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Kurzfassung

Aufgrund ständig wachsender Anforderungen und innovativer Neuerungen
im Automobilbereich haben sich automotive Elektroniksysteme innerhalb
der letzten Jahre zu komplexen, verteilten Echt-Zeit-Systemen entwickelt.
Um der daraus resultierenden Kostenschere zwischen steigender Komplexität
und vertretbarem Entwicklungsaufwand entgegenzuwirken, legt der junge
Industriestandard AUTOSAR Komponentenbasierte Software-Entwicklung
(CBSE) als Methodik für zukünftige automotive Anwendungen fest.
Durch den Einsatz des Komponentenparadigmas auf Applikationsebene wird
eine klare Aufgabentrennung innerhalb automotiver Software festgelegt: An-
wendungen werden aus wiederverwendbaren und austauschbaren Bausteinen,
den Software-Komponenten, zusammengesetzt, deren Implementierung nur
anwendungsspezifische Funktionalität enthält. Infrastrukturelle Funktional-
ität wird durch standardisierte Komponenten-Middleware, der AUTOSAR
Basic Software und dem AUTOSAR Run-Time Environment , realisiert, und
den Software-Komponenten zur Verfügung gestellt. Die so gewählte Ar-
chitektur soll zu einer Steigerung der Wiederverwendbarkeit, Wartbarkeit
und Qualität automotiver Software, und daher zu einer Eindämmung von
Kosten und Entwicklungszeit führen.
Die vom AUTOSAR Standard definierte Middleware ist allerdings als
Schichtenarchitektur spezifiziert, die nur im Groben an Anwendungsan-
forderungen angepasst werden kann. Häufig ist daher ungenutzte Funktional-
ität in eingesetzter Middleware enthalten, und trägt dazu bei, daß herkömm-
liche AUTOSAR konforme Komponenten-Middleware oft überdimensioniert
und verschwenderisch im Umgang mit verfügbaren Ressourcen ist. Diese
Tatsache stellt gerade im Bereich von ressourcenbeschränkten automotiven
eingebetteten Systemen eine Schwäche des AUTOSAR Standards dar.
Die vorliegende Dissertation trägt zur Entschärfung der Middleware-
Problematik in AUTOSAR bei, indem sie den Einsatzbereich von CBSE
über die Anwendungsschicht hinaus auf die Komponenten-Middleware, im
speziellen auf das Kommunikationssubsystem, ausdehnt.
Dazu wird in einem ersten Schritt gezeigt, wie die schichtenbasierte Architek-
tur der AUTOSAR Middleware durch eine komponentenbasierte ersetzt wer-
den kann. Die vorgeschlagene komponentenbasierte Architektur wird mittels
einer statischen Analyse, der Kohäsionsanalyse, aus einer herkömmlichen in-
dustriellen Implementierung extrahiert, und bietet bei größerer Flexibilität
vollwertigen, standardkonformen Ersatz für diese. Zusätzlich werden auf
unterschiedliche Anwendungsfälle hin optimierte Implementierungsvarianten
der errechneten Middleware-Komponentenklassen definiert, durch deren Ein-



satz maßgeschneiderte, komponentenbasierte Middleware erzeugt werden
kann.
In einem zweiten Schritt wird eine Modell-Transformation, die Konnektor-
Transformation, für AUTOSAR Applikationsmodelle vorgestellt, die eine
automatische Synthese von applikationsspezifisch optimierter Middleware
bewerkstelligt. Die Konnektor-Transformation ersetzt alle Vorkommnisse
von so genannten expliziten Konnektoren in plattformunabhängigen App-
likationsmodellen durch Middleware-Komponentenarchitekturen, bestehend
aus vorgefertigten Middleware-Komponenten. Die so generierten und dem
Verteilungsszenario der Applikation entsprechenden plattformspezifischen
Modelle enthalten als Ergebnis die Applikation, sowie genau jene Middleware-
Funktionalität, die von der Applikation benötigt wird. Schlussendlich werden
die plattformspezifischen Modelle in ausführbaren Code für jeden System-
knoten der (eventuell verteilten) Applikation transformiert.
Um die entwickelte Methodik zu evaluieren, wurde eine einfache automo-
tive Anwendung sowohl in herkömmlicher als auch in der vorgeschlagenen
Art und Weise entwickelt. Wie Messungen zeigen, weist die synthetisierte
Kommunikationsmiddleware eine eindeutige Verbesserung im Bezug auf Pro-
grammgröße und Prozessorlast auf: Synthetisierte Middleware ist bezüglich
ihres Programmspeicherbedarfs um bis zu 30% kleiner, und benötigt um bis
zu 10% weniger Ausführungszeit, als herkömmliche AUTOSAR Kommunika-
tionsmiddleware.



Abstract

Driven by steadily increasing requirements of innovative applications, auto-
motive electronics has evolved into highly dependable, distributed, real-time
embedded systems. To close the rising gap between increasing complexity
and affordable costs, the upcoming automotive software standard AUTOSAR
constitutes Component Based Software Engineering (CBSE ) as development
methodology for future automotive applications. CBSE introduces a clear
separation of concerns into AUTOSAR’s system architecture: Any applica-
tion is built from reusable and exchangeable so called Software Components
that deal with business logic only, whereas standardized infrastructural ser-
vices are provided by component middleware—the AUTOSAR Basic Soft-
ware and the AUTOSAR Run-Time Environment . This design leads to an
increase in reusability, maintainability, and application quality, and hence to
a reduction of costs and time-to-market. However, AUTOSAR component
middleware is specified as layered software architecture that is customizable
on a coarse-grained level only, and thus tends to be heavy-weight and im-
practical in resource constrained embedded systems.
This thesis contributes by extending the scope of CBSE within AUTOSAR
beyond the application layer to the component middleware, especially to its
communication subsystem. In a first step, the layered AUTOSAR middle-
ware architecture is replaced by a component based design that is extracted
from an existing layered reference implementation by static analysis—the
Cohesion Analysis . The proposed component based communication middle-
ware completely resembles the standard’s functionality, but is more flexible in
terms of application specific customization. In addition, use-case based vari-
ants of identified component classes are defined to enable improved middle-
ware optimization. In a second step, a model transformation for AUTOSAR
application models is specified that enables automatic middleware synthesis
in line with the AUTOSAR methodology. The Connector Transformation
injects middleware component architectures in place of all explicit connec-
tors within the application models. Thereby, platform-specific models for
each system node are generated, which completely and solely reflect the ap-
plication’s middleware requirements.
To evaluate the proposed approach, it is applied to a simple automotive ap-
plication. The hereby gained synthesized communication middleware shows
an improvement of nearly 30% with respect to its memory footprint and a
reduction in CPU usage of up to 10% compared to its conventional counter-
part.
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Chapter 1

Introduction

1.1 Motivation
Driven by market demands, the application of automotive embedded systems
experienced a significant upturn over the last few years. A wide variety of
new fields of application introduced new market opportunities, but also new
challenges to the systems’ developers. Functionality like steer/break-by-wire,
ambient-intelligence or multimedia functionality is exemplary for those newly
arising services, modern vehicles provide. State-of-the-art vehicles contain
more than 70 Electronic Control Units (ECUs), typically connected by up
to 10 diverse bus systems [Han05]. Today’s automotive applications are
no longer simple programs executed on one single ECU. In fact, they are
heterogeneous software systems in distributed and often safety and mission
critical environments.

By considering the large number of automobiles manufactured every year—in
2007 a total of 73, 2 million vehicles [OIC08] have been produced worldwide—
and the rather long life-cycles of more than 10 years, it becomes obvious
that software for automotive electronic systems has become a key factor not
only in cost1 and quality, but also in time-to-market of current vehicles.
As pointed out by Pretschner et al. [PBKS07], the characteristics of the
automotive domain lead to a wide spectrum of research challenges like inter
alia:

• System models and techniques that enable semantics-preserving trans-
formation and modification of models and code

1Overall costs contain not only expenditures for development and manufacturing, but
also costs for maintenance, which are highly affected by the vehicles’ large number and
long life-cycle.
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1.1. MOTIVATION

• Design methodologies at different levels of abstraction that address
the heterogeneity of the systems involved as well as the compatibility
problem

• Design and coding practices that lead to reusable code and thus to a
reduction in complexity and costs

• Communication middleware for highly distributed heterogeneous sys-
tems

Therefore, it was self-evident that major automotive manufacturers strove
for a standardization not only of software modules deployed within their
vehicles, but also for an appropriate software engineering process. In 2002,
automotive manufacturers, suppliers, and tool developers jointly founded the
Automotive Open System Architecture (AUTOSAR) consortium [HSF+04] to
specify those required standards.

The main aims of AUTOSAR are:

• Increase the quality of automotive software, its maintainability, and its
scalability

• Optimize costs and time to market

To achieve these aims, the well established paradigm of Component Based
Software Engineering (CBSE) has been adopted for the automotive domain:
Applications are assembled across product lines by connecting prefabricated
trusted building blocks, so called commercial-off-the-shelf components, which
interact by their connected interfaces at run-time.

In fact, interaction implies inter-component communication that strongly
depends on the physical system structure and the components’ deployment
scenario. In distributed heterogeneous systems the process of interaction can
become rather complicated and difficult to handle. It is good practice to keep
the complex and error-prone interaction logic separated, if possible hidden,
from the application components. Therefore, component based architectures
typically utilize communication middleware, to cope with the process of dis-
tributed interaction in a transparent way. Application components interact
directly (at least seemingly), irrespective of their deployment scenario, by
utilizing transparent communication middleware. Hence, application com-
ponents do not have to provide any implementation for means of distributed
interaction. This fact keeps them focused on their actual purpose, thereby

2



1.1. MOTIVATION

staying small in size and less error prone. However, generic middleware, like
e.g. middleware for the CORBA Component Model [OMG06], has to pro-
vide implementations for all types of interaction that could occur within any
exerting component architecture. Thus, this kind of middleware typically
tends to be heavy-weight and often monolithic software.

Due to the large number of manufactured automotive electronic systems,
the price per unit has to be kept as low as possible. As a consequence, au-
tomotive embedded systems are inherently resources constrained and thus
do not meet the resource requirements of heavy-weight generic middleware.
However, CBSE has been well accepted within the automotive domain and
hence, demand for light-weight resource saving component middleware arose.
By adopting CBSE for the automotive domain, the AUTOSAR standard ex-
tensively addresses the issue of customizable standardized component mid-
dleware.

AUTOSAR provides a precise specification for a standardized component
and communication middleware. Its logic abstraction is called Virtual Func-
tion Bus (VFB) and its functionality is accessible only via the so called
Run-Time Environment (RTE ). All application components interact in a
location transparent way only through the RTE. In addition, the RTE pro-
vides all infrastructural services implemented within the underlying Basic
Software (BSW ) module. The Basic Software—the implementation of the
AUTOSAR middleware and the operating system—is specified as layered
software that can be trimmed with respect to application requirements in
order to save valuable system resources. Trimming is done by specifying
various compile-time switches2 to exclude middleware layers with unused
functionality. Although this proposed approach targets at economizing sys-
tem resources, it turns out to be suboptimal: Manual management of often
undocumented, proprietary, and vendor specific compile-time switches is ex-
tremely error-prone. Minor changes at application level can lead to major
changes in middleware functionality, requiring detailed knowledge of mid-
dleware internals from application developers and system integrators. In
addition, only coarse-grained middleware customization can be achieved due
to the coarse-grained modularization of the Basic Software.

The research presented within this thesis aims at an improvement of
AUTOSAR’s middleware in terms of reusability, maintainability and poten-
tial for application specific optimizations with respect to system immanent

2These switches are, for example, preprocessor “defines” for conditional compilation in
C source code.
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resource constraints. Following the same advisement that has been taken into
consideration by the AUTOSAR consortium for automotive applications, the
required improvements can be achieved by applying the component paradigm
to AUTOSAR’s middleware itself. However, this idea leads to two major re-
search questions, covered within this thesis:

1. Is it possible to apply the component paradigm not only at the
application level but also to the AUTOSAR component mid-
dleware, especially to the communication subsystem, itself?
All benefits of CBSE would become available not only at application
level but also within the middleware, including better quality, reusabil-
ity and maintainability, and higher cost efficiency.

2. If question one can be answered with yes, the second question unfolds:
Can component based, application specific, and hence custom-
tailored AUTOSAR middleware be automatically synthesized
from application models and prefabricated middleware com-
ponents? A middleware implementation that is optimal in terms of re-
source usage for a specific network node provides only services required
by application components deployed on this particular node. If com-
ponent based middleware that is optimal in the above mentioned sense
could automatically be generated, overall software quality would in-
crease whereas costs for development and maintenance would decrease.
In accordance to the component paradigm, middleware components
could be provided by third parties (e.g., communication middleware
components by bus system manufacturers), thus relaxing the applica-
tion developers’ know-how requirements.

1.2 Approach
As described above, this thesis aims at an improvement of AUTOSAR mid-
dleware by applying the component paradigm at the middleware itself. For
that purpose, several aspects of automotive software engineering are taken
into account:

1. AUTOSAR: The standard’s component model and the prescribed
software engineering methodology are analyzed, to understand not only
all provided mechanisms of component interaction and communication,
but also the related engineering process.

4
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2. Model Driven Development: Models provide different views of a
specific application. With respect to CBSE and AUTOSAR, model ar-
tifacts that contain information regarding communication middleware
functionality are identified within AUTOSAR compliant application
models.

3. Middleware Architecture: To design component based communica-
tion middleware for AUTOSAR, it is mandatory to analyze the stan-
dardized layered AUTOSAR Basic Software and the AUTOSAR Run-
Time Environment . A set of basic middleware components as well as a
general component architecture representing the full AUTOSAR mid-
dleware functionality is identified. In addition light-weight variants of
the identified component classes are specified for improved middleware
optimization.

4. Software Synthesis: To automatically synthesize AUTOSAR com-
pliant communication middleware from application models and prefab-
ricated building blocks, a model driven process is defined. This pro-
cess on the one hand extracts information from application models and
system descriptions, and on the other hand automatically assembles
prefabricated middleware components to form an application’s custom-
tailored middleware. To support model level validation of functional
and non-functional requirements, as well as model checking approaches
in general, the defined process conserves annotated properties and re-
quirements over its different phases.

1.3 Contribution
This thesis contributes by introducing component based communication mid-
dleware into the AUTOSAR standard and by integrating the three domains
of Component Based Software Engineering, Model Driven Development and
AUTOSAR into one consistent methodology that helps to gain cost-effective,
high-quality software for automotive distributed embedded systems. In de-
tail, the contribution is twofold:

1. The component paradigm is applied to AUTOSAR’s originally
layered communication middleware. Thereunto, the AUTOSAR
communication middleware layers are horizontally sliced into blocks of
related functionality. By rejoining tightly coupled blocks, irrespective
of their originating layer, self-contained building blocks—the middle-
ware components—are created. This process is on the one hand ex-

5
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ecuted by a static analysis, the so called Cohesion Analysis [1]3, and
on the other hand manually by domain-experts in order to get a re-
liable reference design for evaluation of the calculated results. The
total of all component class interfaces for the identified component
based middleware design resembles the full functionality and the full
interface of the conventional layered middleware. However, to reduce
size and resource usage of the communication middleware, the com-
ponent based middleware design allows the substitution of full-fledged
heavy-weight components by light-weight variants, providing only nec-
essary, and hence reduced, functionality. In case a component’s func-
tionality is not required by the application or other middleware com-
ponents, this component may even be completely omitted from the
middleware binaries [2, 3]. Supplementary, a component model—the
Component Based Automotive System Software (COMPASS ) compo-
nent model [COM07]—for the AUTOSAR communication middleware
is specified, to prescribe how middleware components have to be used,
how they may be composed, and how they interact [4]. Based on the
COMPASS component model, reusable architectural middleware pat-
terns are specified [5]. These patterns describe functionality of client-
server and of sender-receiver communication, which are the two com-
munication styles implemented by AUTOSAR within the AUTOSAR
Run-Time Environment .

2. A model driven component based development process for au-
tomatic middleware synthesis is specified. This process is closely
related to the Model Driven Architecture (MDA) [OMG03a], but also
adheres to the AUTOSAR methodology [AUT08b]. The core of the
specified process is a model transformation, called Connector Transfor-
mation [6]. It automatically transforms platform independent models
(PIMs), describing the application’s component architecture, into plat-
form specific models (PSMs), containing application components and
component equivalent middleware structures. The Connector Transfor-
mation mainly transforms PIMs into PSMs by injecting platform and
communication specific middleware component architectures4 in place
of explicit connector artifacts, contained within the PIMs. The gener-
ated middleware structures depend on the set of prefabricated middle-

3The author’s publications related to this thesis are referenced with plain numbers. For
the remainder of this thesis these publications’ results are used without being explicitly
referenced.

4The term component architecture denotes a piece of software that is realized by a
well-defined set of composed components and their connectors.
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ware components, architectural middleware patterns, and the applica-
tion’s deployment specification [7, 8]. As a result, only utilized commu-
nication functionality of the AUTOSAR communication middleware is
contained within the middleware binaries. The PSMs moreover reflect
the system’s physical structure, so one PSM is created for each system
node. Hence, this synthesized communication middleware is applica-
tion and node specific, and thus exhibits a smaller memory footprint
than conventional AUTOSAR communication middleware. In addition,
functional and non-functional contracts (by means of model level an-
notations) of middleware components are preserved during transforma-
tion, and thus are contained within the PSMs. Therefore, annotations
of application components and of assembled middleware components
provide a sound foundation for model checking and system validation
of automotive software systems [9].

1.4 Thesis Structure
To answer the research questions issued in Section 1.2, the thesis is structured
as follows:

• Chapter 2, Technological Baseline and State-of-the-Art, overviews
Component Based Software Engineering (Section 2.1) and Model
Driven Development (Section 2.2), and describes how these domains
are related to each other. It provides basics on the key elements of
CBSE and MDD, and summarizes all necessary vocabulary and nota-
tions, used within the remaining chapters.

• Chapter 3, Automotive Open System Architecture, provides an outline
of the AUTOSAR hardware and software architecture. It is focused on
the standard’s sub-domains that are of specific relevance for the subject
of this thesis: the component model, and all system parts related to
communication middleware.

• Chapter 4, COMPASS Middleware, comprises the first major contri-
bution of this thesis: On the one hand it defines the COMPASS com-
ponent model that is applied to the AUTOSAR communication mid-
dleware, in order to solve the research challenges covered within this
thesis (Section 4.2). On the other hand, the chapter identifies mid-
dleware component classes by decomposing conventional AUTOSAR
middleware via the static Cohesion Analysis (Section 4.3).

7



1.4. THESIS STRUCTURE

• Chapter 5, Middleware Synthesis, comprises the second contribution
of this thesis. It describes how to utilize augmented AUTOSAR ap-
plication models to synthesize application specific component based
communication middleware. In Section 5.2 the COMPASS application
model, especially the model artifact of explicit connectors, is intro-
duced, while in Section 5.3 the Connector Transformation is described,
which performs the middleware synthesis.

• In Chapter 6, Discussion, the proposed methodology is applied to an
automotive application at proof-of-concept level. Gathered results are
discussed for the Cohesion Analysis and for the Connector Transfor-
mation (Section 6.1). Finally, related work that has not explicitly been
mentioned within the previous chapters is discussed (Section 6.2), and
a brief outlook on future work is given (Section 6.3).
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Chapter 2

Technological Baseline and
State-of-the-Art

This chapter provides an overview of state-of-the-art technology, represent-
ing the baseline for the contribution of this thesis. It provides fundamental
concepts of component based software engineering and model driven devel-
opment. As a result, a common terminology is defined for the remainder of
this thesis.

2.1 Component Based Software Engineering
One substantial challenge in today’s software engineering is to master the de-
velopment of cost-effective and reliable software in the face of increasing size
and complexity. Various approaches have been proposed over the last years,
some of them made it into industry. Most of them have identified software
reuse as a main candidate for “better and cheaper” software development.

Component Based Software Engineering (CBSE) is one widely accepted con-
cept in developing cost-effective and sound software, that builds on reuse
[NT95], and therefore aims at increasing software quality and productivity.
In CBSE applications are built by assembling small, well-defined, and trusted
building blocks, so called components. Related components are connected by
their interfaces, to form a new software system with combined functionality.
As components provide means of exchangeability and reusability, implicit
context dependencies are strictly prohibited.

Components are subject to third party composition; therefore components
of different vendors have to interact seamlessly. This can only be assured by
defining a framework—a set of rules, utilities, programming abstractions, and
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2.1. COMPONENT BASED SOFTWARE ENGINEERING

an infrastructure—called component model that has to be strictly obeyed
and utilized by all components. A component model provides the semantic
framework of what components are, and how they are constructed, composed,
deployed and used [WS01, LW05]. Thus it provides the foundation for any
component based application.

A component model contains at least the following specifications:

1. Component Definition: The component model defines, what com-
ponents are. It gives a precise description of properties and constraints,
which a building block has to satisfy in order to be a component.

2. Composition Standard: By defining how, where, and when com-
ponents may be connected, the component model clearly defines rules
that are of great relevance for the design process of a component based
application.

3. Interaction Standard: At run-time, connected components interact
by exchanging data or flow of control. The interaction standard defines,
how data is exchanged and what happens to the flow of control within
the interacting components.

4. Infrastructure Specification: One main issue of CBSE is to provide
separation of concerns. To keep components focused on their appli-
cation purpose, any implementation of infrastructural concerns, e.g.
communication issues or life-cycle management, is shifted to the com-
ponent middleware, which in consequence is often referred to as appli-
cation server. The component middleware consequently has to provide
all infrastructural services required by the application components, and
thus is the vital environment for them. As a result, application com-
ponents stay highly specialized to their primary purpose, small in size,
and less error-prone.

Component models are usually categorized into flat or hierarchical models,
or by means of component composition [LW05]. Both, the AUTOSAR com-
ponent model [AUT08c, AUT08g] and the COMPASS component model (see
Section 4.2), are hierarchical component models.

2.1.1 Components

In CBSE, the most common entity is called component. Unfortunately,
literature shows many, very often contradictory, definitions of that term
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[BDH+98, Bro98]. So the first thing to do when dealing with CBSE, is
to clarify the semantic meaning of this appellation, and to provide a clear
vocabulary for the domain as basis for the remainder of this thesis.

2.1.1.1 Component Definition

Within the following paragraphs, some of the most accepted component def-
initions are summarized to obtain a general one, which serves as foundation
for all more specialized refinements, discussed and developed within this the-
sis.

Szyperski [Szy99] defines a component to be a composable unit that interacts
by specified interfaces only:

A software component is a unit of composition with contrac-
tually specified interfaces and explicit context dependencies only.
A software component can be deployed independently and is sub-
ject to composition by third parties.

The definition of Heineman and Council [CH01] differs from most definitions
by postulating that a component has to adhere to a component model:

A [component is a] software element that conforms to a com-
ponent model and can be independently deployed and composed
without modification according to a composition standard.

To obtain reliable behavior from composed software architectures, Mayer
[Mey03] introduces the concept of trust in CBSE and therefore defines a
component to be a trusted element of reuse:

A component is a software element (modular unit) satisfying
the following conditions:

1. It can be used by other software elements, its “clients”.

2. It possesses an official usage description, which is sufficient
for a client author to use it.

3. It is not tied to any fixed set of clients.

[. . . ]
A Trusted Component is a reusable software element possessing
specified and guaranteed property qualities.
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For the CORBA Component Model [OMG06], the Object Management Group
(OMG) specifies a component in a more abstract, syntactic way, related to
the design phase of the development process:

A [component is a] specific, named collection of features that
can be described by an IDL [Interface Definition Language] com-
ponent definition or a corresponding structure in an Interface
Repository.

Finally, for their Unified Modeling Language (UML)1, they define a com-
ponent as an executable element within a system, which has an external
specification in the shape of one or more provided and required interfaces,
and an internal implementation, consisting of one or more classifiers that
realize the component’s behavior:

A component represents a modular part of a system that
encapsulates its contents and whose manifestation is replaceable
within its environment.

A component defines its behavior in terms of provided and
required interfaces. As such, a component serves as a type whose
conformance is defined by these provided and required interfaces
(encompassing both their static as well as dynamic semantics).

By taking all these considerations into account, a general component defini-
tion that is used for the remainder of this thesis can be formulated:

Components are trusted architectural elements of execution that interact
only by their well-defined interfaces, according to contractual guarantees,
and strictly contain no other external dependencies. Components conform
to a component model, so they adhere to a composition and interaction
standard, and can be independently deployed and composed without mod-
ification. Therefore, components are well suited for reuse and third-party
composition.

1Within this thesis UML 2.1 [OMG07b] is used to describe components, component ar-
chitectures, deployment specifications, and architectural templates. It provides a useful set
of predefined classifiers that can easily be extended to meet domain specific requirements
of architectural modeling [RMRR98].
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A set of well composed components is referred to as component architecture,
while the term component model denotes the framework and standards, a
component has to adhere to.

Both, the AUTOSAR component model, described in Section 3.4, as well as
the COMPASS component model, described in Section 4.2, adhere to this
definition.

2.1.1.2 Interfaces

The behavior of a component is completely determined by its implementa-
tion and the specification of its interfaces. Following the given component
definition, interfaces describe a component’s points of interaction.

An interface is a set of operations—the services—and accessible memory lo-
cations, also referred to as data elements. Operations are uniquely specified
by their signature, a tuple consisting of the operation’s name and its ordered
parameter list. Data elements are specified by a tuple containing the ele-
ment’s name and data type. Due to the descriptive nature of an interface, it
does neither offer any implementation of its operations, nor does it provide
any data element. An interface rather refers to a component implementation
that provides all of that [CHJK02]. Depending on the interfaces’ role in a
component description, two kinds of them have to be distinguished:

1. Provided-Interfaces expose services implemented by and data ele-
ments contained within a component, for proper use by other compo-
nents.

2. Required-Interfaces represent a component’s need for external ser-
vices or data elements, provided by other components via their
provided-interfaces. Within a valid component architecture, all
required-interfaces have to be connected to related provided-interfaces,
while dangling provided-interfaces may occur.

Both kinds of interfaces are representable in UML 2, and can be expressed
in various ways. Figure 2.1 depicts one sample component, named A, that
provides services via one provided-interface, called IAServices and demands
external services via one required-interface, called IBServices.

Figure 2.1 depicts component A and its interfaces, using the Ball-and-Socket
notation of UML 2 : Provided-interfaces are denoted as ball, while required-
interfaces are denoted as socket. Although this notation is more intuitive
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IAServices

IBServices
A

« component »

Figure 2.1: UML 2 notation of a component

to read, less information, especially on the interfaces’ properties, is visible
and has to be described within extra artifacts, e.g. interface descriptions or
interface contracts.

2.1.1.3 Ports

Interfaces may be exposed by a component itself, as depicted in Figure 2.1,
or by a component’s port, as depicted in Figure 2.2. A port is a dedicated
point of interaction; it is used to group related interfaces. Ports in general
are typed by all interfaces comprised within. If a port comprises more than
one interface, it is referred to as a complex port. As depicted in Figure 2.2
ports in UML are denoted as rectangles, placed on the component artifact’s
border.

Ports are typically used for

• Interaction Modeling: When describing and verifying run-time be-
havior of composite structures, the sequence of interface invocations
plays an important role. As ports are used to group interfaces, it is
feasible to bind interface states [Sel99]. Interface states are the current
phase of an invocation sequence of a specific port.

• Logic Grouping of Interfaces: Grouping semantically related inter-
faces increases a model’s comprehensibility. All interfaces exposed by
one port are of concern for the same—the port’s—purpose of interac-
tion.

• Model Abstraction: As ports are typed by their interfaces, they can
be used as placeholder for all the interfaces they comprise. In this way,
models with a higher level of abstraction like the architectural patterns
defined within Section 5.3.1 can be created.
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2.1.2 Connectors

Composing components connotes joining related provided- and required-
interfaces. The junction between component interfaces or ports is called con-
nector. At run-time, connected components interact through their associated
interfaces via joining connectors only. While connectors in local component
architectures typically represent simple issues of control- and data-flow, they
become hot-spots of interaction within distributed, heterogeneous systems.

UML provides various ways to express component composition with connec-
tors. Figure 2.2 shows the three most common UML notations for compo-
nent connectors by a simple example: Component A provides services by a
provided-interface of type IA, while component B requires at least one ser-
vice from that interface, thus it comprises IA as required-interface. All three
notations, depicted in Figure 2.2a, 2.2b, and 2.2c, show the involved com-
ponents with their interfaces and ports, but use a different syntax2 for the
same connector. However, the port connector, depicted in 2.2c, semantically
differs from the others. A port connector provides a higher-level of abstrac-
tion of a set of connected interfaces. It is typically used to simply express
that two components are connected for a specific purpose, whereas detailed
information on interfaces is not of interest.

1. Usage Relation Notation: A component that requires external ser-
vices by comprising a required-interface, makes use of that services,
provided by another component via a provided-interface. Figure 2.2a
depicts this fact by connecting the associated required- and provided
interfaces with a usage-relation, represented as dotted arrow. This no-
tation lays stress on usage and, as e.g. in AUTOSAR, on the existence
of a communication channel, also symbolized by the dotted line of the
arrow.

2. Ball-And-Socket Notation: A short-cut to the usage-relation nota-
tion is shown in Figure 2.2b. The required-interface and its associated
provided-interface is directly joined into one symbol. Due to its simplic-
ity, this notation is widely used to represent component dependencies.
Within this thesis, this notation is mainly used for local connections
within middleware architectures, as no “external” communication chan-
nel is used within that connections.

3. Port Notation: Ports, as described in Section 2.1.1.3, may represent a
component’s points of interaction at a higher level of abstraction. They

2UML provides a graphical notation for describing software models. Model elements
are represented by distinct shapes—the syntax for the elements.
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« component  »
B
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A « use »

Provided-Interface Required-Interface

Connector

Port Port

IA IA

(a) Usage relation

« component  »
B

« component  »
A

Connector

IA

(b) Ball-And-Socket connector

« component  »
B

« component  »
A

Connector

PT PT

Typed Port

(c) Port connector

Figure 2.2: UML connector notations
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comprise a well defined set of interfaces that gives them a unique type.
As two components are often connected by multiple related interfaces,
it is often expedient to omit the interface artifacts and simply wire the
matching ports of associated components. A well known example is
that of a call-back mechanism, which requires at least one provided-
and one required-interface for each participant. The “wire” is symbol-
ized by a simple line, connecting the corresponding ports, as shown in
Figure 2.2c.

2.1.3 Component Middleware

Due to the concept of separation of concerns within component based
software—components have to deal with their business purpose only—all
infrastructural requirements are provided by the component model’s middle-
ware. Therefore, the middleware is the vital environment for each application
component. It provides means of life-cycle management and component ex-
ecution, communication and interaction services, and many other features,
required by the application components to fulfill their task.

In typical component models, like the CORBA Component Model (CCM)
and Microsoft’s Component Object Model (COM), application components
are embedded within a component container, which provides an abstraction
of the component model’s middleware to the application components. Al-
though related components are seemingly connected to each other via their
connectors, in reality they are connected to the middleware container that
provides a virtual function bus (VFB) in a transparent way. Figure 2.3
shows two components named A and B, where B requires services from A.
Sub-figure 2.3a shows the components’ point of view: they seem to be di-
rectly connected over the VFB. Sub-figure 2.3b shows the physical view: the
components are connected to the component container that manages the
component interaction.

Within existing (but also proposed) component middleware implementations,
a wide set of architectural paradigms is used. This fact results from the
variety of middleware purposes, but also from the great amount of system
properties. Many of these properties are domain- and/or application-specific,
and have to be taken into consideration, when designing middleware [KG99,
ICG07].

Two common architectural styles are of relevance for this thesis: the layered
and the component based design.
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« component  »
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« component »
A
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IA IA

Virtual Function Bus

(a) Logical view

« component  »
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« component »
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IA IA

Virtual Function Bus

« component »
Component Middleware

« use »

(b) Physical view

Figure 2.3: Virtual function bus (VFB)
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1. Layered Middleware: Layered middleware, like proposed in
[AUT08a, MSM06, Sch02], is constructed as a horizontally layered soft-
ware stack. Lower layers are concealed by upper ones. Therefore, each
layer interacts with adjacent ones only. Application components reside
on top of this software stack, and hence are connected to the stack’s
top-layer.

Even though this type of architecture is modular in terms of layers,
intra-layer modularity is hardly possible. The middleware itself is
typically deployed as monolithic block, thus customization or middle-
ware adaption usually requires a full rebuild. Another disadvantage of
strictly layered middleware is that services from bottom layers can not
be directly accessed from the application components, and thus have
to be delegated through all intermediate layers. These forced service
delegations cause unnecessary run-time overhead, which offers space for
optimization especially in resource constrained domains like embedded
systems. However, due to the well understood mechanisms in layered
software, and due to easy-to-understand designs, this middleware type
still plays an important role in CBSE.

The conventional AUTOSAR component middleware is specified in a
layered style as described in Section 3.3. Its top-most layer is called
Run-Time Environment .

2. Component Based Middleware: Component based middleware,
sometimes also referred to as modular middleware, like described
in [PCCB00, LQS05], is designed in accordance to the component
paradigm. Middleware functionality is divided into functional blocks
that contain closely related, often tightly coupled functionality only.
The implementation of each block’s functionality represents one spe-
cific middleware component. Middleware components may seamlessly
interact with each other, but also with application components. How-
ever, a container component is often used to provide functionality of
interface adaption between generic middleware components and user-
defined application components.

Due to the component based design, middleware of this type can be re-
configured, reused and adapted to altering requirements without a full
rebuild. Service delegations across multiple layers, which often arise in
strictly layered software architectures, are omitted, as related middle-
ware components may be arbitrarily connected without restrictions in
terms of layers.

In addition, component based middleware can be assembled automati-
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cally according to application demands, and thus can provide custom-
tailored, resource efficient middleware.

2.2 Model Driven Development
When building component based applications, software is constructed by as-
sembling prefabricated components. These component architectures reflect
the applications’ functional decomposition, and thus provide a high level view
of the developed software. Components are often also hierarchically com-
posed architectures themselves, hiding their internals behind published inter-
faces. Hence, a component architecture’s level of abstraction can successively
be lowered by refining the view’s granularity, thereby revealing internal struc-
tures of assembled building blocks. Each level of abstraction provides specific
architectural details of the represented application. This fact can be capital-
ized on within a development process by introducing highly specialized views,
corresponding to expert knowledge of the views’ specific domain. In addi-
tion, standardized architectures and building blocks enable production-line
like development cycles. Consequently, when developing component based
software, a proper engineering methodology is mandatory to reach CBSE’s
goals of better and cheaper software. A well suited development process has
to be formalized and wherever possible unified. It has to cope with various
levels of abstraction and their correlation, and also has to provide support
for software- and architectural reuse [Pas02].

One approach that can perfectly be adopted for CBSE is Model Driven De-
velopment (MDD). In MDD, system descriptions, so called models, are used
to obtain a coherent total representation of the software’s characteristics.
Models are the focal points of a model driven development process and are
subject to specification, refinement and manipulation. By applying model
transformations, models can be transformed into new typically more specific
ones. Transformations can also be used to extract model inherent informa-
tion from source models. To subsume, a MDD process is characterized by
the activity of modeling a software system and by transforming the specified
models, to finally gain the required product.

A common definition of the term model is provided in [KWB03]:

A model is a description of (part of) a system written in a
well-defined language.
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A well-defined language is a language with well-defined form
(syntax) and meaning (semantics), which is suitable for auto-
mated interpretation by a computer.

The first definition assesses a model to be a representation, most times an
abstraction, of a system. It is typically simplified and focused on a specific
subset of the system’s features. The second definition more precisely states
how a model has to be specified. The assumption, that a model has to be
automatically interpretable by a computer, seems rather rigorous at the first
look and is not demanded by most model driven approaches. Nevertheless, it
is good practice, since software development, and thus MDD, is a computer
aided process that relies on automation to exploit its full potential.

One of the precursors of MDD is the OMG, who defined the Model Driven
Architecture (MDA) framework [OMG03a], which has become rather pop-
ular within software industry. MDA specifies concepts and languages3, and
the relation between them, but does not define a specific development pro-
cess. In fact, any favored process can be adopted and adapted, if it meets
the requirements of MDA: models and transformations at various levels of
abstraction have to play a central role.

Within the following sections we revisit the most important aspects of MDD
and MDA that are used within this thesis.

2.2.1 Viewpoints and Models

To express the level of abstraction, MDA utilizes so called views [IEE00]:

A viewpoint model or view of a system is a representation of
that system from the perspective of a chosen viewpoint.

To render this definition more precisely, the term viewpoint is also clarified
[OMG03a]:

A viewpoint on a system is a technique for abstraction using
a selected set of architectural concepts and structuring rules, in
order to focus on particular concerns within that system. Here
‘abstraction’ is used to mean the process of suppressing selected
detail to establish a simplified model.

3MDA requires models to be expressed in a Meta Object Facility (MOF ) based
[OMG03b] language.
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Following the given definitions, models are descriptions—also referred to as
views—of a system that are typically focused on specific system aspects.
The specific aspect covered within a model, strictly depends on the model’s
viewpoint.

OMG’s MDA proposes three distinct viewpoints on a system, which are of
great importance in model driven development:

1. Computation Independent Viewpoint: By focusing on the sys-
tem’s environment and its requirements, the computation independent
viewpoint hides details of the system’s structure and processing. This
viewpoint’s main purpose is to separate the fundamental logic of a sys-
tem, e.g. process- or business-models, from its technical specification.

2. Platform Independent Viewpoint: The platform independent
viewpoint aims at the operation of a system while disregarding plat-
form specific details. A platform is considered to be a set of subsys-
tems and technologies, which provide a coherent set of functionality
through interfaces and specific usage patterns. Platform independent
views expose aspects of a system that are shared between distinct tar-
get platforms, and are typically specified in general-purpose modeling
languages such as UML.

3. Platform Specific Viewpoint: The platform specific viewpoint is
focused on the use of a specific platform. It exposes aspects of a system
that can not be shared between different target platforms.

These distinct viewpoints help to gain a clear separation of concerns within
a model driven development process, and also lead to a better comprehensi-
bility of the overall system.

In accordance to the viewpoints’ aspects, MDA proposes four types of mod-
els that are all used within the following chapters. Thus, their purpose is
summarized here:

1. Computation Independent Model (CIM): A description of a sys-
tem from the computation independent viewpoint is called computation
independent model. A CIM describes the situation and the context in
which the system will be used. Therefore, it includes no details of a
system’s structure. However, a CIM typically not only serves as aid to
understand a problem, but also as source of system specific vocabulary
for use in other models. CIMs are often referred to as domain mod-
els, and play an important role in bridging the gap between domain
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experts on the one hand, and experts in design and construction of
system artifacts, on the other hand.

2. Platform Independent Model (PIM): A view of a system from the
platform independent viewpoint is called platform independent model.
A PIM exposes aspects of a system that primarily deal with logical
and structural concerns, independent of any implementation technol-
ogy. Within this thesis PIMs are used to specify component architec-
tures at application level. Matters of distribution or heterogeneity are
not of concern within this models.

3. Platform Specific Model (PSM): A platform specific model is a
view of a system from the platform specific viewpoint. A PSM contains
aspects of a system that are directly related to a specific platform, the
associated implementation technology. It augments relevant aspects
of a PIM with details on how the system uses a particular type of
platform.

4. Platform Model: A platform model specifies technical concepts, sys-
tem parts, and provided as much as required services of a specific plat-
form. It also provides concepts on how the platform has to be used
by an application, and how this usage has to be described within a
PSM. Platform models are a vital source of information for the model
transformation, specified within this thesis.

By utilizing distinct viewpoints, a system is described by multiple models of
various types. As these models represent different abstractions of one system,
they are related to each other. Well-defined relations between models of the
same system may be used to (sometimes even automatically) translate models
of one type into another. To aid this process of translation, models may be
annotated with marks. Within this thesis, marks are attached to elements
of PIMs (connectors in component diagrams), to guide proper translation
of PIMs to PSMs. In MDD, the process of translation is referred to as
transformation.

2.2.2 Transformations

The real value of MDD, especially of MDA, results from its ability to trans-
form models of distinct viewpoints into each other. Platform independent
models can be transformed to platform specific models. Platform specific
models can be translated to code. Traditionally, most of this work has been
done by hand. To automate this process, model transformations have been
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Figure 2.4: Model transformation

subject to research and development over the last years. Automated trans-
formations impose big potential in reducing costs, and in increasing software
quality in MDD, as they reduce the amount of error prone human interven-
tion.

Transformations are typically specified as set of rules, denoted in a
transformation language like OMG’s Query/View/Transformation (QVT )
[OMG07a] or the Atlas Transformation Language [ATL06, JK06]. These
rules are applied to a source model by a transformation tool to generate a
target model.

Figure 2.4 depicts an MDA compliant model hierarchy of the transformation
step: A transformation TAB, executed by a transformation tool, translates
the source model MA into a target model MB. The transformation itself is a
model4, therefore MA, MB, and TAB are elements of model level M1. While
MA and MB conform to their meta-models MMA and MMB respectively,
TAB not only conforms to its meta-model MMT , but is also based on the

4Source code is also considered to be a model of an executable program.
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meta-models of the source and the target model, as it has to cope with both
of them. All three meta-models are elements of model level M2 and finally
conform to the Meta-Object Facility at model level M3.

Depending on the meta-model, to which the source and target models comply
to, two types of transformation can be distinguished:

1. Endogenous Transformation: Any transformation, translating a
source model into a target model that complies to the source model’s
meta-model, is called endogenous transformation. For an endogenous
transformation, MA and MB within Figure 2.4 both have to comply to
the same meta-model (MMA = MMB). Within this thesis, endoge-
nous transformations are used to translate UML models (PIMs) into
other UML models (PSMs).

2. Exogenous Transformation: If a transformation translates a source
model into a target model that complies to a different meta-model,
the transformation is called exogenous transformation. If MA and MB

in Figure 2.4 comply to distinct meta-models (MMA 6= MMB), the
transformation is an exogenous one. This type of transformation is used
within this thesis primarily when generating glue code, configuration
files, and build control files.

2.2.3 MDA Development Phases

With respect to the previously defined views, a typical model driven develop-
ment cycle for a software application as outlined by MDA contains following
phases:

1. Specification of CIMs: System requirements and domain specific
enabling technologies are described within CIMs that primarily de-
scribe the application’s context, and define a common vocabulary for
all forthcoming models used within the application’s development cy-
cles. Requirements of the computation independent models later on
may be mapped to platform independent but also to platform specific
models and vice versa.

2. Specification of PIMs: Platform independent models are developed
in accordance to the application’s domain models (CIMs). They mainly
provide information on the application’s logical structure, but also an
architectural overview of the software system under development.
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2.2. MODEL DRIVEN DEVELOPMENT

3. Platform Specification: The underlying system’s technical concepts,
like available interfaces, usage patterns, architectural properties, but
also physical parts, and available resources are specified within platform
specifications.

PIM

PIMmarked

PSM

Additional 
Information

Additional 
Information

Pattern 
Names

Patterns Platform

Sub-Transformation

Sub-Transformation

Transformation

Figure 2.5: Guided transformation

4. Transformation of PIMs to PSMs: The heart of an MDA compli-
ant MDD process is the transformation of PIMs to PSMs, or in case
of model-to-code transformations the transformation of PIMs or PSMs
into source code. Figure 2.5 depicts a guided transformation as pro-
posed in [OMG03a]: The main transformation is decomposed into two
sub-transformations.

(a) The first sub-transformation (the upper one in Figure 2.5) trans-
lates a PIM into another PIM, by adding platform specific marks—
the platform related pattern names—to the PIM. The so gained
marked PIM is still platform independent in sense of its original
elements and design, but it contains clues—the marks—that help
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to associate the elements of the PIM with platform specific coun-
terparts or patterns. Both sub-transformations in addition allow
the specification of information like Quality-of-Service (QoS) at-
tributes or architectural styles.

(b) The second sub-transformation (the lower one in Figure 2.5 ) fi-
nally translates the marked PIM into a PSM, utilizing platform
specific patterns and usage descriptions from the platform model.

5. Transformation of PSMs to Code: A final step within a model
driven development process is that of code generation. Typically, PSMs
are translated into deployable executable code. This transformation is
most times carried out by translating PSMs to source code that in suc-
cession is compiled and linked into an executable binary. However, code
can also be generated directly from PIMs by model-to-code transforma-
tions, or via model-to-source transformations including the additional
compiler- and linker-runs.

To improve a development process following this work flow, the process has
to be cyclic for iterative refinement. This so called round trip engineering
requires transformations to be bijective. Changes within a target model have
to be transformed back to the source model to guarantee model consistency.
Otherwise those changes would get lost, when transforming the source model
during the following iteration of the development cycle.

2.3 Summary
Outlining the state-of-the-art of component based software engineering and
model driven development, this chapter provided the basic concepts and vo-
cabulary that come to use within this thesis. The term component, as much
as terms related to components, like connector and middleware, were dis-
cussed; based on these given definitions a component model will be intro-
duced in Chapter 4. Additionally, concepts of model driven development
were summarized; the model driven middleware synthesis that is described
in Chapter 5 was developed in line with the concepts of OMG’s MDA.

The next chapter provides a short introduction to the Automotive Open Sys-
tem Architecture (AUTOSAR), which is the target domain of this thesis.
The chapter’s main focus is set to component based software engineering
and model driven development as specified by AUTOSAR, to provide the
background for the contribution of this thesis.
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Chapter 3

Automotive Open System
Architecture

Based on the technological baseline, provided in Chapter 2, this chapter
gives an introduction to the Automotive Open System Architecture. Besides
a general overview, the main focus is set on aspects of AUTOSAR that are
of interest for the contributions of this thesis: the software architecture of
AUTOSAR applications, and the architecture of AUTOSAR system software,
especially of its communication services and middleware.

3.1 History of AUTOSAR
Driven by an increasing number of requirements of innovative applications,
automotive electronic systems have reached a level of complexity that requires
a technological breakthrough in order to manage them cost-effectively and
at high quality. This breakthrough can be achieved with a standardized
engineering process similar to that of production lines that besides are very
familiar to the automotive industry since Henry Ford. By building complex
software from standardized components, and by using standardized tools
within a standardized process, better and cheaper automotive software can
be realized.

To develop an open and standardized automotive software architecture and
adequate development paradigms for automotive electronic systems, the
AUTOSAR consortium was jointly founded by automobile manufacturers,
suppliers, and tool developers in 2002 [HSF+04]. Preparatory discussions on
the common challenges and objectives were held by BMW, Bosch, Continen-
tal, Daimler Chrysler, Volkswagen, and Siemens VDO in August 2002. A
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joint technical team was set up in November of that year, to establish a tech-
nical implementation strategy. The partnership between the AUTOSAR core
members was formally signed off in July 2003. Ford Motor Company, Peugeot
Citroën Automobiles S.A., Toyota Motor Corporation and General Motors
joined the consortium as core partners later on. Today the AUTOSAR con-
sortium consists of 9 core partners, more than 50 premium members, more
than 80 associate members, and 7 development members1. The main objec-
tives of AUTOSAR are to increase the quality of automotive software, its
maintainability, and its scalability, to support usage of Commercial-Off-The-
Shelf (COTS) components across product lines, and finally to optimize costs
and time to market.

The consortium so far created detailed specifications in several releases:
In December 2006, AUTOSAR phase I was finalized with the release of
version 2.1 of the AUTOSAR standard. At the moment, phase II is in
progress, and is scheduled to last until end of 2009, with the finalization
of the AUTOSAR standard, version 4.0. The actual standard under release
is that of version 3.1, finalized in June 2008. Most of the AUTOSAR specific
assumptions within this thesis are based on version 2.1 but also comply to
version 3, the most actual version while writing.

3.2 Hardware Architecture
The hardware architecture of automotive systems can be viewed at different
levels of abstraction.

On the highest level of abstraction, the system level, an automotive system
consists of a number of networks interconnected via gateways. In general
these networks correspond to the different functional domains that can be
found in today’s cars (i.e., chassis domain, power train domain, body do-
main).

The networks themselves comprise a number of electronic control units
(ECUs), which are interconnected via a communication media. The physical
topology used for the interconnection is basically arbitrary. However, bus,
star, and ring topologies are the most common topologies in today’s cars.
The network level represents the medium level of abstraction, used for the
specifications of automotive electronic systems.

1Numbers were extracted from the AUTOSAR web site at http://www.autosar.org/
last visited on 11.01.2009
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Figure 3.1: ECU design

On the lowest level of abstraction, the so called ECU level, the major parts
of an ECU are of interest, like exemplarily depicted in Figure 3.1. An ECU
comprises one or more micro controller units (MCUs) as well as one or more
communication controllers (CCs). In most cases, exactly one MCU and one
CC are used to build up an ECU. In order to be able to control physical
processes within the car (e.g., control of the engine’s injection pump) the
ECU’s MCU is connected to actuators via analogue or digital output ports.
To obtain environmental information, sensors are connected to the MCU’s
analogue or digital input ports. This interface is referred to as the ECU’s
environmental interface. The CC facilitates the physical connectivity of the
ECU to the respective network. This interface of an ECU is called network
interface. The CC, as depicted in Figure 3.1, may contain a host controller
interface (HCI) that provides dual ported memory. This memory is used
to buffer data, which is received by the CC from the network interface for
the MCU, or sent to the network by the MCU via the CC. In addition,
an ECU may contain a so called transceiver. This building block is used
to encode and decode logical bits into their physical representation within
network communication, and thus is connected to the MCU as much as to
the CC.

3.3 Software Architecture
The AUTOSAR software architecture, as depicted in Figure 3.2, specifies
a rather strict distinction between application software and system soft-
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ware, also referred to as Basic Software [AUT08a]. The Basic Software
is organized as layered software architecture, which provides functionality
like communication protocol stacks for automotive communication protocols
(e.g., FlexRay [MHB+01, FHHW03]), the operating system, and diagnostic
modules. The application software is component based, and comprises all
application specific software items like control loops and sensor/actuator in-
teraction. Consequently, the basic/system software provides the basis, on
which the application software is built upon.

The so-called Run-Time Environment (RTE) [AUT08g] provides the inter-
face between application software components and the basic software. It im-
plements means of execution, coordination, and interaction patterns, but also
provides interface adaptation for application components and the AUTOSAR
Basic Software. The Run-Time Environment maps application specific com-
munication requirements to fundamental communication facilities within the
Basic Software. It is generated at compile-time to omit unused functionality
within the system’s executables, hence providing means of optimization for
the AUTOSAR middleware. However, this type of resource-aware optimiza-
tion is performed at a rather high level of the system software. Thus, it
offers coarse-grained optimization facilities only, compared to the approach
discussed within this thesis.

The term communication middleware as used within this thesis maps to those
parts of the Run-Time Environment and the Basic Software that are related
to interaction and communication.

3.3.1 Application Software Architecture

AUTOSAR compliant application software consists of application software
components that are ECU and location independent, and sensor-actuator
components that depend on specific ECU hardware, and therefore are loca-
tion dependent. Whereas instances of application software components can
easily be deployed to arbitrary ECUs, instances of sensor-actuator compo-
nents have to be deployed to a specific ECU for reasons of hardware depen-
dency. Deploying multiple instances of the same component on one single
ECU is supported by the AUTOSAR component model. However, race con-
ditions and data conflicts that might occur due to multiple instantiation or
reentrancy, have to be solved by the component developer and are not within
the scope of AUTOSAR middleware.
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Figure 3.2: AUTOSAR software architecture [AUT08a]

Application software components as well as sensor-actuator components are
interconnected via so-called connectors. These connectors represent the com-
ponents’ run-time interaction, like the exchange of signals2 or remote method
invocations among the connected components. A more detailed description
of the AUTOSAR component model is provided in Section 3.4

3.3.2 System Software Architecture

Due to the designated separation of concerns AUTOSAR software compo-
nents rely on component middleware as described in Section 2.1.3. However,
AUTOSAR middleware does not support dynamic operations like service dis-
covery or late binding, as automotive applications are statically typed and
bound for safety reasons. Nevertheless, the middleware has to provide a ba-
sic platform for the execution of application components. In AUTOSAR,
this functionality is provided by a layered architecture of system software
modules. Figure 3.2 gives a coarse overview of the major categories of these
modules.

2In AUTOSAR the term signal denotes any type of variable.
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1. System Services: The System Services module encompasses all func-
tionality that provides standardized (e.g., operating system, timer sup-
port, error loggers) and ECU specific (e.g., ECU state management,
watchdog management) system services and library functions.

2. Memory Services: TheMemory Services module comprises function-
ality that facilitates the standardized access to internal and external
non-volatile memory for means of persistent data storage.

3. I/O Services: The Input/Output Services module contains function-
ality that provides standardized access to sensors, actuators and ECU
on-board peripherals (e.g., D/A or A/D converters).

4. Communication Services: Last but not least, the Communica-
tion Services module contains functionality that provides standard-
ized access to vehicle networks (i.e., the Local Interconnect Network
(LIN) [LIN06], the Controller Area Network (CAN) [ISO03a, ISO03b],
and FlexRay [MHB+01, FHHW03].

It is important to mention that the AUTOSAR nomenclature clearly distin-
guishes between the Communication Services module, included within Fig-
ure 3.2, and the Communication Stack, which is depicted in Figure 3.3 for a
FlexRay network. The Communication Stack provides a logic view for com-
munication functionality provided by the Communication Services module,
as much as by lower layers like the ECU Abstraction layer or the Micro-
controller Abstraction layer.

Research for this thesis was conducted within the context of automotive sys-
tems utilizing the FlexRay time-driven bus system. Therefore, the FlexRay
communication stack has been analyzed, decomposed, and re-engineered in
a component based way, and hence will be described in more detail within
the following paragraphs. However, the proposed approach can be applied
to other communication subsystems like the CAN stack in the same way.

The internal structure of the Communication Services module for the
FlexRay communication system is depicted in Figure 3.3. It contains fol-
lowing (sub)modules:

1. Com: The Com module provides signal based communication to higher
layers, especially to the RTE . This signal based communication service
is used for intra-ECU communication, as well as for inter-ECU commu-
nication. In case of intra-ECU communication Com mainly uses shared
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memory, whereas in case of distributed (inter-ECU) communication a
more complex mechanism is provided: At the sender side, Com packs
multiple signals into one Protocol Data Unit (PDU). Thereafter, Com
passes this PDU down to a PDU router in order to issue the PDU’s
transmission via the respective network interface. At the receiver side,
Com obtains a PDU from the PDU router , extracts the signals con-
tained within, and then forwards the extracted signals to the higher
software layers.

2. Diagnostic Communication Manager: The Diagnostic Commu-
nication Manager (Dcm) module provides services for ECU diagno-
sis via the communication network. The Dcm supports the Keyword
Protocol 2000 (KWP2000) standardized in ISO/DIS 14230-3 [ISO99]
and the Unified Diagnostic Services (UDS) protocol standardized in
ISO/DIS 14229-1 [ISO06].

3. Network Management: The Network Management modules provide
means of coordinated transition of the system’s ECUs into, and out of
a low-power (or even power down) sleep mode. AUTOSAR network
management is divided into two modules: a bus system independent
module named Generic Network Management (Nm) and a bus system
dependent module named FlexRay Network Management (FrNm) in
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case of a FlexRay bus.

4. PDU Router: The PDU Router module (PduR) provides two major
services: On the one hand, it dispatches PDUs, received from the un-
derlying interfaces (e.g., FlexRay Interface) to the higher layers (e.g.,
COM, Diagnostic Communication Manager). On the other hand, it
performs gateway functionality between multiple communication net-
works, connected to the same ECU. The PDU Router forwards PDUs
from one network interface to another, which may be either of same
(e.g., FlexRay to FlexRay), or of different type (e.g., CAN to FlexRay).

5. FlexRay Transport Protocol: The FlexRay Transport Protocol
module (FrTp) is used to perform segmentation and reassembly of large
PDUs—also referred to as messages—transmitted and received by up-
per layers like the Diagnostic Communication Manager. This protocol
is rather similar to the ISO TP for CAN specified in ISO/DIS 15765-
2.2 [ISO04].

6. FlexRay Interface: Relying on frame-based services provided by the
FlexRay Driver (see below) the FlexRay Interface module (FrIf) fa-
cilitates transmission and reception of PDUs. Multiple PDUs may be
packed into one single network frame at the sending ECU, and in return
have to be extracted at the receiving ECU. The temporal execution
schedule of so called communication jobs governs when packing and
unpacking of frames takes place, and when frames are handed over to
or from the underlying FlexRay Driver. Each of these communication
jobs consists of communication operations, where each is able to handle
exactly one network frame including all PDUs contained within.

7. FlexRay Driver: The FlexRay Driver module provides the basis for
the FlexRay Interface module, by facilitating frame based transmission
and reception of data via a FlexRay communication controller.

3.4 AUTOSAR Software Components
As outlined in Section 3.3, component based software engineering is
AUTOSAR’s development paradigm at application level. It provides clear
separation of infrastructural and application concerns. Any application spe-
cific functionality is assigned to AUTOSAR software components in the
application layer. Functionality related to the system’s infrastructure has
to be provided by layered software modules beneath (and including) the
AUTOSAR Run-Time Environment .
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The following sections provide a description of the AUTOSAR component
model. Due to its design it is well suited at application level, but is not
applicable at Basic Software level. However, as the AUTOSAR component
model specifies the requirements for its component middleware, it plays an
important role for work described within this thesis.

3.4.1 Software Component Definition

An AUTOSAR software component [AUT08c] is a unit of execution that
implements a part of the application’s functionality. It may be of atomic
or composed nature. However, it has to be atomic in terms of deployment.
Therefore, it cannot be distributed over several AUTOSAR ECUs. This re-
striction results from the fact, that AUTOSAR software components must
not implement communication and interaction specific logic. Application
components are not allowed to directly interact with the operating system or
the communication hardware, but have to interface to the Virtual Function
Bus . In consequence, software components are transferable, and hence may
be assigned to their final deployment location very late within the develop-
ment process.

A software component is described by its ports. Ports are well-defined points
of interaction that are characterized by interfaces. An interface may be
provided or required, thus in AUTOSAR a port may be of class required
(R-port) or of class provided (P-port). One port comprises exactly one inter-
face. Hence, this interface is called port interface. An interface can either be
a client-server interface—defining a set of operations that can be invoked—or
a sender-receiver Interface—allowing the usage of data-oriented communica-
tion mechanisms over the VFB (see Section 3.4.2).

The AUTOSAR component definition presented so far, maps to the compo-
nent definition provided in Section 2.1.1. The restrictions described above
form a specialization of the common definition provided there. The following
characteristics of AUTOSAR components describe, how the components are
embedded within the standard’s environment, and how they are executed.
These properties are not explicitly mentioned within the component defini-
tion in Section 2.1.1. However, they are addressed on a general level by the
term “elements of execution”.

Atomic AUTOSAR software components generally consist of a set of
runnable entities. These entities correspond to implementation descriptions
and behavior specifications, and are basic blocks of execution and scheduling
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Figure 3.4: Software component and runnable entities

for the RTE. Figure 3.4 depicts an AUTOSAR software component and its
internal runnable entities, whereas the entities Runnable 1a and Runnable 1b
are associated with the component’s P-port, and the entity Runnable 2 is
associated with the component’s R-port.

AUTOSAR software components have to cope with various system states
that are controlled by a Mode Manager, which is part of the BSW’s Services
layer. As the behavior of a software component is mainly determined by its
runnable entities, mode awareness, as much as mode-change awareness, is
typically implemented as configuration of runnable entities. In Figure 3.4,
the P-port is associated with two entities, each for a specific set of modes.
To adjust its behavior to a specific mode, a component may use one of two
standardized mechanisms:

1. ModeSwitchEvent: By defining a specific ModeSwitch event, a com-
ponent registers one of its runnable entities to be executed by the Run-
Time Environment on mode change (entry and/or exit).

2. ModeDisablingDependency: A component’s configuration specifies
if a runnable entity is executed on arrival of its associated execution
event (RTEEvent) in the system’s actual mode. This mechanism is
rather handy if, e.g., the system is in low-power mode and certain
entities simply should not be executed to save power.

To specify a component within AUTOSAR, a Software Component Descrip-
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tion has to be provided. This description is formalized within predefined
Extensible Markup Language (XML) documents and contains the following
information:

1. Interface Definitions: By specifying the component’s ports and in-
terfaces, all provided and required operations, as much as data elements
are defined. AUTOSAR interfaces may contain operation definitions
for method invocations, and data elements that are typically used in
sender-receiver interaction.

2. Infrastructural Requirements: The infrastructural requirements
specify system level services that have to be provided by AUTOSAR
system software.

3. Resources Needs: The component’s requirements on system re-
sources are typically related to memory consumption and CPU usage.
Resources are classified into static and dynamic ones.

• Static Resources: Static resources can only be allocated by one
entity. If the required amount of resources is greater than the
available one, the process including the resource allocation fails. A
typical example for static resources is Read-Only Memory (ROM).

• Dynamic Resources: Dynamic resources can be allocated to
different threads of control over time. A typical example for a dy-
namic resource is a CPU with respect to processing-time; different
runnable entities obtain the same CPU for a specific time.

4. Implementation specific information: The component’s internals
(internal structure, runnable entities, its behavior, etc.) are denoted
as implementation specific information within the component specifi-
cation.

3.4.2 Composition and Interaction

AUTOSAR application components may be connected, if their interfaces
are of compatible type and communication paradigm, and one is a provided
interface while the other is a required interface.

A composition, specified within a component architecture at application level,
is of abstract nature, and does not physically exist. Instead, components are
directly connected to the VFB, like depicted in Figure 2.3b on page 18.
The AUTOSAR Virtual Function Bus is a logical abstraction of all Basic
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Software layers, involved in component interaction. Therefore, it represents
AUTOSAR’s application specific component middleware.

At run-time, composed components interact via a concrete implementation
of the Virtual Function Bus . The VFB’s interfaces are provided by the Run-
Time Environment that is generated during the development process. RTE
generation considers configuration specific properties and the application’s
communication requirements [AUT08g, AUT08b].

AUTOSAR supports two communication paradigms for component interac-
tion:

1. Client-Server Communication: In client-server communication, a
server provides a service—an operational functionality—that is re-
quired and used by the client. The client initiates communication
by requesting a service from the server, transferring a parameter set
if necessary. The server receives the request, performs the operation,
and dispatches a response to the client. This direction of initiation
is used to categorize whether an AUTOSAR software component is a
client or a server. A component may occupy both roles, client and
server, depending on its design and realization. Client requests can be
blocking—the client’s thread of execution is stalled until the response
from the server is received—or non-blocking, often referred to as asyn-
chronous requests. A non-blocking client will issue a request to the
server, but will not stall its thread of execution to wait for a response.
Therefore, any non-blocking client that expects results from a server,
has to provide a call-back interface for response delivery.

Due to the nature of client-server interaction, its interfaces are typically
procedural ones. Services are specified in terms of operations, which
are identified by a unique function signature. This signature contains
the operation’s name, as much as number, sequence and type of its
parameters.

2. Sender-Receiver Communication: In sender-receiver communica-
tion, a sender component emits messages (data) according to its inter-
face specification in a non-blocking way. This information is received by
one or more receiver components. In AUTOSAR, the sender just pro-
vides the information, while the receivers decides autonomously when
and how to use this information. It is the responsibility of the communi-
cation infrastructure to distribute the information. Therefore, sender-
receiver communication provides means of non-blocking, loosely cou-
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pled, one-to-one and one-to-many data distribution. Sender-receiver in-
teraction is typically one-way communication. However, in dependable
automotive systems it is often feasible to implement sender-receiver
communication with bidirectional data flow3, to provide information
on the communication status (e.g., receipts and acknowledgments).

Information, transmitted for interaction purpose, can be processed in
two different ways within a receiver. Therefore, two types of sender-
receiver interaction have to be distinguished in AUTOSAR:

• State Transmission: The main purpose of this interaction type
is to distribute plain data values. Thus, this type typically imple-
ments a “last-is-best” semantic—only the last received data value
is valid and accessible. Previously stored values are overwritten
by the actual one. In AUTOSAR the term Data Distribution is
used for this interaction type.
• Event Transmission: In event transmission, distributed data

represents messages that denote occurred events. These messages
must not overwrite previously received ones at the receiver. There-
fore, receivers for this interaction type typically implement mes-
sage queues.

3.4.3 Component Middleware

Automotive applications have to be statically bound, due to safety reasons.
Thus, automotive component middleware does neither have to provide means
of dynamic binding or run-time deployment, nor does it have to deal with
service discovery, or directory look-ups. Instead, it has to be resource aware
and custom tailored.

As described in [AUT08a] (also see Figure 3.2) on page 32, AUTOSAR does
not provide an explicit component container to load components into. In-
stead, AUTOSAR software components are bound to the Run-Time Envi-
ronment as implementation of the Virtual Function Bus . The RTE not
only provides infrastructural services to the software components, but also
exposes means of interaction logic, life-cycle management, and component
execution, all based on functionality of the Basic Software layers. There-
fore, when talking of AUTOSAR component middleware, various parts of
the Run-Time Environment and the the Basic Software are addressed.

3The bidirectional data flow of sender-receiver communication is usually implemented
at middleware level and exposed to the application level via assertions and design-time
contracts.
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Figure 3.5: Overview of the AUTOSAR methodology [AUT08b]

3.5 Methodology
The AUTOSAR methodology [AUT08b] serves as guide that provides a work
product flow without restrictive timing or sequence constraints of its activ-
ities. Thus, it provides information on work product dependencies and pre-
requisites, as much as on results of activities. The methodology is specified
using OMG’s Software Process Engineering Metamodel [OMG05] (see Ap-
pendix A).

Figure 3.5 provides a coarse outline of the application development process
as specified by the AUTOSAR methodology. The depicted process does not
include activities of application component development. These activities
are within the responsibility of the Tier-1 supplier, who provides component
specifications within the Configure ECU activity, and component binaries
within the Generate Executable activity.

• The starting point for the prescribed process is the definition of the Sys-
tem Configuration Input work product. This architectural task identi-
fies the system’s hardware, its topology, the software components, and
overall system constraints.

• The first activity, Configure System, mainly maps software components
to ECUs with respect to resource usage and timing constraints. As a
result, the work product System Configuration Description contains all
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system information like bus-mappings, the system topology, and the
component deployment specification.

• The next activity, Extract ECU-Specific Information, extracts specific
information for each ECU within the system, and stores it in the work
product ECU Extract of System Configuration.

Typically, all activities so far are within the responsibility of the Original
Equipment Manufacturer (OEM), whereas all following activities are within
the responsibility of the tier-1 suppliers4.

• The activity Configure ECU adds implementation relevant informa-
tion, like assembled application components, scheduling tables, assign-
ment of runnable entities to tasks, requirements on BSW modules etc.,
to the system description, and in sequence creates the work product
ECU Configuration Description.

• Finally, the activity Generate Executable creates an executable for each
ECU, based on the ECU Configuration Description. This step typically
involves code generation for the RTE, compilation, and linking of bi-
naries.

3.6 Summary
AUTOSAR provides a well-defined software architecture for the automotive
domain. To foster the cost-effective development of high-quality software,
the AUTOSAR standard relies on the component paradigm for application
software, and on a modular layered design for its system software. As this
thesis aims at component based basic software for the AUTOSAR communi-
cation subsystem, this chapter provided a survey of the standard’s concept of
software components, as much as its layered architecture for communication
middleware.

Chapter 4 in succession will define a component model for the AUTOSAR
Basic Software. This component model finally will be used to automatically
synthesize AUTOSAR compliant communication middleware as described in
Chapter 5.

4The term tier-1 denotes well known, “preferred” suppliers. Tier-1 suppliers typically
provide products and services to automotive manufacturers in very large numbers, at
appealing prices or other favorable terms.
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Chapter 4

COMPASS Middleware

This chapter comprises the first major contribution of this thesis. It specifies
a component model for AUTOSAR compliant communication middleware,
and defines middleware component classes, whose implementations—if prop-
erly composed—constitute an application’s custom-tailored communication
subsystem. Classes are identified by decomposing a traditional layered im-
plementation of an AUTOSAR communication stack, which is on the one
hand done manually by domain experts, and on the other hand via static
analysis at source code level.

4.1 Component Based Middleware
Component based software engineering has found broad acceptance within
software industry over the last years. However, the demand for cost-effective
high-quality software forced component middleware to become reusable and
configurable itself. As AUTOSAR relies on CBSE to gain cheaper and better
applications, it sounds reasonable to apply the component paradigm not only
at application level, but also to the middleware itself. Component based
middleware promises to be more flexible than conventional middleware, when
it comes to reuse, configuration, and application specific optimization.

When building component based middleware for AUTOSAR, two things have
to be taken into consideration:

• Middleware components cannot rely on component middleware. There-
fore, the AUTOSAR component model cannot be applied at Basic Soft-
ware level.
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Figure 4.1: Component based middleware for AUTOSAR

• Middleware components have to provide standardized AUTOSAR func-
tionality. Hence, the component model for middleware components has
to be designed in line with the AUTOSAR standard—especially the
standard’s type system—to allow a seamless integration of component
based middleware into AUTOSAR environments.

The following sections provide the cornerstones of COMPASS middleware
for AUTOSAR, a component based communication middleware, developed
within the scope of the research project COMPASS [COM07].

Figure 4.1 outlines the basic idea of component based middleware for
AUTOSAR: Application components, labeled as AUTOSAR SWC, are lo-
cated at the AUTOSAR application layer. They interact via the Virtual
Function Bus , and are physically connected to the Run-Time Environment ,
as described in Section 3.4.2. The RTE exposes all middleware functional-
ity to the application components, and adapts the user-defined application-
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component-interfaces to the generic Basic Software interfaces. As conse-
quence, the RTE has to be automatically generated during the application’s
build-phase. Neither the application components, nor the RTE, nor the stan-
dardized interfaces of the Basic Software are modified by the COMPASS
approach. However, the component based middleware architecture at Basic
Software level, as much as a component model for middleware components,
is part of this thesis’s contribution, and hence is described in detail within
the following sections.

4.2 Component Model
Within the following section, the COMPASS component model for
AUTOSAR Basic Software is specified by providing a component definition,
and by defining rules for composition and interaction.

The specification of the component model is mainly provided by UML 2.0
meta-models. These meta-models formally define the vocabulary, required
to describe COMPASS model elements and their dependencies. When in-
stantiating a meta-model element1, the resulting element is a COMPASS
model element. When instantiated in turn, this model element finally leads
to a specific implementation. To give an example, a meta-model element
ComponentType can be used to instantiate a model element of type Compo-
nent. Finally, a COMPASS compliant component architecture may contain a
specific instance (implementation) of this model element (e.g., the ErrorLog-
ger component, implementing centralized error logging). Abstract elements
within the meta-model, (stereotyped «abstract»), must not be instantiated to
gain model elements. These abstract meta-classes are mostly used to provide
detailed information on aspects of instantiatable meta-classes.

4.2.1 Data Types

Data types are of great importance for describing components as much as
component interaction. Therefore, a model describing data types has to be
specified.

The COMPASS component model considers two levels of abstraction when
defining data types, reflecting AUTOSAR’s type concept2:

1Classes in meta-models represent building blocks of models. Therefore, instantiating
a class within a meta-model may again produce a class, but at a lower level (model level).

2The AUTOSAR standard defines three levels of abstraction: (i) the Data Semantics
Level , (ii) the Data Structure Level and (iii) the Data Implementation Level .
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Figure 4.2: Meta-model of COMPASS data types (simplified)

1. Structural Level: At the structural level, common interface definition
languages typically specify their data types by combining predefined
primitive data types, to form various data structures, the user-defined
types.

2. Implementation Level: At implementation level the mapping of data
types and data structures to bits and bytes is of primary concern.

In heterogeneous component interaction both levels of abstraction have to
be taken into account. ECUs of different type might encode data in different
ways, so data types that match at structural level could mismatch at imple-
mentation level. Therefore, COMPASS provides rules for data conversion,
which are based on the type meta-model provided in Figure 4.2. This model
is equivalent to the one defined by the AUTOSAR standard [AUT08c]. In
fact, COMPASS applies the component paradigm to AUTOSAR Basic Soft-
ware, thus inventing a new—perhaps incompatible—type model is deliber-
ately avoided.

Within the depicted model, class DataType is an abstract generalization of
all data types of the COMPASS component model. The abstract classes
PrimitiveType and CompositeType are both derived from DataType whereas
PrimitiveType is the abstract superclass for all primitive data types. These
are not shown in Figure 4.2 for simplicity but are named here:

• IntegerType: represents all integer types within the COMPASS com-
ponent model (int, word, etc.)
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• FloatType: represents all floating point types within the COMPASS
component model (double, float, etc.)

• BooleanType: represents all boolean types within the COMPASS
component model (bool, etc.)

• CharType: represents all character types within the COMPASS com-
ponent model (char, TCHAR, unichar, etc.)

• StringType: represents all string types within the COMPASS compo-
nent model (string, chararray, etc.)

All of them are concrete classes and hence can be instantiated to generate
COMPASS data types.

In addition, the COMPASS type meta-model contains two classes for com-
posite data types, represented by their abstract superclass CompositeType:
ArrayType and RecordType. As depicted, an ArrayType is associated with
exactly one DataType for all of its elements, while a RecordType contains an
ordered set of RecordElements . RecordElements are concrete specializations
of the DataPrototype class, which is associated with an arbitrary data type
via the generalized DataType class.

The ArgumentPrototype and the DataElementPrototype are concrete spe-
cializations of DataPrototype, and are used within interface definitions. The
ArgumentPrototype is used to specify arguments of operations within client-
server interfaces, while the DataElementPrototype is used to specify data
fields of shared-memory interfaces.

4.2.2 Component Definition

In Section 2.1, a general component definition was provided that comes to use
now: A COMPASS component is a trusted architectural element of execution
that is described by its well-defined points of interaction, the ports and inter-
faces, and that adheres to the COMPASS component model’s composition-
and interaction-standard.

COMPASS components are used to build local (ECU specific) communica-
tion middleware. Hence they interact with local components only (e.g., other
COMPASS components or the local operating system), in order to provide
means of transparent distributed interaction for AUTOSAR application com-
ponents.
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Figure 4.3: Meta-model of COMPASS components

4.2.2.1 Embodiment of COMPASS Components

Figure 4.3 provides a meta-model for COMPASS components, specifying how
components may be represented by model elements within architectural mod-
els. COMPASS defines a hierarchical component model; hence, two general
kinds of middleware components exist: middleware building blocks and as-
semblies.

1. Middleware Building Blocks: The most basic components of the
COMPASSmiddleware are Middleware Building Blocks (MWBBs) that
are derived from the abstract meta-model class MiddlewareComponent-
Type. The classMiddlewareBuildingBlock itself is an abstract class that
is implemented by two subclasses, Passive MWBB and Active MWBB.
Note that both classes are stereotyped «atomic». Middleware building
blocks are atomic in terms of deployment (connected MWBBs have to
be deployed within the same address space) and in terms of execution
(operations of middleware building blocks must not be suspended by a
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scheduler). Since atomicity always has to hold under both aspects, one
single stereotype is used to describe them.

The COMPASS component model distinguishes two kinds of middle-
ware components. In consequence, two kinds of middleware building
blocks exist as mentioned above:

(a) Passive Middleware Building Block: Components of this type
are executed within the client’s thread of execution, which is re-
questing their service. They do not provide infrastructural inter-
faces for independent execution by a scheduler, but nevertheless
may require external infrastructural services, like time service or
logging facilities. Figure 4.4a shows the composite structure of a
passive middleware component that comprises all its provided and
required interfaces within ordinary provided- and required-ports.

(b) Active Middleware Building Block: In contrast, active mid-
dleware components own at least one thread of execution that is
independent from the client’s one. Thus, they have to provide at
least one interface for access by infrastructural services, like oper-
ating system schedulers or interrupt service routines (ISRs). Ports
containing these interfaces are called Infrastructural Service Ac-
cess Ports, and are denoted by a filled square. In Figure 4.4b one
sub-component containing services that are executed within the
middleware component’s own thread of execution is depicted by
the part labeled Active Services. It is an active sub-component and
hence provides an Infrastructural Service Access Port. In addition
the part requires and also provides passive services via ordinary
provided- and required-ports. Active components may provide
services that operate asynchronously to a client’s thread of execu-
tion. Therefore, the client has to provide a call-back interface for
reception of results, or may pull results on its own.
As shown in Figure 4.4, component parts may expose their ports
not only to other parts within the same component, but also to
other middleware components, by connecting them to delegation
ports of their enclosing middleware component.

Middleware components may also be stereotyped «singleton» indicating
that the specific primitive must not exist more then once within a
component architecture on one single ECU.
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Figure 4.4: Middleware building blocks

2. Assemblies: The COMPASS component model is a hierarchical
model. Composed structures may be treated like basic building blocks,
if viewed as black box. These composed structures are called assem-
blies and are represented by the class Assembly in the COMPASSmeta-
model. An assembly may contain composed middleware building blocks
and other assemblies in a recursive manner. As an assembly represents
some kind of frame around its interior building blocks, it provides no
own middleware component characteristic (active or passive) but in-
herits one from its interior constituents:

• An assembly is passive iff it contains only passive building blocks.

• If the assembly contains at least one active building block (either
another assembly or a middleware component), it is also an active
one as it has to expose the Infrastructural Service Access Ports of
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its inner active building blocks.

An assembly also contains information on the connections between its
internal components. These model elements—the connectors—are cov-
ered in more detail in Chapter 5 and are omitted within the meta-model
here for reasons of simplicity.

4.2.2.2 Component Type

To reuse and replace existing components within component architectures,
components have to be classified in accordance to their design and abilities.
Therefore, a component’s type (also referred to as the component class) is
determined by the set of well-defined points of interaction, especially by the
component’s interfaces and ports (see Section 2.1.1.2 and Section 2.1.1.3).

As described in Figure 4.3, middleware component types—assemblies and
middleware building blocks—are subtypes of the abstract superclass Com-
ponentType that specifies the look-alike of COMPASS components: A
COMPASS component may own an arbitrary number of ports. In contrast
to the AUTOSAR component definition that associates one port with ex-
actly one interface (see Section 3.4), COMPASS ports may expose multiple
interfaces of different types.

The COMPASS component model specifies two classes of interfaces3 (see
Figure 4.5):

1. Client-Server Interface: The client-server interface type contains an
ordered set of OperationPrototypes, which contain another ordered set
of ArgumentPrototypes each. According to this specification, a client-
server interface consists of an ordered set of operations that are identi-
fied by their signature.

2. Shared-Memory Interface: The shared-memory interface type uti-
lizes the DataElementPrototype data type (see Figure 4.2). An instance
of a shared-memory interface is specified by the data structure writ-
ten or read. Shared-memory interfaces are considered to be provided-
interfaces of those components that own the shared-memory location,
while they are considered to be required-interfaces for all other compo-
nents that access extrinsic memory locations.

3This limitation was introduced, as COMPASS components are atomic in terms of
deployment. Hence, interaction between middleware components may occur only via local
procedure calls and shared memory access.
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Figure 4.5: Meta-model of component interfaces

Two COMPASS components are type-equivalent, iff both expose type-
equivalent interfaces and ports. Two ports are type-equivalent, if they com-
prise the same set of interfaces. Two interfaces are considered to be type-
equivalent, if they contain the same set of operations and data elements, and
are either both required-interfaces or both provided-interfaces. Two compo-
nents that in total expose the same set of interfaces are not type-equivalent if
the interfaces are partitioned in different ways, so the interfaces are exposed
via different ports.

When it comes to sub-typing, a specialized component may replace a com-
ponent of its super-type, if its interfaces contain at least the same set of
operations and data types. In addition, all ports comprised in the super-
type have to be comprised by the sub-type.

Any implementation of a specific component type may have its own, distinct
name. Any instance of that implementation is considered to be an instance
of the component’s type.
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4.2.3 Composition and Interaction

To build component architectures, every component model has to provide
rules on how its components have to be assembled, and how they interact
at run-time. Middleware components are artifacts that exist at a low level
view of the overall system. Hence, the rules for composition and interac-
tion prescribed by the COMPASS component model are rather simple but
mandatory.

1. A connection between two middleware components is valid, iff

• the connected interfaces are both client-server interfaces, or are
both shared-memory interfaces.

• the connected interfaces contain the same set of operations and
data elements.

• one is a provided-interface, and the other is a required-interface.

2. Connected COMPASS middleware components realize AUTOSAR
communication middleware for a specific system node. They have to
be deployed on the same ECU, and within the same address space. As
a result, middleware components and assemblies are connected by local
client-server connectors (local procedure calls), and by shared-memory
connectors (direct memory access).

3. Interaction at middleware level is implemented as blocking invocation
of operations (local procedure calls), or shared-memory access. Oper-
ations implemented by middleware components are atomic; they may
not be suspended by a scheduler. This fact is expressed within Figure
4.5, where OperationPrototype implements the atomic RunableEntity.
If an operation has to be interruptible, the ISR’s developer has to en-
sure data integrity (e.g., for ECU registers or shared memory cells).

4. COMPASS middleware components are statically bound at compile
time. Instantiation and initialization at run-time has to be performed
at application start-up by one dedicated start-up-component.

Contrary to AUTOSAR software components, no middleware is available for
COMPASS components, as COMPASS components are used to build com-
ponent middleware. Therefore, all infrastructural services (operating system
abstraction, scheduler, etc.) have to be encapsulated within middleware
components that can be connected via infrastructural service access ports as
described in Section 4.2.2.
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4.3 Middleware Components
To make component based AUTOSAR compliant middleware available (and
profitable) for industrial use, a component architecture for Basic Software
based on the COMPASS component model has to be defined. The aspired
benefit of increased reusability and adaptability for AUTOSAR middleware
can only be gained, if this component architecture, as much as the involved
middleware component classes, are not only well-defined but even stan-
dardized. This section in consequence specifies the full set of middleware
component classes necessary to build the communication subsystem of the
AUTOSAR Basic Software. The here presented concept can be applied to
the remaining parts of the Basic Software in the same way, if desired.

To identify the middleware components of the communication subsystem4,
two distinct approaches are taken:

• In the first approach component classes are identified by human exper-
tise. Domain experts manually classify the set of operations, prescribed
by the AUTOSAR standard in terms of semantic relations. All opera-
tions and data structures related to each other are assigned to the same
functional class, a component class [2]. The main issue is to decide if
and how operations are related.

• The second approach is based on static source code analysis of an in-
dustrial reference implementation. This approach leads not only to one
possible solution for decomposition, but to a full set of feasible ones.

4.3.1 Manual Component Classification

To manually classify middleware components for the Basic Software, a two
phase procedure is defined:

1. Identification Phase: In the first phase, all operations, defined
within the AUTOSAR specification of the FlexRay Driver layer
[AUT06a, AUT08d], the FlexRay Interface layer [AUT06b, AUT08e]
and the FlexRay Transceiver Driver layer [AUT06c, AUT08f] have been
categorized with respect to their relation and binding5. In this way,

4For this thesis the chosen communication subsystem is FlexRay [MHB+01]. The
described approach however is also applicable to the other communication subsystems
standardized by AUTOSAR.

5By the writing of this thesis AUTOSAR R3 was released. Software analysis and
decomposition was conducted for version R2. However, the changes between those two
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groups of operations are identified, which are tightly coupled, or cover
related aspects. In addition, the coupling between distinct groups is
reduced to a minimum. Finally, all operations within a group, in con-
junction with associated data elements, are considered to shape one
specific middleware component.

2. Optimization Phase: In the second phase, the components formed
in phase one are refined by deriving implementation variants. These
variants are typically more specialized, e.g, they do not provide the full
functionality of the base version, and therefore are less general, but sig-
nificantly smaller in size and resource consumption. As a result, these
variants of different size come to use when building custom-tailored and
hence optimized middleware (see Chapter 5).

As result of the manual decomposition of the FlexRay communication stack
the following COMPASS middleware component classes have been identified
and specified:

1. Base: This component is the core of COMPASS middleware. It con-
tains operations for node initialization, communication controller ac-
cess, and data propagation. Thus, it is the hot-spot of FlexRay com-
munication.

The Base component is mandatory for each ECU, if the ECU partic-
ipates in a distributed application. However, two versions have been
specified: one that contains full functionality, and one that omits func-
tionality of cluster-communication, and hence is smaller in size.

2. Transmitter: The Transmitter component contains all functionality
to send data via the communication controller (CC). Again, two ver-
sions have been defined. The larger one is able to issue TX confirma-
tions back to the Base component via a call-back interface, while the
‘slimmer’ one omits this feature.

3. Receiver: This component requires no real implementation. Data
reception is performed by the CC that simply informs any recipient via
a call-back mechanism. The Receiver component performs a simple
call-delegation, but could, e.g., be extended for experimental purpose.

versions are rather small within relevant modules, and do not affect the overall outcome
of this chapter. As a consequence, the presented approach as much as the results are also
applicable to AUTOSAR R3.
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4. WUP: The WUP component provides functionality of broadcasting a
wake-up symbol on the bus. It is only required on ECUs containing an
application that is capable of waking-up the entire automotive system
from a low-power or suspend mode.

5. Time Service: This component provides operations to manipulate the
timer-IRQ within the FlexRay CC. Multiple specialized variants of this
component class have been created, and demonstrate the potential of
the described approach. One for example is capable of manipulating
absolute time only, while another is capable of handling global time in
addition, and thus is larger in size.

6. Status: This component allows to read the CC status, and can be
completely omitted for most applications.

7. Media Test: The Media Test component provides operations to send
and receive a media test symbol to and from the bus. This function-
ality is seldom used, and thus provides great potential for middleware
optimization.

8. Transceiver Driver: This component contains all operations that
control the ECU’s transceiver.

The total of all operations, contained within these components equals the
AUTOSAR FrIf API. Therefore, it can be considered as a component based
version of this Basic Software layer.

The full outcome of the applied two-phase procedure for manual compo-
nent classification is documented in Appendix C. The appendix provides
the complete information regarding the classification of all operations within
the FlexRay Driver layer, the FlexRay Interface layer and the FlexRay
Transceiver Driver layer, as much as their mapping onto identified middle-
ware component classes.

4.3.2 Component Recognition by Static Analysis

Contrary to the manual identification of Basic Software components by do-
main experts, the second approach aims at automatic component recognition
within an existing AUTOSAR middleware implementation.
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4.3.2.1 Basic Principle

Two important properties of software components are encapsulation and sep-
aration. A well designed component contains a set of semantically related
operations and memory locations that in total provide specific functionality
exposed by the component’s interfaces. When trying to find those related
operations and memory locations within a global set of functions and data
structures contained within monolithic or coarse-grained layered software,
the coupling between all functions and all data structures has to be exam-
ined.

For the algorithm defined within this thesis two types of coupling are of
interest:

Coupling via Control-Flow: Control-flow refers to the path of execution
of a program. Two distinct functions within a program are strongly
coupled by control-flow, if at least one of them passes control over to
the other one. This is typically done by invoking the other function via
a function call.

Coupling via Data-Flow: Data-flow refers to the flow of information dur-
ing the execution of a program. As information is typically stored
within specific locations like designated memory cells, coupling via
data-flow can be observed by examining access to variables and struc-
ture fields. Two distinct functions are strongly coupled via data-flow if
both access the same memory location, no matter if the type of access
is read or write.

When taking these two types of coupling into account, two rules have to hold
when performing automated component recognition:

1. Operations within one component may be coupled (vertical coupling)
either by control-flow or by data-flow.

2. Operations are (considered to be) not coupled, if they are contained
within distinct components, even if they are linked by control-flow or
data-flow (horizontal coupling). Operations linked in such way have
to be exposed in a component’s interface (a provided-interface of the
component that contains the operation or owns the memory location,
and a required-interface of the component that invokes the operation
or accesses the memory location).
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To decompose existing non-component based programs into a set of reusable,
exchangeable and thus independent components, the proposed algorithm
gathers information on horizontal and vertical coupling by performing a
static analysis of the program’s source code. Utilizing the analysis’s results,
all functions of the program are divided into sets of decoupled, independent
components.

The analysis is performed at compile-time and is independent of any test
cases. The recognized components are determined with respect to all pos-
sible program runs. The algorithm is flow-insensitive (independent of intra-
procedural control-flow) and performs a single pass on the input program. It
does not consider the different calling contexts of functions and is therefore
context-insensitive.

To determine the vertical and the horizontal coupling, the algorithm con-
siders three categories of information, which are gathered by traversing the
program’s abstract syntax tree (AST):

Functions: The functions of the input program are the basic ingredients
for component recognition, and in the end are assigned to one specific
component class each, recognized by the algorithm’s decomposition.

Function calls: Any function call means coupling by control-flow. Thus,
function calls imply a semantic relation between the calling and the
called function.

Structure field types and names: To gather information on coupling by
data-flow, the proposed algorithm relies on type-information without
the consideration of any concrete instances of data. As any function
that uses a specific type has a semantic relation to all other functions
also using this type, type based analysis turned out to be sufficient for
the algorithm’s purpose.

However, fundamental data types typically do not imply any semantic
relations. In consequence, only user defined data types are considered
during analysis. In detail, the collected type-usage information consists
of structure types and field names, similar to the type-based alias-
analysis FieldTypeDecl described in [DMM98].
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4.3.2.2 Cohesion Analysis Algorithm

When developing an algorithm based on static analysis, various options re-
garding complexity and thus execution time exist. The described algorithm
was developed with respect to scalability, hence its complexity is kept lin-
ear to the size of the analyzed source code. In addition, it incorporates
configuration data, especially data on late bound function pointers and on
domain specific properties, to provide linear complexity and to find sufficient
solutions quickly.

The algorithm (Cohesion Analysis) defined on page 62 traverses a program’s
AST and collects information on call-dependencies between functions, and on
type-based memory access within functions. This information is further on
used to build a component graph that is finally used to classify middleware
component classes.

The component recognition algorithm is denoted in pseudo-code. This
code uses named sets and tuples to describe its mode of operation in an
implementation-independent way. Hence, those named sets and tuples will
be defined below, before providing the algorithm itself.

Definition 1 (Call Graph). A call graph GC of a program P is represented
by a pair of sets NC and EC, where the graph’s nodes n ∈ NC represent
marked functions fn ∈ FP of a program P , and the edges e ∈ EC denote
calls between these functions.6 To keep the analysis focused on the program
code itself, helper-functions are held off from the call-graph by considering
relevant—manually marked—functions only.

FP = {f | f is a function ∧ f ∈ P} (4.1)
Gc = (NC , EC) | NC = {fn | fn ∈ FP ∧ fn is marked }, (4.2)

EC = {{a, b} | a, b ∈ NC ∧ a calls b }

Definition 2 (Type-Based Field Usage). A type-based field usage is a
pair (s, d) where s denotes the structure type of the used data structure, and
d denotes the field name—not its type—of the used data field. Again, relevant
structure types and field names may be manually marked, to keep the analysis
focused on specific program elements.

6For the purpose of the Cohesion Analysis algorithm, edges are undirected. Hence,
they are represented by a set of two (connected) nodes rather than by an (ordered) pair:
{a, b} = {b, a} but (a, b) 6= (b, a).
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UT = {(s, d) | s is a structure type ∈ P ∧ (4.3)
d is field of s ∧
s and d are marked }

Definition 3 (Type-based Field Usage Graph). A type-based field us-
age graph GU is represented by a pair of sets NU and EU . The graph’s nodes
n ∈ NU represent a type specific abstraction of data usage—the type based
field usage N ′SF—as well as marked functions that use specific data—N ′Fn.
Edges e ∈ EU connect functions and type-based field usages, and thus repre-
sent usage of data by specific functions.

GU = (NU , EU) | NU = N ′SF ∪ N ′Fn , (4.4)
N ′SF = {n | n is marked ∧ n ∈ UT } ,

N ′Fn = {m | m is marked ∧ m ∈ FP ∧
∃ u ∈ UT . u occurs in m } ,

EU = {{a, b} | a ∈ N ′Fn ∧ b ∈ N ′SF ∧
b occurs in a }

Definition 4 (Component Graph). A component graph GP is denoted
by a pair of sets NP and EP . Its nodes n ∈ NP represent the program’s
data usage abstractions, and the program’s functions. Its edges represent
calls between the program’s functions, or usage of data by a function. The
component graph is calculated by creating a set union of the program’s call
graph and its type-based field usage graph. It unites all gathered information
on coupling via control-flow and on coupling via data usage.

GP = GC ∪ GU = (NP , EP ) | NP = NC ∪ NU , (4.5)
EP = EC ∪ EU

The component graph contains disjoint sub-graphs—connected components
in a graph-theoretic sense—that represent coupled, self-contained functional-
ity, and thus serve as candidates for components in the software engineering
sense.

With the provided definitions in mind, the algorithm specified in Algorithm 1
has to adhere to the following work-flow:
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1. Annotate function pointers. Any function pointer within the in-
put program P has to be associated with exactly those function(s) it
will point to at run-time. Within the analyzed AUTOSAR Basic Soft-
ware, function pointers are often used to implement configuration-time
late binding. The address of a function pointed to by the function
pointer is manually set to the address of an available function after
compile-time as part of the system’s configuration. As this address is
not known at compile-time, and thus is not available at analysis-time,
manual annotation with points-to information, or static assignments of
the addresses of configured functions to the respective function pointers
at source-code level, is mandatory for the algorithm to calculate valid
results.

2. Mark relevant functions. Most software utilizes common helper
functions or compiler built-ins for e.g. memory manipulation. To avoid
assigning these functions to program specific components, all functions
of interest (within this thesis also referred to as relevant functions) have
to be marked by a domain expert. In practice, the set of irrelevant func-
tions is smaller than the set of relevant ones. Therefore, the algorithm
takes a set of irrelevant functions as input value (FM). This set is later
on used to calculate the set of all relevant (and thus marked) functions
FM (Algorithm 1, line 3).

3. Mark characteristic structure fields. The most important task
of a domain expert within the proposed work-flow is the identifica-
tion of relevant data structures respectively their relevant fields. Some
structures are closely related to exposable component functionality, but
other ones are used for internal purpose only. By taking only relevant
fields into account, the algorithm is sensitive to dedicated component
functionality only. Normally, the set of irrelevant structure fields is
smaller than that of relevant ones. Consequently a set of fields that
have to be ignored (DM) is passed to the algorithm, which calculates
the set of all relevant and therefore marked type/field-name pairs DM

via set-subtraction of DM from the set of all type/field-name pairs of
P (SP )(Algorithm 1, line 4).

All three steps so far imply manual work by domain experts. However, the
gained result provides the input data, required by the Cohesion Analysis
algorithm: the annotated source code of the program under analysis, a set
of irrelevant functions, and a set of irrelevant structure fields. All following
steps are part of the algorithm’s implementation and are therefore executed
automatically.
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Algorithm 1: Cohesion Analysis

ComponentRecognition(P, FM , DM): CP1

begin2
FM ← FP − FM; // determine relevant functions3

DM ← SP −DM; // determine relevant structure fields4
NC ← ∅; EC ← ∅; NU ← ∅; EU ← ∅;5

// iterate over all relevant functions in a program
foreach f ∈ FM do6

NC ← NC ∪ {f};7
// iterate over all expressions and subexpressions of function
foreach exp ∈ expressions(f) do8

switch exp do9
// collect structural data usages
case lhs.rhs or lhs –> rhs // dot or arrow expression10

s← structure type in lhs;11
d← structure field name of rhs;12
if (s, d) ∈ DM then13

NU ← NU ∪ {f} ∪ {(s, d)};14
EU ← EU ∪ {{f, (s, d)}};15

end16

end17

// collect call graph data
case fc(...) // function-call-expression18

EC ← EC ∪ {{f, fc}};19
end20

otherwise // any-other-expression21
skip; // no information is extracted22

end23
end24

end25
end26

// build undirected component graph
GP ← (NU ∪ NC , EU ∪ EC);27

// extract components via reachability
CP ← ∅28
while GP 6= (∅, ∅) do29

n← choose_node(GP ) // choose some node n30
GS ← reachable_subgraph(n, GP )31
GP ← GP −GS // remove subgraph GS from GP32
CP ← CP ∪ {nodeset(GS)}33

end34
end35
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struct S1{
S2 a;

} s;

struct S2{
int b;

};
struct S1 *y=&s;

...
x=y->a.b;

=

x .

-> b

y a

Figure 4.6: Source code example and AST

4. Calculate the call graph. A call graph, GC = (NC , EC), is computed
from P ’s AST where functions of the program are represented by nodes,
NC , and calls are represented by edges, EC , between the calling and
the called function (Algorithm 1, line 18–20).

5. Calculate usage graph. A usage graph, GU = (NU , EU), is computed
where functions and type-based field usages are represented by nodes,
NU , and field access within a specific function is represented by an edge,
EU , between the function node and the type-based field usage node.
To identify field accesses, the occurrence of arrow- and dot-expressions
within the AST is analyzed (Algorithm 1, line 10–17).
Figure 4.6 provides a C-code snippet, and an AST snippet representing
the last line of the code. The Cohesion Analysis traverses the program’s
AST and finds all occurrences of field accesses in user defined data
structures. In the given example, two structure types (S1 and S2 )
with one data field each (a and b) are defined. As a result two data
field accesses ((S1, a) and (S2, b)) are collected by storing the structure-
type of the left-hand-side, and the field name of right-hand-side of the
dot- and the arrow-operator.

6. Calculate component graph. A component graph, GP = (NP , EP ),
is calculated by creating a set union of the call graph and the usage
graph. It unites all gathered information on coupling via control-flow
and on coupling via structure type based data field usage (Algorithm 1,
line 27).

7. Extract components from component-graph. The algorithm’s
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final step is the extraction of all disjoint, connected sub-graphs—the
components—from the component graph. The algorithm performs the
extraction via a reachability calculation. Its output CP is a set of
components, where each component is represented by a set of functions
and structure fields contained within the component (Algorithm 1, line
28–34).

Finally, a domain expert may further group multiple of the automatically
computed decoupled components into single components, if desired. This
step becomes rather handy, if the analysis identifies many small components.
Although large numbers of very small components imply high potential for
optimization during automatic middleware synthesis, it is feasible to combine
some into larger components for reasons of economy in maintenance and
versioning.

Compared to the manually gained decomposition of Section 4.3.1, the Cohe-
sion Analysis was able to recognize not only one, but a set of valid decompo-
sitions (see Section 6.1.1 for discussion). However, the one solution manually
created by domain experts is contained within the set of solutions, calcu-
lated by the algorithm. Detailed results of the Cohesion Analysis applied to
an industrial implementation of an AUTOSAR communication stack can be
found in Chapter 6.

The described algorithm inherently depends on configuration specific data,
especially late bound function pointers that are assigned at configuration time
and hence have to be annotated manually. Therefore, distinct configurations
may lead to distinct results. For the subject of this thesis, one representative
configuration was identified, and used. To get a more general decomposition
without assuming one representative configuration, multiple analysis results
of distinct configurations may be fused (see Section 6.3 on future work).

The Cohesion Analysis algorithm was designed to feature linear complexity
and generally applicable results, to achieve good scalability and hence indus-
trial exploitability. As a consequence, it requires manual annotations—marks
for relevant functions and data fields—by domain experts. As any expert
intervention is costly, those manual annotations are the drawback of the de-
scribed algorithm. However, the amount of work for marking functions and
data fields is nearly the same as the one for manual decomposition. Therefore,
the analysis based approach clearly outnumbers the manual approach when
it comes to reuse (e.g. in case of different configuration scenarios). Ongoing
research in addition aims at a significant reduction of required annotations
without loosing the nearly linear complexity of the used analysis.
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4.4 Summary
This chapter applied the component paradigm to AUTOSAR Basic Software,
in detail to its communication stack. Therefor, the COMPASS component
model was defined. The COMPASS component model is fully compatible to
AUTOSAR Basic Software in terms of external interfaces. Hence, component
based Basic Software can seamlessly be integrated into existing (traditional)
software systems.

In addition, middleware component classes were specified, which come to
use in automatic middleware synthesis as described in Chapter 5. To iden-
tify middleware component classes that comply to the actual AUTOSAR
standard, an AUTOSAR reference implementation of the communication
subsystem has been decomposed. Decomposition was on the one hand done
manually, and on the other hand via static analysis at source code level. This
analysis, the Cohesion Analysis , calculates component classes, using infor-
mation on control-flow dependencies and usage of abstract memory locations,
which are identified via structure types and field names respectively. To gain
linear complexity for the proposed analysis algorithm and to increase the
result’s quality, domain know-how in terms of manual annotations at source
code level is utilized. Creating this annotations may cause nearly the same
costs than manual decomposition of an existing implementation. However,
a major benefit arises if the analysis is applied to different configuration
scenarios (especially in presence of late bound function pointers).

Manual decomposition led to eight component classes of middleware compo-
nents; the Cohesion Analysis identified not only one but a set of equivalent
possible decompositions. However, the manually identified solution was also
found by the static analysis, which clearly demonstrates its abilities. A more
detailed description of the calculated analysis results is given in Chapter 6.
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Chapter 5

Middleware Synthesis

In Chapter 4 the component paradigm was applied to AUTOSAR Basic Soft-
ware. As a result, middleware components have been specified, which serve as
basic building blocks for component based communication middleware. The
proposed architecture fully resembles interfaces and functionality of conven-
tional AUTOSAR middleware, but provides increased reusability and main-
tainability due to its component based nature. Based on the presented design,
this chapter provides the second major contribution of this thesis. It describes
a model driven methodology—the COMPASS methodology—that facilitates
automatic synthesis of communication middleware from application models,
deployment specifications, and prefabricated middleware components.

5.1 Methodology
Within the AUTOSAR methodology [AUT08b], an application’s component
architecture is described by platform independent models that on the one
hand are subsequently used to configure generic component middleware, and
that on the other hand are required to generate the application’s Run-Time
Environment (RTE)1.

The COMPASS methodology is a model driven approach for component
based application development. COMPASS introduces automatic genera-
tion of custom-tailored component based middleware to AUTOSAR’s work-
flow. Based on the MDA development phases outlined in Section 2.2.3, the

1The RTE is generated in line with the AUTOSAR methodology, and thus is not subject
to this thesis. Nevertheless, RTE functionality that is related to communication and
interaction is reflected within architectural middleware-patterns provided in Section 5.3.1
on a basic level.
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COMPASS methodology can be described by the following consecutive ac-
tivities2:

1. Specification of CIM and Platform Model: As the application
under development targets the AUTOSAR domain, CIM and platform
model are defined within the AUTOSAR context. However, to satisfy
the requirements of COMPASS, they have to be extended by concepts
of the COMPASS component model:

• The AUTOSAR compliant CIM is extended by COMPASS specific
vocabulary, e.g. by the term ‘middleware component’ and the
concept of component based middleware.

• The platform model has to contain at least a description of all
system parts and their configuration (e.g., ECU types, hardware
resources, interconnecting bus-systems), a specification of avail-
able software interfaces, and a middleware specification. Within a
COMPASS compliant platform model this middleware specifica-
tion on the one hand includes the set of available interaction spe-
cific architectural patterns—the connector templates as described
in Section 5.3.1—and on the other hand contains specifications of
all available middleware components as proposed in Section 4.3.

2. Specification of PIM: Applications are designed by specifying
high-level component architectures in a platform- and deployment-
independent view, using UML 2 component diagrams. Platform in-
dependent application models contain application components only,
which are connected by explicit connectors (see Section 5.2.1) in a lo-
cation transparent way. Explicit connectors are stereotyped by specific
communication styles (e.g., sender-receiver, client-server). They may
be marked with communication specific attributes and QoS attributes
to guide the PIM-to-PSM transformation.

To support interaction specific annotations required by the COMPASS
methodology, a UML 2 profile can be used [RMRR98] to increase the
application models’ expressiveness and readability.

3. Deployment Specification: The application components’ deploy-
ment, and all relevant physical parts of the electronic system in terms

2Appendix B lists all UML 2.0 diagram types that are used within each phase of the
development process.
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of nodes and buses are described in a deployment model. Communica-
tion specific requirements on the component middleware—the charac-
teristics of communication channels between connected components—
strongly depend on the components’ physical location. Hence, the sub-
sequent PIM-to-PSM transformation extracts and utilizes this charac-
teristics from the deployment model, to select appropriate middleware
patterns.

4. Transformation of PIM to PSM: The core of any MDA com-
pliant development process is the transformation of PIMs to PSMs.
Within the COMPASS approach, the platform independent applica-
tion model—the component architecture at application level—is trans-
formed into platform specific component architectures for each system
node.

The Connector Transformation, as described in Section 5.3, is accom-
plished by injecting platform- and distribution-specific component ar-
chitectures in place of connector artifacts within the PIM. The PIM in
consequence is commuted to a PSM. The injected component architec-
tures consist of prefabricated middleware components (see Chapter 4),
which are assembled in accordance to connector templates. Addition-
ally, interface adapters as part of the RTE are generated. These ar-
tifacts adapt user-defined interfaces of application components to the
generic interfaces of the AUTOSAR compliant component middleware.
The generated platform specific component architectures later on are
transformed into ECU specific executables, system configuration data,
and control files by subsequent model-to-code transformations.

5. Transformation of PSM to Code: The platform specific compo-
nent architectures, generated by the PIM-to-PSM transformation, are
transformed into machine executable code. All application component
binaries, all middleware component binaries, and all remaining binaries,
for example parts of the RTE like protocol handlers (see Section 5.3.1),
are bound according to generated control files. Therefore, one machine
executable, which contains application- and middleware logic, is gener-
ated for each system node that is part of the application.

6. Deployment and Configuration: To finally gain a running system,
all generated binaries have to be deployed on their target nodes. Besides
that, the generated system configuration has to be applied, to assure a
valid system state.
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5.2 COMPASS Application Models
COMPASS application models are based on platform independent
AUTOSAR models. Thereby, AUTOSAR models are augmented by interac-
tion specific attributes as much as by model artifacts for explicit connectors.
The following sections introduce explicit connectors as first-class architec-
tural elements, and in addition adds various types of contracts at model
level to hold supplemental attributes of model artifacts.

5.2.1 Explicit Connectors

In well established component models like OMG’s CORBA Component
Model (CCM) [OMG06], or Microsoft’s Component Object Model (COM)
[Mic09], but also in AUTOSAR, all functionality related to component inter-
action and communication is implemented by component middleware. Mat-
ters of distribution or heterogeneity are completely transparent for the com-
ponents. Connectors as defined within these component models are model
level entities denoting the relation between associated component interfaces.
Since they provide no implementation on their own, but represent interac-
tion on an abstract level only, these connectors are referred to as implicit3
connectors within this thesis.

However, connectors represent middleware functionality, hence they can be
associated with the implementation of specific middleware parts. Conse-
quently, it is feasible to grant them first-class status within a component
model. In contrast to implicit connectors that provide an abstraction of
a system’s middleware, these connectors resemble parts of the middleware.
They make the system’s middleware explicit, and thus are referred to as
explicit connectors.

Explicit connectors describe idiomatic patterns of functionality, provide
mechanisms of data- and control-flow [Kel07], and are associated with differ-
ent architectural styles [SG96, Sha93]. Within application models, explicit
connectors express interaction specific attributes, and provide additional fine
grained information on communication and interaction specific properties.

The implementation of explicit connectors may become rather complex, de-
pending on communication style and deployment scenario. Thus, explicit
connectors may also be constructed in a component based way by assem-
bling middleware components like the ones defined in Section 4.2.

3Connectors of this type implicitly denote component middleware that is transparent
for the components.
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Although explicit connectors resemble components within the proposed ap-
proach, they differ in many aspects. Unlike components, a connector changes
its materialization during its life-cycle due to model transformations:

1. In platform independent models the explicit connector is an abstract
representation of component interconnection, specifying interaction
and communication specific properties.

2. In platform specific models an abstract explicit connector is trans-
formed into a concrete set of middleware components. This middleware
component architecture implements the explicit connector’s interac-
tion behavior and communication paradigm. However, after successful
transformation, all connectors within the PSMs are implicit local con-
nectors only.

3. At deployment- and finally at run-time, explicit connectors are no
longer visible. True components representing the explicit connectors’
functionality are deployed and executed.

Figure 5.1 depicts the PIM- and the PSM-phase within an explicit connec-
tor’s life-cycle as described above. For demonstration purpose, the depicted
example is specified as distributed application that is deployed onto two sys-
tem nodes, Node 1 and Node 2

• The platform independent model shows two application components, A
and B. B requires services, provided by component A via the interface
IA. The components’ associated interfaces are connected according to
Section 2.1.2. The connector, depicted as usage-relation, constitutes
an abstract entity, and allows the annotation of communication and
interaction specific attributes.

This PIM so far is in line with conventional AUTOSAR application
models. However, the PIM’s semantic is augmented for the purpose
of this thesis: The connector C between B and A is considered to
be an explicit connector, and thus is granted first-class status within
the model. As a result, C can be transformed into a platform specific
middleware component architecture, contained within a PSM.

• The platform specific model shows the explicit connector C after its
transformation: The PSM consists of two sub-models, one for each sys-
tem node. The abstract model element of C from the PIM has been
transformed into two components, CF1 and CF2. These two compo-
nents in total provide the implementation of the explicit connector C,
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« component »
B

« component »
A

IA IA

PIM

Deployment Boundary

Explicit Connector C

« component »
A

« component »
B

« component »
CF1IA

« component »
CF2 IA

Node 2

Connector TransformationPSM

Node 1

Connector FragmentConnector Fragment

Explicit Connector C

Figure 5.1: PIM to PSM transformation of connector artifacts

where each of them provides a part of the overall functionality. There-
fore, this specific type of component is called connector fragment.

The connector fragments offer the same interfaces that were connected
by C within the PIM, here IA. The application components B and A
are directly connected to the fragments via an implicit connector. All
connector artifacts within PSMs are implicit connectors, typically local
procedure calls or shared memory connectors. To emphasize this fact
within this thesis, the ball-and-socket notation is used for connectors in
PSMs, while the usage-relation notation is used for explicit connectors
in PIMs.

5.2.1.1 Deployment Anomaly

Considering the example given in Figure 5.1, an additional characteristic of
explicit connectors in distributed systems becomes visible: The explicit con-
nector C resides between the connected application components A and B. If A
and B are deployed on the same single node, the connector’s implementation
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has to be deployed there, too. However, if the two application components
are deployed on different nodes, as assumed in the given example, it is no
longer trivial to deploy the connector. In fact, the connector artifact within
the PIM has to be split into two pieces within the PSMs (the sub-models
for each node). These connector fragments subsequently have to be deployed
along with their associated application components. CF1 has to be deployed
on the same node as B while CF2 has to be co-located with A. As a result,
the functionality of connector C crosses the deployment boundary.

This characteristic is referred to as deployment anomaly in literature [Bál02,
BP01]: A connector as one single model element may own an implementation,
which is spread over multiple system nodes.

The representation of an explicit connector within a PSM is a set of con-
nector fragments that are full-fledged, typically prefabricated, middleware
components. Connector fragments contain functionality and implementation
of the system’s component middleware. Remote interaction and communi-
cation is handled by these fragments in a black-boxed way, and hence is
not of concern for the application components B and A. Nevertheless, all
communication- and interaction-specific properties can be specified within
an application model via properties of the connector C.

As denoted in Table 5.1, a connector between components within the same
address space is called Intra Process Connector (IPC), one between different
address spaces but on the same Electronic Control Unit (ECU) is called
Extra Process Connector (XPC) and one between different ECUs, which is
obviously also one between different address spaces, is called Extra Node
Connector (XNC).

Abbr. Name Interaction ECU Addr. Space
IPC Intra Process local co-located same
XPC Extra Process inter process co-located different
XNC Extra Node remote distributed different

Table 5.1: Connector classification by interaction type

All three types of interaction may occur within an AUTOSAR compliant
application, depending on the application’s deployment scenario. Hence,
the middleware synthesis described within this chapter inter alia determines
application requirements in terms of interaction types. As a result, only
middleware components that implement those required interaction types are
incorporated into custom-tailored communication middleware.
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AUTOSAR 
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Figure 5.2: Meta-model of COMPASS explicit connectors

5.2.1.2 Interaction Styles

In accordance to the prevailing specification of AUTOSAR, any interaction
within an application is mapped onto two basic interaction styles: the client-
server paradigm and the sender-receiver paradigm, which have to be imple-
mented by AUTOSAR middleware.

Figure 5.2 depicts a meta-model for explicit connectors in platform inde-
pendent COMPASS application models. All specialized explicit connec-
tors are derived from the common superclass ConnectorPrototype, which is
AUTOSAR’s connector base class. The subclasses are characterized by two
dimensions that classify an explicit connector at application level:

• Interaction Paradigm: The first dimension represents the connec-
tor’s interaction style. Hence, the abstract superclass ExplicitConnec-
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tor is specialized by two also abstract classes, ClientServerConnector
and SenderReceiverConnector.

• Component Deployment: The second dimension represents the in-
teraction type with respect to the deployment scenario of the connected
application components (see Table 5.1). Two connected components
may be deployed within the same address space (IP), on the same
ECU, but within different address spaces (XP), or on different ECUs
(XN). Note these prefixes in Figure 5.2.

As a consequence, the implementation of six types of explicit connectors has
to be supported by COMPASS communication middleware to be in line with
AUTOSAR.

5.2.2 Contracts

To strengthen the reliability and predictability of component based applica-
tions, guarantees about properties and behaviors of application elements are
formalized in contracts [Mey92a, Mey92b, Mey03, RS02, CHJK02, NB02].
Contracts specify requirements and provisions of associated elements. In
general a contract consists of two obligations:

1. The client, who is requiring functionality from another element, has to
satisfy the preconditions of the provider.

2. The provider, who is the supplier of the required functionality, has to
fulfill its post-condition, if the client’s precondition is met.

When modeling a component architecture, contracts are denoted as model
artifacts, and are associated with the model element they refer to. The
model depicted in Figure 5.3 revisits the example from Section 5.2.1, but
is enriched by twelve contracts, the artifacts stereotyped «contract». These
contracts provide important constraints for automated model transformation,
especially for automatic middleware synthesis. In addition they may also be
used for model level system validation and verification.

For the process of automatic middleware synthesis described within this the-
sis, five main types of contracts are used4:

4Of course more types exist, but are not of relevance for the proposed methodology.
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Figure 5.3: Notation of contracts in UML

1. Component contracts are associated with component artifacts. Typ-
ical component contracts deal with resource requirements or deploy-
ment restrictions, like a component’s memory footprint, required sys-
tem resources, or the required ECU type. In Figure 5.3, the contracts
B, A, CF1, and CF2 are component contracts.

2. Interface contracts specify requirements and provisions for compo-
sition and interaction. Attributes within these contracts typically de-
scribe services and properties of a component’s interfaces, like operation
signatures, accessible data elements, or temporal properties like worst-
case execution time (WCET) for operations. The contracts labeled IAP

and IAR are typical interface contracts representing augmented inter-
face definitions. If an interface contract contains an interface specifica-
tion in terms of operation signatures and data element definitions only,
the contract artifact may be omitted, as this information is already
contained within the standard UML interface definitions.
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3. Port contracts are associated with ports and their interfaces, and deal
with the relation between them, like execution- and message-sequences,
or the timing between port invocations. Behavior protocols like de-
scribed in [PVB99] are typically contained within port contracts. Port
contracts in Figure 5.3 are the ones labeled with P.

4. Connector contracts are associated with connectors at applica-
tion level and contain constraints related to communication channels
like worst-case propagation time or the required communication style
[BP04]. Connector contracts are typically attached to explicit connec-
tors at application level. As Figure 5.3 depicts a PSM after transfor-
mation, it contains no explicit connectors and no connector contract.

5. Platform contracts specify properties of platform elements like ECUs
or bus systems (ECU type, available random access memory (RAM),
available read-only memory (ROM), bus timing, etc.). Platform con-
tracts are related to system nodes and hardware resources, and thus
are typically denoted within deployment specifications, e.g., within de-
ployment diagrams.

5.2.2.1 Emerging Contracts

Contracts associated with software components (application components) of
a COMPASS application have to be provided by the components’ manu-
facturer. When applying the Connector Transformation as described in
Section 5.3, a wide set of additional contracts emerges within transformed
PSMs, depending on composition, deployment and interaction. These ad-
ditional contracts originate from prefabricated platform specific middleware
components that are injected into the PSMs during model transformation.
Emerging contracts provide supplemental fine-grained information on the
synthesized component architecture, and thus facilitate model-level valida-
tion of the overall software system under development.

Figure 5.4 shows the process of middleware component development from
a bus-system manufacturer’s point of view: Based on the middleware com-
ponent classes’ interface descriptions, platform specific implementations are
created for all middleware component classes within a specific connector tem-
plate (see Section 5.3). Subsequently, a set of contracts (the ones that will
later on emerge during middleware synthesis) is created for each implemented
middleware component. The component binary, together with its associated
contracts is finally stored in a component repository for use in middleware
synthesis.
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Figure 5.4: Development process for middleware components

In Figure 5.3, six emerging contracts are shown. CF1 and CF2 are compo-
nent contracts, the two contracts labeled P are port contracts, and IAP and
IAR are interface contracts. Even this simple example exhibits the benefit
of emerging contracts: If, for example, the total ROM usage of an appli-
cation including all required middleware functionality is of interest, it now
can be calculated by summing up the ROM usage specified within the four
component contracts. In a similar way, end-to-end timing of distributed
applications can be calculated (see Section 6.3).

5.3 Connector Transformation
As outlined in Section 2.2, a model driven development process is mainly
based on model transformations. This also applies to the COMPASSmethod-
ology: Custom-tailored communication middleware for AUTOSAR applica-
tions is synthesized from application models and prefabricated middleware
components via the Connector Transformation that is a two phase, guided
transformation, as depicted in Figure 5.5.
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Figure 5.5: Connector Transformation

The first phase, the PIM-to-PSM transformation transforms the platform
independent application model into a platform specific model and a set of
interface adapter components, for each ECU. In addition it also generates
control information (make files, shell scripts, etc.) for the second phase.
The transformation process itself is guided by annotated tags—contracts—
within the PIM, the application’s deployment specification, and architectural
middleware patterns, the connector templates. The generated PSMs are
component architectures, representing ECU specific views of the distributed
application, including node specific middleware component architectures.

The second phase transforms the PSMs into ECU specific middleware bi-
naries for each ECU. In addition, system configuration data is generated in
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line with the AUTOSAR standard from annotations within the application
model and the emerging contracts within the PSMs. The generated binaries
finally have to be linked and deployed with the remainder of the software
system and the system configuration data in accordance to the AUTOSAR
methodology, to get an executable automotive application.

5.3.1 Connector Templates

Connector templates are architectural patterns at middleware level for com-
ponent based communication middleware, and serve as blueprint within the
process of middleware synthesis. They are designed as structural templates,
thus the placeholders for middleware components are depicted as so called
parts. Parts are labeled with the components’ role, and are stereotyped as
«com primitive»5. Infrastructural service access ports (see Section 4.2.2) of
the depicted parts are optional. Therefore, both, active and passive ver-
sions of primitives, can be plugged in at the same place within the structural
designs, assuming that the interfaces of associated primitives match.

If a part’s functionality is not required for a specific connector6, a dummy
primitive is plugged in instead of a full-fledged one. These dummies satisfy
the architecture’s interface requirements, but do not provide an implemen-
tation. Instead they immediately return, if invoked.

The communication primitives used within the connector templates are
coarse-grained architectural abstractions that represent basic functionality
within a connector. The provided view resembles parts of the AUTOSAR
Run-Time Environment and of the AUTOSAR Basic Software. However, for
the purpose of this thesis the communication subsystem of the AUTOSAR
Basic Software has been examined and decomposed in a more fine-grained
way (see Section 4.3) then expedient for connector templates. Hence, parts
within connector templates are meant to be composed artifacts, too. As a
result, COMPASS middleware components are contained within the Reader
and the Writer communication primitive, described in Section 5.3.1.1. This

5Communication primitives represent classes of middleware component assemblies as
defined in Section 4.2.2.

6Parts like, e.g., buffers may be contained within a template of a connector, but may
be omitted, if the contract of the explicit connector within the PIM does not prescribe
the parts’ presence. In that way multiple optimized variants of one connector type may
be described by one single template.
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approach in addition decouples design and granularity of middleware com-
ponents from their final application in communication primitives within con-
nector templates.

5.3.1.1 Sender-Receiver Connector Architecture

The first connector pattern to specify is that of sender-receiver connectors,
as client-server connectors can be built upon them. Figure 5.6 shows the
architecture of a sender-receiver connector, which can be used to assem-
ble both, state transmission and event transmission connectors in line with
AUTOSAR.

The depicted connector is made up of two fragments, the sender and the
receiver, which have to be deployed independently , aside with the compo-
nent they are connected to. Depending on the properties of the required
connector, full-fledged communication primitives, or light-weight dummies
can be plugged into the positions, designated by the template’s parts. How-
ever, at least one operational writer and one reader has to be plugged into a
sound sender-receiver connector. Therefore, both placeholders are outlined
fat. Following roles for communication primitives come to use within the
defined component architecture:

1. Reader and Writer: Communication primitives associated with one
of these roles are responsible for the process of information propagation.
Writers put information on the information channel, while readers get
it from there, whereas the nature of the channel depends on the com-
ponents’ deployment. Both, reader and writer, have to be implemented
for any connector class (see Section 5.2.1).

While readers and writers for local interaction may be implemented as
trivial shared memory accesses, they can also become rather complex
composed architectures when distributed.

2. Encoder and Decoder: Encoders provide functionality that is pri-
marily used by writers to manipulate data before it is emitted to the
information channel. Therefore, this role is assigned to communica-
tion primitives that provide services of marshaling, data verification,
or encryption. Decoders provide services that are required by readers
to manipulate data after it has been read from the information chan-
nel. The provided services correspond to that of the encoders. Decoder
primitives are required only, if encoders are used at the corresponding
site of the communication channel.
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Figure 5.6: Sender-Receiver connector template
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3. Confirmation Handler: Confirmation handlers are communication
primitives that keep control of the application’s communication sta-
tus at BSW level. They can provide distinct interfaces for various
levels of confirmation. However, only handling of application specific
confirmations, like that on successful execution, are within this role’s
responsibility. Confirmation on successful transmission (TX) and suc-
cessful reception (RX), is directly handled by the reader and the writer
at Basic Software level.

4. Data Storage: If the receiver fragment has to store received messages,
this can be achieved by any communication primitive that implements
the data storage role. A message queue is a typical implementation of
that communication primitive. In dependable systems, a writer may
also store emitted messages to be able to retransmit them in case of
a communication error. Parts that implement the data storage role
are also used to create and store communication traces, or the node’s
communication history.

Following the proposed architecture, very simple sender-receiver connectors
for data distribution, but also complex ones for event distribution, can be
built for each of the three interaction classes. Optimization at architectural
level can be achieved by eliminating dispensable parts.

5.3.1.2 Client-Server Connector Architecture

Figure 5.7 shows the schematic for a client-server connector. This connector
type utilizes the sender and receiver fragments from Section 5.3.1.1 to real-
ize message propagation along the assigned information channel. Thus, all
properties of sender-receiver interaction are also available for the sender and
the receiver part within a client-server connector. Additional roles allow the
creation of various specific client-server behaviors:

1. Request Manager: Within the client fragment, the request manager
primitive takes care of the client’s service requests. Depending on the
connector’s needs and the primitive’s implementation, various connec-
tor behaviors may be implemented. The request manager primitive,
e.g., is responsible for the connector’s behavior regarding blocking or
non-blocking interaction. It may also account response times, and thus
may decide if a request has timed-out and hard deadlines are exceeded,
which is of great importance in real-time systems.

The request manager primitive within the server fragment has to invoke
the services of the connected server component in accordance to the
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Figure 5.7: Client-Server connector template
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messages received from the client fragment. If this primitive has to
support concurrent server invocations, it has to be implemented as
active primitive, and also has to implement its own job-list for pending
invocations.

2. Protocol Handler: Protocol handler primitives implement an ar-
bitrary communication protocol at Run-Time Environment level for
client-server interaction.

Protocol handler primitives, as well as request manager primitives, only
operate in corresponding pairs. Hence, they have to be enclosed in
neither or in both fragments of a connector, accordingly.

3. Data Storage: At the server-side connector fragment, data storage
primitives can be used to queue incoming but not-yet served requests.
At the client-side fragment, sent requests are stored for monitoring and
accounting of asynchronous calls. The primitives on both sides are op-
tional, and are not related to each other. The data storage element
within client-server connectors differs from that within sender receiver
connectors mainly by its purpose, not by its type. A client-server con-
nector for example, which has to store time-stamps of service requests,
but does not buffer incoming messages, would not contain a full-fledged
data storage within its receiver, but would enclose one itself.

4. Sender and Receiver: Both communication primitives are composed
middleware components. They are built from AUTOSAR Basic Soft-
ware middleware components, like the ones discussed in Section 4.3,
and thus primarily encapsulate Basic Software functionality.

As client-sever interaction is based on sender-receiver communication,
each client-server connector contains at least one sender-receiver con-
nector.

Using this architectural template, a wide number of client-server connec-
tors, like simple procedure-calls (local and remote), or even real-time capable
method invocations can be constructed.

5.3.2 Connector Transformation Algorithm

Based on the COMPASS component model and the connector templates pro-
vided in Section 5.3.1, Algorithm 2 provides the Connector Transformation,
which synthesizes application specific communication middleware: In a first
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step, one PSM is created for each ECU of the distributed system; applica-
tion components are stored within those ECU specific PSMs in accordance
to the application’s deployment specification. In a second step, each con-
nector within the platform independent application model is examined with
respect to the deployment scenario. As a result, deployment and platform
specific connector fragments are selected in accordance to interaction specific
requirements, and are also stored and locally connected within the PSMs.

The used formalism in Algorithm 2 denotes sets starting with a capital letter
and ending with curly brackets as subscript. Elements are denoted start-
ing with a lowercase. To make the code more readable, tuples as much as
specific positions within tuples are identified by names. The following defi-
nitions provide structure and names for the tuples and sets used within the
algorithm’s description.

The Connector Transformation requires a platform independent application
model and a deployment specification as input, and creates a platform- and
node-specific component architecture for each system node that is part of the
application.

Definition 5 (PIM). The application’s component architecture is described
by a platform independent model, denoted by a pair of sets of application
components and of explicit connectors that connect the components.

pim = (Components{},ExplicitConnectors{}) (5.1)

Definition 6 (Connector). A connector is a tuple containing a client com-
ponent, a server component, the interface used for the connection, the con-
nector’s interaction paradigm, and a contract for the connector, for example
WCET annotations for the interface. Both, explicit connector and local con-
nector, are isomorphic to the tuple connector.

connector = (client, server, interface, iparadigm, contract) (5.2)
explicitConnector ∼= localConnector ∼= connector (5.3)

Definition 7 (Deployment Model (DM{})). The application’s deploy-
ment model describes where the application components are deployed to. Valid
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locations for deployment are described by a location that is a pair of ECU
and address space. The application’s deployment model is represented by a set
of pairs of one location and one set of components deployed to that location,
such that there exists exactly one pair for each location of the target system.

DM{} = set of (location,Components{}) (5.4)
location = (ecu, addressspace) (5.5)

Definition 8 (ConnectorPatterns{}). The set of connector patterns con-
tains one architectural pattern for each interaction style (distributionType
and iparadigm).7 A connector pattern is a pair of connector fragments, one
for the client- and the server-side each. A connector fragment is a tuple
containing a set of component classes (place-holders for concrete middleware
components), a set of local connectors, connecting the middleware compo-
nents, and an interface that denotes the fragment’s generic interface type.

ConnectorPatterns{} = set of (distributionType, iparadigm, (5.6)
connectorPattern)

connectorPattern = (clientFragment, serverFragment) (5.7)
connectorFragment = (ComponentClasses{},LocalConnectors{}, (5.8)

interface)
clientFragment ∼= serverFragment ∼= connectorFragment (5.9)

The connector patterns do not prescribe specific middleware components but
classes of compatible components. The selection of a concrete implementa-
tion of a prescribed component class allows to flexibly adjust the resulting
middleware to specific application needs.

Definition 9 (MWComponents{}). The set of available middleware com-
ponents provides the concrete building blocks, which may be assembled to form
the synthesized middleware. The set contains tuples of middleware compo-
nents and associated contracts.

MWComponents{} = set of (component, contract) (5.10)

7To support multiple vendors and variants, the set of connector patterns has to be a
multi-set, capable of containing multiple patterns of same type.
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The algorithm’s output is specified as:

Definition 10 (PSM{}). The algorithm returns a set of platform specific
models, one for each system node. These models are affiliated with exactly
one location, and contain all components (application and middleware) that
are deployed to that location. Additionally, the models contain a set of local
connectors, which connect the components.

PSM{} = set of psm (5.11)
psm = (location,Components{},LocalConnectors{}) (5.12)

Taking the given definitions into account, the algorithm of the Connector
Transformation can be described as follows8:

The Connector Transformation starts with creating and initializing one PSM
for each system node (Algorithm 2, line 3-4). Then, the main loop iterates
over all explicit connectors, which is a quintuple contained within the set
ExplicitConnectors{} of the PIM (Algorithm 2, line 5). Note the way of
binding variables (e.g. client) to specific positions within the tuple. The de-
ployment situation of all connected components is determined (Algorithm 2,
line 6-9) to derive proper middleware requirements.

If the component pair is co-located, a local connector is added to the PSM
that contains the two components (Algorithm 2, line 14), elsewise a connec-
tor pattern is selected with respect to the connector’s interaction paradigm
and the application components’ deployment scenario (Algorithm 2, line 21).
As connectors for distributed interaction consist of two fragments, both frag-
ments, together with their associated application component and with lo-
cation information, are stored within a work-set (Algorithm 2, line 22-24).

To materialize the explicit connector for distributed interaction, the following
procedure is applied to both elements within the work-set: For each part of
the pattern of the connector fragment a concrete implementation of a feasible
middleware component is selected from the set of available middleware com-
ponents (Algorithm 2, line 28). Feasibility is determined by matching the
fragment’s contracts with that of the middleware component. A fragment is

8As the Connector Transformation mainly takes place at model level, the term compo-
nent is used for M1 model level elements, and must not be mixed up with M0 component
implementations. The same applies to connectors, communication primitives, etc.
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Algorithm 2: Connector Transformation

ConnectorTransformation(pim, DM{}, ConnectorPatterns{}, MWComponents{} ):PSM{}1
begin2

// create and initialize PSM for each location
PSM{} ← ∅;3
foreach (location,Components{}) ∈ DM{} do add (location, Components{}, ∅) to PSM{};4

// iterate over all explicit connectors within the PIM
foreach (client, server, interface, iparadigm, contract) ∈ ExplicitConnectors{} of pim do5

foreach (location,Components{},LocalConnectors{}) ∈ PSM{} do6
if client ∈ Components{} then clientLocation← location;7
if server ∈ Components{} then serverLocation← location;8

end9
MiddlewareComponents{} ← ∅; CFCons{} ← ∅;10
if clientLocation == serverLocation then // components are co-located11

distributionType← LOCAL;12
select psm ∈ PSM{} | location of psm == clientLocation;13
add(client, server, interface, iparadigm, contract) to LocalConnectors{} of psm14

else15
if ecu of clientLocation == ecu of serverLocation then16

distributionType← INTERPROCESS;17
else18

distributionType← REMOTE;19
end20
// select apropriate connector pattern
select (d, i, selectedPattern) ∈ ConnectorPatterns{} | d ==21
distributionType ∧ i == iparadigm;

// compute fragments for client and server location
WorkSet{} ← ∅;22
add (client, clientLocation, clientFragment of selectedPattern) to WorkSet{};23
add (server, serverLocation, serverFragment of selectedPattern) to WorkSet{};24
foreach (appComp, cfLocation, connectorFragment) ∈WorkSet{} do25

(ComponentClasses{}, CFCons{}, cfInterface)← connectorFragment;26

// select optimal implementation for each component class
foreach part ∈ ComponentClasses{} do27

select (mwc, contract′) ∈28
MWComponents{} | mwc implements part∧contract′ satifies contract;
add mwc to MiddlewareComponents{};29
if mwc comprises cfInterface then30
fragmentRoot← mwc; // for interface adapter

end31
// add interface adapter
iAdapter ←GenerateInterfaceAdapter(cfInterface, interface);32
add iAdapter to MiddlewareComponents{};33
add (appComp, iAdapter, interface, iparadigm, contract) to CFCons{};34
add (iAdapter, fragmentRoot, cfInterface, iparadigm, contract) to CFCons{};35
// add middleware components and local connectors to PSMs
select psm ∈ PSM{} | location of psm == cfLocation;36
add MiddlewareComponents{} to Components{} of psm;37
add CFCons{} to LocalConnectors{} of psm;38

end39
end40

end41

end42
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a composed architecture that contains exactly one part, which provides the
fragment’s external interface—the one to which the application component is
bound to. This dedicated part is stored as the fragment’s root (Algorithm 2,
line 30). If no proper implementation is available, the transformation can
not be finished successfully9; if more than one candidate for selection exists,
the one with best overall properties can be selected10.

Subsequently, interface adapter components are generated, which connect
the application component to the generic connector interface exposed by the
fragment’s root (Algorithm 2, line 32-35). Finally, the middleware compo-
nents and local connectors are added to the PSM that contains the fragment’s
associated application component (Algorithm 2, line 36-38).

5.3.3 Model-to-Code Transformation

As shown in Figure 5.5 on page 78, an additional model-to-code transforma-
tion (PSM-to-Middleware) is required to gain executable binaries for each
ECU. However, the model-to-code transformation for component based ar-
chitectures is straight-forward, and thus is outlined here on a basic level only.

The provided algorithm of the Connector Transformation calculates platform
specific models for each system node. In addition, interface adapter compo-
nents are generated, which glue the application components to the generic
interfaces of utilized middleware components. In consequence, after success-
fully executing the Connector Transformation, a platform specific model,
and binaries of all components within the PSMs exists for each ECU.

Based on the PSMs, the model-to-code transformation generates control files,
which bind all components that are deployed to the same ECU. This binding
is done by modifying the binary components’ function tables and consecu-
tively linking the modified binaries.

The modification of the function tables results from the fact that calls to
externally provided functions refer to abstract function names. These ab-
stract names contain the interface type that exposes the called function. A
call within component A to a required external function f, which is con-
tained within an interface I, is denoted as call to I::f within A’s source code.

9To solve this issue, either additional middleware component implementations have to
be made available, or communication requirements have to be changed.

10The wording best overall property implies the existence of some kind of metric for
component performance.
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However, f may be provided by any arbitrary component that implements
the interface I, and that is not known at compile-time of A. The concrete
provider of f becomes known after specifying the architecture’s composition,
e.g. component B. Consequently, the abstract call to I::f is rerouted to B ’s
implementation B::f, by patching A’s function table.

In addition, the model-to-code transformation extracts system configuration
data from contracts within the PIM and the PSMs. This data is finally
deployed to the system’s ECUs in conjunction with the executable.

5.4 Summary
This chapter described a model driven methodology for automatic synthe-
sis of component based communication middleware within the domain of
AUTOSAR.

So called explicit connectors that store interaction specific properties in ap-
plication models were established as first class architectural entities. In addi-
tion, the concept of emerging contracts was introduced to enable model level
validation of synthesized middleware architectures. Emerging contracts con-
tain middleware specific properties that originate from assembled middleware
components, and are provided by the middleware components’ manufactur-
ers.

As model transformations are the core of model driven development, this
chapter’s main contribution is the so called Connector Transformation that
transforms PIMs into PSMs. It translates explicit connectors within platform
and deployment independent application models into communication spe-
cific component architectures within the application’s platform specific mod-
els. These middleware component architectures are based on the COMPASS
component model for AUTOSAR Basic Software, described in Chapter 4.
To gain executable binaries for each ECU of the distributed application, the
generated PSMs are finally transformed into code. The generated communi-
cation subsystem is fully compatible to the AUTOSAR standard in terms of
its external interfaces. However, it is custom-tailored and hence light-weight
compared to a conventional AUTOSAR communication subsystem.

To demonstrate the benefit of the described approach, a typical automotive
application was implemented twice: the first version is developed in accor-
dance to the traditional AUTOSAR methodology, the second version in line
with the methodology described within this thesis. Detailed measurements
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are provided in Chapter 6 and inter alia show a reduction of the communi-
cation subsystem’s memory footprint of more then 30%.
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Chapter 6

Discussion

The following sections provide an evaluation of the COMPASS methodol-
ogy and of the algorithms proposed within this thesis. In addition, related
work, as far as not covered within the previous chapters, and future work is
discussed.

6.1 Proof of Concept
To prove the concept of component based AUTOSAR middleware, and to
evaluate the gained benefit, three consecutive steps are taken: First, the
static Cohesion Analysis (see Section 4.3.2) is applied to a full-fledged in-
dustrial implementation of a conventional AUTOSAR communication stack,
in order to gain COMPASS middleware components. Second, a prototypical
automotive application is created in line with the COMPASS methodology
to provide a testbed for automatic middleware synthesis. Third, custom-
tailored communication middleware for the application from step two is syn-
thesized via the Connector Transformation (see Section 5.3) using the mid-
dleware components from step one.

The resulting custom-tailored Basic Software is finally compared to its con-
ventional industrial counterpart to clearly show the advantages of automat-
ically synthesized COMPASS communication middleware in terms of ROM
footprint and CPU usage.

6.1.1 Middleware Component Recognition

To obtain AUTOSAR compliant middleware components, a layered refer-
ence implementation of the AUTOSAR BSW communication subsystem is
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FlexRay Interface
# of files LOC kB

Header 4 1620 59
Implementation 15 4192 135

FlexRay Driver
# of files LOC kB

Header 13 1660 88
Implementation 27 7142 222

Table 6.1: Base characteristics of the analyzed communication stack

decomposed via the static Cohesion Analysis .

The analyzed source code is full-fledged C code that implements the FlexRay
Interface- and Driver-Layer (see Section 3.3.2). The generated abstract syn-
tax tree (AST) contains 291794 nodes, and was traversed once by the algo-
rithm. The full execution (including I/O) of the Cohesion Analysis algorithm
took less than 3 seconds, and used approx. 80MB of memory on a dual 64-bit
Core 2 Duo Xeon workstation at 3.0 GHz.

The source code of the implementation can be characterized as shown in
Tabel 6.1 and in Tabel 6.2:

• Base Characteristics: The implementation of the FlexRay Interface
module is realized in 4 header (.h) and 15 implementation (.c) files with
a total of 5812 lines of code. The FlexRay Driver module is realized
in 13 header (.h) and 27 implementation (.c) files with a total of 8802
lines of code. Accordingly, the analyzed code base consists of 59 files
containing 14614 lines of code (504 kB).

• Code Characteristics: The characteristics of the analyzed implemen-
tation, the FlexRay Interface module and the FlexRay Driver module,
is summarized in Tabel 6.2. As denoted, the implementation consists
of 107 functions that in total contain 431 calls to other functions. This
number refers to the number of call-sites and not the number of calls
executed at run time, as call expressions may be located within loops or
within conditional branches of the program. The rather high number
of 4924 cast expressions results from the fact that all—explicit as much
as implicit—cast operators are contained within the AST generated by
the implemented analyzer.
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Characteristic # of occurrences
Function Definitions 107
Function Call Expressions 431
AddressOf Operators 12
Ptr Deref. Expressions 241
Arrow and dot Operators 457
Cast Expressions 4924

Table 6.2: Code characteristics of the analyzed communication stack

As required by the Cohesion Analysis , a set of 87 functions has been marked
as relevant.1 50 data fields within 12 data structures have been marked as
irrelevant, and thus have been filtered out by the analysis. A detailed list of
all functions marked as relevant, and all structure fields marked as irrelevant
is provided in Appendix D.

Figure 6.1 provides a visualization of the analysis result of the Cohesion
Analysis algorithm. The diagrams contain structure fields denoted as boxes,
and functions denoted as circles. Figure 6.1a shows a full unprocessed com-
ponent graph of the Basic Software under analysis. Figure 6.1b shows the
final result of the Cohesion Analysis applying the filters for marked func-
tions and data fields. The clusters denoted in Figure 6.1b represent those
component classes that have been identified by domain experts via manual
decomposition. Strong cohesion only exist within component classes (the
clusters), while no edges exist between distinct component classes.

6.1.1.1 Comparison of Approaches

Manual decomposition identified eight component classes, as described in
Section 4.3.1: Base, Transmitter, Receiver, WUP, Time Service, Status, Me-
dia Test, and Transceiver Driver.

Compared to the manually gained decomposition, the Cohesion Analysis is
able to recognize not only one, but a set of valid decompositions. These
multiple valid results are caused by the fact that too small components may
by grouped into one bigger and hence more practicable component.

By looking at the Transceiver Driver component class or at the Receiver
component class, it becomes clear why the algorithm provides not just one

1Unlike proposed in Chapter 4 relevant functions have been marked, as COMPASS
middleware has to adhere to the AUTOSAR standard and its prescribed interfaces.
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(a) Unprocessed component graph
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Media Test

Receiver
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Time ServiceTransceiver Driver

Transmitter
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(b) Analysis result

Figure 6.1: Recognized middleware components for AUTOSAR
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but a whole set of solutions: Each function contained within the manually
identified class Transceiver Driver is completely uncoupled. Hence, the pro-
posed clustering is thetic. Each of those functions could be moved to an
arbitrary cluster without violating the algorithm’s constraints for compo-
nent classes. In fact, any permutation of uncoupled components into groups
leads to a valid result in terms of cohesion.

Both, manual decomposition and the Cohesion Analysis , depend on config-
uration specific data like described in Section 4.3.2.2. As a consequence,
repetitive analyses for modified configurations have to be done.2 However,
the process of marking functions and structure fields by domain experts for
the Cohesion Analysis has to be done only once. As the Cohesion Analy-
sis is performed semi-automatically, its ability to scale to multi-configuration
analysis clearly outnumbers the manual approach in terms of required expert
resources.

6.1.2 Testbed Application

To prove the model driven methodology proposed within this thesis, it is
applied to the development process of an AUTOSAR compliant application.
The application chosen as testbed is a typical distributed automotive ap-
plication: a cruise-aware door-lock application. The main purpose of the
application is to lock and unlock a vehicle’s doors. This should be done on
user intervention by utilizing a key, or automatically in accordance to prede-
fined rules and the vehicle’s current speed. All doors should automatically
be locked, if the vehicle’s speed exceeds a given limit. Once the door is
locked, no unlock operation must be performed while the vehicle is moving.
The application is simplified for demonstration purpose, but nevertheless is
focused on the essential issues of a distributed automotive application. To
cover the topics of distributed and local interaction, the application incor-
porates event-based program logic as much as time-driven communication
facilities.

Figure 6.2a describes the application’s platform independent component ar-
chitecture, containing all components and all explicit connectors. The door
lock application is made up of four application components:

1. Speed Sensor: The speed sensor component provides the vehicle’s
current velocity by its interface ISpeed. The interface is a sender-
receiver interface, which is denoted in line with the AUTOSAR UML

2Minor changes within preprocessor directives (e.g., conditional compilation) may lead
to major changes in the overall system’s structure.
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Figure 6.2: Automotive door-lock application
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profile. The component will broadcast the vehicles current speed pe-
riodically, which is a timing constraint of the component but which is
also denoted in the interface contract ISpeed.

2. Key Sensor: The key sensor component handles any key activity of
the user. It reports a lock or unlock action to the lock control compo-
nent by invoking the lock() or unlock() method of the IKey interface.

3. Lock Control: The main application logic resides within the lock con-
trol component. This component receives the vehicles current speed by
its sender-receiver interface ISpeed, and all key related user activities
by its client-server interface IKey. The component controls the vehi-
cle’s door lock, by invoking the lock() or unlock() method of the ILock
interface.

4. Door Lock: This component locks or unlocks the vehicle’s doors. It
implements the functions lock() and unlock(), and provides them within
the ILock interface.

The contracts for the explicit connectors are depicted as ISpeed, IKey, and
ILock. Within these contracts, communication and interaction specific at-
tributes are specified; the ISpeed contract for example defines that no con-
firmation for successful reception is required.

The application’s deployment scenario is provided in Figure 6.2b. To test
local as much as distributed interaction, the components are deployed onto
two ECUs, ECU1 and ECU2 (both of type ARM 922T, providing 16 bit
access to an ERAY 1.0 FlexRay communication controller).

6.1.3 Middleware Synthesis

After successful refactorization of an AUTOSAR communication stack as de-
scribed above, application- and node-specific communication middleware for
the proof-of-concept application is synthesized via the Connector Transfor-
mation.

Following the algorithm provided in Chapter 5, the application’s PIM is
transformed into two PSMs—one for each ECU—with respect to the specified
deployment scenario. To inject proper connector fragments into these PSMs,
all three explicit connectors within the PIM are classified in accordance to
their interaction style, communication requirements, and their distribution
scenario:
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1. Connector at ISpeed Interface: This connector is an XN sender-
receiver connector. Its RTE as much as its BSW functionality is con-
structed in accordance to the sender-receiver template provided in Sec-
tion 5.3.1. As specified within the connector contract ISpeed, no confir-
mation for reception is required. Thus, only reader functionality at the
receiver node, and writer functionality at the sender node is required
for this simple “data broadcast” connector.

2. Connector at IKey Interface: The connector for the IKey inter-
face is an XN client-server connector. It is assembled in accordance
to the client-server template. The protocol handler, which in terms
of AUTOSAR is part of the RTE, implements a simplified version of
the RPC protocol [BN84, BALL89, ATK92], thus requires sender- and
receiver-functionality on the client as much as on the server side.

3. Connector at ILock Interface: Due to the co-located deployment
of the Lock Control and the Door Lock component, this connector is
a local client-server connector. By applying the proposed transforma-
tion algorithm, this connector is transformed into a local connection, a
simple function call.

Figure 6.3 depicts the two PSMs describing the application’s static compo-
nent architecture after successful transformation. Both models contain the
full set of components that have to be deployed to each specific ECU:

1. Application components: Speed Sensor and Key Sensor for ECU1,
Door Lock and Lock Control for ECU2.

2. RTE components: As described in Chapter 3, the RTE glues the
application components to the generic BSW. In addition, the RTE im-
plements interaction behaviors and protocols like signal distribution
and remote procedure calls. As a result, the PSMs contain middle-
ware components that provide RTE functionality: InterfaceAdapter1

and InterfaceAdapter2 for ECU1, and InterfaceAdapter3 for ECU2

are generated from the application components’ interface specifications
within the PIM, and from the AUTOSAR compliant specifications of
the RTE interfaces. The RPC Protocol Handler component on both
ECUs implements remote procedure calls in line with the AUTOSAR
specification.

3. BSW components: Due to the minimalist application requirements
on the Basic Software, only three out of eight BSW components are
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Figure 6.3: Result of applied model transformation.

required on each ECU. Only the Transmitter, the Receiver, and the
mandatory Base component have to be deployed for a fully functional
application. The remaining five BSW components are not required by
the application, and thus are simply omitted.

To obtain executable binaries for each ECU, a simple PSM-to-code trans-
formation is performed: Based on the PSMs, source code for the adapters
is automatically generated and compiled into adapter components. There-
after, the function-tables of all component binaries are patched as described
in Section 5.3.3, in order to map abstract interface-related calls to concrete
implementations of providing components. Finally, all components and all
additional system binaries (e.g., OS) are linked, using generated make-files.

To demonstrate the optimization capabilities of the COMPASS approach,
several variants for some of the identified middleware component classes have
been built. These variants differ in size and functionality, and hence allow a
demand-specific reduction in terms of size of an application-specific middle-
ware component architecture. By examining the connector contracts within
the PIM, the Connector Transformation is able to select the slimmest vari-
ant of each component class that fulfills the contract. The variants built and
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Component Class Variant ROM Usage

Base standard 7899
no cluster functionality 5803

Media Test 1108
Receiver 1188
Status 1364

Time Service

standard 4280
absolute 1616
relative 1612
global 1052

Transceiver Driver 4528
Transmitter 1392
WUP 860

Table 6.3: BSW components for FlexRay

used for the purpose of this thesis are specified in detail in Appendix C, and
are summarized in Tabel 6.3.

When comparing the created software system—application and ECU spe-
cific middleware—to its conventional layered counterpart, the synthesized
component based middleware proves to be more efficient: In best case, the
conventional communication stack containing all functionality requires a to-
tal of 21.512 bytes, whereas a total of 6.884 bytes has been eliminated within
the component based version. Thus, the COMPASS approach gains a reduc-
tion in size by more than 30%. In addition, a run-time performance increase
(10% less CPU usage) is gained. Detailed comparison of execution paths of
both middleware versions showed that the strict layering of the conventional
BSW enforces numerous cascaded delegation calls to access functionality of
lower layers. By breaking up this layering via the component based design,
these functions become directly accessible, which eliminates most delegation
calls.

Finally, an alternate application scenario has been specified to examine the
methodology’s limitations, where all types of interaction occur on all ECUs.
By requiring the full set of communication functionality within each node,
optimization is prevented intentionally. However, in this worst case the syn-
thesized middleware shows an equivalent memory footprint and run-time
performance than the conventional one.
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6.2 Related Work
The following section summarizes related work that is of relevance for this
thesis but has not explicitly been discussed so far. Section 6.2.1 provides
a brief discussion of well established component models, Section 6.2.2 de-
scribes work on static analysis with respect to relevance for the proposed
component recognition algorithm, and Section 6.2.3 finally describes work
on model driven development and model transformations. The domain of
AUTOSAR is not covered here, as it is extensively described in Chapter 3.

6.2.1 Component Models

The KOALA component model [vOvdLKM00, vO98, vO04] was developed by
Van Ommering, Van der Linden, Kramer, and Magee, for embedded systems
within the domain of consumer electronics products. KOALA is a hierarchical
model—composed components are called compound components—that aims
at software reuse and support for product-lines. Components are encapsu-
lated pieces of software and architecture, which are described in a text based
component description language (CDL). Using the CDL KOALA handles di-
versity on internal as much as on external level. Internal diversity aims at
configuration specific variants of components, whereas external diversity aims
at optimization at architectural level. KOALA components are implemented
in C, whereas function names contain a sub-string that encodes the compo-
nent and the port to which the function belongs to. Component architectures
are specified using a proprietary architecture description language (ADL) to
manage product complexity. To connect provided and required functions of
two components in accordance to the architectural description, preproces-
sor based string replacement is used at source code level to substitute calls
to abstract functions3 within the requiring component, by calls to concrete
implementations within the providing component.4 To optimize component
architectures, as much as to rebind them, the components’ source code has
to be available in order to rerun the preprocessor and to recompile the com-
ponents. Although the KOALA and the COMPASS component model have
much in common, they differ in important aspects: COMPASS aims at the
domain of AUTOSAR. As a result it relies on UML 2.0 profiles to describe
component interfaces as much as component architectures. To statically bind

3A concrete implementation of the called function is typically not known at a compo-
nent’s implementation time.

4The usage of the C preprocessor for configuration specific code-rewriting is common
practice within the embedded systems domain.
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two connected components, COMPASS does not necessitate the components’
source code. Static binding is achieved by patching function tables within
the components’ binaries. In consequence, third party component develop-
ers do not have to disclose their intellectual property (the source code) when
selling their components.

The SOFA [SOF09] component model was developed by Plasil et al.
[BP01, Bál02, BP04] for distributed desktop and enterprise applications. It
is a hierarchical component model, hence components may be nested or be
primitives. SOFA components are described by their frame and their archi-
tecture. The frame specifies the components’ external interfaces and con-
figuration parameters; the architecture specifies the internal structure of a
nested component. One specific frame may be implemented by various ar-
chitectures. Components are described in a component description language
that is based on OMG’s Interface Definition Language (IDL). In SOFA, con-
nectors are first class architectural entities, which are still present within a
running application (in contrast to explicit connectors in COMPASS). SOFA
defines three types of basic connectors: Procedure Call, Event Delivery and
Data Stream. In addition, user-defined connectors can be specified. Commu-
nication between SOFA components can be captured formally via so called
behavior protocols. A behavior protocol is a regular-like expression on the
set of all (function call) events, which are exchanged between connected com-
ponents. SOFA distinguishes between interface protocols and frame proto-
cols. The concept of explicit connectors in COMPASS is based on the idea
of SOFA connectors. However, as COMPASS is targeted at resource con-
strained embedded system, explicit connectors have no specific implementa-
tion at run-time. They are first class architectural elements at model level,
but are transformed into local invocations of the system’s communication
middleware.

The FRACTAL [BCS04] component model was developed by Bruneton, Cou-
paye, and Stefani. FRACTAL targets at rather opposite domains, like em-
bedded systems and enterprise applications for telecommunication, by defin-
ing an extensible component model. The definition of the term component
ranges from a very basic level, at which a component is defined to be e run-
time entity that does not provide any control capability to other components,
up to more complex levels, where components have to provide means of intro-
spection, configuration, and modification. A FRACTAL component is speci-
fied either within an interface definition language, or directly at source code
level. The FRACTAL component model also contains connectors, which are
however of secondary nature only. A so called binding is defined to be a com-
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munication path between component interfaces. Bindings are classified to be
primitive or composite. A primitive binding connects one client interface and
one server interface within the same address space. A composite binding is
a communication path between an arbitrary number of distributed compo-
nent interfaces, and is represented as a set of primitive bindings and binding
components. Binding components are called FRACTAL connectors, and are
regular FRACTAL components, whose role is dedicated to communication.
As connectors are of no primary concern in FRACTAL, no further specifi-
cation on interaction is provided. Explicit connectors in COMPASS inter
alia represent communication paths, but in contrast to FRACTAL bindings
allow detailed specifications of interaction specific properties for middleware
synthesis and middleware configuration.

6.2.2 Static Analysis

Lee et al. [LSK+01] describe a methodology to recognize components within
existing object-oriented source code considering class cohesion. They propose
to calculate coupling by message passing and data usage, and in addition
consider coupling by class association, composition and inheritance. To keep
their analysis effort small, their approach relies on domain knowledge, mainly
extracted from UML use-cases and architectural descriptions. In contrary,
the Cohesion Analysis algorithm described within this thesis is intended to
work on object-oriented but also on non-object-oriented source-codes5. It
also relies on domain knowledge, which is represented by marks on functions
and data structures, to keep the analysis’s effort as low as possible.

Emami, Ghiya, and Hendren [EGH94] present a context-sensitive approach
that generates a graph representing all invocation paths (in the absence of
recursion), and precisely handles indirect calls through function pointers in
C. They focus on analysis of stack-directed pointers, and collect alias infor-
mation in the form of points-to relationships. They claim through empirical
evidence that exponential behavior is not seen in practice and suggest the
use of a memorization scheme to avoid redundant analysis. The Cohesion
Analysis algorithm described within this thesis is linear in size of the pro-
gram, but requires function pointers to be pre-processed (annotated) in case
of ambiguity. The integration of points-to information is not covered within
this thesis, but is subject to ongoing research (see Section 6.3). Neverthe-
less, the proposed algorithm’s precision is sufficient to calculate the required
properties of the input program.

5The source code analyzed within this thesis is a full-fledged C code.
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The concept of abstract memory locations described in Chapter 4 was suc-
cessfully applied within the following two publications: Hind, Burki, Carini,
and Choi give experimental results of comparing flow-sensitive and flow-
insensitive flow analysis algorithms in [HBCC99] based on memory locations
associated with names. The call graph is constructed while alias analy-
sis is performed in a similar way to the Cohesion Analysis algorithm. Di-
wan, McKinley, and Moss evaluate three alias analysis algorithms based on
programming language types. The most precise of these three is a flow-
insensitive analysis that uses type compatibility and additional high-level
information such as field names [DMM98]. They use redundant load elimi-
nation to demonstrate the effectiveness of the algorithms in terms of oppor-
tunities for optimization.

6.2.3 Model Driven Development

In [RSB+04] Rackel et al. describe a model driven component based method-
ology as used by the BMW group. Although the described process is tar-
geted at the domain of enterprise and business applications, it is comparable
to the COMPASS approach, described within this thesis. Platform indepen-
dent models are used to define relations between application components in
terms of interfaces and connections. Using model transformations, platform
specific models are generated from the PIMs. Platform specific architec-
tural issues are not visible within PIMs, and are injected into the PSMs
by model transformations. The PSMs finally are transformed into source
code for further use. In COMPASS an application is also specified via a
platform independent model, and in addition by a deployment model. The
Connector Transformation automatically generates PSMs from the PIM, the
deployment specification, and a set of available platform specific middleware
components. A last step finally creates an executable binary from middle-
ware components, compiled interface adapters, and application components.
Both approaches require an application to be modeled at PIM level, while
PSMs and executables are generated by model transformations.

Gokhale et al. outline the integration of MDA into the development process
for distributed embedded real-time systems in [GSL+03]. The paper lists
various alternatives on how to benefit on MDA. Full middleware synthesis
as proposed within this thesis is described, however it is not chosen by the
authors for their project (CoSMIC). As they aim at a QoS-enabled CORBA
Component Model implementation, they focus on the synthesis of configu-
rations and profiles, as much as on the synthesis of QoS-enabled application
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functionality in component assemblies. In contrast, COMPASS aims at the
provision of component based AUTOSAR middleware, and hence is focused
on full middleware synthesis.

In [ASSK02] Agrawal et al. describe a technique to transform platform in-
dependent models into platform specific models using graph transformation.
Both, PIMs and PSMs are considered to be graphs. Hence, PSMs are gener-
ated by transforming the PIMs’ graphs: Input patterns, sub-graphs within
the PIM, are transformed into refined output patterns, sub-graphs within the
PSM, via predefined rules. The Connector Transformation specified within
this thesis works in a similar way: Input patterns within the PIM, the explicit
connectors, are transformed into platform specific component architectures
within the PSMs (see Chapter 5).

6.3 Future Work
Based on the concepts presented within this thesis, future and ongoing re-
search aims at three directions for the automotive domain:

• By extending the Cohesion Analysis with proper points-to information
[Ste96, SH97], and with global context information on compiler-built-
in functions and standard libraries, the amount of manual annotations
can be reduced significantly. First results from improved research pro-
totypes indicate that the number of manual annotations can at least be
halved to get equivalent results to the algorithm in its current version.

• Results of the Cohesion Analysis are inherently valid for one specific
system configuration. This fact mainly results from late-bound func-
tion pointers—typically configured after compile-time—and from con-
figurable modes of operation of an automotive system. The current
methodology, as pointed out in Chapter 4, relies on external expertise
to identify a representative configuration. To overcome this weakness,
the Cohesion Analysis will be extended to cope with multiple weighted
component graphs, to calculate a more general decomposition of the
AUTOSAR Basic Software.

• To support timing-aware composition for AUTOSAR Basic Software,
contracts for middleware components can be extended by timing
contracts that contain information on call dependencies as much as
parametrized approximation formulas for all operations [10]. In conse-
quence, end-to-end timing for AUTOSAR application components can
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be calculated (or at least be bound) at model level. AUTOSAR in
its current version lacks of standardized mechanisms for timing-aware
software composition within its Basic Software. Hence, the concept
of timing-aware composition can be used to improve AUTOSAR by
aspects of execution-times at system level.

6.4 Conclusion
Within this thesis, the concept of component based middleware was intro-
duced to the Automotive Open System Architecture (AUTOSAR) via the
COMPASS methodology. Since this automotive system standard so far is
based on layered communication middleware, a new component based design
has been defined. However, to keep in line with the standard, the external in-
terfaces of the communication middleware completely resemble the external
interfaces of the conventional version.

A component model for the component middleware was specified, and in
addition, middleware component classes as much as class variants of dif-
ferent size and complexity have been identified as building blocks for the
new type of middleware. The component class identification was achieved
via static source code analysis of an industrial implementation of traditional
AUTOSAR middleware. The proposed Cohesion Analysis utilizes control-
flow information, and information on data field usage. Its complexity is linear
to the size of the analyzed source code, hence it is applicable to complex real-
world systems.

To foster automatic generation of application specific and hence custom-
tailored resource-aware middleware, a model driven process was defined,
which is capable of synthesizing component based middleware from pre-
fabricated middleware components, architectural templates, and application
models. The specified Connector Transformation generates platform spe-
cific models from platform independent application models by transforming
explicit connectors within the PIMs into platform specific middleware com-
ponent architectures and generated interface adapter components within the
PSMs. In a subsequent step the PSMs are transformed into application and
node specific executables.

Experimental results showed the capability of the provided methodology to
reduce the middleware’s memory foot-print by up to 30% while CPU usage
was reduced by up to 10%.
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Therefore, this thesis can finally be concluded by answering the two research
questions issued in Chapter 1:

1. Yes. It is possible to apply the component paradigm in AUTOSAR
not only at application level, but also to the component middleware,
especially to the communication subsystem.

2. Yes. Component based, application specific, and hence custom-tailored
AUTOSAR middleware can automatically be synthesized from appli-
cation models and prefabricated middleware components.
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SPEM

The Software Process Engineering Metamodel (SPEM ), as defined by the
OMG in [OMG05], allows the specification of complex software engineering
processes in a model driven way. Process models not only help in project
optimization, but also provide valuable information on resource usage, work-
flow dependencies, and tool chain requirements. In addition, a well-defined
process model fosters the integration of specified engineering processes into
other, more complex and even distributed ones. As this feature plays an
important role within the automotive industry [PBKS07], it is not surprising
that SPEM comes to use within the domain of AUTOSAR.

Software processes in SPEM are expressed in UML 2 diagrams. To increase
the models’ readability, SPEM provides its own UML profile, which defines
a set of stereotypes and corresponding graphical syntax. Figure A.1 depicts
some that are frequently used within the AUTOSAR methodology specifica-
tion.

1. «WorkProduct»: Within the context of SPEM, a work product is
anything (a model, source code, etc.) produced, consumed, or modified
by a process. The stereotype «WorkProduct» describes a class of work
product within a process, and is mostly used for artifacts that are nei-
ther documents (source code, executables, configuration files, etc.) nor
UML 2.0 models. All work products («WorkProduct», «UMLModel»
and «Document») may be altered by an activity, and thus may exist in
multiple distinct states across one process model. To distinguish dif-
ferent states, they are directly annotated at the affected work product.

2. «Document» and «UMLModel»: Both stereotypes describe a spe-
cialization of a work product, and are added to the UML profile for
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(a) «WorkProduct» (b) «Document» (c) «UMLModel»

(d) «Activity» (e) «Guidance» (f) «ProcessRole»

Figure A.1: SPEM stereotypes

reasons of comprehensibility. The «Document» stereotype typically
denotes source code, compiled binaries, configuration files, and con-
trol files for the tool chain, while the «UMLModel» stereotype denotes
UML models, or parts of them.

3. «Activity»: This stereotype describes a piece of work executed by one
process role: tasks, operations, and actions. An activity is associated
with inputs and outputs that are work products. It is performed by
one actor, a «ProcessRole», but may be assisted by multiple others.

4. «Guidance»: The «Guidance» stereotype may be associated with
arbitrary model elements to provide additional information. It is for
example used to assign tools to activities.

5. «ProcessRole»: This stereotype defines responsibilities for work
products. It denotes active resources that execute specific activities,
or that at least assist in execution. Model elements of stereotype «Pro-
cessRole» are performers of activities within SPEM process models.

Besides these model elements, SPEM defines a set of relations between them.
The ones that are used here are depicted in Figure A.2:

1. Flow of work product: The flow of a work product represents the
relation between work products and activities. It is graphically repre-
sented by a line with an arrowhead (see Figure A.2a), originating from
its source and targeted at its destination. Flows of work products are
used to identify inputs and outputs of activities.
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(a) Flow of Work Products (b) Dependency

(c) Composition

Figure A.2: SPEM associations

2. Dependency: Dependencies represent unidirectional relations be-
tween work products, and define who depends on whom. They are
represented by a dotted line with an arrowhead, originating in the
model element depending on the one, at which the arrowhead points
(see Figure A.2b).

3. Composition: A composition denotes that one work product consists
of (or contains) other work products. In general, it is meant to show a
part-total relation. Thus, it is graphically represented by a line with a
solid diamond at the total’s end (see Figure A.2c).

As SPEM is a UML profile, all types of UML diagrams (class diagrams,
use-case diagrams, activity diagrams, etc.) can be used to outline different
aspects of the modeled process.
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Used UML 2 Diagram Types

The following list outlines the basic types of UML 2 diagrams that are used
within the COMPASS methodology.

1. Component Diagram: This type of diagram is used to specify soft-
ware architectures—the software’s functional decomposition. Compo-
nent diagrams are typically used in conjunction with deployment di-
agrams. They mainly consist of component artifacts and connectors
that link the components’ provided and required interfaces (see Chap-
ter 2). The COMPASS methodology utilizes component diagrams to
specify the application at the platform independent level within PIMs,
but also at platform specific level to capture the results of the PIM-to-
PSM transformation (see Chapter 5).

2. Composite Structure Diagram: Diagrams of this type define a
component’s internal structure and its points of interaction in terms
of so called parts and ports (respectively connectors between ports).
Parts represent a subset of possible artifacts contained within a com-
ponent. Hence, a part can be used to represent a component class.
Composite structure diagrams provide a white-box view of a compo-
nent, and thus are used to specify a component’s internal architecture.
They are well suited to specify architectural patterns. The main appli-
cation of composite structure diagrams in the context of this thesis is
to specify architectural patterns of connector fragments (also referred
to as connector templates), used by the PIM-to-PSM transformation
to synthesize communication middleware.

3. Deployment Diagram: To describe the system’s physical structure,
especially the relevant ECUs and the connecting bus systems, and to
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map the application components to the specific ECUs, deployment di-
agrams come to use. The main model artifacts used within deployment
diagrams are system building blocks, like ECUs and bus systems, and
components. Diagrams of this type are used as input for the PIM-to-
PSM transformation (the Connector Transformation), as they provide
information about the application components’ physical location, and
in consequence information about the types of explicit connectors.

All of these diagrams are additionally augmented with various contracts and
tags, to increase precision and comprehensibility.
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FlexRay Communication Layers

Table C.1 provides full information on the classification of all operations
within the FlexRay Driver layer, the FlexRay Interface layer, and the FlexRay
Transceiver Driver layer with respect to AUTOSAR R2, as much as their
mapping onto identified middleware components.

The COMPASS communication middleware is built upon following commu-
nication primitives: Transceiver Driver (TD), Time Service absolute (Time
Service a), Time Service relative (Time Service r), Time Service global (Time
Service g), Time Service full (Time Service full), Status (S),Media Test Sym-
bol (MTS), WakeUp Pattern (WUP), Communication Base (Base S), Com-
munication Base without cluster functionality (Base N), Transmitter (T),
and Receiver (R).

Each operation is represented by one row, while the columns represent the
COMPASS middleware component classes. If an operation has to be imple-
mented by a middleware component, a mark is placed in the operation’s row
at the component’s column.

TD Time Service S MTS WUP Base T R
Operation a r g full S N

FrIf_GetVersionInfo x x
FrIf_Init x
FrIf_ControllerInit x x
FrIf_ClusterInit x
FrIf_Transmit x
FrIf_StartControllerCommunication x x
FrIf_StartClusterCommunication x
FrIf_HaltControllerCommunication x x
FrIf_HaltClusterCommunication x
FrIf_AbortControllerCommunication x x
FrIf_AbortClusterCommunication x
FrIf_SetControllerState x x
FrIf_SetClusterState x
FrIf_GetControllerState x x
FrIf_GetClusterState x
FrIf_SetWakeupChannel x
FrIf_SendWUP x

continued on next page
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TD Time Service S MTS WUP Base T R
Operation a r g full S N

FrIf_SendMTS x
FrIf_CheckMTS x
FrIf_GetSyncState x
FrIf_SetExtControllerSync x x
FrIf_SetExtClusterSync x x
FrIf_GetPOCStatus x
FrIf_GetGlobalTime x x
FrIf_GetMactroticksPerCycle x x
FrIf_ConvertNanosecToMacroticks x x
FrIf_ConvertMacroticksToNanosec x x
FrIf_SetAbsoluteTimer x x
FrIf_SetRelativeTimer x x
FrIf_CancelAbsoluteTimer x x
FrIf_CancelRelativeTimer x x
FrIf_EnableAbsoluteTimerIRQ x x
FrIf_EnableRelativeTimerIRQ x x
FrIf_AckAbsoluteTimerIRQ x x
FrIf_AckRelativeTimerIRQ x x
FrIf_DisableAbsoluteTimerIRQ x x
FrIf_DisableRelativeTimerIRQ x x
FrIf_SetTransceiverMode x
FrIf_SetClusterTransceiverMode x
FrIf_GetTransceiverMode x
FrIf_GetTransceiverWUReason x
FrIf_EnableTransceiverWakeup x
FrIf_EnableClusterTransceiverWakeup x
FrIf_DisableTransceiverWakeup x
FrIf_DisableClusterTransceiverWakeup x
FrIf_ClearTransceiverWakeup x
FrIf_ClearClusterTransceiverWakeup x
FrIf_JoblistExec_<ClstIdx> x x
FrIf_MainFunction_<ClstIdx> x x
<User>_RxIndication x
<User>_TxConfirmation x
<User>_TriggerTransmit x

Fr_Init x x
Fr_ControllerInit x x
Fr_SendMTS x
Fr_CheckMTS x
Fr_StartCommunication x x
Fr_HaltCommunication x x
Fr_AbortCommunication x x
Fr_SendWup x
Fr_SetWakeupChannel x
Fr_SetExtSync x x
Fr_GetSyncState x
Fr_GetPOCStatus x x x
Fr_TransmitTxLSdu x
Fr_ReceiveRxLSdu x
Fr_CheckTxLSduStatus x
Fr_ConfigAllBuffers x x
Fr_GetGlobalTime x x x x
Fr_SetAbsoluteTimer x x x x
Fr_SetRelativeTimer x x
Fr_CancelAbsoluteTimer x x
Fr_CancelRelativeTimer x x
Fr_EnableAbsoluteTimerIRQ x x x x
Fr_EnableRelativeTimerIRQ x x
Fr_AckAbsoluteTimerIRQ x x x x
Fr_AckRelativeTimerIRQ x x
Fr_DisableAbsoluteTimerIRQ x x
Fr_DisableRelativeTimerIRQ x x
Fr_GetVersionInfo x x

FrTrcv_TrcvInit x
FrTrcv_SetTransceiverMode x
FrTrcv_GetTransceiverMode x
FrTrcv_GetTransceiverWUReason x
FrTrcv_GetVersionInfo x
FrTrcv_DisableTransceiverWakeup x
FrTrcv_EnableTransceiverWakeup x
FrTrcv_ClearTransceiverWakeup x
FrTrcv_MainFunctiorn x

continued on next page
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TD Time Service S MTS WUP Base T R
Operation a r g full S N

FrTrcv_Cbk_WakeupByTransceiver x

Table C.1: FlexRay communication primitives
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Appendix D

Manual Annotations for
Component Recognition

The component recognition algorithm (Cohesion Analysis) described in
Chapter 4 requires manual identification of first-class functions that are to be
considered by the analysis, and a specification of abstract memory locations
(structure fields) that relate to component classes. The following sections
denote the functions and structure fields as marked by domain experts, to
gain the results presented within this thesis.

D.1 Functions
Table D.1 contains all functions of the analyzed communication stack, which
should be included within middleware components, and have to be contained
within a provided-interface.

Function Name
FrIf_GetVersionInfo
FrIf_Init
FrIf_ControllerInit
FrIf_ClusterInit
FrIf_Transmit
FrIf_StartControllerCommunication
FrIf_StartClusterCommunication
FrIf_HaltControllerCommunication
FrIf_HaltClusterCommunication

continued on next page
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D.1. FUNCTIONS

Function Name
FrIf_AbortControllerCommunication
FrIf_AbortClusterCommunication
FrIf_SetControllerState
FrIf_SetClusterState
FrIf_GetControllerState
FrIf_GetClusterState
FrIf_SetWakeupChannel
FrIf_SendWUP
FrIf_SendMTS
FrIf_CheckMTS
FrIf_GetSyncState
FrIf_SetExtControllerSync
FrIf_SetExtClusterSync
FrIf_GetPOCStatus
FrIf_GetGlobalTime
FrIf_GetMactroticksPerCycle
FrIf_ConvertNanosecToMacroticks
FrIf_ConvertMacroticksToNanosec
FrIf_SetAbsoluteTimer
FrIf_SetRelativeTimer
FrIf_CancelAbsoluteTimer
FrIf_CancelRelativeTimer
FrIf_EnableAbsoluteTimerIRQ
FrIf_EnableRelativeTimerIRQ
FrIf_AckAbsoluteTimerIRQ
FrIf_AckRelativeTimerIRQ
FrIf_DisableAbsoluteTimerIRQ
FrIf_DisableRelativeTimerIRQ
FrIf_SetTransceiverMode
FrIf_SetClusterTransceiverMode
FrIf_GetTransceiverMode
FrIf_GetTransceiverWUReason
FrIf_EnableTransceiverWakeup
FrIf_EnableClusterTransceiverWakeup
FrIf_DisableTransceiverWakeup
FrIf_DisableClusterTransceiverWakeup

continued on next page
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D.1. FUNCTIONS

Function Name
FrIf_ClearTransceiverWakeup
FrIf_ClearClusterTransceiverWakeup
FrIf_JoblistExec_<ClstIdx>
FrIf_MainFunction_<ClstIdx>
Fr_10_ERAY_Init
Fr_10_ERAY_ControllerInit
Fr_10_ERAY_SendMTS
Fr_10_ERAY_CheckMTS
Fr_10_ERAY_StartCommunication
Fr_10_ERAY_HaltCommunication
Fr_10_ERAY_AbortCommunication
Fr_10_ERAY_SendWUP
Fr_10_ERAY_SetWakeupChannel
Fr_10_ERAY_SetExtSync
Fr_10_ERAY_GetSyncState
Fr_10_ERAY_GetPOCStatus
Fr_10_ERAY_TransmitTxLSdu
Fr_10_ERAY_ReceiveRxLSdu
Fr_10_ERAY_CheckTxLSduStatus
Fr_10_ERAY_ConfigAllBuffers
Fr_10_ERAY_GetGlobalTime
Fr_10_ERAY_SetAbsoluteTimer
Fr_10_ERAY_SetRelativeTimer
Fr_10_ERAY_CancelAbsoluteTimer
Fr_10_ERAY_CancelRelativeTimer
Fr_10_ERAY_EnableAbsoluteTimerIRQ
Fr_10_ERAY_EnableRelativeTimerIRQ
Fr_10_ERAY_AckAbsoluteTimerIRQ
Fr_10_ERAY_AckRelativeTimerIRQ
Fr_10_ERAY_DisableAbsoluteTimerIRQ
Fr_10_ERAY_DisableRelativeTimerIRQ
Fr_10_ERAY_GetVersionInfo
FrTrcv_TrcvInit
FrTrcv_SetTransceiverMode
FrTrcv_GetTransceiverMode
FrTrcv_GetTransceiverWUReason

continued on next page
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D.2. STRUCTURE FIELDS

Function Name
FrTrcv_GetVersionInfo
FrTrcv_DisableTransceiverWakeup
FrTrcv_EnableTransceiverWakeup
FrTrcv_ClearTransceiverWakeup
FrTrcv_MainFunctiorn
FrTrcv_Cbk_WakeupByTransceiver

Table D.1: Marked functions

D.2 Structure Fields
Table D.2 contains all structure fields that have been marked as irrelevant
for the component recognition algorithm. Fields are specified by the data
structure’s type and by the field’s name. An asterisk (*) at the field’s name
represents a wild-card, denoting all fields of the specific data structure.

Stucture Type Field Name
FrIf_TrcvFunctionType *
FrIf_ClusterType *
FrIf_CtrlType *
FrIf_RootConfigType *
FrIf_IdxMappingType DriverNumber
FrIf_EntityCountersType NrClst
FrIf_EntityCountersType *
FrIf_IdxMappingType FrIdx
Fr_10_ERAY_CtrlCfgType BufferCfgPtr
Fr_10_ERAY_BufferCfgType *
Fr_10_ERAY_CfgType *
Fr_10_ERAY_CtrlCfgType nBufferCfgSize

Table D.2: Marked fields
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