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Chapter 1

Introduction

In this thesis we discuss the stability of a linear control system, which is a slight generalization
of a controller applied to an infinite-dimensional model of a gantry crane with heavy chains. In
this introduction we describe the underlying situation and briefly sketch the derivation of the
equations for the controller, as discussed in [11], see also [10].
The model consists of a cart of mass mw, which moves horizontally along a rail, a chain of
length L with mass per length ρ, attached to the cart1, and a load of mass mp at its end,
which is considered to be point-like. The chain is assumed to be non-elastic. Furthermore,
any friction occuring in this system is assumed to be negligible, and is therefore not taken

Figure 1.1: Model of a Gantry Crane (from [11]).

into account.
The objective of applying a con-
troller to this system is to move the
cart in such a way that the chain
follows a desired trajectory. In most
cases this will be to damp out vibra-
tions of the chain, e.g. oscillations
arising from an abrupt stop of the
cart. The controller will be realized
as an appropriate, time-dependent
force F acting upon the cart. The
situation is sketched in Figure 1.1.
Before specifying the control force
F, we have to find the equations of
motion of the system. The horizon-
tal deflection of the chain at height
x (vertical distance from the cart)
and at time t is denoted by w(t, x).
In the model considered here we as-
sume that the occuring oscillations, especially the function ∂xw(t, x), remain sufficiently small
for all t > 0, such that we can assume arctan ∂xw(t, x) ≈ ∂xw(t, x). With this, the equations
describing the dynamics of the system, already taking into account an exterior force F acting
upon the cart, can be derived via Hamilton’s principle. The obtained equations of motion are
the following:

ρ∂2
tw(t, x)− ∂x(P (x)∂xw(t, x)) = 0, (1.1a)
mw∂

2
tw(t, 0)− P (0)∂xw(t, 0) = F (t), (1.1b)

mp∂
2
tw(t, L) + P (L)∂xw(t, L) = 0. (1.1c)

The function P (x) represents the gravitational pull on the chain at height x, given by P (x) =
g[ρ(L − x) + mp], where g denotes the gravitational acceleration. We note that P ≥ mp > 0

1Please note that here only a single chain is considered, unlike the pair of parallel chains as used in [11]. This
change corresponds to the substitution ρ→ ρ/2.

1



holds uniformly on [0, L]. In this thesis we expand this model developped in [11], as described
above, by considering more general functions P : We only require that P ∈ H2(0, L) and that
P > 0 holds uniformly on [0, L].
Let wd denote a given trajectory, satisfying system (1.1) with a certain force Fd acting upon the
cart. The desired property of the controller is to determine a force F such that the trajectory w
approaches the desired trajectory wd. Defining the error function we := w−wd, this is equivalent
to the requirement that we → 0 in an appropriate way. We refer to this as asymptotic stability
of the controller. We find, due to linearity of the equations (1.1), that we also satisfies

ρ∂2
twe(t, x)− ∂x(P (x)∂xwe(t, x)) = 0, (1.2a)
mp∂

2
twe(t, L) + P (L)∂xwe(t, L) = 0. (1.2b)

In order to determine the controlling force F, we first introduce a function Fe such that

F (t) = −P (0)∂xw(t, 0) +mw∂
2
twd(t, 0) + Fe(t).

From (1.1b) we find that
Fe(t) = mw∂tve(t, 0), (1.3)

where ve(t, 0) := ∂twe(t, 0). In order to design the controller, a first approach is to consider a
functional Ve depending on we, ve, describing the energy of the system, and find conditions on
Fe such that the derivative of Ve with respect to the time satisfies d

dtVe(t) ≤ 0. This condition
implies that the controller extracts energy from the error system (1.2), (1.3), and that therefore
the error function we is expected to be non-increasing (in an appropriate norm). As discussed
in [11] it is reasonable to assume that Fe is of the form

Fe(t) = ϑ1ve(t, 0) + ϑ2∂xve(t, 0) + ϑ3we(t, 0) + ϑ4∂xwe(t, 0),

with real coefficients ϑi. In this thesis we explicitly define an inner product in an appropriate
Hilbert space, such that the corresponding norm serves as the function Ve itself. As discussed in
Chapter 3, this allows us to make use of the theory of C0-semigroups of contractions to derive
conditions on the ϑi such that the norm of the error function we is non-increasing along every
trajectory. In practice, this is a very important property of a controller which clearly must be
fulfilled. However, in general, this is not sufficient for the proof of asymptotic stability since the
error function we may remain uniformly bounded but not necessarily tends to zero. Therefore,
in Chapter 4, we explicitly prove asymptotic stability. Finally, in Chapter 5 we show that the
controller not only is asymptotically stable, but even exponentially stable, which means that
the norm of the error function we tends to zero exponentially.
The conclusion of these statements is that, under certain conditions on the ϑi, the discussed
controller satisfies the requirements of stabilizing the system, i.e. the chain will follow the desired
trajectory with decreasing error. For example, if the state desired to attain is the passive state
with non-oscillating chain, the controller will proceed to damp any initial vibrations of the
chain, and in a finite time, any vibrations remaining will be below a certain threshold, e.g. the
accuracy of the sensors attached to the chain.
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Chapter 2

Preliminaries

To begin with we present the problem considered in this thesis in an appropriate mathematical
framework, which is needed for further investigations.

In this thesis we analyse the stability of the following system satisfied by the error function we,
obtained from (1.2) and (1.3)1:

ρ∂2
tw(t, x)− ∂x(P (x)∂xw(t, x)) = 0, x ∈ (0, L), t > 0, (2.1a)
mp∂

2
tw(t, L) + P (L)∂xw(t, L) = 0, (2.1b)

mw∂
2
tw(t, 0) = F (t), (2.1c)

where F (t) := ϑ1∂tw(t, 0) +ϑ2∂x∂tw(t, 0) +ϑ3w(t, 0) +ϑ4∂xw(t, 0), with ϑi ∈ R to be specified
later. The function P ∈ H2(0, L) ↪→ C1[0, 1] is real-valued, satisfying minx∈[0,L] P (x) > 0, and
ρ, mp, and mw are positive constants. Before mathematically analyzing the above problem, we
eliminate most numerical coefficients. To this end, we rescale length and time, i.e. we introduce
new parameters (x̃, t̃), corresponding to the linear transformation x = s1x̃, and t = s2t̃, and
si > 0. Setting s1 = mp

ρP (L) and s2 = s1
√
ρ, equations (2.1a) and (2.1b) become

∂2
t̃w(t̃, x̃)− ∂x̃(P (x̃)∂x̃w(t̃, x̃)) = 0, x̃ ∈ (0, L̃), t̃ > 0, (2.1a’)

∂2
t̃w(t̃, L̃) + ∂x̃w(t̃, L̃) = 0 (2.1b’)

in new coordinates. In (2.1c), mw and all additional factors arising from the change of coordi-
nates can be absorbed in the coefficients ϑi appearing in F, which yields new coefficients ϑ̃i. In
the following, we will only consider the equations in the new coordinates x̃ and t̃. Thus we can
omit the symbol .̃ and simply write x, t and ϑi.

Before we analyse the stability of this system, we re-write it in terms of an initial value problem
in an appropriate Hilbert space: for this we define the complex Hilbert space

H = {z = (w, v, ξ, ψ) : w ∈ H2(0, L), v ∈ H1(0, L), ξ = v(L), ψ = v(0)}, (2.2)

which is a closed subspace of H2 × H1 × C × C. The auxiliary scalar variables ξ, ψ are
introduced in order to include the dynamical boundary conditions (2.1b), (2.1c) into the initial
value problem. H is equipped with the natural inner product given by

〈z1, z2〉∗ = 〈w1, w2〉H2 + 〈v1, v2〉H1 + ξ1ξ̄2 + ψ1ψ̄2,

where ξ̄ denotes the complex conjugate of ξ. Let the linear operator A : D(A) ⊂ H → H be
defined as

A :


w
v
ξ
ψ

 7→


v
(Pw′)′

−w′(L)
ϑ1v(0) + ϑ2v

′(0) + ϑ3w(0) + ϑ4w
′(0)

 , (2.3)

1Since we only consider the error system in the following, we write w = we and F = Fe for simplicity.
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where w′ denotes the spatial derivative of w. The (dense) domain of A is defined as

D(A) :=
{
z = (w, v, ξ, ψ) : w ∈ H3(0, L), v ∈ H2(0, L), ξ = v(L), ψ = v(0), (2.4)

(Pw′)′(L) = −w′(L), (Pw′)′(0) = F
}
,

where F := ϑ1v(0) + ϑ2∂xv(0) + ϑ3w(0) + ϑ4∂xw(0). The boundary conditions stated in D(A)
arise naturally from the requirement that R(A) ⊂ H. With these definitions, we can rewrite
system (2.1) as the following initial value problem in H :{

ż(t) = Az(t),
z(0) = z0 ∈ D(A).

(2.5)

In this thesis we prove that, under certain conditions on the ϑi, A generates a C0-semigroup of
contractions, and that every solution of ż = Az exponentially converges to 0. For the proofs,
the natural inner product 〈·, ·〉∗ on H is not always useful to work with. Therefore, we define
an equivalent inner product, which is more suitable for the considered problem:

〈z1, z2〉H := α1

∫ L

0

[γ(Pw′1)′(Pw̄′2)′ + Pw′1w̄
′
2] dx+ α1γP (L)w′1(L)w̄′2(L)

+α2w1(0)w̄2(0) + α1

∫ L

0

(γPv′1v̄
′
2 + v1v̄2) dx+ α1P (L)ξ1ξ̄2 + α2γψ1ψ̄2

+
1
2
(
ψ1 − 2α1P (0)w′1(0) + 2α2w1(0)

)(
ψ̄2 − 2α1P (0)w̄′2(0) + 2α2w̄2(0)

)
,

where α1, α2, and γ for now are arbitrary positive constants and are specified later in the proof
of Lemma 3.6. We have the following lemma:

Lemma 2.1. The norm ‖ · ‖H is equivalent to the natural norm ‖ · ‖∗ on H.

Proof. We have to prove the existence of constants c1, c2 > 0 such that c1‖z‖∗ ≤ ‖z‖H ≤ c2‖z‖∗
holds for all z ∈ H. To verify the first inequality, it remains to show the existence of c̃1 such
that ∫ L

0

γ((Pw′)′)2 + P (w′)2 dx ≥ c̃1
∫ L

0

(w′′)2 + (w′)2 dx (2.6)

holds for all real-valued w ∈ H2(0, L). Using the properties of P mentioned above, Lemma A.1
can be applied pointwise in x with a =

√
γ P ′(x), b =

√
γ P (x), ε = P (x), x1 = w′(x), and

x2 = w′′(x), which directly yields the desired inequality (2.6).
To verify the second inequality, it suffices to apply Cauchy’s inequality ab ≤ a2

2 + b2

2 , a, b ∈ R,
to all non-quadratic terms in ‖z‖2H.
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Chapter 3

Generation of a Semigroup of
Contractions

In the following we characterize the conditions on the ϑi such that the operator A defined in
(2.3) generates a C0-semigroup of contractions. The main statement is the following theorem:

Theorem 3.1. Let A be the operator defined in (2.3) and let there be constants a, b > 0
satisfying (a+ b− 1)2 < 4ab, such that

ϑ1 =
ϑ3

b
− a, ϑ2 =

ϑ4

b
, (3.1)

and ϑ1, ϑ3 < 0 and ϑ2, ϑ4 > 0. Then A is the infinitesimal generator of a C0-semigroup of
contractions {T (t)}t≥0 on H.

This result follows readily from the following theorem (cf. [9], Theorem 4.3, Chapter I):

Theorem 3.2 (Lumer-Phillips). Let X be a Banach space. A linear operator A with dense
domain D(A) ⊂ X is the infinitesimal generator of a C0-semigroup of contractions if and only
if A is dissipative and ran(A− λ0) = X for a λ0 > 0.

Remark 3.3. If X is a Hilbert space with inner product 〈·, ·〉, the dissipativity of a densely
defined, linear operator A is equivalent to the condition (cf. [9], [13])

Re〈z,Az〉 ≤ 0, ∀z ∈ D(A).

In the case considered here, it is sufficient to use the following corollary of the above theorem
(cf. [6], Theorem 1.2.4):

Theorem 3.4. Let X be a Banach space, and A a linear operator with dense domain D(A) ⊂
X. Then A is the infinitesimal generator of a C0-semigroup of contractions if A is dissipative
and 0 ∈ ρ(A), the resolvent set of A.

A proof can be found in [6]. Here we give an alternative proof:

Proof. From the fact, that ρ(A) is an open set, and 0 ∈ ρ(A), we conclude that ran(A−λ0) = X
for all |λ0| sufficiently small. The theorem now follows from the Lumer-Phillips theorem.

In order to prove Theorem 3.1, we need to verify the conditions stated in Theorem 3.4.

Lemma 3.5. The domain D(A) of the operator A defined in (2.3) is dense in H.

Proof. Let z0 = (w0, v0, ξ0, ψ0) ∈ H. Since the inclusions H3(0, L) ⊂ H2(0, L) ⊂ H1(0, L) are
dense, there exists a sequence zn = (wn, vn, ξn, ψn) ∈ H3(0, L)×H2(0, L)× C2 ∩ H such that
zn → z0 in H. Now, in general, the second derivatives ∂2wn(0), ∂2wn(L) will not satisfy the
boundary conditions necessary for zn ∈ D(A).
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The fact that H1
0 (0, L) ⊂ L2(0, L) dense ensures the existence of a sequence {un} ⊂ H1(0, L)

satisfying un(0) = a for all n ∈ N and any fixed a ∈ C, with ‖un‖L2 → 0. The sequence {yn}
defined by

yn :=
∫ x

0

∫ ξ

0

un(ζ) dζ dξ

satisfies ∂2yn(0) = a for all n ∈ N, and ‖yn‖H2 → 0.
This shows that for the sequence {wn} the values ∂2wn(0), ∂2wn(L) can be modified such that
{zn} ⊂ D(A), but still zn → z0 in H.

Lemma 3.6. Let the assumptions of Theorem 3.1 hold. Then the operator A is dissipative.

Proof. For all z ∈ D(A) we have:

Re〈z,Az〉H = Re
[
α1γ

∫ L

0

(Pw′)′(P v̄′)′ dx+ α1

∫ L

0

Pw′v̄′ dx

+α1γP (L)w′(L)v̄′(L) + α2w(0)v̄(0)

+α1γ

∫ L

0

Pv′(Pw̄′)′′ dx+ α1

∫ L

0

v(Pw̄′)′ dx

−α1P (L)v(L)w̄′(L) + α2γv(0)F̄

+
1
2
[
v(0)− 2α1P (0)w′(0) + 2α2w(0)

][
F̄ − 2α1P (0)v̄′(0) + 2α2v̄(0)

]]
= Re

[
α1γ

∫ L

0

[
Pv′(Pw̄′)′

]′ dx+ α1

∫ L

0

[
Pvw̄′

]′ dx (3.2)

+α1γP (L)w′(L)v̄′(L) + α2w(0)v̄(0)
−α1P (L)v(L)w̄′(L) + α2γv(0)F̄

+
1
2
[
v(0)− 2α1P (0)w′(0) + 2α2w(0)

][
F̄ − 2α1P (0)v̄′(0) + 2α2v̄(0)

]]
.

Using the boundary conditions in D(A) to evaluate the term Pv′(Pw̄′)′|L0 , we find that the real
parts of all terms at x = L cancel against the real part of the third term of (3.2). The remaining
terms are

Re〈z,Az〉H = Re
[
v̄(0)[−α1P (0)w′(0) + α2w(0)] + γF̄ [−α1P (0)v′(0) + α2v(0)] +

+
1
2
[
v(0)− 2α1P (0)w′(0) + 2α2w(0)

][
F̄ − 2α1P (0)v̄′(0) + 2α2v̄(0)

]]
.

By introducing the functional J : w 7→ −2α1P (0)w′(0) + 2α2w(0), we simplify the expression:

Re〈z,Az〉H =
1
2

Re
{
v̄(0)J(w) + γF̄J(v) +

[
v(0) + J(w)

][
F̄ + J(v̄)

]}
. (3.3)

Using (3.1) we can write F = −av(0)− bJ(w)− J(v) with a, b > 0. This fixes

α1 :=
ϑ2

2P (0)
> 0, α2 := −ϑ2ϑ3

2ϑ4
> 0.

Then the right hand side of (3.3) only depends on the three independent values v(0), J(w) and
J(v). Introducing the new variables y1 =

√
a v(0), y2 =

√
b J(w) and y3 =

√
γ J(v) yields:

Re〈z,Az〉H =
1
2
(
P3(Re y1,Re y2,Re y3) + P3(Im y1, Im y2, Im y3)

)
, (3.4)

where P3 is the polynomial defined by

P3(x1, x2, x3) := −x2
1 − x2

2 − x2
3 − 2x1x2

(a+ b− 1
2
√
ab

)
− 2x2x3

(√bγ
2

)
− 2x1x3

(√aγ
2

)
. (3.5)
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Hence, the dissipativity of A is equivalent to

x2
1 +x2

2 +x2
3 + 2x1x2

(a+ b− 1
2
√
ab

)
+ 2x2x3

(√bγ
2

)
+ 2x1x3

(√aγ
2

)
≥ 0, ∀x1, x2, x3 ∈ R. (3.6)

Applying Lemma A.2 yields the following conditions:

a, b ≤ 4
γ
,

(a+ b− 1)2

4ab
≤ 1,

(a+ b− 1)2

4ab
≤ 1− γ

4
.

Since γ > 0 has not yet been specified, we can choose γ arbitrary small, so that the above
conditions reduce to the single condition

(a+ b− 1)2

4ab
< 1. (3.7)

Matching the coefficients in F = ϑ1v(0) +ϑ2v
′(0) +ϑ3w(0) +ϑ4w

′(0) = −av(0)− bJ(w)−J(v)
yields the desired relations for ϑ1, . . . , ϑ4.

Remark 3.7. Condition (3.7) can be simplified by making an coordinate transformation, â =
a + b, b̂ = a − b. The condition then reduces to b̂2 < 2â − 1, which is satisfied exactly by the
set of points inside the parabola touching the coordinate-axes at the points (a, b) = (1, 0) and
(a, b) = (0, 1).

Lemma 3.8. Let A be the operator defined in (2.3), and ϑ3 6= 0. Then A−1 exists and D(A−1) =
H.

Proof. We will prove this Lemma by showing that the equation Az = (f, g, g(L), g(0)) has a
unique solution z ∈ D(A) for every (f, g, g(L), g(0)) ∈ H :

v
(Pw′)′

−w′(L)
ϑ1v(0) + ϑ2v

′(0) + ϑ3w(0) + ϑ4w
′(0)

 =


f
g

g(L)
g(0)

 . (3.8)

From the first line we immediately get v = f ∈ H2(0, L), which also fixes the values v(0) and
v′(0). The third line yields w′(L) = −g(L). After integration of the second line we get

w′(x) =
P (L)
P (x)

w′(L) +
1

P (x)

∫ x

L

g(y) dy. (3.9)

The occuring integral exists, because g ∈ H1(0, L). Since w′(L) is already known, we can
compute the value w′(0) from this equation. Together with the already known values v(0) and
v′(0), we obtain w(0) from the fourth line in (3.8), since ϑ3 6= 0. With this, w(x) can uniquely
be determined by integration of equation (3.9):

w(x) = w(0) +
∫ x

0

P (L)
P (y)

w′(L) dy +
∫ x

0

1
P (y)

∫ y

L

g(ζ) dζ dy. (3.10)

All integrals exist, since P (x) > 0 holds uniformly, and
∫ x
L
g(y) dy is continuous. It remains

to check that w ∈ H3(0, L) is satisfied. This follows from (3.9) with g ∈ H1(0, L) and P−1 ∈
H2(0, L). Thus, the inverse A−1 exists and is defined on H.

Lemma 3.9. The operator A−1 is compact.

Proof. We show that for (f, g, g(L), g(0)) ∈ H and z = A−1(f, g, g(L), g(0)) the norm of z in
J = H3(0, L)×H2(0, L)× C2 is uniformly bounded by ‖(f, g, g(L), g(0))‖H.
Due to the continuous embedding H1(0, L) ↪→ C[0, L] in one dimension (see e.g. [1]), we have
the estimates |g(L)|, |g(0)| ≤ C‖g‖H1 . From the third line in (3.8) we therefore get |w′(L)| ≤
C‖g‖H1 . With this and (3.9) we find the estimate

‖w′‖L2 ≤ C‖g‖H1 . (3.11)
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Applying this result to the identity Pw′′ = g− P ′w′, which is obtained from the second line in
(3.8), and using the fact that P ′ ∈ L2(0, L), yields

‖w′′‖L2 ≤ C‖g‖H1 . (3.12)

Similarly, from (Pw′)′′ = g′ we obtain the estimate

‖w′′′‖L2 ≤ C‖g‖H1 . (3.13)

For v we immediately get ‖v‖H2 = ‖f‖H2 using the first line in (3.8). Due to the continuous
embedding Hk(0, L) ↪→ Ck−1[0, L] in one dimension (cf. [1]), we find the following estimates

|v(0)| ≤ C‖f‖H2 , (3.14)
|v′(0)| ≤ C‖f‖H2 . (3.15)

Using the above estimate for w′(L) and (3.9) we obtain

|w′(0)| ≤ C‖g‖H1 . (3.16)

Applying the above estimate to g(0) and (3.14), (3.15), (3.16) to the fourth line of (3.8) yields

|w(0)|2 ≤ C(‖f‖2H2 + ‖g‖2H1). (3.17)

Altogether, we get
‖w‖2H3 ≤ C(‖f‖2H2 + ‖g‖2H1). (3.18)

Thus, we have ‖w‖2H3 + ‖v‖2H2 ≤ C(‖f‖2H2 + ‖g‖2H1), which shows that A−1 maps bounded
sets in H to bounded sets in J . Since the embeddings H3(0, L) ⊂⊂ H2(0, L) ⊂⊂ H1(0, L) are
compact, A−1 is a compact operator.

Now, Theorem 3.1 follows directly from the above results:

Proof of Theorem 3.1. Due to the results of Lemmata 3.6, 3.8 and 3.9, all assumptions of
Theorem 3.4 are satisfied. Hence, we have proved Theorem 3.1.

The following corollary follows as a consequence of Theorem 3.1, due to elementary properties
of generators of C0-semigroups of operators (see [9] for more details):

Corollary 3.10. Under the assumptions of Theorem 3.1, the initial value problem{
ż(t) = Az(t)
z(0) = z0

(3.19)

has a unique mild solution z(t) := T (t)z0 for all z0 ∈ H, where {T (t)}t≥0 is the C0-semigroup
generated by A. If z0 ∈ D(A), then z(t) is continuously differentiable on [0,∞) and z(t) ∈ D(A)
for all t ≥ 0, and therefore is a classical solution. Furthermore, the norm ‖z(t)‖H is non-
increasing.

Remark 3.11. The particular controller developed in [11] satisfies the conditions for ϑ1, . . . , ϑ4

in Theorem 3.1 with b = a+1. With this identity, the condition (a+b−1)2 < 4ab clearly holds,
and therefore the controller generates a C0-semigroup of contractions.
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Chapter 4

Asymptotic Stability

After having shown that the norm of every solution of the initial value problem (3.19) is non-
increasing in the previous chapter, we now prove that the norm even tends to zero as t → ∞.
We refer to this as asymptotic stability of the C0-semigroup of contractions {T (t)}t≥0 generated
by the dissipative operator A defined in (2.3).

Definition 4.1 (Asymptotic Stability). A C0-semigroup {S(t)}t≥0 in a Banach space X is said
to be asymptotically stable if for every z ∈ X : ‖S(t)z‖ → 0 as t→∞.

To show asymptotic stability of the semigroup {T (t)}t≥0 from Chapter 3, we apply the following
theorem (see [7], Theorem 3.26):

Theorem 4.2. Let {S(t)}t≥0 be a uniformly bounded C0-semigroup in a Banach space X
with generator A, and assume that the resolvent R(λ,A) is compact for some λ ∈ ρ(A). Then
{S(t)}t≥0 is asymptotically stable if and only if Reλ < 0 for all λ ∈ σ(A).

Remark 4.3. Lemma B.1 shows that it is sufficient to show that the resolvent R(λ,A) is
compact for one λ = λ0 ∈ ρ(A), as this already implies the compactness of R(λ,A) for all
λ ∈ ρ(A).

Before we apply Theorem 4.2, we first need to show the following lemma:

Lemma 4.4. Under the assumptions of Theorem 3.1, {λ ∈ C : Reλ ≥ 0} ⊂ ρ(A) holds.

Proof. As a consequence of the Hille-Yoshida theorem (see [9], Corollary 1.3.6), for any in-
finitesimal generator of a C0-semigroup of contractions we have the inclusion {λ ∈ C : Reλ >
0} ⊂ ρ(A). Hence, it remains to prove that iR ⊂ ρ(A).
We already showed in Lemma 3.9 that the operator A−1 is compact. Therefore, its spectrum
σ(A−1) is at most countable and consists only of the point spectrum, i.e. σ(A−1) = σp(A−1).
From this, we immediately get σ(A) = σp(A) = σp(A−1)−1. Thus, it is sufficient to show that
A− iτ is injective for all τ ∈ R, that is to show that the system

v − iτw
(Pw′)′ − iτv
−w′(L)− iτv(L)

ϑ1v(0) + ϑ2v
′(0) + ϑ3w(0) + ϑ4w

′(0)− iτv(0)

 = 0 (4.1)

only has the trivial solution in D(A). We can rewrite this system in terms of the following
equivalent boundary value problem (BVP) for w ∈ H3(0, L) ↪→ C2[0, L] :

(Pw′)′ + τ2w = 0, x ∈ (0, L), (4.2a)
w′(0) = c0w(0), (4.2b)
w′(L) = cLw(L), (4.2c)
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where c0 := −ϑ3+τ
2+iτϑ1

ϑ4+iτϑ2
and cL := τ2. It is important to note that the conditions (3.1) on the

ϑi imply that c0 /∈ R for all τ ∈ R. We now multiply equation (4.2a) by the complex conjugate
w̄ and integrate by parts, which yields

−
∫ L

0

P |w′|2 dx+ τ2‖w‖2L2 + P (L)w′(L)w̄(L) = P (0)w′(0)w̄(0).

Due to the boundary conditions (4.2b) and (4.2c) the left hand side of above identity is real,
but the right hand side is either non-real or zero. Thus w′(0)w̄(0) = 0, and (4.2b) implies that
w(0) = w′(0) = 0. Therefore, every solution of the boundary value problem (4.2) also satisfies
the initial value problem

(Pw′)′ + τ2w = 0, x ∈ (0, L),
w(0) = 0,
w′(0) = 0.

Hence, w ≡ 0, and this shows that A− iτ is injective for all τ ∈ R.

Now we can prove the main statement of this chapter:

Theorem 4.5. Let the assumptions of Theorem 3.1 hold. Then the C0-semigroup of contrac-
tions {T (t)}t≥0 generated by A is asymptotically stable.

Proof. In Lemma 3.9 we showed that 0 ∈ ρ(A) and that A−1 = R(0, A) is compact. By Lemma
4.4 we have Reλ < 0 for all λ ∈ σ(A). Therefore, our assertion follows from Theorem 4.2.
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Chapter 5

Exponential Stability

Here we show an even stronger result than asymptotic stability, namely exponential stability
of the semigroup {T (t)}t≥0, i.e. we prove that every solution of the initial value problem (3.19)
tends to zero exponentially. We follow a strategy similar to the one applied in [8].

Definition 5.1 (Exponential stability). A C0-semigroup {S(t)}t≥0 is said to be exponentially
stable if there exist constants M ≥ 1 and ω > 0 such that ‖S(t)‖ ≤M exp(−ωt) for all t ≥ 0.

To investigate exponential stability of a C0-semigroup, we use the following theorem (see [7],
Corollary 3.36, and [4]):

Theorem 5.2 (Huang). Let {S(t)}t≥0 be a uniformly bounded C0-semigroup in a Hilbert space,
and let A be its generator. Then {S(t)}t≥0 is exponentially stable if and only if iR ⊂ ρ(A) and

sup
τ∈R
‖R(iτ,A)‖ <∞. (5.1)

Remark 5.3. We know from the previous chapter that iR ⊂ ρ(A). The map λ 7→ R(λ,A) is
analytic on ρ(A) (cf. [13]), so, in particular, λ 7→ ‖R(λ,A)‖ is continuous on iR. Therefore it
remains to prove that ‖R(iτ,A)‖ is uniformly bounded as |τ | → ∞.

Now we are able to prove the main theorem of this chapter:

Theorem 5.4. Assume that the conditions in Theorem 3.1 are satisfied. Then the C0-semigroup
of contractions {T (t)}t≥0 generated by A is exponentially stable.

Proof. In order to prove that ‖R(iτ,A)‖ is uniformly bounded for |τ | → ∞, we need to find an
appropriate estimate for the solution z = (w, v, v(L), v(0)) of the equation

(A− iτ)z = (f, g, g(L), g(0)) ∈ H (5.2)

in terms of the right hand side. We show that the unique solution1 (w, v) of the BVP

v − iτw = f, x ∈ (0, L), (5.3a)
(Pw′)′ − iτv = g, x ∈ (0, L), (5.3b)

−w′(L)− iτv(L) = g(L), (5.3c)
ϑ1v(0) + ϑ2v

′(0) + ϑ3w(0) + ϑ4w
′(0)− iτv(0) = g(0) (5.3d)

satisfies the estimate
‖w‖H2 + ‖v‖H1 ≤ C(‖f‖H2 + ‖g‖H1) (5.4)

uniformly for all f ∈ H2(0, L), g ∈ H1(0, L) and for all |τ | sufficiently large.
Since v and w are directly related via equation (5.3a), we replace v in (5.3b)-(5.3d) by v = f+iτw

1See Lemma 4.4.
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to obtain the following BVP for w :

(Pw′)′ + τ2w = g + iτf, x ∈ (0, L), (5.5a)
−w′(L) + τ2w(L) = (g + iτf)(L), (5.5b)

(ϑ4 + iτϑ2)︸ ︷︷ ︸
=:γ1

w′(0) + (ϑ3 + τ2 + iτϑ1)︸ ︷︷ ︸
=:γ2

w(0) = (g + iτf)(0)− ϑ1f(0)− ϑ2f
′(0). (5.5c)

With this, we first show the desired estimate for w.

Step 1: Homogeneous boundary conditions.
To begin with, we shall transform (5.5) into a BVP with homogeneous boundary conditions. To
this end, we use (5.5a) to eliminate the terms w(0) and w(L). This yields, after differentiating
(5.5a), the following BVP for ỹ := Pw′ :

ỹ′′ +
τ2

P
ỹ = g′ + iτf ′, x ∈ (0, L), (5.6a)

ỹ(L) + P (L)ỹ′(L) = 0, (5.6b)
γ1

P (0)
ỹ(0)− γ2

τ2
ỹ′(0) = −g(0)

τ2
(ϑ3 + iτϑ1)− iϑ3

τ
f(0)− ϑ2f

′(0)︸ ︷︷ ︸
=:R1

. (5.6c)

In order to make the second boundary condition homogeneous, we determine a first order
polynomial h(x) = a1x+a0, such that h(x) satisfies the boundary conditions (5.6b),(5.6c). The
coefficients can be determined uniquely:

a1 = − τ2P (0)R1

γ1τ2(L+ P (L)) + P (0)γ2
, a0 = −(L+ P (L))a1. (5.7)

We note that, as already mentioned in the previous section, γ1/γ2 /∈ R, and so a1 is always well
defined. For |τ | > 1 we find the estimate

|ai| ≤
C

τ2
(‖g‖H1 + |τ |‖f‖H2), (5.8)

by using the continuous embedding Hk(0, L) ↪→ Ck−1[0, L] in one dimension (cf. [1]) to estimate
the terms occuring in R1. Now, the function y := ỹ − h satisfies the following problem with
homogeneous boundary conditions:

y′′ +
τ2

P
y = H := g′ + iτf ′ − τ2

P
h, x ∈ (0, L), (5.9a)

y(L) + P (L)y′(L) = 0, (5.9b)
γ1

P (0)
y(0)− γ2

τ2
y′(0) = 0. (5.9c)

We note that the function H can be split into two parts H = Hg + Hf , such that Hg only
depends on g, and Hf only on f.

Step 2: Solution estimate.
Now we determine the solution of (5.9). Let {ϕ1, ϕ2} be a basis of solutions of the homogeneous
equation y′′ + τ2

P y = 0. Then, the general solution of the inhomogeneous equation (5.9a) can
be obtained by variation of constants:

y(x) = c1ϕ1(x) + c2ϕ2(x) +
∫ x

0

H(t)
ϕ1(t)ϕ2(x)− ϕ2(t)ϕ1(x)
ϕ1(t)ϕ′2(t)− ϕ′1(t)ϕ2(t)

dt (5.10)

= c1ϕ1(x) + c2ϕ2(x) +
∫ x

0

H(t)J(x, t) dt, (5.11)
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where J(x, t) is the Green’s function introduced in Lemma C.1, and ci ∈ C are arbitrary
constants. The derivative y′(x) satisfies

y′(x) = c1ϕ
′
1(x) + c2ϕ

′
2(x) +

∫ x

0

H(t)∂xJ(x, t) dt. (5.12)

In order to determine the constants ci we now specify the initial conditions of the solutions
ϕ1, ϕ2 :

ϕ1(0) = 0, ϕ2(0) = 1,
ϕ′1(0) = τ, ϕ′2(0) = 0.

We point out that these conditions imply that the functions ϕi are real-valued. From the
boundary conditions (5.9b),-(5.9c) we then find

c1 =
−
∫ L
0
H(t)J(L, t) dt− P (L)

∫ L
0
H(t)∂xJ(L, t) dt

ϕ1(L) + P (L)ϕ′1(L) + γ2P (0)
γ1τ

[ϕ2(L) + P (L)ϕ′2(L)]
, c2 =

γ2P (0)
γ1τ

c1. (5.13)

Again, since γ2/γ1 /∈ R and ϕ1, ϕ2 are linearly independent, the coefficients c1, c2 are well
defined. Next we estimate these coefficients. First, we find that for |τ | → ∞ we have

γ2P (0)
γ1τ

→ − iP (0)
ϑ2

.

Therefore, we can find some constant C > 0, independent of τ , such that the denominator N
of c1 can be estimated as follows:

|N |2 :=
∣∣∣∣ϕ1(L) + P (L)ϕ′1(L) +

γ2P (0)
γ1τ

[ϕ2(L) + P (L)ϕ′2(L)]
∣∣∣∣2

≥ C
(
|ϕ1(L) + P (L)ϕ′1(L)|2 + |ϕ2(L) + P (L)ϕ′2(L)|2

)
.

From the initial conditions of ϕ1, ϕ2 and Lemma C.1 we find that the Wronskian satisfies
ϕ′1(L)ϕ2(L) − ϕ1(L)ϕ′2(L) = τ. Since ‖ϕi‖L∞ is uniformly bounded for all τ sufficiently large
by Lemma C.2, we conclude that |ϕ′1(L)|+ |ϕ′2(L)| ≥ Cτ, for some constant C > 0 independent
of τ. With this result, we obtain the estimate

|N | ≥ C|τ |, (5.14)

for all |τ | > 1, and C independent of τ.
Now it remains to estimate the integrals occuring in c1 and those in (5.11) and (5.12). Due to
the estimates for h found in (5.8), by applying Theorem C.3 on Hf and the Cauchy-Schwarz
inequality on the integral containing Hg, we find that∥∥∥∥∫ x

0

H(t)J(x, t) dt
∥∥∥∥
L∞

≤ C

|τ |
(‖g‖H1 + ‖f‖H2), (5.15)∥∥∥∥∫ x

0

H(t)∂xJ(x, t) dt
∥∥∥∥
L∞

≤ C(‖g‖H1 + ‖f‖H2), (5.16)

with C > 0 independent of τ, and for all |τ | > 1. Therefore we conclude that the estimate
|ci| ≤ C

|τ | (‖g‖H1 + ‖f‖H2) holds uniformly in τ. Applying these results and the estimates found
in Lemma C.2 to the basis-functions ϕ1, ϕ2, we find that the following estimates hold uniformly
for |τ | > 1 :

‖y‖L2 ≤ C

|τ |
(‖g‖H1 + ‖f‖H2), (5.17)

‖y‖H1 ≤ C(‖g‖H1 + ‖f‖H2). (5.18)

Using (5.8), we see that the same estimates hold for ỹ. Furthermore, by using ỹ = Pw′ and the
equation (5.5a), we find

‖w‖H1 ≤ C

|τ |
(‖g‖H1 + ‖f‖H2), (5.19)

‖w‖H2 ≤ C(‖g‖H1 + ‖f‖H2). (5.20)
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For the L2-estimate we used here (5.5b):

|w(L)| ≤ 1
τ2

∣∣∣∣ ỹ(L)
P (L)

+ g(L) + iτf(L)
∣∣∣∣ ≤ C

|τ |
(‖g‖H1 + ‖f‖H2).

Finally, from equation (5.3a) and by using (5.19) we get the desired estimate

‖v‖H1 ≤ C(‖g‖H1 + ‖f‖H2),

which completes the proof.

Alternative Version of the Proof

Here we present an alternative proof of Theorem 5.4. In the above proof, a “direct” estimate of
w in the H2-norm was avoided by intruducing a new function y, for which only the H1-norm
was needed. With the estimates from Appendix C.1 applied in this proof, a direct estimate of
the H2-norm would not have been uniformly bounded. In the following, alternative, proof of
Theorem 5.4, the desired uniform H2-estimate of w is obtained in a more direct way. But for
this a more careful analysis of the occuring terms and more precise estimates are necessary.

Proof of Theorem 5.4 (alternative version). In order to show that ‖R(iτ,A)‖ is uniformly bounded
for |τ | → ∞, we need to prove the uniform estimate

‖w‖H2 + ‖v‖H1 ≤ C(‖f‖H2 + ‖g‖H1) (5.4)

for the solutions of the system (5.3). Analogously to the the above proof, we replace v = f+iτw
in (5.3b)-(5.3d) to obtain the following BVP for w :

(Pw′)′ + τ2w = g + iτf, x ∈ (0, L), (5.21a)
−w′(L) + τ2w(L) = RL := (g + iτf)(L), (5.21b)

(ϑ4 + iτϑ2)︸ ︷︷ ︸
=:γ1

w′(0) + (ϑ3 + τ2 + iτϑ1)︸ ︷︷ ︸
=:γ2

w(0) = R0 := (g + iτf)(0)− ϑ1f(0)− ϑ2f
′(0). (5.21c)

With this, we first show the desired estimate for w.

Step 1: Homogeneous boundary conditions.
To begin with, we transform (5.21) into a BVP with homogeneous boundary conditions. For
this, we determine a function

h(x) =
∫ x

0

a1

P (t)
dt+ a0, ai ∈ C,

such that h(x) satifies the boundary conditions (5.21b)-(5.21c). The coefficients are

a0 =
γ1RL

P (0) +R0( 1
P (L) − τ

2IP )
γ1τ2

P (0) + γ2( 1
P (L) − τ2IP )

, a1 =
R0τ

2 −RLγ2

γ1τ2

P (0) + γ2( 1
P (L) − τ2IP )

, (5.22)

where IP :=
∫ L
0

1
P dt. Since γ1/γ2 /∈ R, these coefficients are well-defined. For |τ | > 1 the

following estimate holds uniformly:

|ai| ≤
C

τ2
(‖g‖H1 + |τ |‖f‖H2). (5.23)

Setting y = w − h yields the following BVP with homogeneous boundary conditions:

(Py′)′ + τ2y = H := g + iτf − τ2h, x ∈ (0, L), (5.24a)
−y′(L) + τ2y(L) = 0, (5.24b)
γ1y
′(0) + γ2y(0) = 0. (5.24c)
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We note that the function H can be split into two parts H = Hg + Hf , such that Hg only
depends on g, and Hf only on f. We obtain the following estimates for those components:

‖Hg‖H1 ≤ C‖g‖H1 , ‖Hf‖H2 ≤ C|τ |‖f‖H2 , (5.25)
|Hg(x)| ≤ C

|τ |‖g‖H1 , |Hf (x)| ≤ C‖f‖H2 , x ∈ {0, L}, (5.26)

which hold uniformly for |τ | > 1. For (5.26), the expression g+ iτf − τ2h is evaluated explicitly
(without using the estimate (5.23)).

Step 2: Solution estimate.
Now we to determine the solution of (5.24). Let {ϕ1, ϕ2} be a basis of solutions of the homo-
geneous equation (Py′)′ + τ2y = 0. Then the general solution of the inhomogeneous equation
(5.24a) is obtained by variation of constants:

y(x) = c1ϕ1(x) + c2ϕ2(x) +
∫ x

0

H(t)J(x, t) dt, (5.27)

where J(x, t) is the Green’s function explicitly given in (C.9). The first derivative satisfies

y′(x) = c1ϕ
′
1(x) + c2ϕ

′
2(x) +

∫ x

0

H(t)∂xJ(x, t) dt. (5.28)

In order to determine the coefficients c1, c2, we specify the initial conditions of the basis functions
ϕ1, ϕ2 :

ϕ1(0) = 0, ϕ2(0) = 1,
ϕ′1(0) = τ, ϕ′2(0) = 0. (5.29)

These conditions imply that the solutions ϕi are real-valued. From the boundary conditions
(5.24b)-(5.24c) we get

c1 =

∫ L
0
H(t)∂xJ(L, t) dt− τ2

∫ L
0
H(t)J(L, t) dt

−ϕ′1(L) + τ2ϕ1(L)− γ1τ
γ2

[−ϕ′2(L) + τ2ϕ2(L)]
, c2 = −γ1τ

γ2
c1. (5.30)

Again, since γ1
γ2

/∈ R, and the ϕi are linearly independent, the coefficients are well-defined for
all τ ∈ R. In order to find an estimate for the ci, we first note that γ1τ

γ2
→ iϑ2 for |τ | → ∞.

Therefore, we obtain the following estimate of the denominator N of c1 :

|N |2 ≥ C
(
[−ϕ′1(L) + τ2ϕ1(L)]2 + [−ϕ′2(L) + τ2ϕ2(L)]2

)
,

uniformly for |τ | > 1. Due to Lemma C.4 and the initial conditions specified above, we find
that the Wronskian W (t) := ϕ′1(t)ϕ2(t)− ϕ1(t)ϕ′2(t) satisfies P (t)W (t) ≡ P (0)τ. From this, it
follows that |ϕ1(L)|+ |ϕ2(L)| ≥ C > 0 holds uniformly, since the derivatives occuring in W (t)
satisfy |ϕ′i(L)| ≤ C|τ | due to Lemma C.5. Therefore, we get the estimate |N | ≥ Cτ2 for the
denominator N.
By seperating H = Hg + Hf , we find the following estimates from Theorem C.6 due to the
inequalities (5.25)-(5.26):∣∣∣∣∣

∫ L

0

H(t)J(L, t) dt

∣∣∣∣∣ ≤ C

τ2
(‖g‖H1 + ‖f‖H2), (5.31)∣∣∣∣∣

∫ L

0

H(t)∂xJ(L, t) dt

∣∣∣∣∣ ≤ C

|τ |
(‖g‖H1 + ‖f‖H2). (5.32)

With this, we can estimate the numerator in the ci. Together with the estimate |N | ≥ Cτ2

found above, we obtain, uniformly in |τ | > 1 :

|ci| ≤
C

τ2
(‖g‖H1 + ‖f‖H2). (5.33)
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For the integrals in (5.27), (5.28), Theorem C.6 yields∥∥∥∥∫ x

0

H(t)J(x, t) dt
∥∥∥∥
L2

≤ C

τ2
(‖g‖H1 + |τ |‖f‖H2), (5.34)∥∥∥∥∫ x

0

H(t)∂xJ(x, t) dt
∥∥∥∥
L2

≤ C

|τ |
(‖g‖H1 + ‖f‖H2). (5.35)

Combining the estimates (5.33)-(5.35) and the estimates (C.6) for ϕi, we get

‖y‖H1 ≤ C

|τ |
(‖g‖H1 + ‖f‖H2), (5.36)

uniformly for |τ | > 1.

To estimate y′′, we first consider (Py′)′. By (C.8) we obtain

∂x

(
P (x)∂x

∫ x

0

H(t)J(x, t) dt
)

= −τ2

∫ x

0

H(t)J(x, t) dt+H(x).

Hence, Theorem C.6 implies that∥∥∥∥∂x(P (x)∂x
∫ x

0

H(t)J(x, t) dt
)∥∥∥∥

L2

≤ C(‖g‖H1 + ‖f‖H2), (5.37)

uniformly for |τ | > 1. Using the estimates (C.6) for (Pϕ′i)
′ = −τ2ϕi then yields

‖(Py′)′‖L2 ≤ C(‖g‖H1 + ‖f‖H2),

uniformly for |τ | > 1. Using y′′ = 1
P [(Py′)′ − P ′y′] and estimate (5.36) we obtain

‖y‖H2 ≤ C(‖g‖H1 + ‖f‖H2), (5.38)

uniformly for |τ | > 1. Due to (5.23), the same estimates (5.36), (5.38) also hold for w = y + h.
From the estimate for ‖w‖H1 , by using (5.3a) we find that

‖v‖H1 ≤ C(‖g‖H1 + ‖f‖H2),

which proves the theorem.
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Appendix A

Useful Inequalities

Lemma A.1. Let a0, b0, ε0 > 0 be given. Then there exist constants c, d > 0 such that

(ax1 + bx2)2 + εx2
1 ≥ cx2

1 + dx2
2 (A.1)

holds uniformly for all x1, x2 ∈ R and |a| ≤ a0, b ≥ b0 and ε ≥ ε0.

Proof. Inequality (A.1) can be re-written in the equivalent form[
x1

x2

]T [
a2 + ε− c ab

ab b2 − d

] [
x1

x2

]
≥ 0,

where the occuring 2× 2-matrix will be denoted as M. Since this inequality has to hold for all
x1, x2 ∈ R, it is equivalent to M being positive semi-definite. Applying the Sylvester criterion
yields the following conditions:

b2 − d ≥ 0, (A.2)
(ε− c)(b2 − d) ≥ a2d. (A.3)

If a = 0, we can take c = ε0 and d = b20. Otherwise, we see from condition (A.3) that d 6= b2, so
that it can be written as:

c ≤ ε− a2 d

b2 − d
. (A.4)

Because of monotonicity of the right hand side we find the estimate

ε− a2 d

b2 − d
≥ ε0 − a2

0

d

b20 − d
.

So, for (A.4) to hold, it is sufficient that c, d satisfy the stricter inequality

c ≤ ε0 − a2
0

d

b20 − d
. (A.5)

For d sufficiently small, the right hand side becomes positive, and therefore a c > 0 satisfying
(A.5) exists.

Lemma A.2. Let α, β, δ ∈ R and

P3(x1, x2, x3) := x2
1 + x2

2 + x2
3 + 2αx1x2 + 2βx2x3 + 2δx1x3

be a polynomial. Then the inequality P3(x1, x2, x3) ≥ 0 holds for all x1, x2, x3 ∈ R if and only
if the coefficients satisfy the conditions

α2 ≤ 1, β2 ≤ 1, δ2 ≤ 1,
α2 + β2 + δ2 ≤ 1 + 2αβδ.
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Proof. The polynomial can be written as

P3(x1, x2, x3) =

 x1

x2

x3

T  1 α δ
α 1 β
δ β 1

 x1

x2

x3

 ,
with M denoting the 3 × 3 matrix. Now the property P3(x1, x2, x3) ≥ 0, ∀x1, x2, x3 ∈ R is
equivalent to M being positive semi-definite. Applying the Sylvester criterion to M yields
exactly the desired conditions.

18



Appendix B

Compact Resolvents

Here we present a useful result concerning compact resolvents of linear operators. A proof of
the following lemma can be found in [5]. Here we give an alternative, shorter proof.

Lemma B.1. Let A be a closed, densely defined linear operator in a Banach space X. If there
exists a λ0 ∈ ρ(A) such that the resolvent R(λ0,A) is a compact operator, then R(λ,A) is
compact for all λ ∈ ρ(A).

Proof. Let λ ∈ ρ(A). Then we can write

R(λ,A) = R(λ0,A)(A− λ0)R(λ,A). (B.1)

Since R(λ,A) is continuous, and (A − λ0) is closed, we find that (A − λ0)R(λ,A) : X → X
is closed and also continuous, since its domain is the entire space X. Therefore, (B.1) is the
decomposition of R(λ,A) into the product of a compact and a continuous operator, and hence
it is also compact (cf. [13]).
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Appendix C

ODEs with a Parameter:
Uniform Estimates

Before we present the results of this section, we briefly discuss an introductory example in
order to motivate the following analysis. Consider the homogeneous linear ordinary differential
equation

y′′ + τ2y = 0, x ∈ (0, L), τ > 0. (C.1)

The functions sin τx, cos τx form a basis of the solutions of (C.1). From the theory of Fourier-
Integrals it is known that for any f ∈ L1(0, L) the following properties hold (for more details,
see [12]):

lim
τ→∞

∫ L

0

cos τxf(x) dx = 0, lim
τ→∞

∫ L

0

sin τxf(x) dx = 0. (C.2)

If, for example, the stronger requirement f ∈W 1,1(0, L) is assumed, it can even be shown that
the above integrals are O(τ−1).

In the following we consider appropriate generalizations of (C.1) and show results analogous to
(C.2), and also give information about the order of convergence.

C.1 Estimates – Part 1

In this section we discuss the behaviour of the classical solutions y ∈ C2[0, L] of the equation

y′′ +
τ2

P (x)
y = 0, x ∈ (0, L), (C.3)

where τ ∈ R and P ∈ C1[0, L] is a real-valued function satisfying P 0 ≤ P (x) ≤ P 1 uniformly
for x ∈ [0, L] for some positive constants P 0, P 1. Since τ only occours squared, we can assume
that τ ≥ 0 holds in the following.

Lemma C.1 ([3]). Let (ϕ1, ϕ2) be an arbitrary pair of linearly independent solutions of (C.3).
Then the Green’s function of the equation is given by

J(x, t) :=
ϕ1(x)ϕ2(t)− ϕ2(x)ϕ1(t)
ϕ′1(t)ϕ2(t)− ϕ1(t)ϕ′2(t)

. (C.4)

Furthermore, the Wronskian W (t) := ϕ′1(t)ϕ2(t)− ϕ1(t)ϕ′2(t) is constant for t ∈ [0, L]. Hence,
(C.4) simplifies to J(x, t) = C[ϕ1(x)ϕ2(t)− ϕ2(x)ϕ1(t)].

With the prescribed initial data ϕ(0) and ϕ′(0), we shall denote the unique classical solution
of (C.3) by ϕτ . The behaviour of solutions of (C.3) is stated in the following Lemma. For the
proof, see Prop. 2.1 in [2].
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Lemma C.2. There exists a constant C > 0 such that for any family of solutions {ϕτ}τ>1 of
(C.3) the following estimates hold uniformly for τ > 1:

‖ϕτ‖L∞ ≤
C

τ
(τ |ϕτ (0)|+ |ϕ′τ (0)|) , ‖ϕ′τ‖L∞ ≤ C (τ |ϕτ (0)|+ |ϕ′τ (0)|) .

Now we are able to prove the following theorem:

Theorem C.3. Let {Jτ}τ>1 be the family of Green’s functions defined in Lemma C.1. Then
there exists a constant C > 0 such that the following estimates hold uniformly for all f ∈
H1(0, L) and τ > 1: ∥∥∥∥∫ x

0

f(t)Jτ (x, t) dt
∥∥∥∥
L∞

≤ C

τ2
‖f‖1, (C.5)∥∥∥∥∫ x

0

f(t)∂xJτ (x, t) dt
∥∥∥∥
L∞

≤ C

τ
‖f‖1. (C.6)

Proof. We are going to show (C.5), the proof of (C.6) can be done analogously. The index τ is
omitted for sake of simplicity. First, we make the substitution t = x−ξ in the left hand integral,
and define the family of functions ψx : ξ 7→ J(x, x− ξ) with parameter x. These functions are
solutions of the equation

ψ′′x +
τ2

P (x− ξ)
ψx = 0, (C.7)

with ′ denoting here derivatives with respect to ξ. ψx takes the initial values ψx(ξ = 0) = 0
and ψ′x(ξ = 0) = 1. Now, integrating by parts yields∣∣∣∣∫ x

0

f(x− ξ)ψx(ξ) dξ
∣∣∣∣ =

∣∣∣∣∣−
∫ x

0

∂ξ(fP )(x− ξ)
∫ ξ

0

ψx(ζ)
P (x− ζ)

dζ dξ + f(0)P (0)
∫ x

0

ψx(ζ)
P (x− ζ)

dζ

∣∣∣∣∣
≤ 2

‖ψ′x‖L∞
τ2

(∫ x

0

|∂ξ(fP )(x− ξ)|dξ + |f(0)P (0)|
)

≤ C
‖ψ′x‖L∞‖f‖1

τ2
,

where we used (C.7) in the second step. And in the last step we used the continuous embedding
H1(0, L) ↪→ C[0, L]. From Lemma C.2 and the known initial conditions of ψx we find that
‖ψ′x‖L∞ is uniformly bounded for all τ > 1, which proves (C.5).

C.2 Estimates – Part 2

In this section we discuss the behaviour of the classical solutions y ∈ C2[0, L] of the equation

(Py′)′ + τ2y = 0, (C.8)

where τ ∈ R and P ∈ C1[0, L] is a real-valued function satisfying P 0 ≤ P (x) ≤ P 1 uniformly
for x ∈ [0, L] for some positive constants P 0, P 1. Since τ only occours squared, we can assume
that τ ≥ 0 holds in the following.

Lemma C.4 ([3]). Let (ϕ1, ϕ2) be a arbitrary pair of linearly independent solutions of (C.8).
Then the Green’s function of the equation is given by

J(x, t) :=
ϕ1(x)ϕ2(t)− ϕ2(x)ϕ1(t)

P (t)[ϕ′1(t)ϕ2(t)− ϕ1(t)ϕ′2(t)]
(C.9)

Furthermore, the Wronskian W (t) = ϕ′1(t)ϕ2(t)−ϕ1(t)ϕ′2(t) satisfies: P (t)W (t) is constant on
[0, L]. Hence, (C.9) simplifies to J(x, t) = C[ϕ1(x)ϕ2(t)− ϕ2(x)ϕ1(t)].

The behaviour of solutions of (C.8) is stated in the following lemma:
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Lemma C.5. There exists some constant C > 0 such that for any family of solutions {ϕτ}τ>1

of (C.8) the following estimates hold uniformly for all τ > 1:

‖ϕτ‖L∞ ≤
C

τ
(τ |ϕτ (0)|+ |ϕ′τ (0)|) , ‖ϕ′τ‖L∞ ≤ C (τ |ϕτ (0)|+ |ϕ′τ (0)|) . (C.10)

Proof. The functions of the family u = uτ := Pϕ′τ satisfy the equation

u′′ +
τ2

P (x)
u = 0, x ∈ (0, L). (C.11)

From Lemma C.2 above we know that u satisfies the estimates:

‖u‖L∞ ≤
C

τ
(τ |u(0)|+ |u′(0)|) , ‖u′‖L∞ ≤ C (τ |u(0)|+ |u′(0)|) . (C.12)

From the definition of u and (C.8), we find that |u(0)| ≤ P 1|ϕ′(0)| and |u′(0)| = τ2|ϕ(0)|. On
the other hand, we have ‖u‖L∞ ≥ P 0‖ϕ′‖L∞ and ‖u′‖L∞ = τ2‖ϕ‖L∞ . With this, we find the
desired estimates for ϕ from the estimates (C.12).

Now we are able to prove the following

Theorem C.6. Let {Jτ}τ>1 be the family of Green’s functions defined in Lemma C.4. Let
M > 0 be a constant, and {Hτ}τ>1 a family of functions, satisfying one of the following
conditions uniformly in τ :

(a) Hτ ∈W 1,1(0, L) : ‖Hτ‖W 1,1 ≤M,

(b) Hτ ∈W 2,1(0, L) : ‖Hτ‖W 2,1 ≤ τM and |Hτ (0)|, |Hτ (L)| ≤M.

Then there exists some constant C > 0, independent of Hτ and M, such that the following
estimates hold uniformly for all τ > 1 :∥∥∥∥∫ x

0

Hτ (t)Jτ (x, t) dt− H(x)
τ2

∥∥∥∥
L∞
≤ CM

τ2
, (C.13)∥∥∥∥∫ x

0

Hτ (t)∂xJτ (x, t) dt
∥∥∥∥
L∞
≤ CM

τ
. (C.14)

Proof. For the sake of simplicity we omit the index τ as its role should be clear from the
context. We begin by showing (C.13). First, we note that for all x ∈ [0, L] fixed, the function
ψ : t 7→ J(x, t) is a solution of the homogeneous equation (C.8) with initial values ψ(x) =
0, ∂tψ(x) = −1/P (x). Thus the following estimates hold uniformly for τ > 1 due to Lemma
C.5:

‖ψ‖L∞ ≤
C

τ
, ‖∂tψ(x)‖L∞ ≤ C. (C.15)

Now we can integrate by parts:∫ x

0

H(t)J(x, t) dt = −
∫ x

0

H ′Ψ dt+HΨ
∣∣x
0
, (C.16)

where Ψ(t) := − 1
τ2P (t)ψ′(t) is a primitive of ψ (use (C.8)), and ′ denotes here the derivative

with respect to t. With this, we get for the case H ∈W 1,1(0, L) :∥∥∥∥∫ x

0

H(t)J(x, t) dt
∥∥∥∥
L∞

=
1
τ2

∥∥∥∥∫ x

0

PH ′ψ′ dt− PHψ′
∣∣x
0

∥∥∥∥
L∞

≤ C‖H‖W 1,1‖ψ′‖L∞
τ2

≤ CM

τ2
,
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where we used the continuous embedding H ∈ W 1,1(0, L) ↪→ C[0, L] (see [1]). For the other
case, H ∈W 2,1(0, L), we need to integrate by parts a second time in (C.16):∫ x

0

H(t)J(x, t) dt =
1
τ2

(∫ x

0

PH ′ψ′ dt− PHψ′
∣∣x
0

)
=

1
τ2

(
−
∫ x

0

(PH ′)′ψ dt− PHψ′
∣∣x
0

+ PH ′ψ
∣∣x
0

)
=

1
τ2

(
−
∫ x

0

(PH ′)′ψ dt+ P (0)H(0)ψ′(0)− P (0)H ′(0)ψ(0)
)

+
1
τ2
H(x),

where the initial conditions of ψ at t = x were used. Due to the assumed estimates on
H(0), H ′(0), and with (C.15), we find that the terms in the brackets are uniformly bounded
by M. The remaining term outside the brackets is the only one not having the right order in τ,
but it cancels in (C.13), and we obtain the desired estimate.
The second estimate can be obtained completely analogously. The reduced order in τ is due to
the fact that the estimates for ∂xJ(x, t) are one factor of τ “weaker” than those for J(x, t).
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