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ABSTRACT

Technological and research advances in both acquisition and simulation devices
provide continuously increasing high-resolution volumetric data that by far

exceed today’s graphical and display capabilities. Non-uniform representations
offer a way of balancing this deluge of data by adaptively measuring (sampling)
according to the importance (variance) of the data. Also, in many real-life situations
the data are known only on a non-uniform representation.

Processing of non-uniform data is a non-trivial task and hence more difficult
when compared to processing of regular data. Transforming from non-uniform
to uniform representations is a well-accepted paradigm in the signal processing
community. In this thesis we advocate such a concept. The main motivation
for adopting this paradigm is that most of the techniques and methods related to
signal processing, data mining and data exploration are well-defined and stable for
Cartesian data, but generally are non-trivial to apply to non-uniform data. Among
other things, this will allow us to better exploit the capabilities of modern GPUs.

In non-uniform representations sampling rates can vary drastically even by
several orders of magnitude, making the decision on a target resolution a non-
trivial trade-off between accuracy and efficiency. In several cases the points are
spread non-uniformly with similar density across the volume, while in other cases
the points have an enormous variance in distribution. In this thesis we present
solutions to both cases. For the first case we suggest computing reconstructions
of the same volume in different resolutions based on the level of detail we are
interested in. The second case scenario is the main motivation for proposing a
multi-resolution scheme, where the scale of reconstruction is decided adaptively
based on the number of points in each subregion of the whole volume.

We introduce a novel framework for 3D reconstruction and visualization from
non-uniform scalar and vector data. We adopt a variational reconstruction ap-
proach. In this method non-uniform point sets are transformed to a uniform rep-
resentation consisting of B-spline coefficients that are attached to the grid. With
these coefficients we can define a C2 continuous function across the whole volume.
Several testings were performed in order to analyze and fine-tune our framework.
All the testings and the results of this thesis offer a view from a new and different
perspective to the visualization and reconstruction from non-uniform point sets.





KURZFASSUNG

Der ständige Fortschritt in Forschung und Technik bei der Erfassung und der
Simulation von Vorgängen führt zu immer größeren hochaufgelösten volu-

metrischen Daten. Die enormen Datenmengen übersteigen bei weitem die Kapa-
zitäten heutiger Graphikkarten und Bildschirme. Die ungleichförmige Verteilung
der Information in den Daten bietet eine Möglichkeit, die Datenmenge zu reduzie-
ren. Durch adaptives Messen der Daten werden Bereiche mit hoher Wichtigkeit
(Varianz) genauer gemessen und repräsentiert.

Im Vergleich zu regelmäßig repräsentierten Daten ist die Verarbeitung von unre-
gelmäßigen Daten sehr viel aufwendiger. In der Signalverarbeitung ist aus diesem
Grund die Transformation von unregelmäßigen zu regelmäßigen Daten ein häufig
verwendetes Modell. In dieser Arbeit wird dieses Konzept ebenfalls verwendet.
Der Hauptgrund für die Verwendung dieses Ansatzes ist die Anwendbarkeit von
vorhandenen Techniken und Methoden der Signalverarbeitung, des Data-Minings
und der Datenexploration für regelmäßige Daten. Diese Methoden sind für cartesi-
sche Daten wohldefiniert und stabil. Für unregelmäßige Daten ist die Anwendung
dieser Techniken und Methoden hingegen nicht trivial.

In unregelmäßigen Daten kann die Datendichte in unterschiedlichen Regionen
stark variieren. Dies erschwert, eine geeignete Auflösung für die Rekonstruktion
in regelmäßige Daten festzulegen, welche einen Ausgleich zwischen Genauigkeit
und Effizienz herstellt. In der Arbeit wird prinzipiell zwischen zwei Arten der
Verteilung in unregelmäßigen Daten unterschieden: eine gleichförmige Verteilung
der Daten und eine Verteilung mit starken Konzentrationen von Daten in kleinen
Teilbereichen des Datenraums. Für die erste Art der Verteilung wird in der Arbeit
eine Rekonstruktion in verschiedenen Auflösungen vorgeschlagen, die auf dem
gewünschten Detailgrad basieren. Die zweite Art der Verteilung wird mit Hilfe
eines adaptiven Auflösungsschemas behandelt. Die genaue Auflösung der Rekon-
struktion wird dabei adaptiv in Abhängigkeit der Datendichte in jeder Region des
Datenraums bestimmt.

Des Weiteren stellt die Arbeit ein komplettes System zur drei-dimensionalen
Rekonstruktion und Visualisierung unregelmäßigen Skalar- und Vektordaten vor.
Dabei wird ein Rekonstruktionsansatz mittels Variantenrechnung angewendet. Mit
dieser Methode werden unregelmäßige Daten in regelmäßige Daten umgewandelt
indem Koeffizienten einer B-Spline-Repräsentation in einer Gitterstruktur gespei-
chert werden. Mit diesen Koeffizienten ist es möglich, eine C2 stetige Funktion
über das gesamte Volumen zu definieren. Für die Analyse und Feinabstimmung
des vorgestellten Systems wurde auch eine Reihe von Tests durchgeführt. All die-
se Tests und die Resultate der Arbeit bieten einen neuartigen Blickwinkel auf die
Visualisierung und Rekonstruktion von unregelmäßigen Datensätzen.
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The reasonable man adapts himself to

the world, while the unreasonable one

persists in trying to adapt the world to

himself. Therefore, all progress depends

on the unreasonable man.

George Bernard Shaw
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Man’s understanding of every field of

life is often through non-uniform

observations in space or time. Indeed,

most of the readers of this thesis may

sample out the introduction, the

conclusion, and possibly a few sections

and then try to figure out the rest by

reconstruction!
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With recent technological advances, non-uniform representa-
tions are becoming a crucial factor in acquisition and sim-

ulation devices and as such the development of better and more
reliable reconstruction and visualization schemes is a necessity.
After presenting the motivation of this work, in this chapter we
give a general information about the data representations and the
existing techniques applied for processing and visualizing non-
uniform data. After introducing the datasets and criteria used for
evaluating the work, we present the scope and outline of the thesis.





CHAPTER 1

INTRODUCTION

Visualization is focused on enabling and conveying a better and deeper insight
about data and processes. In the last decades, unprecedented technological growth
and development have contributed to the overall improvement of the visualization
pipeline, in particular for the processes of data acquisition and data enhancement.
In practical applications over a wide field of studies, one often faces the problem of
reconstructing an unknown function f from a finite set of discrete data. These data
consist of data sites and data values, and the reconstruction has to approximate
the data values at the data sites. In other words, a function F is sought that
either interpolates or at least approximates the data. The latter case is in particular
important if the data contain noise.

The traditional sources of volumetric data are simulations as well as data acqui-
sition devices. The majority of these devices acquire data on uniform (Cartesian)
lattices. In an effort to study larger and more complex problems, there has been a
move toward non-uniform data representations, since they offer a way of adapting
the measure location (or sample points) according to the importance (variance) of
the data. Examples include: a) simple data loss during data communication in
sensor networks [99], b) Doppler measurements or other novel acquisition models
(polar or spiral) for tomography and magnetic resonance imaging [10], c) adaptive
and moving mesh approaches in mathematical simulations in the physical sciences
[50], d) particle simulations [70], and e) data from general fields such as astronomy,
spectroscopy and signal processing [14].

While the acquisition of data on non-uniform grids has become wide-spread,
the available tools for processing, filtering, analysis, and rendering of data are most
efficient for uniform representations. There are two competing efforts to deal with
non-uniform data: (1) create novel and efficient tools that directly work on them, or
(2) convert the non-uniform representation into an efficient intermediate uniform
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representation and apply standard tools. Both approaches have advantages and
disadvantages. In this thesis we make a contribution towards the latter approach.
Among other things, this will allow us to better exploit the capabilities of modern
GPUs. A simple illustration of the general paradigm of the thesis is shown in
Figure 1.1. The continuous representations are derived from the reconstructed
uniform lattices.

Acquisition Devices

Simulations

Non-uniform 

Point Sets

Continuous

Representations

Visualization

Exploration

Variational 

Reconstruction

Figure 1.1: Abstraction of the general work-flow of the thesis.

In order to find the best way to transform the non-uniform data onto a uni-
form grid, we first need to analyze the nature of the given data. One reason
for non-uniformity is the ability to capture different scales of information den-
sity (e.g. mathematical simulation of shock waves). Another reason for non-
uniform data representations could come from imprecise or alternative measure-
ments (e.g. Doppler measurements) or sparse representations (e.g. compressive
sensing). While in the former case multi-resolution representations might be most
suitable, in the latter case a single resolution representation might be all what is
needed. In this thesis we present a framework to adapt to each scenario.

1.1 Data Representations

Three-dimensional (3D) acquisition and simulation devices provide us with a va-
riety of data representations. Depending on the organization of the points (voxels
in volumes, or cells in finite element analysis) the data can be classified as regular
(Figure 1.2(a)), rectilinear (Figure 1.2(b)), curvilinear (Figure 1.2(c)), and non-
uniform (Figure 1.2(d)). The sampling positions in Figure 1.2 are considered to
be the line intersections. The first three data representations can be classified as
structured, because the 3D point positions (coordinates) can be derived from the
implicit structure. Non-uniform grids, also known as unstructured or irregular, are
considered in our work as point sets. Hence they do not provide any neighbor-
hood information about the elements (in our case 3D points) in the data. In order
to be able to access any single element, we have to explicitly save each point’s
coordinates along with its respective value. Thus, for storing the same amount

4
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of non-uniform 3D points we need four times more storage than the amount of
storage required for the regular (uniform) counterpart. In Figure 1.2(d) the non-
uniform representation is shown just for display purposes as being triangulated,
since triangles are one of the simplest forms of display primitives.

(a) Regular grid (b) Rectilinear Grid

(c) Curvilinear grid (d) Non-uniform grid

Figure 1.2: Grid Structures.

1.2 Non-uniform Data Encoding and Visualiza-

tion Techniques

Our thesis brings together concepts from reconstruction and sampling theory, signal
processing, multi-resolution analysis, visualization and rendering. As such the
citation of all prominent related work in one section would be difficult. Hence, in
this section we give a general overview of the most well-known non-uniform data
encoding and visualization techniques.

Depending on the underlying data structure and source of acquisition differ-
ent, techniques have been developed for the visualization and representation of

5
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(a) (b)

Figure 1.3: Reconstruction of an image (b) from a given non-uniform point set (a).

non-uniform data. The early works in this field are extensions of 2D encoding
techniques to 3D, especially those with regard to functional approximation and
scattered data interpolation [37, 38, 77, 76]. In Figure 1.3 we show an image
where 80% of the points were removed, and the respective reconstruction from
this non-uniform representation.

A usual approach to the rendering of non-uniform points, in a finite element
style, is by first polyhedralizing the point set and then rendering the new structures.
There is a considerable body of literature on the rendering of non-uniform data
based on finite element analysis (see e.g., [23, 53, 60, 69, 86, 87, 92, 95, 96,
115, 119]). While there are very good reasons to adapt such an approach for
rendering, we postulate here that an intermediate transformation onto a regular data
structure opens up the possibilities for much more sophisticated data processing
in general and henceforth focus on such a pipeline. The main problems here
are that the data has first to be subdivided into polyhedra and a correct and fast
visibility ordering has to be computed. These problems were tackled by Silva
et al. [96], Krishnan et al. [53] and Callahan et al. [23]. Weiler et al. [115]
and Schreiner and Scheidegger [92] propose a GPU-based raycasting of tetrahedra
with minimized discontinuities between structures. Rössl et al. [87] propose
reconstruction of non-discrete uniform tetrahedra partitions via quasi-interpolating
quadratic super splines. In Figure 1.4 are shown examples of visualizing non-
uniform point sets through finite element analysis. Although there is a continuously
increasing number of techniques applied to finite element structures, they cannot
match the performance and quality of uniform representations, since they cannot
be efficiently implemented in hardware as their uniform counterpart.

6
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(a) (b) (c)

Figure 1.4: Visualization of non-uniform point sets through finite element analysis: a)

hardware-assisted visibility sorting [23], b) extraction of isosurfaces from irregular grids

[92], and c) hardware-based ray casting for tetrahedral meshes [115].

Data approximation through basis functions is another common approach for
encoding non-uniform point sets. The majority of these methods tries to efficiently
reconstruct surface and shape from non-uniform point clouds acquired by 3D scan-
ning devices [6, 7, 16, 24, 28, 42, 79, 80, 90, 103, 122]. Radially symmetric
functions or radial basis functions (RBFs) were extensively used in most of these
approaches. Alexa et al. [6] propose a moving least squares approximation for
evaluating local maps. Ohtake et al. [80] propose the approximation of point sets
over a piecewise smooth surface by specifying the centers and local support of
RBFs according to point density and surface geometry. Zwicker et al. [121] pro-
pose the usage of an elliptical average filter for the direct rendering of opaque and
transparent surfaces. Some rendering examples from surface visualization using
RBFs are given in Figure 1.5.

Radial basis functions have also been applied for the approximation of volumet-
ric data [47, 48, 117, 121]. Extensive research was conducted into the acceleration
of the approximation process and the elimination of the visual artifacts from the
non-compactness of the basis functions. In Figure 1.6 results are shown from pre-
vious work where radial and ellipsoidal basis functions are used for the volume
fitting process. Further details will be given in Chapter 3.

Particle systems have received special attention in recent years [1, 61, 70, 71,
72]. While most of the methods of this category are used for conventional isosur-
face visualization techniques, special interest is drawn on how these methods can
be applied to volumetric reconstruction/fitting. The basic concepts of these ap-
proaches is that the particles can be distributed adaptively or evenly to accomodate
world-space features (in this case the surface). This provides compact, efficient
and accurate representations [72]. Examples from visualization methods using
particle systems are shown in Figure 1.7

7
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(a) (b) (c)

Figure 1.5: Surface reconstruction through basis function representations: a) surface

approximation with moving least squares [6], b) surface fitting with RBFs [24], and c)

data approximation with compactly supported RBFs [80]

(a) (b) (c)

Figure 1.6: Volumetric reconstruction through basis function representations: a) render-

ing using spherical Gaussian basis functions [48], b) rendering using elliptical Gaussian

basis functions [47], and c) rendering using Gabor wavelets [117].

All the above mentioned approaches offer solutions to a specific type of data
under special constraints. Recently, there has been some effort in combining
rendering techniques for structured and unstructured grids in unified frameworks
[51, 58, 74]. Figure 1.8(a) shows a rendering of astronomy data, where the regular
grid ray casting has been merged with point sprites obtained from the non-uniform
representation. In Figure 1.8(b) the Blunt Fin dataset is rendered using a mov-
ing least square (MLS) approximation fitted to an uniform and non-uniform grid
displayed using raycasting.

In this thesis we offer a framework converting non-uniform point sets onto a
uniform representation either through single- or multi-resolution reconstruction.

8
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(a) (b) (c)

Figure 1.7: Particle systems for the visualization of non-uniform point sets: a) adaptively

sampled particle fluids [1], b) particle-based processing of multi-material volumes [72],

and c) particle-based meshing of CT data [70].

(a) (b)

Figure 1.8: Visualization of non-uniform point sets with hybrid approaches: a) astronomic

data rendered with a hybrid ray caster [51], and b) simulation data rendered with a ray

caster adopted to MLS [58].

1.3 Datasets

Most of the visualization techniques are fitted to data acquired from specific sources.
We tested our framework on several data either obtained by scanning devices,
simulation devices, or synthetic simulations. Following is a description of these
datasets.

1.3.1 Scalar Datasets

The Oil Reservoir dataset was computed by the Center for Subsurface Modeling
at the University of Texas at Austin. This data represents a simulation of a black-oil
reservoir model used to analyze the placement of injection and production wells in
order to minimize oil explorations. The non-uniform point set consists of 29,094

9
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points containing water pressure values for the injection well.
The Natural Convection dataset consists of several timesteps of temperatures

generated from a natural convection simulation of a non-Newtonian fluid in a
box. The domain is heated from below, cooled from above, and has a fixed linear
temperature profile imposed on the sidewalls. The simulation was developed by
the Computational Fluid Dynamics Laboratory at the University of Texas at Austin
and consists of 68,921 points organized in hexahedral bricks. Temperature values
were encoded as they accurately represent the structures that emerge during the
convection process.

The Synthetic Chirp dataset is a synthetic radial sinusoidal wave with spatial
frequency that decreases from center to the edges as defined in Equation 1.1:

Chirp(x, y, z) =
1 − sin(z · π/2) + b · 0.5 ·

(
1 + cos

(
w0·r·180
(r+r0)·π

))

2 + b
(1.1)

where r0 controls how close we go to infinity as we approach the center, w0 controls
the number of maxima between the center and the edges, b is a normalization term,
r =

√
2(x2 + y2), x, y ∈ [−0.5, 0.5] and z ∈ [0, 1]. In our testing scenario we set

r0 = 5, w0 = 4 and b = 0.5. We create a non-uniform point set by evaluating the
Chirp function for 75,000 random points (x, y, z).

The Bypass dataset is a simulation performed at the department of Mechan-
ics at the Royal Institute of Technology in Stockholm [91]. It consists of 421
timesteps of a simulation from a laminar-turbulent transition in a boundary layer
that is subject to free stream turbulence. The dataset consists of 7,929,856 non-
uniform points in a curvilinear grid with uniform spacing across the x and z axes
and non-uniform spacing along the y axis. Laminar flow is characterized by low
momentum convection, pressure, and velocity independent of time. Turbulent flow
is characterized by chaotic and stochastic property changes and tends to produce
vortices. The breakdown to turbulent flow in a flat-plate boundary layer is dom-
inated by the exponential growth of (unstable) Tollmien-Schlichting (TS) waves,
which form typical Lambda-shaped vortices. The visualization of this simulation
is of great importance to better analyze how the ”bypass” of TS waves develops.

The X38 Vehicle dataset consists of 323,192 non-uniform points computed
from an inviscid finite element calculation on a tetrahedral grid. The grid was
computed using an advancing front method and was generated from a geomet-
ric representation emulating the X38 Crew Return Vehicle. The geometry and
the simulation were computed at the Engineering Research Center at Mississippi
State University by the Simulation and Design Center. This data set represents a
single time step in the reentry process of the vehicle into the atmosphere. During
the reentry process, interesting shock structures emerge and dissipate and these

10
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structures have a significant impact on the stability of the vehicle. It is a typical
non-uniform dataset where 99% of its points are concentrated in about 5% of the
volume.

With the exception of the Synthetic Chirp dataset, all the other datasets are
defined as a cloud of points concentrated only at specific positions in the object
space. Hence, there is no possibility to exactly measure the accuracy of a recon-
struction or visualization method at positions not known apriori. In order to better
understand this behavior we created non-uniformly sampled data from regular data
sets by adaptively sampling them. For the adaptive sampling of the data we used
a 3D Laplacian kernel defined as follows:

Laplacian(V ) =
∂2V

∂x2
+

∂2V

∂y2
+

∂2V

∂z2
(1.2)

where V represents the volume given as a 3D regular grid. After convolving the
data with this 3D filter we sorted the point values according to their magnitudes
and retain only those points that have the biggest absolute values (i.e., 20% of all
points in our experiments). We denominate these datasets as Laplacian dataset.
Other filters could have been used, but since the idea of non-uniformly sampled
datasets is to represent higher frequency regions with more points, convolution
with a Laplacian filter would result in a similar effect. The uniform datasets used
in this thesis can be found at http://www.volvis.org .

1.3.2 Vector Datasets

The Flow Transport dataset was generated at AVL List GmbH in order to evaluate
computational fluid dynamics for fire simulation. It contains flow as well as heat
transport solutions. The non-uniform point set consists of 17,120 points containing
the 3D velocity field components of the flow data.

The Cooling Jacket dataset was generated at AVL List GmbH in order to
evaluate a cooling jacket design for a four cylinder diesel engine. This stationary
flow simulation incorporates a heat transport solution in order to predict critical
temperature regions within the engine. The original dataset is specified on an
unstructured grid composed of different cell types such as hexahedra, four sided
pyramids, three sided prisms and tetrahedra. The non-uniform point set consists
of 1,537,898 points containing the 3D velocity field components of the flow data.

The Fuel Injection dataset was computed by the Institute for Internal Combus-
tion Engines and Thermodynamics at The Graz University of Technology. This
data represents a simulation of fuel injection into a simple piston shape. It consists
of 25,190 non-uniform points giving the 3D velocity field components of the fuel
simulation.

11
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In order to create non-uniformly sampled vector data, where we know the
uniform ground truth, we used the gradients computed from uniform data sets and
adaptively sampled them. For the estimation of the gradients we used the central
difference operator. For the adaptive sampling of the gradient data we used the
3D Laplacian kernel as described in Section 1.3.1. Inputs to the kernel are the
amplitudes of the vector field v, ‖v‖ =

√
u2 + υ2 + w2. After convolving the

gradient amplitudes with this 3D filter, we sorted the values according to their
magnitudes and retain only the points that have the biggest absolute values. We
denote these datasets as Laplacian-Gradient datasets.

All the vector data is normalized so that the maximum amplitude across the
vector field is 1.0.

1.4 Evaluation Metrics

We have tested our method with a variety of datasets and with different parameter
settings. An important task of any reconstruction or approximation technique is
the reporting of the reconstruction errors and the metrics used for this.

In order to evaluate the quality of our reconstruction, we use the Root Mean
Square error (RMS) defined as follows:

RMS =

√∑M

i (F (xi, yi, zi) − fi)2

M
× 100

MaxV alue

(1.3)

where F is the approximating function, f are the given values, MaxV alue is the
maximum value in the given point set and M is the number of points. For the
error estimation in Laplacian datasets we will use also RMSg which gives the
global RMS in all regular points (including the points not retained in the Laplacian
dataset).

Our testing platform is an Intel Dual Core 2.70 GHz processor machine with
8GB of RAM. Since our program is single threaded we are using only one dedicated
processor during the reconstruction process.

1.5 Thesis Scope and Outline

The scope of this thesis is to provide an alternative framework to the visualization
of non-uniform point sets. The main difficulty of such representations, the lack
of neighborhood information, is avoided by providing an efficient method for the
reconstruction for 3D scalar and vector data. In this chapter we mentioned some
of the most important categories of techniques that deal with non-uniform point
sets.

12
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Chapter 2 presents the mathematical background and knowledge of existing
reconstruction techniques with special focus on the variational approach. The basis
of the variational approach is given. A block-based method is proposed for solving
the memory and efficiency problems encountered when adapting the variational
approach to the reconstruction of large non-uniform 3D point sets.

Reconstruction from non-uniform point sets is a non-trivial process especially
regarding the specification of an optimal reconstruction resolution. We define
as optimal reconstruction resolution the lowest resolution which ensures minimal
reconstruction error and no visual artifacts. In Chapter 3 we introduce a statistical-
based concept for selecting an optimal reconstruction resolution. Furthermore, an
new regularization functional is proposed to reduce the reconstruction errors.

Whereas selecting a single resolution can give solutions to cases when the data
has an even distribution of points across the volume, a multi-resolution approach
is required for the cases when this distribution is not even. In Chapter 4 we present
two multi-resolution reconstruction approaches that attack the latter problem from
different perspectives.

While the main motivation of this thesis is dedicated to the reconstruction
from scalar non-uniform point sets, in Chapter 5 we apply our approach to non-
uniform vector data. We initially present a straightforward approach obtained
by doing component-wise reconstruction of vector data. The method is applied
to non-uniform vector datasets obtained either from simulations or from thresh-
olding gradients of uniform datasets. By means of error estimation and vector
visualization we show the behavior of our proposed reconstruction technique.

We build Chapter 6 upon statistical data interpretation in an attempt to create
a basis for the criterion of selecting an optimal percentage of the Laplacian points.
Optimal here refers to the minimal percentage of points selected in a way that the
reconstruction errors are lower than a user-defined threshold. An iterative selection
method is presented in an effort to find the non-uniform point set, which will yield
a reconstruction with minimal error.

Finally, Chapter 7 presents a summary of the thesis and after conclusions are
drawn, the ideas for future work are presented.

13
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Several mathematical concepts exist in relation to reconstruction
from non-uniform data in shift-invariant spaces. Generally, if

there is no restriction on the distribution of the samples, the re-
construction is not uniquely defined and hence is ill-posed. In
such cases a variational approach is used and the reconstruction
routine is formulated as a minimization of two terms: a) the sum
of squared errors, and b) the regularization term that controls the
smoothness of the solution. In this chapter we introduce the math-
ematical background for the variational approach, the argumenta-
tion that supports the selection of B-splines as basis functions for
the variational approach, and a proposed method for improving
the efficiency in terms of memory and time.





CHAPTER 2

VARIATIONAL RECONSTRUCTION

Non-uniform data reconstruction (approximation) is a recent, fast growing research
area. It deals with the problem of reconstructing an unknown function from given
non-uniform data. A considerable number of approaches has been proposed for
the reconstruction of non-uniformly sampled scalar data, especially for one- and
two-dimensional signals [33, 34, 39, 59, 67, 89, 94, 120]. The non-uniform recon-
struction techniques can be classified as:

• Global fitting methods [33, 34, 39, 89, 100, 120]

• Distance-weighted methods [94]

• Moving least-squares (MLS) methods [32, 35]

• Shift-invariant methods [2, 4, 25, 63]

• Mesh-based methods [54, 65]

• Variational methods [10, 59, 75, 111, 112]

• Radial basis function (RBF) methods [22, 57, 66, 73]

Most of the methods are based on the reconstruction of the data by solv-
ing large systems of equations, hence suffering from long computational times
[33, 34, 39]. Feichtinger et al. [33] propose a reconstruction algorithm by using
adaptive weights, conjugate gradients, and Toeplitz systems to reduce computa-
tional effort. Grishin and Strohmer [39] extend this work by using Toeplitz and
Hankel matrices with a Neumann boundary condition to improve the reconstruction
speed and quality with piecewise trigonometric polynomials. While they provide
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good reconstruction results, most of these approaches are based on global recon-
struction techniques, since they use basis functions with infinite support. This
makes them impractical to use for real-time visualization applications, where fi-
nite support reconstruction kernels are desired. Park et al. [82] have presented an
efficient discretization of Sibson’s natural-neighbor interpolation for 2D and 3D
data fitting. While ensuring C1 continuity, they fail to report experiments for real
non-uniform point sets. Nielson [76] has presented an overview of several approx-
imation techniques for non-uniform point sets. While each technique performs
best only in particular cases, the use of local compact operators is considered the
fastest approach.

A major part of the literature related to non-uniform reconstruction starts from
the general assumption that the underlying continuous function is band-limited,
hence constraining the space of possible results. Unser [105, 109] suggests to re-
place the concept of band-limitedness by minimum-error projection on a space of
shift-invariant functions. A more general overview on modern non-uniform recon-
struction techniques in shift-invariant spaces has been summarized by Aldroubi
and Gröchenig [4]. Perhaps the most popular shift-invariant spaces are based on
Radial Basis Functions (RBFs).

When choosing a reconstruction method there are several features that should
be taken into account, as:

• Explicit expression: except the MLS and the mesh-based methods all the
other methods can be formulated through explicit mathematical formula-
tions.

• Ability to handle large sampling gaps: variational and RBF methods are
the best ones in handling large sampling gaps. The least efficient ones are
the global-fitting and shift-invariant methods, since they require a minimum
density to ensure the convergence of the solution. Mesh-based and MLS
methods handle the gaps moderately well.

• Reconstruction quality: variational methods are usually believed to be the
best in terms of reconstruction errors and smooth visual results. Global
fitting and Shepard’s method yield the worst quality.

• Computational complexity: global fitting, variational and RBF methods
have the highest computational complexity, since they require solving a dense
system of linear equations. Among the local ones, mesh-based methods also
have a complexity that is comparable to the global ones, especially in the
presence of regularization.

• Robustness to noise: methods that use regularization, as the variational
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method, are robust to noise. The RBF methods can be considered to be in
the next best techniques with regard to robustness to noise.

2.1 Sampling and Reconstruction

Sampling and reconstruction are two closely related processes. Apriori knowledge
of the sampling process on the acquisition device can lead to better reconstruction
results. Modern digital data processing of signals (in our case volumes) use a
discretized version of the original signal f that is obtained by sampling f on
a discrete set. The natural question that arises is whether and how can f be
recovered from its samples. Sampling theorems guarantee a perfect reconstruction
under specific mathematical conditions. Shannon’s theorem provides a method to
perfectly reconstruct band-limited signals from their equidistant samples [93]. A
function f is band-limited if its energy is finite (in L2-space ) and its Fourier
transform vanishes outside a specific interval. The reconstruction formula for
one-dimensional signals that derives from Shannon’s theorem is:

f(x) =
∑

k∈Z

f(k)
sinπ(x − k)

π(x − k)
(2.1)

where f(k) : k ∈ Z are the discrete samples of the band-limited function.
In 1977, Papoulis [81] introduced an extension of Shannon’s sampling theory,

showing that a band-limited signal can be exactly reconstructed from the samples of
the responses of m linear-shift invariant systems sampled at 1/mth of the Nyquist
rate [78]. The main contribution of Papoulis is the idea that there are many ways
of extracting data for a complete characterization of the sampled function [109].
However these theorems require the signals to be band-limited and to have an
infinite number of samples. Real world signals are never exactly band-limited and
the number of samples is finite. There is no such device as an ideal low-pass to
produce a perfectly band-limited signal. Furthermore, Shannon’s reconstruction
formula is rarely used due to the very slow decay and finite support of the sinc
function. In order to deal with those problems, there is a more recent trend that
approaches sampling from the perspective of approximation. The goal is to obtain
a solution that is as close as possible to the original signal according to some
criterion, e.g., in a least squares sense. These methods try to give a solution to the
consistent sampling problem [46], using more realistic non-bandlimited functions
as reconstruction bases. Unser and Aldroubi [106] further investigated such signals
and proposed the use of consistency criteria for the sampling process.

Similar ideas have been extended to the domain of non-uniform sampling and
reconstruction. Special interest has been dedicated to the reconstruction of signals
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in shift-invariant spaces. However, a lower bound on the minimal distance between
two sampling positions has to be assured. For general shift-invariant spaces a Beurl-
ing density D ≥ 1 is necessary for a stable and perfect reconstruction [3]. From
the shift-invariant spaces a logical connection can be done to the reconstruction
with splines, and in particular with B-splines [104]. With their shift-invariance,
compact support and approximation properties they assure the best conditions for
the reconstruction process.

2.2 B-splines

Interpolation can be defined as a model-based recovery of continuous data from
discrete data within a known range of abscissa [101]. The general form of interpo-
lation is:

F (x) =
∑

k∈Zd

ckϕk(x) (2.2)

where x is a d-dimensional vector, ϕk(x) are the basis functions used in the recon-
struction process and ck are the unknown coefficients associated with each basis
function. In the classical form of interpolation, the coefficients ck are the values
of the input samples. The usage of the general form offers new possibilities in
choosing a wider range of attractive basis functions.

In our framework we use B-splines as basis functions in the reconstruction
process. B-splines, with their shift-invariance and compact support, offer optimal
conditions for faster and more accurate reconstruction results. Their symbolic
representation is βn, where n ∈ N is the degree of the spline. B-splines are
piecewise polynomials of degree n, they are symmetric and have a Cn−1 continuity.
They can be formulated as:

β0(x) =





1 |x| < 1
2

1
2

|x| = 1
2

0 |x| > 1
2

(2.3)

and

βn(x) =
n+1∑

k=0

(−1)k(n + 1)

(n + 1 − k)!k!

(
n + 1

2
+ x − k

)n

+

(2.4)

where (x)n
+ = (max(0, x))n and n is a positive integer.

As described by Thévenaz et al. [101] and by Unser et al. [107, 108], B-splines
have several properties which make them very suitable for signal approximation.
We mention properties such as easy analytical manipulation, several recursion
relations, minimal curvature, easy extension to quasi interpolation and simplicity
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of their parametrization. One basic feature, which makes B-splines very suitable
in applications related to signal approximation, is that they enjoy the maximal
order of approximation for a given integer support, providing the best quality for a
given computational cost [102]. B-splines of degree higher than one do not enjoy
the interpolating property, but this is not required in most of the applications that
deal with noisy samples. If such a feature would be required, it can be achieved
through an additional digital filtering step [104], which in turn would introduce
extra computational effort.

2.3 Variational Reconstruction: Theory

In approximation theory, if there is no restriction on the distribution of the samples,
the reconstruction problem is not uniquely defined and hence ill-posed. The vari-
ational approach gives a solution to the general ill-posed reconstruction problem
expressed by Equation 2.2. In such cases the reconstruction routine is formulated
as a minimization of two terms: (1) the sum of squared errors, and (2) the regular-
ization term that controls the smoothness of the solution. The first part guarantees
that the solution is close to the sample points, while the second part ensures that
there are no discontinuities in the reconstruction. In variational theory the best
results with regard to approximation accuracy are given by RBFs, and particularly
by a specific class of basis functions known as thin plate splines [22]. While thin-
plate splines are one of the preferred approaches to deal with multi-dimensional
non-uniform data, they tend to be computationally expensive when the number of
points increases significantly. To overcome this problem Arigovindan et al. [10]
propose to discretize the thin-plate splines using uniform B-splines attached to the
reconstruction grid. While the discretization process holds mathematically for one
dimensional signal reconstruction, for higher dimensions there are no compactly
supported B-splines that span the same space as the thin-plate splines. However
cubic B-splines are very good candidates for the reconstruction process. Cubic
B-splines can be formulated as:

β3(x) =





2
3
− 1

2
|x|2 (2 − |x|) 0 ≤ |x| < 1

1
6
(2 − |x|)3 1 ≤ |x| < 2

0 2 ≤ |x|
(2.5)

Given a set of sample points, pi = (xi,yi,zi), i = 1,2,...,M, let fi be the scalar
value associated with pi. We define the B-spline approximation through the form:

F (x, y, z) =
Nx−1∑

k=0

Ny−1∑

l=0

Nz−1∑

m=0

ck,l,mβ3(x − k)β3(y − l)β3(z − m) (2.6)
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where β3(x) is the cubic B-spline basis function and ck,l,m the B-spline coefficients.
In order to determine the coefficients the following cost function is minimized:

C(F ) =
M−1∑

i=0

‖F (x, y, z) − fi‖2 + λ

∫ ∫ ∫
‖DpF‖2dxdydz (2.7)

where λ is a parameter that controls the smoothness and the second term is the
regularization term that uses Duchon’s seminorms. DpF can be formulated as
follows:

∫ ∫ ∫
‖DpF‖2dxdydz =

∑

q1+q2+q3=p

(
p
q1

)(
p − q1

q2

)
Dq1,q2,q3

(2.8)

with

Dq1,q2,q3
=

∫ ∫ ∫ (
∂pF

∂xq1∂yq2∂zq3

)2

dxdydz (2.9)

The crucial part of the variational technique is to express the second term in
Equation 2.7 by means of the first term. This can be achieved using Duchon’s
semi-norms which are a combination of the sum of partial derivatives of a degree
chosen respectively to the reconstruction technique and spline degree (p should be
smaller than the spline degree [30]). In our framework we use p = 2.

2.3.1 Matrix formulation

We can express Equation 2.7 with a simpler formulation using the following matrix
representations:





c = [c0,0,0 . . . , cNx−1,0,0, . . . , cNx−1,Ny−1,Nz−1]
f = [. . . fi . . .]
Fi,NxNym+Nxl+k = β3(xi − k)β3(yi − l)β3(zi − m)

(2.10)

The cost function can now be rewritten as:

C(F ) = ‖f − Fc‖2 + λcT Rc (2.11)

where R is a block-circulant filter that corresponds to a regularization filter which
is derived from the Duchon’s semi-norm. By applying the Euler-Langrange func-
tional equation for variable c we have:

[F T F + λR]c = F T f (2.12)

We denote A = F T F + λR and b = F T f for the sake of simplicity. Then
Equation 2.12 takes the form Ac = b. We solve this system of linear equations by
using a multi-grid V-cycle method [20, 44]. In each cycle the solution is refined
through a Gauss-Seidel iteration operator [43].
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2.3.2 B-spline Interscale Relation

One of the most important properties of B-splines of odd degree is the interscale
(two-scale) relation:

βn(
x

2j
) =

∑
h(k)βn(

x

2j−1
− k) (2.13)

where h(k) is the binomial filter [12].

Being based on the basic feature of the two-scale relation of odd degree B-
splines Arigovindan et al. [10] propose a multigrid iteration algorithm for finding
the solution to the cost minimization problem. Considering the reconstruction at
different scales, we specify 2j as the scale size and we have:

F (j)(x, y, z)=

Nx−1

2j∑

k=0

Ny−1

2j∑

l=0

Nz−1

2j∑

m=0

c
(j)
k,l,mβ3(

x

2j
− k)β3(

y

2j
− l)β3(

z

2j
− m) (2.14)

For j = 0 the reconstruction is at its finest resolution (Nx ×Ny ×Nz) and for
j = 1 each dimension is divided by two. Once we specify the desired resolution
level, we can make use of the downsampling and upsampling of the signal related
to the two-scale relation of B-splines. The idea is to downsample the signal to a
coarser resolution, solve Equation 2.12 iteratively and then upsample the signal
for getting a finer resolution. The upsampled signal will serve as initialization for
the B-spline coefficients at a finer level of resolution. At each level of resolution
an error refinement scheme is applied. The multigrid scheme ensures the fast
convergence of Equation 2.7 to its solution in each dimension. At the end this
scheme will give our desired reconstructed signal. The resolution coarsening can
be defined through the following equations:





Aj+1 = UT
j AjUj

Rj+1 = UT
j RjUj

bj+1 = UT
j bj

(2.15)

where Uj is a matrix representing the upsampling operation which is achieved by
convolving the signal with a circulant matrix corresponding to the filter kernel of
the B-spline two-scale relation formula ([83] and [110]). The adjoint operation
is the downsampling operation Dj where Dj = Uj

T . Once a coarser resolution
signal is obtained the equation 2.12 is solved through a Gauss-Seidel iterator. The
advantage of this multigrid interscale technique is that the solution in the lower
resolution is more efficient and faster. The upsampling and error refinement is
applied several times until we obtain the target resolution.
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2.4 Block-based Reconstruction

A custom solution to the variational method with thin-plate splines as basis func-
tions would require the calculation of the weights as well as the centers of the basis
functions. The linear system to find such a solution is mostly ill-posed and has
a poor numerical behavior. For solving such a system, when M non-uniformly
sampled points are given, we have to deal with an O(M) complexity. Once the
weights are specified, the next step would be to resample the thin-plate splines on
a regular grid. This would require an additional O(MN3) operations where N3 is
the resolution of the dataset [9].

The method adopted in our framework has several advantages over the thin-
plate spline solution. Since B-splines have a compact support the system is better
conditioned. Thanks to the multigrid interscale relation the solution of the system
is very efficient and the complexity is reduced to O(N3). Furthermore, there is no
need for a resampling step since the samples at the grid positions can be obtained
by a simple filtering of the B-spline coefficients. Hence, the reconstruction time is
dependent not on the number of non-uniform points but on the size of the uniform
grid.

One of the main problems of the variational method is memory require-
ments. For each grid position we estimate the B-spline basis functions
(β3(x), β3(y), β3(z)), that vary in accordance with the point coordinates. Each
coefficient is affecting four positions by its value along each dimension (due the
support of cubic B-splines), hence we are dealing with 4N × 4N × 4N data. As-
suming floating point numbers, for a dataset of size 256× 256× 256 we will need
4GB of memory.

This bottleneck brought us to the idea of reconstructing the point set in block-
wise fashion. One important issue we faced in the straightforward implementation
of block-based reconstruction was the discontinuity problem between neighboring
blocks (Figure 2.1(b)). To overcome this problem we decided to extend the blocks
in each direction by a certain number of voxels. Taking into consideration the
local support of a cubic B-spline and also the reconstruction results, we extended
each block by two voxels in each direction, having thus a 4-voxel overlap between
blocks. In Figure 2.1 we show the rendering of the CT-Head dataset with and with-
out block-overlap. No visual discontinuities are present when we apply a 4-voxel
block overlap (Figure 2.1(c)).

In order to improve performance, the implementation of the variational method
is based on reconstruction of blocks with sizes that are a power of two. The
size of the block influences the reconstruction times. The time needed for the
reconstruction of a block of size 2N × 2N × 2N is 8 times higher than the time
required for reconstructing a block of size 2N−1×2N−1×2N−1. When we select a
small block-size (e.g., 8, 16 or 32) the impact of overlap in reconstruction times is
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(a) (b)

(c)

Figure 2.1: Rendering of the CT-Head dataset: a) original dataset, b) reconstructed

dataset with no overlap between blocks, and c) reconstructed dataset with 4-voxel overlap

between blocks. 20% of the original dataset points were used in b) and c). The block size

used is 128 × 128 × 128.

higher than in the case when blocks of a bigger size are used. The size of a block
(optimal block-size) along each dimension for which the lowest reconstruction
time is required can be found through the following reasoning. If we denote with
Nx one of the dataset dimensions, e.g. its width, and with 2Q the maximum block
size dimension due to memory constraints, then the optimal block-size is 2Q−k
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where k minimizes the following function:

BlockSize(k) =

⌈
Nx − L

2Q−k − L

⌉
· 2−k (2.16)

where L is the overlap between blocks, ⌈x⌉ is the smallest integer greater or equal
to x and (2Q−k − L) > 1. The expression in ⌈⌉ gives the number of blocks to
be used for dimension Nx. As the block-size (2Q−k) increases the number of
blocks decreases, but the time required for reconstructing each block increases by
a two-order relation (hence the multiplication with 2−k).

2.5 Results

We have tested our method with a variety of datasets and with different parameter
settings. We obtained the non-uniform representation from a Cartesian (high-
resolution) representation, by selecting the Laplacian points as explained in Section
1.3. Unless stated otherwise we use λ = 1.0 for the all the results of this section.

First we tested various block sizes in order to find the optimal one. Here, optimal
refers to minimal reconstruction error and best timing performance. In Table 2.1
we show the reconstruction timings and errors of several datasets for four different
block sizes. As we found in our results, the variation of block size has a negligible
effect on the reconstruction errors. However, timings are strongly dependent on
the block size. According to these results and the mathematical concept introduced
in the previous section, the optimal block size for most of the datasets is 64x64x64.
As we reduce the block size, the overlap portion becomes decisive in the timing
performance. When 16 × 16 × 16 blocks are used the reconstruction timings are
almost twice the timings of the 64 × 64 × 64 block-size cases.

The calculated errors for some well-known and widely used datasets are given
in Table 2.2. For each dataset we take only 20% of the points from a Cartesian
dataset after applying a Laplacian filter. Then we show the reconstruction error
and the times (in minutes) required for reconstructing the whole dataset from
the non-uniform point set. All the reported errors were computed with a block-
based reconstruction, except for the Neghip and Hydrogen dataset, which have
dimensions that allow non-block-based reconstructions.

For the rendering of the datasets we have used VolumeShop [21] which is an
open source volume rendering platform. The volumes are rendered with a GPU-
based raycaster with a sampling step of 0.25. For some of the datasets the rendered
images are shown in Figures 2.2, 2.3 and 2.4.

In non-uniform reconstruction approaches which apply exact interpolation tech-
niques, the number of points used for reconstruction highly affects the reconstruc-
tion error. In approximation approaches that use basis functions that are not inter-
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Table 2.1: Reconstruction times (in minutes) and RMSg errors for different block sizes

applied to several datasets.

Dataset RMSg and Times (min)

Name Size 16x16x16 32x32x32 64x64x64 128x128x128

Engine 256 × 256 × 128 2.20 | 2.37 2.26 | 1.29 2.24 | 1.55 2.24 | 2.67
Tooth 256 × 256 × 160 0.24 | 3.75 0.23 | 2.12 0.23 | 1.88 0.23 | 3.22
CT-Head 256 × 256 × 224 3.04 | 4.74 2.92 | 2.83 2.93 | 2.60 2.93 | 3.40
Carp 256 × 256 × 512 0.57 | 11.48 0.55 | 6.23 0.50 | 5.73 0.55 | 8.36
CT-Chest 394 × 394 × 240 1.33 | 11.06 1.31 | 6.13 1.31 | 6.15 1.32 | 6.28
Christmas 512 × 499 × 512 0.50 | 42.14 0.50 | 24.94 0.50 | 17.94 0.50 | 24.08
Stag-Beetle 832 × 832 × 494 0.32 | 114.59 0.31 | 58.94 0.31 | 50.12 0.31 | 61.65

Table 2.2: Reconstruction times (in minutes) and RMSg errors for the variational method.

Each reconstruction is based on 20% of the points of the original dataset. An optimal

block-size estimated using Equation 2.16 is used in the reconstruction process.

Dataset Size Block size RMSg Times (min)

Neghip 64 × 64 × 64 64 × 64 × 64 2.14 0.02
Hydrogen 128 × 128 × 128 128 × 128 × 128 0.17 0.21
Lobster 301 × 324 × 56 32 × 128 × 64 1.21 0.83
Statue Leg 341 × 341 × 93 128 × 128 × 128 0.95 1.47
Engine 256 × 256 × 128 64 × 64 × 32 2.24 1.28
Tooth 256 × 256 × 160 64 × 64 × 64 0.23 1.88
CT-Head 256 × 256 × 224 64 × 64 × 128 2.93 2.60
Foot 256 × 256 × 256 64 × 64 × 64 2.16 3.10
Carp 256 × 256 × 512 64 × 64 × 64 0.50 5.73
CT-Chest 394 × 394 × 240 64 × 64 × 128 1.31 5.08
Christmas 512 × 499 × 512 64 × 64 × 64 0.50 17.94
Stag-Beetle 832 × 832 × 494 64 × 64 × 64 0.31 50.12

polating, as the variational method that we have presented here, there is always
a certain limit where even if we increase the number of points the reconstruction
error will remain stable. This is strongly connected to the regularization parame-
ter which controls the smoothing. In our experiments we concluded that we can
achieve a stable reconstruction rate when using 15%-25% of the points. In Chapter
6 we give further details for the behavior of the variational approach.

Smoothing is another factor that affects the reconstruction error. Smoothing
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(a)

(b)

Figure 2.2: Rendering of the Stag Beetle dataset (832 × 832 × 494): a) original dataset,

and b) reconstructed dataset using 20% of points. The RMSg error is 0.31.
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(a)

(b)

Figure 2.3: Rendering of the Carp dataset (256× 256× 512): a) original dataset, and b)

reconstructed dataset using 20% of points. The RMSg error is 0.5.

lowers the noise levels but it also eliminates details in the data. A compromise is
required between accuracy and smoothness. In Figure 2.5 we display the CT-Chest
dataset for different levels of smoothing. In Figure 2.5(b) there is too much visual
noise due to low smoothing. In Figure 2.5(d) the high frequencies are removed
due to the high smoothing operator.

The reconstruction from non-uniform point sets is very important also in com-
munication theory where parts of a uniform signal often are lost during transmis-
sion, hence creating a non-uniform representation. We created a typical testing
scenario for this case. We blurred a signal (uniform dataset) with white noise (with
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(a)

(b)

Figure 2.4: Rendering of the Christmas dataset (512x499x512): a) original dataset, and

b) reconstructed dataset using 20% of points. The RMSg error is 0.50.
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(a) (b)

(c) (d)

Figure 2.5: Examples of reconstructions using different levels of smoothing of the CT-

Chest dataset (394x394x240): a) original dataset, b) reconstructed dataset with λ = 0.5,

c) reconstructed dataset with λ = 0.7, and d) reconstructed dataset with λ = 1.0. The

reconstruction errors (RMSg) are, respectively, 2.43, 1.34 and 1.76. 20% of the Laplacian

points were used.
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(a) (b)

Figure 2.6: Renderings of the Engine dataset (256×256×128): a) uniform representation

corrupted with 5dB white Gaussian noise, b) reconstruction of 2,516,582 non-uniform

points taken randomly from the uniform representation corrupted with 5dB white Gaussian

noise.

a signal to noise ratio of 5dB) and then discarded 70% of the samples randomly. In
Figure 2.6(a) we show the rendering of the uniform dataset corrupted with noise.
In Figure 2.6(b) we give a result of the reconstruction from the non-uniform data.
The result shows that our method performs well also in the case where the signal
is corrupted with noise.

Although we do not aim for a compression technique, our method achieves a
reduction of up to 60% of the original dataset size when 20% of points are kept
for reconstruction. We do not apply any compression technique, but just save the
coordinates and values in a slice/row basis.
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The key issue in resampling a non-uniform point set into a uni-
form representation is the selection of the proper resolution.

This will be the central question we are trying to answer in this
chapter. We first assume that we can only afford a single reso-
lution and we make suggestions on how this resolution can be
best obtained. This is applicable for non-uniform data, where
the distribution of samples is even (in the sense of a discrepancy
measure), e.g., ultrasound data or seismic data. Furthermore we
introduce a new regularization functional and show its impact on
the improvement of the reconstruction results.





CHAPTER 3

SINGLE-RESOLUTION RECONSTRUCTION

In the previous chapter we introduced the basics of the variational approach and
how to adapt this technique for the usage in a block-wise fashion for large 3D non-
uniform point sets. In this chapter we give more insight to two factors that affect
the variational reconstruction process: (1) the optimal resolution selection, and (2)
regularization. As we will show in the results section both these factors have a
huge impact on the reconstruction quality. In Figure 3.1 we see such a relation
showing the behaviour of our variational approach. If λ is small then there is less
regularization, hence the reconstruction is closer to the input points. While this is
positive for the reduction of the reconstruction error, the negative side effect is that
our approach will show poor reconstruction in areas where big gaps are present.
This is due to the low regularization and smoothing. We also notice that the higher
the resolution of reconstruction the lower the RMS error. Of course a trade-off
between memory requirements and reconstruction quality has to be made.

In Chapter 2, we stated that the variational and RBF-based approaches are
considered the best with regard to reconstruction quality. For every reconstruction
technique to be evaluated, comparison to state of the art techniques should be
provided. Hence, in this chapter we give a detailed comparison of our method
[112] to two methods introduced by Jang et al. [47, 48]. Jang et al.’s [48] method
is formulated as an iterative algorithm for finding the centers and weights of the
RBFs using a PCA-based clustering technique by applying truncated Gaussians as
basis functions. This technique suffers from high-encoding times and is best suited
for locally isotropic structures. Later they [47] adapt their technique to ellipsoidal
basis functions (EBFs). The high computational cost is still the main bottleneck
of this approach.

Welsh and Mueller [117] introduce a method for converting regular volumes to
non-uniform spherical and ellipsoidal Gaussian RBFs and render them via splatting.
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Figure 3.1: Graphs showing the RMS error according to the changes of the lambda reg-

ularization and resolution of reconstruction. The testing was performed with the Natural

Convection dataset.

Juba and Varshney [49] propose the encoding of volumes with truncated Gaussian
basis functions and rendering with a GPU-based ray caster. Zwicker et al. [121]
propose direct volume rendering using a splatting approach to visualize volumes
encoded with elliptical Gaussian kernels.

The non-uniform reconstruction techniques can be divided into two main
groups according to the way the data was acquired [68, 118]. The techniques
in the first group try to reconstruct a signal by considering the non-uniform points
as part of a uniform grid where the missing point values have to be evaluated. The
techniques of the second group consider the reconstruction of the point set at any
desired resolution. All the above-mentioned approaches consider the resolution
of reconstruction as known apriori. In this chapter we provide an insight on the
selection of an optimal resolution.
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3.1 Resolution Selection

The key issue in resampling a non-uniform point set into a uniform representation
is the selection of the proper resolution. This will be the central question we are
trying to answer in this section. We first assume that we can only afford a single
resolution and we make suggestions on how this resolution can be best obtained.
This is applicable for non-uniform data, where the distribution of samples is even
(in the sense of a discrepancy measure), e.g., ultrasound data, seismic data, or data
with missing samples.

Increasing the resolution results in a decrease of the error, since the oscillations
in the data can be captured with more precision. Finding the optimal resolution
(Nx ×Ny ×Nz), in terms of minimal reconstruction error, would therefore require
estimating the error. We propose to do so by simply looking at the error within
a single grid cell. If there are many non-uniform points inside a cell, and their
standard deviation σk is large, the cell might be too large. Therefore, we propose
to approximate the error by using the average standard deviation, defined as:

σavg =

∑Ntotal−1
k=0 σk

Ntotal

(3.1)

as an indicator for the proper uniform grid resolution. Ntotal is the number of cells
in the volume, i.e., Ntotal = Nx ·Ny ·Nz. Empty cells are considered as cells with
zero standard deviation.

We analyze a number of data sets in order to arrive at a reasonable threshold.
Our idea is motivated by the strong correlation observed between the reconstruction
error and the average standard deviation of point values.

3.2 Improving Regularization

Regularization provides a framework for converting ill-posed problems into well-
posed ones by restricting the domain of possible solutions via smoothing con-
straints. Arigovindan et al. [10] suggest using Duchon’s semi-norms (DpF ) for
regularization. For p = 1 and p = 2 this norm yields a minimization of an energy
functional associated with a membrane and a plate model respectively [30, 85].
Here, we propose a new regularization functional in order to reduce reconstruction
errors for anisotropic signals. We denote it as Laplacian regularizer. The main
motivation for this idea lies in the fact that cubic B-splines have a better response
to high frequencies. These frequencies can be better detected and preserved by
convolving the signal with a Laplacian regularization kernel [105]. Our proposed
regularization functional consists of the sum of second degree derivatives if cubic
B-splines are used as a basis function for reconstruction:
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R2(F, λ) = λ

∫ ∫ ∫ (
∂2F

∂x2

)2

+

(
∂2F

∂y2

)2

+

(
∂2F

∂z2

)2

dxdydz (3.2)

In order to deal with anisotropic characteristics we extend Equation 3.2, so that
we can achieve a different regularization in each direction.

R3(F, λx, λy, λz) =

∫ ∫ ∫
λx

(
∂2F

∂x2

)2

+λy

(
∂2F

∂y2

)2

+ λz

(
∂2F

∂z2

)2

dxdydz

(3.3)
Equation 3.3 provides a very good application scenario in cases when we have

apriori knowledge of the directional variance of the data we are reconstructing.
A high variance in the x-direction for example, means we should set a lower λx

and vice-versa. As opposed to Duchon’s seminorms, the regularization terms
introduced in Equation 3.2 and Equation 3.3 do not enjoy the rotational invariance
property.

3.3 Results

We tested our framework on several data either given from originally non-uniform
data, or obtained by taking Laplacian points from a uniform dataset. A GPU-based
raycaster is employed for single resolution rendering. The renderer is developed
inside the VolumeShop platform [21]. The rendering integral is evaluated at each
point along the ray by using Equation 2.6. On the fly gradient estimation is used
by taking partial derivatives of the function defined in Equation 2.6 and applying
the fact that the derivative of a B-spline of degree n is a B-spline of degree n − 1
[104]. It can be defined as follows:

∂βn(x)

∂x
= βn−1(x +

1

2
) − βn−1(x − 1

2
) (3.4)

In order to determine an appropriate resolution for a uniform grid representation
of our non-uniform data points, we would ideally vary the value of Nx, reconstruct
using this resolution and measure the error. Ny and Nz are determined by the
proper aspect ratio of our underlying axis-aligned bounding box enclosing the
given non-uniform data points. Unfortunately, this is computationally infeasible,
since we would have to explicitly reconstruct the data. However, in the search
for a good heuristic, we did indeed reconstruct a number of test data sets under
various resolutions. Then we measured the RMS error of the point set as well as
the average variance of point values (as opposed to the reconstruction error) in
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Figure 3.2: Graphs showing the correlation of σavg to the: a) resolution of reconstruction,

and b) to the respective RMS error. A threshold of σavg = 0.05 is shown with a vertical

line.

each cell, according to Equation 3.1. The resulting relationship for the Natural
Convection dataset can be seen in Figure 3.2. We found a similar relationship in
all test data sets. A complete listing can be found in the end of the section (see
Figure 3.6 and Figure 3.7)

From Figure 3.2 we can analyze the behavior of σavg. When we increase the
resolution, the number of non-uniform points per cell is decreased, hence decreas-
ing the variance of the cell. A low cell-variance results in a better approximation
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capability from the B-splines, hence a lower RMS error. Based on this analysis,
we suggest, that a value of σavg = 0.05 yields a low RMS. In order to use this
effectively for an unknown data set, we start from a low value of Nx and increase it
until the value of σavg falls below the desired value. σavg monotonically decreases
with the increase of resolution. Typically we double Nx in each step, using Nx = 8
as a starting resolution. Once σavg has a value lower than the specified threshold
we refine the exact value of Nx with a binary-search method. Arigovindan et al.
[10] suggested a heuristic such that the number of uniform points is 4-5 times the
number of non-uniform points (i.e., Nx ·Ny ·Nz ≈ 5 ·M ). With our heuristic, on
the other hand, we sometimes find ≈ 4 · M to be good enough.

Table 3.1 compares the reconstruction results with our new regularization func-
tional to the results obtained using the regularization based on Duchon’s semi-
norms. We used uniform data, computed and thresholded their Laplacian to keep
20% of the original points and reconstructed the complete uniform data set from
this sparse representation. While computational times remain the same, we ob-
serve a 20%-60% improvement in the reconstruction error compared to the results
shown in Chapter 2. For our new regularization functional (Equation 3.2) we use
λ = 0.3, while in the previous chapter the results are obtained by using Duchon’s
regularization and λ = 1.0 (for consistency reasons with the results from our pre-
vious work [111]). The comparison of the behavior of our reconstruction method
for the two different regularization functionals is given in Figure 3.3.

Table 3.1: RMSg errors and computation times (in minutes) for different non-uniform

datasets created by taking 20% of Laplacian points from their original uniform represen-

tation.

Dataset RMSg and Times (min)

Name Size Laplacian Regularization Duchon’s Regularization

Engine 256x256x128 0.94 | 1.28 2.24 | 1.28
Tooth 256x256x160 0.18 | 1.88 0.23 | 1.88
CT-Head 256x256x224 1.17 | 2.60 2.93 | 2.60
CT-Chest 394x394x240 0.60 | 5.08 1.31 | 5.08
Carp 256x256x512 0.25 | 5.73 0.50 | 5.73

Table 3.2 compares our method to the work presented by Jang et al. [47, 48].
Our method has lower reconstruction errors and improves computation times by
several orders of magnitude. We show further visual comparison results at the
end of the section in Figures 3.8, 3.9 and 3.10. Our approach makes it possible
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Figure 3.3: Performance of our reconstruction method for varying λ in two different

regularization functional. The testing was performed with the Bypass dataset.

to render images of better quality and does not suffer from the blobby artifacts
present in the images obtained using the RBF and EBF-based methods.

Table 3.2: RMS errors and computation times (in minutes) for different non-uniform

datasets for our approach and the methods proposed from Jang et al. [47, 48]. The ratio

column shows by how much percent the size of the dataset was reduced (compressed). The

resolutions in our approach are selected based on the σavg = 0.05 threshold.

Dataset RMS and Times (min)

Name Resolution Ratio Our method RBF [48] EBF [47]

Oil 38x40x38 50 0.19 | 0.07 1.02 | 1.10 1.08 | 0.21
Natural Convection 61x61x61 17 0.63 | 0.07 1.51 | 6.95 1.41 | 4.16
Synthetic Chirp 64x64x64 12 1.12 | 0.08 3.06 | 229 1.37 | 36.4
Bypass 766x92x192 57 0.61 | 6.40 3.38 | 3987 3.33 | 3889
Blunt-Fin 93x36x25 49 1.14 | 0.12 1.58 | 6.83 1.41 | 5.38

For all point sets in Table 3.2 we have computed the error only at the points used
for the reconstruction (the input-points). However, an important measure is the
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quality of the reconstruction at other locations as well. For the original non-uniform
datasets the ground truth is not given, hence is difficult to evaluate. Instead we took
a Laplacian dataset and reconstructed it on the original grid resolution. In Figure
3.4 we show such a scenario using the Laplacian points from the Tooth dataset.
We compute the errors at the non-uniform points used for the reconstruction as
well as at all the original uniform data points. While our approach has the same
error rates in both cases, the techniques of Jang et al. [47, 48] exhibit a significant
increase in the reconstruction error at the non-input points, which is quite visible.

In Figure 3.5 we show the original Synthetic Chirp dataset, our reconstruction
with a regularization term as defined in Equation 3.2 and our reconstruction with a
directional regularization term as defined in Equation 3.3. The function represent-
ing the Synthetic Chirp dataset is changing very fast in the xy plane (the screen
plane), while it is changing very slowly along the z axis. In order to reduce the
reconstruction error a lower smoothness control along the xy plane is required.
All three cases were reconstructed on a 64 × 64 × 64 grid, selected based on the
σavg = 0.05 threshold. There is a clear improvement in the visual quality when
directional regularization is used; the error is reduced by 54%.
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(a) (b)

(c) (d)

Figure 3.4: Renderings of the Tooth dataset: a) original uniform dataset, b) reconstruction

from 2,110,259 non-uniform points using our method. The resolution of reconstruction is

selected to be the same as in the original 256× 256× 160 dataset. The RMS error is 0.19

at the input points, and 0.18 at the entire uniform volume, c) reconstruction from the same

set of input points using RBFs. The RMS error is 1.26 at input points, and 2.87 for the

entire volume, and d) reconstruction from the same set of input points using EBFs. The

RMS error is 0.76 at input points, and 2.45 at the entire uniform volume.
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(a) (b)

(c)

Figure 3.5: Renderings of the Chirp dataset: a) the original uniform data, b) recon-

struction from 75,000 non-uniform points using regularization as defined in Equation 3.2

(λ = 0.3), RMS is 1.12 with a reconstruction time of 0.08 min, and c) reconstruction from

75,000 non-uniform points using regularization as defined in Equation 3.3 (λx = λy = 0.3,

λz = 1.0), RMS is 0.51 with a reconstruction time of 0.08 min.

44



Single-Resolution Reconstruction - Chapter 3

0 0.5 1 1.5 2 2.5 3 3.5
0

20

40

60

80

100

120

140

R
e

so
lu

ti
o

n
 (

N
x)

Average Standard−Deviation

(a) Natural Convection

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

50

100

150

200

250

300

350

R
e

so
lu

ti
o

n
 (

N
x)

Average Standard−Deviation

(b) Tooth
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(c) Bypass
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(d) Synthetic Chirp
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(e) Blunt-fin
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(f) Oil Reservoir

Figure 3.6: The relation of resolution of reconstruction vs. average standard deviation

σavg as computed in Equation 3.1 for several non-uniform datasets. A threshold of σavg =

0.05 is shown with a vertical line.
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(b) Tooth
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(e) Blunt-fin
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(f) Oil Reservoir

Figure 3.7: The relation of RMS as computed in Equation 1.3 vs. the average standard

deviation σavg as computed in Equation 3.1 for several non-uniform datasets. A threshold

of σavg = 0.05 is shown with a vertical line.
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(a) (b)

(c)

Figure 3.8: Renderings of the Natural Convection dataset: a) reconstruction using our

method, RMS is 0.63, b) reconstruction using RBFs proposed by Jang et al. [48], RMS is

1.51, and c) reconstruction using EBFs proposed by Jang et al. [47], RMS is 1.41.
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(a) (b)

(c)

Figure 3.9: Renderings of the Oil Reservoir dataset: a) reconstruction using our method,

RMS is 0.19, b) reconstruction using RBFs proposed by Jang et al. [48], RMS is 1.02, and

c) reconstruction using EBFs proposed by Jang et al. [47], RMS is 1.08.
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(a) (b)

(c)

Figure 3.10: Renderings of the Synthetic Chirp dataset: a) reconstruction using our

method, RMS is 1.12, b) reconstruction using RBFs proposed by Jang et al. [48], RMS is

3.06, and c) reconstruction using EBFs proposed by Jang et al. [47], RMS is 1.37.
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There are many scenarios where we observe a large variance in
the density of the data points. Hence, finding a single reso-

lution to minimize the error in a uniform representation leads to
very large data sets with lots of redundancy. In such a case, it is
typical to encode the data with a multi-resolution representation.
A multi-resolution function can generally be decomposed into a
coarse resolution part, and into a collection of detail coefficients at
different resolution levels, necessary to recover the original func-
tion. In this chapter we propose two multi-resolution schemes to
tackle this problem.





CHAPTER 4

MULTI-RESOLUTION RECONSTRUCTION

One reason for non-uniformity is the ability to capture different scales of informa-
tion density. There are many scenarios where we observe a large variance in the
density of the data points. Hence, finding an optimal resolution, as proposed in
Chapter 3, to minimize the error in a uniform representation would lead to very
large data sets with lots of redundancy. In such a case, it is typical to represent the
data in a multi-resolution pyramid. Our B-spline basis is anchored on a regular
grid, preventing the need to store the grid geometry explicitly and opening the door
for efficient multi-resolution representations. B-splines have been previously used
for multi-resolution reconstruction of one- or two-dimensional signals in a wavelet
style [26, 59].

Multi-resolution approaches have been introduced to improve the rendering
speed as well as the quality of the data representation adaptively while minimizing
the memory overhead [88]. Generally, the visual importance of the local data
points is based on the distance to the viewer or other user-selected criteria. These
criteria can be intrinsic properties such as temperature, pressure, velocity and
so on. Cignoni et al. [27] propose a multi-resolution technique for rendering
tetrahedral meshes with scattered vertices obtained from any 3D data. Lamar
et al. [56] present an adaptive multi-resolution rendering technique based on
a hierarchical octree scheme. Kähler et al. [52] adopted the multi-resolution
octree scheme to adaptive mesh refinement trees. Linsen et al. [62] as well as
Entezari et al. [31] propose a multi-resolution approach using wavelet concepts
and alternate lattices. Wavelets provide a very suitable framework for multi-scale
signal processing, hence many approaches related to wavelets are dedicated to
multi-resolution analysis [5, 15, 98, 113].

The proper continuous interpolation between different octree levels has re-
mained a challenge in multi-resolution volume rendering. Weiler et al. [116] as
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well as Beyer at al. [17] minimize rendering artifacts between block-boundaries
by overlapping data blocks. Ljung et al. [64] propose a multi-resolution interblock
interpolation that permits extreme changes in resolution across block boundaries.
Wang and Shen [114] present a level-of-detail (LOD) map for improving LOD
quality by taking into account distortions and contributions from multi-resolution
data blocks as a formulation of entropy. Several of the proposed approaches ensure
only a C0 continuity in their rendering algorithms [17, 64]. The multi-resolution
function in our approach is a hierarchical sum of C2 continuous functions, ensuring
the C2 continuity over the entire domain.

Based on the data structure, multi-resolution schemes can be divided into regu-
lar schemes [56] (e.g., octrees) and irregular schemes [52] (e.g., adaptively refined
meshes). Regular schemes are desirable for fast rendering due to their explicit
structure, but are not efficient in representing data when very different resolutions
of refinement are required. Irregular schemes have higher data adaptivity but are
less suitable for fast rendering. Staadt [97] presents a survey on irregular and regu-
lar schemes. We propose one regular scheme, namely bottom-up multi-resolution
pyramid (BMRP), and one hybrid multi-resolution scheme, namely adaptive multi-
resolution reconstruction (AMR), in an effort to reconstruct the non-uniform point
sets efficiently and without loosing details of the data. Our hybrid multi-resolution
scheme adopts concepts from both classes. It is a multi-level hierarchy where the
first level represents the coarse resolution and has a regular representation. Ad-
ditional levels encode the errors and are refined adaptively. The structure of the
refined cells is again regular.

4.1 Bottom-up Multi-resolution Pyramid

In research it is often needed to visualize the same data on different scales. In such
cases it is typical to encode the data with a multi-resolution pyramid. One usually
starts with the highest resolution and gradually finds coarser representations. To
tackle this problem we propose a multi-resolution scheme based on the interscale
relation of the B-splines of odd degree (see Section 2.3.2).

We consider a 3D signal approximated through the function F (j) at scale j
and represented by a set of coefficients c(j) (see Equation 2.14). Using results
from multi-resolution analysis, the same signal can be represented at a finer scale
(j − 1) by the coefficients c(j−1), which are obtained by first upsampling c(j) and
then filtering with h(k). In the same fashion, by using the inverse transform of
Equation 2.13 we can filter and downsample the c(j) to get a projection of these
coefficients to the space spanned by the coarser coefficients c(j+1). For a specific
scale j we denote the upsampling and downsampling process by the matrices Uj

and Dj respectively.
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We initially estimate the coefficients at the finest resolution and then process
them to create a top-down hierarchy of coarser resolutions. We obtain the coeffi-
cients of the coarser resolution (j + 1) by downsampling from the finer resolution
(j): c(j+1) = Djc

(j). Ignoring the finer resolution completely would create an error
at scale (j), i.e., e(j) = c(j) − Ujc

(j+1). By saving the coarser scale coefficients
and also part of the error volumes (where the error is high) we can reconstruct the
data at a finer resolution with little or no error.

For example, for a signal which we want to reconstruct with the finest resolution
of Nx × Ny × Nz, using three levels of hierarchy, we first estimate the finest
coefficients c(0) by minimizing Equation 2.7. Then, by using the interscale relation
we estimate c(1) and c(2), as well as e(0) and e(1). In our scheme we save only c(2)

and parts of e(0) and e(1), which we denote by e
(0)
p and e

(1)
p . When visualizing the

data, we can either use the coefficients c(2) for a coarse resolution representation, or
the approximations c̃(1) = U1c

(2) + e
(1)
p or c̃(0) = U0c̃

(1) + e
(0)
p for a finer resolution

representation.
Our bottom-up multi-resolution pyramid requires an explicit intermediate rep-

resentation of the finest resolution, which might not be feasible computationally.
Hence, we propose a novel algorithm to build an adaptive multi-resolution data
structure.

4.2 Adaptive Multi-resolution Reconstruction

Whenever σavg demands a resolution that is too large to handle directly, we decide
to create a multi-resolution representation starting from a coarse resolution first.
This prevents us from having to compute the highest resolution explicitly and gives
the opportunity to create an adaptive multi-resolution reconstruction algorithm.

Estimating a reasonable coarse resolution is typically tied to hardware con-
straints. One should not choose a very high resolution, such that it compromises
real-time rendering or analysis performance, yet, it should not be too coarse to
avoid storing too many levels in the hierarchy. We call this maximum resolution
Nmax. Next, we determine whether each cell of the coarse resolution should be
subdivided or not, i.e., whether it is composite or not. This is done based on an error
criterion. These steps applied recursively will create a multi-resolution hierarchy,
that adapts to the variance in the data. What follows is pseudo-code outlining this
algorithm as well as the procedure how to use the multi-resolution hierarchy to de-
termine the value of the function. We will use the notation introduced in Chapter
2 and 3.

Algorithm 1 starts by determining the resolution of the volume V (line 1). This
is done based on the σavg threshold. In order to create a balanced tree, the chosen
resolution cannot exceed a maximum resolution Nmax. Given a resolution we can
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Algorithm 1: c
(j)
V = AMR(Volume V, point set PV with values fV , level j)

determine the resolution N for volume V (≤ Nmax);1

determine the B-spline representation FV with coefficients cV ;2

forall cells U of grid V do3

estimate reconstruction error ǫU = FV − fV of all points PU inside the4

cell U;
if (ǫU is too large) AND (|PU | > M̃ ) then5

c
(j+1)
U = AMR(U, PU with values ǫU , level j + 1);6

end7

end8

Algorithm 2: Evaluate Function FV at (x, y, z) for Volume V

evaluate FV (x, y, z) by using coefficients cV ;1

if (x, y, z) is in composite cell U then2

evaluate Function FU at (x, y, z) for Volume U;3

return FV (x, y, z) + FU(x, y, z);4

else5

return FV (x, y, z);6

end7

then determine the B-spline coefficients cV for this resolution using Equation 2.7
(line 2). For each cell of this resolution, we will determine whether we should
recursively subdivide (line 5). This is based on the cell reconstruction error (com-
puted in line 4) as well as whether the number of points in the cell is above a
threshold M̃ . M̃ is used to prevent the algorithm from subdividing cells with a low
number of points inside. Once we determine that we should subdivide the given
cell, we only reconstruct the error function (FV − fV ) in line 6.

Algorithm 2 is used during the raycasting process. It chooses the B-spline
coefficients to use in Equation 2.6 accordingly. If the point is in a composite cell,
it recursively adds the error estimation of each level of the hierarchy.

4.3 Results

In order to implement our BMRP scheme we need to find an error threshold, that
determines which detail coefficients to keep. In our experiments we found that
keeping 20% of the coefficients with the highest error in each level is a good trade-
off between storage overhead and accuracy. Although these error coefficients can
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be anywhere in the volume, they are still located on a uniform grid. Hence, using
a run-length encoding data-structure [19], we found that for 20% of the points of a
uniform dataset we need approximately 40% of the storage required for the entire
uniform dataset.

In Figure 4.1 we show timestep 360 from the Bypass dataset (focusing on the
”bypass” process, i.e., the creation of vortex-shape structures) reconstructed with
our BMRP approach. There is a visible difference in the level of detail in the
different resolutions. The file size for saving c(2), e

(0)
p , and e

(1)
p altogether is 49%

of the size of the non-uniform dataset. Analyzing the plot results of the relation
of the RMS error to the percentages of e(0) and e(1), we observe a drastic change
in the errors in the 20% region. In Figure 4.2 we show the relation of the RMS
error to the percentages of e(0) and e(1), justifying to keep only 20% of the error
coefficients in each level.

To visualize the multi-resolution hierarchy created from our AMR algorithm
we have adapted our CPU-based raycaster to implement Algorithm 2, which takes
all resolution levels into account during rendering.

One of our main concerns is the continuity or smoothness preservation through
different levels of resolution. Since each level of the hierarchy is C2 continuous
and we are simply adding these levels, the final result remains a C2 continuous
function. In order to avoid discontinuities at the boundaries, we extend the borders
of the cells in each direction by a specific number of voxels of value zero (here the
voxel size depends on the resolution of the cell). We take into consideration the
finite support of cubic B-splines. Extending by two voxels in each direction ensures
that the function representing the cell smoothly goes to zero as it approaches these
extended borders and is zero-valued everywhere beyond them.

Taking into consideration rendering performance a suitable choice of Nmax

could be 8, 16, or 32. In fact, in our experiments we chose 32 for the initial level,
but experimented with different Nmax for the subsequent levels. The decision
whether a cell has to be refined is based on the reconstruction error of that cell (see
line 5 in Algorithm 1). The RMS error threshold is always set to 1.0. In order to
prevent the subdivision of cells with only few non-uniform points we set M̃ = 100.

The X38 Vehicle dataset consists of 323,192 non-uniform points emulating the
X38 Crew Return Vehicle. It is a typical non-uniform dataset where 99% of its
points are concentrated in about 5% of the volume. In Figure 4.3 we show the
dataset reconstructed with our multi-resolution scheme consisting of two levels.
Due to the aspect ratio of the axis-aligned bounding box, the coarse resolution is
32 × 23 × 17 with an RMS of 6.39.

Table 4.1 summarizes several scenarios we tested to analyze the behavior and
performance of our AMR method. In all cases we specify the coarse resolution to
be 32, i.e., for the X38 and Bypass data set this translates to an initial dataset of

57



On Visualization and Reconstruction from Non-uniform Point Sets

(a)

(b)

(c)

(d)

Figure 4.1: Renderings of the Bypass dataset reconstructed using our BMRP scheme (finest

resolution 1024×120×256): a) coarse representation reconstructed from c(2) coefficients,

RMS is 4.55, b) finer representation reconstructed from c̃(1) = Ujc
(2) + e

(1)
p , where we

used 20% of the points from the e(1) error volume, RMS is 2.69, c) finest representation

reconstructed from c̃(0) = Uj c̃
(1) + e

(0)
p , where we used 20% of the points from the error

volume e(0), RMS is 0.6, and d) finest representation reconstructed where we used 100%

of the points from the error volumes e(0) and e(1), RMS is 0.4.
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Figure 4.2: Graph showing relation of RMS to the percentages of e(0) and e(1) for the

Bypass dataset.

32 × 23 × 17 cells and 32 × 5 × 9 cells, respectively. Level one represents the
coarse data details, while the other levels represent the finer details. Since there is
no subdivision in level one, the entries for Error, Times and Size in Table 4.1 are the
same for the respective datasets. In the second and third level, we selected either
8×8×8, 16×16×16 or an adaptive resolution based on the σavg = 0.05 threshold,
to subdivide (refine) the composite cells. The number of refined cells in level two
depends on the threshold M̃ . A small value of M̃ results in more refined cells, and
vice-versa. Using a resolution of 83 requires more levels in order to capture the
data accurately, however, the storage per level is reduced. By using a resolution
of 163 or an adaptive resolution we increase the storage requirement per level, but
achieve a better approximation of the data. The number of cells that the data is
subdivided when a 16 × 16 × 16 or adaptive subdivision is used is greater than in
the 8 × 8 × 8 subdivision case. Furthermore, the number of cells that will qualify
for refinement in the next level will be lower for the 16 × 16 × 16 and adaptive
case, since there will be fewer cells that have the number of points higher than M̃ .
When using the adaptive resolution the impact of the third or higher levels in the
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reconstruction error is very small. For the Bypass dataset there is no refinement in
level three for the 16 × 16 × 16 and adaptive case, since no cell has an error and
number of points higher than 1.0 and M̃ , respectively.

Figure 4.3: The X38 Vehicle dataset consisting of 323,192 non-uniform points rendered

with our multi-resolution scheme using two levels of hierarchy.

In addition we also analyzed the impact of the threshold M̃ . In Figure 4.4
we show graphs that give the relation of M̃ to the reconstruction error and to the
storage required for the multi-resolution hierarchy. Lowering the M̃ threshold,
lowers the error, but increases the storage requirements drastically. Driven also
from the results of Figure 4.4, M̃ = 100 is selected as a trade-off between accuracy
and storage requirements.
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Figure 4.4: Graphs showing the impact of M̃ on the: a) RMS error, and b) storage require-

ments for storing the multi-resolution hierarchy dataset (in MB). Testings are performed

with X38 Vehicle dataset and an adaptive resolution is used for the subdivision of the cells

in level two.
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Table 4.1: AMR results for different datasets and settings. Size shows the storage require-

ments in MB, Sub shows the resolution of reconstruction of the composite cells (i.e., either

fixed or selected adaptively (adp) based on the σavg = 0.05 threshold), M̃ is the minimum

number of points for which a cell can be subdivided, Cells is the number of composite cells

in each level of the hierarchy and Times are in minutes.

- Dataset Name

Level Feature X38 Bypass X38

Size 5.11 5.11 5.11 121 121 121 5.11 5.11 5.11
Sub 83 163 adp 83 163 adp adp adp adp

M̃ 100 100 100 100 100 100 50 10 1
RMS 6.39 6.39 6.39 4.33 4.33 4.33 6.39 6.39 6.39

One Times 0.03 0.03 0.03 0.52 0.52 0.52 0.03 0.03 0.03
Size 0.05 0.05 0.05 0.01 0.01 0.01 0.05 0.05 0.05
Cells 136 136 136 938 938 938 183 427 787
RMS 2.66 1.67 1.60 2.41 0.79 0.34 1.59 1.33 1.30

Two Times 0.07 0.17 0.52 1.22 1.72 7.53 0.55 0.58 0.63
Size 0.27 2.13 3.14 1.84 14.66 58.91 3.32 3.58 3.88
Cells 1765 651 33 13270 - - 292 7535 17948
RMS 1.99 1.60 1.58 1.54 - - 1.55 0.97 0.75

Three Times 0.27 0.58 0.03 1.95 - - 0.25 5.03 12.43
Size 3.46 10.18 0.18 25.99 - - 1.37 28.63 81.60
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In this chapter we extend the concepts of the variational recon-
struction to non-uniform vector data reconstruction. We intro-

duce a component-wise vector reconstruction method. We test our
algorithm with non-uniform vector datasets obtained either from
simulations or from the gradients of uniform datasets. By means
of error estimation and vector visualization we show the behav-
ior of our proposed reconstruction technique. The usage of the
reconstructed gradients for shading during the rendering process
improves the smoothness of the images.





CHAPTER 5

VECTOR RECONSTRUCTION

Vector field reconstruction or simply vector reconstruction is a method of creating
a vector field from experimental or computer generated data. A vector field asso-
ciates a vector to every point in a subset of Euclidean space. Generally, the goal of
vector reconstruction is to find a mathematical representation of the data. In turn,
this representation can be used for the study and analysis of phenomena, especially
in fields related to computational fluid dynamics (CFD).

Initially introduced for the study of magnetic fields in classical field theory, to-
day, vector fields occur in subjects such as tomography, optics, quantum mechanics
and medical imaging. Several techniques have been developed for the reconstruc-
tion of 2D and 3D vector fields with special focus in tomography reconstruction
[13, 40, 41, 45, 84]. Variational methods have also been applied for the reconstruc-
tion of vector fields. Bookstein [18] introduces a component-based reconstruction
for 2D vector fields. Amodei and Benbourhim [8] address 2D vector reconstruc-
tion by using a regularization functional based on the curl and divergence of the
vector field. They carry out the reconstruction as a minimization in the second
order Beppo-Levi space. Arigovindan et al. [11] present a variational method
for the reconstruction of 2D vector fields acquired from Doppler measurements.
They use a regularization functional based on Green’s semi-norms for the curl and
divergence of the vector field. Dodu and Rabut [29] present a variational method
for reconstruction of 3D vector fields using radial-basis-like functions.

Laidlaw et al. [55] and Forsberg et al. [36] give a general overview and
comparison of 2D and 3D vector field visualization techniques, respectively.
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5.1 Problem Formulation and Metrics

The formulation of variational vector reconstruction is very similar to the scalar
reconstruction problem introduced in Chapter 2. Given a set of sample positions,
pi = (xi,yi,zi), i = 1, 2, . . . ,M, let fi = [fui

fυi
fwi

]T be the vector field values
associated with pi. We denote v(x, y, z) = [u(x, y, z) υ(x, y, z) w(x, y, z)]T to be
the underlying function of the vector field which approximates the input data.

We want to find a vector field v such that it best approximates the given vector
point set. In order to evaluate the reconstructions obtained from our proposed
technique we use different error metrics. In Equation 5.1 we compute the recon-
struction error for the u component. The errors for the other two components can
be formulated similarly.

RMSu = 100 ·

√√√√ 1

M

M∑

i=1

(u(xi, yi, zi) − fui)
2 (5.1)

While reconstructing vectors, we are interested not only in low RMS errors for
the components of the vector, but especially in low RMS errors for the amplitude
and the orientation of the vector. In order to estimate the errors for the amplitudes,
Equation 5.1 can be reformulated as Equation 5.2. We recall that the vector com-
ponents are normalized so that the maximum amplitude across the vector point set
is 1.0. For the orientation we measure the angle γ between the reconstructed and
the input vector as expressed in Equation 5.3. The angle is given in degrees and
defined over the interval [0◦, 180◦].

RMS‖v‖ = 100 ·

√√√√ 1

M

M∑

i=1

(‖v(xi, yi, zi)‖ − ‖fi‖)2 (5.2)

Eγ =
180◦

M · π

M∑

i=1

cos−1

(
v(xi, yi, zi) · fi

‖v(xi, yi, zi)‖ · ‖fi‖

)
(5.3)

5.2 Component-wise Reconstruction

In the previous chapters we introduced the idea of variational reconstruction and
applied it to non-uniform scalar data. In this chapter we apply our variational
reconstruction scheme to vector data in a component-wise fashion. We search the
solution in the space of uniform B-splines which can be formulated as follows:
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u(x, y, z) =
Nx−1∑

k=0

Ny−1∑

l=0

Nz−1∑

m=0

cu
k,l,mβ3(x − k)β3(y − l)β3(z − m) (5.4)

where cu
k,l,m are the B-spline coefficients associated with the u component of the

vector v. The other two components are formulated in a similar way. In order to
find the coefficients ck,l,m the following cost function is minimized:

C(v) =
M∑

i=1

‖v(xi, yi, zi) − fi‖2 + λR(v) (5.5)

It is important to note that this regularizer does not have any coupled terms,
meaning that it does not enforce any special relationship between velocity compo-
nents. As a regularization functional we use the Laplacian regularizer introduced
in section 3.2 (see Equation 3.2).

In Table 5.1 we show the results from the reconstruction of Laplacian-Gradient
datasets. We reconstruct the whole gradient field from 20% of input vector points.
We give the reconstruction errors for each component (u, υ, w) and for the
amplitudes ‖v‖, as well as the average angle Eγ (in degrees) for the deviation of
the reconstructed vector from the original one. The reconstruction times are given
in minutes (min). The errors are computed only for the input points, i.e., if 20%
of gradient points are used, then only those are used for estimating the errors. We
have denoted the Laplacian-Gradient datasets with a G symbol next to the name of
the scalar dataset.

In Table 5.2 we give the reconstruction errors and times for the same datasets
as in Table 5.1, but the errors are computed over the whole dataset (including the
points discarded from the thresholding process). The amplitude and angle errors
are higher when computed over the whole dataset, since the vector field cannot be
smoothly reconstructed. For the EngineG and CT-ChestG datasets we observe high
reconstruction errors. We argument this behavior is based on two factors. First,
the number of zero-amplitude vectors for the EngineG and CT-ChestG datasets is
about 33% and 63% of the total number of vectors, respectively. Furthermore, the
bounding box for the non-zero vector points in these two datasets has a resolution
of 256 × 256 × 111 and 352 × 320 × 240, respectively. Since there are no input
points for reconstructing the vector field in many slices, our reconstruction method
has to extrapolate from the neighboring points, resulting in high reconstruction
errors on these slices.

In Figure 5.1 we show 2D vector plots of a slice from the NeghipG dataset. The
slice was taken parallel to y − z plane. The displayed 2D projected vector field
is the error between the reconstructed vector field and the input vector field. The
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Table 5.1: Vector reconstruction errors given as RMS for each component (u, υ, w) and

for the amplitudes ‖v‖, as well as the average angle Eγ (in degrees) for the deviation of the

reconstructed vectors from the original ones. Each component is reconstructed separately

with λ = 0.3.

Dataset Error and Times (min)

Name Resolution u υ w ‖v‖ Eγ Times

NeghipG 64 × 64 × 64 1.65 1.54 1.71 2.31 4.33 0.57
HydrogenG 128 × 128 × 128 0.11 0.11 0.11 0.16 3.96 4.67
EngineG 256 × 256 × 128 0.69 0.65 0.98 1.22 7.21 27.57
ToothG 256 × 256 × 160 0.83 0.85 0.82 1.20 13.75 41.93
CT-HeadG 256 × 256 × 224 0.67 0.69 0.61 0.95 6.98 57.68
AneurismG 256 × 256 × 256 1.13 1.12 1.10 1.63 1.42 66.23
BonsaiG 256 × 256 × 256 0.84 0.86 0.64 1.13 7.26 70.83
CT-ChestG 394 × 394 × 240 0.73 0.77 0.24 0.97 5.51 117.05

Table 5.2: Vector reconstruction errors given as RMS for each component (u, υ, w) and

for the amplitudes ‖v‖, as well as the average angle Eγ (in degrees) for the deviation of the

reconstructed vectors from the original ones. Each component is reconstructed separately

with λ = 0.3. The values are computed over the all the points, i.e., estimated at 100% of

points.

Dataset Error and Times

Name Resolution u υ w ‖v‖ Eγ Times

NeghipG 64 × 64 × 64 1.74 3.21 2.25 4.21 4.47 0.57
HydrogenG 128 × 128 × 128 0.85 2.01 2.00 2.96 3.32 4.67
EngineG 256 × 256 × 128 1.07 1.05 22.84 22.87 31.64 27.57
ToothG 256 × 256 × 160 7.91 7.78 1.03 11.06 19.98 41.93
CT-HeadG 256 × 256 × 224 7.09 7.76 2.77 10.82 42.17 57.68
AneurismG 256 × 256 × 256 4.32 4.54 4.11 7.47 0.29 66.23
BonsaiG 256 × 256 × 256 5.28 8.69 1.67 10.26 4.63 70.83
CT-ChestG 394 × 394 × 240 20.36 12.92 0.81 24.09 6.55 117.05

vector amplitudes have been magnified 10 times. In Figure 5.1(a) we show only
vectors that have an amplitude higher than a user-specified threshold. This was
done for visualization purposes. In Figure 5.1(b) we show the selected area from
Figure 5.1(b) with a higher resolution.

In Table 5.3 we give reconstruction results from non-uniform vector point sets
acquired from simulations. The selection of the reconstruction resolution is based
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(a)

(b)

Figure 5.1: 2D vector plot from the NeghipG dataset: a) 2D slice, b) zoomed version of

selected area of (a). Vectors with the smallest amplitudes are colored blue and those with

largest amplitudes are colored red.
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on the σavg assumption introduced in Section 3.1. In this case σavg is estimated for
the amplitudes of the input vector point set, since the set consisting of the vector
amplitudes can be considered as a scalar non-uniform point set.

Table 5.3: Vector reconstruction errors given as RMS for each component (u, υ, w) and

for the amplitudes ‖v‖, as well as the average angle Eγ (in degrees) for the deviation of

the reconstructed vectors from the original ones.

Dataset Error and Times

Name Points Resolution u υ w ‖v‖ Eγ Times

Flow Transport 17,120 44 × 58 × 58 0.26 0.70 0.34 0.64 0.91 0.48
Fuel Injection 25,190 39 × 51 × 60 0.36 0.65 0.62 0.62 0.42 0.50
Cooling Jacket 1,537,898 222 × 128 × 122 0.95 0.94 1.25 1.30 2.51 9.50

In Figure 5.2 we show the 3D vector plot of the non-uniform input vector point
set and the reconstructed point set for the Flow Transport dataset. For visualization
purposes we show only those vectors that have amplitudes higher than a user
defined threshold and we magnify the amplitudes by 10 times. In Figure 5.3 we
show the 3D vector plot of the difference vector field between the datasets shown
in Figure 5.2. The amplitudes are 30 times magnified. In Figure 5.4 we show
two visualizations from the Flow Transport and Fuel Injection Dataset. We used
glyphs and streamlines to visualize the vector fields.

To understand the visual quality of the reconstructions from the Laplacian-
Gradient datasets we used them in the rendering process for shading. In Figures
5.5 and 5.6 we show renderings for the Neghip and Engine datasets. In each Figure
we have used for shading the gradients computed from the scalar data during the
rendering process (Figures 5.5(a) and 5.6(a)), and the gradients reconstructed from
the respective Laplacian-Gradient datasets (Figures 5.5(b) and 5.6(b)). The usage
of the reconstructed gradients for shading during the rendering process improves
the smoothness of the images. By reconstructing the Laplacian-Gradient datasets
we assure that the underlying gradient field used for the shading is represented by
a C2 continuous function, hence ensuring visually better looking images.
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(b)

Figure 5.2: 3D vector plot of the Flow Transport dataset: a) input dataset, and b) recon-

structed dataset. Vector points are shown in a 44 × 58 × 58 resolution. Vectors with the

smallest amplitudes are colored blue and those with largest amplitudes are colored red.
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Figure 5.3: 3D vector plot showing the error vector field between the reconstructed and

input vector point set for the Flow Transport dataset. Vectors with the smallest amplitudes

are colored blue and those with largest amplitudes are colored red.
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(a)

(b)

Figure 5.4: 3D vector visualization: a) the Flow Transport dataset, b) the Fuel Injection

dataset. The HSV colorspace has been used for color mapping.
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(a)

(b)

Figure 5.5: Renderings of Neghip dataset: a) shading is based on gradients computed

from the scalar data, and b) shading is based on the reconstructed gradients from the

NeghipG dataset.
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(a)

(b)

Figure 5.6: Renderings of Engine dataset: a) shading is based on gradients computed

from the scalar data, and b) shading is based on the reconstructed gradients from the

EngineG dataset.
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In Chapter 1 we introduced the idea of using uniform datasets to
produce non-uniform representations by thresholding the Lapla-

cian. We selected the threshold in order to keep 20% of the points.
In this chapter we investigate to find an optimal threshold and how
to improve the selection of points in order to have lower recon-
struction errors. Be means of graphs we analyze the behavior of
our variational scheme in the reconstruction of Laplacian datasets.





CHAPTER 6

OPTIMAL THRESHOLD

In Chapter 1 we introduced the idea of creating non-uniform datasets thresholding
the Laplacian of uniform datasets. We selected 20% of the points from the uni-
form representation. In the chapters that followed, we showed that this threshold
ensured reconstruction with a low RMS error and good visual quality. Although
the selection of Laplacian points is not supposed to be a compression technique,
keeping only 20% of the points of a uniform representation results in an up to 60%
reduction in the storage requirements for the respective data.

6.1 Thresholding the Laplacian

In an attempt to find the optimal threshold we pursued several tests by reconstruct-
ing the Laplacian datasets with different percentages of points. The results related
to some of the tested datasets are given in Figure 6.1. The results show how the
RMS error depends on the number of points selected as input in the reconstruction
process. We can see that for the displayed graphs the reconstruction error becomes
stable in the interval [15%− 25%]. A similar behavior is observed by all the other
tested datasets. From the reconstruction point of view the error does not change
(significantly) when we further increase the number of points. This fact is con-
nected with the approximative and non-interpolating property of cubic B-splines.
The control points of the B-splines tend to oscillate in accordance with fast chang-
ing values of the input points (e.g., edges). In images or volumes edges represent
only a small part of the whole data. If we want the further increase of number
of points to influence the reconstruction error we have to lower the regularization
value λ. As λ approaches zero the variational approach tends to behave as a simple
least square approximation.
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Figure 6.1: The relation of RMSg vs. percentage of Laplacian points selected as non-

uniform data. The results were obtained from our variational reconstruction method using

the Laplacian regularizer (Equation 3.2) and λ = 0.3.

In Figure 6.2(a) we show a typical example from the image processing com-
munity. Figure 6.2(b) shows the image after being convolved with the Laplacian
kernel and scaled to range [0, 255] (for display purposes). We take the highest
absolute values for a Laplacian dataset (the values close to black in the image).
It is obvious that these values constitute only a small part of the image. Hence
selecting the [15% − 25%] threshold interval assures that all important points (i.e.
edges) are taken into account. The increase of the threshold would include points
from areas with a low variance into the reconstruction process. Hence this would
not affect the B-spline coefficients and the reconstruction process.

In Figure 6.3 we show the response of the variational reconstruction error
to a changing λ-regularization and percentage of Laplacian points for the Neghip
dataset. Figure 6.3(a) gives the RMSg error estimated for the uniform points of the
dataset. The error is high when the percentage of the points in the Laplacian dataset
is low, regardless of the λ-regularization. When the percentage of points increases
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(a) (b)

Figure 6.2: Input image (a), and the response after convolution with a Laplacian kernel

and scaling (b).

the λ-regularization plays a more important role in the reconstruction. A high
λ-regularization means more smoothing and better results when the percentage is
low and the gaps between non-uniform points are bigger. A low λ-regularization
means less smoothing and better results when the percentage increases over the 25%
threshhold. Tests with more than ten datasets show that the best results, regarding
the reconstruction errors, can be achieved when λ ∈ [0.2−0.3] and the percentage
of points is in the interval [15% − 25%]. When λ-regularization is high then the
RMS error is high even though we may have a high percentage of Laplacian points.
This is due to the strong regularization and its smoothing effects. Figure 6.3(b)
gives the RMS error only for the input points present in the Laplacian dataset,
hence the reconstruction error is expected to be low when λ-regularization is very
small. As λ-regularization goes to zero, the variational approach behaves like
a simple least-squares approximation. When the percentage of Laplacian points
goes towards 100%, both graphs of Figure 6.3 tend to be similar since they both
give the errors over the whole points of the uniform data.

The comparison of the graphs in Figure 6.3 gives us a better insight on the se-
lection of λ-regularization and optimal threshold. An ideal reconstruction method
is required to deliver similar reconstruction error rates not only for the input points
but also for the whole data domain. From the graphs in Figure 6.3 we see that
the zone, where RMS and RMSg exhibit similar behavior, is for λ ∈ [0.2 − 0.3]
and the percentage of points is in the interval [15% − 25%]. The selection of
such a percentage threshold is also reinforced by the visual comparison of the
rendered images of the Laplacian datasets reconstructed with different numbers of
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Figure 6.3: The relation of RMS to the percentage of Laplacian points and λ-

regularization.
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non-uniform points.

6.2 Iterative Point Selection

When selecting the Laplacian points for creating non-uniform datasets, we stated
that other filters could be possible candidates for the point selection. Due to the
sensitivity of B-splines to high-frequency details, we advocated that convolution
with a Laplacian kernel is the optimal choice. In this section we want to build
upon such conclusions, in order to find a representation of points that leads to
lower reconstruction errors when used with our variational approach. The idea is
to select a specific low-percentage from the Laplacian points, reconstruct the data,
and then increment the number of points on those positions where the RMS error
is highest. The diagram of this scheme is shown in Figure 6.4.

Uniform Volume Select % of Points     Reconstruct   RMS Low?       Visualize
Yes

Add Points where Error is High

No

Figure 6.4: Diagram showing the proposed iterative point selection scheme.

In Table 6.1 we show results from our iterative point selection scheme. The tests
were conducted for three different starting percentages and two different increment
steps. For each starting percentage we measure the reconstruction errors when the
number of points constitute 15%, 20% and 25% of the total points. In each case we
check also the influence of the incremental step on the process (we set it either to
1% or 5%). From the results we understand that the best performance is achieved
when the 1% incremental step is used. The results related to the starting percentage
are very close. Taking into consideration that we have to reconstruct the dataset for
each iteration step, the obvious selection would be the starting percentage which
needs less iterations. Hence our iterative scheme gives best results when 15% is
selected as starting percentage and in each iteration we increment the number of
points by 1%. The results obtained from our iterative scheme demonstrate an up to
15% reduction of the RMS error when compared to the results shown in Chapter
3 (see Table 3.1). Computation times for each dataset are the same as in Tables
2.2 and 3.1, but multiplied by the number of iterations. In Figure 6.5 we show
the behavior of the proposed iterative approach when the starting percentage is 5%
and the incremental step is 1% and 5% respectively.
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Table 6.1: Table showing the performance of the variational reconstruction when the

non-uniform points are selected through our iterative scheme.

RMSg

Starting Percentage 5% 10% 15%

Dataset / Increment 1% 5% 1% 5% 1% 5%

Neghip (15%) 1.13 2.50 1.56 2.41 1.02 1.02
Neghip (20%) 0.99 1.31 1.04 1.42 0.99 1.01
Neghip (25%) 0.96 1.10 0.96 1.07 0.97 0.98
Engine (15%) 1.29 5.48 1.71 1.90 1.58 1.58
Engine (20%) 0.78 2.82 0.89 1.42 0.80 1.10
Engine (25%) 0.66 1.58 0.65 1.02 0.61 0.70
CT-Head (15%) 1.30 3.65 2.74 3.09 3.62 3.62
CT-Head (20%) 0.66 1.96 0.84 1.93 1.12 2.02
CT-Head (25%) 0.48 1.05 0.49 1.11 0.51 1.15
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Figure 6.5: Relation of RMSg to the percentage of Laplacian points for our iterative

approach.
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A scientific truth does not triumph by

convincing its opponents and making

them see the light, but rather because its

opponents eventually die and a new

generation grows up that is familiar

with it.

Max Planck
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SUMMARY
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CONCLUSIONS

In this work we presented a framework for reconstruction and vi-
sualization from non-uniform point sets on uniform grids using

B-spline basis functions. We improve our reconstruction results
by introducing a new regularization functional and a heuristic for
selecting an optimal resolution. We introduce a new link between
non-uniform representations and the interscale B-spline relation in
a multi-resolution context. We show the performance and quality
of our technique when compared to other competing techniques.





CHAPTER 7

SUMMARY AND CONCLUSIONS

Advances in technology are providing us every day with more and more complex
data representations obtained either from real acquisition devices or simulations.
Non-uniform data is a fast-spreading data type since it allows the representation of
information with more samples where it is needed. Providing such a representation,
which has no explicit internal structure, comes with a price. It is not trivial to be
processed, analyzed and/or visualized.

In this thesis we present a general framework for reconstructing and visualizing
non-uniform point sets. We approximate the data with a C2 continuous function
that uses B-splines as basis function.

We adopted a successful approach for the variational reconstruction of two-
dimensional non-uniform data to the three-dimensional case. We proposed a
block-based reconstruction, which does not suffer from inter-block discontinu-
ities, in order to reconstruct 3D large datasets without being hampered by memory
limits. As every variational approach is affected by the chosen regularization, we
conducted several tests showing the impact of regularization on the reconstruction
process. To improve the reconstruction results we introduced a Laplacian-like reg-
ularizer. This regularizer does not ensure rotational and scale invariance, but these
features were traded for lower reconstruction errors and enhanced visual quality
of the images rendered from the reconstructed data. Based on several tests, we
proposed a logical heuristic for selecting a reconstruction resolution. Being de-
pendent on the distribution of points across the volume and the variance of their
values, this heuristic is closely correlated to the reconstruction resolution and to
the reconstruction error.

Whereas selecting an optimal single resolution is advisable when the points are
uniformly spread across the volume, multi-resolution comes into play for the cases
where the distribution of points is highly variant across the volume. We propose a
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multi-level pyramid style representation as a simple approach, but finally opt for
an adaptive multi-resolution approach. The proposed scheme can represent the
volume with multiple levels of details. Yet we suggest the usage of only two levels.
The first level represents the coarse data details, while the second level refines the
details only in the areas where the reconstruction error is high. Both levels are
represented by C2 continuous functions, and considering an appropriate spatial
overlap we ensure the C2 continuity of the multi-resolution function.

We make a first step in the reconstruction of vector data. We extend our
framework to vector reconstruction by doing a component-wise reconstruction.
We analyze our vector reconstruction scheme by applying to datasets obtained
either from simulations or from the gradients of uniform datasets. Our component-
based reconstruction gives low RMS errors. We will use such results in our future
work as a starting point for developing more elaborated reconstruction techniques.

Finally, in our thesis we try to better understand the behavior of the variational
approach with regard to the reconstruction of Laplacian datasets. By means of
graphs and statistical analysis we arrive into the conclusion that best results, in
terms of minimal reconstruction errors and good visual quality, can be achieved
when λ ∈ [0.2 − 0.3] and the percentage of points is in the interval [15% − 25%].

After all what was stated above, the natural question would be: "Is everything
said and done?". The straight answer is "NO!". There is no established theory
that could suggest an optimal reconstruction resolution in terms of minimal recon-
struction errors and good visual quality (no artifacts in the rendered images). With
respect to the variational reconstruction there is no mathematical basis that would
precisely state which regularization functional and what λ-value should be taken to
achieve the best reconstruction for a specific data. With respect to visualization and
multi-resolution there is no clear answer whether uniform or non-uniform grids are
the best data representations in terms of efficiency of encoding and representation
of information (signals). All these questions were offered alternative answers in
this thesis. Until such answers do not become definitive, these questions will still
remain the headings of our "Future Work".
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