
Technical Criteria for the
Productivity of Rapid Web

Development Frameworks in
Enterprise Java

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Christian Thomas
Matrikelnummer 0526537

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung
Betreuer: Thomas Grechenig
Mitwirkung: Mario Bernhart

Wien, 12.9.2011
(Unterschrift Verfasser) (Unterschrift Betreuer)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Research Group Industrial Software (INSO)
Institute for Computer Aided Automation (E183)

Faculty of Informatics
Vienna University of Technology

Master of Science Thesis

Technical Criteria for the
Productivity of Rapid Web

Development Frameworks in
Enterprise Java

Author:
Christian Thomas

Braunspergengasse 28/10, A-1100 Wien

Supervisor:
Thomas Grechenig

Mario Bernhart

Vienna, September 12, 2011

Eidesstattliche Erklärung

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, am 12.9.2011
CHRISTIAN THOMAS

Abstract

In recent years, the World Wide Web has emerged as a central part of our lives. Accord-
ingly, Web Engineering nowadays is among the main activities in software development.
However, due to their special characteristics, developing Web Applications is a complex
task. Web Application Frameworks aim at easing this task. On the one hand, the prolifer-
ation of these software-tools has made the selection of a framework a challenging task.
On the other hand, the competition also led to an ongoing equalization in the market.
Today, the existing Web Frameworks hardly differ regarding their functional expressive-
ness, making it a insignificant criterion when choosing a framework. However, when
Ruby on Rails was released in the end of 2005, it unmasked that Web development till
then lacked an important factor: Productivity. Since that time, also Web Frameworks
in the Java environment are increasingly facing rapid development. Five years after
the first version of Rails, this thesis describes the current state-of-the-art in rapid Web
development with Java. It analyzes the technical factors that altogether define a Web
Application Framework’s productivity. The resulting catalog encompasses more than
120 criteria. This way, it can answer the question of which particular Web Framework to
choose in an upcoming project. The catalog can also be used to base new comparisons
on it and it may even foster further developments in the market.

Zusammenfassung

In den vergangenen Jahren hat sich das World Wide Web zu einem zentralen Bestandteil
unseres Lebens entwickelt. Mithin konnte sich auch die Webentwicklung als Disziplin
innerhalb der Software-Entwicklung fest etablieren. Aufgrund ihrer speziellen Charak-
teristika stellt die Entwicklung von Web-Applikationen ein komplexes Unterfangen dar.
Web Frameworks sollen diese Aufgabe erleichtern. Die Vielzahl vorhandener Tools
macht hier zwar einerseits die Auswahl schwierig, hat inzwischen aber auch zu einer An-
gleichung der Funktionalität geführt: Vorhandene Web Frameworks unterscheiden sich
hinsichtlich ihrer Ausdruckstärke kaum noch, so dass diese nicht länger als Kriterium
bei der Wahl des passenden Werkzeugs dienen kann. Die Veröffentlichung von Ruby on
Rails rückte jedoch schlagartig einen Faktor in den Vordergrund, der von vielen Lösun-
gen bis dahin nicht adressiert wurde: die Produktivität des Entwicklers mit dem jeweili-
gen Tool. Seitdem haben auch viele Frameworks in der Java-Umgebung agile Entwick-
lung auf ihre Agenda gesetzt. Fünf Jahre nach dem Erscheinen von Rails untersucht
diese Arbeit den derzeitigen Stand der Technik auf dem Gebiet und ermittelt die tech-
nischen Faktoren, die die Produktivität der derzeitigen Lösungen definiert. Der resul-
tierende Katalog umfasst mehr als 120 Kriterien. Er erleichtert Managern die Auswahl
der passenden Web Frameworks, kann aber auch als Grundlage neuer Web Framework-
Vergleiche dienen und die Entwicklung vorhandener Werkzeuge vorantreiben.

Contents

List of Figures . vi
List of Tables . vi
Code Listings . vii
List of Abbreviations . viii

1 Introduction 1

2 Fundamentals 4
2.1 Fundamental Technologies of the WWW 4

2.1.1 Communication-specific Technologies 5
2.1.2 Document-specific Technologies 5

2.2 Web Applications . 6
2.2.1 Towards Dynamic Web Pages 6
2.2.2 Categories of Web Applications 9
2.2.3 Characteristics of Web Applications 10

2.3 The Model-View-Controller Pattern 12
2.4 Specifications and Technologies in Enterprise Java 13

2.4.1 Important Concepts . 13
2.4.2 Java Servlet Technology . 14
2.4.3 JSP - JavaServer Pages . 15
2.4.4 Bean Validation . 16
2.4.5 JSF - JavaServer Faces . 17
2.4.6 JPA - Java Persistence API . 19
2.4.7 EJB - Enterprise Java Beans 20
2.4.8 The Spring Framework . 21

2.5 Web Application Frameworks . 22
2.5.1 Definition . 22
2.5.2 Design Philosophy . 24
2.5.3 Taxonomy . 25
2.5.4 Selection drivers . 26

iii

CONTENTS iv

3 Productivity in Software and Web Development 28
3.1 Measuring Productivity . 28
3.2 Productivity Factors . 30
3.3 The Influence of a Web Application Framework 32
3.4 Research Questions . 35

4 Examined Web Frameworks 38
4.1 JBoss Seam . 38

4.1.1 Motivation & History . 39
4.1.2 Prominent Features . 39
4.1.3 Special Approaches to Productivity 41

4.2 Grails . 43
4.2.1 Motivation & History . 43
4.2.2 Prominent Features . 44
4.2.3 Programming Model of Grails 49
4.2.4 Special Approaches to Productivity 51

4.3 Spring Roo . 51
4.3.1 Motivation & History . 52
4.3.2 The Roo Shell . 53
4.3.3 Special Approaches to Productivity 55

5 Productivity Criteria 58
5.1 Model . 58

5.1.1 Data Source Connection Configuration 58
5.1.2 Reverse Engineering the Database 59
5.1.3 Top-down Development Support 60
5.1.4 Validation of Entities . 61
5.1.5 Entity Lifecycle Management 62
5.1.6 Database Queries . 63

5.2 View . 64
5.2.1 View Generation . 64
5.2.2 View Composition . 70
5.2.3 Internationalization . 71
5.2.4 Tag Libraries . 71

5.3 Controller . 72
5.3.1 Scaffolding . 72
5.3.2 Handler Mapping . 73
5.3.3 Data Binding . 74
5.3.4 Input Validation . 76
5.3.5 Context Scope Management 77
5.3.6 View-Mapping . 79

CONTENTS v

5.4 Development Support . 80
5.4.1 Project Generator . 80
5.4.2 IDE Support . 82
5.4.3 Dynamic Language Support 83

5.5 Build & Integration Support . 85
5.5.1 Build Management . 85
5.5.2 Environment Configuration . 86
5.5.3 Dependency Management . 86
5.5.4 Plug-ins . 87

5.6 Testing . 88
5.6.1 Manual Testing . 88
5.6.2 Unit Testing . 90
5.6.3 Integration Testing . 91
5.6.4 Functional Testing . 92

6 Conclusion 93
6.1 Results . 93
6.2 Outlook . 97
6.3 Future Work . 98

Bibliography 100

A Catalog of Criteria 107
A.1 Model . 108
A.2 View . 111
A.3 Controller . 115
A.4 Development Support . 119
A.5 Build & Integration Support . 121
A.6 Testing . 123

List of Figures

2.1 Categories of Web applications . 9
2.2 Model-View-Controller Pattern . 12
3.1 Productivity Ranges in Software Development 31
3.2 Software Development Value Chain . 33

List of Tables

5.1 Common functionalities of generated Scaffolds 65
A.1 Model Criteria . 108
A.2 View Criteria . 111
A.3 Controller Criteria . 115
A.4 Development Support Criteria . 119
A.5 Build & Integration Support Criteria . 121
A.6 Testing Criteria . 123

vi

Code Listings

2.1 A Servlet handling HTTP-Requests 15
2.2 An exemplary JSP-File . 16
2.3 An exemplary Facelet-File . 17
2.4 An exemplary JSF-managed bean . 17
2.6 A simple persistent entity . 20
4.1 Properties and BigDecimal in Groovy 45
4.2 Operators in Groovy . 46
4.3 Collections in Groovy . 46
4.4 Closures in Groovy . 47
4.5 Categories in Groovy . 47
4.6 A domain class in Grails . 49
4.7 A controller in Grails . 50
4.8 A view in Grails . 51
4.10 An exemplary AspectJ ITD definition 56

vii

List of Abbreviations

AJAX Asynchronous JavaScript and XML
AOP Aspect-Oriented Programming
API Application Programming Interface
CDI Context and Dependency Injection
CGI Common Gateway Interface
CSS Cascading Style Sheets
COCOMO Constructive Cost Model
CRUD Create, Read, Update and Delete
DAO Data Access Object
DNS Domain Name System
DOM Document Object Model
DSL Domain Specific Language
DTD Document Type Definition
EAR Java Enterprise Application Archive
EJB Enterprise Java Beans
EL Expression Language
GUI Graphical User Interface
HTML HyperText Markup Language
HTTP Hypertext Transfer Protocol
ITD Inter-Type Declaration
IDE Integrated Development Environment
IP Internet Protocol
GORM Grails Object Relational Mapping
GWT Google Web Toolkit
JAR Java Archive
Java EE Java Enterprise Edition
Java SE Java Standard Edition
JCP Java Community Process
JDBC Java Database Connectivity API
JDK Java Development Kit

viii

LIST OF ABBREVIATIONS ix

JMS Java Message Service
JPA Java Persistence API
JSF JavaServer Faces
JSP JavaServer Pages
JSR Java Specification Request
JSTL Java Standard Tag Library
JVM Java Virtual Machine
GSP Groovy Server Pages
LGPL GNU Lesser General Public License
LoC Lines of Code
MOP Meta Object Protocol
MVC Model View Controller
ORM Object-Relational Mapping
POJO Plain Old Java Object
REST Representational State Transfer
RIA Rich Internet Application
RMI Remote Method Invocation
SQL Structured Query Language
TCP Transmission Control Protocol
UI User Interface
URL Uniform Resource Locator
W3C World Wide Web Consortium
WAF Web Application Framework
WAR Java Web Application Archive
WWW World Wide Web
WYSIWYG What You See Is What You Get
XHTML Extensible Hypertext Markup Language
XML Extensible Markup Language
XSD XML Schema

Chapter 1

Introduction

In recent years, the Internet, and especially the WWW, has evolved to become a central
part in our lives. People nowadays use it to follow the news, compare airfare deals or
connect with others in social networks. The same way, companies have discovered the
WWW for their matters. Standards set only a few years ago are no longer sufficient
today. The shift from static, document-centric Web sites to highly dynamic Web appli-
cations raises the demand on skilled developers and made Web development become a
main activity in today’s software development landscape.

However, the development of Web applications differs significantly from building
traditional software products. This relates to both the project characteristics, with usu-
ally much shorter timelines, and the technical challenges developers are faced with here.
These challenges, resulting from the distributed nature of Web applications and the state-
less architecture of the HTTP protocol, have caused a proliferation of software tools that
specifically address Web development. Among these tools are the so-called Web Appli-
cation Frameworks (or Web Frameworks, for short).

Web Frameworks combine a set of software components and specific programming
models to a generic functionality that, all alone, allows for the development of full-
fledged Web applications. Therefore, developing a new Web application requires choos-
ing a specific Web Framework first. Decisions become more complex by the amount of
alternatives at disposal, though. Only regarding Web Frameworks in the Java segment,
over 50 known open source solutions do exist. And even by taking only those into ac-
count that are used in practice and known to be mature, still more than a dozen remain.
Luckily, the heavy competition in the market has led to a broad equalization regarding
a Web Framework’s expressiveness: It’s hard to think of any problems that cannot be
solved with one of the popular frameworks.

However, when Ruby on Rails, a Web Framework based on the dynamic program-
ming language Ruby, was released in 2005, it unmasked that Web development in Java,
though resulting in quite powerful applications, lacked an important factor: Productivity.

1

CHAPTER 1. INTRODUCTION 2

There were too many setup tasks to fulfill, too many configuration files to manage and
too many layers of indirection to take care of. Rails revealed that this was by no means
a necessity. Nevertheless, the power of Java was still required by enterprises and a sim-
ple switch to Rails was not possible for most. But since that time, productivity is also
increasingly addressed by Java Web Frameworks: Today, it is the main differentiator
between frameworks. Unfortunately, project managers are left alone with the problem
of how to decide for or against one of them.

This diploma thesis analyzes the technical criteria that altogether define a Web Ap-
plication Framework’s productivity. As a result, a comprehensive catalog of criteria will
be introduced. The catalog will serve different purposes: (1) Five years after the first ver-
sion of Rails, it will describe the current state-of-the-art in rapid Web development with
Java. This information will be especially useful for managers that currently analyze the
market and think about adopting a Java Web Framework in their next software project.
(2) The criteria can also be used to answer the question of which particular tool to choose
in an upcoming project. Currently, the only solution is to follow a prototyping strategy
and test multiple projects in parallel. In such scenarios, the catalog will help to focus
on the important criteria and objectify the overall selection process. (3) Prototyping and
framework analysis could even be completely omitted if meaningful comparisons be-
tween Web frameworks would exist. There already exist many such comparisons, but
for the most part, they focus on a subset of functional requirements, which, for the rea-
sons mentioned above, usually won’t be crucial in a development project. But based on
the catalog, new comparisons could be created and identify the most productive Web
frameworks. (4) Finally, the catalog may also be useful for Web framework develop-
ers themselves. They can identify the shortcoming of their current solutions and close
possible gaps.

At the beginning of the thesis, the available literature in the field was studied. It soon
became clear that there was no thorough study on the productivity of Web frameworks:
Web frameworks in general can be considered a topic rather untouched by science. In
contrast, productivity of software development by now is studied for more than 40 years.
Thereby, science focuses on two main questions: How the productivity of a project
can be measured and estimated, and which general criteria affect productivity. Serious
cost estimation models are thereby based on answering the second question first. As
according information was still missing for Web Frameworks, this revealed that the work
should focus on the productivity-defining criteria.

In a next step, Web frameworks needed to be chosen for a closer examination. The
selection process was driven by different factors. To guarantee the significance of the
results, a focus was set on the Java platform: Besides being among the most important
platforms for Web development, the amount of available Web frameworks reaches its
peak here. This indicates that a study on productivity is highly required in this field.
Furthermore, each of the frameworks should be used in real development projects and
considered to be productive. After an investigation on the Internet and different devel-

CHAPTER 1. INTRODUCTION 3

opment communities, three frameworks were chosen, namely JBoss Seam, Grails and
Spring Roo in combination with Spring MVC. All of them are flexibly licensed under
the LGPL resp. Apache License.

The familiarization with a Web framework is considered to be very time consum-
ing. Accordingly, a significant part of the time was consumed by this task. The gained
knowledge was then used to create a first structure of the criteria catalog. This structure
gave a first impression on which areas to focus on. By studying the respective parts in
depth, the catalog was then expanded in an iterative manner, becoming more and more
fine-grained over time. In the end, the final catalog contained more than 120 criteria and
can be found in Appendix A.

Web Frameworks are built on a variety of technologies. Therefore, to understand
the criteria catalog, a basic knowledge of these technologies is a prerequisite. Chapter 2
provides an appropriate introduction, speaks about the special characteristics of Web ap-
plications and defines Web Application Frameworks and the philosophy behind them.
Productivity, and especially the influence of software tools, is then defined by chapter 3.
Related work is discussed and the research questions are derived. Next, the Web Frame-
works examined in the course of this work are shortly presented in chapter 4. At this
point, the reader should have a basic understanding of the concept behind Web Frame-
works and a first impression on how they relate to development productivity. The criteria
analysis as the main part of this work is provided in chapter 5. A detailed overview of
all criteria found is given by Appendix A. Finally, chapter 6 summarizes the results of
the work, gives an outlook on the trends to be expected for the market, and discusses the
topics still open for research.

Chapter 2

Fundamentals

A Web application is commonly defined as

"[...] a software system based on technologies and standards of the World
Wide Web Consortium (W3C) that provides web specific resources such as
content and services through a user interface, the Web browser." [50]

Therefore, to understand the characteristics of Web browser applications and the
specifics of their development, section 2.1 first explains the very basic standards that
form the Web. Section 2.2 then defines Web applications and the relating concepts in
more detail. The Model-View-Controller pattern, a central architectural design in many
Web applications and also important for the structure of the criteria catalog defined later
in this work, is shortly described in section 2.3. As a preparation for the following chap-
ters, section 2.4 then discusses the most important concepts and technologies relevant
to Web Application Frameworks and their usage. Finally, section 2.5 introduces Web
Application Frameworks and the philosophy behind them.

2.1 Fundamental Technologies of the WWW

The World Wide Web (WWW) is one of the most important services of the Internet.
Using the hypertext system, clients can access documents stored on Web servers any-
where in the world, making distribution transparent [72]. The term ’document’ needs to
be taken in its broadest sense though [72]: Having been purely static in the beginning of
the Web in the early 1990s, a document nowadays may provide dynamically generated
content, involving all kinds of active elements like audio, video or client-side scripts for
a dynamic behavior.

The location of a document and the way to access it are specified by an Uniform
Resource Locator (URL). The Domain Name System (DNS) is responsible to map such
human readable URLs to IP addresses [72], that is, to address information the Internet’s

4

CHAPTER 2. FUNDAMENTALS 5

underlying Internet Protocol uses to identify and address hosts. To retrieve a document,
the user either has to (1) know its URL, (2) follow a hyperlink defined in another docu-
ment or (3) consult a search engine.

To retrieve and read documents, clients make use of a Web browser. A Web browser
is a software application located on the client’s machine, typically providing a GUI that
eases navigation [72]. The communication between a browser and a Web server and the
ways the browser presents information to the user are widely standardized. The most
important of these standards are shortly described in the following sections.

2.1.1 Communication-specific Technologies

The Hypertext Transfer Protocol (HTTP) protocol has "become the most popular trans-
port protocol for Web contents" [50]. HTTP usually builds on top of TCP on the transport
layer. Conversations in HTTP are request/response based, where the Web browser sends
a request and a Web server responds. Both request and response consist of a message
header and message body. [6]

Each HTTP request contains the URL of the requested resource and the HTTP
method: The method defines the kind of action the clients invokes on the respective
resource. Though there are nine HTTP methods defined, Web browsers mainly use GET
and POST [6]. The GET-Method is used to request the resource specified in the URL.
Actions implemented by GET ought to be idempotent, to invoke them "over and over
again, without unwanted side effects" [6]. The server’s state should not be affected by
GET (irrespective of logging etc.) [6]. When sending data using GET, it is appended
to the requested URL and therefore becomes visible in the Web browser’s address bar.
This is a common approach to submit data required to handle the request, e.g. to define
the keywords on a search engine. One advantage of this solution is that the response
becomes bookmark-able. POST’s only intention is to send data to the server. In contrast
to GET, the data here becomes part of the request’s message body and no limitation in
size occurs. POST does not need to be idempotent. [6]

A very importing thing to stress is that HTTP is stateless: Associating a HTTP re-
quest with a former request of the same client is not possible without any further ado
[6]. The statelessness of HTTP is such a big issue that 2.2.1 will discuss solutions to this
problem in a separate section.

2.1.2 Document-specific Technologies

There are different presentation technologies Web browsers do support. Many of these
technologies (and all which will be discussed here) were developed by the World Wide
Web Consortium (W3C), a standards organization for the WWW.

The HyperText Markup Language (HTML) was the first technology in this regard.
For being a markup language, the documents contain special annotations that need to
be distinguished from normal text. In HTML, these annotations are called tags and are

CHAPTER 2. FUNDAMENTALS 6

enclosed within angle brackets. Tags define how the client’s Web browser has to render
the document. [17]

Nowadays, HTML documents are often accompanied by Cascading Style Sheets
(CSS). By defining multiple style rules in a declarative manner, CSS separates pre-
sentation from content. Since the publication of CSS, presentational HTML markup is
concerned deprecated. [17]

HTML is "weak in its ability to describe the structure and the meaning of a docu-
ment’s content" [17], though the upcoming version HTML 5 is proposed to put things
right here. Up to now, the issue is addressed by another standard, the Extensible Markup
Language (XML). XML is a meta-language for markup languages, i.e., XML can be
used to define own tags in a new, domain specific language. In contrast to HTML, the
structural rules are stricter: Parsers can easily check whether a document is well-formed,
that is, whether it obeys all structural XML rules and whether it is also valid, meaning it
adheres to the grammatical, domain-specific rules defined for this document. Such rules
are written in a special schema language, usually XML Schema (XSD) or Document
Type Definition (DTD) [17]. In software development, XML is a popular way to de-
fine configuration metadata (see section 2.4.1). However, regarding presentation, it is
most important with respect to the Extensible Hypertext Markup Language (XHTML).
XHTML redefines HTML in a way that it becomes valid XML (with all the advantages
described above), all by preserving the compatibility with Web browser supporting only
plain HTML [17].

2.2 Web Applications

The standards discussed in the last section form the basis of the WWW. However, there
is more to Web applications than providing static hypertext documents. Section 2.2.1
will first discuss different enhancements applied to both sides of the client/server ar-
chitecture, evolving the Web to "a platform able to support the execution of complex
applications" [17]. These enhancements have led to broad range of Web applications,
described in 2.2.2, before discussing the characteristics that make Web applications and
their development distinct from common software (section 2.2.3).

2.2.1 Towards Dynamic Web Pages

The WWW was originally intended to provide simple static hypertext documents to the
user. Due to its huge acceptance, new requirements arose quickly, steadily evolving the
Web to the application platform we know today [17]. Some of the major enhancements
are discussed in this section.

Application execution engines

An early approach towards dynamic pages was the Common Gateway Interface (CGI),
which had some significant drawbacks regarding performance and state management.

CHAPTER 2. FUNDAMENTALS 7

These limitations were solved by application execution engines [17] like Java Servlets,
which will be discussed in-depth in section 2.4.2. Like CGI, they allow to call arbitrary
program code, for example, to query or update a database. However, by computing
HTTP responses using application execution engines, process creations and terminations
are omitted and resources can be shared easily in a concurrent manner. These tasks are
usually managed and optimized in the background; the developer no longer has to think
about it [17]. And because the use of processes is reduced, data can easily be kept in a
single place, making also the implementation of session management easier (see below).

All the mentioned points were common problems of the old CGI.

Server-side scripting

Servlets completely consist of programming instructions. Regarding the document-
specific technologies discussed earlier in this chapter, this is an unnatural way of gener-
ating user response. Server-side scripting allows the insertion of program code into page
templates which, apart from that, look like usual hypertext documents, as for example
HTML. To deploy such scripts, the Web server must be equipped with the respective
scripting engine [17]: When a request arrives, the Web server passes the page template
to the scripting engine, which then processes the programming instructions. The result
sent to the user is a plain hypertext document. One representative for this approach is
the JavaServer Pages (JSP) technology, discussed later in section 2.4.3.

Session management

Since HTTP is a stateless protocol (see section 2.1.1), this raises the question of how
retaining state across multiple user requests is possible nonetheless. There are various
workarounds to this problem; the two most important are discussed here. The first solu-
tion works using cookies.

"A cookie is an object created by a server-side program and stored at the
client (typically, in the disk cache of the browser), which can be used by the
server-side program to store and retrieve state information associated with
the client." [17]

In its response, the server can send a Set-Cookie HTTP header to create a cookie
filled with the information in the value part of the header. The client will always trans-
mit this data in following requests. This way, the server can deposit client and session
identifiers in the cookie and can easily access this information in future requests. [6]

Since cookies can define arbitrary URLs they are valid for and get send to – abso-
lutely independent of the URL actually visited – there has been an abuse of this technol-
ogy, concerning tracking of user behavior and advertisements (see [34] for details). As a
result, many clients do not accept cookie creation or may delete them unpredictably [6].
Therefore, relying on cookies is not enough.

URL-Rewriting as a second solution does not require cookies. Using this approach,
the client’s state information simply gets appended to all URLs the user requests on the

CHAPTER 2. FUNDAMENTALS 8

respective website. However, this is no action supported by the browser: The applica-
tion must take care of rewriting each link created in any of the dynamic pages the user
requests [17]; many technologies, like for example Servlets, take this work from the de-
veloper automatically though. One real drawback of this solution is the misuse of the
URL for state management, bad if the developer is a friend of a RESTful1 URL design.

Java Servlets (see section 2.4.2) combine both approaches in the following way: The
very first response sent to a client uses both methods, cookies and URL-Rewriting. If
the cookie data gets send back in the following request, URL rewriting is stopped for the
rest of the session. This way, the Servlet technology allows for session management and
also provides clean URLs if possible. [6]

Client-side scripting

Over the years, enhancements have not only been applied to the Web server. With the
Web evolving, new presentation and interactivity requirements arose [17].

JavaScript is a client-side scripting language executed by the Web browser [17]. In
the context of this work, it is important to stress that, irrespective of its name, JavaScript
has nothing in common with Java [6]. The JavaScript code is either part of the HTML
markup or comes in external files. It may be invoked when the page is loaded or an
event from one of the HTML elements is raised because of a user interaction. To-
day, JavaScript is the only scripting language "adequately supported by most of the
Web browsers on the market" [17]. Though being the de-facto standard, there are still
browser-specific peculiarities a developer has to take into account. Tools like the Google
Web Toolkit (GWT)2 provide a higher-level approach towards dynamic page presenta-
tion: The framework generates JavaScript code and HTML markup from common Java
code, handling all the stated peculiarities automatically [43].

Leveraging the Document Object Model (DOM), JavaScript is able to modify a
HTML document dynamically.

"DOM supplies a standard set of objects for representing HTML and XML
documents, a standard model of how these objects can be combined, and a
standard interface for accessing and manipulating them." [17]

Using JavaScript, DOM and the XMLHttpRequest API it even becomes possi-
ble to transparently perform HTTP requests in the background, dynamically adding the
received content to the page. This approach is also known as Asynchronous JavaScript
and XML (AJAX). AJAX allows for new interaction possibilities and highly responsible
pages. [17]

1REST = Representational State Transfer. A movement having its orgin in the Web service field, that,
among other things, advocates a more natural usage of HTTP and URLs that are only used to identify
resources.

2Project Site: http://code.google.com/webtoolkit

http://code.google.com/webtoolkit

CHAPTER 2. FUNDAMENTALS 9

2.2.2 Categories of Web Applications

At this point of the chapter, it should already be apparent that different kinds of Web ap-
plications exist: Some might return purely static resources, while others provide access
to sophisticated business logic in a highly dynamic manner. The different categories are
depicted in Figure 2.1. Obviously, there is a correlation between development history
and degree of complexity. However, a newer category is not necessarily a full replace-
ment of an older one. The same way, a Web application may also fall into several
categories at once. [50]

Figure 2.1: Categories of Web applications [50]

The following is just a short overview on the different categories. For a detailed
description, see [50].

DOCUMENT-CENTRIC The Web site only provides access to plain hypertext documents.

INTERACTIVE Interactivity by means of HTML forms is provided; pages may be gen-
erated dynamically according to user input.

TRANSACTIONAL Performing updates on the underlying database becomes possible.

WORKFLOW-BASED These applications allow the handling of workflows, typically based
on Web services.

COLLABORATIVE In contrast to workflow-based Web applications, this category is able
to deal with unstructured operations. Communication between users is important here.

SOCIAL WEB Here, users provide their identity to a community of other users with
similar interests.

CHAPTER 2. FUNDAMENTALS 10

PORTAL-ORIENTED These applications offer a central point of access to separate and
possibly heterogeneous sources of information and services.

UBIQUITOUS As the name says, this category of application facilitates ubiquitous ac-
cess, independent of location or device.

SEMANTIC WEB The provided information aims at being understandable and usable by
machines, e.g. to facilitate knowledge management.

2.2.3 Characteristics of Web Applications

Web applications differ from usual software due to characteristics which aren’t of partic-
ular importance or do not even exist in traditional software products [50]. The existence
of these characteristics is what makes Web development so special and is the reason why
existing processes, procedures and tools need to be adapted for building Web applica-
tions [58]. The following section will briefly examine these characteristics (for a more
detailed discussion, see [50]). Obviously, the degree to which a certain characteristic is
present also depends on the category of the particular Web application.

Product-related Characteristics

The following factors make a Web application special as a product: (1) The content,
(2) the hypertextual structure of its documents and (3) the User Interface.

Content is the main argument for using a particular Web application. Content must
be generated, made available and updated frequently. The best way to present the in-
formation also depends on the respective user group and its quality demands that need
to be satisfied. Information needs to be "up to date, exact, consistent and reliable" [50].
Lately, solutions also tend to be location-aware and personalized.

The hypertextual structure of documents implies the integration of special tech-
niques to avoid "disorientation and cognitive overload" [50], since each user has an
individual style of reading and may move freely within the provided content.

Concerning the User Interface, the "high competitive pressure on the Web" [50]
makes the "look and feel" a factor that determines upon success or failure of the appli-
cation. In particular, the User Interface should be self-explainable, for often, one cannot
expect the user to read documentations or visit training courses.

Usage-related Characteristics

The usage of a Web application may vary concerning (1) the social context, that is,
the specific user, (2) the technical context, defined by the network connection and the
accessing devices and (3) the natural context, meaning location and time. Predicting
these factors is hardly possible which implies the "necessity to continuously adapt to
specific usage situations" [50].

For a user, it is easy to find competing applications in the Web. That is, applica-
tion usage is always spontaneous which has implications on scalability and reliability

CHAPTER 2. FUNDAMENTALS 11

requirements [58]. Furthermore, the heterogeneity between users is of a high degree
concerning their abilities, knowledge and preferences.

Concerning the technical context, there are multiple factors developers cannot in-
fluence and therefore have to make assumptions about. E.g., bandwidth and reliability
of the connection have a big impact on the provided quality of service; devices that ac-
cess the application may differ widely in their specifications. Additionally, users can
configure their Web browsers autonomously which also influences functionality.

Last, Web applications may be accessed from any geographical position at any time
(natural context) which implies new requirements concerning internationalization and
security, but also provides new opportunities regarding location-aware or time-aware
services.

Development-related Characteristics

The development of Web applications is special in terms of (1) the development team,
(2) the technical infrastructure, (3) the development process and (4) integration concerns.

In comparison, development teams in Web application engineering have a young av-
erage age [50], thus making the team less experienced. Furthermore, Web development
should always take a multidisciplinary approach, based on expertise from several areas:
In addition to IT experts, there should also be experts regarding hypertext, design and
the specific domain.

Inhomogeneity and immaturity characterize the technical infrastructure. Web ser-
vers can easily be configured, but this does not hold true for the client’s Web browser.
Furthermore, components used in Web development often have bugs or are updated fre-
quently, requiring a change of the development environment as well.

Concerning the development process, flexibility is very important. Web development
projects cannot adhere to a predefined project plan [50]. Furthermore, short development
times and the fact that Web applications often consist of autonomous components allow
for parallel development by various subgroups.

Last, regarding integration, there often is a need for external integration: Web ap-
plications may be based on content and services provided by external applications the
development team is not in control of and has only few knowledge about.

Evolution

Evolution is what guides all the three dimensions discussed before [50]. Web applica-
tions are always subject to continuous change. Because of the high competitive pressure
and the rapid change on the Web with users always wanting the "newest Web hype" [50],
development cycles have become shorter. However, as surveys show (see [58]), time-to-
market, unlike traditional software engineering, is not the most important quality process
driver: To be competitive, it is often advantageous to be "later and better" than "sooner
but worse".

CHAPTER 2. FUNDAMENTALS 12

2.3 The Model-View-Controller Pattern

The Model-View-Controller Pattern (MVC) is an architectural pattern in the context of
interactive applications providing a user interface. MVC

"[...] divides an interactive application into three components. The model
contains the core functionality and data. Views display information to the
user. Controllers handle user input." [16]

According to [36], what is most important about MVC is the separation of presen-
tation from the model. User interfaces tend to change quite often [16]. Furthermore
different users may exist, having conflicting requirements on the user interface but not
on the logic behind, that is, the model. This separation should always be followed, ex-
cept the simplest systems where the model has no real behavior. Applying MVC, the
model is independent of the User Interface. If the developer also implements the second
separation between view and controller, then the model is also independent of specific
input behavior. However, this is concerned less important, since most systems have only
one controller per view anyway [36]. Not implementing this separation results in the
Document-View pattern [16].

MVC is visualized in Figure 2.2.

Figure 2.2: The Model-View-Controller Pattern [36]

For Web development, there exists the so called Model 2 architecture, which can be
regarded as a server-side implementation of Model View Controller (MVC) [68]. In the
Model 2 architecture, a Servlet is used to process the request. Depending on the request,
the Servlet may instantiate the model. The Model 2 pattern does not clearly define the
model; it simply can be any data-structure fulfilling the developer’s needs. The Servlet
then forwards the model to a JSP, which is now responsible to generate the view based
on the model’s data. The JSP does no processing at all. [68]

The original MVC pattern postulates the use a change-propagation mechanism bet-
ween the view and the model, based on the Observer-Pattern (see [16] for details). This

CHAPTER 2. FUNDAMENTALS 13

is the reason why there are voices (e.g., [29]) that Model 2 is a new way of parameter
passing, but no implementation of MVC.

2.4 Specifications and Technologies in Enterprise Java

Information technology has become an important issue for today’s enterprises. They
need to deliver services to a broad range of users and therefore have high demands on
the availability, reliability, scalability, security and other qualities of these services. By
providing a platform for server programming, Java Enterprise Edition (Java EE) aims at
reducing the development effort for such enterprise services [19].

However, there are also specifications or technologies outside the official EE plat-
form that are very important in enterprise development with Java: Some are part of the
Java Standard Edition (Java SE) aiming for general programming use, others aren’t even
part of an official specification but are nevertheless used extensively, like the Spring
Framework (see section 2.4.8). The (unofficial) term Enterprise Java, as used in the title
of this master thesis, comprises all these technologies.

In the following sections, the most important specifications and technologies in En-
terprise Java will be introduced. This introduction will not exceed the amount of infor-
mation required to understand the following chapters though.

2.4.1 Important Concepts

Technologies concerning Enterprise Java make use of a few typical programming con-
cepts and paradigms not necessarily known to developers in other application fields.
These concepts are also important for understanding the following chapters of this work.

Metadata

Java Enterprise technologies often require additional information associated with certain
framework or programming elements. Since these elements still need to be interpreted
by a Java Virtual Machine (JVM), they need to be defined in a way that does not interfere
with the usual programming syntax. [56]

Basically, there are two common solutions for this problem: Either the developer de-
fines the metadata in an external file, usually written in XML, or the developer uses anno-
tations. Annotations were introduced in Java 5 as a way to define class metadata directly
in the source code [56]. Examples for such annotations in Java SE are @Override or
@Deprecated. They also play an important part in the Convention over Configuration
principle of modern Web Applications Frameworks (see section 2.5.2).

Both XML and annotations have their pros and cons. Annotations usually provide a
better usability. Because they are defined in the source code, they are more documental
than XML and a configuration in question is easier to find. Furthermore, annotations
are type-safe. When using XML, adaption requires changes on multiple files. However,

CHAPTER 2. FUNDAMENTALS 14

configuration changes require no recompilation of the source code. And to handle gen-
eral configuration issues, valid not only for single classes, using external definitions is
the only option. [54]

Many technologies allow both types of metadata definitions, often letting XML con-
figurations overwrite existing annotations. In such cases, development teams should
define conventions when to use which mechanism.

Inversion of Control and Dependency Injection

Inversion of control is often referred to as the Hollywood Principle – "Don’t call us, we
will call you". It is a key part of what makes a framework differ from a library [37].
Inversion of control is the

"[...] characteristic of a framework [...] that the methods defined by the user
to tailor the framework will often be called from within the framework itself,
rather than from the user’s application code. The framework [...] plays
the role of the main program in coordinating and sequencing application
activity. This inversion of control gives frameworks the power to serve as
extensible skeletons. The methods supplied by the user tailor the generic
algorithms defined in the framework for a particular application." [48]

In the course of this work, it is important to stress that inversion of control is also
inherent to every Web Application Framework.

Dependency injection is a special form of the Inversion of Control principle used to
let frameworks inject references to required resources into class instances. This decou-
ples the different components, resulting in a better application design which is easier
to configure and easier to test [74]. There are different forms of dependency injection:
References may be injected into fields directly, set methods can be used or the ref-
erences get bound in the object’s constructor. Setter Dependency Injection gives more
control over the injection process, while Constructor Dependency Injection makes sure
that the respective dependencies are satisfied after the object’s initialization. The dif-
ferent injection points are either annotated or get defined using external configuration
files.

2.4.2 Java Servlet Technology

The Java Servlet Technology provides a request-response programming model. The
request could be of any type, but commonly Servlets communicate using HTTP. [6]

At runtime, there usually exists only one instance per Servlet definition. Each re-
quest is handled in an own thread. This approach offers a significant performance gain;
however, the developer has to keep concurrency issues in mind and synchronize appro-
priately where required. [6]

CHAPTER 2. FUNDAMENTALS 15

Servlets are defined in the javax.servlet and javax.servlet.http pack-
ages. Usually, programmers define own Servlets by extending them from HttpSer-

vlet which already provides an implementation of this interface. The developer only
needs to override one or more service methods that correspond to the HTTP methods
defined above in section 2.1.1. There, information from the request can be extracted
and external resources can be accessed. The response is either returned directly from
within the method or delegated to another Web component, for example, to a JSP. The
following code snippet in Listing 2.1 shows a simple Servlet responding to HTTP-GET
requests. Package imports and exception handling has been omitted for simplicity.

Listing 2.1: A simple Servlet handling HTTP-requests (SimpleServlet.java)

1 @WebServlet("/simple")

2 public class SimpleServlet extends HttpServlet {

4 protected void doGet(HttpServletRequest request,

HttpServletResponse response){

5 response.setContentType("text/html");

6 PrintWriter out = response.getWriter();

7 out.println("<html><body>Hello, World!</body></html>");

8 }

9 }

A HttpServlet is by no means restricted to HTML in its response. Furthermore,
the depicted approach to print HTML pages into the response stream is only recom-
mended for the simplest cases [6]. The next section will show a better solution to this
problem.

The HttpServletRequest can be used to read out the request, such as request
attributes, headers, or the request body. Accordingly, HttpServletResponse pro-
vides ways to generate a response, like adding headers or a message body. The current
user session, basically a map to store and retrieve key/value pairs valid for the whole
session, can also be retrieved.

The Java Servlet Technology also defines an event system applications can subscribe
for and allows defining filter-chains to adapt requests before they are processed by the
Servlet. All this makes Java Servlets highly flexible and is the reason why actually
most Web Application Frameworks are based on it. Accordingly, improvements in the
latest 3.0 specification for Java EE 6 address easier configurations and a modularization
support [47].

2.4.3 JavaServer Pages

JavaServer Pages (JSP) are an example for a server-side scripting language already in-
troduced in section 2.2.1, that is, they focus on the View and consist of static data like
HTML and JSP elements [6] which define the dynamic content of the page. Listing 2.2

CHAPTER 2. FUNDAMENTALS 16

shows a simple JSP file containing a directive, a declaration, a scriptlet and two expres-
sions.

Listing 2.2: A simple JSP using 4 kinds of JSP elements (SimpleJsp.jsp)

1 <%@ page import="java.util.*, java.text.*" %>

2 <%@ taglib prefix="my" uri="customTags" %>

3 <html>

4 <body>

5 <%! int count = 0; %>

6 <% SimpleDateFormat sdf = new SimpleDateFormat("HH:mm");

7 String time = sdf.format(new Date());%>

8 You are the <%= ++count %>. user of this page.<p/>

9 Current time is <%= time %>.

10 </body>

11 </html>

In the end, the Web container translates and compiles each JSP file into a common
Servlet: The static data is directly written to the HttpServletResponse object’s
response stream; JSP elements get transformed into special code constructs [6]. Inside a
JSP file, the developer can make use of so-called implicit objects that automatically get
injected. For example, there are objects representing the HttpServletRequest, the
HttpServletResponse or the current user session.

However, using scriptlets, declarations or expressions in JSP files is concerned a bad
practice. Those kind of files are hard to maintain and can hardly be understand by Web
designers that need to edit them. Instead, developers are encouraged to use Expression
Language (EL) which offers a way to call normal Java code from inside JSP and still
appears more natural to non-programmers. By using standard action tags as defined by
the Java Standard Tag Library (JSTL) or by defining custom tags, coding in JSP becomes
obsolete [6]. The according functionality is implemented using common Java code.

It is also possible to write JSP files in well-formed XML. Those files are called JSP
Documents.

2.4.4 Bean Validation

Validation of data is a recurring task, important for any application dealing with user
input [9]. The Bean Validation specification defines a metadata model to address this
issue, relying on annotations or XML. It can be used on any tier and is not restricted for
a use in the Java EE environment. [9]

Bean Validation works by applying constraints that consist of two parts: A constraint
annotation and constraint implementation. Constraints can be applied to fields, methods,
whole classes or even other constraints. The same type can be subject to multiple con-
straints. The specification already comes with many built-in constraints for various use
cases. [9]

An example for how to use the Bean Validation API is given in the following section.

CHAPTER 2. FUNDAMENTALS 17

2.4.5 JavaServer Faces

According to the specification, JavaServer Faces (JSF) "is a user interface framework
for Java Web applications" [8]. By mapping HTTP requests to reusable and stateful
components, it provides a separation of behavior and presentation according to the MVC
pattern. The latest release of JSF was version 2.1.

Since the Seam Frameworks (see section 4.1) in its common usage is based on JSF
[4], the programming model will be explained in more detail here. The following exam-
ple includes two pages and a simple component: The first page (in listing 2.3) defines a
form, allowing the user to type in her/his first name and send it to the server by pressing
the button. After that, some server-side logic executes and finally forwards the user to a
second page, printing a personalized greeting. If the provided username is too short or
too long, the form page is displayed again, showing an appropriate error message.

Listing 2.3: A facelet defining a form (input.xhtml)

1 <html xmlns="http://www.w3.org/1999/xhtml"

2 xmlns:h="http://java.sun.com/jsf/html">

3 <h:body>

4 <h:messages/>

5 <h:form>

6 Enter your name:

7 <h:inputText value="#{greeting.name}"/>

8 <h:commandButton value="Greet me!"

action="#{greeting.doGreeting}"/>

9 </h:form>

10 </h:body>

11 </html>

In contrast to older versions, Facelets are now the preferred presentation technology
in JSF [8]. The reason is about to be discussed later in this work (see section 4.1.2).
Documents need to be valid XML in Facelets [45].

The prefix h is a reference to the HTML JSF components used in the page. JSF
defines multiple tag libraries and also allows the developer to define custom tags [8].
Both the input field and the button set a reference to a bean called greeting. Listing
2.4 shows the definition of this bean.

Listing 2.4: ManagedBean with CDI and Bean Validation annotations (Greeting.java)

1 @Model

2 public class Greeting {

4 @Size(min = 2, max = 25)

5 private String name;

7 public String getName() {

8 return name;

CHAPTER 2. FUNDAMENTALS 18

9 }

11 public void setName(String name) {

12 this.name = name;

13 }

15 public String doGreeting() {

16 return "greeting";

17 }

18 }

Except the two annotations, Greeting.java is a common Java class definition.
@Model is a CDI annotation: Context and Dependency Injection (CDI) is a new part of
Java EE 6 and offers dependency injection for so called Managed Beans, that is, objects
with an enhanced lifecycle that depend on the current context of the injecting instance.
"Clients [...] executing in the same context will see the same instance of the bean" [51].
Besides the loose-coupling offered by dependency injection, developers profit from this
approach because they no longer have to think about lifecycle and thread management
regarding stateful objects [51]. CDI also brings the concept of interceptors to Managed
Beans, so this is no longer a reason to use Enterprise Java Beans (EJB) (defined in section
2.4.7). CDI will also play an important role in the upcoming version of the JBoss Seam
framework.

Here, @Model creates a request-scoped bean and makes it available under a default
EL name, which is the unqualified class name, uncapitalized [51]. Furthermore, the
class defines a property called name, which is annotated again: @Size is a built-in
annotation from the Bean Validation specification that was introduced in the last section.
Finally, there is an action method defined called doGreeting(). In this case, the
action method forwards the user to the greeting view, which, by making use of the
provided name, simply prints a personalized welcome message:

Listing 2.5: Facelet printing output (greeting.xhtml)

1 <html xmlns="http://www.w3.org/1999/xhtml"

2 xmlns:h="http://java.sun.com/jsf/html">

3 <h:body>

4 Hello, #{greeting.name}!

5 </h:body>

6 </html>

To implement the depicted behavior, JSF processes a request in multiple phases.
Depending on the kind of request and the kind of the requested resource, these phases
differ widely. The most common lifecycle, however, is where a Faces Request generates
a Faces Response [8]. Here, processing works as follows [4]:

(1) Restore view: The component hierarchy is restored using the stored state informa-
tion from the last request.

CHAPTER 2. FUNDAMENTALS 19

(2) Apply request values: From the information in the request, each component can now
update its state (the so called local state).

(3) Process validations: Next, validations are performed. A short-circuit to phase 6 may
occur due to failing validations.

(4) Update model values: The local state can now be used to update the application
model.

(5) Invoke Application: The respective action method is called and control is passed
over to the application. Either the method ifself or the rules defined in faces-
config.xml determine the next view to display.

(6) Render response: Last, the response is rendered to the client and the state is stored
for following requests.

Further details of the JSF lifecycle can be found in [8].
Regarding previous versions, JSF 2 provides a much better support for the Conven-

tion over Configuration principle. Many XML configurations can now be replaced by
annotations or even do not need to be specified because reasonable defaults apply.

2.4.6 Java Persistence API

Concerning persistency, there has always been a clash between the object-oriented world
on the one side and relational databases on the other. The object-relational mapping
approach, as used by the Java Persistence API (JPA), aims at bridging this gap the most
transparent way [56]. JPA consists of four different parts: (1) The API, (2) a query
language similar to SQL but in an object-oriented way, (3) the Criteria API to find stored
data using query-defining objects and finally (4) the object/relational metadata [47].

A very important concept in JPA is the entity. According to the specification, "an
entity is a lightweight persistent domain object" [26]. This object is very similar to a
common object in Java, there only exist a few additional requirements. Most important,
the object must be configured as an entity and needs to include an ID field and a non-
private (empty) default constructor. An entity represents a table in a database, whereas
an instance of this entity is stored in a single row of this table. Concerning the entity’s
fields or properties, different types are allowed, including all primitive types and their
respective wrappers, Date, BigDecimal and other entities. The latter case, an entity
being part of another entity, indicates a relationship between these objects. Relationships
can either be uni- or bidirectional and have either a 1:1, 1:n or m:n multiplicity. Inher-
itance is also supported. The JPA implementation automatically deals with mapping
these relationships to the database and creates mapping tables where required [56].

Listing 2.6 shows an exemplary User entity with a m:n relationship to other users.

CHAPTER 2. FUNDAMENTALS 20

Listing 2.6: A simple persistent entity (User.java)

1 @Entity

2 public class User {

4 @Id @GeneratedValue

5 private Long id;

7 private String username;

9 @ManyToMany

10 private List<User> friends;

12 public User(){}

14 public User(String username, List<User> friends) {

15 this.username = username;

16 this.friends = friends;

17 }

19 // getters & setters

20 ...

21 }

Another important part of the JPA specification is the EntityManager. As the
name says, it manages entities and their lifecycle. At any point of the application, each
entity is either in a transient, managed, detached or removed state. Different methods
of the EntityManager make them change their state. Concerning an entity’s state,
it is also important whether the EntityManager is used in a transaction-based or ex-
tended PersistenceContext. Depending on an application- or container-managed
approach, the default varies here. The EntityManager is also used to create queries,
set locks on the database or run transactions. [56]

2.4.7 Enterprise Java Beans

The EJB specification defines a component-model for the server-side business logic of an
application [47]. An enterprise bean requires an EJB container to run in. This container
aims at transparently providing services such as concurrency handling, transactions or
security. The idea behind this approach is that the developer can instead focus on the
implementation of the core business logic [54].

The central element of EJB is the enterprise bean. This is a component encapsulating
business logic. There exist two types of enterprise beans: Session beans and message
driven beans. The type also defines the way the container optimizes their management.

"A session bean represents a transient conversation with a client" [47]. How this
conversation looks like depends on the actual type of session bean. Stateless session
beans get assigned to a client for the length of one method call. In contrast, stateful
session beans have a client-specific state and exist until the client removes the bean or

CHAPTER 2. FUNDAMENTALS 21

it times out. Singleton beans are new to EJB 3.1 and are only instantiated once per
application.

Message Driven Beans allow for an asynchronous communication with clients. This
is typically accomplished by using the Java Message Service (JMS) technology: Asyn-
chronous communication decouples senders and receivers, making them independent
from a technical perspective. This is a possible approach towards the enterprise applica-
tion integration. [47]

Clients may access enterprise beans in multiple ways. This depends on whether
the respective enterprise bean is defined local and/or remote. Local communication is
possible where clients run in the same application as the enterprise bean. Remote beans
can be accessed from clients on different machines or different JVMs and therefore also
offer ways to decompose the server-side application, e.g., to introduce load balancing.
Communication is based on RMI here. Stateful session beans may also define a Web
Service interface. Message driven beans always communicate remotely. [54]

The EJB specification also offers a rich model to implement callbacks, interceptors
or define timer-based operations carried out by enterprise beans.

2.4.8 The Spring Framework

In contrast to the technologies discussed beforehand, the Spring Framework3 does not
originate from the official JCP.

Spring became popular in the times of J2EE, that is, before Java EE 5 was released
in 2006. Back then, enterprise development with Java and especially the EJB 2.x tech-
nology was considered complicated and unproductive.

Spring simplifies the development process by providing a unified abstraction over
many Java SE and Java EE APIs and other open source frameworks [74]. It aims at
being a non-intrusive framework, providing many optional modules for different devel-
opment concerns. In contrast to an EJB application, it is possible to deploy a Spring Web
application on a common Web server without having to abandon services like container-
managed transactions. Long before CDI, Spring delivered a framework for Dependency
Injection and also provided help for Aspect-Oriented Programming (AOP) – something
that is still not part of the official Java specification. As a consequence, Spring nowadays
is considered a de facto Standard for Java enterprise application development [74].

However, because Java EE 5 and Java EE 6 tackled many of the issues stated above,
there are voices (like, for example [55]) saying that Spring is no longer needed today.
This view obviously disregards that, in the meantime, there is more to Spring than De-
pendency Injection or being a replacement for EJB: The Spring stack comprises many
projects there is no standardized alternative to. Spring Roo, discussed in section 4.3, is
one of those projects.

3Project Site: http://www.springsource.com

http://www.springsource.com

CHAPTER 2. FUNDAMENTALS 22

2.5 Web Application Frameworks

Because of the special characteristics of Web applications (see 2.2.3), their development
is a challenging task. A Web Application Framework (WAF) can fundamentally ease
parts of this task. In this section, WAFs will be defined (section 2.5.1), their underlying
philosophy will be discussed (section 2.5.2) and a taxonomic scheme will be depicted
that allows the classification of different types of WAFs (section 2.5.3). Finally, the main
factors that drive the selection of a WAF are named in section 2.5.4.

2.5.1 Definition

The idea behind Web Application Frameworks is no phenomenon unique to Web devel-
opment. Application Frameworks have been around for many years now. Web Applica-
tion Frameworks are just a special manifestation for the Web, which is why they share
most of their characteristics and motivations. Therefore, before talking about Web Ap-
plication Frameworks and their strength, the general term of an Application Framework
will be discussed first.

Application Frameworks in General

"A framework is a reusable, "semi-complete" application that can be spe-
cialized to produce custom applications." [17]

Instead of libraries, which only provide just a single building block for the appli-
cation under development, Application Frameworks "leverage the sameness between
applications" [40] by offering a "skeletal structure for an application solution" [69]. A
library provides just a set of functions, which in Java are organized into classes. The
developer may or may not call these functions, and after each call, control returns to the
client. The behavior of Application Frameworks is fundamentally different: For a frame-
work is a semi-complete application, waiting for the developer to turn it into something
useful by adding application-specific behavior, it is the framework itself which calls the
developers code. And after performing some work, control is automatically handed back
to the framework [37]. This is exactly the behavior defined as "Inversion of Control" in
section 2.4.1 on page 14.

Implementing enterprise applications is a complex and error-prone task. The re-
sulting software needs to be correct, efficient and inexpensive. Solving this task "from
scratch" is therefore usually no option. This is where Application Frameworks come
into play. [32]

Application Frameworks are typically created by experienced developers and based
on their profound domain knowledge [32]. This way, using an Application Framework
may happen for the same reason programmers are advised to implement design patterns
in their code: For recurring problems (which, in this case, is application development in
the specific domain) they provide a solution known to work. By using an Application

CHAPTER 2. FUNDAMENTALS 23

Framework as a foundation for own products, the re-creation and revalidation of com-
mon solutions is avoided. Besides better software quality and performance, their usage
also leads to substantial improvements concerning developer productivity. [32]

Application Frameworks all follow the same principles: Using multiple layers of
indirection, they all define frozen spots and hot spots. Frozen spots relate to the overall
architecture of the framework and its basic components. These remain unchanged by the
framework user, that is, they are "frozen". Hot spots, on the other hand, define the parts
of the framework that may be extended by the application developer and are specific to
the individual application. To take this approach, Application Frameworks are based on
the Inversion of Control principle (see section 2.4.1 on page 14 for details). [69]

However, using an Application Framework also suffers from a few weaknesses: First
of all, much learning effort, like weeks or months, may be required to really become
productive with the tool. This effort usually needs to be amortized over many projects;
otherwise, it will likely not pay off [32]. Furthermore, the reliance on Inversion of
Control typically makes applications harder to debug. Often, it is not even clear whether
a certain bug relates to the application or the framework itself [32]. Last but not least,
Application Frameworks are common software; they are subject to changes and need to
be maintained. This way, using an Application Framework introduces new dependencies
to the project [32].

Web Application Frameworks

A Web Application Framework (WAF) as a special type of Application Framework is
commonly defined as

"[...] a reusable, skeletal, semi-complete modular platform that can be spe-
cialized to produce custom Web applications." [69]

Because a WAF is an Application Framework, it has the same characteristics and
provides the same advantages to the developer; it is only specially aligned for the Web.
As such, a WAF includes all the building blocks essential for constructing Web applica-
tions. It is usually based on the MVC pattern and supports a n-Tier architecture.

Integrating libraries commonly proven for Web development (an approach known as
"best of breed", see section 2.5.2), a Web Framework already provides all the tools to
implement the functionality typically required by Web applications. [69] These require-
ments usually cover libraries for User Interfaces and persistency, user and permission
management, form handling and input validation or security, to name but a few. [73]

Some authors ([46]) differentiate between Web Application Frameworks and Agile
Web Application Frameworks. According to them, a WAF is a framework that specializes
for a single tier (like persistency or User Interfaces) and only Agile Web Application
Frameworks provide full stack solutions. Following this definition, any of the tools
examined in this work actually are Agile Web Application Frameworks. However, for
simplicity reasons, this work will refer to them as Web Application Frameworks.

CHAPTER 2. FUNDAMENTALS 24

2.5.2 Design Philosophy

A modern WAF is usually driven by a few core design principles which are discussed in
the following.

Convention over Configuration

Convention over Configuration is a design paradigm for software applications. Frame-
works designed according to this principle reduce the configuration overhead of the un-
derlying application. This becomes possible by choosing defaults instead of requiring
the developer to configure each single detail concerning the application behavior. Frame-
work developers can usually anticipate the most common usage of their tool; therefore,
they can easily find sensible values and make a deviation the exceptional case. How-
ever, if conventions fail, the framework still needs to provide a way to apply a different
configuration (that is, it is Convention over Configuration but not Convention instead of
Configuration). [71]

The main advantage of this principle is that application developers become faster.
They do not need to configure every detail, which is a big relief since many configuration
errors do not become obvious before runtime. It is easier to maintain the application,
for less explicit configuration exists. Furthermore, a modification in the code does not
require a modification in the configuration. [18]

However, the Convention over Configuration principle also carries the inherent dan-
ger of developers not using the framework with the required care. They overlook that
they still need to be familiar with the default configuration values, otherwise, they cannot
notice when a deviation from the defaults is required. Finding such errors can become
complex, because the application often seems to work perfectly on the first sight. [18]

Templating and Scaffolding

Based on templating and scaffolding, certain development tasks can easily be automated
[71]. This way, developers can create Web applications ready to deploy in a few minutes,
just by providing a few information about the application to develop (e.g., the project
name or a database connection). The WAF then carries out all necessary configurations.
For example, required libraries are automatically integrated, the application is ready to
use internationalization, database configuration is completed and build files are available.
Building such a system manually would often take hours or days, and only be possible
to experienced users. Novice users do not have to learn the framework the hard way and
can already start developing. Furthermore, the created application architecture usually
obeys the best practices for the specific WAF.

Integration and Best-of-Breed

Web applications share some common functional requirements, some of which were
already mentioned in section 2.5.1. Quite often, these requirements are already solved

CHAPTER 2. FUNDAMENTALS 25

by specific libraries specialized for the respective tasks. Modern WAFs therefore try
to delegate most work by integrating these libraries and configuring them beforehand.
A common term in this regard is "best of breed", meaning the framework builds on
those technologies that have proven in practice and are known to work well together [4],
instead of providing own mechanisms that compete with existing good solutions [58].

However, for most Web applications there are also special requirements on technolo-
gies that WAF developers cannot anticipate. Therefore, WAF developers have to design
the framework in such a way that an integration of new technologies is easy and the
framework does not interfere with them. [58]

2.5.3 Taxonomy

Though most WAFs are based on the MVC pattern, there are still different types of Web
frameworks, varying in the programming model they promote.

REQUEST-BASED FRAMEWORKS Request-based WAFs stick close to the already men-
tioned CGI or Servlet approach. Programming in such a framework is quite natural and
linear: Controllers receive a request which the developer then processes in a first step.
On the basis of the request, the developer invokes some application logic (e.g., informa-
tion gets stored or is received from the database) and in the end, a view is returned. The
application flow is therefore programmed explicitly. Likewise, state is handled in a more
explicit manner. [69]

COMPONENT-BASED FRAMEWORKS Component-based Frameworks aim at reusability.
The request-processing is abstracted away; the application logic is encapsulated in com-
ponents and possibly becomes reusable for similar use cases. State is handled auto-
matically by the framework. By implementing event-handling mechanisms, component-
based frameworks are closer to the programming model known from traditional GUI
applications. [69] The abstraction of this approach results in a more complex and
less obvious application flow. E.g., the life-cycle of JSF, which is representative of a
component-based architecture, decomposes a single request in up to six phases. [4]

RIA-BASED FRAMEWORKS A Rich Internet Application (RIA) is a Web application
which utilizes "asynchronous techniques such as Asynchronous JavaScript and XML
(AJAX) to enable real time data communication and dynamic rendering, which give
the Web interface a more desktop-like application feel" [31]. RIA-based Frameworks
generate a client-side application with state and user interaction. This type of WAF is
out of scope of this master thesis for they do not follow a server-centric approach.

In the course of this work, three WAFs will be discussed in detail. JBoss Seam
(section 4.1) is an example of a component-based framework whereas Grails (section

CHAPTER 2. FUNDAMENTALS 26

4.2) is a representative for a request-based WAF. Spring Roo (section 4.3) will be used
in conjunction with Spring MVC, which is also request-based.

2.5.4 Selection drivers

The last section mentioned the influence of software tools (like Web Application Frame-
works) on the productivity of development. However, there are multiple reasons why
even the most productive framework is not always the first choice for a new application.
Sometimes, other factors are so critical that productivity can no longer be a factor. Those
criteria that influence the selection process are listed in the following. Any new Web
project that is targeted with the selection of a WAF should take these factors into account.

PROJECT PARAMETERS The most important factor is the project itself. Either functional
or non-functional requirements can push certain frameworks into the spotlight and dis-
qualify others. A tool that has been the best choice for the last project can be unsuited
for the next one. One way to start the evaluation process is to decide upon the type of
WAF (see section 2.5.3) required: Request-based frameworks are said to be more scal-
able and "internet facing" than component based frameworks, best suited for a small
number of clients or intranet applications ([63], [67]). Next, certain programming lan-
guages proposed by different WAFs might be no option due to performance reasons.
Besides, WAFs are known to have certain "sweet spots" [62], that is, use cases they are
well-suited for. If the application is one of them, the framework might be a good choice.

LEGACY SYSTEMS Often, legacy systems are another factor to deal with. For example,
functional requirements might exist to connect the Web application to a legacy backend.
In this case, choosing a WAF that is based on the same programming language could be
a good approach [63], having a big influence on the possible framework alternatives. If
there is a legacy Web application to deal with, depending on the WAF, the complexity
of a conversion process might vary.

MATURITY Choosing a mature framework reduces the risk of a project. Otherwise, de-
velopers might have to deal with bugs and other shortcomings here. It can also be favor-
able to choose a framework that is based on approved standards. In this regard, Java’s
standardization approach in the Java Community Process (JCP) even allows choosing
from different providers implementing the same API.

PROJECT HEALTH Applications planned to operate over multiple years should build on
a WAF that is actively developed. Otherwise, the application might become obsolete
over time. Frequent updates and support in mailing lists etc. can be valid indicators for
the project health [63].

CHAPTER 2. FUNDAMENTALS 27

AVAILABILITY OF EXPERTISE Even if no new developers get hired for the application to
develop, the availability of expertise still is an important factor. If the projects depends
on the know-how of a few team-members, employee turnover can have bad impacts if
no further expertise is available elsewhere. Against this background, job trends can also
show up how a WAF develops in the market. If its popularity drops off, choosing the
framework for a project expected to operate over multiple years might be risky.

LICENSING Besides license fees that may have to be paid (though unusual in the Java
world), even the kind of open source license a WAF is published under may be important
in special cases. Depending on the license, changes to the framework implementation
have different effects on the resulting product. The difficulty regarding this point is that
such modifications often cannot be foreseen.

Finally, managers should keep in mind that in the end, the developers are the ones
using the respective WAF. Choosing one which they do not like will very likely decrease
the team’s productivity. Productivity as a main selection driver will be discussed in depth
in chapter 3. This is also the place where the state-of-the-art regarding productivity
measurement in web development is reviewed.

Chapter 3

Productivity in Software and Web
Development

Productivity is an important factor in software development projects: Productivity gains
result in shorter development times, they let the return on investment increase or they
simply allow for a higher quality regarding the final product [5]. The other way round,
a bad productivity may either result in a poor quality, in exceeded project schedules or
even project cancellations – and a loss of money. Studies show that exceeded schedules
and budgets are among the main reasons why development projects fail [30]. Irrespective
of success or failure, the ability to meet schedule or budget targets is concerned "fair"
or "poor" in one third to one half of all projects [30]. For the worldwide revenue only
for enterprise software being estimated more than $230bn [61], productivity hence is a
critical factor in software development. Accordingly, there is a huge interest to find those
factors influencing it, from both academy and industry [22]. Studies on cost estimation
already started in the early 1960’s [66]. Regarding the last decade, they also increasingly
address the area of web applications.

The two main fields of research are described in the following: These are productiv-
ity measurement (section 3.1) and the identification and estimation of factors affecting
productivity (section 3.2). Section 3.3 describes the general relevance of web application
frameworks in this context. Based on this theoretical analysis, the research questions for
chapter 5 will be deduced (see section 3.4).

3.1 Measuring Productivity

For being so important, companies naturally have a high interest in controlling software
development productivity. And, as DeMarco states: "You can’t control what you can’t
measure" [25].

Software development is a process that encompasses multiple actions. The definition

28

CHAPTER 3. PRODUCTIVITY IN SOFTWARE AND WEB DEVELOPMENT 29

of the productivity of a process is as follows:

Productivity =
Outputs produced by the process
Inputs consumed by the process

[11] (3.1)

As the formula shows, productivity gains can be achieved by reducing the inputs,
raising the outputs, or both [11].

Concerning software development processes, the consumed inputs comprise com-
puters, supplies, other equipment, and labor [11]. For being the most expensive factor,
labor, typically measured in man-months, has the highest impact here. Measuring the
inputs is not trivial [11]. E.g., decisions need to be made which personnel to include into
the calculations or which process phases to take into account. Nevertheless, companies
can usually reach an agreement here. Such an agreement, if used in a consistent manner,
allows for meaningful comparisons [11].

What makes productivity measurements really difficult is quantifying the outputs
[21]. Many different ways for output measurement of software projects have been pro-
posed over years. Such metrics can be divided into four different categories [21].

First, there is the large group of physical size metrics, measuring the Lines of Code
(LoC) in the respective source code. Variations apply to the questions whether comments
or reused code is counted or not. LoC metrics are widely used, though (or because of)
being a quite basic approach [21]. Critics state that such physical size metrics tend to
penalize high-level languages and have shown that well-formatted programs can be three
times shorter than their original size (see references in [21]. A second group of metrics
is based on the functional size, like function or use case points. Just like LoC, they are
among the most used metrics [21]. Design size metrics measure the number of modules
or classes. Finally, value based metrics measure added value or different aspects of
output in multidimensional models. According to [21], value based metrics "show a
good alignment with the idea of producing value and are gaining popularity today, but
are more complex and still maturing". Some authors (see references in [21]) propose a
completely different approach by measuring the value of a product from the view of its
stakeholders. For all having different interests, their perception of productivity would
also be different.

However, besides all these different approaches, there is evidence to suggest "that
only very few organizations actually use them" [66]. There are various reasons for this,
most of them related to the problem of how to define and measure output, intrinsic to the
definition of productivity [21].

A universal model for measuring software productivity is not available [21]: Differ-
ent companies and different projects underlie different circumstances. However, regard-
ing single organizations, there often aren’t enough resources available for the required
measurement methods and tools. Hence, due to the lack of past project data, these com-
panies cannot use meaningful metrics adequately [66]. If metrics are used nevertheless,
this happens due to Gilb’s law:

CHAPTER 3. PRODUCTIVITY IN SOFTWARE AND WEB DEVELOPMENT 30

"Anything you need to quantify can be measured in some way that is supe-
rior to not measuring it at all." [41]

However, authors also state that, depending on the indicators used, completely differ-
ent conclusions about productivity can be drawn for the same project. They also mention
the risk of "measuring dimensions that are not strongly linked to the phenomenon being
observed" [21].

3.2 Productivity Factors

Another focal point of research in this area of software development is to find out the
factors that determine productivity, and to which degree. This allows for a rating of the
most important influences. Companies can adjust their efforts to increase productivity
by making improvements in the corresponding areas. Corresponding surveys exist since
the 1970’s [57]. A good overview is provided by [22]. Though different factors and
classifications exist, the estimation model discussed here is COCOMO II4, for its cost
drivers are the most widely selected in related studies [57].

"COCOMO II is an objective cost model for planning and executing soft-
ware projects. [...] A cost model provides a framework for communicating
business decisions among the stakeholders of a software effort." [13]

COCOMO II provides support in financial decisions concerning software develop-
ment projects, helps to set budgets and schedules or decides on tradeoffs among different
influences like software costs or quality factors. To this, it is based on two underlying
information models: A framework "for describing a software project, including models
of the process, culture, stakeholders, methods, tools, teams, and the size/complexity of
the software product" and a broad experience base of precedents [13]. Very important
parameters in COCOMO II are the already mentioned cost drivers. These are charac-
teristics of software development identified to affect the effort to complete a project.
Depending on their impact on a particular project, they can be rated from "Extra Low"
to "Extra High". Taking the ratio between the highest and the lowest rating value, the
productivity range of a cost factor can be deduced. This is the factor to which a sin-
gle cost driver can influence the costs of a project. E.g., by assuming all other factors
are held constant, a productivity range of 1.25 for a particular cost driver means that
depending on this cost driver, project costs can vary by 25 percent [11].

Figure 3.1 lists all productivity ranges from COCOMO II from the year 2000. For a
detailed explanation of all the cost drivers, see [13].

The most significant influence is by far the management of people, their motivation
and especially the individual developers that get deployed. It has to be noted that the
impact of cost factors tends to change over time and that the depicted productivity ranges

4Project Site: http://csse.usc.edu/csse/research/COCOMOII

http://csse.usc.edu/csse/research/COCOMOII

CHAPTER 3. PRODUCTIVITY IN SOFTWARE AND WEB DEVELOPMENT 31

Figure 3.1: COCOMO II productivity ranges, 2000 [12]

go back to the year 2000. According to [57], the values are about to be updated soon.
Moreover, as already mentioned for the metrics discussed in the last section, the precise
values also depend on the respective environment. That is, organizations may need to
calibrate them to improve estimation accuracies [57].

Figure 3.1 infers different strategies to improve productivity, the most promising
ones being the following [11]:

• Get the best from people: As already stated above, the "personnel/team capability
factor" by far has the highest productivity range. Comparing two developers, one
can easily be three times more productive. However, companies will usually not
need to pay him/her three times more. This means that organizations should al-
ways try to get the best from people. Besides staffing, improvements concerning
facilities and management may also be worthwhile.

CHAPTER 3. PRODUCTIVITY IN SOFTWARE AND WEB DEVELOPMENT 32

• Make steps more efficient: This is primary accomplished by using software tools
and environments. An example for a more efficient development process is the
use of a decent Integrated Development Environment (IDE) when none was used
before. Another strategy in this category is the purchase of faster workstations.

• Eliminate steps: Again, this is mostly done by software tools. There exist different
tools to automate repetitive and labor-intensive tasks. Automated testing or code
generation approaches are all examples for this strategy.

• Eliminate rework: Eliminating the rework is one of the most compelling strategies,
as rework usually encompasses around 30 % of the development process [11]. For
improvements, companies can use front-end-aids (e.g., for traceability of require-
ments), adapt the process lifecycle or use rapid prototyping approaches. Other
options relate to modern programming practices.

• Build simpler products: Companies should always aim for simpler products. This
reduces the projects inherent complexity. Complexity has a productivity range
of 2,38 and is the most significant cost driver after human capabilities. Rapid
prototyping approaches can result in better architectures and less implementation
efforts; thorough specifications may lead to less debugging and integration issues.

• Reuse components: Reusing components, libraries, code and specifications or de-
signs is another key to productivity. This avoids recurring implementation efforts
and thus, improves productivity.

3.3 The Influence of a Web Application Framework

The strategies for companies to improve productivity, as inferred in the last section, un-
derline the major importance of software tools. Though these tools provide no support
in personnel issues, they are relevant in any of the other strategies. The reason why soft-
ware tools are nonetheless only ranked on ninth place in the list of productivity ranges
is the amount of fixed product and team characteristics in this ranking: For example, the
product complexity, the required reliability or the time constraints are either not manage-
ment controllable or only to a small degree – they are part of the given project charter.
Taking this group of cost drivers out of consideration, the use of software tools becomes
one of the most important issues a manager has to take care of. Depending on the use of
software tools, productivity may vary up to 50 %.

The productivity improvements gained through software tools can be of various
types [14]: They can help to improve development processes by facilitating activities
that haven’t been practiced before. Development activities that existed before but were
carried out without tools can be supported and sometimes even automated. Furthermore,
they can improve quality and reduce rework in design and code. As more and more de-
velopment tools become available, recent surveys [57] indicate that the impact of tools

CHAPTER 3. PRODUCTIVITY IN SOFTWARE AND WEB DEVELOPMENT 33

is significantly increasing in the last 10 to 15 years. Consequentially, the most cited
productivity factor in literature is "tools" (for a comparison, see [22]).

Obviously, in Web application development, the choice of software tools also in-
cludes the decision on an appropriate Web Application Framework. However, there is
no precise estimation about their influence on productivity in literature. One method to
determine such influences and get a rough impression is by value chain analysis. The
value chain is a

"[...] method of understanding and controlling the costs involved in a wide
variety of organizational enterprises. It identifies a canonical set of cost
sources or value activities, representing the basic activities an organization
can choose from to create added value for its products." [11].

Particularly, by studying the value chain, enterprises can identify ways to save costs.
Figure 3.2 shows a representative value chain of a software project.

Figure 3.2: Exemplary Software Development Value Chain [11]

CHAPTER 3. PRODUCTIVITY IN SOFTWARE AND WEB DEVELOPMENT 34

Note that some details have been omitted in the figure; for example, the service
and margin components have not been assigned numbers. The service activity, above
all including maintenance and evolution of software, typically causes 70 % of lifecycle
costs [11]. However, according to [11], the value chain for this specific phase "is not
markedly different" from the general distribution of costs in figure 3.2, therefore enables
no additional exploration.

The most important thing to note is that the operations phase covers 80 % of the
overall development outlay. This is the area where software developers are directly
involved and it therefore is the key area to significant productivity improvements in
software engineering. The block breaks up into Management (7 %), quality assurance
and configuration management (5 %) and the different development phases. Including
rework tasks, coding, integration and testing altogether make up 36 % which is 45 %
regarding the sole operation costs. In Web Engineering, these are the areas that are
usually accompanied by a WAF.

Another thing to note is that the depicted value chain goes back to the year of 1987.
Since that time, many changes occurred regarding software engineering practices: "Soft-
ware Processes have transformed from code-and-fix and waterfall-like to spiral, iterative,
and more agile approaches to developing software" [57]. For such iterative and agile pro-
cesses are known to have different perceptions, one of them for example to value working
code higher than extensive documentation [44], the proportion of work influenced by a
WAF is probably even higher.

Furthermore, the inversion of control principle inherent to WAFs (see 2.4.1) may
additional increase their importance in the value chain. Frameworks influenced by this
architectural style tend to impose a specific design to the resulting application, because
they clearly define the points where control is handed over to the developer. Usually
these designs align to the best practices in the respecting areas, like the MVC pattern
for web applications (see 2.3). The usage of a WAF therefore significantly simplifies the
design of the application, usually accounting up to 27 % of the value chain costs.

The usage of frameworks also allows for (third party) code reuse. The reuse of
software artifacts avoids unnecessary work. According to Boehm in [10], work avoid-
ance can save 47 % over the "normal improvements accrued via a business-as-usual ap-
proach". However, he stresses that there are several pitfalls to avoid when improving
productivity this way. But regarding frameworks based on inversion of control, like
WAFs, this reuse is automated to a large degree. This is another indicator for the in-
fluence of WAFs on development productivity. Other features provided by them were
already mentioned in the last chapter, like scaffolding and template approaches, and are
about to be discussed in detail in the following.

There also exist special cost estimation models for web applications, as for exam-
ple in [66]. The reason for this is the sum of special characteristics inherent to web
application, as already discussed in section 2.2.3.

However, in some situations software tools can also decrease a project’s productivity.

CHAPTER 3. PRODUCTIVITY IN SOFTWARE AND WEB DEVELOPMENT 35

This may happen because they increase the effort on specific activities or even introduce
new activities into the process [14]. One important factor to consider here is the tool’s
learning curve.

The learning curve specifies how much time needs to be invested into learning the
tool before becoming productive with it. A WAF’s learning curve highly depends on the
know-how in the team. Depending on the background of the respective developers, it
might be steeper or smaller. 5 Nevertheless, this is also a property of the framework but
difficult to objectify. A decent documentation eases the start with the WAF. However,
published books could even indicate that the respective framework is too difficult to learn
without them. The longer development takes or the more projects are going to be build
with the respective WAF, the lesser is the influence of the learning curve.

3.4 Research Questions

This diploma thesis studies the productivity gained by web application frameworks. In
the context of upcoming web application development projects, it aims at simplifying
the process of selecting the appropriate WAF when productivity is a criterion – which
does not always have to be the case, as section 2.5.4 discussed. However, against the
background of the current state-of-the-art in software productivity research, the ques-
tion is coming up, what the best methodology on this would be. As the past sections
showed, the research in the field focuses on two main areas: Productivity measurement
and productivity factors.

Productivity measurements are mostly driven by an ex post view and require a
project database for analysis. In the literature, there is one example ([66]) where Ruhe,
Jefferey and Wieczorek studied cost estimation for Web applications. The data set used
for the study consisted of twelve "typical" web applications, created between 1998 and
2002. For analysis, they adapted the so-called COBRA method, which, like COCOMO,
is also based on cost factors. However, they clearly state that there is no experience
on potential cost factors for the domain of Web applications. Hence, expert interviews
where used as estimation. To measure the size of the respective Web applications, func-
tion points were counted. This resulted in a list of "potential" cost factors of web de-
velopment. However, due to the small-sized project database, the significance of these
results can be challenged. Furthermore, the influence of tools was not taken into account.

To actually measure the productivity of different WAFs this way, a much bigger
web project database is required but does not exist. But even with an existing project
database, the problem of how to measure output (see section 3.1) would still exist.

The fact that the influence of development tools was not taken into account reveals
that an analysis of productivity factors regarding Web Application Frameworks is re-

5Whether a steeper or smaller learning curve is better depends on where time and outcome are mapped
on in the coordinate plane. Regarding other measurements, time is usually mapped on the abscissa. This
would mean that a steeper learning curve is better. However, developers and even scientists most often
speak of steep learning curves being bad, so they obviously map the outcome on the abscissa.

CHAPTER 3. PRODUCTIVITY IN SOFTWARE AND WEB DEVELOPMENT 36

quired. As [73] concludes:

"No comprehensive list of functional requirements of Web frameworks has
been found in the literature."

However, the authors themselves do also only provide a list of seven topics, admitted
to be "slightly generalizing". Hence, the features provided by WAFs haven’t been stud-
ied in its completeness yet, especially not those that account for their productivity. But
without obtaining this knowledge, a decent analysis and comparison of WAFs to finally
choose among them will not be possible:

"Because we don’t know how to analyze a tool’s impact on specific projects,
we generally adopt them based on an intuitive understanding of their ex-
pected impact. In many cases, the actual results of this practice are disap-
pointing." [14]

Though this refers to software tools in general, it is also valid for WAFs. Already in
May 1992, the theme of IEEE Software’s special issue on Tools Assessment was:

"The industry has made great strides in making more development tools
available. It’s now time to find ways to consistently, objectively evaluate a
tool’s utility and appropriateness."

A catalog of technical criteria that form a WAF’s productivity would allow such
objective evaluation.

Research question: Which technical criteria make up the productivity of a Web
Application Framework?

In [46], the authors have created a comparison model for Agile Web Frameworks.
To this, they defined a set of aspects that "summarize general features and issues found
in web application development". These general aspects were also used as a basis for
this work. However, the resulting comparison model was much too coarse-grained and
there was no clear focus on productivity.

To make a detailed analysis possible, the following examination will only comprise
the Java market and confine on server-side aspects. This way, according to the taxonomy
introduced in section 2.5.3, the analysis will be both valid for request- and component-
based frameworks. The final catalog divides into six major parts, namely (1.-3.) the
support regarding the three components in the MVC pattern (see section 2.3), (4.) how
development speed can be fostered irrespective of a particular artifact under develop-
ment, (5.) build and integration support and finally (6.) testing. This classification was
both derived from [46] and the author’s experience gained by analyzing the different
WAFs presented shortly in the next section: It reflects the core areas where modern web

CHAPTER 3. PRODUCTIVITY IN SOFTWARE AND WEB DEVELOPMENT 37

development tools set their focus regarding productivity enhancements. Whenever dif-
ferent ways exist to fulfill a certain task, the pro’s and con’s of each approach, especially
the required input, will be examined and their consequences on the application’s quality
are discussed.

As stated in [14], a "tool’s impact is not solely governed by its inherent properties,
but also by the characteristics of the adopting project." That is, the actual impact of a
particular productivity factor depends on the respective project. This is a general issue
inherent to all surveys on productivity factors though (see section 3.2). Nevertheless,
by reading chapter 5, one should get an impression on the influence of each criterion.
Furthermore, as a quick overview, Appendix A classifies the criteria and their influence
on productivity ranging from LOW to HIGH. This classification is based on the author’s
impression gained throughout the work. A more objective measurement would again
require some kind of project database.

Finally, as [14] emphasizes, "to make effective use of specific tools you should first
understand how a tool will affect [...] critical variables in your project." Regarding the
development with Web application frameworks, the following chapters of this master
thesis provide a good starting point to answer this question. The current state-of-the-art
in rapid web development will become clear and a forecast on future developments in
the field is given. Knowing such trends can be helpful for managers to select future-
proof solutions in their web engineering projects but may also be interesting for WAF
developers to decide on their next moves in implementation.

Chapter 4

Examined Web Frameworks

In this chapter, the three Web Application Frameworks analyzed in the course of this
work, namely JBoss Seam, Grails and Spring Roo, are described. A deeper insight would
go beyond the scope of this work though. However, additional information about each
framework is referenced in the respective sections. By describing (1) the history of the
framework and the motivation behind it, (2) its most prominent features and (3) special
approaches to productivity, the spirit behind each implementation should become clear.
The chapter also provides a first impression of the current state-of-the-art in rapid Web
development.

4.1 JBoss Seam

JBoss Seam6 is a framework for building Web applications using the Java EE platform
[56]. The name alludes to the term of a seamless integration and was originally related
to the fact that the framework fitted JSF and EJB, two major specification in Java EE,
closer together [4]. Today, Seam unifies many parts of Java EE and aims at making
other proven libraries more accessible. Many developers choose the framework to deal
with shortcomings of the JSF specification or because they recognized Object-Relational
Mapping (ORM) related problems in alternative WAFs. This way, people around Seam
had a big influence on the latest JSRs for Java EE 6, especially JSF 2, CDI and Bean
Validation: Many were part of the respective expert groups or even led them.

Besides this heavy scope on Enterprise Java, Seam also considers many concepts of
rapid Web development and ships with a rich tool set fostering agile development.

6Project Site: http://www.seamframework.org

38

http://www.seamframework.org

CHAPTER 4. EXAMINED WEB FRAMEWORKS 39

4.1.1 Motivation & History

Seam was founded in 2005 and is actively developed by JBoss, a division of Red Hat.
The former Project Lead was Gavin King, already known as the initiator of the ORM
framework Hibernate. The reasons for creating a new WAF were therefore closely con-
nected to the big success of Hibernate.

King recognized that many developers were using Hibernate improperly. Relying on
a stateless design, propagated particularly by the Spring Framework, they could not take
advantage of the extended persistence context [4]. This often resulted in detached ob-
jects and Hibernate’s LazyInitializationException or in many unnecessary
database calls, the number one reason for performance problems in today’s software ap-
plications [42]. Other developers tried to solve this problem by scoping the persistence
context to the user’s session, held it open for too long and ended up in cache and memory
leaks. King’s idea was to permit a stateful design in which the persistence context could
be managed automatically, extended to survive multiple requests, by better integrating
JSF and EJB 3. Today, this continuity between user interactions still is one of Seam’s
core competencies.

Seam is licensed under the GNU Lesser General Public License (LGPL). At the time
of writing, the latest final release of Seam was 2.2.0.GA which is also the version under
examination in the course of this work. Seam 3 is under development and is proposed to
implement all outstanding Java EE 6 features.

4.1.2 Prominent Features

Seam provides many features to ease Web application development. The ones described
in the following are for the most part unique to the platform and fundamental for devel-
oping with Seam. Chapter 5 will refer to many other features the framework provides.
A complete overview of Seam can be found in [52].

JSF enhancements

The previous versions of JSF 2 contained some serious shortcomings [4].
The lack of a front controller made many use cases very difficult to implement.

Initial requests were not able to do much more than serving a page. Invoking action
methods, required to e.g. serve RESTful URLs, making security checks or redirect to a
different (error) page, was not possible without falling back to a custom PhaseList-

ener. This introduced lots of boilerplate code into the application logic. Seam provided
an approved and configurable, yet transparent PhaseListener to solve the problem.

Postbacks, the other request type in JSF, were also problematic. Since posting data
can easily interfere with the browser’s back button and its ability to set bookmarks, the
Redirect-After-Post Pattern has evolved. Unfortunately, JSF 1.2 offered no way to store
request data anywhere else than in the user’s session. This resulted in performance prob-
lems and multi-window complications. Though also based on traditional Java Servlets,

CHAPTER 4. EXAMINED WEB FRAMEWORKS 40

Seam was able to provide additional, declaratively manageable scopes to the developer.
By controlling the session context in a fine-grained manner, conversations and even busi-
ness process contexts became possible.

Another problem of the old JSF was to connect it with EJB. Though both technolo-
gies where important specifications in Java EE 5, JSF required the additional layer of a
backing bean to finally access an EJB. This resulted in a tighter coupling between the
view and the business layer. In Seam, Enterprise Java Beans can be used just like normal
baking beans and can be called from the view by using the enhanced EL. A concrete
example how Seam improved applications in this regard is provided by [7].

The aforementioned information may appear redundant because in the meantime, all
these problems were also solved by JSF 2. However, Seam’s success bases particularly
on these enhancements which were probably the main reason for companies to choose
this framework for their developments. Moreover, they were obviously of big influence
on the latest JSF specification.

Bijection

The concept of Dependency Injection was already explained in section 2.4.1 on page 14
as a way to keep components loosely coupled in a POJO-based programming model.
Seam extends this mechanism in two ways [4]:

First of all, dependency injection is dynamic in Seam. Instead of injecting an object
only once during initialization, Seam repeats this step every time a method is called for
the respective component.7 Otherwise, injecting a component instance of a narrower
scope into a component instance stored in a wider scope could easily result in a Null-
PointerException, because the lifetime of the used component has already come
to an end.

Besides moving away from static dependency injection, Seam also adds the concept
of Outjection. Outjection means that a component itself can define new context variables
of a specified scope. In a second step, these variables can then be used by other compo-
nents, for example by using dependency injection again. This way, outjection becomes
an easy way to propagate state held by a component into the Seam container.

The process of injection and outjection is called Bijection. Bijection proceeds in four
steps [52]:

1. Dependency injection for fields annotated with @In

2. Invocation of the called method defined by the component

3. Outjection for fields annotated with @Out

4. Disinjection
7Exceptions occur for reentrant method calls.

CHAPTER 4. EXAMINED WEB FRAMEWORKS 41

To implement this mechanism, Seam uses a bijection interceptor [52]. After the
invoked method has finished and outjection was performed, disinjection assigns null
values to all formerly injected fields to remove all data that could not be kept up to date
anyway while the component is idle. This prevents memory leaks.

There are additional variants of @In and @Out to mark fields for bijection. It is also
possible to configure bijection using XML.

4.1.3 Special Approaches to Productivity

Like any other framework examined in this master thesis, Seam tries to foster an agile
development. The different approaches hereunto are partly presented in this section and
will be discussed in depth in Chapter 5.

The project generator

The project generator seam-gen can be used to create executable Web applications, ca-
pable to create, read, update and delete (CRUD) database records, to find and filter, sort
and paginate them. A skeleton project created this way is fully configured: It is ready
for use in the most popular IDEs, provides ant-scripts8 to deploy on JBoss AS or Glass-
fish, and supports hot deployment of static resources, views and Java Beans. Different
development environments are created, just like the support for AJAX or a component
debug page for development.

To benefit from all these features, which are a great relief for everyone starting with
a new framework, the user has to answer a small questionnaire about the project to be
created in the beginning. This information includes database settings and basic project
facts like name and package format (WAR or EAR).

The user can also specify whether to follow a bottom-up or top-down approach on the
persistence layer. Bottom-up in this case means to create JPA-entity classes by examin-
ing an already existing database schema. In the background, seam-gen uses Hibernate’s
reverse engineering tool9 to accomplish this goal. Following the top-down approach is
the common way of implementing entity classes which define the database schema [52].

After this scaffolding process, seam-gen may still be used to update the project,
create Seam components or generate views for added entity classes.

JBoss Tools

For the most part, the JBoss tools9 are designed for use in all kind of projects, not in
a Seam-specific way. One such example is the already mentioned reverse engineering
tool. Others support the creation of JSF-views in a WYSIWYG manner or provide code-
completion in IDEs for special file types. Some tools come as an IDE plug-in, others are

8Project Site: http://ant.apache.org
9Project Site: http://www.hibernate.org/subprojects/tools.html

http://ant.apache.org
http://www.hibernate.org/subprojects/tools.html

CHAPTER 4. EXAMINED WEB FRAMEWORKS 42

designed to be used in the console only. Even when not using a single JBoss technology
at all, the tools can be of great help for a Java developer.

However, some of the tools are specific to JBoss Seam. They comprise wizards to
create new Seam projects or add specific seam components, editors for visual support or
content assist when defining components. A complete overview is provided by [33].

Query & Home Component

Bundled with Seam comes the so called Seam Application Framework, basically a set of
classes to support the developer in building components that need to perform database
operations. Managing persistent entities is not always trivial and, when done wrong,
may result in serious performance problems. The Seam Application Framework aims
at avoiding these problems and additionally allows for a quick development of such use
cases.

Among the most important classes are two kinds of persistence controllers. A persis-
tence controller implements the mediator design pattern by encapsulating the respective
persistence manager and a page controller in a single component [4]. This approach
has a major advantage: The persistence manager as a replacement for DAOs used in
other WAFs is able to perform CRUD operations and manage the results. By scoping
the persistence controller to the appropriate context, the developer does no longer have
to fear detached objects or performance problems. However, the persistence manager is
unaware of all the things happening on the Web layer – this is where the page controller
comes into play. By combining both in a single unit, database operations can be easily
accomplished in a both stateful and performant manner. All this should become clearer
by describing the two major persistence controller templates: Home and Query.

The Home Component manages a single entity instance. For initialization, the devel-
oper needs to provide the entity class of the instance to be managed and the persistence
provider to be used, either JPA or Hibernate. After this, Home allows for a stateful
CRUD of single persistent entities.

In comparison, Query can manage complete result set listings. By providing a
query, the developer can easily truncate and paginate the results, sort them according to
the user’s preferences or apply additional restrictions. By storing the Query component
in the right context, the developer does not have to fear issuing unnecessary database
calls or running out of memory, even if the use case involves multiple HTTP requests.

CHAPTER 4. EXAMINED WEB FRAMEWORKS 43

4.2 Grails

Grails10 was invented with the main intent to be the "better, easier way to build Web
applications on the Java platform" [71]. It is highly influenced by Ruby on Rails11 (in
the beginning, the original name of the framework has even been Groovy on Rails12).
As such, principles from agile and rapid development are deeply integrated into the
framework [71].

Grails applications are usually written in Groovy, a dynamically typed language for
the JVM. Though a different programming language, developers can benefit from all
the classes and methods provided by the Java Development Kit (JDK) as usual – even
circular dependencies between Java and Groovy code are no problem.

Another point that sets Grails apart from other WAFs in the Java environment is that
it is indeed grounded on commonly used technologies like Hibernate or Spring, but sets
an abstraction layer on top of them to shield the developer from their complexity [64].

Since the programming model differs widely from the already discussed JSF or
Seam, a code example is provided in section 4.2.3 to get an impression on how a Web
application is designed using Grails.

4.2.1 Motivation & History

The history of Grails is closely connected with the history of Groovy. Both were trig-
gered by developments outside the Java platform.

Groovy was invented in 2003 by James Strachan. Strachan was a Java developer,
but when comparing Java with other programming languages like Python13, he realized
his language was lacking many useful features, especially dynamic behavior. For Java
still being a robust and well-supported platform, he decided to port these features to the
JVM. The principle of a Java-friendly but feature-rich programming language still is
what drives Groovy development today [53].

In 2004, Groovy was standardized by JSR 241 as the second standard language for
the JVM. According to Sun, "having additional interesting languages for the Java plat-
form seems like a Good [sic] Thing"14, that is, they see no rival but a companion for Java
in Groovy [53].

In the Same year, Ruby on Rails was released. Many developers were attracted by the
quick and easy way Rails provided to create data-driven Web applications. At that time,
Graeme Rocher was already implementing MVC-Controllers in Groovy, making use of
a self-adapted version of WebWork15. Recognizing the success of Ruby on Rails and
other WAFs built on dynamic languages, Rocher and Guilaume Laforge, specification

10Project Site: http://www.grails.org
11Project Site: http://rubyonrails.org
12http://marc.info/?l=groovy-dev&m=114373309105440&w=1
13Project Site: http://www.python.org
14Sun’s comment in Vote Log for JSR 241
15Project Site: http://www.opensymphony.com/webwork

http://www.grails.org
http://rubyonrails.org
http://marc.info/?l=groovy-dev&m=114373309105440&w=1
http://www.python.org
http://www.opensymphony.com/webwork

CHAPTER 4. EXAMINED WEB FRAMEWORKS 44

lead for JSR 241 and project lead for Groovy since that time, decided in 2005 to create
a WAF based on Groovy. Since November 2008, Grails is part of the SpringSource3

portfolio [64].
The current stable version of Grails is 1.3.6. It is published under the Apache Li-

cense.

4.2.2 Prominent Features

In comparison to other Java Web Frameworks, Grails most prominent feature is of course
Groovy. For Groovy being a complete and self-contained programming language, dis-
cussing all its features will not be possible here. By explaining Groovy’s basics and pro-
viding some code examples, this should however not influence the further understanding
of Grails.

Another concept that sets Grails apart is its plug-in mechanism which will be dis-
cussed in the second part of this section.

Groovy

Groovy16 is a dynamic programming language allowing both static and dynamic typing
which can be mixed arbitrarily. In contrast to other dynamic languages, Groovy code is
not interpreted but transformed into bytecode [53]. This point results in Groovy’s core
strength which makes it so compelling to Java developers: Java code can call Groovy
code without even being aware of the fact that it was written in a different language. The
same holds true for Groovy code accessing objects written in Java.

This does not mean that any code fragment taken form Java is also valid Groovy
(though this applies for many Java classes). For example, Groovy has limited support for
Java’s classic for-loop and implements no equivalent for inner or anonymous classes
[53]. But aside from these constructs, Java and Groovy are very similar, which makes
Groovy easy to learn with a background in Java [71].

Groovy is more expressive than Java and often better to read [53]. First of all, Groovy
tries to fix many problems that became obvious in 15 years of Java programming. These
concepts will be discussed shortly. Furthermore, Groovy aims at providing programming
concepts to the Java platform already proven powerful in other languages. Among these
are Closures and Metaprogramming. For being very important concepts also in Grails,
both will be discussed separately. To better understand all these features, an example is
provided in each of the following sections. These examples are Groovy Scripts, that is,
they are executable without any further ado.

All in all, Groovy programs usually contain only 40-60 % of the LoC an equivalent
Java program would require [64].

16Project Site: http://groovy.codehaus.org

http://groovy.codehaus.org

CHAPTER 4. EXAMINED WEB FRAMEWORKS 45

SYNTAX Groovy simplifies Java’s syntax in many concerns. Semicolons at the end
of lines are not required; parentheses can often be omitted (though it is recommended
doing so only in the simplest cases [53]). Where Java only imports the java.lang
package implicitly, Groovy does so for many more, including java.io, java.util
and java.math. Furthermore, Groovy stops the coexistence of primitive types and
objects known from Java: In Groovy, everything is an object. These objects also have a
different scoping behavior: If no scope is specified, methods are concerned public and
fields turn into properties, that is, getters and setters become available during runtime and
accessing the field directly by its name results in invoking the respective Getter/Setter
[53]. Java’s default scope has been completely removed. Another important thing to
note is that Groovy uses the BigDecimal class for its floating-point arithmetic instead
of double or float. Though inferior in performance, this follows Groovy’s principle
of least surprise: For example, 0.1D * 3 is 0.3 in Groovy but 0.300...04 in Java
[53]. Together with its wide simplification of the BigDecimalAPI, this makes Groovy
an interesting option for financial calculations.

Listing 4.1: Accessing properties and the usage of Big Decimal in Groovy

1 class Person {

2 String name

3 }

4 def person = new Person()

5 person.name = ’John Doe’

6 assert person.getName() == ’John Doe’

8 assert 2.0 instanceof BigDecimal

9 assert 2.0 / 0.5 == 4

NEW OPERATORS Groovy provides many new operators to the developer. The spread-
dot operator (*.) can be used to invoke a method on every item in an aggregated object
and replace the item by the method’s return value. Using the safe navigation operator
(?.), the developer no longer has to fear an object he is calling a method from may
be null. In this case, the whole expression returns null, but throws no NullPoin-

ter-Exception. Chaining this operator is possible to an arbitrary depth. The Elvis
operator (?:) is a simplification in cases where using Java’s ternary operator becomes
quite verbose to either assign a value to a variable or – in case this value is null – set a
default value. One very important thing to note for Java developers is that Groovy uses
== for comparisons on equality and the is operator to check for identity. Groovy even
adds an operator to easier compare two values (<=>) according to Java’s Comparable
approach. Furthermore, the as operator allows for easier type casting.

There are lots of other operators for special use cases such as regular expression
matching. Further information is provided by the Groovy User Guide17.

17http://groovy.codehaus.org/User+Guide

http://groovy.codehaus.org/User+Guide

CHAPTER 4. EXAMINED WEB FRAMEWORKS 46

Listing 4.2: Additional Operators in Groovy

1 def list = [1,2,3]

2 assert list*.multiply(2) == [2,4,6]

4 Date date = null

5 assert date?.time == null

7 String oldName = null

8 String newName = oldName ?: ’John Doe’

9 assert newName == ’John Doe’

11 assert ’Amy’ <=> ’Zue’ == -1

13 assert 12345 as String == ’12345’

LISTS, MAPS AND RANGES Collections are a very important concept for every pro-
grammer. In Java however, collections aren’t much more than a set of APIs. Groovy
makes lists and maps first class citizens of the language and even add the concept of
ranges for easier creating enumerations of arbitrary lengths. Parsing or constructing a
collection is less verbose this way. Making use of operator overloading, the same holds
true for the way new elements are added to lists and maps. Requesting a value from a
list is supported in an array-style notation. Even addressing an element starting from the
end of the index is possible.

However, what makes lists and maps even more powerful are the methods that
Groovy adds to their APIs, profiting from the two concepts defined next.

Listing 4.3: Working with Collections in Groovy

1 List list = []

2 for(i in 1..100){

3 list << i

4 }

5 assert list.size() == 100

7 list = [1,2,3,4,5]

8 assert list[0] == 1

9 list = list[0..2]

10 assert list[-1] == 3

CLOSURES Closures are a powerful concept in dynamic languages. Though appear-
ing complex in the beginning, they quickly become invaluable to the programmer after
understanding their usage [71].

Closures are reusable code fragments and behave like anonymous functions [71].
One might also think of closures as a method without a name. However, unlike meth-
ods, the closures arguments are declared within the curly braces that also encompass

CHAPTER 4. EXAMINED WEB FRAMEWORKS 47

the closure’s body. The general syntax of a closure in Groovy is <arguments> ->

<body> . In case no arguments are specified, the default argument it can be used
within the body and the arrow (->) has to be dropped. The body is a sequence of in-
structions, where the last instruction defines the body’s return value. Using the return
keyword to this is not compulsory; the same rule applies for any method written in
Groovy. Defining a closure can either be done explicitly or inline.

The Groovy JDK18, which defines the methods added by Groovy to the normal JDK,
heavily exploits the concept of Closures. This is another reason which makes Collections
so powerful in Groovy.

Listing 4.4: Working with Closures in Groovy

1 Closure sqr = {a -> a * a}

2 assert (1..3).collect(sqr) == [1,4,9]

3 assert sqr(4) == 16

5 def sum = 0

6 (1..100).each{sum += it}

7 assert sum == 5050

CATEGORIES Categories are Groovy’s way to extend the behavior of already exist-
ing classes and are one part of Groovy’s Meta Object Protocol (MOP) [23]. "Ex-
tending" in this sense is different from the concept of inheritance known from object
oriented programming: Groovy makes it possible to add methods to classes even de-
clared as final. E.g., the Groovy JDK adds many additional methods for Java’s
java.lang.String API. Likewise it does for dozens of other classes in the JDK.
The following code listing is an example of a user defined category for the already men-
tioned java.lang.String class. Such methods are defined static and programmers
need to enclose code sections where they wish to use the newly defined method with the
use construct (this is not required for the categories defined in the Groovy JDK though).

Listing 4.5: A user-defined method (Category) for java.lang.String

1 class StringUtilCategory {

2 static def firstCharacter(String self){

3 return self?.substring(0,1)

4 }

5 }

7 use(StringUtilCategory){

8 assert "John Doe".firstCharacter() == ’J’

9 }

18http://groovy.codehaus.org/groovy-jdk

http://groovy.codehaus.org/groovy-jdk

CHAPTER 4. EXAMINED WEB FRAMEWORKS 48

METACLASSES Metaclasses are another important concept in the Meta Object Protocol.
In contrast to categories, they allow to dynamically change an object’s behavior. This
feature is also known as Duck Typing in dynamic languages ("if it walks like a duck and
talks like a duck, its probably a duck") [71]. In Groovy, duck typing becomes possible in
the following way: Every Groovy-object implicitly implements the groovy.lang.-
GroovyObject interface.19 The interface defines a couple of methods, the most im-
portant ones here are invokeMethod() and setMetaClass(). Every object has
a metaclass set by default. The metaclass maintains all the metadata of an object, i.e.
constructors, fields, operators, properties, static methods and instance methods. By de-
fault, invokeMethod() only forwards requests the object’s metaclass [53]. That is,
by setting a different metaclass for an object, you may alter the object’s behavior at
runtime. Another option would be to overwrite invokeMethod(). This way, the pro-
grammer becomes able to pretend behavior [23]: If the metaclass does not implement a
method that the object calls on it, a MissingMethodException will be thrown. invoke-
Method() may catch this exception and dynamically generate the appropriate behav-
ior. For example, Grails Object Relational Mapping (GORM) makes heavy use of this
option by providing dynamic finders [53]. This way the developer may call methods like
Person.findAllByLastnameLike("Doe") though he never wrote the respec-
tive method: Dynamic finders generate the appropriate query automatically, provided
Person implements a property called lastname.

Plug-ins

Plug-ins are modules that bundle functionality. This functionality often isn’t specific
to one single application and therefore can be shared between projects. Using plug-ins
means reusing code. Code reuse has many advantages: First, the developer saves the
time of developing an own solution. Second, the overall quality of the application under
development increases, for the reused code is often well tested, robust and mature [71].

Grails was built with plug-ability in mind since its beginning [20]. In a way, Grails is
not much more than a runtime-plug-in loading and configuring other plug-ins. Accord-
ingly, Grails’ architecture consists of the Grails core and a plug-in system connected to it
[71]. Plug-ins themselves divide into core plug-ins shipped with Grails and user plug-ins
provided by the community. One example for a core plug-in is the already mentioned
GORM. User plug-ins can be obtained from Grails’ plug-in repository. Currently, more
than 400 user plug-ins exist. For example, there is support for mail, full-text searching
the database or AJAX. Obviously, since these are no official releases, quality differs
widely. Some serve the same purpose or are out of date and can’t be used with newer
Grails versions. Contrariwise, others reveal so useful and mature that they become part
of the core plug-ins. At the Grails Plugin Portal20 one can get an overview about the

19This is the same interface a Java class needs to implement so that intances are treated like normal
Groovy-objects.

20http://grails.org/plugin/home

http://grails.org/plugin/home

CHAPTER 4. EXAMINED WEB FRAMEWORKS 49

experiences developers made with a specific plug-in. Before developing a feature re-
quirement that is not application-specific, a project team should always check whether
there is already a plug-in provided for this purpose.

The modularization implied by using plug-ins may lead to an improved architecture
on the respective application. This is the reason why it sometimes makes sense to im-
plement parts of the applications functionality as a plug-in, even though it is not going
to be available to anyone else. A plug-in in Grails is a Grails application; therefore, de-
velopment is quite natural for developers familiar with the framework. Besides finding
and installing plug-ins, the Grails command line tool (see section 4.2.4) also supports
the creation of new plug-ins. However, new plug-ins should stick to the principle of
convention over configuration and avoid being intrusive to the developer. Plug-ins may
even base on already existing plug-ins [64].

4.2.3 Programming Model of Grails

As already stated, Grails applications differ widely from component-oriented JSF appli-
cations. Therefore a short example will be depicted in this section to get an impression
on the programming model in Grails. This should also lead to a better understanding
of Spring Roo (see section 4.3 on page 51), since designing a Web application there is
pretty similar to Grails. The files shown in the following do not make up a fully exe-
cutable application of course, but by using one of the tools explained in section 4.2.4,
the remaining work basically comes down to configuring the data source.

As the name already says, a domain class describes a part of the application’s do-
main. The domain in the following is quite easy: The database stores a number of
messages and should be able to present a single message to the user. By providing the id
of the message, the user itself can decide which message to display.

Listing 4.6: The Message domain class (Message.groovy)

1 package messenger

3 class Message {

5 String author

6 String message

8 static constraints = {

9 author(blank:false)

10 message(blank:false,maxSize:255)

11 }

12 }

As shown in listing 4.6, the domain class contains fields for saving the author of the
message and the message itself. Behind the scenes, Grails will also add an id field and

CHAPTER 4. EXAMINED WEB FRAMEWORKS 50

a version field for optimistic locking. Both the author and the message field must not
be null or empty ("blank") and the maximal length of each message is 255 characters.
The class represents a valid Grails Object Relational Mapping (GORM) file. GORM is
a Domain Specific Language (DSL) Grails uses as its ORM-Layer. In contrast to general
purpose languages like Groovy or Java, a DSL is "a computer programming language of
limited expressiveness focused on a particular domain" [39]. The domain in this case is
ORM. Groovy is very powerful in creating domain specific languages.

Grails will automatically generate multiple methods for the domain class, so that
everything is already there to be able to retrieve messages from the database. The re-
spective logic will be called by a Controller. A controller in Grails performs the same
tasks as the controller known form the MVC pattern (see section 2.3). Here, the con-
troller has to read a message id from the user request, get the respective message from
the database and return a view back to the user presenting the information.

Listing 4.7: The Message controller (MessageController.groovy)

1 package messenger

3 class MessageController {

5 def show = {

6 def msg = Message.get(params.id)

7 if (!msg) {

8 flash.message = "Message ${params.id} not found"

9 redirect(uri:’/index.gsp’)

10 }

11 else {

12 [msg: msg]

13 }

14 }

15 }

The method get() in line 6 of listing 4.7 is automatically generated by Grails for
every domain class. params is a map that stores request parameters by their corre-
sponding name. In this case, the id of the message the user requests is needed. If a
message was found, a request-scoped map containing the entity is returned and the de-
fault view is displayed, which in this case is "list" because this is the name of the called
closure. Otherwise the user is redirected to another page, displaying the appropriate er-
ror message. Since request-scoped data gets lost on a redirect, the message needs to be
stored in the flash scope.

If the user requests the URL app/message/list/{id}, the list()method in
the MessageController gets called and the value of {id} will be bound to params.id
(assuming that app is the name of the Web application under construction).

All that remains is displaying the message to the user. By default, Grails uses Groovy
Server Pages (GSP) as its view technology, which is very similar to JSP [71]:

CHAPTER 4. EXAMINED WEB FRAMEWORKS 51

Listing 4.8: Displaying a single message (list.gsp)

1 <%@ page import="messenger.Message" %>

2 <html>

3 <body>

4 <g:if test="${flash.message}">

5 <div class="message">${flash.message}</div>

6 </g:if>

7 ID: ${fieldValue(bean: msg, field: "id")}

8 Author: ${fieldValue(bean: msg, field: "author")}

9 Message: ${fieldValue(bean: msg, field: "message")}

10 </body>

11 </html>

Line 5 in listing 4.8 describes a way to read-out flash-scoped data as created by
the controller. To access data stored in the different scopes, the view has to use the
appropriate keys (namely message and messageInstance in this case).

4.2.4 Special Approaches to Productivity

Grails was designed to allow for a rapid development of Web applications. Groovy and
Grails plug-in support, two major approaches into this direction, were already discussed
in section 4.2.2.

Just like Seam, Grails offers a project generator and support for developing Grails
applications inside an IDE. For the concepts are pretty similar to the ones described in
section 4.1.3, the following information is a bit shorter. This does by no way mean Grails
support in this regard is less powerful or provides less functionality.

Grails’ command line tool provides a way to generate fully configured CRUD ap-
plications. Using the tool, new domain classes, controllers or views can be created or
generated. There are also commands to create and run test case or look for or install new
plug-ins. The console also allows for generation of new gant scripts. Gant21 is a build
tool for Groovy that encloses Apache Ant [64].

Different IDEs offer plug-ins for Groovy and Grails, including NetBeans,22 Intel-
liJ IDEA23 and Eclipse.24 The SpringSource Tool Suite25, discussed in section 4.3.3,
probably offers the best support.

4.3 Spring Roo

Spring Roo26 takes a completely different approach than the two WAFs discussed before.
According to the project’s mission statement, Roo wants to "fundamentally and sustain-

21Project Site: http://gant.codehaus.org
22Project Site: http://netbeans.org
23Project Site: http://www.jetbrains.com/idea
24Project Site: http://www.eclipse.org
25Project Site: http://www.springsource.com/developer/sts
26Project Site: http://www.springsource.org/roo

http://gant.codehaus.org
http://netbeans.org
http://www.jetbrains.com/idea
http://www.eclipse.org
http://www.springsource.com/developer/sts
http://www.springsource.org/roo

CHAPTER 4. EXAMINED WEB FRAMEWORKS 52

ably improve Java developer productivity without compromising engineering integrity
or flexibility" [3]. This also means that Roo is not restricted to Web application develop-
ment and hence, is no WAF in the true sense of it. However, as section 4.3.1 will show,
it is directly influenced by Web application development and people focus on using the
tool in such an environment, either to develop Spring MVC or GWT2 applications, the
two inbuilt Web technologies [2].

Spring Roo want to address the configuration burden Java developers are typically
faced with in enterprise development [27]. The tool configures and manages the in-
frastructure of the project, manages the build process and also tries to help in solving
particular business problems [27]. Because of this focus on configuration, and the dele-
gation of work to other frameworks and libraries, applications developed using Roo do
not even require any Roo-specific libraries at runtime. For developers familiar with the
Java Standard and Spring, learning Spring Roo comes down to learn a few new annota-
tions and to get a feeling of how to use and communicate with the Roo shell.

In the course of this work, Roo was used to create Spring MVC Web applications.
Spring MVC is part of the Spring Framework, whose fundamental capabilities were
already discussed in section 2.4.8.

4.3.1 Motivation & History

From all the technologies discussed in this chapter, Spring Roo is the most recent one:
Version 1.0.0.GA was released in December 2009. However, the motivation for Roo
goes back to 2005 [3]:

Ben Alex, developer at SpringSource, noticed a mismatch between the WAFs of that
time and the rich domain models he was used to implement. He was forced to create lots
of boilerplate code for each domain model and used different tools for this. Therefore
Alex created a code generator called ROO (Real Object Oriented) to ease this work and
be more productive.

Though ROO got positive feedback at some Spring-related conferences in 2006 and
2007 and, Alex had to concentrate on other projects in the Spring portfolio. The feedback
of a few companies that used the tool nonetheless was used in a complete new tool Alex
publicly presented in April 2009. The name was changed to "Roo" to stress the term was
no longer an acronym.

As already stated above, Roo’s goal is to "fundamentally and sustainably improve
Java developer productivity without compromising engineering integrity or flexibility"
[3]. Sustainability in this sense means that the architecture proposed by Roo is standard
and easy to maintain, and that productivity is provided throughout the whole project life-
cycle. In doing so, Roo tries not to impose any trade-offs on the project. At runtime,
no Roo-specific libraries are required. During development, it makes no specifications
on the editors or tools the developer wants to use. Even removing Roo support from the
project is easy by comparison [3]. Furthermore, the technologies it is build on are com-
mon Java technologies. However, the developer can always be sure that only libraries

CHAPTER 4. EXAMINED WEB FRAMEWORKS 53

required by the current project state will be part of the deployed application.
Concerning Roo’s architecture, one can differentiate between the Roo core, the base

add-ons and third party add-ons [3]. In contrast to the latter, base add-ons already come
shipped with the Roo download.

At the time of writing, the latest stable release of Roo was 1.1.1. It is published
under the Apache License 2.0.

4.3.2 The Roo Shell

The only thing that makes up Roo is a command-line tool called the Roo shell. Even the
annotations that come with Roo are just another way to communicate with the shell. By
leveraging the shell’s capabilities, Roo can be used to create Web applications in a short
time. This is accomplished by scaffolding and code generation approaches for specific
frameworks. That is, Roo can also be regarded as an abstraction layer over usual WAFs.

Currently, most developers use the tool to develop Spring MVC applications [3].
The programming model of Spring MVC is very similar to the one used in Grails (see
section 4.2.3). This is because Grails uses Spring MVC as its underlying WAF [65].
Therefore, an example will not be provided here. However, a typically controller method
signature is depicted in section 5.3.3 on page 75. Besides Spring MVC, Roo also offers
inbuilt support for GWT.2 There also exists an add-on to create JSF 2.0 applications.27

Though being implemented as a command line tool, the Roo shell provides an un-
usual level of usability. It is designed to be usable without any study of the documenta-
tion, following a "learning by doing" approach. For example, this is the first output of
Spring Roo before creating a new project:

Listing 4.9: Exemplary output of the Roo Shell

____ ____ ____
/ __ \/ __ \/ __ \
/ /_/ / / / / / / /
/ _, _/ /_/ / /_/ /

/_/ |_|____/____/ 1.1.1.RELEASE [rev 156ccd6]

Welcome to Spring Roo. For assistance press TAB or type "hint" then hit ENTER.
roo> hint
Welcome to Roo! We hope you enjoy your stay!

Before you can use many features of Roo, you need to start a new project.

To do this, type ’project’ (without the quotes) and then hit TAB.

Enter a --topLevelPackage like ’com.mycompany.projectname’ (no quotes).
When you’ve finished completing your --topLevelPackage, press ENTER.
Your new project will then be created in the current working directory.

Note that Roo frequently allows the use of TAB, so press TAB regularly.
Once your project is created, type ’hint’ and ENTER for the next suggestion.
You’re also welcome to visit http://forum.springframework.org for Roo help.
roo>

Listing 4.9 already illustrates two important shell features: Contextual Awareness
and Hints. In the present situation no project exists yet, so Roo can anticipate the first

27Project Site: http://kenai.com/projects/Roofaces

http://kenai.com/projects/Roofaces

CHAPTER 4. EXAMINED WEB FRAMEWORKS 54

thing to do is to create one. Accordingly, when the user types hint, the information
displayed is all about project creation. Though contextual awareness may appear very
simple in this specific case, it is of great help throughout the whole project cycle and -
in combination with the verbosity of hints - a main reason for this command line tool’s
usability. Additionally, different colors in the output guarantee a better readability. The
input is further simplified by Tab-completion and Inline-help to find out possible options.

Possible commands encompass ways to backup the project, define persistent enti-
ties, add finder-methods to them, create unit, integration or Selenium tests, scaffold con-
trollers, implement a JMS infrastructure and much more. Another very useful feature
is the possibility to record a sequence of commands to replay them in different projects
or on different machines. This approach is also used in all sample applications that ship
with the Roo: Before executing their scripts using the Shell, they only consist of simple
text files.

Furthermore, it is important to note that no unnecessary libraries are part of the
application at any time. For example, a project does not become a Web application
before a Spring MVC controller is added. This kind of dependency management support
leads to smaller archive files and faster application startup [3].

The Roo shell is designed to operate during application development, that is, also
when it is not used for typing in commands. By monitoring the project’s file system,
Roo acts as a central coordinator: Specific modifications of source files cause it to adapt
or delete *.aj, configuration or markup files. This way, Roo is fully round-trip aware
and can carry out many steps that would else be redundant and repetitive to the developer
[3]. Roundtrip-awareness is provided irrespective of the IDE or editor the programmer
uses in the current development phase.

All annotations that ship with Roo only exist to be observed by the Roo shell when-
ever they appear in the source code. Therefore, they are all source-level annotations,
meaning they do not become part of the compiled *.class files and are only retained
in the source code itself (this is also the reason why no Roo-specific libraries are required
during runtime). Whenever a new instance of an annotation appears or an existing one
is modified or deleted, this results in different actions carried out by the Roo shell. For
example, if the developer adds the @RooToString annotation to a class, Roo will
automatically generate a method following Java’s toString() approach, taking all
fields defined for the respective class into account. There are multiple annotations for
different purposes, for example to adjust scaffolding, persistent entities or Java Beans.
The annotations can be configured in a fine grained manner using annotation arguments.

Implicit communication with the shell is probably the one that is taking place most of
the time. This follows Roo’s philosophy of providing productivity throughout the whole
project lifetime [3]. Another important guideline in this philosophy is that Roo "works
the way a reasonable person would expect" [3]. This means for example, even though
Roo as a code generator is running in the background, a developer does not need to fear
Roo might make changes to files he is working with (unless the developer tells Roo to

CHAPTER 4. EXAMINED WEB FRAMEWORKS 55

do so). Section 4.3.3 will explain how this is accomplished in Roo. Furthermore, Roo is
designed to forgive mistakes. If a developer is working on the project and forgets to start
the shell, Roo will catch up all changes the next time it starts. Besides, Roo always runs
in a transactional context that allows automatic rollbacks in case the developer revokes
certain actions [3].

4.3.3 Special Approaches to Productivity

Many of the features the Roo shell provides make excessive use of AspectJ’s ITD ap-
proach. This concept is therefore explained in detail in the following. To foster the
productivity gained by Spring Roo, one might also use the SpringSource Toolsuite IDE.
This is a special IDE offered by SpringSource which provides special support for many
Spring-related technologies, including Roo.

AspectJ Inter Declaration Types

One of Roo’s core principles is to be non-intrusive [3]. However, sticking to this prin-
ciple becomes difficult in plain Java when there is code to generate. For example, in
Roo a developer can annotate a class as @RooJavaBean to let the shell generate Getter
and Setter methods for each field defined in the class. Furthermore, for any new field
added in the following, the methods also need to be generated instantly. In common
Java, the only solution to code generation in this case is to add the methods directly into
the class containing the respective fields. Following this approach, Roo would need to
modify class definitions the developer is currently working on. Besides requiring the
developer to reload each file after Roo has carried out its changes (which, in the example
above, would mean after each new field defined), this mechanism can easily interfere
with unsaved code changes.

To avoid this misconception, and hide generated code, Roo makes heavy use of
AspectJ’s Inter-Type Declarations. AspectJ28 is the de-facto standard in the Java world
to implement Aspect Oriented Programming. What is most important about AspectJ here
is that it is not only a library but an extension to Java. This way, the AspectJ language
can provide additional functionalities to Java, but of course requires special bytecode
weavers to result in valid Java programs.

The use of AspectJ is also the reason why not all IDE’s are able to compile Spring
Roo projects. This also causes features like content-assist to fail regarding Roo generated
methods and fields. Calls to these elements will be regarded as errors. That means, to
work with Roo inside an IDE, a compiler capable of JDT weaving must be available.

One of the possibilities AspectJ provides are Inter-Type Declarations (ITD). ITDs
are files that allow the definition of class members and structures (fields, methods, con-
structors, even interfaces or superclasses) that are owned by other types [3]. For the
example above, this means that the Getter and Setter methods can be generated inside an

28Project Site: http://www.eclipse.org/aspectj

http://www.eclipse.org/aspectj

CHAPTER 4. EXAMINED WEB FRAMEWORKS 56

ITD and outside of the original source file. Since both files get merged at bytecode level,
types defined with use of Inter-Type Declaration (ITD)s behave just like normal types.

Roo also uses ITDs to provide a mechanism similar to Grails’ dynamic finders. The
shell makes specific suggestions what kind of finders could currently be generated. The
ITD of such a finder looks like this:

Listing 4.10: Exemplary ITD used to generate a finder

1 privileged aspect ProductFinder {

3 public static Query Product.findProductsByNameEquals(String

name) {

4 if (name == null || name.length() == 0) throw new

IllegalArgumentException("Name argument is required");

5 EntityManager em = Product.entityManager();

6 Query q = em.createQuery("SELECT Product FROM Product AS

product WHERE product.name = :name");

7 q.setParameter("name", name);

8 return q;

9 }

11 }

Listing 4.10 represents a finder for a Product entity. The bytecode weaver will add
the method at compile time, therefore the developer is able to use this generated query
method just as if it was defined right inside Product. Though working with a statically
typed language, Java developers this way get a correspondent to dynamic finders known
from frameworks like Grails or Ruby on Rails.

SpringSource Toolsuite

The SpringSource Toolsuite25 (STS) is freely obtainable since May 2009. Before, it was
only available to direct customers of SpringSource.

STS is in fact an Eclipse24 distribution providing preconfigured and attuned plug-
ins to support software development with Spring technologies. For example, there ex-
ist graphical Spring configuration editors or online XML validations. The Dashboard
gives access to Spring-related blogs and news and provides tutorials to the different
Spring technologies. A special feature is the architecture-support plug-in that analyses
the project state and gives advices to the developer. Since the Spring framework has
become a very large and fast growing project, this tool is especially useful to learn new
features and get rid of deprecated Spring usage mechanisms. Exploiting this plug-in, the
project will more likely follow best practices in Spring development.

However, since both Roo and Grails are both SpringSource projects, there also exists
support for them: There are wizards to automatically generate Roo or Grails projects.
Both the Grails console and the Roo shell can be integrated into the IDE, which is es-

CHAPTER 4. EXAMINED WEB FRAMEWORKS 57

pecially useful for Roo projects for they otherwise require a running shell in the back-
ground. Special views give a better overview on the current project state, e.g., about
defined controllers or controller mappings. Concerning Roo’s ITD concept, STS inte-
grates the required JDT bytecode weaver and provides refactoring commands to "push
in" code from ITD files into their corresponding Java object definitions.

Another IDE that integrates AspectJ support, the key enabling technology for Roo,
is IntelliJ IDEA.23 At the time of writing, Netbeans22 was not able to deal with Spring
Roo projects, for AspectJ support was missing.

Chapter 5

Productivity Criteria

According to their official documentations, all the frameworks analyzed in the course of
this work are "rapid" (JBoss Seam), "rapid" and "agile" (Grails) or simply "productive"
(Spring Roo). By examining the state-of-the-art for the productivity in web application
development, this chapter should also make these vague terms clearer. Besides, the
resulting catalog can serve as a guideline in WAF evaluations, e.g., regarding new web
development projects.

To this, the first part of the catalog is based upon the Model-View-Controller pattern
(see section 2.3). That is, section 5.1 deals with WAF support regarding the Model, 5.2
with the View and 5.3 with the Controller component. In the second part, productivity
is examined regarding different software engineering disciplines or tasks: Section 5.4
covers development support in general, independent of specific artifacts, section 5.5 is
about Builds and Integration and section 5.6 deals with Testing.

5.1 Model

Because persisting data is central to nearly all enterprise applications [4], persistence
is an area addressed exceedingly in WAFs’ approaches to productivity. Concerning the
MVC pattern, the data that makes up an application is part of the Model.

5.1.1 Data Source Connection Configuration

The first step when communicating with a database is to establish a connection. In Java,
JDBC is used to access databases. Therefore, to use a specific database, a JDBC driver
must exist. This driver is usually provided by the database vendor. An application mak-
ing Java Database Connectivity API (JDBC) calls therefore requires the respective driver
(usually a packaged JAR) in its class path and needs to be told a class inside this driver
that implements the javax.sql.DataSource interface. Next, the actual connection

58

CHAPTER 5. PRODUCTIVITY CRITERIA 59

properties need to be defined. These depend on the database and its configuration, but
will usually contain information about the database URL and the credentials. Enterprise
applications have special requirements where and how this information must be stored.
Modern WAFs are built on ORM tools which typically introduce additional configura-
tion aspects. Productivity in this area can be fostered in different extents:

In a first step, for WAFs usually also provide build scripts for compilation and pack-
aging, a WAF should place the required configuration files to their intended place in the
file system where the user then needs to fill in the missing pieces of information. Next,
the user may be prompted to specify a path to the required JDBC driver. The same way,
information about the connection may be provided to the framework.

Spring Roo simplifies this process by directly asking for the database and persistence
provider. It then automatically obtains the JDBC driver and the default settings for the
respective database and the persistence provider. Additional information that cannot be
determined by defaults, like the database schema or user credentials, may be provided in
the same step. This way, the database and the ORM framework often can be configured
within a single command passed to the shell. However, this approach obviously can
only work for databases the WAF is familiar with. When providing a feature like this,
it is important it can be reused anytime during development to redefine the database
connection settings.

Grails follows a different approach. The WAF automatically integrates and con-
figures an HSQL in-memory database for the development and test environments (for
environments, see section 5.5.2). Additional configuration is not required. This is espe-
cially useful in very early project stages or when evaluating the framework for the first
time.

However, database configuration does not apply very often during development. It
usually has to be defined only once or once per environment. Therefore, big productivity
gains should not be expected here. The mechanisms defined in the next section have
more abilities in this regard.

5.1.2 Reverse Engineering the Database

As already mentioned, Object-Relational Mapping (ORM) is an often-used technique
in WAFs to provide access to relational databases (see section 2.4.6). Here, the design
of the database schema is represented by persistent entity classes. However, software
development projects nowadays often have to deal with legacy databases [71]. In this
case, the database schema is already given and, to a large extent, defines the form of the
entities. Reverse engineering describes the process of generating the entities from the
schema information stored in the database.

Reverse engineering a legacy database works by pointing the framework to the re-
spective database schema. Often, this is the same data source that was already defined for
the Web application itself, so this step might be skipped. Every JDBC driver implements
the java.sql.DatabaseMetadata interface, which is used by reverse engineering

CHAPTER 5. PRODUCTIVITY CRITERIA 60

tools to access information concerning the database’s capabilities, its behavior and about
the particular schema. This process is called introspection. The information gained here
can then be used to finally create the persistent entities.

The advantage of using the WAF’s abilities to reverse engineering (instead of a third
party tool tailored for this requirement) is that the generated classes already stick to the
conventions claimed by the WAF. Furthermore, the WAF this way is able to generate
additional code for working with the entities, like Data Access Objects.

Spring Roo even provides an incremental reverse engineering strategy. That is, the
tool repeatedly re-introspects the database and compares the result with the metadata
currently expected by the application. If certain tables or columns have been deleted
or renamed in the meantime or didn’t exist before, the model is updated automatically,
including possible references to the respective types. However, using an annotation-
based approach, the developer can configure whether entities are allowed to be deleted
this way (on a per-entity basis).

Reverse engineering might face the developer with multiple problems. Databases
often use naming conventions inadequate for objects and their fields. While this problem
might be by-passed by WAFs familiar with the respective database, there is no way to
provide a solution for poor names introduced by other developers [4]. Furthermore,
some information required can’t always be gathered from JDBC metadata alone; the
other way round, the developer might want to ignore parts of the metadata information
[7]. To address all these issues, the WAF should provide ways to control the reverse
engineering process. Otherwise, falling back to a professional 3rd party tool for reverse
engineering might be the better option, for manual changes require a deep insight into
the used technologies and, depending on the extent of the domain model, waste a lot of
time.

Currently, Spring Roo’s approach regarding reverse engineering control is restricted
to the inclusion or exclusion of tables which names match certain patterns. JBoss Seam,
in contrast, uses Hibernate’s reverse engineering tool9 in the background, which allows
defining custom reverse engineering strategies.

5.1.3 Top-down Development Support

Naturally, a WAF also allows top-down development, that is, defining entity classes first
which then get mapped to the database in a second step. All framework examined in this
work offer ways to create stubs for new entities, accessible through the WAF’s generator.
How important such funtionality really is depends on the programming model and the
way entities get defined in the respective framework. For example, JBoss Seam sticks
very close to the JPA specification (see section 2.4.6), whereas Spring Roo prefers to
split entites into multiple ITD files. Accordingly, for a developer familiar with the Java
EE stack, defining an entity in Seam will be straightforward, whereas the programming
model in Roo is specific to this particular tool. A command to automatically generate
entity stubs therefore seems more important in the latter case.

CHAPTER 5. PRODUCTIVITY CRITERIA 61

This argument may also be the reason why Spring Roo provides a very fine-grained
approach concerning entity generation through its shell. Here, it becomes even possible
to specify single fields, their designated types and names, or relationships with other
entities. This approach also offers interesting options regarding the validation of domain
classes, to be discussed in the following section.

Next, when creating an entity using the project generator, WAFs may automatically
add id and version fields to the generated classes. This is also an architectural sup-
port for adding these fields to every single entity can be concerned a best practice. Ver-
sion fields are an important concept regarding database access and optmistic locking
strategies.

Frameworks like Grails, which are based on dynamic languages, may automatically
turn entity fields into properties, that is, making them accessible by means of Getter and
Setter methods. Through its ITD concept, Spring Roo offers a simliar concept, turning
classes into JavaBeans transparently. Though the time saved by such approaches cannot
be regarded critical to a web project, such features still reveal useful since they automate
steps that are often required by the underlying technologies or the WAF itself, but are
easy to oversee due to the inherent inversion of control mechanism.

A completely different way of influencing the generation of persistent entities is
to modify the underlying templates used in the background. Therefore, the respective
templates should be provided by the WAF. However, the opportunities given this way
are very limited and mainly address the visual appearance of classes. Template adaption
will be discussed in depth as a part of the View (see section 5.2.1), for it is a much more
important object there.

5.1.4 Validation of Entities

Validation is an important topic in web applications, as it is in any application accepting
user input [47]. Sadly, it is also a topic often ignored by programmers [15].

Every WAF will somehow provide a way to allow validation of entities. At some
point in request-processing, the control is always handed over to the application. This is
where the developer can integrate validation by hand, at the very least. However, modern
approaches try to separate validation concerns from functional code, in a declarative and
therefore less error-prone and faster way. A WAF should support a similar approach and
do the entire necessary configuration beforehand.

In a next step, the reverse engineering process should already concern validation and
add the constraints derivable from the JDBC-Metadata automatically. If the framework
also provides a way to generate single entity fields, then this is the point where validation
support can be applied in a very fine-grained manner, on a per-field basis. For example,
when using the Roo shell to add instance fields to an entity, validation annotations can
be added in the same step. The contextual awareness of the shell makes sure that only
relevant annotations are proposed. Since the Bean Validation API (see section 2.4.4) lists

CHAPTER 5. PRODUCTIVITY CRITERIA 62

more than a dozen annotations and Hibernate Validator29 as a possible provider of this
standard adds even more, such an approach makes sense: Otherwise, the developer might
forget to add certain restrictions. The only way out would be a study of the corresponding
documentation(s).

If a WAF provides its own validation mechanism instead of following a specifica-
tion, there are a few rules this solution should follow to be productive: First of all, simple
validations (like min or max values for numbers or the matching of given regular ex-
pressions against Strings) should be allowed to set in a declarative manner; otherwise, if
the mechanism comes down to manual checks using assertions or if-conditions, there is
only little gain for the developer. Second, the mechanism should still be flexible enough
to allow the definition of custom validation constraints that can be bounded to the entity,
that is, separated from application logic itself. All these points are satisfied by the vali-
dation approach used in Grails. Section 5.3.4 will list further requirements with respect
to the invocation of validations.

CRUD pages, discussed in section 5.2.1, may foster validation support by automat-
ically adding validation checks to the view, potentially even by using an AJAX-based
approach, or use them to determine adequate HTML elements in web forms.

5.1.5 Entity Lifecycle Management

Promoted by Ruby on Rails [4], the Active Record design pattern has become a very
popular design pattern in WAFs. Grails and Spring Roo30 both offer an implementation.
An Active Record encapsulates domain object concerns (as simple persistent entities in
the JPA do) and data access logic in a single artifact. That is, the domain object is able to
save and retrieve itself from the database [4]. Active record is concerned a faster way to
handle persistence. For example, to store an instance to the database, one simply has to
call instance.save(). There is no need to obtain a Persistence Context directly or
to use a DAO. To implement the Active Record pattern, Grails uses Groovy’s Metaclass
concept and Spring Roo, for bringing an adequate approach to the static Java world,
provides the @RooEntity annotation that triggers the shell to generate an additional ITD
class for these purposes. This way, additional methods to find, persist or flush, merge or
remove a certain entity become available.

However, the Active Record pattern also has some significant drawbacks. Most im-
portant is the missing separation of concerns, where domain models are hard linked to
the persistence framework. Reusing these objects in XML serialization or for JMS is not
possible without any further ado. Other problems may arise from the fact that Active
Records hide the way persistence in handled in the background. Many use cases require
to change multiple objects in a single unit of work and in a number of steps, guiding
the user over mutliple screens until this conversation can finally be commited (which is

29Project site: http://www.hibernate.org/subprojects/validator
30At the time of writing, there was the open issue ROO-301, categorized major, asking for support of

additional ways to access the database for not being forced to implement Active Record.

http://www.hibernate.org/subprojects/validator

CHAPTER 5. PRODUCTIVITY CRITERIA 63

about to be discussed in section 5.3.5). This requires adequate persistence context prop-
agation and management. Using the data access logic of an Active Record may then
lead to unnecessary database communication, or worse, stale data. This is the reason
why JBoss Seam offers the reusable Home component template for managing a single
entity. Such a component can always be scoped and tested appropriately; however, for
simple scenarios, using it is not as easy and fast as Active Records are known to be.

5.1.6 Database Queries

Querying the database basically faces the developer with two distinct concerns: The
query must be formulated (in such a way that the correct results are returned in a perfor-
mant way) and the respective result sets must be managed somehow. Both tasks may be
supported by a WAF.

As the last section should already have shown, frameworks based on dynamic lan-
guages can easily intercept method calls and create code dynamically, just like Grails can
using Groovy’s MetaClass and methodMissing features. Concerning database ac-
cess, it this way becomes possible to create queries dynamically at runtime, a feature
called Dynamic Finders in Grails. Dynamic Finders search the database according to
different criteria, including LIKE or BETWEEN searches. However, concerning Grails,
one restriction occurs: Criteria might be joined using AND or OR, but querying is only
allowed on two fields – and a single entity.

The provided finders usually include the following criteria, which should be self-
explanatory:

• LessThan

• LessThanEquals

• GreaterThan

• GreaterThanEquals

• Like

• Ilike

• NotEqual

• Between

• IsNotNull

• IsNull

• And - for combining different criteria
• Or - for combining different criteria

Spring Roo shows that it is possible to provide a similar feature for non-dynamic
languages too. Here, the developer sets the Shell’s focus on a certain entity, may ask it
to make assumptions on possible finders, and let it generate certain Finders in a special
ITD. In contrast to Grails, Roo allows an unlimited combination of search criteria and
fields. Generated finders can then be called like any other method defined for this entity.

CHAPTER 5. PRODUCTIVITY CRITERIA 64

That is, though still named dynamic finders by Roo, those methods become part of the
static program code and are by no means dynamically generated at runtime. Therefore,
the finders in Spring Roo will sometimes be referred to as static finders in the following,
to distinguish them from the related concept used in Grails.

The Roo approach, though exploiting Aspect Oriented Programming features, even
has an advantage over Dynamic Finders: Since the generated query code becomes avail-
able to the developer, one can take and extend it to address more complex queries. In
contrast, the underlying query of a Dynamic Finder in Grails gets generated at runtime
and is therefore not accessible. The concept is therefore only useful when the respective
finder matches the required query exactly.

When executed, the finders generated by Roo and Grails always return the complete
result set of the respective query. This behavior is straightforward to the developer, but
at the same time, may put unnecessary pressure on the database. For example, a user
searching for a particular data record may be interested in the latest results first. Query-
ing the database for all data records, irrespective of their age, is inefficient then. Instead,
when the age of the record is already considered at query time, it may be sufficient to
return a much smaller result set in the beginning. A WAF should support such use cases,
for a performant implementation can be a complex task and requires a deeper insight
in how to handle the persistence context right. Seam, for example, provides the Query
template component for contextual queries. Such a component is initialized with a query
and offers different parameters to control the database access in a fine grained manner.
Results can be paginated and therefore, no unnecessary rows need to be queried. As long
as results aren’t considered dirty by the component (which may happen when a different
result page is requested or due to changing sort orders), the query is not executed again.
This approach shows how result sets can be managed in a performant yet user-friendly
and fast way.

5.2 View

According to the MVC pattern, the View is responsible for displaying information to the
user, in particular the one stored in the model. Again, a Web Application Framework
may provide some features here to ease the creation and management of views.

One important thing to note about the View is that its final design is usually made
by a Web designer, that is, a person who is typically familiar with presentation standards
(see section 2.1.2) but knows little about software development or programming as a
whole. Therefore, a developer should always try to create views that keep close to the
standards and contain as little programming constructs as possible.

5.2.1 View Generation

Concerning the presentation layer, the probably most time saving feature that can be
provided by a WAF is the possibility to generate views automatically, a functionality
also known as scaffolding. Scaffolding can be further divided into dynamic and static

CHAPTER 5. PRODUCTIVITY CRITERIA 65

scaffolding. WAFs may even offer round-trip awareness for the View, that is, modify a
generated view automatically due to changes made by the developer in the underlying
artifacts. Usually, the generation of view markup is based on some predefined templates
that ship with the framework. By modifying these templates, scaffolds can be adjusted
to the project accurately.

CRUD Pages

CRUD is an acronym for the four database operations Create, Read, Update and Delete.
CRUD Pages are WWW-documents that provide a User Interface to this kind of opera-
tions. A WAF often provides ways to generate such CRUD pages automatically within a
few seconds. The functionalities may encompasses ways to list all instances of a specific
entity, split the results into multiple pages (a feature also known as pagination), view the
details of a listed instance and its related entities (an operation also called drill-down),
search for certain entities by specifying the contents of one or more contained fields
(using AND or OR concatenations), sort the results by different categories, add new in-
stances to the database by specifying fields and relationships to other entity instances, or
to delete or edit specific entities. Table 5.1 lists common functionalities made available
using scaffolding techniques.

Table 5.1: Common functionalities of generated Scaffolds

Function Description
Create Offers a web form to create a new entity and persist it to the database.

For each property, a form field is provided. Solutions differ in the way
they allow to create relations to other entities and in the way they take
validation (see section 5.1.4) into account.

List List all entities of a certain type. Screens may be cleaned up by provid-
ing pagination functionalities. Sorting the list by selecting a particular
property may not always be possible.

Read Show the details of a particular entity. Usually, this screen is accessed by
drilling down from the List or Search screens. Solutions may vary in
the way related entities are displayed.

Search Provides a search mask to find entities of a specific type. Search criteria
may be matched to certain fields and combined in an AND or OR manner.
Search may not be provided by every WAF.

Update Edit the values of a certain entity. The same restrictions as for Create
may occur. Usually, this screen is accessed by drilling down from the
List or Search screens.

Delete Offers the deletion of the depicted entity. The functionality may also be
accessible form the List or Search screens.

CHAPTER 5. PRODUCTIVITY CRITERIA 66

Differences in the scaffolding solutions typically address Create and List (and
the related Update or Search screens, respectively). Concerning the creation of enti-
ties, the way field types and validation-restrictions are taken into account is crucial. For
example, if an entity’s String field accepts a large amount of characters, implementing
a textarea instead of a simple input field may be appropriate. The same holds true
for Date objects and JavaScript calendars that support their definition. Required inputs
may be pointed out automatically, on basis of the information stored in the underlying
entity. Fields can be validated instantly using an AJAX-driven approach. Error-messages
might be displayed at a single point of the page, either above or underneath the respective
form, or multiple error fields exist, each one next to the form element they are related to,
in a more user-friendly fashion. Another question is how relations between entities can
be defined, and for which types of relations (1:1, 1:n, n:m).

Respecting lists, two important features scaffolds should provide here are pagination
and sorting. Pagination allows splitting up the overall result set into multiple pages.
Besides providing a much better overview, this can significantly reduce the database
load, for only chunks of data need to be accessed. Sorting eases the handling of the
list: On the basis of the defined columns, records can be ordered in an ascending or
descending manner.

CRUD functionality may prove useful for several reasons: First of all, listing or
searching are common use cases in web applications. The generated views and con-
trollers serve as a good starting point to implement additional requirements specific to
the application under development: It is easier to delete certain undesired functionalities
than starting to implement the use case from zero. If the view templates used to generate
the screens have been adapted beforehand (more on this in section 5.2.1), even these
modifications may not be required.

Second, CRUD generation proves very useful in situations where the resulting doc-
uments are not intended for public usage but for administrating the application’s un-
derlying database, e.g., to add or delete certain users by hand. Such admin pages are
another use case common to many web applications and would probably take days of
implementation without this feature.

A last advantage of CRUD generation is that developers new to the WAF can use
the generated application to get familiar with its programming style and conventions.
This way, the feature also serves as documentation for the best practices used in the
corresponding WAF.

As shown, WAFs may differ widely in the way they scaffold applications. Therefore,
when CRUD functionality is required or the WAF is only used to generate some admin
pages, a comparison may pay out. From the frameworks examined in this master thesis,
JBoss Seam provided the best solution, for it offered search functionalities, pagination
and sorting, and was able to deal with all types of entity relations.

CHAPTER 5. PRODUCTIVITY CRITERIA 67

Dynamic Scaffolding

Dynamic scaffolding describes the WAF’s facility to create views and controller actions
on the fly, when the web application is deployed. That is, the generated views and
controller actions aren’t accessible to the programmer. For real-world applications, this
is obviously no option. The functionality may still be sufficient for admin screens used to
manage database contents though. However, the most important advantage of dynamic
scaffolds is that they allow the developers to adapt the underlying database model over
and over again, without being forced to carry out the same changes in the corresponding
views. The generated views can then show whether the changes lead to the designated
results or not. That is, dynamic scaffolding provides useful in the very early stages of a
web application project.

It can be argued that a WAF that provides a mature round-tripping approach for the
View (which is about to be described later in this section) can forgo dynamic scaffolding
without influencing a developer’s productivity. The other way round (i.e., replacing
round-trip awareness by dynamic scaffolds), this is not true.

Without a modification of the underlying templates, dynamic scaffolding offers only
a few options to influence the way views get generated. For example, it is possible
to decide upon the ordering of fields that are displayed in forms. This ordering may
adhere to the ordering found in the respective entity definition. In Grails, the ordering
is derived from the fields’ order in the constraints closure. Often, the underlying
validation messages can also be adapted or extended for internationalization purposes.
Validation is another aspect that may influence the dynamic scaffolds. The constraints
for example can be used by the WAF to decide upon the type of fields that get displayed
in a web form. This way, a String accepting more than 50 characters may result in a
<textarea> element, whereas the default would be a simple <input> field.

The dynamic scaffolding approach of Grails works on a per-action basis: A con-
troller administering a specific entity and configured for dynamic scaffolding will only
generate views for those methods no controller actions are defined for. That is, the prece-
dence of developer-defined actions is higher, which allows using dynamic scaffolding
only for specific pages and stick to self-defined actions in the other cases.

Static Scaffolding

In contrast to the dynamic approach described above, static scaffolding is a feature that
should be provided by any WAF build with productivity in mind. Here, the controller
actions and views are only generated once and become a durable, that is, static part of
the Web project.

Static scaffolding usually works by pointing the WAF to a specific entity. The WAF
may additionally ask for the specific CRUD views the developer wants to generate, oth-
erwise, the WAF will simply generate all of them. In the latter case, the additional over-
head usually comes down to delete a couple of files by hand. Often, project generators
also offer a command to generate all views for all available entities automatically.

CHAPTER 5. PRODUCTIVITY CRITERIA 68

The reason why static scaffolding is so important is that many use cases in Web
development are similar to those offered by CRUD screens, at least to a certain degree.
For example, a typical use case when providing a search function is that the results
should be displayed in a list; therefore, generating a view and a controller capable to list
all entities of a certain kind may be a good starting point (if search is not among the
available CRUD functions). The "only" thing left would be to define a search field, read
out the respective user input and modify the dataset returned to the view accordingly.

Even if the use case to implement does not match the general CRUD functionality,
static scaffolding may still be useful for it automates many basic actions that a developer
would have to do anyway. These tasks for example involve the creation of a new con-
troller, associating it with a view, writing the view’s markup by satisfying the possibly
underlying template engine’s needs, applying other WAF-specific configurations, and by
all this, sticking to the conventions used in the overall project. Hence, static scaffolding
can save a lot of time.

Round-tripping

The downside of static in contrast to dynamic scaffolding is that views usually remain
untouched by the WAF after their generation. That is, the advantage of dynamic adaption
to modifications in the underlying model gets lost. However, at some point of develop-
ment of nearly every web application, a switch to static scaffolding is inevitable: The
view must be customized manually to fit the actual use case. After that, each change of
the entity also implies changing the corresponding view by hand.

The problem stated can be solved by using a WAF with round-trip awareness, that
is, a WAF which is not only able to generate code or markup due to commands the
developer has entered into the WAF’s project generator, but also as a reaction to manual
changes made in the corresponding files. One way to implement such behavior was
already depicted for Spring Roo in section 4.3. However, Roo’s general approach of
reacting on the appearance/disappearance of certain annotations or instance methods by
separating generated code from developer code in ITDs is not applicable for the View.

Instead, the following technique is used: All critical tags in a view are prepared with
an additional z attribute. By default, z contains a hash-key calculated by the element’s
name, its attributes and attribute values (obviously, z as an attribute itself is not taken
into account here). If the developer changes an element, this will result in a hash code
mismatch. Since the only reason for such an event is that the user has modified the cor-
responding tag, z is automatically set to "user-managed" and Roo will not interfere
with changes of this element. However, the user can replace "z" with a "?" anytime
so that Roo will create a new hash code and take back the control. This approach is one
reason why Roo uses the XML syntax of JSP Documents (see section 2.4.3) instead of
common JSP.

CHAPTER 5. PRODUCTIVITY CRITERIA 69

Template Adaption

The View generated by a WAF always uses a default design and layout. For most web
applications, this will not be enough: A unique layout is required by the application, ad-
hering to the customer’s corporate identity in page structure, colors, pictures and logos.
Other reasons for an adaption may be needs imposed by the development team itself, for
example, the integration of conventions or recurring information like the use of certain
<meta> tags, legal details or website credits. Without being able to modify the prede-
fined templates, a developer would need to adjust every freshly generated page to these
requirements.

Templates consist of static markup code and instructions to the underlying template
engine [24]. This template engine has to be distinguished from the one used in the de-
ployed application for generating the actual view to the user. Often, different template
engines will be used to fulfill these two tasks. For example, Seam uses Facelets as its
default view technology to generate XHTML to the user, but the templates written to
scaffold new web applications are based on FreeMarker.31 The reason for this differen-
tiation is that tools like FreeMarker are technology agnostic and can be used freely to
create JSP or Facelets pages, Java or even Groovy code. In contrast, JSP is only able to
generate Servlets.

The task of a template engine is to take a template and a data model and generate
output based on this information. Adapting the scaffolding results therefore either works
by adapting the template or the underlying data model. The latter is usually no option as
it requires to go into the details of the template engine API and, more important, change
the source code of the WAF generator itself. However, all required information is typi-
cally related to the database model and should always be among the information passed
to the template engine. Hence, template modification is the primary way to influence
scaffolds.

For the developer, it is important how the WAF makes the templates available. Here,
two different kinds of requirements need to be distinguished: Some requirements may
be valid for each new web application to develop, while others are application specific.
Introducing application-specific requirements into templates that are used for every web
application is no good idea, since the next application to generate will also contain these
changes. The other way round, a recurring implementation of general requirements into
every new application also consumes much time. Therefore, both global templates and
ways to derive application-specific templates from them should exist. The application-
specific templates then can be modified without interfering with other applications.

This approach is followed by Grails. The install-templates command makes
templates available on a per-project basis. This is the place where application-specific
changes can be made, on the basis of templates that already adhere to general require-
ments valid for all applications.

31Project Site: http://freemarker.sourceforge.net

http://freemarker.sourceforge.net

CHAPTER 5. PRODUCTIVITY CRITERIA 70

5.2.2 View Composition

View composition is another feature that reduces the overhead of creating the presenta-
tion tier. Very often, web pages are made up of the same elements like headers showing
the logo of an application, sidebars displaying the menu or footers containing copyrights
or links to website credits. One can observe that, while surfing through the pages of a
particular website, only parts of these elements do actually change, while others stay the
same from screen to screen. That is, the screens share the same structure where the inde-
pendent parts are always placed at the same position. This kind of consistency between
different views is what a user is typically used to and is probably even a factor influenc-
ing the trustfulness of a web application. View composition strategies are based on this
observation and try to reduce the markup code required to set up a new view. This way,
they bring the Don’t repeat yourself (DRY) concept, an important principle in modern
programming, to the presentation layer. Basically, there are two different approaches
dealing with View composition.

The Composite View pattern works by composing multiple parts, all defined in dif-
ferent files, to define the complete web page. One representative for a templating frame-
work build on the Composite View pattern is Apache Tiles32, for example used by Spring
Roo. Here, a template defines the overall layout of the page, while some attributes build
the inner gaps to be filled by the application. An attribute may be another template, a
simple String or a definition. A definition "is a composition to be rendered to the end
user" [35], combining a template with filled attributes in some configuration file. This
approach allows for a reuse of markup in multiple views.

Another way is to use the Decorator pattern. In this approach, the developer renders
a page back to the user as always, but the page gets intercepted by a decorator. This
decorator is aware of the way the respective page needs to look in the end, i.e., it knows
which template to use in the given situation. This template defines those parts that can
be taken from the page and have to be merged with the other contents of the template. A
popular layout engine following the Decorator pattern is SiteMesh33, for example used
in Grails.

The two approaches have different impacts on the web application. The Composite
View pattern has a slightly better performance since the pages do not have to be parsed
as by the Decorator Pattern. On the other hand, each page must be explicitly defined
and composed here, whereas a single decorator could even be reused by the complete
application [35]. In the end, the differences between both patterns will not be critical
to the project, and using the one the WAF offers by default is probably the best advice.
However, some WAFs do not offer a templating engine at all and delegate the work
to the underlying view technology. View technologies like JSP indeed offer ways to
include certain files, but cannot keep up with template engines designed for such use
cases. Using only the view technology’s mechanisms can be concerned error-prone, but

32Project Site: http://tiles.apache.org
33Project Site: http://www.opensymphony.com/sitemesh

http://tiles.apache.org
http://www.opensymphony.com/sitemesh

CHAPTER 5. PRODUCTIVITY CRITERIA 71

at least results in a lot of overhead for the programmer.

5.2.3 Internationalization

Web applications are typically accessed using the Internet, addressing people from all
over the world. Depending on the geographic location and the social background of
the user, the application should be displayed using the user’s language and the com-
mon esthetic sensation in the respective region. Therefore, internationalization (i18n) is
required.

For the developer, this primary means not to use hard-coded text messages in markup
files or program code, but instead use message keys which are then retrieved from special
resource bundles that store the localized message contents. A WAF should automatically
detect the user’s Locale, e.g., using the Accept-Language header sent by the user’s
browser. For the Locale set this way is not adequate in all cases, the application should
also provide a way to select a language manually. The WAF could support such scenar-
ios by providing a special view component for language selection. Moreover, a default
locale should be configured automatically. The WAF should put the corresponding mes-
sage bundle to its designated place in the application’s directory structure. This helps
the developer to define additional languages for the application.

For internationalization is such an important topic, many libraries and frameworks
used by a WAF come with their own solutions in this field. This typically results in
multiple resource bundles and makes internationalization hard to manage. A WAF might
therefore provide a way to centrally access all these different message bundles. For
example, JBoss Seam offers a special messages component to address this issue. This
solution can even be extended with additional bundles.

Another problem is how to test Locales. Switching the browser’s language might not
be required if the WAF provides support here: Grails for instance, allows appending a
special lang parameter to the URL. For the given locale identifier is stored in a cookie,
all following requests will be displayed in the defined Locale automatically.

It should be noted that the actual formatting (e.g., date and time patterns, currency
units) will usually be delegated to Java’s internal Locale implementation and is hence no
WAF-related task.

5.2.4 Tag Libraries

View composition provides a way to reuse page structures and page parts. Tag libraries
aim at the same direction, though on a more fine-grained level, supporting the reuse of
certain markup constructs implemented in a collection of tags. Why and how to use tags
has already been defined in section 2.4.3. Just like a rich set of libraries is a quality
characteristic for a programming language, the same holds true for view technologies
and the tag libraries available here.

To a great extent, the amount of available libraries depends on the popularity of the

CHAPTER 5. PRODUCTIVITY CRITERIA 72

respective view technology. Favoring a WAF keeping close to the standards in this regard
may therefore be a good decision. The developer can then choose from a rich set of alter-
natives, ranging from simple open-source libraries over rich HTML input components
to commercial products. In the worst case, for a WAF that defines its own presenta-
tion layer, chances are that only a single library exists. If the required functionality is
not available or is simply not solved in a contenting way, the only solution would be to
define an own solution.

Besides built-in or third-party libraries, most WAFs also ship with additional tags
specific for the use of the respective framework. For example, Seam ships with over 30
additional JSF controls. Most often, such tags are simple modifications of the standard
tags enriched by some information to fit the WAF’s needs. Sometimes though, they
can really simplify the implementation of the pages, especially if the particular use case
is among the WAF’s "sweet spots" (for this term, refer to section 2.5.4). Therefore,
additionally provided tag libraries may be worth a look when comparing different WAFs.

5.3 Controller

The Controller is the last component in the MVC pattern to talk about. It handles the
incoming user input and, hereupon, calls the model’s functional interfaces. The result of
these calls may also influence the view to be rendered.

Controllers encapsulate big parts of the application’s business logic. For business
logic being very application-specific, the possible support a WAF can provide here is
limited. Nevertheless, WAFs provide many features that can reduce the required devel-
opment efforts.

5.3.1 Scaffolding

When the web application or parts of it are scaffolded by the WAF, this does also in-
volve the creation of controller code. While generated entities or views often adhere to
standards well-known to the developer (e.g., JPA resp. JSP or Facelets), controllers are
highly specific to the WAF in use. This is where another advantage of Scaffolding as a
concept becomes obvious: A developer new to a WAF can use the generated code for
learning purposes to get a feeling for how to use the respective framework. The knowl-
edge gained this way can be helpful to manually define new controllers and stick to the
best practices propagated by the WAF developers themselves.

As stated in section 5.2.1, WAFs differ in the extent they offer scaffolding to the
developer. Besides providing scaffolding techniques as a start, it is most important that
these techniques remain usable over the complete development phase. This statement is
not only valid for controllers, but also for generation of entities and views. Frameworks
may decide to offer scaffolding only when the application is set up and the model is
generated from the database the first time.

CHAPTER 5. PRODUCTIVITY CRITERIA 73

Offering commands that distinguish between controller-plus-view generation or con-
troller-without-view generation may be useful; however, if this feature is missing, the
resulting overhead comes down to deleting some files manually. The same holds true
for the question whether the WAF always generates a complete CRUD-able controller or
allows for a more detailed definition. In this case, depending on how much functionality
is actually needed, the overhead of adapting the project afterwards may be bigger though:
For example, if the only possible action should be to list all entities, this may require to
delete controller actions and views for creating, updating and deleting entities of that
kind. Depending on the framework, even modifications to the model may be necessary
to keep the code clean of unneeded functionality.

Section 5.1.6 already discussed the possibility to automatically generate finders to
search for entities according to different criteria. Frameworks that offer such function-
ality may also offer ways to generate controller actions that call such finders and views
which in turn call these controller actions. This way, providing search functionality to
the user becomes a matter of seconds. For searching is an often-required use case, this
feature may be of major importance for many projects. This scenario also demonstrates
a disadvantage of dynamic finders offered by WAFs based on dynamic languages: For
the required search functionality is not known at compile time (and provided by lan-
guage features such as Groovy’s MissingMethod approach), automatically generat-
ing views for them is not possible.

Usually, code generation approaches follow certain code conventions. For con-
trollers, these conventions may for example concern URL and view mappings. However,
since those conventions may not fit to the respective application or aren’t appreciated by
the development team for any reasons, the templates used to generate the code should be
accessible to the developer. However, a differentiation between application-specific and
global templates doesn’t seem as important for Controllers as it is regarding the View.

5.3.2 Handler Mapping

In request-based WAFs, every incoming request is received by a Front Controller (see the
Front Controller pattern in [36]). One of the first things this Front Controller, typically a
Servlet, does is trying to map the request to a controller (this time, a controller according
to the MVC pattern). To this, one or more so-called handler mappings are consulted.
Such handler mappings define algorithms on how to map HTTP requests to controllers.
Hereunto, different information from the request may be used,e.g., the URL and the
HTTP-method. Component-based frameworks like Seam involve similar procedures.

WAFs should not mandate a particular approach here (Spring MVC, as an exam-
ple, provides different pre-configured mappings and also allows to define custom ones),
but via scaffolding techniques, they will often do, for the generated controllers adhere
to the default handler mapping requirements. As long as developers cannot specify the
desired handler mapping beforehand, this actually means that the WAF is responsible
to provide a convenient, easy-to-use and flexible convention. Frameworks may use

CHAPTER 5. PRODUCTIVITY CRITERIA 74

completely different approaches here: For example, Spring Roo uses Spring MVC’s
DefaultAnnotationHandlerMapping to map requests to controllers and con-
troller methods. The annotation-driven design allows a very fine-grained and RESTful1

configuration where even request parameters and header fields can be taken into account.
However, the generated Controller classes become highly dependent on this specific han-
dler mapping. In contrast, Grails does not provide such a fine-grained mapping, but the
controller code remains clean from any handler mapping definitions. This way, changes
to the handler mapping can even be announced in a simple Groovy-script, without inter-
fering with generated scaffolds.

5.3.3 Data Binding

After finding the appropriate controller method, the request is passed there. However,
since the common HttpServletRequest API is cumbersome to use, most WAFs
provide ways to ease parsing a request. These techniques are commonly referred to as
Data Binding. Some of the techniques described in the following are either specific to
request- or component-based WAFs.

Command Objects

When receiving data by means of Servlets, the mismatch between HTTP and Objects
becomes obvious: Each single value needs to be picked from the request and probably
also checked for existence before finally calling the Object’s constructor using these
values. Obviously, this is a time-consuming task and results in many lines of code.
Command Objects or simply Commands provide relief in this regard: By binding the
underlying web form in the view to a command, which has a code representation of a
class, typically a persistent entity, the request parameters get automatically bound to an
object representation by the WAF. This makes request processing easier and much more
natural from an object-oriented point of view.

Command objects also address situations "when there isn’t a one-to-one mapping
between the form data and a domain object" [71]. A popular example for such a situation
is a password verification field to protect the user from setting a misspelled password.
Such an input has no representation in the entity representing the user. Instead, command
objects can be used for marshalling the request data. Concerning Grails, converting
command objects into their persistent entity representation after validation (which works
the same way for them) is simple: Using Groovy’s implicit constructor feature, which
allows to set fields by passing a map of key/value pairs, and the properties-method,
which is available for every class and returns the object’s fields as a map, conversion
comes down to a simple constructor call:

UserCommandObject uco = ...

def user = new User(uco.properties)

CHAPTER 5. PRODUCTIVITY CRITERIA 75

Keys in the map that do not match fields in the entity will simply be ignored. This
way it becomes even possible to use the params object, a map-representation of the
request parameters, to initialize objects.

Implicit Objects

The mentioned params object is one of the implicit objects Grails automatically injects
into each controller instance. Besides params, which provides all request parameters
in a map, there also exist implicit objects for the different storage contexts (see section
5.3.5) or logging purposes. For they get injected automatically, accessing them and using
the features they provide is easy and fast. The transparent approach also results in a less
technical, more functional code in the controller. In fact, controllers in Grails are another
example of Groovy’s power regarding Domain Specific Languages.

Dependency Injection

In pure Java, an equivalent concept to implicit objects is Dependency Injection (see
section 2.4.1 for details). It is therefore also used in Spring MVC and Seam. In Spring
MVC, the current session is one of the objects that may be injected this way. Besides the
already discussed concept of bijection, Seam offers further annotations to inject various
objects, e.g., single request parameters, loggers or information concerning data models.
It should be noted that Dependency Injection is a less transparent concept than implicit
objects, for a field has to be defined and, most of the times, some associated metadata.
However, dependency injection allows for more manual control when to inject which
types – a feature missing for implicit objects, resulting in a less performant solution.

Method Signature Analysis

To provide a convenient data binding approach, the WAF can analyze the controller
method’s signature and especially the defined parameters. Depending on the respec-
tive algorithm, this technique may also be used in the handler mapping. The following
example of such an (annotated) method signature is taken from Spring MVC:

@RequestMapping(value = "/{id}", params = "form", method = GET)

public String updateForm(@PathVariable("id") Long id, Model m)

The @RequestMapping annotation’s primary concern is to specify the method’s
metadata required for the handler mapping. In the example, a request will be passed to
the method, if and only if (1) GET is used as the HTTP method, (2) a request parameter
named "form" and (3) an additional path level (relative to the controller’s primary map-
ping) are specified. Obviously, this controller method’s task is to serve a web form to
update some entity (probably the type of entity the controller is responsible for) with the
id sent as a part of the URL.

When examining the method signature above, the only special characteristic com-
pared to a common method signature in Java is its @PathVariable annotation. This

CHAPTER 5. PRODUCTIVITY CRITERIA 76

annotation is used to bind a method parameter to an URI template parameter specified
in the request mapping; here, the id specified in the URL gets automatically bound and
casted to the method parameter this way. Spring MVC also supports the @Request-
Param and @RequestHeader annotations to do the same for request parameters resp.
header fields.

Of course, the stated method signature is not specified in any interface or abstract
class part of the Spring Framework. Spring MVC makes use of Java’s reflection tech-
nology to be able to call such methods. The allowed types are listed in the Spring
Framework’s Javadoc for the @RequestMapping annotation.34 This approach allows
flexible signatures where only the actually required information needs to be specified.
By additionally leveraging from autoboxing and annotation features, data binding be-
comes much easier than it is using plain Servlets.

5.3.4 Input Validation

Binding the request data to the Controller is not enough. The information received still
needs to be validated. Input validation is an important topic often overlooked by pro-
grammers [15]. A WAF should try to ease this work and provide ways to keep the
controller logic clean from validation concerns.

Spring Roo uses the Bean Validation API (see section 2.4.4) for validation purposes.
The respective annotations can either be set using the Roo shell or by placing them man-
ually in the code. Entities are automatically validated when persist() or merge()
get called. However, for cases where the main processing is done beforehand, this is
too late. And even though the object in question might never get stored to the database,
other calculations can be based on the object which therefore still requires validation. To
this, Spring MVC allows annotating controller method parameters with @Valid. At the
same time, the developer can define a BindingResult parameter. Spring MVC then
automatically invokes validation each time the respective method is called. The results
are stored inside the BindingResult object, which the developer can programmatically
check for possible validation errors.

Grails provides a similar validation support. Entities can be equipped with an ad-
ditional constraints closure. As the name says, this closure allows defining con-
straints in a way similar to the declarative approach known from the Bean Validation
API. Whenever the respective object is passed into a controller, the developer can call an
entity’s (automatically generated) validate() method to check for potential errors.

Section 5.1.4 already listed some requirements to be fulfilled by custom validation
mechanisms introduced by WAFs. Concerning input validation, this list can be extended
by the following points: The approach has to provide some API to inform the developer
about the validation results in detail. Next, a decent error propagation mechanism should
be provided, open for internationalization concerns. That means that error messages
are inserted into the view automatically, using some kind of naming and configuration

34http://static.springsource.org/spring/docs/3.0.x/javadoc-api

http://static.springsource.org/spring/docs/3.0.x/javadoc-api

CHAPTER 5. PRODUCTIVITY CRITERIA 77

conventions. If the WAF also offers automatic validation-triggering, as achieved by the
@Valid annotation in Spring MVC method signatures, this is only an advantage as
long as the mechanism is flexible enough to allow the developer to circumvent these
automatic checks where required.

Concerning command objects defined in the last section, there is another problem
related to validation and security of the application. Since form fields get automati-
cally bound to commands by matching against the property name, intentionally modified
HTTP requests may try to set properties in the command object that have not been spec-
ified in the web form and aren’t intended for modification. WAFs that offer command
objects therefore should also offer ways to circumvent such attacks. Possible solutions
here are black- and whitelists: These lists either define those fields not to be modified
(blacklists) or the ones that are allowed to be set (whitelists). This solution is also pro-
vided by Grails and its bindData() method for controllers.

One should note that not all validations can be defined on entity level because they
are only specific to certain situations in the application flow. For example, even though
a valid number is passed to the controller as an entity id for update concerns, this does
not mean an entity with this id does actually exist in the database. That is, despite all
kinds of automated validation, the developer should always remain critical concerning
request data. Application logic cannot be totally clean of validation concerns.

5.3.5 Context Scope Management

After validation, the controller is finally ready to process the request. Obviously, the
details of processing are application specific. At the very end, a view will be passed
to the user. However, for this document to render, certain data may be required by the
underlying view template. This is the point where context or variable scopes come into
play.

Context scopes can store references to all kind of objects, for a specified period of
time. This period depends on the respective scope used for storing. The Java Servlet
technology (see section 2.4.2) defines three different context scopes: (1) The servlet-
Context or application scope accessible by the whole application for its complete life-
time, (2) the session scope unique to a single HTTP session and (3) the request scope,
which’s lifetime is bound to a single request only.

For web applications, the limitation to these three scopes implies some significant
shortcomings: Concerning one specific user, there are only two available scopes to store
information in. Since web applications often involve use cases that require user assis-
tance over multiple screens (i.e., multiple requests), the information required throughout
the process needs to be stored in the session scope. However, storing such information
in the session scope can easily become a problem. Compared to simple desktop appli-
cations, web applications have only little control over their usage. For example, the user
can easily (and without any bad intentions) open a second browser window and start
the same process again, e.g., for comparison reasons. Now, two parallel processes work

CHAPTER 5. PRODUCTIVITY CRITERIA 78

on the same context variables, interfering with each other. Prevention of such behavior
is a very complex and time-consuming task; therefore, every WAF should provide ad-
ditional scopes for solving such use cases. For example, Seam offers the conversation
scope on top of a user session that distinguishes separate processes using conversation
identifiers. Web flows are another approach to implement such scenarios. Leveraging
these solutions, the developer is also disburdened of cleaning up the session manually.

Another problem is the very short life of request scoped variables. After sending
the response, all information is dropped. This behavior conflicts with the Redirect-After-
Post pattern, a best practice in web application development [49]: The pattern says that
a view should never be displayed in response to a POST request. Instead, a redirect
response code should be send, navigating the user to the final view using GET. This
approach protects web applications against users reloading pages or clicking browser
back/forward buttons. Without the pattern, such behavior could easily result in send-
ing the same POST request again (which is problematic since POST is no idempotent
operation, see section 2.1.1). However, between responding to the POST request and
receiving the new GET request, the web application will drop all request-scoped context
variables. That is, the view can no longer access the results of the previous request.
Scoping such information to the session requires the developer to do a manual clean up
afterwards, being not only a tedious but also difficult task. Modern WAFs therefore offer
special scopes able to survive exactly one redirect, usually called flash scope. Regarding
the amount of POST requests in an application, such scopes can save the developer a
lot of time: A user posting data will at least expect to read a success or failure message.
However, providing such scopes is not at all a matter of course in WAFs. For example,
without using Spring Web Flows (which would be cumbersome for this kind of tasks),
Spring MVC offers no such scope.35

Besides the availability of certain context scopes, it is also important how easy these
scopes can be accessed. From the WAFs reviewed in the course of this work, Grails
offered the simplest approach by making all scopes available through implicit objects.
Furthermore, maps returned from controller actions get automatically passed to the view.
In Spring MVC, controller methods may define Map or org.springframework.-
ui.Model parameters that can then be filled and later be used in the view (without
returning them explicitly). Furthermore, a return value approach similar to the one
used in Grails is provided. To use it, the controller method’s return value has to be
@ModelAttribute annotated though. If the developer wants to declare some session
scoped data, the session needs to be injected into an instance field of the controller. This
behavior is inconsistent with the approach used the for the request scope. Seam as a
component-framework uses its Bijection mechanism (see section 4.1.2 on page 40) to
read and write variables in the different scopes. Concerning @In, if no scope is explic-
itly defined, Seam will search through all scopes to find the respective variable, starting
from the narrowest one.

35The integration of a flash scope in Spring MVC is scheduled for version 3.1 of the Spring Framework.

CHAPTER 5. PRODUCTIVITY CRITERIA 79

One should note that the concept of context scopes has nothing to do with an ap-
propriate persistence context management. Even if an entity gets stored in a durable
context (like flash, conversation or session scope) to be accessed in future requests, the
entity might still get detached. This is definitely the case when JPA’s persistence con-
text is used in transaction mode, as it is the default when using a container-managed
EntityManager. After the request has been processed, this will result in detaching
all entities currently loaded. When accessing the detached instance in a later request,
merge() has to be called to load the object into the new persistence context, required
to propagate any of its changes to the database. However, merge() results in an addi-
tional database select and, even worse, it overwrites any database changes related to this
object in between. This is the reason why calling merge() should be avoided where
possible [4]. Instead, the persistence context could be used in extended mode, possibly
together with an optimistic locking strategy. However, such use cases cannot be foreseen
by a WAF. Having an easy access to the persistence context therefore is an important
point for web applications. JBoss Seam, emphasizing its strength in stateful scenarios,
is a WAF providing special support in this regard.

5.3.6 View-Mapping

The last remaining controller task is to define the view that needs to be rendered to the
user. There are different techniques to fulfill this requirement. One idea is to apply a
simple convention. The view-mapping in Grails for instance is based on the unqualified
controller class name and the name of the closure called therein. Since each controller
has its own folder of views, the framework will use this folder to look for a file that has
the name of the respective closure. For example, if the list closure is called, the view
to be rendered is list.gsp from inside the controller’s folder.

Using conventions is the easiest way to define a view. However, it is not very flexible
and therefore not always adequate. Another approach dealing with this issue is to return
simple Strings that define the name of the view. The disadvantage is the now introduced
dependency between the controller code and the view. However, since the usual relation
between controller and view is 1:1 [36], this is less problematic. The only alternative
would be to define the view to be rendered in a separate configuration file. The disad-
vantage of this solution is that the application flow in the code will often become harder
to trace. In the end, this is also a matter of taste. Project teams should define conventions
on how to define view mappings by default.

The last section already described the importance of redirects. Since redirects may
occur quite often, depending on the amount of POST actions in the application, a WAF
should provide easy mechanisms to initiate redirects. Grails offers a simple redirect
method here that either accepts a String of the designated URL or controller/action ref-
erences to call after the redirect. In contrast, the only places Seam allows to define
redirects are the external page descriptors.

CHAPTER 5. PRODUCTIVITY CRITERIA 80

5.4 Development Support

The last sections covered the ways WAFs can address productivity gains concerning the
different components defined by the MVC pattern. This chapter now examines those
features that increase the developer productivity throughout the project, irrespective of
the current artifact under development.

5.4.1 Project Generator

The project generator is a piece of software that comes bundled with a WAF. Many of
the productivity features discussed in the course of this chapter are accessed by means
of the project generator. However, it should be noted that the term project generator
is no official term; in JBoss Seam it is called seam-gen, for Spring Roo it is the Roo
shell and Grails does not even have a special name for it. Common to all solutions is
that the development of new web applications always starts using this piece of software.
For being a simple command line tool, the developer usually opens a console window
to make a few inputs and create a first scaffold of the new web application. As the next
section will show, some WAFs also offer UI-counterparts of their project generator in
the form of IDE plug-ins.

Scaffolding and other features invoked from inside the generator have already been
discussed before. This section talks about those features that characterize the project
generator itself, defining the fundamental abilities that concrete features can build on.

The first question concerning project generators is how user input is handled. The
three WAFs examined in the course of this work all provide different solutions here. One
approach is to direct the developer through a defined set of configurations. Concerning
the application’s control flow, the user has only little or no influence at all. For many
information is given to the tool in one such input cycle, the total amount of commands the
generator accepts will usually be smaller (and therefore, easier to remember). However,
this approach only seems feasible for setting up new projects. Functionalities required
later in the project do not depend on so much information. Accordingly, this input
approach should be coupled with another, more flexible one. JBoss Seam uses this
approach in form of a questionnaire when creating a new web application.

A second solution is to design the generator in such a way that in each run, only one
command is accepted. After processing the input, the generator stops execution. For
issuing a new command, the generator software will need to start again. The advan-
tage of this approach is its flexibility: Each feature-to-be can be encapsulated in a single
command — it is all a matter of additional arguments for the respective command. How-
ever, it is difficult to hold state between two distinct commands. Some use cases, e.g.,
adding additional fields to generated entities, are therefore hard to implement. Further-
more, for the generator needs to start and stop over and over again, issuing a sequence
of commands takes much longer than it would actually be required.

A last approach, proposed by Spring Roo, combines the advantages of both worlds.

CHAPTER 5. PRODUCTIVITY CRITERIA 81

Starting the generator means starting another shell, waiting for input commands. This
way, for all commands are invoked within the control of the generator, handling state is
much easier (though still complex when shutting down the shell and open it again). That
allows for contextual awareness: Depending on the current artifact under focus, a special
set of commands is available, while others are hidden by the generator. Besides increas-
ing the clarity of the generator, able to deal with a huge amount of commands, and its
general usability, this also allows questionnaire-like approaches known from seam-gen.
Furthermore, the approach is flexible and allows an easy integration of new commands.

As it should be clear by now, many possible productivity gains in web application
projects owe to the generator. However, features like static finders or view generation
show that its work is by no means restricted to scaffolding a new application. Therefore,
what is most important about every project generator is that it also allows for issuing
commands after the web application has already been created. Seam shows a related
shortcoming here: seam-gen can only be connected to one project at once – after creating
a second web application using the tool, the first project can no longer be managed using
the generator. The functionality provided by seam-gen (at least the one that is not part
of the project’s build file), is lost.

In contrast, the Roo shell can not only be used throughout the development phase, it
is also able to do round-tripping between its internal state and the changes made by the
developer outside the shell. The user can even communicate with the shell running in the
background by means of special annotations. Adding or removing these annotations in
the application code, or changing an annotation’s attributes, results in code generations
invoked by the shell. By adhering to certain conventions, in particular not changing gen-
erated ITD files, this roundtrip-approach does not interfere with the developer’s work.
For the shell does also observe files under control of the developer, it is possible to copy
generated methods from an ITD file (which is permitted) and reuse it in the own code:
When the shell recognizes the new method, it will automatically remove the generated
one — no compiler errors claiming duplicate method definitions will occur.

Spring Roo also allows to record commands passed to the Roo shell in a special
script file. Such scripts can then be called from inside the shell to repeat those steps.
This way, repetitive tasks, especially during project setup phases, can be simplified or
even exchanged between different computers.

Code-generation by the WAF’s generator should always be preferred to own decla-
rations. Besides saving much time in comparison, this is also because configuration and
code then adhere to the best practices used for the respective WAF. Therefore, to foster
its usage, the generator should also address the comfort of input. The Roo shell, for
example, offers tab-completion, a hint command with context awareness and different
text colors to increase the clarity of the user interface. Other simplifications address the
usage of default values and the remembrance of values already used beforehand.

CHAPTER 5. PRODUCTIVITY CRITERIA 82

5.4.2 IDE Support

An Integrated Development Environment (IDE) is a software environment that covers
a wide range of functionality to support the development of software. Though there
are multiple IDEs available for Java, a recent survey in [75] has shown that more than
90 % of Java developers use one of three major IDEs: Eclipse,24 IntelliJ IDEA,23 and
Netbeans.22

For WAFs, this is of big advantage: They need to make the web project and its
structure known to the IDE; however, there do not exist standards in this regard. For
each IDE to support, additional efforts are required. In their own interest, WAFs should
make sure that at least the mentioned IDEs are able to deal with their web applications.
Otherwise, features like compilation, content assist or on-click-deployment won’t be
available for developers sticking to the respective IDE.

In the course of this work, four major ways have been identified how IDE-support
can be achieved.

The first option is to create IDE-specific configuration files using the project gen-
erator. There either exist separate commands to create them or the files are generated
automatically when the new web project is set up. The last approach is followed by
JBoss Seam: The framework creates IDE files for Eclipse, Netbeans and IntelliJ.

A second option is presented by Grails. This WAF has native support both in Net-
beans and IntelliJ. That means, those IDEs are developed in a way to understand Grails
projects automatically. Obviously, such an approach only seems possible for the most
prominent WAFs.

Concerning Spring Roo, IDE support here is delegated to the underlying build tool
Maven.36 Maven provides multiple plug-ins to generate configuration files for various
IDEs on the basis of the project information stored in the POM. This support has also
been integrated into some IDEs.

A last option is to provide a project-generation plug-in for the respective IDE. Usu-
ally, this option comes as an additional alternative to one of the three approaches men-
tioned before. Regarding Seam, a UI for creating new projects has the further advan-
tage that the input given otherwise in a questionnaire in the console can be immediately
checked against flaws. However, it is important that common build files (see section
5.5.1) are still provided; otherwise, a lot of flexibility would be lost outside the IDE. An
application should always remain manageable from inside and outside an IDE.

Whichever option is followed, in the end it should be possible to compile, package,
deploy and, where available, hot deploy (see section 5.6.1) the application. As Spring
Roo shows, even if the IDE is able to grasp the application’s structure, this does not
automatically mean it is able to compile it. Roo’s ITD approach requires a special com-
piler capable of JDT weaving; otherwise, compilation will fail. This has already been
discussed in section 4.3.3 on page 55.

36Project Site: http://maven.apache.org

http://maven.apache.org

CHAPTER 5. PRODUCTIVITY CRITERIA 83

Many WAFs also provide further tooling support for specific IDEs. Just like configu-
ration files, writing such plug-ins is highly IDE specific. However, their implementation
is obviously much more complex. A WAF therefore can provide IDE plug-ins, but better
does not depend on them: IDEs, just like WAFs, tend to be updated quite often. Whether
a new version will work with the old plug-in is not always guaranteed.

There is a variety of functionality that can be provided through IDE plug-ins: As
already stated, a plug-in may provide a UI to scaffold new web applications (including
reverse engineering the database). In contrast to simple build scripts, hot deployment,
as far as implemented, can be initiated automatically every time a file is saved in the
editor. For creating new entities, views or controllers, new entries might be added to
the IDE’s menu bars. Just like in the command line generator solutions, those new files
are filled with stub code and are placed in the correct directories automatically. Special
project views may be offered, providing a better outline of the complete application and
the created artifacts. For these WAF-specific artifacts, plug-ins can offer an enhanced
content assist. Concerning Grails, there even exists content assist regarding Groovy
scripts (for Java code, this should be standard). Grails and Roo also offer counterparts of
their command line tools in the IDE. This way, the developer no longer has to take care
of the console. But it also allows the IDE to carry out workspace refreshs automatically,
every time new code has been generated.

Another feature that can be addressed by plug-ins is error detection. For Java is
a statically typed language, error detection in code is usually no problem. However,
web applications do not only consist of plain code; usually, there are also markup or
configuration files to be managed. Quite often, the content in those files refers to external
elements, defined at another place in the application. One typical example are beans
accessed in JSF views (see also the code listing in section 2.4.5): Spelling mistakes here
usually aren’t recognized until runtime. However, special IDE plug-ins can validate such
inputs instantly.

Particular artifacts can also be supported using special visual editors. However, for
writing such visual editors is a complex task, they are usually only available for the most
common artifacts, like JPA entities of JSP views.

5.4.3 Dynamic Language Support

Dynamic languages are concerned a way to reduce the time to write application code.

"A dynamic language basically enables programs that can change their
code and logical structures at runtime, adding variable types, module na-
mes, classes, and functions as they are running. These languages [...] gen-
erally check typing at runtime." [60]

The code produced by dynamic languages is generally more compact [60]. One rea-
son for this is that most dynamic languages are dynamically typed, reducing the overhead
of type declarations. Moreover, dynamic languages often come with special operators

CHAPTER 5. PRODUCTIVITY CRITERIA 84

and other structural items that do not only reduce coding effort, but also increase a de-
veloper’s flexibility in writing the application [60]. Section 4.2.2 exemplary lists some
of the features provided by the dynamic language Groovy.

Besides Java, the Java Virtual Machine (JVM) also supports dynamic languages. For
its task is to execute programs translated into bytecode, any language that compiles into
bytecode can run in the JVM. As a consequence, many dynamic languages for the Java
platform exist, Groovy only being one of them. Furthermore, efforts are made to ease
their development and usage: JSR-223, part of Java SE 6, and JSR-292 (according to Or-
acle’s current roadmap37 scheduled for Java SE 7) simplify the access of Java code from
scripting languages, provide a framework on how to host scripting engines inside Java
applications, add special bytecode support and should generally let dynamic languages
run fast on the JVM. [59]

According to [64], a typical Groovy application contains only 40-60 % LoC an
equivalent Java program requires. Though sounding impressive, this hides some of
the disadvantages inherent to dynamic languages and dynamic typing that can easily
increase the effort for the developer. Above all, type-related errors aren’t found until
runtime, whereas static typing detects them at compile time. The overhead of fixing
such errors is therefore much bigger in dynamic languages, and gets even worse for web
applications where an application needs to be deployed to a server to run. Furthermore,
dynamic constructs make applications harder to debug and often harder to understand.
Though these issues can partly be addressed by writing tests, it is difficult to say how
big the productivity gain by using dynamic languages really is.

Concerning WAFs, dynamic languages can be supported in different ways. In Grails,
a dynamic language is the default to be used within the WAF. The whole programming
model is aligned to the usage of Groovy, providing Domain Specific Languages (DSL)
for controllers, persistent entities or service classes. In contrast, Spring MVC and JBoss
Seam is based mainly on Java, though both also allow the usage of dynamic languages
and the "syntactic sugar" typically provided by dynamic languages. For example, it is
possible to define the persistent entities or controllers resp. components using Groovy.
This way, the developer can benefit from certain language features. For example, math-
ematical calculations or the work on collections might be tasks appealing to delegate
from Java to dynamic language code. However, what these solutions lack is the clarity
of a DSL support. For instance, though getter and setter methods can be omitted when
writing persistent entities using Groovy, the respective fields still need to be annotated -
something unusual in Grails or Groovy as a whole.

Nevertheless, using dynamic or static languages is by no means an either/or decision.
Instead, it makes sense to switch between both approaches, depending on the respective
task. WAFs should at least provide a way to use dynamic languages.

37http://openjdk.java.net/projects/jdk7/features/#f353

http://openjdk.java.net/projects/jdk7/features/#f353

CHAPTER 5. PRODUCTIVITY CRITERIA 85

5.5 Build & Integration Support

The directory structure and configuration of web applications differs widely from stan-
dard desktop applications. This section describes how WAFs provide support in this
area.

5.5.1 Build Management

Supporting the build of a project should be a matter of course for every WAF. By using
the WAF’s generator for the first time on a new project, all required steps should be
executed automatically.

The first thing to do is to create an adequate directory layout for the new project.
There needs to exist a place where to store the source files of the project. These source
files result in compiled classes which as well need to be put somewhere. The same
holds true for resource and configuration files or required libraries. Test code should be
separated from functional code by means of separate directories.

However, creating a ready-made directory layout is not enough. The WAF should
also provide ways to execute build steps on the basis of these layouts. Typically, com-
piling and packaging the application will be supported, for both highly depend on the
used directory layout and the places where configuration and resource files reside. Next,
the deployment of the resulting archive could also be part of the WAFs build solution.
Deployment makes an application available on a web or application server. Different
kinds of deployment commands may exist in parallel, e.g., to support hot deployment
(see section 5.6.1). Other targets may allow invoking the available unit, integration or
functional tests (see section 5.6).

Usually, a WAF will use an existing tool for the management of builds. Tools like
Apache Maven36 already propose standard directory layouts for Java projects. When
keeping to these standards, developers used to the respective tools will easier understand
the project layout.

Tools like Maven also integrate solutions to define custom build steps. Grails (in its
common usage) follows a slightly different approach here. For build commands are typ-
ically invoked using the project generator here, the developer can define groovy scripts
that implement the respective build target, and either put them into the application or
Grails installation’s script directory. This makes the script part of the commands
available through the generator, exclusively for the project or globally for all Grails ap-
plications.

Closely connected with the creation of a directory structure for the project is the
generation of project files for specific IDEs. The generation of IDE files has already
been discussed in section 5.4.2.

CHAPTER 5. PRODUCTIVITY CRITERIA 86

5.5.2 Environment Configuration

Throughout their lifetime, applications are used in different environments: In the begin-
ning, during their creation, they are mainly accessed by developers on their development
machines. Later, they go into production. For web applications, this means they get
deployed to a server environment and are used by real customers.

Such different environments require different configurations. For example, if the
application is about to be debugged, stack traces in the UI (see Debug pages in section
5.6.1) may be welcome, but in production, they present a security issue. In real-life
scenarios, debug and production phases often exist in parallel. WAFs therefore support
the concept of Environments (also called Profiles).

Environments allow a per environment configuration. That is, depending on whether
the applications is about to run in a development or production environment, different
configurations automatically apply. This configuration usually addresses the data source
to be used, the logging level or exception propagation and can be freely adapted by the
developers. Typically, WAFs will support test, development and production

modes as environments. Build steps then are performed according to the current mode.
Obviously, the WAF should also support an easy switch between environment mo-

des, for example by means of the project generator.

5.5.3 Dependency Management

For WAFs, it makes sense to delegate some of their tasks to third party APIs that are spe-
cialized to provide the respective functionality. These APIs, often themselves concerned
as frameworks, need to be integrated into the web application. Integration encompasses
both a proper configuration as well as the inclusion of required dependencies. Most of
the time, the desired API not only consists of a single library, but defines multiple de-
pendencies on required libraries itself. Dependency management refers to the task of
dealing with all these dependencies and resolving them. The level of support a WAF
offers regarding dependency management may differ.

The first generation of a new application should always include all libraries required
for compiling and deploying this project stub. Depending on the used build tool, these
dependencies might either be resolved when compiling the project the first time or they
already come packaged with the WAF itself.

Quite often, WAFs already include functionality that is not necessarily required by
the first project stub. They do so because, from their point of view, a usage is highly
probable regarding web application development with this WAF. This may make sense
when otherwise the developer would need to deal with dependency management con-
cerns (which depends on the WAF). However, if some of these libraries are not required,
this raises the question of how these special dependencies are handled by the WAF.
The easiest way is to automatically integrate and configure all of them, irrespective of
the particular application. This way, the developer can simply use the respective APIs

CHAPTER 5. PRODUCTIVITY CRITERIA 87

without having to worry about unresolved dependencies. However, this also increases
the application’s size, its complexity (regarding configuration) and its deployment time.
Spring Roo takes a more intelligent approach here: It assures that only required libraries
become part of the project. If new functionality is used within the application, the ad-
ditional dependencies are resolved automatically. The other way round, libraries the
application no longer depends on, because the developer has removed the related func-
tionality, are deleted automatically. The depicted behavior is guaranteed as long as the
respective dependencies are known to Spring Roo. Concerning the ways this knowledge
is defined and extended, both Grails and Roo make use of a plug-in mechanism.

5.5.4 Plug-ins

Plug-ins (or add-ons) serve different purposes at once. Most obviously, they integrate
and configure additional technologies and services. Whenever a developer is faced with
a requirement that is not specific to the application under development, this is where
a plug-in could come into play [71]. Quite often, this new requirement might depend
on a specific library or framework. Without a plug-in, the developer needs to learn
the new framework and, concerning its integration, needs to know how to configure
it within the WAF in use. In contrast, adding a new add-on is standardized for the
specific WAF, the most difficult step often being the search for an appropriate plug-in.
Furthermore, many plug-ins make use of the adapter pattern, simplifying the new API
to the functionality that is actually required. This reduces the amount of time to invest
into the new framework used in the background. Concerning Grails, this approach may
also allow using common Java frameworks in a pure Groovy style. Besides, the design
of an add-on even makes sense without making it available to the community: Plug-ins
support the modularization of an application.

Both Spring Roo and Grails are WAFs build on a plug-in mechanism. Their ap-
proaches here are basically the same: Concerning plug-ins, the architecture distinguishes
between base add-ons and third party add-ons. Base add-ons are out-of-the-box features
of the WAF. In Roo, they also provide the metadata other plug-ins can build on, making
use of the Roo core which provides major services add-ons will "almost always require"
[1]. Examples for such base add-ons in Roo are integrations of JPA, JMS, finders, email
or logging. Third party add-ons are community-driven and are not bundled with the
WAF. They are stored in specific repositories that can be accessed by everyone. Obvi-
ously, the developers of a WAF should provide an easy mechanism to access and search
in this database. This may be a special website or a special feature integrated into the
WAF’s generator. The amount of functionality provided by the community through add-
ons is probably a key factor for the success of certain WAFs like Ruby on Rails.

At the time of writing, Grails already provided a rich set of add-ons. Roo, in contrast,
had only little documentation about the overall topic with very few resources on how to
write new add-ons. Accordingly, the number of plug-ins was quite small. However, the
developers emphasize the importance of add-ons in the Roo landscape and promise to

CHAPTER 5. PRODUCTIVITY CRITERIA 88

update the documentation soon.38 For the developers of a WAF, a plug-in mechanism is
a good way to minimize the download size and avoids dealing with legal issues [1].

Despite all the time saved by using third party add-ons, developers should never
forget that plug-ins are external code. For enterprise applications, this means that new
plug-ins should be studied in-depth before usage, to find possible security or perfor-
mance issues.

5.6 Testing

Testing has become an important part in today’s software development. Software tests
address the reliability of an application and allow finding defects that prevent it from
running correctly. Certain kinds of software tests can also be automated, that is, they
can be used to verify the application’s correctness in a recurrent manner. This is im-
portant, for code changes often involve unintended side effects. Using test automation
approaches, refactoring existing solutions is possible with a higher confidence [71].

Because of this importance, test-driven development, a software development pro-
cess that has evolved in recent years, even recommends to "test first", that is, to write
tests for a code segment which is yet to be written. This way, a higher test coverage can
be achieved and the resulting application is designed with testability from the beginning
[71].

Concerning software tests, web applications introduce special requirements. One
reason for this is their inherent distributed client/server architecture and the communi-
cation over HTTP. Special markup is exchanged between both parties. Furthermore,
code may either run in the client’s browser or server-side. One also has to deal with the
problem of different browsers that may access the web application. Depending on the
audience, performance testing may also be important (for further web-related require-
ments, see [70]). Obviously, these special characteristics also need to be addressed by
WAFs.

5.6.1 Manual Testing

Even without writing a single test, developers that deploy their application from time
to time and look for the result are also testing [4]. Though such tests aren’t automated
(hence called manual tests), they are nonetheless important and therefore specially sup-
ported by WAFs.

Hot Deployment

As already discussed in section 5.5.1, web applications need to get deployed to a server
to see them running. For the developer, the recurrent process of compiling, packaging
and deploying has a significant drawback: The bigger a web application gets, the more

38see http://forum.springsource.org/showpost.php?p=328167&postcount=15

http://forum.springsource.org/showpost.php?p=328167&postcount=15

CHAPTER 5. PRODUCTIVITY CRITERIA 89

increases its startup time on the server. By default, changes to files, irrespective of being
plain configuration, resource or source files, always require a complete redeploy. The
developer, interested in the effect of the changes applied to the application, has to wait
for the application to load. Depending on the frequency of this rhythm of changing and
testing, this may lead to a big loss of development time. A recent survey [75] with more
than 1000 participants shows that users of different web and application servers spend
between 14 to 24 % of their coding time for redeployment.

The idea of an incremental hot deployment is to update an application while it is
already running, making changes take effect immediately. This way, it could be a huge
time saver; however, Java EE does by no means address this feature [4]. Hot swapping, a
feature part of the JVM, allows bytecode changes of loaded classes, but schema changes
in these classes fail [28]. The developers of JRebel39 say their tool is able to deal with
most of these schema changes and provide support for many WAFs including Seam and
Spring MVC. However, JRebel is only available for a fee.

Due to the missing specification and the inherent complexity of hot deployment, the
support of a WAF will usually be home-grown and limited here. At present, a change
of persistent entities and EJBs will very likely not be possible. Moreover, the available
features here might even depend on the package format of the application (war or ear)
and even worse, on a specific web or application server. In contrast, the change of static
resources like style sheets and graphics is often possible. When runtime JSP compila-
tion is supported by the server and is enabled, same holds true for JSP [4]. For the hot
deployment of Facelets, they must run in development mode [4]. However, changing a
view often requires changing the source code as well. Here, Seam currently supports the
change of JavaBeans and Grails the change of controllers and services, though restric-
tions occur regarding the already mentioned schema changes.

Another question is how a hot deploy can be invoked. Seam offers the explode
command as an alternative to package deployment which extracts the application to a
directory on the server. This way, the replacement of single files becomes possible. The
WAF might also support an automatic hot deployment from inside an IDE, e.g., when
saving changes to a file.

Obviously, hot deployment for web applications is still an open issue, depending on
non-standard features certain web servers might or might not support. To benefit from
the solutions a WAF offers in this regard, one often becomes dependent on a specific
server vendor and, if IDE support is also desired, maybe also on a specific IDE. Even
then, hot deployment of application logic and persistent entities is restricted.

Debug pages

Finding a bug by manual testing is only half the job; it still needs to be corrected. At
this point, the distributed nature of web applications and the separation into code and

39Project Site: http://www.zeroturnaround.com/jrebel

http://www.zeroturnaround.com/jrebel

CHAPTER 5. PRODUCTIVITY CRITERIA 90

markup becomes obvious. Stack traces, if available at all, tend to be less readable and
vague in the way that they often cannot point out the root of a problem.

Debug pages address this issue. During development, they catch any exception that
occurs, at a central point. Besides showing the respective stack trace, they also allow
getting an overview of the current application state. For example, to locate the cause of
the exception, the developer might look for the contents of certain variable scopes or the
request parameters sent in the respective request. This way, debug pages offer similar
functionalities debuggers provide, in a platform- and IDE-independent manner. Debug
pages can also be useful in situations where no exception occurred, to study the current
state and other ongoing activities, like sessions or conversations [4].

It should be noted that debug pages are usually only available when the application
is running in debug or development mode. In production, providing such information to
the user could easily result in vulnerabilities.

5.6.2 Unit Testing

In contrast to manual tests, unit tests (and all other tests discussed for the rest of this
chapter) allow for automation. That is, once written, they can be invoked without human
interaction (given that a properly configured testing environment exists). Besides taking
work away from the developers, this can also increase an application’s quality for errors
are found earlier in time.

Concerning dynamically typed languages, like Groovy used in Grails, automated
testing is especially important: As already mentioned, errors regarding typing (e.g., class
cast exceptions or missing method parameters) cannot be discovered until runtime here.
This disadvantage (compared to static typing) can be addressed by extensive testing,
and first of all, unit testing. Though this may appear like the time saved by writing
dynamic code is lost again for writing tests to verify this code, this does not have to
be the case from a test-driven development perspective: For this movement postulates
a high code coverage by means of software tests, the tests would have to be written
anyway, irrespective of the language under usage [71].

Unit tests focus on only one element (or one unit) of the application at a time, like
classes and their methods [38]. For web applications, different kinds of units exist. Quite
often, these units are unique to web applications (e.g., controllers or command objects)
and therefore, a WAF should provide special support to test them adequately. For ex-
ample, Grails builds on the popular JUnit40 framework and provides special TestCase
extensions for controllers and tag libraries.

Since unit tests try to test code in isolation that most of the time depends on other
objects (so called collaborators), developers often need to create test doubles to make
this possible. To simplify such tasks, Spring MVC provides special Mock Classes and
Dependency injection extensions for JUnit here. This way, controller requests can easily
be generated manually to verify the controller output afterwards.

40Project Site: http://www.junit.org

http://www.junit.org

CHAPTER 5. PRODUCTIVITY CRITERIA 91

As already stated, unit tests are especially important in WAFs based on dynamic
typed languages. Accordingly, Grails, as a typical representative for such a WAF, fosters
the creation of unit tests through its project generator: Every time a new controller,
entity, tag library or service class is created, a corresponding test class for unit testing
the respective artifact is also generated.

In this context, it is also important that WAFs follow a certain convention on where
to put test classes and how to define methods as test methods, so that the WAF is able to
find and execute them automatically. Such conventions are the reason why WAFs should
provide commands for the generation and invocation of different test types. Conventions
also allow for the generation of special test reports (for example, in HTML) that give an
overview on the whole project’s test results, including success rates and the time needed
to run all tests. Depending on the level of detail, drilling down to a particular test and
examine its results may also be possible.

5.6.3 Integration Testing

Unit tests cannot ensure that different elements of the application work together, that is,
whether they integrate correctly. This is where integration tests set their focus. They are
"designed to test larger parts of an application" [71].

For the developer, it is important to note that integration tests, from a code-based
point-of-view, look quite similar to unit tests. The only difference is that test doubles
are no longer required. Therefore, integration tests can for example run against a real
database (inside of transactions to be rollbacked afterwards). The actual constraints
integration tests are subject to depend on the environment the WAF has set up. Typically,
views cannot be tested, but dependency injcetion should already be supported.

The main disadvantage of integration tests is that, due to the special environment
required by them, they take much longer to run. Therefore, they cannot provide such
an instant feedback unit tests tend to give. In this regard, it should be mentioned that it
is not always clear whether to use unit or integration tests to verify certain conditions.
The mocking and stubbing required by unit tests often can be too tedious and time-
consuming.

As already stated, the special concepts web applications build on introduce special
requirements concerning testing. One is the test of proper URL mappings. Here, the
developer can verify that a call of particular URL is mapped to the desired controller
action and that certain parameters get bound correctly. JBoss Seam introduces a related
test mechanism for JSF that allows emulating complete user interactions (but still in
the form of integration tests, that is, without the requirement to deploy the application).
Here, the interaction between JSF components and the view is tested, without testing
the view itself. This basically works by simulating the different JSF lifecycle phases by
hand.

CHAPTER 5. PRODUCTIVITY CRITERIA 92

5.6.4 Functional Testing

Though integration tests already cover a lot of functionality, some artifacts, especially
views, still remain untested. Functional test make sure that "the application works as
a whole" [71]. For this, the application runs in its common environment, that is, an
unrestricted web or application server.

The last condition already reveals a significant drawback of functional tests: For
they run in an unrestricted environment, a single test demands much more time than
for example a unit test. However, since functional tests also aim for automation, this is
usually no time a developer has to invest.

Another drawback, possibly more important regarding productivity, relates to the
fact that functional tests tend to be UI-driven. The fact that user interfaces are often sub-
ject to frequent changes, makes functional tests very fragile. Their automation therefore
often requires frequent modifications.

There exist different kinds of functional tests. WAFs should at least integrate one
mechanism to test views and their interaction with controller code. Plug-ins might then
provide additional features to the developer. The Functional Test plug-in for Grails is a
typical example. It allows communicating with the server over HTTP and verify different
things about the response, such as status codes or page contents.

Selenium41 is another tool WAFs often integrate support for. The tool makes use of
a common web browser to test interactions with the web application. The most impor-
tant advantage is that Selenium tests are easy to create using point-and-click interfaces
provided for certain Web browsers. However, tests similar to the ones created by the
Functional Test plug-in are likely less UI-dependent. Selenium in turn also allows test-
ing for correct JavaScript handling, another thing that can be addressed using functional
tests.

41Project Site: http://seleniumhq.org

http://seleniumhq.org

Chapter 6

Conclusion

This chapter first recapitulates the work and discusses its central results (section 6.1).
Those interested in a complete overview of the productivity criteria should refer to Ap-
pendix A. Section 6.2 takes a look at the future trends to expect regarding Web Appli-
cation Frameworks and their way of use. In the last section, open research questions are
discussed.

6.1 Results

The last chapter has discussed the productivity criteria of Web Application Frameworks
in detail. To provide a quick overview, Appendix A lists all criteria in a comprehensive
manner. This list encompasses more than 120 entries.

As this huge amount of criteria indicates, there already exists a large support for Web
application development through WAFs: WAFs can automatically configure appropriate
environments for testing, development or production phases. They are able to reverse
engineer the database to convey the domain model into the required entity representa-
tion. Validation configuration is executed without further ado prepared to be used in
declarative style, with separation of concerns in mind. Dynamic finders can easily be
generated, either at compile time or runtime; basic queries no longer have to be written
manually. Views for specific entities or query result sets can be created automatically,
together with features allowing for pagination and sorting to foster usability. The Views
adhere to composition principles to support reuse on markup level. Internationalization
is easy to integrate. Context scopes manage the application state automatically and can
be accessed easily. Specific business requirements often come already shipped in form
of plug-ins. These are only the most basic features modern WAFs provide. The list does
not even contain the general concepts provided to ease work, like special IDE support,
the rich set of features that come with the project generator or the ways to ease testing.

One noticeable fact is the extent of technical evolution regarding the former act of

93

CHAPTER 6. CONCLUSION 94

Servlet programming, even with respect to the enhancements in the latest Servlet spec-
ification (see section 2.4.2). Especially the WAFs in the area of request-based frame-
works (which have a strong relationship to Servlets, see section 2.5.3), as for exam-
ple Spring MVC, show that the same programming model by now allows for code that
feels quite natural to Java developers. This for example reflects in the way input can
be validated and passed to the application. Method bodies are relieved from valida-
tion code and no longer depend on the excessive API of Java’s ServletRequest or
ServletResponse objects. Parameters in the method’s signature can be defined very
freely, based on Java’s Reflection mechanism. The difference between classes serving
normal objects and those serving web clients fades way. Obviously, this reduces the
effort of implementation and later rework.

Such simplifications in the programming model are even pushed further by Domain
Specific Languages, easy to implement with dynamic languages like Groovy. One place
Grails makes use of a this concept is its solution for Object-relational mapping, GORM
(see section 4.2.3). Domain Specific Languages focus on particular domains, this way
hiding unnecessary complexity from the programmer. However, the simplicity and pro-
ductivity of a certain DSL in this case depends on the programming language used for
its implementation.

Though Domain Specific Languages are a good example for the power of dynamic
languages, it is not so clear whether there really is a productivity gain emanating from
them. Their combination with dynamic typing, their support of special operators, and
the often-to-find influences from the functional programming paradigm generally seem
to make code written in dynamic languages shorter. However, type-related errors aren’t
found until runtime here, which can be a huge disadvantage especially for web applica-
tions and their long-taking deployment times. Though this issue can be partly addressed
by excessively writing tests (which is also a good practice even for static languages) and
there even exist special IDE plug-ins that try to bring code-completion features to dy-
namic programming, this behavior may easily compensate any productivity advantages
here. Furthermore, as the last chapter shows, both JBoss Seam and Spring MVC offer
ways to implement code written in dynamic languages for the JVM. Even though they
lack a DSL support, this can be useful in those situations where static languages aren’t
the best choice. Nevertheless, this influence of dynamic languages on productivity in
web development is definitely worth investigation.

None of the examined WAFs scores on every single criterion. One artifact that dis-
closes significant differences is the project generator. All solutions had a specific han-
dling here and were of varying effectiveness. The Roo shell was intuitive in use and
proved the most powerful tool in the examination. Its code generation support, ranging
from big artifacts to single entity fields, was even able to compensate some of the dis-
advantages inherent to static languages. Furthermore, the shell is designed for a usage
throughout the whole development cycle of an application and in an arbitrary amount of
projects in parallel. In contrast, JBoss Seam’s generator is linked to a specific project at

CHAPTER 6. CONCLUSION 95

any time, and whenever a new project is created using seam-gen, this link is broken up
forever. A parallel use in different projects therefore is not possible.

A second feature that may differ between frameworks and comes with productiv-
ity implications is the generation of finders, that is, database queries. Grails supports
finders leveraging Groovy’s MetaClass and methodMissing features, that is, they
are created dynamically (hence called dynamic finders). Spring Roo also supports the
generation of queries based on specific persistent entities, however, this requires the de-
veloper to issue some commands using the shell first. Though this appears slightly more
time-consuming, the advantage of this approach is that the resulting queries become part
of the static application code – they can be accessed by the developer and adjusted to
the specific needs of the use case. In Grails, by contrast, dynamic finders are useless if
they do not match the requirements exactly. Despite Spring Roo’s powerful approach
here, finders are much more difficult to implement using static languages like Java and
only using static code generation mechanisms. Seam for example lacks this feature com-
pletely.

Regarding productivity, another important aspect with differing implementations is
the concept of context scopes. Context scopes are required to overcome the statelessness
of the WWW’s underlying HTTP protocol. WAF’s should at least offer an additional
flash scope, that is, a scope for storing references that need to survive a redirect. Though
often required, such behavior is not part of the Servlet specification. This hinders the im-
plementation of the commonly used Redirect-After-Post pattern. In this case, developers
either need to define a custom scope, or store the respective references in the session.
The first approach is obviously quite complicated, whereas the latter can easily result
in performance overheads and requires a very thorough style of programming, for the
developer needs to clean up the session manually. Spring MVC currently offers no ap-
propriate solution in this context. In contrast, Grails again benefits from Groovy’s power
in domain specific languages and transparently injects suitable containers for all required
context scopes.

Since many companies today use IDEs, the availability of respective plug-ins that
support the development with a specific WAF, also influences productivity. This is also
a point where the popularity of a WAF and the background of its development team may
play a role: At least three IDEs with a significant market share exist (see section 5.4.2).
As plug-in development for them is not possible in a platform-independent manner, it
introduces a huge effort to the WAF developers. The higher the popularity of a frame-
work is, the higher are the chances to find people willing to help. Likewise, if the WAF
is developed by a company, more financial resources are available for specific IDE sup-
port. Since IDE plug-ins can be very useful, these (non-technical) issues may also be
worth considering.

Lots of other criteria that influence the productivity in web engineering are listed in
Appendix A. Even though their contribution to productivity seems to be quite small for
many of them, in their entirety they provide a very rapid style of programming. However,

CHAPTER 6. CONCLUSION 96

this advantage does not come for free: Developers need to actively study the WAF and
its possibilities. Modern WAFs comprise multiple artifacts, the project generator being
one example, IDE plug-ins another. This can be quite unnatural for developers only used
to program against certain APIs. The API that comes with a WAF is still important, but
without delving into the details of the other artifacts, teams will not leverage from the full
power offered by the respective WAF. They risk to be satisfied with the most prominent
features and disregard the rest. So to say, the development with a WAF requires a new
style of programming, where switching between many different tools, which may even
interfere with each other, needs to be learned first.

When studying the different WAFs for this master thesis, it became obvious that,
sometimes, speed of development and quality of the resulting solution directly interfere
with each other - development speed reduces the input, quality increases the output. The
productivity of this particular solution depends on the team’s valuation of each factor.
Sometimes, the decision is even a hard-wired part of the WAF and there is no way to
adapt the respective behavior. One framework might decide for a higher development
speed, the other for quality. This is where the framework selection can become quite
tricky or may turn out as a bad decision if a major aspect of the project is affected. To
illustrate this, there for example is a significant difference in the way Grails and Seam
handle the persistence context in their ORM solutions. Grails and its Domain Specific
Language GORM completely hide it from the developer; there is no way to access it.
Instead, the persistence context is automatically scoped to the current transaction. That
means if one transaction stores an entity in the context, and a subsequent one tries to
access the now detached data, it has to be merged with the current database first. De-
pending on the amount of data that has to be merged, this can be a very expensive
operation (the details are described in section 5.3.5). Seam, in contrast, offers a way
to set the persistence context’s scope manually. This prevents performance leaks, but
comes to price of a more complicated Application Programming Interface (API). Many
concepts in Grails, like for example dynamic finders, would not be possible with such
an implementation.

One aspect with a huge need for improvement is hot deployment. A recent survey
shows that developers estimate to spend up to 24 % of their coding time for the deploy-
ment of their applications. None of the examined frameworks was able to deploy classes
with schema changes while the application was already running. There is one tool in the
market, available for a fee, that seems to be able to deal with such schema changes. This
indicates that solutions do exist, but are obviously hard to implement. Hence, this may
be an area that should best be addressed by Java EE itself and cannot be delegated to the
framework developers. A fully working approach would be a big step forward in web
engineering productivity.

CHAPTER 6. CONCLUSION 97

6.2 Outlook

The current state-of-the-art in WAF development already allows developers to set their
main focus on the application’s business code (and markup). However, on the side of the
framework, this requires implementing the depicted criteria in their entirety. The fact
that none of the examined frameworks was capable of that implies that such a WAF is
probably not available at the moment. Hence, the first step towards a higher productivity
in web engineering is by adapting the full range of criteria into the WAF. Regarding the
level of competition in the market, and the huge productivity improvements in recent
years, an alignment is likely to happen.

In the future, WAFs will probably need to expand their capabilities to also assist the
developer in writing the core business aspects of the application. Spring Roo already
provides a mechanism that foreshadows how such assistance may look like. Here, each
action of the developer is tracked by a tool in the background, reacting on certain events
by modifying the application. The roundtrip-awareness of this tool, together with a
separation of generated and hand-written code, together avoid an interference with the
developer. Such a mechanism is especially appealing for web application development
since the developer has to deal with lots of different artifacts here. For the application
flow always follows a fixed sequence of steps here, writing the respective tools should
not be too complicated. However, as already stated in the last section, such tools confront
the developer with a new style of programming: At the moment, programmers aren’t
used to environments that change the code base by themselves.

Another aspect that is gaining more and more importance is integration. Integration
issues are probably among the most time-wasting tasks a web developer has to fulfill.
A certain library or framework needs to be accessed by the application; however, nei-
ther the WAF developers nor the developers of this library themselves did anticipate this
usage scenario. In the worst case, this may even lead to a situation where a proper inte-
gration is not possible. Besides being obviously unsatisfying, it is also difficult to foresee
and hence, may even let the whole project fail. It is quite possible that, when technical
features of WAFs align more and more in the near future, the integration capabilities of
a WAF become the most important factor to choose among them.

One way some WAFs try to address integration support today is by plug-in systems.
The idea behind such a system is that the corresponding work is done once by a third
party and can be reused by others. However, the quality of the solutions will obviously
vary from plug-in to plug-in this way. Of the examined WAFs, the only one without an
integrated plug-in system was JBoss Seam. Regarding Seam 3, a CDI Plug-in-Center
already exists.42

42see http://groups.diigo.com/group/cdi-extensions

http://groups.diigo.com/group/cdi-extensions

CHAPTER 6. CONCLUSION 98

For some parts of a web application, visual editors, integrated into an IDE, may
also be helpful. One typical example for this is the JPA Diagram Editor.43 This tool
provides a visual editor to create an application’s domain model. However, using such
tools today narrows the developer to a specific IDE: Providing visual editors is not only
costly, it also requires much rework to offer the same tool for another IDE. In the future,
such tool support will likely exist mostly for those technologies that are based on a
standard – like in the above example, JPA. Standardization is a precondition for many
IDE-specific development simplifications, for otherwise, the demand may not justify the
development. Page flows are only one example that seems predestinated for visual tool
support. Developers could first define the flow in a UML-like language and then generate
the required code, view and configuration files. However, page flows aren’t standardized
yet and such a tool does not exist.

6.3 Future Work

This master thesis worked out the technical criteria that define a WAF’s productivity. As
a comparison with the related concept of productivity factors in software development
projects shows, it is also a common approach to measure the impact of such factors. Due
to the lack of a decent project database (see section 3.4), in the course of this work, this
was not possible though. The creation of such a database would allow a more detailed
examination of the factors that distinguishes web development from common software
development. When measuring the impact of certain technical WAF criteria, one can fall
back to the results worked out here. To this, the measurement should obviously focus on
the likely more crucial criteria than on all of them in their entire detailedness.

One point outside the scope of this work but probably worth investigation are special
business requirements in Web development. Here, the term business requirements refers
to all those features provided by some WAFs but cannot be concerned a part of their
core functionality. Typical examples are full-text search, charting or PDF generation.
Though not used by every single web project, these are still common requirements.
Hence, an expansion of the criteria catalog by taking business requirements into account
may provide helpful.

Even with the productivity criteria at hand, framework selection can still be difficult.
Here, development teams would clearly benefit from a detailed instruction on how the
process should be designed best. Often, the time to select a WAF is quite short and leads
to wrong decisions. The process therefore should take different time spans into account
and adapt the required steps accordingly. However shaped, it would probably contain
one or more phases in which certain WAFs have to be explored in some way. This is
also the point where applying the criteria could become a fix part of the process, for such
an examination will also accelerate the understanding of the respective WAF.

43see http://wiki.eclipse.org/JPA_Diagram_Editor_Project

http://wiki.eclipse.org/JPA_Diagram_Editor_Project

CHAPTER 6. CONCLUSION 99

The last paragraph also indicates another way the criteria can be used. By applying
the catalog to multiple WAFs, and publishing the respective results, the capabilities of
different frameworks could be compared in an objective manner. This would obviously
simplify the framework selection in many development teams, because they no longer
need to apply the catalog themselves. The only task left would be to weight the criteria
in an order that reflects the project’s requirements.

Bibliography

[1] Ben Alex. Spring Roo 1.0.0: Technical Deep Dive. Presentation on SpringOne
2GX, 2010.

[2] Ben Alex. What’s New In Spring Roo 1.1.1.
http://blog.springsource.com/2011/01/11/

whats-new-in-spring-roo-1-1-1/, January 2011.

[3] Ben Alex and Stefan Schmidt. Spring Roo – Reference Documentation.
http://static.springsource.org/spring-roo/reference/

pdf/spring-roo-docs.pdf, May 2010.

[4] Dan Allen. Seam in Action. Manning Publications Co., Greenwich, CT, USA,
2008.

[5] Helmut Balzert. Lehrbuch der Softwaretechnik. Spektrum, Akad. Verl.,
Heidelberg, 1998.

[6] Bryan Basham, Kathy Sierra, and Bert Bates. Head First Servlets and JSP:
Passing the Sun Certified Web Component Developer Exam. O’Reilly Media,
second edition edition, 3 2008.

[7] Christian Bauer and Gavin King. Java Persistence with Hibernate. Manning
Publications Co., Greenwich, CT, USA, 2006.

[8] Emmanuel Bernard and Steve Peterson. JavaServer Faces Specification - Version
2.0.
http://jcp.org/aboutJava/communityprocess/final/jsr314,
June 2009.

[9] Emmanuel Bernard and Steve Peterson. JSR 303: Bean Validation.
http://people.redhat.com/~ebernard/validation/, October
2009.

[10] Barry Boehm. Managing software productivity and reuse. Computer, IEEE,
32:111 – 113, 1999.

100

http://blog.springsource.com/2011/01/11/whats-new-in-spring-roo-1-1-1/
http://blog.springsource.com/2011/01/11/whats-new-in-spring-roo-1-1-1/
http://static.springsource.org/spring-roo/reference/pdf/spring-roo-docs.pdf
http://static.springsource.org/spring-roo/reference/pdf/spring-roo-docs.pdf
http://jcp.org/aboutJava/communityprocess/final/jsr314
http://people.redhat.com/~ebernard/validation/

BIBLIOGRAPHY 101

[11] Barry W. Boehm. Improving software productivity. Computer, 20(9):43–57,
1987.

[12] Barry W. Boehm. Safe and simple software cost analysis. Software, IEEE,
17(5):14–17, 2000.

[13] Barry W. Boehm, Chris Abts, A. Winsor Brown, Sunita Chulani, Bradford K.
Clark, Ellis Horowitz, Ray Madachy, Donald Reifer, and Bert Steece. Software
Cost Estimation with Cocomo II. Prentice Hall, Inc., Upper Saddle River, NJ,
USA, 2000.

[14] Tilmann Bruckhaus, Nazim H. Madhavji, Ingrid Janssen, and John Henshaw. The
impact of tools on software productivity. Software, IEEE, 13:29, 1996.

[15] Julian M Bucknall. 10 mistakes every programmer makes.
http://www.techradar.com/.../

10-mistakes-every-programmer-makes-909424, November 2010.

[16] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and
Michael Stal. Pattern-Oriented Software Architecture, Volume 1: A System of
Patterns. Wiley, Chichester, UK, 1996.

[17] Sven Casteleyn, Florian Daniel, Peter Dolog, and Maristella Matera. Engineering
Web Applications (Data-Centric Systems and Applications). Springer, 1 edition, 8
2009.

[18] Nicholas Chen. Convention over Configuration. http:
//softwareengineering.vazexqi.com/files/pattern.html,
November 2006.

[19] Roberto Chinnici and Bill Shannon. Java Platform, Enterprise Edition (Java EE)
Specification, v6. http://www.jcp.org/en/jsr/detail?id=316,
December 2009.

[20] Scott Davis. Mastering Grails: Understanding plug-ins. Mix in new functionality
with ease. IBM developerWorks, http://www.ibm.com/
developerworks/java/library/j-grails07219/index.html,
July 2009.

[21] Gibeon Soares de Aquino Junior and Silvio Romero de Lemos Meira. Towards
effective productivity measurement in software projects. Software Engineering
Advances, International Conference on, 0:241–249, 2009.

[22] Suzana Candido de Barros Sampaio, Emanuella Aleixo Barros, Gibeon Soares
de Aquino Junior, Mauro Jose Carlos e Silva, and Silvio Romero de Lemos Meira.
A review of productivity factors and strategies on software development. Software
Engineering Advances, International Conference on, pages 196–204, 2010.

http://www.techradar.com/.../10-mistakes-every-programmer-makes-909424
http://www.techradar.com/.../10-mistakes-every-programmer-makes-909424
http://softwareengineering.vazexqi.com/files/pattern.html
http://softwareengineering.vazexqi.com/files/pattern.html
http://www.jcp.org/en/jsr/detail?id=316
http://www.ibm.com/developerworks/java/library/j-grails07219/index.html
http://www.ibm.com/developerworks/java/library/j-grails07219/index.html

BIBLIOGRAPHY 102

[23] Fergal Dearle. Metaprogramming and the Groovy mop. http://www.
packtpub.com/article/metaprogramming-and-groovy-mop,
May 2010.

[24] Dániel Dékány. Freemarker Manual.
http://freemarker.sourceforge.net/docs/index.html,
December 2009.

[25] T. DeMarco. Controlling Software Projects: Management, Measurement, and
Estimates. Prentice Hall PTR, Upper Saddle River, NJ, USA, 1986.

[26] Linda DeMichiel. Java Persistence api, version 2.0.
http://jcp.org/aboutJava/communityprocess/final/jsr317,
December 2009.

[27] Gordon Dickens and Ken Rimple. Spring Roo in Action. Book accessed through
the Early Access Program of Manning (MEAP), print edition planned to be
published in Spring 2011, December 2010.

[28] Stuart Douglas. Current state of hot deployment in java. http://community.
jboss.org/wiki/Currentstateofhotdeploymentinjava, June
2010.

[29] Dirk Draheim and Gerald Weber. An overview of state-of-the-art architectures for
active web sites. Technical report, Free University Berlin, 2002.

[30] Khaled El Emam and A. Günes Koru. A replicated survey of it software project
failures. IEEE Software, 25:84–90, 2008.

[31] Jason Farrell and George S. Nezlek. Rich internet applications - the next stage of
application development. In ITI ’07: Information Technology Interfaces,, pages
413 – 418, Washington, DC, USA, 2007. IEEE Computer Society.

[32] Mohamed Fayad and Douglas C. Schmidt. Object-oriented application
frameworks. Commun. ACM, 40(10):32–38, 1997.

[33] Anatoly Fedosik, Olga Chikvina, Michael Sorokin, and Svetlana Mukhina. Seam
Development Tools Reference Guide. http://docs.jboss.org/tools/
3.1.0.GA/en/seam/html/index.html, 2010.

[34] Seth Fogie. How Not to Use Cookies. http://www.informit.com/
guides/content.aspx?g=security&seqNum=232, December 2006.

[35] Apache Software Foundation. Apache Tiles Tutorial.
http://tiles.apache.org/framework/tutorial/index.html,
June 2010.

http://www.packtpub.com/article/metaprogramming-and-groovy-mop
http://www.packtpub.com/article/metaprogramming-and-groovy-mop
http://freemarker.sourceforge.net/docs/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr317
http://community.jboss.org/wiki/Currentstateofhotdeploymentinjava
http://community.jboss.org/wiki/Currentstateofhotdeploymentinjava
http://docs.jboss.org/tools/3.1.0.GA/en/seam/html/index.html
http://docs.jboss.org/tools/3.1.0.GA/en/seam/html/index.html
http://www.informit.com/guides/content.aspx?g=security&seqNum=232
http://www.informit.com/guides/content.aspx?g=security&seqNum=232
http://tiles.apache.org/framework/tutorial/index.html

BIBLIOGRAPHY 103

[36] Martin Fowler. Patterns of Enterprise Application Architecture. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2002.

[37] Martin Fowler. InversionOfControl.
http://martinfowler.com/bliki/InversionOfControl.html,
June 2005.

[38] Martin Fowler. Mocks Aren’t Stubs.
http://martinfowler.com/articles/mocksArentStubs.html,
January 2007.

[39] Martin Fowler. Using Domain Specific Languages.
http://martinfowler.com/dslwip/UsingDsls.html#

DefiningDomainSpecificLanguages, April 2008.

[40] George Franciscus and Craig R. McClanahan. Struts in Action: Building Web
Applications With the Leading Java Framework. Manning Publications Co.,
Greenwich, CT, USA, 2002.

[41] Tom Gilb. Software metrics (Winthrop computer systems series). Winthrop
Publishers, 1977.

[42] Andreas Grabner. Top 10 Performance Problems taken from Zappos, Monster,
Thomson and Co. http://www.theserverside.com/discussions/
thread.tss?thread_id=60382, June 2010.

[43] Robert Hanson and Adam Tacy. GWT in Action: Easy Ajax with the Google Web
Toolkit. Manning Publications, 6 2007.

[44] Jim Highsmith and Alistair Cockburn. Agile software development: The business
of innovation. Computer, IEEE, 34:120, 2001.

[45] Jacob Hookom. Facelets - JavaServer Faces View Definition Framework.
https:

//facelets.dev.java.net/nonav/docs/dev/docbook.html.

[46] José Ignacio Fernández-Villamor, Laura Díaz-Casillas, and Carlos Á. Iglesias. A
Comparison Model for Agile Web Frameworks. In EATIS ’08: Proceedings of the
2008 Euro American Conference on Telematics and Information Systems, pages
1–8, New York, NY, USA, 2008. ACM.

[47] Eric Jendrock, Ian Evans, Devika Gollapudi, Kim Haase, and Chinmayee
Srivathsa. The Java EE 6 Tutorial.
http://docs.jboss.org/weld/reference/1.0.1-Final/en-US,
November 2010.

http://martinfowler.com/bliki/InversionOfControl.html
http://martinfowler.com/articles/mocksArentStubs.html
http://martinfowler.com/dslwip/UsingDsls.html#DefiningDomainSpecificLanguages
http://martinfowler.com/dslwip/UsingDsls.html#DefiningDomainSpecificLanguages
http://www.theserverside.com/discussions/thread.tss?thread_id=60382
http://www.theserverside.com/discussions/thread.tss?thread_id=60382
https://facelets.dev.java.net/nonav/docs/dev/docbook.html
https://facelets.dev.java.net/nonav/docs/dev/docbook.html
http://docs.jboss.org/weld/reference/1.0.1-Final/en-US

BIBLIOGRAPHY 104

[48] Brian Johnson, Ralph E. Foote. Designing reusable classes. Journal of
Object-Oriented Programming, 1(2):22–35, June/July 1988.

[49] Michael Jouravlev. Redirect After Post. http://www.theserverside.
com/news/1365146/Redirect-After-Post, August 2004.

[50] Gerti Kappel, Birgit Pröll, Siegfried Reich, and Werner Retschitzegger, editors.
Web Engineering - The Discipline of Systematic Development of Web
Applications. John Wiley & Sons Ltd., England, 2006.

[51] Gavin King, Pete Muir, Dan Allen, and David Allen. JSR-299: The new Java
standard for dependency injection and contextual lifecycle management.
http://download.oracle.com/javaee/6/tutorial/doc.

[52] Gavin King, Pete Muir, et al. Seam – Contextual Components, A Framework for
Enterprise Java. http://docs.jboss.org/seam/2.2.0.GA/en-US/
pdf/seam_reference.pdf, July 2009.

[53] Dierk Koenig, Andrew Glover, Paul King, Guillaume Laforge, and Jon Skeet.
Groovy in Action. Manning Publications Co., Greenwich, CT, USA, 2007.

[54] Holger Koschek, Oliver Ihns, Dierk Harbeck, Stefan M. Heldt, Jo Ehm, Carsten
Sahling, and Roman Schlömmer. EJB 3 professionell. Dpunkt.verlag Gmbh,
2007.

[55] Cameron McKenzie. Moving from Spring to Java EE 6: The Age of Frameworks
is Over. http://www.theserverside.com/discussions/thread.
tss?thread_id=61023, October 2010.

[56] Bernd Müller and Harald Wehr. Java-Persistence-API mit Hibernate.
Addison-Wesley, Munich, Germany, 2007.

[57] Vu Nguyen, LiGuo Huang, and Barry Boehm. An analysis of trends in
productivity and cost drivers over years. Technical report, Center for Systems and
Software Engineering, University of Southern California, August 2010.

[58] Jeff Offutt. Quality Attributes of Web Software Applications. IEEE Softw.,
19(2):25–32, 2002.

[59] Ed Ort. New JDK 7 Feature: Support for Dynamically Typed Languages in the
Java Virtual Machine. http://java.sun.com/developer/
technicalArticles/DynTypeLang/index.html, July 2009.

[60] Linda Dailey Paulson. Developers shift to dynamic programming languages.
Computer, 40:12–15, February 2007.

http://www.theserverside.com/news/1365146/Redirect-After-Post
http://www.theserverside.com/news/1365146/Redirect-After-Post
http://download.oracle.com/javaee/6/tutorial/doc
http://docs.jboss.org/seam/2.2.0.GA/en-US/pdf/seam_reference.pdf
http://docs.jboss.org/seam/2.2.0.GA/en-US/pdf/seam_reference.pdf
http://www.theserverside.com/discussions/thread.tss?thread_id=61023
http://www.theserverside.com/discussions/thread.tss?thread_id=61023
http://java.sun.com/developer/technicalArticles/DynTypeLang/index.html
http://java.sun.com/developer/technicalArticles/DynTypeLang/index.html

BIBLIOGRAPHY 105

[61] Christy Pettey and Ben Tudor. Gartner Says Worldwide enterprise Software
Revenue to Surpass $232 Billion in 2010.
http://www.gartner.com/it/page.jsp?id=1437613, September
2010.

[62] Matt Raible. Comparing Java Web Frameworks. Presentation on ApacheCon,
2007.

[63] Matt Raible. Comparing JVM Web Frameworks. Presentation on Devoxx, 2010.

[64] Graeme Rocher and Jeff Brown. Grails 1.2. Das produktive Web-Framework für
die Java-Plattform. Mitp-Verlag, Bonn, Germany, February 2010.

[65] Graeme Rocher, Peter Ledbrook, Marc Palmer, and Jeff Brown. The Grails
Framework – Reference Documentation.
http://grails.org/doc/latest/guide/single.pdf, June 2010.

[66] Melanie Ruhe, Ross Jeffery, and Isabella Wieczorek. Cost estimation for web
applications. Software Engineering, International Conference on, 0:285, 2003.

[67] Shin Sang. How to Choose A Web Application Framework. Presentation on
Hong Kong Hospital Authority, 2007.

[68] Govind Seshadri. Understanding JavaServer Pages Model 2 architecture.
http://www.javaworld.com/javaworld/jw-12-1999/

jw-12-ssj-jspmvc.html, December 1999.

[69] Tony C. Shan and Winnie W. Hua. Taxonomy of Java Web Application
Frameworks. E-Business Engineering, IEEE International Conference on, pages
378–385, 2006.

[70] Vijay Shinde. How can a Web site be tested? http://www.

softwaretestinghelp.com/how-can-a-web-site-be-tested,
July 2007.

[71] Glen Smith and Peter Ledbrook. Grails in Action. Manning Publications Co.,
Greenwich, CT, USA, 2009.

[72] Andrew S. Tanenbaum and Maarten van Steen. Distributed Systems: Principles
and Paradigms (2nd Edition). Prentice Hall, Inc., Upper Saddle River, NJ, USA,
2006.

[73] Iwan Vosloo and Derrick G. Kourie. Server-Centric Web Frameworks: An
Overview. ACM Comput. Surv., 40(2):1–33, 2008.

[74] Eberhard Wolff. Spring 3: Framework für die Java-Entwicklung. dpunkt Verlag,
Heidelberg, Germany, 3. edition, February 2010.

http://www.gartner.com/it/page.jsp?id=1437613
http://grails.org/doc/latest/guide/single.pdf
http://www.javaworld.com/javaworld/jw-12-1999/jw-12-ssj-jspmvc.html
http://www.javaworld.com/javaworld/jw-12-1999/jw-12-ssj-jspmvc.html
http://www.softwaretestinghelp.com/how-can-a-web-site-be-tested
http://www.softwaretestinghelp.com/how-can-a-web-site-be-tested

BIBLIOGRAPHY 106

[75] ZeroTurnaround. What happens when over 1000 Java developers compare their
development environments? http://www.zeroturnaround.com/

java-ee-productivity-report-2011, December 2010.

http://www.zeroturnaround.com/java-ee-productivity-report-2011
http://www.zeroturnaround.com/java-ee-productivity-report-2011

Appendix A

Catalog of Criteria

The following table gives an overview of the productivity criteria of Web Application
Frameworks worked out in chapter 5. The catalog is sorted according to the different
sections. Each criterion is tagged with a unique id; for each section, numeration starts
again, combined with a single letter that identifies the respective section. This approach
should simplify the work with the catalog and ease the discussion about single criteria.
Furthermore, a short explanation is given for each point; in case more detailed infor-
mation is required, a reference to the section or page discussing the specific criterion is
provided.

The table also includes an estimation regarding a criterion’s influence on the de-
veloper’s productivity, ranging from LOW to HIGH in three levels. However, this also
depends on the respective project.

A
.1

M
od

el
(M

)

N
o.

C
ri

te
ri

on
D

es
cr

ip
tio

n
R

ef
.

In
flu

en
ce

C
on

fig
ur

in
g

th
e

D
at

ab
as

e
C

on
ne

ct
io

n
M

1
Pr

oj
ec

tG
en

er
at

or
Su

p-
po

rt
In

st
ea

d
of

m
an

ua
lly

de
fin

in
g

th
e

co
nn

ec
tio

n
se

tti
ng

s,
th

e
W

A
F’

s
ge

ne
ra

to
r

pr
o-

vi
de

s
su

pp
or

t
he

re
.

C
on

fig
ur

at
io

n
fil

es
ar

e
cr

ea
te

d
au

to
m

at
ic

al
ly

an
d

pu
t

to
th

e
ri

gh
tp

la
ce

in
si

de
th

e
pr

oj
ec

t.
R

ea
so

na
bl

e
de

fa
ul

ts
et

tin
gs

ar
e

us
ed

w
he

re
po

ss
i-

bl
e,

fo
llo

w
in

g
a

C
on

ve
nt

io
n

ov
er

C
on

fig
ur

at
io

n
ap

pr
oa

ch
.

5.
1.

1
L
O
W

M
2

Su
pp

or
to

fp
ar

tic
ul

ar
V

en
do

rs
T

he
W

A
F

pr
ov

id
es

su
pp

or
t

fo
r

sp
ec

ifi
c,

of
te

n
us

ed
da

ta
ba

se
ve

nd
or

s.
H

en
ce

,
th

e
co

nfi
gu

ra
tio

n
su

pp
or

tc
an

be
im

pr
ov

ed
by

m
ak

in
g

th
e

JD
B

C
dr

iv
er

av
ai

la
bl

e
au

to
m

at
ic

al
ly

an
d

in
tr

od
uc

in
g

ve
nd

or
sp

ec
ifi

c
co

nfi
gu

ra
tio

ns
.

5.
1.

1
L
O
W

M
3

R
ec

on
fig

ur
at

io
n

Su
pp

or
t

T
he

W
A

F’
s

su
pp

or
tr

eg
ar

di
ng

da
ta

ba
se

co
nfi

gu
ra

tio
n

is
av

ai
la

bl
e

th
ro

ug
ho

ut
th

e
w

ho
le

de
ve

lo
pm

en
tp

ha
se

,n
ot

on
ly

w
he

n
cr

ea
tin

g
a

ne
w

ap
pl

ic
at

io
n.

5.
1.

1
L
O
W

M
4

E
nv

ir
on

m
en

tC
on

fig
ur

a-
tio

n
T

he
W

A
F’

s
su

pp
or

tr
eg

ar
di

ng
da

ta
ba

se
co

nfi
gu

ra
tio

n
is

re
us

ab
le

fo
r

di
ff

er
en

te
n-

vi
ro

nm
en

ts
,l

ik
e

te
st

,d
ev

el
op

m
en

to
rp

ro
du

ct
io

n
pr

ofi
le

s.
5.

1.
1

L
O
W

R
ev

er
se

E
ng

in
ee

ri
ng

th
e

D
at

ab
as

e
M

5
R

ev
er

se
E

ng
in

ee
ri

ng
Su

pp
or

t
T

he
W

A
F

is
ab

le
to

in
tr

os
pe

ct
a

da
ta

ba
se

an
d

ge
ne

ra
te

pe
rs

is
te

nt
en

tit
ie

s
on

th
e

ba
si

s
of

th
is

in
fo

rm
at

io
n.

T
he

im
po

rt
an

ce
of

th
is

fe
at

ur
e

al
so

de
pe

nd
s

on
ho

w
cl

os
e

th
e

m
od

el
co

de
us

ed
by

th
e

W
A

F
st

ic
ks

to
th

e
st

an
da

rd
.

If
st

an
da

rd
,a

th
ir

d
pa

rt
y

to
ol

ta
ilo

re
d

fo
rr

ev
er

se
en

gi
ne

er
in

g
w

ill
lik

el
y

ex
is

te
ls

ew
he

re
.

5.
1.

2
H
I
G
H

M
6

In
cr

em
en

ta
lR

ev
er

se
E

n-
gi

ne
er

in
g

If
th

e
da

ta
ba

se
is

ac
ce

ss
ed

an
d

m
od

ifi
ed

by
ot

he
rd

ev
el

op
er

so
ra

pp
lic

at
io

ns
du

ri
ng

de
ve

lo
pm

en
t,

in
cr

em
en

ta
lr

ev
er

se
en

gi
ne

er
in

g
he

lp
s

to
di

sc
ov

er
sc

he
m

a
ch

an
ge

s
an

d
ad

ap
tt

he
ap

pl
ic

at
io

n’
s

m
od

el
au

to
m

at
ic

al
ly

,i
fd

es
ir

ed
.

5.
1.

2
L
O
W

N
o.

C
ri

te
ri

on
D

es
cr

ip
tio

n
R

ef
.

In
flu

en
ce

M
7

Si
m

pl
e

R
ev

er
se

E
ng

i-
ne

er
in

g
C

on
tr

ol
A

si
m

pl
e

re
ve

rs
e

en
gi

ne
er

in
g

co
nt

ro
la

llo
w

s
in

cl
ud

in
g

or
ex

cl
ud

in
g

ce
rt

ai
n

ta
bl

es
fr

om
th

e
re

ve
rs

e
en

gi
ne

er
in

g
pr

oc
es

s.
B

es
id

es
ac

ce
le

ra
tin

g
th

e
re

en
gi

ne
er

in
g

pr
o-

ce
ss

,
th

is
re

lie
ve

s
th

e
de

ve
lo

pe
r

fr
om

de
le

tin
g

un
de

si
re

d
en

tit
ie

s,
re

fe
re

nc
es

to
th

es
e

ob
je

ct
s,

an
d

an
y

ar
tif

ac
ts

cr
ea

te
d

in
co

nj
un

ct
io

n
w

ith
th

e
en

tit
ie

s.

5.
1.

2
L
O
W

M
8

C
us

to
m

R
ev

er
se

E
ng

i-
ne

er
in

g
St

ra
te

gi
es

C
us

to
m

st
ra

te
gi

es
m

ak
e

it
po

ss
ib

le
to

ad
dr

es
s

un
de

si
re

d
na

m
in

g
co

nv
en

tio
ns

,c
us

-
to

m
iz

e
ty

pe
m

ap
pi

ng
s

or
pr

ov
id

e
ad

di
tio

na
li

nf
or

m
at

io
n

th
e

re
ve

rs
e

en
gi

ne
er

in
g

pr
oc

es
s

ca
nn

ot
ga

th
er

fr
om

th
e

m
et

ad
at

a
st

or
ed

in
th

e
da

ta
ba

se
al

on
e.

5.
1.

2
A
V
E
R
A
G
E

To
p-

do
w

n
D

ev
el

op
m

en
tS

up
po

rt
M

9
St

ub
G

en
er

at
io

n
T

he
W

A
F’

s
ge

ne
ra

to
r

pr
ov

id
es

a
w

ay
to

ge
ne

ra
te

st
ub

s
fo

r
pe

rs
is

te
nt

en
ti-

tie
s.

T
ho

se
st

ub
s

ar
e

pr
op

er
ly

co
nfi

gu
re

d
w

ith
in

th
e

fr
am

ew
or

k,
bu

t
co

nt
ai

n
no

ap
pl

ic
at

io
n-

sp
ec

ifi
c

co
de

ye
t.

T
he

st
ub

s
m

ay
al

re
ad

y
de

fin
e
i
d

an
d
v
e
r
s
i
o
n

fie
ld

s.

5.
1.

3
A
V
E
R
A
G
E

M
10

Fi
el

d
G

en
er

at
io

n
If

th
e

ge
ne

ra
tio

n
of

si
ng

le
pe

rs
is

te
nt

en
tit

ie
s

is
po

ss
ib

le
,t

he
W

A
F

m
ig

ht
al

so
su

p-
po

rt
th

e
de

fin
iti

on
of

fie
ld

s
an

d
re

la
tio

ns
hi

ps
to

ot
he

r
en

tit
ie

s
by

m
ea

ns
of

its
pr

oj
ec

tg
en

er
at

or
.

5.
1.

3
L
O
W

M
11

A
cc

es
so

rG
en

er
at

io
n

Fo
r

ev
er

y
ne

w
ly

de
fin

ed
fie

ld
,

th
e

W
A

F
au

to
m

at
ic

al
ly

ge
ne

ra
te

s
th

e
re

sp
ec

tiv
e

ge
tte

r
an

d
se

tte
r

m
et

ho
ds

.
T

ho
ug

h
of

te
n

re
qu

ir
ed

by
va

ri
ou

s
fr

am
ew

or
ks

,
th

is
is

so
m

et
hi

ng
ea

si
ly

fo
rg

ot
te

n
by

th
e

de
ve

lo
pe

r
–

a
m

is
ta

ke
no

t
di

sc
ov

er
ed

un
til

de
pl

oy
m

en
t.

5.
1.

3
A
V
E
R
A
G
E

M
12

Te
m

pl
at

e
A

da
pt

io
n

To
ge

ne
ra

te
en

tit
ie

s,
W

A
Fs

ty
pi

ca
lly

m
ak

e
us

e
of

sp
ec

ia
lt

em
pl

at
e

en
gi

ne
s.

T
he

un
de

rl
yi

ng
te

m
pl

at
es

sh
ou

ld
be

ac
ce

ss
ib

le
to

th
e

de
ve

lo
pe

rf
or

ad
ju

st
in

g
th

e
co

de
ge

ne
ra

tio
n

pr
oc

es
s

to
th

e
co

nv
en

tio
ns

us
ed

in
th

e
re

sp
ec

tiv
e

de
ve

lo
pm

en
tp

ro
je

ct
.

5.
1.

3
L
O
W

N
o.

C
ri

te
ri

on
D

es
cr

ip
tio

n
R

ef
.

In
flu

en
ce

V
al

id
at

io
n

of
E

nt
iti

es
M

13
Se

pa
ra

tio
n

of
C

on
ce

rn
s

T
he

W
A

F
pr

ov
id

es
an

ex
pl

ic
it

va
lid

at
io

n
su

pp
or

t
ai

m
in

g
fo

r
se

pa
ra

tio
n

of
co

n-
ce

rn
s.

O
ne

po
ss

ib
le

ap
pr

oa
ch

is
to

pr
ov

id
e

an
im

pl
em

en
ta

tio
n

of
th

e
B

ea
n

V
al

i-
da

tio
n

sp
ec

ifi
ca

tio
n.

5.
1.

4
A
V
E
R
A
G
E

M
14

D
ec

la
ra

tiv
e

A
pp

ro
ac

h
V

al
id

at
io

ns
ar

e
de

fin
ed

in
a

de
cl

ar
at

iv
e

m
an

ne
r.

T
hi

s
pr

ev
en

ts
th

e
de

ve
lo

pe
rf

ro
m

st
ri

ng
in

g
to

ge
th

er
i
f

co
nd

iti
on

s
an

d
ot

he
r

as
se

rt
io

ns
.

Su
ch

ap
pr

oa
ch

es
ar

e
to

o
er

ro
r-

pr
on

e
an

d
tim

e-
co

ns
um

in
g

in
co

m
pa

ri
so

n.

5.
1.

4
H
I
G
H

M
15

R
ev

er
se

E
ng

in
ee

ri
ng

T
he

in
fo

rm
at

io
n

av
ai

la
bl

e
fr

om
th

e
da

ta
ba

se
an

d
JD

B
C

m
et

ad
at

a
is

us
ed

by
th

e
re

ve
rs

e
en

gi
ne

er
in

g
pr

oc
es

s
to

de
cl

ar
e

va
lid

at
io

n
co

ns
tr

ai
nt

s
fo

r
fie

ld
s

or
w

ho
le

cl
as

se
s.

5.
1.

4
A
V
E
R
A
G
E

M
16

C
ro

ss
-fi

el
d

V
al

id
at

io
ns

T
he

de
cl

ar
at

io
n

of
co

ns
tr

ai
nt

s
co

nc
er

ni
ng

m
ul

tip
le

fie
ld

s
is

po
ss

ib
le

in
a

w
ay

co
n-

si
st

en
tt

o
th

e
W

A
F’

s
ov

er
al

lv
al

id
at

io
n

ap
pr

oa
ch

.
5.

1.
4

L
O
W

M
17

G
en

er
at

or
Su

pp
or

t
If

th
e

W
A

F
su

pp
or

ts
th

e
de

fin
iti

on
of

si
ng

le
en

tit
y

fie
ld

s
th

ro
ug

h
th

e
ge

ne
ra

to
r,

th
en

th
e

de
cl

ar
at

io
n

of
fie

ld
-s

pe
ci

fic
va

lid
at

io
ns

is
po

ss
ib

le
in

th
e

sa
m

e
w

ay
.

5.
1.

4
L
O
W

E
nt

ity
L

if
ec

yc
le

M
an

ag
em

en
t

M
18

Pe
rs

is
te

nc
e

C
on

te
xt

H
id

-
in

g
Si

m
pl

e
op

er
at

io
ns

on
en

tit
ie

sa
re

su
pp

or
te

d
by

hi
di

ng
th

e
pe

rs
is

te
nc

e
co

nt
ex

t,
e.

g.
,

by
us

in
g

an
A

ct
iv

e
R

ec
or

d
pa

tte
rn

ap
pr

oa
ch

.
T

hi
s

re
lie

ve
s

th
e

de
ve

lo
pe

r
fr

om
ob

ta
in

in
g

a
pe

rs
is

te
nc

e
co

nt
ex

t
an

d
ha

nd
le

it
ex

pl
ic

itl
y,

un
ne

ce
ss

ar
y

fo
r

si
m

pl
e

us
e

ca
se

s.

5.
1.

5
A
V
E
R
A
G
E

M
19

E
xt

en
de

d
Pe

rs
is

te
nc

e
C

on
te

xt
H

an
dl

in
g

T
he

W
A

F
ex

pl
ic

itl
y

su
pp

or
ts

th
e

st
or

ag
e

of
si

ng
le

en
tit

ie
s

in
lo

ng
ru

nn
in

g
co

n-
ve

rs
at

io
ns

an
d

ex
te

nd
ed

pe
rs

is
te

nc
e

co
nt

ex
ts

.O
th

er
w

is
e,

co
st

ly
m

er
ge

op
er

at
io

ns
ar

e
re

qu
ir

ed
.I

m
pl

em
en

tin
g

an
ow

n
so

lu
tio

n
he

re
is

a
co

m
pl

ex
ta

sk
.

5.
1.

5
A
V
E
R
A
G
E

N
o.

C
ri

te
ri

on
D

es
cr

ip
tio

n
R

ef
.

In
flu

en
ce

D
at

ab
as

e
Q

ue
ri

es
M

20
Q

ue
ry

Su
pp

or
t

T
he

W
A

F
pr

ov
id

es
su

pp
or

t
fo

r
ha

nd
lin

g
re

su
lt

se
ts

in
lo

ng
ru

nn
in

g
co

nv
er

sa
-

tio
ns

an
d

ex
te

nd
ed

pe
rs

is
te

nc
e

co
nt

ex
ts

.
O

th
er

w
is

e,
co

st
ly

an
d

po
ss

ib
ly

tim
e-

co
ns

um
in

g
m

er
ge

op
er

at
io

ns
ar

e
re

qu
ir

ed
.

5.
1.

6
H
I
G
H

M
21

D
yn

am
ic

Fi
nd

er
s

B
y

ex
am

in
in

g
an

en
tit

ie
s

st
ru

ct
ur

e,
si

m
pl

e
qu

er
ie

s
re

qu
ir

ed
by

th
e

de
ve

lo
pe

r
ca

n
be

ge
ne

ra
te

d
au

to
m

at
ic

al
ly

,u
si

ng
fe

at
ur

es
pr

ov
id

ed
by

dy
na

m
ic

la
ng

ua
ge

s.
5.

1.
6

H
I
G
H

M
22

St
at

ic
Fi

nd
er

s
B

y
ex

am
in

in
g

an
en

tit
ie

s
st

ru
ct

ur
e,

si
m

pl
e

qu
er

ie
s

re
qu

ir
ed

by
th

e
de

ve
lo

pe
r

ca
n

be
ge

ne
ra

te
d

au
to

m
at

ic
al

ly
an

d
be

co
m

e
pa

rt
of

th
e

ap
pl

ic
at

io
n

co
de

.
T

hi
s

w
ay

,i
t

be
co

m
es

po
ss

ib
le

to
st

ar
tw

ith
a

ge
ne

ra
te

d
st

ub
an

d
re

us
e

it
fo

ro
w

n
m

od
ifi

ca
tio

ns
.

5.
1.

6
H
I
G
H

M
23

Fi
nd

er
s:

O
pe

ra
to

rS
up

-
po

rt
T

he
fie

ld
s

of
th

e
en

tit
y

ca
n

be
qu

er
ie

d
in

m
ul

tip
le

w
ay

s,
e.

g.
,u

si
ng

L
I
K
E

,E
Q
U
A
L

or
B
E
T
W
E
E
N

op
er

at
or

s.
5.

1.
6

A
V
E
R
A
G
E

M
24

Fi
nd

er
s:

D
ep

th
Fi

nd
er

s
ar

e
ab

le
to

in
co

rp
or

at
e

m
ul

tip
le

fie
ld

s
–

be
st

,a
n

in
fin

ite
am

ou
nt

of
fie

ld
s,

co
m

bi
ni

ng
th

em
us

in
g

A
N

D
or

O
R

op
er

at
or

s.
5.

1.
6

A
V
E
R
A
G
E

A
.2

V
ie

w
(V

)

N
o.

C
ri

te
ri

on
D

es
cr

ip
tio

n
R

ef
.

In
flu

en
ce

C
R

U
D

Pa
ge

s
V

1
C

re
at

e,
R

ea
d,

U
pd

at
e,

D
el

et
e,

L
is

t
T

he
W

A
F

pr
ov

id
es

su
pp

or
t

fo
r

ge
ne

ra
tin

g
th

e
m

os
t

ba
si

c
C

R
U

D
pa

ge
s,

th
at

is
,

vi
ew

s
to

cr
ea

te
,

sh
ow

,
ed

it
or

de
le

te
si

ng
le

en
tit

ie
s.

T
he

se
op

er
at

io
ns

(e
xc

ep
t

C
re

at
e)

al
so

im
pl

y
a

po
ss

ib
ili

ty
to

lis
te

xi
st

in
g

en
tit

ie
s

in
a

fir
st

st
ep

.
Su

ch
a

lis
t

th
en

al
lo

w
s

dr
ill

in
g-

do
w

n
to

sp
ec

ifi
c

en
tit

ie
s

to
re

ad
,u

pd
at

e
or

de
le

te
th

em
.

p.
65

H
I
G
H

N
o.

C
ri

te
ri

on
D

es
cr

ip
tio

n
R

ef
.

In
flu

en
ce

V
2

C
re

at
e,

U
pd

at
e:

V
al

id
a-

tio
n

/T
yp

e
co

ns
id

er
at

io
n

W
he

n
ge

ne
ra

tin
g

th
e

m
ar

ku
p,

sc
af

fo
ld

in
g

ta
ke

s
th

e
ty

pe
of

en
tit

y
fie

ld
s

an
d

th
e

co
rr

es
po

nd
in

g
va

lid
at

io
n

re
st

ri
ct

io
ns

in
to

ac
co

un
t.

T
hi

s
re

su
lts

in
ad

eq
ua

te
in

pu
t

fie
ld

s
w

ith
ex

pl
ic

it
de

pi
ct

io
n

of
re

qu
ir

ed
va

lu
es

.
To

su
pp

or
tv

al
id

at
io

n,
th

e
W

A
F

m
ig

ht
al

so
go

an
A

JA
X

-b
as

ed
ap

pr
oa

ch
he

re
.

p.
65

H
I
G
H

V
3

C
re

at
e,

U
pd

at
e:

Se
pa

ra
te

E
rr

or
fie

ld
s.

Fo
rp

ro
vi

di
ng

a
be

tte
ru

sa
bi

lit
y

in
in

pu
tf

or
m

,e
rr

or
m

es
sa

ge
s

(r
es

ul
tin

g
fr

om
va

l-
id

at
io

n
pr

oc
es

si
ng

)a
re

se
pa

ra
te

d
in

to
m

ul
tip

le
fie

ld
s,

ea
ch

on
e

re
la

te
d

to
a

si
ng

le
en

tit
y

fie
ld

.

p.
65

H
I
G
H

V
4

Se
ar

ch
in

g
T

he
W

A
F

su
pp

or
ts

to
se

ar
ch

fo
re

nt
iti

es
of

sp
ec

ifi
c

ty
pe

s.
B

y
an

al
yz

in
g

th
e

de
fin

ed
fie

ld
s,

th
is

fo
r

ex
am

pl
e

al
lo

w
s

us
in

g
a

Q
ue

ry
by

E
xa

m
pl

e
ap

pr
oa

ch
fo

r
Se

ar
ch

.
C

on
ce

rn
in

g
th

e
re

su
lt

pa
ge

s,
th

e
sa

m
e

re
qu

ir
em

en
ts

as
fo

rL
is

ts
ex

is
t,

th
at

is
,t

he
y

sh
ou

ld
al

lo
w

dr
ill

in
g-

do
w

n
to

pa
rt

ic
ul

ar
en

tit
ie

s
to

sh
ow

,u
pd

at
e

or
de

le
te

th
em

.

p.
65

H
I
G
H

V
5

L
is

t,
Se

ar
ch

in
g:

So
rt

in
g

W
he

n
su

pp
or

te
d,

th
e

lis
ts

an
d

re
su

lt
se

ts
ca

n
be

so
rt

ed
by

di
ff

er
en

t
cr

ite
ri

a,
de

-
pe

nd
in

g
on

th
e

fie
ld

s
de

fin
ed

in
th

e
re

sp
ec

tiv
e

en
tit

y,
in

an
as

ce
nd

in
g

or
de

sc
en

d-
in

g
m

an
ne

r,
as

th
e

us
er

de
si

re
s.

p.
65

A
V
E
R
A
G
E

V
6

L
is

t,
Se

ar
ch

in
g:

Pa
gi

na
-

tio
n

W
he

n
su

pp
or

te
d,

th
e

lis
ts

an
d

re
su

lt
se

ts
ca

n
be

tr
un

ca
te

d
in

to
m

ul
tip

le
pa

ge
s.

T
hi

s
al

lo
w

s
fo

ra
be

tte
rc

la
ri

ty
in

th
e

vi
ew

an
d

re
du

ce
s

th
e

da
ta

ba
se

lo
ad

.T
he

us
er

m
ig

ht
al

so
be

ab
le

to
de

fin
e

ho
w

m
an

y
en

tit
ie

s
sh

ow
up

on
a

si
ng

le
pa

ge
.

p.
65

H
I
G
H

V
7

Fi
nd

er
s

If
th

e
W

A
F

is
ab

le
to

ge
ne

ra
te

st
at

ic
fin

de
rs

,
th

e
ge

ne
ra

tio
n

of
ad

eq
ua

te
se

ar
ch

sc
re

en
s

th
at

in
vo

ke
th

es
e

fin
de

rs
be

co
m

es
po

ss
ib

le
.

p.
65

H
I
G
H

V
8

I1
8n

C
on

fig
ur

at
io

n
T

he
ge

ne
ra

te
d

C
R

U
D

sc
re

en
s

sh
ou

ld
be

fu
lly

co
nfi

gu
re

d
re

ga
rd

in
g

in
te

rn
at

io
na

l-
iz

at
io

n
co

nc
er

ns
.

p.
65

H
I
G
H

N
o.

C
ri

te
ri

on
D

es
cr

ip
tio

n
R

ef
.

In
flu

en
ce

D
yn

am
ic

Sc
af

fo
ld

in
g

V
9

C
om

pl
et

e
G

en
er

at
io

n
T

he
m

os
t

ba
si

c
su

pp
or

t
fo

r
dy

na
m

ic
sc

af
fo

ld
in

g
al

lo
w

s
ge

ne
ra

tin
g

al
l

av
ai

la
bl

e
vi

ew
s

fo
ra

ll
av

ai
la

bl
e

en
tit

ie
s

au
to

m
at

ic
al

ly
.

p.
67

A
V
E
R
A
G
E

V
10

Sp
ec

ifi
c

E
nt

ity
Ty

pe
s

T
he

W
A

F
al

lo
w

s
ap

pl
yi

ng
its

dy
na

m
ic

sc
af

fo
ld

in
g

ap
pr

oa
ch

w
ith

re
sp

ec
tt

o
sp

e-
ci

fic
en

tit
y

ty
pe

s.
T

he
fu

nc
tio

na
lit

y
re

ga
rd

in
g

di
ff

er
en

t
ty

pe
s

ca
n

be
pr

ov
id

ed
ex

pl
ic

itl
y

by
th

e
de

ve
lo

pe
r.

p.
67

H
I
G
H

V
11

Sp
ec

ifi
c

C
R

U
D

-P
ag

es
T

he
W

A
F

m
ak

es
it

po
ss

ib
le

to
de

fin
e

w
hi

ch
pa

rt
s

of
th

e
av

ai
la

bl
e

C
R

U
D

sc
re

en
s

sh
ou

ld
be

ge
ne

ra
te

d
dy

na
m

ic
al

ly
an

d
al

lo
w

s
de

fin
in

g
ot

he
r

fu
nc

tio
na

lit
y

m
an

u-
al

ly
.

p.
67

H
I
G
H

V
12

In
flu

en
ce

on
ge

ne
ra

te
d

Pa
ge

s
T

he
W

A
F

al
lo

w
s

co
nt

ro
lli

ng
th

e
dy

na
m

ic
sc

af
fo

ld
s

to
a

ce
rt

ai
n

de
gr

ee
,e

.g
.,

th
e

or
de

ri
ng

of
in

pu
tfi

el
ds

.
p.

67
L
O
W

St
at

ic
Sc

af
fo

ld
in

g
V

13
C

om
pl

et
e

G
en

er
at

io
n

T
he

m
os

tb
as

ic
su

pp
or

tf
or

st
at

ic
sc

af
fo

ld
in

g
al

lo
w

s
ge

ne
ra

tin
g

al
la

va
ila

bl
e

vi
ew

s
fo

ra
ll

av
ai

la
bl

e
en

tit
ie

s
au

to
m

at
ic

al
ly

.
p.

67
H
I
G
H

V
14

Sp
ec

ifi
c

E
nt

ity
Ty

pe
s

T
he

W
A

F
al

lo
w

s
ap

pl
yi

ng
its

st
at

ic
sc

af
fo

ld
in

g
ap

pr
oa

ch
w

ith
re

sp
ec

tt
o

sp
ec

ifi
c

en
tit

y
ty

pe
s.

T
hi

s
is

po
ss

ib
le

at
an

y
tim

e
du

ri
ng

de
ve

lo
pm

en
t.

p.
67

H
I
G
H

V
15

Sp
ec

ifi
c

C
R

U
D

-P
ag

es
T

he
W

A
F

m
ak

es
it

po
ss

ib
le

to
de

fin
e

w
hi

ch
pa

rt
s

of
th

e
av

ai
la

bl
e

C
R

U
D

sc
re

en
s

sh
ou

ld
be

ge
ne

ra
te

d.
W

he
n

on
ly

sp
ec

ifi
c

C
R

U
D

sc
re

en
s

ar
e

re
qu

ir
ed

,t
hi

s
fe

at
ur

e
av

oi
ds

th
e

de
le

tio
n

of
un

us
ed

pa
ge

s.
It

re
m

ai
ns

av
ai

la
bl

e
th

ro
ug

ho
ut

th
e

w
ho

le
de

ve
lo

pm
en

tp
ro

ce
ss

.

p.
67

L
O
W

V
16

R
ou

nd
-t

ri
pp

in
g

Sc
af

fo
ld

ed
pa

ge
s

ca
n

be
m

od
ifi

ed
by

th
e

de
ve

lo
pe

r
w

hi
le

ke
ep

in
g

vi
ew

ge
ne

ra
-

tio
n

ru
nn

in
g

(a
s

in
dy

na
m

ic
sc

af
fo

ld
in

g)
,b

ut
w

ith
ou

ti
nt

er
fe

ri
ng

w
ith

th
e

ch
an

ge
s

m
ad

e.
C

ha
ng

es
in

th
e

un
de

rl
yi

ng
en

tit
ie

s
ar

e
au

to
m

at
ic

al
ly

pr
op

ag
at

ed
to

al
lr

el
-

ev
an

tv
ie

w
s.

p.
68

H
I
G
H

N
o.

C
ri

te
ri

on
D

es
cr

ip
tio

n
R

ef
.

In
flu

en
ce

Te
m

pl
at

e
A

da
pt

io
n

V
17

A
da

pt
io

n
of

gl
ob

al
V

ie
w

Te
m

pl
at

es
To

pr
ev

en
ta

pp
ly

in
g

th
e

sa
m

e
ch

an
ge

s
re

qu
ir

ed
fo

ra
ny

ne
w

w
eb

ap
pl

ic
at

io
n

ov
er

an
d

ov
er

ag
ai

n,
th

e
W

A
F

al
lo

w
sa

da
pt

in
g

th
e

gl
ob

al
ly

ap
pl

ie
d

vi
ew

te
m

pl
at

es
us

ed
fo

rC
R

U
D

ge
ne

ra
tio

n.

p.
69

A
V
E
R
A
G
E

V
18

A
da

pt
io

n
of

lo
ca

lV
ie

w
Te

m
pl

at
es

To
pr

ev
en

ta
pp

ly
in

g
th

e
sa

m
e

ch
an

ge
s

re
qu

ir
ed

fo
r

an
y

ne
w

pa
ge

of
th

e
w

eb
ap

-
pl

ic
at

io
n

ov
er

an
d

ov
er

ag
ai

n,
th

e
W

A
F

al
lo

w
s

in
st

al
lin

g
th

e
gl

ob
al

te
m

pl
at

es
in

to
si

ng
le

w
eb

ap
pl

ic
at

io
ns

.F
ro

m
th

er
e

on
,l

oc
al

te
m

pl
at

es
ar

e
us

ed
fo

rt
he

ge
ne

ra
tio

n
of

C
R

U
D

pa
ge

s.
T

hi
s

w
ay

,l
oc

al
te

m
pl

at
e

m
od

ifi
ca

tio
ns

be
co

m
e

po
ss

ib
le

.

p.
69

H
I
G
H

V
ie

w
C

om
po

si
tio

n
V

19
E

xp
lic

it
C

om
po

si
tio

n
Su

pp
or

t
T

he
W

A
F

su
pp

or
ts

vi
ew

co
m

po
si

tio
n

in
de

pe
nd

en
to

f
a

sp
ec

ifi
c

vi
ew

te
ch

no
lo

gy
,

e.
g.

,b
y

im
pl

em
en

tin
g

th
e

D
ec

or
at

or
or

C
om

po
si

te
V

ie
w

pa
tte

rn
.

5.
2.

2
H
I
G
H

V
20

V
ie

w
Te

ch
no

lo
gy

su
p-

po
rt

s
C

om
po

si
tio

n
If

ex
pl

ic
it

co
m

po
si

tio
n

su
pp

or
ti

s
no

ta
va

ila
bl

e,
at

le
as

tt
he

us
ed

vi
ew

te
ch

no
lo

gy
sh

ou
ld

su
pp

or
tc

om
po

si
tio

n
th

en
.H

ow
ev

er
,s

uc
h

so
lu

tio
ns

ge
ne

ra
lly

ca
nn

ot
ke

ep
up

w
ith

ex
pl

ic
it

co
m

po
si

tio
n

su
pp

or
t.

5.
2.

2
H
I
G
H

In
te

rn
at

io
na

liz
at

io
n

V
21

Pr
e-

co
nfi

gu
ra

tio
n

A
ll

co
nfi

gu
ra

tio
n

st
ep

s,
in

cl
ud

in
g

th
e

cr
ea

tio
n

an
d

po
si

tio
ni

ng
of

re
so

ur
ce

bu
nd

le
s

fo
rt

he
de

fa
ul

tl
oc

al
e,

ar
e

au
to

m
at

ic
al

ly
ca

rr
ie

d
ou

tb
y

th
e

W
A

F.
5.

2.
3

A
V
E
R
A
G
E

V
22

A
ut

om
at

ic
L

oc
al

e
D

et
ec

-
tio

n
T

he
W

A
F

in
te

gr
at

es
a

m
ec

ha
ni

sm
to

de
te

ct
th

e
us

er
’s

lo
ca

le
an

d
au

to
m

at
ic

al
ly

re
tr

ie
ve

s
th

e
co

rr
es

po
nd

in
g

re
so

ur
ce

bu
nd

le
.

5.
2.

3
H
I
G
H

V
23

R
es

ou
rc

e
bu

nd
le

A
bs

tr
ac

-
tio

n
Fo

rm
an

y
lib

ra
ri

es
an

d
fr

am
ew

or
ks

in
te

gr
at

ed
in

to
a

W
A

F
of

te
n

pr
ov

id
e

th
ei

ro
w

n
i1

8n
-s

up
po

rt
an

d
co

m
e

w
ith

di
ff

er
en

tr
es

ou
rc

e
bu

nd
le

s,
th

e
W

A
F

ab
st

ra
ct

s
fr

om
th

is
be

ha
vi

or
by

pr
ov

id
in

g
a

sp
ec

ia
lc

om
po

ne
nt

th
at

al
lo

w
s

a
ce

nt
ra

la
cc

es
s

to
al

l
th

es
e

bu
nd

le
s.

5.
2.

3
A
V
E
R
A
G
E

N
o.

C
ri

te
ri

on
D

es
cr

ip
tio

n
R

ef
.

In
flu

en
ce

V
24

L
oc

al
e

Sw
itc

hi
ng

W
he

n
pr

ov
id

in
g

di
ff

er
en

tl
oc

al
es

,t
he

W
A

F
ea

se
s

th
ei

r
te

st
in

g
by

si
m

pl
if

yi
ng

th
e

sw
itc

h
be

tw
ee

n
di

ff
er

en
t

la
ng

ua
ge

s,
e.

g.
,b

y
us

in
g

sp
ec

ia
l

U
R

L
pa

ra
m

et
er

s
th

at
al

lo
w

a
m

an
ua

ld
efi

ni
tio

n
of

th
e

lo
ca

le
to

us
e.

5.
2.

3
L
O
W

Ta
g

L
ib

ra
ri

es
V

25
A

va
ila

bi
lit

y
of

Ta
g

L
i-

br
ar

ie
s

To
av

oi
d

th
e

im
pl

em
en

ta
tio

n
of

ne
w

ta
gs

fo
r

th
e

ap
pl

ic
at

io
n,

a
hi

gh
am

ou
nt

of
(t

hi
rd

pa
rt

y)
lib

ra
ri

es
is

av
ai

la
bl

e
fo

r
th

e
de

fa
ul

t
vi

ew
te

ch
no

lo
gy

us
ed

by
th

e
W

A
F.

5.
2.

4
H
I
G
H

V
26

Ta
g

L
ib

ra
ri

es
by

th
e

W
A

F
If

th
e

W
A

F
pr

ov
id

es
ce

rt
ai

n
"s

w
ee

ts
po

ts
"

in
its

us
ag

e,
an

d
th

ey
al

so
ad

dr
es

s
th

e
V

ie
w

,t
he

n
sp

ec
ia

lt
ag

lib
ra

ri
es

su
pp

or
tin

g
th

es
e

us
e

ca
se

s
sh

ou
ld

co
m

e
bu

nd
le

d
w

ith
th

e
fr

am
ew

or
k.

5.
2.

4
A
V
E
R
A
G
E

A
.3

C
on

tr
ol

le
r

(C
)

N
o.

C
ri

te
ri

on
D

es
cr

ip
tio

n
R

ef
.

In
flu

en
ce

Sc
af

fo
ld

in
g

C
1

C
om

pl
et

e
G

en
er

at
io

n
T

he
m

os
t

ba
si

c
op

tio
n

fo
r

a
W

A
F

pr
ov

id
in

g
co

nt
ro

lle
r

sc
af

fo
ld

in
g.

C
on

tr
ol

le
rs

fo
r

ea
ch

en
tit

y
ar

e
cr

ea
te

d,
co

nt
ai

ni
ng

al
la

va
ila

bl
e

ac
tio

n
m

et
ho

ds
fo

r
al

la
va

il-
ab

le
C

R
U

D
pa

ge
s.

T
he

se
co

nt
ro

lle
rs

w
or

k
ou

t-
of

-t
he

-b
ox

,t
ha

ti
s,

th
ey

ar
e

fu
lly

co
nfi

gu
re

d
an

d
co

m
pl

et
el

y
im

pl
em

en
te

d.

5.
3.

1
H
I
G
H

C
2

Sp
ec

ifi
c

en
tit

y
B

y
po

in
tin

g
th

e
W

A
F

to
a

si
ng

le
en

tit
y,

a
co

nt
ro

lle
r

fo
r

th
is

sp
ec

ifi
c

en
tit

y
is

ge
ne

ra
te

d,
co

nt
ai

ni
ng

al
la

va
ila

bl
e

co
nt

ro
lle

ra
ct

io
ns

.I
ft

he
W

A
F

do
es

no
tp

ro
vi

de
su

ch
an

op
tio

n,
th

is
w

ou
ld

re
du

ce
sc

af
fo

ld
in

g
to

be
us

ed
in

a
re

ve
rs

e-
en

gi
ne

er
in

g
co

nt
ex

t.

5.
3.

1
H
I
G
H

N
o.

C
ri

te
ri

on
D

es
cr

ip
tio

n
R

ef
.

In
flu

en
ce

C
3

Sp
ec

ifi
c

co
nt

ro
lle

ra
c-

tio
ns

In
st

ea
d

of
ge

ne
ra

tin
g

al
la

ct
io

ns
,t

he
W

A
F

pr
ov

id
es

a
w

ay
to

sp
ec

if
y

w
hi

ch
ac

tio
n

m
et

ho
ds

to
im

pl
em

en
tf

or
th

e
re

sp
ec

tiv
e

en
tit

y.
W

ith
ou

tt
hi

s
op

tio
n,

th
e

ad
di

tio
na

l
ov

er
he

ad
us

ua
lly

co
m

es
do

w
n

to
th

e
re

m
ov

al
of

th
e

ob
so

le
te

m
et

ho
ds

an
d

th
ei

r
co

rr
es

po
nd

in
g

vi
ew

s.

5.
3.

1
L
O
W

C
4

Sc
af

fo
ld

in
g

w
ith

ou
tV

ie
w

T
he

W
A

F
pr

ov
id

es
a

w
ay

to
ge

ne
ra

te
a

si
ng

le
co

nt
ro

lle
r

w
ith

ou
t

ge
ne

ra
tin

g
th

e
as

so
ci

at
ed

vi
ew

(s
).

A
ga

in
,t

hi
s

ca
n

be
re

ga
rd

ed
le

ss
im

po
rt

an
t,

fo
rt

he
ta

sk
ha

nd
ed

ov
er

to
th

e
de

ve
lo

pe
ru

su
al

ly
is

to
de

le
te

so
m

e
m

ar
ku

p
fil

es
.

5.
3.

1
L
O
W

C
5

St
at

ic
Fi

nd
er

s
If

th
e

W
A

F
al

lo
w

s
ge

ne
ra

tin
g

co
de

fo
r

st
at

ic
fin

de
rs

,
th

en
th

is
op

tio
n

of
fe

rs
a

w
ay

to
ge

ne
ra

te
co

nt
ro

lle
r

ac
tio

ns
w

hi
ch

in
vo

ke
th

es
e

fin
de

rs
an

d
re

tu
rn

th
e

co
r-

re
sp

on
di

ng
re

su
lt

se
ts

to
th

e
vi

ew
.

5.
3.

1
H
I
G
H

C
6

A
da

pt
io

n
of

te
m

pl
at

es
Fo

r
no

ta
pp

ly
in

g
th

e
sa

m
e

ch
an

ge
s

fo
r

ev
er

y
co

nt
ro

lle
r

ov
er

an
d

ov
er

ag
ai

n,
th

e
co

nt
ro

lle
rt

em
pl

at
es

us
ed

in
th

e
ba

ck
gr

ou
nd

ar
e

op
en

fo
ra

da
pt

io
n.

T
hi

s
be

co
m

es
es

pe
ci

al
ly

im
po

rt
an

tw
he

n
th

e
de

ve
lo

pm
en

tt
ea

m
de

ci
de

s
to

de
vi

at
e

fr
om

th
e

de
-

fa
ul

tc
on

tr
ol

le
rm

ap
pi

ng
ap

pr
oa

ch
.

5.
3.

1
A
V
E
R
A
G
E

H
an

dl
er

M
ap

pi
ng

C
7

C
on

ve
nt

io
n

T
he

re
ex

is
ts

an
ea

sy
to

us
e

de
fa

ul
t

ap
pr

oa
ch

fo
r

m
ap

pi
ng

in
co

m
in

g
re

qu
es

ts
to

co
nt

ro
lle

rs
.T

he
us

e
of

co
nfi

gu
ra

tio
n

fil
es

is
no

tr
eq

ui
re

d,
bu

tm
ay

be
pr

ov
id

ed
as

an
al

te
rn

at
iv

e.

5.
3.

2
A
V
E
R
A
G
E

C
8

St
ra

te
gy

sw
itc

h
It

is
po

ss
ib

le
to

ch
an

ge
th

e
de

fa
ul

t
U

R
L

m
ap

pi
ng

ap
pr

oa
ch

w
ith

ou
t

in
te

rf
er

in
g

w
ith

th
e

ex
is

tin
g

co
nt

ro
lle

r
ac

tio
ns

.
T

he
se

ac
tio

n
m

et
ho

ds
ei

th
er

re
m

ai
n

un
-

to
uc

he
d

or
ar

e
tr

an
sl

at
ed

ac
co

rd
in

g
to

th
e

ne
w

m
ap

pi
ng

ap
pr

oa
ch

au
to

m
at

ic
al

ly
.

5.
3.

2
L
O
W

N
o.

C
ri

te
ri

on
D

es
cr

ip
tio

n
R

ef
.

In
flu

en
ce

D
at

a
B

in
di

ng
C

9
C

om
m

an
d

O
bj

ec
ts

up
po

rt
To

ea
se

th
e

ha
nd

lin
g

of
in

pu
t,

th
e

W
A

F
su

pp
or

ts
co

m
m

an
d

ob
je

ct
s

en
ca

ps
ul

at
in

g
it

in
an

ob
je

ct
-o

ri
en

te
d

w
ay

.
C

om
m

an
d

O
bj

ec
ts

al
so

pr
ov

id
e

a
w

ay
to

de
al

w
ith

si
tu

at
io

ns
w

he
re

no
1:

1
re

la
tio

ns
hi

p
be

tw
ee

n
en

tit
ie

s
an

d
in

pu
td

at
a

ex
is

ts
.

p.
74

H
I
G
H

C
10

Im
pl

ic
it

O
bj

ec
ts

up
po

rt
A

W
A

F
ba

se
d

on
a

dy
na

m
ic

la
ng

ua
ge

tr
an

sp
ar

en
tly

in
je

ct
s

(i
m

pl
ic

it)
ob

je
ct

s
in

to
ea

ch
co

nt
ro

lle
r.

C
on

ce
rn

in
g

th
e

de
ve

lo
pe

r,
no

fu
rt

he
r

ef
fo

rt
is

re
qu

ir
ed

to
ac

ce
ss

th
es

e
ob

je
ct

s.
T

hi
sa

ls
o

ke
ep

st
he

co
de

cl
ea

n
fr

om
te

ch
ni

ca
lc

on
ce

rn
s,

be
in

g
ea

si
er

to
m

ai
nt

ai
n.

p.
75

A
V
E
R
A
G
E

C
11

D
ep

en
de

nc
y

In
je

ct
io

n
A

no
n-

dy
na

m
ic

W
A

F
al

lo
w

s
in

je
ct

in
g

al
l

ki
nd

of
de

pe
nd

en
ci

es
,

w
hi

ch
m

ay
be

re
qu

ir
ed

by
th

e
ap

pl
ic

at
io

n
lo

gi
c,

in
to

co
nt

ro
lle

rs
.

p.
75

A
V
E
R
A
G
E

C
12

M
et

ho
d

Si
gn

at
ur

e
A

na
ly

-
si

s
To

re
lie

ve
co

nt
ro

lle
rs

of
ge

tti
ng

re
qu

ir
ed

ob
je

ct
s

th
em

se
lv

es
,

e.
g.

by
us

in
g

de
-

pe
nd

en
cy

in
je

ct
io

n,
or

fo
rc

in
g

th
em

to
im

pl
em

en
t

sp
ec

ifi
c

in
te

rf
ac

es
,

th
e

W
A

F
ca

n
an

al
yz

e
th

e
m

et
ho

d’
s

si
gn

at
ur

e
to

in
je

ct
th

es
e

ob
je

ct
s

in
to

m
et

ho
d

pa
ra

m
et

er
s

au
to

m
at

ic
al

ly
.

p.
75

H
I
G
H

C
13

A
bs

tr
ac

tio
n

ov
er

Se
rv

le
t

A
PI

T
he

W
A

F
ab

st
ra

ct
s

aw
ay

th
e

co
m

m
on

Se
rv

le
tA

PI
,s

im
pl

if
yi

ng
th

e
w

ay
re

qu
es

ts
ca

n
be

pa
rs

ed
.T

hi
s

is
us

ua
lly

th
e

ca
se

fo
rf

ra
m

ew
or

ks
of

fe
ri

ng
m

et
ho

d
si

gn
at

ur
e

an
al

ys
is

or
re

la
te

d
co

nc
ep

ts
.

p.
75

L
O
W

In
pu

tV
al

id
at

io
n

C
14

M
an

ua
lI

nv
oc

at
io

n
T

he
va

lid
at

io
n

of
en

tit
ie

st
ha

tg
et

pa
ss

ed
to

th
e

co
nt

ro
lle

rc
an

be
in

vo
ke

d
m

an
ua

lly
,

w
ith

ou
tc

al
lin

g
th

e
pe

rs
is

te
nc

e
co

nt
ex

t.
5.

3.
4

A
V
E
R
A
G
E

C
15

C
om

m
an

d
O

bj
ec

ts
V

al
id

at
io

n
fo

r
C

om
m

an
d

O
bj

ec
ts

w
ith

ou
t

a
da

ta
ba

se
re

pr
es

en
ta

tio
n

is
av

ai
la

bl
e

an
d

ca
n

be
in

vo
ke

d
m

an
ua

lly
.

5.
3.

4
A
V
E
R
A
G
E

C
16

B
la

ck
-a

nd
W

hi
te

lis
ts

To
av

oi
d

vu
ln

er
ab

ili
tie

s
in

th
is

re
ga

rd
,C

om
m

an
d

O
bj

ec
ts

bo
un

d
to

th
e

co
nt

ro
lle

r
sh

ou
ld

be
se

cu
re

d
of

un
w

an
te

d
in

pu
tu

si
ng

bl
ac

k-
an

d
w

hi
te

lis
ts

.
5.

3.
4

A
V
E
R
A
G
E

N
o.

C
ri

te
ri

on
D

es
cr

ip
tio

n
R

ef
.

In
flu

en
ce

C
17

M
an

ua
lR

et
ri

ev
al

of
R

e-
su

lts
T

he
re

su
lts

of
a

m
an

ua
lly

in
vo

ke
d

va
lid

at
io

n
ar

e
av

ai
la

bl
e

to
th

e
co

nt
ro

lle
ra

ct
io

n,
fo

rt
he

su
cc

es
s

or
fa

ilu
re

of
th

e
va

lid
at

io
n

de
ci

de
s

on
su

bs
eq

ue
nt

op
er

at
io

ns
.

5.
3.

4
A
V
E
R
A
G
E

C
18

E
rr

or
pr

op
ag

at
io

n
m

ec
ha

-
ni

sm
In

ca
se

of
fa

ili
ng

va
lid

at
io

ns
,t

he
W

A
F

m
ak

es
th

e
co

rr
es

po
nd

in
g

er
ro

r
m

es
sa

ge
s

av
ai

la
bl

e
to

th
e

un
de

rl
yi

ng
vi

ew
au

to
m

at
ic

al
ly

.
T

he
de

ve
lo

pe
r

on
ly

ne
ed

s
to

fo
r-

w
ar

d
th

e
us

er
to

th
e

co
rr

ec
tp

ag
e.

5.
3.

4
H
I
G
H

C
19

In
te

rn
at

io
na

liz
at

io
n

T
he

m
es

sa
ge

s
re

tu
rn

ed
to

th
e

us
er

in
ca

se
of

fa
ili

ng
va

lid
at

io
ns

ar
e

op
en

fo
rI

nt
er

-
na

tio
na

liz
at

io
n.

5.
3.

4
H
I
G
H

C
on

te
xt

Sc
op

e
M

an
ag

em
en

t
C

20
C

on
ve

rs
at

io
n

Sc
op

e
To

ke
ep

da
ta

in
sc

op
e

ov
er

m
ul

tip
le

sc
re

en
s,

a
sp

ec
ia

lc
on

ve
rs

at
io

n
sc

op
e

is
of

fe
re

d
by

th
e

fr
am

ew
or

k.
O

th
er

w
is

e,
th

e
da

ta
w

ou
ld

ne
ed

to
be

st
or

ed
in

th
e

se
ss

io
n,

w
hi

ch
is

di
ffi

cu
lt

to
cl

ea
n

up
an

d
ca

n
ea

si
ly

in
te

rf
er

e
w

ith
pa

ra
lle

lp
ro

ce
ss

es
by

th
e

sa
m

e
us

er
.

5.
3.

5
H
I
G
H

C
21

Pe
rs

is
te

nc
e

C
on

te
xt

m
an

-
ag

em
en

t
To

re
du

ce
th

e
am

ou
nt

of
da

ta
ba

se
co

m
m

un
ic

at
io

ns
,a

nd
to

av
oi

d
ri

sk
y
m
e
r
g
e
(
)

op
er

at
io

ns
,t

he
W

A
F

of
fe

rs
an

ea
sy

w
ay

to
se

tt
he

pe
rs

is
te

nc
e

co
nt

ex
tt

o
ex

te
nd

ed
m

od
e.

5.
3.

5
H
I
G
H

C
22

Fl
as

h
sc

op
e

To
m

ak
e

ce
rt

ai
n

da
ta

su
rv

iv
e

a
re

di
re

ct
or

a
ne

w
re

qu
es

t,
a

sp
ec

ia
l"

fla
sh

sc
op

e"
is

of
fe

re
d

by
th

e
W

A
F.

T
hi

s
is

ve
ry

im
po

rt
an

tf
or

co
m

m
on

us
e

ca
se

s
w

he
re

th
e

R
ed

ir
ec

t-
af

te
r-

Po
st

pa
tte

rn
is

us
ed

to
di

sp
la

y
er

ro
ro

ri
nf

o
m

es
sa

ge
s

in
re

sp
on

se
to

PO
ST

re
qu

es
ts

.

5.
3.

5
H
I
G
H

C
23

A
cc

es
si

ng
sc

op
es

Fo
r

be
in

g
a

re
cu

rr
in

g
ta

sk
,t

he
ac

ce
ss

to
th

e
di

ff
er

en
ts

co
pe

s
is

si
m

pl
ifi

ed
by

th
e

W
A

F,
e.

g.
us

in
g

m
et

ho
d

si
gn

at
ur

e
an

al
ys

is
or

im
pl

ic
it

ob
je

ct
s.

5.
3.

5
A
V
E
R
A
G
E

V
ie

w
M

ap
pi

ng
C

24
C

on
ve

nt
io

n
ov

er
C

on
fig

-
ur

at
io

n
To

m
ap

vi
ew

s
to

co
nt

ro
lle

r
ac

tio
ns

,
a

de
fa

ul
t

ap
pr

oa
ch

re
qu

ir
in

g
no

ad
di

tio
na

l
ac

tio
ns

in
th

e
co

de
is

pr
ov

id
ed

by
th

e
W

A
F.

5.
3.

6
L
O
W

N
o.

C
ri

te
ri

on
D

es
cr

ip
tio

n
R

ef
.

In
flu

en
ce

C
25

R
et

ur
n

va
lu

e
ap

pr
oa

ch
Fo

rb
ei

ng
th

e
si

m
pl

es
ts

ol
ut

io
n

w
he

n
co

nv
en

tio
ns

do
no

tfi
t,

th
e

W
A

F
al

lo
w

sd
efi

n-
in

g
th

e
vi

ew
to

di
sp

la
y

us
in

g
a

co
nt

ro
lle

rm
et

ho
d’

s
re

tu
rn

va
lu

e.
5.

3.
6

A
V
E
R
A
G
E

C
26

E
as

e
of

R
ed

ir
ec

ts
Fo

r
be

in
g

an
im

po
rt

an
ta

nd
re

cu
rr

in
g

ta
sk

,t
he

in
vo

ca
tio

n
of

re
di

re
ct

s
is

ea
se

d
by

th
e

W
A

F.
5.

3.
6

L
O
W

A
.4

D
ev

el
op

m
en

tS
up

po
rt

(D
)

N
o.

C
ri

te
ri

on
D

es
cr

ip
tio

n
R

ef
.

In
flu

en
ce

Pr
oj

ec
tG

en
er

at
or

D
1

C
on

te
xt

ua
la

w
ar

en
es

s
Fo

rt
he

W
A

F’
s

pr
oj

ec
tg

en
er

at
or

ke
ep

s
tr

ac
k

of
th

e
cu

rr
en

ti
np

ut
se

ss
io

n,
it

is
ab

le
to

of
fe

r
sp

ec
ia

ls
up

po
rt

re
ga

rd
in

g
th

e
cu

rr
en

ts
itu

at
io

n,
e.

g.
by

co
m

m
an

d
or

he
lp

su
gg

es
tio

ns
.

5.
4.

1
L
O
W

D
2

R
ou

nd
-t

ri
pp

in
g

T
he

ge
ne

ra
to

rn
ot

on
ly

ge
ne

ra
te

s
co

de
fo

rt
he

de
ve

lo
pe

r,
it

is
al

so
ab

le
to

re
ac

to
n

th
e

de
ve

lo
pe

r’
s

ac
tio

ns
ou

ts
id

e
th

e
ge

ne
ra

to
r,

to
cr

ea
te

ad
di

tio
na

lc
od

e
or

re
m

ov
e

ol
d

on
e.

5.
4.

1
A
V
E
R
A
G
E

D
3

A
pp

lic
at

io
n

aw
ar

en
es

s
T

he
ge

ne
ra

to
ri

s
de

si
gn

ed
in

a
w

ay
th

at
is

ab
le

to
tr

ac
k

th
e

st
at

e
of

an
ap

pl
ic

at
io

n
ov

er
m

ul
tip

le
in

pu
ts

es
si

on
s

an
d

ca
n

ev
en

re
ac

to
n

ch
an

ge
s

th
at

ha
ve

be
en

m
ad

e
to

th
e

ap
pl

ic
at

io
n

in
th

e
ab

se
nc

e
of

a
ru

nn
in

g
ge

ne
ra

to
ri

ns
ta

nc
e.

5.
4.

1
A
V
E
R
A
G
E

D
4

Pa
ra

lle
lu

sa
ge

in
di

ff
er

en
t

pr
oj

ec
ts

If
th

e
W

A
F

is
us

ed
fo

r
di

ff
er

en
t

w
eb

ap
pl

ic
at

io
n

pr
oj

ec
ts

in
pa

ra
lle

l,
th

e
ge

n-
er

at
or

re
m

ai
ns

us
ab

le
fo

r
ea

ch
of

th
es

e
pr

oj
ec

ts
th

ro
ug

ho
ut

th
ei

r
de

ve
lo

pm
en

t.
T

he
pr

od
uc

tiv
ity

ga
in

of
th

is
fe

at
ur

e
ob

vi
ou

sl
y

de
pe

nd
s

on
th

e
ge

ne
ra

to
r’

s
ov

er
al

l
fu

nc
tio

na
lit

y.

5.
4.

1
L
O
W

-
H
I
G
H

N
o.

C
ri

te
ri

on
D

es
cr

ip
tio

n
R

ef
.

In
flu

en
ce

D
5

In
pu

tC
om

fo
rt

T
he

ge
ne

ra
to

ra
dd

re
ss

es
us

ab
ili

ty
by

pr
ov

id
in

g
fe

at
ur

es
lik

e
co

nv
en

tio
n

ov
er

co
n-

fig
ur

at
io

n,
ta

b
co

m
pl

et
io

n,
a

he
lp

sy
st

em
et

c.
T

hi
s

is
im

po
rt

an
tt

o
fo

st
er

its
us

ag
e,

fo
ra

de
ve

lo
pe

rw
ill

th
en

lik
el

ie
ru

se
it

ag
ai

n.

5.
4.

1
L
O
W

D
6

C
om

m
an

d
R

ec
or

di
ng

T
he

W
A

F
al

lo
w

sr
ec

or
di

ng
se

qu
en

ce
so

fc
om

m
an

ds
is

su
ed

to
th

e
pr

oj
ec

tg
en

er
at

or
an

d
re

pl
ay

th
em

la
te

ri
n

di
ff

er
en

tp
ro

je
ct

s
or

on
di

ff
er

en
tm

ac
hi

ne
s.

5.
4.

1
L
O
W

ID
E

Su
pp

or
t

D
7

C
om

pi
la

tio
n

su
pp

or
t

W
eb

ap
pl

ic
at

io
ns

ha
ve

a
sp

ec
ia

l
st

ru
ct

ur
e

an
ID

E
ne

ed
s

to
un

de
rs

ta
nd

.
T

he
W

A
F

pr
ov

id
es

a
m

ec
ha

ni
sm

to
as

su
re

th
is

.
T

hi
s

al
so

in
cl

ud
es

a
w

ay
to

co
m

pi
le

th
e

ap
pl

ic
at

io
n

fr
om

in
si

de
th

e
ID

E
.

So
m

et
im

es
,

th
is

re
qu

ir
es

ad
di

tio
na

l
ID

E
-

ca
pa

bi
lit

ie
s

(e
.g

.,
sp

ec
ia

lp
lu

g-
in

s)
.

5.
4.

2
H
I
G
H

D
8

ID
E

la
un

ch
co

m
m

an
ds

T
he

W
A

F
pr

ov
id

es
en

ou
gh

co
nfi

gu
ra

tio
ns

so
th

at
ap

pl
ic

at
io

n
de

pl
oy

m
en

t
be

-
co

m
es

po
ss

ib
le

fr
om

in
si

de
th

e
ID

E
.

5.
4.

2
L
O
W

D
9

Pl
ug

-i
n:

Pr
oj

ec
tc

re
at

io
n

A
pl

ug
-i

n
to

cr
ea

te
ne

w
w

eb
ap

pl
ic

at
io

ns
fr

om
in

si
de

th
e

ID
E

ex
is

ts
.

D
ep

en
di

ng
on

th
e

W
A

F,
th

is
m

ig
ht

ev
en

be
an

ou
t-

of
-t

he
-b

ox
fe

at
ur

e
of

th
e

re
sp

ec
tiv

e
ID

E
.

fe
at

ur
e

m
ay

ev
en

co
m

e

5.
4.

2
L
O
W

D
10

Pl
ug

-i
n:

Pr
oj

ec
tG

en
er

a-
to

rr
ep

la
ce

m
en

t
A

sp
ec

ia
l

pl
ug

-i
n

re
pl

ac
in

g
th

e
co

m
m

on
pr

oj
ec

t
ge

ne
ra

to
r

w
ith

a
ne

w
co

ns
ol

e
in

si
de

th
e

ID
E

is
pr

ov
id

ed
.

T
hi

s
w

ay
,t

he
W

A
F

be
co

m
es

co
m

pl
et

el
y

m
an

ag
ea

bl
e

fr
om

in
si

de
th

e
ID

E
.

5.
4.

2
L
O
W

D
11

Pl
ug

-i
n:

A
rt

ifa
ct

cr
ea

tio
n

A
pl

ug
-i

n
is

pr
ov

id
ed

th
ro

ug
h

w
hi

ch
pa

rt
ic

ul
ar

W
A

F-
sp

ec
ifi

c
ar

tif
ac

ts
ca

n
be

cr
e-

at
ed

fr
om

in
si

de
th

e
ID

E
.

T
hi

s
fe

at
ur

e
th

en
re

pl
ac

es
ce

rt
ai

n
co

m
m

an
ds

pr
ov

id
ed

by
th

e
pr

oj
ec

tg
en

er
at

or
w

hi
ch

no
lo

ng
er

ha
ve

to
be

re
m

em
be

re
d

an
d

ty
pe

d.

5.
4.

2
L
O
W

D
12

Pl
ug

-i
n:

A
rt

ifa
ct

vi
ew

A
pl

ug
-i

n
th

at
pr

ov
id

es
an

op
tim

iz
ed

ov
er

vi
ew

on
th

e
pr

oj
ec

tb
y

ta
ki

ng
th

e
ap

pl
i-

ca
tio

n’
s

ar
tif

ac
ts

in
to

sp
ec

ia
lc

on
si

de
ra

tio
n.

5.
4.

2
A
V
E
R
A
G
E

N
o.

C
ri

te
ri

on
D

es
cr

ip
tio

n
R

ef
.

In
flu

en
ce

D
13

Pl
ug

-i
n:

A
dv

an
ce

d
E

rr
or

D
et

ec
tio

n
A

rt
ifa

ct
s,

es
pe

ci
al

ly
co

nfi
gu

ra
tio

n
an

d
m

ar
ku

p
fil

es
,c

an
be

va
lid

at
ed

us
in

g
sp

e-
ci

al
ID

E
pl

ug
-i

ns
.

T
hi

s
va

lid
at

io
n

m
ec

ha
ni

sm
al

so
ad

dr
es

se
s

re
fe

re
nc

es
to

ot
he

r
co

m
po

ne
nt

s
or

ar
tif

ac
ts

de
fin

ed
in

si
de

th
es

e
fil

es
.

5.
4.

2
A
V
E
R
A
G
E

D
14

Pl
ug

-i
n:

V
is

ua
lE

di
to

rs
T

he
cr

ea
tio

n
of

ce
rt

ai
n

ar
tif

ac
ts

is
si

m
pl

ifi
ed

by
pr

ov
id

in
g

sp
ec

ia
lv

is
ua

le
di

to
rs

.
5.

4.
2

A
V
E
R
A
G
E

D
yn

am
ic

L
an

gu
ag

e
Su

pp
or

t
D

15
Su

pp
or

to
fd

yn
am

ic
la

n-
gu

ag
es

T
he

W
A

F
su

pp
or

ts
th

e
us

ag
e

of
dy

na
m

ic
la

ng
ua

ge
s,

fo
r

m
an

y
ap

pl
ic

at
io

n
lo

gi
c

ta
sk

s
ca

n
be

fu
lfi

lle
d

m
uc

h
ea

si
er

an
d

fa
st

er
le

ve
ra

gi
ng

fe
at

ur
es

pr
ov

id
ed

by
dy

-
na

m
ic

la
ng

ua
ge

s.

5.
4.

3
H
I
G
H

D
16

D
SL

su
pp

or
t

T
he

W
A

F
su

pp
or

ts
sp

ec
ia

lD
om

ai
n

Sp
ec

ifi
c

L
an

gu
ag

es
to

be
us

ed
w

ith
dy

na
m

ic
la

ng
ua

ge
s.

T
hi

se
sp

ec
ia

lly
m

ak
es

se
ns

e
re

ga
rd

in
g

W
A

F-
sp

ec
ifi

c
ar

tif
ac

ts
lik

e
co

n-
tr

ol
le

rs
or

pe
rs

is
te

nt
en

tit
ie

s.

5.
4.

3
A
V
E
R
A
G
E

A
.5

B
ui

ld
&

In
te

gr
at

io
n

S
up

po
rt

(I)

N
o.

C
ri

te
ri

on
D

es
cr

ip
tio

n
R

ef
.

In
flu

en
ce

B
ui

ld
M

an
ag

em
en

t
I1

C
on

st
ru

ct
io

n
of

di
re

ct
or

y
la

yo
ut

T
he

W
A

F
au

to
m

at
ic

al
ly

ge
ne

ra
te

s
al

l
fil

es
an

d
fo

ld
er

s
re

qu
ir

ed
to

su
cc

es
sf

ul
ly

de
pl

oy
th

e
ap

pl
ic

at
io

n.
5.

5.
1

L
O
W

I2
C

om
pi

le
,P

ac
ka

ge
T

he
W

A
F

pr
ov

id
es

w
ay

s
to

co
m

pi
le

an
d

pa
ck

ag
e

th
e

ap
pl

ic
at

io
n.

To
th

is
,s

pe
ci

al
bu

ild
sc

ri
pt

s
ca

n
be

ge
ne

ra
te

d
or

th
e

pr
oj

ec
t

ge
ne

ra
to

r
m

ay
of

fe
r

sp
ec

ia
l

co
m

-
m

an
ds

.

5.
5.

1
H
I
G
H

I3
D

ep
lo

y
T

he
de

pl
oy

m
en

to
f

a
co

m
pi

le
d

pa
ck

ag
e

is
po

ss
ib

le
us

in
g

a
sp

ec
ia

lb
ui

ld
sc

ri
pt

or
pr

oj
ec

tg
en

er
at

or
co

m
m

an
d.

5.
5.

1
H
I
G
H

N
o.

C
ri

te
ri

on
D

es
cr

ip
tio

n
R

ef
.

In
flu

en
ce

E
nv

ir
on

m
en

tC
on

fig
ur

at
io

n
I4

Su
pp

or
to

fe
nv

ir
on

m
en

ts
T

he
W

A
F

pr
ov

id
es

di
ff

er
en

te
nv

ir
on

m
en

tm
od

es
,e

.g
.,

to
te

st
,d

ev
el

op
or

ru
n

th
e

ap
pl

ic
at

io
n

in
pr

od
uc

tio
n.

T
he

se
en

vi
ro

nm
en

ts
ar

e
fu

lly
co

nfi
gu

re
d

us
in

g
m

ea
n-

in
gf

ul
de

fa
ul

tc
al

ib
ra

tio
ns

re
ga

rd
in

g
lo

gg
in

g,
U

I-
st

ac
kt

ra
ce

s,
da

ta
ba

se
ac

ce
ss

et
c.

5.
5.

2
H
I
G
H

I5
Pe

re
nv

ir
on

m
en

tc
on

fig
u-

ra
tio

n
A

ll
re

le
va

nt
co

nfi
gu

ra
tio

ns
ar

e
ap

pl
ie

d
on

a
pe

r-
en

vi
ro

nm
en

t
ba

si
s

an
d

ca
n

be
ad

ap
te

d
ea

si
ly

.
5.

5.
2

H
I
G
H

I6
Sw

itc
h

be
tw

ee
n

en
vi

ro
n-

m
en

ts
T

he
W

A
F

pr
ov

id
es

a
fa

st
an

d
ea

sy
w

ay
to

sw
itc

h
be

tw
ee

n
di

ff
er

en
te

nv
ir

on
m

en
ts

,
e.

g.
,u

si
ng

th
e

pr
oj

ec
tg

en
er

at
or

.
5.

5.
2

L
O
W

D
ep

en
de

nc
y

M
an

ag
em

en
t

I7
In

te
gr

at
io

n
of

ba
si

c
de

-
pe

nd
en

ci
es

T
ho

se
de

pe
nd

en
ci

es
ty

pi
ca

lly
re

qu
ir

ed
by

al
m

os
te

ve
ry

w
eb

ap
pl

ic
at

io
n

ar
e

in
te

-
gr

at
ed

by
de

fa
ul

to
ra

ut
om

at
ic

al
ly

w
he

n
th

ey
ar

e
us

ed
fo

rt
he

fir
st

tim
e.

O
bv

io
us

ly
,

th
e

la
tte

r
is

th
e

be
tte

r
op

tio
n

fo
r

it
m

ak
es

su
re

no
un

ne
ce

ss
ar

y
lib

ra
ri

es
an

d
co

n-
fig

ur
at

io
ns

ar
e

ap
pl

ie
d.

5.
5.

2
H
I
G
H

I8
A

ut
om

at
ic

de
pe

nd
en

cy
-

m
an

ag
em

en
t

N
ew

de
pe

nd
en

ci
es

ar
e

re
so

lv
ed

au
to

m
at

ic
al

ly
,w

ith
ou

tr
eq

ui
ri

ng
th

e
de

ve
lo

pe
rt

o
to

uc
h

co
nfi

gu
ra

tio
n.

5.
5.

3
H
I
G
H

I9
In

te
gr

at
io

n
su

pp
or

t
T

he
W

A
F

ea
se

s
th

e
in

te
gr

at
io

n
of

ne
w

A
PI

s
an

d
fr

am
ew

or
ks

in
to

th
e

w
eb

ap
pl

i-
ca

tio
n

(e
.g

.,
by

pr
ov

id
in

g
a

pl
ug

-i
n

m
ec

ha
ni

sm
).

5.
5.

3
A
V
E
R
A
G
E

Pl
ug

-i
ns

/A
dd

-o
ns

I1
0

Pl
ug

-i
n

m
ec

ha
ni

sm
Pl

ug
-i

ns
in

te
gr

at
e

ne
w

fu
nc

tio
na

lit
y

in
to

th
e

ap
pl

ic
at

io
n

an
d

do
(m

os
to

f)
th

e
re

-
qu

ir
ed

co
nfi

gu
ra

tio
n

au
to

m
at

ic
al

ly
.

A
n

in
-b

ui
lt

pl
ug

-i
n

m
ec

ha
ni

sm
th

er
ef

or
e

is
a

fir
st

st
ep

to
si

gn
ifi

ca
nt

ly
re

du
ce

in
te

gr
at

io
n

ef
fo

rt
s

in
w

eb
de

ve
lo

pm
en

t.

5.
5.

4
H
I
G
H

I1
1

A
va

ila
bi

lit
y

of
Pl

ug
-i

ns
A

hi
gh

am
ou

nt
of

av
ai

la
bl

e
pl

ug
-i

ns
in

cr
ea

se
s

th
e

ch
an

ce
s

of
fin

di
ng

an
ap

pr
op

ri
-

at
e

on
e

fo
rt

he
fu

nc
tio

na
lit

y
cu

rr
en

tly
re

qu
ir

ed
.

5.
5.

4
H
I
G
H

N
o.

C
ri

te
ri

on
D

es
cr

ip
tio

n
R

ef
.

In
flu

en
ce

I1
2

C
en

tr
al

Pl
ug

-i
n

re
po

si
-

to
ry

To
be

ab
le

to
fin

d
th

em
,a

ll
av

ai
la

bl
e

pl
ug

-i
ns

ar
e

st
or

ed
in

a
ce

nt
ra

lr
ep

os
ito

ry
th

at
ca

n
be

fr
ee

ly
ac

ce
ss

ed
by

ev
er

yo
ne

.
T

hi
s

re
po

si
to

ry
m

ig
ht

be
a

w
eb

ap
pl

ic
at

io
n

its
el

fo
ra

pl
ac

e
ac

ce
ss

ib
le

us
in

g
th

e
pr

oj
ec

tg
en

er
at

or
.

5.
5.

4
A
V
E
R
A
G
E

I1
3

In
st

al
la

tio
n

m
ec

ha
ni

sm
O

nc
e

an
ad

eq
ua

te
pl

ug
-i

n
is

fo
un

d,
th

e
W

A
F

su
pp

or
ts

its
ea

sy
in

st
al

la
tio

n
in

a
st

an
da

rd
iz

ed
w

ay
.

5.
5.

4
L
O
W

A
.6

Te
st

in
g

(T
)

N
o.

C
ri

te
ri

on
D

es
cr

ip
tio

n
R

ef
.

In
flu

en
ce

G
en

er
al

Te
st

in
g

cr
ite

ri
a

T
1

G
en

er
at

io
n

of
te

st
st

ub
s

T
he

W
A

F
ge

ne
ra

to
r

pr
ov

id
es

co
m

m
an

ds
to

ge
ne

ra
te

em
pt

y
st

ub
s

fo
r

un
it,

in
te

-
gr

at
io

n
an

d
fu

nc
tio

na
lt

es
tc

la
ss

es
.

T
hi

s
al

so
in

cl
ud

es
th

ei
r

pr
op

er
co

nfi
gu

ra
tio

n
w

ith
in

th
e

sy
st

em
.

5.
6.

2
A
V
E
R
A
G
E

T
2

In
vo

ca
tio

n
of

te
st

s
E

ith
er

th
e

W
A

F’
s

pr
oj

ec
tg

en
er

at
or

or
th

e
ge

ne
ra

te
d

bu
ild

fil
es

pr
ov

id
e

co
m

m
an

ds
to

in
vo

ke
te

st
-r

un
s

fo
ra

ll
av

ai
la

bl
e

te
st

ty
pe

s.
5.

6.
2

A
V
E
R
A
G
E

T
3

R
ep

or
ts

A
ft

er
te

st
in

g,
re

po
rt

s
ab

ou
tt

he
te

st
re

su
lts

ar
e

au
to

m
at

ic
al

ly
ge

ne
ra

te
d.

T
he

in
-

fo
rm

at
io

n
in

cl
ud

es
ov

er
al

lr
es

ul
ts

as
w

el
la

s
de

ta
ile

d
in

fo
rm

at
io

n
ab

ou
tp

ar
tic

ul
ar

te
st

ca
se

s.

5.
6.

2
H
I
G
H

H
ot

D
ep

lo
ym

en
t

T
4

St
at

ic
re

so
ur

ce
s

C
ha

ng
es

to
st

at
ic

re
so

ur
ce

s
lik

e
st

yl
es

he
et

s
or

gr
ap

hi
cs

ca
n

be
ho

td
ep

lo
ye

d
an

d
ta

ke
ef

fe
ct

im
m

ed
ia

te
ly

.
p.

88
A
V
E
R
A
G
E

T
5

V
ie

w
s

T
he

W
A

F
su

pp
or

ts
th

e
ho

td
ep

lo
ym

en
to

f
th

e
pa

rt
ic

ul
ar

vi
ew

te
ch

no
lo

gy
in

us
e.

C
ha

ng
es

to
th

e
re

sp
ec

tiv
e

vi
ew

th
en

ta
ke

im
m

ed
ia

te
ef

fe
ct

on
th

e
se

rv
er

.
p.

88
A
V
E
R
A
G
E

N
o.

C
ri

te
ri

on
D

es
cr

ip
tio

n
R

ef
.

In
flu

en
ce

T
6

M
et

ho
d

B
od

y
ch

an
ge

s
So

ur
ce

co
de

ch
an

ge
s

re
st

ri
ct

ed
to

m
et

ho
d

bo
di

es
ca

n
be

ho
t

de
pl

oy
ed

.
M

et
ho

d
si

gn
at

ur
es

or
ot

he
rd

ir
ec

tc
la

ss
m

em
be

rs
do

no
tn

ee
d

to
be

m
od

ifi
ab

le
th

ou
gh

.
p.

88
A
V
E
R
A
G
E

T
7

C
la

ss
St

ru
ct

ur
e

C
ha

ng
es

B
es

id
es

al
lo

w
in

g
m

et
ho

d
bo

dy
ch

an
ge

s,
th

e
W

A
F

al
so

su
pp

or
ts

th
e

ho
td

ep
lo

y-
m

en
to

fc
la

ss
es

w
hi

ch
st

ru
ct

ur
es

ha
ve

ch
an

ge
d,

e.
g.

re
ga

rd
in

g
m

et
ho

d
si

gn
at

ur
es

or
in

st
an

ce
fie

ld
s.

p.
88

A
V
E
R
A
G
E

T
8

M
od

el
C

ha
ng

es
C

ha
ng

es
to

pe
rs

is
te

nt
en

tit
ie

s
ca

n
be

ho
t

de
pl

oy
ed

an
d

do
no

t
re

qu
ir

e
a

se
rv

er
re

st
ar

t.
p.

88
A
V
E
R
A
G
E

T
9

A
ut

om
at

ic
in

vo
ca

tio
n

W
he

n
a

fil
e

th
at

is
al

lo
w

ed
to

be
ho

td
ep

lo
ye

d
ch

an
ge

s,
th

is
pr

oc
es

s
is

au
to

m
at

i-
ca

lly
in

vo
ke

d.
T

hi
s

fu
nc

tio
na

lit
y

of
te

n
is

pr
ov

id
ed

in
co

nj
un

ct
io

n
w

ith
th

e
us

e
of

an
ID

E
.

p.
88

L
O
W

D
eb

ug
pa

ge
T

10
St

ac
kt

ra
ce

s
W

he
n

do
in

g
m

an
ua

lt
es

tin
g,

ex
ce

pt
io

ns
w

ill
oc

cu
r.

T
he

co
rr

es
po

nd
in

g
st

ac
kt

ra
ce

s
ar

e
ea

si
ly

ac
ce

ss
ib

le
w

ith
ou

to
pe

ni
ng

th
e

se
rv

er
lo

g
fil

es
,i

.e
.,

by
m

ea
ns

of
sp

ec
ia

l
de

bu
g

pa
ge

s.

p.
89

L
O
W

T
11

Sc
op

e
va

ri
ab

le
co

nt
en

ts
Fo

r
st

ac
kt

ra
ce

s
of

te
n

do
no

t
pr

ov
id

e
en

ou
gh

in
fo

rm
at

io
n

fo
r

de
bu

gg
in

g,
de

bu
g

pa
ge

s
pr

ov
id

e
ad

di
tio

na
li

nf
or

m
at

io
n

re
ga

rd
in

g
th

e
ap

pl
ic

at
io

n
st

at
e.

p.
89

A
V
E
R
A
G
E

U
ni

tt
es

tin
g

T
12

Su
pp

or
tf

or
U

ni
tt

es
ts

T
he

W
A

F
in

te
gr

at
es

a
so

lu
tio

n
fo

rw
ri

tin
g

an
d

in
vo

ki
ng

un
it

te
st

s.
5.

6.
2

H
I
G
H

T
13

Su
pp

or
tf

or
Te

st
D

ou
bl

es
T

he
de

fin
iti

on
of

te
st

do
ub

le
s

(l
ik

es
M

oc
ks

an
d

St
ub

s)
is

su
pp

or
te

d
by

th
e

W
A

F.
5.

6.
2

H
I
G
H

T
14

Pr
e-

co
nfi

gu
re

d
te

st
do

u-
bl

es
So

m
e

ar
tif

ac
ts

,l
ik

e
fo

re
xa

m
pl

e
co

nt
ro

lle
rs

,o
ft

en
de

pe
nd

on
sp

ec
ia

lo
bj

ec
ts

(e
.g

.,
us

er
se

ss
io

ns
,r

eq
ue

st
pa

ra
m

et
er

s)
.F

or
al

lt
he

se
ob

je
ct

s,
th

e
W

A
F

al
re

ad
y

pr
ov

id
es

re
ad

y-
m

ad
e

te
st

do
ub

le
s.

5.
6.

2
H
I
G
H

T
15

Su
pp

or
tf

or
w

eb
-s

pe
ci

fic
ar

tif
ac

ts
Te

st
in

g
w

eb
-s

pe
ci

fic
ar

tif
ac

ts
ca

n
be

ea
se

d
by

pr
ov

id
in

g
sp

ec
ia

lA
PI

s
fo

rt
he

m
.

5.
6.

2
A
V
E
R
A
G
E

N
o.

C
ri

te
ri

on
D

es
cr

ip
tio

n
R

ef
.

In
flu

en
ce

T
16

A
ut

om
at

ic
ge

ne
ra

tio
n

If
te

st
in

g
ha

s
a

hi
gh

pr
io

ri
ty

in
W

A
F’

s
sp

ir
it,

un
it

te
st

st
ub

s
m

ig
ht

be
cr

ea
te

d
au

to
m

at
ic

al
ly

w
he

ne
ve

ra
ne

w
ar

tif
ac

t(
lik

e
co

nt
ro

lle
r,

en
tit

y
or

se
rv

ic
e

ob
je

ct
s)

is
cr

ea
te

d.

5.
6.

2
L
O
W

In
te

gr
at

io
n

te
st

in
g

T
17

Sp
ec

ia
le

nv
ir

on
m

en
t

In
te

gr
at

io
n

te
st

s
ne

ed
to

ru
n

in
si

de
a

co
nt

ai
ne

r.
To

ac
ce

le
ra

te
th

e
te

st
s,

th
is

en
-

vi
ro

nm
en

ti
s

re
st

ri
ct

ed
(e

.g
.,

pr
ov

id
e

no
Se

rv
le

tc
on

ta
in

er
)

or
ev

en
ab

le
to

ru
n

in
em

be
dd

ed
m

od
e.

5.
6.

3
H
I
G
H

T
18

Su
pp

or
to

fU
R

L
m

ap
pi

ng
te

st
s

Te
st

s
of

U
R

L
m

ap
pi

ng
s

sh
ow

w
he

th
er

re
qu

es
ts

ar
e

co
rr

ec
tly

bo
un

d
to

co
nt

ro
lle

r
ac

tio
ns

an
d

th
ei

rp
ar

am
et

er
s.

5.
6.

3
A
V
E
R
A
G
E

T
19

Su
pp

or
to

fu
se

ri
nt

er
ac

-
tio

ns
te

st
Te

st
s

of
us

er
in

te
ra

ct
io

ns
al

lo
w

an
al

yz
in

g
re

sp
on

se
s

ba
se

d
on

gi
ve

n
in

pu
ts

,i
n

a
vi

ew
-i

nd
ep

en
de

nt
m

an
ne

r.
5.

6.
3

A
V
E
R
A
G
E

Fu
nc

tio
na

lt
es

tin
g

T
20

Su
pp

or
to

fH
T

T
P-

ba
se

d
te

st
s

H
T

T
P

te
st

in
g

ap
pr

oa
ch

es
al

lo
w

th
e

ea
sy

ge
ne

ra
tio

n
of

H
T

T
P

re
qu

es
ts

an
d

pr
ov

id
e

w
ay

s
to

ve
ri

fy
th

e
re

sp
on

se
.

5.
6.

4
A
V
E
R
A
G
E

T
21

Su
pp

or
to

fU
IT

es
ts

U
I-

dr
iv

en
te

st
in

g
al

lo
w

s
th

e
ea

sy
cr

ea
tio

n
of

fu
nc

tio
na

lt
es

ts
by

m
ea

ns
of

a
po

in
t-

an
d-

cl
ic

k
in

te
rf

ac
e.

5.
6.

4
A
V
E
R
A
G
E

	List of Figures
	List of Tables
	Code Listings
	List of Abbreviations
	1 Introduction
	2 Fundamentals
	2.1 Fundamental Technologies of the WWW
	2.1.1 Communication-specific Technologies
	2.1.2 Document-specific Technologies

	2.2 Web Applications
	2.2.1 Towards Dynamic Web Pages
	2.2.2 Categories of Web Applications
	2.2.3 Characteristics of Web Applications

	2.3 The Model-View-Controller Pattern
	2.4 Specifications and Technologies in Enterprise Java
	2.4.1 Important Concepts
	2.4.2 Java Servlet Technology
	2.4.3 JSP - JavaServer Pages
	2.4.4 Bean Validation
	2.4.5 JSF - JavaServer Faces
	2.4.6 JPA - Java Persistence API
	2.4.7 EJB - Enterprise Java Beans
	2.4.8 The Spring Framework

	2.5 Web Application Frameworks
	2.5.1 Definition
	2.5.2 Design Philosophy
	2.5.3 Taxonomy
	2.5.4 Selection drivers

	3 Productivity in Software and Web Development
	3.1 Measuring Productivity
	3.2 Productivity Factors
	3.3 The Influence of a Web Application Framework
	3.4 Research Questions

	4 Examined Web Frameworks
	4.1 JBoss Seam
	4.1.1 Motivation & History
	4.1.2 Prominent Features
	4.1.3 Special Approaches to Productivity

	4.2 Grails
	4.2.1 Motivation & History
	4.2.2 Prominent Features
	4.2.3 Programming Model of Grails
	4.2.4 Special Approaches to Productivity

	4.3 Spring Roo
	4.3.1 Motivation & History
	4.3.2 The Roo Shell
	4.3.3 Special Approaches to Productivity

	5 Productivity Criteria
	5.1 Model
	5.1.1 Data Source Connection Configuration
	5.1.2 Reverse Engineering the Database
	5.1.3 Top-down Development Support
	5.1.4 Validation of Entities
	5.1.5 Entity Lifecycle Management
	5.1.6 Database Queries

	5.2 View
	5.2.1 View Generation
	5.2.2 View Composition
	5.2.3 Internationalization
	5.2.4 Tag Libraries

	5.3 Controller
	5.3.1 Scaffolding
	5.3.2 Handler Mapping
	5.3.3 Data Binding
	5.3.4 Input Validation
	5.3.5 Context Scope Management
	5.3.6 View-Mapping

	5.4 Development Support
	5.4.1 Project Generator
	5.4.2 IDE Support
	5.4.3 Dynamic Language Support

	5.5 Build & Integration Support
	5.5.1 Build Management
	5.5.2 Environment Configuration
	5.5.3 Dependency Management
	5.5.4 Plug-ins

	5.6 Testing
	5.6.1 Manual Testing
	5.6.2 Unit Testing
	5.6.3 Integration Testing
	5.6.4 Functional Testing

	6 Conclusion
	6.1 Results
	6.2 Outlook
	6.3 Future Work

	Bibliography
	A Catalog of Criteria
	A.1 Model
	A.2 View
	A.3 Controller
	A.4 Development Support
	A.5 Build & Integration Support
	A.6 Testing

