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Kurzfassung 

Moderne Gebäudeautomatisierungssysteme müssen immer mehr Aufgaben bewältigen und 
werden dazu noch komplexer. Abstrakt gesehen müssen die Kontrolleinheiten dieser Systeme die 
Fähigkeit besitzen zielorientierte Problemstellungen in einem gegebenen Umfeld und unter Einhal-
tung von Sicherheitskriterien und anderen Randbedingungen zu lösen. Bisherige regelbasierte Algo-
rithmen können mit der steigenden Komplexität moderner Systeme nicht mehr umgehen und die 
Suche nach neueren und „intelligenteren“ Methoden für die Entscheidungsfindung ist ein weltweiter 
Forschungsschwerpunkt.  

Das ARS Projekt (Artificial Recognition System), im Rahmen dessen diese Arbeit durchge-
führt wurde, entwickelt eine Simulation um Modelle der Psychoanalyse und Neurologie mit Metho-
den der künstlichen Intelligenz zu kombinieren und die Fähigkeiten dieses Lösungsansatzes zu un-
tersuchen. Im Zuge dieser Arbeit wurde die Schnittstelle zwischen der Entscheidungseinheit und der 
virtuellen Welt entwickelt, mit Hilfe derer die Agenten Aktionen ausführen können.  

Der agile Entwicklungsprozess des Projektes und andere Randbedingungen erfordern vor allem ein-
fache Erweiterbarkeit und robuste, testbare Komponenten. Um dies zu gewährleisten werden be-
währte Patterns angewendet um eine allgemeine Struktur und Steuerung zu implementieren, die 
unabhängig von den konkreten Aktionen ist. Diese erlaubt es Befehle aufzurufen und bis zum Aus-
führungszyklus der Simulation zu sammeln, wo sie dann nach bestimmten Regeln wie Energiebedarf 
oder gegenseitigem Ausschluss geprüft, und schließlich ausgeführt werden. Die ersten etwa 20 Akti-
onen, die zum Beispiel Bewegen, Essen, Angreifen und vieles mehr ermöglichen, werden ebenfalls 
implementiert wodurch bereits verschiedene Test-Szenarien simuliert werden können. Um die Wei-
terverwendung und Nutzung der Aktionen zu vereinfachen, wird auch ein einheitliches Dokumenta-
tionsformat entwickelt das sämtliche Parameter und Eigenschaften der Befehle dokumentiert und als 
Katalog für die übrigen Entwickler zur Verfügung gestellt werden kann. 
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Abstract 

Modern building automation systems have to deal with more and more increasingly complex 
tasks. From an abstract view, the control units for theses systems have to solve goal-oriented prob-
lems in a given environment and meet security constraints and other conditions. State of the art rule-
based algorithms are already reaching their limits and new, more “intelligent” methods for decision 
making are in the focus of worldwide research. 

The ARS project (Artificial Recognition System) is developing a concept which combines 
models from the field of psychoanalysis and neurology with methods of artificial intelligence. To 
evaluate the possibilities of this scheme, a new artificial life simulation is being developed. In the 
course of this work, an interface between the agent’s body and decision unit is designed and imple-
mented to allow the agent to perform actions in this virtual world. 

Due to the agile development process of the project and other constraints, the new compo-
nents are required to be particularly extendable, robust, and testable. Approved patterns are chosen 
to ensure this, and a general infrastructure for calling and executing actions is designed. The respec-
tive classes allow calling commands and collecting them until the execution phase of the simulation. 
Here they are validated and checked for energy demand, mutual exclusions and other restrictions 
before they are actually dispatched. The first 20 actions are also implemented and allow the agent to 
move, eat, attack, and more. Using these commands, the first real test simulations can already be 
carried out putting the new components to actual use. Since other developers will use and enhance 
the software later, a documentation template is developed to create a uniform, compact, but also 
exhaustive catalogue of actions. 
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1. Introduction 

Large office buildings of today have control systems, which manage lights, heating, air condition, 
access control, security surveillance, and many other services. The number of sensors these systems 
have as input ranges to tens of thousands. Due to decreasing prices and increasing possibilities of the 
equipment, more and more applications are put under control of these computer systems and add to 
the already startling complexity. This increases the possibility of failures and also the dependency on 
the system, which makes these failures more fatal.  

To cope with this, many approaches are studied by the industry and universities. To reduce the com-
plexity at the system core, more intelligent sensors are developed; to enhance failure tolerance, dis-
tributed and redundant systems are studied; to reduce installation and maintenance costs, field busses 
are used. Another new strategy is examined at the department of Computational Engineering at the 
Technical University of Vienna: Bionics is the study of solutions and concepts found in nature and 
biology, and the application of these for technical systems. The most complex and also most suc-
cessful concept for a control system is the human being itself. We can handle huge amounts of input 
data, we are fault tolerant and we can produce decisions in real-time. Therefore the Artificial Recog-
nition System (ARS) uses the human being as a model system for the next generation of control 
systems [Zuck2008]. 

 

Figure 1: ARS Project and Decision Cycle [Deu2007] 
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As sketched in Figure 1, the project covers the whole cycle of decision making from the sensor input 
and pre-processing, to the decision process itself and finally to the controlling of the actuators. The 
first stages of the process, namely the pre-processing of the input, is studied in the perception sub-
project (ARS-PC). This part is mainly responsible for breaking down the huge volume of informa-
tion gathered from the sensors to an abstract, smaller, but more meaningful set of information. This 
data is then small enough in volume to actually allow to be processed by the decision unit: Here in a 
combined effort of neurologists, psychologists and engineers, a model for decision making is devel-
oped, mainly deduced from Sigmund Freud’s second topic model. This sub-project is named ARS-
psychoanalysis (ARS-PA) [Deu2007]. 

To evaluate the concept, explore the possibilities and compare it to other state-of-the-art practices, 
simulations must be done. These simulations are agent-based, which means that the simulation con-
sists of a computer simulated environment and autonomous agents, which are software entities that 
can communicate and manipulate the environment without further control from outside the agent’s 
program. These agents can gather information only through virtual sensors, use this to decide what 
to do next and then perform one or more of a fixed list of actions. The simulator for the project also 
has to allow to be configured for several different purposes, so different and increasingly more com-
plex problems can be examined. In the beginning, the simulator will be set up to copy well studied 
problems from other artificial intelligence simulations like the “fungus-eater” of Masanao Toda 
[Tod1982]: Here a single agent lives on a planet with only two resources – uranium and nutritious 
fungus. The agent’s goal is to mine as much uranium as possible, but moving around and mining 
consumes energy, which, in turn, can be filled up by finding and eating fungus. The decision unit of 
this fungus-eater agent receives sensor-information as input (it’s energy level and a map of the world 
containing the locations of uranium and fungus) and has to produce a command (move, eat, mine) as 
output. The agent’s performance will vary depending on the strategy it applies and therefore allow 
comparisons. Later simulations will add features like agent-to-agent interaction, dynamic environ-
ments, different classes of agents (predators vs. pray), manipulating objects and others. The actual 
requirements for the simulator were developed in a cooperation of engineers, psychologists and neu-
rologists and are written down as short stories or descriptions of problem-situations very much like 
the description of the fungus-eater above. This way of implicitly writing down the requirements 
rather than explicitly listing them is in accordance with agile development methods and is a more 
natural way of expressing them, especially when parties from such different fields of expertise are 
involved. 

First evaluation of the concept was done with simulations made with a professional simulation tool 
called Any-Logic. This allowed creating a prototype quickly and producing requirements for a more 
sophisticated simulation-tool. The latter is now being developed using a simulation toolkit called 
MASON, which is a framework and tools-library for developing any kind of custom agent-based 
simulation. It is open-source, programmed in Java and comes with optional additions like a physics 
engine, which was used to create a more realistic environment. But MASON itself only provides the 
skeleton for the simulation; the actual environment, agents, sensors, actions and everything else must 
be programmed individually. This allows producing very powerful and complex simulators, but it 
also takes time before first results become available. The software is developed by a core team of 
doctoral candidates, which created the basic components and manage the development process, but 



  Introduction 

 3

also by several students who participate in the course of internships or diploma thesis like this one. 
To allow these fluctuations in the personnel of the team a feature driven development process is 
applied: A list of individual features is derived from the requirements, which can then be imple-
mented independently piece-by-piece. This keeps the amount of communication and interdepend-
ence at a minimum and can also cope with changes and additions to the requirements, which come 
up after first experiences have been made. 

The new simulator consists of five main components:  

• The simulation-framework: This is mostly provided by the MASON libraries, but config-
ured for the project. In addition several utility-functions and the main simulation cycle were 
created so other parts can be fitted in. 

• The simulation-environment: It is two dimensional, bounded and can hosts the entities, 
which can be anything from stones, plants that can be grown and eaten, and of course 
agents. The environment is governed by a physics engine, which ensures realistic physical 
interaction of the participants like surface friction, collisions, forces joining objects, etc. 

• The agent’s environment-body interface: It contains attributes like size and weight for the 
physics engine, but also sensors for gathering information from the environment (vision, 
collision, audio, etc.) and actuators for performing actions in the environment such as mov-
ing, attacking, or communicating.  

• The agent’s body: It holds energy and inventory states, manages the communication and has 
several organs for different purposes, for example a digestion system which converts nutri-
tion to energy and excrements, a health system which stores state and effects of damages by 
collisions or attacks.  

• The agent’s mind: It takes sensor information as an input and delivers actions as an output.  
An interface allows swapping this decision making unit and study different implementa-
tions. This component is the actually studied object and the theoretical models developed in 
the project are implemented here and tested in the simulation to determine their properties 
and performance in various situations.  

In the course of this thesis the actuators of the agent’s environment-body interface are designed and 
implemented: 

 

Figure 2 Execution Stack and Processor 
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Actions are launched from several sources and collected in a stack as can be seen in Figure 2: 

• Sensors: As a direct reaction to a sensory input actions can be launched, comparable to re-
flexes. 

• Body: Internal units of the body can produce actions such as a change of the agent’s appear-
ance like it’s body-color or eye shape as a response to illness or fatigue. 

• Mind: The main source for actions is the decision-making unit whose sole purpose is to pro-
duce actions to reach the agent’s goal. 

These actions are collected in a stack until the execution stage of the simulation cycle where they are 
processed by the execution processor: 

• Inhibition: The mind may anticipate an automatic sensory reaction and needs the possibility 
to inhibit it. These actions are discarded from the stack without further influence. 

• Energy: All remaining actions are considered for execution, but depending on the type of the 
action a certain amount of energy and stamina is consumed as long as there is enough. 

• Mutual exclusions (Mutex): Actions can exclude themselves like moving left and right at the 
same time or picking-up and dropping something simultaneously. If combinations like these 
occur then these actions will also be discarded even though the energy was consumed. 

• Constraints: Finally each action may have certain individual constraints. For example, the 
agent can only eat if something eatable is in range. Each action’s constraints are checked 
and if they cannot be fulfilled the action will not be carried out 

• Execution: All remaining actions will then be executed 

The action processor also stores a history of actions from the previous round including information 
about if whether the action was performed or not. Since the software will probably be further en-
hanced and adapted, care was taken to use patterns which ensure the most flexibility. The action 
processor is encapsulated and only deals with a common “action” interface, so more actions can be 
added, and each can be changed independently without compromising the system. Actions that ma-
nipulate other entities do so through proxy-interfaces, so entities and actions can be developed inde-
pendently and entities can be enhanced to allow an action when needed. An example for this is the 
“eat” action, which calls a generic function of a proxy-interface “eatable”. When the command is 
dispatched, the processor searches for entities containing this interface in range, and when one is 
found, it calls the appropriate methods on the interface. The eaten entity reacts to this action in a way 
defined by the entity itself, for example return the food-equivalent of the bite and shrink in size or 
disappear from the environment. This follows the decoupling and separation-of-concerns rules, and 
allows entities to be available for the “eat”-action just by adding the interface and implementing the 
reaction. 

As mentioned before, a list of requirements in the form of short stories or problem situations was 
created by the core team. From this, the implicit actions which need to be supported were derived 
and more than 20 individual actions were listed, e.g. move, turn, eat, kill, communicate, attack, 
change body colour, sleep. These actions can be grouped into three categories: 
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• “Stand-alone”: These actions change internal states of the agent or it’s state in the environ-
ment such as moving or changing the body-colour. They do not involve other entities. 

• Binding actions: These actions bind entities to the agent, e.g. pick-up, move from/to the in-
ventory. These actions need entities in range, which can be identified because they inherit a 
certain interface. 

• Manipulating actions: Specialised actions, which involve certain interaction with other enti-
ties like attacking or communicating. Each of these actions interacts with the other entity 
only through a certain interface, for example, the “eatable” interface mentioned above. This 
allows identifying entities, which support a certain action, and also allows decoupling the 
function from the entity. 

Following the feature driven development process, the features – here the actions – are listed, dis-
cussed in detail with the leading software developers and then implemented one-by-one allowing 
immediate usage after testing. The actions are also documented using a common description tem-
plate that contains the purpose of the action, it’s parameters and information on how to implement it. 
This results in a catalogue of actions, which can be found in Appendix II of this thesis and offers 
structured and exhaustive information for the developers who need to use them later.  
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2. Background 

First the subject – artificial life simulations – is be presented by explaining the basic idea of such 
systems and the state-of-the-art in this field. The following section will then introduce the Artificial 
Recognition System (ARS) project, which this work is a part of, and lay out the concept of the simu-
lator. This chapter then closes by summarizing the methods and tools used in the practical part of 
this work. 

2.1 Artificial Life Simulations 

After giving an introductionary overview, the state-of-the-art regarding artificial life simulations is 
described from different viewpoints such as the decision making architectures, the development 
process and the simulators. 

2.1.1 Overview 

The term “artificial life” was introduced by C. Langton in 1986 and meant the investigation of life as 
it could be [Bed2001]. This field of study is highly interdisciplinary and covers a whole range of 
areas from biology and the emergence of life as examined by [Coh2007], evolution itself as studied 
by [Cur2003] and even the study of social behaviour and interaction [Dau1999]. In the course of the 
Seventh International Conference on Artificial Life in 2001, a list of open questions in the field of 
Artificial Life was created. This list contains a total of 14 challenges that cover all these fields of 
expertise [Bed2001] and also suggests using simulations as the instrument for solving some of the 
problems. The term “artificial life simulator” is therefore used for several different applications. The 
shared aspect of all variations is, that they target at synthetically constructing a phenomena from 
basic units rather than analysing complex phenomena and breaking them down into their parts 
[Sip1995].  

In this thesis an artificial life simulation is understood to consist of an environment and one or more 
agents. Agents are independent entities which can extract information from the environment with 
sensors and can perform certain actions to manipulate or explore the environment such as moving, or 
eating. The aim of the simulation is to study different decision-making strategies and the results of 
these schemes in game-like problem situations specially designed to focus on certain points of inter-
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est. Referring to the list of challenges mentioned above, the related questions from there are 
[Bed2001]: 

• Explain how rules and symbols are generated from physical dynamics in living systems. 

• Determine minimal conditions for evolutionary transitions from specific to generic response 
systems. 

• Develop a theory of information processing, information flow, and information generation 
for evolving systems. 

• Demonstrate the emergence of intelligence and mind in an artificial living system. 

Simulations in general, are a way to model more complex systems in order to explore specific prob-
lems without having to deal with non-relevant details. It is therefore a simplified model for a real 
system and only valid within the scope it was designed for. A very common argument concerning 
simulations is therefore, that not all insights gained from them can automatically be declared valid 
just because some real world test cases worked [Pol2008]. In this project, the aim is to study the 
decision-making process itself and the principles involved. The part relevant for valid results is 
therefore not the simulation environment but the given problem scenario and this is of course valid 
in any domain (including any simulation which can represent the scenario).  

The practical part and main focus of this thesis is the development of the possible actions an agent 
can perform in such a simulation. When it comes to computer systems a choice is made by applying 
some sort of algorithm to produce possible alternatives and then score them using all information 
available including a set of goals [Pom1996]. In artificial life simulations all information available to 
the agent is gathered via its sensors at the decision moment or earlier. The possible alternatives are 
the fixed list of actions the agent can perform and the decision is the choice which action should be 
executed at a given point in time. The number and variety of actions enlarges the number of possible 
decisions and allows for more complex scenarios. Therefore, creating many fine grained actions 
instead of only a few more powerful ones is important, e.g. actions for move, turn, eat instead of one 
“find-food-and-eat-it” action. 

2.1.2 Decision Making Architectures 

The first successful architecture described in detail for machine decision making which included a 
certain degree of reasoning rather than simple rule-based algorithms is the subsumption architecture 
developed by Rodney Brooks [Bro1986].  

Rather than splitting the decision process into a set of serial tasks, this architecture builds control-
layers stacked over one another. As sketched in Figure 3, each layer is realised as a single finite-state 
machine and adds further complexity – here called competence – to the model by manipulating the 
data flow of the layer below. In his paper, the zero-level competence for a mobile robot is just mo-
tion directed at moving it away from other objects. The first-level then adds a heuristic for planning 
ahead so that less evasive manoeuvres need to be carried out. The second-level adds a basic heading 
to the aimless movement by selecting potential targets and influencing the preferred direction to-
wards this target. 
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Figure 3: Subsumption Architecture [Bro1986] 

This idea is elegant in an engineering sense, because performance can be increased just by adding 
well-encapsulated black-box units and stacking them without the need to change the lower layers. 
But in practice this approach has several flaws [Moc1995]: 

• The construction of finite state machines requires great efforts for realising specific tasks. 

• The system is not adaptable and has no learning components since the connections are hard-
wired. 

• The subsumed information is lost since behavioural arbitration is based on priority among 
the modules. 

To overcome these difficulties several adaptations have been proposed such as neural networks for 
learning or emotional mechanisms. 

Another well-studied and heavily applied concept is the belief-desire-intension (BDI) framework 
described in detail by [Rao1995]: One data-structure comprises all collected sensor-information and 
combines it to the agent’s view of the world – the beliefs. A second data-structure represents the 
objectives and their priorities – the desires. And finally the third data-structure – the intensions – is 
the currently chosen course of action. Therefore the agent chooses an intended action that will sat-
isfy it’s desires – given the current beliefs.  

The BDI framework was later enhanced with emotions. As shown in Figure 4, emotions come into 
play twice during the cycle belief->desire->intension: Primary emotions are generated immediately 
after updating the beliefs as a response to the changes in the view of the world. These emotions 
could be fear as a response to threats, sadness as response to the death of another agent, etc. These 
primary emotions are then used to adapt the intensions, which in turn generate secondary emotions. 
The process of adapting the intensions is carried out in a loop for a number of cycles and can pro-
duce changing emotions. For example, anger from sadness, which triggers other intensions, which 
again produce emotions and so forth. The performance of this decision making process was tested 
and seen to outperform existing BDI architectures by [Jia2007]. 
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Figure 4: BDI Architecture [Jia2007] 

Another adaptation to the concept has been made by [Ho2003], [Ho2004] through adding autobio-
graphic memory to the agent. Both perceptions and actions are stored together as episodes in a way 
which allows to recapitulate past events both for adapting the agent’s own behaviour as well as to 
communicate these episodes to other agents for their profit. To further explore this concept they 
developed a 3D simulation environment where agents can only survive by keeping separate internal 
values – energy, moisture and glucose – above a minimum threshold by searching for and consum-
ing certain resources while every action they perform reduces these internal values. Through simula-
tion, [Ho2008] found that the autobiographic memory and the possibility to communicate experi-
ences could be used to ground the agent’s decisions, i.e. the reasons for an agents actions can be 
traced back to significant experiences.  

2.1.3 Development Processes 

The BDI architecture is the basic idea behind most of the agent architectures and has even led to the 
development of domain-specific development processes.  

From the engineering point of view, processes are needed to guide the development, allow for pro-
ductive collaborative work and apply best practices. In the field of multi-agent programming the 
issue of autonomous software components must also to be taken into account and therefore new 
processes have been developed such as Tropos, Gaia, Prometheus or NUMAP which even comes 
with proprietary support tools to assist in the process [Hec2008].  

A totally different approach to the design-process is the Behaviour-Oriented Design (BOD) pro-
posed by [Bry2003], which focuses less on the programming task but more on the decomposition of 
the actual problem so more sophisticated agents can be developed without losing oversight. The 
method is similar to object-oriented design and works downwards from the basic “what should the 
agent do” description of a scenario. This behaviour is then split into atomic actions and sequences 
and sorted into a hierarchy with the root being the goal, and all possible actions and their constraints 
that can lead to this goal. The resulting tree can then be developed in separate parts, each in iterative 
cycles enhancing the specifications in the process. [Bry2006] have also developed a modelling suite 
using MASON as simulation. 
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2.1.4 Simulator Environments and Frameworks 

A very old but still referenced environment for testing and comparing the performance of decision 
architectures is “Tileworld” developed back in 1990. The environment consists only of plains, holes 
and obstacles, and is generated randomly. Holes disappear after a certain timeout and reappear at a 
different location. The goal for the agent is to collect points by filling holes before they disappear. 
The simulation has only two phases: The act-phase in which the intended actions are executed and 
the reasoning-phase which contains the implementation of the decision which should be tested. As 
input information a whole world map is available including the timeouts and locations of all holes. 
The only actions available are moving and filling holes [Pol1990]. This test-architecture, although of 
course much simpler, shares the basic idea of the project at hand: a dynamic environment, a test 
scenario and agents following an input-reason-output cycle where the reasoning-part can be swapped 
to test different strategies.  

Large numbers of models have been developed, which use genetic algorithms to evolve creatures 
and test the fitness by using an artificial life simulation to see how good the creature performs at a 
given task. Influential examples in this field are Tierra, Echo and Polyworld [Bor2006]. Later these 
systems became the basis for a set of more complex simulations, which added physics to the simula-
tions and created creatures from basic parts, which were described in genetic code. An example for 
one of these more complex simulations is “framesticks”, which was developed by Poznan University 
of Technology in Poland and was introduced in the year 2000 [Kom2000, Kom2003]. This frame-
work allowed creating stick-like “creatures” with neural networks as brains, which could evolve 
both in their bodily appearance and their mental abilities. The main focus here was still to study the 
power of the evolutionary process itself, but since the fitness of a creature was determined by it’s 
ability to reproduce they were also able to move and interact in a complex environment which fea-
tured different terrains, obstacles, lakes, etc.  

A number of generic simulation frameworks has been developed which can potentially be used to 
create more complex simulations, e.g. SWARM [Ter1998], MUTANT [Cal1998], RePast [Tat2006], 
MASON [Luk2005]. In a comparison of popular multi-agent toolkits MASON [Rai2006], which is 
used for the practical part of this thesis, was recommended for calculation intensive simulations with 
many or complex agents, since it is faster than other frameworks and can be distributed over several 
machines. More detailed information on MASON and comparisons with other frameworks will be 
given later. 

Another interesting idea is to use commercially available computer games, which already come with 
an environment and a framework to implement computer opponents. Some of these games like 
BioWare’s Neverwinter Nights even come with designers to develop scenarios. [Spr2004] uses 
adaptive scripting to generate more advanced computer opponents, but the basic idea could also 
easily be enhanced to produce an environment for artificial life simulations. A way to do this would 
be to add an abstraction layer, which provides the agents with restricted sensor information of their 
surroundings and passes on the decisions as actions back to the simulator. This way both the envi-
ronment and all the already available out-of-the-box actions and features of the game can be used. 
Of course one would also be restricted to this fixed list of actions, but if the interface is designed 
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properly, wrappers for several games could be developed while reusing the agent’s decision unit and 
allow more possibilities this way. 

2.1.5 Actuators and Actions in Existing Simulator Environments 

Since artificial life simulations are developed to study and examine behavioural or evolutional theo-
ries, most publications focus on these topics and give little or no reference to the actuators and pos-
sible actions of the agents. The following enumeration will list the actions available in each of the 
simulation environments presented in the previous chapter as far as they have been published: 

• Titleworld: The only available actions for the agent are moving from one square to an adja-
cent one and filling holes [Pol1990]. 

• Echo: Agents can move between different locations, eat and store resources but can also in-
teract with other agents by fighting, trading resources and mating [Bor2006]. 

• Framesticks: The number of actions is very limited but the bodily appearance is taken into 
account and the speed, performance and abilities depended on the physical shape of the crea-
ture. The agents can move through different terrains (walk, swim, fly), consume energy and 
fight. 

• Commercial games: When using commercial, off-the shelf games like [Spr2004], the avail-
able actions depend on which game is used. In the concrete case of Neverwiter Nights, 
which is a role-playing game, actions such as movement, picking up and dropping objects 
and fighting are available. Depending on the figure additional actions, like casting spells to 
attack opponents may also be available. 

However all the system mentioned do not support the complexity needed to study decision-making 
processes. For this task a more complex environment and a larger number of available actions are 
needed to scale up the decision-space.  

2.1.6 Related Work 

Even though the technical possibilities have increased immensely, not many other projects can be 
found that can be compared to the ARS project this thesis is a part of. 

A group at the University of Arizona are currently working on an enhanced BDI based simulation-
framework with human-in-the-loop capabilities. The simulator in this case is a CAVE Automatic 
Virtual Environment (CAVE) where the environment is calculated from Google 3D images using 
Google SketchUp 3D. Using the CAVE technology a human can interact with the simulation in a 
cave-like room where its current view is presented as images on the walls. The goal of this project is 
Crowd Simulation where each human in the crowed is represented as an autonomous agent with a 
BDI model for decision making [Lee2008]. This is of course a totally different goal than the one of 
the project at hand, but the idea of human-in-the-loop simulations with real human-agent interaction 
is an idea, which could also be applied in artificial life simulations – both to add additional dynamics 
to the simulation as well as to compare the behaviour of agents relative to humans within the same 
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environment. The latter could be done by comparing logs of the actions which would be analysed by 
behavioural experts [Nor2000]. 

The team working on autobiographic memory mentioned above have created and application called 
“FearNot!”, which tells stories by letting them emerge from the interactions of agents rather than 
fixed scripts. The story is therefore not implemented in the form of a script, but as intentions the 
single agents have. By communicating and trying to reach their individual goals the story unfolds 
and can be followed by human observers. The agents are also capable of summarizing the past 
events via their autobiographic memory and can – in contrast to a fixed script – react dynamically to 
changes in the environment or suggestions on what to do next, which can be given by observers at 
certain points in the story. This application is currently being evaluating at primary schools with 
children aged 9 to 11 who are supposed to judge the performance of the actors both with autobio-
graphic memory and without it [Ho2007].  

Jean-Daniel Kant and Samuel Thiriot from the Univeristé de Paris have proposed an alternative to 
the BDI decision-making model: The Cognitive Decision AGEnt (CODAGE) [Kan2006]. The main 
idea here is to distinguish between relevant and irrelevant information coming in from the sensor-
layer by using experiences from the past to determine the priorities. The concept is a descriptive 
approach where decision-making is said to be a process comprised of three steps: intelligence, de-
sign and choice. Intelligence is understood here as the process of understanding what the decision is 
about by exploring the current context in respect to the constraints of the decision. In the following 
design phase possible different solutions to the problem are created. And in the choice-phase the 
system finally chooses one of these. This basic scheme has been applied by setting up a tree of alter-
natives, where the nodes represent different possible states of the world in past, present and future. 
The arcs between the nodes represent possible transitions of these states. This tree is then modified 
and enhanced by different agents:  

• Agents which add information from perception and experience 

• Agents that rate information with priorities or certainty  

• Agents that connect information with reference-points 

The final result is a tree, which shows different possible future states, how desirable they are, and 
how to get there. Another agent – the decision agent – works in parallel to select possibilities, which 
should be explored further. This decision-making architecture is very sophisticated and makes use of 
agents at a very low level of the process. It is also obviously very computationally intensive and 
therefore more useful for studying a single decision rather than a real-time decision process needed 
for an artificial life simulation. Currently the team is developing a simulation, which they want to 
construct as a generic framework where different decision heuristics could be incorporated including 
learning neural network decision units and also human-in-the-loop units so agents and operators can 
compete against each other in the simulation. 
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2.2 Artificial Recognition System – Project (ARS) 

In modern office buildings more and more sophisticated automation systems are implemented. 
About 30 years ago the only few sensors in a building were usually thermometers for the heating and 
air-condition. Now building automation systems manage huge numbers of sensors and actuators for 
control, monitoring, surveillance and security purposes. The control-systems, which have to manage 
this ever-increasing data-flood, are becoming more complex as well. This leads to failures and ex-
pensive maintenance and installation work. But still there is no end in sight and even more applica-
tions and domains are put under the control of these systems, which also leads to a high dependency, 
making a possible failure have an increasingly large impact [Pra2005]. 

The software components developed in the course of this thesis are used for the “Bubble World” 
(BW) simulation, the artificial life simulation for the Artificial Recognition System (ARS) project. 
The primary goal of this project is to develop a more human like decision-unit which can cope with 
large amounts of input-data, filter out the relevant information, compare redundant sensor-
information and use this for more fault-tolerant and robust applications in the fields of surveillance 
and building-automation [Pra2005]. 

The operation cycle for a decision in this system is perception, decision, action. The project is thus 
divided into two main parts: ARS-PC (Perception) where the systems responsible for gathering and 
interpreting sensor-inputs are developed and secondly ARS-PA (Psychoanalysis) where the decision 
making process is modelled [Deu2007]. 

Perception 

As mentioned above, the decision unit has to be able to cope with hundreds, thousands or even mil-
lions of sensor-inputs and use this information in real-time for determining the course of action. 
Therefore this flood of data must be broken down to a volume that can be processed by a computer 
system. To achieve this, the concept of Neuro-Symbolic Networks was developed by [Vel2008] in 
the course of the ARS-PC project: 

Neural networks are fault-tolerant, can deal with incomplete information and learn, but they cannot 
explain the decision process nor the output information. Symbolic systems on the other hand are 
very powerful when it comes to knowledge representation and can be explicitly combined by logic 
relations. Neuro-Symbolic Networks make use of the strengths of both approaches by creating sym-
bols from layers of neural networks. The incoming sensor-information is condensed to more and 
more abstract symbols in each layer. These symbols therefore become more compact but also repre-
sent more meaningful information. In this way sensor-information from tactile sensors, light-
barriers, cameras, motion sensors and others can be combined to symbols for “person entering the 
room”, “person walking”, “person standing” and “person leaving”. This information is much more 
valuable than the large set of sensory information and also much more reliable than a state-of-the-art 
single motion sensor for surveillance would be. In later layers these basic symbols can be further 
combined to even more complex ones like whole sequences. 
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Due to the neural networks at the base of the system, operations can learn new symbols as they go 
along, even though the most basic symbols at the lowest layers have to be set in advance as a sort of 
reference from which all other information is derived. Another advantage is that the process can – in 
principle – be carried out in parallel, even though current computer technology has to simulate neu-
ral networks due to lack of specialized hardware. But the whole process can still be integrated in a 
hierarchical network of computers working in parallel at certain stages in the process.  

The final result – the most abstract symbols – is scales smaller in volume than the basic inputs at the 
beginning of the process. They can therefore be handled by a decision unit, which they are passed on 
to, as the next step. 

Decisions 

The model developed in the ARS-PA project is highly interdisciplinary using knowledge from the 
fields of neurology, psychology, artificial intelligence and computational engineering. The develop-
ment was carried out in a top-down design approach, starting off with Sigmund Freud’s second topic 
model at the top and aiming at creating a coherent implementation, which can be simulated by com-
puters. Compared to state-of-the-art architectures mentioned above, the approach taken in this pro-
ject is a far more complex. But besides being one of the most thoroughly studied concepts in the 
field of psychology, this model can be split it in into individual components, namely the ID, Ego and 
Super-Ego. Each of which have certain properties, functions and interrelations, which can again be 
split into parts. This model is therefore accessible to a top-down design approach and can be tackled 
with common engineering practices [Zuc2008]. 

Simulation platform 

The first simulation developed for verifying the model was created using a professional simulation 
tool, AnyLogic. This tool suited the requirements and was chosen primarily because it offers quick 
results with first prototypes and allows the usage of native Java, so code can later be ported to other 
platforms if need be.  

The number and complexity of the test-scenarios needed for the evaluation of the model increased 
during further research work, and AnyLogic, offering many charts and extensive visualization of the 
simulation, suffers from performance loss when increasing the number of entities and the complex-
ity. A second issue is the demand for automated tests and comparisons which need special logging 
are not offered by Anylogic [Deu2008]. Due to these problems the current project was launched, 
aiming at developing a new simulator to overcome these issues.  

Simulation architecture 

Figure 5 shows a screenshot of the actual simulator: the new simulation set-up has a 2 dimensional 
closed environment with fixed borders that cannot be overcome by entities of the simulation. De-
pending on the scenario, the environment can be equipped with objects such as the two stones, the 
cake or the can (blue dot) in the example. In a single simulation, several agents – represented by the 
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three large coloured circles – can be added which can then move in the environment, manipulate 
objects and interact.  

 

Figure 5: Screenshot of Simulator Visualization 

Every agent is comprised of a mind and a body, which can differ in respect to the implementation, 
i.e. they have different physical abilities or minds. The mind is comprised of the decision unit and all 
components needed according to the model such as memory, and is only indirectly connected to the 
environment via the body. From this it gets input information in form of sensor-data and can execute 
actions by passing back appropriate commands. The body serves as a container for the internal state 
(health, energy or stamina) and also has several sensors. Internal sensors, representing the bodily 
states; and external sensors which represent information gathered from the environment, e.g. vision 
sensor, collision sensor, audio sensor. The body itself also has actuators with which it can manipu-
late both its internal states, for example setting a sleeping state, and also the environment, e.g. move, 
eat, attack.  

The simulation is carried out in rounds, each comprised of a 5-stage cycle as can be seen in Figure 6: 

1. Sensing: In this phase the sensor-data is updated by gathering information from the relevant 
sources.  

2. Update internal body state: Status values like stamina or health are updated. 

3. Process data: The decision unit receives the updated sensor-data as input and produces 
commands as output 
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4. Execution: Commands have been issued during all previous stages – reflex-like actions di-
rectly by the senses, representational actions like a change of body colour due to the internal 
body status, and of course the actual commands produced by the decision unit. 

5. Advance Cycle: The actual simulation is carried out and the simulator-states are updated. 

 

Figure 6: Simulation Architecture and Cycle 

The actual object of study is the 3rd stage of the cycle. Taking only the sensor data as input, com-
mands have to be produced as an output by the decision unit. These decisions are recorded and 
logged for later analysis. The interface for the decision unit is as universal as possible so different 
models can be implemented and compared without having to change other parts of the software. In 
addition, configurations can be applied so agents with different abilities can be constructed such as 
restricting the usage of certain actions or changing performance parameters. 

Action execution 

The practical part of this thesis is implementing the 4th stage of the simulation cycle. A means to 
collect the actions during the previous stages of the cycle has to be offered, and the actual execution 
of a list of about 20 actions has to be implemented. Due to the modularity of the concept this part of 
the simulation can be implemented without interfering with the rest of the project. A detailed analy-
sis of the requirements will be given in Chapter 3. 
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2.3 Development Environment 

This section introduces the methods and tools used in the course of the practical part of this thesis. 
Since the programming language used is Java, lots of Open Source tools exist and the first part will 
list the ones which were chosen by the project team for this simulator. The main non-generic library 
used for the simulation is the MASON multi-agent simulation toolkit which will also be presented 
here. Afterwards the basic development process will be explained and also some other possibilities 
will be shown for comparison. The last subsection will focus on patterns – both the basic idea devel-
oped by Gamma et. al, as well as some popular examples will be given. 

2.3.1 Development Tools 

The development team for the new simulator mainly makes use of open-source tools. The ones rele-
vant for this project will be introduced briefly in this chapter. 

Programming language 

Java was chosen as the programming language and is used here in version 1.6. Java is an object-
oriented language and similar to C in it’s syntax. It is not compiled to machine code, which can be 
executed directly, but to an intermediate code which is interpreted by a just-in-time compiler. This 
makes it highly portable which is one of the reasons why it was so ideally suited for web-
applications where the client can have any operating system or browser. Besides this java is also a 
fully qualified programming language and has a large community of developers, which contributed 
many open-source tools and libraries. This makes it uniquely attractive for non-commercial applica-
tions such as this one. 

Integrated development environment (IDE) 

The Eclipse Project was founded by IBM in 2001 and supported by industry leaders such as Bor-
land, MERANT and others. In 2004 it was transformed into the non-profit corporation called the 
“Eclipse Foundation”. Since then it is funded by members and has it’s own managing staff, but the 
actual work is carried out by open source developers that volunteer their time to the project 
[Eclipse2009]. The main project of this corporation was and still is the Eclipse IDE (Integrated de-
velopment environment), which is used in this project. 

The Eclipse IDE is actually a multi-purpose platform for running plug-ins. These plug-ins provide 
the actual functionality. They can be easily updated and enhanced by an integrated update and instal-
lation wizard, which connects to databases with available tools via the Internet. The development 
IDE can be downloaded in pre-configured packages for several programming languages. Here the 
“Eclipse IDE for Java Developers” is used, which already contains all relevant tools: package 
browser, editor with syntax-highlighting, builder, debugger and also the JUnit test-suite for creating 
and running unit-tests. 
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Version-control 

The project is carried out by a core-team and additional developers, which contribute components in 
the course of projects or diploma thesis such as this one. To allow the participants to work independ-
ently, but share their work within the team, a version-control system is used. For this project Subver-
sion was chosen.  

Subversion is a licence-free tool developed by CollabNet. It is available for several operating sys-
tems including Windows and Linux and already comes with a web-based access-scheme, so it can be 
used to allow connections even over the Internet. The system offers version control on file and direc-
tory basis with additional possibilities like branching and tagging for advanced repository manage-
ment [CollabNet2009]. 

The client by CollabNet is only available as command-line tool, but plug-ins for the most common 
IDEs are also available. This includes the Eclipse IDE, so the Subversive SVN Team Connectors are 
used in this project for connecting to the archive. 

Team forum and requirement repository 

Subversion is used to keep track of the project source-code, all other information like requirements, 
how-tos, references, etc. are stored on a web-platform, created using DokuWiki. 

DokuWiki is an Open-Source Wiki system developed by the German Andreas Gohr. The system 
was programmed in php and comes as a set of libraries, which offer built-in version control, 
WYSIWYG editing, indexing, and linking of content [DokuWiki2009]. 

2.3.2 MASON 

According to [MASON2009], MASON stands for “Multi-Agent Simulator Of Neighbourhoods… or 
Networks... or something...”. It is developed by the George Mason University in collaboration with 
the GMU Centre for Social Complexity and is a simulation toolkit for computationally demanding 
multi-agent systems. It offers a discrete event simulation core, visualization libraries for 2D and 3D 
simulations and other additional extensions such as the 2D Physics Simulator Package. It is written 
in Java and is the framework at the base of the simulation, which is currently being built. 

Architecture 

According to [Luk2005] the main goals for the design were: 

• A small, fast, modifiable core with separate visualization in 2D and 3D 

• Check-pointing any model to disk such that it can be resumed on any platform with or with-
out visualization 

• Efficient support for up to a million agents without visualization and as many as possible 
with visualization 

• Easy embedding into existing libraries 
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One of the goals, which were explicitly not made for MASON, was to include parallelization across 
multiple processors, it is – by design – a single process simulator. 

The main architecture consists of three layers: 

• The utility layer: Contains general-purpose classes such as a random-number generator, 
GUI-widgets, etc. 

• The model layer: Main classes of the simulator, responsible for scheduling and holding ob-
ject states and associations.  

• The visualization layer: GUI-based visualization and manipulation of the model. Each object 
of the model is referenced through a proxy for manipulation or inspection. The model and 
visualization layers were carefully separated so the simulation can be run with and without 
visualization or be stopped and continued with a different visualization model.  

The framework is designed more like a library to allow excessive adaptations and use in a large vari-
ety of applications by adding additional layers on top of the model layer, such as extensions directly 
availably for MASON or custom-designed additions for domain specific problems [Bal2003]. 

The actual simulation is a scheduled execution cycle, where entities (agents) are registered at the 
scheduler for execution at a certain point of time in the future via a common interface. This simple 
behaviour can then be enhanced by using wrappers for ordering or grouping entities or running them 
multiple times or even in parallel threads [Luk2005]. 

Comparison 

Table 1 shows an overview of two papers comparing different simulation frameworks. The left col-
umn shows results from the developers of MASON themselves [Luk2005], while the right column 
displays the conclusions of an independent group [Rai2006] concerning the most popular systems. 

Table 1: Simulation Framework Comparison 

Name Conclusion by [Luk2005] Conclusion by [Rai2006] 
Objective-C 
Swarm 

(+) Graphical visualization, inspec-
tion of simulation objects, stochastic 
event ordering 
(-) Objective-C is an uncommon 
programming language and it’s key 
features and benefits are not used for 
the framework 
 

(+) Stable, allows separation of graphical 
interface and model, allows hierarchies of 
swarms 
(-) lack of development tools, weak error 
handling, no garbage collection, bad docu-
mentation 

Java Swarm Special libraries which communicate 
with the objective-C version 

(+) good trade-off between Objective-C 
version and Java enhancements 
(-) clumsy work-arounds for porting features 
from Objective-C to Java, difficult to debug 
due to Objective-C libraries used, slow 
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Repast Re-Implementation of Swarm in 
Java or .NET; Large community, 
lots of functinality – neural net-
works, genetic algorithms, social 
modelling system, system dynamics 
modelling, logging, GIS and graphs 
and charts. 
(+) Graphical visualization, inspec-
tion of simulation objects, stochastic 
event ordering; 
Additionally from the same authors 
in [Bal2003]: 
(+) Import/Export Excel, charts, 
SimBuilder 

(+) fast, implements most of Swarm’s func-
tions as well as good enhancements, classes 
for geographical and network functions 
(-) scheduler executes in randomised order, 
several incompatible collection classes, in-
complete documentation 

MASON (+) fast, simulation and visualisation 
are separated, results can be repro-
duced; additional extensions for 
several domains 

(+) fast simulation (fastest in the test), good 
choice for experienced programmers, clever 
innovations 
(-) only few tools, non-standard terminol-
ogy, incompatible collection classes, lack of 
a terminal window for debugging 

NetLogo (+) Interpreted language = changes 
can be applied during runtime to 
tweak parameters, portable on dif-
ferent platforms 
(-) Slow, Visualisation constrained 
to a single window 

(+) Easy to use, rapid prototyping, excellent 
documentation, good for simulating short-
term, local interaction 
(-) only moderate complexity of agents can 
be modelled, no stoppable debugger, whole 
model in a single file, no direct access to 
design primitives 

Breve (+) Interpreted language = changes 
can be applied during runtime to 
tweak parameters, portable on dif-
ferent platforms; Physics engine 
(-) Slow, Visualisation constrained 
to a single place 

 

Ascape Rule based simulations which react 
on certain environmental conditions 
(+) simplified modelling 
(-) Considerable constraints on 
simulation design due to simplifica-
tion and the model 

 

 

For the project at hand, only Java Swarm or MASON can actually be considered, because according 
to both comparisons, these are the frameworks suited for complex, reproducible simulations. The 
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lack of tools criticised by [Rai2006] is no problem when everything necessary for the actual project 
is available. And since both comparisons conclude that MASON’s primary asset is its speed, it is an 
appropriate choice. 

Usage in the project 

In this project the core-libraries were used for the simulation itself. Agents and other entities are 
custom designed and are added to the scheduler with the appropriate interfaces. The environment is 
supported through the use of the 2D physics simulator package also available directly from the de-
velopers of the framework. For visualization, the 2D environment was used and integrated as an 
optional feature so the simulation can be run both with and without visualization.  

2.3.3 Development Process 

Every software project follows some kind of scheme to produce requirements, generate a design, 
allow cooperative development and implementation, evaluate the results and refine the design. Often 
the process itself is not written down and clearly formulated in guidelines, but evolves from initial 
work and experience to a kind of “how we do things” process as a general understanding among the 
team members. It can nevertheless be analysed and compared to well-known development processes 
or to the way similar projects were done. 

Classifications for development processes 

Although the number of published development processes is constantly rising, they can be grouped 
into more general categories. The differences between the models themselves are mainly in naming 
of the phases, roles of the actors and in documentation. Following categories have been described in 
[Bun2008]: 

• Sequential processes: The steps of the development process are assigned to phases, which 
are then carried out in a sequential order. The most basic concept is the “phase” model, 
where the steps are simply requirement-analysis, design and implementation. But this proc-
ess is not really in step with actual practice, because backtracking to earlier phases, which is 
not intended by the process, is actually very common in practice. Other models of this cate-
gory therefore allow this to a certain extent, for example the waterfall-model, but still regard 
it as an exception. Nevertheless many software-projects are carried out in this way, since it 
is a very intuitive approach and works out for small projects [Bun2008]. 

• Prototypic processes: These models are basically sequential processes, but by-design de-
mand to backtrack to earlier phases when a certain phase has been completed. For example, 
after the analysis phase a basic prototype is built, tested and then the analysis is refined to 
reflect the results of the test. The same goes for the design phase: here another prototype is 
built and from the tests both requirements and design may be changed [Bun2008]. 

• Incremental processes: These processes try to reduce complexity by creating the product in 
iterative cycles or spirals: The set of requirements is ordered and split into parts, then each 
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part goes through the complete sequential or prototypic process. When a part is complete 
more requirements are added and the enlarged system is build by following a sequential 
process. This is continued until the full system has been built. Depending on the specific 
definition of the process, phases of different cycles can be “pipe-lined” and carried out in 
parallel to save time. For example, the analysis and design teams can add new requirements 
and start creating a design-specification for the next phase while the implementation of the 
previous cycle is still being carried out [Bun2008, Lar2003]. 

• Re-use oriented processes: These processes are actually incremental processes, which very 
carefully select the order in which the system is developed. If this is done in a way that itera-
tions represent abstract levels of a system, new products can re-use this completed work and 
start off from a basic product instead from nothing. For example, they could use the results 
of the prior project’s 4th cycle and continue from there. Even though this sounds very sensi-
ble it is difficult to actually create these abstract levels for re-use. Often parts can only be re-
used by adding wrappers or decorators to the existing code. In the last years the so-called 
model-driven development, which basically belongs to this category, has been developed. A 
domain-specific language is used to parameterise, configure. and enhance an existing base-
system. The approach also allows separating the functionality developed in the domain-
specific language from the bases system. This way, the produce of later stages of the devel-
opment can be re-used when the base-system is changed as opposed to the opposite de-
scribed above [Bun2008, Cza2005].  

Agile methods 

Agile methods were developed to reduce the growing amount of work imposed by fully-fledged 
development processes, which is not directed at actually producing software. These methods come 
in the same flavours as described above, but distinguish themselves from conservative processes by 
a higher degree of flexibility. The focal values hereby are [Abr2002]: 

• Individuals and interactions over processes and tools 

• Working software over comprehensive documentation 

• Customer collaboration over contract negotiation 

• Responding to change over following a plan 

This results in incremental processes with rapid cycles, many releases and a high involvement of the 
customer. Often the full requirements are not present at the beginning of the project, but are added or 
changed as the product evolves. Existing examples for agile methods are XP (eXtreme Program-
ming) [Bec1999], SCRUM [Ris2000] or Feature driven development [FDD2009]. As the last is very 
similar to the applied process in this project, it will be explained in more detail: 

Feature driven development is an agile method that can be put into the category of incremental de-
velopment processes. The 5 phases of the process are [FDD2009]: 
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1. Develop an overall model: After a basic walk-through of the domain with a domain expert, 
independent teams propose models for parts of the overall system under guidance of a chief-
architect. These are then combined to an overall model of the system. 

2. Build a feature list: The domain is decomposed into subject areas, business activities within 
this area and steps within them to form a categorized feature list. 

3. Plan by feature: The order in which the features have to be realized is planned depending on 
their dependencies. These are then assigned to chief-developers for realisation. 

4. Design by feature: The chief developers receive packages of features. These are then de-
signed, reviewed in a design inspection and then integrated into the overall model thereby 
extending it to add the new features. 

5. Build by feature: The features are assigned to developers who implement them. The classes 
produced are “owned” by these developers, which makes them solely responsible for them. 
Before adding the features to the overall build, they are unit-tested and a code-review is 
done by the chief programmer. 

Agent-Oriented development methodologies 

Agents add complexity to all phases of the development process and therefore need additional prac-
tices or adaptations: 

• Requirement-Analysis: New terms have to be introduced and defined which are not needed 
in other projects, e.g. agents, beliefs, goals, plans. In addition agents are active – as in op-
pose to objects, which are passive – and they can interact. To model theses concepts appro-
priate modelling-languages have to be used. [Bau2001] have proposed AUML (Agent Uni-
fied Modelling Language) as an extension to UML, which introduces additional schematics. 
[Cai2002] believed a completely different approach has to be taken and developed MES-
SAGE (methodology for engineering systems of software agents) which introduces a set of 
models to break down the requirements of the system to those for agents and their interac-
tions rather than to class-diagrams. 

• Design: Most methodologies split the design-phase into two main parts. The first part pro-
duces the agent-concept, i.e. which agents are needed and what goals do they have. The sec-
ond part produces the realisation of these agents, the interaction and the environment. Ex-
amples for this are Tropos [Vre2004] or Prometheus [Pad2003]. 

• Implementation: The implementation process can also be seen as a combination of two 
parts: Firstly the environment must be created, only when the environment has reached a 
certain level of completeness the agents can be introduced, because they depend on a work-
ing environment which needs to offer at least the most basic functionality. To get results or 
test concepts early, existing frameworks or simulators are often used. This way agent-based 
prototypes can be developed, which are later ported to a new and more sophisticated envi-
ronment.  
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Applied practices in the project 

The aim of the project is to evaluate theories using the produced simulator. These theories and mod-
els are being enhanced over time and will probably also be changed or adapted to reflect results from 
the simulator as soon as they are available. It is therefore very difficult to specify all details of the 
system beforehand and it is also practically certain that new requirements will come up and the de-
velopment will continue as soon as the simulator is put into use. This results in the need for agile 
methods, where dynamic response to changes is inherent to the process.  

A second very influential property of the project is that it is carried out by a core team but also by 
students who contribute small parts in the course of practical lessons or diploma thesis such as this 
one. The project must therefore be divided into pieces, which can be developed independently under 
the supervision of members of the core team.  

Both these arguments point towards the feature driven process described earlier, and even if the pro-
ject team does not explicitly state it, the process is actually applied with very little adaptations and 
these are mainly due to the agent-orientation. In reference to the methodologies listed above, the 
variations are: 

• Requirement analysis: The requirements which were created in cooperation with domain ex-
perts from the fields of neurology and psychology are either described as situations or sto-
ries the simulation must provide, or directly by the actual abilities the agent must posses. 
These can then be broken down as described in the feature driven model above. 

• Design and Implementation: In accordance with the feature-driven approach, the system is 
being extended by adding feature after feature. But to cope with the agent-orientation this is 
done in two parallel processes – one process aims at developing the environment and the 
second at developing the decision model, which can be added by a plug-in like interface. 
Also, as mentioned above, a small prototype was created earlier to test certain theories and 
problems in regard to the agent-concept before starting the development of the actual simu-
lator.  

2.3.4 Patterns 

Object oriented software development is a paradigm, which has had both great successes and large 
failures. On the one hand it reduces complexity of structural programming by creating independent 
units, which can be developed and tested independently before combining them to larger systems. 
On the other hand the number of possibilities for realizing a single objective is huge, but not all of 
them result in satisfactory results or differ in reference to scalability, performance or maintainability. 
To communicate good practices for solving certain design-problems and to have common names for 
referring to both a problem and the solution, [Gam1998] developed the concept of patterns. In gen-
eral each pattern consists of following elements: 

• Pattern name: The name of the pattern can be used as a reference and can thereby describe 
both the design problem and its solution. It allows communicating design-concepts on a 
more abstract level and in a more compact way. 
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• Problem: This describes when to apply the pattern by giving the context of the problem. 
This can be done be referring to certain algorithms, class structures or object structures and 
also conditions for when the pattern can be applied 

• Solution: This part presents the elements that make up the solution, their relationships and 
collaborations. The solution does not describe a concrete design, but an abstract solution and 
how a set of classes or structure of objects can solve the given problem. 

• Consequences: Here the results for using a specific pattern are given and also possible is-
sues, which can come up when applying the pattern, are listed. By explicitly listing the con-
sequences, the evaluation of possible alternatives is made easier. 

The design-decisions made in the course of this thesis are described in terms of patterns, and the 
concrete patterns used will also be presented. As an example for this chapter, the singleton pattern 
will be given [Gam1998]. This pattern is also used in the project, but not in the actual components of 
this thesis: 

Pattern name: Singleton 

Problem: For some classes it is important to have only exactly one instance. The singleton pattern 
can be applied when 

• there must be exactly one instance of a class, and it must be accessible to clients from a well 
known access-point 

• when the sole instance should be extensible by sub-classing, and client should be able to use 
an extended instance without modifying their code. 

Solution: Define a static method that lets clients access its unique instance. This operation has ac-
cess to a static variable which holds the unique instance once it is created and returns this instance if 
it is already initialised or creates it by calling a private which cannot be called otherwise. 

Consequences:  

• Controlled access to a sole instance: Access can be restricted or controlled by the class itself 

• Reduced name space: In contrast to global variables it avoids polluting the name space with 
global variables that store sole instances 

• Permits refinement of operations and representation: The singleton class may be sub-classed 
and it is easy to configure the application with an instance of the class needed at run-time. 

• Permits a variable number of instances: The pattern can be extended to allow the creation of 
a restricted number of instances. 

• More flexible than class operations: Class operations cannot be enhanced to allow more than 
one instance, and – depending on the programming language – possibly cannot be overrid-
den in subclasses. 

In this project the Singleton pattern is uniformly applied instead of global variables, for example to 
get access to the simulator’s scheduler. 
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3. Requirement Analysis 

In the course of this thesis an artificial life simulator will be enhanced to allow the agent to call cer-
tain actions. The requirements were stated by the core team and several domain experts from the 
fields of neurology and psychology. In accordance with the agile development process they are 
mainly stated as short “stories” or scenes which indirectly imply what the agent needs to be able to 
do. They were collected in the project’s wiki and are analysed in this chapter to produce the list of 
features which have to be implemented – in this case the list of actions the agent has to be able to 
perform and also all the infrastructural components needed for calling and managing them. In addi-
tion, the already existing architecture of the simulator has to be taken into account and the new com-
ponents have to fit into the concept of the already existing framework. The intended use and nature 
of the project and it’s design process also imposes several non-functional requirements like extensi-
bility, performance parameters, which are listed in a separate section including the implications for 
the design. The final section lists further assumptions which are not explicitly stated in the require-
ments but which are crucial for the design and where agreed upon during a design meeting.  

3.1 Use Cases 

As mentioned above, most requirements are not explicitly listed as it would have been done in con-
servative projects, but were stated as small “stories”. This comes more natural when people with 
different fields of expertise work together. The complete list of these stories can be found in Appen-
dix I. As an example, one of these stories will be discussed in detail and the others will be listed in a 
table including the actions they imply.  

As an example for the style of how requirements are stated, the use-case UC00 “The Lonely Life of 
a Hungry Bubble” is given: 

“A bubble – a lonley one – roams around in a world. Whenever it stumbles across something 
eatable, and it is hungry, it will eat. Whenever necessary, the bubble rests or takes a short nap. The 
digestion system makes it necessary to get rid of the excrements. This will be done – similarly to 
eating and sleeping – wherever the bubble is at the moment of need. Other agents/bubbles are 
ignored – cooperation is not necessary in this sad and lonely world …” 
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To allow an agent in the simulation to act as described in this description, the following must be 
possible: 

• Movement: The agent must be able to move in the environment. This can be done by 
supplying two commands – one command for moving forwards or backwards and second 
command for turning left or right. The speed of movement and turning is not relevant in this 
context but it should at least be possible to override some default value. 

• Eating: The agent must be able to find out if an object is eatable and then must be able to eat 
it. The search is done by the sensors, but a command for eating must be available. When it is 
called and an object is in range, the object or a part of it must be added to the digestion sys-
tem so the hunger resides. In addition the object which is eaten must be able to react to the 
command, so it can, for example, shrink in size or disappear from the environment. 

• Egesting excrements: For “getting rid of the excrements” a command must be supplied. 

• Sleeping: The agent can get tired. This could be due to some arbitrary process, but with ref-
erence to the agent’s already existing software-infrastructure, it is obvious that the agent’s 
internal energy-level should be reduced by carrying out actions like moving, and can be re-
filled by sleeping. Therefore a reasonable energy-value must be calculated and consumed for 
each of the described actions and an action for sleeping must be supplied, which refills the 
internal energy levels. 

• Cooperation: This description states that other agents are ignored and no cooperation should 
be possible. Since other use-cases state the opposite, it must be possible to enable and dis-
able actions depending on the simulation at hand. This requirement is stated in the list of re-
quirements concerning execution. 

In this manner all of the use-cases where analysed. The complete sources can be found in Appendix 
I, a summary with the resulting conclusions is given in Table 1.  

Table 2: Use Case Implications 

UC Use-case name Implications 
00 The Lonely Life of a Hungry Bubble Action “eat” 

Action “sleep” 
Action “egest excrements” 
Actions for movement 

01 Collecting and taking food home Pick up/drop objects 
Carry objects 
Actions for movement 

02 Planting energy sources Pick up/drop objects 
Carry objects 
Action “plant” 
Action “cultivate” 
Actions for movement 
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03 Searching for type of Energy Source Actions for movement 
Action “eat” 

04 Transforming energy sources (cooking) Action “cook” 
Action “eat” 

05 Location Identification No action-related requirements 
06 Confronted with Harmful Energy Sources No action-related requirements 
07 Body Integrity Respond to injuries by reducing func-

tionality of the actuators 
08 Reproduction Agent can emit a certain odor 

Agent can mate and reproduce 
09 Excretion Action "egest excrements" 
10 Motion Fatigue Reduce speed or inhibit actions as 

response to lack of stamina 
11 Different energy sources  
L1 Dancing Dancing 

3.2 Required Actions 

The required actions come from two sources: Most come from the use-cases described above, but as 
a second source, an already completed feature-list of actions is available. This was developed during 
the course of a diploma thesis by [Koh2008]. It was then revised and compiled into a feature-list by 
the core team, but does not include all of the actions imposed by the use cases.  

Since some actions need certain features which must first be available in the simulation and are not 
available yet some actions where also removed from the list. An example for this would be the 
“odour” mentioned in use-case “08 Reproduction”: this feature cannot be implemented yet, because 
a representation for scents is not available in the environment. Table 3 is the concluding list of extent 
of actions which need to be developed in the course of this thesis. For each action a short description 
and the source of the requirement is stated. 

Table 3: Final List of Required Actions 

Name Description Source 
Bite An agent can bite another entity when it 

is in range to harm it or kill and eat it. 
Core team’s feature-list 

Change body colour The agent’s body colour must be able to 
be changed to reflect internal states 
such as illness. 

Core team’s feature-list 

Change facial expressions The agent must be able to change: lens-
size, lens-shape, left/right antenna posi-
tion, eye-size. 

Core team’s feature-list 
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Cultivate Some objects should be able to be cul-
tivated by an agent – for example plants 
supply more nutritional value if they are 
cultivated before they are eaten. 

Use-case 02  

Dance An agent should be able to perform 
several different dances to express emo-
tions or a certain state of mind:  

• salsa (happy) 
• tango (reproduce) 
• waltz (sad) 

Use-case L1 

Eat The agent can eat certain objects when 
they are in range. 

Use-case 00, 03, 04 

Excrement The agent can egest excrements after 
digesting the eaten food. 

Use-case 00, 09 

Kiss An agent can try to kiss another agent 
triggering a response if the kiss is suc-
cessful. 

Core team’s feature-list 

Lightning-attack An agent can launch a long-range attack 
on another agent to harm or kill it. 

Core team’s feature-list 

Move to/from inventory In addition to carrying a single object 
the agent can move objects to it’s in-
ventory, thereby removing it from the 
environment. 

Use-case 01, 02 

Move, turn Agents can move in a two dimensional 
environment. 

Use-case 00, 01, 02, 03 

Move to eatable area An agent can move the entity it is cur-
rently carrying into the eatable area, i.e. 
the range of the “eat”-command. 

Core team’s feature-list 

Pick up/Drop The agent can pick up objects in range 
which can then be carried when moving 
around. 

Use-case 01, 02 

Sleep An agent can sleep to recharge it’s in-
ternal energy levels. 

Use-case 00 

3.3 Requirements Concerning Execution 

The actions are one part of the project, the second part is to create the necessary infrastructure for 
calling, validating and executing them. Again a part of the requirements is derived from the use-
cases like the need to disable commands for certain simulations. Some of the actions listed above 
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also require additional infrastructure such as the inventory. On the other hand the scheme must fit 
into the existing architecture of the project which also imposes constraints on the design.  

Availability of Actions 

The complete list of actions is a collection from several different and independent simulation set-
ups. For some scenes it should not be possible to call certain actions. For example, communication 
actions should not be possible in the “The Lonely Life of a Hungry Bubble” szenario. On the other 
hand a simulation may include several different types of entites – some with certain abilities, some 
without them. A mechanism must therefor be provided to enable or disable actions. Since the 
simulator uses a parameter-tree to configure the setup of the simulation for other parameters, this 
existing infrastructure should also be used for configurating the availabilty of actions for a concrete 
instance.  

In another situation a normally available action must be temporarily disabled, for example when 
actions are not available due to damage (see use case “07 body integrity”). This cannot be done 
using the normal configuration routine, because that would only happen once during the setup of the 
simulation. Therefore another mechanism for temporariliy disabling and re-enabling actions must 
also be supplied. 

But even if two different entity-types support an action, the result may be different due to the type of 
the entity. For example, the bite of a lion and that of a cat will have a considerably different impact 
on the entity that suffers it. Parameters for scaling the input/output ratio of commands like this must 
therefor also be supplied and allowed to be configured using the parameter-tree. 

Calling Actions 

The simulation is carried out in rounds with 5 stages as presented in Chapter 2. It must be possible to 
call commands for the actions during the first three phases preceding the execution phase: 

1. Sensing: Commands representing bodily reflexes are called. 

2. Update of the internal body state: Internal body states such as illness or fatigue are expressed 
by changing the body-colour or facial expressions like eye-size. These changes are also per-
formed by calling appropriate commands. 

3. Data processing: Most commands come directly from the data processing unit, e.g. eat, 
move, attack. 

The actions cannot be carried out the instant they are called, because they have to be validated first 
which is only possible after all the commands for the round are available. The interface for calling 
commands must therefore provide a possibility to call commands and collect them in a stack until 
the execution phase.  

Actions called during the sensing phase cannot be influenced by the decision unit in the data proc-
essing phase. This is the intended situation for reflexes, but if the decision unit can anticipate a re-
flex-reaction beforehand it should be possible to inhibit this action. For each action which can be 
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called, a mechanism for inhibiting it must therefore also be available. During the execution phase 
calls and inhibitions are then paired and cancel each other out. 

To model recurring routines it should be possible to create an individual list of commands and call 
them as a whole instead of separate commands each round. During each consecutive round of the 
simulation the items should be taken from this list and executed as if they had just been called 
manually. But if one of the actions in the list fails – regardless of the reason – the rest of the list 
should be discarded. An example for such a sequence of actions would be the “dance” (see use-case 
L1). This is actually not a single action, but a list of commands such as move forward, turn, move 
backward, etc. Instead of calling all of the commands separately the whole dance-sequence is called 
and the executed command-by-command each round until the list is completed or one of the com-
mands fails. 

The architecture of the simulator is designed to support multiple decision units. Therefore, the simu-
lator and the decision-units were implemented in two separate packages. A second reason for divid-
ing the project into parts is, that the decision unit should not be able to directly access the simulation 
but should only be allowed prepared sensory data as input and also only a predefined list of actions 
as output. For this reason the decision-unit does not have a direct reference to the main simulator 
package. Instead a third package – the decision-unit interface –, which is referenced by both of the 
other packages, contains all common interfaces and classes. Since most of the commands come from 
the decision unit, but are then actually executed in the main simulator, the interface for calling ac-
tions or sequences and inhibiting actions must be made available for both using this third package. 

To compare different decision units a log-file will be written, which logs the sensory input and the 
command-output of the decision unit. There is already existing functionality for creating the file, but 
the called actions and their parameters must be made available for this and methods for creating the 
content must be provided. 

Constraints on Actions 

When all the commands have been collected they need to be validated against a set of constraints 
before they can be executed.  

The agent in the simulator has an energy and a stamina level. Both are constantly refilled by a fixed 
amount each round and additionally by eating or sleeping. But certain body functions and sensors 
consume energy, as do actions. The decision unit of the agent has to balance this out by eating and 
resting between other actions. The energy and stamina demand of a certain action depends on the 
type and also on the parameters of the action. For example, moving fast will need more energy than 
moving slowly. If a command was called which demands more energy or stamina than is available, 
the energy and stamina should be drained to a minimum value, but the command should be dis-
carded and not executed. If the command was part of a sequence, the rest of the sequence should 
also be discarded.  

The remaining actions from the stack must then be checked in reference to one another. It should be 
impossible to call actions like bite and eat in the same round while other combinations like move 
and eat could be possible. A way of defining these mutual exclusions must be found so they can be 
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checked prior to the actual execution. If a conflict is found, one or both of the commands must be 
discarded. To distinguish between actions three priority levels are needed: 

• Normal priority: If two actions with this priority come into conflict with one another, both 
should be discarded. 

• Reflexes: When two reflexes come into conflict with one another both should be discarded, 
but if one of the two is just of normal priority, the reflex should remain and the other should 
be discarded.  

• State updates: State updates have the highest priority in case of conflicts. These actions 
should never be discarded, except when two state updates conflict.  

The constraints described up to now must be checked for any action, but individual actions also may 
have certain additional constraints. For example the “eat” command can only be executed if some-
thing eatable is actually in range. Therefore, before the actual execution these action-dependant con-
straints must also be checked.  

Executing Actions 

The fourth phase of the simulation cycle is the execution round. After the constraints have been 
checked, the remaining actions will be dispatched. The actions defined in Section 3.2 can be grouped 
into three categories in respect to their functionality: 

• Actions which change the agent’s physical representation or state. These actions have no 
immediate effect on other entities and either adjust internal states – like sleeping – or send 
commands to the environment like move or turn. The command can directly access the state 
values and manipulate them as required for the concrete action. 

• Actions which manipulate other entities. These actions involve calling functions on other en-
tities and additionally may need to identify if an action can be called using another entity     
(“is the other entity eatable?”). Since the development process is feature driven and new fea-
tures are added incrementally, it is not known a priori which entities may be created in the 
future and which of these will need to be supported by the actions. The commands should 
therefore not deal with the concrete entities, because this would mean that the implementa-
tion of the command would need to be changed every time a new entity is created, but rather 
with an interface which is implemented by the entities that support the actions.  

• Actions which concern the binding of other entities. These actions set both internal states to 
keep track of the bound entities but also deal with an opposing second entity. Both to search 
for “carryable” entities and to inform the entity what is happening to it an interface should 
be used similar to the previous category. 

Managing Binding States 

To manage the binding of entities, an additional component must be created which is not already 
available in the existing implementation. This “inventory” should be bound to the agent like a body-
part and is used to keep track of objects that where picked up or moved to the inventory by the ap-
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propriate actions. When objects are carried they should be linked to the entity in the simulation envi-
ronment, so when the entity moves, the bound object is moved too. The impact on the movement, 
i.e. slower movement with the same energy, is handled by the underlying physics engine and does 
not need any further attendance. Carrying other objects should also consistently consume energy 
proportional to the weight, but also proportional to a configurable parameter. 

In addition, a carried object should be able to be moved to the inventory (and back out of the inven-
tory) by special commands. When an object is in the inventory it is completely removed from the 
simulation environment and cannot be reached by any sensors or by other actions. The agent must 
therefore keep track of the inventory-contents in its memory. Keeping objects in the inventory also 
consumes energy, but less than carrying them. In addition the movement is not impaired and the 
agent can move more freely.  

3.4 Non-Functional Requirements 

Besides the functional requirements regarding the actions and the execution process presented in the 
previous chapters, additional needs exists which also have to be taken into account when designing 
the components. From all the possible parameters which can be discussed regarding non-functional 
requirements many are not relevant for this project, e.g. usability, security or configuration manage-
ment. But the applied design process and the fact that this is only a part of a much larger project 
which involves many more people need special consideration. 

Extensibility and Modifiability 

The feature driven design process applied in the project is an incremental process as explained in 
Chapter 2. The whole project is split into parts, which are themselves split into features and added 
piece-by-piece. Additionally the simulator in this project is built to verify theories and additional 
requirements will surely come-up as soon as the software is put to use. Therefore efforts must be 
made to allow for later enhancements and adaptations. This need can be supported by taking care to 
encapsulate functionality as much as possible and keep the parts highly independent. The most prob-
able changes and enhancements that may come-up, are new types of agents and new actions. New 
types of agents can be dealt with by configuring the available commands and their parameters as 
described earlier or – respectively – by using interfaces for interaction among entities also as de-
scribed earlier. The main additional requirement is therefore to ensure that new actions can be added 
as easily as possible. 

Documentation 

The normal application of feature driven development would make the creator the “owner” of his 
classes and solely responsible for them. But due to the fact that the project team only has a small 
core team and other developers come and go in the course of internships or diploma thesis such as 
this one, it is highly likely that the created code will later have to be modified by someone else. The 
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code should therefore be extensively documented, structured logically and written in the style of the 
existing software to allow fast comprehension. 

The actions themselves will be both configured and called by other people, especially by the devel-
opers of the decision unit. A means of describing them in a compact but exhaustive way must there-
fore be found. It should be as easy as possible to select the appropriate command for a desired action 
and to find out how to use it.  

Testability and Robustness 

As described in the background chapter, debugging and testing agent-based software is not as easy 
as it is in other types of software. The simulator may run for hours and then exit due to some run-
time-error which can only be reproduced by running the simulation for the same amount of time 
again. To start off with the highest possible robustness the components should be pre-tested indi-
vidually via unit-tests.  These have the additional advantage of being able to be called in automated 
tests after each build. The project team uses JUnit to create unit tests which is integrated into the 
development environment as mentioned in the background chapter. Even if many features cannot be 
tested in this way because they need the whole simulation environment up and running, the basic 
functionality of calling, validating and executing a command should be covered by extensive unit-
tests.  

Performance 

Even if performance is always a key quality attribute for software, it is not of the highest importance 
in this project, since it is not a real-time system intended for frequent user-machine interaction, but 
will run independently until some exit criteria is met. Of course care must be taken not to waste re-
sources, but given the decision between optimising for speed and keeping structures simple and easy 
to modify, the latter should be opted for. 

3.5 Additional Assumptions 

The design is based on the requirements stated above, but to further reduce the design space addi-
tional assumptions have to be made. These assumptions were discussed with the core-development 
team and it was agreed that the implications of these assumptions pose no problem to the intended 
use of the simulator. As a reference and to explain design-decisions made in the next chapter the 
most crucial assumptions will be presented here including their consequences. 

Atomicity 

To ease the processing of actions, the commands are treated as atomic operations which last exactly 
one simulator round. When they are called, they can be processed and checked for validity inde-
pendently (except for mutual exclusions among the actions of the current simulation round). If the 
action cannot be performed due to lack of energy or because action-specific constraints are not met, 
the action is discarded without further ado. If it is valid, it is dispatched as a whole and then dis-



  Requirement Analysis  

 35

carded. The benefit of this is, that only a single execution stack needs to be managed where actions 
for the current simulation round are collected and processed. There is no need to reference future or 
past actions and there is no need for further tracking the action after it has been processed this one 
time. 

All actions are designed this way, so actions which should be carried out over several execution 
rounds must be called consecutively round-by-round. For example, sleeping for 10 rounds has to be 
done by calling the sleep command 10 times. An alternative is to use action-sequences which can be 
called a once, but may contain actions for several consecutive rounds. 

Statelessness 

In addition to atomicity, actions are stateless. An action can only inflict a change in the environment, 
an internal body-part, or a sensor, but it has no state of it’s own. Actions which need to reference a 
state that was not previously available must be split into the action itself and an object which can 
hold the state and is bound to the agent’s body.  

An example for this would be the sleep command. This command should have several conse-
quences, one of which is that when the agent is asleep certain functions are not available, e.g. sen-
sory input or actions such as move, eat, attack. To determine if the agent is asleep one would need to 
check a sleep-state variable which cannot be provided by the command itself. In this situation, two 
solutions are possible: 

• A Sleeping attribute is introduced as a property of the agent-body. A command “sleep” sets 
this attribute and any operation which is influenced by the sleep state must check this attrib-
ute before continuing with it’s normal operation, and other commands which cannot be per-
formed during sleep must check the variable when checking the other constraints. A second 
command “wake-up” would reset the sleeping attribute and all functions would be available 
again. 

• The second possibility would be to abandon the state variable entirely and instead of forcing 
every influenced component to check a state variable, the command would directly call a 
function which deactivates the relevant components for the next simulation round. Actions 
which are not available when sleeping could be added to the list of mutual exclusions for the 
sleeping command and would not need any special treatment. Since commands are atomic, 
the sleep command would need to be called consecutively during the whole sleeping phase 
(which could be done creating a sequence). 

No Feedback 

By design, an actuator does not give feed-back about whether the action was performed or not. 
Commands are called and put on the stack, but the agent cannot track them and determine if they 
were actually performed or not. Instead it must use its sensors to indirectly check if the action was 
successful and had the desired result. For example when a move command is called the agent can 
determine the success by checking if the visual sensors reflect the desired new position. In some 
situations multiple sensory input could also be available. For example, a collision is sensed when 
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hitting an obstacle and the visual sensors also provide the information that the position was not 
changed. 

In most cases ready-available sensor-information can be used directly to determine the result of an 
action, but in other cases the information must be “injected” by the actuators. For example if the 
agent tries to eat when nothing is in range, no change in the environment would result. In this case 
the information will be returned by creating a fast messenger representing a painful sensation as a 
form of sensory input.  

Handling of Opposing Entities 

Some actions require an opposite entity. Eating, for instance, requires an entity which is eaten. It was 
agreed upon that when calling the command the opposite entity is not given as an argument. Instead 
the command will search a defined sensor area and use any valid entity in this range. If none or more 
than one entity is found in the action’s range, the action will not be performed. The energy needed 
for the action will be consumed nevertheless, but depending on the action a response in the form of 
pain may result like when trying to bite “nothing”. 

This has influences in the pattern of commands when designing the agent’s decision unit. When an 
agent sees something eatable it does not call a command like “eat entity X” directly referring to the 
entity, but instead must move in a way to ensure that the entity is in range and then call the com-
mand “eat” without further parameters.  

Constraints on Binding Entities 

Since actions are stateless, as mentioned above, actions which bind other entities in a persistent 
manner need a place to store this information. For this an inventory-object will be created which can 
be referenced through the agent’s body. An agent can bind to another entity in two ways: 

• Carrying: An agent can decide to pick up an object. It is then linked to the agent until 
dropped or put into the inventory, but an agent can only carry exactly one object. 

• Inventory: An agent can put an object it is already carrying into the inventory. This removes 
it from the simulation and it cannot be used or seen by other agents until it is taken out 
again. The inventory can only hold a defined maximum number of objects and a certain total 
weight. 
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4. Model 

Before dealing with the details, the basic requirements will be discussed on a more abstract level and 
patterns will be selected which promise the best possible solution. These will then be combined to 
create the model for the concrete requirements collected in Chapter 3. First the execution process 
will be discussed and the basic model will be presented and argued for with reference to the re-
quirements. Afterwards the model for the actions will be given using the groups already defined in 
Chapter 3. Additional classes will also be defined which are needed to store persistent information 
for the actions such as binding states. Finally the non-functional requirements concerning documen-
tation will be dealt with and the developed solution will be presented.  

4.1 Applied Patterns 

As stated in the background chapter, the concept of patterns was developed by [Gam1998] and is a 
way to document and communicate best-practice solutions for reoccurring problems. Instead of de-
veloping proprietary solutions, patterns will be applied wherever possible. Before combining them to 
the complete model the selected patterns will be presented and the decisions for choosing them will 
be given.  

4.1.1 Command Pattern 

As stated in the requirements, it must be possible to call actions during all phases of the simulation 
cycle. On the other hand, they cannot be executed instantaneously, because they have to be verified 
first and should only be executed in the execution phase of the cycle. Therefore, the commands must 
be collected on some kind of stack. The Command pattern is one of the behavioural patterns defined 
by [Gam1998], and it’s intent is to “encapsulate a request as an object, thereby letting you param-
eterise clients with different requests, queue or log requests, and support undoable operations” and 
later: “Use the Command pattern when you want to specify, queue, and execute requests at different 
time”. Since this is an exact description of the problem at hand, further analysis of the proposed so-
lution should be done. 
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Figure 7: Command Pattern 

The proposed solution contains following classes as can be seen in Figure 7: 

• Command: The command is the interface for calling the actual execution of the operation. 

• Concrete Command: Defines a binding between the command and the receiver. The execu-
tion is implemented by calling the appropriate action on the receiver. 

• Client: The client creates a concrete command object and sets the receiver. 

• Invoker: Calls the execution method of the command at the appropriate moment. 

• Receiver: Knows how to perform the actual operation associated with the command. 

 

Figure 8: Command Pattern - Sequence diagram 

The sequence-diagram in Figure 8 shows the interaction that takes place when an operation is called: 

1. The client creates a concrete command object and specifies the receiver.  

2. The concrete command object is then handed over to the invoker who stores it for later exe-
cution 

3. At the appropriate time, the invoker calls the execute method on the command interface, 
which is implemented by the concrete command. This, in-turn, calls the action on the re-
ceiver. 

4. The receiver then carries out the actual operation 

With reference to the requirements, the application of this pattern can help solve several problems: 
First and most important is that the call and the actual execution of the command can take place at 
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separate times. This solves the requirement that commands need to be called during the sensing, 
updating and processing phases of the cycle, but have to be executed later during the execution 
phase. Additionally, commands are encapsulated in separate and independent classes. New com-
mands can therefore be added without changing existing code, which supports the requested simple 
extensibility. 

4.1.2 Command Processor Pattern 

Following the requirements, the commands – represented by the command objects – must be col-
lected, validated, executed and logged. The Command pattern already offers a general interface for 
all commands. The Command Processor pattern described by [Bus2007] takes advantage of this fact 
and proposes a centralised, general processor class instead of the invoker in the command pattern. 
Since this generalized invoker only deals with the abstract command interface, it can handle any 
class implementing it if the interface supplies all the necessary parameters needed for the processors 
tasks. 

 

Figure 9: Command Processor 

Figure 9 shows the structure of the solution and contains following classes: 

• Command: This is the same interface as described in the command pattern and contains the 
execute – command and any other general attributes or methods needed by the processor 

• Command Processor: This is the substitute for the invoker class in the command pattern. It 
incorporates a stack on which new commands can be laid and coordinates execution, log-
ging and any other general operation needed. 

• Concrete Command: This is the same class as in Figure 7 and contains the actual implemen-
tation of the operation. 

The application of this pattern offers a general structure for the complete component. The commands 
can be collected in this centralised component until the execution phase. The processor only deals 
with the general interface, so the benefit of encapsulation gained by the command pattern is not lost. 
Using this interface, properties can be exposed to allow the processor to handle all the general con-
straints such as energy consumption, mutual exclusion, inhibition and logging in addition to invok-
ing the actual execution. 
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4.1.3 Composite Pattern 

Not only single commands but also whole sequences of commands should be available. The proces-
sor described in the previous chapter would therefore need to be able to handle two different inter-
faces – the command and the sequence. To overcome this double implementation, the Composite 
pattern can be applied, which was also defined by [Gam1998]: “Composite lets clients treat individ-
ual objects and compositions of objects uniformly.” 

 

Figure 10: Composite pattern 

The client in Figure 10 only deals with one unique interface – the “component”. From this abstract 
class both single objects (leaves) and composites inherit. These composites can –in turn – again con-
tain leaves and composites at any arbitrary complexity because they also only reference them via the 
abstract component interface. When the client calls a method of the component, it is passed to all 
objects keeping the actual structure transparent to the client.  

Even if the pattern allows handling hierarchical trees of objects, the problem at hands only requires 
dealing with single commands and lists of commands. But if later requirements arise and demand 
more complex structures than lists only a new composite class needs to be created and neither the 
commands nor the processor must be changed. Using this pattern therefore also backs up the re-
quirement for extensibility. 

4.1.4 Proxy Pattern 

The actions themselves have been grouped into categories in Section 3.3. One group of these ma-
nipulate other entities, and it was argued that it is necessary for the interface to the opposing entity to 
be kept abstract and independent. This is to ensure that new entities can be created later which sup-
port certain actions without having to change the code of the execution itself. These actions must 
therefore not deal with the concrete classes, but with a generic interface which can be implemented 
by any entity which supports the action.  

A similar problem is also imposed by the structure of the project. As mentioned in the requirements, 
the decision unit and the main simulation are divided into separate packages with no reference from 
the decision unit to the main simulator. The processor must be implemented in the main project so it 
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can execute the commands, but these commands are, in part, called by the decision unit. This situa-
tion is similar to the one described before. The calling object may not deal with the actual class di-
rectly, but this time because the structure of the project makes it impossible. 

This general problem can be overcome by applying the proxy pattern – again from the collection of 
[Gam1998].  

 

Figure 11: Proxy Pattern 

A substitute – the proxy – is placed between the client and the real subject, as can be seen in Figure 
11. The proxy can control access to the real subject and hide the actual implementation to the client. 
The simplest form of the proxy is an interface instead of a separate class. This interface is imple-
mented by the actual subject. The client only accesses the real subject through this interface and 
therefore the implementation is hidden. If additional functions such as logging, access control or 
dynamic changes to the reference are needed, the simple interface can be replaced with a separate 
proxy class later without having to change the client or the real subject.  

With reference to the concrete problems described above, each command which needs an opposing 
entity will access it only through a proxy-interface. This way new entities can be created and all that 
needs to be done to support a certain action is to implement the interface – no changes to existing 
code need to be made. Regarding the processor, a proxy class or an interface needs to be imple-
mented in the decision unit interface. The decision unit can only access methods provided by this 
proxy and later enhancements such as logging or more complex access restrictions, can be easily 
implemented without having to change the processor or the decision unit. Using this concept it 
would also be possible to make a runtime separation of the decision unit and the simulation, because 
the proxy object can be used to transparently access the simulator through an Internet link or any 
other communication medium instead of a direct reference. Again, all that would need to be changed 
is the proxy and not the simulator or the decision unit. 

4.2 Basic Concept for Calling and Executing Commands 

In Section 4.1, patterns were presented which solve some of the issues imposed by the requirements. 
The main structure for the whole action-calling concept is based on the Command and Command 
Processor patterns. A problem which has not yet been discussed is, that the concrete commands have 
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to be available in the decision unit interface, but the execution will need to reference objects in the 
simulator which are not available there. For this reason the receiver is not set by the client as sug-
gested in the pattern, but will be set by the action processor and referenced as “executor” in later 
descriptions. The concrete model will therefore be comprised of following components as can be 
seen in Figure 12: the action command, sequence, processor and executor. 

 

Figure 12: Class diagram of the model 

4.2.1 Abstract Action Command Class 

Each concrete action will be implemented as a single class extending an abstract action command as 
defined by command pattern. This interface will be the only one available to the action processor 
and must therefore provide all relevant functionality: 

• Retrieve command: A single action is only comprised of one command, but the action se-
quence can contain several. Applying the composite pattern, a method to retrieve all com-
mands will be implemented which hides the actual structure. The abstract class will imple-
ment this function with the default behaviour of returning just itself as the only command, so 
basic actions do not need to override it. 

• Check if completed: Following the same argumentation as before, the processor will need to 
know if all actions have been performed or if it continues to the next round. For this a 
method must be available which accepts the current round as parameter and returns true if 
the whole composite has been completed. The abstract class will implement this function de-
faulting the command itself for the duration of one round. 

• Logging information: Because all parameters concerning execution are implemented in the 
action executor, the abstract action command only has to provide a method, which returns 
the name and parameters of the command. The logging infrastructure creates an XML file, 
so the value returned must be an XML node representing this.  
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With reference to the vocabulary used in the Composite pattern, the default behaviour is that of a 
leaf, but it can be overridden to represent a composite. In both cases it hides the actual structure be-
hind the interface so the client – in this case the action processor – can handle all of them in the same 
way. 

In the requirements, the atomicity of actions was defined as an assumption, so only commands with 
the duration of exactly one round would need to be supported. But since the Composite pattern hides 
the actual structure behind the “retrieve command” method, this constraint could be loosened if the 
actual need arises. 

This class must be implemented in the decision unit interface, so it can be referenced by the decision 
unit and also by the action processor in the main package. 

4.2.2 Concrete Action Command 

For each action, a concrete action command class must be created and implemented in the decision 
unit interface. The class must extend the abstract action command so it can be managed by the proc-
essor. The two methods “retrieve command” and “check if completed” can be used as implemented 
in the abstract class, only the logging-method must be overridden and return the command and it’s 
parameters as an XML node. 

The command will be passed to the executor by the processor and must therefore supply all the pa-
rameters for the concrete action in addition to the inherited interface, but it may not contain any state 
variables due to the statelessness property. Each type of command has its own executor, so these 
attributes do not need to be masked behind another interface, but can be provided directly as proprie-
tary properties of the concrete command. For example, the “move” action may need attributes such 
as speed and direction, which can be implemented with appropriate member variables and get-
ters/setters. 

4.2.3 Action Sequence 

According to the requirements, it must be possible to call whole lists of actions in addition to single 
ones. The action sequence will be represented by a single class and implemented in the decision unit 
interface. It must provide functions for adding and retrieving actions from a list. Actions can be 
added by passing a concrete command object and giving duration (number of cycles the action 
should be carried out), and the execution round it should start. The execution round is not the abso-
lute number, but relative to the point in time when the sequence was initially called, i.e. 0 is the cur-
rent round, 1 the next round, 2 the round after that. Following the Composite pattern, the concrete 
command added to the sequence could also be another sequence and thereby create a tree of com-
mands. As already mentioned, this concept can be enhanced to even more complex constructions, 
but at the present time the requirements do not demand this.  

The methods “retrieve command” and “check if completed” must be overridden so all commands for 
the current round are returned or – respectively – checked. The method for retrieving the logging 
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information must also be overridden and return the concatenated list of all the information returned 
by it’s commands list in XML format. 

4.2.4 Action Executor 

In the Command pattern, the “receiver” responsible for executing the actual command is normally 
set by the client. In this project the pattern had to be adapted because the client – the decision unit – 
cannot reference an object for execution because it needs to be implemented in the main simulator 
project. To cope with the situation each command is mapped to an executor – the receiver – and the 
relation is stored by the action processor and configured during the simulation set-up. 

All concrete executors extend an abstract action executor, so they – like the command – have a 
common interface for the processor. The action processor needs this common interface to stay inde-
pendent of the actual actions, but still all information necessary for carrying out the processor’s gen-
eral validation tasks must be available. For this, the interface must provide the following functional-
ity: 

• Mutual exclusions: A list of action command types which cannot be executed at the same 
time as this executor.  

• Energy and stamina: Methods for determining the demand have to be implemented. They 
accept an instance of a concrete command of the appropriate type as parameter and return 
the energy and stamina demand. The command as a parameter is needed because its attrib-
utes may have an influence on the calculated demand. For example, moving fast is more 
costly than moving slowly. 

• Execution method: The actual execution method will be called after all general validation 
work has been done. Since the processor can only check general constraints, the concrete 
executors must check any additional command-dependant constraints prior to execution. The 
method returns true or false depending on whether the action was successful. This result 
value is used for optional logging only and is not passed back, or made available to the deci-
sion unit as defined in the requirements. 

The concrete action executor can be seen as a software representation of an actuator. It accepts 
commands of the appropriate type and executes them using the command’s attributes like direction 
and speed in case of movement. But the executor itself can also be configured via its concrete inter-
face in order to change the behaviour as requested in Section 3.3. In accordance with the rest of the 
software, these attributes are set via the parameter tree during start-up. 

4.2.5 Action Processor 

The central class of the executing component is the action processor. This class is responsible for 
solving several requirements: It must have an internal configuration interface to enable and disable 
actions, it must provide an interface for calling actions or sequences available to the decision unit, 
and finally it must validate and execute the commands. 
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Configuration Interface 

As stated in the requirements it is necessary to define which actions are available. This must be pos-
sible during the set-up of the simulation and also later for dynamic changes. Since the Command 
pattern will be followed, all available commands are represented by a concrete command class inher-
iting the abstract command class. Using reflection, the list of available commands can therefore be 
represented by a list of types. Thus the action processor will supply the methods “enable” and “dis-
able” which accept the reflection type for the concrete command as an argument and store these. 
These methods can be used both during start-up and also during execution of the simulator and 
therefore satisfy the requirements. 

In addition to the en-/disable methods, all available commands must be mapped with an executor 
during start-up. For this, a registering method must be available which accepts the reflection class of 
a concrete command and a configured instance of a concrete executor. These must be stored in the 
processor so when a command is called, the appropriate executor can be found and used. By default 
the registering of an action also enables it, which means that if the opposite is required, the disable 
method must be called afterwards.  

Calling Interface 

The action processor provides an interface for inhibiting and calling actions. Both methods accept a 
concrete command object as a parameter and store them until the execution phase. Since all concrete 
commands and also the action sequence extend the abstract action command following the Compos-
ite pattern, only one method for calling and one for inhibiting is necessary. In accordance with the 
no-feedback definition, the methods do not return a value and it is not possible to track the command 
after it has been submitted. To be able to solve mutual exclusion conflicts as defined by the require-
ments, a second optional parameter sets the priority level of the call to be either normal, reflex or 
body update (default is normal). 

To allow the decision unit to use the interface, the processor implements an interface stored in the 
decision unit interface to publish it’s public methods. Since no references from the decision unit to 
the main simulator are allowed, no function not published by this interface can be used. Addition-
ally, the concrete action processor can be substituted by a proxy implementing the same interface 
without having to change the implementation of any of the participating classes. Via this proxy, ad-
ditional functionality could be provided as already mentioned in the pattern description, e.g. more 
sophisticated access control or transparent communication via Internet.  

Execution Interface 

The action processor must implement a single execution command without parameters, which will 
be called by the simulation framework during the appropriate phase.  

All commands have been collected on a stack and can be accessed via the interface of the abstract 
command class. Since the atomic commands are masked by the interface, the processor must first 
get all actual commands by looping through the stack and calling the method for retrieving the 
commands for the current round. The disabled or inhibited commands are then immediately removed 
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from the list. These actions can be ignored completely, so they will neither be executed, nor con-
sume energy nor interrupt a running action sequence. All remaining actions are paired with the ex-
ecutor and thus represent the current execution stack. 

The next step is responsible for energy and stamina consumption. The amount needed for the indi-
vidual action can be determined by the methods provided by the command executors which are 
available through their common action executor interface. If the available energy or stamina is not 
sufficient for all the actions in the stack, the stamina will be drained to zero and the energy will be 
drained to a value proportional to the stamina used, i.e. if the demand was 100 stamina and 10 en-
ergy, and the stamina level is only 50, then 50 stamina and 5 energy will be consumed. The energy 
value is not checked and can therefore also drop below zero which will “kill” the agent. 

All remaining actions then need to be checked against each other for mutual exclusions in a double 
loop. The abstract action command provides the list of mutual exclusions as a list of types of action 
commands which can be compared with the object instance’s type via reflection. In the case of an 
exclusion, the priority with which the action was called determines which action should be discarded 
following the description in the requirements: Body update calls will always be executed, reflexes 
win over normal actions, and if both actions are of the same priority, they will both be discarded.  

After reducing the list of commands, all remaining actions are executed by calling the appropriate 
function of the executor defined above, passing the command as a parameter. The return value (true 
or false) is saved for logging purposes only, as is the reason for not executing the action if it was 
dropped.  

At the end of the execution phase all completed commands are dropped, which can be verified by 
using the “check if completed” method of the abstract action command class. Since all commands 
are stateless by definition, the command can be dropped without loosing any information. 

Additional Functionality 

In addition to the actual execution tasks, the action processor needs to provide further functionality 
to meet all requirements: 

• Logging: The processor must provide logging information on all of the commands which 
were called in the current round. For this a method must be implemented which returns the 
list of all the command’s logging information which is available through the corresponding 
method of the abstract action command. 

• Execution history: The “no feedback” definition makes it unnecessary to provide informa-
tion about the execution status. But for testing the processor it is essential to know when and 
why a command was discarded or if it was executed on schedule. For this, a method will be 
implemented which returns the list of commands that were on stack in the last round and the 
state of execution or non-execution including the reason for failing. This function will be 
hidden to the decision unit by not publishing it in the decision unit interface. 
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4.2.6 Execution Sequence Diagram 

Figure 13 shows the sequence diagram for the execution of a single command. During the set-up 
phase the executor and command were registered at the action processor by creating an instance of 
the executor and passing the combination command-type and executor instance to the processor. 
Later, in the processing cycle, the decision unit creates an instance of a concrete command and sets 
the parameters. It then passes the command to the processor, who stores it on a stack. In the execu-
tion phase the processor gets the validation information for the commands via the executor (energy 
demand, mutual exclusions, etc.) and loops through them validating them. The remaining commands 
are then executed by calling the execute method of the corresponding executor, which performs the 
operation using the parameters of the command and returns its success back to the processor.  

 

Figure 13: Execution Sequence diagram 

4.3 Concrete Actions 

In the requirements, the actions where divided into three categories:  

• Actions which change the agent’s physical representation or state 

• Actions which manipulate other entities 

• Actions which concern the binding of other entities 
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The first category of commands can directly access the appropriate objects and set the values or call 
the methods needed for the operation. All work can be done inside the execution method of the ac-
tion executor without changes to other components, so no additional interfaces or masking needs to 
be done. For the other actions, proxies will be used to decouple the command and the entities as was 
already argued for during the description of the pattern. The third category additionally needs a new 
class to store the binding information. The first subsections present the logic applied for proxies and 
the new inventory class. Afterwards a table will be given containing all the actions listed in the re-
quirements and the elements needed for the actual implementation. 

4.3.1 Proxies 

All actions besides those of the first category need to changes state-values or call methods of other 
entities. Since new entities may be created later, the action executor would need to be changed if the 
new class should support the command. To decouple the executor from the entity the proxy pattern 
will be applied, and for each action which needs to manipulate another entity an interface will be 
created: The executor deals only with methods provided by the interface and has no need to know 
more about the concrete class. This way new entities can be created and made to support a function 
by implementing the appropriate interface. This scheme can also be utilized to create test-containers 
where the executor deals with a dummy-object that only logs if the executor calls the functions 
properly. 

The requirements state that the opposing entity is not passed as a parameter but should be selected 
automatically by looking for an appropriate entity in the agent’s range. This can also be accom-
plished with the interface as described above. Using reflection, all entities in range can be checked to 
verify if they implement the interface needed for the concrete action. If they do, and if there is only 
one valid entity in range, the reference will be treated as the opposing entity and can be used di-
rectly. 

4.3.2 Inventory Class 

For actions which bind other entities an additional class must be created as argued for in the re-
quirements. Every agent that supports the binding commands must provide a reference to an instance 
of this “inventory” class which needs to support the following functions: 

• Pick up: As defined, one entity can be bound to the agent and is joined by a link so both 
move through the environment together. The inventory class must therefore provide a func-
tion to set the reference to this entity and establish the link. If another entity was “picked up” 
previously, the existing link will be dropped before the new one is established . 

• Drop: This method drops the link to the currently carried entity. 

• From/to inventory: One method moves the currently carried object to an internal inventory 
and removes it from the simulation environment. The second one moves an object from the 
inventory and binds it as the carried/picked-up object. The inventory can only be filled up to 
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a configurable maximum weight and number of objects. If the limit is reached, the methods 
throw an exception which must be handled by the calling action command.  

• Energy and stamina demand: Carried objects, and objects in the inventory need a certain 
amount of energy and stamina each round. The value is calculated by the inventory class and 
the action processor retrieves and consumes that amount together with the total from the 
other actions. 

• Move to area: This method is needed as a support function for the corresponding command. 
The default joint between the carried entity and the agent is changed so the carried object is 
“pulled” to the desired destination. The method needs the destination area as parameter. 

Following the same logic as the other operations, an interface is needed with which these commands 
interact. This “carryable” interface must be implemented by any entity that can be picked up. The 
interface will be used both to identify “carryable” objects and to set the binding state of the entity 
through an appropriate method. This way the entity “knows” what is happening to it and can react 
accordingly. Plants, for instance, should stop to grow when they are carried. The interface also sup-
plies a method to retrieve the weight of an object so energy demands can be calculated and the con-
straints can be checked. Additionally, a reference to the object representation in the simulator is 
needed so the joint can be established and the object can be removed from or returned back to simu-
lator environment. 

4.3.3 Table of Actions, Executors and Proxies 

Using Table 3, a list of commands, executors and proxies can be derived following the model pre-
sented above. Table 4 shows the result and lists the commands needed for each action including their 
parameters, a description of then executor’s functionality, and a definition if a proxy interface is 
necessary. 

Table 4: Actions, Executors and Proxies 

Action Command(Parameters) Executor Proxy 
Bite AttackBite (Force) Search for entity via the proxy, 

bite it and effect damage on it or 
the caller. 

Yes 

Change body 
colour 

BodyColor (Red, Green, Blue) 
BodyColorRed (Red) 
BodyColorGreen (Green) 
BodyColor Blue (Blue) 

Set values via the agent’s internal 
body components. 

No 

Change facial 
expression 

EyeSize(Size) 
LeftAntennaPosition(Position) 
LensShape(Shape) 
LensSize(Size) 
RightAntennaPosition(Position) 

Set values via the agent’s internal 
body components. 

No 
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Cultivate Cultivate(Amount) Search for entity via the proxy and 
cultivate it. 

Yes 

Dance Sequence for Tango 
Sequence for Walz 
Sequence for Salsa 

None (sequence of move and turn 
commands) 

No 

Eat Eat() Search for entity via the proxy, eat 
it. Inflict damage or pass nutri-
tional value to stomach. 

Yes 

Excrement Excrement (Intensity) Create an excrement entity from 
the stomach system and drop it in 
the environment. 

No 

Kiss Kiss(Intensity) Search for entity via the proxy, try 
to kiss it and create the internal 
response if positive. 

Yes 

Lightning-attack AttackLightning (Force, Oppo-
nentID) 

Search for the named entity and 
attack it via the proxy function. 

Yes 

Move to/from 
inventory 

FromInventory() 
ToInventory() 

Move the carried object to/from 
the inventory using the inventory 
class. 

Yes , 
Carryable 

Move, turn Move(Direction, Speed) 
Turn (Direction, Angle) 

Add the appropriate forces in the 
physics engine. 

No 

Move to eatable 
area 

MoveToEatableArea() Move the carried object to the 
destination area using the inven-
tory class. 

Yes , 
Carryable 

Pick up/Drop Drop () 
PickUp () 

Search for entity via the proxy and 
bind it to the entity via the inven-
tory class. 

Yes , 
Carryable 

Sleep Sleep(Intensity) Notify a set of internal components 
about the sleeping state. 

Yes 

4.4 Documentation 

In the requirements the necessity for a useful and extensive documentation was explained. Espe-
cially the actions must be documented in a way so other developers can use them and find the ap-
propriate command easily, and without having to analyse the code. 

Since all actions are based on a single strategy, the model allows describing them using following 
parameters: 

• Description of the behaviour: The first and most relevant information is what the com-
mand actually does and what it should be used for.  
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• Stamina and energy: When implementing an action, the developer needs to know how 
much energy and stamina is needed. Since commands are not executed if the demand 
cannot be met, the decision unit must be designed in a way to balance out the demand. 

• Command parameters: Every parameter available for the command must be described. If 
possible a default or recommended value should also be given. 

• Executor parameters: When implementing new entities, the available commands must be 
mapped to an executor. These can also be configured to reflect differences between enti-
ties like the relation of force to invested energy so the bite of a lion is more severe than 
that of a cat. 

• Mutual exclusions: Since some actions cannot be executed at the same time as others, 
these constraints must also be documented for the developers to consider. 

• Constraints: Any proprietary constraints must also be known to the developer and must 
therefore be contained in the description. 

• Proxy: If the command deals with an opposing entity via a proxy interface, the methods 
and parameters should be described, so when creating new entities, the developer knows 
what needs to be done to support the action. 

To supply this information, a template will be developed and after implementing an action it will be 
filled out. This way a structured catalogue of actions results which can be made available to other 
developers. It is clear and easily understandable, but also exhaustive because all relevant parameters 
are contained.  

4.5 Tests 

The requirements showed clearly, that those parts which are accessible to unit testing should be cov-
ered extensively to allow automated tests and avoid problems during the actual simulation execution.  

The action processor and the abstract classes are completely decoupled from the actual simulator. 
The whole process of registering, calling and executing commands can therefore be covered by 
white box unit tests. Table 5 lists the test cases giving a name, a description of the operation, and the 
list of functions that are covered by the test case. 

Table 5: Execution Processor - Test Cases 

Test Case Description Tested functionality 
MutEx 1) Call two commands of the same prior-

ity which mutually exclude each other 
and check if both are blocked 
2) Call two commands of different prior-
ity and check if the lower is blocked and 
the higher is executed 

Calling commands, validation via 
mutual exclusions with different 
priorities, executing commands 
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Inhibition Call two different commands and inhibit 
one of them. After the execution phase 
check if the correct command was inhib-
ited and the second one was executed. 

Calling, inhibiting and executing 
commands 

Disabling Call two different commands, disable 
both and re-enable one of them. After the 
execution phase check if the correct 
command was discarded and the second 
one executed. 

Calling, disabling and executing 
commands 

Sequences Create a sequence containing at least two 
different commands which are called in a 
sequence where both are executed to-
gether and also separately. Check after 
each round if the correct commands 
where dispatched and if the sequence is 
discarded in the end. 

Calling and executing sequences 

 

The concrete actions cannot easily be tested separated from the actual simulation, because most 
functions need to access the actual environment or involve interaction of several entities. Unit-tests 
could therefore not cover most of the predictable problems. To make this part of the project available 
to automated testing, a whole test-environment and a separate test simulation for each action would 
need to be implemented:  

• A test-configuration which is as simple as possible to ensure encapsulation of possible error-
sources, for example only a plane environment and one agent to test basic movement.  

• A test-decision unit with a simple command list for the test.  

• A logging and verification component which logs the calls, the execution result and the state 
of the environment after each simulation cycle. Since MASON guarantees reproducibility of 
results as documented in the background chapter, the log of a test-run could be compared to 
a previously saved successful run. If the two files differ, something has changed and must be 
looked into manually to determine if this is an actual error or benign. 

Even if this type of automated testing would be possible, it would be sensitive to changes in other 
parts of the simulation too. The feature driven development process is an incremental process, and 
changes to other parts are not only likely, but definite. This test would therefore need a lot of future 
attention and work, because most differences will be benign but still need manual examination. Fol-
lowing this argumentation, it is not justifiable to implement automated tests for the concrete actions, 
so these will be tested manually. The existing simulator fortunately already offers the tools for this. 
A special implementation of a decision unit can be used to “remote control” the agent by using cur-
sor keys to move it. This “remote control” must therefore be enhanced, so all new actions can also 
be called and tested.  
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5. Implementation and Results 

After a review in the course of a development meeting, the model was approved by the core team. 
Following the feature driven development process, the whole project is now split into several fea-
tures which can be implemented piece-by-piece independently and do not interfere with the devel-
opment of other components. For the model at hand, these parts are the inventory class, the execu-
tion-infrastructure and the individual actions which can be added separately anyway. This chapter is 
also organised in this order. After giving a short overview of the existing simulator, the implementa-
tion of the inventory class will be presented. Afterwards the action processor and the related classes 
will be explained in detail – including sequence diagrams, examples of how to use them and how the 
new components were connected to the existing model. After implementing this infrastructure, the 
actions are developed: The implementation of a single action will be presented in detail including all 
the classes and code changes needed and also the documentation template will be filled out. The 
details on all other actions are given as a table. In the final section of this chapter, the results will be 
presented by crosschecking the model and the implementation to the requirements and giving the 
results of all the tests. 

5.1 Overview of the Existing Software 

The main architecture and components of the Bubble World Simulation were already introduced in 
the background chapter. Here some technical details of the agent’s design will be presented which 
are relevant for the interfaces and connections to the new components.  

The simulation is agent based and therefore the main architecture is comprised of two main parts: 
The environment and the agent (the reasons for this were given in Chapter 2). Even if certain actions 
need to access the environment, the classes relevant for the execution process itself deal with the 
agent alone, so only this part of the software will be examined here. Since the actual implementation 
consists of several hundred classes, only the main ones relevant for the current project are contained 
in Figure 14 for better oversight. 

The agent’s main class is the abstract clsMobile which is later extended for the concrete agent, de-
pending on the simulation. The class itself is an extension of the clsEntity which has a reference to 
an instance of clsBody, which is also an abstract class and is extended to resemble a certain type of 
body. The clsBody-extensions then provide references to the different body-parts of the concrete 
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entity. All actual agent’s bodies are instances of the clsComplexBody – other entities have no decision 
unit and resemble things like food or stones, etc. and  are not relevant in this context. 

The clsComplexBody hosts the hierarchical references to all internal body structures: 

• clsInternalSystem: contains references to several body-internal components like the stom-
ach or stamina system. 

• clsIntraBodySystem: contains references to objects concerning internal states which also 
have an impact on the environment or can be seen by the environment, for example body-
colour or facial expressions. 

• clsInterBodyWorldSystem: mainly provides utility classes which involve the entities’ effect 
on the environment or vice-versa, like damage infliction, creating excrements, etc. 

• clsInternalIO: contains references to all internal sensors or actuators like sensors which de-
tect stamina values or health status. 

• clsExternalIO: contains references to all external sensors or actuators such as sensors for 
vision or audio. 

• clsBrainSocket: gateway class which references the actual decision unit and calls the proc-
essing function converting and passing all relevant input and output data. 

 

Figure 14: Simulator Class Diagram 

In addition to the actual functionality of the classes, methods have to be provided so the software’s 
infrastructure can handle them and provide some general functionality. The necessary methods are 
described here and are implemented in the appropriate classes without further mentioning in the text: 

• Functions needed for storing and visualising the object-diagram and hierarchies: 

o public String getName(): returns the name of the class. 

o public eBodyParts getBodyPartID(): returns the type of the class referring to a 
general list of body parts represented by an enumeration type. 

o public long getUniqueID(): returns the unique ID of the instance. 
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• Structure for applying the configuration tree: 

o public static clsBWProperties getDefaultProperties(String poPrefix): static 
method which returns the default configuration for the component and all it’s 
internal components. The call is also passed on to all referenced classes, which 
results in a list containing all parameters as a configuration tree. Here each 
parameter is stored by a name=value line, the naming being a dot-separated 
representation of the hierarchical position in the agent’s structure:  

  entitydefaults.HARE.body.sensorsext.actionavailable.ACTIONEX_MOVE=1 

o public clsClassName(String poPrefix, clsBWProperties poProp, references): 
the class’s constructors accept the prefix and the list of properties for the configura-
tion stored in the format above. Besides this, only relevant references to object in-
stances are passed along side the configuration tree. 

o private void applyProperties(String poPrefix, clsBWProperties poProp): pri-
vate method that retrieves the values from the configuration tree passed via the pa-
rameter poProp and applies them (stores them in member variables or uses the val-
ues otherwise). 

The naming of the new components, methods and variables is done following the project’s coding 
conventions. For easier reading, the most important ones are given here: 

• Files: classes begin with “cls”, interfaces with “itf” 

• Variables: The first letter defines the scope of the variable (p=parameter, m=member, 
s=static, blank=function), the second letter defines the type of the variable (b=boolean, 
e=enumeration, n=number, r=real number, o=object) 

• Names are given in the camel-back notation, i.e. every new word starts with a capital letter 
but without spaces or blanks in-between, for example “camelBack” instead of “camel_back” 
or “camelback”. 

5.2 Inventory 

Actions are stateless and will be discarded after execution, so any action which needs to keep a per-
sistent state must do this by accessing components bound to the entity. The actions pick up, drop and 
move from/to inventory bind other entities to the agent in a persistent manner. Since the existing 
implementation does not offer a way to handle this, a new class – the inventory class – needs to be 
created and implemented. 

Section 4.3.2 already described all the necessary functions and all of them were implemented in a 
single class. This new component does not fit directly into the existing tree of body-parts, but since 
it binds entities to one another, it was decided to reference it through the clsMobile as shown in 
Figure 15. 
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Figure 15: Inventory Class Diagram 

5.3 Classes for Command Execution 

The classes needed for the command execution infrastructure were developed in Section 4.2. Figure 
16 shows an overview of these classes and a detailed description for each element is given in this 
section. 

 

Figure 16: Implementation Class Diagram 

5.3.1 Abstract Action Command Class “clsActionCommand” 

The clsActionCommand is an abstract class which is later extended by the concrete commands and is 
implemented in the decision unit interface package. The class’s interface is designed following the 
Composite pattern to hide the internal structure and contains following methods: 
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• boolean isComplete(int pnRound): returns if the command is completed, i.e. in the case of 
a composite command this means that all items have been executed. The default behaviour 
is a single-round command, so the method returns true when called with pnRound greater 
than 0. 

• ArrayList<clsActionCommand> getCommands(int pnRound): returns the list of individual 
commands for the current round. Default behaviour is again the single-round, single-
instance command, so the method returns a list containing only itself.  

• abstract String getLog(): returns the logging information for the command as an XML 
node with the format: <CommandName>parameterlist</CommandName> 

5.3.2 Action Sequence Class “clsActionSequence” 

This class is also implemented in the decision unit interface and is an extension of the clsActionCom-
mand. It hides it’s list structure to the processor through the interface, but supplies a method for add-
ing new commands with it’s extended interface: 

• add(int pnRound, clsActionCommand poAction, int pnDuration): adds the new command 
poAction to the sequence for a duration of pnDuration beginning in round pnRound, where 0 
is the current round. 

• String getLog(): overrides the method of the base-class and returns the concatenated string 
of all the commands’ logging information by looping through it’s command list. 

5.3.3 Abstract Action Executor Class “clsActionExecutor” 

The clsActionExecutor is an abstract class which is later extended by the concrete executors and is 
implemented in the main simulator package. It offers all functions needed by the action processor as 
was defined in the model: 

• ArrayList<Class<?>> getMutualExclusions(clsActionCommand poCommand): arraylist con-
taining the types of action commands which cannot be performed at the same time. This will 
be checked by the processor in a double loop prior to execution. Commands of the same 
type automatically exclude themselves and need not be listed, i.e. no two commands of the 
same type can be executed in the same round. Default behaviour is to return an empty list. 

• abstract double getStaminaDemand(clsActionCommand poCommand): gets the amount of 
stamina needed to perform the action. Even if the action cannot be performed due to some 
constraint, this amount of stamina will be consumed. 

• double getEnergyDemand(clsActionCommand poCommand): gets the amount of energy needed 
per round to perform the action. Even if the action cannot be performed, this amount of en-
ergy will be consumed. Default behaviour is to return the amount of stamina scaled by the 
constant value 0.2, i.e. a stamina value of 0.5 will result in an energy demand of 0.1.  
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• abstract boolean execute(clsActionCommand poCommand): executes the actual command 
and returns true if the command was successful or false otherwise. 

Additionally, the class supplies utility functions as protected methods that are needed by several 
concrete executors: 

• clsEntity findSingleEntityInRange(clsEntity poSelfReference, clsComplexBody 
poBody, eSensorExtType peSensor, Class<?> poInterface): returns a reference to an 
entity that implements the poInterface if exactly one can be found in the range defined by 
peSensor. For example, this method is used by the eat action to find something “eatable” in 
range by passing the “eatable area sensor” and the itfEatable interface. 

• clsEntity findNamedEntityInRange(String EntityID, clsComplexBody poBody, 
eSensorExtType peSensor, Class<?> poInterface): returns a reference to an entity with 
ID=EntityID, if it carries the poInterface and can be found in the range of peSensor. 

5.3.4 Action Processor Class “clsActionProcessor” 

The calling interface of this class is published to the decision unit by implementing an 
itfActionProcessor interface which also decouples the two packages following the proxy pattern. It 
is implemented in the decision unit interface and supplies following methods: 

• void call(clsActionCommand poCommand, eCallPriority pePriority): calls a command 
poCommand and adds it to the execution stack with pePriority (reflex, body-update, or 
normal). The command can be any concrete implementation extending the abstract 
clsActionCommand including composites like sequences. 

• void call(clsActionCommand poCommand): calls the command using the default priority 
“normal”. 

• void inhibitCommand(Class<?> poCommand, int pnDuration): inhibits commands of the 
type poCommand for pnDuration rounds. 

• public String logXML(): returns the complete log of all commands called during the cur-
rent execution round by returning the concatenated string of all the commands getLog() re-
turn values. 

The concrete clsActionProcessor is implemented in the main simulator package and supplies fol-
lowing additional functions described in the configuration and execution interface of the model: 

• void addCommand(Class<?> poCommand, clsActionExecutor poExecutor): maps the com-
mand poCommand to the executor poExecutor. This method will be called during the set-up of 
the simulator. All commands must be registered in this manner, so the executor for a con-
crete command can be determined and validation and execution can take place. 
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• void disableCommand(Class<?> poCommand): disables all commands of the type poCommand 
forthwith. Calls can be performed, but during execution phase the commands will be 
dropped without further notice. 

• void enableCommand(Class<?> poCommand): re-enables commands of the type poCommand.  

• ArrayList<clsActionCommand> getCommandStack(): returns the list of commands currently 
on the stack. This method is for debug purposes only. 

• ArrayList<clsActionCommand> getExecutionHistory(eExecutionResult peResult): returns 
an array list of all commands that were on the stack during the previous round and where 
called resulting in peResult (execution or non execution due to constraint violation, dis-
abling, inhibition, mutual exclusion, no stamina). This method is also for debug purposes 
only. 

• ArrayList<clsActionCommand> getExecutionHistory(): returns all actually executed com-
mands using the previous method with peResult=eExecutionResult.Executed. This method 
is also for debug purposes only. 

• void dispatch(): Determines, validates and then executes all the commands on the stack as 
described in detail in the model. 

The action processor is instantiated by – and can be referenced through – the clsExternalIO since 
this class is responsible for managing actuators to the agent’s external world. Some actions actually 
don’t relate to the environment, but to internal body states such as body colour or facial expressions. 
It would be possible to duplicate the execution infrastructure and implement  a second processor in 
the clsInternalIO to differentiate between them. The action processor class could be re-used by 
instantiating it twice and actions would be registered at only one of the two instances. But there is no 
real benefit in doing this, because the developer of a decision unit would always have to be careful to 
dispatch a command to the correct processor. But since the commands themselves are instantiated 
without reference to an internal or external hierarchy, no compiler error or other warning would 
bring this to the attention of the developer and the simulation would just crash during runtime. Hav-
ing only a single processor is therefore the easiest way to overcome this, even if the initial design 
seems to have anticipated a different implementation. But since the decision unit gets all sensor data 
in a single container instead of an internal and external one, it may also be that the differentiation of 
internal and external sensors will be given up later too.  

To test the basic functionality of the simulator up to the point where the real actions are imple-
mented, the development team integrated some simple temporary methods for movement. The de-
velopment of the actual infrastructure and the new implementation of the actions can therefore be 
done without interfering with the other components. Following the feature driven development proc-
ess, components of other developers are not interfered with due to code ownership. When all neces-
sary work is done and the tests are completed, the old functions can be marked as deprecated and be 
replaced with the new ones by the individual developers. In practice this is not done in the current 
project because only two simple test-classes actually used the temporary methods. So after every-
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thing is prepared and tested, and after coordination with the responsible team members, the tempo-
rary implementation are removed and replaced right away. 

5.3.5 Interface to the Decision Unit 

All relevant classes and interfaces are implemented in the decision unit interface, so they can be 
referenced by all decision units without also referencing the main simulator. The processing phase of 
the cycle is initiated by the clsBrainSocket described in Section 5.1. This gateway class transforms 
all internal sensory data structures to the appropriate types known to the decision unit and also 
passes a reference to the action processor using the itfActionProcessor interface known to both 
packages. The decision unit can then create a command and call it as shown in following short ex-
ample which calls the move command with the parameters for forward, and the default speed of 1: 
oActionProcessor.call(new clsActionMove(eActionMoveDirection.MOVE_FORWARD,1.0)); 

5.4 Actions 

After the execution infrastructure is implemented, the concrete actions can be developed piece-by-
piece extending the functionality of the simulator without interfering with other development work 
as requested by the feature driven process. In this section, first a detailed example for implementing 
an action will be given. All other atomic actions will be described in a table enhancing the table cre-
ated in the model. Some actions are not atomic and were implemented as sequences of other actions 
which can be created using a factory class as described in the final subsequence. 

5.4.1 Implementing a new Action 

An action can consist of up to three separate structures: 

• Command: The command is a class extending the abstract clsActionCommand and imple-
mented in the decision unit interface. It contains all of the parameters that can be set for a 
concrete command and is passed to the action processor upon calling and stored there on a 
stack. 

• Executor: The executor is a class extending the abstract clsActionExecutor and imple-
mented in the main simulator package. It is used by the action processor to validate and exe-
cute a command. An executor can handle several commands, but to encapsulate them and 
keep them independent only different variations of the same command should be combined 
in this way, e.g. change body-colour, change red component of the body-colour, change blue 
component of the body-colour, change green component of the body-colour. 

• Proxy: When a command deals with an opposite entity – for example when attacking it – a 
proxy-interface is used to decouple the concrete entity from the action. The proxy is used 
both to search for an entity which can be used for the action and also to perform the action 
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itself. Not all commands need a proxy, the “change body-colour”, for example, can directly 
access it’s own entities’ settings without needing any additional decoupling. 

The implementation will be described in detail using the “attack/bite” action as an example because 
it is simple but still needs all three structures. The implementation will be done by creating the 
necessary components following the model, testing the implementation manually through the 
simulator’s remote control and then documenting it using the template designed in the model. The 
single steps will show listings for the relevant parts of code matching. The complete, and combined 
source code for this command can be found in Appendix III. 

Command class 

Listing 1 shows the code for the concrete action command. Following the naming conventions, the 
class is called clsActionAttackBite and extends the clsActionCommand. The file is stored in the 
folder decisionunit.itf.actions of the decision unit interface. 

Following the model, the only parameter necessary is the force of the attack, so this value will be 
stored in a member variable mrForce (double types are used rather than float to avoid conversions, 
since the physics engine uses doubles). For this parameter, get and set methods are implemented and 
the parameter is also added to the constructor to allow the complete creation and call of a command 
in a single line rather than having to set every property individually using the setters. 

The getLog() method of the base class is overridden and returns the command’s name and the force-
parameter as an XML node to the caller. The methods isComplete and getCommands can be kept and 
need not be overridden, because the default behaviour of the abstract command is already that of an 
atomic command.  

Listing 1: Concrete Action Command “clsActionAttackBite” 

1 public class clsActionAttackBite extends clsActionCommand { 
2    private double mrForce; 
3    public clsActionAttackBite(double prForce) { 
4       mrForce=prForce; 
5    } 
6    @Override 
7    public String getLog() { 
8       return "<AttackBite>" + mrForce + "</AttackBite>";  
9    } 
10    public double getForce() { 
11       return mrForce; 
12    } 
13    public void setForce(double prForce) { 
14       mrForce=prForce; 
15    } 
16 } 

Proxy class 

Following the model, the command uses an interface for the opposing entity. It is named 
itfAPAttackableBite and stored in the bw.body.io.actuators.actionProxies of the main 
simulator. The interface contains all methods needed by the executor. 
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Listing 2: Proxy Interface "itfAPAttackableBite" 

1 public interface itfAPAttackableBite { 
2    double tryBite(double pfForce); 
3    void bite(double pfForce); 
4 } 
 

Listing 2 shows the source code for the itfAPAttackable interface which defines following methods: 

• double tryBite(double pfForce): This method will be called before the actual action. The 
opposing entity can determine if the force of the bite is high enough to actually damage the 
attacked entity rather than the biting entity. A zero value will be returned if ok, or otherwise 
a positive value representing the damage done to the calling entity. 

• void bite(double pfForce): This method will only be called after tryBite returned zero. 
The opposing entity must do all appropriate steps like register the damage, remove itself 
from the simulation, etc. 

Executor class 

The executor is named clsExecutorAttackBite and extends the clsActionExecutor. It is stored in 
the bw.body.io.actuators.actionExecutors folder of the main simulator. 

The basic parts of this class are shown in Listing 3. Due to the configuration logic of the system, the 
constructor takes the prefix and configuration tree as parameters. The applyProperties method  
extracts the actual configuration values and stores the values in member variables. The defaults for 
are returned by the getDefaultProperties method as described in Section 5.1. For the Attack/Bite 
command, following configuration values are defined: 

• A range sensor which returns all entities near enough to perform the action which is stored 
in the member variable moRangeSensor and defaulted to eSensorExtType.EATABLE_AREA. 

• A scaling factor to set the ratio of energy to force (to distinguish between a cat’s bite and a 
lion’s bite) which is stored in the member variable mrForceScalingFactor and defaulted to 1. 

The concrete action additionally needs a reference to the agent itself to access the sensors, so this is 
also passed via the constructor and stored in the moEntity variable. 

The constructor also creates the array-list of mutual exclusions and stores it in the member variable 
moMutEx which can be accessed through the overridden method getMutualExclusions. In this case 
the only command that mutually excludes the Attack/Bite command is the Eat command, so this 
command class type is added to the array-list. The construction of the array-list could be done in the 
getter itself, but because the validation for this is done in a double loop and the method will be called 
several times. For performance reasons it is therefore prudent to set up the list once and pass as a 
reference for each call.  
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For the infrastructure of the simulator, the executor then also needs to override methods for the name 
and body-part ID of the class. The latter returns an enumeration value that needs to added to the 
enumeration bw.utils.enums.eBodyParts. 

Listing 3: Basic Parts of the Concrete Action Executor "clsExecutorAttackBite" 

1 public class clsExecutorAttackBite extends clsActionExecutor{ 
2    private double mrForceScalingFactor; //Set by the applyProperties method 
3    private ArrayList<Class<?>> moMutEx = new ArrayList<Class<?>>(); //Set by the 

constructor 
4    private clsEntity moEntity; //passed in the constructor 
5    private eSensorExtType moRangeSensor; //Set by the applyProperties method 
6    public static final String P_RANGESENSOR = "rangesensor"; 
7    public static final String P_FORCECALINGFACTOR = "forcescalingfactor"; 
8    public clsExecutorAttackBite(String poPrefix, clsBWProperties poProp, clsEntity 

poEntity) { 
9       moEntity=poEntity; 
10       moMutEx.add(clsActionEat.class); 
11       applyProperties(poPrefix,poProp); 
12    } 
13    public static clsBWProperties getDefaultProperties(String poPrefix) { 
14       String pre = clsBWProperties.addDot(poPrefix); 
15       clsBWProperties oProp = new clsBWProperties(); 
16       oProp.setProperty(pre+P_RANGESENSOR, eSensorExtType.EATABLE_AREA.toString()); 
17       oProp.setProperty(pre+P_FORCECALINGFACTOR, 1f); 
18       return oProp; 
19    } 
20    private void applyProperties(String poPrefix, clsBWProperties poProp) { 
21       String pre = clsBWProperties.addDot(poPrefix); 
22       moRangeSensor=eSensorExtType.                                                           

valueOf(poProp.getPropertyString(pre+P_RANGESENSOR)); 
23       mrForceScalingFactor=poProp.getPropertyFloat(pre+P_FORCECALINGFACTOR); 
24    } 
25    @Override 
26    protected void setBodyPartId() { 
27       mePartId = bw.utils.enums.eBodyParts.ACTIONEX_ATTACKBITE; 
28    } 
29    @Override 
30    protected void setName() { 
31       moName="Attack/Bite executor";  
32    } 
33    @Override 
34    public ArrayList<Class<?>> getMutualExclusions(clsActionCommand poCommand) { 
35       return moMutEx;  
36    } 
37 } 
 

After having set-up the part of the class involved with the general infrastructure, the more action 
specific methods are added. The getEnergyDemand method is used in its default behaviour returning 
20% of the calculated stamina. The getStaminaDemand method is overridden and returns an exponen-
tially rising value depending on the force defined in the command. The parameters of the formula 
are stored in static variables and are not configured by the configuration tree because they have to be 
fine-tuned to balance out regeneration and consummation since they grow exponentially and should 
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not be changed for different entity types. Listing 4 shows the code-snippet for this method including 
the static variables. 

Listing 4: Attribute Functions of Concrete Action Executor "clsExecutorAttackBite" 

1 static double srStaminaScalingFactor = 0.001; 
2 static double srStaminaBase = 4f; 
3    @Override 
4    public double getStaminaDemand(clsActionCommand poCommand) { 
5       clsActionAttackBite oCommand =(clsActionAttackBite) poCommand; 
6       return srStaminaScalingFactor* Math.pow(srStaminaBase,oCommand.getForce()) ; 
7    } 
 
Listing 5 shows the execution method, which is overridden to perform the actual operation. First an 
opponent is located using the utility-function findSingleEntityInRange of the executor. If none can 
be found the command is aborted, and a notification is sent to the brain using the Fast Messenger 
system. This needs to be done because actions do not provide direct feed back and indirect feed-back 
through sensors is not available here but must therefore be injected in this way. 

If an entity was found, the reference is accessed via the itfAPAttackableBite interface. First the 
tryBite method is called which either returns a positive value which is interpreted as a damage to 
the caller and thus passed on to the health system, or zero which means the attack can be performed. 
The force defined in the command is herby scaled using the scaling factor from the configuration so 
an attack which needs the same percentage of the entity’s energy and stamina represents a different 
force depending on the type of entity. 

Listing 5: Execute Method of Concrete Action Executor "clsExecutorAttackBite" 

1 @Override 
2 public boolean execute(clsActionCommand poCommand) { 
3 clsActionAttackBite oCommand =(clsActionAttackBite) poCommand;  
4 clsComplexBody oBody = (clsComplexBody) ((itfGetBody)moEntity).getBody(); 
5 itfAPAttackableBite oOpponent = (itfAPAttackableBite) 

findSingleEntityInRange(moEntity, oBody, moRangeSensor, 
itfAPAttackableBite.class) ; 

6 if (oOpponent==null) { 
7    clsFastMessengerSystem oFastMessengerSystem 

=oBody.getInternalSystem().getFastMessengerSystem(); 
8    oFastMessengerSystem.addMessage(mePartId, eBodyParts.BRAIN, 1); 
9    return false; 
10 }  
11 double rDamage = oOpponent.tryBite(oCommand.getForce()*mrForceScalingFactor); 
12 if (rDamage>0) { 
13    oBody.getInternalSystem().getHealthSystem().hurt(rDamage); 
14    return false; 
15 } 
16 oOpponent.bite(oCommand.getForce()*mrForceScalingFactor); 
17    return true; 
18 }  
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Registering the command 

Before using the command, it must be referenced at the processor and mapped to an appropriate 
executor. This is done during the set-up of the action processor in bw.body.io.clsExternalIO. 

First the default property-tree is enhanced by adding a property to define if an action should be 
available. The list is also passed on to the executor so it can add it’s default properties. The prefixes 
are created by combining fixed prefixes and a string representation of the body-part enumeration 
value of the executor. Following the code conventions, all fixed values – here the prefixes – are 
saved in static variables. Listing 6 shows the lines added to the getDefaultProperties method of 
clsExternalIO and the static variable definition. 

Listing 6: Code-Snippets for Registering the Command AttackBite in the getDefaultProperties method 

1 public static final String P_ACTIONAVAILABLE = "actionavailable"; 
2 public static final String P_ACTIONEX = "actionexecutor"; 
3  
4 sKey= pre+P_ACTIONAVAILABLE+"."+bw.utils.enums.eBodyParts.ACTIONEX_ATTACKBITE; 
5 oProp.setProperty(sKey,1); 
6 sKey= pre+P_ACTIONEX+"."+bw.utils.enums.eBodyParts.ACTIONEX_ATTACKBITE; 
7 oProp.putAll(clsExecutorAttackBite.getDefaultProperties(sKey)); 
 

The actual values are set in the applyProperties method. If – according to the configuration – the 
action is enabled, it will be registered at the processor by creating an instance of the executor and 
passing it to the processor together with the command’s type. In Listing 7 the source-code for this is 
given. 

Listing 7: Code-Snippet for Applying Properties 

1 sKey= pre+P_ACTIONAVAILABLE+"."+bw.utils.enums.eBodyParts.ACTIONEX_ATTACKBITE; 
2 if (oProp.getPropertyInt(sKey)==1) {  
3    sKey=poPrefix +"." +P_ACTIONEX +"." +bw.utils.enums.eBodyParts.ACTIONEX_ATTACKBITE; 
4    oExecutor = new clsExecutorAttackBite(sKey,poProp,moEntity) 
5    moProcessor.addCommand(clsActionAttackBite.class, oExecutor); 
6 } 

Documenting the command 

After the command is implemented and all parameters are known it can be documented for other 
developers. For this, a general documentation template for actions was defined in Section 4.4 and is 
used consistently for all actions, so a general catalogue of actions can be produced. The template 
contains all the parameters which were already defined in the model: 

• Description of the behaviour  

• Stamina and energy demand 

• Command parameters: name, default value and description 

• Executor parameters: name, default value and description 
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• The list of mutual exclusions 

• Constraints 

• Proxy: name and list of methods including their description 

For the example command at hand, the result is shown in Figure 17. The forms for all other imple-
mented actions can be found in Appendix II. 

 

Figure 17: Filled out documentation template for the Attack/Bite action 
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Implementing the Proxy Interface 

After the command is registered, the proxy interface has to be implemented by the code-owners of 
the entity-classes. They must decide which entities can be used for the function – in this case which 
can be bitten – and implement the interface following the documentation in the command’s descrip-
tion. The interface itfAttackableBite is implanted by the classes clsHare and clsCarrot, which are 
extension of clsMobile. Therefore, these two types of entities are found by the executor and can be 
“bitten” by calling the Attack/Bite command. 

Testing the Command 

As argued in the model, the tests are performed manually by using a special simulation set-up. In 
this configuration a remote-control agent is available whose decision unit is a simple loop querying 
the keyboard and calling a function depending on the key the user presses. The clsRemoteControl 
from decisionunits.simple.remotecontrol must first be enhanced for the new command. To do 
this, a switch must be added for an unused key in the method process. For the Attack/Bite command 
the key “b” is chosen which has the integer representation of 66. When the key is pressed, the action 
command is created and passed to the processor with the default force of 4 as shown in Listing 8. 

Listing 8: Code-Snippet Adding a New Command  to the RemoteControl 

1 case 66: //'B' 
2    poActionProcessor.call(new clsActionAttackBite(4)); 
3    break; 
 

After adding the new command to the remote control, the simulation can be started and tested by 
moving the remote controlled agent to an opposing entity that implements the itfAttackableBite 
interface and pressing “b” to bite it. The visualisation of the simulation and also the inspectors sup-
ply the necessary information to determine if the command was executed appropriately. 

5.4.2 Implemented Actions 

The commands, executors and proxies for the remaining actions are implemented in the same way as 
the example above. Table 4 lists the actions, executors, and proxies that have to be implemented. 
Table 6 shows all classes that were actually created for each of the actions, Details can be seen in 
Appendix II:  

• For each command-class the parameters are listed 

• For each executor-class the parameters and a short description of the functionality is given  

• For proxy-interfaces the methods are stated.  
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Table 6: Implemented Actions 

Action Type Class Name Description 
Command clsActionAttackBite Parameter: force 
Proxy  itfAPAttackableBite Methods:  

tryBite(force)=0 for OK 
                          >0 for damage 
bite(force) 

Bite 

Executor clsExecutorAttackBite Parameters: Scaling factor, 
Range 
Execute: Search for entity, try, bite 

Command clsActionBodyColor Parameters: red, green, blue 
Command clsActionBodyColorBlue Parameter: blue 
Command clsActionBodyColorRed Parameter: red 
Command clsActionBodyColorGreen Parameter: green 

Change body 
colour 

Executor clsExecutorBodyColor Execute: set values via the intra 
body system 

Command clsActionFacialExEyeSize Parameter: size (enum) 
Command clsActionFacialExLeftAntenna

Position 
Parameter: position (enum) 

Command clsActionFacialExLensShape Parameter: shape (enum) 
Command clsActionFacialExLensSize Parameter: size (enum) 
Command clsActionFacialExRightAntenn

aPosition 
Parameter: position (enum) 

Change facial   
expression 

Executor clsExecutorFacialExpressions Parameter: Range 
Execute: set values via the intra 
body system 

Command clsActionCultivate Parameter: amount 
Proxy  itfAPCultivatable Method: cultivate(amount) 

Cultivate 

Executor clsExecutorCultivate Execute: Search for entity, cultivate 
Command clsActionEat Parameters: range, bitesize 
Proxy  itfAPEatable Methods:  

tryEat()=0 for OK 
               >0 for damage 
eat(biteSize) 

Eat 

Executor clsExecutorEat Execute: Search for entity, try, eat 
Command clsActionExcrement Parameter: Intensity Excrement 
Executor clsExecutorExcrement Parameters: Scalingfactor 

Execute: Create and drop excre-
ment via inter body world system 
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Command clsActionKiss Parameter: Intensity (enum) 
Execute: Search for entity, try, kiss 

Proxy  itfAPKissable Methods:  
tryKiss(intensity)  
kiss(intensity) 

Kiss 

Executor clsExecutorKiss Execute: Search for entity, try, kiss 
Command clsActionAttackLightning Parameters: Force, OpponentID 
Proxy itfAPAttackableLightning Method: attack(force) 

Lightning-attack 

Executor clsExecutorAttackLightning Parameters: Scalingfactor 
Execute: Search for entity, attack 

Command clsActionPickUp No Parameters 
Command clsActionDrop No Parameters 
Command clsActionToInventory No Parameters 
Command clsActionFromInventory Parameter: Index 
Command clsActionMoveToEatableArea No Parameters 
Proxy itfAPCarryable Methods:  

getCarryableEntity setCarried-
BindingState(State) 

Executor clsExecutorPickUp Parameters: Range, Scalingfactor 
Execute: Set binding via inventory 

Executor clsExecutorDrop Execute: Set binding via inventory 
Executor clsExecutorToInventory Execute: Set binding via inventory 
Executor clsExecutorFromInventory Execute: Set binding via inventory 

Move to/from            
inventory, 
Pickup,               
Drop,                  
Move to eatable 
area 

Executor clsExecutorMoveToArea Parameters: Destination Area 
Execute: Change binding joint to 
add force pulling entity to eatable 
area via inventory 

Command clsActionMove Parameters: Direction (enum), 
speed 

Command clsActionTurn Parameters: Direction (enum), 
angle 

Executor clsExecutorMove Parameter: Scalingfactor 
Execute: Add movement force 

Move, turn 

Executor clsExecutorTurn Execute: Add force 
Command clsActionSleep Parameters: Intensity (enum) 
Proxy itfAPSleep Method: Sleep() 

Sleep 

Executor clsExecutorSleep Parameter: List of components to 
notify for light/intense sleep 
Execute: Notify components via 
proxy 
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5.4.3 Implemented Actions Sequences 

The requirements specify “dancing” as a necessary action. As stated in the model, this action is not 
atomic and is therefore represented by an action sequence. To prepare and re-use these common 
action sequences, a factory class was added to the decision unit interface.  

This clsActionSequenceFactory supplies static functions which create and return commonly used 
action sequences so they can be passed to the processor. In Table 7 the requested dance styles are 
listed including the method-name in clsActionSequenceFactory for creating the sequence and a 
description listing the atomic commands used. 

Table 7: Action Sequences 

Sequence Method Description 
Salsa getSalsaSequence(Speed, Duration) Move in squares for <duration> times 

 Round   Command 
 1-15   move (forward, <Speed>) 
 20-30   turn (right, 18) 
 30-45   move (forward, <Speed>) 
 50-60  turn (right, 18) 
 60-75  move (forward, <Speed>) 
 80-90  turn (right, 18) 
 90-105   move (forward, <Speed>) 
 110-120   turn (right, 18) 

Walz getWalzSequence(Speed, Duration) Move in circles for <duration> times 
 Round   Command 
 1-120   move (forward, 2) 
 1-60   turn (left, 12*<Speed>) 
 61-120   turn (right, 12*<Speed>) 

Tango GetTangoSequence(Speed, Duration) Move in triangles for <duration> times 
 Round   Command 
 1-15   move (forward, <Speed>) 
 20-30   turn (right, 24) 
 30-45   move (forward, <Speed>) 

 50-60  turn (right, 24) 
 60-75  move (forward, <Speed>) 
 80-90  turn (right, 24) 
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5.5 Results 

To validate the results of the project, the model will be crosschecked with the requirements making 
sure that everything is covered. Then the test-results for the infrastructure, hands-on tests for the 
actions and real simulation results will be given. To summarize the results a table with the state of 
all components is then presented in the last subsection. 

5.5.1 Crosschecking Model and Requirements 

The model defines the classes of the execution infrastructure and the basic strategy for implementing 
actions. To ensure that the requirements are met, a comparison is done. 

For the actions a basic strategy and logic is applied that corresponds to the command pattern. The 
structure ensures that the list can be expanded later without having to change the existing code. For 
each of the actions in Table 3, the necessary command-, executor- and proxy classes are defined. 
The actual implementation can be done for each action separately in an order following the project’s 
priorities.  

The first demand stated in the requirements is, that it needs to be possible to enable and disable 
commands. This is solved by supplying appropriate functions in the command processor which can 
be called during set-up and also later during the simulation. The executors can be configured and 
registered at the command processor so the behaviour of an action can be adapted depending on the 
entity as requested. 

Both actions and sequences can be called or inhibited during any phase of the simulation and the 
information is stored until the execution phase by applying the command and command processor 
patterns. The actions and also the calling interface of the execution processor are made available to 
the decision unit by implementing them in the decision unit interface package.  

Subsection 3.3 demands that the commands shall be validated by checking energy demands, mutual 
exclusion and also additional individual constraints. This was solved by implementing all general 
checks in the action processor and all the individual ones directly in the executor classes. This way 
the action processor stays independent and the executors are kept free from redundant checking al-
gorithms. 

For the execution, Subsection 3.3 already suggest to use interfaces to identify entities and call the 
relevant methods. This was implemented following the proxy pattern and defining the list of classes 
needed by enhancing the table of actions with the command, executor, and proxy classes. 

To manage the binding states an inventory class was defined which offers all the functionality 
needed to support the actual commands. 

To ensure the extensibility of the components requested in Section 3.4 several measures were taken: 

• The Proxy pattern is applied to decouple the executor from the entities. This way new enti-
ties can be created without having to change existing code. 
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• The Command pattern is used to decouple the command from the execution infrastructure. 
The commands are also independent of one another. New actions can be defined by creating 
a command and an executor and registering them at the processor – again no existing code 
needs to be changed. 

• The Compound pattern is used so sequences and single actions supply the same interface. 
This can be used to develop new structures of commands encapsulating the structure and 
hiding it from the processor 

Section 3.4 also describes the requirements concerning documentation. To fulfil these, a well-
structured, single template that describes all actions is available and provides all relevant informa-
tion for developers who need to call actions or develop new entities. 

To enhance testability and promote robustness as requested, the action processor supplies additional 
logging functionality so test cases can be developed which automatically compare the actual result to 
the intended one. Additional the Proxy pattern allows to test commands and executors with unit 
tests, because the actual entity can be replaced with a stub without further changes to the compo-
nents. 

The performance could be estimated by calculating the amount of computation time that is needed 
when calling and executing commands. But since performance is only a second level priority and no 
concrete measurable values were given in Section 3.4, this examination is not undertaken. 

Actions are atomic and stateless as defined, and calling them returns no feedback. The execution-
result is available for testing and debugging only and is hidden from the decision unit because the 
methods are not published in the decision unit interface. 

The Proxy pattern used to decouple the executor and the entities can also be used to identify and find 
applicable objects. As requested, it is not necessary to pass the entity as a parameter to the command 
because it can be found automatically.  

The binding constraints defined in Section 3.5 are treated similarly to individual constraints of other 
actions and are checked by the executor or respectively the utility functions of the inventory class. 

This crosscheck shows that all requirements are respected by the model and precautions have been 
taken for the non-functional ones. In accordance with the feature driven development process, the 
model was presented to the core development team by supplying a documentation of the proposed 
model and discussing it during a meeting prior to the implementation. 

5.5.2 Unit-Testing the Execution Infrastructure 

The test cases for the execution infrastructure are defined in Subsection 4.5. The development envi-
ronment offers the JUnit Test Suite as mentioned in Chapter 2.3.1, so this framework is used to im-
plement the test cases. Before creating the actual test, some utility classes need to be created: 

• tstTestCommand: A concrete command extending the clsActionCommand. The command pro-
vides getters and setters for energy and stamina and an execution state flag. The command 
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also hosts a mutual exclusion list which can be manipulated externally. This way a test can 
inject properties it wants to test without having to create separate commands. 

• tstTestCommand_A, tstTestCommand_B: These two classes extend the tstTestCommand class, 
but do not change the actual behaviour of the class. The distinction is only necessary so two 
commands A+B can be called simultaneously as necessary according to the test cases (Call-
ing the same command twice for the same round is not possible due to automatic mutual ex-
clusion) 

• tstTestExecutor: This is a concrete action executor extending the clsActionExecutor. The 
list of mutual exclusions is passed from the command and the execution function only sets 
the “executed” flag of the tstTestCommand. This way, by keeping a reference to the com-
mand, the test function can determine if the execute-function was actually called. 

All test cases begin by creating an action processor and registering the tstTextCommand_A and 
tstTextCommand_B with the tstTestExecutor. Table 8 shows the implementation of the test cases. 
The names are take from Table 5 and the column “implementation” describes the actual realisation 
on the basis of the description in the model. 

Table 8: Test Case Implementation 

Test Case Implementation 
MutEx 1) Calling two commands with the same priority 

* Create new commands A and B of the type tstTestCommand_A, respectively 
tstTestCommand_B and call them both with priority normal.  
* Set the mutual exclusion of command B when calling command A 
* Call the action-processor’s dispatch function 
* Assert that both commands were blocked by checking both the commands 
execution flag and also the execution history of the processor. 
2) Calling two commands with different priority 
* Create new commands A and B of the type tstTestCommand_A, respectively 
tstTestCommand_B and call command A with priority reflex and command B 
with priority normal. 
* Set the mutual exclusion of command B when calling command A 
* Call the action-processor’s dispatch function 
* Assert that command A was executed and command B was blocked by 
checking both the commands execution flag and also the execution history of 
the processor. 

Inhibition * Create new commands A and B of the type tstTestCommand_A, respectively 
tstTestCommand_B and call them both with default priority.  
* Inhibit command A for 1 round. 
* Call the action-processor’s dispatch function 
* Assert that command A was blocked and command B was executed by 
checking both the commands execution flag and also the execution history of 
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the processor. 
Disabling * Create new commands A and B of the type tstTestCommand_A, respectively 

tstTestCommand_B and call them both with default priority.  
* Disable both commands and re-enable command B. 
* Call the action-processor’s dispatch function 
* Assert that command A was executed and command B was blocked by 
checking both the commands execution flag and also the execution history of 
the processor. 

Sequences * Create and call a sequence of four separate commands of type 
tstTestCommand_A, for execution in consecutive rounds, i.e. the first in round 
1, the second in round 2, etc. 
* Create and call a second sequence containing one command of type 
tstTestCommand_B for a duration of four rounds. 
* Call the action-processor’s dispatch function and assert that Command A1 
and Command B were executed. 
* Call the action-processor’s dispatch function and assert that Command A2 
and Command B were executed. And afterwards twice more for command 
A3+B and A4+B. 
* Call the action-processor’s dispatch function a fifth time and assert that 
none of the commands were called. 

 

The tests were performed and passed. Since they can be called automatically during build or manu-
ally when needed, these tests offer permanent validation of the execution infrastructure. 

5.5.3 Hands-on Test for Action Commands 

As argued in Section 4.5, it is not justifiable to create automated tests for all of the actions, because 
they would need permanent manual attention to separate real errors from benign changes. The exist-
ing simulation already offers a possibility for manual hands-on tests through a special decision unit. 
This “Remote-Bot” registers keys pressed on the keyboard and can be used to create corresponding 
action commands which are then passed on to the action processor for execution. Table 9 shows the 
implemented keys and the commands they relate to. 

Table 9: Remote Control Keys 

Key Related command 
Up Cursor Move forward 
Down Cursor Move backward 
Left Cursor Turn left 
Right Cursor Turn right 
“e” Eat 
Num Pad “+” Pick up 
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Num Pad “-“ Drop 
Num Pad “/” From inventory 
Num Pad “*” To inventory 
“l” Attack/Lighting 
“b” Attack/Bite 
“x” Excrement 
“m” Move to eatable area 
“k” Kiss 
“c” Cultivate 
“s” Sleep 
“1” Dance - Salsa 
“2” Dance - Tango 
“3” Dance – Walz 
“f” Change body colour: +10 red, -10 blue, -10 green 
 

The commands concerning facial expressions can not be tested because functionality needed from 
the main simulator is not implemented yet. Since this is not part of this thesis but lies in the respon-
sibility of other project members, the commands were prepared and call the appropriate functions 
which at the moment only consist of the method body. 

During the tests some problems occurred that need further attention: 

• Move to eatable area: The creation of the joint which pulls the object to the destination area 
handicaps the agent’s movement. The source of the problem lies in the coordinates supplied 
by the destination area, which is under the responsibility of another project member. 

• Lightning attack: This command is the only one where the ID of the opposing entity is ex-
plicitly defined. During the conversion of sensory data when passing it to the decision unit, 
the entity IDs are lost, so the decision unit can’t set the parameters. This has to be looked 
into by the responsible developer. 

• Exception when moving objects to the inventory and back to the simulation: The MASON 
physics engine has a flaw that throws an exception when deregistering and then reregistering 
objects in the environment. The deregistering method does not clean up all references to the 
object and so duplicate keys are created when the objects is re-registered. The problem has 
been analysed but must be resolved through an update of the physics engine. 

• Slow Movement: Another problem of the physics engine was encountered when moving 
very slowly. Below a certain threshold the agent starts moving backwards instead of for-
wards. The problem is of minor concern because the normal speed of movement is much 
higher than this value, but it should also be looked into. 

• The body-colour is not adequately represented in the visualisation of the simulation: The 
properties are correct and are also correctly changed by the command, but the colour of the 
agent is not updated on the screen. This may also be a flaw in the MASON framework’s 
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visualisation package, but should be looked into by a developer of the environment compo-
nents. 

5.5.4 Live-Test and Component Application 

To verify the project, the model was already compared to the requirements, the execution infrastruc-
ture was unit-tested, and the commands were checked via hands-on tests. The final validation for the 
concept is therefore the actual application of the new functionality. In agreement with the feature 
driven development process, the model was implemented piece-by-piece. Therefore, after complet-
ing the basic infrastructure and the first few actions, the new features could already be used. So par-
allel to the development of the last actions two small simulation set-ups were made by other groups 
in the development team. 

On the left side of Figure 18 the “hare vs. lynx” simulation is shown. This is a three stage preda-
tor/pray scenario where the lynx (the to larger yellow symbols) hunt and eat hares (the gray circles) 
who in turn search for and eat carrots (the small yellow dots). The three large stones in the screen-
shot are additional obstacles to hide behind and to make movement patterns more complicated. This 
simulation uses the commands: move, turn, eat and attack/bite. 

The “Fungus Eater” is a scenario developed by Masanao Toda [Tod1982] and is shown on the right 
side of Figure 18. The environment contains one agent (green circle in the middle), several fungi 
(red circles) and uranium oar (yellow and black circles). The agent’s goal is to mine as much ura-
nium as possible while balancing out his energy level. Each operation consumes energy which can 
be refilled by eating fungi. The simulation makes use of the commands: move, turn, pick up, drop, to 
inventory, from inventory and eat. 

  

Figure 18: Simulation set-up: hare vs. lynx (left), fungus eater (right) 

The basic concept has therefore been proven to be applicable and the fact that not one question was 
posed by the developers implementing the scenarios shows clearly that the documentation was also 
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sufficient. The other precautions taken for ensuring extensibility and robustness will hopefully show 
their effect during the later course of the project and can only be verified over time. 

5.5.5 Project Results Summary 

Table 10 shows the summary of all presented results. For each element the result of the three test-
stages (unit test, hands-on test and live test) is given and also the resulting total status, which can be 
either:  

• Completed: All applicable tests were passed 

• Prepared: Live-test still open 

• Bug: A bug was found and tests must be redone when resolved 

Table 10: Summary of Test Results 

Element Status Unit Tests Hands-on Tests Live-Tests 
Execution Infrastructure Completed Passed Passed Passed 
Bite Completed N/A Passed Passed 
Change body colour Bug N/A Visualisation problem Open 
Change facial expressions Prepared N/A Command passed, 

Simulation support open 
Open 

Cultivate Prepared N/A Passed Open 
Dance Prepared N/A Passed Open 
Eat Completed N/A Passed Passed 
Excrement Prepared N/A Passed Open 
Kiss Prepared N/A Passed Open 
Lightning-attack Bug N/A Interface problem Open 
Move to inventory Completed N/A Passed Passed 
Move from inventory Bug N/A Physics engine problem Physics engine 

problem 
Move Completed N/A Passed Passed 
Turn Completed N/A Passed Passed 
Move to eatable area Bug N/A Area sensor problem Open 
Pick up Completed N/A Passed Passed 
Drop Completed N/A Passed Passed 
Sleep Prepared N/A Passed Open 
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6. Conclusion and Outlook 

To conclude this work, a short summary of the project will be given followed by an outlook contain-
ing possible enhancements and future applications. 

6.1 Summary and Conclusion 

Today’s control systems use rule-based algorithms and are reaching their limits in respect to the 
complexity demanded of them. On the other hand the dependency on these systems is constantly 
rising and flaws can become very costly. Therefore new methods for managing and controlling are 
necessary. For this reason, the Department of Computational Engineering at the Technical Univer-
sity of Vienna has initiated the ARS project, which uses the human mind as a model for a new deci-
sion making unit. Here models and methods from the fields of psychoanalysis and neurology are 
combined with artificial intelligence techniques. To test their theories they need to simulate certain 
scenarios and challenges, and compare the performance of their strategy with other state-of-the-art 
decision-making models such as the BDI architecture.  

An established way to verify concepts like this is to create an artificial life simulation. Here agents 
are set to the test in different scenarios and the performance of different agents can be compared. 
Even if this type of simulation has a long history in various fields of artificial intelligence, no ready-
available simulator can provide the complexity needed for the project at hand. A team of doctoral 
candidates is therefore developing a new simulator, the “Bubble World”, for this very purpose.  

The software for the simulator is built following a feature driven process to cope with changing re-
quirements and contributors. It uses the highly scalable simulation framework MASON at its core 
and also makes use of its physics engine to create an environment as realistic as possible. Around 
this, the actual simulation is built in Java and using various tools such as the Eclipse IDE, Subver-
sion for version control and DokuWiki for keeping track of all the paperwork. The simulation is 
round-based and each round consists of sensing, updating, processing and execution phases. The 
main focus of the study is the processing phase, where an exchangeable decision making unit takes 
the gathered sensor data as input and produces actions as output. In the course of this thesis, the 
components necessary to call, manage, validate and execute these actions were built. 

The requirements collected by a team of psychologists, neurologists and engineers are documented 
as short stories following the agile development methods. They are analysed to derive all the implic-
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itly stated requirements to produce a table of actions. This is revised by adding individual commands 
that are mentioned in a separate list and also by removing actions which are not needed or cannot be 
provided at the present moment. A second set of requirements concerns the actual execution process 
like the need for enabling/disabling or validating actions. These are also mainly derived from the use 
cases but are also given by the current state of the project and the existing interfaces. Most of the 
non-functional requirements found to be necessary come from the development process itself. Hav-
ing many changing contributors and lacking a complete finite list of requirements – as is the case in 
feature driven development and other agile processes – demands exhaustive documentation and pre-
requisites for later extensions. The project itself – being agent orientated – also contributes some 
requirements such as extensive automated tests, because debugging a running program of this type is 
difficult and time-consuming.  

On the basis of these demands, additional assumptions are made to further decrease the design 
space. Actions are found to be atomic, stateless, and do not delivery any feedback. A basic scheme 
for dealing with opposing entities is also defined, so actions are now called without explicitly nam-
ing the opposing entity, but by using any applicable one in range. The binding of other entities, i.e. 
picking them up or putting them into the inventory, is also constrained because the original require-
ments do not give enough information on this topic. 

On the basis of these specifications the model is developed. Before going into details, the main prob-
lem areas are identified and common, well-known solutions are found to address them in the form of 
patterns:  

• To separate call and execution of the actions, the command and command processor patterns 
is examined.  

• The composite pattern is found to be the solution for managing both single commands and 
sequences. 

• Both to decouple the action and the opposing entity – eat” command and “eaten entity” – 
and also to mask the real action processor behind a public interface, the proxy pattern is 
studied. 

Using these basic strategies as their foundation, the new components are designed:  

• An abstract command that – using the composite pattern – can be extended to represent a 
single action but also a sequence of actions. 

• An abstract executor that deals with the actual operation using the command as parameter 
list. 

• A centralised processing component – the action processor – which deals only with abstract 
interfaces for commands and executors, but can use these to handle all general constraints 
and manage the execution process.  

• An optional proxy for opposing entities for actions that need to deal with these. 

Around this basic framework, all the functionality stated in the requirements is added and the table 
of actions is analysed and enhanced to resemble a list of commands, executors, and proxies needed 
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for their realisation. To fulfil the documentation-demands a template is developed that is exhaustive 
and contains all necessary information, but is still easy to use and comprehend due to a uniform 
structure for all actions. Applying the design-for-testability rules, possible test methods are discussed 
before the actual implementation. For the basic execution scheme test cases are developed and for 
the actual actions a general procedure for manual tests is defined.  

For actual implementation, first the existing software is analysed to find suitable connection points 
for the interfaces and new components. Then the list of features is developed, implemented, tested 
and documented piece-by-piece: the inventory, the basic execution infrastructure, the actions, and 
the sequences.  

To verify the completeness of the model it is crosschecked by walking through the requirements and 
listing the relevant parts of the design. Actions are tested with a hands-on test using a remote con-
trolled agent. In addition, practical live tests were done by another group who made use of the sup-
plied commands to implement two real simulation set-ups. During theses tests some flaws were 
found in the physics engine which must be resolved by an update of the framework. Some work for 
the remaining team members also remains, who need to implement some last functions to support 
already implemented commands. 

6.2 Discussion and Outlook 

The components developed in the course of this thesis have already been put to work and found to 
suit the needs. Still, from a technical view, enhancements could be made. Besides the obvious one 
like adding new actions, also more sophisticated composites could be created. Small macros or even 
independent 2nd level decision units which can deal with small routine tasks in the style of the sub-
sumption architecture would be possible. If these things are needed or are actually contra productive, 
because they undermine the decision unit, is up to the core team. But with reference to the input unit, 
where many delicate little pieces of information are combined to create powerful symbols, the output 
unit could also be constructed in a similar manner. Instead of combining small pieces to come up 
with complex information units such as “person X has entered the room”, an abstract action like 
“greet the person” could be split into parts like: turn towards the person, move forward until a cer-
tain distance has been reached, stretch out the hand. Which in turn can of course also be split into 
pieces until the level of the actual atomic actions is reached. Of course this scheme would need a 
learning mechanism similar to the one on the input side and it would not be sensible to hardcode 
these high level actions as fixed sequences. But the idea itself is pretty obvious considering the suc-
cess it had on the input side and that humans also learn to do things by combining simple actions to 
casual routines by practicing. This job could be done by the decision unit, but following the same 
arguments as on the input side, it is sensible to keep the decision unit free of all unnecessary work 
and move it to a higher level of abstraction. 

The general design of the simulator also allows several interesting opportunities. With a few fairly 
simple adaptations, the existing separation of the main project and the decision unit could be en-
hanced even further, so the two parts are completely independent and the dependencies are injected 
at runtime following the example of service oriented architectures. By doing this, two things become 
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possible: On the one hand, an adapter could be created so decision units cannot only be used in this 
simulation, but also tested in other environments such as computer games like [Spr2004] did. To 
take this idea a little further, the scheme of letting a machine based decision architecture compete 
against and cooperate with human users to see if they are equal feels somewhat like a Turing test. 
Only here the odds are more just, because the humans are in machine territory and so both have ex-
actly the same possibilities in respect to communication and actions.  

The MASON simulation itself is actually a single process simulation which could not be distributed 
over several machines, but it offers to stop, save and continue a running simulation. Therefore it can 
be hosted in a cluster where several simulations run in parallel, and it is also accessible to the re-
quest/response logic of Internet applications. With this in mind, the second advantage of completely 
decoupling the simulation and the decision unit would be, that the interface could be supplied as a 
web service. This way decision units developed by other parties from other universities could be 
developed, tested and then compete against each other over the internet in predefined set-ups without 
any of the parties having to give up their source-code or even the compiled components. The concept 
would be somewhat like the football competitions in robotics, only the disciplines would be different 
simulation scenarios and the competitors would be the different implementations of the decision 
units.  

Considering the project as a whole, the possibilities are hard to grasp. The work needed to create the 
simulation and thus be able to experiment with the ideas is huge. But it is a new frontier and many 
ideas and possibilities will arise only after experiments can finally be done. 
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Appendix I: Use Cases and Feature List 

The list of use-cases was taken from the project’s wiki as a reference for the requirement analysis on 
September 19, 2009. 

UC00 The Lonely Life of a Hungry Bubble 

Description 

A bubble – a lonely one – roams around in a world. Whenever it stumbles across something eatable, 
and it is hungry, it will eat. whenever necessary, the bubble rests or takes a short nap. The digestion 
system makes it necessary to get rid of the excrements. This will be done – similarly to eating and 
sleeping – wherever the bubble is at the moment of need. Other agents/bubbles are ignored – coop-
eration is not necessary in this sad and lonely world …  

 

Purpose 

Fast and simple generation of the following three bodily needs and possibilities to satisfy them:  

• Hunger 

• Excretion 

• Exhaustion 

UC01 Collecting and Taking Food Home 

Description 

In this use case the agent has to search its world for food. It is sparsely distributed and regrows at a 
very slow rate. Hence, it is not sufficient to eat the food at the place it has been found, moreover it 
has to be carried home to guarantee enough supply in times of need.  

To fulfill this task an agent has to have at least the following abilities: movement, orientation (at 
least to find back home), perception (identification of food and home), carrying objects, and a 
memory to remember that food has been stored at home. 

 

Purpose 
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• collecting food 

• storing food at a place near to the preferred rest-position (home-like) by lie down energy 
source 

UC02 Planting Energy Sources 

Description 

This use case is an extension of “Collecting food and carrying it home” and “Different types of 
food”. If food is sparse, collecting and storing it is only one approach to this problem. Another solu-
tion could be to plant and harvest food. The agent’s task within this use case is to find special types 
of food (not every food type can be cultivated), carry it home, plant it, wait until enough food has 
grown, and then consume it. Alternatively, other areas with different soils are better for a certain 
type of food to be planted than the home of the agent.  

This kind of behavior can be implemented by suppressing the primary-like wish ”eat now!” and to 
initiate a secondarylike wish procedure which includes the possibility: ”do not eat now; plant close 
to home; get more food”.  

 

Purpose 

• grow own energy fields in the neighborhood 

• take care of the planted sources 

• harvest new energysources 

UC03 Searching for type of Energy Source 

The bubbles have to search for a specific type of energy source. 

UC04 Transforming energy sources (cooking) 

As explained in “Different types of food”, agents need different types of food for survival. A simple 
solution for getting different types is searching and collecting. A more complex approach is the 
combination of two types which results in a third type (e.g. cooking). This ability needs conscious 
planning to be able to reason about whether it is preferable to search for this third type, or if it is 
possible not to eat such a food type at all (accepting minor problems with its own body). 

UC05 Location Identification 

To allow an agent to navigate through its world, it has to have the ability to identify certain locations 
using its own sensors. “Collecting food and carrying it home” can be extended by the knowledge of 
where to find food to ease the search for food once it has been found at a certain position. As the 
human mind does not have a localization mechanism like a particle filter (see @@@probabilistic 
robotics), this is not a trivial task. Existing approaches using episodic memory (e.g. [28]) are not 



Appendix I : Use Cases and Feature List 

 84 

totally compatible with the psychoanalytical memory traces. Hence, this use case is needed to enable 
us to work on the field of localization using human like methods.  

 

UC06 Confronted with Harmful Energy Sources 

Food is not necessarily a plant, it can also be an animal (or pushed to the extreme – other agents). 
While plants can be harmful by supplying the wrong diet, animals have the additionally possibility 
to self defend themselves or to attack or even hunt and eat the agents.  

Next to the abilities movement and perception, the agents have to have the ability of thread assess-
ment. This can be done using several approaches like affects, conscious planning, acting-as-if. Pos-
sible reactions could be fleeing, self defense, attacking, grouping with other agents, … 

UC07 Body Integrity 

If an agent is attacked (by an animal or an other agent) or hits an obstacle hard, it is very likely that it 
will be injured. If injured, the health of an agent is reduced and – eventually – a sensor or actuator 
has reduced functionality. The agent should learn that certain situations are to be avoided. If not, the 
agent risks to reach its original goal (e.g. a rare food type) at high costs. 

UC08 Reproduction 

The aim of this use case is to give bubbles the potential to reproduce themselves. Bubbles are sexual 
attracted to each other by the odor they emit.  

The children of 2 Bubbles are again fully equiped mature Bubbles. Things inerhited by the parents 
are (see also inheritance):  

• new generated kind of odor 

• color of the new Bubble is a mixture of the parents 

• size/weight etc. is a mixture of the parents 

When two compatible bubbles meet by accident in the BFG they communicate and agree on mating. 
The act of reproduction is displayed by a cloud surrounding the two bubles and ends with a 3rd bub-
ble appearing. The bubbles loose child-parent relationship direct after reproduction, no raising a 
family. The only connection is the odor building some kind of odor-clique.  

UC09 Excretion 

Some nutritions are more difficult to digest than others, some are even undigestible. This results in 
the need of the agent to get rid of them. The result are excrements which are omitting a bad odor. An 
agent has to search for a suitable place – far enough from its home and other agents, but close 
enough not to waste to much energy for this type of business. If an agent places its excrements to 
close to other agents, social reproach is the result. 
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UC10 Motion Fatigue 

Next to energy gained from consuming food, an agent also need enough stamina to do a certain ac-
tion like movement. Stamina is much faster reduced than energy. Stamina is regained by resting. 
This use case demands from an agent to fulfil e.g. “Collecting food and carrying it home” as fast as 
possible. Hence, not only the primary goal of finding food and carrying it home has to be consid-
ered, moreover, how fast the agent moves and where and when it takes a rest is of importance. Se-
lecting the wrong place for a rest could result in an attack by an animal (see “Harmful food”). 

UC11 Different energy sources 

The agent needs to be able to differentiate between several food types using its sensors. Eating a 
”good” or a ”bad” food results in affects towards the food type. Additionally, the current location, 
other agents nearby, etc. can be assigned with such affects. As a result, the agent is able to differen-
tiate between several types of foods using its affects. 

UCL1 Dancing 

To enable social interactions among the agents next to more basic ones like hunting and 
reproduction, dancing is introduced. To dance, one agent has to search for another agent which is in 
the ”mood” to dance. If both are agreeing to dance, they start immediately until one of them decides 
to follow a different goal. As a result, both agents are ”trusting” each other more than before. In 
times of need, this may help to survive. For example, an agent is more likely to donate food to 
another agent if they have establishes a trust relationship before. 

Feature List: Attack 

a long range attack. each entity within the visionsensor range can be attacked. the decision returns 
the id string provided by the vision sensor (e.g. HARE_0). if an entity with this id exists in the vision 
sensor and this entity provides the lightning attack interface, an attack can be performed. the strength 
is passed similarly to movement params. energy and stamina are withdrawn even in the case that no 
matching entity is present. the stroke is always of the same strength – distance is ignored.  

eating/killing/sleeping are mutually exclusive to lightning attack.  

stamina = strength*strength_to_energy_factor + 5 

energy = strength*strength_to_energy_factor + 1 

Feature List: Body Color 

Goal:  

Body Color is a actuator of the Bubble. While the basic body-color of a bubble is blue 
specific stimuli can change its color by increasing the green respectively the red content. 

Parameters:  

• RGB change value (+-R/+-G/+-B) 
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Effects:  

• turn to red: (maybe same red values, for misleading perception of others) 

o body temperature 

o reciprocal stamina 

o sexual excitement 

o shame 

• turn to green: 

o reciprocal health value 

o disgust 

o stomach upset 

Return Values:  

• nothing 

• tbd if my sensors can detect my color 

Actuator Costs:  

• none (costs are created by the source of the change eg. stomach) 

Implementation Details:  

Except the bubble no agent type disposes of changing color.  

changes the color value of the bubble  

clsBodyColor in IntraBodySystems needs more implementation 

Feature Liste: Cultivate Food 

Goal:  

• Abstracted action to water plants=food 

• food (plants) grow faster when they are cultivated (watered) 

• food-objects are effected for a predefined time after cultivate action (imlpementation in 
food-object) 

• too much cultivation damages food 

Parameters:  

• amount of cultivation (water would be metaphoric because there is no physical water) –> 

• 0 = no cultivation (unnecessary) 

• double value = amount cultivation 
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Implementation details:  

• target has to be in manipulate area 

• target has to implement the itfCultivation 

• target has to implement (that's obvious) what happens afterward (grow faster) 

Effects:  

• object changes re-grow rate 

Return values:  

• none 

• sensor vision gives the necessary info after some time 

Actuator costs:  

• Energy cost = prop. to amount of cultivation 

• Stamina cost = prop. to amount of cultivation 

Feature List: Dance 

Goal:  

• follow a predefined motion scheme 

• follow a predefined motion scheme with respect to another agent (has to be defined in more 
detail) 

Parameters:  

• type of dance –> 

o salsa (happy) (square) 

o tango (reproduce) (triangle) 

o waltz (sad) (circle left/right) 

• speed of dance 

Implementation details:  

• This is the place where the ACTION-SEQUENCES (TM) will be used 

• could be like this: forward (10x) - rot. left (10x) - goto begin 

Effects:  

• agent follows predefined motion pattern 

Return values:  

• none 
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• other sensors give the necessary info 

Actuator costs:  

• Energy cost = prop. to speed of dance (just like move) 

• Stamina cost = prop. to speed of dance (just like move) 

Feature List: Excrement 

agent decides to get rid of some of its indigestible nutritions. nutrition is removed from the stomach 
up to a maximum amount (different per entity) and stored into a new created excrement object 
(clsSmartExcrement). the intensity of the action is a multiplicator of the maximum amount (ceiled 
by the available amount). Stamina = intensisty^2 * 0.01; Energy = 0.2 * stamina. no expulsion is 
performed in case of lack of energy or stamina (energy and stamina should be decreased).  

most of this functionality should be implemented in a class located in 
bw.body.interbodyworldsystems.  

body-color, odor, and facial expression are allowed. every other action is incompatible. 

Feature List: Facial Expression 

Each bubble can change its facial expression in five dimensions:  

• lens size (small, medium, large) 

• eye size (small, medium, large) 

• lens shape (round, lenticular, oval, dash) 

• left antenna (upright, intermediate, horizontal, down) 

• right antenna (upright, intermediate, horizontal, down) 

the params are enums. an interface should be used to distinguish between entities with and entities 
without facial expression.  

only while being sound asleep not facial control is available. stamina = 0.0001, energy = stamina * 
0.01 

Feature List: Kiss 

Goal:  

Create a emotional reaction in the other agent. Fiendly physical interaction between 2 
Bubbles. 

Parameters:  

Intensity of the kiss (low, middle, strong) 

Effects:  
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• if sucessful: trigger a (tbd) slow messenger in the kisser and one in the kissed, reduce some 
energy (small amount) 

• if unsucessful: reduce some energy (small amount) 

Return Values:  

• nothing 

• sensors need to sens if the kiss was accepted or rejected 

Actuator Costs:  

• increased energy consumption (low, middle, strong) 

Implementation Details:  

• only bubbles can kiss, and be kissed 

• maybe side effects when kissing someone of the same sex 

Feature List: Move object to eatable area 

Goal:  

• Move object (topmost) from manipulate area to eatable area 

Parameters:  

• applied force –> 

• 0 = no force (unnecessary) 

• double value (depends on decision unit but corresponds to physics engines forces) 

Implementation details (MASON physics engine):  

• create pinJoint between Objects 

• reduce length of pin joint 

• stop when object is in range 

Effects:  

• object additionally appears in eatable area (as long as the eatable area is a subset of the 
manipulate area) 

Return values:  

• none 

• sensor eatable area gives the necessary feedback 

Actuator costs:  

• Energy cost = prop. to applied force 
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• Stamina cost = prop. to applied force 

Feature List: Sleep 

Goal:  

• Agent regains stamina and health 

• Energy consume decreases - selected consumers are switched off 

Parameters:  

• Sleep intensity –> 

• 0 = no sleep (default) 

• 1 = switch off first phalanx of consumers 

• 2 = switch off all non-life-supporting consumers 

Implementation Details:  

• Agent Body supports and interface (itfSleep) that defines a 

• parametring function that finally switches of the sensors/act/brain act/etc 

• There, the list of consumers has to be defined 

Effects:  

• switch off a predefined list of consumers 

• consumers can be sensors / actuators? / brain activities 

Return values:  

• none 

• agent has to check if the sensors are down by it's own indirectly 

• (reduced energy consumption) 

• (faster stamina regain) 

Actuator costs:  

• Energy cost = 0 

• Stamina cost = 0 
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Appendix II: Action Descriptions 

The following pages show the descriptions for the actions which were developed in the course of the 
thesis using the documentation template: 

• Move 

• Turn 

• Eat 

• AttackBite 

• PickUp 

• Drop 

• ToInventory 

• FromInventory 

• AttackLightning 

• BodyColor 

• FacialExEyeSize 

• FacialExLeftAntennaPosition, FacialExRightAntennaPosition 

• FacialExLensShape 

• FacialExLensSize 

• Kiss 

• Cultivate 

• Excrement 

• MoveToEatableArea 

• Sleep 
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Action Move 
 
Description 
The entity is moved forward or backward in the simulation environment at a given speed 
 
Stamina and consumption 

• Stamina 2^Speed * 0.01 
• Energy  0.2 * Stamina 

 
Command Parameters 
Parameter Default Description 
Direction FORWARD FORWARD or BACKWARD 
Speed 4 Is multiplied by a scaling factor (Only applies when moving 

forward) 
 
Executor Parameters 
Parameter Default Description 
SpeedScalingFactor 10 Scale the speed given by the command parameter without 

increasing the energy demand. Use for determining the 
relationship of speed to energy demand (e.g. turtle vs. rab-
bit ) 

 
Mutual Exclusions 
None 
 
Constraints 
None 
 
Proxy 
None 
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Action Turn 
 
Description 
The entity is turned either left or right for a given angle 
 
Stamina and consumption 

• Stamina 2^ * 0.001 
• Energy  0.2 * Stamina 

 
Command Parameters 
Parameter Default Description 
Direction  LEFT or RIGHT 
Angle 2 In degrees 
 
Executor Parameters 
None 
 
Mutual Exclusions 
None 
 
Constraints 
None 
 
Proxy 
None 
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Action Eat 
 
Description 
Searches for an eatable entity in a given sensor-region and tries to eat it. If none or more than one 
entity is found in the region a fast messenger is sent to the brain. The eaten entity can cause both 
damage (e.g. stone) or have nutritional value (e.g. cake). 
 
Stamina and consumption 

• Stamina 0.5 
• Energy  0.2 * Stamina 

 
Command Parameters 
None 
 
Executor Parameters 
Parameter Default Description 
RangeSensor  Visionsensor that returns entities in range 
BiteSize 1 Size of the bite the entity can eat at a time 
 
Mutual Exclusions 

• Move 
• Turn 

 
Constraints 
Exactly one entity with interface “itfAPEatable” has to be in range, otherwise FastMessanger will be 
sent to the brain. 
 
Proxy itfAPEatable 
Method Description 
TryEat return “0” if ok, or otherwise a positive determining the damage inflected. 
Eat(BiteSize) Only called after tryEat returned “0” 

Entity must return a clsFood object and do all appropriate steps (shrink in 
size, remove from simulation, etc.) 



  Appendix II : Action Descriptions  

 95

Action AttackBite 
 
Description 
Searches for a possible entity in a given sensor-region and tries to bite it. If none or more than one 
entity is found in the region a fast messenger is sent to the brain.  
The action is called with a force as parameter => The amount of energy consumed depends on the 
force applied. If the force is too low the opponent endures no damage, but instead damage will be 
inflicted on the caller  
 
Stamina and consumption 

• Stamina 4^Force * 0.001 
• Energy  0.2 * Stamina 

 
Command Parameters 
Parameter Default Description 
Force 4 Energy to invest on trying to bite the opposing entity 
 
Executor Parameters 
Parameter Default Description 
RangeSensor  Visionsensor that returns entities in range 
ForceScalingFactor 1 Scales the force depending on the entity (e.g. a tiger vs. a 

rabbit) 
 
Mutual Exclusions 

• Eat 
 
Constraints 
Exactly one entity with interface “itfAPAttackableBite” has to be in range, otherwise FastMessanger 
will be sent to the brain. 
 
Proxy itfAPAttackableBite 
Method Description 
tryBite(Force) return “0” if ok, or otherwise a positive determining the damage inflected. 

(Idea: Entity tries to bite another entity investing a given force which is 
proportional to an energy invested for the action. If the force is not high 
enough the opponent will not be bitten but instead a damage will be in-
flicted on the caller of the action) 

bite(Force) Only called after tryBite returned “0” 
Entity is bitten and must do all appropriate steps (turn into something eat-
able or remove from simulation, etc.) 
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Action PickUp 
 
Description 
Searches for a carryable entity in a given sensor-region and tries to pick it up. If none or more than 
one entity is found in the region nothing happens. 
The item will be linked to the entity via a PinJoint and the reference is stored in the clsMobile’s in-
ventory. 
Picking-up entities needs energy, but holding on to them does not. Due to the link between the agent 
and the carried entity movement is more difficult and slower – so consider putting it into the inven-
tory. 
 
Stamina and consumption 

• Stamina <Picked-up Entity’s mass> * MassScalingFactor 
• Energy  0.2 * Stamina 

 
Command Parameters 
None 
 
Executor Parameters 
Parameter Default Description 
MassScalingFactor 0.01 Stamina need per unit of mass 
 
Mutual Exclusions 

• Drop 
• ToInventory 
• FromInventory 

 
Constraints 
Exactly one entity with interface “itfAPCarryable” has to be in range so the function can be executed 
 
Proxy itfAPCarryable 
Method Description 
getCarryableEntity() return a reference to the clsMobile interface of the entity if 

carrying is possible, otherwise null 
setCarriedBindingState(BindingState) Is called when the binding state changes. Enum-values 

    NONE 
    CARRIED 
    INVENTORY 
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Action Drop 
 
Description 
If an item is currently being carried the item will be dropped and the link to the entity will be re-
moved. 
 
Stamina and consumption 

• Stamina 0 
• Energy  0 
 

Command Parameters 
None 
 
Executor Parameters 
None 
 
Mutual Exclusions 

• PickUp 
• ToInventory 
• FromInventory 

 
Constraints 
An item must currently be carried (reference in the clsMobile’s inventory must be set) 
 
Proxy itfAPCarryable 
Method Description 
getCarryableEntity() return a reference to the clsMobile interface of the entity if 

carrying is possible, otherwise null 
setCarriedBindingState(BindingState) Is called when the binding state changes. Enum-values 

    NONE 
    CARRIED 
    INVENTORY 
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Action ToInventory 
 
Description 
The item currently being carried will be stored in the inventory and hence removed from the simula-
tion environment.  
Moving an entity to the inventory does not consume energy, but keeping it there does. If stamina is 
drained to zero - items can still be moved from the inventory and be dropped, because these actions 
do not need energy by themselves. (so there’s your way out …) 
 
Stamina and consumption 

• Stamina for the action    0 
while in the inventory  0.25 * Mass/<Inventory’s max. mass> 

• Energy  0 
while in the inventory  0.2 * Stamina 

 
Command Parameters 
None 
 
Executor Parameters 
None 
 
Mutual Exclusions 

• PickUp 
• Drop 
• FromInventory 

 
Constraints 
An item must currently be carried (reference in the clsMobile’s inventory must be set). The inven-
tory must have enough space left (maximum number of items and maximum weight) 
 
Proxy itfAPCarryable 
Method Description 
getCarryableEntity() return a reference to the clsMobile interface of the entity if 

carrying is possible, otherwise null 
setCarriedBindingState(BindingState) Is called when the binding state changes. Enum-values 

    NONE 
    CARRIED 
    INVENTORY 
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Action FromInventory 
 
Description 
An item from the inventory is taken, re-registered in the simulation and linked to the entity (=back to 
state “carried”). To rid yourself of an item in the inventory entirely first call “FromInventory” and 
then “Drop”. 
 
Stamina and consumption 

• Stamina for the action    0 
• Energy  0 
 

Command Parameters  
Parameter Default Description 
Index 0 0-based index of the item in the inventory 
 
Executor Parameters 
None 
 
Mutual Exclusions 

• PickUp 
• Drop 
• ToInventory 

 
Constraints 
No item is currently be carried (reference in the clsMobile’s inventory is null) 
 
Proxy itfAPCarryable 
Method Description 
getCarryableEntity() return a reference to the clsMobile interface of the entity if 

carrying is possible, otherwise null 
setCarriedBindingState(BindingState) Is called when the binding state changes. Enum-values 

    NONE 
    CARRIED 
    INVENTORY 

 



Appendix II : Action Descriptions 

 100 

Action AttackLightning 
 
Description 
Searches for an entity defined by it’s ID in a given sensor-region (default: vision sensor) and attacks 
it. If the entity cannot be found, energy  and stamina will be wasted but nothing else will happen. 
The action is called with a force as parameter => The amount of energy consumed depends on the 
force applied.  
 
Stamina and consumption 

• Stamina 1 * Force * 0.05 
• Energy  0.2 * Stamina 

 
Command Parameters 
Parameter Default Description 
OpponentID  ID of the opponent to attack 
Force 1 Energy to invest for the attack 
 
Executor Parameters 
Parameter Default Description 
RangeSensor  Visionsensor that returns entities in range 
ForceScalingFactor 1 Scales the force depending on the entity 
 
Mutual Exclusions 

• Eat 
• AttackBite 
• Kiss 
• Cultivate 

 
Constraints 
The Opponent with the given ID must be in Range. 
 
Proxy itfAPAttackLightning 
Method Description 
attackLightning(Force) Entity is attacked with the given force and must do all appropriate steps 

(damage or more) 
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Action BodyColor (And –Red, Green, - Blue) 
 
Description 
Set the red, green and blue component of the entities body-color. There is an action to set all values 
at once and actions to set the three components independently. The parameter passed refers to a 
change in comparison to the default color, not to the current color, i.e. setting a component to zero 
sets it back to default 
 
Stamina and consumption 

• Stamina 0 
• Energy  0 

 
Command Parameters 
Parameter Default Description 
Red 0 Change the value of the component +/- in regard to the de-

fault color 
Green 0 Change the value of the component +/- in regard to the de-

fault color 
Blue 0 Change the value of the component +/- in regard to the de-

fault color 
 
Executor Parameters  
None 
 
Mutual Exclusions 
None 
 
Constraints 
None 
 
Proxy 
None 
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Action FacialExEyeSize 
 
Description 
Set the eye size in the facial expression of the entity 
 
Stamina and consumption 

• Stamina 0.01 
• Energy  0.2 * stamina 

 
Command Parameters 
Parameter Default Description 
Size  Small, medium or large 
 
Executor Parameters  
None 
 
Mutual Exclusions 
None 
 
Constraints 
None 
 
Proxy 
None 
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Action FacialExLeftAntennaPosition 
            FacialExRightAntennaPosition 
 
Description 
Set the position of the left/right antenna of the entity 
 
Stamina and consumption 

• Stamina 0.01 
• Energy  0.2 * stamina 

 
Command Parameters 
Parameter Default Description 
Position  Upright, intermediate, horizontal, down 
 
Executor Parameters 
None 
 
Mutual Exclusions 
None 
 
Constraints 
None 
 
Proxy 
None 
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Action FacialExLensShape 
 
Description 
Set the lens shape of the entity 
 
Stamina and consumption 

• Stamina 0.01 
• Energy  0.2 * stamina 

 
Command Parameters 
Parameter Default Description 
Shape  Round, lenticular, oval, dash 
 
Executor Parameters 
None 
 
Mutual Exclusions 
None 
 
Constraints 
None 
 
Proxy 
None 
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Action FacialExLensSize 
 
Description 
Set the lens size of the entity 
 
Stamina and consumption 

• Stamina 0.01 
• Energy  0.2 * stamina 

 
Command Parameters 
Parameter Default Description 
Size  Small, medium, large 
 
Executor Parameters 
None 
 
Mutual Exclusions 
None 
 
Constraints 
None 
 
Proxy 
None 
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Action Kiss 
 
Description 
Searches for a kissable entity in a given sensor-region and kisses it. If none or more than one entity 
is found in the region the energy is consumed, but nothing happens. If the kiss is successful then a 
kiss-effect is launched which sends a fast messenger corresponding to the intensity. 
 
Stamina and consumption 

• Stamina 2*(1…3=Low…Strong)*0.001 
• Energy  0.2 * Stamina 

 
Command Parameters  
Parameter Default Description 
Intensity  Low, Middle, Strong 
 
Executor Parameters 
Parameter Default Description 
RangeSensor  Visionsensor that returns entities in range 
 
Mutual Exclusions 

• Move 
• Turn 
• Eat 
• AttackBite 
• AttackLightning 
• Cultivate 

 
Constraints 
Exactly one entity with interface “itfAPKissable” has to be in range, otherwise energy will be 
wasted but nothing happens. 
 
Proxy itfAPKissable 
Method Description 
tryKiss(Intensity) return true if ok, otherwise false 
kiss(Intensity) Only called after tryKiss returned true 

Entity is kissed and must do all appropriate steps (sent it’s own Fast Mes-
senger, etc.) 
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Action Cultivate 
 
Description 
Searches for a cultivatable entity in a given sensor-region and “cultivates” it. Cultivation can be seen 
as synonymous to watering a plant or something similar, e.g. it causes a plant to grow faster, but if 
too much cultivation is done it can actually cause harm aswell. If none or more than one entity is 
found in the region the energy is consumed, but nothing happens.  
 
Stamina and consumption 

• Stamina 2*Amount^Amount * 0.001 
• Energy  0.2 * Stamina 

 
Command Parameters  
Parameter Default Description 
Amount 1 “Amount” of cultivation.  
 
Executor Parameters 
Parameter Default Description 
RangeSensor  Visionsensor that returns entities in range 
 
Mutual Exclusions 

• Move 
• Turn 
• Eat 
• Attack/Bite 
• AttackLightning 
• Kiss 

 
Constraints 
Exactly one entity with interface “itfAPCultivatable” has to be in range, otherwise energy will be 
wasted but nothing happens. 
 
Proxy itfAPCultivatable 
Method Description 
Cultivate(Amount) Entity must do all appropriate steps (determine if amount is too much or 

ok and grow faster or be damaged, etc.) 
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Action Excrement 
 
Description 
Removes indigestible from the stomach and drops an appropriate smartExcrement at the current 
location. A parameter for the Intensity can be given which determines both the amount removed 
from the stomach and the energy consumed 
 
Stamina and consumption 

• Stamina 0.1*Intensity 
• Energy  0.2 * Stamina 

 
Command Parameters  
Parameter Default Description 
Intensity 1 Determines amount removed from the stomach and energy 

consumed. 
 
Executor Parameters 
Parameter Default Description 
IntensityScalingFactor  Scales the amount removed from the stomach in reference to 

the invested energy (e.g. for cows vs. rabbits) 
 
Mutual Exclusions 
None 
 
Constraints 
None 
 
Proxy 
None 
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Action MoveToEatableArea  
 
Description 
Action searches for a “carryable” entity the manipulatable area and then moves it towards the center 
of the eatable area with a given force. If none or more than one carryable entity is in the manipulat-
able area no action will be performed but energy and stamina will be wasted. If the object is already 
in the eatable area no action will be performed either, but energy and stamina will be wasted. 
 
Stamina and consumption 

• Stamina 2^Force*0.01 
• Energy  0.2 * Stamina 

 
Command Parameters  
Parameter Default Description 
Force 4 Force to move the object with 
 
Executor Parameters 
Parameter Default Description 
ForceScalingFactor 1 Scale the force given by the command parameter without 

increasing the energy demand. Use for differentiating be-
tween strong/weak entities 

RangeSource  Visionsensor of the source-range 
RangeDest  Visionsensor of the destination-range 
 
Mutual Exclusions 

• Move, Turn 
• Cultivate 
• Drop, PickUp, FromInventory, ToInventory 

 
Constraints 
Exactly one object inheriting the itfAPCarryable interface must be in the source-range. This entity 
may not be in the destination range. 
 
Proxy itfAPCarryable (Will only be used to find applicable entities, but no method will be called) 
Method Description 
getCarryableEntity() return a reference to the clsMobile interface of the entity if 

carrying is possible, otherwise null 
setCarriedBindingState(BindingState) Is called when the binding state changes. Enum-values 

    NONE 
    CARRIED 
    INVENTORY 
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Action Sleep 
 
Description 
Informs a number of body-parts about the sleep-state. These should react by turning off for one 
simulation round which results in lower or zero energy consumption but also means that their func-
tion will not be available or impaired. Two sleep states (light and deep) are available for each of 
which a list of objects can be defined which will be informed when the action is called. 
 
Stamina and consumption 

• Stamina 0 
• Energy  0 

 
Command Parameters  
Parameter Default Description 
Intensity  Light or Deep 
 
Executor Parameters 
Parameter Default Description 
NotifyLight  Arraylist of itfSleep – inheriting objects which should be 

informed in case of light sleep 
NotifyDeep  Arraylist of itfSleep – inheriting objects which should be 

informed in case of deep sleep 
 
Mutual Exclusions 

• Move, Turn 
• Eat 
• AttackBite, AttackLightning 
• Kiss 
• Cultivate 
• Drop, PickUp, FromInventory, ToInventory, MoveToEatableArea 

 
Constraints 
None 
 
Proxy itfAPSleep 
Method Description 
Sleep() Bodypart must do all appropriate steps (reduce energy consumption, deac-

tivate features, …) 
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Appendix III: Source-Code for Action Implementation 
Example 

In Section 5.4.1 the action Attack/Bite was implemented step-by-step as an example. The source-
code was split into parts so explanations could be added. Here the complete listing for this example 
is presented in a single piece. 

clsActionAttackBite 

1 package decisionunit.itf.actions; 
2  
3 public class clsActionAttackBite extends clsActionCommand { 
4    private double mrForce; 
5    public clsActionAttackBite(double prForce) { 
6       mrForce=prForce; 
7    } 
8    @Override 
9    public String getLog() { 
10       return "<AttackBite>" + mrForce + "</AttackBite>";  
11    } 
12    public double getForce() { 
13       return mrForce; 
14    } 
15    public void setForce(double prForce) { 
16       mrForce=prForce; 
17    } 
18 } 
 

itfAPAttackableBite 

1 package bw.body.io.actuators.actionProxies; 
2  
3 public interface itfAPAttackableBite { 
4    double tryBite(double pfForce); 
5    void bite(double pfForce); 
6 } 
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clsExecutorAttackBite 

1 package bw.body.io.actuators.actionExecutors; 
2 import config.clsBWProperties; 
3 import java.util.ArrayList; 
4 import bw.body.clsComplexBody; 
5 import bw.body.internalSystems.clsFastMessengerSystem; 
6 import bw.body.io.actuators.clsActionExecutor; 
7 import bw.entities.clsEntity; 
8 import bw.utils.enums.eBodyParts; 
9 import bw.body.io.actuators.actionProxies.*; 
10 import bw.body.itfget.itfGetBody; 
11 import decisionunit.itf.actions.*; 
12 import enums.eSensorExtType; 
13 public class clsExecutorAttackBite extends clsActionExecutor{ 
14    static double srStaminaBase = 4f;  
15    static double srStaminaScalingFactor = 0; //0.001f;   
16    private ArrayList<Class<?>> moMutEx = new ArrayList<Class<?>>(); 
17    private clsEntity moEntity; 
18    private eSensorExtType moRangeSensor; 
19    private double mrForceScalingFactor; 
20    public static final String P_RANGESENSOR = "rangesensor"; 
21    public static final String P_FORCECALINGFACTOR = "forcescalingfactor"; 
22    public clsExecutorAttackBite(String poPrefix, clsBWProperties poProp, clsEntity 

poEntity) { 
23       super(poPrefix, poProp); 
24       moEntity=poEntity; 
25       moMutEx.add(clsActionEat.class); 
26       applyProperties(poPrefix,poProp); 
27    } 
28    public static clsBWProperties getDefaultProperties(String poPrefix) { 
29       String pre = clsBWProperties.addDot(poPrefix); 
30       clsBWProperties oProp = clsActionExecutor.getDefaultProperties(pre); 
31       oProp.setProperty(pre+P_RANGESENSOR, eSensorExtType.EATABLE_AREA.toString()); 
32       oProp.setProperty(pre+P_FORCECALINGFACTOR, 1f); 
33       return oProp; 
34    } 
35    private void applyProperties(String poPrefix, clsBWProperties poProp) { 
36       String pre = clsBWProperties.addDot(poPrefix); 
37       moRangeSensor= 

eSensorExtType.valueOf(poProp.getPropertyString(pre+P_RANGESENSOR)); 
38       mrForceScalingFactor=poProp.getPropertyFloat(pre+P_FORCECALINGFACTOR); 
39    } 
40    @Override 
41    protected void setBodyPartId() { 
42       mePartId = bw.utils.enums.eBodyParts.ACTIONEX_ATTACKBITE; 
43    } 
44    @Override 
45    protected void setName() { 
46       moName="Attack/Bite executor";    
47    } 
48    @Override 
49    public ArrayList<Class<?>> getMutualExclusions(clsActionCommand poCommand) { 
50       return moMutEx;  
51    } 
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52    @Override 
53    public double getEnergyDemand(clsActionCommand poCommand) { 
54       return getStaminaDemand(poCommand)*srEnergyRelation; 
55    } 
56    @Override 
57    public double getStaminaDemand(clsActionCommand poCommand) { 
58       clsActionAttackBite oCommand =(clsActionAttackBite) poCommand; 
59       return srStaminaScalingFactor* Math.pow(srStaminaBase,oCommand.getForce()) ; 
60    } 
61    @Override 
62    public boolean execute(clsActionCommand poCommand) { 
63       clsActionAttackBite oCommand =(clsActionAttackBite) poCommand;  
64       clsComplexBody oBody = (clsComplexBody) ((itfGetBody)moEntity).getBody(); 
65       itfAPAttackableBite oOpponent = (itfAPAttackableBite) 

findSingleEntityInRange(moEntity, oBody, moRangeSensor 
,itfAPAttackableBite.class) ; 

66       if (oOpponent==null) { 
67          clsFastMessengerSystem oFastMessengerSystem =    

oBody.getInternalSystem().getFastMessengerSystem(); 
68          oFastMessengerSystem.addMessage(mePartId, eBodyParts.BRAIN, 1); 
69          return false; 
70       }  
71       double rDamage = oOpponent.tryBite(oCommand.getForce()*mrForceScalingFactor); 
72       if (rDamage>0) { 
73          oBody.getInternalSystem().getHealthSystem().hurt(rDamage); 
74          return false; 
75       } 
76       oOpponent.bite(oCommand.getForce()*mrForceScalingFactor); 
77       return true; 
78    }   
79 } 
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