simultaneously with the invention of sequent calculus, Gentzen proved

the cut-elimination theorema [48], which states that, if a sequent is the end-

sequent of a proof ϕwith cuts, then there is a proof ϕ′ without cuts of the

same end-sequent; or, in other words, sequent calculus without the cut

rule is still complete. Moreover, his proof not only proved the existence

of such a proof ϕ′, but described a constructive method based on proof

rewriting rules to eliminate the cuts from any proof ϕ, transforming it

into a proof ϕ′ without cuts.

This chapter starts with a general discussion of the importance of cut-

elimination for logic (Section 3.1) and ends with a detailed description of

proof rewriting rules for cut-elimination in the spirit of Gentzen’s (Section

3.2).

3.1 The Importance of Cut-Elimination for Logic

The cut-elimination theorem plays a very significant role in logic, be-

cause it has many important corollaries. Firstly, any cut-free proof ϕ′

has the subformula property: the formulas occurring in the premises of

an inference of ϕ′ are subformulas of formulas occurring in the conclu-

sion sequent of the inference. This allows many advances in automated

deduction, such as relatively easy bottom-up (backward, goal-oriented)

proof search in automated deduction (as new formulas do not have to

be guessedb), analytic tableau [43, 30], Maslov’s inverse method [35] and

aThe cut-elimination theorem is also known as Gentzen’s Hauptsatz.
bNote, however, that in the case of weak quantifier rules, an instance for the variable still has to

be guessed from an infinite number of potential terms. The superiority of the resolution calculus

23
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logic programming [110].

Moreover, the subformula property also leads to the major theoretical

application of the cut-elimination theorem: consistency proofs. For a theory

is trivially consistent if all its theorems can be derived by a sequent cal-

culus where cut is eliminable, simply because there is no cut-free proof of

the empty sequent. Consistency proofs were, in fact, the main motivation

for the development of sequent calculus, and cut-elimination is therefore

one approach within Hilbert’s program [74].

Another interesting consequence of the cut-elimination theorem is

derived from the fact that cut-free proofs allow the construction of inter-

polants of their end-sequents via Maehara’s lemma [112, 9], by induction

on the structures of the proofs. In this sense, the cut-elimination theorem

and Maehara’s lemma provide a purely syntactical and constructive proof

of Craig’s interpolation theorem [27]. Moreover, a corollary, Beth’s definabil-

ity theorem, can also be given a constructive proof: if a predicate symbol

is defined implicitly, then cut-elimination and the method of Maehara’s

lemma can be used to construct an explicit definition [9].

Not only interpolants but also Herbrand disjunctions can be easily

constructed or extracted from cut-free proofs. This has been shown in

Gentzen’s Midsequent theoremc[48, 49] for the prenex case and extensions

to more general cases have been studied and compared in [94, 95]. There-

fore, from a certain point of view, the midsequent theorem can be seen

as the missing link relating the cut-elimination theorem with Herbrand’s

theorem [64, 62, 63, 21]. Indeed, Herbrand’s theorem preceded the cut-

elimination theorem and was hard to prove without it, but relatively eas-

ier proofs can be obtained by using cut-elimination as a lemma and then

using either the mid-sequent theorem, for the prenex case, or arguments

like the ones shown in [22, 85, 95], for more general cases.

If sequent calculus is seen as a meta-calculus about proofs in another

calculus (e.g. natural deduction [48]), then the cut rule essentially says

that the proofs denoted by the premise sequents can be composed, result-

ing in a proof denoted by the conclusion sequent. But it does not say how

the composition has to be done. Cut-elimination methods can therefore

be seen as processes that actually do the composition of the proofs. In

certain areas of logic, such as that which relates proofs to functional pro-

over the standard sequent calculus for proof search lies exactly on the fact that resolution restricts
instantiation to most general unifiers, while the standard sequent calculus does not. There are,
however, analytic tableaux and hence sequent calculi that incorporate most general unification in
proof search.

cThe midsequent theorem is also known as Gentzen’s sharpened Hauptsatz
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grams via the Curry-Howard isomorphism [28, 29, 33], it may be important

that this composition be deterministic and unique, because the compo-

sition (cut-elimination) of proofs corresponds to the computation of the

corresponding programs. This requirement is equivalent to demanding

that methods of cut-elimination should be confluent.

The desire to have minimalistic proof representations (e.g. generalized

lambda terms [96], proof nets [53], short tautologies [68], Deep Inference

(formalism A, atomic flows and deductive nets) [60, 18, 19], Herbrand

sequents [95, 94, 70] , logical flow graphs [20, 24], . . . ) that are “free of

bureaucracy” is equivalent to the question of identityd of proofs [111, 78]

(“when should two proofs be considered the same?”), for bureaucracy can

be defined as all the syntactic differences between two proofs that should

be considered the same. This gives rise to the approach of semantics of

proofs [78], that attempts to assign meanings to proofs and then answer

the question of the identity of proofs affirmatively if the proofs have the

same meaning. This includes assigning meanings to proofs with cuts, and

hence it might again be relevant to enforce confluence of cut-elimination,

as it is usually desirable to have the same meaning for a proof with cuts

and its cut-free normal forms and this might be harder to achieve if there

are too many cut-free normal forms.

Even though cut-elimination and many other proof-theoretical tech-

niques had been developed for purely foundational reasons and thus

were intended to be used only in an abstract sense, later they came to be

applied to actual mathematical proofs. Girard’s informal application of

cut-elimination to eliminate the lemmas of a mathematical proof by Fuer-

stenberg and Weiss of van der Waerden’s theorem, resulting in van der

Waerden’s original mathematical proof, is one of the most famous exam-

ples [54]. Luckhardt’s extraction of bounds for the number of solutions of

certain Diophantine equations from proofs of Roth’s theorem by analyz-

ing the terms of Herbrand disjunctions extractable from these proofs is

another impressive example, especially considering that the achievement

dBy Leibniz’s law of the identity of indiscernibles [79, 89] (∀x∀y(∀P(P(x) ↔ P(y)) → x = y))
applied to proofs, and by the adoption of Henkin semantics [61] for second-order quantification,
it is clear that the question of the identity of proofs is only well-defined if the domain over which
the variable P is quantified is precisely fixed, which is frequently not the case. Leibniz’s law also
suggests that the identity of proofs can only be assessed relative to a domain of properties of proofs
that are of interest for a given application (e.g. the property of “proving the same theorem” might
be sufficient to classify two proofs as the same, if the only interest is to know whether the theorem
holds, while the additional interest of analyzing the mathematical content of a proof could require
additional properties such as “having the same Herbrand sequent”). Searching for an absolute
concept of proof identity is futile.
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of such bounds by standard number-theoretic techniques occurred only

later and with much more effort [16].

Cut-elimination is also related to a principle of parsimony and simplic-

ity popularly known as Ockham’s razor [87], according to which simpler

explanations should be preferred over more complex ones. A proof with

non-analytic cuts does not satisfy the subformula property, and hence

contains superfluous concepts, which, as shown by the cut-elimination

theorem, are not really necessary to derive the end-sequent. Therefore,

in a qualitative sense of Ockham’s razor, cut-free proofs are simpler and

ought to be preferred over proofs with cuts. Therefore, methods of cut-

elimination ought to be seen as means to achieve the simplicity demanded

by Ockham’s razor in the specific area of logic. On the other hand, cut-

free proofs can be significantly larger than proofs with cuts [109, 93].

Therefore, according to a purely quantitative Ockham’s razor principle,

cut-elimination ought to be avoided. The phenomenon of cut-elimination

is then almost a paradox for the Ockham’s razor principle. It shows the

relativity of simplicity in a very simple way, by exhibiting an intrinsic

trade-off between the qualitative and quantitative kinds of simplicity.

Surprisingly, though, cut-elimination seems to have not yet been a case

studied by philosophers concerned with issues of this popular principle.

3.1.1 Related Approaches

While sequent calculus and cut-elimination were Gentzen’s late approach

to Hilbert’s program, Hilbert himself had originally chosen a different

approach, based on the epsilon calculus [72] and the epsilon substitution

method [1, 90]. Particularly, both a cut-free proof in the sequent calculus

and a proof without epsilon-terms in the epsilon calculus allow easy

extraction of Herbrand disjunctions [91] . Historically interesting is also

the fact that the epsilon calculus preceded Herbrand’s theorem by a few

years, and later enabled the first correct proof of Herbrand’s theorem to be

obtained as a corollary of an extended version of the first epsilon theorem

[91, 73].

Yet another approach to proving consistency is Goedel’s “Dialectica”

method of functional interpretation [55]. Interestingly, the focus of this

method (and its variants, such as the refined A-translation [15, 113]) also

migrated from foundational issues to applications on actual mathemat-

ical proofs [76, 113]. Indeed, not only “programs” (functionals) can be

extracted from proofs in this way, but also Herbrand disjunctions [51],

since the functional interpretation essentially encodes all the terms of a
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Herbrand disjunction into recursive functionals.

3.2 Reductive Cut-elimination Proof Rewriting Rules

It is evident that a cut can be easily eliminated if it occurs immediately

below an axiom inference. This can be done by rewriting the proof ac-

cording to the rewriting rule shown in Definition 3.2.6. This leads to the

following idea for the elimination of cuts in general: swap the cut infer-

ences upward, until they are immediately below axiom inferences, where

they can easily be eliminated. This swapping can be done according to the

rewriting rules of Definition 3.2.9. However, if the cut-formula occurrence

is not atomic, the swapping will eventually be blocked when the cut oc-

curs immediately below the inferences that introduce both its cut-formula

occurrences. When this happens, the cut (and the inferences immediately

above it) can be replaced by new cuts such that their cut-formula occur-

rences are proper subformulas of the cut-formula of the replaced cut. As

the blocking inferences are also removed by the replacement, it is clear

that the upward swapping can proceed. This replacement can be done

according to Definition 3.2.14, if the cut-formula has a propositional con-

nective in its shallowest level, or Definition 3.2.17, if the cut-formula has

a quantifier in its shallowest level. Structural inferences above cuts can

also block their upward swapping. In the case of weakening, the cut

can be simply eliminated, analogously to the case for axiom inferences,

according to Definition 3.2.19. The case for contraction is more compli-

cated, since it requires the duplication of some subproofs, as shown in

Definition 3.2.20.

Historically, cut-elimination methods based on proof rewriting meth-

ods have been known as reductive cut-elimination methods, because the

upward swapping of cuts reduces its rank (Definition 3.2.9) and the re-

placement of a cut by others obviously (except in the case of contraction)

reduces the overall complexity (grade (e.g. Definitions 3.2.14 and 3.2.17))

of the cut-formulas of the proof.

As usual, rewriting rules are seen here as abstract definitions of com-

patible closed relations over the set of proofs. Infix notation is used: if ϕ

can be rewritten to ϕ′, then ϕ�x ϕ
′ (meaning (ϕ,ϕ′) ∈ �x).
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3.2.1 Preliminaries about Rewriting Relations

The following definitions are standard from rewriting systems. They are

heavily used in all subsequent chapters.

Definition 3.2.1 (Transitive Closure). Let � be a rewriting relation. Then:

• ϕ �
n ϕn if and only if there are proofs ϕ1,. . . ,ϕn−1 such that ϕ � ϕ1,

ϕ1 � ϕ2,. . . , ϕn−1 � ϕn.

• ϕ�
∗ ϕ′ if and only if there is a natural number n such that ϕ�

n ϕn.

�
∗ is the reflexive transitive closure of �.

Definition 3.2.2 (Normal form). Let � be a rewriting relation on proofs.

A proof ϕ is a �-normal-form if and only if ϕ� ϕ′ for no proof ϕ′.

A proof ϕ′ is a �-normal-form of ϕ if and only if ϕ �
∗ ϕ′ and ϕ′ is a

�-normal-form.

Definition 3.2.3 (Normalization Relations). Let � be a rewriting relation

on proofs. Then �
↓ is the sub-relation of �

∗ such that ϕ�
↓ ψ if and only

if ϕ�
∗ ψ and ψ is a �-normal-form.

Definition 3.2.4 (Confluence). A rewriting relation � is confluent if and

only if every proof ϕ has only one �-normal-form.

Definition 3.2.5 (Normalization). A rewriting relation � is weakly normal-

izing if and only if, for every proof ϕ, there is a proof ϕ′ such that ϕ�
∗ ϕ′

and ϕ′ is a �-normal-form.

A rewriting relation � is strongly normalizing if and only if, for every

proof ϕ0, there is no infinite sequence of proofs (ϕ1, ϕ2, . . .) such that

ϕn � ϕn+1 (for all n ≥ 0).
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3.2.2 The Rewriting Rules

Definition 3.2.6 (�a). Cut-elimination over axiom inferences:

A ` A

ϕr

A,Π ` Λ
cut

A,Π ` Λ

⇓

ϕr

A,Π ` Λ

ϕl

Γ ` ∆,A A ` A
cut

Γ, ` ∆,A

⇓

ϕl

Γ ` ∆,A

Definition 3.2.7 (�r1
). Upward swapping of cuts over unary inferences

(unary rank reduction):

ϕl

Γ ` ∆,A

ϕr

A,Π′ ` Λ′
ρ

A,Π ` Λ
cut

Γ,Π ` ∆,Λ

⇓

ϕl

Γ ` ∆,A

ϕr

A,Π′ ` Λ′
cut

Γ,Π′ ` ∆,Λ′
ρ

Γ,Π ` ∆,Λ

ϕl

Γ′ ` ∆′,A
ρ

Γ ` ∆,A

ϕr

A,Π ` Λ
cut

Γ,Π ` ∆,Λ

⇓

ϕl

Γ′ ` ∆′,A

ϕr

A,Π ` Λ
cut

Γ′,Π ` ∆′,Λ
ρ

Γ,Π ` ∆,Λ

Definition 3.2.8 (�r2
). Upward swapping of cuts over binary inferences

(binary rank reduction):

ϕl

Π ` Λ,A

ϕ1

A, Γ1 ` ∆1

ϕ2

Γ2 ` ∆2 ρ
A, Γ ` ∆

cut
Π, Γ ` Λ,∆

⇓

ϕl

Π ` Λ,A

ϕ1

A, Γ1 ` ∆1
cut

Π, Γ1 ` Λ,∆1

ϕ2

Γ2 ` ∆2 ρ
Π, Γ ` Λ,∆

ϕl

Π ` Λ,A

ϕ1

Γ1 ` ∆1

ϕ2

A, Γ2 ` ∆2 ρ
A, Γ ` ∆

cut
Π, Γ ` Λ,∆

⇓

ϕ1

Γ1 ` ∆1

ϕl

Π ` Λ,A

ϕ2

A, Γ2 ` ∆2
cut

Π, Γ2 ` Λ,∆2 ρ
Π, Γ ` Λ,∆
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ϕ1

Γ1 ` ∆1,A

ϕ2

Γ2 ` ∆2 ρ
Γ ` ∆,A

ϕr

A,Π ` Λ
cut

Γ,Π ` ∆,Λ

⇓

ϕ1

Γ1 ` ∆1,A

ϕr

A,Π ` Λ
cut

Γ1,Π ` ∆1,Λ

ϕ2

Γ2 ` ∆2 ρ
Γ,Π ` ∆,Λ

ϕ1

Γ1 ` ∆1

ϕ2

Γ2 ` ∆2,A ρ
Γ ` ∆,A

ϕr

A,Π ` Λ
cut

Γ,Π ` ∆,Λ

⇓

ϕ1

Γ1 ` ∆1

ϕ2

Γ2 ` ∆2,A

ϕr

A,Π ` Λ
cut

Γ2,Π ` ∆2,Λ ρ
Γ,Π ` ∆,Λ

Definition 3.2.9 (�r). Upward swapping of cuts (rank reduction):

�r � �r1
∪�r2

�rnon−atomic
is the sub-relation of �r obtained by restricting it to non-

atomic cut-formulas.

Definition 3.2.10 (�p∧). Reduction of complexity of a cut-formula having

∧ as shallowest connective (grade reduction):

ϕ1

Γ1 ` ∆1,B

ϕ2

Γ2 ` ∆2,C ∧r
Γ1, Γ2 ` ∆1,∆2,B ∧ C

ϕr

B,C,Π ` Λ
∧l

B ∧ C,Π ` Λ
cut

Γ1, Γ2,Π ` ∆1,∆2,Λ

⇓

ϕ2

Γ2 ` ∆2,C

ϕ1

Γ1 ` ∆1,B

ϕr

B,C,Π ` Λ
cut

C, Γ1,Π ` ∆1,Λ
cut

Γ1, Γ2,Π ` ∆1,∆2,Λ
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Definition 3.2.11 (�p∨). Reduction of complexity of a cut-formula having

∨ as shallowest connective (grade reduction):

ϕl

Π ` Λ,B,C
∨r

Π ` Λ,B ∨ C

ϕ1

B, Γ1 ` ∆1

ϕ2

C, Γ2 ` ∆2 ∨l
B ∨ C, Γ1, Γ2 ` ∆1,∆2 cut

Γ1, Γ2,Π ` ∆1,∆2,Λ

⇓

ϕl

Π ` Λ,B,C

ϕ2

C, Γ2 ` ∆2 cut
Π, Γ2 ` ∆2,Λ,B

ϕ1

B, Γ1 ` ∆1
cut

Γ1, Γ2,Π ` ∆1,∆2,Λ

Definition 3.2.12 (�p→). Reduction of complexity of a cut-formula having

→ as shallowest connective (grade reduction):

ϕl

B,Π ` Λ,C
→r

Π ` Λ,B→ C

ϕ1

Γ1 ` ∆1,B

ϕ2

C, Γ2 ` ∆2 →l
B→ C, Γ1, Γ2 ` ∆1,∆2 cut

Γ1, Γ2,Π ` ∆1,∆2,Λ

⇓

ϕ1

Γ1 ` ∆1,B

ϕl

B,Π ` Λ,C

ϕ2

C, Γ2 ` ∆2 cut
B,Π, Γ2 ` ∆2,Λ cut

Γ1, Γ2,Π ` ∆1,∆2,Λ

Definition 3.2.13 (�p¬). Reduction of complexity of a cut-formula having

¬ as shallowest connective (grade reduction):

ϕl

B, Γ ` ∆ ¬r
Γ ` ∆,¬B

ϕr

Π ` Λ,B ¬l
¬B,Π ` Λ

cut
Γ,Π ` ∆,Λ

⇓

ϕr

Π ` Λ,B

ϕl

B, Γ ` ∆
cut

Γ,Π ` ∆,Λ
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Definition 3.2.14 (�p). Propositional grade reduction:

�p � �p∧ ∪�p∨ ∪�p→ ∪�p¬

Definition 3.2.15 (�q∀). Reduction of complexity of a cut-formula having

a universal quantifier at its shallowest level:

ϕl

Γ ` ∆,B{x← α}
∀r

Γ ` ∆,∀xB

ϕr

B{x← t},Π ` Λ
∀l

∀xB,Π ` Λ
cut

Γ,Π ` ∆,Λ

⇓

ϕ′
l
{α← t}

Γ ` ∆,B{x← t}

ϕr

B{x← t},Π ` Λ
cut

Γ,Π ` ∆,Λ

where ϕ′
l

is obtained from ϕl by renaming all bound variables to glob-

ally fresh new ones, so that they are not equal to any free variable in the

term t.

Definition 3.2.16 (�q∃). Reduction of complexity of a cut-formula having

an existential quantifier at its shallowest level:

ϕl

Γ ` ∆,B{x← t}
∃r

Γ ` ∆,∃xB

ϕr

B{x← α},Π ` Λ
∃l

∃xB,Π ` Λ
cut

Γ,Π ` ∆,Λ

⇓

ϕl

Γ ` ∆,B{x← t}

ϕ′r{α← t}

B{x← t},Π ` Λ
cut

Γ,Π ` ∆,Λ

where ϕ′r is obtained from ϕr by renaming all bound variables to

globally fresh new ones, so that they are not equal to any free variable in

the term t.

Definition 3.2.17 (�q). Quantificational grade reduction:

�q � �q∀ ∪�q∃



3.2. REDUCTIVE CUT-ELIMINATION PROOF REWRITING RULES 33

Definition 3.2.18 (�d). Reduction over definition inferences:

ϕl

Γ ` ∆,A[x1, . . . , xn]
dr

Γ ` ∆,P(x1, . . . , xn)

ϕr

A[x1, . . . , xn],Π ` Λ
dlP(x1, . . . , xn),Π ` Λ
cut

Γ,Π ` ∆,Λ

⇓

ϕl

Γ ` ∆,A[x1, . . . , xn]

ϕr

A[x1, . . . , xn],Π ` Λ
cut

Γ,Π ` ∆,Λ

Definition 3.2.19 (�w). Cut-elimination over weakening inferences:

ϕl

Γ ` ∆ wr
Γ ` ∆,A

ϕr

A,Π ` Λ
cut

Γ,Π ` ∆,Λ

⇓

ϕl

Γ ` ∆ w∗r,w
∗
l

Γ,Π ` ∆,Λ

ϕl

Γ ` ∆,A

ϕr

Π ` Λ wl
A,Π ` Λ

cut
Γ,Π ` ∆,Λ

⇓

ϕr

Π ` Λ w∗r,w
∗
l

Γ,Π ` ∆,Λ

�wnon−atomic
is the sub-relation of �w obtained by restricting it to non-

atomic cut-formulas.

Definition 3.2.20 (�c). Duplication of cuts over contraction inferencese:

ϕl

Γ ` ∆,A,A
cr

Γ ` ∆,A

ϕr

A,Π ` Λ
cut

Γ,Π ` ∆,Λ

⇓

ϕl

Γ ` ∆,A,A

ϕr

A,Π ` Λ
cut

Γ,Π ` ∆,Λ,A

ϕ′r

A,Π ` Λ
cut

Γ,Π,Π ` ∆,Λ,Λ,
c∗

l
, c∗r

Γ,Π ` ∆,Λ

ϕl

Γ ` ∆,A

ϕr

A,A,Π ` Λ
cl

A,Π ` Λ
cut

Γ,Π ` ∆,Λ

⇓

ϕ′
l

Γ ` ∆,A

ϕl

Γ ` ∆,A

ϕr

A,A,Π ` Λ
cut

A,Γ,Π ` ∆,Λ
cut

Γ,Γ,Π ` ∆,∆,Λ
c∗

l
, c∗r

Γ,Π ` ∆,Λ

eThe use of a purely multiplicative calculus, in which all contractions occur explicitly via
contraction inferences, allows the isolation of the phenomenon of duplication of subproofs (and
the need for renaming of eigenvariables) to the case of cut-reduction over contractions. Had
an additive or mixed calculus been chosen, implicit contractions would occur, and its treatment
would not be as transparent.
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where ϕ′
l

and ϕ′r are variants of, respectively, ϕl and ϕr, in which the

eigenvariables are renamed to preserve proof regularity.

�cnon−atomic
is the sub-relation of �c obtained by restricting it to non-

atomic cut-formulas.

Definition 3.2.21 (�ã). Reduction to atomic cuts (with possibly contracted

or weakened cut-formula-occurrences):

�ã � �rnon−atomic
∪�p ∪�q ∪�wnon−atomic

∪�cnon−atomic

Definition 3.2.22 (�a). Reduction to atomic cuts (so that no cut-formula-

occurrence is contracted or weakened):

�a � �r ∪�p ∪�q ∪�w ∪�c

Definition 3.2.23 (�). Reductive cut-elimination:

� � �a ∪�a
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3.2.3 Examples of Reductive Cut-Elimination

Two detailed simple examples of reductive cut-elimination are shown

below. In each example the arrows have a subscript indicating which

proof rewriting rule has been applied.

Example 3.1. Let ϕ be the proof below:

A ` A

A ` A wl
C,A ` A

B ` B ¬r
` B,¬B

∨r
` B ∨ ¬B

B ` B
B ` B ¬l

¬B,B `
∨l

B ∨ ¬B,B ` B
→r

B ∨ ¬B ` B→ B
cut

` B→ B wl
D ` B→ B

∨l
A,C ∨D ` A,B→ B

cut
A,C ∨D ` A,B→ B

Its cuts can be eliminated according to the following proof rewriting sequence:

A ` A

A ` A wl
C,A ` A

B ` B ¬r
` B,¬B

∨r
` B ∨ ¬B

B ` B
B ` B ¬l

¬B,B `
∨l

B ∨ ¬B,B ` B
→r

B ∨ ¬B ` B→ B
cut

` B→ B wl
D ` B→ B

∨l
A,C ∨D ` A,B→ B

cut
A,C ∨D ` A,B→ B

⇓�r1

A ` A

A ` A wl
C,A ` A

B ` B ¬r
` B,¬B

∨r
` B ∨ ¬B

B ` B
B ` B ¬l

¬B,B `
∨l

B ∨ ¬B,B ` B
cut

B ` B →r
` B→ B wl

D ` B→ B
∨l

A,C ∨D ` A,B→ B
cut

A,C ∨D ` A,B→ B

⇓�p∨

A ` A

A ` A wl
C,A ` A

B ` B ¬r
` B,¬B

B ` B ¬l
¬B,B `

cut
B ` B B ` B

cut
B ` B →r
` B→ B wl

D ` B→ B
∨l

A,C ∨D ` A,B→ B
cut

A,C ∨D ` A,B→ B
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⇓�p¬

A ` A

A ` A wl
C,A ` A

B ` B B ` B
cut

B ` B B ` B
cut

B ` B →r
` B→ B wl

D ` B→ B
∨l

A,C ∨D ` A,B→ B
cut

A,C ∨D ` A,B→ B

⇓�r2

A ` A
A ` A wl

C,A ` A
cut

A,C ` A

B ` B B ` B
cut

B ` B B ` B
cut

B ` B →r
` B→ B wl

D ` B→ B
∨l

A,C ∨D ` A,B→ B

⇓�w

A ` A A ` A
cut

A ` A wl
C,A ` A

B ` B B ` B
cut

B ` B B ` B
cut

B ` B →r
` B→ B wl

D ` B→ B
∨l

A,C ∨D ` A,B→ B

⇓�a

A ` A A ` A
cut

A ` A wl
C,A ` A

B ` B B ` B
cut

B ` B →r
` B→ B wl

D ` B→ B
∨l

A,C ∨D ` A,B→ B

⇓�a

A ` A A ` A
cut

A ` A wl
C,A ` A

B ` B →r
` B→ B wl

D ` B→ B
∨l

A,C ∨D ` A,B→ B

⇓�a

A ` A wl
C,A ` A

B ` B →r
` B→ B wl

D ` B→ B
∨l

A,C ∨D ` A,B→ B



3.2. REDUCTIVE CUT-ELIMINATION PROOF REWRITING RULES 37

Example 3.2. Let ϕ be the proof below:

P(u) ` P(u) Q(u) ` Q(u)
→l

P(u),P(u)→ Q(u) ` Q(u)
→r

P(u)→ Q(u) ` P(u)→ Q(u)
∃r

P(u)→ Q(u) ` ∃y(P(u)→ Q(y))
∀l

∀x(P(x)→ Q(x)) ` ∃y(P(u)→ Q(y))
∀r

∀x(P(x)→ Q(x)) ` ∀x∃y(P(x)→ Q(y))

P(a) ` P(a) Q(v) ` Q(v)
→l

P(a),P(a)→ Q(v) ` Q(v)
→r

P(a)→ Q(v) ` P(a)→ Q(v)
∃r

P(a)→ Q(v) ` ∃y(P(a)→ Q(y))
∃l

∃y(P(a)→ Q(y)) ` ∃y(P(a)→ Q(y))
∀l

∀x∃y(P(x)→ Q(y)) ` ∃y(P(a)→ Q(y))
cut

∀x(P(x)→ Q(x)) ` ∃y(P(a)→ Q(y))

Its cut can be eliminated according to the following proof rewriting sequence:

P(u) ` P(u) Q(u) ` Q(u)
→l

P(u),P(u)→ Q(u) ` Q(u)
→r

P(u)→ Q(u) ` P(u)→ Q(u)
∃r

P(u)→ Q(u) ` ∃y(P(u)→ Q(y))
∀l

∀x(P(x)→ Q(x)) ` ∃y(P(u)→ Q(y))
∀r

∀x(P(x)→ Q(x)) ` ∀x∃y(P(x)→ Q(y))

P(a) ` P(a) Q(v) ` Q(v)
→l

P(a),P(a)→ Q(v) ` Q(v)
→r

P(a)→ Q(v) ` P(a)→ Q(v)
∃r

P(a)→ Q(v) ` ∃y(P(a)→ Q(y))
∃l

∃y(P(a)→ Q(y)) ` ∃y(P(a)→ Q(y))
∀l

∀x∃y(P(x)→ Q(y)) ` ∃y(P(a)→ Q(y))
cut

∀x(P(x)→ Q(x)) ` ∃y(P(a)→ Q(y))

⇓�q∀

P(a) ` P(a) Q(a) ` Q(a)
→l

P(a),P(a)→ Q(a) ` Q(a)
→r

P(a)→ Q(a) ` P(a)→ Q(a)
∃r

P(a)→ Q(a) ` ∃y(P(a)→ Q(y))
∀l

∀x(P(x)→ Q(x)) ` ∃y(P(a)→ Q(y))

P(a) ` P(a) Q(v) ` Q(v)
→l

P(a),P(a)→ Q(v) ` Q(v)
→r

P(a)→ Q(v) ` P(a)→ Q(v)
∃r

P(a)→ Q(v) ` ∃y(P(a)→ Q(y))
∃l

∃y(P(a)→ Q(y)) ` ∃y(P(a)→ Q(y))
cut

∀x(P(x)→ Q(x)) ` ∃y(P(a)→ Q(y))

⇓�r1

P(a) ` P(a) Q(a) ` Q(a)
→l

P(a),P(a)→ Q(a) ` Q(a)
→r

P(a)→ Q(a) ` P(a)→ Q(a)
∃r

P(a)→ Q(a) ` ∃y(P(a)→ Q(y))

P(a) ` P(a) Q(v) ` Q(v)
→l

P(a),P(a)→ Q(v) ` Q(v)
→r

P(a)→ Q(v) ` P(a)→ Q(v)
∃r

P(a)→ Q(v) ` ∃y(P(a)→ Q(y))
∃l

∃y(P(a)→ Q(y)) ` ∃y(P(a)→ Q(y))
cut

P(a)→ Q(a) ` ∃y(P(a)→ Q(y))
∀l

∀x(P(x)→ Q(x)) ` ∃y(P(a)→ Q(y))

⇓�q∃

P(a) ` P(a) Q(a) ` Q(a)
→l

P(a),P(a)→ Q(a) ` Q(a)
→r

P(a)→ Q(a) ` P(a)→ Q(a)

P(a) ` P(a) Q(a) ` Q(a)
→l

P(a),P(a)→ Q(a) ` Q(a)
→r

P(a)→ Q(a) ` P(a)→ Q(a)
∃r

P(a)→ Q(a) ` ∃y(P(a)→ Q(y))
cut

P(a)→ Q(a) ` ∃y(P(a)→ Q(y))
∀l

∀x(P(x)→ Q(x)) ` ∃y(P(a)→ Q(y))

⇓�r1
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P(a) ` P(a) Q(a) ` Q(a)
→l

P(a),P(a)→ Q(a) ` Q(a)
→r

P(a)→ Q(a) ` P(a)→ Q(a)

P(a) ` P(a) Q(a) ` Q(a)
→l

P(a),P(a)→ Q(a) ` Q(a)
→r

P(a)→ Q(a) ` P(a)→ Q(a)
cut

P(a)→ Q(a) ` P(a)→ Q(a)
∃r

P(a)→ Q(a) ` ∃y(P(a)→ Q(y))
∀l

∀x(P(x)→ Q(x)) ` ∃y(P(a)→ Q(y))

⇓�r1

P(a) ` P(a) Q(a) ` Q(a)
→l

P(a),P(a)→ Q(a) ` Q(a)
→r

P(a)→ Q(a) ` P(a)→ Q(a)

P(a) ` P(a) Q(a) ` Q(a)
→l

P(a),P(a)→ Q(a) ` Q(a)
cut

P(a)→ Q(a),P(a) ` Q(a)
→r

P(a)→ Q(a) ` P(a)→ Q(a)
∃r

P(a)→ Q(a) ` ∃y(P(a)→ Q(y))
∀l

∀x(P(x)→ Q(x)) ` ∃y(P(a)→ Q(y))

⇓�p→

P(a) ` P(a)

P(a) ` P(a) Q(a) ` Q(a)
→l

P(a),P(a)→ Q(a) ` Q(a) Q(a) ` Q(a)
cut

P(a),P(a)→ Q(a) ` Q(a)
cut

P(a)→ Q(a),P(a) ` Q(a)
→r

P(a)→ Q(a) ` P(a)→ Q(a)
∃r

P(a)→ Q(a) ` ∃y(P(a)→ Q(y))
∀l

∀x(P(x)→ Q(x)) ` ∃y(P(a)→ Q(y))

⇓�r2

P(a) ` P(a)

P(a) ` P(a)

Q(a) ` Q(a) Q(a) ` Q(a)
cut

Q(a) ` Q(a)
→l

P(a),P(a)→ Q(a) ` Q(a)
cut

P(a)→ Q(a),P(a) ` Q(a)
→r

P(a)→ Q(a) ` P(a)→ Q(a)
∃r

P(a)→ Q(a) ` ∃y(P(a)→ Q(y))
∀l

∀x(P(x)→ Q(x)) ` ∃y(P(a)→ Q(y))

⇓�r2

P(a) ` P(a) P(a) ` P(a)
cut

P(a) ` P(a)

Q(a) ` Q(a) Q(a) ` Q(a)
cut

Q(a) ` Q(a)
→l

P(a)→ Q(a),P(a) ` Q(a)
→r

P(a)→ Q(a) ` P(a)→ Q(a)
∃r

P(a)→ Q(a) ` ∃y(P(a)→ Q(y))
∀l

∀x(P(x)→ Q(x)) ` ∃y(P(a)→ Q(y))

⇓�a
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P(a) ` P(a)

Q(a) ` Q(a) Q(a) ` Q(a)
cut

Q(a) ` Q(a)
→l

P(a)→ Q(a),P(a) ` Q(a)
→r

P(a)→ Q(a) ` P(a)→ Q(a)
∃r

P(a)→ Q(a) ` ∃y(P(a)→ Q(y))
∀l

∀x(P(x)→ Q(x)) ` ∃y(P(a)→ Q(y))

⇓�a

P(a) ` P(a) Q(a) ` Q(a)
→l

P(a)→ Q(a),P(a) ` Q(a)
→r

P(a)→ Q(a) ` P(a)→ Q(a)
∃r

P(a)→ Q(a) ` ∃y(P(a)→ Q(y))
∀l

∀x(P(x)→ Q(x)) ` ∃y(P(a)→ Q(y))
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3.2.4 Some Properties of Reductive Cut-elimination

The following properties of reductive cut-elimination are well-known.

They are included here for the sake of self-containment.

Theorem 3.1 (Lack of Strong Normalization for �). � is not strongly

normalizing.

Proof. Consider the proof ϕ below:

A ` A A ` A ∨l
A ∨A ` A,A cr

A ∨ A ` A

A ` A A ` A ∧r
A,A ` A ∧ A cl

A ` A ∧A cut
A ∨ A ` A ∧ A

As shown in [66, 67] , there is a rewriting sequence leading to ϕ′:

A ` A A ` A
∨l

A ∨ A ` A,A

A ` A A ` A
∨l

A ∨A ` A,A

A ` A A ` A
∧r

A,A ` A ∧A
cut

A ∨ A,A ` A,A ∧ A
cut

A ∨ A,A ∨ A ` A,A,A ∧ A
cl

A ∨A ` A,A,A ∧A
cr

A ∨A ` A,A ∧A

A ` A A ` A
∧r

A,A ` A ∧A
cl

A ` A ∧A
cut

A ∨A ` A ∧ A,A ∧A
cr

A ∨A ` A ∧A

Both auxiliary formula occurrences of the lowermost cut are again

main formula occurrences of contractions. Essentially the same reduc-

tions can be employed indefinitely, in order to produce always larger

proofs and never reaching a �-normal-form. �

Theorem 3.2 (Lack of Confluence for �). � is not confluent.

Proof. Consider the proof ϕw below:

A ` A ¬l
A,¬A `

∧l
A ∧ ¬A ` wr

A ∧ ¬A ` A

A ` A ¬r
` A,¬A

∨r
` A ∨ ¬A wl

A ` A ∨ ¬A
A ∧ ¬A ` A ∨ ¬A

It has two distinct �-normal-forms, depending on which side is pre-

ferred for the cut-reduction over weakening:

A ` A ¬l
A,¬A `

∧l
A ∧ ¬A ` wr

A ∧ ¬A ` A ∨ ¬A

A ` A ¬r
` A,¬A

∨r
` A ∨ ¬A wl

A ∧ ¬A ` A ∨ ¬A

Non-confluence can also be caused by contractions on both sides of a

cut, as shown in the proof ϕc below [66, 31, 46, 115]:
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A ` A A ` A ∨l
A ∨ A ` A,A cr

A ∨ A ` A

A ` A A ` A ∧r
A,A ` A ∧ A cl

A ` A ∧ A cut
A ∨ A ` A ∧ A

ϕc has the following two �-normal-forms:

A ` A A ` A ∧r
A,A ` A ∧ A cl

A ` A ∧ A

A ` A A ` A ∧r
A,A ` A ∧A cl

A ` A ∧ A ∨l
A ∨ A ` A ∧ A,A ∧ A cr

A ∨ A ` A ∧ A

A ` A A ` A ∨l
A ∨A ` A,A cr

A ∨A ` A

A ` A A ` A ∨l
A ∨ A ` A,A cr

A ∨A ` A ∧r
A ∨A,A ∨ A ` A ∧A cl

A ∨A ` A ∧A

�

Theorem 3.3 (Weak Normalization for �). � is weakly normalizing.

Proof. Two well-known terminating strategies for � are Gentzen’s [48, 13],

which selects uppermost cuts, and Tait’s [9], which selects cuts of maximal

logical complexity. �

Theorem 3.4 (Cut-elimination Theorem (Gentzen’s Hauptsatz)). If there

is a proof ϕ with end-sequent Γ ` ∆, then there exists a cut-freef proof ϕ′

with end-sequent Γ ` ∆.

Proof. By Theorem 3.3, there exists a proof ϕ′ with end-sequent γ ` δ and

such that ϕ �
∗ ϕ′ and ϕ′ is a �-normal-form. Assume, for the sake of

contradiction, that ϕ′ has cuts. Then, at least one of the proof rewriting

rules that define � can be applied, and hence ϕ′ is not a �-normal-form.

As this contradicts the fact thatϕ′ is a �-normal-form, ϕ′must be cut-free.

Therefore, there exists a cut-free proof with end-sequent Γ ` ∆.

While Gentzen proved his Hauptsatz syntactically and constructively

by using essentially �. It is also possible to give a semantic proof based on

the facts that sequent calculus is semantically sound and cut-free sequent

calculus is semantically complete [112]. However, this proof has the

disadvantage of not providing a method (except, of course, naive proof

fGentzen’s Hauptsatz holds for proofs with axiom sequents of the form A ` A, as assumed
in this Thesis. However, for mathematical applications, it is frequently convenient to allow more
flexible forms of axiom sequents. In this case, some cuts might not be completely eliminable. An
in-depth discussion of this topic can be found in [22].
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search) for actually constructing a cut-free proof from a proof with cuts.

�

Remark 3.2.1 (The Complexity of Cut-Elimination). Since [93] and [109]

it is known that the complexity of cut-elimination is non-elementary. The

elimination of cuts from a proof ϕ can result in a proof whose size and

length are non-elementarily bigger than the size ofϕ. Detailed discussions

of the complexity of cut-elimination can be found in [22, 98, 13, 106].

More refined bounds, showing the role of quantifier alternations and

contractions, can be found in [50].



Chapter 4

Cut-Elimination by Resolution

Although reductive cut-elimination methods are sufficient for theoretical

purposes, such as Gentzen’s original aim of proving the cut-elimination

theorem and its corollaries, they have a few drawbacksa when it comes

to practical applications, such as the actual automated elimination of cuts

from formalized mathematical proofs in order to obtain new and simpler

mathematical proofs [6].

Firstly, reductive cut-elimination methods are not robust to changes in

the sequent calculus. If new rules were added to the sequent calculus or

if the existing rules were just slightly modified (e.g. if rules with implicit

contractions and weakenings were used, such as in an additive or mixed

calculus), then new rewriting rules would have to be formulated to cope

with the modified calculus.

Secondly, the elimination of cuts by reductive methods is a long and

costly process of local rewritings. This locality of the method also implies

that it is not capable of exploiting the global structure of the proof in order

to potentially achieve significantly shorter cut-free proofs.

Finally, a comparison [9, 11] of Gentzen’s rewriting strategy to that of

Tait and Schuette shows that there are two sequences of proofs (ϕn)n∈N

and (ψn)n∈N such that:

• there is a sequence of cut-free proofs (ϕG
n )n∈N obtained from (ϕn)n∈N

via �
G whose sizes of the cut-elimination sequences grow polyno-

mially with respect to the sizes of the proofs in (ϕG
n )n∈N but the sizes

aIt is interesting to note that Goedel’s alternative approach, the dialectica functional interpre-
tation, also has some drawbacks in the actual extraction of functionals from proofs, which led to
the development of the refined A-translation [113].

43
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of the cut-free proofs of any sequence (ϕT
n )n∈N obtained from (ϕn)n∈N

via �
T grow non-elementarily.

• there is a sequence of cut-free proofs (ψT
n )n∈N obtained from (ψn)n∈N

via �
T whose sizes of the cut-elimination sequences grow polyno-

mially with respect to the sizes of the proofs in (ψG
n )n∈N but the sizes

of the cut-free proofs of any sequence (ψG
n )n∈N obtained from (ψn)n∈N

via �
G grow non-elementarily.

This shows that the non-deterministic choices made in reductive cut-

elimination can have a significant effect on the size of the cut-free proofs.

But the right choices could only be done with a global analysis of the

proof.

These drawbacks motivate the continuous development of an alterna-

tive method of cut-elimination by resolution, which:

• is compactly and abstractly described, ensuring robustness with

respect to details of the sequent calculus.

• eliminates all cuts at once.

• is global.

• is such that there is always a sequence (ψ′n)n∈N of cut-free proofs

obtained from (ψn)n∈N by cut-elimination by resolution whose sizes

grow at most elementarily with respect to the sizes of the proofs

(ψS
n)n∈N obtained from (ψn)n∈N by reductive cut-elimination following

any rewriting strategy.

Cut-elimination by resolution starts with the extraction of a cut per-

tinent struct from a proof ϕ with end-sequent Γ ` ∆. This struct can

be transformed into a cut-pertinent clause set, which is always unsatisfi-

able. By the refutational completeness of the resolution calculus (Theorem

2.3), there is a resolution refutation δ of the cut-pertinent clause set. A

new proof CERes(ϕ, δ) of Γ ` ∆ can then be constructed by using the

refutation as a skeleton (with an appropriate conversion of factoring to

contraction inferences and resolution inferences to cuts), on which the leaf

subproofs (each consisting of an initial inference deriving a clause from

the cut-pertinent clause set) are replaced by projections. CERes(ϕ, δ) is not

completely cut-free, but its cuts have atomic cut-formulas only. Such cuts

are inessential, because, as their cut-formulas do not have quantifiers,

they do not prevent the extraction of a Herbrand sequent [94].
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The first Section (Section 4.1) of this Chapter explains the most fun-

damental concept of cut-elimination by resolution as presented here: the

cut-pertinent struct. The following Sections (4.2, 4.3, 4.4, 4.5, 4.6) explain

different waysb to transform the cut-pertinent struct into a cut-pertinent

clause set, as well as different algorithms to construct projections for the

clauses of such clause sets. Finally, Section 4.7 explains how to put refuta-

tions and projections together, in order to obtain CERes-Normal-Forms.

Although the rules of the sequent calculus defined and used in pre-

vious chapters have at most two premises, sequent calculi with rules

having greater arity do exist. This is the case, for example, of sequent

calculi with superdeduction [36, 17] and sequent calculi for multi-valued

logics [5, 4, 118]. Therefore, in contrast to usual presentations of the

methodc, cut-elimination by resolution is defined here in a general way,

making no assumptions about the arities of the rules present in the cal-

culus. Nevertheless, examples and proofs of some theorems stick to the

case of sequent calculi having at most binary rules.

4.1 Cut-Pertinent Struct

In order to extract from proofs information that is pertinent to the cuts in

the proofs, auxiliary definitions (4.1.5, 4.1.2, 4.1.1, 4.9.2) are necessary to

clarify the notion of pertinence in this context. Then, the concept of struct

(Definition 4.1.4) can be used as a compact way to store the cut-pertinent

information of a proof (Definition 4.1.7).

Definition 4.1.1 (Cut-Pertinent and Cut-Impertinent Occurrences). A for-

mula occurrence is cut-pertinent if and only if it is an ancestor of a cut

formula occurrence. The set of cut-pertinent formula occurrences of a proof

ϕ is denoted ΩCP(ϕ).

A formula occurrence is cut-impertinent if and only if it is not cut-

pertinent. The set of cut-impertinent formula occurrences of a proof ϕ is

denoted ΩCI(ϕ).

Remark 4.1.1. In LK, a cut-impertinent formula occurrence is an ancestor

of a formula occurrence in the end-sequent.

b For the reader who is not yet so familiar with cut-elimination by resolution, it might be
profitable to skip Sections 4.3, 4.4, 4.5 and 4.6 in a first read, focusing instead on the simplest way
of constructing clause sets described in Section 4.2 only.

cNote, however, that a method of cut-elimination by resolution for sequent calculi for multi-
valued logics containing rules with arbitrary arity has already been defined in [5]
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Definition 4.1.2 (Ω-Pertinence). Let ρ be an inference of a proof ϕ, and

let Ω be a set of atomic formula occurrences of ϕ. Then ρ operates within

Ω if and only if all its active atomic occurrences are in Ω; and ρ partially

operates withinΩ if and only if at least one of its active atomic subformula

occurrences is in Ω. Moreover, ρ is Ω-pertinent if and only if ρ operates

withinΩ; ρ isΩ-partially-pertinent if and only if ρpartially operates within

Ω; and ρ is Ω-impertinent if and only if ρ is neither Ω-pertinent nor Ω-

partially-pertinent.

Definition 4.1.3 (Cut-Pertinence). An inference ρ is cut-pertinent if and

only if ρ is ΩCP(ϕ)-pertinent.

An inference ρ is cut-impertinent if and only if ρ is ΩCI(ϕ)-pertinent.

Definition 4.1.4 (Structs). The set of structsd S is defined as the smallest

set satisfying:

1. If A is an atomic formula occurrence, then A ∈ S.

2. ε⊗ ∈ S (the empty ⊗-junction).

3. ε⊕ ∈ S (the empty ⊕-junction).

4. If S1, . . . , Sn ∈ S, then (S1 ⊗ . . . ⊗ Sn) ∈ S.

5. If S1, . . . , Sn ∈ S, then (S1 ⊕ . . . ⊕ Sn) ∈ S.

6. If S ∈ S, then ¬S ∈ S.

The connectives⊗ and⊕ are assumed to be commutative. So, the order

of substructs in ⊗-junctions and ⊕-junctions does not matter. Moreover,

they are also assumed to be associative. So, inner parentheses can be

dropped in structs that contain either only ⊗ or only ⊕.

Definition 4.1.5 (Closure for Sets of Formula Occurrences). A set Ω of

atomic (sub)formula occurrences of a proof ϕ is closed if and only if, if any

active atomic subformula occurrence of an inference ρ in ϕ is in Ω, then

all active atomic subformula occurrences of ρ are in Ω.

d A struct is essentially the same as a clause term, as defined in [10, 13] . A new name is given
here for three reasons:

• there is a subtle, although inessential, difference: in clause terms, leaves are occupied by
clauses; while in structs, leaves are occupied by atomic formulas.

• the name “term” is already used in Definition 2.1.2.

• the name “struct” explicits the fact that structs extracted from proofs (e.g. cut-pertinent
structs) have the same branching structure as their proofs, as shown in Example 4.2.
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Remark 4.1.2. If Ω is closed, then every inference ρ is either Ω-pertinent

orΩ-impertinent, but neverΩ-partially-pertinent.

Definition 4.1.6 (Pertinent Struct). The Ω-pertinent struct SΩϕ of a proof ϕ

with respect to a closed set of formula occurrences Ω is defined induc-

tively, as follows:

• Ifϕ consists of an axiom inference ρ only: Letω+
1
, . . . , ω+n ∈ Ω be pos-

itive formula occurrences and ω−
1
, . . . , ω−m ∈ Ω be negative formula

occurrencese in the axiom sequent of ϕ. Then:

SΩϕ � ¬ω
−
1 ⊗ρ . . . ⊗ρ ¬ω

−
m ⊗ρ ω

+
1 ⊗ρ . . . ⊗ρ ω

+
n

If n = 0 and m = 0, then SΩϕ is the empty ⊗-junction, denoted ε⊗.

• If ϕ ends with an n-aryΩ-pertinent inference ρ: Let ϕ1, . . . , ϕn be the

immediate subproofs of ϕ. Then:

SΩϕ � S
Ω
ϕ1
⊕ρ . . . ⊕ρ S

Ω
ϕn

• If ϕ ends with an n-ary Ω-impertinent inference ρ: Let ϕ1, . . . , ϕn be

the immediate subproofs of ϕ. Then:

SΩϕ � S
Ω
ϕ1
⊗ρ . . . ⊗ρ S

Ω
ϕn

A connective ⊗ρ or ⊕ρ is said to correspond to the inference ρ. When

this correspondence is clear or irrelevant, the subscript ρ can be simply

omitted.

Definition 4.1.7 (Cut-Pertinent Struct). The cut-pertinent struct of a proof

ϕ is defined as:

Sϕ � S
ΩCP(ϕ)
ϕ

Example 4.1 (Cut-Pertinent Struct). Let ϕ be the proof below:

A ` A B ` B
∧1

rA,B ` A ∧ B
∧l

A ∧ B ` A ∧ B

B ` B A ` A
∧2

rA,B ` B ∧ A
∧l

A ∧ B ` B ∧ A
cut3

A ∧ B ` B ∧ A
C ` C C ` C

cut4
C ` C ∨5

l(A ∧ B) ∨ C ` B ∧A,C

eIn the standard sequent calculus LK, only axiom sequents of the form A ` A are allowed.
Therefore, n ≤ 1 and m ≤ 1.
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Its cut-pertinent struct is:

Sϕ ≡ ((A ⊕1 B) ⊕3 (¬B ⊗2 ¬A)) ⊗5 (C ⊕4 ¬C)

Example 4.2 (Struct Displayed as a Tree). Let ϕ be the proof of Example 4.1.

Its cut-pertinent struct Sϕ can be displayed as a tree, making it clearly visible

that Sϕ has the same branching structure as ϕ.

⊕5

⊗3

⊕1

A B

⊗2

¬B ¬A

⊕4

C ¬C

4.2 CEResS

4.2.1 Cut-Pertinent Standard Clause Set

Cut-pertinent structs can be transformed into clause sets (Definition 4.2.3)

that are unsatisfiable (Theorem 4.1). The transformation is analogous to

the standard clause form transformation for formulas in negation normal

form [2], with ⊕ playing the role of ∧ and ⊗ playing the role of ∨. Firstly,

⊕⊗-Normalization ( Definition 4.2.1) distributes ⊗ connectives over the

⊕ connectives until a struct in normal form is reached, which is a ⊕-

junction of ⊗-junctions. Then each ⊗-junction can be interpreted as a

clause (Definition 4.2.2).

Definition 4.2.1 (;⊕⊗). The standard struct normalization is defined by

the following struct rewriting rules:

S ⊗ (S1 ⊕ . . . ⊕ Sn) ;⊕⊗ (S ⊗ S1) ⊕ . . . ⊕ (S ⊗ Sn)

(S1 ⊕ . . . ⊕ Sn) ⊗ S ;⊕⊗ (S1 ⊗ S) ⊕ . . . ⊕ (Sn ⊗ S)

Definition 4.2.2 (Clausification of Structs). Let S ≡
⊕

i∈I
(
⊗

1≤ j′≤ ji
¬ω−

i j′
⊗

⊗

1≤h′≤hi
ω+

ih′
) be a struct in ⊕⊗-normal-form. Then:

cl(S) � {ω−i1, . . . , ω
−
i ji
` ω+i1, . . . , ω

+
ihi
|i ∈ I}
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Definition 4.2.3 (Cut-pertinent Standard Clause Set). The cut-pertinent

standard clause setf,g of a proof ϕ is:

CS
ϕ � cl(S∗ϕ)

where S∗ϕ is the ;⊕⊗-normal-form of Sϕ.

Theorem 4.1 (Unsatisfiability of the Cut-Pertinent Clause Set). CS
ϕ is un-

satisfiable, for any proof ϕ.

Proof. Detailed proofs for sequent calculi with at most binary rules are

available in [9, 10]. A proof for certain calculi for multi-valued logics

with rules of arbitrary arity is available in [5]. The essential idea of the

proof is to construct a sequent calculus refutation ϕ′ (i.e. a proof of the

empty-sequent `) of the clause set by modifying ϕ. In [9, 10], this is

done by induction, removing cut-impertinent formula occurrences (this

guarantees that the end-sequent of ϕ′ is the empty sequent), skipping

unary cut-impertinent inferences and performing a technically intricate

proof merging procedure in the case of binary cut-impertinent inferences.

This merging procedure guarantees that the axiom sequents of ϕ′ are

clauses of CS
ϕ. ϕ′ is therefore a sequent calculus refutation of CS

ϕ, and by

the soundness of the sequent calculus inference rules, CS
ϕ is unsatisfiable.

It is interesting to remark that, by using proof transformation tech-

niques that are developed in later sections and chapters of this thesis,

the construction of ϕ′ can be described in a simpler. Namely, ϕ′ is

construct by removing cut-impertinent formula occurrences, replacing

cut-impertinent inferences by Y-inferences and then performing merging

Y-elimination 5.1.2. �

f Clause sets can be defined more generally with respect to any ϕ-closed set of formula
occurrences, and not just with respect to the set of cut-pertinent formula occurrences. For example,
cut-impertinent clause sets are used in [68].

g The cut-pertinent (standard) clause set is exactly the same as the characteristic clause set [13],
which is the original clause set developed together with and for the method of cut-elimination by
resolution [9, 10, 12]. It is interesting to note, however, that they are constructed in substantially
different ways. While the characteristic clause set is obtained by interpreting ⊕ and ⊗ in the
characteristic clause term as, respectively, a set union and a clause set merge operation (although
it is also possible to construct the characteristic clause term directly from the proof, without
prior extraction of the characteristic clause term [6]), the cut-pertinent (standard) clause set is
constructed via ⊕⊗-normalization of the cut-pertinent struct. Here, this alternative approach via
⊕⊗-normalization is chosen not only to show that it is possible, but also for two other reasons.
Firstly, the analogy between transformations of structs into clause sets and transformations of
formulas into clause forms becomes clearer. Secondly, this approach provides a good framework
in which improvements of the standard clause set (e.g. the profile clause set (Section 4.4) and
the definitional clause set (Section 4.5) can all be seen as improved ways of ⊕⊗-normalizing the
cut-pertinent struct.
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Example 4.3 (Cut-Pertinent Standard Clause Set). Let ϕ be the proof shown

in Example 4.1. Its cut-pertinent struct Sϕ can be ⊕⊗-normalized as follows:

Sϕ ≡ ((A ⊕ B) ⊕ (¬B ⊗ ¬A)) ⊗ (C ⊕ ¬C)

;⊕⊗ ((A ⊕ B) ⊗ (C ⊕ ¬C)) ⊕ ((¬B ⊗ ¬A) ⊗ (C ⊕ ¬C))

;⊕⊗ ((A ⊗ (C ⊕ ¬C)) ⊕ (B ⊗ (C ⊕ ¬C))) ⊕ ((¬B ⊗ ¬A) ⊗ (C ⊕ ¬C))

;⊕⊗ (((A ⊗ C) ⊕ (A ⊗ ¬C)) ⊕ (B ⊗ (C ⊕ ¬C))) ⊕ ((¬B ⊗ ¬A) ⊗ (C ⊕ ¬C))

;⊕⊗ (((A ⊗ C) ⊕ (A ⊗ ¬C)) ⊕ ((B ⊗ C) ⊕ (B ⊗ ¬C))) ⊕ ((¬B ⊗ ¬A) ⊗ (C ⊕ ¬C))

;⊕⊗ (((A ⊗ C) ⊕ (A ⊗ ¬C)) ⊕ ((B ⊗ C) ⊕ (B ⊗ ¬C))) ⊕ (((¬B ⊗ ¬A) ⊗ C) ⊕ ((¬B ⊗ ¬A) ⊗ ¬C))

≡ (A ⊗ C) ⊕ (A ⊗ ¬C) ⊕ (B ⊗ C) ⊕ (B ⊗ ¬C) ⊕ (¬B ⊗ ¬A ⊗ C) ⊕ (¬B ⊗ ¬A ⊗ ¬C)

And the cut-pertinent clause set of ϕ is:

Cϕ ≡ {` A,C ; C ` A ; ` B,C ; C ` B ; B,A ` C ; B,A,C `}

4.2.2 Projections

Since a projection’s purpose is to replace a leaf in a refutation of a clause

set, its end-sequent must contain the leaf’s clause as a subsequent. More-

over, if its end-sequent contains any other formula occurrence, then this

formula must appear in the end-sequent of the original proof with cuts,

because this formula occurrence is propagated downward after the re-

placement and thus necessarily appears in the end-sequent of the CERes-

normal-form. So, if the formula were not in the end-sequent of the orig-

inal proof, the CERes-normal-form’s end-sequent would be necessarily

different from that of the original proof with cuts, and this is not in-

tended. Finally, a projection must, of course, be cut-free, otherwise the

CERes-normal-form would contain more (and potentially essential) cuts

in addition to those inessential atomic cuts originating from the refutation.

These three conditions are formally expressed in Definition 4.2.4.

Two alternative ways of constructing projections are defined in this

Subsection:

S-projections (first Subsubsection below) and O-projections (second Sub-

subsection below).

Definition 4.2.4 (Projection). Letϕ be a proof with end-sequent Γ ` ∆ and

c ≡ Γc ` ∆c ∈ Cϕ. Any cut-free proof of (Γ′, Γc ` ∆
′,∆c)σ, where Γ′ ⊆ Γ,

∆′ ⊆ ∆ and σ is a substitution, is a projection of ϕ with respect to c.

S-Projections

In this subsection the standard method for the construction of projections

is described. It has already been extensively described [13, 7, 10, 9, 102],
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and it is frequently implicitly defined by an inductive proof of the ex-

istence of projections. Here an explicit definition (Definition 4.2.5) is

given, which is essentially the proof-recursive algorithm that can be di-

rectly extracted from the usual inductive proof of existence of projections.

The main advantage of this algorithm is that it is very easy to prove its

correctness, exactly because of its closeness to the proof of existence of

projections.

Definition 4.2.5 (S-Projection). Let ϕ be a proof and c ∈ Cϕ. Let ΛΩCP(ϕ)

denote the ΩCP(ϕ)-pertinent subset of Λ and ΛΩCI(ϕ) denote the ΩCP(ϕ)-

impertinent subset of Λ. Then bϕ′cc′ is constructed for every subproof ϕ′

of ϕ with c′ the subclause of c containing occurrences from ϕ′ only:
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• If ϕ′ is of the form

axiom
Γ ` ∆

then bϕ′cc′ is:

axiom
Γ ` ∆

and, clearly:

Γ ` ∆ = ΓΩCI(ϕ), ΓΩCP(ϕ) ` ∆ΩCI(ϕ),∆ΩCP(ϕ)

= (ΓΩCI(ϕ) ` ∆ΩCI(ϕ)) ◦ c′

• If ϕ′ is of the form

ϕ′
1

Γ1 ` ∆1 . . .

ϕ′n
Γn ` ∆n ρ

Γ ` ∆

where ρ is aΩCP(ϕ)-impertinent inference, then bϕ′cc′ is:

bϕ′
1
cc′

1

(Γ
ΩCI(ϕ)

1
` ∆

ΩCI(ϕ)

1
) ◦ c′

1
. . .

bϕ′ncc′n

(Γ
ΩCI(ϕ)
n ` ∆

ΩCI(ϕ)
n ) ◦ c′n

ρ
(ΓΩCI(ϕ) ` ∆ΩCI(ϕ)) ◦ c′

1
◦ . . . ◦ c′n

and, by definition of cut-pertinent clause set, c′
1
◦ . . . ◦ c′n = c′

• If ϕ′ is of the form

ϕ′
1

Γ1 ` ∆1 . . .

ϕ′n
Γn ` ∆n ρ

Γ ` ∆

where ρ is a ΩCP(ϕ)-pertinent inference, then, by definition of cut-

pertinent clause set, c′ = c′
j
for some j such that 1 ≤ j ≤ n and hence

bϕ′cc′ can be constructed as:

bϕ′
j
cc′

j

(Γ
ΩCI(ϕ)

j
` ∆

ΩCI(ϕ)

j
) ◦ c′

j
w∗

(ΓΩCI(ϕ) ` ∆ΩCI(ϕ)) ◦ c′
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Finally, the S-projectionh of ϕ with respect to c is:

bϕcSc � bϕcc

Definition 4.2.6 (Skolemized Proof). A proof is Skolemized if and only if

ϕ has no cut-impertinent strong quantifier inferences.

Lemma 4.1 (S-Projections are Proofs). Let ϕ be a skolemized proof and

c ≡ ω−
1
, . . . , ω−n ` ω

+
1
, . . . , ω+m ∈ Cϕ. Then bϕcS

ω−
1
,...,ω−n`ω

+
1
,...,ω+m

is a proof.

Proof. The only critical case in the inductive construction of S-projections

according to Definition 4.2.5 is the case when ρ is a ΩCP(ϕ)-impertinent

strong quantifier inference. As c′
j

have been merged to the premise se-

quents, a violation of eigen-variable condition for ρ could occur if c′
j
con-

tained the eigen-variable ofρ. However, asϕ is assumed to be skolemized,

this critical case cannot occur. �

Example 4.4 (Violation of Eigen-Variable Condition in S-Projection of a

Non-Skolemized Proof). Let ϕ be the non-skolemized proof below:

P(α) ` P(α)
∀l(∀x)P(x) ` P(α)
∀r(∀x)P(x) ` (∀x)P(x)

P(β) ` P(β)
∀l(∀x)P(x) ` P(β)
∀r(∀x)P(x) ` (∀x)P(x)
cut

(∀x)P(x) ` (∀x)P(x)

It cut-pertinent clause set is:

Cϕ ≡ {` P(α) ; P(β) `}

And bϕcS
P(β)`

is:

P(β) ` P(β)
∀rP(β) ` (∀x)P(x)

wl
P(β), (∀x)P(x) ` (∀x)P(x)

bϕcS
P(β)`

is clearly not a proof, because the eigenvariable condition for the ∀r

inference is violated.

Lemma 4.2 (S-Projections are Cut-free).

Let ϕ be a proof and c ≡ ω−
1
, . . . , ω−n ` ω

+
1
, . . . , ω+m ∈ Cϕ.

Then bϕcS
ω−

1
,...,ω−n`ω

+
1
,...,ω+m

is cut-free.

h S-projections are simply called projections in other publications about cut-elimination by
resolution, because they used to be the only projections considered. Here they have a distinct
name to distinguish them from projections constructed by other methods, such as O-projections.
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Proof. In the inductive construction of S-projections, no cuts are intro-

duced and all ΩCP(ϕ)-inferences (including, of course, all cuts of ϕ) are

skipped or replaced by sequences of weakening inferences. Therefore,

S-projections are cut-free. �

Lemma 4.3 (S-Projections have Correct End-Sequents). Let ϕ be a proof

with endsequent Γ ` ∆ and c ≡ ω−
1
, . . . , ω−n ` ω

+
1
, . . . , ω+m ∈ Cϕ. Then

bϕcS
ω−

1
,...,ω−n`ω

+
1
,...,ω+m

has end-sequent Γ, ω−
1
, . . . , ω−n ` ∆, ω

+
1
, . . . , ω+m.

Proof. In the inductive construction of S-Projections, for every subproof

ϕ′ of ϕ, bϕ′cc′ has an end-sequent that is the composition of the ΩCP(ϕ)-

impertinent subsequent of the end-sequent of ϕ′ with the subclause c′ of c

containing only atoms that occur inϕ′. Forϕ′ = ϕ, theΩCP(ϕ)-impertinent

subsequent of Γ ` ∆ is Γ ` ∆ itself and c′ is equal to c. Therefore, the end-

sequent of bϕcS
ω−

1
,...,ω−n`ω

+
1
,...,ω+m

is Γ, ω−
1
, . . . , ω−n ` ∆, ω

+
1
, . . . , ω+m. �

Theorem 4.2 (Correctness of S-Projections). A S-projection of a skolem-

ized proof ϕ with respect to a clause c is a projection of ϕ with respect to

c.

Proof. This is an immediate consequence of Lemmas 4.1, 4.2 and 4.3. �

Example 4.5 (S-Projection). Consider the proof ϕ of Example 4.1:

A ` A B ` B ∧r
A,B ` A ∧ B

∧l
A ∧ B ` A ∧ B

B ` B A ` A ∧r
A,B ` B ∧ A

∧l
A ∧ B ` B ∧ A

cut
A ∧ B ` B ∧A

C ` C C ` C
cut

C ` C ∨l
(A ∧ B) ∨ C ` B ∧ A,C

Then, the projections bϕcS
`A,C

and bϕcS
`B,C

are:

A ` A wl
A,B ` A

∧l
A ∧ B ` A wr

A ∧ B ` A,B ∧A
C ` C wr

C ` C,C
∨l

(A ∧ B) ∨ C ` A,C,B ∧ A,C

B ` B wl
A,B ` B

∧l
A ∧ B ` B wr

A ∧ B ` B,B ∧ A
C ` C wr

C ` C,C
∨l

(A ∧ B) ∨ C ` B,C,B ∧ A,C

The projections bϕcS
C`A

and bϕcS
C`B

are:

A ` A wl
A,B ` A

∧l
A ∧ B ` A wr

A ∧ B ` A,B ∧A
C ` C wl

C,C ` C
∨l

(A ∧ B) ∨ C,C ` A,B ∧ A,C

B ` B wl
A,B ` B

∧l
A ∧ B ` B wr

A ∧ B ` B,B ∧A
C ` C wl

C,C ` C
∨l

(A ∧ B) ∨ C,C ` B,B ∧ A,C
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The projections bϕcS
B,A`C

and bϕcS
B,A,C`

are:

B ` B A ` A ∧r
B,A, ` B ∧ A

wl
A ∧ B,B,A ` B ∧ A

C ` C wr
C ` C,C

∨l
(A ∧ B) ∨ C,B,A ` C,B ∧ A,C

B ` B A ` A ∧r
B,A ` B ∧ A

wl
A ∧ B,B,A ` B ∧A

C ` C wl
C,C ` C

∨l
(A ∧ B) ∨ C,B,A,C ` B ∧ A,C

O-Projections

Construction algorithms directly extracted from proofs of existence are

usually not optimali, and this is the case for the algorithm that constructs

S-projections. S-projections are very redundant, simply because their

end-sequents must always contain the whole end-sequent of the original

proof with cuts.

This Subsubsection describes a method to construct less redundant

projections, which are called O-projections. Many auxiliary definitions

are needed to formalize precisely certain proof transformations. While

these auxiliary definitions might make the construction of O-projections

seem to be a quite technical procedure, the intuitive idea behind this con-

struction is quite simple and perhaps even more intuitive than the proof-

recursive construction of S-projections. The method follows roughly three

steps: firstly, cut-pertinent inferences are “deleted” (so that cut-pertinent

occurrences are propagated down to the end-sequent, and thus the end-

sequent now contains every clause of the clause set); then, occurrences

and inferences that are not in a certain sense relevant to the occurrences of

the specific clause under consideration are also “deleted” (this guarantees

that only that clause will occur in the end-sequent of the projection); and

finally, the problems introduced by the previous two steps are fixed.

Most of the auxiliary transformations make use of Y-inferences. This

is because inferences cannot be simply “deleted”, especially if they have

arity greater than one, since then it would not be clear how to merge

the subproofs of all branches. That is why inferences are actually not

deleted, but rather replaced by Y-inferences of arbitrary arity. Later, the

Y-inferences can be eliminated (Definition 4.2.19).

Definition 4.2.7 (Y Rule). The Y rule of inference is shown below:

ϕ1

Γ1 ` ∆1 . . .

ϕn

Γn ` ∆n
Y

Γ1, . . . , Γn ` ∆1 . . . ,∆n
i For another example of non-optimal algorithms extracted from proofs, note that reductive

methods of cut-elimination can be seen as algorithms directly extracted from Gentzen’s proof of
the cut-elimination theorem, which is essentially a proof of existence of cut-free proofs.
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Definition 4.2.8 (Inference Replacement). Let ϕ be the proof below:

...

ϕ1

Γ1, Γ
ρ

1
` ∆1,∆

ρ

1
. . .

ϕn

Γn, Γ
ρ

n ` ∆n,∆
ρ

n
ρ1

Γ1, . . . , Γn, Γ
ρ1 ` ∆1, . . . ,∆n,∆

ρ1
...
ψ

Γ ` ∆

Then the proof ϕ′ shown below is the result of replacing the inference

ρ1 by the inference sequence ρ∗2.

...

ϕ1

Γ1, Γ
ρ

1
` ∆1,∆

ρ

1
. . .

ϕn

Γn, Γ
ρ

n ` ∆n,∆
ρ

n
ρ∗2

Γ1, . . . , Γn, Γ
ρ∗

2 ,Π ` ∆1, . . . ,∆n,∆
ρ∗

2,Λ
...
ψ′

Γ′,Π ` ∆′,Λ

where ψ′ is the proof thread ψ with all descendant occurrences of Γρ1

and ∆ρ1 replaced by the corresponding occurrences of Γρ
∗
2 and ∆ρ

∗
2 and

having the extra conclusion occurrences of ρ∗2, Π and Λ, added to each of

its sequents (i.e. the extra occurrences are propagated downward to the

end-sequent).

Example 4.6 (Inference Replacement). Let ϕ be the proof below:

A ` A A ` A
cut

A ` A

Then ϕY below is the result of replacing cut by a Y-inference:

A ` A A ` A
Y

A,A ` A,A

And ϕ¬∧ below is the result of replacing cut by a ¬r in the right branch and

a ∧r:

A ` A
A ` A ¬r
` A,¬A

∧r
A ` A, (A ∧ ¬A)

Definition 4.2.9 (Pertinent Y-Replacement). YΩ⊕ (ϕ) denotes the result of

replacing all Ω-pertinent inferences in ϕ by Y inferences, called the Ω-

pertinent Y-replacement of ϕ.
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Example 4.7 (Pertinent Y-Replacement). Let ϕ be the proof below, where the

cut-pertinent atomic occurrences and inferences have been highlighted:

A ` A B ` B ∧r
A,B ` A ∧ B

∧l
A ∧ B ` A ∧ B

B ` B A ` A ∧r
A,B ` B ∧ A

∧l
A ∧ B ` B ∧A

cut
A ∧ B ` B ∧ A

C ` C C ` C
cut

C ` C ∨l
(A ∧ B) ∨ C ` B ∧ A,C

Then Y
ΩCP(ϕ)
⊕ (ϕ) is:

A ` A B ` B Y⊕A,B ` A,B
∧l

A ∧ B ` A,B

B ` B A ` A ∧r
A,B ` B ∧ A

Y⊕A,B ` B ∧ A
Y⊕A ∧ B,A,B ` A,B,B ∧ A

C ` C C ` C Y⊕C,C ` C,C
∨l

(A ∧ B) ∨ C,A,B,C ` A,B,B ∧A,C,C

Definition 4.2.10 (Impertinent Y-Replacement). YΩ⊗ (ϕ) denotes the result

of replacing all Ω-impertinent inferences in ϕ by Y inferences, called the

Ω-impertinent Y-replacement of ϕ.

Definition 4.2.11 (Eigen-Y-Replacement). A Ω-pertinent Y-replacement

ofϕ is an eigen-Y-replacement if and only if YΩ⊕ (ϕ) violates no eigen-variable

conditions. In this case, ϕ is calledΩ-pertinent eigen-Y-replaceable.

A Ω-impertinent Y-replacement of ϕ is an eigen-Y-replacement if and

only if YΩ⊗ (ϕ) violates no eigen-variable conditions. In this case,ϕ is called

Ω-impertinent eigen-Y-replaceable.

Example 4.8 (Y-replacement with Eigen-Variable Violations). Let ϕ be the

proof below:

P(α) ` P(α)
∀l(∀x)P(x) ` P(α)
∀r(∀x)P(x) ` (∀x)P(x)

P(α) ` P(α)
∀l(∀x)P(x) ` P(α)
∀r(∀x)P(x) ` (∀x)P(x)
cut

(∀x)P(x) ` (∀x)P(x)

Then, Y
ΩCP(ϕ)
⊕ (ϕ), shown below, has a violation of the eigenvariable condition

for the ∀r inference:

P(α) ` P(α)
∀l(∀x)P(x) ` P(α)
Y

(∀x)P(x) ` P(α)

P(α) ` P(α)
Y

P(α) ` P(α)
∀rP(α) ` (∀x)P(x)
Y

(∀x)P(x),P(α) ` P(α), (∀x)P(x)
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Lemma 4.4 (ΩCP(ϕ)-pert. Eigen-Y-replaceability of Skolemized Proofs).

Ifϕ is a Skolemized proof, thenϕ isΩCP(ϕ)-pertinent eigen-Y-replaceable.

Proof. By definition of Skolemized proof (Definition 4.2.6), ϕ has no cut-

impertinent strong quantifier inferences. By definition of pertinent Y-

replacement, any cut-pertinent strong quantifier inference in ϕ are re-

placed by Y inferences in the ΩCP(ϕ)-pertinent Y-replacement Y
ΩCP(ϕ)
⊕ (ϕ).

Therefore, Y
ΩCP(ϕ)
⊕ (ϕ) has no strong quantifier inference, and hence violates

no eigen-variable condition. By definition of eigen-replaceability (Defini-

tion 4.2.11), ϕ is therefore ΩCP(ϕ)-pertinent eigen-Y-replaceable. �

Example 4.9 (Non-Skolemized butΩCP(ϕ)-pertinent Eigen-Y-Replaceable

Proof). Let ϕ be the proof below:

P ` P P ` P
cut

P ` P

Q(α) ` Q(α)
∀l(∀x)Q(x) ` Q(α)
∀r(∀x)Q(x) ` (∀x)Q(x)
∧r

P, (∀x)Q(x) ` P ∧ (∀x)Q(x)

Then, even though ϕ is not skolemized, Y
ΩCP(ϕ)
⊕ (ϕ), shown below, has no

violation of eigenvariable conditions:

P ` P P ` P
Y

P,P ` P,P

Q(α) ` Q(α)
∀l(∀x)Q(x) ` Q(α)
∀r(∀x)Q(x) ` (∀x)Q(x)
∧r

P,P, (∀x)Q(x) ` P,P ∧ (∀x)Q(x)

Definition 4.2.12 (Axiom Linkage). Two atomic (sub)formula occurrences

ω1 and ω2 in a proof ϕ are axiom-linked, denoted ω1 � ω2, if and only if

there are formula occurrences ω′
1

and ω′2 in an axiom sequent of ϕ such

that ω′
1
↘ ω1 and ω′2 ↘ ω2.

Definition 4.2.13 (Axiom-Linked Set of Occurrences). Let ω be an atomic

(sub)formula occurrence in a proof ϕ. The set of occurrences axiom-linked

to ω in ϕ is:

Ωω(ϕ) � {ωi|ωi � ω}
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Example 4.10 (Axiom-Linked Sets of Occurrences). Let ϕ and Y
ΩCP(ϕ)
⊕ (ϕ) be

the proofs shown in Example 4.7. These proofs are shown again below, with each

color representing a set of mutually axiom-linked atomic occurrences.

A ` A B ` B ∧r
A,B ` A ∧ B

∧l
A ∧ B ` A ∧ B

B ` B A ` A ∧r
A,B ` B ∧ A

∧l
A ∧ B ` B ∧A

cut
A ∧ B ` B ∧ A

C ` C C ` C
cut

C ` C ∨l
(A ∧ B) ∨ C ` B ∧ A,C

A ` A B ` B Y⊕A,B ` A,B
∧l

A ∧ B ` A,B

B ` B A ` A ∧r
A,B ` B ∧ A

Y⊕A,B ` B ∧ A
Y⊕A ∧ B,A,B ` A,B,B ∧ A

C ` C C ` C Y⊕C,C ` C,C
∨l

(A ∧ B) ∨ C,A,B,C ` A,B,B ∧ A,C,C

Definition 4.2.14 (Proofoid). The proofoid LϕMΩ of a proof ϕ with respect

to a set of occurrences Ω (an Ω-proofoid) is obtained by:

1. performing Ω-impertinent Y-replacement.

2. removing all Ω-impertinent formula occurrences.

Definition 4.2.15 (Proof-Slice). The slice of a proof ϕ with respect to a set

of atomic occurrences {ω1, . . . , ωn} is:

NϕO{ω1,...,ωn} � LϕM⋃n
i=1Ωωi

(ϕ)

Remark 4.2.1. A slice of ϕ is an Ω-proofoid of ϕ with the additional

restriction that Ω should be the union of sets of axiom-linked atomic

occurrences.

Example 4.11 (Slice). Consider Y
ΩCP(ϕ)
⊕ (ϕ) shown in Example 4.7. Then

NY
ΩCP(ϕ)
⊕ (ϕ)O{A,C} is:

A ` A ` Y⊕A ` A
∧l

A ∧ B ` A

` ` Y⊗
`

Y⊗
`

Y⊕A ∧ B ` A
C ` C ` Y⊕C ` C

∨l
(A ∧ B) ∨ C ` A, C

The ∧l inference in the proofoid above is “broken”, since one of its auxiliary

formula occurrences is missing. This motivates Definitions 4.2.16 and 4.2.17,

which aim at fixing such problems.
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Definition 4.2.16 (Broken Inference). An inference ρ is broken in a proofoid

ψ if and only if some of its auxiliary occurrences are missing.

Definition 4.2.17 (W-Fixing). Fixing a broken inference ρ that is not a

contraction can be done by adding weakening inferences according to the

proof rewriting rule shown below:

ϕ1

Γ1 ` ∆1 . . .

ϕn

Γn ` ∆n ρ
Γ ` ∆

⇓

ϕ1

Γ1 ` ∆1
w∗

Γ1, Γ
′
1
` ∆1,∆

′
1

. . .

ϕn

Γn ` ∆n
w∗

Γn, Γ
′
n ` ∆n,∆

′
n ρ

Γ ` ∆

where Γ′
j
and ∆′

j
(1 ≤ j ≤ n) are the missing auxiliary occurrences of ρ.

If ρ is a broken contraction, simply skipping it is better than adding

weakening inferences to fix it. This is done with the following proof

rewriting rules:

ϕ′

Γ ` ∆, F cr
Γ ` ∆, F

⇓

ϕ′

Γ ` ∆, F

ϕ′

F, Γ ` ∆ cl
F, Γ ` ∆

⇓

ϕ′

F, Γ ` ∆



4.2. CERESS 61

Example 4.12 (W-Fixing). Consider NY
ΩCP(ϕ)
⊕ (ϕ)O{A,C} shown in Example 4.11.

Then Wfix(NY
ΩCP(ϕ)
⊕ (ϕ)O{A,C}) is:

A ` A ` Y⊕A, ` A wl
A,B ` A

∧l
A ∧ B ` A

` ` Y⊗
`

Y⊗
`

Y⊕A ∧ B ` A
C ` C ` Y⊕C ` C

∨l
(A ∧ B) ∨ C ` A, C

Definition 4.2.18 (Argmin). Let S be a set and f : S→ N.

Then argmin
x∈S

f (x) denotes an x ∈ S such that for all y ∈ S, f (x) ≤ f (y).

Definition 4.2.19 (Y-Elimination). The elimination of Y inferences follows

the proof rewriting rule shown below:

ϕ1

Γ1 ` ∆1 . . .

ϕn

Γn ` ∆n
Y

Γ1, . . . , Γn ` ∆1 . . . ,∆n

⇓

ϕ j

Γ j ` ∆ j
w∗

Γ1, . . . , Γn ` ∆1 . . . ,∆n

as long as the following contraints are satisfied:

• The proofoids ϕ1, . . . , ϕn should not contain Y-inferences (this en-

forces an uppermost Y-elimination strategy and guarantees conflu-

ence).

• Let P � {ψ|ψ = ϕi and 1 ≤ i ≤ n and ϕi is a proof}. If P , ∅, then

ϕ j = argmin
ψ∈P

|ψ|.

~ϕ�denotes the normal-form ofϕ according to the Y-elimination proof

rewriting rules.
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Example 4.13 (Y-Elimination). Consider Wfix(NY
ΩCP(ϕ)
⊕ (ϕ)O{A,C}) shown in Ex-

ample 4.12. A Y-elimination rewriting sequence for it is shown below:

A ` A ` Y⊕A, ` A wl
A,B ` A

∧l
A ∧ B ` A

` ` Y⊗
`

Y⊗
`

Y⊕A ∧ B ` A
C ` C ` Y⊕C ` C

∨l
(A ∧ B) ∨ C ` A, C

⇓

A ` A wl
A,B ` A

∧l
A ∧ B ` A

` ` Y⊗
`

Y⊗
`

Y⊕A ∧ B ` A
C ` C ` Y⊕C ` C

∨l
(A ∧ B) ∨ C ` A, C

⇓

A ` A wl
A,B ` A

∧l
A ∧ B ` A

`
Y⊗

`
Y⊕A ∧ B ` A

C ` C ` Y⊕C ` C
∨l

(A ∧ B) ∨ C ` A, C

⇓

A ` A wl
A,B ` A

∧l
A ∧ B ` A `

Y⊕A ∧ B ` A
C ` C ` Y⊕C ` C

∨l
(A ∧ B) ∨ C ` A, C

⇓

A ` A wl
A,B ` A

∧l
A ∧ B ` A

C ` C ` Y⊕C ` C
∨l

(A ∧ B) ∨ C ` A, C

⇓
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A ` A wl
A,B ` A

∧l
A ∧ B ` A C ` C

∨l
(A ∧ B) ∨ C ` A, C

Therefore ~Wfix(NY
ΩCP(ϕ)
⊕ (ϕ)O{A,C})� is:

A ` A wl
A,B ` A

∧l
A ∧ B ` A C ` C ∨l

(A ∧ B) ∨ C ` A,C

Definition 4.2.20 (Necessary Empty ⊗-juncts). Let S be a ⊗-junct in a ⊕⊗-

normal-form of the cut-pertinent struct Sϕ of a proof ϕ. If S has an empty

⊗-junct occurrence ε∗⊗ as a substruct, ε∗⊗ is called necessary if and only if

there is an inference ρ in ϕ and a formula occurrence ω in S such that ρ is

simultaneously Ωω(ϕ)-pertinent andΩε∗⊗(ϕ)-pertinent.

Definition 4.2.21 (O-Projection (With Respect to a ⊗-junct)). Let ϕ be a

proof and S be a ⊗-junct in a ⊕⊗-normal-form of the cut-pertinent struct

Sϕ. Let S′ be S after removal of all unnecessary empty ⊗-juncts. S′ is of

the form S1 ⊗ . . . ⊗ Sn where Si is either a formula occurrence ωi, its dual

¬ωi or a necessary empty ⊗-junct εi
⊗. The O-projection of ϕwith respect to

S1 ⊗ . . . ⊗ Sn is:

bϕcOS � ~Wfix(NY
ΩCP(ϕ)
⊕ (ϕ)O{$1,...,$n})�

where $i is the corresponding ωi or εi
⊗.

Remark 4.2.2. The reason why O-projections must take the empty ⊗-

juncts εi
⊗ into account is that otherwise NY

ΩCP(ϕ)
⊕ (ϕ)O{$1,...,$n} would contain

non-fixable broken binary inferences.

Example 4.14 (O-Projection (With Respect to a ⊗-junct)). Let ϕ be the proof

below:

P ` P P ` P cut
P ` P Q ` Q

∧r
P,Q ` P ∧Q

Its cut-pertinent struct Sϕ is:

⊗

⊕

P ¬P

ε⊗
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It can be ;⊕⊗-normalized to:

(P ⊗ ε⊗) ⊕ (¬P ⊗ ε⊗)

Then bϕcO
P⊗ε⊗

is shown below (note that ε⊗ is unnecessary in P ⊗ ε⊗):

P ` P

And bϕcO
¬P⊗ε⊗

is shown below (note that ε⊗ is necessary in ¬P ⊗ ε⊗):

P ` P Q ` Q
∧r

P,Q ` P ∧Q

Remark 4.2.3. Interestingly, the distinction between necessary and unnec-

essary empty ⊗-juncts is only required in the case of ;⊕⊗-normalization.

If ;⊕⊗P
-normalization (Definition 4.4.1) and ;⊕⊗W

-normalization (Defini-

tion 4.3.12) are used, all empty ⊗-juncts are necessary.

Definition 4.2.22 (O-Projection).

Let ϕ be a proof and c be clause from Cϕ and S be the ⊗-junct whose

clausification resulted in c. The O-projection of ϕ with respect to the

clause c is:

bϕcOc � bϕc
O
S

Remark 4.2.4. The reason why the O-projection with respect to a clause

is defined as the O-projection with respect to its corresponding ⊗-junct

is that the ⊗-junct still contains information about the empty ⊗-juncts

(which originate from axiom sequents containing no cut-pertinent for-

mula occurrences), which is lost during clausification.

Lemma 4.5 (O-Projections are Proofs).

Letϕbe aΩCP(ϕ)-pertinent eigen-Y-replaceable proof and c ≡ ω−
1
, . . . , ω−n `

ω+
1
, . . . , ω+m ∈ Cϕ. Then bϕcO

ω−
1
,...,ω−n`ω

+
1
,...,ω+m

is a proof.

Proof. All Y inferences are eliminated. No eigen-variable conditions are

violated, since ϕ isΩCP(ϕ)-pertinent eigen-Y-replaceable. All other infer-

ences are correct due to W-fixing. �

Lemma 4.6 (O-Projections are Cut-free).

Let ϕ be a proof and c ≡ ω−
1
, . . . , ω−n ` ω

+
1
, . . . , ω+m ∈ Cϕ.

Then bϕcO
ω−

1
,...,ω−n`ω

+
1
,...,ω+m

is cut-free.
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Proof. Y
ΩCP(ϕ)
⊕ (ϕ) is the result of replacing all cut-pertinent inferences in

ϕ by Y inferences. Since cuts are cut-pertinent, they are also replaced.

Therefore bϕcO
ω−

1
,...,ω−n`ω

+
1
,...,ω+m

must be cut-free, because no procedure in the

construction of O-projections adds cuts. �

Lemma 4.7 (O-Projections have Correct End-Sequents). Let ϕ be a proof

with endsequent Γ ` ∆ and c ≡ ω−
1
, . . . , ω−n ` ω

+
1
, . . . , ω+m ∈ Cϕ. Then

bϕcO
ω−

1
,...,ω−n`ω

+
1
,...,ω+m

has end-sequent Γ′, ω−
1
, . . . , ω−n ` ∆

′, ω+
1
, . . . , ω+m, with Γ′ ⊆

Γ and ∆′ ⊆ ∆.

Proof. ω−
1
, . . . , ω−n , ω

+
1
, . . . , ω+m are ancestors of cuts and, after cut-pertinent

Y-replacement, they will appear in the end-sequent of Y
ΩCP(ϕ)
⊕ (ϕ). More-

over, ω−
1
, . . . , ω−n , ω

+
1
, . . . , ω+m are ((

⋃n
i=1Ωω−i (ϕ)) ∪ (

⋃m
i=1Ωω+i (ϕ)))-pertinent,

and hence they are not removed during slicing. On the other hand, slic-

ing removes other cut-pertinent occurrences (i.e. it removes occurrences

from other clauses from the end-sequent), since these occurrences are

necessarily (
⋃

ω′∈{ω−
1
,...,ω−n ,ω

+
1
,...,ω+m}

Ωω′(ϕ))-impertinent.

Γ′ and ∆′ are the multisets having the formula occurrences of Γ and

∆ which are (
⋃

ω′∈{ω−
1
,...,ω−n ,ω

+
1
,...,ω+m}

Ωω′(ϕ))-partially-pertinent. The formula

occurrences that are (
⋃

ω′∈{ω−
1
,...,ω−n ,ω

+
1
,...,ω+m}

Ωω′(ϕ))-impertinent are removed

by slicing. �

Theorem 4.3 (Correctness of O-Projections). An O-projection of aΩCP(ϕ)-

pertinent eigen-Y-replaceable proof ϕ with respect to a clause c is a pro-

jection of ϕ with respect to c.

Proof. This is an immediate consequence of Lemmas 4.5, 4.6 and 4.7. �

Example 4.15 (O-Projections). Consider the proof ϕ of Example 4.1:

A ` A B ` B ∧r
A,B ` A ∧ B

∧l
A ∧ B ` A ∧ B

B ` B A ` A ∧r
A,B ` B ∧ A

∧l
A ∧ B ` B ∧A

cut
A ∧ B ` B ∧ A

C ` C C ` C
cut

C ` C ∨l
(A ∧ B) ∨ C ` B ∧ A,C

Then, the projections bϕcO
`A,C

and bϕcO
`B,C

are:

A ` A wl
A,B ` A

∧l
A ∧ B ` A C ` C ∨l

(A ∧ B) ∨ C ` A,C

B ` B wl
A,B ` B

∧l
A ∧ B ` B C ` C ∨l

(A ∧ B) ∨ C ` B,C

The projections bϕcO
C`A

and bϕcO
C`B

are:
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A ` A wl
A,B ` A

∧l
A ∧ B ` A

C ` C wl
C,C ` C

∨l
(A ∧ B) ∨ C,C ` A,C

B ` B wl
A,B ` B

∧l
A ∧ B ` B

C ` C wl
C,C ` C

∨l
(A ∧ B) ∨ C,C ` B,C

The projections bϕcO
B,A`C

and bϕcO
B,A,C`

are:

B ` B A ` A ∧r
A,B ` B ∧ A

wl
A ∧ B,A,B ` B ∧A C ` C

∨l
(A ∧ B) ∨ C,A,B ` B ∧A,C

B ` B A ` A ∧r
A,B ` B ∧ A

wl
A ∧ B,A,B ` B ∧A

C ` C wl
C,C ` C

∨l
(A ∧ B) ∨ C,A,B ` B ∧A,C
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4.3 CEResW

The construction of a clause set from the cut-pertinent struct requires

that the struct be transformed to a ⊕⊗-normal-form. In the case of stan-

dard clause sets, this transformation is done via ;⊕⊗, which basically

distributes ⊗ over ⊕, causing many duplications. Remembering that

cut-impertinent inferences correspond to ⊗ and cut-pertinent inferences

correspond to ⊕, a preprocessing that swapped cut-impertinent infer-

ences upward above cut-pertinent inferences would lead to proofs having

cut-pertinent structs where⊗ (corresponding to the cut-impertinent infer-

ences that are swapped upward) connectives occur above ⊕ connectives

(corresponding to cut-pertinent inferences over which cut-impertinent

inferences are swapped). Therefore, fewer distributions and duplications

would be necessary, and thus simpler clause sets would result.

Moreover, it is sometimes also the case that, by swapping weakening

inferences downward, whole subproofs could be deleted, resulting in

proofs with even simpler cut-pertinent structs and clause sets.

However, performing local proof rewritings like inference swapping

goes against the philosophy of cut-elimination by resolution, that strives

to abstract away from the proof and work only with compact repre-

sentations (e.g. structs and clause sets) of the information relevant for

cut-elimination. With this philosophy in mind, it turns out that it is pos-

sible to employ an improved struct rewriting system (;⊕⊗W
) that trans-

forms structs into ⊕⊗-normal-forms taking the possibility of inference

swapping into account, without actually performing the swapping in the

proof. Indeed, it can be shown that ;⊕⊗W
actually corresponds to in-

ference swapping, in a sense that is made precise in Lemma 4.9. The

improved cut-pertinent clause set that results from using ;⊕⊗W
instead of

;⊕⊗ is known as the cut-pertinent swapped clause set.

4.3.1 Inference Swapping

In this Subsection, a proof rewriting system (Definition 4.3.10) for in-

ference swappingj is described. It is subdivided according to the kind

of dependence (Definition 4.3.1) between the inferences that are being

swapped. If the lower inference is independent of the upper inference,

then they can easily be swapped (Definition 4.3.2), with no increase of

proof size. However, if the lower inference is indirectly dependent on the

jThe study of inference swapping in Gentzen’s sequent calculi goes back to [75]. Another
modern and more abstract study of inference swapping can be found in [59].
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upper inference, then swapping requires a duplication of the lower infer-

ence, as well as the introduction of weakening and contraction inferences

(Definition 4.3.3). The case of eigen-variable dependence can be avoided

by considering skolemized proofs only. Even though two inferences can-

not generally be swapped if there is direct dependence between them,

swapping is possible in the particular case when the upper inference is

a contraction (Definition 4.3.5) or a weakening (downward swapping of

weakening inferences, Definition 4.3.5).

Definition 4.3.1 (Inference Dependence). An inference ρ1 is directly de-

pendent on another inference ρ2, denoted ρ1 ≺D ρ2, if and only if a main

occurrence of ρ2 is an ancestor of an auxiliary occurrence of ρ1.

A strong quantifier inference ρ1 is eigenvariable-dependent on another

inference ρ2 occurring above ρ1, denoted ρ1 ≺Q ρ2, if and only if the

substitution term of ρ2 contains an occurrence of the eigenvariable of ρ1.

An inference ρ1 is indirectly dependent on another inference ρ2 occurring

above ρ1, denoted ρ1 ≺I ρ2, if and only if it is not directly dependent on

ρ2 and the auxiliary occurrences of ρ1 have ancestors in more than one

premise sequent of ρ2.

An inference ρ1 is independent of another inference ρ2 if and only if ρ1

is neither directly dependent nor eigenvariable-dependent nor indirectly

dependent on ρ2.

Example 4.16 (Directly Dependent Inferences). In the proof ϕ below, ∨l ≺D

∧l (i.e. ∨l is directly dependent on ∧l):

A ` A B ` B ∧r
A,B ` A ∧ B

∧l
A ∧ B ` A ∧ B

B ` B A ` A ∧r
A,B ` B ∧ A

∧l
A ∧ B ` B ∧A cut1A ∧ B ` B ∧ A

C ` C C ` C cut2C ` C ∨l
(A ∧ B) ∨ C ` B ∧ A,C

Example 4.17 (Eigenvariable-Dependent Inferences). In the proof ϕ below,

∀r ≺Q ∀l.

P( f (α)) ` P( f (α))
∀l(∀x)P(x) ` P( f (α))
∀r(∀x)P(x) ` (∀x)P( f (x))
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Example 4.18 (Indirectly Dependent Inferences). In the proof ϕ below, the

ancestors or descendants of active occurrences of ∧l are highlighted in green:

A ` A B ` B ∧r
A,B ` A ∧ B

∧l
A ∧ B ` A ∧ B

B ` B A ` A ∧r
A,B ` B ∧ A

∧l
A ∧ B ` B ∧ A cut1A ∧ B ` B ∧ A

C ` C C ` C cut2C ` C ∨l
(A ∧ B) ∨ C ` B ∧A,C

Since occurrences highlighted in green occur in two premise sequents of ∧r,

∧l ≺I ∧r (i.e. ∧l is indirectly dependent on ∧r).

Moreover, the green occurrences are also ancestors or descendents of ∨l.

Therefore, it is also the case that ∨r ≺I ∧r.

Example 4.19 (Independent Inferences). In the proof ϕ below, ancestors and

descendants of active occurrences of ∨l are highlighted in red:

A ` A B ` B ∧r
A,B ` A ∧ B

∧l
A ∧ B ` A ∧ B

B ` B A ` A ∧r
A,B ` B ∧ A

∧l
A ∧ B ` B ∧ A cut1A ∧ B ` B ∧ A

C ` C C ` C cut2C ` C ∨l
(A ∧ B) ∨ C ` B ∧A,C

Since occurrences highlighted in red occur in only one premise sequent of

cut1 and ∨l, ∨l is not indirectly dependent on cut1. Moreover, ∨l is also clearly

neither directly dependent nor eigenvariable-dependent on cut1. Therefore, ∨l is

independent of cut1.

Definition 4.3.2 (�I). Swapping of Independent Inferences:

ϕ1

Γ
ρ1

1
, Γ
ρ2

1
, Γ1 ` ∆

ρ1

1
,∆
ρ2

1
,∆1

ρ1
Γρ1 , Γ

ρ2

1
, Γ1 ` ∆

ρ1 ,∆
ρ2

1
,∆1

ρ2
Γρ1 , Γρ2 , Γ1 ` ∆

ρ1 ,∆ρ2,∆1

⇓

ϕ1

Γ
ρ1

1
, Γ
ρ2

1
, Γ1 ` ∆

ρ1

1
,∆
ρ2

1
,∆1

ρ2
Γ
ρ1

1
, Γρ2 , Γ1 ` ∆

ρ1

1
,∆ρ2,∆1

ρ1
Γρ1 , Γρ2 , Γ1 ` ∆

ρ1 ,∆ρ2,∆1
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ϕ1

Γ
ρ1

1
, Γ
ρ2

1
, Γ1 ` ∆

ρ1

1
,∆
ρ2

1
,∆1

ϕ2

Γ
ρ1

2
, Γ2 ` ∆

ρ1

2
,∆2

ρ1
Γρ1 , Γ

ρ2

1
, Γ1, Γ2 ` ∆

ρ1 ,∆
ρ2

1
,∆1,∆2

ρ2
Γρ1 , Γρ2, Γ1, Γ2 ` ∆

ρ1 ,∆ρ2,∆1,∆2

⇓

ϕ1

Γ
ρ1

1
, Γ
ρ2

1
, Γ1 ` ∆

ρ1

1
,∆
ρ2

1
,∆1

ρ2
Γ
ρ1

1
, Γρ2 , Γ1 ` ∆

ρ1

1
,∆ρ2,∆1

ϕ2

Γ
ρ1

2
, Γ2 ` ∆

ρ1

2
,∆2

ρ1
Γρ1 , Γρ2, Γ1, Γ2 ` ∆

ρ1 ,∆ρ2,∆1,∆2

ϕ2

Γ
ρ1

2
, Γ2 ` ∆

ρ1

2
,∆2

ϕ1

Γ
ρ1

1
, Γ
ρ2

1
, Γ1 ` ∆

ρ1

1
,∆
ρ2

1
,∆1

ρ1
Γρ1 , Γ

ρ2

1
, Γ1, Γ2 ` ∆

ρ1 ,∆
ρ2

1
,∆1,∆2

ρ2
Γρ1 , Γρ2, Γ1, Γ2 ` ∆

ρ1 ,∆ρ2,∆1,∆2

⇓

ϕ2

Γ
ρ1

2
, Γ2 ` ∆

ρ1

2
,∆2

ϕ1

Γ
ρ1

1
, Γ
ρ2

1
, Γ1 ` ∆

ρ1

1
,∆
ρ2

1
,∆1

ρ2
Γ
ρ1

1
, Γρ2, Γ1 ` ∆

ρ1

1
,∆ρ2,∆1

ρ1
Γρ1 , Γρ2, Γ1, Γ2 ` ∆

ρ1 ,∆ρ2,∆1,∆2

ϕ1

Γ
ρ1

1
, Γ
ρ2

1
, Γ1 ` ∆

ρ1

1
,∆
ρ2

1
,∆1

ρ1
Γρ1 , Γ

ρ2

1
, Γ1 ` ∆

ρ1 ,∆
ρ2

1
,∆1

ϕ2

Γ
ρ2

2
, Γ2 ` ∆

ρ2

2
,∆2

ρ2
Γρ1 , Γρ2, Γ1, Γ2 ` ∆

ρ1 ,∆ρ2,∆1,∆2

⇓

ϕ1

Γ
ρ1

1
, Γ
ρ2

1
, Γ1 ` ∆

ρ1

1
,∆
ρ2

1
,∆1

ϕ2

Γ
ρ2

2
, Γ2 ` ∆

ρ2

2
,∆2

ρ2
Γ
ρ1

1
, Γρ2, Γ1, Γ2 ` ∆

ρ1

1
,∆ρ2,∆1,∆2

ρ1
Γρ1 , Γρ2, Γ1, Γ2 ` ∆

ρ1 ,∆ρ2,∆1,∆2

ϕ2

Γ
ρ2

2
, Γ2 ` ∆

ρ2

2
,∆2

ϕ1

Γ
ρ1

1
, Γ
ρ2

1
, Γ1 ` ∆

ρ1

1
,∆
ρ2

1
,∆1

ρ1
Γρ1 , Γ

ρ2

1
, Γ1 ` ∆

ρ1,∆
ρ2

1
,∆1

ρ2
Γρ1 , Γρ2, Γ1, Γ2 ` ∆

ρ1 ,∆ρ2,∆1,∆2



4.3. CERESW 71

⇓

ϕ2

Γ
ρ2

2
, Γ2 ` ∆

ρ2

2
,∆2

ϕ1

Γ
ρ1

1
, Γ
ρ2

1
, Γ1 ` ∆

ρ1

1
,∆
ρ2

1
,∆1

ρ2
Γ
ρ1

1
, Γρ2 , Γ1, Γ2 ` ∆

ρ1

1
,∆ρ2,∆1,∆2

ρ1
Γρ1 , Γρ2 , Γ1, Γ2 ` ∆

ρ1,∆ρ2,∆1,∆2

ϕ1

Γ
ρ1

1
, Γ
ρ2

1
, Γ1 ` ∆

ρ1

1
,∆
ρ2

1
,∆1

ϕ2

Γ
ρ1

2
, Γ2 ` ∆

ρ1

2
,∆2

ρ1
Γρ1 , Γ

ρ2

1
, Γ1, Γ2 ` ∆

ρ1 ,∆
ρ2

1
,∆1,∆2

ϕ3

Γ
ρ2

3
, Γ3 ` ∆

ρ2

3
,∆3

ρ2
Γρ1 , Γρ2 , Γ1, Γ2, Γ3 ` ∆

ρ1 ,∆ρ2,∆1,∆2,∆3

⇓

ϕ1

Γ
ρ1

1
, Γ
ρ2

1
, Γ1 ` ∆

ρ1

1
,∆
ρ2

1
,∆1

ϕ3

Γ
ρ2

3
, Γ3 ` ∆

ρ2

3
,∆3

ρ2
Γ
ρ1

1
, Γρ2, Γ1, Γ3 ` ∆

ρ1

1
,∆ρ2,∆1,∆3

ϕ2

Γ
ρ1

2
, Γ2 ` ∆

ρ1

2
,∆2

ρ1
Γρ1 , Γρ2 , Γ1, Γ2, Γ3 ` ∆

ρ1 ,∆ρ2,∆1,∆2,∆3

ϕ1

Γ
ρ1

1
, Γ1 ` ∆

ρ1

1
,∆1

ϕ2

Γ
ρ1

2
, Γ
ρ2

2
, Γ2 ` ∆

ρ1

2
,∆
ρ2

2
,∆2

ρ1
Γρ1 , Γ

ρ2

2 , Γ1, Γ2 ` ∆
ρ1 ,∆

ρ2

2 ,∆1,∆2

ϕ3

Γ
ρ2

3 , Γ3 ` ∆
ρ2

3 ,∆3
ρ2

Γρ1 , Γρ2 , Γ1, Γ2, Γ3 ` ∆
ρ1 ,∆ρ2,∆1,∆2,∆3

⇓

ϕ1

Γ
ρ1

1
, Γ1 ` ∆

ρ1

1
,∆1

ϕ2

Γ
ρ1

2
, Γ
ρ2

2
, Γ2 ` ∆

ρ1

2
,∆
ρ2

2
,∆2

ϕ3

Γ
ρ2

3
, Γ3 ` ∆

ρ2

3
,∆3

ρ2
Γ
ρ1

2
, Γρ2 , Γ2, Γ3 ` ∆

ρ1

2
,∆ρ2,∆2,∆3

ρ1
Γρ1 , Γρ2 , Γ1, Γ2, Γ3 ` ∆

ρ1 ,∆ρ2,∆1,∆2,∆3

ϕ3

Γ
ρ2

3
, Γ3 ` ∆

ρ2

3
,∆3

ϕ1

Γ
ρ1

1
, Γ
ρ2

1
, Γ1 ` ∆

ρ1

1
,∆
ρ2

1
,∆1

ϕ2

Γ
ρ1

2
, Γ2 ` ∆

ρ1

2
,∆2

ρ1
Γρ1 , Γ

ρ2

1
, Γ1, Γ2 ` ∆

ρ1,∆
ρ2

1
,∆1,∆2

ρ2
Γρ1 , Γρ2 , Γ1, Γ2, Γ3 ` ∆

ρ1 ,∆ρ2,∆1,∆2,∆3

⇓



72 CHAPTER 4. CUT-ELIMINATION BY RESOLUTION

ϕ3

Γ
ρ2

3
, Γ3 ` ∆

ρ2

3
,∆3

ϕ1

Γ
ρ1

1
, Γ
ρ2

1
, Γ1 ` ∆

ρ1

1
,∆
ρ2

1
,∆1

ρ2
Γ
ρ1

1
, Γρ2 , Γ1, Γ3 ` ∆

ρ1

1
,∆ρ2,∆1,∆3

ϕ2

Γ
ρ1

2
, Γ2 ` ∆

ρ1

2
,∆2

ρ1
Γρ1 , Γρ2 , Γ1, Γ2, Γ3 ` ∆

ρ1,∆ρ2,∆1,∆2,∆3

ϕ3

Γ
ρ2

3
, Γ3 ` ∆

ρ2

3
,∆3

ϕ1

Γ
ρ1

1
, Γ1 ` ∆

ρ1

1
,∆1

ϕ2

Γ
ρ1

2
, Γ
ρ2

2
, Γ2 ` ∆

ρ1

2
,∆
ρ2

2
,∆2

ρ1
Γρ1 , Γ

ρ2

2
, Γ1, Γ2 ` ∆

ρ1 ,∆
ρ2

2
,∆1,∆2

ρ2
Γρ1 , Γρ2, Γ1, Γ2, Γ3 ` ∆

ρ1 ,∆ρ2,∆1,∆2,∆3

⇓

ϕ1

Γ
ρ1

1
, Γ1 ` ∆

ρ1

1
,∆1

ϕ3

Γ
ρ2

3
, Γ3 ` ∆

ρ2

3
,∆3

ϕ2

Γ
ρ1

2
, Γ
ρ2

2
, Γ2 ` ∆

ρ1

2
,∆
ρ2

2
,∆2

ρ2
Γ
ρ1

2
, Γρ2, Γ2, Γ3 ` ∆

ρ1

2
,∆ρ2,∆2,∆3

ρ1
Γρ1 , Γρ2, Γ1, Γ2, Γ3 ` ∆

ρ1 ,∆ρ2,∆1,∆2,∆3

Remark 4.3.1. For the sequent calculus LK, the proof rewriting rules

defined in Definition 4.3.2 are sufficient. For sequent calculi in general,

analogous rules can be defined for the cases where ρ1 or ρ2 have arity

greater than two.

Example 4.20 (Swapping of Independent Inferences). As shown in Example

4.19 ∨l is independent of cut1 in the proof ϕ below:

A ` A B ` B ∧r
A,B ` A ∧ B

∧l
A ∧ B ` A ∧ B

B ` B A ` A ∧r
A,B ` B ∧ A

∧l
A ∧ B ` B ∧A cut1A ∧ B ` B ∧ A

C ` C C ` C cut2C ` C ∨l
(A ∧ B) ∨ C ` B ∧ A,C

Therefore, ∨l can be swapped above cut1, resulting in the following proof ψ

with ϕ�I ψ:

A ` A B ` B ∧r
A,B ` A ∧ B

∧l
A ∧ B ` A ∧ B

C ` C C ` C cut2C ` C ∨l
(A ∧ B) ∨ C ` A ∧ B,C

B ` B A ` A ∧r
A,B ` B ∧ A

∧l
A ∧ B ` B ∧ A

cut1
(A ∧ B) ∨ C ` B ∧ A,C

The cut-pertinent struct of ψ is:

Sψ ≡ ((A ⊕ B) ⊗ (C ⊕ ¬C)) ⊕ (¬B ⊗ ¬A)
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While the cut-pertinent struct of ϕ, as shown in Example 4.1, is:

Sϕ ≡ ((A ⊕ B) ⊕ (¬B ⊗ ¬A)) ⊗ (C ⊕ ¬C)

By comparing the cut-pertinent structs, it is possible to see that the effect of

swapping a cut-impertinent inference (∨l) above a cut-pertinent inference (cut1)

was that the ⊗-junction corresponding to ∨l was swapped within (above, if the

struct is displayed as a tree) the ⊕-junction corresponding to cut1.

∨l can be further swapped above cut2, resulting in the following proofψ′ with

ψ�I ψ
′:

A ` A B ` B ∧r
A,B ` A ∧ B

∧l
A ∧ B ` A ∧ B C ` C ∨l

(A ∧ B) ∨ C ` A ∧ B,C C ` C
cut2(A ∧ B) ∨ C ` A ∧ B,C

B ` B A ` A ∧r
A,B ` B ∧ A

∧l
A ∧ B ` B ∧A

cut1
(A ∧ B) ∨ C ` B ∧A,C

Its cut-pertinent struct is:

Sψ′ ≡ (((A ⊕ B) ⊗ C) ⊕ ¬C) ⊕ (¬B ⊗ ¬A)

And its cut-pertinent clause set is:

Cψ′ ≡ {` A,C ; ` B,C ; C ` ; B,A ` }

Comparing it with the cut-pertinent clause set of ϕ shown below, it is clear

that effect of swapping cut-impertinent inferences upward is significant.

Cϕ ≡ {` A,C ; C ` A ; ` B,C ; C ` B ; B,A ` C ; B,A,C `}

The reason for this beneficial effect is that ⊕⊗-normalization distributes ⊗

over all ⊕-juncts of a ⊕-junction, causing many duplications. Swapping, on the

other hand, distributes only over one ⊕-junct, causing no duplications.
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Definition 4.3.3 (�ID). Distributional Swapping of Indirectly Dependent

Inferences:

ϕ1

Γ
ρ1

1
, Γ
ρ2

1
, Γ1 ` ∆

ρ1

1
,∆
ρ2

1
,∆1

ϕ2

Γ
ρ1

2
, Γ
ρ2

2
, Γ2 ` ∆

ρ1

2
,∆
ρ2

2
,∆2

ρ1
Γρ1 , Γ

ρ2

1
, Γ
ρ2

2
, Γ1, Γ2 ` ∆

ρ1 ,∆
ρ2

1
, Γ
ρ2

2
,∆1,∆2

ρ2
Γρ1 , Γρ2, Γ1, Γ2 ` ∆

ρ1 ,∆ρ2,∆1,∆2

⇓

ϕ1

Γ
ρ1

1
, Γ
ρ2

1
, Γ1 ` ∆

ρ1

1
,∆
ρ2

1
,∆1

w∗
Γ
ρ1

1
, Γ
ρ2

1
, Γ
ρ2

2
, Γ1 ` ∆

ρ1

1
,∆
ρ2

1
,∆
ρ2

2
∆1
ρ2

Γ
ρ1

1
, Γρ2 , Γ1 ` ∆

ρ1

1
,∆ρ2,∆1

ϕ2

Γ
ρ1

2
, Γ
ρ2

2
, Γ2 ` ∆

ρ1

2
,∆
ρ2

2
,∆2

w∗
Γ
ρ1

2
, Γ
ρ2

1
, Γ
ρ2

2
, Γ2 ` ∆

ρ1

2
,∆
ρ2

1
,∆
ρ2

2
,∆2

ρ2
Γ
ρ1

2
, Γρ2 , Γ2 ` ∆

ρ1

2
,∆ρ2,∆2

ρ1
Γρ1 , Γρ2 , Γρ2, Γ1, Γ2 ` ∆

ρ1 ,∆ρ2,∆ρ2,∆1,∆2
c∗

Γρ1 , Γρ2 , Γ1, Γ2 ` ∆
ρ1,∆ρ2,∆1,∆2

Remark 4.3.2. For the sequent calculus LK, the proof rewriting rule de-

fined in Definition 4.3.3 is sufficient. However, for sequent calculi in

general, the rule must be generalized to cases where, for example, ρ2

has arity greater than one. Nevertheless, such more general cases are

analogous to the case shown here.

Remark 4.3.3. While the inference ρ2 in the proof rewriting rules of Defi-

nition 4.3.3 can be a contraction, there are cases in which contractions can

be swapped upward in a smarter way, as shown in Definition 4.3.4

Example 4.21 (Distributional Swapping of Indirectly Dependent Infer-

ences). In the proof ψ′ below, ∧l ≺I ∧r.

A ` A B ` B ∧r
A,B ` A ∧ B

∧l
A ∧ B ` A ∧ B C ` C ∨l

(A ∧ B) ∨ C ` A ∧ B,C C ` C
cut2

(A ∧ B) ∨ C ` A ∧ B,C

B ` B A ` A ∧r
A,B ` B ∧ A

∧l
A ∧ B ` B ∧ A

cut1
(A ∧ B) ∨ C ` B ∧ A,C

∧l can be swapped above ∧r, resulting in the following proof ψ′′ with ψ′ �ID

ψ′′:
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A ` A wl
A,B ` A

∧l
A ∧ B ` A

B ` B wl
A,B ` B

∧l
A ∧ B ` B ∧r

A ∧ B,A ∧ B ` A ∧ B
cl

A ∧ B ` A ∧ B C ` C ∨l
(A ∧ B) ∨ C ` A ∧ B,C C ` C

cut2
(A ∧ B) ∨ C ` A ∧ B,C

B ` B A ` A ∧r
A,B ` B ∧A

∧l
A ∧ B ` B ∧ A

cut1
(A ∧ B) ∨ C ` B ∧ A,C

Definition 4.3.4 (�IDC). Swapping of indirectly dependent contractions:

ϕ1

Γ1, Γρ, Γρ ` ∆1,∆ρ,∆ρ
ρ

Γ1, Γρ,Πρ ` ∆1,∆ρ,Λρ
ρ

Γ1,Πρ,Πρ ` ∆1,Λρ,Λρ
c∗

Γ1,Πρ ` ∆1,Λρ

⇓

ϕ1

Γ1, Γρ, Γρ ` ∆1,∆ρ,∆ρ
c∗

Γ1, Γρ ` ∆1,∆ρ
ρ

Γ1,Πρ ` ∆1,Λρ

ϕ1

Γ1, Γ
ρ

1
, Γ
ρ

1
` ∆1,∆ρ,∆ρ

ϕ2

Γ2, Γ
ρ

2
` ∆2,∆

ρ

2 ρ
Γ1, Γρ,Πρ ` ∆1,∆ρ,Λρ

ϕ2

Γ2, Γ
ρ

2
` ∆2,∆

ρ

2 ρ
Γ1,Πρ,Πρ ` ∆1,Λρ,Λρ

c∗
Γ1,Πρ ` ∆1,Λρ

⇓

ϕ1

Γ1, Γ
ρ

1
, Γ
ρ

1
` ∆1,∆

ρ

1
,∆
ρ

1
c∗

Γ1, Γρ ` ∆1,∆ρ

ϕ2

Γ2, Γ
ρ

2
` ∆2,∆

ρ

2 ρ
Γ1,Πρ ` ∆1,Λρ

ϕ2

Γ2, Γ
ρ

2
` ∆2,∆

ρ

2

ϕ2

Γ2, Γ
ρ

2
` ∆2,∆

ρ

2

ϕ1

Γ1, Γ
ρ

1
, Γ
ρ

1
` ∆1,∆ρ,∆ρ

ρ
Γ1, Γρ,Πρ ` ∆1,∆ρ,Λρ

ρ
Γ1,Πρ,Πρ ` ∆1,Λρ,Λρ

c∗
Γ1,Πρ ` ∆1,Λρ
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⇓

ϕ2

Γ2, Γ
ρ

2
` ∆2,∆

ρ

2

ϕ1

Γ1, Γ
ρ

1
, Γ
ρ

1
` ∆1,∆

ρ

1
,∆
ρ

1
c∗

Γ1, Γρ ` ∆1,∆ρ
ρ

Γ1,Πρ ` ∆1,Λρ

Definition 4.3.5 (�C). Distributional Swapping over contractions:

ϕ1

Γ1, Γρ, Γ
′
ρ ` ∆1,∆ρ,∆

′
ρ

c∗
Γ1, Γρ ` ∆1,∆ρ

ρ
Γ1,Πρ ` ∆1,Λρ

⇓

ϕ1

Γ1, Γρ, Γ
′
ρ ` ∆1,∆ρ,∆

′
ρ

w∗
Γ1, Γρ, Γρ ` ∆1,∆ρ,∆ρ

ρ
Γ1, Γρ,Πρ ` ∆1,∆ρ,Λρ

ρ
Γ1,Πρ,Πρ ` ∆1,Λρ,Λρ

c∗
Γ1,Πρ ` ∆1,Λρ

ϕ1

Γ1, Γ
ρ

1
, Γ1ρ

′ ` ∆1,∆
ρ

1
,∆
ρ′

1
c∗

Γ1, Γρ ` ∆1,∆ρ

ϕ2

Γ2, Γ
ρ

2
` ∆2,∆

ρ

2 ρ
Γ1,Πρ ` ∆1,Λρ

⇓

ϕ1

Γ1, Γ
ρ

1
, Γ
ρ′

1
` ∆1,∆

ρ

1
,∆
ρ′

1
w∗

Γ1, Γ
ρ

1
, Γ
ρ

1
` ∆1,∆ρ,∆ρ

ϕ2

Γ2, Γ
ρ

2
` ∆2,∆

ρ

2 ρ
Γ1, Γρ,Πρ ` ∆1,∆ρ,Λρ

ϕ2

Γ2, Γ
ρ

2
` ∆2,∆

ρ

2 ρ
Γ1,Πρ,Πρ ` ∆1,Λρ,Λρ

c∗
Γ1,Πρ ` ∆1,Λρ
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ϕ2

Γ2, Γ
ρ

2 ` ∆2,∆
ρ

2

ϕ1

Γ1, Γ
ρ

1
, Γ
ρ′

1
` ∆1,∆

ρ

1
,∆
ρ′

1
c∗

Γ1, Γρ ` ∆1,∆ρ
ρ

Γ1,Πρ ` ∆1,Λρ

⇓

ϕ2

Γ2, Γ
ρ

2
` ∆2,∆

ρ

2

ϕ2

Γ2, Γ
ρ

2
` ∆2,∆

ρ

2

ϕ1

Γ1, Γ
ρ

1
, Γ
ρ′

1
` ∆1,∆

ρ

1
,∆
ρ′

1
w∗

Γ1, Γ
ρ

1
, Γ
ρ

1
` ∆1,∆ρ,∆ρ

ρ
Γ1, Γρ,Πρ ` ∆1,∆ρ,Λρ

ρ
Γ1,Πρ,Πρ ` ∆1,Λρ,Λρ

c∗
Γ1,Πρ ` ∆1,Λρ

Example 4.22 (Distributional Swapping over Contractions). In the proof

ψ′′′ (with ψ′′ �C ψ
′′′) below, ∨l has been swapped above the contraction and

duplicated into two copies: ∨l and ∨l.

A ` A wl
A,B ` A

∧l
A ∧ B ` A

B ` B wl
A,B ` B

∧l
A ∧ B ` B

∧r
A ∧ B,A ∧ B ` A ∧ B C ` C

∨l
(A ∧ B) ∨ C,A ∧ B ` A ∧ B,C C ` C

∨l
(A ∧ B) ∨ C, (A ∧ B) ∨ C ` A ∧ B,C,C

cl
(A ∧ B) ∨ C ` A ∧ B,C,C

cr
(A ∧ B) ∨ C ` A ∧ B,C C ` C

cut2
(A ∧ B) ∨ C ` A ∧ B,C

B ` B A ` A
∧r

A,B ` B ∧ A
∧l

A ∧ B ` B ∧A
cut1

(A ∧ B) ∨ C ` B ∧ A,C

Example 4.23 (More Swapping). Now that ∨l has been duplicated, ∨l and ∨l

can be swapped above∧r, since each copy is now independent of∧r. The resulting
proof ψ∗ is:

A ` A wl
A,B ` A

∧l
A ∧ B ` A C ` C

∨l
(A ∧ B) ∨ C, ` A,C

B ` B wl
A,B ` B

∧l
A ∧ B ` B C ` C

∨l
(A ∧ B) ∨ C ` B,C

∧r
(A ∧ B) ∨ C, (A ∧ B) ∨ C ` A ∧ B,C,C

cl
(A ∧ B) ∨ C ` A ∧ B,C,C

cr
(A ∧ B) ∨ C ` A ∧ B,C C ` C

cut2
(A ∧ B) ∨ C ` A ∧ B,C

B ` B A ` A
∧r

A,B ` B ∧ A
∧l

A ∧ B ` B ∧ A
cut1

(A ∧ B) ∨ C ` B ∧ A,C

Its cut-pertinent struct is:

Sψ∗ ≡ (((A⊗C)⊕(B⊗C))⊕¬C)⊕(¬B⊗¬A) ≡ (A⊗C)⊕(B⊗C)⊕¬C⊕(¬B⊗¬A)
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Note that, due to all the swapping Sψ∗ is already in ⊕⊗-normal-form, and

hence the cut-pertinent clause set of ψ∗ can be obtained simply by clausification

of the struct:

Cψ∗ ≡ {` A,C ; ` B,C ; C ` ; B,A ` }

It is interesting to note that Cψ∗ = Cψ′ (ψ′ is shown in Example 4.21),

even though Sψ∗ , Sψ′ . This is because the ⊕⊗-normalization of Sψ′ has the

same effect of distributional duplications as the distributional swapping over

contractions.

Definition 4.3.6 (�WI). Downward swapping of weakening inferences

over independent inferences.

ϕ1

Γ
ρ

1
, Γ ` ∆

ρ

1
,∆

wl
F, Γ

ρ

1
, Γ ` ∆

ρ

1
,∆
ρ

F, Γρ, Γ ` ∆ρ,∆

⇓

ϕ1

Γ
ρ

1
, Γ ` ∆

ρ

1
,∆
ρ

Γρ, Γ ` ∆ρ,∆ wl
F, Γρ, Γ ` ∆ρ,∆

ϕ1

Γ
ρ

1
, Γ ` ∆

ρ

1
,∆

wr
Γ
ρ

1
, Γ ` ∆

ρ

1
,∆, F

ρ
F, Γρ, Γ ` ∆ρ,∆, F

⇓

ϕ1

Γ
ρ

1
, Γ ` ∆

ρ

1
,∆
ρ

Γρ, Γ ` ∆ρ,∆ wl
Γρ, Γ ` ∆ρ,∆, F

ϕ1

Γ
ρ

1
, Γ1 ` ∆

ρ

1
,∆1

wl
F, Γ

ρ

1
, Γ1 ` ∆

ρ

1
,∆1

ϕ2

Γ
ρ

2
, Γ2 ` ∆

ρ

2
,∆2

ρ
F, Γρ, Γ1, Γ2 ` ∆

ρ,∆1,∆2

⇓

ϕ1

Γ
ρ

1
, Γ1 ` ∆

ρ

1
,∆1

ϕ2

Γ
ρ

2
, Γ2 ` ∆

ρ

2
,∆2

ρ
Γρ, Γ1, Γ2 ` ∆

ρ,∆1,∆2 wl
F, Γρ, Γ1, Γ2 ` ∆

ρ,∆1,∆2

ϕ1

Γ
ρ

1
, Γ1 ` ∆

ρ

1
,∆1

wr
Γ
ρ

1
, Γ1 ` ∆

ρ

1
,∆1, F

ϕ2

Γ
ρ

2
, Γ2 ` ∆

ρ

2
,∆2

ρ
Γρ, Γ1, Γ2 ` ∆

ρ,∆1, F,∆2

⇓

ϕ1

Γ
ρ

1
, Γ1 ` ∆

ρ

1
,∆1

ϕ2

Γ
ρ

2
, Γ2 ` ∆

ρ

2
,∆2

ρ
Γρ, Γ1, Γ2 ` ∆

ρ,∆1,∆2 wr
Γρ, Γ1, Γ2 ` ∆

ρ,∆1, F,∆2

ϕ1

Γ
ρ

1
, Γ1 ` ∆

ρ

1
,∆1

ϕ2

Γ
ρ

2
, Γ2 ` ∆

ρ

2
,∆2

wl
F, Γ

ρ

2
, Γ2 ` ∆

ρ

2
,∆2

ρ
F, Γρ, Γ1, Γ2 ` ∆

ρ,∆1,∆2

⇓

ϕ1

Γ
ρ

1
, Γ1 ` ∆

ρ

1
,∆1

ϕ2

Γ
ρ

2
, Γ2 ` ∆

ρ

2
,∆2

ρ
Γρ, Γ1, Γ2 ` ∆

ρ,∆1,∆2 wl
F, Γρ, Γ1, Γ2 ` ∆

ρ,∆1,∆2
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ϕ1

Γ
ρ

1
, Γ1 ` ∆

ρ

1
,∆1

ϕ2

Γ
ρ

2
, Γ2 ` ∆

ρ

2
,∆2

wr
Γ
ρ

2
, Γ2 ` ∆

ρ

2
,∆2, F

ρ
Γρ, Γ1, Γ2 ` ∆

ρ,∆1, F,∆2

⇓

ϕ1

Γ
ρ

1
, Γ1 ` ∆

ρ

1
,∆1

ϕ2

Γ
ρ

2
, Γ2 ` ∆

ρ

2
,∆2

ρ
Γρ, Γ1, Γ2 ` ∆

ρ,∆1,∆2 wr
Γρ, Γ1, Γ2 ` ∆

ρ,∆1, F,∆2

Definition 4.3.7 (Degenerate Inferences). An inference ρ in a proof ϕ

is degenerate when all its auxiliary formula occurrences are descendants

of main formula occurrences of weakening inferences. When only some

auxiliary (sub)-formula occurrences of ρ are descendants of main formula

occurrences of weakening inferences, ρ is partially degenerate.

Definition 4.3.8 (�WD). Downward swapping of weakening inferences

over directly dependent inferences.

ϕ1

Γ ` ∆
w∗

Γ
ρ

1
, Γ ` ∆

ρ

1
,∆
ρ

Γρ, Γ ` ∆ρ,∆

⇓

ϕ1

Γ ` ∆
w∗

Γρ, Γ ` ∆ρ,∆

ϕ1

Γ1 ` ∆1
w∗

Γ
ρ

1
, Γ1 ` ∆

ρ

1
,∆1

ϕ2

Γ
ρ

2
, Γ2 ` ∆

ρ

2
,∆2

ρ
Γρ, Γ1, Γ2 ` ∆

ρ,∆1,∆2

⇓

ϕ1

Γ1 ` ∆1
w∗

Γρ, Γ1, Γ2 ` ∆
ρ,∆1,∆2

ϕ2

Γ
ρ

2
, Γ2 ` ∆

ρ

2
,∆2

ϕ1

Γ1 ` ∆1
w∗

Γ
ρ

1
, Γ1 ` ∆

ρ

1
,∆1

ρ
Γρ, Γ2, Γ1 ` ∆

ρ,∆2,∆1

⇓

ϕ1

Γ1 ` ∆1
w∗

Γρ, Γ2, Γ1 ` ∆
ρ,∆2,∆1

Definition 4.3.9 (�W). The proof rewriting relation for downward swapping

of weakening is:

�W � (�WI ∪ �WD)

Definition 4.3.10 (�). The proof rewriting relation for inference swapping

is:

� � (�I ∪ �ID ∪ �IDC ∪ �C ∪ �W)
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4.3.2 Cut-Pertinent Swapped Clause Sets

In this section another struct rewriting system (;⊕⊗W
) to transform structs

into ⊕⊗-normal-forms is described. It takes the possibility of inference

swapping into account and distributes ⊗ not among all ⊕-juncts, but only

among some of them. Indeed, it is shown in Lemma 4.8 that every rewrit-

ing of the struct according to ;⊕⊗W
corresponds to an inference swapping

sequence in the corresponding proof according to�. In summary, while

;⊕⊗ does full distribution of ⊗ over ⊕, as if cut-impertinent inferences

were always indirectly dependent on the cut-pertinent inferences above

them, ;⊕⊗W
does partial distribution when the corresponding inferences

are independent. Moreover, ;⊕⊗W
is capable of exploiting the presence

of weakening in the proof.

In order for the partial distribution and the correspondence to in-

ference swapping to be possible, the struct must encode not only the

branching structure of the proof, in the form of ⊕ and ⊗ connectives, but

also enough extra information to allow the retrieval of the dependencies

between the branching inferences. Although there could be various ways

to extend structs to encode dependency information directly, an indirect

and quite minimalistic extension is given here. In the proof of Lemma

4.8 it becomes clear that it is possible to retrieve dependency information

from structs containing additional information regarding the pertinence

of its formula occurrences in the sets as described in Definition 4.3.11.

Cut-pertinent swapped clause sets (Definition 4.3.13) of proofs are simply

defined as the clausification of ;⊕⊗W
-normal-forms of the cut-pertinent

structs of the proofs. While swapped clause sets are always smaller than or

of equal size to standard clause sets, they have the disadvantage of being

non-unique, because ;⊕⊗W
is non-confluent. Therefore, in general more

than one swapped clause set of a proof is necessary to fully characterize

the set of all possible CEResW-normal-forms for the proof. Nevertheless, it

is important to note that each swapped clause set is unsatisfiable (Theorem

4.5).

Swapped clause sets are very similar to profile clause sets, which have

been defined in [66]. In fact, the concept of swapped clause set evolved

from attempts to find an intuitively simpler definition for profile clause

sets. In Subsection 4.4, profile clause sets are defined and the slight

difference with respect to swapped clause sets is discussed.

Definition 4.3.11 (Inference Occurrences). Let ω1, . . . , ωn be all the occur-

rences of atomic subformulas of auxiliary occurrences of an inference ρ
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in a proof ϕ. Then:

Ωρ(ϕ) �
⋃

1≤i≤n

Ωωi
(ϕ)
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Example 4.24 (Inference Occurrences). In the proof ϕ below, the occurrences

belonging to Ω∨l
(ϕ) have been highlighted in red:

A ` A B ` B ∧r
A,B ` A ∧ B

∧l
A ∧ B ` A ∧ B

B ` B A ` A ∧r
A,B ` B ∧ A

∧l
A ∧ B ` B ∧A cut1A ∧ B ` B ∧ A

C ` C C ` C cut2C ` C ∨l
(A ∧ B) ∨ C ` B ∧ A,C

And below, the occurrences belonging to Ωcut1
(ϕ) have been highlighted in

blue:

A ` A B ` B ∧r
A,B ` A ∧ B

∧l
A ∧ B ` A ∧ B

B ` B A ` A ∧r
A,B ` B ∧ A

∧l
A ∧ B ` B ∧A cut1A ∧ B ` B ∧ A

C ` C C ` C cut2C ` C ∨l
(A ∧ B) ∨ C ` B ∧ A,C

Definition 4.3.12 (;⊕⊗W
). In the struct rewriting rules below, let ρ be

the inference in ϕ corresponding to ⊗ρ. For the rewriting rules to be

applicablek, Sn+1, . . . , Sn+m and S must contain at least one occurrence from

Ωρ(ϕ) each (i.e. there is an atomic substruct S′
n+k

of Sn+k such that S′
n+k
∈

Ωρ(ϕ)), and S1, . . . , Sn and Sl and Sr should not contain any occurrence

from Ωρ(ϕ). Moreover, an innermost rewriting strategy is enforced: only

minimal reducible substructs (i.e. structs having no reducible proper

substruct) can be rewritten.

S⊗ρ(S1⊕. . .⊕Sn⊕Sn+1⊕. . .⊕Sn+m) ;⊕⊗W
S1⊕. . .⊕Sn⊕(S⊗ρSn+1)⊕. . .⊕(S⊗ρSn+m)

(S1⊕. . .⊕Sn⊕Sn+1⊕. . .⊕Sn+m)⊗ρS ;⊕⊗W
S1⊕. . .⊕Sn⊕(Sn+1⊗ρS)⊕. . .⊕(Sn+m⊗ρS)

Sl⊗ρSr ;⊕⊗W
Sl Sl⊗ρSr ;⊕⊗W

Sr Sl⊕ρSr ;⊕⊗W
Sl Sl⊕ρSr ;⊕⊗W

Sr

S⊕ρSr ;⊕⊗W
Sr Sl⊕ρS ;⊕⊗W

Sl

Remark 4.3.4. The struct rewriting rules of ;⊕⊗W
include not only rules

to distribute ⊗ over ⊕ in a more clever way, but also rules to handle

k Note that m can be equal to zero, in which case the first two rewriting rules simply degenerate
to:

S⊗ρ(S1 ⊕ . . . ⊕ Sn) ;⊕⊗W
S1 ⊕ . . . ⊕ Sn

(S1 ⊕ . . . ⊕ Sn)⊗ρS ;⊕⊗W
S1 ⊕ . . . ⊕ Sn
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struct connectives that correspond to degenerate and partially degenerate

inferences. These rules are related to downward swapping of weakening

inferences, as shown in Lemma 4.8.

Example 4.25 (⊕⊗W-Normalization). Let ϕ be the proof below:

A ` A B ` B
∧1

rA,B ` A ∧ B
∧l

A ∧ B ` A ∧ B

B ` B A ` A
∧2

rA,B ` B ∧ A
∧l

A ∧ B ` B ∧ A
cut3

A ∧ B ` B ∧ A
C ` C C ` C

cut4
C ` C ∨5

l(A ∧ B) ∨ C ` B ∧A,C

Its cut-pertinent struct is:

Sϕ ≡ ((A ⊕1 B) ⊕3 (¬B ⊗2 ¬A)) ⊗5 (C ⊕4 ¬C)

Considering that {A,B,C} ⊂ Ω∨5
l
(ϕ) and {A,B,C} ∩Ω∨5

l
(ϕ) = ∅, the struct

can be normalized in the two ways shown below:

Sϕ ≡ ((A ⊕1 B) ⊕3 (¬B ⊗2 ¬A)) ⊗5 (C ⊕4 ¬C)

;⊕⊗W
((A ⊕1 B) ⊗5 (C ⊕4 ¬C)) ⊕3 (¬B ⊗2 ¬A)

;⊕⊗W
((A ⊗5 (C ⊕4 ¬C)) ⊕1 (B ⊗5 (C ⊕4 ¬C))) ⊕3 (¬B ⊗2 ¬A)

;⊕⊗W
(((A ⊗5 C) ⊕4 ¬C) ⊕1 ((B ⊗5 C) ⊕4 ¬C)) ⊕3 (¬B ⊗2 ¬A)

≡ (A ⊗5 C) ⊕ ¬C ⊕ (B ⊗5 C) ⊕ ¬C ⊕ (¬B ⊗2 ¬A)

≡ S1

Sϕ ≡ ((A ⊕1 B) ⊕3 (¬B ⊗2 ¬A)) ⊗5 (C ⊕4 ¬C)

;⊕⊗W
((A ⊕1 B) ⊗5 (C ⊕4 ¬C)) ⊕3 (¬B ⊗2 ¬A)

;⊕⊗W
((((A ⊕1 B) ⊗5 C) ⊕4 ¬C)) ⊕3 (¬B ⊗2 ¬A)

;⊕⊗W
((((A ⊗5 C) ⊕1 (B ⊗5 C)) ⊕4 ¬C)) ⊕3 (¬B ⊗2 ¬A)

≡ (A ⊗5 C) ⊕ (B ⊗5 C) ⊕ ¬C ⊕ (¬B ⊗2 ¬A)

≡ S2

Theorem 4.4 (Non-Confluence of ;⊕⊗W
). ;⊕⊗W

is non-confluent.

Proof. Example 4.25 shows a struct having two different ;⊕⊗W
-normal-

forms. Therefore ;⊕⊗W
is non-confluent. Example 4.25 also shows that

non-confluence can be caused when there is a reducible substruct on

which both of the two first rewriting rules shown in Definition 4.3.12

can be applied. Yet another and more obvious source of non-confluence,

however, are cases in which any of the four last rewriting rules shown in

Definition 4.3.12 can be applied, because then another of those rules can
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always be applied. It is necessary to choose which ⊕-junct (or ⊗-junct) to

delete; and, unless both juncts are equal, each choice will clearly lead to a

distinct normal form. �

Definition 4.3.13 (Cut-pertinent Swapped Clause Set). A cut-pertinent

swapped clause set of a proof ϕ with respect to a ;⊕⊗W
-normal-form S

of Sϕ is:

CW
ϕ|S � cl(S)

In cases where a proof ϕ has only one cut-pertinent swapped clause

set, it can be denoted simply as CW
ϕ .

Example 4.26 (Cut-Pertinent Swapped Clause Set). Let ϕ be the proof con-

sidered in Example 4.25 and S1 and S2 the two ;⊕⊗W
-normal-forms ofSϕ shown

there. Then:

CW
ϕ|S1
= { ` A,C ; ` B,C ; C ` ; C ` ; B,A ` }

CW
ϕ|S2
= { ` A,C ; ` B,C ; C ` ; B,A ` }

It is interesting to note that CW
ϕ|S1
= CW

ϕ|S2
(since they are sets). This is no

coincidence. It always occurs when the non-confluence in the struct level is due

to non-degenerated applications of the first two rewriting rules.

Lemma 4.8 (Correspondence between ;⊕⊗W
and �). If ϕ is skolemized

and Sϕ ;⊕⊗W
S, then there exists a proof ψ such that ϕ�∗ ψ and Sψ = S.

Proof. The proof can be subdivided into the possible cases of ;⊕⊗W
-

rewriting:

• Case 1: the selected reducible substruct has the form S⊗ρ(S1⊕. . .⊕Sn)

(and is rewritten to S1 ⊕ . . . ⊕ Sn):

Let ρ be the inference in ϕ corresponding to ⊗ρ. Let ϕ′ be the

subproof having the conclusion sequent of ρ as end-sequent, ϕ′
1

be

the subproof of ϕ having the left premise sequent of ρ as its end-

sequent andϕ′2 be the subproof ofϕhaving the right premise sequent

ofρ as its end-sequent. Clearly,S
ΩCP(ϕ)

ϕ′
1

= S andS
ΩCP(ϕ)

ϕ′
2
= (S1⊕. . .⊕Sn).

Since S
ΩCP(ϕ)

ϕ′
2

contains no occurrence of Ωρ(ϕ), it must be the case

that all auxiliary occurrences ωi of ρ occurring in its right premise
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sequent are descendants of main occurrences of weakening infer-

ences. Hence, there is a proof�W-normal-form ϕ′′2 of ϕ′2.

Moreover, since S⊗(S1 ⊕ . . . ⊕ Sn) is a minimal reducible substruct,

the occurrences ωi are not ancestors of any cut-impertinent binary

inference (for if they were, there would be a reducible substruct of

S⊗(S1 ⊕ . . . ⊕ Sn), contradicting the fact that S⊗(S1 ⊕ . . . ⊕ Sn) is a

minimal reducible substruct of Sϕ). And, clearly, ωi are also not

ancestors of any cut-pertinent binary inference, because ρ is cut-

impertinent. Therefore, in the sequence rewriting ϕ′2 into ϕ′′2 , none

of the rewriting rules of �WD that delete binary inferences is used.

Consequently, S
ΩCP(ϕ)

ϕ′′
2
= S

ΩCP(ϕ)

ϕ′
2

.

Let ϕ′′ be the result of replacing ϕ′2 by ϕ′′2 in ϕ′. Clearly, ϕ′′ is of the

form:

ϕ′
1

Γ
ρ

1
, Γ1 ` ∆

ρ

1
,∆1

ϕ′′′2

Γ2 ` ∆2
w∗

Γ
ρ

2
, Γ2 ` ∆

ρ

2
,∆2

ρ
Γρ, Γ2, Γ1 ` ∆

ρ,∆2,∆1

where ϕ′′2 is:

ϕ′′′2

Γ2 ` ∆2
w∗

Γ
ρ

2
, Γ2 ` ∆

ρ

2
,∆2

By using one of the rewriting rules of �WD, ϕ′′ can be rewritten to

the proof ψ′ below:

ϕ′′′2

Γ2 ` ∆2
w∗

Γρ, Γ2, Γ1 ` ∆
ρ,∆2,∆1

Clearly, S
ΩCP(ϕ)

ψ′
= (S1 ⊕ . . . ⊕ Sn)

Therefore, there exists a proof ψ (namely, the proof obtainable from

ϕ by replacing its subproof ϕ′ by ψ′) such that ϕ�W ψ and Sψ is Sϕ
with S⊗(S1 ⊕ . . . ⊕ Sn) rewritten to S1 ⊕ . . . ⊕ Sn.

• Case 2: the selected reducible substruct has the form (S1⊕ . . .⊕Sn)⊗S

(and is rewritten to S1 ⊕ . . . ⊕ Sn): Symmetric to case 1.



86 CHAPTER 4. CUT-ELIMINATION BY RESOLUTION

• Case 3: the selected reducible substruct has the form Sl⊗Sr (and is

rewritten to Sr): Analogous to case 1.

• Case 4: the selected reducible substruct has the form Sl⊗Sr (and is

rewritten to Sl): Analogous to case 2.

• Case 5: the selected reducible substruct has the form Sl⊕Sr (and is

rewritten to Sr): Analogous to case 1.

• Case 6: the selected reducible substruct has the form Sl⊕Sr (and is

rewritten to Sl): Analogous to case 2.

• Case 7: the selected reducible substruct has the form Sl⊕Sr (and is

rewritten to Sr): Analogous to case 1.

• Case 8: the selected reducible substruct has the form Sl⊕Sr (and is

rewritten to Sl): Analogous to case 2.

• Case 9: the selected reducible substruct has the form S⊗ρ2
(S′ ⊕ρ1

S′′)

(and is rewritten to S′ ⊕ρ1
(S⊗ρ2

S′′)):

Let ρ2 be the inference corresponding to ⊗ρ2
and ρ1 be the infer-

ence corresponding to ⊕ρ1
. Since ρ1 is cut-pertinent and ρ2 is cut-

impertinent, ρ2 is not directly dependent on ρ1. Moreover, ϕ is

skolemized and thus ρ2 is also not eigen-variable dependent on ρ1.

As only S′′ has occurrences of Ωρ2
(ϕ), Ωρ2

(ϕ) has occurrences in at

most one premise sequent of ρ1, and hence ancestors of auxiliary

occurrences of ρ2 occur in at most one premise sequent of ρ1. There-

fore ρ2 is independent of ρ1. Moreover, any inference ρi (on the path

between ρ2 and ρ1) on which ρ2 directly depends is also independent

of ρ1.

Consequently, there exists a proof ψ with ϕ �∗I ψ where ρ2 and all

inferences ρi on which it depends have been swapped above ρ1, so

that Sψ is Sϕ with S⊗(S′ ⊕ S′′) rewritten to S′ ⊕ (S⊗S′′).

• Case 10: the selected reducible substruct has the form S⊗(S′ ⊕ S′′)

(and is rewritten to (S⊗S′) ⊕ S′′): Analogous to case 7.

• Case 11: the selected reducible substruct has the form (S′ ⊕ S′′)⊗S

(and is rewritten to (S′⊗S) ⊕ S′′): Symmetric to case 7.

• Case 12: the selected reducible substruct has the form (S′ ⊕ S′′)⊗S

(and is rewritten to S′ ⊕ (S′′⊗S)): Analogous to case 9.
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• Case 13: the selected reducible substruct has the form (S′⊕ρ1
S′′)⊗ρ2

S

(and is rewritten to (S′⊗ρ2
S) ⊕ρ1

(S′′⊗ρ2
S)):

Since ρ1 is cut-pertinent and ρ2 is cut-impertinent, ρ2 is not directly

dependent on ρ1. Moreover, ϕ is skolemized and thus ρ2 is also

not eigen-variable dependent on ρ1. However, as both S′ and S′′

have occurrences of Ωρ2
(ϕ), ρ2 ≺I ρ1. In the sequent calculus LK,

this can only happen if there exists a sequence of unaryl inferences

ρ∗D ≡ (ρD1
, . . . , ρDn) on the path between ρ2 and ρ1 such that ρDi

is

indirectly dependent on ρ1 and ρ2 depends on ρDi
, for any i such that

1 ≤ i ≤ n. Moreover, any inference ρDi
(on the path between ρ2 and

ρ1) on which ρ2 directly depends is also independent of ρ1.

Let ϕ′ be the subproof of ϕ having the conclusion sequent of ρ2 as its

end-sequent. Then, there exists a proof ϕ′′ withϕ′ �∗ ϕ′′ (swapping

ρ∗D and ρ2 above all inferences on which they do not depend) such

that ϕ′′ has the following form (or a form symmetric to it):

ϕ1

Γ1, Γ
ρ2

1
, Γ
ρ1

1
` ∆1,∆

ρ2

1
,∆
ρ1

1

ϕ2

Γ2, Γ
ρ2

2
, Γ
ρ1

2
` ∆2,∆

ρ2

2
,∆
ρ1

2 ρ1
Γ1, Γ2, Γ

ρ2

1
, Γ
ρ2

2
, Γρ1 ` ∆1,∆2,∆

ρ2

1
,∆
ρ2

2
,∆ρ1

ρ∗
D

Γ1, Γ2, Γ
ρ1 ` ∆1,∆2, F

ρ2

12
,∆ρ1

ϕ3

Γ3 ` ∆3, F
ρ2

3 ρ2
Γ1, Γ2, Γ3, Γ

ρ1 ` ∆1,∆2,∆3, F
ρ2 ,∆ρ1

Then there exists a proof ϕ′′′ with ϕ′′ �∗ ϕ′′′ (swapping ρ∗D above

ρ1) such that ϕ′′′ has the following form:

ϕ1

Γ1, Γ
ρ2

1
, Γ
ρ1

1
` ∆1,∆

ρ2

1
,∆
ρ1

1
w∗

Γ1, Γ
ρ2

1
, Γ
ρ2

2
, Γ
ρ1

1
` ∆1,∆

ρ2

1
,∆
ρ2

2
,∆
ρ1

1
ρ∗

D
Γ1,Γ

ρ1
1
` ∆1, F

ρ2

12
,∆
ρ1
1

ϕ2

Γ2, Γ
ρ2

2
, Γ
ρ1
2
` ∆2,∆

ρ2

2
,∆
ρ1
2

w∗

Γ2, Γ
ρ2

1
, Γ
ρ2

2
, Γ
ρ1
2
` ∆2,∆

ρ2

1
,∆
ρ2

2
,∆
ρ1
2
ρ∗

D
Γ2, Γ

ρ1
2
` ∆2, F

ρ2

12
,∆
ρ1
2
ρ1

Γ1,Γ2, Γ
ρ1 ` ∆1,∆2, F

ρ2

12
, F
ρ2

12
,∆ρ1

cr
Γ1,Γ2, Γ

ρ1 ` ∆1,∆2, F
ρ2

12
,∆ρ1

ϕ3

Γ3 ` ∆3,F
ρ2

3
ρ2

Γ1,Γ2, Γ3, Γ
ρ1 ` ∆1,∆2,∆3, F

ρ2 ,∆ρ1

Then there exists a proof ϕ(4) with ϕ′′′ �C ϕ
(4) (swapping ρ2 above

the contraction) such that ϕ(4) has the following form:

lIf the inferences were not unary, the struct would simply not be of the form (S′ ⊕ρ1
S′′)⊗ρ2

S.
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ϕ1

Γ1 ,Γ
ρ2

1
,Γ
ρ1

1
` ∆1 ,∆

ρ2

1
,∆
ρ1

1
w∗

Γ1 , Γ
ρ2

1
, Γ
ρ2

2
,Γ
ρ1

1
` ∆1 ,∆

ρ2

1
,∆
ρ2

2
,∆
ρ1

1
ρ∗D

Γ1 , Γ
ρ1

1
` ∆1 , F

ρ2

12
,∆
ρ1

1

ϕ2

Γ2 ,Γ
ρ2

2
,Γ
ρ1

2
` ∆2 ,∆

ρ2

2
,∆
ρ1

2
w∗

Γ2 , Γ
ρ2

1
, Γ
ρ2

2
,Γ
ρ1

2
` ∆2 ,∆

ρ2

1
,∆
ρ2

2
,∆
ρ1

2
ρ∗D

Γ2 , Γ
ρ1

2
` ∆2 , F

ρ2

12
,∆
ρ1

2
ρ1

Γ1 , Γ2 ,Γ
ρ1 ` ∆1 ,∆2 , F

ρ2

12
, F
ρ2

12
,∆ρ1

ϕ3

Γ3 ` ∆3 , F
ρ2

3
ρ2

Γ1 ,Γ2 , Γ3 ,Γ
ρ1 ` ∆1 ,∆2 ,∆3 , F

ρ2

12
,Fρ2 ,∆ρ1

ϕ3

Γ3 ` ∆3 , F
ρ2

3
ρ2

Γ1 , Γ2 ,Γ3 , Γ3 ,Γ
ρ1 ` ∆1 ,∆2 ,∆3 ,∆3 , F

ρ2 ,Fρ2 ,∆ρ1

cr
Γ1 , Γ2 , Γ3 , Γ3 , Γ

ρ1 ` ∆1 ,∆2 ,∆3 ,∆3 ,F
ρ2 ,∆ρ1

c∗

Γ1 , Γ2 ,Γ3 , Γ
ρ1 ` ∆1 ,∆2 ,∆3 ,F

ρ2 ,∆ρ1

Finally, there exists a proof ψ′ with ϕ(4) �∗I ψ
′ (swapping each copy

of ρ2 above ρ1) such that ψ′ has the following form:

ϕ1

Γ1 ,Γ
ρ2

1
,Γ
ρ1

1
` ∆1 ,∆

ρ2

1
,∆
ρ1

1
w∗

Γ1 , Γ
ρ2

1
, Γ
ρ2

2
,Γ
ρ1

1
` ∆1 ,∆

ρ2

1
,∆
ρ2

2
,∆
ρ1

1
ρ∗D

Γ1 , Γ
ρ1

1
` ∆1 , F

ρ2

12
,∆
ρ1

1

ϕ3

Γ3 ` ∆3 , F
ρ2

3
ρ2

Γ1 , Γ3 ,Γ
ρ1

1
` ∆1 ,∆3 , F

ρ2 ,∆
ρ1

1

ϕ2

Γ2 ,Γ
ρ2

2
, Γ
ρ1

2
` ∆2 ,∆

ρ2

2
,∆
ρ1

2
w∗

Γ2 , Γ
ρ2

1
, Γ
ρ2

2
,Γ
ρ1

2
` ∆2 ,∆

ρ2

1
,∆
ρ2

2
,∆
ρ1

2
ρ∗D

Γ2 , Γ
ρ1

2
` ∆2 ,F

ρ2

12
,∆
ρ1

2

ϕ3

Γ3 ` ∆3 , F
ρ2

3
ρ2

Γ2 , Γ3 ,Γ
ρ1

2
` ∆2 ,∆3 , F

ρ2 ,∆
ρ1

2
ρ1

Γ1 ,Γ2 , Γ
ρ1 ` ∆1 ,∆2 ,F

ρ2

12
,F
ρ2

12
,∆ρ1

cr
Γ1 , Γ2 ,Γ3 , Γ3 ,Γρ1 ` ∆1 ,∆2 ,∆3 ,∆3 , Fρ2 ,∆ρ1

c∗
Γ1 ,Γ2 , Γ3 ,Γ

ρ1 ` ∆1 ,∆2 ,∆3 , F
ρ2 ,∆ρ1

Consequently, there exists a proof ψwith ϕ�∗ ψ (namely, the proof

obtained from ϕ by rewriting its subproof ϕ′ to ψ′ as shown above)

where ρ2 and all unary inferences ρDi
on which it depends have

been swapped above ρ1, so that Sψ is Sϕ with (S′ ⊕ S′′)⊗S rewritten

to (S′⊗S) ⊕ (S′′⊗S).

• Case 14: the selected reducible substruct has the form S⊗(S′ ⊕ S′′)

(and is rewritten to (S⊗S′) ⊕ (S⊗S′′)): Symmetric to case 11.

�

Lemma 4.9 (Iterated Correspondence between ;⊕⊗W
and �). If ϕ is

skolemized and Sϕ ;
∗
⊕⊗W

S, then there exists a proof ψ such that ϕ �∗ ψ

and Sψ = S.

Proof. This Lemma is just the iterated version of Lemma 4.8 and can be

easily proved by induction on the number of rewriting steps to rewrite

Sϕ to Sψ. �

Theorem 4.5 (Unsatisfiability of the Cut-Pertinent Swapped Clause Set).

For any skolemized proof ϕ and any ;⊕⊗W
-normal-form S of Sϕ, CW

ϕ|S
is

unsatisfiable.

Proof. By Lemma 4.9, there exists a proof ψ such that Sψ = S. Clearly,

CW
ϕ|S
= CW

ψ . But CW
ψ = C

S
ψ

, since S is also a ;⊕⊗-normal-form. Therefore,

CW
ϕ|S
= CS

ψ
and, by Theorem 4.1, it is unsatisfiable. �
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Proof. Yet another approach involves an actual construction of a resolution

refutation for CW
ϕ|S

, as shown in Chapter 6. By the soundness of the

resolution calculus, CW
ϕ|S

must then be unsatisfiable. �

Remark 4.3.5. It is not possible to prove Theorem 4.5 analogously to the

proof of the unsatisfiability of the profile shown in [66, 67], which is es-

sentially based on the fact that the profile clause set of ϕ subsumes CS
ϕ.

Unfortunately,CW
ϕ|S

does not subsumeCS
ϕ in general. In particular, the sub-

sumption fails whenϕ contains degenerate cut-impertinent inferences, in

which case ;⊕⊗W
prunes too much of the struct and hence some clauses

of CS
ϕ are not subsumed by any clause of CW

ϕ|S
.

4.3.3 Projections

The method for constructing S-projections does not work with swapped

clause sets. Specifically the inductive case for cut-impertinent inferences

is problematic. In the case of the standard clause set, in which ⊗ is

fully distributed over ⊕, it must be the case that such cut-impertinent

inferences must always appear in the S-projection. In the case of the

swapped clause set, on the other hand, the existence of degenerate cases

with no distribution imply that such cut-impertinent inferences should

not always appear in the S-projection. While it is definitely possible to

define a modified S-projection with a more fine-grained analysis of the

inductive case for cut-impertinent inferences, as has been done for the

profile in [66] for example, this will not be done here, because it is much

simpler to use O-projections instead.

The construction of O-projections assumes only that the signature of

the struct remains constantm during the struct normalization process. As

this is the case for both ;⊕⊗ and ;⊕⊗W
, O-projections work equally well for

standard and swapped clause sets. In fact, O-projections were originally

developed here as projections that would work for swapped and profile

clause sets, but they turned out to be quite independent of and hence

robust to changes in the normalization process, allowing them to be used

together with standard clause sets too.

m In Section 4.5, a struct normalizing process that extends the signature is defined. Therefore
O-projections cannot be used there.
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Example 4.27 (O-Projections for Swapped Clause Sets). Consider the proof

ϕ of Example 4.1 and its cut-pertinent swapped clause set shown in Example

4.26.

Then, the projections bϕcO
`A,C

and bϕcO
`B,C

are:

A ` A wl
A,B ` A

∧l
A ∧ B ` A C ` C ∨l

(A ∧ B) ∨ C ` A,C

B ` B wl
A,B ` B

∧l
A ∧ B ` B C ` C ∨l

(A ∧ B) ∨ C ` B,C

The projections bϕcO
C`

and bϕcO
B,A`

are:

C ` C B ` B A ` A ∧r
A,B ` B ∧ A

Comparing the projections above with the projections with respect to the

clauses of CS
ϕ shown in Example 4.15, it is clear that not only the number of

projections is reduced (from six to four), since CW
ϕ has fewer clauses than CS

ϕ, but

also the projections are less redundant as a whole, since each initial cut-pertinent

occurrence is duplicated less often and thus the clauses have fewer occurrences.

4.4 CEResP

Another cut-pertinent clause set, called profile, was developed in [66].

While there the profile is extracted directly from proofs where formula

occurrences are annotated with labels, it is possible to define the profile in

terms of an alternative struct rewriting system for the ⊕⊗-normalization

of cut-pertinent structs: ;⊕⊗P
(Definition 4.4.1).

The rewriting system ;⊕⊗P
is very similar to ;⊕⊗W

, with two differ-

ences: It avoids the first source of non-confluencen, i.e. cases when the

first two rules of ;⊕⊗W
are applicable, because the only rewriting rule of

;⊕⊗P
is essentially equivalent to a unique and minimal choice of applica-

tion order of the two applicable rules of ;⊕⊗W
in such cases. And it avoids

the second source of non-confluence, i.e. the “degenerate” cases in which

a whole substruct is deleted by one of the last four rules of ;⊕⊗W
, simply

by keeping both substructs connected by a ⊕ connective (i.e. “degener-

ate” ⊕ remain ⊕ while “degenerate” ⊗ are converted to ⊕). Hence there

is no choice of what substruct to delete in such cases anymore.

nNevertheless, note that the first source of non-confluence for ;⊕⊗W
is not so important,

because it only creates copies that are eventually disregarded during clausification, since clause
sets are sets. In other words, all swapped clause sets obtained from ;⊕⊗W

-normal-forms that
differ only because of the first kind of non-confluence are equal.
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Since the last four rules of ;⊕⊗W
correspond to the downward swap-

ping of weakening inferences (�WD), it is clear that swapped clause sets

exploit the presence of weakening in the proofs better than profile clause

sets. This is the price paid by the profile clause set for its confluence. Re-

lated to this way of handling weakening is the fact that the profile clause

set of a proof is the union of all the swapped clause sets of the proof.

It is interesting to note that it is possible to define an additional proof

rewriting relation, �cut, that corresponds to the conversion of “degen-

erate” ⊗ into ⊕. Therefore, while ;⊕⊗W
corresponds to � (Lemma 4.9),

;⊕⊗P
corresponds to� ∪ �cut (Lemma 4.11).

4.4.1 Cut-Pertinent Profile Clause Set

Definition 4.4.1 (;⊕⊗P
). In the struct rewriting rule below, let ρ be the in-

ference corresponding to ⊗ in the proof ϕ from which the struct was

extracted. For the rewriting rule to be applicable Sn+1, . . . , Sn+m and

Tk+1, . . . ,Tk+l must contain at least one occurrence from Ωρ(ϕ) each, and

S1, . . . , Sn and T1, . . . ,Tk should not contain any occurrence from Ωρ(ϕ).

Moreover, an innermost rewriting strategy is enforced: only minimal re-

ducible substructs (i.e. structs having no reducible proper substruct) can

be rewritten.

(T1 ⊕ . . . ⊕ Tk ⊕ Tk+1 ⊕ . . . ⊕ Tk+l)⊗(S1 ⊕ . . . ⊕ Sn ⊕ Sn+1 ⊕ . . . ⊕ Sn+m)

;⊕⊗P

(T1 ⊕ . . . ⊕ Tk ⊕ S1 ⊕ . . . ⊕ Sn) ⊕ (
⊕

1 ≤ i ≤ l

1 ≤ j ≤ m

Tk+i⊗Sn+ j)

Example 4.28 (⊕⊗P-Normalization). Let ϕ be the proof below:

A ` A B ` B
∧1

rA,B ` A ∧ B
∧l

A ∧ B ` A ∧ B

B ` B A ` A
∧2

rA,B ` B ∧ A
∧l

A ∧ B ` B ∧ A
cut3

A ∧ B ` B ∧ A
C ` C C ` C

cut4
C ` C ∨5

l(A ∧ B) ∨ C ` B ∧A,C

Its cut-pertinent struct is:

Sϕ ≡ ((A ⊕1 B) ⊕3 (¬B ⊗2 ¬A)) ⊗5 (C ⊕4 ¬C)
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And it can be normalized as follows:

Sϕ ≡ ((A ⊕1 B) ⊕3 (¬B ⊗2 ¬A)) ⊗5 (C ⊕4 ¬C)

;⊕⊗P
((A ⊕1 B) ⊗5 (C ⊕4 ¬C)) ⊕3 (¬B ⊗2 ¬A)

;⊕⊗P
((((A ⊗5 C) ⊕1 (B ⊗5 C)) ⊕4 ¬C)) ⊕3 (¬B ⊗2 ¬A)

≡ (A ⊗5 C) ⊕ (B ⊗5 C) ⊕ ¬C ⊕ (¬B ⊗2 ¬A)

≡ S

Note that S = S2, for S2 shown in Example 4.25. One application of a

rewriting rule of ;⊕⊗P
corresponded to two applications of rewriting rules of

;⊕⊗W
in an optimal order.

Theorem 4.6 (Confluence of ;⊕⊗P
). ;⊕⊗P

is confluent.

Proof. This follows from the non-existence of critical pairs, which is easy

to see, as ;⊕⊗P
has only one rewriting rule and an innermost rewriting

strategy is enforced. �

Definition 4.4.2 (Cut-pertinent Profile Clause Set). The cut-pertinent profile

clause set of a proof ϕ is:

CP
ϕ � cl(S)

where S is the ;⊕⊗P
-normal-form of Sϕ.

Example 4.29 (Cut-Pertinent Profile Clause Set). Let ϕ be the proof consid-

ered in Example 4.28. Then:

CP
ϕ = { ` A,C ; ` B,C ; C ` ; B,A ` }

Comparing CP
ϕ with CW

ϕ|S1
and CW

ϕ|S2
shown in Example 4.26, it is interesting

to note that CP
ϕ = C

W
ϕ|S1
= CW

ϕ|S2
. This is so because there are no degenerate

cut-impertinent inferences in ϕ.

Example 4.30 (Cut-Pertinent Profile Clause Set).
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Definition 4.4.3 (�cut). Conversion of degenerate inferences to cuts:

ϕ1

Γ1 ` ∆1
w∗

Γ
ρ

1
, Γ1 ` ∆

ρ

1
,∆1

ϕ2

Γ2 ` ∆2
w∗

Γ
ρ

2
, Γ2 ` ∆

ρ

2
,∆2

ρ
Γρ, Γ1, Γ2 ` ∆

ρ,∆1,∆2

⇓

ϕ1

Γ1 ` ∆1 wr
Γ1 ` ∆1,A

ϕ2

Γ2 ` ∆2 wl
A, Γ2 ` ∆2 cut

Γ1, Γ2 ` ∆1,∆2
w∗

Γρ, Γ1, Γ2 ` ∆
ρ,∆1,∆2

Remark 4.4.1. A degenerate inference ρ, as shown in Definition 4.4.3,

could also be removed by using �W. However, in this case only one of

the subproofs could be kept and the end-sequent of the other subproof

together with the main formula of ρwould be introduced by weakening.

Therefore, it would be necessary to non-deterministically choose which

subproof to keep.

It is precisely in the presence of degenerate inferences that profile

clause sets and swapped clause sets differ. While profile clause sets avoid

non-determinism by using a struct normalization that corresponds to�cut

in such cases, swapped clause sets do not care about non-determinism

and prefer to prune whole subproofs by using a struct normalization that

corresponds to�W in such degenerate cases.

Lemma 4.10 (Correspondence between ;⊕⊗P
and � ∪ �cut). If ϕ is

skolemized and Sϕ ;⊕⊗P
Sψ, then there exists a proof ψ such that ϕ(�

∪ �cut)
∗ψ and Sψ = Sψ.

Proof. The proof is analogous to the proof of Lemma 4.8, except that the

case for degenerate cut-impertinent inferences corresponds to�cut. �

Lemma 4.11 (Iterated Correspondence between ;⊕⊗P
and � ∪ �cut). If

ϕ is skolemized and Sϕ ;
∗
⊕⊗P

Sψ, then there exists a proof ψ such that

ϕ(� ∪ �cut)
∗ψ and Sψ = Sψ.

Proof. This Lemma is just the iterated version of Lemma 4.10 and can be

easily proved by induction on the number of rewriting steps to rewrite

Sϕ to Sψ. �
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Theorem 4.7 (Unsatisfiability of the Cut-Pertinent Profile Clause Set). For

any skolemized proof ϕ, CP
ϕ is unsatisfiable.

Proof. The original proof of the unsatisfiability of the profile can be found

in [66, 67]. The idea of the proof is to note that CP
ϕ always subsumes CS

ϕ,

which is, by Theorem 4.1, unsatisfiable. Therefore,CP
ϕ is also unsatisfiable.

�

Proof. Alternatively, this theorem can be proved analogously to the proof

of Theorem 4.5. By Lemma 4.11, there exists a proof ψ such that Sψ = S.

Clearly, CP
ψ
= CS

ψ
, since S is also a ;⊕⊗-normal-form. Therefore, CP

ϕ = C
S
ψ

and, by Theorem 4.1, it is unsatisfiable. �

4.4.2 Projections

A modified inductive method for constructing S-projections for profile

clause sets is shown in [66]. The method for constructing O-projections,

on the other hand works without any modification for profile clause sets.

Example 4.31 (O-Projections for Profile Clause Sets). Consider the proof ϕ

of Example 4.1. Since its profile clause set CP
ϕ is equal to its swapped clause set

CW
ϕ shown in Example 4.26, the O-projections with respect to the clauses of CP

ϕ

are exactly the same as the O-projections with respect to the clauses ofCW
ϕ , which

are shown in Example 4.27.

4.5 CEResD

The construction of standard clause sets from structs is analogous to the

standard transformation of formulas to conjunctive normal forms. Con-

sequently, it has the same well-known disadvantage of increasing the size

significantly in the worst case. Indeed, the size of a standard clause set

can be exponential with respect to the size of the struct from which it is

constructed, in the same way that the size of a clause normal form of a

formula can be exponential with respect to the size of the formula itself.

There exists, however, an improved technique known as structural clause

form transformation [2], based on the extension principle. By using this

technique, it can be shown that the atomic size of the clause normal form

of a formula is in the worst case only linearly biggero than the size of

the formula itself. The price paid is that the structural conjunctive nor-

mal form of a formula is not logically equivalent to the formula anymore,

oHowever, the symbolic size can be quadratic due to Skolem terms produced by skolemization.
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because new defined predicate symbols are added, thus extending the sig-

nature. Nevertheless, satisfiability-equivalence is preserved: the formula

is unsatisfiable if and only if its structural clause form is unsatisfiable.

Although profile clause sets and swapped clause sets are great im-

provements of the standard clause set, it is not so hard to see that, in the

worst case, the size of these clause sets is still exponential with respect

to the size of the struct, because distributive duplications still occur (in

cases corresponding to swapping of indirectly dependent inferences). It

is therefore only natural to investigate the possibility of adapting the idea

of structural clause form transformation to the construction of clause sets

from structs, in order to avoid the exponential blow-up in size in the worst

casep. The purpose of this section is to show how this can be done.

4.5.1 Cut-Pertinent Definitional Clause Set

Definition 4.5.1 adapts to structs the idea of structural conjunctive nor-

mal form transformation. Every substruct is given a new name, a new

predicate symbol defined to be equivalent to the substruct. The defin-

ing formulas are very shallow formulas and can be easily transformed to

⊕-junctions of ⊗-junctions.

Definition 4.5.1 (;⊕⊗D
). Let S be a struct. For every non-literal substruct

S′ ≡ S′
1
⊗ . . . ⊗ S′n or S′ ≡ S′

1
⊕ . . . ⊕ S′n of S, a new predicate symbol can be

created together with a corresponding defining formula:

Def S′ � NS′(x1, . . . , xm)↔ Nn(S′
1
)⊗...⊗n(S′n)(x1, . . . , xm)↔ n(S′1) ⊗ . . . ⊗ n(S′n)

or

Def S′ � NS′(x1, . . . , xm)↔ Nn(S′
1
)⊕...⊕n(S′n)(x1, . . . , xm)↔ n(S′1) ⊕ . . . ⊕ n(S′n)

where x1, . . . , xm are the free variables of S′, n(S′
k
) is S′

k
if S′

k
is a literal struct

and NS′
k
(y1, . . . , y j) if S′

k
is a non-literal struct with free variables y1, . . . , y j.

The connective↔ is considered to be just an abbreviationq:

A↔ B1 ⊗ . . . ⊗ Bn � (A ⊗ B1 ⊗ . . . ⊗ Bn) ⊕ (B1 ⊗ A) ⊕ . . . ⊕ (Bn ⊗ A)

A↔ B1 ⊕ . . . ⊕ Bn � (B1 ⊗ . . . ⊗ Bn ⊗ A) ⊕ (A ⊗ B1) ⊕ . . . ⊕ (A ⊗ Bn)

pSince structs do not contain quantifiers, no skolemization is necessary. Therefore, by adapting
the structural clause form transformation technique to structs, not only the atomic size of the clause
set remains linearly bounded with respect to the atomic size of the struct but also its symbolic size
remains linearly bounded with respect to the symbolic size of the struct.

qThe abbreviation can be intuitively understood due to the analogy of ⊗with ∨ and ⊕with ∧.
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where C is ¬D, if C = D, and D, if C = ¬D.

Then:

S ;⊕⊗D
S∗

where:

S∗ � n(S) ⊕
⊕

non-literal substructs S′ of S

Def S′

Each defining formula Def S′ originates so-called definitional⊗-junctions.

All other ⊗-junctions (e.g. n(S)) are called proper ⊗-junctions.

Example 4.32 (⊕⊗D-Normalization). Let ϕ be the proof below:

A ` A B ` B
∧1

rA,B ` A ∧ B
∧l

A ∧ B ` A ∧ B

B ` B A ` A
∧2

rA,B ` B ∧A
∧l

A ∧ B ` B ∧ A
cut3

A ∧ B ` B ∧ A
C ` C C ` C

cut4
C ` C ∨5

l(A ∧ B) ∨ C ` B ∧ A,C

Its cut-pertinent struct is:

Sϕ ≡ ((A ⊕ B) ⊕ (¬B ⊗ ¬A)) ⊗ (C ⊕ ¬C)

New predicate symbols can be created and defined by the following formulas:

• D↔ C ⊕ ¬C

• E↔ ¬B ⊗ ¬A

• F↔ A ⊕ B

• G↔ F ⊕ E

• H ↔ G ⊗D

Finally, the ;⊕⊗D
-normal-form of Sϕ is:

S∗ � H⊕

(¬D ⊗ C) ⊕ (¬D ⊗ ¬C) ⊕ (¬C ⊗D ⊗ C)⊕

(¬E ⊗ ¬B ⊗ ¬A) ⊕ (E ⊗ B) ⊕ (E ⊗ A)⊕

(¬F ⊗ A) ⊕ (¬F ⊗ B) ⊕ (¬A ⊗ ¬B ⊗ F)⊕

(¬G ⊗ F) ⊕ (¬G ⊗ E) ⊕ (¬E ⊗ ¬F ⊗ G)⊕

(¬H ⊗ G ⊗D) ⊕ (¬G ⊗H) ⊕ (¬D ⊗H)
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Definition 4.5.2 (Cut-pertinent Definitional Clause Set). The cut-pertinent

definitional clause set of a proof ϕ is:

CD
ϕ � cl(S)

where S is the ;⊕⊗D
-normal-form of Sϕ.

The clauses corresponding to definitional ⊗-junctions are called defini-

tional clauses. The clauses corresponding to proper ⊗-junctions are called

proper clauses.

Example 4.33 (Definitional Clause Set). Let ϕ be the proof in Example 4.32.

Then, its definitional clause set CD
ϕ consists of the following clauses. The proper

clause is ` H. All other clauses are definitional clauses.

D ` C

E,B,A `

F ` A

G ` F

H ` G,D

` H

D,C `

` E,B

F ` B

G ` E

G ` H

C ` D,C

` E,A

A,B ` F

E, F ` G

D ` H

4.5.2 Projections

The construction of projections requires special care when definitional

clause sets are used. The reason is that the clauses now contain many new

predicate symbols which do not occur in the proof. Since S-projections

and O-projections contain only symbols that occur in the proof, it is clear

that they cannot be used with definitional clause sets. New kinds of

projections, called D-projections have to be developed.

D-Projections

For all definitional clauses of a definitional clause set, projections can be

constructed very easily by using definition rules, even without any de-

pendence on the proof. These projections are the definitional D-projections

explained in Definition 4.5.3. However, in every definitional clause set

there is exactly one clause, namely the proper clause, for which defini-

tional D-projections do not work. Then a proper D-projection (Definition

4.5.4) is necessary. It is called proper, because it actually depends on the

proof.
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Definition 4.5.3 (Definitional D-Projection). Let ϕ be a proof and c a

definitional clause in CD
ϕ . The Definitional D-projection bϕcDD

c with respect

to the clause c can be easily constructed by using definition rules, as

exemplified below:

Assume c is one of the definitional clauses originating from the fol-

lowing defining formula:

Def S′ � Nn(S′
1
)⊗...⊗n(S′n)(x1, . . . , xm)↔ n(S′1) ⊗ . . . ⊗ n(S′n)

Then c is one of the following clauses:

• Nn(S′
1
)⊗...⊗n(S′n)(x1, . . . , xm) ` n(S′

1
), . . . , n(S′n)

• n(S′
1
) ` Nn(S′

1
)⊗...⊗n(S′n)(x1, . . . , xm)

• . . .

• n(S′n) ` Nn(S′
1
)⊗...⊗n(S′n)(x1, . . . , xm)

And the definitional D-projections are:

bϕcDD

NS′
1
⊗...⊗S′n

(x1,...,xm)`n(S′
1
),...,n(S′n)

:

n(S′
1
) ` n(S′

1
) . . . n(S′n) ` n(S′n)

∨∗
l

n(S′
1
) ∨ . . . ∨ n(S′n) ` n(S′

1
), . . . , n(S′n)

dl
Nn(S′

1
)⊗...⊗n(S′n )(x1, . . . , xm) ` n(S′

1
), . . . , n(S′n)

bϕcDD

n(S′
k
)`NS′

1
⊗...⊗S′n

(x1,...,xm)
:

n(S′
k
) ` n(S′

k
)

w∗r
n(S′

k
) ` n(S′

1
), . . . , n(S′n)

∨∗r
n(S′

k
) ` n(S′

1
) ∨ . . . ∨ n(S′n)

dr
n(S′

k
) ` Nn(S′

1
)⊗...⊗n(S′n)(x1, . . . , xm)

If c, on the other hand is one of the definitional clauses originating

from the following defining formula:

Def S′ � Nn(S′
1
)⊕...⊕n(S′n)(x1, . . . , xm)↔ n(S′1) ⊕ . . . ⊕ n(S′n)

Then c is one of the following clauses:

• n(S′
1
), . . . , n(S′n) ` Nn(S′

1
)⊕...⊕n(S′n)(x1, . . . , xm)

• Nn(S′
1
)⊕...⊕n(S′n)(x1, . . . , xm) ` n(S′

1
)

• . . .

• Nn(S′
1
)⊕...⊕n(S′n)(x1, . . . , xm) ` n(S′n)

And the definitional D-projections are:
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bϕcDD

NS′
1
⊗...⊗S′n

(x1,...,xm)`n(S′
1
),...,n(S′n)

:

n(S′
1
) ` n(S′

1
) . . . n(S′n) ` n(S′n)

∧∗r
n(S′

1
), . . . , n(S′n) ` n(S′

1
) ∧ . . . ∧ n(S′n)

dr
n(S′

1
), . . . , n(S′n) ` Nn(S′

1
)⊕...⊕n(S′n)(x1, . . . , xm)

bϕcDD

n(S′
k
)`NS′

1
⊗...⊗S′n

(x1,...,xm)
:

n(S′
k
) ` n(S′

k
)

w∗
l

n(S′
1
), . . . , n(S′n) ` n(S′

k
)
∧∗

l
n(S′

1
) ∧ . . . ∧ n(S′n) ` n(S′

k
)

dl
Nn(S′

1
)⊕...⊕n(S′n)(x1, . . . , xm) ` n(S′

k
)

If S′
k

is a negative literal, it is necessary to add negation inferences to

the definitional D-projections above.

Example 4.34 (Definitional D-Projection). The simple D-projections are:

bϕcDD

D`C
:

C ` C wl
C,¬C ` C

∧l
C ∧ ¬C ` C dlD ` C

bϕcDD

D,C`
:

C ` C wl
C,C ` C ¬l

C,¬C,C `
∧l

C ∧ ¬C,C `
dlD,C `

bϕcDD

C`D,C
:

C ` C
C ` C ¬r
` C,¬C

∧r
C ` C,C ∧ ¬C

drC ` C,D

bϕcDD

`E,A
:

A ` A ¬r
` ¬A,A wr
` ¬B,¬A,A

∨r
` ¬B ∨ ¬A,A

dr` E,A

bϕcDD

`E,B
:

B ` B ¬r
` ¬B,B

wr
` ¬B,¬A,B

∨r
` ¬B ∨ ¬A,B

dr` E,B

bϕcDD

E,A,B`
:

B ` B ¬l
¬B,B `

A ` A ¬l
¬A,A `

∨l
¬B ∨ ¬A,B,A `

dlE,B,A `

bϕcDD

F`A
:

A ` A wl
A,B ` A

∧l
A ∧ B ` A dlF ` A

bϕcDD

F`B
:

B ` B wl
A,B ` B

∧l
A ∧ B ` B dlF ` B

bϕcDD

A,B`F
:

A ` A B ` B ∧r
A,B ` A ∧ B

drA,B ` F

bϕcDD

G`F
:

F ` F wl
F,E ` F

∧lF ∧ E ` F dlG ` F

bϕcDD

G`E
:

E ` E wl
F,E ` E

∧lF ∧ E ` E dlG ` E

bϕcDD

F,E`G
:

F ` F E ` E ∧r
F,E ` F ∧ E

drF,E ` G

bϕcDD

D`H
: D ` D wr

D ` G,D
∨r

D ` G ∨D drD ` H

bϕcDD

G`H
:
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G ` G wr
G ` G,D

∨r
G ` G ∨D drG ` H

bϕcDD

H`G,D
: G ` G D ` D ∨l

G ∨D ` G,D
dlH ` G,D

Definition 4.5.4 (Proper D-Projection). Let ϕ be a proof and Sϕ its cut-

pertinent struct. Then, the proper D-projection bϕcDP

`n(Sϕ)
can be constructed

inductively. Let ϕ′ be a subproof of ϕ having ρ as its last inference and

let S′ be the corresponding substruct of Sϕ. The following cases can be

distinguished:

• ρ is an axiom inference: Then ϕ′ is of the form:

ρ
A ` A

– If both occurrences of A are in ΩCP(ϕ) (i.e. they are ancestors of

cut-formulas), then ϕ′′ is defined as:

ρ
A ` A ¬r
` ¬A,A

∨r
` ¬A ∨ A dr
` n(S′)

– If only the occurrence of A in the antecedent is inΩCP(ϕ) (i.e. an

ancestor of a cut-formula), then ϕ′′ is defined as:

ρ
A ` A ¬r
` ¬A,A

– Otherwise, ϕ′′ � ϕ′

• ρ is a n-ary inference (with n ≥ 2): Then ϕ′ is of the form:

ψ′
1

Γ′
1
` ∆′

1
. . .

ψ′n
Γ′n ` ∆

′
n ρ

Γ′ ` ∆′

By induction, ψ′′
k

is of the form:

ψ′′
k

Γ′′
1
` ∆′′

1
, n(S′

ψ′
k

)

where S′
ψ′

k

is the substruct of S′ corresponding to ψ′
k
.
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– ρ is cut-impertinent: Then ϕ′′ is defined as:

ψ′′
1

Γ′′
1
` ∆′′

1
, n(S′

ψ′
1
) . . .

ψ′′n
Γ′′n ` ∆

′′
n , n(S′

ψ′n
)
ρ

Γ′′ ` ∆′′, n(S′
ψ′

1
), . . . , n(S′

ψ′n
)
∨r

Γ′′ ` ∆′′, n(S′
ψ′

1
) ∨ . . . ∨ n(S′

ψ′n
)

dr
Γ′′ ` ∆′′, n(S′)

More informally, after the cut-impertinent inferenceρ, the defin-

ing components of n(S′) are available to be combined disjunc-

tively. By the defining formula of n(S′), a dr inference can be

used to encapsulate the disjunction in the single defined predi-

cate symbol n(S′).

– ρ is cut-pertinent: Then ϕ′′ is defined as:

ψ′′
1

Γ′′
1
` ∆′′

1
, n(S′

ψ′
1
) . . .

ψ′′n
Γ′′n ` ∆

′′
n , n(S′

ψ′n
)
∧r

Γ′′ ` ∆′′, n(S′
ψ′

1
) ∧ . . . ∧ n(S′

ψ′n
)

dr
Γ′′ ` ∆′′, n(S′)

More informally, the cut-pertinent inference ρ can be replaced

by a ∧r inference, which combines the defining components of

n(S′) conjunctively. By the defining formula of n(S′), a dr infer-

ence can be used to encapsulate the conjunction in the single

defined predicate symbol n(S′).

• ρ is a unary inference: Then ϕ′ is of the form:

ψ′
ρ

Γ′ ` ∆′

– ρ is cut-pertinent: then ϕ′′ is defined as:

ψ′′

More informally, ρ is simply skipped.

– ρ is cut-impertinent: then ϕ′′ is defined as:

ψ′′
ρ

Γ′′ ` ∆′′
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More informally, ρ is simply kept and nothing changes, ex-

cept for the downward propagation of changes that occurred in

transforming the proof ψ′ above to ψ′′.

The proper D-projection bϕcDP

`n(Sϕ)
is the final result of this inductive

construction, i.e. it is ϕ′′ when the subproof ϕ′ coincides with the whole

proof ϕ.

Example 4.35 (Proper D-Projection). Consider again the proofϕ from previous

examples:

A ` A B ` B
∧1

rA,B ` A ∧ B
∧l

A ∧ B ` A ∧ B

B ` B A ` A
∧2

rA,B ` B ∧A
∧l

A ∧ B ` B ∧ A
cut3

A ∧ B ` B ∧ A
C ` C C ` C

cut4
C ` C ∨5

l(A ∧ B) ∨ C ` B ∧ A,C

Below the inductive construction of the proper D-projection bϕcDD

`H
is shown

step-by-step. An informal skeleton of the original proof is shown in every step,

just to emphasize that the construction follows the structure of the original proof.

A ` A B ` B
∧1

r

∧l

B ` B A ` A
∧2

r

∧l

cut3 C ` C C ` C
cut4

∨5
l

Some of the axiom sequents contain cut-pertinent formula occurrences in the

antecedents. It is necessary, therefore, to add ¬r inferences to move these formula

occurrences to the consequents:

A ` A B ` B
∧1

r

∧l

B ` B ¬r
` ¬B,B

A ` A ¬r
` ¬A,A

∧2
r

∧l

cut3
C ` C

C ` C ¬r
` ¬C,C

cut4

∨5
l

∧1
r and cut4 are cut-pertinent inferences, and hence they must be replaced by

∧r inferences followed by appropriate dr inferences. ∧2
r , on the other hand, is a

cut-impertinent inference. Therefore, a ∨r inference and a dr inference must be

added after ∧2
r :
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A ` A B ` B
∧

A,B ` A ∧ B
drA,B ` F
∧l

B ` B ¬r
` ¬B,B

A ` A ¬r
` ¬A,A

∧2
r` ¬B,¬A,B ∧ A

∨r
` ¬B ∨ ¬A,B ∧A

dr` E,B ∧ A
∧l

cut3

C ` C
C ` C ¬r
` ¬C,C

∧r
C ` C ∧ ¬C,C

drC ` D,C
∨5

l

The leftmost ∧l unary inference is cut-impertinent, and hence must be kept.

The rightmost ∧l unary inference, on the other hand, is cut-impertinent, and

hence must be skipped.

A ` A B ` B
∧

A,B ` A ∧ B
drA,B ` F
∧l

A ∧ B ` F

B ` B ¬r
` ¬B,B

A ` A ¬r
` ¬A,A

∧2
r` ¬B,¬A,B ∧ A

∨r
` ¬B ∨ ¬A,B ∧A

dr` E,B ∧ A
cut3

C ` C
C ` C ¬r
` ¬C,C

∧r
C ` C ∧ ¬C,C

drC ` D,C
∨5

l

The procedure for cut3 is analogous. It must be replaced by ∧r and dr:

A ` A B ` B
∧

A,B ` A ∧ B
drA,B ` F
∧l

A ∧ B ` F

B ` B ¬r
` ¬B,B

A ` A ¬r
` ¬A,A

∧2
r` ¬B,¬A,B ∧ A

∨r
` ¬B ∨ ¬A,B ∧A

dr` E,B ∧ A
∧r

A ∧ B ` F ∧ E,B ∧A
drA ∧ B ` G,B ∧ A

C ` C
C ` C ¬r
` ¬C,C

∧r
C ` C ∧ ¬C,C

drC ` D,C
∨5

l

Finally, ∨r and dr are added after the cut-impertinent ∨5
l

inference, thus

resulting in the following proper D-projection:

A ` A B ` B ∧r
A,B ` A ∧ B

drA,B ` F
∧l

A ∧ B ` F

B ` B ¬r
` ¬B,B

A ` A ¬r
` ¬A,A

∧r
` ¬B,¬A,B ∧A

∨r
` ¬B ∨ ¬A,B ∧ A

dr` E,B ∧ A
∧r

A ∧ B ` F ∧ E,B ∧ A
drA ∧ B ` G,B ∧ A

C ` C
C ` C ¬r
` ¬C,C

∧r
C ` C ∧ ¬C,C

drC ` D,C
∨l

(A ∧ B) ∨ C ` G,D,B ∧ A,C
∨r

(A ∧ B) ∨ C ` G ∨D,B ∧A,C
dr(A ∧ B) ∨ C ` H,B ∧ A,C
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4.6 CEResDW

Although the number of defined symbols introduced by the construction

of definitional clause sets is only linearly bounded with respect to the

size of the structs, it is still far from optimal. A technique that combines

ideas from swapped clause sets and from definitional clause sets can be

used to significantly reduce this number. Once again, the difficulty lies in

the projections. As in the case of definitional clause sets, a new notion of

projection has to be developed.

4.6.1 Cut-Pertinent Swapped Definitional Clause Set

Swapped definitional clause sets are obtained by a straightforward com-

bination of the normalizations used for swapped clause sets and for def-

initional clause sets. Initially, a restricted form of ;⊕⊗W
-normalization

(namely ;⊕⊗DWW
) can be applied as long as no duplications of substructs

occur. Subsequently, a limited form of ;⊕⊗D
(namely ;⊕⊗DWD

) can be ap-

plied with the restriction that only substructs that are ⊕-junctions nested

within ⊗-junctions are replaced by new defined predicates.

Definition 4.6.1 (;⊕⊗DW
). In the struct rewriting rules below, let ρ be

the inference in ϕ corresponding to ⊗ρ. For the rewriting rules to be

applicable, Sk and S must contain at least one occurrence fromΩρ(ϕ) each

(i.e. there is an atomic substruct S′
k

of Sk such that S′
k
∈ Ωρ(ϕ))r, and

S1, . . . , Sn and Sl and Sr should not contain any occurrence from Ωρ(ϕ).

Moreover, an innermost rewriting strategy is enforced: only minimal

reducible substructs (i.e. structs having no reducible proper substruct)

can be rewritten.

S⊗(S1 ⊕ . . . ⊕ Sk ⊕ . . . ⊕ Sn) ;⊕⊗DWW
S1 ⊕ . . . ⊕ (S⊗Sk) ⊕ . . . ⊕ Sn

(S1 ⊕ . . . ⊕ Sk ⊕ . . . ⊕ Sn)⊗S ;⊕⊗DWW
S1 ⊕ . . . ⊕ Sn ⊕ (Sk⊗S) ⊕ . . . ⊕ Sn

S⊗Sr ;⊕⊗DWW
Sr Sl⊗S ;⊕⊗DWW

Sl S⊕Sr ;⊕⊗DWW
Sr Sl⊕S ;⊕⊗DWW

Sl

r An atomic substruct is a formula occurrence. Therefore it makes sense to talk about perti-
nence of atomic substructs in Ωρ(ϕ), even though it might look strange at first.
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Sl⊗Sr ;⊕⊗DWW
Sl Sl⊗Sr ;⊕⊗DWW

Sr Sl⊕Sr ;⊕⊗DWW
Sl Sl⊕Sr ;⊕⊗DWW

Sr

In the struct rewriting rule below, C[ ] is a struct context (i.e. C[S]

indicates that the struct S is a substruct of a struct C[S]). For the rewriting

rule to be applicable, S ≡ S1⊕ . . .⊕Sn must be a ⊗-junct in C[S]. Moreover,

an innermost rewriting strategy is enforced: S ≡ S1 ⊕ . . . ⊕ Sn can be

replaced by NS(x1, . . . , xm) only if S has no substruct S′ that is a ⊗-junction

of ⊕-junctions (if this were the case, then S′ must be replaced before).

C[S] ≡ C[S1 ⊕ . . . ⊕ Sn]

;⊕⊗DWD
C[NS(x1, . . . , xm)] ⊕ (NS(x1, . . . , xm)↔ S′

1
⊕ . . . ⊕ S′n)

The relation ;⊕⊗DW
is the composition of ;

∗
⊕⊗DWW

and ;
∗
⊕⊗DWD

(i.e.

S ;⊕⊗DW
S∗ if and only if there exists S′ such that S ;

∗
⊕⊗DWW

S′ and

S′ ;∗
⊕⊗DWD

S∗).

The ⊗-junctions of a struct in ;⊕⊗DW
can be classified in the following

way:

• If the ⊗-junction originates from a defining equation, it is called a

definitional ⊗-junction.

• Otherwise:

– If the ⊗-junction does not contain new defined predicate sym-

bols, it is called pure.

– Otherwise, it is called mixed.

Example 4.36 (⊕⊗DW-Normalization). Let ϕ be the proof below:

A ` A B ` B
∧1

rA,B ` A ∧ B
∧l

A ∧ B ` A ∧ B

B ` B A ` A
∧2

rA,B ` B ∧ A
∧l

A ∧ B ` B ∧ A
cut3

A ∧ B ` B ∧ A
C ` C C ` C

cut4
C ` C ∨5

l(A ∧ B) ∨ C ` B ∧A,C

Its cut-pertinent struct is:

Sϕ ≡ ((A ⊕1 B) ⊕3 (¬B ⊗2 ¬A)) ⊗5 (C ⊕4 ¬C)

Considering that {A,B,C} ⊂ Ω∨5
l
(ϕ) and {A,B,C} ∩Ω∨5

l
(ϕ) = ∅, the struct

can be normalized in the way shown below:
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Sϕ ≡ ((A ⊕1 B) ⊕3 (¬B ⊗2 ¬A)) ⊗5 (C ⊕4 ¬C)

;⊕⊗DWW
((A ⊕1 B) ⊗5 (C ⊕4 ¬C)) ⊕3 (¬B ⊗2 ¬A)

;⊕⊗DWW
((((A ⊕1 B) ⊗5 C) ⊕4 ¬C)) ⊕3 (¬B ⊗2 ¬A)

;⊕⊗DWD
(((DA⊕B ⊗

5 C) ⊕4 ¬C)) ⊕3 (¬B ⊗2 ¬A) ⊕ (DA⊕B ↔ (A ⊕1 B))

≡ (DA⊕B ⊗
5 C) ⊕4 ¬C ⊕3 (¬B ⊗2 ¬A)⊕

(¬DA⊕B ⊗ A) ⊕ (¬DA⊕B ⊗ B) ⊕ (DA⊕B ⊗ (¬A ⊗ ¬B))

(¬DA⊕B ⊗ A), (¬DA⊕B ⊗ B) and (DA⊕B ⊗ (¬A ⊗ ¬B)) are definitional ⊗-

junctions. ¬C and (¬B ⊗2 ¬A) are pure ⊗-junctions. And, finally, (DA⊕B ⊗
5 C)

is a mixed ⊗-junction.

Definition 4.6.2 (Cut-pertinent Swapped Definitional Clause Set). A cut-

pertinent definitional clause set of a proof ϕ is:

CD
ϕ|S′ � cl(S)

where S′ is a ;⊕⊗DWW
-normal-form of Sϕ and S′ ;∗

⊕⊗DWD
S.

The clauses corresponding to definitional ⊗-junctions are called defi-

nitional clauses. The clauses corresponding to pure ⊗-junctions are called

pure clauses. The clauses corresponding to mixed ⊗-junctions are called

mixed clauses.

If the ;⊕⊗DWW
-normal-form S′ is unique or clear from the context, then

it can be omitted. The swapped definitional clause set is then denoted

simply as CD
ϕ .

Example 4.37 (Swapped Definitional Clause Set). Let ϕ be the proof in

Example 4.25. Then one of its swapped definitional clause sets is:

CD
ϕ ≡





` DA⊕B,C ;

C ` ;

B,A ` ;

DA⊕B ` A ;

DA⊕B ` B ;

A,B ` DA⊕B





The clauses DA⊕B ` A, DA⊕B ` B and A,B ` DA⊕B are definitional clauses.

C ` and B,¬A ` are pure clauses. And ` DA⊕B,C is a mixed clause.
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4.6.2 Projections

While construction of swapped clause sets is reasonably straightforward,

the construction of projections for some of the clauses presents some diffi-

culties. As in the case of definitional clause sets, some clauses of swapped

definitional clause sets are merely definitional, and hence corresponding

definitional D-projections can be easily constructed. Other clauses are

pure in the sense that they do not contain any defined predicate symbol,

and hence O-Projections can be constructed for such clauses. However,

there are mixed clauses for which none of the previously defined notions

of projection work, because these clauses contain a mix of defined and

undefined predicate symbols.

DW-Projections

The new notion of projection required by mixed clauses is called mixed

DW-Projection (Definition 4.6.7) and it is essentially a combination of O-

projection and proper D-projection. It requires the auxiliary concepts of

encapsulated formula occurrences (Definition 4.6.3) and encapsulated in-

ferences (Definition 4.6.4). Roughly, constructing a mixed DW-projection

is initially similar to constructing an O-projection, taking care to include

encapsulated formula occurrences in the slice. Later cut-pertinent infer-

ences are replaced by∧r and dr inferences, similarly to what is done during

the construction of proper D-projections, in order to re-encapsulate the

encapsulated formula occurrences into the defined predicate symbol.

Definition 4.6.3 (Encapsulated Formula Occurrences). Let S be a struct

and S′ be a substruct of S. Let NS′ be the defined predicate for S′. Then,

the encapsulated occurrences of NS′ are all the atomic occurrences of S′.

Example 4.38 (Encapsulated Formula Occurrences). The encapsulated for-

mula occurrences of the defined predicate DA⊕B of the ;⊕⊗DW
-normal-form of the

struct Sϕ shown in Example 4.36 are: A and B.

Definition 4.6.4 (Encapsulated Inferences). Let S be a cut-pertinent struct

of a proof ϕ and S′ be a substruct of S. Let NS′ be the defined predicate

for S′. Then, every inference ρ of ϕwhich corresponds to a connective ⊕ρ
or ⊗ρ in S′ or that is an axiom inference having a formula occurrence of S′

in its conclusion sequent is an encapsulated inference of NS′ .

Example 4.39 (Encapsulated Inferences). The encapsulated inferences of the

defined predicate DA⊕B of the ;⊕⊗DW
-normal-form of the struct Sϕ shown in
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Example 4.36 are: ∧1
r and the axiom inferences having A ` A and B ` B as

conclusion sequents.

Definition 4.6.5 (Definitional DW-Projection). Let ϕ be a proof and c a

definitional clause in CD
ϕ|S

. Then the definitional DW-projection of ϕ with

respect to c is constructed in the same way as a definitional D-projection

and thus simply defined as:

bϕcDWD
c � bϕcDD

c

Definition 4.6.6 (Pure DW-Projection). Letϕbe a proof and c a pure clause

in CD
ϕ|S

. Then the pure DW-projection of ϕ with respect to c is constructed

in the same way as a O-projection and thus simply defined as:

bϕcDWD
c � bϕcOc

Definition 4.6.7 (Mixed DW-Projection). Let ϕ be a proof and c a mixed

clause in CD
ϕ|S

. Let ΩE and ΥE be the sets of, respectively, encapsulated

formula occurrences and encapsulated inferences of defined predicates

occurring in c. Let Ωc be the set of undefined formula occurrences in

c. Then the mixed DW-projection of ϕ with respect to c can be computed

according to the following steps:

1. Construct ϕ1 � NϕO{ΩE∪Ωc}.

2. Replace the inferences of ΥE in ϕ1 by ¬r, ∧r, ∨r and dr (analogously

to what is done in the construction of proper D-projections). Let ϕ2

be the resulting proofoid.

3. Construct ϕ3 � Y
ΩCP(ϕ2)
⊕ (ϕ2) by replacing the cut-pertinent inferences

of ϕ2 by Y-inferences.

4. Constructϕ4 � Wfix(ϕ3) by fixing broken inferences with weakening.

5. Finally, construct the mixed DW-projection bϕcDWM
c � ~ϕ4� by elimi-

nating the Y-inferences from ϕ4.

Example 4.40 (Mixed DW-Projection). Let ϕ be the proof shown in Example

4.36, which is displayed again for convenience below:

A ` A B ` B
∧1

rA,B ` A ∧ B
∧l

A ∧ B ` A ∧ B

B ` B A ` A
∧2

rA,B ` B ∧A
∧l

A ∧ B ` B ∧ A
cut3

A ∧ B ` B ∧ A
C ` C C ` C

cut4
C ` C ∨5

l(A ∧ B) ∨ C ` B ∧ A,C
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The first step in the construction of the mixed DW-projection bϕcDWM

`DA⊕B,C
is

the slicing with respect to ΩE ∪Ωc whereΩE = {A,B} and Ωc = {C}:

A ` A B ` B
∧1

rA,B ` A ∧ B
∧l

A ∧ B ` A ∧ B

` `
Y

`
Y

`
Y

A ∧ B ` A ∧ B
C ` C `

Y
C ` C ∨5

l(A ∧ B) ∨ C ` A ∧ B, C

The second step is the introduction of definition inferences, resulting in the

proofoid ϕ2 below:

A ` A B ` B ∧r
A,B ` A ∧ B

drA,B ` DA⊕B ∧l
A ∧ B ` DA⊕B

` `
Y

`
Y

`
Y

A ∧ B ` DA⊕B

C ` C `
Y

C ` C
∨5

l(A ∧ B) ∨ C ` DA⊕B, C

Subsequently, cut-pertinent inferences ofϕ2 should be replaced by Y-inferences.

However, sinceϕ2 has no cuts, there is nothing to be replaced, and henceϕ3 = ϕ2.

Subsequently, broken inferences of ϕ3 should be W-fixed. However, there are no

broken inferences in ϕ3. Therefore, only the last step of eliminating Y-inferences

remains and its result is the mixed DW-projection bϕcDWM

`DA⊕B,C
shown below:

A ` A B ` B ∧r
A,B ` A ∧ B

drA,B ` DA⊕B ∧l
A ∧ B ` DA⊕B C ` C

∨5
l(A ∧ B) ∨ C ` DA⊕B,C

4.7 CERes-Normal-Forms

The refutation of a clause set and the projections of a (skolemization of

a) proof with arbitrary cuts can be combined to produce a new proof

whose cuts are atomic and thus inessential. This combination procedure

is described in detail in Definition 4.7.1.

Definition 4.7.1 (CERes-Normal-Form).

The CERes-normal-form CERes(ϕ, δ) of a proof ϕ with respect to a refu-
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tation δ of a cut-pertinent clause set Cϕ′ of the skolemizations ϕ′ of ϕ is

constructed according to the following steps:

1. δ̂ is obtained from δ by replacing each initial inference by the corre-

sponding projection.

2. Let σ1, . . . , σn be the unifiers of each resolution inference in δ and let

σ � σ1 . . . σn. Then ϕ̃′ is obtained from δ̂σ by replacing all resolution

inferences by atomic cuts and all factoring inferences by contraction

inferences.

3. In general, the end-sequent of ϕ̃′ can have a different number of

copies (even zero) of each formula of the end-sequent of ϕ′. There-

fore, ϕ′′ is constructed by appending weakening and contraction

inferences to the end of ϕ̃′, so that ϕ′′ has the same end-sequent as

ϕ′.

4. Finally, CERes(ϕ, δ) is constructed by deskolemizing ϕ′′ so that the

end-sequent of CERes(ϕ, δ) is equal to the end-sequent of ϕ.

Moreover, subscripts and superscripts are used to explicitly indicate

the kind of clause set and the kind of projections that have been used:

• CEResS
S(ϕ, δ) uses the standard clause set and S-projections.

• CEResO
S (ϕ, δ) uses the standard clause set and O-projections.

• CEResS
W(ϕ, δ) uses a swapped clause set and S-projections.

• CEResO
W(ϕ, δ) uses a swapped clause set and O-projections.

• CEResS
P(ϕ, δ) uses the profile clause set and S-projections.

• CEResO
P (ϕ, δ) uses the profile clause set and O-projections.

• CEResD
D(ϕ, δ) uses the definitional clause set and D-projections.

• CEResDW
DW(ϕ, δ) uses the swapped definitional clause set and DW-

projections.

s In general, skolemization and deskolemization of proofs are not unique, since there are
various alternative algorithms [8]. Nevertheless, for simplicity, it is assumed here that a fixed
deterministic algorithm is used, with the respect to which every proof has a unique skolemization
and a unique deskolemization. Consequently, the CERes-normal-form of a proof ϕ is indeed
determined by the proof ϕ itself and by a refutation δ of its clause set.
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Example 4.41 (CEResS
S-Normal-Form). Let ϕ be the proof shown in Example

4.1. Its standard cut-pertinent clause set, as shown in Example 4.3 is:

CS
ϕ ≡ {` A,C ; C ` A ; ` B,C ; C ` B ; B,A ` C ; B,A,C `}

Let δ be the following refutation of CS
ϕ:

` A,C C ` A
r

` A,A
fr

` A

` B,C C ` B
r

` B,B
fr

` B

B,A ` C C,B,A `
r

B,A,B,A `
fr

B,A,B `
fr

A,B `
r

A ` r
`

Consider the S-projections bϕcS
`A,C

, bϕcS
`B,C

, bϕcS
C`A

, bϕcS
C`B

, bϕcS
B,A`C

and

bϕcS
B,A,C`

shown in Example 4.5. Then, the result of replacing all initial inferences

of δ by the corresponding projections and replacing resolution inferences by

atomic cuts and factoring inferences by contraction inferences is ϕ̃ shown below:

bϕcS
`A,C

Γ ` ∆,A,C

bϕcS
C`A

C, Γ ` ∆,A
cut

Γ, Γ ` ∆,∆,A,A
cr

Γ, Γ ` ∆,∆,A

bϕcS
`B,C

Γ ` ∆,B,C

bϕcS
C`B

C, Γ ` ∆,B
cut

Γ, Γ ` ∆,∆,B,B
cr

Γ, Γ ` ∆,∆,B

bϕcS
B,A`C

B,A,Γ ` ∆,C

bϕcS
B,A,C`

C,B,A,Γ ` ∆
cut

B,A,B,A, Γ,Γ ` ∆,∆
cr

B,A,B,Γ, Γ ` ∆,∆
cr

A,B,Γ,Γ ` ∆,∆
cut

A,Γ, Γ,Γ, Γ ` ∆,∆,∆,∆
cut

Γ,Γ, Γ,Γ, Γ, Γ ` ∆,∆,∆,∆,∆,∆

Finally, CEResS
S(ϕ, δ) shown below is obtained by adding contraction infer-

ences to the bottom of the proof:

bϕcS
`A,C

Γ ` ∆,A,C

bϕcS
C`A

C, Γ ` ∆,A
cut

Γ, Γ ` ∆,∆,A,A
cr

Γ, Γ ` ∆,∆,A

bϕcS
`B,C

Γ ` ∆,B,C

bϕcS
C`B

C, Γ ` ∆,B
cut

Γ, Γ ` ∆,∆,B,B
cr

Γ, Γ ` ∆,∆,B

bϕcS
B,A`C

B,A,Γ ` ∆,C

bϕcS
B,A,C`

C,B,A,Γ ` ∆
cut

B,A,B,A, Γ,Γ ` ∆,∆
cr

B,A,B,Γ, Γ ` ∆,∆
cr

A,B,Γ,Γ ` ∆,∆
cut

A,Γ, Γ,Γ, Γ ` ∆,∆,∆,∆
cut

Γ,Γ, Γ,Γ, Γ, Γ ` ∆,∆,∆,∆,∆,∆
c∗

Γ ` ∆
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Example 4.42 (CEResO
S -Normal-Form). Consider again the proofϕ shown in Example 4.1 and its standard cut-pertinent clause

set, shown in Example 4.3. Let δ be the refutation shown in Example 4.41.

Consider the O-projections bϕcO
`A,C

, bϕcO
`B,C

, bϕcO
C`A

, bϕcO
C`B

, bϕcO
B,A`C

and bϕcO
B,A,C`

shown in Example 4.15. Then, the result of

replacing all initial inferences of δ by the corresponding projections is δ̂ shown below:

bϕcO
`A,C

(A ∧ B) ∨ C ` A,C

bϕcO
C`A

(A ∧ B) ∨ C,C ` A,C
r

(A ∧ B) ∨ C, (A ∧ B) ∨ C ` A,A,C
fr

(A ∧ B) ∨ C, (A ∧ B) ∨ C ` A,C

bϕcO
`B,C

(A ∧ B) ∨ C ` B,C

bϕcO
C`B

(A ∧ B) ∨ C,C ` B,C
r

(A ∧ B) ∨ C, (A ∧ B) ∨ C ` B,B,C
fr

(A ∧ B) ∨ C, (A ∧ B) ∨ C ` B,C

bϕcO
B,A`C

(A ∧ B) ∨ C,A,B ` B ∧A,C

bϕcO
B,A,C`

C, (A ∧ B) ∨ C,A,B ` B ∧A,C
r

A,B,A,B, (A ∧ B) ∨ C, (A ∧ B) ∨ C ` B ∧ A,B ∧A,C
fr

A,B,B, (A ∧ B) ∨ C, (A ∧ B) ∨ C ` B ∧ A,B ∧A,C
fr

A,B, (A ∧ B) ∨ C, (A ∧ B) ∨ C ` B ∧ A,B ∧A,C
r

A, (A ∧ B) ∨ C, (A ∧ B) ∨ C, (A ∧ B) ∨ C, (A ∧ B) ∨ C ` B ∧A,B ∧ A,C
r

(A ∧ B) ∨ C, (A ∧ B) ∨ C, (A ∧ B) ∨ C, (A ∧ B) ∨ C, (A ∧ B) ∨ C, (A ∧ B) ∨ C ` B ∧A,B ∧ A,C,C

Then ϕ̃ shown below is the result of replacing resolution inferences by atomic cuts and factoring inferences by contraction

inferences.

bϕcO
`A,C

(A ∧ B) ∨ C ` A,C

bϕcO
C`A

(A ∧ B) ∨ C,C ` A,C
cut

(A ∧ B) ∨ C, (A ∧ B) ∨ C ` A,A,C
cr

(A ∧ B) ∨ C, (A ∧ B) ∨ C ` A,C

bϕcO
`B,C

(A ∧ B) ∨ C ` B,C

bϕcO
C`B

(A ∧ B) ∨ C,C ` B,C
cut

(A ∧ B) ∨ C, (A ∧ B) ∨ C ` B,B,C
cr

(A ∧ B) ∨ C, (A ∧ B) ∨ C ` B,C

bϕcO
B,A`C

(A ∧ B) ∨ C,A,B ` B ∧ A,C

bϕcO
B,A,C`

C, (A ∧ B) ∨ C,A,B ` B ∧ A,C
cut

A,B,A,B, (A ∧ B) ∨ C, (A ∧ B) ∨ C ` B ∧A,B ∧ A,C
cr

A,B,B, (A ∧ B) ∨ C, (A ∧ B) ∨ C ` B ∧A,B ∧ A,C
cr

A,B, (A ∧ B) ∨ C, (A ∧ B) ∨ C ` B ∧A,B ∧ A,C
cut

A, (A ∧ B) ∨ C, (A ∧ B) ∨ C, (A ∧ B) ∨ C, (A ∧ B) ∨ C ` B ∧ A,B ∧A,C
cut

(A ∧ B) ∨ C, (A ∧ B) ∨ C, (A ∧ B) ∨ C, (A ∧ B) ∨ C, (A ∧ B) ∨ C, (A ∧ B) ∨ C ` B ∧ A,B ∧A,C,C
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Finally CEResO
S (ϕ, δ) shown below is obtained by adding contraction inferences to the bottom of the proof:

bϕcO
`A,C

(A ∧ B) ∨ C ` A,C

bϕcO
C`A

(A ∧ B) ∨ C,C ` A,C
cut

(A ∧ B) ∨ C, (A ∧ B) ∨ C ` A,A,C
cr

(A ∧ B) ∨ C, (A ∧ B) ∨ C ` A,C

bϕcO
`B,C

(A ∧ B) ∨ C ` B,C

bϕcO
C`B

(A ∧ B) ∨ C,C ` B,C
cut

(A ∧ B) ∨ C, (A ∧ B) ∨ C ` B,B,C
cr

(A ∧ B) ∨ C, (A ∧ B) ∨ C ` B,C

bϕcO
B,A`C

(A ∧ B) ∨ C,A,B ` B ∧A,C

bϕcO
B,A,C`

C, (A ∧ B) ∨ C,A,B ` B ∧A,C
cut

A,B,A,B, (A ∧ B) ∨ C, (A ∧ B) ∨ C ` B ∧ A,B ∧A,C
cr

A,B,B, (A ∧ B) ∨ C, (A ∧ B) ∨ C ` B ∧ A,B ∧A,C
cr

A,B, (A ∧ B) ∨ C, (A ∧ B) ∨ C ` B ∧ A,B ∧A,C
cut

A, (A ∧ B) ∨ C, (A ∧ B) ∨ C, (A ∧ B) ∨ C, (A ∧ B) ∨ C ` B ∧A,B ∧ A,C
cut

(A ∧ B) ∨ C, (A ∧ B) ∨ C, (A ∧ B) ∨ C, (A ∧ B) ∨ C, (A ∧ B) ∨ C, (A ∧ B) ∨ C ` B ∧A,B ∧ A,C,C
c∗

(A ∧ B) ∨ C ` B ∧A,C

Comparing CEResO
S (ϕ, δ) shown above with CEResS

S(ϕ, δ) shown in Example 4.41, it is clear that the use of O-projections

results in smaller proofs, mainly because there are fewer redundant weakening and contraction inferences.
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Example 4.43 (CEResO
W-Normal-Form). Consider now the swapped clause set

of the proof ϕ of Example 4.1:

CW
ϕ = { ` A,C ; ` B,C ; C ` ; B,A ` }

A refutation δ of CW
ϕ is shown below:

` A,C
` B,C B,A `

r
A ` C

r
` C,C

fr
` C C ` r

`

Consider the O-projections bϕcO
`A,C

, bϕcO
`B,C

, bϕcO
C`

, bϕcO
B,A`

shown in Example

4.27. Then, the result of replacing all initial inferences of δ by the corresponding

projections is δ̂ shown below:

A ` A wl
A,B ` A

∧l
A ∧ B ` A C ` C

∨l
(A ∧ B) ∨ C ` A,C

B ` B wl
A,B ` B

∧l
A ∧ B ` B C ` C

∨l
(A ∧ B) ∨ C ` B,C

B ` B A ` A
∧r

A,B ` B ∧A
r

(A ∧ B) ∨ C,A ` B ∧ A,C
r

(A ∧ B) ∨ C, (A ∧ B) ∨ C ` B ∧ A,C,C
fr

(A ∧ B) ∨ C, (A ∧ B) ∨ C ` B ∧ A,C C ` C
r

(A ∧ B) ∨ C, (A ∧ B) ∨ C ` B ∧A,C

Then ϕ̃ shown below is the result of replacing resolution inferences by atomic

cuts and factoring inferences by contraction inferences.

A ` A wl
A,B ` A

∧l
A ∧ B ` A C ` C

∨l
(A ∧ B) ∨ C ` A,C

B ` B wl
A,B ` B

∧l
A ∧ B ` B C ` C

∨l
(A ∧ B) ∨ C ` B,C

B ` B A ` A
∧r

A,B ` B ∧A
cut

(A ∧ B) ∨ C,A ` B ∧ A,C
cut

(A ∧ B) ∨ C, (A ∧ B) ∨ C ` B ∧ A,C,C
cr

(A ∧ B) ∨ C, (A ∧ B) ∨ C ` B ∧ A,C C ` C
cut

(A ∧ B) ∨ C, (A ∧ B) ∨ C ` B ∧A,C

Finally CEResO
W(ϕ, δ) shown below is obtained by adding contraction infer-

ences to the bottom of the proof:

A ` A wl
A,B ` A

∧l
A ∧ B ` A C ` C

∨l
(A ∧ B) ∨ C ` A,C

B ` B wl
A,B ` B

∧l
A ∧ B ` B C ` C

∨l
(A ∧ B) ∨ C ` B,C

B ` B A ` A
∧r

A,B ` B ∧A
cut

(A ∧ B) ∨ C,A ` B ∧ A,C
cut

(A ∧ B) ∨ C, (A ∧ B) ∨ C ` B ∧ A,C,C
cr

(A ∧ B) ∨ C, (A ∧ B) ∨ C ` B ∧ A,C C ` C
cut

(A ∧ B) ∨ C, (A ∧ B) ∨ C ` B ∧A,C
cl

(A ∧ B) ∨ C ` B ∧A,C
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Comparing CEResO
W(ϕ, δ) shown above with CEResS

S(ϕ, δ) shown in Exam-

ple 4.41 and CEResO
S (ϕ, δ), it is clear that the use of swapped clause sets and

O-projections results in smaller proofs.

Example 4.44 (CEResO
P -Normal-Form). For the proof ϕ of Example 4.1, CP

ϕ =

CW
ϕ and CEResO

P (ϕ, δ) = CEResO
W(ϕ, δ), since there are no degenerate inferences.

Example 4.45 (CEResD
D-Normal-Form). Consider the definitional clause set

CD
ϕ of the proof ϕ shown in Example 4.33:

D ` C

E,B,A `

F ` A

G ` F

H ` G,D

` H

D,C `

` E,B

F ` B

G ` E

G ` H

C ` D,C

` E,A

A,B ` F

E, F ` G

D ` H
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The shortest refutation δ of CD
ϕ is shown below:

` H

H ` G,D

G ` F

G ` E

F ` A

F ` B E,B,A `
r

F,E,A `
r

F,F,E `
fl

F,E `
r

G,F `
r

G,G `
fl

G `
r

H ` D

D ` C D,C `
r

D,D `
fl

D ` r
H ` r

`

By using the proper D-projection shown in Example 4.35 and definitional D-projections shown in Example 4.34, CEResD
D(ϕ, δ)

is:

A ` A B ` B
∧r

A,B ` A ∧ B
dr

A,B ` F
∧l

A ∧ B ` F

B ` B
¬r

` ¬B,B

A ` A
¬r

` ¬A,A
∧r

` ¬B,¬A,B ∧ A
∨r

` ¬B ∨ ¬A,B ∧ A
dr

` E,B ∧ A
∧r

A ∧ B ` F ∧ E,B ∧ A
dr

A ∧ B ` G,B ∧ A

C ` C

C ` C
¬r

` ¬C,C
∧r

C ` C ∧ ¬C,C
dr

C ` D,C
∨l

(A ∧ B) ∨ C ` G,D,B ∧ A,C
∨r

(A ∧ B) ∨ C ` G ∨D,B ∧ A,C
dr

(A ∧ B) ∨ C ` H,B ∧ A,C

bϕcDD

H`G,D

bϕcDD

G`F

bϕcDD

G`E

bϕcDD

F`A

bϕcDD

F`B
bϕcDD

E,B,A`
cut

F,E,A `
cut

F,F,E `
cl

F,E `
cut

G,F `
cut

G,G `
cl

G `
cut

H ` D

bϕcDD

D`C
bϕcDD

D,C`
cut

D,D `
cl

D `
cut

H `
cut

(A ∧ B) ∨ C ` B ∧ A,C
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Example 4.46 (CEResDW
DW-Normal-Form). Consider again the swapped definitional clause set of the proof ϕ shown in Example

4.37:

CD
ϕ ≡ {` DA⊕B,C ; C ` ; B,A ` ; DA⊕B ` A ; DA⊕B ` B ; A,B ` DA⊕B}

The shortest refutation δ of CD
ϕ is shown below:

` DA⊕B,C C `
r

` DA⊕B

DA⊕B ` A
DA⊕B ` B B,A `

r
DA⊕B,A ` r

DA⊕B,DA⊕B ` flDA⊕B ` r
`

By using the mixed DW-projection shown in Example 4.40, pure DW-projections shown in Example 4.15 and definitional

DW-projections shown in Example 4.34, CEResDW
DW(ϕ, δ) is:

A ` A B ` B ∧r
A,B ` A ∧ B

drA,B ` DA⊕B ∧l
A ∧ B ` DA⊕B C ` C

∨5
l(A ∧ B) ∨ C ` DA⊕B,C C ` C

cut
(A ∧ B) ∨ C ` DA⊕B,C

A ` A wl
A,B ` A

∧l
A ∧ B ` A dlDA⊕B ` A

B ` B wl
A,B ` B

∧l
A ∧ B ` B dlDA⊕B ` B

B ` B A ` A ∧r
B,A ` B ∧ A

cut
DA⊕B,A ` B ∧ A

cut
DA⊕B,DA⊕B ` B ∧ A

cl
DA⊕B ` B ∧ A

cut
(A ∧ B) ∨ C ` B ∧ A,C
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4.8 CERes Ignoring Atomic Cuts

If CERes is applied to a proof containing only atomic cuts, CERes still

transforms the proof into a new proof containing only atomic cuts, but

with additional structural inferences and with the atomic cuts located

in the bottom of the proof. This is clearly non-ideal, because the proof

could be simply left unchanged. More generally, if CERes is applied

to a proof containing complex cuts and atomic cuts, CERes unnecessar-

ily includes the atomic cuts in the process of reduction, even though

atomic cuts cannot be reduced further. The inclusion of atomic cuts re-

sults in larger clause sets that are more costly to refute, and in normal

forms with possibly additional structural inferences. This indicates that

there is a very simple and evident improvement of the CERes method

that has been thoroughly overlooked so far: instead of distinguishing

between cut-pertinent and cut-impertinent formula occurrences (i.e. be-

tween ancestors and non-ancestors of all cut formula occurrences) and

cut-pertinent and cut-impertinent inferences (i.e inferences that operate

on the ancestors and on the non-ancestors of cut formula occurrences),

it suffices to distinguish between ancestors of complex cut formula occur-

rences and ancestors of either occurrences in the end-sequent or of atomic

cut-formula occurrences.

Definition 4.8.1 (Complex-Cut-Pertinent and Complex-Cut-Impertinent

Occurrences). A formula occurrence is complex-cut-pertinent if and only

if it is an ancestor of a non-atomic cut formula occurrence. The set of

complex-cut-pertinent formula occurrences of a proof ϕ is denoted ΩCCP(ϕ).

A formula occurrence is complex-cut-impertinent if and only if it is not

complex-cut-pertinent. The set of complex-cut-impertinent formula occur-

rences of a proof ϕ is denotedΩCCI(ϕ).

Definition 4.8.2 (Complex-Cut-Pertinence). An inference ρ is complex-cut-

pertinent if and only if ρ is ΩCCP(ϕ)-pertinent.

An inference ρ is complex-cut-impertinent if and only if ρ is ΩCCI(ϕ)-

pertinent.

Definition 4.8.3 (CERes-Normal-Form Ignoring Atomic Cuts).

The CERes-normal-form ignoring atomic cuts CCERes(ϕ, δ) of a proof ϕ is

obtained in the same way as CERes(ϕ, δ) except that, in all manipulations

and constructions of structs, clause sets and projections, ΩCCP(ϕ) is used

instead of ΩCP(ϕ), ΩCCI(ϕ) is used instead of ΩCI(ϕ) and complex-cut-

pertinence of inferences is used instead of cut-pertinence of inferences.
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Example 4.47 (CERes-Normal-Form Ignoring Atomic Cuts). Let ϕ be the

proof below:

A ` A B ` B
∧1

rA,B ` A ∧ B
∧l

A ∧ B ` A ∧ B

B ` B A ` A
∧2

rA,B ` B ∧ A
∧l

A ∧ B ` B ∧ A
cut3

A ∧ B ` B ∧ A
C ` C C ` C

cut4
C ` C ∨5

l(A ∧ B) ∨ C ` B ∧A,C

Its complex-cut-pertinent struct is shown below. It is interesting to note that

cut4 now corresponds to a⊗ connective, because cut4 is complex-cut-impertinent.

SC
ϕ ≡ ((A ⊕1 B) ⊕3 (¬B ⊗2 ¬A)) ⊗5 (ε⊗ ⊗

4 ε⊗)

The struct can be ;⊕⊗W
-normalized to:

S ≡ (A ⊗5 ε⊗ ⊗
4 ε⊗) ⊕1 (B ⊗5 ε⊗ ⊗

4 ε⊗) ⊕3 (¬B ⊗2 ¬A)

And the corresponding clause set is:

Cϕ ≡ { ` A ; ` B ; B,A ` }

It can be refuted by the refutation δ shown below:

` A
` B B,A `

r
A ` r

`

The O-projection bϕcO
`A

is shown below. Interestingly, projections can now

contain atomic cuts because they are complex-cut-impertinent inferences.

A ` A wl
A,B ` A

∧l
A ∧ B ` A

C ` C C ` C
cut4

C ` C ∨5
l(A ∧ B) ∨ C ` A,C

Analogously, the O-projection bϕcO
`B

is:

B ` B wl
A,B ` B

∧l
A ∧ B ` B

C ` C C ` C
cut4

C ` C ∨5
l(A ∧ B) ∨ C ` B,C

And the O-projection bϕcO
B,A`

is:

B ` B A ` A
∧2

rA,B ` B ∧A
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Combining the refutation and the projections as usual, CCEResO
W(ϕ, δ) is obtained:

A ` A wl
A,B ` A

∧l
A ∧ B ` A

C ` C C ` C
cut4

C ` C ∨5
l(A ∧ B) ∨ C ` A,C

B ` B wl
A,B ` B

∧l
A ∧ B ` B

C ` C C ` C
cut4

C ` C ∨5
l(A ∧ B) ∨ C ` B,C

B ` B A ` A
∧2

rA,B ` B ∧ A
cut

(A ∧ B) ∨ C,A ` B ∧ A,C
cut

(A ∧ B) ∨ C, (A ∧ B) ∨ C ` B ∧A,C,C
c∗

(A ∧ B) ∨ C ` B ∧ A,C
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4.9 CERes Ignoring Quantifier-Free Cuts

In fact, for some applications, such as Herbrand sequent extraction [94,

95], it suffices to eliminate only cuts that have quantifierst in their cut

formulas.

Definition 4.9.1 (Quantified-Cut-Pertinent and Quantified-Cut-Imperti-

nent Occurrences). A formula occurrence is quantified-cut-pertinent if and

only if it is an ancestor of a cut formula occurrence that contains quanti-

fiers. The set of quantified-cut-pertinent formula occurrences of a proof ϕ is

denoted ΩQCP(ϕ).

A formula occurrence is quantified-cut-impertinent if and only if it is

not quantified-cut-pertinent. The set of quantified-cut-impertinent formula

occurrences of a proof ϕ is denoted ΩQCI(ϕ).

Definition 4.9.2 (Quantified-Cut-Pertinence). An inference ρ is quantified-

cut-pertinent if and only if ρ is ΩQCP(ϕ)-pertinent.

An inference ρ is quantified-cut-impertinent if and only if ρ is ΩQCI(ϕ)-

pertinent.

Definition 4.9.3 (CERes-Normal-Form Ignoring Quantifier-Free Cuts).

The CERes-normal-form ignoring quantifier-free cuts QCERes(ϕ, δ) of a proof

ϕ is obtained in the same way as CERes(ϕ, δ) except that, in all manipula-

tions and constructions of structs, clause sets and projections, ΩQCP(ϕ) is

used instead ofΩCP(ϕ),ΩQCI(ϕ) is used instead ofΩCI(ϕ) and quantified-

cut-pertinence of inferences is used instead of cut-pertinence of inferences.

tIn fact, even if the cut formula occurrences of a cutρ in a proofϕdo contain quantifiers, if these
quantifiers are dummy in the sense that they were introduced by weakening inferences instead of
being properly introduced by quantifier inferences, then ρ could also be considered “quantifier-
free” and therefore be ignored. Nevertheless, for simplicity, this additional improvement is not
considered in detail here.





Chapter 5

Comparison of Cut-Elimination
Methods

The purpose of this chapter is to compare cut-elimination by resolution,

as described in Chapter 4, and reductive cut-elimination, as described in

Chapter 3, with respect to the normalized proofs that they produce.

A naive comparison that would check for exact syntactic equality of

the normalized proofs would not be convenient, since occasional syntac-

tical differences might occur not because of essential differences in the

proofs but actually because of the bureaucracy required by sequent cal-

culi. Indeed, such a naive comparison would tell nothing beyond the

quite non-informative fact that cut-elimination by resolution is different

from reductive cut-elimination by resolution, simply because the nor-

malized proofs produced by the former always have atomic cuts in the

bottom, while the normalized proofs produced by the latter usually have

atomic cuts on the top.

What is needed is a comparison based on a proof equivalence rela-

tion that disregards bureaucratic matters such as the position of atomic

cuts. To this aim, the notion of canonic refutation (Definition 5.1.4) of a

normalized proof is used. Roughly speaking, two proofs are then con-

sidered CR-equivalent (Definition 5.1.6) when they have the same canonic

refutations.

Comparisons based on CR-equivalence are much more informative.

In particular, it is possible to show (Theorem 5.4) that cut-elimination

by resolution CR-simulatesa (Definition 5.2.2) reductive methods, i.e. for

a Essentially, the notion of CR-simulation allows the precise formalization of informal claims

123
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any normalized proof ϕ′ produced from ϕ by a reductive method, cut-

elimination by resolution is capable of producing a proof ϕ∗ from ϕ such

that ϕ∗ is CR-equivalent to ϕ′. On the other hand, reductive methods do

not CR-simulate cut-elimination by resolution (Theorem 5.6).

5.1 Canonic Refutations

Informally and rather sketchy, the canonic refutation from a proof ϕwith

atomic cuts consists simply of removing all the cut-impertinent formula

occurrences and inferences of ϕ and transforming the remaining cut in-

ferences into resolution inferences. Even more informally, the intuitive

idea is that a canonic refutation from a proof is the “resolution skeleton”

that lies within a proof whose cuts are atomic, if these cuts are seen as

resolution inferences.

However, the concept of canonic refutation is formally not so simple,

because there are many ways in which the cut-impertinent inferences

could be removed. In order to avoid this complication, canonic refutations

are defined only for proofs that are also in�⊕⊗-normal-form (Definition

5.1.4), in which case the removal can be made precise and simple by

using auxiliary Y inferences and a method to eliminate them (Definition

5.1.2). For proofs ϕ that are not in �⊕⊗-normal-form, a set of canonic

refutations can be defined as the set having the canonic refutations of all

�⊕⊗-normal-forms of ϕ (Definition 5.1.5).

As shown in Theorem 5.1, the canonic refutation from a proof ϕ is

indeed a refutation of the swapped clause set of ϕ. This is not just a coin-

cidence, but a fundamental goal that had to be achieved when conceiving

the notion of canonic refutation, since it is essential to the proof that

cut-elimination by resolution CR-simulates reductive cut-elimination.

Definition 5.1.1 (�⊕⊗). �⊕⊗ is the sub-relation of�with the additional re-

striction that n-ary (for n > 1) cut-pertinent inferences cannot be swapped

above m-ary (for m > 1) cut-impertinent inferences. Moreover, in order

to ensure that�⊕⊗ is weakly-normalizing, any swapping is forbidden if

the proof is already in a form such that no n-ary (for n > 1) cut-pertinent

inference occurs above a m-ary (for m > 1) cut-impertinent inference.

Definition 5.1.2 (Merging Y-Elimination). The merging-elimination of Y

inferences follows the proof rewriting rules shown below:

that cut-elimination by resolution “subsumes” or is “more general than” reductive methods.
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Γ1 ` ∆1 . . . Γn ` ∆n
Y

Γ1, . . . , Γn ` ∆1 . . . ,∆n

⇓

Γ1, . . . , Γn ` ∆1 . . . ,∆n

ϕ

Γ ` ∆
Y

Γ ` ∆

⇓

ϕ

Γ ` ∆

Definition 5.1.3 (cut-r-Replacement). rr
cut(ϕ) denotes the result of replac-

ing all atomic cuts in ϕ by resolution inferences.

Definition 5.1.4 (Canonic Refutation). Letϕ be a proof in �ã-normal-form

and in�⊕⊗-normal-form. Then the canonic refutationb from ϕ is:

CR(ϕ) � rr
cut(~Y

ΩCP(ϕ)
⊗ (ϕ)�M)

Example 5.1 (Canonic Refutation). Let ϕ be the proof below with the cut-

pertinent occurrences and inferences highlighted in red:

A ` A wl
A,C ` A

∧l
A ∧ C ` A

A ` A
B ` B ¬r
` B,¬B

∧r
A ` B,A ∧ ¬B

cut
A ∧ C ` B,A ∧ ¬B B ` B

cut
A ∧ C ` B,A ∧ ¬B

b This definition of canonic refutation for swapped clause sets is inspired by the definition
of canonic refutation for characteristic clause sets given in [12]. However, while in [12] canonic
refutations are defined for any proof containing atomic cuts only (i.e. any proof in �ã-normal-
form), here proofs are also required to be in �⊕⊗-normal-form. This is convenient, because it
allows a very simple and direct extraction of canonic refutations from proofs. In [12], where
this additional requirement is not made, canonic refutations are constructed inductively. While
it would be in principle possible to construct canonic refutations for swapped clause sets in a
similar inductive fashion and without the restriction to�⊕⊗-normal-form, the description of the
construction would be much more complex than in the case for characteristic clause sets, for
two reasons. Firstly, the inductive case for binary cut-impertinent inferences would have to take
their dependencies into account when merging refutations; and secondly, if a proof is not in
�⊕⊗-normal-form, its swapped clause set might not even be unique, due to degenerate inferences,
and hence, such degenerate inferences would also have to be handled appropriately during an
inductive construction of canonic refutations for swapped clause sets of proofs with atomic cuts
in general.
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ϕ is in �ã-normal-form and in �⊕⊗-normal-form. Therefore it is possible

to extract a canonic refutation from it. Firstly, cut-impertinent inferences are

replaced by Y-inferences and cut-impertinent formula occurrences are removed:

` A
Y

` A
Y

` A
A `

` B
Y

` B
Y

A ` B
cut

` B B `
cut`

Then the Y-inferences are eliminated according to the proof rewriting rules

of Definition 5.1.2:

` A A ` B cut
` B B `

cut`

Finally, CR(ϕ) is obtained by replacing cuts by resolution inferences:

` A A ` B r
` B B ` r

`

Theorem 5.1 (Correctness of Canonic Refutations). CR(ϕ) is a refutation

of CW
ϕ .

Proof. The uniqueness of the swapped clause set CW
ϕ is guaranteed by the

fact that ϕ is in�⊕⊗-normal-form.

As ϕ is in �ã-normal-form, the only cut-pertinent inferences are cuts

(cut-pertinent weakenings and contractions do not occur, because ϕ is in

�⊕⊗-normal-form), and all other inferences are replaced by Y-inferences

in Y
ΩCP(ϕ)
⊗ (ϕ). So, Y

ΩCP(ϕ)
⊗ (ϕ) contains only atomic cuts and Y-inferences.

Since ϕ is in�⊕⊗-normal-form, all the Y inferences with arity greater

than one occur above cuts. Hence, merging Y-elimination can be applied

and all Y inferences can be eliminated by the proof rewriting rules of

Definition 5.1.2. Then the only remaining inferences are atomic cuts, and

these are replaced by resolution inferences. Thus CR(ϕ) is a resolution

deduction.

CR(ϕ) is a resolution deduction of the empty clause (i.e. a refutation),

simply because the end-sequent of ϕ contains no cut-pertinent formula

occurrences. And CR(ϕ) is a refutation of CW
ϕ , because, since Sϕ is in

;⊕⊗W
-normal form, the initial clauses of ~Y

ΩCP(ϕ)
⊗ (ϕ)�M are in CW

ϕ . �
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Definition 5.1.5 (Set of Canonic Refutations). Let ϕ be a proof in �ã-

normal-form. Then the set of canonic refutations of ϕ is:

SCR(ϕ) � { CR(ψ) | ψ is a�⊕⊗-normal-form of ϕ }

Remark 5.1.1. Note that, ifϕ has no degenerate inferences, the cardinality

of SCR(ϕ) is equal to one. Moreover, the cardinality of SCR(ϕ) is equal to

the number of swapped clause sets of ϕ.

Example 5.2 (Set of Canonic Refutations). Let ϕ be the proof below:

A ` A A ` A cut
A ` A wr

A ` A,C

B ` B B ` B cut
B ` B wr

B ` B,D
∧r

A,B ` A,B,C∧D

Even though ϕ is in �ã-normal-form, it is not in�⊕⊗-normal-form. Hence

a canonic refutation cannot be directly extracted from ϕ.

However ϕ has two�⊕⊗-normal-forms. One of them is the proof ϕ1 shown

below:

A ` A A ` A cut
A ` A

w∗
A,B ` A,B,C∧D

The other one is the proof ϕ2 shown below:

B ` B B ` B
cut

B ` B
w∗

A,B ` A,B,C∧D

Canonic refutations can be extracted from ϕ1 and ϕ2. CR(ϕ1) is:

A ` A A ` A r
`

And CR(ϕ2) is:

B ` B B ` B
cut`

Then, by the definition of set of canonic refutations:

SCR(ϕ) = {CR(ϕ1),CR(ϕ2)}
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Definition 5.1.6 (CR-Equivalence).

Two proofs ϕ1 and ϕ2 in �ã-normal-form are strongly CR-equivalent, de-

noted ϕ1 =sCR ϕ2, if and only if SCR(ϕ1) = SCR(ϕ2). They are weakly

CR-equivalent, denoted ϕ1 =wCR ϕ2, if and only if there exists δ such that

δ ∈ SCR(ϕ1) and δ ∈ SCR(ϕ2).

5.2 CR-Simulation

CR-simulation (Definition 5.2.2) allows the comparison of different cut-

elimination methods based on whether the normalized proofs produced

by them are CR-equivalent.

Definition 5.2.1 (�ã-Normalization Method).

A relation � is a �ã-normalization method if and only if ϕ� ψ implies that

ψ is in �ã-normal-form.

Example 5.3 (�ã-Normalization Method). Clearly, �↓ã is a �ã-normalization

method. Moreover, �↓
a

and CERes (with any kinds of clause set and projections)

are also �ã-normalization methods.

Definition 5.2.2 (CR-Simulation). Let �1 and �2 be two �ã-normalization

methods. �1 CR-simulates �2 if and only if, for any proofs ϕ and ϕ2 with

ϕ�2 ϕ2, there exists ϕ1 such that ϕ�1 ϕ1 and ϕ1 =wCR ϕ2.

5.2.1 CR-Simulation between Two Reductive Methods

Theorems 5.2 and 5.3 show simple CR-simulation results for two slightly

different reductive cut-elimination methods. �
↓

ã (Definition 3.2.21) and

�
↓

a
(Definition 3.2.22) differ essentially only in the fact that �

↓

a
is more

eager to shift atomic cuts upward; their normal forms differ essentially

only in the position of atomic cuts. Hence it is natural to assume that

these methods are equivalent in an informal sense. The fact that they

CR-simulate each other supports the claim that the formal notion of CR-

simulation captures the informal idea of equivalence of cut-elimination

methods.

Theorem 5.2. �
↓

ã CR-simulates �
↓

a
.

Proof. Assume ϕ �
↓

a
ϕ2. Then, by definition of �

↓

a
, ϕ �

∗
a
ϕ2. It is easy

to see that there exists ϕ1 such that ϕ �
↓

ã ϕ1 and ϕ1(�c ∪ �w ∪ �r)
↓ϕ2

(this is because, for any rewriting sequence ϕ�
∗
a
ϕ2, a rewriting sequence

ϕ�
∗
ãϕ1(�c∪�w∪�r)

∗ϕ2 can be obtained by postponing the rewritings that
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shift atomic cuts upward and possibly adding a few more rank reduction

rewritings to shift more complex cuts above the atomic cuts that have

been left in place). Let δ ∈ SCR(ϕ2). Then, by definition of set of canonic

refutations, there is a proof ψ such that CR(ψ) = δ and ψ is a�⊕⊗-normal-

form of ϕ2. Moreover, it must be the case that δ ∈ SCR(ϕ1), because ψ is a

�⊕⊗-normal-form of ϕ1. Therefore, ϕ1 =wCR ϕ2 and thus �
↓

ã CR-simulates

�
↓

a
. �

Theorem 5.3. �
↓

a
CR-simulates �

↓

ã .

Proof. Assume ϕ �
↓

ã ϕ2. Then, by definition of �
↓

ã , ϕ �
∗
ã ϕ2. Since �ã is a

sub-relation of �a, it is also the case that ϕ �
∗
a
ϕ2. Let δ ∈ SCR(ϕ2). Then,

by definition of set of canonic refutations, there is a proof ψ such that

CR(ψ) = δ and ψ is a�⊕⊗-normal-form of ϕ2. Consider a particular�⊕⊗
rewriting sequence from ϕ2 to ψ passing through a proof ϕ1, i.e. such

that ϕ2 �
∗
⊕⊗ ϕ1 and ϕ1 �

↓
⊕⊗ ψ, with the restriction that ϕ2 �

∗
⊕⊗ ϕ1 only by

downward shifting of cut-pertinent contractions and weakenings. Then

it is also the case that ϕ2(�c ∪ �w ∪ �r)
↓ϕ1, and hence ϕ �

↓

a
ϕ1. Since

ϕ1 �
↓
⊕⊗ ψ, it is the case that δ ∈ SCR(ϕ1). Therefore, ϕ1 =wCR ϕ2) and thus

�
↓

a
CR-simulates �

↓

ã . �

5.2.2 CR-Simulation by CERes

This Subsection is devoted to proving that cut-elimination by resolu-

tion CR-simulates reductive cut-elimination. The proof is based on sev-

eral technical lemmasc collectively stating that, when a reductive cut-

c Similar invariance lemmas for standard clause sets can already be found in [12]. These
results were improved in [66] with the invention of profile clause sets. Namely, profile clause sets
are invariant under �r, while standard clause sets are not. The invariance lemmas presented in
this section differ from the ones in the cited works mainly in two ways:

• The lemmas are stated for structs, and not for clause sets, as in [66], or for “characteristic
clause terms”, as in [12]. The reason for this, is that, as shown in Chapter 4, structs can be
transformed into different kinds of clause sets. Therefore, proving invariance lemmas for
structs is a way of proving invariance lemmas for all kinds of clause sets at once. Moreover,
since structs have a good correspondence to the actual structure of proofs, as evidenced by
Example 4.2 and Theorem 4.8, they allow a cleaner presentation of the invariance results.

• However, for certain cut-reductions, the struct itself does not remain invariant. Never-
theless, some of its normal-forms do remain invariant. This is the case, for example, of
invariance under �r. The ;⊕⊗P

-normal-forms and the ;⊕⊗W
-normal-forms remain invari-

ant. Since the invariance for ;⊕⊗P
-normal-forms correspond to the invariance for profile

clause sets already shown in [66], only the invariance for ;⊕⊗W
-normal-forms is shown

here. This invariance implies that swapped clause sets are also invariant under �r.

• Lemma 5.3 shows that ;⊕⊗W
-normal-forms of structs (and hence also swapped clause

sets) are invariant under �w. Profile clause sets do not enjoy this invariance. This is
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elimination step is performed on a proof, its struct and clause sets either

do not change or change only in inessential ways.

Lemma 5.1 (Invariance of the Struct under �p).

ψ[ϕ] �p ψ[ϕ′] implies Sψ[ϕ] = Sψ[ϕ′]

Proof. The case analysis below shows that the cut-pertinent struct does not

change (modulo commutativity and associativity of⊕) when the subproof

ϕ ofψ is rewritten according to any of the four propositional cut reduction

rules, �p∧ , �p∨ , �p→ and �p¬ : Sϕ = Sϕ′ , and hence Sψ[ϕ] = Sψ[ϕ′].

• �p∧ : As shown below, Sϕ = (Sϕ1
⊕Sϕ2

) ⊕Sϕr and Sϕ′ = Sϕ2
⊕ (Sϕ1

⊕

Sϕr). Therefore, by associativity and commutativity of ⊕, Sϕ = Sϕ′ .

Sϕ1

ϕ1

Γ1 ` ∆1,B

Sϕ2

ϕ2

Γ2 ` ∆2,C ∧r
Γ1, Γ2 ` ∆1,∆2,B ∧ C

Sϕr

ϕr

B,C,Π ` Λ
∧l

B ∧ C,Π ` Λ
cut

Γ1, Γ2,Π ` ∆1,∆2,Λ
(Sϕ1

⊕Sϕ2
)⊕Sϕr

⇓

Sϕ2

ϕ2

Γ2 ` ∆2,C

Sϕ1

ϕ1

Γ1 ` ∆1,B

Sϕr

ϕr

B,C,Π ` Λ
cut

C, Γ1,Π ` ∆1,Λ cut
Γ1, Γ2,Π ` ∆1,∆2,Λ

Sϕ2
⊕(Sϕ1

⊕Sϕr )

another evidence of the superiority of swapped clause sets with respect to the presence of
weakening in proofs.
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• �p∨ : As shown below, Sϕ = Sϕl
⊕ (Sϕ1

⊕Sϕ2
) and Sϕ′ = (Sϕl

⊕Sϕ2
)⊕

Sϕ1
. Therefore, by associativity and commutativity of ⊕, Sϕ = Sϕ′ .

Sϕl

ϕl

Π ` Λ,B,C
∨r

Π ` Λ,B ∨ C

Sϕ1

ϕ1

B, Γ1 ` ∆1

Sϕ2

ϕ2

C, Γ2 ` ∆2 ∨l
B ∨ C, Γ1, Γ2 ` ∆1,∆2 cut

Γ1, Γ2,Π ` ∆1,∆2,Λ
Sϕl
⊕(Sϕ1

⊕Sϕ2
)

⇓

Sϕl

ϕl

Π ` Λ,B,C

Sϕ2

ϕ2

C, Γ2 ` ∆2
cut

Π, Γ2 ` ∆2,Λ,B

Sϕ1

ϕ1

B, Γ1 ` ∆1 cut
Γ1, Γ2,Π ` ∆1,∆2,Λ

(Sϕl
⊕Sϕ2

)⊕Sϕ1

• �p→ : As shown below, Sϕ = Sϕl
⊕ (Sϕ1

⊕Sϕ2
) and Sϕ′ = Sϕ1

⊕ (Sϕl
⊕

Sϕ2
). Therefore, by associativity and commutativity of ⊕, Sϕ = Sϕ′ .

Sϕl

ϕl

B,Π ` Λ,C
→r

Π ` Λ,B→ C

Sϕ1

ϕ1

Γ1 ` ∆1,B

Sϕ2

ϕ2

C, Γ2 ` ∆2 →l
B→ C, Γ1, Γ2 ` ∆1,∆2 cut

Γ1, Γ2,Π ` ∆1,∆2,Λ
Sϕl
⊕(Sϕ1

⊕Sϕ2
)

⇓

Sϕ1

ϕ1

Γ1 ` ∆1,B

Sϕl

ϕl

B,Π ` Λ,C

Sϕ2

ϕ2

C, Γ2 ` ∆2
cut

B,Π, Γ2 ` ∆2,Λ cut
Γ1, Γ2,Π ` ∆1,∆2,Λ

Sϕ1
⊕(Sϕl

⊕Sϕ2
)
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• �p¬ : As shown below, Sϕ = Sϕl
⊕Sϕr andSϕ′ = Sϕr ⊕Sϕl

. Therefore,

by commutativity of ⊕, Sϕ = Sϕ′ .

Sϕl

ϕl

B, Γ ` ∆ ¬r
Γ ` ∆,¬B

Sϕr

ϕr

Π ` Λ,B ¬l
¬B,Π ` Λ

cut
Γ,Π ` ∆,Λ
Sϕl
⊕Sϕr

⇓

Sϕr

ϕr

Π ` Λ,B

Sϕl

ϕl

B, Γ ` ∆
cut

Γ,Π ` ∆,Λ
Sϕr⊕Sϕl

�

Definition 5.2.3 (Instantiation of Structs). Let S1 and S2 be structs. Then

S1 ≤s S2 if and only if there is a variable substitution σ such that S1σ = S2.

Lemma 5.2 (Instantiation of the Struct under �q).

ψ[ϕ] �q ψ[ϕ′] implies Sψ[ϕ] ≤s Sψ[ϕ′]

Proof. The case analysis below shows that the cut-pertinent struct is only

instantiated when the subproof ϕ of ψ is rewritten according to any of

the two quantifier cut reduction rules, �q∀ and �q∃ : Sϕ ≤s Sϕ′ , and hence

Sψ[ϕ] ≤s Sψ[ϕ′].

• �q∀ : As shown below, Sϕ = Sϕl
⊕ Sϕr and Sϕ′ = Sϕl

{α ← t} ⊕ Sϕr .

Since Sϕr does not contain α, Sϕ′ = (Sϕl
⊕Sϕr ){α← t}. Therefore, by

the definition of ≤s, Sϕ ≤s Sϕ′ .

Sϕl

ϕl

Γ ` ∆,B{x← α}
∀r

Γ ` ∆,∀xB

Sϕr

ϕr

B{x← t},Π ` Λ
∀l

∀xB,Π ` Λ
cut

Γ,Π ` ∆,Λ
Sϕl
⊕Sϕr
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⇓

Sϕl
{α←t}

ϕl{α← t}

Γ ` ∆,B{x← t}

Sϕr

ϕr

B{x← t},Π ` Λ
cut

Γ,Π ` ∆,Λ
Sϕl
{α←t}⊕Sϕr

• �q∃ : As shown below, Sϕ = Sϕl
⊕ Sϕr and Sϕ′ = Sϕl

⊕ Sϕr{α ← t}.

Since Sϕl
does not contain α, Sϕ′ = (Sϕl

⊕ Sϕr ){α← t}. Therefore, by

the definition of ≤s, Sϕ ≤s Sϕ′ .

Sϕl

ϕl

Γ ` ∆,B{x← t}
∃r

Γ ` ∆,∃xB

Sϕr

ϕr

B{x← α},Π ` Λ
∃l

∃xB,Π ` Λ
cut

Γ,Π ` ∆,Λ
Sϕl
⊕Sϕr

⇓

Sϕl

ϕl

Γ ` ∆,B{x← t}

Sϕr {α←t}

ϕr{α← t}

B{x← t},Π ` Λ
cut

Γ,Π ` ∆,Λ
Sϕl
⊕Sϕr {α←t}

�

Lemma 5.3 (Normalized Invariance under �w).

ψ[ϕ] �w ψ[ϕ′] implies Sψ[ϕ′] = Sψ[S′]

such that Sψ[ϕ] = Sψ[S] ;⊕⊗W
Sψ[S′]

Proof. The case analysis below shows that even though the cut-pertinent

struct changes because a substruct is deleted when the subproof ϕ of ψ is

rewritten according to the weakening cut reduction rules �w, this change

is inessential with respect to ;⊕⊗W
-normalization, because the deleted
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substruct would be deleted by ;⊕⊗W
-normalization anyway. In other

words, the ;⊕⊗W
-normalized struct does not changed.

• �w with weakening in the left branch: As shown below, Sϕ =

Sϕl
⊕ Sϕr and Sϕ′ = Sϕl

. Nevertheless, Sϕ ;⊕⊗W
Sϕ′ , via the struct

rewriting rule Sl⊕Sr ;⊕⊗W
Sl.

Sϕl

ϕl

Γ ` ∆ wr
Γ ` ∆,A

Sϕr

ϕr

A,Π ` Λ
cut

Γ,Π ` ∆,Λ
Sϕl
⊕Sϕr ;⊕⊗W

Sϕl

⇓

Sϕl

ϕl

Γ ` ∆ w∗r,w
∗
l

Γ,Π ` ∆,Λ
Sϕl

• �w with weakening in the right branch: As shown below, Sϕ =

Sϕl
⊕ Sϕr and Sϕ′ = Sϕr . Nevertheless, Sϕ ;⊕⊗W

Sϕ′ , via the struct

rewriting rule Sl⊕Sr ;⊕⊗W
Sr.

Sϕl

ϕl

Γ ` ∆,A

Sϕr

ϕr

Π ` Λ wl
A,Π ` Λ

cut
Γ,Π ` ∆,Λ
Sϕl
⊕Sϕr;⊕⊗W

Sϕr

⇓

d Note that only ;⊕⊗W
-normalized structs are invariant under �w. ;⊕⊗P

-normalized structs
are not invariant. This is because ;⊕⊗W

is better than ;⊕⊗P
when it comes to exploiting redun-

dancies due to cut-pertinent weakening inferences. Consequently, the swapped clause sets are
also invariant under �w, while profile clause sets are not. Indeed, the behaviour of profile clause
sets under �w is quite complex to describe [67, 66] .
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Sϕr

ϕr

Π ` Λ w∗r,w
∗
l

Γ,Π ` ∆,Λ
Sϕr

�

Definition 5.2.4 (Equivalence of Structs Modulo Renaming and Multi-

plicity of ⊗-junctions). Let S1 and S2 be ⊗-junctions (i.e. they are structs

not containing the ⊕ connective). Then S1 =s S2 if and only if there is a

variable renaming σ such that S1σ = S2.

Let S1 �
⊕

1≤i≤n
S1i and S2 �

⊕

1≤ j≤m
S2 j be two structs where S1i and

S2 j are ⊗-junctions. Then S1 =s S2 if and only if for all S1k there is a S2l

such that S2l =s S1k and for all S2l′ there is a S1k′ such that S2l′ =s S1k′ .

Let S1 and S2 be arbitrary structs. Then S1 =s S2 if and only if for all

S′
1

such that S1 ;⊕⊗W
S′

1
there exists S′2 such that S2 ;⊕⊗W

S′2 and S′
1
=s S′2

and for all S′2 such that S2 ;⊕⊗W
S′2 there exists S′

1
such that S1 ;⊕⊗W

S′
1

and S′
1
=s S′2.

Lemma 5.4 (Duplication of Substructs). Let S1 be a substruct of S. Let S′

be the struct obtained from S by replacing S1 by S1 ⊕ S2 where S2 = S1σ

for a variable renaming σ. Let S ;⊕⊗ Snorm and S′ ;⊕⊗ S′norm. Then

Snorm =s S′norm.

Proof. By induction on the structure of S or on the length of the normal-

ization sequence. �

Lemma 5.5 (Duplication of Substructs). Let S1 be a substruct of S. Let S′

be the struct obtained from S by replacing S1 by S1 ⊕ S2 where S2 = S1σ

for a variable renaming σ. Let S ;⊕⊗P
Snorm and S′ ;⊕⊗P

S′norm. Then

Snorm =s S′norm.

Proof. By induction on the structure of S or on the length of the normal-

ization sequence. �

Lemma 5.6 (Duplication of Substructs). Let S1 be a substruct of S. Let S′

be the struct obtained from S by replacing S1 by S1⊕S2 where S2 = S1σ for

a variable renaming σ. Then, for any Snorm such that S ;⊕⊗W
Snorm there is

a S′norm such that S′ ;⊕⊗W
S′norm and Snorm =s S′norm.

Proof. In contrast to the previous cases for ;⊕⊗ and ;⊕⊗P
, for ;⊕⊗W

it was

necessary to state the lemma in a slightly modified way, due to the fact
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that ;⊕⊗W
is not confluent. The proof, however, can also be easily made

by induction on the structure of S or on the length of the normalization

sequence. �

Lemma 5.7 (Invariance Modulo Renaming and Multiplicity under �c).

ψ[ϕ] �c ψ[ϕ′] implies Sψ[ϕ] =s Sψ[ϕ′]

Proof. The case analysis below shows that applying �c in a subproof ϕ of

ψ adds copies of some clauses to the characteristic clause set. However,

the new clauses are just variants obtained by renaming eigenvariables.

Therefore, Sϕ =s Sϕ′ , and hence Sψ[ϕ] =s Sψ[ϕ′].

• �c with a contraction in the left branch: As shown below, Sϕ =

Sϕl
⊕ Sϕr and Sϕ′ = (Sϕl

⊕ Sϕr) ⊕ Sϕ′r . Since ϕ′r is just a copy of

ϕr with the eigenvariables renamed for the sake of proof regularity,

Sϕ′r =s Sϕr . Therefore, Sϕ =s Sϕ′ .

Sϕl

ϕl

Γ ` ∆,A,A cr
Γ ` ∆,A

Sϕr

ϕr

A,Π ` Λ
cut

Γ,Π ` ∆,Λ
Sϕl
⊕Sϕr

⇓

Sϕl

ϕl

Γ ` ∆,A,A

Sϕr

ϕr

A,Π ` Λ
cut

Γ,Π ` ∆,Λ,A

Sϕ′r

ϕ′r
A,Π ` Λ

cut
Γ,Π,Π ` ∆,Λ,Λ,

c∗
l
, c∗r

Γ,Π ` ∆,Λ
(Sϕl
⊕Sϕr )⊕Sϕ′r

• �c with a contraction in the right branch: As shown below, Sϕ =

Sϕl
⊕ Sϕr and Sϕ′ = Sϕ′

l
⊕ (Sϕl

⊕ Sϕr). Since ϕ′
l

is just a copy of

ϕl with the eigenvariables renamed for the sake of proof regularity,

Sϕ′
l
=s Sϕl

. Therefore, Sϕ =s Sϕ′ .
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Sϕl

ϕl

Γ ` ∆,A

Sϕr

ϕr

A,A,Π ` Λ cl
A,Π ` Λ

cut
Γ,Π ` ∆,Λ
Sϕl
⊕Sϕr

⇓

Sϕ′
l

ϕ′
l

Γ ` ∆,A

Sϕl

ϕl

Γ ` ∆,A

Sϕr

ϕr

A,A,Π ` Λ
cut

A, Γ,Π ` ∆,Λ
cut

Γ, Γ,Π ` ∆,∆,Λ
c∗

l
, c∗r

Γ,Π ` ∆,Λ
Sϕ′

l
⊕(Sϕl

⊕Sϕr )

�

Lemma 5.8 (Normalized Invariance under �r).

ψ[ϕ] �r ψ[ϕ′] implies Sψ[ϕ′] = Sψ[S′]

such that Sψ[ϕ] = Sψ[S] ;⊕⊗W
Sψ[S′]

Proof. The case analysis below shows that no change occurs in the ;⊕⊗W
-

normalized cut-pertinent structs, when the subproof ϕ of ψ is rewritten

according to the cut rank reduction rules �r.

• �r with a unary rule: As shown below, Sϕ = Sϕl
⊕ Sϕr and Sϕ′ =

Sϕl
⊕ Sϕr . Hence, Sϕ = Sϕ′ .

Sϕl

ϕl

Γ ` ∆,A

Sϕr

ϕr

A,Π′ ` Λ′
ρ

A,Π ` Λ
cut

Γ,Π ` ∆,Λ
Sϕl
⊕Sϕr

⇓
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Sϕl

ϕl

Γ ` ∆,A

Sϕr

ϕr

A,Π′ ` Λ′
cut

Γ,Π′ ` ∆,Λ′
ρ

Γ,Π ` ∆,Λ
Sϕl
⊕Sϕr

Sϕl

ϕl

Γ′ ` ∆′,A
ρ

Γ ` ∆,A

Sϕr

ϕr

A,Π ` Λ
cut

Γ,Π ` ∆,Λ
Sϕl
⊕Sϕr

⇓

Sϕl

ϕl

Γ′ ` ∆′,A

Sϕr

ϕr

A,Π ` Λ
cut

Γ′,Π ` ∆′,Λ
ρ

Γ,Π ` ∆,Λ
Sϕl
⊕Sϕr

• �r with a cut-pertinent binary rule: In all cases below, Sϕ = Sϕ′ by

the associativity and commutativity of ⊕.

Sϕl

ϕl

Π ` Λ,A

Sϕ1

ϕ1

A, Γ1 ` ∆1

Sϕ2

ϕ2

Γ2 ` ∆2 ρ
A, Γ ` ∆

cut
Π, Γ ` Λ,∆
Sϕl
⊕(Sϕ1

⊕Sϕ2
)

⇓

Sϕl

ϕl

Π ` Λ,A

Sϕ1

ϕ1

A, Γ1 ` ∆1 cut
Π, Γ1 ` Λ,∆1

Sϕ2

ϕ2

Γ2 ` ∆2 ρ
Π, Γ ` Λ,∆
(Sϕl
⊕Sϕ1

)⊕Sϕ2
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Sϕl

ϕl

Π ` Λ,A

Sϕ1

ϕ1

Γ1 ` ∆1

Sϕ2

ϕ2

A, Γ2 ` ∆2 ρ
A, Γ ` ∆

cut
Π, Γ ` Λ,∆
Sϕl
⊕(Sϕ1

⊕Sϕ2
)

⇓

Sϕ1

ϕ1

Γ1 ` ∆1

Sϕl

ϕl

Π ` Λ,A

Sϕ2

ϕ2

A, Γ2 ` ∆2 cut
Π, Γ2 ` Λ,∆2 ρ

Π, Γ ` Λ,∆
Sϕ1
⊕(Sϕl

⊕Sϕ2
)

Sϕ1

ϕ1

Γ1 ` ∆1,A

Sϕ2

ϕ2

Γ2 ` ∆2 ρ
Γ ` ∆,A

Sϕr

ϕr

A,Π ` Λ
cut

Γ,Π ` ∆,Λ
(Sϕ1

⊕Sϕ2
)⊕Sϕr

⇓

Sϕ1

ϕ1

Γ1 ` ∆1,A

Sϕr

ϕr

A,Π ` Λ
cut

Γ1,Π ` ∆1,Λ

Sϕ2

ϕ2

Γ2 ` ∆2 ρ
Γ,Π ` ∆,Λ
(Sϕ1

⊕Sϕr )⊕Sϕ2

Sϕ1

ϕ1

Γ1 ` ∆1

Sϕ2

ϕ2

Γ2 ` ∆2,A ρ
Γ ` ∆,A

Sϕr

ϕr

A,Π ` Λ
cut

Γ,Π ` ∆,Λ
(Sϕ1

⊕Sϕ2
)⊕Sϕr

⇓
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Sϕ1

ϕ1

Γ1 ` ∆1

Sϕ2

ϕ2

Γ2 ` ∆2,A

Sϕr

ϕr

A,Π ` Λ
cut

Γ2,Π ` ∆2,Λ ρ
Γ,Π ` ∆,Λ
Sϕ1
⊕(Sϕ2

⊕Sϕr )

• �r with a cut-impertinent binary rule:

In the rank reduction immediately below, Sϕ′ = (Sϕl
⊕ Sϕ1

) ⊗ Sϕ2
,

and thus Sϕ′ , Sϕ′ . However, it is easy to see that Sϕ ;⊕⊗W
Sϕ′ , due

to the fact that ;⊕⊗W
performs only a partial distributione of ⊗ over

⊕.

Sϕl

ϕl

Π ` Λ,A

Sϕ1

ϕ1

A, Γ1 ` ∆1

Sϕ2

ϕ2

Γ2 ` ∆2 ρ
A, Γ ` ∆

cut
Π, Γ ` Λ,∆
Sϕl
⊕(Sϕ1

⊗ρSϕ2
)

⇓

Sϕl

ϕl

Π ` Λ,A

Sϕ1

ϕ1

A, Γ1 ` ∆1 cut
Π, Γ1 ` Λ,∆1

Sϕ2

ϕ2

Γ2 ` ∆2 ρ
Π, Γ ` Λ,∆

(Sϕl
⊕Sϕ1

)⊗ρSϕ2
;⊕⊗W

Sϕl
⊕(Sϕ1

⊗ρSϕ2
)

Sϕl

ϕl

Π ` Λ,A

Sϕ1

ϕ1

Γ1 ` ∆1

Sϕ2

ϕ2

A, Γ2 ` ∆2 ρ
A, Γ ` ∆

cut
Π, Γ ` Λ,∆
Sϕl
⊕(Sϕ1

⊗ρSϕ2
)

⇓

e Not only ;⊕⊗W
-normalized structs (and, correspondingly, swapped clause sets) but also

;⊕⊗P
-normalized structs (and, correspondingly, profile clause sets) are invariant under �r. The

proof of this fact can be found in [66, 67]. However, ;⊕⊗-normalized structs (and, correspondingly,
standard clause sets) are not invariant under �r. This negative fact can be seen in [12].
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Sϕ1

ϕ1

Γ1 ` ∆1

Sϕl

ϕl

Π ` Λ,A

Sϕ2

ϕ2

A, Γ2 ` ∆2 cut
Π, Γ2 ` Λ,∆2 ρ

Π, Γ ` Λ,∆
Sϕ1
⊗ρ(Sϕl

⊕Sϕ2
);⊕⊗W

Sϕl
⊕(Sϕ1

⊗ρSϕ2
)

Sϕ1

ϕ1

Γ1 ` ∆1,A

Sϕ2

ϕ2

Γ2 ` ∆2 ρ
Γ ` ∆,A

Sϕr

ϕr

A,Π ` Λ
cut

Γ,Π ` ∆,Λ
(Sϕ1

⊗ρSϕ2
)⊕Sϕr

⇓

Sϕ1

ϕ1

Γ1 ` ∆1,A

Sϕr

ϕr

A,Π ` Λ
cut

Γ1,Π ` ∆1,Λ

Sϕ2

ϕ2

Γ2 ` ∆2 ρ
Γ,Π ` ∆,Λ

(Sϕ1
⊕Sϕr )⊗ρSϕ2

;⊕⊗W
(Sϕ1

⊗ρSϕ2
)⊕Sϕr

Sϕ1

ϕ1

Γ1 ` ∆1

Sϕ2

ϕ2

Γ2 ` ∆2,A ρ
Γ ` ∆,A

Sϕr

ϕr

A,Π ` Λ
cut

Γ,Π ` ∆,Λ
(Sϕ1

⊗ρSϕ2
)⊕Sϕr

⇓

Sϕ1

ϕ1

Γ1 ` ∆1

Sϕ2

ϕ2

Γ2 ` ∆2,A

Sϕr

ϕr

A,Π ` Λ
cut

Γ2,Π ` ∆2,Λ ρ
Γ,Π ` ∆,Λ

Sϕ1
⊗ρ(Sϕ2

⊕Sϕr );⊕⊗W
(Sϕ1

⊗ρSϕ2
)⊕Sϕr

�
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Definition 5.2.5 (Struct Precedence).

4 � ≤s ∪ =s ∪ =

Lemma 5.9 (Precedence under �). If ψ[ϕ] � ψ[ϕ′] then for any ;⊕⊗W
-

normal-form S′ of Sψ[ϕ′] there exists a ;⊕⊗W
-normal-form S of Sψ[ϕ] such

that S 4 S′.

Proof. This lemma is a direct consequence of Lemmas 5.1, 5.2, 5.3, 5.7 and

5.8. �

Lemma 5.10 (Refutations of Preceding Clause Sets). Let S1 and S2 be

structs in ;⊕⊗W
-normal-form such that S1 4

∗ S2. Then, any resolution

refutation δ of cl(S2) is also a refutation of cl(S1).

Proof. By the definition of 4, the clauses in cl(S2) must be instances of

cl(S1). Since the leaf clauses of any refutation δ of cl(S2) are instances of

clauses in cl(S2), they are also instances of clauses of cl(S1). Therefore, δ

is also a refutation of cl(S1). �

Theorem 5.4. CEResO
W CR-simulates �

↓

a
.

Proof. Let ϕ be a proof with cuts and ϕ′ such that ϕ �
↓

a
ϕ′, and let S′ be

;⊕⊗W
-normal-form of Sϕ′ .

By Lemma 4.9, there exists a proof ϕ′′ such that ϕ′ �∗ ϕ′′ and Sϕ′′ =

S′. Moreover, ϕ′′ is in �⊕⊗-normal-form. Hence CR(ϕ′′) exists and is a

refutation of S′.

By an iterated use of Lemma 5.9, there exists a ;⊕⊗W
-normal-form S of

Sϕ such that S 4 S′; and, by Lemma 5.10, CR(ϕ′′) is also a refutation of S.

Let ϕ∗ � CEResO
W(ϕ,CR(ϕ′′)). Clearly, CR(ϕ∗) = CR(ϕ′′). Therefore,

CEResO
W CR-simulates �

↓

a
. �

Remark 5.2.1. The proof of Theorem 5.4, together with the soundness of

the Resolution calculus, can be seen as an alternative constructive proof

of Theorem 4.5. A refutation of a swapped clause set is constructed by

applying �
↓

a
to a proof and extracting its canonic refutation. Therefore,

since a refutation (i.e. the extracted canonic refutation) of the swapped

clause set exists and the resolution calculus is sound, the swapped clause

set must be unsatisfiable.

Theorem 5.5. CEResO
W CR-simulates �

↓

ã .

Proof. By Theorem 5.4, CEResO
W CR-simulates �

↓

a
. By Theorem 5.3, �

↓

a

CR-simulates �
↓

ã . Therefore, CEResO
W CR-simulates �

↓

ã . �
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Theorem 5.6. CEResO
W cannot be CR-simulated by any cut-elimination

method based on �.

Proof. Many examples of proofs for which CR-simulation is impossible

are shown in Chapter 6. �





Chapter 6

Resolution Refinements for
Cut-Elimination

Theorems 5.4, 5.6 in Chapter 5 have shown that CERes is better than

reductive cut-elimination methods in the sense that CERes can always

produce (modulo CR-equivalence) the normal forms produced by reduc-

tive methods but the converse does not hold. However, CERes pays a

high price for its flexibility and power. As shown in Example 6.1, re-

futing a clause set of a proof can be as hard as proving its end-sequent

by resolution (i.e. refuting the negation of its end-sequent) from scratch.

Moreover, Theorem 6.1 shows that Example 6.1 is not an isolated case;

there is actually a large class of proofs, namely proofs that do not con-

tain certain kinds of redundancy (e.g. weakening inferences), for which

refuting the clause set is as hard as proving the end-sequent from scratch.

That the difficulty of refuting clause sets is a serious issue, which jeop-

ardizes the practical application of CERes, is empirically supported by

experiments made with Fuerstenberg’s proof of the existence of infinitely

many primes [6]. Fuerstenberg’s proof, which uses lemmas (cuts) from

topology, has been formalized as a sequence of proofs where the k-th

proof shows that there are more than k primes. Current theorem provers,

such as Otter [83] and Prover9 [84], were unable to refute the clause sets

for k ≥ 2.

One possible approach to solve the issue of refutation search is to

enrich the cut-pertinent struct with additional information (defined in

Subsection 6.2.1) about the cuts in the proof. Subsequently, resolution re-

finements can be defined, which use the extra information to constrain the

145
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inferences of the resolution calculus and thus reduce the space of allowed

resolution deductions. Subsections 6.2.4, 6.2.5, 6.2.6 and 6.2.7 show a

few possible refinements, and Subsection 6.2.8 is devoted to proving that

clause sets are still refutable when the refined resolution calculi are used.

6.1 Refuting Clause Sets versus Searching for Resolu-
tion Proofs of End-Sequents

Example 6.1 shows a case in which refuting the clause set of a proof

is as hard as refuting the negation of the formula corresponding to the

end-sequent of the proof.

Indeed, in general, a proof with only atomic cuts can always be ob-

tained by simply reproving the end-sequent by resolution (i.e. refuting

its negation) and then converting this refutation to a sequent calculus

proof [39]. However, this process is normally more costly than to use

CERes or reductive methods, simply because a large amount of informa-

tion contained in the proof with cuts is simply disregarded and only the

end-sequent is considered and reproved. But for cases such as that of

Example 6.1, it is actually simpler to reprove the end-sequent by resolu-

tion; and this is certainly an undesirable result for CERes (and perhaps

even for cut-elimination in general), because a cut-elimination method

ought to be able to exploit the information contained in the input proof

with cuts in such a way that a proof with only atomic cuts could be

constructed more easily than if it were constructed simply by reproving

the end-sequent without no additional information. In summary, a cut-

elimination method ought to be simpler and easier than simply searching

again for a cut-free proof (or a proof with only atomic cuts)a.

A semantic proof of cut-elimination together with a complete search

procedure for cut-free sequent calculus proofs could hardly be considered

a cut-elimination method. Analogously, if using CERes were always as

hard as reproving the end-sequent by resolution, it could be argued that

CERes is not really a cut-elimination method, but just resolution proof

search disguised as a cut-elimination method. Fortunately, there are many

proofs for which using CERes is computationally simpler than reproving

the end-sequent by resolution. Nevertheless, Theorem 6.1 characterizes a

a In fact, this kind of requirement could be generalized to proof transformations in general.
A method that transforms a proof ϕ into a proof ϕ′ satisfying certain properties ought to be
computationally simpler than searching for another proof ψ having the same end-sequent as ϕ
and satisfying those properties.
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disturbingly large class of proofs on which CERes behaves as in Example

6.1.

Theorem 6.1 indirectly suggests that CERes behaves well (in compari-

son with pure resolution proof search) when the proofs with cuts contain

weakening inferences or axiom sequents having either no cut-pertinent

formula occurrences or only cut-pertinent formula occurrences. In such

cases the clause sets are smaller and simpler to refute than the clause

forms of the negated end-sequents. Theorem 6.2 shows that CERes also

exploits the instantiations of cut-impertinent quantifiers, which are incor-

porated on the clause sets, making them easier to refute than the clause

forms of the negated end-sequents. These theorems informally indicate

that CERes is intermediary between a pure proof search method and a

pure proof transformation method.

Example 6.1 (The Difficulty of Refuting Clause Sets). Let ϕ be the proof

below:

A ` A ¬r
` ¬A,A B ` B

→l
A→ B ` ¬A,B

∨r
A→ B ` ¬A ∨ B

A ` A
¬∗

¬A ` ¬A
B ` B ¬l
¬B,B `

∨l
¬B,¬A ∨ B ` ¬A

→r
¬A ∨ B ` ¬B→ ¬A

cut
A→ B ` ¬B→ ¬A

Then, its cut-pertinent struct is:

Sϕ ≡ (¬A ⊗ B) ⊕ (A ⊕ ¬B)

And its clause set is:

CW
ϕ ≡ { A ` B ; ` A ; B ` }

The formula corresponding to end-sequent of ϕ is:

Fϕ � F (A→ B ` ¬B→ ¬A) ≡ ((A→ B)→ (¬B→ ¬A))

The clause form of ¬Fϕ is:

C � { A ` B ; ` A ; B ` }

Since CW
ϕ = C, refuting CW

ϕ is as hard as proving the end-sequent of ϕ by

resolution without using any information from ϕ.

Theorem 6.1 (Difficulty of Refuting Clause Sets of Some Proofs). Let ϕ be

a proof with a quantifier-free end-sequent, with neither contraction nor
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weakening inferences and such that every axiom sequent contains exactly

one cut-pertinent occurrence. Let C be the clause form of the negation of

the formula corresponding to the end-sequent of ϕ. Then CP
ϕ = C.

Proof. Let Sϕ\ρ denote the substruct of Sϕ at the inference ρ. Let S\ρ

denote the ;⊕⊗P
-normal-form of Sϕ\ρ. Let CP

ϕ\ρ � cl(S\ρ).

Let sρ denote the cut-impertinent subsequent of the conclusion sequent

of the inference ρ. Let cf(F) denote the standard clause form of a formula

F. Let Cρ denote cf(¬F (sρ)).

Below it is shown by induction that CP
ϕ\ρ = Cρ for all inferences ρ in

ϕ. The theorem then follows from the facts that CP
ϕ = C

P
ϕ\ρ

∗ and Cρ∗ = C,

for ρ∗ the bottommost inference of ϕ.

In all proofs displayed below, cut-pertinent formula occurrences are

highlighted in red.

• Base case, ρ is an axiom inference: then the subproof at ρ has one of

the following two forms:

– If the cut-pertinent formula occurrence is in the consequent of

the conclusion sequent of ρ:

axiom
A ` A

In this case, CP
ϕ\ρ = {` A} and Cρ = {` A}. Therefore CP

ϕ\ρ = Cρ.

– If the cut-pertinent formula occurrence is in the antecedent of

the conclusion sequent of ρ:

axiom
A ` A

In this case, CP
ϕ\ρ = {A `} and Cρ = {A `}. Therefore CP

ϕ\ρ = Cρ.

• ρ is a cut-pertinent unary inference: then the subproof at ρ has the

following form:

...
ρ′

Γ,Λ ` ∆,Π
ρ

Γ′,Λ ` ∆′,Π

By induction hypothesis, CP
ϕ\ρ

′ = Cρ′ . Since sρ = sρ′ , Cρ = Cρ′ . And

CP
ϕ\ρ = C

P
ϕ\ρ

′, because Sϕ\ρ = Sϕ\ρ
′. Therefore, CP

ϕ\ρ = Cρ.

• ρ is a cut-pertinent binary inference: then the subproof at ρ has the

following form:
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... ρ′
1Γ1,Λ1 ` ∆1,Π1

... ρ′2Γ2,Λ2 ` ∆2,Π2 ρ
Γ′,Λ1,Λ2 ` ∆

′,Π1,Π2

By induction hypothesis, CP
ϕ\ρ

′
1
= Cρ′

1
and CP

ϕ\ρ
′
2 = Cρ′

2
. Sϕ\ρ =

Sϕ\ρ
′
1
⊕ Sϕ\ρ

′
2, and hence CP

ϕ\ρ = C
P
ϕ\ρ

′
1
∪ CP

ϕ\ρ
′
2. Moreover:

Cρ = cf(¬F (Λ1,Λ2 ` Π1,Π2))

= cf(¬(
∧

Λ1 ∧
∧

Λ2 →
∨

Π1 ∨
∨

Π2))

= cf(
∧

Λ1 ∧
∧

Λ2 ∧ ¬
∨

Π1 ∧ ¬
∨

Π2)

= cf(
∧

Λ1) ∪ cf(
∧

Λ2) ∪ cf(¬
∨

Π1) ∪ cf(¬
∨

Π2)

= cf(
∧

Λ1) ∪ cf(¬
∨

Π1) ∪ cf(
∧

Λ2) ∪ cf(¬
∨

Π2)

= cf(
∧

Λ1 ∧ ¬
∨

Π1) ∪ cf(
∧

Λ2 ∧ ¬
∨

Π2)

= cf(¬F (Λ1 ` Π1)) ∪ cf(¬F (Λ2 ` Π2))

= Cρ′
1
∪ Cρ′

2

Therefore, CP
ϕ\ρ = Cρ.

• ρ is a cut-impertinent unary inference: then ρ is a unary inference

introducing a propositional connective, since by assumption con-

traction, weakening and quantifier inferences are not present in ϕ.

The following cases can be distinguished:

– ρ is a ¬r inference: Then the subproof at ρ has the following

form:

...
ρ′

Γ,Λ, F ` ∆,Π
¬r(ρ)

Γ,Λ ` ∆,Π,¬F

Clearly, CP
ϕ\ρ = C

P
ϕ\ρ

′, because Sϕ\ρ = Sϕ\ρ
′. Moreover:

Cρ = cf(¬F (Λ ` Π,¬F))

= cf(¬(
∧

Λ→
∨

Π ∨ ¬F))

= cf(
∧

Λ ∧ ¬
∨

Π ∧ F)

= cf(
∧

Λ ∧ F ∧ ¬
∨

Π)

= cf(¬(
∧

Λ ∧ F→
∨

Π))

= cf(¬(F (Λ, F ` Π)))

= Cρ′

By induction hypothesis, CP
ϕ\ρ

′ = Cρ′ . Therefore, CP
ϕ\ρ = Cρ.

– ρ is a ¬l inference: Analogous to the previous case.
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– ρ is a ∧l inference: Then the subproof at ρ has the following

form:

...
ρ′

Γ,Λ, F1, F2 ` ∆,Π ∧l(ρ)
Γ,Λ, F1 ∧ F2 ` ∆,Π

Clearly, CP
ϕ\ρ = C

P
ϕ\ρ

′, because Sϕ\ρ = Sϕ\ρ
′. Moreover:

Cρ = cf(¬F (Λ, F1 ∧ F2 ` Π))

= cf(¬(
∧

Λ ∧ F1 ∧ F2 →
∨

Π))

= cf(
∧

Λ ∧ F1 ∧ F2 ∧ ¬
∨

Π)

= cf(¬F (Λ, F1, F2 ` Π))

= Cρ′

By induction hypothesis, CP
ϕ\ρ

′ = Cρ′ . Therefore, CP
ϕ\ρ = Cρ.

– ρ is a ∨r inference: analogous to the previous case.

– ρ is a→r inference: analogous to the previous cases.

• ρ is a cut-impertinent binary inference: then ρ is a binary inference

introducing a propositional connective. The following cases can

therefore be distinguished:

– ρ is a ∧r inference: then the subproof at ρ has the following

form:

... ρ′
1Γ1,Λ1 ` ∆1,Π1, F1

... ρ′2Γ2,Λ2 ` ∆2,Π2, F2 ∧r(ρ)
Γ1, Γ2,Λ1,Λ2 ` ∆1,∆2,Π1,Π2, F1 ∧ F2

Then, Cρ′
1
= cf(

∧

Λ1) ∪ cf(¬
∨

Π1) ∪ cf(¬F1), Cρ′
1
= cf(

∧

Λ1) ∪
cf(¬
∨

Π1) ∪ cf(¬F1) and:

Cρ = cf(¬F (Λ1,Λ2 ` Π1,Π2,F1 ∧ F2))

= cf(¬(
∧

Λ1 ∧
∧

Λ2 →
∨

Π1 ∨
∨

Π2 ∨ (F1 ∧ F2)))

= cf(
∧

Λ1 ∧
∧

Λ2 ∧ ¬
∨

Π1 ∧ ¬
∨

Π2 ∧ ¬(F1 ∧ F2))

= cf(
∧

Λ1) ∪ cf(
∧

Λ2) ∪ cf(¬
∨

Π1) ∪ cf(¬
∨

Π2) ∪ cf(¬(F1 ∧ F2))

= cf(
∧

Λ1) ∪ cf(
∧

Λ2) ∪ cf(¬
∨

Π1) ∪ cf(¬
∨

Π2) ∪ cf(¬F1 ∨ ¬F2))

= cf(
∧

Λ1) ∪ cf(
∧

Λ2) ∪ cf(¬
∨

Π1) ∪ cf(¬
∨

Π2) ∪ (cf(¬F1) � cf(¬F2))

where (cf(¬F1) � cf(¬F2)) denotes the set

{c1 ◦ c2 | c1 ∈ cf(¬F1), c2 ∈ cf(¬F2)}

.
On the other hand, Sϕ\ρ = Sϕ\ρ

′
1
⊗ρ Sϕ\ρ

′
2. By induction hy-

pothesis, CP
ϕ\ρ

′
1
= Cρ′

1
= cf(

∧

Λ1) ∪ cf(¬
∨

Π1) ∪ cf(¬F1) and
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CP
ϕ\ρ

′
2 = Cρ′

2
= cf(

∧

Λ1) ∪ cf(¬
∨

Π1) ∪ cf(¬F2). Then, by defini-
tion of ;⊕⊗P

-normalization:

CP
ϕ\ρ = cf(

∧

Λ1) ∪ cf(
∧

Λ2) ∪ cf(¬
∨

Π1) ∪ cf(¬
∨

Π2) ∪ (cf(¬F1) � cf(¬F2))

because only the substructs corresponding to cf(¬F1) and cf(¬F2)

are Ωρ(ϕ)-pertinent. Therefore, CP
ϕ\ρ = Cρ.

– ρ is a ∨l inference: analogous to the previous case.

– ρ is a→l inference: analogous to the previous cases.

�

Remark 6.1.1. Since Theorem 6.1 requires the proofϕ to be free of weaken-

ing inferences, CW
ϕ = C

P
ϕ. Therefore, the theorem also holds for swapped

clause sets. However, the theorem does not hold for standard clause

sets, since the simple ;⊕⊗-normalization employed in the construction of

standard clause sets creates redundant clauses and literals and hence the

case of cut-impertinent binary inferences would fail.

Remark 6.1.2. A proof ϕ in the class of proofs that satisfy the conditions

of Theorem 6.1 is such that it essentially as hard to compute CEResO
P (ϕ, δ)

or CEResO
W(ϕ, δ) as to simply reprove the end-sequent by resolution. It

is interesting to notice, moreover, that for this class of proofs, due to the

redundancies introduced in the construction of standard clause sets, it is

actually easier to simply reprove the end-sequent by resolution than to

compute CEResO
S (ϕ, δ). Moreover, the proofs produced by reproving the

end-sequent would be in general shorter and smaller than CEResO
S (ϕ, δ).

This is yet another way of recognizing the superiority of profile and

swapped clause sets in comparison to standard clause sets.

Theorem 6.2 (Difficulty of Refuting Clause Sets of Some Proofs). Let ϕ

be a skolemized proof with neither contraction nor weakening inferences

and such that every axiom sequent contains exactly one cut-pertinent

formula occurrence. Let C be the clause form of the negation of the

formula corresponding to the end-sequent of ϕ. Then C ≤s C
W
ϕ .

Proof. The proof is analogous to the proof of Theorem , with the following

two additional cases when ρ is a weak quantifier inference:

• ρ is a ∀l inference: Then the subproof at ρ has the following form:

...
ρ′

Γ,Λ, F[t] ` ∆,Π
∀l(ρ)

Γ,Λ, (∀x)F(x) ` ∆,Π
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By induction hypothesis, Cρ′ ≤s C
P
ϕ\ρ

′. Clearly, CP
ϕ\ρ = C

P
ϕ\ρ

′, be-

cause Sϕ\ρ = Sϕ\ρ
′; and Cρ <s Cρ′ . Therefore, Cρ ≤s C

P
ϕ\ρ.

• ρ is a ∃r inference: analogous to the previous case.

�

Remark 6.1.3. Theorem 6.2 shows that, in the presence of weak quantifier

inferences, while retaining all the other conditions of Theorem 6.1, it is

easier to refute the cut-pertinent clause set than to reprove the end-sequent

by resolution from scratch. This is so because the cut-pertinent clause set

contains information about the instantiations that were used in the weak

quantifier inferences, and hence it is more specific than the clause form of

the negation of the formula corresponding to the end-sequent.

Remark 6.1.4. It might be fruitful to investigate further generalizations

of Theorems 6.1 and 6.2 which would, for example, not require absence

of contraction and weakening inferences. It seems that the presence of

weakening inferences is always beneficial to CERes. However, Example

7.2 suggests that the presence of contractions can be bad for the CERes

method. In that example, the swapped clause set has twice more clauses

than the clause form of the negation of the formula corresponding to the

end-sequent of the proof. Half of the clauses of the swapped clause set

are mere duplicates caused by contractions. Therefore, it seems that a

more detailed analysis of the effect of contractions on CERes could lead

to improvements of the method.

6.2 Refinements based on Reductive Methods

In Section 6.1 it has been argued that the amount of search performed

by CERes is in some cases unacceptably high; as high as to cast doubts

on CERes status as a genuine cut-elimination method. The amount of

search is high because the cut-pertinent structs do not contain enough

information about the proofs with cuts. Therefore, to constrain the search,

the natural solution is to enrich the cut-pertinent struct with additional

information and define refined resolution calculi that make use of the

extra information to constrain the inference rules and thus reduce the

search space.

The following subsections define increasingly constrained refinements

using increasingly more information from the proof with cuts. This allows

a trade-off between how constrained the refutation search is and the
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variety of normal forms that can be produced. The more constrained the

refinement and the more information is used from the proof with cuts,

the farther the refined CERes is from being a pure resolution proof search

method and closer it is to being a genuine proof-transformation method.

The refinements are inspired by reductive methods of cut-elimination.

Basically, the aim is to define refined CERes methods that still CR-simulate

reductive methods, but do not CR-Simulate the unrefined CERes. In

this sense, the refined methods are intermediary between CERes and

reductive methods. To achieve this aim, a simple procedure is used:

firstly, example proofs with cuts are found for which reductive methods

are not capable of producing normal forms that are CR-equivalent to some

normal forms produced by CERes; then a refinement is defined in such a

way that the refined CERes does not produce these normal forms that are

not producible (modulo CR-equivalence) by reductive methods.

This procedure for designing refinements is also interesting from the

point of view of clarifying the relation between CERes and reductive

methods, two fundamentally different kinds of cut-elimination methods.

In particular, it shows very clearly the reason why reductive methods

do not CR-simulate CERes. Reductive methods are bound to preserve

cut-linkage and cut-side annotations, as defined in Subsection 6.2.1 and

proved in Subsections 6.2.2 and 6.2.3, while the unrefined CERes methods

are not.

6.2.1 Cut-Linkage and Cut-Side

The following auxiliary definitions allow the annotation of cut-pertinent

formula occurrences with information about how they relate to the cuts

of a proof. These annotations persist when the cut-pertinent struct is

extracted, therefore the cut-pertinent struct is automatically enriched with

such annotations. Resolution refinements that exploit these annotations

are defined in the following subsections.

Definition 6.2.1 (Cut-Linkage). Two cut-pertinent atomic (sub)formula

occurrences ν1 and ν2 in a proof ϕ are cut-linked, denoted ν1 _ ν2, if and

only if there is a cut ρ such that ν1 is an ancestor of νi and ν2 is an ancestor

of ν j where νi and ν j are auxiliary occurrences of ρ.

Remark 6.2.1. νi and ν j can be the same auxiliary occurrence. They do

not need to be in different premises of the cut.
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Example 6.2 (Cut-Linkage). In the proofϕ below, occurrences highlighted with

the same color are cut-linked to each other.

P(α) ` P(α)
wr

P(α),¬P(α) ` P(α)
→r

P(α), ` ¬P(α)→ P(α)
∀l

(∀x)P(x), ` ¬P(α)→ P(α)
∀r

(∀x)P(x), ` (∀x)(¬P(x)→ P(x))

P(s) ` P(s)
¬r

` ¬P(s),P(s) P(s) ` P(s)
→l

¬P(s)→ P(s) ` P(s),P(s)
cr

¬P(s)→ P(s) ` P(s)
∀l

(∀x)(¬P(x)→ P(x)) ` P(s)

P(s) ` P(s)
∃r

P(s) ` (∃y)P(y)
cut

(∀x)(¬P(x)→ P(x)) ` (∃y)P(y)
cut

(∀x)P(x) ` (∃y)P(y)

Definition 6.2.2 (Cut-Side). Let ν be an ancestor of an auxiliary formula

occurrence ν′ of a cut ρ. ν has left (right) cut-side if and only if ν′ occurs in

the left (right) premise of ρ.

Definition 6.2.3 (Atomic Cut-Linkage). Two cut-pertinent atomic formula

occurrences ν1 and ν2 in a proof ϕ are atomically cut-linked, denoted ν1_̆ν2,

if and only if there is a cut-inference ρ such that ν1 ↘ bνicπ and ν2 ↘ bν jcπ

whereπ is the position of an atomic sub-formula and νi and ν j are auxiliary

occurrences of ρ.

Remark 6.2.2. νi and ν j can be the same auxiliary occurrence. They do

not need to be in different premises of the cut-inference.

Example 6.3 (Atomic Cut-Linkage). In the proof ϕ below, occurrences high-

lighted with the same color are atomically cut-linked to each other.

P(α) ` P(α)
wr

P(α),¬P(α) ` P(α)
→r

P(α), ` ¬P(α)→ P(α)
∀l

(∀x)P(x), ` ¬P(α)→ P(α)
∀r

(∀x)P(x), ` (∀x)¬P(x)→ P(x)

P(s) ` P(s)
¬r

` ¬P(s),P(s) P(s) ` P(s)
→l

¬P(s)→ P(s) ` P(s),P(s)
cr

¬P(s)→ P(s) ` P(s)
∀l

(∀x)¬P(x)→ P(x) ` P(s)

P(s) ` P(s)
∃r

P(s) ` (∃y)P(y)
cut

(∀x)¬P(x)→ P(x) ` (∃y)P(y)
cut

(∀x)P(x) ` (∃y)P(y)

Definition 6.2.4 (Proofs Annotated with Cut-Links and Cut-Sides). A

proof ϕ is said to be annotated with cut-links and cut-sides if and only if

every atomic cut-pertinent (sub)formula occurrence is annotated with a

set of labels that indicate its cut-side in ϕ and the set of (atomically)

cut-linked occurrences of ϕ to which it belongs.

If ν is a cut-pertinent atomic (sub)formula occurrence in ϕ, then:

• cutlink(ν) denotes the label that indicates to which set of cut-linked

occurrences ν belongs;

• cutlinka(ν) denotes the label that indicates to which set of atomically

cut-linked occurrences ν belongs;
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• and cutside(ν) denotes the label that indicates the cut-side of ν.

Remark 6.2.3. The annotations of a formula occurrence are meant to be

persistent in the sense that they are carried along with the occurrence

when the occurrence is used for the construction of cut-pertinent structs

and clause sets. In other words, when a cut-pertinent struct S is extracted

from an annotated proof ϕ, the atomic formula occurrences in S have the

same annotations as the corresponding occurrences in ϕ.

Moreover, if ϕ is transformed to a proof ϕ′ by a proof transformation

method, the annotations of a formula occurrence ν in ϕ persist as anno-

tations of any formula occurrence ν′ corresponding to ν in ϕ′. Clearly,

what it means for an occurrence in ϕ′ to “correspond” to an occurrence

of ϕ might be not always clear and ultimately depends on the particular

proof transformations under consideration. Nevertheless, for the proof

transformations considered here (i.e. reductive cut-elimination methods),

the intuitive notion of correspondence of occurrences seems to be clear

enough not to justify a tedious fully formal definition of correspondence.

A problematic case might be reductions over contractions, in which oc-

currences are duplicated. In this case, both copies in ϕ′ are considered to

correspond to the occurrence inϕ that was duplicated. Hence the annota-

tions are also duplicated and carried along to both copies. Another prob-

lematic case are transformations that merge equal subproofs by adding

contractions (e.g. the proof rewriting rewriting relations shown in Defi-

nition 4.3.4). In this case, the merged occurrences inherit the union of the

annotations of the corresponding occurrences that have been merged.

To avoid confusion and clarify the fact that the labels have been inher-

ited from ϕ, the following notation can be used:

• cutlink(ν′, ϕ) � {cutlink(ν)|ν′ corresponds to ν};

• cutlinka(ν
′, ϕ) � {cutlinka(ν)|ν′ corresponds to ν};

• cutside(ν′, ϕ) � {cutside(ν)|ν′ corresponds to ν};

Remark 6.2.4. To facilitate visualization, the annotations indicating cut-

linkage are displayed as colors in the examples in this chapter. The

annotations indicating the cut-side of an occurrence are displayed as

superscripts on the occurrence (l for left cut-side and r for right cut-side).
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6.2.2 Cut-Linkage Preservation under Reductive Cut-Elimi nation

The importance of the concepts of cut-linkage and atomic cut-linkage

developed in the previous section lies in the fact that, under reductive cut-

elimination, they are preserved (in a sense made precise in Theorems 6.3

and 6.4). Preservation of cut-linkage annotations is therefore an essential

property of reductive cut-elimination methods, and it informally entails

that canonic refutations from normal forms produced by reductive cut-

elimination methods are always such that resolved literals have the same

(atomic) cut-linkage annotations with respect to the input proof with cuts.

This fact can be used to design resolution refinements for CERes as shown

in Subsections 6.2.4, 6.2.5, 6.2.6 and 6.2.7.

Definition 6.2.5 (Positions and Subformulas). pFqπ denotes the subfor-

mula of F at position π.

Remark 6.2.5. Positions can be encoded as binary strings. In this case, for

example: pA∧ (B ∨ (∀x)C(x))q0 = A; pA∧ (B ∨ (∀x)C(x))q1 = B∨ (∀x)C(x);

pA ∧ (B ∨ (∀x)C(x))q10 = B; pA ∧ (B ∨ (∀x)C(x))q110 = C(x).

However, for the remainder of this chapter, it is irrelevant how posi-

tions are actually encoded.

Definition 6.2.6 (Context Formulas). F[F′]π denotes a formula F with the

subformula F′ in position π of F.

Theorem 6.3 (Atomic Cut-Linkage Preservation under Reductive Cut-E-

limination). Let ϕ be a proof with cuts and ϕ∗ a proof such that ϕ �
∗ ϕ∗.

Let ρ be a cut in ϕ∗ with auxiliary occurrences νl and νr. Then, for any

position π, cutlinka(pνlq
π, ϕ) = cutlinka(pνrq

π, ϕ).

Proof. The theorem can be proved by induction on the length n of the

sequence rewriting ϕ� ϕ1
� . . .� ϕn = ϕ∗. The base case, when n = 0 is

trivial. For the inductive case, it is assumed as induction hypothesis that

the theorem holds for n = k and it is shown that it also holds for n = k+ 1.

To this aim, all possible cases of rewriting from ϕk to ϕk+1 are analyzed

below.

In all cases, it suffices to analyze what happens to a cut ρ of ϕk+1 if

it was modified (shifted, created, reduced, . . . ) by the rewriting of ϕk

to ϕk+1 (for if ρ is not modified, then cutlinka(pνlq
π, ϕ) = cutlinka(pνrq

π, ϕ)

holds trivially).

• ϕk
�p ϕ

k+1: This case can be subdivided in four cases, depending on

which connective is eliminated:
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– ϕk
�p∧ ϕ

k+1: Notice that in the lowermost of the two new cuts of

ϕk+1, for any position π2, the occurrences of the atomic formula

C occupying that position in both auxiliary occurrences of the

cut have the same atomic cut-linkage annotations (the same

color blue). The same analogously holds for the uppermost of

the two new cuts. Therefore, for any cut ρ of ϕk+1 with auxiliary

occurrences νl and νr and for any position π, cutlinka(pνlq
π, ϕ) =

cutlinka(pνrq
π, ϕ).

ϕ1

Γ1 ` ∆1, F1[B]π1

ϕ2

Γ2 ` ∆2, F2[C]π2 ∧r
Γ1, Γ2 ` ∆1,∆2, F1[B]π1 ∧ F2[C]π2

ϕr

F1[B]π1 , F2[C]π2 ,Π ` Λ ∧l
F1[B]π1 ∧ F2[C]π2 ,Π ` Λ

cut
Γ1, Γ2,Π ` ∆1,∆2,Λ

⇓

ϕ2

Γ2 ` ∆2, F2[C]π2

ϕ1

Γ1 ` ∆1, F1[B]π1

ϕr

F1[B]π1 , F2[C]π2 ,Π ` Λ
cut

F2[C]π2 , Γ1,Π ` ∆1,Λ
cut

Γ1, Γ2,Π ` ∆1,∆2,Λ

– ϕk
�p∨ ϕ

k+1: Analogous to the case for �p∧ .

ϕl

Π ` Λ, F1[B]π1 , F2[C]π2 ∨r
Π ` Λ, F1[B]π1 ∨ F2[C]π2

ϕ1

F1[B]π1 , Γ1 ` ∆1

ϕ2

F2[C]π2 , Γ2 ` ∆2
∨l

F1[B]π1 ∨ F2[C]π2 , Γ1, Γ2 ` ∆1,∆2
cut

Γ1, Γ2,Π ` ∆1,∆2,Λ

⇓

ϕl

Π ` Λ, F1[B]π1 , F2[C]π2

ϕ2

F2[C]π2 , Γ2 ` ∆2
cut

Π, Γ2 ` ∆2,Λ, F1[B]π1

ϕ1

F1[B]π1 , Γ1 ` ∆1
cut

Γ1, Γ2,Π ` ∆1,∆2,Λ

– ϕk
�p→ ϕ

k+1: Analogous to the case for �p∧ .

ϕl

F1[B]π1 ,Π ` Λ, F2[C]π2 →r
Π ` Λ, F1[B]π1 → F2[C]π2

ϕ1

Γ1 ` ∆1, F1[B]π1

ϕ2

F2[C]π2 , Γ2 ` ∆2 →l
F1[B]π1 → F2[C]π2 , Γ1, Γ2 ` ∆1,∆2

cut
Γ1, Γ2,Π ` ∆1,∆2,Λ

⇓



158 CHAPTER 6. RESOLUTION REFINEMENTS FOR CUT-ELIMINATION

ϕ1

Γ1 ` ∆1, F1[B]π1

ϕl

F1[B]π1 ,Π ` Λ, F2[C]π2

ϕ2

F2[C]π2 , Γ2 ` ∆2
cut

F1[B]π1 ,Π, Γ2 ` ∆2,Λ
cut

Γ1, Γ2,Π ` ∆1,∆2,Λ

– ϕk
�p¬ ϕ

k+1: Analogous to the case for �p∧ .

ϕl

F[A]π, Γ ` ∆ ¬r
Γ ` ∆,¬F[A]π

ϕr

Π ` Λ, F[A]π ¬l
¬F[A]π,Π ` Λ

cut
Γ,Π ` ∆,Λ

⇓

ϕr

Π ` Λ, F[A]π

ϕl

F[A]π, Γ ` ∆
cut

Γ,Π ` ∆,Λ

• ϕk
�q ϕ

k+1: Similar to the case for �p. It can also be subdivided in

two cases, according to which quantifier is eliminated:

– ϕk
�q∀ϕ

k+1: Notice that in the cut ofϕk+1 that has been changed by

the rewriting, for any position π, the occurrences of the atomic

formula A occupying that position in both auxiliary occurrences

of the cut have the same atomic cut-linkage annotations (the

same color red). Therefore, for any cut ρ of ϕk+1 with auxiliary

occurrences νl and νr and for any position π, cutlinka(pνlq
π, ϕ) =

cutlinka(pνrq
π, ϕ).

ϕl

Γ ` ∆, F[A]π{x← α}
∀r

Γ ` ∆, (∀x)F[A]π

ϕr

F[A]π{x← t},Π ` Λ
∀l(∀x)F[A]π,Π ` Λ
cut

Γ,Π ` ∆,Λ

⇓

ϕl{α← t}

Γ ` ∆, F[A]π{x← t}

ϕr

F[A]π{x← t},Π ` Λ
cut

Γ,Π ` ∆,Λ

– ϕk
�q∃ ϕ

k+1: Analogous to the case for �q∀ .

ϕl

Γ ` ∆, F[A]π{x← t}
∃r

Γ ` ∆,∃xF[A]π

ϕr

F[A]π{x← α},Π ` Λ
∃l

∃xF[A]π,Π ` Λ
cut

Γ,Π ` ∆,Λ
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⇓

ϕl

Γ ` ∆, F[A]π{x← t}

ϕr{α← t}

F[A]π{x← t},Π ` Λ
cut

Γ,Π ` ∆,Λ

• ϕk
�r ϕ

k+1: This is the simplest case. Notice that in the cut of ϕk+1

that has been shifted upward by the rewriting, for any position π,

the occurrences of the atomic formula A occupying that position

in both auxiliary occurrences of the cut have the same atomic cut-

linkage annotations (the same color red). Therefore, for any cut ρ

of ϕk+1 with auxiliary occurrences νl and νr and for any position π,

cutlinka(pνlq
π, ϕ) = cutlinka(pνrq

π, ϕ).

ϕl

Γ ` ∆, F[A]π

ϕr

F[A]π,Π
′ ` Λ′

ρ
F[A]π,Π ` Λ

cut
Γ,Π ` ∆,Λ

⇓

ϕl

Γ ` ∆, F[A]π

ϕr

F[A]π,Π
′ ` Λ′

cut
Γ,Π′ ` ∆,Λ′

ρ
Γ,Π ` ∆,Λ

ϕl

Γ′ ` ∆′, F[A]π ρ
Γ ` ∆, F[A]π

ϕr

F[A]π,Π ` Λ
cut

Γ,Π ` ∆,Λ

⇓

ϕl

Γ′ ` ∆′, F[A]π

ϕr

F[A]π,Π ` Λ
cut

Γ′,Π ` ∆′,Λ
ρ

Γ,Π ` ∆,Λ
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ϕl

Π ` Λ, F[A]π

ϕ1

F[A]π, Γ1 ` ∆1

ϕ2

Γ2 ` ∆2 ρ
F[A]π, Γ ` ∆

cut
Π, Γ ` Λ,∆

⇓

ϕl

Π ` Λ, F[A]π

ϕ1

F[A]π, Γ1 ` ∆1
cut

Π, Γ1 ` Λ,∆1

ϕ2

Γ2 ` ∆2 ρ
Π, Γ ` Λ,∆

ϕl

Π ` Λ, F[A]π

ϕ1

Γ1 ` ∆1

ϕ2

F[A]π, Γ2 ` ∆2 ρ
F[A]π, Γ ` ∆

cut
Π, Γ ` Λ,∆

⇓

ϕ1

Γ1 ` ∆1

ϕl

Π ` Λ, F[A]π

ϕ2

F[A]π, Γ2 ` ∆2
cut

Π, Γ2 ` Λ,∆2 ρ
Π, Γ ` Λ,∆

ϕ1

Γ1 ` ∆1, F[A]π

ϕ2

Γ2 ` ∆2 ρ
Γ ` ∆, F[A]π

ϕr

F[A]π,Π ` Λ
cut

Γ,Π ` ∆,Λ

⇓

ϕ1

Γ1 ` ∆1, F[A]π

ϕr

F[A]π,Π ` Λ
cut

Γ1,Π ` ∆1,Λ

ϕ2

Γ2 ` ∆2 ρ
Γ,Π ` ∆,Λ

ϕ1

Γ1 ` ∆1

ϕ2

Γ2 ` ∆2, F[A]π ρ
Γ ` ∆, F[A]π

ϕr

F[A]π,Π ` Λ
cut

Γ,Π ` ∆,Λ
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⇓

ϕ1

Γ1 ` ∆1

ϕ2

Γ2 ` ∆2, F[A]π

ϕr

F[A]π,Π ` Λ
cut

Γ2,Π ` ∆2,Λ ρ
Γ,Π ` ∆,Λ

• ϕk
�cϕ

k+1: Notice that in the two new cuts of ϕk+1 that have been cre-

ated by the rewriting ofϕk toϕk+1, for any positionπ, the occurrences

of the atomic formula A occupying that position in all auxiliary oc-

currences of the cuts have the same atomic cut-linkage annotations

(the same color red). This is so because atomic cut-linkage annota-

tions persist, being distributed to all copies of an occurrence when it

is duplicated (i.e. when �c duplicates some occurrences, all copies

of an occurrence are assumed to retain the same cut-linkage an-

notations as the original occurrence). Therefore, for any cut ρ of

ϕk+1 with auxiliary occurrences νl and νr and for any position π,

cutlinka(pνlq
π, ϕ) = cutlinka(pνrq

π, ϕ).

ϕl

Γ ` ∆, F[A]π, F[A]π cr
Γ ` ∆, F[A]π

ϕr

F[A]π,Π ` Λ
cut

Γ,Π ` ∆,Λ

⇓

ϕl

Γ ` ∆, F[A]π, F[A]π

ϕr

F[A]π,Π ` Λ
cut

Γ,Π ` ∆,Λ, F[A]π

ϕ′r
F[A]π,Π ` Λ

cut
Γ,Π,Π ` ∆,Λ,Λ,

c∗
l
, c∗r

Γ,Π ` ∆,Λ

ϕl

Γ ` ∆, F[A]π

ϕr

F[A]π, F[A]π,Π ` Λ cl
F[A]π,Π ` Λ

cut
Γ,Π ` ∆,Λ

⇓



162 CHAPTER 6. RESOLUTION REFINEMENTS FOR CUT-ELIMINATION

ϕ′
l

Γ ` ∆, F[A]π

ϕl

Γ ` ∆, F[A]π

ϕr

F[A]π, F[A]π,Π ` Λ
cut

F[A]π, Γ,Π ` ∆,Λ
cut

Γ, Γ,Π ` ∆,∆,Λ
c∗

l
, c∗r

Γ,Π ` ∆,Λ

• ϕk
�w ϕ

k+1: When ϕk is rewritten to ϕk+1 via �w, the only thing that

happens is the elimination of one cut. All cuts the remain in ϕk+1

are left unchanged. Therefore, for any cut ρ of ϕk+1 with auxiliary

occurrences νl and νr and for any position π, cutlinka(pνlq
π, ϕ) =

cutlinka(pνrq
π, ϕ).

ϕl

Γ ` ∆ wr
Γ ` ∆, F[A]π

ϕr

F[A]π,Π ` Λ
cut

Γ,Π ` ∆,Λ

⇓

ϕl

Γ ` ∆ w∗r,w
∗
l

Γ,Π ` ∆,Λ

ϕl

Γ ` ∆, F[A]π

ϕr

Π ` Λ wl
F[A]π,Π ` Λ

cut
Γ,Π ` ∆,Λ

⇓

ϕr

Π ` Λ w∗r,w
∗
l

Γ,Π ` ∆,Λ

• ϕk
�a ϕ

k+1: Analogous to the case for �w.

A ` A

ϕr

A,Π ` Λ
cut

A,Π ` Λ

⇓
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ϕr

A,Π ` Λ

ϕl

Γ ` ∆,A A ` A
cut

Γ, ` ∆,A

⇓

ϕl

Γ ` ∆,A

�

Theorem 6.4 (Cut-Linkage Preservation under Reductive Cut-Elimina-

tion). Let ϕ be a proof with cuts and ϕ∗ a proof such that ϕ �
∗ ϕ∗. Let ρ

be a cut in ϕ∗ with auxiliary occurrences νl and νr. Then, for any position

π, cutlink(pνlq
π, ϕ) = cutlink(pνrq

π, ϕ).

Proof. This theorem follows from Theorem 6.3 and from noting that atomic

cut-linkage is a sub-relation of cut-linkage. �

6.2.3 Cut-Side Preservation under Reductive Cut-Eliminat ion

A similar preservation result can be proved for cut-side annotations, as

shown in Theorem 6.5.

Theorem 6.5 (Cut-Side Preservation under Reductive Cut-Elimination).

Let ϕ be a proof with cuts and ϕ∗ a proof such that ϕ �
∗ ϕ∗. Let ρ be a

cut in ϕ∗ with auxiliary occurrences νl and νr. Then, for any position π,

cutside(pνlq
π, ϕ) , cutside(pνrq

π, ϕ).

Proof. Analogous to the proof of Theorem 6.3. �

6.2.4 Using Cut-Linkage

The refinement described in this subsection (Definition 6.2.7) uses only

cut-linkage annotations and yet in a very loose way. Nevertheless, it is

already strict enough to prevent certain refutations, as shown in Examples

6.4 and 6.5.
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Example 6.4. Let ϕ be the proof of Example 6.2. Then the clause set of ϕ is:

Cϕ ≡ {` P(α)
︸︷︷︸

c1

; P(s) ` P(s)
︸      ︷︷      ︸

c2

; P(s) ` P(s)
︸      ︷︷      ︸

c3

; P(s) `
︸︷︷︸

c4

}

Let δ be the following refutation of Cϕ:

c1 c4 r
`

There is no �a-normal-form ϕ′ of ϕ such that CR(ϕ′) = δ (this fact can be

easily verified by performing reductive cut-elimination on ϕ or by noting that

otherwise this would lead to a contradiction of Theorem 6.4).

Definition 6.2.7 (Refined Resolution using Cut-Linkage). The inference

rules of the resolution calculus refined by using cut-linkage Rcl are the

same as the rules of the unrestricted resolution calculus, except for an

additional restriction on the resolution rule:

• Resolution Rule (restricted by using cut-linkage):

Γ1 ` ∆1,A1 A2, Γ2 ` ∆2 r(σ)
Γ1ση, Γ2ση ` ∆1ση,∆2ση

only if there exist formula occurrences F1 ∈ Γ1 ∪ ∆1 ∪ {A1} and F2 ∈

Γ2 ∪ ∆2 ∪ {A2} such that cutlink(F1) ∩ cutlink(F2) , ∅.

where σ is a most general unifier of A1 and A2 and η is a substitution

that renames all variables to globally new fresh ones.

Example 6.5 (Refined Resolution using Cut-Linkage). The R-refutation δ

shown in Example 6.4 is not a Rcl-refutation, because c1 and c4 do not have any

literals that have the same cut-linkage annotations (i.e. the same colors). There

are four minimal Rcl-refutations of Cϕ, which are shown below:

c1 c2 r
` P(s) c4 r

`

c1 c3 r
` P(s) c4 r

`

c1

c2 c4 r
P(s) `

r
`
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c1

c3 c4 r
P(s) `

r
`

Infinitely many non-minimal Rcl-refutations of Cϕ can be obtained by re-

solving c2 with c3 many times. An example of such a non-minimal refutation is

shown in Example 6.6.

6.2.5 Using Cut-Linkage (More Strictly)

The refinement described in this subsection also uses only cut-linkage

annotations, but it does so in a more strict way than the refinement de-

scribed in the previous subsection. Here it does not suffice for two clauses

to contain literals having equal cut-linkage annotations, but the resolved

literals themselves must have equal cut-linkage annotations.

Example 6.6. Consider the proof ϕ of Example 6.4 and let δ∗ be the following

Rcl-refutation of Cϕ:

` P(α)

P(s) ` P(s) P(s) ` P(s)
r

P(s) ` P(s)
r

` P(s) P(s) `
r

`

There is no �a-normal-form ϕ′ of ϕ such that CR(ϕ′) = δ∗. Otherwise,

Theorem 6.4 would be contradicted. In any case, this fact can also be seen by

analyzing the cut reduction at the moment when the lowermost cut has been

shifted up to the→l and→r inferences of ϕ. At this moment, the proof has the

following form ϕ1, where ψ is a partial proof:

P(s) ` P(s)
wr

P(s),¬P(s) ` P(α)
→r

P(s), ` ¬P(s)→ P(s)

P(s) ` P(s)
¬r

` ¬P(s),P(s) P(s) ` P(s)
→l

¬P(s)→ P(s) ` P(s),P(s)
cut

ψ

Applying �p→ yields the following proof ϕ2:

P(s) ` P(s)
¬r

` ¬P(s),P(s)

P(s) ` P(s)
wr

P(s),¬P(s) ` P(s)
cut

P(s), ` P(s),P(s) P(s) ` P(s)
cut

ψ
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The reduction displayed above shows that the elimination of the cut with

cut-formula ¬P(s) → P(s) creates two new cuts such that their cut-formula

occurrences have all equal cut-linkage annotations (colors). Therefore, in CR(ϕ′),

resolved literals necessarily have the same cut-linkage annotation. This is not

the case with δ∗, because the first resolution inference resolves two literals with

different cut-linkage annotations.

Definition 6.2.8 (Refined Resolution using Cut-Linkage (More Strictly)).

The inference rules of the resolution calculus refined by using cut-linkage

more strictly, Rcls, are the rules of the unrestricted resolution calculus with

the following additional restrictions on the resolution and factoring rules:

• Resolution Rule (using cut-linkage more strictly):

Γ1 ` ∆1,A1 A2, Γ2 ` ∆2 r(σ)
Γ1ση, Γ2ση ` ∆1ση,∆2ση

only if cutlink(A1) ∩ cutlink(A2) , ∅.

where σ is a most general unifier of A1 and A2 and η is a substitution

that renames all variables to globally new fresh ones.

• Factoring Rules:

A,A′, Γ ` ∆
Aση, Γση ` ∆ση

fl(σ)
Γ ` ∆,A,A′

Γση ` ∆ση,Aση
fr(σ)

and then cutlink(Aση) � cutlink(A) ∪ cutlink(A′).

where σ is a most general unifier of A and A′ and η is a substitution

that renames all variables to globally new fresh ones.

6.2.6 Using Cut-Side and Cut-Linkage

Example 6.7 shows that, even when Rcls is used, CERes could still pro-

duce normal forms not obtainable by reductive methods modulo CR-

equivalence, because Rcls still allows the resolution of literals having

equal cut-side annotations. Such cases can be avoided by refining the

resolution calculus in a way that uses cut-side annotations as well, as

described in Definition 6.2.9

Example 6.7. Let ϕ be the following annotated proof:



6.2. REFINEMENTS BASED ON REDUCTIVE METHODS 167

P(α) ` P(α)
wr

P(α) ` ¬P(α),P(α)
∨r

P(α) ` ¬P(α) ∨ P(α)
∀l(∀x)P(x) ` ¬P(α) ∨ P(α)

∀r(∀x)P(x) ` (∀x)(¬P(x) ∨ P(x))

P(t) ` P(t)
¬l

¬P(t),P(t) `
¬r

¬P(t) ` ¬P(t) P(t) ` P(t)
∨l

¬P(t) ∨ P(t) ` P(t),¬P(t)
∨r

¬P(t) ∨ P(t) ` P(t) ∨ ¬P(t)
∀l(∀x)(¬P(x) ∨ P(x)) ` P(t) ∨ ¬P(t)
cut

(∀x)P(x) ` P(t) ∨ ¬P(t)

Then the clause set of ϕ is:

Cϕ ≡ {` P(α)
︸︷︷︸

c1

; ` P(t)
︸︷︷︸

c2

; P(t) `
︸︷︷︸

c3

}

A possible Rcls-refutation of Cϕ is shown below:

c2 c3 r
`

On the other hand, any �a-normal form ψ such that ϕ �
↓

a
ψ is such that

CR(ψ) is the following:

c1{α 7→ t} c3 r
`

Definition 6.2.9 (Refined Resolution using Cut-Linkage (Strictly) and

Cut-Sides). The inference rules of the resolution calculus refined by using

cut-linkage and cut-sides, Rscl, are the rules of the unrestricted resolution

calculus with the following additional restrictions on the resolution and

factoring rules:

• Resolution Rule (using cut-side and cut-linkage):

Γ1 ` ∆1,A1 A2, Γ2 ` ∆2 r(σ)
Γ1ση, Γ2ση ` ∆1ση,∆2ση

only if cutlink(A1) ∩ cutlink(A2) , ∅ and cutside(A1) ∩ cutside(A2) = ∅.

where σ is a most general unifier of A1 and A2 and η is a substitution

that renames all variables to globally new fresh ones.

• Factoring Rules (using cut-side and cut-linkage):

A,A′, Γ ` ∆
Aση, Γση ` ∆ση

fl(σ)
Γ ` ∆,A,A′

Γση ` ∆ση,Aση
fr(σ)
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only if cutside(A1)∩cutside(A2) = ∅. And then cutlink(Aση) � cutlink(A′)∪

cutlink(A′).

where σ is a most general unifier of A and A′ and η is a substitution

that renames all variables to globally new fresh ones.

6.2.7 Using Atomic Cut-Linkage

The most restrictive refinement studied in this chapter is obtained when

atomic cut-linkage is used. More precisely, resolved literals are required

to have equal atomic cut-linkage annotations, as described in Definition

6.2.10. It is capable of preventing refutations such as the one shown in

Example 6.8.

Example 6.8. Let ϕ be the proof below:

P(α) ` P(α)l

∀l
(∀z)P(z) ` P(α)l

∀r
(∀z)P(z) ` (∀x)P(x)l

wr
(∀z)P(z) ` (∀x)P(x)l, (∀y)P(y)l

∨r
(∀z)P(z) ` (∀x)P(x)l ∨ (∀y)P(y)l

P(t)r ` P(t)
∃r

P(t)r ` (∃w)P(w)
∀l

(∀x)P(x)r ` (∃w)P(w)

P(s)r ` P(s)
∃r

P(s)r ` (∃w)P(w)
∀l

(∀y)P(y)r ` (∃w)P(w)
∨l

(∀x)P(x)r ∨ (∀y)P(y)r ` (∃w)P(w), (∃w)P(w)
cr

(∀x)P(x)r ∨ (∀y)P(y)r ` (∃w)P(w)
cut

(∀z)P(z) ` (∃w)P(w)

Its clause set is:

Cϕ ≡ {` P(α)l

︸ ︷︷ ︸

c1

; P(t)r `
︸︷︷︸

c2

; P(s)r `
︸ ︷︷ ︸

c3

}

Let δ be the following Rscl-refutation of Cϕ:

c1 c3 r
`

The refutation δ cannot be the canonic refutation of any normal form ϕ∗

obtained by reductive cut-elimination methods. This can be seen by an analysis

of the first cut-reduction, on ∨, which matches each subformula of the left cut-

occurrence with its corresponding subformula in the right cut-occurrence. To

obtain δ as a canonic refutation, on the other hand, it would be necessary to

match the left subformula of the left cut-occurrence with the right subformula of

the right cut-occurrence when doing the cut-reduction on ∨. Indeed, the only

canonic refutation for a reductive normal form ϕ∗ is the following δ∗:

c1{α← t} c2 r
`
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Definition 6.2.10 (Refined Resolution using Atomic Cut-Linkage). The in-

ference rules of the resolution calculus refined by using atomic cut-linkage,

Racl, are the rules of the unrestricted resolution calculus with the following

additional restrictions on the resolution and factoring rules:

• Resolution Rule (using cut-linkage more strictly):

Γ1 ` ∆1,A1 A2, Γ2 ` ∆2 r(σ)
Γ1ση, Γ2ση ` ∆1ση,∆2ση

only if cutlinka(A1) ∩ cutlinka(A2) , ∅.

where σ is a most general unifier of A1 and A2 and η is a substitution

that renames all variables to globally new fresh ones.

• Factoring Rules:

A,A′, Γ ` ∆
Aση, Γση ` ∆ση

fl(σ)
Γ ` ∆,A,A′

Γση ` ∆ση,Aση
fr(σ)

and then cutlinka(Aση) � cutlinka(A
′) ∪ cutlinka(A).

where σ is a most general unifier of A and A′ and η is a substitution

that renames all variables to globally new fresh ones.

6.2.8 Refined Refutability

Sections 6.2.4, 6.2.5, 6.2.6, 6.2.7 have shown how cut-linkage and cut-side

annotations and refined resolution calculi that use these annotations can

be used to prevent certain kinds of refutations. A question that naturally

arises from this approach is whether clause sets remain refutable if these

refined resolution calculi are used.

For unrestricted resolution, the refutability is a consequence of the

unsatisfiability of clause sets (Theorems 4.1 and 4.5) and the refutational

completeness of unrestricted resolution. However, refined resolution cal-

culi are generally not refutationally complete, and hence the refutability

of clause sets must be proved by other means. In particular, the proofs

shown here are constructive; they actually show how to construct a reso-

lution proof for a clause set.

Theorem 6.6 shows that at least one of the swapped clause sets of

a proof is indeed refutable by the most refined resolution calculus Racl.

Theorem 6.7 shows that, in fact, any swapped clause set is Racl-refutable.

This result can be transfered to less refined calculi by using Lemma 6.1.
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Although these theorems hold for swapped clause sets, it is conjec-

tured the similar results could also be proved for standard clause sets

and profile clause sets. The proofs, however, would be more complicated

because standard clause sets and profile clause sets are not as invariant

as swapped clause sets.

Theorem 6.6 (Racl-Refutability of a Swapped Clause Set). For any proof

ϕ, there exists a Racl-refutation of a swapped clause set CW
ϕ|S∗

of ϕ with

respect to a ;⊕⊗W
-normal-form S∗ of Sϕ.

Proof. Let ϕ′ be such that ϕ �
↓

a
ϕ′. By Definitions 5.1.4 and 5.1.5 and

Theorem 5.1, there exists δ ∈ SCR(ϕ′) such that δ is a R-refutation of CW
ϕ′ |S′

where S′ is a ;⊕⊗W
-normal-form of Sϕ′ . By Lemma 5.9, there exists a

;⊕⊗W
-normal-form S∗ of Sϕ such that S∗ 4 S′. By Lemma 5.10, δ is also a

refutation of CW
ϕ|S∗

. By Theorem 6.3, the resolved literals of any resolution

inference ρ of δmust have a non-empty intersection of atomic cut-linkage

annotations. Therefore, δ is a Racl-refutation of CW
ϕ|S∗

. �

Theorem 6.7 (Racl-Refutability of any Swapped Clause Set). For any proof

ϕ, there exists a Racl-refutation of the swapped clause set CW
ϕ|S∗

of ϕ with

respect to any ;⊕⊗W
-normal-form S∗ of Sϕ.

Proof. By Lemma 4.9 there exists a proof ϕ∗ such that Sϕ∗ = S∗. Let ϕ′

be such that ϕ∗ �↓ã ϕ
′. Since ϕ∗ is in �⊕⊗-normal-form and �ã does not

introduce any degenerate inference, ϕ′ has only one �⊕⊗-normal-form.

Let ϕ′′ be the �⊕⊗-normal-form of ϕ′. Let δ be the canonic refutation

from ϕ′′. By Definition 5.1.5 and Theorem 5.1 δ is a R-refutation of CW
ϕ′ |S′

where S′ is the ;⊕⊗W
-normal-form of Sϕ′ . By Lemma 5.9, there exists a

;⊕⊗W
-normal-form S of Sϕ∗ such that S 4 S′. Moreover, since ϕ∗ is in

�⊕⊗-normal-form, there is only one ;⊕⊗W
-normal-form of Sϕ∗ . Hence,

S = S∗ and S∗ 4 S′. Therefore, by Lemma 5.10, δ is also a refutation

of cl(S∗) ≡ CW
ϕ|S∗

. By Theorem 6.3, the resolved literals of any resolution

inference ρ of δmust have a non-empty intersection of atomic cut-linkage

annotations. Therefore, δ is a Racl-refutation of CW
ϕ|S∗

. �

Lemma 6.1 (Restrictiveness of Refinements). The following hold with

respect to a refutation δ of a clause set Cϕ of a proof ϕ enriched with

atomic cut-linkage, cut-linkage and cut-side annotations:

• If δ is a Racl-refutation, then δ is a Rscl-refutation.

• If δ is a Rscl-refutation, then δ is a Rcls-refutation.
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• If δ is a Rcls-refutation, then δ is a Rcl-refutation.

• If δ is a Rcl-refutation, then δ is a R-refutation.

Proof. The last three items of the lemma are evident; they follow directly

from the definitions of each refined resolution calculus. The first item,

though, is slightly less evident and hence is shown below:

For simplicity, assume that δ contains only resolution inferences (the

analysis for the general case containing factoring inferences is analogous).

Assume, for the sake of contradiction, that δ is a Racl-refutation but not

a Rscl-refutation. Then, by the definition of Racl, for any resolution in-

ference ρ with resolved literals A1 and A2, cutlinka(A1) = cutlinka(A2).

Consequently, cutlink(A1) = cutlink(A2). Moreover, since δ is not a Rscl-

refutation, by the definition of Rscl, there must be a resolution inference ρ′

with resolved literals A′
1

and A′2 such that cutside(A′
1
) = cutside(A′2). And

this, together with the fact that cutlinka(A
′
1
) = cutlinka(A

′
2), implies that A′

1

and A′2 must have the same polarity. But this is a contradiction, because

only literal of opposite polarity can be resolved. �

Theorem 6.8 (Rscl-Refutability of any Swapped Clause Set). For any proof

ϕ, there exists a Rscl-refutation of the swapped clause set CW
ϕ|S∗

of ϕ with

respect to any ;⊕⊗W
-normal-form S∗ of Sϕ.

Proof. This theorem follows from Theorem 6.7 and Lemma 6.1 �

Theorem 6.9 (Rcls-Refutability of any Swapped Clause Set). For any proof

ϕ, there exists a Rcls-refutation of the swapped clause set CW
ϕ|S∗

of ϕ with

respect to any ;⊕⊗W
-normal-form S∗ of Sϕ.

Proof. This theorem follows from Theorem 6.8 and Lemma 6.1 �

Theorem 6.10 (Rcl-Refutability of any Swapped Clause Set). For any proof

ϕ, there exists a Rcl-refutation of the swapped clause set CW
ϕ|S∗

of ϕ with

respect to any ;⊕⊗W
-normal-form S∗ of Sϕ.

Proof. This theorem follows from Theorem 6.9 and Lemma 6.1 �

Theorem 6.11 (R-Refutability of any Swapped Clause Set). For any proof

ϕ, there exists a R-refutation of the swapped clause set CW
ϕ|S∗

of ϕ with

respect to any ;⊕⊗W
-normal-form S∗ of Sϕ.

Proof. This theorem follows from Theorem 4.5 and the refutational com-

pleteness of R. However, notice that such a proof does not construct a
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R-refutation of the swapped clause set. It just proves that it exists. A

proof according to the proof of Theorem 6.10 and using Lemma 6.1, on

the other hand, does construct a R-refutation. �

6.2.9 CR-Simulation among Refinements

The refutability results established in Section 6.2.8 can be reformulated as

CR-simulation results.

Theorem 6.12 (CR-Simulation among Refinements). The following CR-

simulation results hold:

• CERes with Rscl CR-simulates CERes with Racl.

• CERes with Rcls CR-simulates CERes with Rscl.

• CERes with Rcl CR-simulates CERes with Rcls.

• CERes CR-simulates CERes with Rcl.

Proof. These results follow immediately from Lemma 6.1. �

Theorem 6.13 (CR-Simulation of Reductive Methods by Refined CERes).

CEResO
W with R ∈ {Rscl,Racl,Rcls,Rcl} CR-simulates �

↓

ã .

Proof. This is clear from an analysis of the proof of Theorem 6.7. �

Conjecture 6.1 (CR-Simulation of CERes with Racl by Reductive Methods).

�
↓

ã CR-simulates CEResO
W with Racl.

Proof. Proving or disproving this conjecture remains for future work. In

case it is disproved, it would be interesting to define a more restricted

refinement for which this conjecture could be proved. �



Chapter 7

Cut-Introduction

It is well-known that eliminating cuts frequently increases the size and

length of proofs. In the worst case, cut-elimination can produce non-

elementarily larger and longer proofs [109, 93]. This fact naturally leads to

a desire to devise methods that could introduce cuts and compress proofs.

However, this has been a notoriously difficult task. Indeed, the problem of

answering, given a proofϕ and a number l such that l ≤ length(ϕ), whether

there is a proof ψ such that length(ψ) < l is known to be undecidable

[14]. Nevertheless, a lower bound for compressibility based on specific

cut-introduction methods that are inverse of reductive cut-elimination

methods is known [65]a, and some ad-hoc methods to introduce cuts of

restricted forms have been proposed. They are based on techniques from

automated theorem proving, such as conflict-driven formula learning

[42], and from logic programming, such as tabling [92, 86].

Besides the concern of compression, cut-introduction is also interesting

as a way of structuring and extracting interesting concepts from proofs.

In [40], for example, it is shown that many translation techniques of

automated deduction can be seen as introduced cuts. Furthermore, in

mathematical proofs, automatic introduction of cuts would correspond

to the automatic discovery of potentially useful lemmas. And Chapter

9 shows how cuts and the introduction of cuts corresponds to various

procedures in other areas of science.

This Chapter shows that, with very simple modifications, the CERes

method can be converted into a method for the introduction of atomic

aA cut-introduction method g is inverse of a reductive cut-elimination method if and only if,
for any cut-free proof ϕ, the proof with cuts g(ϕ) rewrites to ϕ (i.e. g(ϕ) � ϕ).

173
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cuts that can compress proofs.

7.1 Cut-Introduction by Resolution

The CIRes method of cut-introduction by resolution is based on two

simple observations:

• In a naive attempt to introduce cuts by applying the proof rewriting

rules of reductive cut-elimination methods in an inverse direction,

the first step, which is the introduction of atomic cuts in the top

of cut-free proofs, is trivial. However, pushing the cuts down (by

applying inverse rank reduction rules), combining the cuts to make

more complex cuts, and exploiting redundancies in the form of con-

tractions is non-trivial.

• If applied to a proof containing atomic cuts in the top, CERes outputs

a proof containing atomic cuts in the bottom, because a CERes-

normal-form is constructed by plugging all the projections on the

top of the refutation, and all atomic cuts are converted resolution

inferences from the refutation.

The CIRes method then simply consists of adding atomic cuts to every

leaf of the cut-free proof and applying CERes to push these cuts down.

Compression can be achieved thanks mainly to three ways by which

CERes is able to exploit or avoid redundancies:

• It is possible that the refutation uses only some clauses of the clause

set. The effect is that large parts of the proof (i.e. the projections

with respect to the unused clauses) can be deleted, replaced by

weakening. Clearly, this kind of deletion can lead to compression.

• If a refutation contains factoring inferences, the corresponding proof

with cuts has cuts whose cut-formula occurrences are being con-

tracted. Since the presence of cut-pertinent contractions is a major

reason for the increase of size and length during cut-elimination,

adding cut-pertinent contractions (via factoring) can lead to com-

pression.

• The improved normalizations used in the construction of profile or

swapped clause sets and the careful construction of O-projections

minimize redundancy. (It is interesting to note, on the other hand,

that in the case of standard clause sets and S-projections, parts of
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the proof frequently occur repeated in several projections, jeopar-

dizing the potential for compression. The evolution from standard

clause sets to profile or swapped clause sets and from S-projections

to O-projections has been therefore a critical step to enable the de-

velopment of CIRes from CERes.)

Definition 7.1.1 (Naive Introduction of Atomic Cuts). Let ϕ be a cut-free

proof. Then ϕa denotes the proof obtained from ϕ by replacing every

axiom inference with conclusion sequent of the form A ` A by a subproof

of the form:

A ` A A ` A
cut

A ` A

Definition 7.1.2 (CIRes-Normal-Form). The CIRes-normal-form of a cut-

free proof ϕ with respect to a refutation δ of a clause set Cϕa is:

CIRes(ϕ, δ) � CERes(ϕa, δ)

Remark 7.1.1. Analogously to CERes, subscripts and superscripts are also

used to explicitly state which variants of clause sets and projections are

used. So, CIResO
W(ϕ, δ) denotes a CIRes-normal-form in which a swapped

clause set and O-projections are used, for example.

Example 7.1 (CIRes Applied to a Very Simple Compressible Proof). Let ϕ

be the proof below:

A ` A A ` A ∧r
A,A ` A ∧ A cl

A ` A ∧ A

A ` A A ` A ∧r
A,A ` A ∧A cl

A ` A ∧ A ∨l
A ∨ A ` A ∧ A,A ∧ A cr

A ∨ A ` A ∧ A

Then ϕa is:

A ` A A ` A
cut

A ` A

A ` A A ` A
cut

A ` A
∧r

A,A ` A ∧A
cl

A ` A ∧A

A ` A A ` A
cut

A ` A

A ` A A ` A
cut

A ` A
∧r

A,A ` A ∧ A
cl

A ` A ∧ A
∨l

A ∨ A ` A ∧A,A ∧A
cr

A ∨A ` A ∧ A

Its cut-pertinent struct is:

Sϕa ≡ ((A ⊕ ¬A) ⊗∗∗ (A ⊕ ¬A)) ⊗∗∗∗∗ ((A ⊕ ¬A) ⊗∗∗ (A ⊕ ¬A))

And it can be ;⊕⊗W
-normalized as follows:
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Sϕa ≡ ((A ⊕ ¬A) ⊗∗∗ (A ⊕ ¬A)) ⊗∗∗∗∗ ((A ⊕ ¬A) ⊗∗∗ (A ⊕ ¬A))

;⊕⊗W
(A ⊕ A ⊕ (¬A ⊗∗∗ ¬A)) ⊗∗∗∗∗ ((A ⊕ ¬A) ⊗∗∗ (A ⊕ ¬A))

;⊕⊗W
(A ⊕ A ⊕ (¬A ⊗∗∗ ¬A)) ⊗∗∗∗∗ (A ⊕ A ⊕ (¬A ⊗∗∗ ¬A))

;⊕⊗W
(A ⊗∗∗∗∗ A) ⊕ (A ⊗∗∗∗∗ A) ⊕ (A ⊗∗∗∗∗ A) ⊕ (A ⊗∗∗∗∗ A) ⊕ (¬A ⊗∗∗ ¬A) ⊕ (¬A ⊗∗∗ ¬A)

The swapped clause set is therefore:

CW
ϕa ≡ { ` A,A ; ` A,A ; ` A,A ; ` A,A ; A,A ` ; A,A ` }

And δ shown below is one of the possible refutations of CW
ϕa :

` A,A
fr

` A
A,A `

fl
A ` r

`

The O-projections are:

bϕacO
`A,A

:

A ` A A ` A ∨l
A ∨ A ` A,A

bϕacO
A,A`

:

A ` A A ` A ∧r
A,A ` A ∧ A

Finally, the O-projections and the refutation can be combined in order to

produce CEResO
W(ϕa, δ), which is, by definition, CIResO

W(ϕ, δ):

A ` A A ` A ∨l
A ∨A ` A,A cr

A ∨ A ` A

A ` A A ` A ∧r
A,A ` A ∧ A cl

A ` A ∧A cut
A ∨ A ` A ∧ A

The following hold regarding sizes and length of ϕ:

• length(ϕ) = 6

• |ϕ| = 41

• |ϕ|a = 32

Regarding sizes and length of CIResO
W(ϕ, δ), on the other hand:

• length(CIResO
W(ϕ, δ)) = 5

• |CIResO
W(ϕ, δ)| = 32
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• |CIResO
W(ϕ, δ)|a = 26

This shows that CIRes is indeed able to compress proofs. It is interesting to

note that CIResO
W(ϕ, δ) is the shortest proof of A ∨ A ` A ∧ A in the sequent

calculus used. The proof ϕ, on the other hand is one of the two shortest cut-free

proofs of A ∨ A ` A ∧ A. The other shortest proof is the proof ϕ′ shown below:

A ` A A ` A ∨l
A ∨A ` A,A

cr
A ∨A ` A

A ` A A ` A ∨l
A ∨ A ` A,A

cr
A ∨A ` A ∧r

A ∨A,A ∨ A ` A ∧A cl
A ∨A ` A ∧A

Note that CIResO
W(ϕ, δ)�∗ϕ and CIResO

W(ϕ, δ)�∗ϕ′, and it is also not so hard

to verify that CIResO
W(ϕ′, δ) = CIResO

W(ϕ, δ) (not considering the colors/labels).

In fact, there are infinitely many ϕ∗ such that CIResO
W(ϕ, δ) �

∗ ϕ∗ [66], and

for any of them CIResO
W(ϕ∗, δ) = CIResO

W(ϕ, δ). Considering that the size of ϕ∗

is arbitrary, the amount of compression achievable with CIRes is unbounded.
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Example 7.2 (CIRes Applied to a More Interesting Proof). Although Example 7.1 shows that CIRes can compress proofs, the

proof used is very simple. In this example, a more interesting proofb ϕ shown below is used:

P1 ` P1
¬l

P1,¬P1 `

P1 ` P1
¬l

P1,¬P1 `

P2
− ` P2

− ¬l
P2
−,¬P2

− ` ∨l
P2
−,P

1,¬P1 ∨ ¬P2
− ` ∨l

P1,P1,¬P1 ∨ P2
−,¬P1 ∨ ¬P2

− ` cl
P1,¬P1 ∨ P2

−,¬P1 ∨ ¬P2
− `

P1 ` P1
¬l

P1,¬P1 `

P1 ` P1
¬l

P1,¬P1 `

P2
− ` P2

− ¬l
P2
−,¬P2

− ` ∨l
P2
−,P

1,¬P1 ∨ ¬P2
− ` ∨l

P1,P1,¬P1 ∨ P2
−,¬P1 ∨ ¬P2

− ` cl
P1,¬P1 ∨ P2

−,¬P1 ∨ ¬P2
− `

P2
+ ` P2

+ ¬l
P2
+,¬P2

+ ` ∨l
P2
+,P

1 ∨ ¬P2
+,¬P1 ∨ P2

−,¬P1 ∨ ¬P2
− ` ∨l

P1 ∨ P2
+,¬P1 ∨ P2

−,¬P1 ∨ ¬P2
−,P

1 ∨ ¬P2
+,¬P1 ∨ P2

−,¬P1 ∨ ¬P2
− ` cl

P1 ∨ P2
+,¬P1 ∨ P2

−,¬P1 ∨ ¬P2
−,P

1 ∨ ¬P2
+,¬P1 ∨ ¬P2

− ` cl
P1 ∨ P2

+,¬P1 ∨ P2
−,P

1 ∨ ¬P2
+,¬P1 ∨ ¬P2

− `

The subproofs highlighted below are equal. This redundant repetition suggests that cut-introduction might be able to compress

this proof.

b The end-sequent of this proof was adapted from an instance of a sequence of clause sets used in [26] to show that the resolution calculus can produce
significantly shorter proofs than the analytic tableaux calculus. .
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P1 ` P1
¬l

P1,¬P1 `

P1 ` P1
¬l

P1,¬P1 `

P2
− ` P2

− ¬l
P2
−,¬P2

− ` ∨l
P2
−,P

1,¬P1 ∨ ¬P2
− ` ∨l

P1,P1,¬P1 ∨ P2
−,¬P1 ∨ ¬P2

− ` cl
P1,¬P1 ∨ P2

−,¬P1 ∨ ¬P2
− `

P1 ` P1
¬l

P1,¬P1 `

P1 ` P1
¬l

P1,¬P1 `

P2
− ` P2

− ¬l
P2
−,¬P2

− ` ∨l
P2
−,P

1,¬P1 ∨ ¬P2
− ` ∨l

P1,P1,¬P1 ∨ P2
−,¬P1 ∨ ¬P2

− ` cl
P1,¬P1 ∨ P2

−,¬P1 ∨ ¬P2
− `

P2
+ ` P2

+ ¬l
P2
+,¬P2

+ ` ∨l
P2
+,P

1 ∨ ¬P2
+,¬P1 ∨ P2

−,¬P1 ∨ ¬P2
− ` ∨l

P1 ∨ P2
+,¬P1 ∨ P2

−,¬P1 ∨ ¬P2
−,P

1 ∨ ¬P2
+,¬P1 ∨ P2

−,¬P1 ∨ ¬P2
− ` cl

P1 ∨ P2
+,¬P1 ∨ P2

−,¬P1 ∨ ¬P2
−,P

1 ∨ ¬P2
+,¬P1 ∨ ¬P2

− ` cl
P1 ∨ P2

+,¬P1 ∨ P2
−,P

1 ∨ ¬P2
+,¬P1 ∨ ¬P2

− `

Following the steps of the CIRes method, ϕa is obtained by adding atomic cuts to the leaves of ϕ:

ϕa
l

ϕa
r

∨l
P1 ∨ P2

+,¬P1 ∨ P2
−,¬P1 ∨ ¬P2

−,P
1 ∨ ¬P2

+,¬P1 ∨ P2
−,¬P1 ∨ ¬P2

− ` cl
P1 ∨ P2

+,¬P1 ∨ P2
−,¬P1 ∨ ¬P2

−,P
1 ∨ ¬P2

+,¬P1 ∨ ¬P2
− ` cl

P1 ∨ P2
+,¬P1 ∨ P2

−,P
1 ∨ ¬P2

+,¬P1 ∨ ¬P2
− `

where ϕa
l

is:

P1 ` P1 P1 ` P1

cut
P1 ` P1

¬l
P1,¬P1 `

P1 ` P1 P1 ` P1

cut
P1 ` P1

¬l
P1,¬P1 `

P2
− ` P2

− P2
− ` P2

−
cut

P2
− ` P2

− ¬l
P2
−,¬P2

− ` ∨l
P2
−,P

1,¬P1 ∨ ¬P2
− ` ∨l

P1,P1,¬P1 ∨ P2
−,¬P1 ∨ ¬P2

− ` cl
P1,¬P1 ∨ P2

−,¬P1 ∨ ¬P2
− `
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and ϕa
r is:

P1 ` P1 P1 ` P1

cut
P1 ` P1

¬l
P1,¬P1 `

P1 ` P1 P1 ` P1

cut
P1 ` P1

¬l
P1,¬P1 `

P2
− ` P2

− P2
− ` P2

−
cut

P2
− ` P2

− ¬l
P2
−,¬P2

− ` ∨l
P2
−,P

1,¬P1 ∨ ¬P2
− ` ∨l

P1,P1,¬P1 ∨ P2
−,¬P1 ∨ ¬P2

− ` cl
P1,¬P1 ∨ P2

−,¬P1 ∨ ¬P2
− `

P2
+ ` P2

+ P2
+ ` P2

+
cut

P2
+ ` P2

+ ¬l
P2
+,¬P2

+ ` ∨l
P2
+,P

1 ∨ ¬P2
+,¬P1 ∨ P2

−,¬P1 ∨ ¬P2
− `

Its cut-pertinent struct is:

Sϕa ≡ ((P1 ⊕ ¬P1) ⊗∗∗ ((P1 ⊕ ¬P1) ⊗∗∗ (P2
− ⊕ ¬P2

−))) ⊗∗∗∗ (((P1 ⊕ ¬P1) ⊗∗∗ ((P1 ⊕ ¬P1) ⊗∗∗ (P2
− ⊕ ¬P2

−))) ⊗∗∗∗ (P2
+ ⊕ ¬P2

+))

And it can be normalized as follows:

Sϕa ≡ ((P1 ⊕ ¬P1) ⊗∗∗ ((P1 ⊕ ¬P1) ⊗∗∗ (P2
− ⊕ ¬P2

−))) ⊗∗∗∗ (((P1 ⊕ ¬P1) ⊗∗∗ ((P1 ⊕ ¬P1) ⊗∗∗ (P2
− ⊕ ¬P2

−))) ⊗∗∗∗ (P2
+ ⊕ ¬P2

+))

;⊕⊗W
((P1 ⊕ ¬P1) ⊗∗∗ (P1 ⊕ P2

− ⊕ (¬P1 ⊗∗∗ ¬P2
−))) ⊗∗∗∗ (((P1 ⊕ ¬P1) ⊗∗∗ ((P1 ⊕ ¬P1) ⊗∗∗ (P2

− ⊕ ¬P2
−))) ⊗∗∗∗ (P2

+ ⊕ ¬P2
+))

;⊕⊗W
(P1 ⊕ P1 ⊕ (¬P1 ⊗∗∗ P2

−) ⊕ (¬P1 ⊗∗∗ ¬P2
−)) ⊗∗∗∗ (((P1 ⊕ ¬P1) ⊗∗∗ ((P1 ⊕ ¬P1) ⊗∗∗ (P2

− ⊕ ¬P2
−))) ⊗∗∗∗ (P2

+ ⊕ ¬P2
+))

;⊕⊗W
(P1 ⊕ P1 ⊕ (¬P1 ⊗∗∗ P2

−) ⊕ (¬P1 ⊗∗∗ ¬P2
−)) ⊗∗∗∗ (((P1 ⊕ ¬P1) ⊗∗∗ (P1 ⊕ P2

− ⊕ (¬P1 ⊗∗∗ ¬P2
−))) ⊗∗∗∗ (P2

+ ⊕ ¬P2
+))

;⊕⊗W
(P1 ⊕ P1 ⊕ (¬P1 ⊗∗∗ P2

−) ⊕ (¬P1 ⊗∗∗ ¬P2
−)) ⊗∗∗∗ ((P1 ⊕ P1 ⊕ (¬P1 ⊗∗∗ P2

−) ⊕ (¬P1 ⊗∗∗ ¬P2
−)) ⊗∗∗∗ (P2

+ ⊕ ¬P2
+))

;⊕⊗W
(P1 ⊕ P1 ⊕ (¬P1 ⊗∗∗ P2

−) ⊕ (¬P1 ⊗∗∗ ¬P2
−)) ⊗∗∗∗ ((P1 ⊗∗∗∗ ¬P2

+) ⊕ (P1 ⊗∗∗∗ ¬P2
+) ⊕ (¬P1 ⊗∗∗ P2

−) ⊕ (¬P1 ⊗∗∗ ¬P2
−) ⊕ P2

+)

;⊕⊗W
((P1 ⊗∗∗∗ P2

+) ⊕ (P1 ⊗∗∗∗ P2
+) ⊕ (¬P1 ⊗∗∗ P2

−) ⊕ (¬P1 ⊗∗∗ ¬P2
−)) ⊕ ((P1 ⊗∗∗∗ ¬P2

+) ⊕ (P1 ⊗∗∗∗ ¬P2
+) ⊕ (¬P1 ⊗∗∗ P2

−) ⊕ (¬P1 ⊗∗∗ ¬P2
−))

≡ (P1 ⊗∗∗∗ P2
+) ⊕ (P1 ⊗∗∗∗ P2

+) ⊕ (¬P1 ⊗∗∗ P2
−) ⊕ (¬P1 ⊗∗∗ ¬P2

−) ⊕ (P1 ⊗∗∗∗ ¬P2
+) ⊕ (P1 ⊗∗∗∗ ¬P2

+) ⊕ (¬P1 ⊗∗∗ P2
−) ⊕ (¬P1 ⊗∗∗ ¬P2

−)

The swapped clause set is therefore:
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CW
ϕa ≡ { ` P1,P2

+ ; ` P1,P2
+ ; P1 ` P2

− ; P1,P2
− ` ; P2

+ ` P1 ; P2
+ ` P1 ; P1 ` P2

− ; P1,P2
− ` }

CW
ϕa can be refuted by the refutation δ below:

` P1,P2
+ P2

+ ` P1

r
` P1,P1

fr
` P1

P1 ` P2
− P1,P2

− ` r
P1,P1 `

fr
P1 ` r

`

The O-projections are:

bϕacO
`P1,P2

+

:

P1 ` P1 P2
+ ` P2

+ ∨l
P1 ∨ P2

+ ` P1,P2
+

bϕacO
P2
+`P

1
:

P1 ` P1

P2
+ ` P2

+ ¬l
P2
+,¬P2

+ ` ∨l
P2
+,P

1 ∨ ¬P2
+ ` P1

bϕacO
P1`P2

−

:

P1 ` P1
¬l

P1,¬P1 ` P2
− ` P2

− ∨l
P1,¬P1 ∨ P2

− ` P2
−

bϕacO
P1,P2

−`
:

P1 ` P1
¬l

P1,¬P1 `

P2
− ` P2

− ¬l
P2
−,¬P2

− ` ∨l
P1,P2

−,¬P1 ∨ ¬P2
− `
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CIResO
W(ϕ, δ), which is by definition equal to CEResO

S (ϕa, δ), is:

P1 ` P1 P2
+ ` P2

+ ∨l
P1 ∨ P2

+ ` P1,P2
+

P1 ` P1

P2
+ ` P2

+ ¬l
P2
+,¬P2

+ ` ∨l
P2
+,P

1 ∨ ¬P2
+ ` P1

cut
P1 ∨ P2

+,P
1 ∨ ¬P2

+ ` P1,P1

cr
P1 ∨ P2

+,P
1 ∨ ¬P2

+ ` P1

P1 ` P1
¬l

P1,¬P1 ` P2
− ` P2

− ∨l
P1,¬P1 ∨ P2

− ` P2
−

P1 ` P1
¬l

P1,¬P1 `

P2
− ` P2

− ¬l
P2
−,¬P2

− ` ∨l
P1,P2

−,¬P1 ∨ ¬P2
− ` cut

P1,P1,¬P1 ∨ P2
−,¬P1 ∨ ¬P2

− ` cr
P1,¬P1 ∨ P2

−,¬P1 ∨ ¬P2
− ` cut

P1 ∨ P2
+,P

1 ∨ ¬P2
+,¬P1 ∨ P2

−,¬P1 ∨ ¬P2
− `

Comparing the lengths and sizes, the compression achieved is now much more impressive than in Example 7.1:

• length(ϕ) = 17

• |ϕ| = 169

• |ϕ|a = 97

• length(CIResO
W(ϕ, δ)) = 13

• |CIResO
W(ϕ, δ)| = 105

• |CIResO
W(ϕ, δ)|a = 70
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7.2 Remarks

Even though CIRes can successfully introduce atomic cuts and compress

proofs, the method still has a major drawback. Refuting the swapped

clause sets is, at least in the examples considered in the previous section,

as hard as refuting the clause form of the negation of the end-sequent.

This means that introducing cuts via CIRes is approximately as compu-

tationally expensive as simply reproving the theorem by resolution and

then converting the resolution proof to a sequent calculus. Nevertheless,

it might be possible to design resolution refinements for CIRes that could

use more information contained in the cut-free proof in ways that would

facilitate the introduction of cuts.

Another drawback is the fact that CIRes produces normal forms in

which all atomic cuts are in the bottom. In the examples considered in

this chapter, this was not a problem, because the shortest proofs with

cuts happened to be proofs in which the atomic cuts occur in the bottom.

However, this is not generally the case, and then CIRes will sometimes

produce sub-optimally compressed normal forms, because the projections

will contain redundancies in order to allow the atomic cuts to be in the

bottom. This drawback could only be solved by using radically different

notions of projections, which would allow them to be combined in more

flexible ways with the refutation of the clause set, so that the atomic cuts

do not necessarily appear in the bottom of the normal forms. However,

such an improvement of projections and of the CERes method itself is far

from trivial and has yet to be developed.

Finally, it must be remarked that much more significant compression

(e.g. non-elementary compression) could in principle be obtained via

introduction of quantified cuts. The CIRes method described in this

chapter introduces only atomic cuts and is therefore just a small first

step toward the harder task of introducing general complex quantified

cuts. An intermediary step could be the introduction of propositional

cuts, which could be perhaps possible by using definitional and swapped

definitional clause sets. But even then, there would still be a long way

to achieve compressive quantified-cut-introduction. And in any case, an

algorithm that would generally guarantee optimal compression cannot

exist, due to the undecidability results in [14].





Chapter 8

Complexity

In previous chapters, several variants of the CERes method were de-

veloped, but comparisons were purely qualitative. The purpose of this

chapter is to complement this qualitative analysis with a few quantitative

results and conjectures regarding the asymptotic sizes of proofs, clause

sets and refutation search spaces when various variants are used.

8.1 Number of Clauses in Clause Sets

In this section, the asymptotic number of clauses in different variants of

clause sets is compared.

Theorem 8.1 (Number of Clauses in Profile and Swapped Clause Sets).

There exists a sequence of proofs ϕ1, ϕ2, . . . , ϕn, . . . such that:

• |ϕn| = kn, for some constant k.

• |CP
ϕn
| = 3n.

• |CW
ϕn |S
| = 3, for any ;⊕⊗W

-normal-form S of Sϕ.

185
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Proof. Let ϕ1 be the proof below:

A1 ` A1 B1 ` B1 ∧r
A1,B1 ` A1 ∧ B1

A1 ` A1 B1 ` B1 ∧r
A1,B1 ` A1 ∧ B1 ∧l

A1 ∧ B1 ` A1 ∧ B1 cut
A1,B1 ` A1 ∧ B1

And let ϕn, for n > 1, be:

ϕn−1

A1, . . . ,An−1,B1, . . . ,Bn−1 ` A1 ∧ B1, . . . ,An−1 ∧ Bn−1 wr
A1, . . . ,An−1,B1, . . . ,Bn−1 ` A1 ∧ B1, . . . ,An−1 ∧ Bn−1,C

An ` An Bn ` Bn ∧r
An,Bn ` An ∧ Bn

An ` An Bn ` Bn ∧r
An,Bn ` An ∧ Bn ∧l

An ∧ Bn ` An ∧ Bn cut
An,Bn ` An ∧ Bn wl

C,An,Bn ` An ∧ Bn cutn−1A1, . . . ,An,B1, . . . ,Bn ` A1 ∧ B1, . . . ,An ∧ Bn

Then:

Sϕn = (. . . ((A1 ⊕ B1) ⊕ (¬A1 ⊗ ¬B1)) ⊕ . . .) ⊕ ((An ⊕ Bn) ⊕ (¬An ⊗ ¬Bn))

Sϕn is already in ;⊕⊗P
-normal-form. Therefore:

CP
ϕn
= { ` A1 ; ` B1 ; A1,B1 ` ; ` A2 ; ` B2 ; A2,B2 ` ; . . . ; ` An ; ` Bn ; An,Bn ` ; }

And hence, |CP
ϕn
| = 3n.

However, Sϕn is not in ;⊕⊗W
-normal-form, because the inferences cuti (1 ≤ i < n) are degenerate. Therefore, there

are n ;⊕⊗W
-normal-forms S j ((1 ≤ j ≤ n)) of Sϕn :

S j = (A j ⊕ B j) ⊕ (¬A j ⊗ ¬B j)
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Consequently:

CW
ϕn |S j
= { ` A j ; ` B j ; A j,B j ` }

And hence, |CW
ϕn |S j
| = 3, for any ;⊕⊗W

-normal-form S j of Sϕn . �
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Theorem 8.2 (Number of Clauses in Definitional and non-Definitional

Clause Sets). There exists a sequence of proofs ϕ1, ϕ2, . . . , ϕn, . . . such that:

• |ϕn| ≤ k4n, for some rational constant k.

• |CS
ϕn
| ≥ k′22n

, for some rational constant k′.

• |CD
ϕn
| ≤ k′′2(k′′′n), for some rational constants k′′ and k′′′.

Proof. Let ψ1(s) be the following proof:

A1(s) ` A1(s) B1(s) ` B1(s)
∧r

A1(s),B1(s) ` A1(s) ∧ B1(s)
∧l

A1(s) ∧ B1(s) ` A1(s) ∧ B1(s)

C1(s) ` C1(s) D1(s) ` D1(s)
∧r

C1(s),D1(s) ` C1(s) ∧D1(s)
∧l

C1(s) ∧D1(s) ` C1(s) ∧D1(s)
∨l

(A1(s) ∧ B1(s)) ∨ (C1(s) ∧D1(s)) ` A1(s) ∧ B1(s),C1(s) ∧D1(s)
∨r

(A1(s) ∧ B1(s)) ∨ (C1(s) ∧D1(s)) ` (A1(s) ∧ B1(s)) ∨ (C1(s) ∧D1(s))

And let ψn(s) (n > 1) be:

ψn−1(a.s)

An(s) ` An(s)

ψn−1(b.s)

Bn(s) ` Bn(s)
∧r

An(s),Bn(s) ` An(s) ∧ Bn(s)
∧l

An(s) ∧ Bn(s) ` An(s) ∧ Bn(s)

ψn−1(c.s)

Cn(s) ` Cn(s)

ψn−1(d.s)

Dn(s) ` Dn(s)
∧r

Cn(s),Dn(s) ` Cn(s) ∧Dn(s)
∧l

Cn(s) ∧Dn(s) ` Cn(s) ∧Dn(s)
∨l

(An(s) ∧ Bn(s)) ∨ (Cn(s) ∧Dn(s)) ` An(s) ∧ Bn(s),Cn(s) ∧Dn(s)
∨r

(An(s) ∧ Bn(s)) ∨ (Cn(s) ∧Dn(s)) ` (An(s) ∧ Bn(s)) ∨ (Cn(s) ∧Dn(s))

where (for n > 1):

An(s) � (An−1(a.s) ∧ Bn−1(a.s)) ∨ (Cn−1(a.s) ∧Dn−1(a.s))

Bn(s) � (An−1(b.s) ∧ Bn−1(b.s)) ∨ (Cn−1(b.s) ∧Dn−1(b.s))

Cn(s) � (An−1(c.s) ∧ Bn−1(c.s)) ∨ (Cn−1(c.s) ∧Dn−1(c.s))

Dn(s) � (An−1(d.s) ∧ Bn−1(d.s)) ∨ (Cn−1(d.s) ∧Dn−1(d.s))

and x.l denotes the result of appending the character x in the beginning

of the list of characters l.

Moreover, let ϕn be the proof below:

ψn([]) ψn([])
cut

(An([]) ∧ Bn([])) ∨ (Cn([]) ∧Dn([])) ` (An([]) ∧ Bn([])) ∨ (Cn([]) ∧Dn([]))

Let Sl
ψk(s)

be the substruct of Sϕn at the root inference of the subproof

ψk(s) in left side of ϕn. Analogously, let Sr
ψk(s)

be the substruct of Sϕn at the



8.1. NUMBER OF CLAUSES IN CLAUSE SETS 189

root inference of the subproof ψk(s) in the right side of ϕn. Then Sϕn is

(displayed as a tree):

⊕

Sl
ψn([])

Sr
ψn([])

where Sl
ψk(s)

and Sr
ψk(s)

(k > 1) are:

⊗

⊕

Sl
ψk−1(a.s)

Sl
ψk−1(b.s)

⊕

Sl
ψk−1(c.s)

Sl
ψk−1(d.s)

⊕

⊗

Sr
ψk−1(a.s)

Sr
ψk−1(b.s)

⊗

Sr
ψk−1(c.s)

Sr
ψk−1(d.s)

and Sl
ψ1(s)

and Sr
ψ1(s)

are:

⊗

⊕

A1(s) B1(s)

⊕

C1(s) D1(s)

⊕

⊗

¬A1(s) ¬B1(s)

⊗

¬C1(s) ¬D1(s)

Let fl(n) be the number of clauses in CS
ϕn

whose formula occurrences

occur in the left branch of the cut. Analogously, let fr(n) be the number

of clauses stemming from the right branch of the cut. Clearly, |CS
ϕn
| =

fl(n)+ fr(n). A careful analysis of the structs displayed above shows that:

fl(n) =

{

4 , if n = 1

4( fl(n − 1))2 , otherwise

fr(n) =

{

2 , if n = 1

2( fr(n − 1))2 , otherwise

It can be easily proved by induction that fl(n) = 4(2n−1) and fr(n) =

2(2n−1). Therefore:

|CS
ϕn
| = 4(2n−1) + 2(2n−1) ≥ 2(2n)

An inspection of the structs displayed above also shows that the num-

ber of non-literal substructs in Sϕn is 2(4n)− 1 (4n − 1 substructs in each of

Sl
ψn([])

and Sr
ψn([])

plus the whole unproper substruct Sϕn). Each substruct

generates a new defined predicate, and for each defined predicate, three

clauses are formed. An additional clause corresponds to the whole struct.

Therefore |CD
ϕn
| = 3(2(4n) − 1) + 1 = 6(4n) + 2 ≤ 7(22n).

�
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Remark 8.1.1. Theorem 8.2 could be modified so thatCP
ϕn

orCW
ϕn

were used

instead of CS
ϕn

. For ϕn shown in the proof of the theorem, CP
ϕn
= CW

ϕn
= CS

ϕn
.

Therefore, exactly the same bounds on the sizes would apply.

Remark 8.1.2. Theorem 8.2 could be modified so that CD
ϕn

were used in-

stead ofCD
ϕn

. Clearly, the upper bound for |CD
ϕn
|would still be exponential,

but the constants k′′ and k′′′ could be smaller.

8.2 Search Space

In this section, the search spaces when using different variants of the

CERes method are compared.

Definition 8.2.1 (Search Spacea). The search space sR(C) used for refuting a

set of clauses C in a refined resolution calculus R is the minimum number

of resolvents generated by a breadth-first search strategy until the empty

clause is obtained.

Remark 8.2.1. For Theorems 8.3 and 8.4, it is assumed that no kind of

subsumption algorithm is used together with the resolution search pro-

cedure.

Theorem 8.3 (Search Space Improvement by Using Swapped Clause Sets).

There exists a sequence of proofs ϕ1, ϕ2, . . . , ϕn, . . . such that:

• |ϕn| = kn, for some constant k.

• sR(CP
ϕn

) = 2n2.

• sR(CW
ϕn |S

) = 2, for any ;⊕⊗W
-normal-form S of Sϕ.

aA much more general and deeper investigation of the complexity of resolution refutation
search can be found in [80].



8.2.
S

E
A

R
C

H
S

PA
C

E
191

Proof. In the proofs below, subscript indexes are used to distinguish occurrences of the same predicate symbol that

occur in different subproofs. Thus, A1 and A2 are considered to be the same predicate symbol A, but A1 occurs in the

subproofs ϕi, for i ≥ 1, and A2 occurs in the subproofs ϕi, for i ≥ 2 only.

Let ϕ1 be the proof below:

A1 ` A1 B1 ` B1 ∧r
A1,B1 ` A1 ∧ B1

A1 ` A1 B1 ` B1 ∧r
A1,B1 ` A1 ∧ B1 ∧l

A1 ∧ B1 ` A1 ∧ B1
cut

A1,B1 ` A1 ∧ B1

And let ϕn, for n > 1, be:

ϕn−1

A1, . . . ,An−1,B1, . . . ,Bn−1 ` A1 ∧ B1, . . . ,An−1 ∧ Bn−1 wr
A1, . . . ,An−1,B1, . . . ,Bn−1 ` A1 ∧ B1, . . . ,An−1 ∧ Bn−1,C

An ` An Bn ` Bn ∧r
An,Bn ` An ∧ Bn

An ` An Bn ` Bn ∧r
An,Bn ` An ∧ Bn ∧l

An ∧ Bn ` An ∧ Bn cut
An,Bn ` An ∧ Bn wl

C,An,Bn ` An ∧ Bn cutn−1A1, . . . ,An,B1, . . . ,Bn ` A1 ∧ B1, . . . ,An ∧ Bn

Then:

CP
ϕn
= { ` A1 ; ` B1 ; A1,B1 ` ; ` A2 ; ` B2 ; A2,B2 ` ; . . . ; ` An ; ` Bn ; An,Bn ` ; }

And hence, sR(CP
ϕn

) = 2n2 (n2 resolvents with resolved atom A and n2 resolvents with resolved atom B.).

On the other hand:

CW
ϕn |S j
= { ` A j ; ` B j ; A j,B j ` }

And hence, sR(CW
ϕn |S

) = 2 (one resolvent with resolved atom A and one resolvent with resolved atom B.). �
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Theorem 8.4 (Search Space Improvement by Using Refinements). There

exists a sequence of proofs ϕ1, ϕ2, . . . , ϕn, . . . such that:

• |ϕn| = kn, for some constant k.

• sR(CP
ϕn

) = 2n2.

• sR(CP
ϕn

) = 2n, for R ∈ {Rcl,Rcls,Rscl,Racl}.

Proof. Consider again the proofs shown in Theorem 8.3. It was already

shown there that sR(CP
ϕn

) = 2n2. It is easy to see that, when using any of

the refinements, two atoms Ai and A j (or Bi and B j) can only be resolved

if i = j. Therefore, there are only n resolvents with resolved atom A

and only n resolvents with resolved atom B, and hence sR(CP
ϕn

) = 2n, for

R ∈ {Rcl,Rcls,Rscl,Racl}. �

Remark 8.2.2. Theorem 8.4 holds not only for profile clause sets, but also

for standard clause sets, because both variants of clause sets coincide for

the sequence of proofs used in the proof of the theorem. However, the

proof of theorem cannot be adapted to work for swapped clause sets,

simply because they handle degenerate inferences more cleverly than

standard and profile clause sets.

8.3 Proof Sizes and Lengths

In this section, the sizes and lengths of proofs using different variants of

CERes are compared.

Theorem 8.5 (Sizes of CERes-Normal-Forms using Definitional Clause

Sets). There exists a sequence of proofs ϕ1, ϕ2, . . . , ϕn, . . . such that:

• |ϕn| ≤ k14n, for some rational constant k1.

• |CEResO
S (ϕn, δS)| ≥ k222n

, for some rational constant k2, for any refu-

tation δS.

• |CEResD
D(ϕn, δD)| ≤ 2(k3n), for some rational constant k3, for some

refutation δD.

Proof. Consider the proofs ϕn defined in the proof of the Theorem 8.2. As

proved there, |CS
ϕn
| ≥ k′22n

, for some rational constant k′. Moreover, in

any refutation δS of CS
ϕn

, every clause of CS
ϕn

has to be used at least once.

Therefore, |δ| ≥ k′22n
. Since |CEResO

S (ϕn, δS)| ≥ |δS|, |CEResO
S (ϕn, δS)| ≥ k′22n

too.
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It was also proved in Theorem 8.2 that |CD
ϕn
| ≤ k′′2(k′′′n). It is not too hard

to see that a refutation δD of CD
ϕn

could be constructed so that every clause

of CD
ϕn

is used at most once, with the exception of the clause containing

only the defined predicate symbol corresponding to the whole struct,

which must be used three times. Therefore, there is a rational constant c

such that |δD| ≤ 2(cn). The sizes of all definitional D-projections is constant.

The size of the proper D-projection bϕnc
DP

`DSϕn

, which has to be used three

times, is linear on the size ofϕn. Hence |bϕnc
DP

`DSϕn
| ≤ c′4n, for some rational

constant c′. Therefore |CEResD
D(ϕn, δD)| ≤ 2(k3n), for some rational constant

k3. �

Theorem 8.6 (Sizes of QCERes-Normal-Forms). There exists a sequence

of proofs ζ1, ζ2, . . . , ζn, . . . such that:

• |ζn| ≤ k14n, for some rational constant k1.

• |CEResO
S (ζn, δS)| ≥ k222n

, for some rational constant k2, for any refu-

tation δS.

• |QCERes(ζn, δ)| ≤ k34n, for some rational constant k3, for any refuta-

tion δ.

Proof. Let ξ be the proof below:

P(α) ` P(α)
∀l(∀x)P(x) ` P(α)
∀r(∀x)P(x) ` (∀x)P(x)

P(c) ` P(c)
∀l(∀x)P(x) ` P(c)
∃r(∀x)P(x) ` (∃x)P(x)
cut

(∀x)P(x) ` (∃x)P(x)

Let ζn be the proof below:

ξ ϕn
∨l

(∀x)P(x) ∨ ((An([]) ∧ Bn([])) ∨ (Cn([]) ∧Dn([]))) ` (An([]) ∧ Bn([])) ∨ (Cn([]) ∧Dn([])), (∃x)P(x)

where ϕn is defined in the proof of Theorem 8.2.

CS
ζn

is similar to CS
ϕn

, except for the additional clause P(c) ` and the

fact that the literal P(α) is merged to every clause stemming from the

left branch of ϕn. By essentially the same argument used in the proof of

Theorem 8.5, |CEResO
S (ζn, δS)| ≥ k222n

, for some rational constant k2, for

any refutation δS.

The clause set according to QCERes, though, is simply:

{ ` P(α) ; P(c) ` }

The only ground refutation of this clause set is:
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` P(c) P(c) `
r

`

And the QCERes-normal-form QCERes(ζn, δ) is:

P(c) ` P(c)
∀l

(∀x)P(x) ` P(c) ϕn
∨l

(∀x)P(x) ∨ T ` T,P(c)

P(c) ` P(c)
∃r

P(c) ` (∃x)P(x)
cut

(∀x)P(x) ∨ T ` T, (∃x)P(x)

where:

T � ((An([]) ∧ Bn([])) ∨ (Cn([]) ∧Dn([])))

Clearly, the size of QCERes(ζn, δ) is therefore linear on the size of zetan.

Therefore, |QCERes(ζn, δ)| ≤ k34n. �

Definition 8.3.1 (A Non-Elementary Function). The function s() is defined

as follows:

s(n) �

{

1 , if n = 0

2s(n−1) , otherwise

Conjecture 8.1 (Sizes of CERes-Normal-Forms using Profile and Swapped

Clause Sets). There exists a sequence of proofs ϕ1, ϕ2, . . . , ϕn, . . . such that:

• |ϕn| ≤ 2kn, for some rational constant k.

• |CEResO
W(ϕn, δW)| ≥ k′s(n), for some rational constant k′, for any refu-

tation δW.

• |CEResO
P (ϕn, δP)| = k′′, for some constant k′, for some refutation δP.

Proof. Let ϕn be a proof of the following form:

ψl
n

Γl
n ` ∆

l
n wr

Γl
n ` ∆

l
n,A

ψr
n

Γr
n ` ∆

r
n wr

Γr
n ` ∆

r
n,B ∧r

Γl
n, Γ

r
n ` ∆

l
n,∆

r
n,A ∧ B

Let Cl be the subset of CP
ϕ having the clauses stemming from ψl

n, and

let Cr be the subset of CP
ϕ having the clauses stemming from ψr

n.

Due to the degenerate inference ∧r, ϕn has two swapped clause sets:

CW
ϕn |S1
= Cl and CW

ϕn |S2
= Cr.

Assuming that bothψl
n andψr

n admit only non-elementary cut-elimination,

any refutation δW of any of the two swapped clause sets will have non-

elementary size.

On the other hand, CP
ϕ = Cl ∪ Cr, and hence it might be possible, if ψl

n

and ψr
n are in a certain sense partially dual, that there are clauses cl ∈ Cl

and cr ∈ Cr such that the following refutation of CP
ϕ exists:
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cl cr r
`

However, the construction of ψl
n and ψr

n has not been done yet. �

8.4 Proof Compression by Cut-Introduction

This section discusses a conjecture regarding the amount of compression

that can be achieved by the CIRes method.

Conjecture 8.2 (Compression via CIRes). There exists a sequence of se-

quents s1, s2, . . . , sn, . . . such that: such that:

• |ϕn| ≥ 22(cn)
, for some rational constant c.

• |CIResO
W(ϕn, |) ≤ 2(km), for some rational constant k.

whereϕ1, ϕ2, . . . , ϕn, . . . is the sequence of smallest cut-free proofs having,

respectively, s1, s2, . . . , sn, . . . as their end-sequents.

Proof. The idea for this proof is to use a sequence of sets of clauses given

in [26]:

Tn = {±P1 ∨ ±P2
± ∨ ±P3

±± ∨ . . . ∨ ±Pn
±...±}

where ± preceding a predicate symbol is either empty or ¬, and the string

of± in the subscript of a predicate symbol corresponds to the values taken

by ± before the previous predicate symbols. For example:

T2 = {P
1 ∨ P2

+,¬P1 ∨ P2
−,P

1 ∨ ¬P2
+,¬P1 ∨ ¬P2

−}

It is known (from [26]) that:

• There are refutations δn of Tn such that |δn| ≤ 2(k1m).

• For any analytic tableaux refutation ψn of Tn |ψn| ≥ 22(c1n
).

Example 7.2 shows that CIRes is able to do the desired compression

for T2. And there is no reason to believe that it would not work for Tn in

general. �





Chapter 9

Applications of Cut

In the previous chapters, the cut rule and methods for its elimination and

introduction were studied in a quite abstract, technical and theoretical

way. Even though motivations for the study of cut were given in Section

3.1, they were still mostly theoretical and restricted to the field of proof

theory. The purpose of this chapter is to illustrate that proof theory, and

hence also this thesis, is actually not as isolated and closed in itself as

the previous chapters might suggest. The main aim is to suggest that

proof theory is highly cross-disciplinary, since it can serve as a tool for

foundational investigations of a wide range of scientific disciplines.

Applications of proof theory to linguistics, for example, are well

known [23, 88]. In the following sections, informal correspondences be-

tween proof theory and a few other scientific disciplines are discussed. It

is shown how typical concepts, methods and tasks in these disciplines

can be understood from a proof-theoretical perspective as cuts, cut-

elimination, cut-introduction, proof search and extraction of Herbrand

disjunctions.

9.1 Physics: Energy Conservation as Cut

To solve problems of physics, certain invariants (such as energy) are fre-

quently used. This is so because solving problems by using a derived

principle (such as the principle of energy conservation) is usually easier

than solving them by using the most basic physical laws. This section

intends to exemplify how problem solution can generally be seen from a

proof-theoretic perspective in which the use of derived principles corre-

197
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spond to an implicit use of cut. The following simple problem of physics

shall be considered:

An object of mass m is dropped from height h0 and with

initial velocity equal to zero. The only force acting on the

object is the force of gravity (with an intensity mg). What is the

velocity of the object when its height is equal to zero?

A typical solution (Solution 1) to this problem uses the principle of

energy conservation, as follows:

1. Let t f be the time when the object reaches height zero.

2. According to the principle of energy conservation, e(t f ) = e(0), i.e.

the energy at t f is equal to the initial energy.

3. Hence, by definition of gravitational potential energy in a uniform

gravitational field and by definition of kinetic energy, mgh(t f ) +

m
ḣ(t f )2

2
= mgh(0) +m ḣ(0)2

2
.

4. According to the initial conditions, h(0) = h0 and ḣ(0) = 0. Moreover,

by assumption, h(t f ) = 0. Therefore, m
ḣ(t f )2

2
= mgh0.

5. Clearly, m
ḣ(t f )2

2
= mgh0 holds if ḣ(t f ) =

√

2gh0 or ḣ(t f ) = −
√

2gh0.

6. Since it is known that the height is decreasing and velocity is the rate

of change of height, the only solution is: ḣ(t f ) = −
√

2g0.

Another solution (Solution 2) computes the velocity as a function of

time by integrating the acceleration produced by the gravitational force.

Then it determines the time when the object reaches height zero, and

computes the velocity at that time. The details are shown below:

1. According to Newton’s second law of motion, f (t) = mḧ(t) at any

time t. Moreover, the uniform gravitational field produces a force

f (t) = −mg. Hence, ḧ(t) = −g.

2. By integration, ḣ(t) = −gt + ḣ(0).

3. According to the initial conditions, ḣ(0) = 0, and hence ḣ(t) = −gt.

4. By integration again, h(t) = −g t2

2
+ h(0).
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5. According to the initial conditions, h(0) = h0, and hence h(t) = −g t2

2
+

h0.

6. For h(t f ) = 0 to hold, it must be the case that t f =

√
2h0

g
.

7. Hence ḣ(t f ) = −g
√

2h0

g
, which can be simplified to ḣ(t f ) = −

√

2gh0.

Solution 2 is more basic in the sense that it uses only the basic physical

laws of motion (here assumed to be Newton’s laws of motion) and of

uniform gravitational fields. Solution 1, on the other hand, assumes that

energy is conserved, without actually proving it from Newton’s basic

laws.

In order to view problem solving from a proof theoretic perspective,

it is necessary to formalize problem solving as theorem proving. In the

example above, the problem can be stated as the following theorem to be

proved:

(∃t′)(h(t′) = 0 ∧ (∃v) ḣ(t′) = v)

Solving the given problem then consists of finding a proof of the

theorem above such that v is instantiated by a ground term. Interestingly,

formalizing the problem as a theorem to be proved enforces the explicit

mention of the hidden assumption that the height eventually becomes

zero; otherwise the variable t′ would be free and the theorem would be

open.

Solution 1 can be easily formalized as the proof ϕ1 below. To keep the

size of the proof small enough, the inference rule sl was used to encode

simple algebraic simplifications. Clearly, this rule is admissible in the

sense that it could be replaced by several applications of more formal

and more basic inference rules such as paramodulation and appropriate

axioms.
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h(t f ) = 0 ` h(t f ) = 0

ḣ(t f ) = −
√

2gh0 ` ḣ(t f ) = −
√

2gh0
∃r

ḣ(t f ) =
√

2gh0 ` (∃v) ḣ(t f ) = v
sl

mg0 +m
ḣ(t f )2

2
= mgh0 +m 02

2
` (∃v) ḣ(t f ) = v

wl

h(t f ) = 0, h(0) = h0, ḣ(0) = 0,mg0 +m
ḣ(t f )2

2
= mgh0 +m 02

2
` (∃v) ḣ(t f ) = v

=l

h(t f ) = 0, h(0) = h0, ḣ(0) = 0,mgh(t f ) +m
ḣ(t f )2

2 = mgh(0) +m
ḣ(0)2

2 ` (∃v) ḣ(t f ) = v
dl

h(t f ) = 0, h(0) = h0, ḣ(0) = 0, e(t f ) = e(0) ` (∃v) ḣ(t f ) = v
∀l

h(t f ) = 0, h(0) = h0, ḣ(0) = 0, (∀ti)(∀t j) e(ti) = e(t j) ` (∃v) ḣ(t f ) = v
∀l

h(t f ) = 0, h(0) = h0, ḣ(0) = 0, (∀ti)(∀t j) e(ti) = e(t j) ` (∃v) ḣ(t f ) = v
∧r

h(t f ) = 0, h(t f ) = 0, h(0) = h0, ḣ(0) = 0, (∀ti)(∀t j) e(ti) = e(t j) ` h(t f ) = 0 ∧ (∃v) ḣ(t f ) = v
cl

h(t f ) = 0, h(0) = h0, ḣ(0) = 0, (∀ti)(∀t j) e(ti) = e(t j) ` h(t f ) = 0 ∧ (∃v) ḣ(t f ) = v
∃r

h(t f ) = 0, h(0) = h0, ḣ(0) = 0, (∀ti)(∀t j) e(ti) = e(t j) ` (∃t′)(h(t′) = 0 ∧ (∃v) ḣ(t′) = v)
∃l

(∃t) h(t) = 0, h(0) = h0, ḣ(0) = 0, (∀ti)(∀t j) e(ti) = e(t j) ` (∃t′)(h(t′) = 0 ∧ (∃v) ḣ(t′) = v)
∧l

(∃t) h(t) = 0, h(0) = h0 ∧ ḣ(0) = 0, (∀ti)(∀t j) e(ti) = e(t j) ` (∃t′)(h(t′) = 0 ∧ (∃v) ḣ(t′) = v)
dl

Fall, Init,EnergyConservation ` (∃t′)(h(t′) = 0 ∧ (∃v) ḣ(t′) = v)

Solution 2 can be formalized as the following proof ϕ2. Again, due

to size constraints, integration has been encoded only semi-formally by

means of the inference rule
∫

l
.



9.1. PHYSICS: ENERGY CONSERVATION AS CUT 201

h
(√

2h0

g

)

= 0 ` h
(√

2h0

g

)

= 0
wl

h(0) = h0, h
(√

2h0

g

)

= 0 ` h
(√

2h0

g

)

= 0

ḣ
(√

2h0

g

)

= −
√

2gh0 ` ḣ
(√

2h0

g

)

= −
√

2gh0

∃r

ḣ
(√

2h0

g

)

= −
√

2gh0 ` (∃v) ḣ
(√

2h0

g

)

= v
sl

ḣ
(√

2h0

g

)

= −g
√

2h0

g ` (∃v) ḣ
(√

2h0

g

)

= v
∀l

(∀t)(ḣ(t) = −gt) ` (∃v) ḣ
(√

2h0

g

)

= v
wl

ḣ(0) = 0, (∀t)(ḣ(t) = −gt) ` (∃v) ḣ
(√

2h0

g

)

= v
∧r

h(0) = h0, ḣ(0) = 0, h
(√

2h0

g

)

= 0, (∀t)(ḣ(t) = −gt) ` h
(√

2h0

g

)

= 0 ∧ (∃v) ḣ
(√

2h0

g

)

= v
∃r

h(0) = h0, ḣ(0) = 0, h
(√

2h0

g

)

= 0, (∀t)(ḣ(t) = −gt) ` (∃t′)(h(t′) = 0 ∧ (∃v) ḣ(t′) = v)
sl

h(0) = h0, ḣ(0) = 0, h
(√

2h0

g

)

= −g

(√
2h0

g

)2

2 + h0, (∀t)(ḣ(t) = −gt) ` (∃t′)(h(t′) = 0 ∧ (∃v) ḣ(t′) = v)
∀l

h(0) = h0, ḣ(0) = 0, (∀t)(h(t) = −g t2

2 + h0), (∀t)(ḣ(t) = −gt) ` (∃t′)(h(t′) = 0 ∧ (∃v) ḣ(t′) = v)
=l

h(0) = h0, ḣ(0) = 0, (∀t)(h(t) = −g t2

2 + h(0)), (∀t)(ḣ(t) = −gt) ` (∃t′)(h(t′) = 0 ∧ (∃v) ḣ(t′) = v) ∫

lh(0) = h0, ḣ(0) = 0, (∀t)(ḣ(t) = −gt), (∀t)(ḣ(t) = −gt) ` (∃t′)(h(t′) = 0 ∧ (∃v) ḣ(t′) = v)
cl

h(0) = h0, ḣ(0) = 0, (∀t)(ḣ(t) = −gt) ` (∃t′)(h(t′) = 0 ∧ (∃v) ḣ(t′) = v)
sl

h(0) = h0, ḣ(0) = 0, (∀t)(ḣ(t) = −gt + 0) ` (∃t′)(h(t′) = 0 ∧ (∃v) ḣ(t′) = v)
=l

h(0) = h0, ḣ(0) = 0, (∀t)(ḣ(t) = −gt + ḣ(0)) ` (∃t′)(h(t′) = 0 ∧ (∃v) ḣ(t′) = v) ∫

lh(0) = h0, ḣ(0) = 0, (∀t)(ḧ(t) = −g) ` (∃t′)(h(t′) = 0 ∧ (∃v) ḣ(t′) = v)
sl

h(0) = h0, ḣ(0) = 0, (∀t)(mḧ(t) = −mg) ` (∃t′)(h(t′) = 0 ∧ (∃v) ḣ(t′) = v)
dl

h(0) = h0, ḣ(0) = 0, (∀t)( f (t) = −mg) ` (∃t′)(h(t′) = 0 ∧ (∃v) ḣ(t′) = v)
∧l

h(0) = h0 ∧ ḣ(0) = 0, (∀t)( f (t) = −mg) ` (∃t′)(h(t′) = 0 ∧ (∃v) ḣ(t′) = v)
dl

Init,Gravity ` (∃t′)(h(t′) = 0 ∧ (∃v) ḣ(t′) = v)

As expected ϕ1 is not only smaller than ϕ2, but also simpler, since it

does not need to use integration. Furthermore, while in ϕ2 the time when

the object hits the floor has to be computed explicitly (i.e. t′ is instantiated

to a ground term), in ϕ1 this is not so (i.e. t′ is instantiated to a variable).

The idea of formalizing a problem as a theorem and in such a way that

its solution is in the instances used for the quantified variables in the proof

is the fundamental principle behind the logic programming paradigm, of

which Prolog [107] is the most prominent language. However, while logic

programming languages usually use refined resolution calculi, which are

suitable for proof search, here a high-level sequent calculus was used,

since the aim was not to search for proofs automatically but to formalize

existing solutions as proofs in the simplest and most natural possible

way. The fact that both ϕ1 and ϕ2 use sophisticated simplification rules

and ϕ2 even uses an integration rule shows that even such a simple
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physics problem would be hard to solve (and even to state) in pure logic

programming. It illustrates the practical necessity of deduction modulo

[36] and the integration of logic programming (or automated deduction

in general) with computer algebra systems [114].
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Solution 1 implicitly uses cuts, because EnergyConservation and Fall are not considered to be basic laws of physics.

In principle, ϕ1 must be composed with a proof ϕE of EnergyConservation and a proof ϕF of Fall. This is done with two

cuts, as shown in the proof ϕ below:

ϕF

Init,Gravity ` Fall

ϕE

Gravity ` EnergyConservation

ϕP

Init, Fall,EnergyConservation ` (∃t′)(h(t′) = 0 ∧ (∃v) ḣ(t′) = v)

Init,Gravity, Fall ` (∃t′)(h(t′) = 0 ∧ (∃v) ḣ(t′) = v)

Init, Init,Gravity,Gravity ` (∃t′)(h(t′) = 0 ∧ (∃v) ḣ(t′) = v)
cl

Init,Gravity ` (∃t′)(h(t′) = 0 ∧ (∃v) ḣ(t′) = v)
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Where ϕF is the proof below, proving that the object will eventually

fall to height zero under the gravitational field and the initial conditions

specified in the description of the problem:

h(0) = h0, h
(√

2h0

g

)

= 0 ` h
(√

2h0

g

)

= 0
∃r

h
(√

2h0

g

)

= 0 ` (∃t′) h(t′) = 0
sl

h
(√

2h0

g

)

= −g

(√
2h0

g

)2

2 + h0 ` (∃t′) h(t′) = 0
∀l

(∀t)(h(t) = −g t2

2 + h0) ` (∃t′) h(t′) = 0
wl

h(0) = h0, (∀t)(h(t) = −g t2

2 + h0) ` (∃t′) h(t′) = 0
=l

h(0) = h0, (∀t)(h(t) = −g t2

2 + h(0)) ` (∃t′) h(t′) = 0 ∫

lh(0) = h0, (∀t)(ḣ(t) = −gt) ` (∃t′) h(t′) = 0
wl

h(0) = h0, ḣ(0) = 0, (∀t)(ḣ(t) = −gt + 0) ` (∃t′) h(t′) = 0
sl

h(0) = h0, ḣ(0) = 0, (∀t)(ḣ(t) = −gt + 0) ` (∃t′) h(t′) = 0
=l

h(0) = h0, ḣ(0) = 0, (∀t)(ḣ(t) = −gt + ḣ(0)) ` (∃t′) h(t′) = 0 ∫

lh(0) = h0, ḣ(0) = 0, (∀t)(ḧ(t) = −g) ` (∃t′) h(t′) = 0
sl

h(0) = h0, ḣ(0) = 0, (∀t)(mḧ(t) = −mg) ` (∃t′) h(t′) = 0
dl

h(0) = h0, ḣ(0) = 0, (∀t)( f (t) = −mg) ` (∃t′) h(t′) = 0
∧l

h(0) = h0 ∧ ḣ(0) = 0, (∀t)( f (t) = −mg) ` (∃t′) h(t′) = 0
d

Init,Gravity ` Fall
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And ϕE is the proof that energy is conserved in a uniform gravitational field:

` gh(0) + ḣ(0)2

2 = gh(0)+ ḣ(0)2

2 wl

(ḣ(α) = −gα + ḣ(0)), (h(t) = −g α
2

2 + ḣ(0)α + h(0)), (ḣ(β) = −gβ + ḣ(0)), (h(β) = −g
β2

2 + ḣ(0)β + h(0)) ` gh(0)+ ḣ(0)2

2 = gh(0)+ ḣ(0)2

2
=∗r, s

∗
r

(ḣ(α) = −gα + ḣ(0)), (h(t) = −g α
2

2 + ḣ(0)α+ h(0)), (ḣ(β) = −gβ + ḣ(0)), (h(β) = −g
β2

2 + ḣ(0)β + h(0)) ` gh(α) + ḣ(α)2

2 = gh(β)+
ḣ(β)2

2
∀l

(∀t)(ḣ(t) = −gt + ḣ(0)), (∀t)(h(t) = −g t2

2 + ḣ(0)t + h(0)), (∀t)(ḣ(t) = −gt + ḣ(0)), (∀t)(h(t) = −g t2

2 + ḣ(0)t + h(0)) ` gh(α) + ḣ(α)2

2 = gh(β)+
ḣ(β)2

2 cl

(∀t)(ḣ(t) = −gt + ḣ(0)), (∀t)(h(t) = −g t2

2 + ḣ(0)t + h(0)) ` gh(α) +
ḣ(α)2

2 = gh(β) +
ḣ(β)2

2 cl

(∀t)(ḣ(t) = −gt + ḣ(0)) ` gh(α) + ḣ(α)2

2 = gh(β)+
ḣ(β)2

2
∫

l
(∀t)(ḧ(t) = −g) ` gh(α) + ḣ(α)2

2 = gh(β)+
ḣ(β)2

2
s

(∀t)(mḧ(t) = −mg) ` mgh(α) +m
ḣ(α)2

2 = mgh(β)+m
ḣ(β)2

2
dr

(∀t)(mḧ(t) = −mg) ` e(α) = e(β)
dl

(∀t)( f (t) = −mg) ` e(α) = e(β)
∀r

(∀t)( f (t) = −mg) ` e(α) = e(β)
∀r

(∀t)( f (t) = −mg) ` (∀ti)(∀t j) e(ti) = e(t j)
d

Gravity ` EnergyConservation
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The proofs discussed above illustrate that an essential task of theo-

retical science is to invent and discover concepts, such as the principle

of energy conservation, that turn out to be useful cuts. In other words,

a significant part of the usual scientific activity can be described as cut-

introduction. Different levels of Science can also be related to cuts. When

reasoning about chemical reactions, the Chemistry laws used can be seen

as cuts derivable from more fundamental laws of Quantum Mechanics.

Major scientific revolutions, on the other hand, usually involve radical

transformations of proofs. For example, while in the proofs above, which

assume Newtonian Mechanics, energy is a mere derived concept, in Rel-

ativistic Mechanics energy is equivalent to mass, and hence a much more

fundamental concept.

9.2 Robotics and Agent Theory: Plan Reuse as Cut

In this section, a simple example of a mobile robot in an environment

with rooms and corridors is used to investigate tasks like planning from

a proof-theoretical perspective.

The picture below depicts the environment where the robot is located.

It consists of four rooms connected by corridors.

3


1


4


2


The robot is assumed to have acquired, by sensory experience, a set of

beliefs regarding the existence of rooms and corridors in the environment:

Beliefs �





E(1),E(2),E(3),E(4),

C((1, e), (2,w)),C((3, e), (4,w)),

C((1, n), (3, s)),C((2, n), (4, s))





where, for example, E(1) can be interpreted as “x is a room”, and

C((1, e), (2,w)) can be interpreted as “there is a corridor connecting the

east of room 1 with the west of room 2.
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Moreover, the robot assumes, in the form of rules of inference, that it

can move from one room to another by moving in a certain direction, if

there is a corridor connecting the rooms with an appropriate direction:

` E(x) ∧ E(y) ∧ C((x, z), (y, z̄))
Mr

`M(x, y, z)

` E(x) ∧ E(y) ∧ C((y, z̄), (x, z))
Mr

`M(x, y, z)

` E(x) ∧ E(x)
Mr

`M(x, x, o)

E(x) ∧ E(y) ∧ C((x, z), (y, z̄)) `
MlM(x, y, z) `

E(x) ∧ E(y) ∧ C((y, z̄), (x, z)) `
MlM(x, y, z) `

E(x) ∧ E(x) `
MlM(x, x, o) `

The robot can also reason about composed movements:

` (∃z)(M(x, z, s1) ∧M(z, y, s2))
M′

r`M(x, y, s1 : s2)

(∃z)(M(x, z, s1) ∧M(z, y, s2)) `
M′

lM(x, y, s1 : s2) `

So, based on its beliefs and on its reasoning capabilities, the robot

knows that it can go from room 1 to room 2, because it can construct the

following proof (justification) ϕ12:

` E(1) ` E(2) ` C((1, e), (2,w))
∧r

` E(1) ∧ E(2) ∧ C((1, e), (2,w))
Mr

`M(1, 2, e)

It also knows that it can move from room 1 to room 4, because of proof

ϕ14 below:
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` E(1) ` E(2) ` C((1, e), (2,w))
∧r

` E(1) ∧ E(2) ∧ C((1, e), (2,w))
Mr

`M(1, 2, e)

` E(2) ` E(4) ` C((2, n), (4, s))
∧r

` E(2) ∧ E(4) ∧ C((2, n), (4, s))
Mr

`M(2, 4, n)
Mr

`M(1, 2, e) ∧M(2, 4, n)
∃r

` (∃z)(M(1, z, e)∧M(z, 4, n))
M′r`M(1, 4, e : n)
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In fact, the robot knows that, wherever he is, he can go wherever he wants. Essentially, the robot has the following

proof ϕ stored in his memory:

` E(1) ` E(2) ` C((1, e), (2,w))
∧r

` E(1) ∧ E(2) ∧ C((1, e), (2,w))
Mr

`M(1, 2, r)
∃r

` (∃p)M(1, 2, p) . . .

` E(1) ` E(2) ` C((1, e), (2,w))
∧r

` E(1) ∧ E(2) ∧ C((1, e), (2,w))
Mr

`M(1, 2, e)

` E(2) ` E(4) ` C((2, n), (4, s))
∧r

` E(2) ∧ E(4) ∧ C((2, n), (4, s))
Mr

`M(2, 4, n)
Mr

`M(1, 2, e)∧M(2, 4, n)
∃r

` (∃z)(M(1, z, e)∧M(z, 4, n))
M′r

`M(1, 4, e : n)
∃r

` (∃p)M(1, 4, p) ∧
r

`
∧

i∈{1,2,3,4}

∧

j∈{1,2,3,4}(∃p)M(i, j, p)
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Now the environment changes. A new room and a new corridor are

added:

3


1


4


2


5


And the robot is informed of the changes and updates its beliefs ac-

cordingly:

Beliefs �





E(1),E(2),E(3),E(4),E(5),

C((1, e), (2,w)),C((3, e), (4,w)),

C((1, n), (3, s)),C((2, n), (4, s)),C((4, e), (5,w))





Now assume that the robot has the desire to go from his current room 1

to the new room 5. Naturally, if a desire ever becomes a goal, it is because

the agent knows that is possible to realize the desire. So, the agent will be

interested in proving the possibility of going from room 1 to room 5. In

doing so, he can of course use his previous knowledge that he can move

everywhere in the four previous rooms, as shown in proof ϕ′
15

:

M(1, 4, α) `M(1, 4, α)

` E(4) ` E(5) ` C((4, e), (5,w))
∧r

` E(4) ∧ E(5) ∧ C((4, e), (5,w))
Mr

`M(4, 5, e)
∧r

M(1, 4, α) `M(1, 4, α) ∧M(4, 5, e)
∃rM(1, 4, α) ` (∃z)(M(1, z, α) ∧M(z, 5, e))
M′

rM(1, 4, α) `M(1, 5, α : e)
∃rM(1, 4, α) ` (∃p)M(1, 5, p)
∃l(∃p)M(1, 4, p) ` (∃p)M(1, 5, p) ∧

l∧

i∈{1,2,3,4}

∧

j∈{1,2,3,4}(∃p)M(i, j, p) ` (∃p)M(1, 5, p)

Strictly, the robot has used cut to show that its desire is realizable, as

shown in proof ϕ15:

ϕ

`
∧

i∈{1,2,3,4}

∧

j∈{1,2,3,4}(∃p)M(i, j, p)

ϕ′
15

∧

i∈{1,2,3,4}

∧

j∈{1,2,3,4}(∃p)M(i, j, p) ` (∃p)M(1, 5, p)
cut

` (∃p)M(1, 5, p)
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After knowing that the desire is realizable, the robot must come to a

plan to realize it. In other words, the robot is now not only interested in

showing that (∃p)M(1, 5, p) holds, but also in a finding a ground term p′

that instantiates the quantified p in such a way that M(1, 5, p′) also holds.

As p′ is a sequence of atomic actions, it can be considered a plan. Proof-

theoretically, planning correspond to extraction of the terms of Herbrand-

disjunctions from proofs of the realizability of the corresponding desire.

However, proofs with quantified cut-formulas do not admit this ex-

traction. For example, in ϕ15, p is instantiated by α : e, which is not a

ground term. The eigenvariable α does not tell which actions should be

taken. α : e can be understood as a high-level underspecified plan composed

of lower level plans α to go from room 1 to a certain room x and a lowest

level plan e to go east from there. α should be substituted by an actual plan.

One approach would be to replan by reproving (∃p)M(1, 5, p) without cuts

from scratch, so that a ground instance for p could be extracted from the

cut-free proof. A better approach, however, is simply to eliminate the cut

in the proof ϕ15. The process of cut-elimination substitutes α by a ground

plan to go from room 1 to room 4, thus effectively composing a previ-

ously known plan with a new small action. Cut-elimination corresponds

to plan reuse. The proof ϕ∗
15

shows the result of cut-elimination.

ϕ∗
15

:

ϕ14

`M(1, 4, e : n)

` E(4) ` E(5) ` C((4, e), (5,w))
∧r

` E(4) ∧ E(5) ∧ C((4, e), (5,w))
Mr

`M(4, 5, e)
∧r

`M(1, 4, e : n) ∧M(4, 5, e)
M′

r` (∃z)(M(1, z, e : n) ∧M(z, 5, e))
M′

r`M(1, 5, e : n : e)
∃r

` (∃p)M(1, 5, p)

9.3 Machine Learning: Decision Tree as Cut

Machine learning [87] is concerned with the study and development of

algorithms that allow computers to learn from data. Usually, such algo-

rithms try to construct structures (e.g. decision trees, neural networks,

induced logic programs, clusters, bayesian networks, support vector ma-

chines . . . ) that are more compact than the data, and which can be used

instead of the data to answer certain particular queries of interest about

instances of the data (e.g. queries about the class to which a particular

instance of the data belongs, in the case of supervised learning algorithms).
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More importantly, these compact structures learned from training data

set can usually be used to accurately answer queries about previously

unseen instances that were not in the training data set, assuming that

the training data contains a statistically significant sample of the whole

data. In other words, it is possible to reason inductively about the whole

data based on experience limited to a small training subset of the data.

It is possible and easy to extrapolate the compact structure that has been

learned from the training data set to the whole data set.

Clearly, a notion of inference is ubiquitous to machine learning, as one

can argue that learned compact structures are inferred from the training

data and that the classification of new data is inferred from the compact

structure. However, this notion of inference seems to be broader and

more informal than notions of inference used in proof theory, and the

relation between them is not entirely clear. The purpose of this section is

to illustrate how these notions of inference coincide and how the learned

compact structures can be seen as cuts. To this aim, a simple example of

decision tree is used.

The training data is shown in Table 9.1. Every instance has two at-

tributes, which have values “low”, “medium” or “high”, and is classified

either as belonging (“yes”) or not belonging (“no”) to the class C. The

attributes could represent certain symptoms, and the class a disease. Or

the attributes could represent performance in certain tasks in a test or

evaluation, and the class whether the individual passed the test.

i A1 A2 C

1 low high no
2 medium high yes
3 medium medium yes
4 high low yes
5 low low no
6 medium low no

Table 9.1: Training Data

The given data can be represented as a formula:

Data′T � (A1(1, l) ∧A2(1, h) ∧ C(1, n))∧

(A1(2,m) ∧A2(2, h) ∧ C(2, y))∧

. . .∧

(A1(6,m) ∧A2(6, l) ∧ C(6, n))
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By using a closed-world assumption, Data′T can be transformed to:

DataT � Data′T∧(¬A1(1,m)∧¬A1(1, h)∧¬A2(1, l)∧¬A2(1,m)∧¬C(1, y))∧. . .

From the training data, decision tree learning algorithms (e.g. ID3

and C4.5) can be used to generate a decision tree. In general, there

might be many possible decision trees for a given training data set, and

consequently there are various optimality criteria and heuristics to choose

good decision trees. In this section, it is assumed that the following

decision tree has been chosen:

yes


A1


A2


medium


medium


yes


high


yes


high


no


low


no


low


The decision tree above can be expressed as the following formula:

DT �
∧

i∈{1,2,3,4,5,6}

DT1(i)

where:

DT1 �
∧

i∈{1,2,3,4,5,6}





(A1(i, l)→ C(i, n))

∧

(A1(i,m)→ DT2)

∧

(A1(i, h)→ C(i, y))





and:

DT2(i) �





(A2(i, l)→ C(i, n))

∧

(A2(i,m)→ C(i, y))

∧

(A2(i, h)→ C(i, y))




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It is interesting to note that the formulas above can be seen as logic

programs composed of Horn clauses, and in principle, these formulas

could have been obtained by inductive logic programming techniques

from DataT. So, decision tree learning algorithms are essentially inductive

logic programming algorithms that induce logic programs of a specific

form.
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As desired, DT is (slightly) more compact than DataT. DT does not summarize all information in DataT, though,

because it is not the case that DT → DataT. However, DataT → DT holds, as sketched by the proof ϕDT only partially

shown below:

ϕ1
DT

DataT ` (A1(1, l)→ C(i, n)) ∧ (A1(1,m)→ DT2) ∧ (A1(1, h)→ C(1, y)) . . .

ϕ6
DT

DataT ` (A1(6, l)→ C(6, n)) ∧ (A1(6,m)→ DT2) ∧ (A1(6, h)→ C(6, y))
dr,∧r

DataT ` DT

However, DT contains enough information to classify the instances, as exemplified by the proof ϕ2 below, which

correctly instantiates the queried class variable x to y (class “yes”):

A1(2,m) ` A1(2,m)

A2(2, h) ` A2(2, h)

C(2, y) ` C(2, y)
∃rC(2, y) ` (∃x)C(2, x)

→l
A2(2, h)→ C(2, y),A2(2, h) ` (∃x)C(2, x)

∧l
DT2(2),A2(2, h) ` (∃x)C(2, x)

→l
A1(2,m)→ DT2(2),A1(2,m),A2(2, h) ` (∃x)C(2, x)

∧l
(A1(2, l)→ C(2, n)) ∧ (A1(2,m)→ DT2(2)) ∧ (A1(2, h)→ C(2, y)),A1(2,m),A2(2, h) ` (∃x)C(2, x) ∧

lDT,A1(2,m),A2(2, h) ` (∃x)C(2, x)

The decisions taken at the decision nodes of the decision tree correspond to the pairs of ∧l and→l inferences in ϕ1.
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The use of the decision tree is an implicit use of cut, because the cut

rule has to be used to actually show that the classification of instance 2

follows from the data, as shown in the proof ϕ′2 below:

ϕDT

DataT ` DT

ϕ2

DT,A1(2,m),A2(2, h) ` (∃x)C(2, x)
cut

DataT ` (∃x)C(2, x)

Moreover, since the decision tree itself can be seen as a cut-formula in

certain proofs , the construction of a decision tree can be seen as special

kind of cut-introduction.

The generalization of the decision tree to data not belonging to the

training data set corresponds simply to replacing the conjunction over all

instances of the training data set by universal quantification, and results

in the following formula:

DT∗ � (∀i)DT1(i)

To classify previously unseen instances, such as an instance k for which

A1(k, h) and A2(k,m), the decision tree can be used as it is, resulting in a

the classification “yes”. By using DT∗ instead of DT, the inferential use of

the decision tree on a previously unseen instance to deduce its class can

also be mapped to a formal proof ϕk:

A1(k, h) ` A1(k, h)

C(k, y) ` C(k, y)
∃r

C(k, y) ` (∃x)C(k, x)
wl

C(k, y),A2(k,m) ` (∃x)C(k, x)
→l

A1(k, h)→ C(k, y),A1(k, h),A2(k,m) ` (∃x)C(k, x)
∧l

(A1(k, l)→ C(k, n)) ∧ (A1(k,m)→ DT2(k)) ∧ (A1(k, h)→ C(k, y)),A1(k,m),A2(k, h) ` (∃x)C(k, x)
∀l

DT∗,A1(k, h),A2(k,m) ` (∃x)C(k, x)

However, the classification of k only follows from the training data

if a principle of induction allowing the generalization of conjunctions to

universal quantification is incorporated into the calculus. This can be

done by relaxing the cut rule, so that the right cut-formula is allowed to

be a generalization of the left cut-formula. In this sense, the (relaxed)

cut rule provides an easy way of incorporating inductive reasoning to a

calculus. Evidently, this relaxed cut rule cannot be eliminated.

ϕDT

DataT ` DT

ϕk

DT∗,A1(k, h),A2(k,m) ` (∃x)C(k, x)
cutrelaxed

DataT ` (∃x)C(k, x)



Chapter 10

Conclusion

The initial goal of developing resolution refinements for cut-elimination

by resolution was successfully achieved, as shown in Chapter 6. More-

over, the process of development of the refinements proved to be very

fruitful, leading to many other major contributions to the understanding

and improvement of the CERes method, which are summarized below:

• The CERes method is now a family of methods, all described within

a unified framework of normalization of cut-pertinent structs, where

different variants of the method correspond to different normaliza-

tions.

• An intuitive explanation of the notion of profile clause set was given

by showing that the struct normalization that is used for the con-

struction of the profile roughly corresponds to the swapping of in-

ferences.

• Pushing further the correspondence with swapping of inferences led

to the development of swapped clause sets, which are better than

the profile clause sets in terms of size.

• The problem of the exponential size of clause sets with respect to

the size of the proofs from which they are extracted was solved with

the development of definitional and swapped definitional clause set,

which do not have this problem because they use a normalization

that is analogous to structural conjunctive normal form transforma-

tion.

217
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• A less redundant kind of projection called O-projection was devel-

oped.

• The differences and similarities between normalized proofs pro-

duced by CERes and by reductive methods, two methods that pre-

viously seemed to be so fundamentally different and hence incom-

parable, are now clearer, thanks to the definition of intermediary

refined methods.

• A method for introducing atomic cuts by resolution, CIRes, was de-

veloped. The method is capable of compressing proofs significantly.

Perhaps more importantly than the results that have been achieved so

far, though, this thesis opens many doors for future research:

• Regarding refinements, there are at least four directions for further

research:

– The study of refinements inspired by reductive methods could

be continued by trying to define refinements resembling par-

ticular strategies (e.g. Gentzen’s or Tait’s) for reductive cut-

elimination.

– Other kinds of refinements could be pursued. For example:

the unifications allowed during resolution could be restricted

according to the instantiations of quantifiers present in the input

proof; semantic resolution could be considered in the case of

interactive refutation search; bounds on the number of times

that a clause should be used could perhaps be obtained by an

analysis of the structure of the input proof . . .

– While the refinements studied here are adequate for pure logic,

mathematical applications usually use specialized inference rules

like equality rules and rules incorporating deduction modulo

theories. Therefore, refinements that restrict not only resolution

and factoring rules but also paramodulation and demodulation

rules must be developed.

– While this thesis focused on first-order logic, CERes is already

being extended to higher-order logics. Considering that the

search for refutations is even harder in higher-order logics, re-

finements will definitely be necessary. While the refinements

described here can probably serve as good starting point, it is
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likely that specific refinements for the higher-order case could

be investigated.

– The implementation, experimentation and use of the refine-

ments in the CERes system also remains to be done, since this

thesis focused on their theoretical development and analysis

only.

• The unified framework used to describe all the variants of CERes

paves the way for the systematic study of other variants in the future.

Definitional clause sets, for example, were still defined in a rather

naive way, corresponding to the simplest structural conjunctive nor-

mal form transformations. More sophisticated definitional clause

sets could be defined analogously to existing more sophisticated

structural transformations.

• It is clear that, even though O-projections are much less redundant

than S-projections, they still contain redundancies in certain cases.

Trying to develop better projections seems to be a very challenging

direction for future research. It is likely that it would require a major

modification of the CERes method involving more complex ways of

combining projections and refutations. A good benchmark for this

kind of improvement are substructural logics without weakening

and without contraction, because the still existing redundancies in

current variants of CERes are due to the unnecessary use of con-

traction and weakening. In order to modify CERes to work for

substructural logics, this source of redundancy would have to be

eliminated.

• Less redundant projections would also imply a greater potential

for compression of proofs via CIRes. Atomic cut-introduction by

resolution is still just a first step toward the introduction of more

complex cuts, and therefore there is still a lot of work to be done in

this direction.
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