
Dissertation

Special Curve Patterns for
Freeform Architecture

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines
Doktors der technischen Wissenschaften unter der Leitung von

O.Univ.-Prof. Dr. Helmut Pottmann
Institut für Diskrete Mathematik und Geometrie (E104)

eingereicht an der Technischen Universität Wien,
Fakultät für Mathematik und Geoinformation,

von

Bailin Deng, MSc.
Matr.Nr.: 0829009

Tigergasse 23-27/3/2, 1080 Wien

Wien, am 29.08.2011

 
 
Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek 
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at). 
 
The approved original version of this thesis is available at the main library of 
the Vienna University of Technology  (http://www.ub.tuwien.ac.at/englweb/). 

 





Zusammenfassung

In den letzten Jahren wurden Freiform-Flächen in der Architektur immer beliebter.
Die technischen Herausforderungen, die bei der Realisierung solcher Flächen zu bewälti-
gen sind haben ein neues, aktives Forschungsfeld – die Architekturgeometrie – geschaffen.
In dieser Arbeit untersuchen wir spezielle Kurvenmuster auf Flächen, die im Design und
der Realisierung architektonischer Freiform-Flächen Anwendung finden.

Zuerst betrachten wir Familien (stückweise) geodätischer Kurven auf Flächen die zur
Einteilung in Paneele und beim Innenraum Entwurf wichtig sind. Wir schlagen ein
Verfahren zur Ausbreitung solcher Kurven ausgehend von einer Startkurve vor, so dass
die Distanzfunktion benachbarter Kurven eine gegebene Distanzfunktion annährt. Als
lineare Approximation von Distanzfunktionen verwenden wir Jacobi-Felder. Eine Nach-
barkurve wird dann entsprechend des ausgewählten Jacobi-Feldes durch Lösen eines
Optimierungsproblems bestimmt. Durch Verwendung verschiedener Distanzfunktionen
können unterschiedliche Kurvenmuster erzeugt werden. Die vorgestellte Methode er-
laubt den intuitiven und leicht handhabbaren Entwurf von goedätischen Mustern auf
Freiform-Flächen.

Im Anschluss wird eine Methode zur Berechnung funktionaler Gewebe vorgestellt.
Ein funktionales Gewebe besteht aus drei Kurvenfamilien mit regulärer Konnektivität,
wobei die Kurven zusätzliche funktionale Eigenschaften erfüllen müssen. Um den Her-
stellungsprozess der einzelnen Kurvenelemente zu verbessern, werden ebene, zirkuläre
und geodätische Kurvensegmente betrachtet. Die diskrete Entsprechung eines Gewebes
ist ein reguläres Dreiecksnetz. Dabei entsprechen die Kurven des Gewebes Kantenzügen
des Netzes. Die Gestalt des Gewebes wird durch ein Funktional bestimmt, das die Abwei-
chung der Kurven von geforderten Eigenschaften bestraft. Des Weiteren wird gezeigt,
dass Gewebe die aus ebenen Kurven bestehen unter Verwendung dreier Familien von
Ebenen exakt berechnet werden können. Durch die Bereitstellung eines Verfahrens zum
Entwurf von Geweben bestehend aus leicht herzustellenden Kurvensegmenten, liefert
diese Arbeit einen Beitrag zur Realisierung von Geweben wie sie in aktuellen architek-
tonischen Entwürfen zu finden sind.



Abstract

In recent years, freeform shapes are gaining more and more popularity in architecture.
Such shapes are often challenging to manufacture, and have motivated an active research
field called architectural geometry. In this thesis, we investigate patterns of special curves
on surfaces, which find applications in design and realization of freeform architectural
shapes.

We first consider families of geodesic curves or piecewise geodesic curves on a surface,
which are important for panelization of the surface and for interior design. We propose a
method to propagate a series of such curves across a surface, starting from a given source
curve, so that the distance functions between neighboring curves are close to given target
distance functions. We use Jacobi fields as first order approximation of the distance
functions from a curve to its neighboring curves, and select a Jacobi field which is closest
to the target distance function. A neighboring curve is then computed according to the
selected Jacobi field by solving an optimization problem. Using different target distance
functions, we can generate different patterns of geodesic/piecewise geodesic curves. Our
method provides an intuitive and controllable way to design geodesic patterns on freeform
surfaces.

We then present a method to compute functional webs, which are three families of
curves with regular connectivity, where the curves have given special properties. We
consider planar, circular and geodesic properties of the curves, which facilitate the fab-
rication of curve elements. We discretize a web as a regular triangle mesh, where the
curves are represented by edge polylines of the mesh. The shape of the web is deter-
mined by optimizing a target functional which penalizes the deviation of the curves from
their target properties. Furthermore, for webs where all curves are planar, we also show
they can be computed in an exact way using three families of planes. By enabling the
design of webs composed of curve elements which are easily manufacturable, our method
addresses the challenge in realization of webs which have emerged in recent architectural
designs.



Acknowledgments

I would like to thank all the people who have supported me during my doctoral study.
I am grateful to my supervisor Helmut Pottmann, who offered me the opportunity

to work on architectural geometry, and has always provided guidance and support. His
profound knowledge of geometry, and his elegant way of applying it to real-world appli-
cations, have set an example for me. I would like to express my appreciation to Johannes
Wallner for his advice on my work, and for his exceptional writing skill. I would also
like to thank Niloy Mitra for taking the job as external reviewer.

This thesis would not have been completed without the help from my colleagues. I am
thankful to Christian Müller and Martin Kilian for their advice on improving the thesis,
to Heinz Schmiedhofer and Martin Reis for rendering Figures 3.12, 3.14, 3.18, and 3.20,
and to Martin Kilian for translating the abstract into German.

Throughout my study, I learned a lot from the discussions with the colleagues in
our institute, including, but not limited to, Bernhard Blaschitz, Simon Flöry, Philipp
Grohs, Mathias Höbinger, Martin Kilian, Friedrich Manhart, Christian Müller, Boris
Odehnal, Martin Peternell, and Alexander Schiftner. I am grateful to them for sharing
their knowledge and expertise.

My work has been supported by the Austrian Science Fund (FWF) under the grant
S9206.

Finally I would like to thank my parents for their unconditional love and support.
Many thanks to Xianbin, for being the greatest friend; and to Spencer, for her under-
standing and love.





Contents

1 Introduction 9

2 Geodesic Patterns on Freeform Surfaces 14
2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Distance Between Geodesics . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Evolving Geodesics on Mesh Surfaces . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Solving the Jacobi Equation . . . . . . . . . . . . . . . . . . . . . . 19
2.3.2 Selecting a Jacobi Field . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.3 Computing the Next Geodesic . . . . . . . . . . . . . . . . . . . . 21
2.3.4 Evolution of Geodesics . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.5 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.7 Limitations of Geodesic Evolution Method . . . . . . . . . . . . . . 32

2.4 Evolving Piecewise Geodesic Curves . . . . . . . . . . . . . . . . . . . . . 33
2.4.1 Piecewise Geodesic Curves . . . . . . . . . . . . . . . . . . . . . . 33
2.4.2 Jacobi Fields on Piecewise Geodesic Curves . . . . . . . . . . . . . 33
2.4.3 Selecting Jacobi Fields on Piecewise Geodesic Curves . . . . . . . 33
2.4.4 Handling Intervals Without Fundamental Solutions . . . . . . . . . 35
2.4.5 Adding Breakpoints to a Piecewise Geodesic Curve . . . . . . . . . 36
2.4.6 Computing the Next Piecewise Geodesic Curve . . . . . . . . . . . 37
2.4.7 Post-processing of the Next Piecewise Geodesic Curve . . . . . . . 40
2.4.8 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.5 Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3 Functional Webs for Freeform Architecture 49
3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.1.1 Web Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2 Discrete Webs by Global Optimization . . . . . . . . . . . . . . . . . . . . 55

3.2.1 The Fairing Functional . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.2.2 The Shape Proximity Functional . . . . . . . . . . . . . . . . . . . 56
3.2.3 The Boundary Proximity Functional . . . . . . . . . . . . . . . . . 59
3.2.4 The Planar Property . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.2.5 The Circular Property . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.2.6 The Geodesic Property . . . . . . . . . . . . . . . . . . . . . . . . 62
3.2.7 Counting Degrees of Freedom . . . . . . . . . . . . . . . . . . . . . 63
3.2.8 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . 65
3.2.9 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.3 Exact Planar Webs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7



Contents

3.3.1 Discrete Planar Webs from Plane Families . . . . . . . . . . . . . . 83
3.3.2 Continuous Planar Webs . . . . . . . . . . . . . . . . . . . . . . . . 84
3.3.3 Constructing Continuous Planar Webs . . . . . . . . . . . . . . . . 84
3.3.4 Modification of Continuous Planar Webs . . . . . . . . . . . . . . . 92

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4 Conclusion and Future Work 99

8



1 Introduction

In recent years, freeform shapes are becoming more and more popular in architecture.
Following the Frank Gehry’s pioneering work in adapting digital technologies to ar-
chitectural design [Lindsey 2001] [Mitchell 2001], architects are now able to employ
computer-aided design (CAD) tools in the design process, which allow them to specify
complicated shapes in an accurate and easy way. The use of digital design tools, to-
gether with the technological advances in material and construction, have enabled the
use of freeform elements in contemporary architecture (see Figures 1.1 and 1.2 for some
examples of freeform architecture). In order to realize a complex freeform shape in a
feasible and affordable way, the designed surface is usually segmented into smaller com-
ponents which are easier to fabricate. For example, the freeform exterior surface of the
Walt Disney Concert Hall in Figure 1.1 is realized using a large number of stainless steel
panels (see Figure 1.3). This process of approximating a designed surface using simple
elements is called rationalization. For complicated freeform surfaces, rationalization is
a challenging task. First of all, the simple elements used in rationalization usually lead
to deviation between the designed surface and the approximation surface. To guarantee

Figure 1.1: Walt Disney Concert Hall, Los Angeles, designed by Frank Gehry. Photo by
Carol Highsmith.

9



1 Introduction

Figure 1.2: Hungerburg Station, Innsbruck, Austria, designed by Zaha Hadid. Photo by
Francis Wu via Flickr.

Figure 1.3: Details of the freeform exterior surface of the Walt Disney Concert Hall,
which is realized using stainless steel panels. Photos by Renee Silverman
and Richard Banks via Flickr.

10



1 Introduction

Figure 1.4: Centre Pompidou-Metz, France, designed by Shigeru Ban. The roof contains
an interwoven curve structure made from glued laminated timber. Photos
by Didier Boy de la Tour.

consistency between the realized shape and the original design, this deviation needs to
be small. Furthermore, for nice visual appearance of the realized shape, the elements of
the approximation surface need to be arranged in an aesthetically pleasing way, which
further limit the available degrees of freedom for the approximation surface. In gen-
eral, rationalization cannot be handled by standard CAD tools. This limitation has
motivated research efforts from architects, engineers, mathematicians, and computer
scientists, which have now become an active research field called architectural geometry.
Introduction to this field and recent progress can be found in the textbook [Pottmann
et al. 2007a], articles [Pottmann et al. 2008c] [Pottmann 2009] [Pottmann 2010] [Wall-
ner and Pottmann 2011], and conference proceedings [Pottmann et al. 2008a] [Ceccato
et al. 2010]. Architectural geometry aims at geometric modeling and optimization tools
for architectural needs, especially for economical realization of freeform architectural
designs. Previously, most research work focused on rationalization methods with the
approximation surface composed of various simple elements such as planar quadrilater-
als [Glymph et al. 2004] [Liu et al. 2006] [Zadravec et al. 2010], planar hexagons [Wang
et al. 2008], single curved panels [Pottmann et al. 2008b], circles [Schiftner et al. 2009],
ruled surface patches [Flöry and Pottmann 2010], repeated quads or triangles [Fu et al.
2010] [Singh and Schaefer 2010], and panels produced from reused molds [Eigensatz
et al. 2010]. Other work is concerned with the optimization of multi-layer structures
[Pottmann et al. 2007b] and circular arc structures [Bo et al. 2011], which lead to easily
manufacturable beams and nodes.

In this thesis, we are instead interested in curve families on a surface. The importance
of curve families in freeform architecture is two-fold. Firstly, starting from a family of
curves on a surface, we can compute a set of single curved panels covering the surface
using the optimization algorithm from [Pottmann et al. 2008b], where the curves are
taken as the initial boundaries between the panels. Since this is a highly nonlinear
problem, the initial curves must be arranged properly to guarantee the success of the
optimization approach. For example, to compute a geodesic strip model, an initial set

11



1 Introduction

Figure 1.5: If a straight paper strip is bent to lie on a surface, it will follow a geodesic
on the surface.

of geodesic curves is needed [Pottmann et al. 2008b]. Therefore, curve families play an
important role in the panelization of a freeform surface. Secondly, curve families can be
part of a freeform architectural design (see Figure 1.4 for an example). The layout of
these curves are essential for the visual appearance as well as the structural integrity of
the design.

In architecture, some special curves have nice properties in terms of structural func-
tionality and manufacturing cost. One example is planar curves in vertical planes, which
can be used as support elements. Another example is geodesic curves. A geodesic curve
is a generalization of the notion of a straight line to surfaces [do Carmo 1976]. If we take
a straight strip made from paper or wood, and bend it to follow the shape of a surface,
the bent strip will follow a geodesic on the surface (see Figure 1.5). A family of geodesic
curves on a surface can represent a set of developable strips covering the surface, with
each strips having approximately straight development [Pottmann et al. 2008b]. These
strips can be easily fabricated by trimming standard-size rectangular strips. If a curve
element is a geodesic, it can be manufactured by bending a straight timber board about
its weak axis, which is inexpensive compared with other manufacturing approaches like
CNC machining [Pirazzi and Weinand 2006]. In this thesis, we investigate families of
special curves (such as geodesics) on freeform surfaces, and propose computational tools
to create such families. The investigation is organized as follows:

• In Chapter 2, we are concerned with geodesic curves and piecewise geodesic curves
with approximately constant distance between each other, which can represent
wooden panels covering a surface, with each panel having approximately straight
development and small variation of width. Such panel layouts are useful for re-
alization of freeform architectural shapes, as well as for interior design. We first
review the Jacobi equation, which governs the distance between two neighboring
geodesics. Using the Jacobi equation, we propose methods to evolve a family of
geodesic/piecewise geodesic curves starting from a given source curve, so that the
distance functions between neighboring curves are close to given target distance

12



1 Introduction

functions.

• In Chapter 3, we are interested in curve structures consisting of three families of
curves with regular connectivity (like Figure 1.4), which we call webs. Such struc-
tures have appeared in some recent architectural designs, and might be expensive
to build due to the intricate shapes of the curve elements. We first show the
connection between these structures and a classical geometry research topic called
web geometry. Then we provide algorithms to compute webs consisting of special
curve elements, including planar, circular and geodesic curves, which can either
be manufactured in an inexpensive way, or have desirable structural properties.
We do so by solving a non-linear optimization problem, using a target functional
which takes the target properties of the curves into account. For webs consisting
of only planar curves, we show how they can be computed in an exact way using
three families of planes.

In both chapters, the curve families can be regarded as patterns on a surface. In other
words, we are investigating patterns of special curves on freeform surfaces.

13



2 Geodesic Patterns on Freeform Surfaces

In this chapter, we consider the problem of cladding a general double curved surface
with straight panels. More precisely, given a double curved surface, we look for a set
of developable strips with nearly straight development, so that the strips can be bent
and joined to approximate the given surface. This problem has applications in freeform
architectural design, especially for interior spaces (see Figures 2.1, 2.2, 2.3). It can be
shown that such panels follow geodesic curves on the given surface [Pottmann et al.
2008b]. In practice, these panels are often trimmed from rectangular strips of fixed
width d. To reduce material waste, we want to have panels whose widths are close to
d. Such a problem can be solved by searching for a family of geodesic curves on the
surface with the intrinsic distance between neighboring geodesic curves close to d. In
this chapter, we solve a more general problem:

Problem 2.1. Given a freeform surface and a target distance function W (s), compute
a family of geodesics {gi} on the surface such that the distance function wi(s) from gi
to gi+1 is close to W (s), where s is the arc-length parameter of gi.

With this formulation, we can not only generate geodesic curves with almost constant
distance between neighboring curves, but also create interesting patterns of geodesics by
using special distance functions W (s).

Problem 2.1 is not easy to solve. In general, the intrinsic distance between two points
on a surface can not be expressed by a formula, except for some special surfaces such
as surfaces of constant Gaussian curvature and surfaces of revolution [do Carmo 1976].
So in practice, surface cladding with straight panels can be done only for surfaces of
special shapes (see Figures 2.1, 2.2), or in an experimental way (see Figure 2.3). In this
chapter we employ a first order approximation of the distance between two neighboring
geodesics, which enables us to solve Problem 2.1 for general freeform surfaces.

We assume that the freeform surface is given as a triangular mesh. And the resulting
geodesics will be represented as polylines on the mesh surface. The surface needs to
be of disk topology. We will not talk about how to compute actual panels from the
geodesic curves. Such a problem is addressed by [Pottmann et al. 2008b] and [Wallner
et al. 2010].

2.1 Related Work

A geodesic curve is a locally shortest path on a surface S. The computation of geodesics
is a classical topic. Depending on the given conditions, there are basically two types of
problems. The first one is an initial value problem: given a point p ∈ S and a vector
v ∈ TpS where TpS is the tangent space of S at p, find a geodesic g which is incident
with p, such that the tangent vector of g at p is v. The second one is a boundary

14



2 Geodesic Patterns on Freeform Surfaces

Figure 2.1: The roof of Southern Cross Station at Melbourne, Australia, covered with
straight metal panels. Photo by Dale Gillard via Flickr.

Figure 2.2: Interior design of the experimental media and performing arts center at Rens-
selaer Polytechnic Institute, Troy, New York, using straight wooden panels.
Photo by Skunkworks Photographic via Flickr.

15



2 Geodesic Patterns on Freeform Surfaces

(a) (b)

Figure 2.3: Experimental cladding using paper strips (a) results in an office space design
by NOX Architects ((b), see [Spuybroek 2004]).

value problem: given two points p1, p2 ∈ S, find a geodesic g connecting p1 and p2. For
smooth surfaces, the first problem is equivalent to solving an initial value problem for
a second order ODE, while the second problem can be converted into the constrained
minimization of the quadratic energy

∫
‖ġ‖2 [do Carmo 1976].

On polyhedral surfaces, geodesic curves are polylines. [Polthier and Schmies 1998]
propose straightest geodesics as solutions to the initial value problem on polyhedral
surfaces. If a straightest geodesic g crosses a surface edge E, the two segments of g
which are incident with E will form equal angles with E; if g crosses a surface vertex V ,
the two segments incident with V will bisect the sum of angles from surface faces incident
with V . The time complexity of computing a straightest geodesic is O(n), where n is
the number of edges of the surface. The boundary value problem of computing geodesics
on polyhedral surfaces is closely related to the computation of shortest paths between
two points on a surface. Since shortest path problems find applications in a wide range
of areas such as computer graphics and robotics, many algorithms have been proposed
to compute exact or approximate shortest paths between two points. [Mitchell et al.
1987] provide an algorithm (MMP) to compute the exact shortest path from a single
source point to any point on a polyhedral surface. They observe that each edge of
the surface can be divided into a set of intervals (also called windows), over which the
shortest distance function to the source point can be computed atomically. The MMP
algorithm computes these windows by propagating the distance information over the
surface, using a Dijkstra-like method. It is of time complexity O(n2 log n) and space
complexity O(n2). Using these windows, a shortest path from the source point to any
point on the surface can be traced with time complexity O(k + log n) where k is the
number of faces crossed by the path. [Surazhsky et al. 2005] show that despite the worst
case complexity O(n2 log n), the MMP algorithm can run much faster in practice. They
propose an efficient implementation of the MMP algorithm. [Liu et al. 2007] discuss
degenerate cases that might appear in the algorithm of [Surazhsky et al. 2005], and
provide algorithms to handle such cases. [Chen and Han 1990] propose an algorithm

16



2 Geodesic Patterns on Freeform Surfaces

(CH) to construct a sequence tree to store the information about the distance from the
source point to each edge. Unlike the MMP algorithm, they do not employ Dijkstra-like
propagations. The CH algorithm is of time complexity O(n2) and space complexity Θ(n).
[Kaneva and O’Rourke 2000] propose an implementation of the CH algorithm. [Xin and
Wang 2009] improve the CH algorithm by filtering useless windows, and by maintaining a
priority queue like Dijkstra’s algorithm. Their implementation significantly outperforms
the original CH algorithm.

Exact geodesic curves between two points are usually expensive to compute. There-
fore, approximate geodesic curves are often used in practice. [Kimmel and Sethian 1998]
compute approximate geodesic paths on triangular meshes by solving the eikonal equa-
tion with the fast marching method (FMM). The running time of their algorithm is
O(n log n). Various improvements for this method have been proposed ([Novotni and
Klein 2002][Kirsanov 2004][Yatziv et al. 2006]) to achieve lower time complexity or higher
accuracy. [Mart́ınez et al. 2005] and [Xin and Wang 2010] propose iterative methods to
improve the geodesic paths computed by FMM.

For the problem of cladding freeform surfaces with developable panels, early research
evolved from the architecture of F.Gehry [Shelden 2002]. [Pottmann et al. 2008b] inves-
tigate the problem of covering freeform surfaces by developable strips. They introduce
geodesic strip models, which are continuous surfaces composed of developable strips with
nearly straight development. This is closely related to the problem we want to solve here.
In their paper the geodesic strip models are computed by numerical optimization requir-
ing careful initialization, and there is no direct control of the strip width. Instead, the
method in this chapter aims at producing geodesic curves with distance functions be-
tween neighboring curves close to prescribed functions. Such a formulation provides more
flexibility in controlling the shapes of the strips. Besides, the geodesics computed by our
methods can be used to initialize the optimization algorithm in [Pottmann et al. 2008b].
Recently, [Kahlert et al. 2011] study the tiling of a surface by strips of bounded width
whose boundary curves are quasi-geodesics [Aleksandrov and Zahlgaller 1967], which is
similar to the problem we solve in this chapter. They only aim at nearly-constant strip
widths. Besides, for surface regions with high Gaussian curvature it may not be possible
to find two neighboring geodesics without intersection. For such surfaces [Kahlert et al.
2011] can only generate quasi-geodesics with intersections, which might not be desirable
in real applications. The piecewise geodesic curves introduced in this chapter can handle
such cases and generate strip boundary curves without intersection.

2.2 Distance Between Geodesics

Although closed-form representations of the intrinsic distance between two points are
in general not available, there is a well-known first order approximation of the intrinsic
distance between two neighboring geodesics: Start at time t = 0 with a geodesic curve
g(s), which is parametrized by arc length s, and let it move smoothly with time. A
snapshot at time t = ε yields a geodesic curve g+ near g (see Figure 2.4):

g+(s) = g(s) + εv(s) + ε2(. . .).

17



2 Geodesic Patterns on Freeform Surfaces

g(0)

g(s)

g′(s)

g+(s)g+(s)g+(s)g+(s)g+(s)g+(s)g+(s)g+(s)g+(s)g+(s)g+(s)g+(s)g+(s)g+(s)g+(s)g+(s)g+(s)

v(s)

Figure 2.4: A geodesic g(s) with Jacobi field v(s), and a neighboring geodesic g+(s)
which is at distance ≈ ε‖v(s)‖. The parameter s is the arc length along the
geodesic g, and v obeys the Jacobi differential equation (2.1). Here v(0) = 0.

The derivative vector field v(s) is called a Jacobi field. It is known that without loss of
generality we may assume v(s) is orthogonal to the curve g(s), and it can be expressed
in terms of the geodesic’s tangent vector g′ as

v(s) = w(s) ·Rπ/2(g′(s)), (2.1)

where
w′′(s) +K(s)w(s) = 0. (2.2)

Here Rα is the rotation by angle α in the tangent plane of the surface, and K(s) is the
Gaussian curvature function along g(s) [do Carmo 1976].

To make use of the Jacobi fields, we define the signed distance function from g to g+

as follows (see Figure 2.5).

Definition 2.1. Let g and g+ be two neighboring geodesic curves. For a point p ∈ g,
trace a geodesic from p with initial tangent direction Rπ/2(T (p)), where T (p) is the unit
tangent vector of g at p. Let h(t) be an arc-length parametrization of this geodesic, such
that the tangent vector of h(t) at p is Rπ/2(T (p)). Let X be the intersection point between
h and g+. Then the signed distance from p to g+ is defined as

D(p, g+) = t1 − t0,

where h(t0) = p, h(t1) = X. And the signed distance function from g(s) to g+ is defined
as

Wg(s) = D(g(s), g+).

Now the signed distance function Wg(s) in Definition 2.1 can be approximated by a
function w(s) satisfying Equation (2.2). And Problem 2.1 is converted to a problem of
finding such a function w(s) which is close to the target distance function W (s).

18



2 Geodesic Patterns on Freeform Surfaces

g(s) = h(t0)

X = h(t1)

D(g(s), g+)

h(t)

g

g+

Figure 2.5: The signed distance D(g(s), g+) from g(s) to g+ is computed with a geodesic
h(t) which is orthogonal to g.

2.3 Evolving Geodesics on Mesh Surfaces

2.3.1 Solving the Jacobi Equation

Since the Jacobi equation (2.2) is a second order linear ODE with coefficient function
K(s), the solutions form a two dimensional linear space. Any solution w(s) is a linear
combination of two linearly independent fundamental solutions w(1)(s), w(2)(s)

w(s) = λ1w
(1)(s) + λ2w

(2)(s). (2.3)

The fundamental solutions are found as follows: The geodesic g under consideration is
sampled at arc-length parameter values x0 < x1 < . . . < xM . The unknown function
w(s) is represented by its values wi = w(xi), i = 0, . . . ,M at the sample points. The
second derivative w′′ at xi is approximated with finite difference

w′′i =
2

Li + Li+1
(
wi+1 − wi

Li
− wi − wi−1

Li−1
), i = 1, . . . ,M − 1,

where Li = xi+1 − xi. Then at sample parameter xi, Equation (2.2) becomes

2

Li + Li+1
(
wi+1 − wi

Li
− wi − wi−1

Li−1
) +Kiwi = 0, i = 1, . . . ,M − 1, (2.4)

where Ki = K(xi) is the Gaussian curvature at point g(xi). This is a linear system.
And the solution can be written as a recurrence relation

wi+1 =
(2− Li−1LiKi)(Li−1 + Li)

2Li−1
wi −

Li
Li−1

wi−1, i = 1, . . . ,M − 1. (2.5)

Then for given initial values w0, w1, we can compute wi(i = 2, . . . ,M) by Equation (2.5).

For fundamental solutions w(1) and w(2), we simply use initial values w
(1)
0 = 0, w

(1)
1 = 1

and w
(2)
0 = 1, w

(2)
1 = 0.

19



2 Geodesic Patterns on Freeform Surfaces

Another way to solve for the fundamental solutions is to impose boundary conditions

w
(1)
0 = 0, w

(1)
M = 1 and w

(2)
0 = 1, w

(2)
M = 0 to linear system (2.4). The unknown values

w
(i)
1 , . . . , w

(i)
M−1 (i = 1, 2) can be computed by solving a tridiagonal linear system

MW = B, (2.6)

where

M =



L0L1K1−2
2L0

L0+L1
2L2

L1+L2
L1L2K2−2

2L1
L1+L2

. . .
2LM−2

LM−3+LM−2
LM−3LM−2KM−2−2

2LM−3

LM−3+LM−2
2LM−1

hM−2+hM−1
hM−2hM−1KM−1−2

 ,

W = [w
(i)
1 , w

(i)
2 , . . . , w

(i)
M−2, w

(i)
M−1]

T ,

B = [− 2L1w
(i)
0

L0 + L1
, 0, . . . , 0,−

2LM−2w
(i)
M

LM−2 + LM−1
]T .

This type of fundamental solution will be used in Section 2.4. Note that linear system
(2.6) may be singular and we may not get w(1), w(2) from the given boundary conditions.
This can happen when g(sM ) is conjugate to g(s0) relative to g, which means that there
exists a non-zero solution w(c)(s) of the Jacobi equation with w(c)(s0) = w(c)(sM ) = 0
[do Carmo 1976].

2.3.2 Selecting a Jacobi Field

To select a Jacobi field closest to a target distance function W (s) on an interval I, we
compute the coefficients λ1, λ2 in Equation (2.3) by minimizing the error function

Fw =

∫
I
[w(s)−W (s)]2ds =

∫
I
[λ1w

(1)(s) + λ2w
(2)(s)−W (s)]2ds.

This problem reduces to solving a 2× 2 linear system. The solution is

λ1 =
D1E22 −D2E12

E11E22 − E2
12

,

λ2 =
D2E11 −D1E12

E11E22 − E2
12

,

where

Eij =

∫
I
w(i)(s) w(j)(s) ds, i, j = 1, 2,

Di =

∫
I
w(i)(s) W (s) ds, i = 1, 2.

And the minimum value of Fw is

minFw =
2D1D2E12 −D2

1E22 −D2
2E11

E11E22 − E2
12

+

∫
I
[W (s)]2ds. (2.7)

20



2 Geodesic Patterns on Freeform Surfaces

D
(g

(s
i ), g

+
)

hi

Xi
p = hG(t)

α

hG

g(si)
g

g+

Figure 2.6: Geodesic g+ is determined by the arc-length parameter t of a point p on hG,
and the intersection angle α between g+ and hG.

2.3.3 Computing the Next Geodesic

Once a Jacobi field w(s) is selected, we can compute a neighboring geodesic g+ according
to w(s). We uniformly sample g(s) at arc-length parameter values si(i = 0, . . . , N), and
search for a geodesic g+ which minimizes the error function

E(g+) =
N∑
i=0

[D(g(si), g
+)− w(si)]

2, (2.8)

where D(g(si), g
+) is the signed distance from g(si) to g+ defined in Definition 2.1. A

geodesic g+ can be determined by two degrees of freedom. We can compute g+ either
from initial value conditions (a point q on g+ and the tangent vector of g+ at q), or
from boundary value conditions (two points on g+). Since computing a geodesic as a
boundary value problem is of higher time complexity than as an initial value problem
(see Section 2.1 for a review), we determine g+ from initial value conditions as follows.
For each sample point g(si), let hi be the orthogonal geodesic through g(si) which is used
in computing D(g(si), g

+) (see Definition 2.1). We choose one of {hi} as the generating
geodesic, and denote it by hG. The geodesic g+ is determined from the intersection point
p between g+ and hG, as well as the tangent vector of g+ at p. p can be represented
using an arc-length parameter t on hG : p = hG(t); and the tangent vector of g+ at p
can be determined from the intersection angle α between hG and g+ (see Figure 2.6).
Therefore, the minimization of (2.8) is a non-linear least squares problem with respect
to variables t and α.

We solve this minimization problem numerically using the Levenberg-Marquardt (LM)
method [Madsen et al. 2004]. In each iteration, the LM method requires the partial
derivatives of D(g(si), g

+) with respect to t and α. These partial derivative values are
computed analytically as follows. In general, a geodesic on a triangular mesh surface lies
on a sequence of faces. These faces can be “unfolded” into a planar domain. In other
words, there is an isometric mapping which maps these mesh faces into a set of triangles
in R2 with the same connectivity. And the geodesic curves on these faces are mapped to
straight lines [Mitchell et al. 1987]. Figure 2.7 shows the image straight lines of g+ and

21



2 Geodesic Patterns on Freeform Surfaces

hi

Xi

hG

p = hG(t)

α

g+

Figure 2.7: Through the unfolding of mesh faces containing g+, geodesics g+ and {hi}
are mapped to straight lines g+ and {hi}.

{hi} under such a mapping. Since isometry preserves arc-length and angles, the partial
derivative values can be computed using these straight lines. For the initial values of sG
and αG, we choose

t(0) = thG(p) + w(tg(p)),

α(0) = π
2 + arctanw′(tg(p)).

(2.9)

Here w is the selected Jacobi field function. thG(p) is the arc-length parameter of point
p on hG, where p is the intersection point between hG and g. tg(p) is the arc-length
parameter of p on g.

2.3.4 Evolution of Geodesics

From the neighboring geodesic g+ computed above, we can apply the same methods
to select a Jacobi field on g+ and compute its neighboring geodesic. Repeating this
procedure on each newly computed geodesic, we obtain a sequence of geodesics covering
the surface region on one side of the source geodesic g. The region at the other side of
g can be covered in the same way.

2.3.5 Implementation Details

Sampling of Geodesics

The sample parameters required for solving the Jacobi equation are uniformly sampled
from the considered interval of g. The same sample parameters are also used for tracing
orthogonal geodesics {hi} when computing g+.

Computation of Gaussian Curvature

Solving the Jacobi equation requires the Gaussian curvature values at the sample points
of geodesic g. To obtain these values, the input mesh surface is first pre-processed to
obtain the Gaussian curvature value at each vertex, using the jet fitting algoritm [Cazals
and Pouget 2008] implemented in CGAL [Pouget and Cazals 2011]. Then the Gaussian

22



2 Geodesic Patterns on Freeform Surfaces

hj

hj+1

∂S

g(s)

g+(s)

Figure 2.8: Orthogonal geodesics hj , hj+1 do not intersect with g+(s), because of the
surface boundary ∂S.

curvature value on each face is computed by linear interpolation of the values at the
three vertices.

Intersections Between Geodesics

A neighboring geodesic g+ may not intersect all orthogonal geodesics {hi} traced from
the current geodesic g, especially in surface regions near the boundary. Figure 2.8 shows
such an example. If hi does not intersect with g+, we cannot compute D(g(si), g

+) in
Equation (2.8). Therefore, the target function in (2.8) is modified to the following form

E(t, α) =
∑
i∈I

[D(g(si), g
+)− w(si)]

2. (2.10)

Here I is an index set such that for any i ∈ I, hi intersects with g+. During the numerical
minimization of E(t, α), we keep track of an index set I which is used for Equation (2.10).
At the start of the minimization, I is initialized as I = {i | hi intersects g+(0)}, where

g+(0) is the geodesic computed from initial variable values t(0) and α(0) given in Equation

(2.9). Besides, hi may have more than one intersection point with g+. To compute
D(g(si), g

+), we use the intersection point which gives a signed distance value closest to
w(si).

In each iteration of the LM method, a step (δt, δα) is computed from the current vari-
able values t(k) and α(k), which gives new variable values tnew = t(k)+δt, αnew = α(k)+δα.
The classical implementation of the LM method performs a step control to determine
whether the new variables are accepted: The new target function value E(tnew, αnew) is
compared with the current value E(t(k), α(k)). If E(tnew, αnew) < E(t(k), α(k)), then tnew,
αnew are accepted as the variable values for the next iteration t(k+1) = tnew, α(k+1) =
αnew; otherwise, tnew and αnew are rejected, and another step is computed [Madsen et al.
2004]. For our problem, the new variables may give a geodesic curve g+new which does not
intersect all the orthogonal geodesics indicated by the current index set I (see Figure 2.9
for an example). In order to compare E(tnew, αnew) with E(t(k), α(k)), we compute a com-
mon index set Î = I ∩ Inew where Inew = {i | hi intersects g+new}. Then E(tnew, αnew),

23



2 Geodesic Patterns on Freeform Surfaces

hj
hj+1

∂S

g

g+(k)

g+(new)

Figure 2.9: Orthogonal geodesics hj , hj+1 intersect with geodesic g+(k) which corresponds

to the current variable values, but do not intersect with geodesic g+(new) which
corresponds to the new variable values.

Algorithm 2.1: Modified step control for the LM method.

Input: A set of orthogonal geodesics {hi}, the index set I of {hi} for
computing the target function, current variable values t and α, current
step (δt, δα), and step size thresholds εt, εα.

Output: Updated variable values t, α, updated index set I, and a boolean
variable accept representing whether the current step is accepted.

tnew = t+ δt, αnew = α+ δα ;1

compute geodesic g+new from tnew and αnew ;2

Inew = {i | hi intersects g+new} ;3

Î = I ∩ Inew ;4

if Î 6= I
∧

( |δt| > εt
∨
|δα| > εα ) then5

accept = FALSE;6

return;7

else8

compute E(t, α) and E(tnew, αnew) using index set Î;9

if E(tnew, αnew) < E(t, α) then10

t = tnew, α = αnew, I = Î;11

accept = TRUE;12

return;13

else14

accept = FALSE;15

return;16

end17

end18

24



2 Geodesic Patterns on Freeform Surfaces

Algorithm 2.2: Searching for the longest interval of Jacobi field with bounded
deviation.

Input: A set of uniform sample parameters {xi|0 ≤ i ≤M} on geodesic g,
target constant distance W , and deviation threshold ε.

Output: The longest interval [xj , xk] (0 ≤ j < k ≤M) on which a Jacobi field
satisfying condition (2.12) exists.

for K = M to 2 do1

create empty set A ;2

for I = 0 to M −K do3

select a Jacobi field w(s) to W on interval [xI , xI+K ];4

if w(s) satisfy condition (2.12) on [xI , xI+K ] then5

compute fitting error EI according to Equation (2.7);6

add index I to A;7

end8

end9

if A is not empty then10

find index I in A with the smallest error EI ;11

xj = xI , xk = xI+K ;12

return;13

end14

end15

E(t(k), α(k)) are computed using Î instead of I. If E(tnew, αnew) < E(t(k), α(k)) then I is
updated to Î. On the other hand, if Î 6= I , updating I will lead to a smaller number of
orthogonal geodesics used for computing the target function. For better fitting quality,
we would like I to be as large as possible. Since a large step (δt, δα) will easily induce
a geodesic g+new with Î different from I, we reject a step if Î 6= I, and |δt| or |δα| is not
small enough. This modified step control method is summarized in Algorithm 2.1.

2.3.6 Results

Here we give some examples of evolution of geodesics . In all examples, the source curve
is a straightest geodesic computed from a point on the surface, and a surface tangent at
the point. These initial conditions are specified interactively.

Constant Distance with Bounded Deviation

The most simple target distance function W (s) is a constant function. In general,
the distance function between two neighboring geodesics cannot be constant unless the
surface is developable. In the evolution of geodesics, we can look for the longest interval
[a, b] on the current geodesic g such that there exists a Jacobi field which satisfies the
condition

W − ε ≤ w(s) ≤W + ε, ∀s ∈ [a, b], (2.11)

25



2 Geodesic Patterns on Freeform Surfaces

(a)

(b)

Figure 2.10: Evolution of geodesics with constant target distance and bounded deviation,
using two different source curves (dark blue) on a same surface. Here the
light blue pieces of curves show where the distance constraint (2.11) is
violated. Both examples use the same target distance valueW and deviation
error bound ε = 0.05 ·W .

26



2 Geodesic Patterns on Freeform Surfaces

where ε > 0 is a threshold for deviation. In other words, we look for the longest interval
with a Jacobi field of bounded deviation. To do so, we first sample g(s) uniformly at
arc-length parameter values xi = i

ML, i = 0, . . . ,M , where L is the total length of g(s).
Among them we search for the longest interval [xj , xk] (0 ≤ j < k ≤M) on which there
exists a solution w(s) of the Jacobi equation with the condition

W − ε ≤ w(si) ≤W + ε, i = j, . . . , k. (2.12)

Note that this condition is a discrete version of (2.11). The search is done with Algorithm
2.2. Then the Jacobi field closest to W on [xj , xk] is selected, and a neighboring geodesic
g+ is computed using orthogonal geodesics {hi} traced from points on g(s) within the
interval [xj , xk]. Afterward the actual distance from g to g+ needs to be checked: We

trace another set of orthogonal geodesics {ĥi} from sample points {g(ŝi)} across the
whole curve g(s), and compute the signed distance values D(g(ŝi), g

+). Then we search
for the longest interval [ŝj , ŝk] such that W − ε ≤ D(g(ŝi), g

+) ≤ W + ε for j ≤ i ≤ k.

And g+ is trimmed by ĥj and ĥk to produce a segment ĝ+, which represents the longest
range on g+ with approximately constant distance W from g(s). Figure 2.10 shows
such an example, where geodesics are evolved from two different source curves. Here
the source geodesic is shown in dark blue, the segments ĝ+ are shown in brown, and
the other parts of g+ are shown in light blue. Note that the brown curves indicate a
surface region which can be cladded with straight panels of constant width W along the
geodesics, without large gaps between the panels.

Curvature-dependent Evolution

For aesthetic reasons, we might want to have denser strips if the normal curvature across
the strip is high. This can be achieved with a curvature-dependent target distance
function W (s) = φ(|κn(s)|), where κn(s) is the normal curvature of the surface at point
g(s) along the direction orthogonal to g′(s), and φ is a monotonically decreasing function.
Figure 2.11(a) shows an example of using curvature-dependent target functions. Here
we use function

φ(|κn|) =
2

|κn|
arcsin

√
2ε|κn| − (ε|κn|)2,

which is the maximum length of a circular arc of curvature |κn|, which deviates no
more than ε from the corresponding chord, if ε|κn| < 1 (see Figure 2.11(b)). This circle
approximates the surface sectional curve, and the chord approximates the sectional curve
of a panel with boundary curves on the surface. In practice we want to have a lower
bound WU and WL for function W (s). So W (s) is defined as

W (s) =


WL if |κn(s)| > κL,
WU if |κn(s)| < κU ,
φ(|κn(s)|) otherwise,

where φ(κL) = WL, φ(κU ) = WU .

27



2 Geodesic Patterns on Freeform Surfaces

ε

1

|κn|

(a) (b)

Figure 2.11: Curvature-dependent evolution of geodesics. (a) A family of geodesics
generated from a curvature-dependent target distance function. (b) The
curvature-dependent function is derived from a bound ε of the deviation
between an arc and a chord on a circle of radius 1/|κn|.

Pattern Transfer

We can even transfer straight line patterns in a plane onto geodesic patterns on a surface.
First we sketch a set of straight line segments and designate one of them to be the source
segment l0. Note that straight lines are geodesics in a plane, and Definition 2.1 defines
the distance function from a segment to the line containing its neighbor segment, which is
a linear function. Therefore, on the two sides of l0, we have two sets of distance functions
{W+

0 (s), W+
1 (s), . . ., W+

N+
(s)} and {W−0 (s), W−1 (s), . . ., W−N−

(s)} between neighboring

straight line segments (see Figure 2.12). From a source geodesic g0 on a surface, we can
evolve a series of geodesics gi (i ≥ 1) on each side of g0, according to one of the above two
sets of distance functions. For a set of distance functions {W0(s), W1(s), . . ., WN (s)},
suppose function Wj(s) is measured from a segment of length Lj to its neighboring
segment. Then geodesic gi is computed from gi−1 according to a target distance function
which is a “normalized” version of WN (i)(s) where N (i) = (i− 1) mod (N + 1):

W (s) =
(Li−1 − s)WN (i)(0) + sWN (i)(LN (i))

LN (i)
.

28



2 Geodesic Patterns on Freeform Surfaces

W−0 (L0)

W−0 (0) W+
0 (0)

W+
0 (L0)

W+
1 (0)

W+
1 (L1)

l0

Figure 2.12: A set of straight line segments with a designated source l0. They define two
sets of linear distance functions {W+

i (s)} and {W−j (s)} on two sides of l0.

(a)

(b)

Figure 2.13: Evolution of geodesics according to distance functions defined by a set of
straight line segments.

29



2 Geodesic Patterns on Freeform Surfaces

Figure 2.14: As-equidistant-as-possible evolution of geodesics on a surface. On high cur-
vature regions, there are intersections between the geodesics. The surface
is taken from London Aquatics Centre, by Zaha Hadid Architects.

Here Li−1 is the length of geodesic gi−1. Figure 2.13 shows some straight line segment
patterns in a plane, and their corresponding geodesic patterns on a surface.

As-equidistant-as-possible Evolution

Instead of finding the longest interval of Jacobi field satisfying a deviation bound, we
can simply select a Jacobi field w(s) which is closest to a constant function on the whole
interval of a geodesic. Depending on the underlying surface shape, the next geodesic
computed from w(s) may be far from being equidistant to the current one. It may even
intersect the current geodesic. During evolution, we can check for intersections and trim
the newly computed geodesic with existing geodesics. Such evolution gives a layout of
geodesics which are “as equidistant as possible”. Figure 2.14 shows an example of this
construction.

To reduce the number of intersections of geodesics, we can first segment the surface
into regions each of which can be covered with geodesics without many intersections.
Such a segmentation can be done using geodesic vector fields introduced by [Pottmann
et al. 2010]. Afterward we perform as-equidistant-as-possible evolution on each region
separately. Figure 2.15 shows such an example, where the generated geodesics are used
to guide the cladding with straight wooden panels.

Timings

The run time of an evolution depends on the complexity of the mesh, the sample density
of g for computing the Jacobi field and for tracing orthogonal geodesics, and the number
of geodesics that are evolved from the source curve. Table 3.1 gives the timing data of
some examples above. Here #Face is the number of faces of the surface mesh. δs is the
ratio of the distance between neighboring sample points along g to the bounding box
diameter of the surface patch. Time is the total run time of the evolution in seconds,

30



2 Geodesic Patterns on Freeform Surfaces

(a)

(b)

Figure 2.15: As-equidistant-as-possible evolution on a segmented surface. (a) Segmenta-
tion boundary (in blue), and geodesics (in brown) within each region. (b)
Design of wooden panel patterns based on (a).

31



2 Geodesic Patterns on Freeform Surfaces

measured on a laptop with a 2.4GHz dual core CPU. %Jacobi and %NLS are the per-
centages of the total time used in computing Jacobi fields and in solving the non-linear
least squares problem for computing g+, respectively. We can see that most of the time
is spent on computing g+ by least squares minimization.

Fig #Face δs Time %Jacobi %NLS

2.10(a) 95594 6.4 · 10−4 13.4 0.82 99.17

2.10(b) 95594 6.4 · 10−4 12.1 0.91 98.84

2.11 205886 4.3 · 10−4 29.2 0.58 98.66

2.13(a) 164699 4.1 · 10−4 8.7 0.57 99.42

2.13(b) 49632 9.7 · 10−4 3.5 0.56 99.15

Table 2.1: Timing data for evolution of geodesics.

2.3.7 Limitations of Geodesic Evolution Method

Figure 2.14 shows an example where neighboring geodesics intersect, which may be
undesirable in applications. We can avoid such intersections only if we can find a solution
of the Jacobi equation with no zeros in the considered interval. It turns out that we can
tell the existence of such “useful” solutions simply by testing if the fundamental solution

w(1) with initial conditions w
(1)
0 = 0, w

(1)
1 = 1 has another zero in the interval. The

proposition below, proved in [do Carmo 1992], characterizes the two possible cases and
sums up some of their geometric properties.

Proposition 2.1. Consider a geodesic curve g(s), where s ∈ [0, L] is an arc length
parameter. Assume a fundamental solution w(1)(s) of the Jacobi equation with w(1)(0) =
0. Then there are the following two cases:

case 1 case 2

number of zeros of w(1)(s) for 0 < s ≤ L 0 ≥ 1
number of zeros of any solution on interval [0, 1] ≤ 1 ≥ 1
existence of solution nonzero in [0, L] yes no
g locally minimizes distance of g(0), g(L) yes no

The inequality K(s) > (π/L)2 for s ∈ [0, L] implies case 2. Analogously K(s) < (π/L)2

implies case 1.

Here case 1 corresponds to the situation of no intersection. Proposition 2.1 means that
on surface regions with large positive Gaussian curvature, we cannot avoid intersections
if the geodesics are long enough. In these regions, we can either perform segmentation,
like Figure 2.15, or consider piecewise geodesic curves introduced in Section 2.4.

32



2 Geodesic Patterns on Freeform Surfaces

2.4 Evolving Piecewise Geodesic Curves

2.4.1 Piecewise Geodesic Curves

On surface regions with large Gaussian curvature, the Jacobi equation implies that the
distance function w(s) between two neighboring geodesics will quickly deviate from a
constant function. In other words, only on a short interval can w(s) satisfy the condition
W −ε ≤ w(s) ≤W +ε with constant W and small ε. This motivates us to cover surfaces
using curves consisting of short geodesic segments, in order to maintain approximately
constant distance between neighboring curves. We call such curves piecewise geodesic
curves.

Definition 2.2. A piecewise geodesic curve is a continuous curve consisting of geodesic
segments. If g(s), s ∈ [0, L] is the arc-length parametrization of a piecewise geodesic
curve, then there exists a set of parameter values 0 = s0 < s1 < . . . < sN = L such
that g(s) is geodesic on intervals [si, si+1], i = 0, . . . , N − 1. Each segment {g(s) | s ∈
[si, si+1]} is called an arc of g, and is denoted by gi. The points g(si)(i = 1, . . . , N − 1)
are called the breakpoints of g.

Note that the tangent vector of a piecewise geodesic curve may have discontinuity at
the breakpoints. Also note that a geodesic curve is a special piecewise geodesic curve
(consisting of only one segment of geodesic).

2.4.2 Jacobi Fields on Piecewise Geodesic Curves

Like geodesic curves, we can employ Jacobi fields to approximate the distance between
two neighboring piecewise geodesic curves. For a piecewise geodesic curve g(s), we
consider an infinitesimally close piecewise geodesic curve g+(s) with the same number
of breakpoints. For an arc gi of g(s), the distance function to the corresponding arc g+i
of g+(s) is defined as the distance function from gi to the geodesic curve containing g+i ,
using Definition 2.1. This distance function can be approximated by a solution function
wi(s) of the Jacobi equation on gi. If each arc gi corresponds to interval [si, si+1] of
g(s), and each arc g+i corresponds to interval [s+i , s

+
i+1] of g+(s), then infinitesimally we

have the following condition for functions wi−1(s), wi(s) on neighboring arcs gi−1, gi
(see Figure 2.16)

wi−1(si)

cosαi
=
wi(si)

cosβi
. (2.13)

Here breakpoints g(si) and g+(s+i ) are connected by a geodesic hi. αi, βi are the angles
between the tangent of hi at g(si) and directions Rπ/2

(
g′i−1(si)

)
, Rπ/2 (g′i(si)), respec-

tively.

2.4.3 Selecting Jacobi Fields on Piecewise Geodesic Curves

Given a target distance function W (s) and a piecewise geodesic curve g(s) with arcs gi
defined on intervals [si, si+1] (i = 0, . . . , N−1), we can select a set of Jacobi fields {wi(s)},
one for each arc, to approximate W (s). First we specify the directions of movement for

33



2 Geodesic Patterns on Freeform Surfaces

g+(s+i )

g(si)g(si)g(si)g(si)g(si)g(si)g(si)g(si)g(si)g(si)g(si)g(si)g(si)g(si)g(si)g(si)g(si)

g(si−1)

αiαiαiαiαiαiαiαiαiαiαiαiαiαiαiαiαi βiβiβiβiβiβiβiβiβiβiβiβiβiβiβiβiβi

g(si+1)

gi−1

g+i−1

gi

g+i

wi−1(si−1)
wi(si+1)

hi

wi(si)wi−1(si)

Figure 2.16: Jacobi fields on a piecewise geodesic curve g(s).

the breakpoints, from which we read off the angles αi, βi in relation (2.13). Then {wi(s)}
are obtained by minimizing a target function

E =

N−1∑
i=0

∫ si+1

si

(wi(s)−W (s))2ds

subject to constraints (2.13) for i = 1, . . . , N − 1. On [si, si+1], wi(s) can be represented
as linear combination of two fundamental solutions w(i,1)(s), w(i,2)(s)

wi(s) = λ
(1)
i w(i,1)(s) + λ

(2)
i w(i,2)(s) (2.14)

with boundary conditions w(i,1)(si) = 1, w(i,1)(si+1) = 0, w(i,2)(si) = 0, w(i,2)(si+1) = 1.
To satisfy condition (2.13), we introduce coefficient variables λi(i = 0, . . . , N), and let

wi(s) =

{
λiw

(i,1)(s) + λi+1w
(i,2)(s), i = 0,

cosβi
cosαi

λiw
(i,1)(s) + λi+1w

(i,2)(s), i = 1, . . . , N − 1.
(2.15)

Now the target function can be written in matrix form

E = λTAλ− 2λTB +

∫ sN

s0

[W (s)]2ds.

Here

λ = [λ0, . . . , λN ]T ,

A =



H11
0 H12

0

H12
0 H22

0 +(γ1)
2H11

1 γ1H
12
1

...

γi−1H
12
i−1 H22

i−1+(γi)
2H11

i γiH
12
i

...

γN−2H
12
N−2 H22

N−2+(γN−1)
2H11

N−1 γN−1H
12
N−1

γN−1H
12
N−1 H22

N−1


,

B = [D(1)
0 , D

(2)
0 +γ1D

(1)
1 , ..., D

(2)
i−1+γiD

(1)
i , ..., D

(2)
N−2+γN−1D

(1)
N−1, D

(2)
N−1]

T ,

34



2 Geodesic Patterns on Freeform Surfaces

where

γi =
cosβi
cosαi

,

D
(k)
i =

∫ si+1

si

w(i,k)(s) W (s) ds, k = 1, 2,

Hjk
i =

∫ si+1

si

w(i,j)(s) w(i,k)(s) ds, j, k = 1, 2.

Minimizing E leads to a symmetric tridiagonal system

Aλ = B.

And functions {wi(s)} are constructed from the solution to this system.

2.4.4 Handling Intervals Without Fundamental Solutions

On each interval [sj , sj+1], the two fundamental solutions w(j,1)(s), w(j,2)(s) in Equation
(2.14) are computed from linear system (2.6). If this system is singular, w(j,1)(s), w(j,2)(s)
are not available. In this case, we add breakpoints to split the interval [si, si+1], until we
can solve system (2.6) to obtain fundamental solutions on each sub-interval of [si, si+1].
To do so, we first uniformly sample the interval at tk = sj+

k
Mj

(sj+1−sj) (k = 1, . . . ,Mj−
1) as candidate breakpoints. For each tk, we check whether linear system (2.6) is non-
singular on both intervals [sj , tk] and [tk, sj+1]. If this is the case, two solution functions
wj,L(s) and wj,R(s) are computed for intervals [sj , tk] and [tk, sj+1] respectively, by
minimizing the target function

ek =

∫ tk

sj

[wj,L(s)−W (s)]2 ds+

∫ sj+1

tk

[wj,R(s)−W (s)]2 ds. (2.16)

wj,L(s) and wj,R(s) need to satisfy condition (2.13) at tk, which means

wj,L(tk) = wj,R(tk). (2.17)

In order to minimize ek subject to condition (2.17). we introduce three coefficient vari-
ables λ0, λ1, λ2, and let

wj,L(s) = λ0w
(1)
j,L(s) + λ1w

(2)
j,L(s),

wj,R(s) = λ1w
(1)
j,R(s) + λ2w

(2)
j,R(s),

(2.18)

where w
(1)
j,L(s), w

(2)
j,L(s) are fundamental solutions on [sj , tk] with boundary conditions

w
(1)
j,L(sj) = 1, w

(1)
j,L(tk) = 0, w

(2)
j,L(sj) = 0, w

(2)
j,L(tk) = 1; and w

(1)
j,R(s), w

(2)
j,R(s) are funda-

mental solutions on [tk, sj+1] with boundary conditions w
(1)
j,R(tk) = 1, w

(1)
j,R(sj+1) = 0,

35



2 Geodesic Patterns on Freeform Surfaces

w
(2)
j,R(tk) = 0, w

(2)
j,R(sj+1) = 1. Minimizing ek leads to linear equations

∂e

∂λ0
= 2(λ0H

11
L + λ1H

12
L −D

(1)
L ) = 0, (2.19)

∂e

∂λ1
= 2[λ0H

12
L + λ1(H

22
L +H11

R ) + λ2H
12
R −D

(2)
L −D

(1)
R ] = 0, (2.20)

∂e

∂λ2
= 2(λ1H

12
R + λ2H

22
R −D

(2)
R ) = 0, (2.21)

where

H ik
L =

∫ tk

sj

w
(i)
j,L(s) w

(k)
j,L(s) ds, i, k = 1, 2,

H ik
R =

∫ sj+1

tk

w
(i)
j,R(s) w

(k)
j,R(s) ds, i, k = 1, 2,

D
(i)
L =

∫ tk

sj

w
(i)
j,L(s) W (s) ds, i = 1, 2,

D
(i)
R =

∫ sj+1

tk

w
(i)
j,R(s) W (s) ds, i = 1, 2.

The minimum value of ek is computed from the solution of linear system (2.19) – (2.21),
and is denoted by Ek. Among all candidate breakpoints {tk}, if at least for one of them
we can compute Ek, then the one with the smallest value of Ek is chosen as breakpoint,
and no more breakpoints are needed on [sj , sj+1]. Otherwise, we simply split [sj , sj+1]
at the midpoint (sj + sj+1)/2, and repeat the above process to add breakpoints to sub-
intervals [sj , (sj + sj+1)/2] and [(sj + sj+1)/2, sj+1]. Proposition 2.1 guarantees that
linear system (2.6) is non-singular on an interval that is short enough. Therefore, only
a finite number of breakpoints are needed for interval [sj , sj+1].

2.4.5 Adding Breakpoints to a Piecewise Geodesic Curve

The Jacobi fields computed in Section 2.4.3 may have large deviation from the target
function W (s). For each function wi(s), we check for the condition

W (si,k)− ε ≤ wi(si,k) ≤W (si,k) + ε, k = 0, . . . ,Mi, (2.22)

where ε > 0 is a given error threshold, and {si,k | k = 0, . . . ,Mi} is a set of sample
parameter values on interval [si, si+1]. If this condition is violated, a breakpoint is added
to [si, si+1], and a new set of functions {wi(s)} is computed using the new breakpoints.
If there is more than one interval violating condition (2.22), we add the breakpoint to
the interval with the largest value of the following average error function

ei =
1

si+1 − si

∫ si+1

si

[wi(s)−W (s)]2 ds.

This process is repeated until condition (2.22) is satisfied on all intervals.

36



2 Geodesic Patterns on Freeform Surfaces

When adding a breakpoint to interval [sj , sj+1], we determine the breakpoint position
in the same way as Section 2.4.4, with the additional constraint that wj,L(s) and wj,R(s)
in Equation (2.16), together with the current Jacobi fields {wi(s)|i 6= j} on other in-
tervals, need to satisfy condition (2.13) at the current breakpoints. Depending on the
position of interval [sj , sj+1] within the whole curve, this additional constraint could
mean some boundary conditions for wj,L(s) and wj,R(s) at sj and sj+1: If there exists a
neighboring interval [sj−1, sj ], condition (2.13) at sj means that

wj−1(sj)

cosαj
=
wj,L(sj)

cosβj
⇔ wj,L(sj) =

cosβj
cosαj

wj−1(sj). (2.23)

Similarly, if there exists a neighboring interval [sj+1, sj+2], we have a boundary condition

wj,R(sj+1) =
cosαj+1

cosβj+1
wj+1(sj+1). (2.24)

Also note that Equation (2.18) implies that wj,L(sj) = λ0, wj,R(sj+1) = λ2. Therefore,
condition (2.23) is equivalent to

λ0 =
cosβj
cosαj

wj−1(sj),

and condition (2.24) is equivalent to

λ2 =
cosαj+1

cosβj+1
wj+1(sj+1).

For g(s) with N intervals [si, si+1] (i = 0, . . . , N−1), we are in one of the following three
cases:

1. N = 1: No boundary condition is imposed. We solve Equations (2.19) (2.20) (2.21)
for λ0, λ1, λ2.

2. N > 1, j = 0, N −1: There is one boundary condition. For j = 0, λ2 is determined
from the boundary condition, and we solve Equations (2.19) (2.20) for λ0, λ1. For
j = 0, the boundary condition determines λ0, and Equations (2.20) (2.21) are
solved for λ1, λ2.

3. N > 1, 1 ≤ j ≤ N − 2: There are two boundary conditions, which determine λ0
and λ2. And λ1 is determined from Equation (2.20).

Figure 2.17 illustrates the process of adding a breakpoint.

2.4.6 Computing the Next Piecewise Geodesic Curve

From the functions {wi(s)} on each arc of g(s), we can compute a corresponding piecewise
geodesic curve g+(s). If g(s) consists of only one arc, g+(s) is a geodesic curve, and is
computed in the same way as in Section 2.3.3. Otherwise, from each breakpoint Pi of

37



2 Geodesic Patterns on Freeform Surfaces

g(sj)g(sj)g(sj)g(sj)g(sj)g(sj)g(sj)g(sj)g(sj)g(sj)g(sj)g(sj)g(sj)g(sj)g(sj)g(sj)g(sj)

g(sj+1)

wj−1(sj)

wj(sj)

wj(sj+1)
wj+1(sj+1)

g(s)

(a)

g(sj)g(sj)g(sj)g(sj)g(sj)g(sj)g(sj)g(sj)g(sj)g(sj)g(sj)g(sj)g(sj)g(sj)g(sj)g(sj)g(sj)
g(tk)g(tk)g(tk)g(tk)g(tk)g(tk)g(tk)g(tk)g(tk)g(tk)g(tk)g(tk)g(tk)g(tk)g(tk)g(tk)g(tk)

g(sj+1)

wj,L(sj)

wj,L(tk)wj,L(tk)wj,L(tk)wj,L(tk)wj,L(tk)wj,L(tk)wj,L(tk)wj,L(tk)wj,L(tk)wj,L(tk)wj,L(tk)wj,L(tk)wj,L(tk)wj,L(tk)wj,L(tk)wj,L(tk)wj,L(tk)
=wj,R(tk)=wj,R(tk)=wj,R(tk)=wj,R(tk)=wj,R(tk)=wj,R(tk)=wj,R(tk)=wj,R(tk)=wj,R(tk)=wj,R(tk)=wj,R(tk)=wj,R(tk)=wj,R(tk)=wj,R(tk)=wj,R(tk)=wj,R(tk)=wj,R(tk)

wj,R(sj+1)

(b)

g(ŝj)g(ŝj)g(ŝj)g(ŝj)g(ŝj)g(ŝj)g(ŝj)g(ŝj)g(ŝj)g(ŝj)g(ŝj)g(ŝj)g(ŝj)g(ŝj)g(ŝj)g(ŝj)g(ŝj)

g(ŝj+1)g(ŝj+1)g(ŝj+1)g(ŝj+1)g(ŝj+1)g(ŝj+1)g(ŝj+1)g(ŝj+1)g(ŝj+1)g(ŝj+1)g(ŝj+1)g(ŝj+1)g(ŝj+1)g(ŝj+1)g(ŝj+1)g(ŝj+1)g(ŝj+1)

g(ŝj+2)

ŵj−1(ŝj)

ŵj(ŝj)

ŵj+1(ŝj+2)
ŵj+2(ŝj+2)ŵj+2(ŝj+2)ŵj+2(ŝj+2)ŵj+2(ŝj+2)ŵj+2(ŝj+2)ŵj+2(ŝj+2)ŵj+2(ŝj+2)ŵj+2(ŝj+2)ŵj+2(ŝj+2)ŵj+2(ŝj+2)ŵj+2(ŝj+2)ŵj+2(ŝj+2)ŵj+2(ŝj+2)ŵj+2(ŝj+2)ŵj+2(ŝj+2)ŵj+2(ŝj+2)ŵj+2(ŝj+2)

ŵj(ŝj+1)ŵj(ŝj+1)ŵj(ŝj+1)ŵj(ŝj+1)ŵj(ŝj+1)ŵj(ŝj+1)ŵj(ŝj+1)ŵj(ŝj+1)ŵj(ŝj+1)ŵj(ŝj+1)ŵj(ŝj+1)ŵj(ŝj+1)ŵj(ŝj+1)ŵj(ŝj+1)ŵj(ŝj+1)ŵj(ŝj+1)ŵj(ŝj+1)
=ŵj+1(ŝj+1)=ŵj+1(ŝj+1)=ŵj+1(ŝj+1)=ŵj+1(ŝj+1)=ŵj+1(ŝj+1)=ŵj+1(ŝj+1)=ŵj+1(ŝj+1)=ŵj+1(ŝj+1)=ŵj+1(ŝj+1)=ŵj+1(ŝj+1)=ŵj+1(ŝj+1)=ŵj+1(ŝj+1)=ŵj+1(ŝj+1)=ŵj+1(ŝj+1)=ŵj+1(ŝj+1)=ŵj+1(ŝj+1)=ŵj+1(ŝj+1)

(c)

Figure 2.17: Adding a breakpoint to piecewise geodesic curve. (a) The functions {wi(s)}
before adding a breakpoint. Interval [sj , sj+1] violates condition (2.22). (b)
For each candidate point tk on [sj , sj+1], functions wj,L(s) and wj,R(s) and
the error term Ek are computed; (c) The candidate with the smallest value
of Ek is selected as breakpoint, and functions {ŵi(s)} are recomputed using
the new breakpoints {g(ŝi)}.

38



2 Geodesic Patterns on Freeform Surfaces

P+
k = Tk(t)

PkPkPkPkPkPkPkPkPkPkPkPkPkPkPkPkPk

P+
k−1

Pk−1

P+
k+1P+
k+1P+
k+1P+
k+1P+
k+1P+
k+1P+
k+1P+
k+1P+
k+1P+
k+1P+
k+1P+
k+1P+
k+1P+
k+1P+
k+1P+
k+1P+
k+1

Pk+1

θLk θRk

θLk−1
θRk+1

Tk

Tk−1
Tk+1

g+k−2 g+k−1
g+k

g+k+1

Figure 2.18: The piecewise geodesic curve g+(s) is determined by arc-length parameter
t of P+

k on Tk, and the angles θLi (1 ≤ i ≤ k), θRj (k ≤ j ≤ N − 1).

g(s), we trace a geodesic Ti along the movement direction of Pi which defines the relation
(2.13). Ti is called a trail curve. g+(s) is constructed as a piecewise geodesic curve with
the same number of breakpoints as g(s). And each breakpoint P+

i of g+(s) needs to lie
on the corresponding trail curve Ti.

A piecewise geodesic curve g+(s) with N arcs is determined by N + 1 degrees of
freedom. We choose one trail curve Tk as the main trail curve. The break point P+

k of
g+(s) can be determined by an arc-length parameter t on Tk: P+

k = Tk(t). Arc g+k−1
is traced from P+

k along a direction given by the angle θLk between g+k−1 and Tk. g+k−1
intersects trail curve Tk−1 at breakpoint P+

k−1, from which we continue to trace the arcs

g+i−1 (i < k) one by one, using the angles θLi between g+i and Ti. Similarly, starting from
P+
k , we can consecutively trace each arc g+j (j ≥ k) using angle θRj (see Figure 2.18).

Therefore, g+(s) is determined by N + 1 variables: the arc-length parameter t of P+
k on

Tk, and the angles {θLi | 1 ≤ i ≤ k} and {θRj | k ≤ j ≤ N − 1}.
g+(s) is obtained from a non-linear least squares problem similar to Section 2.3.3. For

each arc gi of g(s) defined on interval [si, si+1], we uniformly sample gi at parameter
values si,j = si + j

Mi
(si+1 − si) (j = 0, . . . ,Mi). Geodesics hi,j are traced from points

g(si,j) along directions orthogonal to gi. Signed distance values D(g(si,j), g
+
i ) are derived

from the intersections between hi,j and the geodesic curve containing arc g+i of g+(s)
(see Figure 2.19). g+(s) is determined by minimizing the following target function with
respect to variables t, θLi (1 ≤ i ≤ k) and θRj (k ≤ j ≤ N − 1)

E =
∑
i

si+1 − si
Mi + 1

Mi∑
j=0

[D(g(si,j), g
+
i )− wi(si,j)]2. (2.25)

This non-linear least squares problem is solved using the LM method. The partial

39



2 Geodesic Patterns on Freeform Surfaces

g(si)

g(si+1)

g(si,j)

hi,j

D
(g(s

i,j ), g +i
)

g+i

g+i−1 g+i+1

Figure 2.19: Orthogonal geodesic hi,j is traced from g(si,j) to compute signed distance
D(g(si,j), g

+
i ) to g+i .

derivatives of E are computed analytically by unfolding the mesh faces containing g+(s),
which maps g+(s), {Ti} and {hi,j} to intersecting straight line segments (see Figure 2.20).
Within the LM method, we apply modified step size control as discussed in Section 2.3.5.

2.4.7 Post-processing of the Next Piecewise Geodesic Curve

After we obtain g+(s) by numerical minimization, we still need some post-processing on
g+(s) to improve its shape.

Merging Neighboring Arcs

Sometimes it turns out that some breakpoints on g+(s) are not necessary and we can
replace some neighboring arcs of g+(s) with a single arc, without violating the bound

P
+
k

θ
L
k θ

R
kθ

L
k−1

θ
R
k+1

hk−2,j hk−1,j hk,j

hk+1,j

T k
T k−1 T k+1

g+k−2
g+k−1 g+k

g+k+1

Figure 2.20: By unfolding the mesh faces containing g+(s), arcs {g+i } are mapped to
straight line segments {g+i }, and geodesics {Ti}, {hi,j} are mapped to
straight lines {T i}, {hi,j}.

40



2 Geodesic Patterns on Freeform Surfaces

g(sj)g(sj)g(sj)g(sj)g(sj)g(sj)g(sj)g(sj)g(sj)g(sj)g(sj)g(sj)g(sj)g(sj)g(sj)g(sj)g(sj)
g(sj−1)

g(sj+1)

Tj

Tj−1
Tj+1

g+j−1
g+j g+j+1g+j−2

(a)

g(sj)g(sj)g(sj)g(sj)g(sj)g(sj)g(sj)g(sj)g(sj)g(sj)g(sj)g(sj)g(sj)g(sj)g(sj)g(sj)g(sj)

g(sj−1)

g(sj+1)

g(sj−1,l) g(sj,l)

D
(
g(
s
j−

1
,l ),

g̃
j )

D
(g(sj,l),

g̃
j)
hj,l

hj−1,lTj−1
Tj+1

g̃j
g+j+1g+j−2

(b)

g(sj)g(sj)g(sj)g(sj)g(sj)g(sj)g(sj)g(sj)g(sj)g(sj)g(sj)g(sj)g(sj)g(sj)g(sj)g(sj)g(sj)

g(sj−1)

g(sj+1)

Tj−1 Tj+1
g+(s)

(c)

Figure 2.21: Merging neighboring arcs on g+(s). (a) The arcs before merging. (b) A
replacement arc g̃j is computed for arcs g+j−1 and g+j , and condition (2.26)

is checked. (c) If condition (2.26) is satisfied, Tj is removed and g+(s) is
recomputed using the remaining trail curves.

41



2 Geodesic Patterns on Freeform Surfaces

P+
hP
+
hP
+
hP
+
hP
+
hP
+
hP
+
hP
+
hP
+
hP
+
hP
+
hP
+
hP
+
hP
+
hP
+
hP
+
hP
+
h

Tj
Th

g+(s)

g(s)

(a)

P+
hP
+
hP
+
hP
+
hP
+
hP
+
hP
+
hP
+
hP
+
hP
+
hP
+
hP
+
hP
+
hP
+
hP
+
hP
+
hP
+
h

θ

Th

g̃j

(b)

Figure 2.22: If Tj is the first or last trail curve, g̃j is determined by an angle θ.

of deviation between the target distance function W (s) and the actual distance. This
can happen because the Jacobi field is only a first order approximation of the actual
distance. We would like to merge these arcs and reduce the number of breakpoints of
g+(s), because this leads to a more simple and aesthetic shape of g+(s). Note that the
possibility of merging two arcs can be indicated by a small intersection angle between
them. Therefore, we choose a pair of neighboring arcs g+j−1 and g+j with the smallest

intersection angle αj . If αj is smaller than a given threshold εα, we try to merge g+j−1 and

g+j . To do so, we first compute a replacement arc g̃j without changing the other arcs.
Then with the sample parameters {sj−1,l}, {sj,l} and orthogonal geodesics {hj−1,l},
{hj,l} which have been used previously for computing g+(s), we check the following
condition

W (sγ,l)− ε ≤ D(g(sγ,l), g̃j) ≤W (sγ,l) + ε, γ = j − 1, j, (2.26)

where D(g(sγ,l), g̃j) is the signed distance from g(sγ,l) to the geodesic curve containing
g̃j (see Figure 2.21(b)), and ε > 0 is a threshold value. If condition (2.26) is satisfied
for all sample parameters {sj−1,l}, {sj,l}, then trail curve Tj is removed, and g+(s) is
recomputed using the remaining trail curves (see Figure 2.21(c)). This procedure is
repeated until no neighboring arcs can be merged.

Depending on the position of Tj , there are different ways to compute the replacement
geodesic g̃j :

1. Tj is the only trail curve: g̃j is computed by minimizing the target function

Ẽ =
∑

γ=j−1,j

sγ+1 − sγ
Mγ + 1

Mγ∑
l=0

[D(g(sγ,l), g̃j)−W (sγ,l)]
2. (2.27)

This is similar to Section 2.3.3.

2. There is more than one trail curve, and Tj is the first or last trail curve: Since
other arcs of g+(s) can not be changed, g̃j needs to be incident with the breakpoint

42



2 Geodesic Patterns on Freeform Surfaces

P+
h

P+
l

Xl

DTl(g̃j)
θ

Th
Tl

g̃j

Figure 2.23: The signed distance function DTl(g̃j) is used for computing arc g̃j which is
incident with P+

h and P+
l .

P+
h of g+(s) on the neighboring trail curve Th. So g̃j is determined by the angle
θ between g̃j and Th (see Figure 2.22). The value of θ is obtained by minimizing
target function (2.27).

3. There is more than one trail curve, and Tj is neither the first nor the last trail
curve: g̃j needs to be incident with breakpoints P+

h and P+
l on neighboring trail

curves Th and Tl. The geodesic curve containing g̃j is computed as a straightest
geodesic traced from P+

h which minimizes a target function e = [DTl(g̃j)]2, where
DTl(g̃j) is the signed distance along Tl from P+

l to the intersection point between
Tl and g̃j . The variable of this minimization problem is the intersection angle θ
between Tl and g̃j (see Figure 2.23).

Resolving Intersections Between Trail Curves

A trail curve Ti may intersect a neighboring trail curve Tj at a point between the break-
points Pi and P+

i . This leads to undesired shape of g+(s) (see Figure 2.24(a)). For such
intersections, we remove Ti, Tj , and insert a virtual trail curve T which is incident with
the center point P between Pi and Pj on g(s). Then g+(s) is recomputed using the
remaining trail curves as well as the virtual trail curve (see Figure 2.24(b)). This pro-
cedure is repeated until all intersections between neighboring trail curves are resolved.

Trimming Trail Curves

Two neighboring piecewise geodesic curves g(s) and g+(s) can represent the boundary
curves of a sequence of straight panels joined along end points. The trail curve segments
between g(s) and g+(s) represent the boundaries between neighboring panels. Therefore,
we trim the trail curves by g(s) and g+(s) to obtain these boundary curve segments. For
an ordinary trail curve Ti, we keep the part between breakpoints Pi and P+

i . For a virtual

trail curve T which intersect g+(s) at breakpoint P
+

, we use geodesic curve segments

to connect P
+

with each break point on g(s) associated with the trail curves that are

43



2 Geodesic Patterns on Freeform Surfaces

Pi Pj

TiTj

g(s)

g+(s)

(a)

Pi Pj

P

T

g(s)

g+(s)

(b)

Figure 2.24: Resolving intersections of trail curves. (a) An intersection between neigh-
boring trail curves Ti and Tj , which leads to undesirable shapes of g+(s).
(b) Ti and Tj are replaced by virtual trail curve T , and g+(s) is recomputed.

replaced by T when resolving the trail curve intersections. Such connections result in
triangle-shaped panels incident with the breakpoints on virtual curves (see Figure 2.25).

2.4.8 Results

Like geodesic curves, we can cover a surface patch by evolving piecewise geodesic curves
from a source curve. In this section we give some examples of this type of evolution.
In each example, the source curve g0(s) is a geodesic curve (which is also a piecewise

P
+

Pk Pl

g+(s)

g(s)

Ti Tj

T

Figure 2.25: Trimming trail curves. The ordinary trail curves Ti, Tj are simply trimmed

by breakpoints. For virtual trail curve T , breakpoint P
+

is connected to
Pk and Pl, whose original trail curves have been replaced by T .

44



2 Geodesic Patterns on Freeform Surfaces

Figure 2.26: Piecewise geodesic curves (in brown) and trimmed trail curves (in red)
evolved from a source curve (in dark blue). The evolution is performed on
the same surface as Figure 2.14, using the same constant target distance
function and the same source curve. The error threshold for introducing
breakpoints is 5% of the target distance value.

geodesic curve with one arc), and the target distance function is a constant function. The
computation of Jacobi fields requires specifying movement directions for the breakpoints.
In all examples, we use the direction bisecting the angle between the two neighboring
arcs as the movement direction.

Figure 2.26 shows a layout of piecewise geodesic curves on the same surface as in
Figure 2.14. The evolution starts from the same source curve, using the same target
distance function. By evolving piecewise geodesic curves instead of geodesics, we get
a more equidistant layout of curves, and get rid of intersections between neighboring
curves.

Figure 2.27(a) shows the evolution of piecewise geodesic curves on the same surface
as in Figure 2.26, using a smaller target distance value for the realistic width of wooden
panels. Figures 2.27(b), 2.27(c) and 2.27(d) show a layout of wooden panels computed
from these piecewise geodesic curves, using the binormal method in [Wallner et al. 2010].

Figure 2.28 gives an example where the trail curves tend to converge and intersect.
The intersections are resolved by the post-processing algorithm to produce nice layouts
of piecewise geodesic curves and trimmed trail curves.

Figure 2.29 compares evolution of piecewise geodesic curves from the same source
curve, using the same target distance value but different error thresholds for introducing
breakpoints. The evolution with a smaller threshold produces a layout with smaller
deviation from the target distance, and introduces more breakpoints.

The timing data of some examples above is shown in Table 2.2. Here the meanings of
#Face, δs, Time, %Jacobi,%NLS are the same as in Table 3.1. %Merge, %Int and %Trim
are the percentages of time spent on merging neighboring arc, resolving intersection and
trimming trail curves, respectively.

45



2 Geodesic Patterns on Freeform Surfaces

(a)

(b)

(c) (d)

Figure 2.27: Wooden panel layout from piecewise geodesic curves. (a) A layout of piece-
wise geodesic curves by evolution. (b) The surface is covered by wooden
panels of constant width, computed from the piecewise geodesic curves.
(c)(d) Details of the wooden panels.

46



2 Geodesic Patterns on Freeform Surfaces

(a) (b)

Figure 2.28: A surface with intersecting trail curves, viewed from different angles. The
error threshold for introducing breakpoints is 2.5% of the target distance
value.

(a) (b)

Figure 2.29: Evolving piecewise geodesic curves on the same surface from the same source
curve (blue, at extreme left), using the same target distance value and
different error threshold values. The threshold values in (a) and (b) are
7.5% and 5% of the target distance value, respectively. The surface is taken
from the top of the Lilium Tower, Warsaw, by Zaha Hadid Architects.

47



2 Geodesic Patterns on Freeform Surfaces

Fig #Face δs Time %Jacobi %NLS %Merge %Int %Trim

2.28 91180 7.5 · 10−4 48.2 0.33 47.75 36.34 2.74 0.15

2.29(a) 32018 1.3 · 10−3 31.0 0.45 64.44 26.52 0.61 0.16

2.29(b) 32018 1.3 · 10−3 29.8 0.44 64.76 25.66 1.37 0.13

Table 2.2: Timing data for evolution of piecewise geodesic curves.

2.5 Conclusion and Discussion

In this chapter, we present methods to evolve geodesics or piecewise geodesic curves on a
surface patch, so that the distance function between neighboring curves are close to some
specified target function. We employ the well-known Jacobi fields to approximate the
distances between neighboring curves. Since the Jacobi fields on a geodesic form a two
dimensional linear space, the problem of selecting Jacobi fields on geodesics or piecewise
geodesic curves is reduced to solving a linear system. Using the selected Jacobi fields,
a neighboring curve can be computed from the current curve by solving a non-linear
least squares problem. Piecewise geodesic curves have more degrees of freedom than
geodesics. So the evolution of piecewise geodesic curves provides more flexibility in
creating geodesic patterns on a surface, producing layouts of curves which fit the target
distance functions better. With the presented methods, we are able to create families of
geodesics or piecewise geodesic curves with nearly constant distance between neighboring
curves, as well as other interesting patterns of geodesics.

There are some limitations for these methods. First of all, Jacobi fields only provide
first order approximations of distances between geodesic curves. There may be large
approximation error, if the target distance is large, or if the underlying surface is not
smooth. Besides, The current methods only work for surface patches without holes.
Furthermore, these methods are essentially solving initial value problems, and the layout
of the generated curves depends heavily on the source curve (see Figure 2.10 for an
example of geodesics evolved from different source curves on the same surface). In order
to find an optimal layout, a user may need to try different source curves and compare
the results.

48



3 Functional Webs for Freeform Architecture

In this chapter, we investigate the problem of realizing architectural freeform surface
shapes by regular patterns of long-range elements with special properties. Such long-
range elements include structural elements and supports, floor levels, curved panels, and
curves which are not physically realized by a single element but nevertheless are highly
visible in the design. Since these elements can be represented as curves on the surface,
we are investigating curve networks on a surface, where the curves have some special
properties. This investigation is motivated by some recent architectural designs and
constructions. In Figure 3.1, interwoven bamboo strips are used for an interior design.
These strips can be modeled as geodesics on an underlying surface. Figure 3.2 shows a
roof structure consisting of curve elements made from timber. Due to the general shapes
of these elements, they have to be manufactured by CNC machining [Scheurer 2010]. In
Figure 3.3, two families of wooden strips are imposed on a family of support elements,
to form a timber rib shell [Pirazzi and Weinand 2006]. Here the wooden strips follow
geodesics on the rib shell surface, and the support elements lie in vertical planes. Figure
3.4 is a tower with its outer shell built from laminated timber beams, where some joints of
the beams are aligned with the horizontal floor levels. From these examples we see that
certain properties of the curve elements can facilitate manufacturing, or provide desired
structural properties. In this chapter we will consider the following special properties of
the curves:

• geodesic curves are the shapes of straight panels subjected only to bending about
their weak axis and to torsion [Pirazzi and Weinand 2006], which means that they
can be manufactured from straight panels without CNC machining;

• planar curves are easily manufacturable for the simple reason that most factory
floors are flat;

• circular curves, which are part of a circle, are even more efficiently manufacturable;

• vertical curves (contained in planes parallel to a hypothetical z axis) are useful for
support elements;

• horizontal curves (contained in planes orthogonal to the hypothetical z axis) are
useful for design and for floor levels to follow.

In accordance with the above examples, we consider three families of curves

F1 = {C1(i)}i∈Z,
F2 = {C2(j)}j∈Z,
F3 = {C3(k)}k∈Z

(3.1)

49



3 Functional Webs for Freeform Architecture

Figure 3.1: Interior design using composite bamboo strips, at Tang Palace, Hangzhou,
China, designed by Atelier FCJZ.

Figure 3.2: The roof structure of Yeoju Golf Club, South Korea, designed by Shigeru
Ban, manufactured from timber using NC machining.

50



3 Functional Webs for Freeform Architecture

Figure 3.3: Assembling screw-laminated beams for a timber rib shell prototype based
on two families of geodesics supported by a third family of vertical planar
elements [Pirazzi and Weinand 2006]. Image courtesy IBOIS (EPFL, Lau-
sanne).

Figure 3.4: The Korkeasaari Lookout Tower in Helsinki, Finland, with the outer shell
built from laminated timber beams. Photos by Jussi Tiainen.

51



3 Functional Webs for Freeform Architecture

(a) (b)

Figure 3.5: Connectivity of the three families of curves F1, F2, F3. (a) The curves
are homeomorphic to three families of parallel lines, where any intersection
point of two lines from two families is incident with a line from the remaining
family. (b) Taking every second curve from each family, we obtain a tri-hex
structure of curves as in Figure 3.2.

which lie on a surface, with regular connectivity. This means the following properties of
the curves:

1. Two curves in the same family have no common point, i.e, Cα(i) ∩ Cα(j) = ∅
(α = 1, 2, 3) if i 6= j;

2. For any intersection point between two curves from different families p = Cα(i) ∩
Cβ(j) (α 6= β), there is a unique curve Cγ(k) (γ 6= α, β) from the remaining family,
such that Cγ(k) is incident with p;

3. For any intersection point p between two curves from different families, the tangents
of the two curves at p are linearly independent.

F1, F2, F3 are homeomorphic to three families of parallel lines (see Figure 3.5(a)). Note
that some special arrangements of curves can be obtained from the subsets of curves in
F1, F2, F3. For example, using every second curve in each family, we can obtain the
tri-hex structure in Figure 3.2. (see Figure 3.5(b)).

In this chapter, we would like to compute the curve families F1, F2, F3 such that
the curves within each family have one of the special properties listed above. This task
is converted into a numerical optimization problem, with appropriate target functionals
expressing the desired properties for the curves. In terms of architectural design, we
consider two types of problem:

1. In a rationalization problem, we are given a reference surface, and the computed
discrete web needs to be close to this surface;

2. In a form-finding problem, only part of the web is required to satisfy some posi-
tional constraints (e.g., the boundary curves are required to be incident with some
given shapes).

52



3 Functional Webs for Freeform Architecture

x1

x2 x3

x4

x5x6

x7
o

C1(uo)

C3(wo) C2(vo)

C3(wx1)

C1(wx2
)

Figure 3.6: A hexagonal web satisfies the condition that for any point o and a neighboring
point x1, the point x7 coincides with x1.

Usually, rationalization problems are more restrictive, and may not be solvable.

3.1 Related Work

3.1.1 Web Geometry

It turns out that the curve families in Equation (3.1) can be seen as a discrete version
of a hexagonal web, which was introduced by Blaschke and colleagues [Blaschke and Bol
1938] in a mathematical study which is now called web geometry [Chern 1982].

In web geometry, a three-web on an open domain D of a surface consists of three
one-parameter families of smooth curves

C1 = {C1(u)}u∈R,
C2 = {C2(v)}v∈R,
C3 = {C3(w)}w∈R

with the following properties [Pereira and Pirio 2009]:

1. D = ∪uC1(u) = ∪vC2(v) = ∪wC3(w);

2. Ci(s) ∩ Ci(t) = ∅ (i = 1, 2, 3) if s 6= t;

3. For any intersection point p between two curves from different families, the tangents
of the two curves at p are linearly independent.

The above properties imply that for any point q ∈ D, there exists exactly one curve
from each family which is incident with q.

A hexagonal web is a three-web with the following closure property: Let o be a point
in D, and C1(uo), C2(vo), C3(wo) be the three curves in the web which are incident

53



3 Functional Webs for Freeform Architecture

with o. Take a point x1 ∈ C1(uo) in a neighborhood of o. According to the properties
of three-webs, there exists a unique curve C3(wx1) ∈ C3, which is incident with x1 and
intersects C2(vo) at a point x2. Similarly there exists a unique curve C1(ux2) ∈ C1 which
is incident with x2 and intersects C3(w0) at a point x3. Repeating this construction,
we get a sequence of points x1, . . . , x7 which are incident with one of the three curves
C1(uo), C2(vo), C3(wo) (see Figure 3.6). If for any point o ∈ D and any of its neighboring
point x1 ∈ C1(uo), the above construction leads to a point x7 = x1, then this three-web
is called a hexagonal web.

By comparing the definition of a three-web with the conditions we require for the curve
families F1, F2, F3 in Equation (3.1), we see that F1, F2, F3 form a discrete three-
web on a surface. Furthermore, it is trivial to verify that F1, F2, F3 satisfy the closure
property of hexagonal webs mentioned above. Therefore, we say that F1, F2, F3 form
a discrete hexagonal web. And the rationalization problem we consider here is directly
analogous to the smooth problem of covering a given surface by a web whose curves
enjoy certain properties. This is an old topic of differential geometry; unfortunately it
has been solved only for some special cases. [Graf and Sauer 1924] prove that a complete
hexagonal web of straight lines in R2 consists of the tangents of an algebraic curve of
class 3 (possibly reducible). [Mayrhofer 1931] shows that surfaces of constant Gaussian
curvature have the same variety of hexagonal webs of geodesics as the plane. For general
surfaces, however, it is not known exactly which surfaces can be covered by a hexagonal
web of geodesics: [Volk 1929] shows that for such surfaces, the coefficients of the first
fundamental form must fulfill a certain third order PDE, for which a general solution
looks hopeless. Likewise it is unknown which webs of planar curves a general surface
can support (apart from the trivial cases of projecting webs of straight lines in R2 onto a
surface). The very reduced problem of describing all webs in R2 formed by three linear
pencils of circles has been solved only recently [Lazareva 1988] [Shelekhov 2007]. We
conclude that many smooth problems of differential geometry which directly correspond
to the problems studied here are unsolved, and it is difficult to obtain additional insight
from the smooth case.

Geometry Processing

In the field of geometry processing, there is some work concerning curve networks with
the same combinatorics as those considered here. [Wallner et al. 2007] consider such
curve networks which minimize certain energy functionals. [Nieser et al. 2010] introduce
hexagonal global parameterizations, where the parameter lines have the topology of
hexagonal webs. Neither of them considers the functional properties which we aim at
here. [Pottmann et al. 2010] construct a hexagonal web of approximately geodesic curves
on a mesh surface by computing three scalar functions on the surface, with the level set
curves of each function being approximately geodesic. For these level set curves to form
a hexagonal web, the function values need to satisfy a certain algebraic condition. The
three scalar functions are determined by minimizing a target functional which penalizes
the deviation of the level set curves from geodesics. In this chapter, we compute geodesic
webs in a different way, i.e., by searching for regular triangle meshes whose edge polylines

54



3 Functional Webs for Freeform Architecture

v

v1 v2

v3

v4v5

v6

(a) (b)

Figure 3.7: A discrete hexagonal web can be represented by a regular triangle mesh. (a)
For an interior vertex v, neighboring vertices vi and vi+3 (i = 1, 2, 3) belong
to the same polyline which represents a curve in the web. (b) A simple
regular mesh which represents a web. The blue, yellow and red families of
polylines represent planar, geodesic and circular curves, respectively.

are straightest geodesic curves on the mesh surface. Such an approach enables us to
consider also hexagonal webs with other types of curves, such as planar curves and
circular curves, and provides a general framework for computing discrete webs.

3.2 Discrete Webs by Global Optimization

In this section we present a method to construct discrete hexagonal webs by optimizing
a target functional. The key idea is that a discrete hexagonal web can be discretized
as a regular triangle mesh (i.e., each interior vertex is of valence 6), such that the edge
polylines of the mesh represent the curves of the web, while the mesh vertices represent
the intersection points between the curves. Then the underlying surface of the web is
represented by the mesh surface. Among the six neighboring vertices vi (i = 1, . . . , 6)
of an interior vertex v, two opposite ones vi and vi+3 (i = 1, 2, 3) belong to the same
edge polyline representing a curve (see Figure 3.7(a)). Using this rule, we can infer three
families of edge polylines L1, L2, L3 corresponding to the three families of curves F1,
F2, F3 in Equation (3.1) (see Figure 3.7(b)). Therefore, the problem of computing a
web with specified properties of curves is converted to a problem of computing a regular
triangle mesh whose edge polylines have the specified properties. In a rationalization
problem, the mesh needs to approximate the given surface. In a form-finding problem,
the mesh needs to satisfy the given positional constraints. Such a mesh is determined

55



3 Functional Webs for Freeform Architecture

by minimizing a target functional

f =
∑
j

λpropjfpropj (Lj) +
∑
j

λfairjffairj (Lj) + λproxfprox + λbdryfbdry. (3.2)

Here fpropj (Lj) refers to a functional which penalizes the deviation of family Lj from
its required property. ffairj (Lj) is a fairness functional for family Lj . fprox penalizes the
deviation between the mesh surface and the constraint shapes which the mesh surface
needs to be close to. fbdry penalizes the deviation between the mesh boundary curves and
the target boundary curves. fprox and fbdry express the positional constraints imposed on
the web surface by a rationalization or form-finding problem. The λ’s represent weights.
The variables for this minimization problem are the mesh vertex coordinates, as well as
the auxiliary variables required by the functionals. This minimization problem is solved
using numerical optimization. The formulation of each functional is explained below.

3.2.1 The Fairing Functional

For a polyline L, we employ second order or third order differences of consecutive vertices
in L as a fairing functional

hfair,II(L) =
∑

v1,v2,v3 consecutive in L

‖v1 − 2v2 + v3‖2,

hfair,III(L) =
∑

v1,v2,v3,v4 consecutive in L

‖v1 − 3v2 + 3v3 − v4‖2.
(3.3)

The fairing functional for a polyline family L is defined as the sum of one of the above
terms in (3.3) for all polylines in L

ffair,σ(L ) =
∑
L∈L

hfair,σ(L), σ = II, III. (3.4)

We may choose different σ in (3.4) for different families of polylines. Functional hfair,II(L)
reaches a minimum when the vertices of L are uniformly distributed on a straight line,
while hfair,III(L) is minimized only if the vertices of L lie on a parabola or a straight
line. hfair,II(L) is more restrictive since it tends to “straighten” the polyline. On the
other hand, hfair,II(L) is able to produce more evenly spaced vertices on the polyline.
The choice between hfair,II(L) and hfair,III(L) depends on the specific requirement from
the actual problem.

3.2.2 The Shape Proximity Functional

Functional fprox expresses the deviation between the web surface mesh and the constraint
shapes. For a rationalization problem, the constraint shape is a given surface which needs
to be approximated by the web. For a form-finding problem, the constraint shapes can
be some curves or points with which the web surface needs to be incident. fprox can
have one of the following two forms:

56



3 Functional Webs for Freeform Architecture

The Proximity Functional using Sample Points of the Constraint Shapes

The first form of fprox is defined using the shortest distance from a set of sample points
P of the constraint shapes to the mesh M representing the web

fprox,I =
∑
p∈P

[dist(p,M)]2. (3.5)

Here dist(p,M) is the shortest distance from point p to M . It is evaluated by searching
for a footpoint p⊥ on M , whose distance to p is the smallest among all points of M .
Then dist(p,M) = ‖p − p⊥‖. To minimize the target functional (3.2) by numerical
optimization, we also need to compute the derivatives of dist(p,M) with respect to the
variables of the minimization problem. When the variable values undergo small enough
changes, we can obtain closed-form representations of dist(p,M), from which we can
compute the derivatives with respect to the current variable values. Depending on the
footpoint position p0⊥ on the current mesh, there are three cases to consider:

1. p0⊥ is in the interior of a face F of mesh M : For small enough changes of vertex
positions of M , the footpoint of p on the new mesh will still lie on F . There-
fore, locally dist(p,M) equals the distance from p to the plane containing F . Let
v1, v2, v3 be the vertices of F , then dist(p,M) has a local representation

dist(p,M) = |(p− v1) ·NF |, (3.6)

where

NF =
(v2 − v1)× (v3 − v1)
‖(v2 − v1)× (v3 − v1)‖

,

is the unit normal vector of the face. Note that here dist(p,M) only depends on
the coordinates of v1, v2, v3. The derivative of dist(p,M) with respect to any other
variable is zero.

2. p0⊥ is in the interior of an edge E of M : For small enough changes of vertex
positions of M , the new footpoint still lies on E, unless p is on a plane which is
incident with E and orthogonal to a face containing E. Since such a case happens
with probability zero, it can be ignored in practice. Therefore, dist(p,M) locally
equals the distance from p to the straight line containing E. Let v1, v2 be the two
vertices of E, then

dist(p,M) = ‖(p− v1)− TE(TE · (p− v1))‖,

where

TE =
v2 − v1
‖v2 − v1‖

is a unit tangent vector of the edge. Here dist(p,M) only depends on the coordi-
nates of v1 and v2.

57



3 Functional Webs for Freeform Architecture

3. p0⊥ coincides with a vertex v of M : For small enough changes of vertex positions
of M , the new footpoint still coincides with v, unless p is on the surface of the
following pyramid P̂ : the apex of P̂ is at v; the base polygon of P̂ is an nv-gon at
infinity, where nv is the valence of v; there is a one-to-one correspondence between
the pyramid faces {Fi} incident with the apex, and the mesh edges {Ei} incident
with v, so that Ei is orthogonal to Fi. Point p lies on the surface of P̂ with
probability zero. Therefore, dist(p,M) locally equals the distance from p to v

dist(p,M) = ‖p− v‖.

This function only depends on the coordinates of v.

The Proximity Functional using Vertices of the Web Surface

The second form of fprox can be used in rationalization problems, where the constraint
shape is a given surface S. It is defined using the tangential distance from the vertices
{v} of the web surface mesh M to S

fprox,II =
∑
v∈M

[distT (v, S)]2. (3.7)

Here the tangential distance distT (v, S) is defined as the signed distance from vertex v
to the tangent plane of S at v⊥, where v⊥ is the footpoint of v on S. distT (v, S) only
depends on the coordinates of v. To compute the derivatives of distT (v, S), we ignore
the dependence of the footpoint v⊥ on the position of v, and distT (v, S) becomes a linear
function of the coordinates of v. The square of this tangential distance is suggested by
[Pottmann and Leopoldseder 2003] as an approximation of the true squared distance
function (SQDF) from v to S, if the footpoint v⊥ is not on the boundary of S. It is in
second order agreement with the SQDF if v is close to S [Pottmann and Leopoldseder
2003].

Comparison Between the Two Forms

fprox,II can only be used for rationalization problems, while fprox,I can be used in ratio-
nalization as well as form-finding. Besides, fprox,I requires the web surface to cover the
whole constraint shapes: If we sample the constraint shapes densely enough, minimiz-
ing functional fprox,I requires every sample point to be close to the web surface mesh,
effectively covering the constraint shapes with the web surface. Such a covering effect
can not be guaranteed by fprox,II: For a given constraint surface S, a web surface mesh
M with all vertices lying on a sub-region of S leads to a minimum of fprox,II. However,
S is not entirely covered by M .

58



3 Functional Webs for Freeform Architecture

3.2.3 The Boundary Proximity Functional

For a boundary polyline B of the web surface mesh, and a curve CB as the target position
of B, the following functional penalizes the deviation between B and CB

hbdry(B) =
∑
v∈B

[distT (v, CB)]2. (3.8)

Here v is a vertex on polyline B, distT (v, CB) is the distance from v to the tangent line
of CB at the footpoint of v. The value and derivatives of distT (v, CB) is evaluated in a
way similar to distT (v, S) in (3.7). The boundary proximity functional fbdry is the sum
of the functional (3.8) for all boundary curves of the web surface

fbdry =
∑
B

hbdry(B).

3.2.4 The Planar Property

For a polyline to be a planar curve, all of its vertices need to lie on the same plane. A
plane in R3 can be represented by a unit normal vector n and a scalar d, such that any
point p on the plane satisfies

p · n− d = 0. (3.9)

Since p · n − d is the signed distance from point p to the plane, we use the following
functional to penalize the deviation of a polyline from a plane

hplanar(L) =
∑
v∈L

(nL · v − dL)2. (3.10)

Here unit vector nL and scalar dL are auxiliary variables representing the plane. The
planar property functional for a polyline family L is defined as

fplanar(L ) =
∑

L∈Iplanar(L )

fplanar(L).

Here Iplanar(L ) is the set of polylines in L which need to be planar and have more
than three vertices. We only consider polylines with more than three vertices, because
a polyline with less than four vertices is always planar. For numerical optimization, the
initial values of nL and dL in (3.10) are obtained from the best fitting plane to the initial
vertex positions in L, using principal component analysis (PCA) [Jolliffe 2002].

Special Positions of Planes

For a polyline L to lie in a horizontal plane, we note that a horizontal plane has constant
unit normal vector n = (0, 0, 1), and functional (3.10) is modified to

hHplanar(L) =
∑
v∈L

(vz − dL)2,

59



3 Functional Webs for Freeform Architecture

P

OX Y

Z

OP = d · e3
e1

e2

e3

v

vP⊥ vC⊥

C

Figure 3.8: Distance from a point v to a circle C. The plane P which contains the circle
is determined from an orthonormal frame e1, e2, e3 at point OP = d·e3. Plane
P is incident with OP and has normal vector e3. The distance from v to its
footpoint vC⊥ on C can be decomposed as ‖v−vC⊥‖2 = ‖v−vP⊥‖2+‖vP⊥−vC⊥‖2,
where vP⊥ is the footpoint of v on P .

where vz is the z coordinate of vertex v, and dL is the only auxiliary variable. For L to be
in a vertical plane, we note that a vertical plane has unit normal vector n = (nx, ny, 0),
and functional (3.10) is modified to

hVplanar(L) =
∑
v∈L

(nL,xvx + nL,yvy − dL)2,

where vx, vy are the x and y coordinates of vertex v, and scalars nL,x, nL,y, dL are
auxiliary variables with the constraint (nL,x)2 + (nL,y)

2 = 1. Also note that although a
polyline with no more than three vertices is always planar, it may not be in a vertical
plane or horizontal plane. Therefore, for functionals hHplanar(L) and hVplanar(L), we cannot
ignore polylines with less than four vertices.

3.2.5 The Circular Property

For a polyline L to represent a circular curve, we require all the vertices of the polyline
to be on a circle. Therefore, the following functional penalizes the deviation of a polyline
L from a given circle C

hcircle(L) =
∑
v∈L

[dist(v, C)]2, (3.11)

where dist(v, C) is the distance from a vertex v to its footpoint vC⊥ on circle C. Note that
the squared distance [dist(v, C)]2 can be decomposed into two parts (see Figure 3.8)

[dist(v, C)]2 =
∥∥v − vC⊥∥∥2 =

∥∥v − vP⊥∥∥2 +
∥∥vP⊥ − vC⊥∥∥2 = [dist(v, P )]2 + [dist(vP⊥, C)]2.

Here vP⊥ is the footpoint of v on the plane P which contains circle C, dist(v, P ) =∥∥v − vP⊥∥∥ is the distance from v to the plane P , and dist(vP⊥, C) =
∥∥vP⊥ − vC⊥∥∥ is the

60



3 Functional Webs for Freeform Architecture

distance from vP⊥ to circle C. Plane P can be represented by a unit normal vector e3
and a scalar d, so that

[dist(v, P )]2 = (v · e3 − d)2.

Furthermore, a pair of orthonormal vectors e1, e2 parallel with P leads to a local coor-
dinate system (ξ1, ξ2) in P , with the origin at OP = de3, and the two coordinate axes
parallel to e1 and e2, respectively. In this local coordinate system, the footpoint vP⊥ has
coordinates

ξ1(v
P
⊥) = v · e1, ξ2(v

P
⊥) = v · e2. (3.12)

Besides, in this coordinate system, the circle C can be represented by an equation

g(ξ1, ξ2) = b0(ξ
2
1 + ξ22) + b1ξ1 + b2ξ2 + b3 = 0, (3.13)

where scalars bi (i = 0, 1, 2, 3) satisfy a normalization constraint

b21 + b22 − 4b0b3 = 1. (3.14)

Using this representation, the squared distance [dist(vP⊥, C)]2 can be approximated by
[g(ξ1(v

P
⊥), ξ2(v

P
⊥))]2 [Pratt 1987]. Here we do not use the center position and the radius

value to represent a circle, because we want to include straight lines as special cases of
circles, which cannot be represented using the center and the radius. Now functional
(3.11) can be written as

hcircle(L) =
∑
v∈L

(v · e3 − d)2 + [g(ξ1(v
P
⊥), ξ2(v

P
⊥))]2. (3.15)

Note that e1, e2, e3 form an orthonormal frame, which can be encoded by a unit quater-
nion [Kuipers 2002]. Therefore, the auxiliary variables for (3.15) are scalars d, bi
(i = 0, 1, 2, 3), and the unit quaternion representing e1, e2, e3. For initial values of the
auxiliary variables, we first compute a best fitting plane for the vertices of L using PCA,
which gives e3 and d. Any pair of orthonormal vectors in this plane can be chosen as
e1 and e2, giving the initial value of the unit quaternion. Then we compute the local
coordinates for the footpoints of the vertices of L on plane P , according to (3.12). The
initial values of bi (i = 0, 1, 2, 3) are computed by fitting a circle to these footpoints
using a metric derived from (3.13) [Chernov 2010]. Using (3.15), the circular property
functional for a polyline family L is defined as

fcircle(L ) =
∑

L∈Icircle(L )

hcircle(L),

where Icircle(L ) are the set of polylines in L which are required to be circular and have
more than three vertices. We ignore polylines with no more than three vertices because
their vertices are always on the same circle.

61



3 Functional Webs for Freeform Architecture

v1 v2

v3

v4v5

v6

ω1
ω2

ω3
ω4

ω5

ω6

e6 e3

e1

e4

e2

e5

Figure 3.9: The geodesic condition of a mesh polyline at a vertex is defined using the
angles {ωi}i=1,...,6 formed by the neighboring edges {ei}i=1,...,6 of the vertex.

3.2.6 The Geodesic Property

When dealing with geodesic mesh polylines we employ the concept of straightest geodesics
introduced by [Polthier and Schmies 1998]. For an interior vertex v of a regular mesh,
there are six edges ei = vvi(i = 1, . . . , 6) incident with v (see Figure 3.9). Each pair
of opposite edges ei and ei+3 (indices modulo 6) belongs to a polyline from one of the
three families. Let ωi ∈ [0, π) be the angle between edges ei and ei+1. Then the polyline
which contains ei and ei+3 is a straightest geodesic at v if [Polthier and Schmies 1998]

ωi + ωi+1 + ωi+2 = ωi+3 + ωi+4 + ωi+5. (3.16)

Accordingly the following functional expresses the straightest geodesic condition at v for
the polyline containing ei and ei+3

hgeod(v, i) = (
2∑
j=0

ωi+j −
5∑

k=3

ωi+k)
2. (3.17)

Note that since

ωi = arccos (
vi − v
‖vi − v‖

· vi+1 − v
‖vi+1 − v‖

),

functional hgeod(v, i) depends on the positions of v and its one-ring neighbor vertices.
For a polyline L to be a straightest geodesic, condition (3.16) needs to be satisfied at
every interior mesh vertex of L. The following functional penalizes the deviation between
L and a straightest geodesic

hgeod(L) =
∑

v∈V(L)

hgeod(v, iv(L)), (3.18)

where V(L) is the set of interior mesh vertices on L, and iv(L) is the smallest index of
a neighboring edge of v which belongs to polyline L. The geodesic property functional

62



3 Functional Webs for Freeform Architecture

for a polyline family L is defined as

fgeod(L ) =
∑

L∈Igeod(L )

hgeod(L),

where Igeod(L ) is the set of polylines in L which are required to be geodesic.

3.2.7 Counting Degrees of Freedom

For a mesh with NV vertices, there are Nf = 3NV degrees of freedom (d.o.f) for vertex
coordinates. The planar, circular and geodesic properties of mesh edge polylines induce
constraints on the mesh vertex coordinates. If the effective number of these constraints
is larger than Nf , the minimization of functional (3.2) may not produce satisfactory
results. Here we count the number of these constraints, to see what properties we can
require for a web.

The Planar Property

For a polyline L which is required to be planar, each vertex needs to satisfy a condition
(3.9). The effective number of constraints for L is

Cplanar(L) = NL
V −NL

aux,

where NL
V is the number of vertices on L, and NL

aux is the number of d.o.f. provided by
the auxiliary variables for the plane. For a general plane, NL

aux = 3; for a vertical plane,
NL

aux = 2; for a horizontal plane, NL
aux = 1. For all polylines of a family L to be planar,

the total number of constraints is

Cplanar(L ) =
∑
L∈L ,
NL
V ≥mL

Cplanar(L) ≤ NV −
∑
L∈L ,
NL
V ≥mL

NL
aux.

Here mL is the required minimum number of vertices for L. mL = 2 if L is contained in
a vertical or horizontal plane, and mL = 4 if L is in a general plane.

A web where all curves are planar is called a planar web. For a regular mesh to rep-
resent a planar web, all edge polylines need to be planar, and the number of constraints
induced by the planar property is∑

i=1,2,3

Cplanar(Li) ≤ 3NV −
∑

NL
V >mL

NL
aux.

The difference between the number of d.o.f. from vertex coordinates and the number of
constraints from the planar property is

Nf −
∑

i=1,2,3

Cplanar(Li) ≥
∑

NL
V >mL

NL
aux.

63



3 Functional Webs for Freeform Architecture

Z

P

S

Figure 3.10: A trivial planar web. A web of straight lines in plane P is projected to a
surface S, using point Z as the center of projection. This results in a trivial
planar web on S.

Therefore, we still have some degrees of freedom for the mesh to satisfy the positional
constraints imposed by a rationalization or form-finding problem. Indeed, every surface
S can be covered by a planar web in a trivial way: Take a plane P with a web W of
straight lines on it, and a point Z which is not incident with plane P . Each straight
line L in the web W, together with point Z, determine a plane PL. The intersection
between PL and the surface S is a planar curve on S, which we call the projection of
L from center Z onto S. The projections of all straight lines in W from Z onto S is a
planar web on S (see Figure 3.10). We call such a planar web trivial. A planar web is
trivial if there exists a point Z such that for every curve C in the web, there is a plane
which contains C and Z. In some cases we can even rationalize a surface with a planar
web which is not trivial. See Figure 3.15 for an example.

The Circular Property

The circular property of a polyline L requires each vertex of L to satisfy two conditions:
(1) the vertex lies on the plane of the circle; (2) the footpoint of the vertex in this plane
satisfies Equation (3.13). The number of d.o.f. provided by the auxiliary variables is six.
Therefore, the effective number of constraints for L is

Ccircle(L) = 2NL
V − 6.

64



3 Functional Webs for Freeform Architecture

If we want to construct a mesh where all polylines are circular, the total number of
constraints is

Ccircle =
∑
NL
V >3

(2NV (L)− 6).

This number is often larger than Nf . So the circular property is more restrictive than
the planar property, and we can construct webs of circular curves only in some special
cases.

The Geodesic Property

The geodesic property of a polyline L induces one constraint (3.16) for each interior
mesh vertex of L. Therefore, for all members of a polyline family L to be geodesic, the
number of constraints Cgeod(L ) equals the number of interior vertices NIV of the mesh.
For a geodesic web (i.e., all polylines are geodesic), the total number of constraints is∑

i=1,2,3

Cgeod(Li) = 3NIV .

The difference between Nf and the total number of constraints is

Nf −
∑

i=1,2,3

Cgeod(Li) = 3NV − 3NIV = 3NBV ,

where NBV is the number of boundary vertices of the mesh. In other words, we have
as many degrees of freedom as the coordinates of boundary vertices. We can therefore
expect that a geodesic web is uniquely determined by its boundary. It is possible to
construct a geodesic web which approximates a given surface (see Figure 3.11 for an
example).

3.2.8 Implementation Details

Numerical Minimization of the Target Functional

The minimization of functional (3.2) is a non-linear least squares problem. We solve
it using the Levenberg-Marquardt (LM) method [Madsen et al. 2004]. The first order
derivative values required by the LM method are computed analytically. Since each
squared component of the target functional only depends on a small number of variables,
we need to solve a sparse linear system in each iteration. This is done using the sparse
Cholesky factorization in [Chen et al. 2008].

Handling Auxiliary Variables with Normalization Constraints

Some auxiliary variables are subject to normalization constraints. For example, the
coordinate variables nL,x, nL,y, nL,z of the unit normal vector nL in (3.10) needs to
satisfy (nL,x)2 + (nL,y)

2 + (nL,z)
2 = 1. This side condition complicates the computation

65



3 Functional Webs for Freeform Architecture

of derivatives. To make nL,x, nL,y, nL,z independent of each other, we represent the unit
vector nL as

nL =
(nL,x, nL,y, nL,z)√

(nL,x)2 + (nL,y)
2 + (nL,z)

2
.

This representation incorporates the normalization condition. The derivatives of nL with
respect to nL,x, nL,y, nL,z can be computed analytically, as long as (nL,x)2 + (nL,y)

2 +

(nL,z)
2 > 0. At the start of the LM method, the initial values n

(0)
L,x, n

(0)
L,y, n

(0)
L,z are

normalized. In each iteration of the LM method, a step ∆X is computed for all variables.
Let δnL,x, δnL,y, δnL,z be the be the components of ∆X for nL,x, nL,y, nL,z, respectively,

and let n
(k)
L,x, n

(k)
L,y, n

(k)
L,z be the corresponding current values of variables. We compute the

candidate values

n
(new)
L,x = n

(k)
L,x + δnL,x,

n
(new)
L,y = n

(k)
L,y + δnL,y,

n
(new)
L,z = n

(k)
L,z + δnL,z,

and check for the condition(
n
(new)
L,x

)2
+
(
n
(new)
L,y

)2
+
(
n
(new)
L,z

)2
> ε (3.19)

where ε > 0 is a small threshold. We modify the step control algorithm for the LM
method, so that if condition (3.19) is violated, the step ∆X is rejected and a new step

is computed. If a step is accepted, n
(new)
L,x , n

(new)
L,y , n

(new)
L,z are normalized to become the

values of nL,x, nL,y, nL,z in the next iteration

n
(k+1)
L,x =

n
(new)
L,x

D
, n

(k+1)
L,y =

n
(new)
L,y

D
, n

(k+1)
L,z =

n
(new)
L,z

D
,

where D =

√(
n
(new)
L,x

)2
+
(
n
(new)
L,y

)2
+
(
n
(new)
L,z

)2
. All variables that are subject to nor-

malization constraints are handled in this way.

Evaluation of Footpoints

Some functionals require searching for a footpoint p⊥ of given point p on a surface or
a curve. We assume that the surface is given as a mesh, and the curve is given as
a polyline. The evaluation of the footpoint on a mesh surface can be done efficiently
using a kd-tree [Bentley 1975] for the mesh faces. Such a kd-tree can be constructed
in O(n log n) time, and enables query of the footpoint in O(log n) time, where n is the
number of faces on S [de Berg et al. 2008]. Similarly, the evaluation of the footpoint on
a polyline is done using a kd-tree for the segments of the polyline.

66



3 Functional Webs for Freeform Architecture

Sampling Points on Reference Shapes

Functional (3.5) is defined using a set of sample points of the reference shape. Our
implementation allows the user to specify the number n of sample points. For a refer-
ence curve, the n sample points are generated by uniformly sampling the curve in the
considered interval. For a reference surface, the sample points are generated according
to [Alliez et al. 2003], which uniformly sample a mesh surface according to the given
number of sample points.

Choosing Functional Weights

The functional weights in (3.2) need to be specified by the user. Note that each functional
f is represented as sum of squared components σi

f =
∑
i

(σi)
2.

A weight λ for functional f can be interpreted as a fixed contribution factor wf for all
components

λf =
∑
i

(wfσi)
2,

which means
λ = Nf (wf )2

where Nf is the number of components in the definition of f . In this way, the weighted

sum of a set of functionals

{
fi =

∑
j

[
σ
(i)
j

]2}
can be written as

∑
i

λifi =
∑
i

∑
j

[
wfiσ

(i)
j

]2
.

The contribution factor wfi is a more intuitive way to measure the influence of a compo-
nent in the target function. Our implementation allows the user to specify wfi for each
functional fi, instead of setting their weights {λi} directly.

Note that the components of the geodesic property functional represent angular values,
while the components of other functionals represent distance values. To combine them
into a single target functional in a meaningful way, we normalize all components into
compatible quantities as follows. Let D be the bounding box diameter for the initial
web surface. If σ is a component representing a distance value, we divide it by D to
obtain a ratio

ρ =
σ

D
. (3.20)

For an angular component σ =
∑2

k=0 ωi+k −
∑5

k=3 ωi+k in (3.17), we note that the
following value is the discrete total geodesic curvature at vertex v for the polyline L
containing ei and ei+3 [Polthier and Schmies 1998]

K =
2π

θ
·
∑2

k=0 ωi+k −
∑5

k=3 ωi+k
2

=
σπ

θ
,

67



3 Functional Webs for Freeform Architecture

where θ =
∑5

k=1 ωi+k. Also note that the part of L which is associated with v has length
(Ei+Ei+3)/2, with Ei and Ei+3 being the length of ei and ei+3, respectively. Therefore,
the geodesic curvature of L at v can be computed as

κLg (v) =
K

(Ei + Ei+3)/2
=

2σπ

θ(Ei + Ei+3)
. (3.21)

The ratio between bounding box diameter D and the radius of a circle with curvature
|κLg (v)| is

τ = D|κLg (v)| = 2D|σ|π
θ(Ei + Ei+3)

. (3.22)

τ equals the geodesic curvature of the polyline when the model is rescaled so that D = 1.
Therefore, τ serves as a normalized geodesic curvature value. Since usually θ ≈ 2π, and
Ei + Ei+3 ≈ 2e where e is the average edge length of the web surface, we approximate
the signed version of ratio τ as

ρ =
Dσ

2e(0)
, (3.23)

where e(0) is the average edge length of the initial web surface mesh. Now for each

functional fi, we can normalize its components {σ(i)j } into ratio values {ρ(i)j }, according
to (3.20) or (3.23). The contribution factor wfi for each functional is applied to these
components to obtain the normalized target functional

F =
∑
i

∑
j

[
wfiρ

(i)
j

]2
. (3.24)

3.2.9 Results

This section gives some examples of computing discrete webs by optimization.

Geodesic Webs

The following examples construct discrete geodesic webs for rationalization or form-
finding. The initial mesh of the web is contained in the best approximation plane P
for a set of sample points {qi} on the given constraint shapes, computed with PCA.
This initial mesh is of rectangular shape, with its sides aligned with the two principal
directions of {qi} which are parallel with P . The target functional is of the form

T = λproxfprox,I + λfair
∑
i

ffair,II(Li) + λgeod
∑
i

fgeod(Li). (3.25)

Figure 3.11 is a rationalization example. Figure 3.11(a) is the reference surface which
needs to be approximated by the web. The initial mesh is shown in Figure 3.11(b). Figure
3.11(c) is the optimized mesh, which covers the whole reference surface. Figure 3.11(e)
is the color-coded normalized geodesic curvature τ (see Equation (3.22) for definition)
for the three families of polylines (shown in white) on the optimized mesh. Since we are

68



3 Functional Webs for Freeform Architecture

(a) (b)

(c) (d)

1 10−1 10−2 10−3

(e)

Figure 3.11: Rationalization using a geodesic web. (a) The reference surface. (b) The
initial mesh for the web. (c) The optimized mesh. (d) The polylines of the
optimized mesh are trimmed by the reference surface, resulting in a curve
network on the reference surface. (e) The color-coded normalized geodesic
curvature values (defined in Equation (3.22)) for the three families of mesh
polylines (in white).

69



3 Functional Webs for Freeform Architecture

Figure 3.12: An architectural design based on Figure 3.11(d), where the curve elements
can be realized by bending straight wooden panels.

(a)

(b) (c)

1 10−1 10−2 10−3

(d)

Figure 3.13: Form-finding using a geodesic web. (a) The given constraint curve (in dark
blue), and the initial mesh for the web. (b) The optimized mesh, which
is incident with the constraint curve. (c) The polylines of the optimized
mesh are trimmed by the constraint curve. (d) The color-coded normalized
geodesic curvature values for the three families of mesh polylines.

70



3 Functional Webs for Freeform Architecture

Figure 3.14: By deleting some polylines in the geodesic web of Figure 3.13(c) we obtain
a tri-hex structure which serves as the basis of an architectural design.
The greater part of beams in this example is to be made from layers, each
individually bent into shape (which is possible due to the geodesic property).

71



3 Functional Webs for Freeform Architecture

only concerned with the curves on the given surface, we trim the optimized mesh with
the boundary of the given surface, and obtain a curve network shown in Figure 3.11(d).
Figure 3.12 is an architectural design based on the geodesic polylines in Figure 3.11(d),
which can be realized by bending wooden panels.

Figure 3.13 shows an example of form-finding. We are given a curve which represents
the desired boundary of the geodesic web. The geodesic web needs to be incident with
this curve. Figure 3.13(a) shows the given curve (in blue) and the initial mesh. Figure
3.13(b) is the optimized mesh. Note that the second order difference fairing functional
ffair,II in (3.25) leads to shrinking of the mesh surface, while the proximity functional
fprox,I prevents the mesh from shrinking beyond the given constraint curve. Figure
3.13(d) shows the normalized geodesic curvatures for the three polyline families in the
optimized mesh. We trim the optimized mesh with the given boundary curve to obtain
a curve network shown in Figure 3.13(d). An architectural design based on the curves
in Figure 3.13(d) is shown in Figure 3.14. Here every second curve of each family is
removed to produce a tri-hex structure.

Planar Webs

We show below two examples of rationalization using planar webs. The target functional
is of the form

F = λproxfprox + λfair
∑
i

ffair,III(Li) + λplanar
∑
i

fplanar(Li). (3.26)

In Figure 3.15, the reference surface is the top of the Lilium Tower. We use fprox,II as
the proximity functional in (3.26). The vertices of the initial mesh is incident with the
reference surface (see Figure 3.15(a)). Since we are interested in non-trivial planar webs,
we fix the auxiliary variables of the planar property for four polylines, such that they
represent four planes which do not have a common point. This prevents the mesh from
evolving into a shape where all polylines are in planes with a common intersection point.
The optimized mesh is shown in Figure 3.15(b). To visualize the deviation of a polyline
L from planar curves, we compute a best fitting planar polyline L of L for comparison.
The vertices of L are the footpoints of the vertices of L on a plane PL, which is the best
fitting plane for the vertices of L. In Figure 3.15(b), the polylines of the optimized mesh
are shown in brown, while their best fitting planar polylines are shown in dark blue with
smaller radius (75% of the radius of the brown polylines). In this way, a large deviation
of the optimized polylines from the planar property is indicated by the visibility of blue
polylines. Figure 3.15(b) shows that the planarity constraints for the polylines are well
satisfied. To check whether or not the planar web in Figure 3.15(b) is trivial, we can
search for a point p which is closest to all planes {Pi} for the polylines, by minimizing
the following target function

T (p) =
∑
i

[dist(p, Pi)]
2, (3.27)

where dist(p, Pi) is the distance from point p to plane Pi. This is a linear least squares
problem. After that we compute the footpoint of p on each plane Pi. If the planes

72



3 Functional Webs for Freeform Architecture

(a)

(b)

(c)

Figure 3.15: Rationalization using a planar web. (a) The reference surface and the initial
mesh. (b) The optimized mesh, with the best fitting planar curves (in dark
blue, with smaller radius) for the mesh polylines. The fact that the dark
curves are hardly visible indicates small deviation between the polylines and
exactly planar curves. (c) We check whether the planar web is trivial, using
a point p (in red) minimizing the target function (3.27) and its footpoint
(in yellow) onto the planes containing the polylines. The footpoints do not
concentrate at point p, indicating that the web is not trivial.

{Pi} have a common intersection point, the footpoints will be concentrated at p. Figure
3.15(c) shows the point p (in red) and the footpoints (in yellow) for the optimized mesh.
We can see that the computed planar web is not trivial.

In Figure 3.16, we aim at a web of planar curves with tri-hex connectivity. The initial
mesh in Figure 3.16(b) is created using 3D modeling tools. We require every second
polyline of each family to be planar. For the proximity functional we use fprox,I, which
leads to an optimized mesh that covers the whole reference surface (see Figure 3.16(c)).
By removing the mesh surface regions outside the reference surface, and by collecting
the polylines with planarity constraints, we obtain a tri-hex structure shown in Figure

73



3 Functional Webs for Freeform Architecture

(a) (b)

(c) (d)

(e)

Figure 3.16: Rationalization using planar curves with tri-hex connectivity. (a) The ref-
erence surface. (b) The initial mesh, with the planarity constriants imposed
on every second polyline of each family. (c) The optimized mesh. (d) By
deleting the mesh region outside the range of the reference surface, and
collecting the polylines with planarity constraints, we obtain a curve net-
work of tri-hex connectivity. The fitting planar curves for the polylines are
shown in dark blue with smaller radius, indicating small deviation between
the polylines and planar curves. (e) We check whether this planar web is
trivial, in a way similar to Figure 3.15(c). The deviation between the red
point and the yellow points indicate that the web is not trivial.

74



3 Functional Webs for Freeform Architecture

3.16(d). In Figure 3.16(d), the best fitting planar polylines are shown with smaller radius
in dark blue, indicating only small deviation between them. Figure 3.16(e) shows the
point p (in red) which minimizes (3.27), and the footpoints of p onto the planes. We
see that the computed planar web is not trivial. Note, however, that this planar web
may not be useful, due to aesthetic reasons. This example shows that it can be difficult
to find a web which satisfies the imposed conditions and is aesthetically pleasing at the
same time.

Webs with Circular Curves

Figure 3.18 shows a discrete web with some curves being circular. We want this web to
approximate a given surface, with two families of geodesics and one family of circular
curves which are in vertical planes. From the analysis in Section 3.2.7, we see that if
we impose geodesic and circular conditions on every polyline within the corresponding
families, we may not have enough degrees of freedom. Therefore, we only require every
4th polyline of the circular family to be a circular polyline in a vertical plane. Besides,
to reduce the number of constraints for the web surface, we do not use the whole given
surface as reference shape, but take the boundary curve and another curve on the surface
as constraint curves (see Figure 3.18(a)). Let L1, L2 be the geodesic families of polylines,
and L3 be the circular family. We use the following target functional

F = λproxfprox,I + λgeod
∑
i=1,2

fgeod(Li) + +λcirclefcircle(L3)

+λplanarfplanar(L3) + λfair,II
∑
i=1,2

ffair,II(Li) + λfair,IIIffair,III(L3).

Here the functional fplanar is used to constrain the circular polylines to lie in vertical
planes. The vertices of the initial mesh lie on the given surface (see Figure 3.18(b)).
Figure 3.18(c) shows the optimized mesh, as well as the best fitting vertical circular
curves to the polylines with circularity constraints. The fitting circular curves are shown
in dark blue with larger radius (130% of the radius of the brown polylines). Figure
3.18(d) shows the optimized mesh with the constraint curves. Figure 3.18(e) shows the
normalized geodesic curvature plots for the two geodesic families of polylines. We trim
the optimized mesh by a plane which represents the ground, to obtain a curve network
useful for architecture (see Figure 3.18(f)). Figure 3.18 is an architectural design based
on this curve network.

Webs of Cylinder Topology

Next we show some webs of cylinder topology. Such a web can represent the shape of
a tower. Among the three families of polylines, one of them contain close polylines,
which we will call the horizontal family. The remaining two families will be called the
diagonal families. The regular connectivity of the mesh means that all polylines in the
horizontal family have the same number of vertices. In the examples below, all polylines
in the diagonal families are required to be geodesics, and some polylines of the horizontal

75



3 Functional Webs for Freeform Architecture

(a) (b)

(c) (d)

10−3

10−2

10−1

1

(e)

(f)

Figure 3.17: A web containing circular curves. (a) The boundary curve (in red) and an-
other curve (in green) on a given surface are taken as the constraint curves.
(b) The initial mesh for the web. (c) The optimized mesh. The best fitting
vertical circular curves are shown in dark blue with larger radius, indicat-
ing small deviation from the respective mesh polylines. (d) The optimized
mesh is indeed close to the constraint curves. (e) The normalized geodesic
curvature for the two families of geodesic polylines. (f) The polylines are
trimmed by a plane representing the ground, resulting in a curve network
useful for architectural design (see Figure 3.18).

76



3 Functional Webs for Freeform Architecture

Figure 3.18: An architectural design based on Figure 3.17(f).

families are required to be planar curves in horizontal planes. Such conditions are useful
in constructing the outer surface of a building by two families of long strips, while
requiring the intersections of these strips to be aligned with floor levels of the building
(see Figure 3.4 for an example). Let L1, L2 be the diagonal families of polylines, and
L3 be the horizontal family. The target functional is of the form

F = λproxfprox + λbdryfbdry + λgeod
∑
i=1,2

fgeod(Li)

+λplanarfplanar(L3) + λfair,II
∑
i=1,2

ffair,II(Li) + λfair,IIIffair,III(L3). (3.28)

Figure 3.19 is a rationalization example. The two boundary curves of the given ref-
erence surface lie in horizontal planes (see Figure 3.19(a)). We use fprox,II as the shape
proximity functional fprox. And the boundary proximity functional fbdry penalizes the
deviation between the boundary curves of the web and the boundary curves of the given
surface. In order to have enough degrees of freedom for the proximity constraints, we
only require every 6th polyline in the horizontal family to be in a horizontal plane. In
the initial mesh, all vertices lie on the given surface, and all polylines of the horizontal
family lie on equidistant horizontal planes (see Figure 3.19(b)). Figure 3.19(c) shows
the optimized mesh, as well as the best horizontal fitting curves for the polylines with
planarity constraints. The horizontal fitting curves are shown in dark blue with larger
radius (130% of the radius of the brown polylines), indicating small deviation of the
polylines from horizontal curves. The normalized geodesic curvature for the diagonal
families are shown in Figure 3.19(d). Figure 3.20 is an architectural design based on this
web.

77



3 Functional Webs for Freeform Architecture

(a) (b) (c)

10−3

10−2

10−1

1

(d)

Figure 3.19: Rationalization using a web of cylinder topology. (a) The reference sur-
face. (b) The initial mesh for the web. (c) The optimized mesh. The fitting
horizontal planar curves are shown in dark blue with larger radius, and indi-
cate small deviation from the corresponding polylines. (d) The normalized
geodesic curvature for the two families of geodesic polylines.

78



3 Functional Webs for Freeform Architecture

Figure 3.20: An architectural design based on the web in Figure 3.19. For the diagonal
families of curves, we introduce additional high frequency bending of small
amplitude to obtain a “weaving” design.

Figure 3.22 is a form-finding example. The two boundary curves of the web are
constrained to two ellipses in horizontal planes (shown in Figure 3.22(a)). We require all
polylines in the horizontal families to be horizontal planar curves. It can be shown that
there are enough degrees of freedom for such conditions: Every boundary vertex of the
mesh is constrained on a curve, and has one d.o.f. for its position. Each interior vertex
has three d.o.f. for its position. Therefore, the total number of d.o.f. for vertex positions
of the mesh is 3NIV +NBV , where NIV and NBV are the number of interior vertices and
boundary vertices, respectively. The geodesic conditions induce 2NIV constraints. The
horizontal planar condition for each interior polyline L (i.e., with no boundary vertex) of
the horizontal family induces NL

V − 1 constraints, with NL
V being the number of vertices

on L. In total the planar conditions induce
∑

(NL
V − 1) = NIV −Nh constraints for the

interior polylines of the horizontal family, where Nh is the number of interior polylines.
So the number of the remaining d.o.f. is

3NIV +NBV − 2NIV − (NIV −Nh) = NBV +Nh > 0

This form-finding problem is solved in a multiresolution way: We start from a coarse
initial mesh M0, with its boundary vertices incident with the constraint curves (see
Figure 3.22(b)). The target functional (3.28) is minimized to obtain an optimized mesh

M̃0 (see Figure 3.22(c)). Then M̃0 is subdivided by introducing new vertices at midpoints
of mesh edges (see Figure 3.21 ), which gives a finer new mesh M1 as the initial mesh for
the next level of optimization (see Figure 3.22(d)). Such subdivision and optimization
is iterated, until we obtain an optimized mesh at the desired resolution. Figure 3.22(e)

shows the optimized mesh M̃2. Also shown in Figure 3.22(e) are the horizontal planar
fitting curves in dark blue with smaller radius, which are not visible. Figure 3.22(f)

79



3 Functional Webs for Freeform Architecture

Figure 3.21: Subdividng a regular mesh by connecting the mid-points of edges.

shows the normalized geodesic curvature for the polylines in the diagonal families. We
can see that both the planarity conditions and the geodesic conditions are well satisfied,
confirming our analysis for the degrees of freedom.

We can even iteratively “grow” a web of cylinder topology, using a set of guiding curves
{Ci} to control the shape of the surface. In each iteration, we optimize a web of cylinder
topology with respect to the following constraints: The bottom boundary vertices are
constrained to be close to a given curve in the plane z = 0. The top boundary curve
is constrained to be in a horizontal plane z = (k − 1)h, where h is a constant and k
is the number of polylines in the horizontal family. We require all interior polylines of
the horizontal family to be in horizontal planes. Besides, we sample the guiding curves
between the planes z = 0 and z = (k − 1)h to obtain a set of points {qj}, and the mesh
need to be close to these points. Note that the constraints for polylines are the same
as the previous example, except that the top boundary vertices are not constrained to a
curve, but to a horizontal plane. This leads to one more degree of freedom for each top
boundary vertex. From an analysis similar to the previous example, we conclude that
the difference between the number of d.o.f. for the vertex coordinates and the number
of constraints for the polylines equals 3

2NBV +Nh > 0. Therefore, it is possible to have
enough d.o.f. for the positional constraints induced by the points {qj}. The optimized
mesh in each iteration is augmented by one layer of new vertices to become the initial
mesh for the next iteration: Let M̃ (k) be the optimized mesh for the current iteration,
with k polylines in its horizontal family. We project the top boundary vertices of M̃ (k)

onto the plane z = kh to obtain a set of new vertices. These new vertices are added
to M̃ (k) to generate a new mesh M (k+1) of cylinder topology, with k + 1 polylines in
the horizontal family. M (k+1) becomes the initial mesh for the next iteration. Figure
3.23 is an example of such a growing web. Figure 3.23(a) shows the bottom boundary
constraint curve (in green) and the guiding curves (in red). We start from an initial
mesh M (3) with 3 polylines in the horizontal family, which is shown in Figure 3.23(b).

Figure 3.23(c) is the optimized mesh M̃ (3). Figure 3.23(d) shows the initial mesh M (4)

for the next iteration, which is derived from M̃ (3). Figure 3.23(e) is the optimized mesh

M̃ (38), with the horizontal planar fitting curves shown in dark blue with smaller radius
(not visibility in the figure). Figure 3.23(f) shows the normalized geodesic curvature

values for the diagonal families in M̃ (38).

80



3 Functional Webs for Freeform Architecture

(a) (b) (c) (d)

(e)

10−3

10−2

10−1

1

(f)

Figure 3.22: Form-finding using a web of cylinder topology, in a multiresolution way.
(a) The constraint curves. (b) The initial mesh M0 for the initial level

of resolution. (c) The optimized mesh M̃0 for M0. (d) M̃0 is subdivided
to produce the initial mesh M1 for the next level of resolution. (e) The

optimized mesh M̃2. The fitting horizontal planar curves are shown in dark
blue (which are not visible, indicating the planarity of the corresponding
polylines). (f) The normalized geodesic curvature for the diagonal families

of polylines in M̃2.

81



3 Functional Webs for Freeform Architecture

(a) (b) (c) (d)

(e)

10−3

10−2

10−1

1

(f)

Figure 3.23: Growing a web of cylinder topology. (a) The bottom constraint curve (in
green) and the guiding curves (in red). (b) The initial mesh M (3). (c)

The optimized mesh M̃ (3) for M (3). (d) M̃ (3) is augmented by a layer of
new vertices to generate the initial mesh M (4) for the next iteration of
optimization. (e) The optimized mesh M̃ (38). The fitting horizontal planar
curves are shown in dark blue (which are not visible, indicating that the
horizontal planar conditions are well satisfied). (f) The normalized geodesic

curvature for the diagonal families of polylines in M̃ (38).

82



3 Functional Webs for Freeform Architecture

Weights and Timing

Table 3.1 shows the weights and timing data for some examples above. Here #V is the
number of variables for the optimization problem. T is the timing (in seconds) for the
optimization, measured on a laptop with a 2.4GHz CPU. The m’s are the maximum
magnitude of the normalized components ρ in target functional (3.24) for specific prop-
erties of the optimized mesh, while the w’s are the corresponding contribution factors
used in (3.24).

Fig #V T mgeod w mplanar w mcircle w mfair,II w mfair,III w mbdry w mprox w
3.11 7563 100 0.06 0.0025 0.002 0.1 1·10−4 1 2·10−4 1
3.13 10074 214 0.05 0.09 0.001 1 0.001 1
3.15 5155 66 0.009 3 0.01 0.1 0.002 1
3.16 13396 1002 0.01 3 0.01 1 0.009 1 0.009 1
3.17 12537 210 0.4 0.045 0.003 1.5 0.002 1.5 0.002 4 0.002 1 0.006 0.4 0.005 0.4
3.19 13187 176 0.2 0.09 0.01 1.5 0.005 3 0.003 1 0.004 1.5 0.04 1

Table 3.1: Weights and timing for the optimization of discrete webs.

3.3 Exact Planar Webs

For the discrete webs constructed by optimization, usually the constraints for mesh
polylines can only be satisfied up to a certain threshold. For planar webs, however,
it turns out to be easy to give a complete parametric description of them. Such a
description enables us to compute a planar web using three families of planes, and the
curves in this web will be exactly planar. In this section we discuss the construction and
modification of these exact planar webs.

3.3.1 Discrete Planar Webs from Plane Families

Assume that the three families L1, L2, L3 of mesh polylines in a regular triangle mesh

L1 = {L1(i)}i∈Z,
L2 = {L2(j)}j∈Z,
L3 = {L3(k)}k∈Z

are defined such that polylines L1(i), L2(j) and L3(k) intersect in a vertex vij if and
only if i + j + k = c where c ∈ Z is a constant. In other words, the polylines can be
represented as

L1(i) = {. . . , vi0, vi1, vi2, . . .},
L2(j) = {. . . , v0j , v1j , v2j , . . .},
L3(k) = {. . . , v−k,c, v1−k,c−1, v2−k,c−2, . . .}.

83



3 Functional Webs for Freeform Architecture

For a planar web, each polyline Lr(i) is contained in a plane Pr(i) (r = 1, 2, 3). Therefore,
there are three families of planes {P1(i)}i∈Z, {P2(j)}j∈Z, {P3(k)}k∈Z such that the mesh
vertices arise as the intersection

vij = P1(i) ∩ P2(j) ∩ P3(k), where i+ j + k = c. (3.29)

So the general description of a discrete planar web is as follows: Select three families of
planes and define the vertices of a triangle mesh by (3.29). Note that by this construction,
each mesh polyline is exactly planar. Figure 3.24 shows an example where all three
families are linear pencils of planes.

3.3.2 Continuous Planar Webs

The above method can be extended to describe a smooth surface where a web of planar
curves exists: Take three families of planes {P1(u)}u∈R, {P2(v)}v∈R, {P3(w)}w∈R, and
define a surface by

S(u, v) = P1(u) ∩ P2(v) ∩ P3(w) where u+ v + w = c, (3.30)

where c ∈ R is a constant. Then the iso-parameter lines u = const, v = const and
w = const define planar curves in this surface. On such a surface, we can recover three
families of parametric planar curves {C1(i)}i∈Z, {C2(j)}j∈Z, {C2(k)}k∈Z with the same
connectivity as the planar polylines in a discrete planar web, where

C1(i) = S(αi, r), r ∈ R,
C2(j) = S(s, αj), s ∈ R,
C3(k) = S(t, c− t− αk), t ∈ R

(3.31)

with α ∈ R being a non-zero constant. We call the surface in (3.30) a continuous planar
web. By choosing different values of α, we can obtain planar curve networks of different
density on the same continuous planar web (see Figure 3.25).

3.3.3 Constructing Continuous Planar Webs

To construct a continuous planar web, we need to select three continuous families of
planes. A plane can be identified with a normal vector n and a scalar d, such that any
point p on the plane satisfies equation n · p = d. Therefore, a continuous one-parameter
family of planes P (t) can be represented by a vector-valued function n(t) and a scalar-
valued function d(t). We use the notation P (t) = (d(t), n(t)) for this representation.
For three families of planes P1(u) = (d1(u), n1(u)), P2(v) = (d2(v), n2(v)), P3(w) =
(d3(w), n3(w)), the surface in (3.30) has a parametric form

S(u, v) =
d1(u)(n2(v)× n3(w)) + d2(v)(n3(w)× n1(u)) + d3(w)(n1(u)× n2(v))

det(n1(u), n2(v), n3(w))
,

(3.32)
where w = c− u− v.

84



3 Functional Webs for Freeform Architecture

P1(i1)

P1(i0)

P2(j0)

P2(j1)

P3(k)

Figure 3.24: The vertices vij of a planar web are generated by the families P1, P2, P3

of planes via vij = P1(i) ∩ P2(j) ∩ P3(c − i − j). Here all three families of
planes are linear pencils.

85



3 Functional Webs for Freeform Architecture

Figure 3.25: On a same surface defined by (3.30), we can obtain webs of planar curves
of different density, by choosing different values of α in (3.31).

Here we present two approaches to select plane families P1(u), P2(v), P3(w). In the
first approach, the three families of planes are orthogonal to the three coordinate axes
respectively. In the second approach, each family consists of the normal planes of a
parametric curve.

Plane Families Orthogonal to Coordinate Axes

If the three families of planes P1(u), P2(v), P3(w) are orthogonal to x axis, y axis and z
axis, respectively, they have constant normal vectors

n1(u) = (1, 0, 0),

n2(v) = (0, 1, 0),

n3(w) = (0, 0, 1),

and (3.32) is simplified to

S(u, v) = (d1(u), d2(v), d3(c− u− v)). (3.33)

In this case, we can control the shape of S(u, v) simply using the three scalar functions
d1(u), d2(v), d3(w). Here we give some examples of such surfaces. In all these exam-
ples, we use c = 2 in Equation (3.33), and we are interested in the region of S(u, v)
corresponding to the parameter domain 0 ≤ u, v ≤ 1, meaning that 0 ≤ c − u − v ≤ 2.
Therefore, we only need to specify the functions d1(u), d2(v), d3(w) on intervals [0, 1],
[0, 1], [0, 2], respectively.

Figure 3.26 shows an example with d1(u), d2(v) being cubic polynomial functions, and
d3(w) being a linear function. This is a translational surface. Note that we have two

86



3 Functional Webs for Freeform Architecture

0 1
0

1

d1(u)

0 1
0

1

d2(v)

0 2
0

1

d3(w)

Figure 3.26: A continuous planar web (3.33) with d3(w) being a linear function, which
is a translational surface.

parametric curves

c1(u) = S(u, 0) = (d1(u), d2(0), d3(c− u)), u ∈ [0, 1],

and
c2(v) = S(0, v) = (d1(0), d2(v), d3(c− v)), v ∈ [0, 1].

Since d3 is a linear function, we have

d3(c− u) + d3(c− v) = d3(c) + d3(c− u− v).

From this

c1(u) + c2(v) = (d1(0) + d1(u), d2(0) + d2(v), d3(c) + d3(c− u− v))

= S(u, v) + (d1(0), d2(0), d3(c)).

Therefore, S(u, v) can be written as

S(u, v) = c1(u) + c2(v)− (d1(0), d2(0), d3(c)),

which means that S(u, v) is a translational surface [Farin 2001]. So we have: The
continuous planar web defined in Equation (3.33) is a translational surface if d3 is a
linear function.

Note that the surface parametrization in (3.33) is singular at a point if the partial
derivatives Su and Sv at that point is linear dependent, i.e.,

Su × Sv = 0. (3.34)

87



3 Functional Webs for Freeform Architecture

0 1
0

1

d1(u)

0 1
0

1

d2(v)

0 2
0

1

d3(w)

qqqqqqqqqqqqqqqqq

(a) (b)

qqqqqqqqqqqqqqqqq

(c)

Figure 3.27: A continuous planar web with a singular point q. (a) The surface viewed
from different angles. (b) A closer look at the singular point q (in green).

Since
Su × Sv = (d′2(v)d′3(c− u− v), d′1(u)d′3(c− u− v), d′1(u)d′2(v)),

condition (3.34) is satisfied if for the three derivative values d′1(u), d′2(v) and d′3(c−u−v),
at least two of them are zero. Therefore, a singular point can be induced by stationary
points of functions d1, d2, d3 in the considered intervals. Figures 3.27 and 3.28 show
surfaces constructed from functions d1, d2, d3 with stationary points, as well as the

88



3 Functional Webs for Freeform Architecture

0 1
0

1

d1(u)

0 1
0

1

d2(v)

0 2
0

1

d3(w)

(a)

qqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqq

(b)

Figure 3.28: A continuous planar web with a singular point. (a) The surface viewed from
different angles. (b) The singular point q (in green).

89



3 Functional Webs for Freeform Architecture

singular points. At the singular point in Figure 3.27, Su, Sv are non-zero and parallel.
At the singular point in Figure 3.28, Su = Sv = 0. Also note that in Figure 3.27 there
is self-intersection of the surface, while in Figure 3.28 every point on the surface is a
double point.

Normal Planes of Parametric Curves

For a continuous one-parameter family P (t) of planes, there exists a parametric curve
c(t) whose normal plane at point c(t) coincides with P (t), apart from the degenerate
cases. If P (t) is given, c(t) can be found by solving an ODE. Therefore, we have

Proposition 3.1. A continuous planar web is defined by the families of normal planes of
P1(u), P2(v), P3(w) of three parametric curves c1(u), c2(v), c3(w) via Equation (3.30).

Note that for a given family of planes P (t), there may be more than one parametric
curve whose normal planes are P (t). For example, the following two curves

b1(t) = (R1 cos t, R1 sin t, 0),

b2(t) = (R2 cos t, R2 sin t, 0)

are different if R1, R2 > 0 and R1 6= R2, but they have the same family of normal planes.
For the description of a continuous planar web, we can use any of the curves which give
the desired family of normal planes.

In (3.32), the point S(u, v) is at infinity if det(n1(u), n2(v), n3(c−u−v)) = 0 [Pottmann
and Wallner 2001]. Such a point cannot be realized in an Euclidean space, and should
be avoided in the construction of a continuous planar web. The surface S(u, v) does not
have points at infinity in a parameter domain R, if

det(n1(u), n2(v), n3(c− u− v)) 6= 0, for all (u, v) ∈ R. (3.35)

Figure 3.29 shows some continuous planar webs derived from the normal planes of
three parametric curves. Condition (3.35) is used to guarantee that the surfaces are well
defined in the considered parameter domains.

To control the shapes of continuous planar webs derived from normal planes, we need
to control the parametric curves c1(u), c2(v), c3(w). In geometric modeling, B-spline
curves are among the most widely used forms of parametric curves. Their shapes can be
easily manipulated via their control points [Farin 2001]. In the following presentations,
we will focus on the case where c1(u), c2(v), c3(w) are B-spline curves. Suppose the
considered surface region is derived from normal planes of curve ci(t) on interval t ∈
[ai, bi] (i = 1, 2, 3). And we assume that ci(t) is a B-spline curve of degree ni defined
on a knot vector T = {t0, . . . , tmi+ni+1}, where tni = ai, tmi+1 = bi, with control points

{p(i)j }j=0,...,mi , i.e.,

ci(t) =

mi∑
j=0

Nni
j (t)p

(i)
j . (3.36)

Here {Nni
j (t)} are B-spline basis functions of degree ni defined on knot vector T .

90



3 Functional Webs for Freeform Architecture

Figure 3.29: Continuous planar webs from normal planes of three curves. The normal
planes containing the planar curves on the surface are shown in the same
colors.

To ensure that condition (3.35) is satisfied on the considered parameter domain, we
note that for a parametric curve c(t), the normal vector of its normal plane is parallel
to its tangent vector. If c1(u), c2(v), c3(w) are all regular curves, condition (3.35) is
equivalent to

det(ċ1(u), ċ2(v), ċ3(c− u− v)) 6= 0, for all (u, v) ∈ R, (3.37)

where ċ1, ċ2, ċ3 are the first derivatives of c1(u), c2(v), c3(w), respectively. For the
B-spline curve ci(t) defined in (3.36),

ċi(t) =

mi−1∑
j=0

ni
tj+ni+1 − tj

Nni−1
j (t)∆p

(i)
j , (3.38)

where {Nni−1
j (s)} are B-spline basis functions of degree ni − 1 defined on a knot vector

T̃ = {t1, . . . , tmi+ni}, and ∆p
(i)
j = p

(i)
j+1 − p

(i)
j are the difference vectors between neigh-

boring control points. From this we obtain a sufficient condition for S(u, v) to have no
point at infinity in the considered parameter domain

Proposition 3.2. If c1, c2, c3 are B-spline curves defined in (3.36), then the continuous
planar web defined by the normal planes of c1, c2, c3 has no point at infinity if

det(∆p
(1)
i ,∆p

(2)
j ,∆p

(3)
k ) > 0, for all i, j, k, (3.39)

or
det(∆p

(1)
i ,∆p

(2)
j ,∆p

(3)
k ) < 0, for all i, j, k. (3.40)

Proof. The derivative in (3.38) can be written as

ċi(t) =

mi−1∑
j=0

B
(i)
j (t)∆p

(i)
j (3.41)

91



3 Functional Webs for Freeform Architecture

with non-negative functions {B(i)
j (t)}, such that for any t in the considered domain, not

all of {B(i)
j (t)} are zero. Then in (3.37), the determinant expands to

det(ċ1(u), ċ2(v), ċ3(w)) =
∑
i,j,k

B
(1)
i (u)B

(2)
j (v)B

(3)
k (w) det(∆p

(1)
i ,∆p

(2)
j ,∆p

(3)
k ),

where w = c − u − v. Here the coefficient values {B(1)
i (u)B

(2)
j (v)B

(3)
k (w)} are non-

negative, and not all of them are zero. Therefore, if condition (3.39) or (3.40) is satis-
fied, then det(ċ1(u), ċ2(v), ċ3(w)) is always positive or always negative on the considered
domain, which satisfies the condition (3.37) for no point at infinity.

Note that among the functions {B(i)
j (t)} in (3.41) at most ni of them are non-zero

at a given parameter t, due to the local control property of B-spline curves. There-
fore, for det(ċ1(u), ċ2(v), ċ3(w)) to be non-zero, we only need to impose the condition

det(∆p
(1)
i ,∆p

(2)
j ,∆p

(3)
k ) > 0 or det(∆p

(1)
i ,∆p

(2)
j ,∆p

(3)
k ) < 0 on those index triples (i, j, k)

for which B
(1)
i (u)B

(2)
j (v)B

(3)
k (w) is non-zero for a certain parameter (u, v) in the consid-

ered domain. We can find such a set I of effective triples as follows. Let the knot vectors
of c1(u), c2(u), c3(w) be denoted by U = {u0, . . . , um1+n1+1}, V = {v0, . . . , vm2+n2+1},
W = {w0, . . . , wm3+n3+1}, respectively. For each pair of knot spans [uα, uα+1] (α =
n1, . . . ,m1) and [vβ, vβ+1] (β = n2, . . . ,m2) where uα 6= uα+1, vβ 6= vβ+1, the corre-
sponding range of w is

w ∈ [c− uα+1 − vβ+1, c− uα − vβ].

Let [wγ , wδ] (γ, δ ∈ Z) be the smallest knot span of W which contains the interval
[c− uα+1 − vβ+1, c− uα − vβ]. Then a triple (i, j, k) with α− n1 ≤ i ≤ α− 1, β − n2 ≤
j ≤ β − 1, γ − n3 ≤ k ≤ δ − 2 is contained in I. To summarize, we have

Corollary 3.3. The surface region considered in Proposition 3.2 has no point at infinity
if

det(∆p
(1)
i ,∆p

(2)
j ,∆p

(3)
k ) > 0, for all (i, j, k) ∈ I, (3.42)

or
det(∆p

(1)
i ,∆p

(2)
j ,∆p

(3)
k ) < 0, for all (i, j, k) ∈ I. (3.43)

3.3.4 Modification of Continuous Planar Webs

We can modify a continuous planar web into another one. Here we introduce two ap-
proaches to do so. These modification methods enable us to create new designs of
continuous planar webs from existing ones, instead of starting from scratch using the
methods in Section 3.3.3.

92



3 Functional Webs for Freeform Architecture

Modification by Projective Transformations

In a three-dimensional real projective space RP 3 (obtained by adding points at infinity
to R3), a projective transformation is a mapping between points. Such a transformation
φ is represented by a 4× 4 regular matrix M. A point with homogeneous coordinates Q
(written as a column vector) is mapped by φ to a point with homogeneous coordinates
MQ. Such a mapping induce a mapping ψ between planes, represented by the 4 × 4
regular matrix M−T , such that a plane with homogeneous coordinates P is mapped
by ψ to a plane with homogeneous coordinates M−TP. If a point q is incident with
a plane P , then point φ(q) is incident with plane ψ(P ) [Pottmann and Wallner 2001].
Therefore, if a point q is the intersection between three planes P1, P2, P3, then point
φ(q) is the intersection between three planes ψ(P1), ψ(P2), ψ(P3). For a continuous
planar web S(u, v) = P1(u)∩P2(v)∩P3(w) generated by three families of planes P1(u),
P2(v), P3(w), the three plane families can be mapped by ψ to three new families of
planes P 1(u) = ψ(P1(u)), P 2(v) = ψ(P2(v)), P 3(w) = ψ(P3(w)). P 1(u), P 2(v), P 3(w)
can be used to create a continuous planar web

S(u, v) = P 1(u) ∩ P 2(v) ∩ P 3(w),

and point S(u, v) is the image of S(u, v) via mapping φ

S(u, v) = φ(S(u, v)).

Therefore, we can modify an existing planar web S(u, v) by specifying a projective
transformation φ and applying it to S(u, v). A projective transformation is determined
by two fundamental sets of points {qi}i=0,...,4 and {ri}i=0,...,4, which means that no four
points in {qi} are coplanar, and no four points in {ri} are coplanar. The matrix M of
the projective transformation is determined by conditions

MQi = λiRi, for some λi ∈ R \ {0}, i = 0, . . . , 4, (3.44)

where Qi and Ri are homogeneous coordinates of qi and ri, respectively [Pottmann and
Wallner 2001]. Note that since {qi} is a fundamental set, vectors {Qi}i=0,...,3 form a basis
of R4, and Q4 can be represented as Q4 =

∑3
i=0 aiQi. Similarly, R4 can be represented

as R4 =
∑3

i=0 biRi. Now denote Q̂i = aiQi, R̂i = biRi, i = 0, . . . , 3, then the condition
(3.44) is equivalent to

MQ̂i = R̂i, i = 0, . . . , 3.

Therefore, M can be obtained by solving a linear system[
Q̂0Q̂1Q̂2Q̂3

]T
MT =

[
R̂0R̂1R̂2R̂3

]T
For the modification of a planar web S(u, v) we can choose five points on S(u, v) which
form the source fundamental set {qi}, and specify another five points as the image
fundamental set {ri}, determining the matrix M. The new planar web S(u, v) will be
incident with the points {ri}. Figure 3.30 shows an example of such modification.

93



3 Functional Webs for Freeform Architecture

(a)

(b)

(c)

Figure 3.30: Modification of a continuous planar web using a projective transformation.
(a) The original surface, with the source fundamental set of points (in pur-
ple), viewed from different angles. (b) The modified surface, with the target
fundamental set of points (in purple), viewed from same angles as (a). (c)
The original and modified surfaces are put together for comparison.

94



3 Functional Webs for Freeform Architecture

Note that under a projective transformation M, some points on the original surface
may be mapped to points at infinity. Let Pinf be the homogeneous coordinates of the
plane at infinity, Then the plane P0 with homogeneous coordinates MTPinf is mapped
to the plane at infinity. If P0 intersects with the original surface, the intersection points
will be mapped to points at infinity. To avoid points at infinity on the modified surface,
we need to make sure that plane P0 does not intersection with the original surface.

Interactive Deformation by Optimization

The second approach is only applicable to continuous planar webs derived from the nor-
mal planes of three B-spline curves. Starting from such a continuous planar web S(u, v)
defined on a parameter domain R, we sample a set of points {(ui, vi)} inside R. The cur-
rent surface points {S(ui, vi)} at these parameter values give a set of “handles”, which
the user can drag to desired locations {qi}. Then we search for a new continuous planar
web S(u, v) by changing the control point positions of the three B-spline curves, such
that points {S(ui, vi)} are close to {qi}, This is done by minimizing a target functional

F = λfairffair +
∑
i

wi‖S(ui, vi)− qi‖2, (3.45)

where wi > 0 are weights for each point, ffair is a fairing functional for S(u, v), and
λfair is the weight for ffair. The variables are the control point coordinates of the three
B-spline curves.

The weights {wi} in Equation (3.45) are chosen as follows. We separate all sample
parameters {(ui, vi)} into two sets: the “moved set” M = {i | S(ui, vi) 6= qi} for
which the target point location differ from the current surface point, and the “fixed set”
F = {i | S(ui, vi) = qi} for which the target point is the same as the current surface
point. On the one hand, we want to make the new positions {S(ui, vi)}i∈I of the moved
set close to their target positions. On the other hand, we want to achieve the effect that
the surface region further away from the moved set is more constrained to its current
position. We set wi = 1 for each point in the moved set. The weight for a point in
the fixed set depends on its distance Di to the moved set. The larger this distance is,
the larger the weight becomes. Let Dmax = maxi∈F Di and Dmin = mini∈F Di be the
maximum and minimum values of such distances. Then wi(i ∈ F) is defined as

wi =
Di −Dmin

Dmax −Dmin
α+

Dmax −Di
Dmax −Dmin

β,

where α, β ∈ R are user-defined values such that 0 ≤ β � α ≤ 1. The distance Di is
defined as the minimum distance to a point in the moved set, measured either in the
parameter domain

Di = min
j∈M
‖(ui, vi)− (uj , vj)‖, (3.46)

or using the Euclidean distance between current surface points

Di = min
j∈M
‖S(ui, vi)− S(uj , vj)‖. (3.47)

95



3 Functional Webs for Freeform Architecture

To define the fairing term in (3.45), we take the intersection points between the three
families of planar curves C1(i), C2(j), C3(k) defined in (3.31). These points are the
vertices of a regular mesh of a discrete planar web, where the three families of mesh
polylines L1, L2, L3 correspond to C1(i), C2(j), C3(k), respectively. We define the
fairing term based on these polylines

ffair =
∑

i=1,2,3

ffair,σ(Li), σ = II, III,

with ffair,σ(Li) defined in Equation (3.4).
Since the initial surface S(u, v) is constructed from three B-spline curves according to

Section 3.3.3, the initial control points satisfy (3.42) or (3.43). To ensure that the new
surface S(u, v) is free of points at infinity, we need to maintain a condition

η · det(∆p
(1)
i ,∆p

(2)
j ,∆p

(3)
k ) > 0, for all (i, j, k) ∈ I, (3.48)

where η = 1 if the initial surface S(u, v) satisfies (3.42), and η = −1 if S(u, v) satisfies
(3.43). I is the same as in (3.42) and (3.43). In other words, we maintain the same
sufficient condition for no point at infinity as the initial surface. Therefore, the new
surface S(u, v) is obtained by minimizing the target function (3.45) subject constraints
(3.48). This constrained optimization problem is solved by sequential quadratic pro-
gramming [Nocedal and Wright 2006]. Our implementation uses the SLSQP algorithm
implemented in NLopt library [Johnson 2011] which is based on [Kraft 1988] [Kraft
1994].

Figure 3.31 shows two examples of such modification. Figure 3.31(a) shows the original
surfaces, as well as the B-spline curves and the normal planes. The handles are sampled
as the intersection points of a network of planar curves (shown in red) defined in (3.31).
Among the target positions of the handles (shown in white), only one of them is different
from the original position (marked as q1). Figures 3.31(b) and 3.31(c) are the modified
surfaces, using weighting schemes defined by (3.47) and (3.46), respectively.

Table 3.2 shows some details of the optimization. Here Ncp is the total number of
control points for the B-spline curves. #var is the number of variables for the optimiza-
tion problem. Nhandle is the number of handles. Nfair is the number of sample points for
the fairing term. T is the timing in seconds.

Figure Ncp #var Nhandle Nfair T

3.31 Left 15 45 49 2401 6

3.31 Right 21 63 36 2304 3

Table 3.2: Details and timing for the deformation in Figure 3.31.

3.4 Discussion

There are limitations to the discrete web optimization, especially to finding webs such
that both a reference surface is approximated and geometric properties are fulfilled.

96



3 Functional Webs for Freeform Architecture

q1

q1

(a)

(b)

(c)

Figure 3.31: Interactive deformation of continuous planar webs. (a) The continuous
planar webs before deformation, with one target point q1 different from the
original position of the handle. (b) Deformed surface using “Euclidean”
weights (3.47). The original surface shape is also shown for comparison.
(b) Deformed surface using “parametric” weights (3.46).

97



3 Functional Webs for Freeform Architecture

This is due to the global and coupled nature of constraints. For some surfaces there
simply exists no web which can satisfy all the constraints without large deviation from
the surface. For such cases our algorithm will fail to produce satisfactory results. It
remains a challenging research problem to give a precise characterization of the types of
webs that can exist on a given surface.

Due to the global nature of the constraints, local control of webs can be expected
to be available only to a limited extent. For the case of nontrivial planar webs, any
change of one of the families of planes will influence the surface at least along strips.
For geodesic webs covering a given surface S0, a dimension count in the smooth case
shows that we cannot expect that locally deformed surfaces St (0 ≤ t < ε) are still
covered by a geodesic web. By [Volk 1929], St must satisfy a certain 4th order PDE. If
the deformation is local, all St’s share values and derivatives along a common boundary.
This usually implies that all St’s are the same.

A combinatorial limitation is the regularity of meshes we use. It is possible to extend
the discrete web optimization approach to irregular meshes (i.e., meshes containing in-
terior vertices of valence 6= 6). For an interior vertex v of even valence which is different
from 6 (a singular vertex), we can still categorize opposite neighboring vertices into the
same mesh polyline containing v and apply the functionals in Section 3. However, this
does not make sense in most cases. For instance, requiring the geodesic property near a
singular vertex leads to a singularity of the surface geometry. This implication “combina-
torial singularity =⇒ geometric singularity” follows from the existence of geodesic mesh
polylines which run side by side before encountering the singularity and which diverge
immediately afterwards, implying a concentration of Gaussian curvature (see the Jacobi
equation (2.2)). Other work on regular triangular and hexagonal parametrizations such
as [Nieser et al. 2010] does not surfer from this problem.

98



4 Conclusion and Future Work

In this thesis, we described methods to create patterns of special curves on surfaces,
which find applications in design and realization of freeform architecture.

We first presented an evolution approach to generate a series of curves which are ei-
ther geodesic or piecewise geodesic, starting from a given source curve on a surface. This
approach “propagates” curves across the surface so that the distance functions between
neighboring curves are close to given target functions. Each new curve is computed
according to a Jacobi field on the current “wavefront” curve of the propagation which is
closest to the target distance function. The Jacobi fields give first order approximations
of distance fields from the wavefront curve to a neighboring curve. The problem of select-
ing a Jacobi field that is closest to the target distance function is easily solvable, thanks
to the linear structure of the space of Jacobi fields. The use of target distance functions
provides flexibility in the creation of curve patterns. In the simplest case of constant
target distance functions, we obtain curve patterns which represent layouts of panels
with straight developments and approximately constant widths, which are important for
fabrication of architectural freeform shapes and for interior design. Using other types
of target distance functions, we are able to obtain non-trivial patterns adapted to spe-
cific needs for design and construction. Using this evolution approach, we can explore
different patterns by specifying different source curves and target distance functions.
This leads to more predictable and controllable results than the nonlinear optimization
approach to geodesic D-strip models in [Pottmann et al. 2008b].

We then presented computational tools to create functional webs, i.e., three families
of curves with regular connectivity, where the curves have designated special properties
(planar, circular or geodesic). By discretizing a web as a regular triangle mesh, we can
compute a discrete web using an optimization approach, where the target functional
penalizes the deviation of the curves from their target properties. To investigate the
solvability of this optimization problem for specific target properties, we estimate the
number of d.o.f for a functional web as the difference between the number of mesh vertex
coordinates and the number of constraints induced by curve properties. This estimation
helps the user to choose target curve properties which are achievable for a specific web.
For webs consisting of planar curves, we show how they can be computed in an exact
way using three families of planes. To the best of our knowledge, this is the first sys-
tematic investigation into practical computation of functional webs. Recent emergence
of web structures in architecture poses new challenges in their realization, since every
general-shaped curve element has to be fabricated by CNC-machining, resulting in high
manufacturing cost [Scheurer 2010]. Our computational framework can help the archi-
tects to design webs with curve elements that are easy to fabricate, leading to economical
realization of such structures.

For future work on geodesic patterns, we would like to extend the evolution approach

99



4 Conclusion and Future Work

to address some current limitation. The current approach of evolution only works for sur-
face patches of disk topology. In order to use this approach to cover a surface with other
topologies, we need to segment the surface into patches, e.g., using the segmentation
algorithm from [Pottmann et al. 2010]. Such segmentation may not always be desirable.
For example, for a surface of revolution, we would like the generated pattern to maintain
symmetry with respect to the rotation axis. However, the segmentation approach can-
not guarantee such symmetry. Instead, we can apply the evolution approach to closed
curves which are piecewise geodesic. The Jacobi fields on such piecewise geodesic closed
curves can be computed in a way similar to the Jacobi fields on piecewise geodesic open
curves. Such closed curves can be propagated on a surface of cylinder topology without
the need for segmentation. Besides, when segmenting a complicated surface for geodesic
patterns, the user may want to control the positions of singularities, i.e., points where
more than two patches meet. We can work on a segmentation algorithm which respects
specified singularity positions, and produces patches of disk or cylinder topology which
are suitable for the evolution of geodesic/piecewise geodesic curves.

For future work on functional webs, an interesting topic is the exploration of shape
spaces of functional webs with given curve properties. This can be done following the
approach of [Yang et al. 2011]: A web discretized as a regular triangle mesh can be
represented by a vector in R3|V | which includes the mesh vertex coordinates, where |V |
is the number of vertices. A target property of an edge polyline defines a set of constraints
for the coordinates of its vertices. Therefore, for a given set of curve properties, the webs
with these properties correspond to a manifold in R3|V | defined by the corresponding
constraints. If this manifold is not an empty set of points, we can allow the user to explore
it to see the possible shapes of webs. Such exploration is useful in the design of a web.
Another interesting and related topic is the existence of discrete webs with given curve
properties. The estimation of the number of d.o.f. for a web in Chapter 3 is only a rough
one. First of all, the constraints derived from curve properties may not be independent,
or may contradict each other. These cases are not taken into account by the current
estimation. For example, according to this estimation, we cannot construct a web where
all curves are circular, because the number of constraints exceeds the number of vertex
coordinates. However, as shown in [Pottmann et al. 2011], such webs do exist. Moreover,
the constraints from curve properties are all nonlinear. Therefore, the difference between
the number of variables and the number of constraints may not reflect the actual degrees
of freedom for the solutions. The existence of discrete webs with given properties is a
challenging yet important topic. Its solution will shed light on the problem of existence
of hexagonal webs with corresponding properties, which remains an open topic in web
geometry.

Within architectural geometry, an important future work is construction-aware design
for freeform architecture. Traditionally in an architectural project, design and ratio-
nalization are separate tasks. The architect first uses CAD tools to create the designed
shape. This design then goes through the rationalization process, which generates a sim-
plified model that is suitable for fabrication. The rationalization process usually involves
complicated nonlinear optimization, and the output model may not always be consis-
tent with the architect’s original intent. In that case, the architect needs to modify the

100



4 Conclusion and Future Work

original design, and apply rationalization again. Sometimes this cycle between design
and rationalization needs to be iterated for a few times before a satisfactory result is
obtained. Such iteration is time-consuming. Also, it is not easy to know what changes
on the original design are needed to produce a specific rationalized shape. Therefore,
researchers have recently started working on construction-aware design tools, which inte-
grate rationalization into the design process. Such tools will generate only those designs
which meet the specified manufacturing and feasibility constraints. For the geodesic
pattern problem, we may start from some target distance functions, and look for sur-
faces which allow families of geodesic/piecewise geodesic curves with distance functions
between neighboring curves matching the target functions. For functional webs, we can
start from a set of target curve properties, and look for webs consisting of curves with
these properties. In both cases, the feasible shapes may form a space, and the idea of
shape space exploration will be useful in the design process.

101



Bibliography

Aleksandrov, A. D., Zahlgaller, V. A., 1967. Intrinsic Geometry of surfaces. American
Mathematical Society.

Alliez, P., de Verdière, É. C., Devillers, O., Isenburg, M., 2003. Isotropic surface remesh-
ing. In: Proceedings of Shape Modeling International. pp. 49–58.

Bentley, J. L., 1975. Multidimensional binary search trees used for associative searching.
Communications of the ACM 18 (9), 509–517.

Blaschke, W., Bol, G., 1938. Geometrie der Gewebe. Springer.

Bo, P., Pottmann, H., Kilian, M., Wang, W., Wallner, J., 2011. Circular arc structures.
ACM Transactions on Graphics 30 (4), 101:1–101:12, Proceedings of SIGGRAPH
2011.

Cazals, F., Pouget, M., 2008. Algorithm 889: Jet fitting 3: —A generic C++ package
for estimating the differential properties on sampled surfaces via polynomial fitting.
ACM Transactions on Mathematical Software 35 (3), 24:1–24:20.

Ceccato, C., Hesselgren, P., Pauly, M., Pottmann, H., Wallner, J. (Eds.), 2010. Advances
in Architectural Geometry 2010. Springer.

Chen, J., Han, Y., 1990. Shortest paths on a polyhedron. In: Proceedings of the sixth
annual symposium on Computational geometry. pp. 360–369.

Chen, Y., Davis, T. A., Hager, W. W., Rajamanickam, S., 2008. Algorithm 887:
Cholmod, supernodal sparse cholesky factorization and update/downdate. ACM
Transactions on Mathematical Software 35 (3), 22:1–22:14.

Chern, S.-S., 1982. Web geometry. Bulletin of the American Mathematical Society 6,
1–8.

Chernov, N., 2010. Circular and Linear Regression: Fitting Circles and Lines by Least
Squares. CRC Press.

de Berg, M., Cheong, O., van Kreveld, M., Overmars, M., 2008. Computational Geom-
etry: Algorithms and Applications, 3rd Edition. Springer.

do Carmo, M. P., 1976. Differential Geometry of Curves and Surfaces. Prentice Hall.

do Carmo, M. P., 1992. Riemannian Geometry. Birkhäuser.

102



Bibliography

Eigensatz, M., Kilian, M., Schiftner, A., Mitra, N. J., Pottmann, H., Pauly, M., 2010.
Paneling architectural freeform surfaces. ACM Transactions on Graphics 29, 45:1–
45:10, Proceedings of SIGGRAPH 2010.

Farin, G., 2001. Curves and Surfaces for CAGD: A Practical Guide, 5th Edition. Morgan
Kaufmann.

Flöry, S., Pottmann, H., 2010. Ruled surfaces for rationalization and design in architec-
ture. In: Sprecher, A., Yeshayahu, S., Lorenzo-Eiroa, P. (Eds.), LIFE in:formation.
On Responsive Information and Variations in Architecture. Association for Computer
Aided Design in Architecture (ACADIA), pp. 103–109, Proceedings of ACADIA 2010.

Fu, C.-W., Lai, C.-F., He, Y., Cohen-Or, D., 2010. K-set tilable surfaces. ACM Trans-
actions on Graphics 29 (4), 44:1–44:6, Proceedings of SIGGRAPH 2010.

Glymph, J., Shelden, D., Ceccato, C., Mussel, J., Schober, H., 2004. A parametric
strategy for free-form glass structures using quadrilateral planar facets. Automation
in Construction 13 (2), 187–202, Conference of the Association for Computer Aided
Design in Architecture.

Graf, H., Sauer, R., 1924. Über dreifache Geradensysteme. Sitzungsberichte
der Bayerische Akademie der Wissenschaften Mathematisch-Naturwissenschaftliche
Abteilung, 119–156.

Johnson, S. G., 2011. The NLopt nonlinear-optimization package. http://ab-initio.
mit.edu/nlopt.

Jolliffe, I. T., 2002. Principal Component Analysis, 2nd Edition. Springer.

Kahlert, J., Olson, M., Zhang, H., 2011. Width-bounded geodesic strips for surface tiling.
The Visual Computer 27 (1), 45–56.

Kaneva, B., O’Rourke, J., 2000. An implementation of Chen & Han’s shortest paths
algorithm. In: Proceedings of the 12th Canadian Conference on Computational Ge-
ometry.

Kimmel, R., Sethian, J. A., 1998. Computing geodesic paths on manifolds. Proceedings
of the National Academy of Sciences of the United States of America 95 (15), 8431–
8435.

Kirsanov, D., 2004. Minimal discrete curves and surfaces. Ph.D. thesis, Harvard Univer-
sity.

Kraft, D., 1988. A software package for sequential quadratic programming. Tech. Rep.
DFVLR-FB 88-28, Institut für Dynamik der Flugsysteme, Oberpfaffenhofen.

Kraft, D., 1994. Algorithm 733: TOMP – Fortran modules for optimal control calcula-
tions. ACM Transactions on Mathematical Software 20 (3), 262–281.

103

http://ab-initio.mit.edu/nlopt
http://ab-initio.mit.edu/nlopt


Bibliography

Kuipers, J. B., 2002. Quaternions and Rotation Sequences: A Primer with Applications
to Orbits, Aerospace and Virtual Reality. Princeton University Press.

Lazareva, V. B., 1988. Parallelizable three-webs formed by pencils of circles. Webs and
Quasi-groups, 74–77 (in Russian).

Lindsey, B., 2001. Digital Gehry: Material Resistance, Digital Construction. Birkhäuser.

Liu, Y., Pottmann, H., Wallner, J., Yang, Y.-L., Wang, W., 2006. Geometric modeling
with conical meshes and developable surfaces. ACM Transactions on Graphics 25 (3),
681–689, Proceedings of SIGGRAPH 2006.

Liu, Y.-J., Zhou, Q.-Y., Hu, S.-M., 2007. Handling degenerate cases in exact geodesic
computation on triangle meshes. The Visual Computer 23 (9), 661–668.

Madsen, K., Nielsen, H. B., Tingleff, O., 2004. Methods for non-linear least squares
problems. http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/3215/pdf/
imm3215.pdf.

Mart́ınez, D., Velho, L., Carvalho, P. C., 2005. Computing geodesics on triangular
meshes. Computers & Graphics 29 (5), 667–675.

Mayrhofer, K., 1931. Über Sechseckgewebe aus Geodätischen. Monatshefte für Mathe-
matik 38 (1), 401–404.

Mitchell, J. S. B., Mount, D. M., Papadimitriou, C. H., 1987. The discrete geodesic
problem. SIAM Journal on Computing 16 (4), 647–668.

Mitchell, W. J., 2001. Roll over Euclid: how Frank Gehry designs and builds. In: Ragheb,
J. F. (Ed.), Frank Gehry, Architect. Guggenheim Museum Publications, pp. 353–363.

Nieser, M., Palacios, J., Polthier, K., Zhang, E., 2010. Hexagonal global parameterization
of arbitrary surfaces. In: ACM SIGGRAPH ASIA 2010 Sketches. pp. 5:1–5:2.

Nocedal, J., Wright, S., 2006. Numerical Optimization, 2nd Edition. Springer.

Novotni, M., Klein, R., 2002. Computing geodesic distances on triangular meshes. In:
The 10-th International Conference in Central Europe on Computer Graphics, Visu-
alization and Computer Vision 2002 (WSCG’2002).

Pereira, J. V., Pirio, L., 2009. An invitation to web geomety — from abel’s addition
theorem to the algebraization of codimension one webs. http://w3.impa.br/~jvp/
invitation.pdf.

Pirazzi, C., Weinand, Y., 2006. Geodesic lines on free-form surfaces – optimized grids
for timber rib shells. In: Proceedings of World Conference in Timber Engineering.

Polthier, K., Schmies, M., 1998. Straightest geodesics on polyhedral surfaces. In: Hege,
H.-C., Polthier, K. (Eds.), Mathematical Visualization. Springer Verlag, Heidelberg,
pp. 135–150.

104

http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/3215/pdf/imm3215.pdf
http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/3215/pdf/imm3215.pdf
http://w3.impa.br/~jvp/invitation.pdf
http://w3.impa.br/~jvp/invitation.pdf


Bibliography

Pottmann, H., 2009. Geometry and new and future spatial patterns. Architectural Design
79 (6), 60–65.

Pottmann, H., 2010. Architectural geometry as design knowledge. Architectural Design
80 (4), 72–77.

Pottmann, H., Asperl, A., Hofer, M., Kilian, A., 2007a. Architectural Geometry. Bentley
Institute Press.

Pottmann, H., Hofer, M., Kilian, A. (Eds.), 2008a. Advances in Architectural Geometry
2008.

Pottmann, H., Huang, Q., Deng, B., Schiftner, A., Kilian, M., Guibas, L., Wallner, J.,
2010. Geodesic patterns. ACM Transactions on Graphics 29 (4), 43:1–43:10, Proceed-
ings of SIGGRAPH 2010.

Pottmann, H., Leopoldseder, S., 2003. A concept for parametric surface fitting which
avoids the parametrization problem. Computer Aided Geometric Design 20 (6), 343–
362.

Pottmann, H., Liu, Y., Wallner, J., Bobenko, A., Wang, W., 2007b. Geometry of multi-
layer freeform structures for architecture. ACM Transactions on Graphics 26 (3), Pro-
ceedings of SIGGRAPH 2007.

Pottmann, H., Schiftner, A., Bo, P., Schmiedhofer, H., Wang, W., Baldassini, N., Wall-
ner, J., 2008b. Freeform surfaces from single curved panels. ACM Transactions on
Graphics 27 (3), 76:1–76:10, Proceedings of SIGGRAPH 2008.

Pottmann, H., Schiftner, A., Wallner, J., 2008c. Geometry of architectural freeform
structures. Internationale Mathematische Nachrichten 209, 15–28.

Pottmann, H., Shi, L., Skopenkov, M., 2011. Darboux cyclides and webs from circles.
ArXiv e-prints.

Pottmann, H., Wallner, J., 2001. Computational Line Geometry. Springer.

Pouget, M., Cazals, F., 2011. Estimation of local differential properties. In: CGAL User
and Reference Manual, 3.8 Edition. CGAL Editorial Board, http://www.cgal.org/
Manual/3.8/doc_html/cgal_manual/packages.html#Pkg:Jet_fitting_3.

Pratt, V., 1987. Direct least-squares fitting of algebraic surfaces. ACM SIGGRAPH
Computer Graphics 21 (4), Proceedings of SIGGRAPH 1987.

Scheurer, F., 2010. Materialising complexity. Architectural Design 80 (4), 86–93.

Schiftner, A., Höbinger, M., Wallner, J., Pottmann, H., 2009. Packing circles and spheres
on surfaces. ACM Transactions on Graphics 28, 139:1–139:8, Proceedings of SIG-
GRAPH Asia 2009.

105

http://www.cgal.org/Manual/3.8/doc_html/cgal_manual/packages.html#Pkg:Jet_fitting_3
http://www.cgal.org/Manual/3.8/doc_html/cgal_manual/packages.html#Pkg:Jet_fitting_3


Bibliography

Shelden, D. R., 2002. Digital surface representation and the constructibility of gehry’s
architecture. Ph.D. thesis, Massachusetts Institute of Technology.

Shelekhov, A., 2007. Classification of regular three-webs formed by pencils of circles.
Journal of Mathematical Sciences 143 (6), 3607–3629.

Singh, M., Schaefer, S., 2010. Triangle surfaces with discrete equivalence classes. ACM
Transactions on Graphics 29 (4), 46:1–46:7, Proceedings of SIGGRAPH 2010.

Spuybroek, L., 2004. NOX: Machining Architecture. Thames & Hudson.

Surazhsky, V., Surazhsky, T., Kirsanov, D., Gortler, S. J., Hoppe, H., 2005. Fast exact
and approximate geodesics on meshes. ACM Transactions on Graphics 24 (3), 553–
560, Proceedings of SIGGRAPH 2005.

Volk, O., 1929. Über Flächen mit geodätischen Dreiecksnetzen. Sitzungsberichte der
Heidelberger Akademie der Wissenschaften.

Wallner, J., Pottmann, H., 2011. Geometric computing for freeform architecture. Journal
of Mathematics in Industry 1 (1), 1–18.

Wallner, J., Pottmann, H., Hofer, M., 2007. Fair webs. The Visual Computer 23 (1),
83–94.

Wallner, J., Schiftner, A., Kilian, M., Flöry, S., Höbinger, M., Deng, B., Huang, Q.,
Pottmann, H., 2010. Tiling freeform shapes with straight panels: Algorithmic meth-
ods. In: Ceccato, C., et al. (Eds.), Advances in Architectural Geometry 2010. Springer,
pp. 73–86.

Wang, W., Liu, Y., Yan, D.-M., Chan, B., Ling, R., Sun, F., 2008. Hexagonal meshes
with planar faces. Tech. Rep. TR-2008-13, Department of Computer Science, The
University of Hong Kong.

Xin, S.-Q., Wang, G.-J., 2009. Improving Chen and Han’s algorithm on the discrete
geodesic problem. ACM Transactions on Graphics 28 (4), 104:1–104:8.

Xin, S.-Q., Wang, G.-J., 2010. Applying the improved chen and han’s algorithm to
different versions of shortest path problems on a polyhedral surface. Computer-Aided
Design 42 (10), 942–951.

Yang, Y.-L., Yang, Y.-J., Pottmann, H., Mitra, N. J., 2011. Shape space exploration of
constrained meshes. In: SIGGRAPH Asia 2011.

Yatziv, L., Bartesaghi, A., Sapiro, G., 2006. O(N) implementation of the fast marching
algorithm. Journal of Computational Physics 212 (2), 393–399.

Zadravec, M., Schiftner, A., Wallner, J., 2010. Designing quad-dominant meshes with
planar faces. Computer Graphics Forum 29 (5), 1671–1679, Proceedings of Symposium
on Geometry Processing 2010.

106



Curriculum Vitae

Bailin Deng, born August 21, 1982 in Xinhui, Guangdong Province, China.

Education

09/2001 - 06/2005 Tsinghua University, China. BEng in Computer Software.
09/2003 - 06/2004 The Chinese University of Hong Kong, Hong Kong SAR, China.

Exchange student.
09/2005 - 06/2008 Tsinghua University, China. MSc in Computer Science.
since 10/2008 Vienna University of Technology, Austria. Ph.D. studies in Ap-

plied Geometry, supervisor Helmut Pottmann.

Employment and Research Experience

since 10/2008 Research assistant at Vienna University of Technology, Austria.
Research in Applied Geometry.

11/2009 - 01/2010 Visiting student at Geometric Modeling and Scientific Visualiza-
tion Center, King Abdullah University of Science and Technology,
Saudi Arabia. Research in Architectural Geometry.

Publications

Deng, B., Pottmann, H., Wallner, J., 2011. Functional webs for freeform architecture.
Computer Graphics Forum 30 (5), 1369–1378, Proc. Symp. Geometry Processing 2011.

Pottmann, H., Huang, Q., Deng, B., Schiftner, A., Kilian, M., Guibas, L., Wallner, J.,
2010. Geodesic patterns. ACM Transactions on Graphics 29 (4), 43:1–43:10, Proc.
SIGGRAPH 2010.

Wallner, J., Schiftner, A., Kilian, M., Flöry, S., Höbinger, M., Deng, B., Huang, Q.,
Pottmann, H., 2010. Tiling freeform shapes with straight panels: Algorithmic meth-
ods. In: Ceccato, C., et al. (Eds.), Advances in Architectural Geometry 2010. Springer,
pp. 73–86.

Yong, J.-H., Deng, B., Cheng, F., Wang, B., Wu, K., Gu, H.-J., 2009. Removing local
irregularities of triangular meshes with highlight line models. Science in China Series
F: Information Sciences 52 (3), 418–430.

Talks

07/2011 Functional Webs for Freeform Architecture, Symposium on Geometry
Processing 2011, Lausanne.


	Introduction
	Geodesic Patterns on Freeform Surfaces
	Related Work
	Distance Between Geodesics
	Evolving Geodesics on Mesh Surfaces
	Solving the Jacobi Equation
	Selecting a Jacobi Field
	Computing the Next Geodesic
	Evolution of Geodesics
	Implementation Details
	Results
	Limitations of Geodesic Evolution Method

	Evolving Piecewise Geodesic Curves
	Piecewise Geodesic Curves
	Jacobi Fields on Piecewise Geodesic Curves
	Selecting Jacobi Fields on Piecewise Geodesic Curves
	Handling Intervals Without Fundamental Solutions
	Adding Breakpoints to a Piecewise Geodesic Curve
	Computing the Next Piecewise Geodesic Curve
	Post-processing of the Next Piecewise Geodesic Curve
	Results

	Conclusion and Discussion

	Functional Webs for Freeform Architecture
	Related Work
	Web Geometry

	Discrete Webs by Global Optimization
	The Fairing Functional
	The Shape Proximity Functional
	The Boundary Proximity Functional
	The Planar Property
	The Circular Property
	The Geodesic Property
	Counting Degrees of Freedom
	Implementation Details
	Results

	Exact Planar Webs
	Discrete Planar Webs from Plane Families
	Continuous Planar Webs
	Constructing Continuous Planar Webs
	Modification of Continuous Planar Webs

	Discussion

	Conclusion and Future Work

