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wendeten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der

Arbeit - einschließlich Tabellen und Abbildungen -, die anderen Werken oder dem Internet

im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle

als Entlehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Ibrahim Elsayed)





Zusammenfassung

In den verschiedenen wissenschaftlichen Disziplinen werden laufend Forschungsdaten ge-

sammelt, die in der Regel über Webportale moderner Forschungsinfrastrukturen für die

Datenanalyse zugänglich gemacht werden. Es ist heute von großer Wichtigkeit die Er-

gebnisse dieser Analysen mit den verwendeten Inputdaten zu verknüpfen und diese Ver-

knüpfungen semantisch anzureichern, um dadurch die Wiederverwendung der Daten sowie

der analytischen Methoden zu fördern. In der Fachliteratur werden zahlreiche Systeme,

die riesige Mengen an geografisch verteilten Forschungsdaten verwalten können, vorge-

stellt, allerdings ist bei diesen die (Datenspace-) Schlüsselfunktion nämlich das Verwalten

von semantisch angereicherten Verknüpfungen nicht ausreichend berücksichtigt. Diese of-

fene Forschungsfrage wird in vorliegender Dissertation behandelt, indem ein effizienter

Datenmanagement-Ansatz für Forschungsinfrastrukturen gegeben wird. Unser Ansatz ist

es, die Verknüpfung zwischen den Inputdaten und den Forschungsergebnissen semantisch

anzureichern und beides (Daten und Verknüpfungen) für die Wiederverwendung nach-

haltig zu archivieren. Dadurch können systematisches Bereitstellen, Abfragen und Wie-

derverwenden von Input- und Ergebnisdaten im Rahmen von Forschungsinfrastrukturen

erleichtert werden. Die für die Wiederverwendung der Daten notwendige Archivierung be-

darf der Berücksichtigung des gesamten Daten-Lebenszyklus. Wir stellen eine auf OWL

basierende neue Ontologie für die Erstellung von semantisch angereicherten Verknüpfungen

zwischen Input- und Ergebnisdaten wissenschaftlicher Studien vor. Die wichtigsten wissen-

schaftlichen Beiträge dieser Dissertation sind: (1) Das e-Science Lebenszyklus-Modell, ein

spezifisches Modell, das den gesamten Daten-Lebenszyklus für die effiziente Archivierung

wissenschaftlicher Studien berücksichtigt; (2) Die semantische Anreicherung wissenschaft-

licher Studien, um Verknüpfungen mit einem semantischen Modell zu beschreiben; (3) Eine

Architektur für die Langzeitarchivierung des gesamten Daten-Lebenszyklus wissenschaft-

licher Studien; (4) Eine Plattform für den groß angelegten wissenschaftlichen Datenspace

- jSpace, die die Ergebnisse dieser Dissertation zusammenführt und es ermöglicht, meh-

rere Datenspace-Instanzen verschiedener Anwendungsgebiete zu verbinden; und (5) Die

jSpace Java Programmierschnittstelle, die Methoden zur Verfügung stellt, um Daten wis-

senschaftlicher Studien semantisch aufzubereiten sowie in einer verteilten Datenumgebung

zu verwalten. Der Software-Prototyp ist auf der jSpace Webseite zum Download verfügbar.





Abstract

Scientific data, collected in various research domains are made accessible for sig-

nificant analysis through portals by the means of e-Infrastructures. Managing the

outcome of these analyses in conjunction with its corresponding input data, by en-

riching the existing relationship with semantics to facilitate reuse of data and ana-

lytical methods is nowadays more important than ever. Systems providing advanced

integrated view to large-scale and distributed scientific data are described in the lit-

erature to a great extent, however the key (dataspace) feature managing semantic

relationships is not well considered and thus it represents an open research challenge

to be addressed in this work. This work focuses its effort on scientific dataspaces,

which, if applied in e-Science applications can provide a highly efficient and pow-

erful scientific data management solution for e-Infrastructures. Our approach is to

semantically enrich the existing relationship among primary and derived datasets

and to preserve both, relationships and datasets together within a dataspace to be

reused by owners and others. This approach is shown to significantly improve as-

sisted publishing, discovery, and reuse of primary and derived data used in scientific

studies within e-Infrastructures. To enable reuse, data must be well preserved, which

can best be established if the full life cycle of data is addressed. We present a novel

OWL ontology for the creation of semantically rich relationships among primary and

derived datasets in scientific studies. The major contributions of this thesis include:

(1) e-Science life cycle model, a specific model addressing the complete data life

cycle to provide well-preserved scientific studies, (2) Semantic markup for scientific

studies enabling to describe relationships among datasets of scientific studies with

a semantic model, (3) Long-term preservation framework providing preservation of

the complete life cycle of data in scientific studies, (4) Large-scale scientific datas-

pace platform - jSpace integrating the achievements presented in this thesis enabling

to interconnect multiple dataspace instances from various domains, and (5) jSpace

Java API providing all needed methods to construct semantic data about scientific

studies and a model for their management within a distributed data environment.

The jSpace prototype software can be downloaded from the jSpace Web page.
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Chapter 1

Introduction

“A dataspace is everything that is not only in a single DBMS.”

In the keynote to the 15th International Conference on Database

Systems for Advanced Applications in Tsukuba on April 1st, 2010

given by

Gerhard Weikum

1.1 Motivation

Scientific instruments and computer simulations are creating vast data stores that

require new scientific methods to analyze and organize data. Data analysis tools

have not kept pace with our ability to capture and store data [GLNS+05]. However,

access to and analysis of scientific data within a short period of time is a crucial

factor in achievements of scientific discoveries. New research challenges are brought

about by the emergence of data-intensive scientific discovery [HTT09], which is a

rapidly emerging methodology, introduced as “The Fourth Paradigm” by Jim Gray.

Researchers will gain from an increased ability to make discoveries that are hidden

in the huge amount of their data. There are many excellent examples of long-term

use of data in different research domains, however, these are not detailed in publica-

tions, because they are part of a researcher’s work. This has as a consequence that

the ideas behind them are not made accessible to others by publishing a scientific

paper. Increased use of data will be a persistent feature of future research, business,

government and discussion making [AR10].

e-Science refers to the large-scale science that will increasingly be carried out

through distributed global collaborations enabled by the internet. In many e-Science

applications relevant scientific data is typically collected at different participating



1.1. Motivation 5

research centers. This distributed and often heterogenous data is made accessible

for significant analysis through portals by the means of e-Infrastructures. Scientific

data can be categorized into three major categories: (1) primary data, (2) derived

data , and (3) background data. Data items of each category are interacting within

scientific experiments. Typically, a primary data set is accessed and analyzed by

some kind of analytical methods, which produce a set of derived data products.

Analytical methods are often composed into scientific workflows represented by a

workflow language and executed by a workflow enactment engine. Background data

typically represents such scientific workflows, but is not limited to it. Also prove-

nance data1 [SPG05] is regarded in this context as background data. In general any

data item corresponding to a scientific experiment that does not represent primary

or derived data, is classified as background data. Managing the outcome of scientific

experiments in conjunction with its corresponding input data by enriching the ex-

isting relationship among primary and derived data with semantics to be searchable

and following to be discovered and further used in other research areas represents

an open research issue to be challenged by this thesis.

The distributed space of primary, background and derived data can, if managed

by semantically rich relationships among participating data items support scientists

in organizing and preserving their scientific experiments in the long-term to be re-

used by owners and others.

Institutional repositories are clearly and broadly being recognized as essential

infrastructure for scholarship in the digital world. Consequently, it seems highly

probable that the next few years will see growing connections between institutional

repositories as infrastructure and the broader issues that are emerging about strate-

gies and infrastructure necessary to support the management, dissemination and

curation of research data [LL05].

Today, there are powerful systems for managing data at the level of a single

database system (whether relational, XML, or in some other model). While the

commercial world has standardized on the relational data model and SQL, no single

standard or tool has critical mass in the scientific community [GLNS+05]. There are

many parallel and competing efforts to build scientific data management solutions

- at least one per discipline. Data interchange outside each group is problematic,

and therefore an open research issue and probably a never-ending story faced by the

data management community .

A much greater challenge facing the data management community is to raise the

1Provenance data is referred in the literature to a description of the origins of a dataset and
the process that led to that specific dataset, such as a workflow description.
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abstraction level at which data is managed in order to provide a system controlling

different data sources, each with its own data model [Hal05]. The goal is to manage

a dataspace, rather than a database. A dataspace consists of a set of participants

and a set of relationships among participants [FHM05]. A participant can be any el-

ement containing data in some way. Relationships describe how two participants are

related to each other. Relationships can be expressed by single word-relationships,

such as replica-of, related-to, view-of, etc. In the extreme example they can be se-

mantic mappings of database schemas. Systems providing the required services over

dataspaces are considered to be Dataspace Support Platforms (DSSPs) [HFM06].

In [EBT06] we have defined such a system as:

“A set of software programs that controls the organization, storage

and retrieval of data in a dataspace. It also handles the security and

integrity of the dataspace.”

We are aware that the security of the dataspace represents an important chal-

lenge, however it is not addressed in this thesis. Besides authentication, encryption

and privacy requirements on the infrastructural layer [DFL+09] main security is-

sues in this context deal with retaining data control to the client with multiple

organizations involved [DMF+09].

1.2 Research Approach

The initial ideas on managing dataspaces have started to evoke interests of the data

management community, however most effort is related to the database research

and application mainstream and so far not considered for advanced scientific data

management. Furthermore, most of the approaches towards realizing a dataspace

system that were presented at international conferences to date, focus on personal

information management. In Figure 1.1 we illustrate our extension to the main-

stream dataspace research providing advanced scientific data management. The

mainstream dataspace research can be summarized as the research direction focus-

ing on the realization of dataspace concepts for an on-demand data integration,

which is referred in literature as pay-as-you-go data integration [DSDH08].

Scientific dataspaces aim at providing associated mechanisms for managing se-

mantically rich relationships among scientific data resources as well as to keep track

of scientific experiments - independent of the e-Science application domain - that are

being conducted by members of a scientific community and to link these experiments
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Figure 1.1: Dataspace research extension.

with user information i.e. institutional affiliation, email address, working field, etc.

of the scientist who conducted the experiment.

This thesis intends to provide novel data management solutions based on the

concepts of dataspaces for large-scale and long-term management of scientific data,

and we also utilize several concepts from knowledge management technologies . Our

approach is to investigate how the creation of the relationship between dataspace

participants can be semi-automatized, how to semantically enrich existing relation-

ships among primary and derived data items, and how to preserve both relationships

and data together within the dataspace to be reused by owners and others. To en-

able reuse, data must be well preserved. Preservation of scientific data can best be

established if the full life cycle of data is addressed [Lyn08]. The effects of data loss

can be economic, because the experiments have to be re-run, but in some cases data

loss represents an opportunity lost forever. Therefore, the preservation of scientific

data (primary, background, and derived datasets), including semantic relationships

among them providing knowledge, such as why and how a specific study was con-

ducted, represents an important challenge to be faced in this work.

Main objective is to link derived data with their corresponding primary data by

providing semantically rich relationships. Further, to make both relationships and

data available within the dataspace for scientists from various groups of organiza-

tions who might have use of it and who want to collaborate by the means of virtual

organizations in the context of an e-infrastructure. We present the key concepts



8

of dataspaces and its environment in e-Science - the life cycle of scientific data2 -

as classes of an ontology expressed in OWL [W3C04], and we use this ontology to

provide semantics about iterations in the life cycle for creating semantically rich

relationships among life cycle iterations and its corresponding primary, background,

and derived data.

The success of a dataspace will be highly dependent on the power of the used

relationship concept as well as its flexibility. Rich relationships between partici-

pants are going to be the backbone of such a system, with the basic necessity to

support their semi-automatically creation of them as well as their improvements and

maintenance. The development of a suitable relationship framework customizable

towards various application needs is an important issue, to be solved by the scientific

dataspace paradigm presented in this thesis.

The dataspace paradigm is being evaluated in the context of two real world

e-Science applications:

1. Non-Invasive Health-Parameter Prediction based on Traditional Chinese Medicine

- conducted within the CADGrid bilateral research project [cad11].

2. Breath Gas Analysis for Molecular-Oriented Detection of Minimal Diseases -

conducted within the Austrian Grid [agr10] project. The follow up project

Advanced Breath Analysis [aba11] builds upon the dataspace paradigm and

further develops the platform addressing security and autonomous features for

execution of breath gas analysis experiments.

Moreover, to evaluate performance and scalability of our solutions, we build a syn-

thetic large-scale dataspace. This approach is shown to significantly improve assisted

publishing, discovery, and reuse of primary, background, and derived data used in

e-Science applications.

1.3 Research Questions, Goals, and Methods

Our research questions and goals are explicitly and systematically described in the

following subsections.

2The life cycle of scientific data covers all steps in the process of conducting a scientific study.
It is further described in Section 4.2.
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1.3.1 Semantic Relationships among Dataspace Participants

Research Question A: How can semantically enriched relationships among data

items, described by an ontology support discovery of scientific datasets in a datas-

pace?

Research Goals are:

• to define a measure for semantic richness of dataspace participants,

• to link participants of a scientific dataspace by providing semantically rich

relationships among derived data products with their corresponding primary

and background data,

• to invent a suitable relationship paradigm for the creation, representation and

advanced searching of relationships among participants of a scientific datas-

pace,

• to apply the relationship model in a prototype implementation of a scientific

dataspace support platform offering semantic search&query interfaces,

• to evaluate the model on top of several real world and modeled e-Science

applications.

1.3.2 Establishing Data Preservation Spaces

Research Question B: How can an ontology that addresses the full life cycle of data

support long-term preservation of scientific data in a dataspace?

Research Goals are:

• to develop an OWL ontology that addresses the full life cycle of data in sci-

entific experiments considering accessed and derived, as well as background

datasets,

• to dispose single instances of scientific experiments as individuals of that on-

tology to be represented in RDF graphs linking to involved scientific datasets

(resources),

• to provide an appropriate indexing mechanism for uniform organization of

scientific data life cycle resources,

• to preserve those RDF graphs together with its corresponding scientific re-

sources within an adequate physical storage system.
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1.3.3 Realizing Large-Scale Dataspaces

Research Question C: Are large-scale dataspaces the next generation knowledge- and

data management paradigms replacing data grids and what requirements (perfor-

mance, scalability, usability, etc.) should they fulfill?

Research Goals are:

• to analyze most recent developments in the area of scientific data management

systems and other large-scale data and knowledge management solutions in-

cluding data grids taking into account the defined measure for semantic rich-

ness,

• to elaborate and experimentally implement large-scale dataspace scenarios

with geographically distributed scientific data resources and collaborating sci-

entists on top of a real world e-Science application,

• to differentiate those existing systems with the scientific dataspace support

platform in terms of multi-disciplinary virtual organizations,

• to define how the process of scientific collaboration should be organized, in

order to efficiently affiliate existing dataspaces of different domains into a

large-scale and multi-disciplinary scientific dataspace.

1.4 Organization of the Dissertation

This thesis is organized into three major parts. Part I introduces the problem area,

provides the background knowledge and an extensive related work chapter. Part II

deals with the methodology and concepts applied. Its three Chapters (4, 5, and 6)

elaborate the scientific data life cycle in e-Science applications, present the system

architecture of our Scientific Dataspace Support Platform , and discusses large-scale

dataspace scenarios. Part III finally describes the prototypical implementation, the

system usage and interaction, and the experimental evaluation in two real world

e-Science applications. It also concludes this thesis and gives suggestions for future

research. A visual overview of the organization of this thesis is given in Figure 1.2.

In the following an outline of this thesis is given with a brief description of each

chapter.

Chapter 2 This chapter introduces an appropriate research background and in-

troduces the research context of the work in this thesis. In particular, it
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describes the terms e-Science and e-Infrastructure, e-Science Portal, and Ser-

vice Oriented Architecture. Furthermore, it defines four supreme disciplines

of data management in e-Science and discusses their corresponding key data

management tasks. Finally, the chapter provides an overview of the data-

management requirements of e-Science applications on dataspace systems and

gives a general summary of data management solutions for e-Science.

Chapter 3 represents a comprehensive work to survey the state of the art in datas-

pace features to date. It describes in great detail how dataspace features were

considered in the current research projects and enterprise solutions of the data

management community. Its sections cover research projects and enterprise

solutions including data preservation systems that provide at least some of the

features a dataspace system should offer.

Chapter 4 This chapter discusses the development and evaluation of the scientific

dataspace model and elaborates what data items are considered as dataspace

participants in the scientific dataspace. It demonstrates the approach for cre-

ation, representation, and maintaining of semantically enriched relationships

among distributed dataspace participants.

Chapter 5 This chapter introduces the e-Science life cycle ontology. It describes

how relationships among dataspace participants can be semantically enriched

by the use of an ontology. This chapter also describes the methodology that

was applied for building the e-Science life cycle ontology and outlines the major

classes and properties of that ontology. Also other existing methodologies for

building an ontology are described briefly at the end of this chapter.

Chapter 6 This chapter discusses first use cases and then elaborates in great detail

the architecture of the proposed dataspace-based support platform called jS-

pace. Also, the EPR-Framework for organizing end point references to datasets

managed by the dataspace is introduced in this chapter. A reference imple-

mentation is also described within this Chapter.

Chapter 7 This chapter introduces capabilities of the proposed scientific dataspace

paradigm for large-scale purposes. This includes the ability to support multi-

ple domains and disciplines. It presents large-scale scientific dataspaces as a se-

mantic data infrastructure that integrates multiple geographically distributed

Resource Description Framework (RDF) data stores supporting SPARQL us-

ing an existing adaptive distributed SPARQL query processor. It also discusses
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how scalability can be achieved in the scientific dataspace paradigm. A syn-

thetic large-scale scientific dataspace is generated and test along with exiting

technologies. The approach for realizing large-scale scientific dataspaces is

described in detail and tested on synthetically generated data.

Chapter 8 This chapter presents an experimental evaluation in several e-Science

applications from two different research domains. It discusses for each appli-

cation how the acting research groups are profiting from the described support

platform and its underlying scientific dataspace. Experiences and issues from

the evaluation are also discussed in this chapter.

Chapter 9 This chapter summarizes the research done within this thesis. It out-

lines the major research contributions briefly discusses open issues and future

research directions. Also research publications that have resulted from the

research are listed at the end of this chapter.

Appendix A This Appendix provides the jSpace Tutorial. A tutorial on how to

set up a dataspace-based infrastructure using the jSpace framework.

Appendix B This Appendix exemplifies a life cycle resource (LCR) from a real

e-Science application, in particular breath gas analysis for the detection of

Molecular-Oriented Detection of Minimal Diseases. It also illustrates the

classes and properties for that LCR.

Furthermore each chapter has a short introduction of the problem it addresses

and concludes with a summary of the main results and achievements. If applicable,

a specific related work section concerning the concepts in each Chapter is presented

additionally to Chapter 3, where an in-depth analysis of available large- and small-

scale data management systems is elaborated.



Chapter 2

Research Background and Context

“... there is a lot of data that is collected but not curated or

published in any systematic way.”

In a talk to the national Research Council in Mountain View on

January 11, 2007 given by

Jim Gray

2.1 Introduction

The term dataspace is differently considered by different research communities. In

the data mining and knowledge discovery community, a dataspace is described as an

infrastructure for remote data analysis and distributed data mining, where a datas-

pace is an example of a data web - that is, a web-based infrastructure for working

with data [GM02]. The utility of such a dataspace is to reduce the time required

to accomplish the data extraction, cleaning, and transforming step as well as the

exploratory data analysis step of a data mining task. In the paper, Grossman and

Mazucco describe a special data transport protocol for accessing data stored physi-

cally as files in distributed dataspace servers on a data web. The data within their

dataspace is a distributed collection of columns. Another usage of the term datas-

pace is given in [IG99], where a dataspace is defined as a three dimensional physical

space enhanced with connectivity to the network. Here, a dataspace is populated

by classes of mobile objects producing and storing their own data. These physical

objects can be queried and monitored on the basis of their properties. Spatial coor-

dinates are the basic points of reference to navigate and query the dataspace. The

idea is to provide digital information embedded in physical space for wide range
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applications such as efficient transportation, environmental protection, and rapid

emergency response.

In [FHM05] a new abstraction for information management by describing a plat-

form supporting dataspaces, where a dataspace contains a set of participants and a

set of relationships is introduced. A participant can be any data element. The idea

is to raise the abstraction level at which data is managed in order to provide a sys-

tem managing different data sources, each with its own data model. The concepts

are presented in a visionary way, however, their implementation in real application

environments has opened new research challenges. Following that different research

groups have addressed the realization of dataspace concepts for various application

fields, most of them being personal information management.

In this chapter we provide background knowledge on data management, par-

ticularly in e-Science applications and introduce the idea of dataspaces. Therefore

we first discuss the terms e-Science and e-Infrastructures in Section 2.2, e-Science

Portals in Section 2.3 and address Service Oriented Architectures in Section 2.4.

Within Section 2.5 and its subsections we then address the term scientific data

management by splitting it into its four main research challenges. In Section 2.7

we illustrate and discuss current data management solutions that fit in scientific

applications in context of measurement dimensions, like administrative proximity,

semantic integration, and dimension of scale. It will not address specific implemen-

tations of such solutions, which are discussed deeply as part of the related work in

Chapter 3. The idea is to give the reader an overview of available solutions for data

management in e-Science applications and comparing them in dimensions of a space

of data management solutions.

2.2 e-Science and e-Infrastructures

Science has evolved in the past several decades from an empirical and theoretical

approach to one that includes computational simulations and modeling [BGS06],

commonly known as enhanced science. The term e-Science is often used to refer to

highly collaborative computational science that uses distributed software infrastruc-

tures in order to support shared efforts. Technological progress in such e-Science

infrastructures have enabled researchers to run complex, computational investiga-

tions that include data access, analysis, and largely automated model execution.

Cyberinfrastructures also called e-infrastructures for e-Science [HT05] promise

to change the way scientists will tackle research challenges in a number of domains,

including earth sciences [RSP07], medicine [The10] and life sciences [Kri04].
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The e-Science [HT05, RJS03] and the e-infrastructure [Ste08, Nat07b] programs

are initiatives focused on re-energizing and expanding the use of the web and related

services to enable more effective research, global collaborations, better utilization

of unique resources, and to help address emerging challenges in scientific research.

Initial focus was on grid [FKT01a], distributed and high performance computing.

Problems of workflow, provenance, middleware, and interoperability were also ad-

dressed. A 2007 NSF report added (1) data, data analysis, and visualization, (2)

cyber services and virtual organizations, and (3) learning and workforce develop-

ment to the goals of the e-infrastructure vision [Nat07b]. The first item recognizes

that science is becoming increasingly data-driven as low-cost sensors, low-cost stor-

age, faster networks are enabling the construction of large data archives that in turn

permit discovery through data mining. The second item above from the NSF re-

port recognizes that science is increasingly conducted by larger teams (big science),

requiring researchers with specialized skills not always locally available, resulting in

distributed virtual teams. Concurrently a new generation of scientists has grown

up with the web and social media and are comfortable and proficient with cyber

services. Finally, the third item in the NSF report recognizes that an important role

for e-infrastructure is education and workforce development.

2.3 e-Science Portals

An e-science portal is a conventional web portal that sits on top of a rich collection

of web-based services that allow a community of users access to shared data and

application resources without exposing them to the details of grid or cloud com-

puting [GPC+08]. Due to wireless connectivity improvements and hardware getting

mobile and constantly smaller and cheaper, portal developers are facing new chal-

lenges. Enormous amounts of data will be produced at a rate never seen before in

any field of human activity, requiring next generation e-science portals to cope with

and making use of it. Social networking tools are being intensively used by scientists

forming virtual scientific communities. This led to an evolution of digital scientific

discourse [CWW+08] and other dynamics that drive virtual scientific activities such

as research intelligence [She08] and workflow-using e-scientists [GDR07] in a way

making it important to preserve scientific experiments on the whole, including pri-

mary data, intermediate data, derived data, the processes, and the tools and their

versions used. In this context e-Science portals providing tools to enhance collab-

oration of scientists are gaining more and more attraction within various research

domains.
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On the one hand an e-Science portal can provide the user a single point of

access to information, data, and tools that is available and maintained in some

kind of organized and distributed scientific space. On the other hand, by having the

scientists in front of the portal conducting scientific experiments, portals can also be

utilized as an instrument to capture information about what the scientist is doing,

why, and in which context. Once having these crucial semantics about scientific

experiments organized in an efficient manner and attached to its corresponding

primary and derived data, they could provide deeper insights into studies than

someone could grasp from publications or technical reports.

Current leading portal platforms such as the Liferay portal platform [Inc10]

are composed of a number of portlets, which can be described as self-contained

interactive elements that are written to a particular standard [Yua10]. Since portlets

are developed independently of the portal itself, and loosely coupled with the portal,

they are apparently SOA (Service-Oriented Architecture).

2.4 Service Oriented Architectures (SOA)

The computational and data intensive applications in the modern grid, cloud, and

other distributed computing areas often make use of components (services) as the

building blocks of their applications within service oriented architectures (SOA)

[ST05].

There are multiple definitions of SOA. The OASIS group and the Open Group

have both provided formal definitions. OASIS defines SOA in the SOA Reference

Model definition [LME09] as the following:

A paradigm for organizing and utilizing distributed capabilities that

may be under the control of different ownership domains. It provides

a uniform means to offer, discover, interact with and use capabilities

to produce desired effects consistent with measurable preconditions and

expectations.

Great progress has been made in the last decade to utilize SOA in grid com-

puting [RBJS03] and recently also in cloud Computing [BBG11, FA11] in order to

facilitate the virtualization of heterogenous resources like data sources and compu-

tational resources. Distributed computing from its very beginning, is in practice

to serve the scientific community by solving their large and complex problems that

involve resources from across organizations [FKNT02a, FKNT02b]. Amongst all
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these distributed technologies grid computing has played an important role in the

last decade in the promotion of scientific and engineering research activities.

Cloud computing has evolved as the new next-generation technology that facili-

tates the creation of large-scale computing and storage services for hosting applica-

tion services requiring high availability and performance.

2.5 Key Data Management Tasks in e-Science

The complex interaction in e-infrastructures, which includes people, services, appli-

cations, data, instruments, and computational resources has pointed out a strong

need for data management.

Data management in e-Science addresses methodologies to provide advanced

data-intensive systems and applications. This allows scientists to better determine

what data exists and where it resides and thus to achieve greater and faster inves-

tigations within scientific studies addressed. The interconnection of the outputs in

scientific studies with their corresponding input data and the preservation of the

whole data life cycle represents important challenges in this context. By semanti-

cally enriching this data life cycle and further, by making it accessible for researchers,

it not only helps to discover interesting new datasets and patterns but also enables

the studies and experiments to be re-used and reproduced, which is important for

a research community and in particular in cross-disciplinary science. We therefore

classify the field of scientific data management into four supreme disciplines as fol-

lows:

• determining of what data exists and where it resides

• searching the data (space) for answers to specific questions

• discovering interesting new datasets and patterns

• assisted and automated publishing of primary and derived data

2.5.1 Determining of What Data Exists and Where it Re-

sides

Small-scale research groups consisting of a senior researcher, one or two post-graduate

researchers and few PhD- as well as Master-students are very common in the Eu-

ropean and the US research landscape (Figure 2.1). Typically every member of the

research group is equipped with a workstation where the scientist stores scientific
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Figure 2.1: Small-scale research lab.

data and experiments he or she is using, creating, modifying, etc. in a way he or she

thinks to be appropriate. In some cases there might be a central data-host, where

the results of the group are being centrally stored, this however ends up in many

cases as a simple big flat directory with lots of un-owned data with dubious content.

Especially when people leave the research group, e.g. a PhD candidate completed

his thesis, it is most likely the case that the only pieces of information, results, data,

and knowledge left at the research lab is represented by the thesis, publications,

or technical reports the scientist has written. It is hardly possible that scientific

experiments conducted by a scientist who left the research group some time ago

can be re-run, because it is not easy to determine what data exists and where

it resides. In many research labs it is even not possible for the composer of an

experiment to repeat it after some time had passed away, lets say a year. This is

due to lack of efficient scientific data management mechanisms that allow scientists

to automatically record what experiments are being conducted including long-term

preservation of their corresponding data items.

An instance of the above mentioned research group typically contributes to one

or more collaborative multi-national research projects, where meetings are organized

at a regular basis. Moreover they participate in scientific communities by attend-

ing international conferences and similar meetings. Typically data and knowledge

exchange among groups and individuals that participate in such meetings, is based
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on presentations and publications. However, this simple mechanism of data ex-

change does not provide enough information to enable other scientists from third

parties to re-run experiments not to mention to re-use its corresponding existing

data. Therefore it is of utmost importance to enable scientists easy-to-use methods

to determine what data exists and where it resides. Key-challenge in this context

is the semantic enrichment of data products as well as their intelligent organization

within distributed space of data.

Provenance (also referred to as lineage and pedigree) has beed defined by com-

puter scientists in different ways [BSS08, BKT01, SPG05]. However, in the context

of service oriented architectures, provenance of a piece of data can be defined as

the process that led to that piece of data [GLM04]. Data provenance and process

indexScientific!dataspace model represent the two basic views of provenance. Data

provenance is the lineage/history of a data product, whereas process provenance is

the transformation history that derived this data product. Provenance has been

used both in the field of database systems [BKT01, Tan08, ZCL09] as well as in the

field of scientific workflows [kep11, tav11, TDG06, vis11].

In the context of scientific data management in e-Science data and process prove-

nance can support determining of what data exists and where it resides. For instance,

if the derived result set of a scientific experiment is retrieved, process provenance

can lead to the primary dataset that was input to the experiment as well as to the

background dataset used to analyze the input dataset producing the derived result

set. Data provenance can for instance provide the information needed to determine

older versions of a background dataset (e.g. an analytical method). This can be

useful if a model error was detected and the scientist wants to determine all data

that is affected by the error. Thus provenance represents an important feature,

which should be provided in todays scientific data management systems.

2.5.2 Searching the Data (Space) for Answers to Specific

Questions

Providing answers to specific questions is a major challenge faced by the scien-

tific data management community. Advanced scientific data management solutions

should be equipped with an intelligent search and query interface. The greatest

system will not be accepted by the end users, if it lacks a search interface that

allows to provide answers to specific questions. Query interfaces that are limited

to a single query language might provide great query features. However scientists

from various domains, especially from the life science domain will not start to learn
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a query language in order to be able to use a data management tool that helps to

determine what data exists, where it resides and what purpose the data has been

collected for. The widely spread keyword query represents the easiest way to search

for content. It became very popular due to internet search engines.

Advanced scientific data management solutions should provide search and query

features together in an integrated way. This leads to an information gathering task

where multiple search phrases and query constructs are submitted to the system in

several levels. In between these levels also the combination of multiple keywords and

query mechanisms such as logical operators (and, or, etc.) form together specific

questions. Such questions might be expressed by scientists as the following:

A ”I have detected a model error and want to know which derived data products

need to be recomputed.”

B ”I want to apply an analysis X on dataset Y. If the results already exist, I’ll

save hours of computation.”

C ”Is there any study done on the sample probe taken from probands A and B

using the analytical method C?”

Through e-Science portals and advanced user interfaces scientists should be sup-

ported with the needed tools, which enable users to express search queries visually

and in a simple way.

2.5.3 Discovering Interesting New Datasets and Patterns

With an increasing amount of scientific data collections, we face not only problems

in terms of their efficient management - it also brings a lot of opportunities, first

and foremost the possibility to re-use existing data and experiments for new studies.

In conjunction to supreme discipline “determining of what data exists and where

it resides” this discipline is more about to discover new datasets and patterns from

existing scientific studies that about to determine what data exists. Patterns in

this context are regarded as pieces of data that can be used for different purposes,

such as a generic data preparation workflow or an analytical methods that executes a

standard algorithm or mathematical method of any prepared dataset. Such patterns,

if organized in an efficient manner can be useful for the acting scientist and will help

to focus on the initial tasks.

In order to provide scientists the possibility to re-use existing data, we need

first of all to semantically enrich and preserve the existing data. Well preserved
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and semantically rich data can only be achieved if the full life cycle of data is

addressed [Lyn08]. There are various life cycle models and paradigms developed for

different purposes in different domains. For example for data mining [HKP06] there

is the CRISP (CRoss Industry Standard Process for Data Mining) model [CCK+00,

She00], or for software development there is the Rational Unified Process [Sta05].

Independent of the domain such models always unify common steps into a clear

amount of interconnected phases to be processed successively in an iterative manner.

In e-Science the steps a scientist is conducting while processing an experiment,

typically need to be organized into major phases to model an e-Science life cycle

paradigm. An individual iteration or a cycle of such a model can be seen as a

pattern, which might be re-used if it is well-preserved and made discoverable to

a scientific community. At a lower level of abstraction even single phases of an

iteration might be re-used, thus also representing patterns. Data being used in a

scientific experiment need to be linked to corresponding phases of an e-Science life

cycle model and following also need to be preserved within a space of data. This

will allow the development of discovery services as well as the utilization of available

methods to provide scientists the possibility to discover interesting new datasets and

patterns.

The term e-Science life cycle is referred to as an iterative model that models all

the above mentioned steps or phases of a scientific experiment. It represents the

basis of the scientific dataspace paradigm and is deeply discussed in Chapter 4.2

where also the paradigm itself is addressed.

2.5.4 Assisted and Automated Publishing of Primary and

Derived Data

Once an analytical method has been applied on some identified and prepared dataset,

which as a results produced a number of derived datasets, it is important to make

those results with their corresponding input datasets available in some kind of a

space of data for other collaborating research groups. This collaborating research

groups that might be geographically distributed around the globe will find pub-

lished data through search and query services offered by a scientific data(space)

management system. Such services organize meta data about published data, and

relationships among data of different data categories (primary, derived and back-

ground).

Data Publication in terms of scientific data management provides publishing

data as datasets that allow users to request personalized subsets of the data. The
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requests can be submitted via an e-Science portal and the replies returned to the

scientist, depending on the user’s category and his access rights.

Data Publication services are likely to unify this process and make it easy for

scientists to register new datasets and for users to find these datasets. Furthermore,

to automatically publish derived datasets depending on the actor’s settings. In

this context focus is set on building semantically rich relationships among primary

and derived datasets as well as among corresponding background data that were

published. These relationships, managed within a space of data, allow providing

answers to specific questions submitted as requests via e-Science portals. Data

publication in a dataspace environment will carry this idea much further as it will

be possible for users to request data from many repositories at once, and returning

relevant primary and derived data as well as available background data from each

of them.

2.6 Data-Management Requirements of e-Science

Applications on Dataspace Systems

We discuss the requirements of e-Science applications on a dataspace by the means

of the dataspace environment components depicted in Figure 2.2.

Figure 2.2: Key components of a dataspace support platform for e-Science applica-
tions.
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Information Retrieval

Querying and searching are two different information retrieval methods and repre-

sent one of the main services supported by a Dataspace Management System. In

general querying and searching methods should be supported by all dataspace par-

ticipants independent of their data models as if applied to a single database. A

well known and simple search process is the keyword search. The support of such

a search method on all participants in a dataspace regardless which data model it

contains is a challenging research topic. The development of keyword based search

methods for relational and XML databases is faced by the data engineering commu-

nity [dbx02, GSBS03, HP02]. Supporting a global query functionality allowing to

formulate queries on top of all participants in a dataspace, needs intelligent methods

for interpreting and translating queries into various languages. Query translation

methods present a main research challenge, faced by a large body of research com-

munities [CKS+00, KCKN04].

Information Extraction

Most frequently used data containers are relational databases, object-oriented sys-

tems, XML databases, and files. However, the world wide web has become a huge

data container and thus a storehouse of knowledge. In order to allow post-processing

of data obtained from the web, web information extraction techniques, extracting rel-

evant information from semi-structured web pages should be supported. Extracted

contents have to be transformed into structural information and saved locally for

further processing. Non-structured web documents need to be classified first using

text mining techniques, which map the parsed documents into groups organized

with the help of ontologies [HQZW04]. Based on those ontologies a keyword search

is possible to retrieve such documents. The third and last kind of documents that

can be found on the web are structured documents, which allow easier access and

integration due to the rich semantic information included in the data representation.

Data Management Extension

The Data Management Extension component offers features for enhancing low level

dataspace components. A dataspace component for example could be a simple

fileserver or set of web documents. As these types of data elements have no or

only limited data management functions it is a task of the Dataspace Management

System to provide additional data management features such as backup, recovery,

and replication.
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Catalog

It contains a detailed description of all participants included into the dataspace.

Besides the basic information about the participant, such as owner, creation date,

etc., the description should also include semantic information about the data of the

participant. The user should be able to browse the Catalog to get more information

about specific data sources. The Catalog can refer to a metadata repository in order

to separate basic information from more detailed data descriptions.

Manager

In order to support the above mentioned features, the system needs to be managed

by a central component interacting with the user. Besides user authentication, right

assignment, and other services, the Manager is responsible for communication with

the participants thus serving as an interface between the users and the participants

of the dataspace.

Local Store and Index

This component manages the cache containing search and query results so that cer-

tain queries can be answered without accessing the actual data source and supports

the creation of query-able association between participants. Also an adequate in-

dexing mechanism to uniquely identify each dataspace participant including their

relationships need to be addressed

Replication Storage

It allows to replicate the participant data in order to increase access performance,

thus high availability and recovery is supported. Also the replication of relationships

needs to be addressed by a dataspace paradigm for e-Science applications.

Application Repository

Here, the users can share data analysis tools, domain specific models, evaluations,

etc. that can be applied to the data available in the dataspace. The integration

of analytical methods into the dataspace and the creation of relationships among

datasets organized as dataspace participants that have either resulted from the usage

of the analytical methods or used as input to the analytical method is therefore an

important requirement to be challenged by a scientific dataspace.
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2.7 Space of Data Management Solutions for e-

Science

Todays data management solutions are categorized along two dimensions depicted

in Figure 2.3 (a), which is reproduced from the dataspace vision paper [FHM05]. It

shows a categorization of existing data management solutions along two dimensions.

“Administrative Proximity” indicates how close the various data sources are in terms

of administrative control. “Near” means that the sources are under the same or

at least coordinated control, while “Far” indicates a looser coordination tending

towards none at all. The closer the administrative control of a group of data sources,

the stronger the guarantees (e.g., of consistency, permanence) that can be provided

by the data management system.

Semantic Integration

Administrative
Proximity

Far

Near

High Low

Web SearchVirtual Organization

DBMS

Data integration systems

Scientific repositories

Desktop Search

Enterprise portals

Semantic Integration

Administrative
Proximity Scale
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Small
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Web Search

Virtual Organization

DBMS

Data integration systems
Scientific repositories

Desktop Search

Enterprise portals

(a) (b)

Figure 2.3: (a) A space of data management solution [FHM05]. (b) An extended
space of data management solutions considering the scale-dimension.

“Semantic Integration” indicates how closely the schemas of the various data

sources have been matched. In other words, how well the types, names, units,

meanings, etc. of the data in the sources are matched up. At the high end of the

spectrum, all data conforms to a single agreed-upon schema. At the low end, there

is no schema information at all. In between lay various data integration solutions

and approaches based on semi-structured data and controlled vocabularies. This

dimension indicates the degree to which semantically rich query processing and data

manipulation can be provided across a group of data sources, with higher degrees

of integration providing richer functionality [FHM05].

In Figure 2.3 (b) we extend the space of data management solutions with a
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third dimension. Scale indicates the size of the corresponding managed data, thus

it gives us an indication where the data management solution might be deployed.

“Small” means that the data management solution can manage a clear amount of

data and is designed for a small group of users towards single-user. They are typi-

cally represented by personal information management systems. “Large” indicates

that the data management solution is able to be deployed for large-scale scientific

applications ranging from astrophysics to geo- and medical-sciences, where a large

amount of data and requesting users is fcharacteristic. A data management solution

near by “Medium” means that it can either be deployed for small- and large-scale

requirements, but for the efficiency and in order to give a good return they fit best

in the medium-scale.

2.8 Summary

Data management systems for e-Science strongly need to consider relationships that

exist among primary, background, and derived data. It has become essentially for

any data management system to provide information about how a data product

has been derived. Today, there are well organized online libraries that organize

scientific publications to a great extent. However, what is missing in this context

is a way to create relations from scientific publications and technical reports that

mainly describe in some sort a scientific study or experiment to (a) the primary data

source used and (b) the analytical methods applied. These relationships need to be

semantically enriched (e.g. more information such as why and how a specific study

was applied, including contact information about the scientist responsible for caring

out the study/research) to allow computer programs to query that knowledge. This

challenge is referred in this thesis to as preservation of the life cycle of scientific data

in scientific studies.

Furthermore, it is crucial to provide an efficient and easy way for scientists to

share and publish their data including rich semantics about conducted experiment

to enable their re-use.
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Related Work

“Dataspaces can be viewed as an umbrella for varied efforts in the data

management community.”

In: From Databases to Dataspaces, SIGMOD Record, Vol. 34, No. 4,

December 2005 by

Michael Franklin, Alon Halevy and David Maier

Since much of the research in the data management community already falls

into the requirements of dataspaces, including areas such as schema mapping, data

integration and model management, uniform search over multiple types of data

combining structured, semistructured, and unstructured data, approximate query

processing, managing and querying uncertain data and its lineage, and stream and

sensor data management and processing, we can view dataspaces as an umbrella for

these varied efforts. However, as we have discussed in the previous two chapters we

believe that the holistic view taken by dataspaces and their supporting platforms

lead themselves to a new set of research challenges.

In Section 2.6 we have identified key components of a dataspace support platform

for e-Science, each representing own challenges and opening new research topics in

the field of scientific data management. This chapter describes how these dataspace

features were considered in the current research projects and enterprise solutions of

the data management community. Thus, this chapter represents a comprehensive

work to survey the state of the art in dataspace features to date. Its sections cover

research projects and enterprise solutions that provide at least some of the features

a dataspace systems should offer. We classify those systems into two major clusters:
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1. Large-scale data management systems are considered in Section 3.1 and

2. Small-scale data management systems, including personal information man-

agement systems that provide dataspace features are described in Section 3.2.

In Section 3.3 we present a comparison matrix that indicates, which system provides

which of the previously identified dataspace features. As the measure for semantic

richness we have defined the utilization of the semantic web technologies. These

technologies include the Resource Description Framework (RDF) [rdf04b], a variety

of data interchange formats (e.g. RDF/XML, N3, Turtle, N-Triples), and notations

such as RDF Schema (RDFS) [rdf04a], the Web Ontology Language (OWL) [owl04]

and the SPARQL protocol and query language [PS08, C+08] for semantic wed data

sources, all of which are intended to provide a formal description of concepts, terms,

and relationships within a given knowledge domain.

3.1 Large-Scale Data Management Systems

3.1.1 DSpace

DSpace [DSp11] is a digital repository software platform that enables organisations

to:

• capture and describe digital scholarly research material using a submission

workflow module, or a variety of programmatic ingest options

• distribute an organization’s digital assets over the Web through a search and

retrieval system

• preserve digital assets over the long term

It is typically used to provide an institutional repository for open access scholarly

research, theses and learning objects, and a preservation archive. DSpace 1.0 was

released by MIT Libraries and HP Labs in November 2000 as open source digital

repository software under the BSD license. In 2006 a group of thirteen DSpace

committers, technical experts, and other interested parties have met to review the

DSpace architecture for the next release [Ock07]. Currently, by mid 2011, approxi-

mately 200 research institutions located in 35 countries have registered a live DSpace

repository.
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Figure 3.1: DSpace data model diagram [Fon11].
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DSpace Data Model

The DSpace data model diagram is shown in Figure 3.1. Each DSpace site is divided

into communities, which can be further divided into sub-communities reflecting the

typical university structure of college/faculty, department, or research group. Com-

munities contain collections, which are groupings of related content. A collection

may appear in more than one community. Each collection is composed of items,

which are the basic archival elements of the archive. Each item is owned by one

collection. Additionally, an item may appear in additional collections; however ev-

ery item has only one collection. Items are further subdivided into named bundles

of bitstream. Bitstreams are the name suggests, streams of bits, usually ordinary

computer files. According to [Fon11], most items tend to have the following named

bundles in practice:

• ORIGINAL - the bundle with the original, deposited bitstreams

• THUMBNAILS - thumbnails of any image bitstreams

• TEXT - extracted full-text from bitstreams in ORIGINAL, for indexing

• LICENSE - contains the deposit license that the submitter granted the host

organization; in other words, specifies the rights that the hosting organization

have

• CC LICENSE - contains the distribution license, if any (a Creative Commons

license) associated with the item. This license specifies what end users down-

loading the content can do with the content

Each bitstream is associated with one Bitstream Format, which is a consistent

way to refer to a particular file format in DSpace. Bitstream formats can be more

specific than MIME types or file suffixes. For example, application/ms-word and

.doc span multiple versions of the Microsoft Word application, each of which pro-

duces bitstreams with presumably different characteristics [Fon11]. The support level

indicates how well the hosting institution is likely to be able to preserve content in

the format in the future. Each item has one qualified Dublin Core [DCM11] meta-

data record, which can be entered by end-users as they submit content. It might

also be derived from other metadata as part of an ingest process.

Items can be removed from DSpace in one of two ways: They may be “with-

drawn”, which means they remain in the archive but are completely hidden from

view. In this case, if an end-user attempts to access the withdrawn item, they are
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presented with a “tombstone” that indicates the item has been removed. For what-

ever reason, an item may also be “expunged” if necessary, in which case all traces

of it are removed from the archive. Table 3.1, which is reproduced from the DSpace

system documentation in [Fon11], gives an overview of DSpace objects with concrete

examples.

Object Example

Community Laboratory of Computer Science; Oceanographic Re-
search Center

Collection LCS Technical Reports; ORC Statistical Datasets
Item A technical report; a dataset with accompanying descrip-

tion; a video recording of a lecture
Bundle A group of HTML and image bitstreams making up an

HTML document
Bitstream A single HTML file; a single image file; a source code file
Bitstream Format Microsoft Word version 6.0; JPEG encoded image format

Table 3.1: DSpace object with concrete examples [Fon11].

DSpace Metadata

DSpace organized three sorts of metadata about archived content:

• Descriptive Metadata - by default a qualified Dublin Core metadata schema

loosely based on the Library Application Profile [DCM04] is provided, however

not restricted to it. The end-user can configure multiple schemas and select

metadata fields from a mix of configured schemas to describe items.

• Administrative Metadata - includes preservation metadata, provenance and

authorization policy data. Most of this is held within DSpace’s relational

DBMS schema. Provenance metadata is stored in Dublin Core records.

• Structural Metadata - This includes information about how to present an item,

or bitstreams within an item, to an end-user, and the relationships between

constituent parts of the item.

Ingest Process and Workflow

The ingesting process in DSpace is illustrated in Figure 3.2. An “External SIP” is

an XML metadata document with some content files. The “Batch Item Importer”

turns the external SIP into an “in progress submission” object. Depending on the

policy to which the submission is targeted, a workflow process might be initiated to
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ensure it is suitable for inclusion in the collection. Once this steps are completed

a provenance message containing the filename and checksums of the submission is

added to the Dublin Core. After this the “Item Installer” imports the archived item

in DSpace.

Ingest Process and Workflow
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3.9. Ingest Process and Workflow
Rather than being a single subsystem, ingesting is a process that spans several. Below is a simple illustration
of the current ingesting process in DSpace.

DSpace Ingest Process

The batch item importer is an application, which turns an external SIP (an XML metadata document with some
content files) into an "in progress submission" object. The Web submission UI is similarly used by an end-user
to assemble an "in progress submission" object.

Depending on the policy of the collection to which the submission in targeted, a workflow process may be
started. This typically allows one or more human reviewers or 'gatekeepers' to check over the submission and
ensure it is suitable for inclusion in the collection.

When the Batch Ingester or Web Submit UI completes the InProgressSubmission object, and invokes the next
stage of ingest (be that workflow or item installation), a provenance message is added to the Dublin Core which
includes the filenames and checksums of the content of the submission. Likewise, each time a workflow changes
state (e.g. a reviewer accepts the submission), a similar provenance statement is added. This allows us to track
how the item has changed since a user submitted it.

Once any workflow process is successfully and positively completed, the InProgressSubmission object is con-
sumed by an "item installer", that converts the InProgressSubmission into a fully blown archived item in DSpace.
The item installer:

• Assigns an accession date

• Adds a "date.available" value to the Dublin Core metadata record of the item

• Adds an issue date if none already present

• Adds a provenance message (including bitstream checksums)

• Assigns a Handle persistent identifier

• Adds the item to the target collection, and adds appropriate authorization policies

• Adds the new item to the search and browse index

Figure 3.2: Ingest process in DSpace [Fon11].

3.1.2 Storage Resource Broker

The Storage Resource Broker (SRB) is a middleware developed by the San Diego

Supercomputer Center (SDSC) [MWR05], which allows accessing heterogeneous dis-

tributed data including, filesystems, database systems and archival storage systems.

It is also considered as a datagrid [MCS+06a]. SRB uses a metadata catalog service

(MCAT) to provide a means to organize data in a collection-oriented view. MCAT

provides a set of APIs which allows attribute-based access to data collections and

items and provides an execution of distributed applications in order to establish

data access at every storage site of the distributed environment. The API offers the

capability to information discovery, identification of required data collection data

retrieval of various distributed data sources which may be distributed across wide

area networks.

SRB Architecture

Data resource access, which is managed by SRB MCAT catalog is provided by the

use of attribute names of the datasets independent from the physical file location,

maintaining a location transparency. Datasets collected by SRB include descriptive
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as well as system metadata [RWM02]. Descriptive metadata represents the con-

tents, whereas system metadata enables location and access control information for

collected datasets. Data recorded using SRB is arranged as a hierarchy of collec-

tions and sub-collections, whereas datasets arranged by the same collection can be

distributed across heterogeneous storage environments.

SRB can organize data access to various archival resources such as HPSS, Uni-

Tree and ADSM, file systems such as the Unix File System, NT File System and

the Mac OSX File System and databases such as Oracle, DB2, and Sybase. Fur-

thermore, it offers a logical representation for storage system descriptions, digital

file items, and datasets and supports characteristic facilities, which can be applied

in digital libraries, persistent archive systems and collection management systems.

SRB offers search capabilities based on user-defined metadata, which managed by

MCAT. Figure 3.3 gives an high-lever overview of the architecture of SRB.

Figure 3.3: SRB architecture [MWR05].

SRB distinguishes among Physical Storage Resources (PSRs) and Logical Stor-

age Resources (LSRs). Depending on the data source, PSRs are defined as following.

• For storage resources with file system interfaces: a PSR is the (hostname,

pathname) combination, representing a certain directory path on a certain

host.

• For storage resources with database system interfaces: a PSR is the (hostname,

database id, table id) triple, representing a host, a database on that host, and
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a table within that database.

A group of declared PSRs, which for example can be a table in an Oracle database,

directory path in HPSS or AIX filesystem, are joined together forming a single logical

storage resource (LSR). Client APIs provide references to LSRs. A replication of a

dataset, which is linked to a LSR is performed by replicating each PSR.

Access to distributed data resources is provided by a federation of SRB servers,

that manage a distinct set of PSRs, and allow SRB servers to act as clients to each

other. This enables a client application to access distributed data, even if there is

no direct connection between application and the controlling SRB server.

The SRB Server is in constant communication with the clients receiving their

requests and sending responses after they have collected the requested information

on datasets provided by the MCAT service. SRB represents a federated server

system, whereas every SRB server is responsible for a particular group of storage

resources. The implementation of the federated SRB server described in [MCS+06b]

offers following advantages:

• Location transparency - the data can be provided by connecting from one

federated SRB Server to another server using a logical attribute name or the

item and data collections.

• Improved reliability and availability - federated servers manage the data repli-

cation being performed on various hosts and storage systems in order to pro-

vide efficient load facilities.

• Logistical and administrative reasons - while using one single authentication

environment, the storage systems can be proceeded on distributed hosts im-

plementing different security mechanism.

• Fault tolerance - if one of the storage systems is not available, the global

identifier is aware of other available replicas, while automatically linking to

them.

• Integrated data access - the data access is provided the same way locally as

it is for distributed resources establishing an integrated access to distributed

data environments.

• Persistence - the replicated data elements on different storage systems are

represented by their logical attribute names providing the same data item

properties and so maintain an unique access management.
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The SRB Client offers an user tool that allows communication by sending user

requests to SRB Servers. Main client implementations are:

• Windows GUI named InQ [Nat07a] as depicted in Figure 3.4 that offers a

file-manager-like interface providing an easy way for users to manage their

data stored on SRB. InQ facilitates various management operations such as

traditional drag-and-drop operations for a transfer of files, a supports authen-

tication tools managing the access, data replication, metadata management

etc. Figure 3.4 shows a view of a data collection within the SRB using the

InQ interface.

• A web-based Client, named MySRB [RWM02] that allows secure access and

share of distributed data collections and data items stored in SRB. MySRB

provided three basic facilities: (1) collection and file management, (2) meta-

data handling, and (3) access and display of files and metadata.

Figure 3.4: InQ SRB Client.
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3.1.3 iRODS - integrated Rule-Oriented Data System

The integrated Rule-Oriented Data System (iRODS) [MRW05] is referred to as a

second generation data Grid software [RMH+10]. It is being developed by the SDSC

Storage Resource Broker team and its collaborators. iRODS further developed SRBs

abstraction concept by providing a data management abstraction process named

policy abstraction. iRODS provides a RULE Engine, which is responsible for rule

interpretation in order to evaluate how to reply to different client requests. iRODS

is open source under a BSD-type license.

iRODS approach uses Rule Oriented Programming (ROP) for achieving an adap-

tive middleware architecture. Adaptive middleware architectures typically represent

the core of a system enabling easy modifications and adaptions by users in order

to accomplish their tasks without the need to perform complex code implementa-

tions. All operations that are accomplished using the iRODS system are proceeded

as rules in the iRODS rule engine. These rules are initialized by application calls,

while controlling performed operations.

Rule Oriented Programming

Rule-oriented programming provides user facilities for modifying and controlling

operation functionality of a certain process without relaying on system or applica-

tion developers. ROP provides small, well-defined operations that perform a certain

task called micro-services [RMH+10], which are usually defined by system and ap-

plication programmers. While executing rules users can change task operations by

applying micro-services or by modifying already implemented code provided by ex-

isting micro-services. Different micro-services can be linked together in order to

provide a higher level facility in form of an action. Each action might be executed

in various manner containing a certain number of micro-services. An action provides

a particular task name, describing the executed operation, whereas micro-services

indicate the corresponding task. There are two mechanisms for finding the best set

of micro-services used for an action:

• Condition - provides permission control facilities, which can be applied on any

micro-service. This mechanism introduces the so called (action, condition,

chain)-triplet [RMH+10], which implements a rule in iRODS.

• Priority - responsible for controlling and testing the order of an executed rule,

whereas rules with low number will be executed first.
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Each time a set of micro-services is attached to a new action and afterwards

performed, the iRODS rule engine calls the corresponding rule service. If there is a

failure while executing micro-services, meaning that the corresponding action could

not be performed, the next rule with lower number is executed.

iRODS Architecture

The architecture of the iRODs system is illustrated in Figure 3.5.

Figure 3.5: The architecture of the iRODS system [MRW05].

Main parts of the iRODS architecture are:

• Data Grid infrastructure - provides a client-server application and shared data

sources.

• A database system - managing the data properties and operations that can be

applied on them.

• A rule system - rules executing management.

The iRODS Rule Engine is implemented on each iRods server. It represents the

core of the iRODS Rule System. Depending on the executed rule and its function,

a set of micro-services grouped as an action is executed by the rule engine. iRODS

distinguishes two kinds of rule classes:
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• System Level rules - are server side rules responsible for system management fa-

cilities. Examples for such policies are: authentication and access control, data

management operations such as representation, replication, data extraction,

data replacement and distribution, automotive service logging and auditing

operations.

• User Level rules - are client side rules, which are executed using the irule

command or the rcExecMyRule API. Users can send a request to a server

asking to execute a particular set of micro-services. All data items are stored

on various iRODS servers where requested operations can be performed.

The Rule Execution Server can queue and execute rules attached to actions, which

are performed in the background controlled by the Delayed Execution Service. Such

actions, which consists of different micro-service operations executed successively

are for example checksum operations and data replication.

Features of an iRODS System

• Virtualization - every data collection or data source communicating with the

iRODS system is represented by its logical name, which is independent from

the physical location of the data source itself. The Metadata Catalog manages

the data associated with the virtual representation of the logical names

• Data Transport - iRODS Data can be transferred among distributed stor-

age systems in different manners. The files being moved from one system to

another can be divided into smaller files and so separately transferred (bulk

method) or at once (parallel method). The system choses the method auto-

matically depending on the size of the file.

• Metadata Catalog - The iRODS metadata catalog is called iCAT. It of-

fers facilities for metadata management. It handles system and user-defined

metadata, and abstract physical-to-logical name mappings. iCAT can be im-

plemented using various database management systems.

• The Rule Engine - The Rule Engine implements a set of rules which are

attached to executed actions that contain a set of micro-services. Any executed

task triggers a rule.
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• The Execution Engine - Micro-service are controlled by the execution en-

gine. A set of micro-services grouped into actions can also be executed re-

motely. Results are returned after the action has been performed.

• The Scheduler - iRODS provides a scheduler, which can delay task execu-

tions. iCAT handles the schedule activity.

Since iRODS is to our best knowledge the standard component for digital preser-

vation we have decided to use it as underlying data preservation system within the

scientific dataspace support platform presented in this work. The availability of rich

client applications and a Java client API for iRODS has also influenced our decision

to use iRODS. However, we don’t utilize the full power of iRODS in our system. We

basically use iRODS to persistently store primary, background and derived datasets

of scientific studies. This is further described in following chapters.

3.1.4 IBM Webshpere Information Integrator

WebSphere Information Integrator [Con05], formerly known as DB2 Information

Integrator enables applications to access distributed heterogeneous data resources

such as DB2 UDB, Oracle, and Sybase, and data resources which do not build

upon relational data models such as text files and unstructured documents. Fur-

thermore, it provides access to XML related sources and documents, and data being

accessed using Web Service application. WebSphere Information Integrator manages

metadata of corresponding data sources using a unified metadata catalog , which

is provided by a federation of DB2 UDB database engines. The federated server

system offers transparent object virtualization while acting as a virtual database.

The system provides wrappers, which communicate with various data resources. A

so called wrapper module provides various wrapper implementations for each data

source, offering data access facilities used by federated servers in order to establish

connections to these data sources, execute different operations and fetch desired

data elements as illustrated in Figure 3.6. Each wrapper represents data using a

table-like structure [ACD04].

Overview

Federated databases act as one single database for client applications and users con-

necting to the database. It implements a metadata catalog identifying and managing

the metadata information about data source and their properties, which is used for

querying the data sources. Because the data sources are organized as relational ta-

bles providing a unified view over such data, the federated server is able to execute
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Figure 3.6: WebSphere Information Integrator data federation using wrapper
[ACD04].

SQL queries as if querying a single data source. Non-relational data sources can

be mapped to relational data structures allowing unified SQL querying, even if the

non-relational sources do not offer SQL facilities [BAB+03]. WebSphere Information

Integrator is consolidated four major components as shown in Figure 3.7:

• Relational wrappers - implement various wrappers for relational database ac-

cess such as Sybase, Microsoft SQL Server, Oracle, ODBC, and Teradata data

sources.

• Non-relational wrappers - implement various wrappers for mapping non-relational

data sources, such as XML files, various research files from different domains

such as chemistry, biology and genetics.

• Global catalog - handles the whole federated system metadata including data

items information (operations, tables, attributes) provided by the federated

system, metadata information about wrapper module implementations, logical

nickname representations, and information about data sources themselves.

• DB2 Net Search Extender - provides search mechanism executing SQL queries

across various files and documents using automatically updated index data,

which is loaded into memory providing effective query results.
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Figure 3.7: WebSphere Information Integrator components [ACD04].

The global catalog provides nickname, index, and attribute information of dis-

tributed data sources. This metadata information handled by the global catalog is

used by the WebSphere query optimizer to execute SQL queries.

Functions and objects

Four of the following Information Integrator components must be defined in order

to provide data access to the Federated Server:

• Wrappers - provide data access modules which store information about various

data sources and their protocols. Additionally properties and characteristics

of distributed data sources are recorded.

• Servers - wrappers provide data access to particular sources stored at servers,

whereas each server is identified by a DLL statement, which refers to one

certain data source.

• Nicknames - provide logical abstractions of data sources, which map the data

to a local table. Each data source is identified by one unique nickname used

by a server for executing SQL queries.

• User mapping - user access ID information on server-side is mapped to a

password and data source ID used for further connections.
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• Data type mappings - data types are mapped to DB2 data types in order to

query data, whereas wrappers define the mapping facility.

• Function mappings - wrappers implement also special DB2 mapping facilities.

• Global catalog - handles the whole federated system metadata information,

including data source information (attributes and operations), metadata in-

formation about wrapper module implementations, logical nickname represen-

tations, and information about data sources and mapping functions.

Federated Server

Each DB2 server having a running WebSphere Information Integrator represents a

federated server, which can be implemented on Unix, Linux and Windows operating

systems. Client applications have integrated data access across distributed data

sources, which are handled as a single unified data source, having a transparent

format, a location and executed operations. The WebSphere Information Integrator

provides facilities for manipulation of XML sources and documents. The query

results can be usual SQL statements or XML documents, which can be mapped into

XML Schema . Federated Servers can be accessed through usual database or service

clients, which if preformed remotely are named pushdown operations. Data source

registration on the WebSphere Information Integrator is provided using following

steps:

• Registration of the wrapper module - each wrapper is registered in the database

providing data source access information.

• Data source-server definition - each data source needs to be declared as server

of the federated system.

• Authentication information - registration of remote authentication facilities

provided by user mappings

• Federated system connection - the SQL query statements should be directly

executable on each data source.

• Definition of data type mappings - additional mapping definitions should be

provided if required to be applied on particular data sources.

• Nickname and table identification - each data source refers to a corresponding

nickname, which identifies the data sources.
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There is additional nickname metadata information, named column options, describ-

ing data source column objects, which can provide federated servers with further

information. This metadata used by wrappers indicates how the column data should

be handled. Each data source contains a set of index information declared as the

index specification. Each time a new nickname is registered, the metadata global

catalog saves information about index specification of data sources adding corre-

sponding table information about the sources.

WebSphere Information Integrator provides access to multiple data sources as

listed in Table 3.2 below.

Type Data source

Relational data source DB2, Informix, Oracle, Teradata, Microsoft
SQL Server, ODBC, OLEDB

Prepared Data BioRS, BLAST, Documentum, Entrez, HM-
MER, IBM Lotus Extended Search, Mi-
crosoft Excel, flat (table-structured) filed,
XML

Table 3.2: Supported data sources in WebSphere IBM Information Integrator.

3.1.5 Chimera

Chimera [FVWZ02] is a virtual data system, which provides a workflow manage-

ment tool. It mainly consists of a Virtual Data Catalog , used for derived process

organization and a Virtual Data Language Interpreter (VDL), which understands

user requests and is able to execute SQL statements on generated datasets. VDL

is location transparent, storing the workflow related definitions in the Virtual Data

Catalog. The main idea is to provide semantic information about how a dataset

is derived from various data sources and which operations were performed on such

data, uncovering relationships among these datasets.

The virtual data system offers different data management facilities, which can

be executed on generated datasets, such as data replication, restore or redefine

operations over already defined data items. Chimera virtual data catalog represents

and manages all processes and operation as well as their characteristics applied on

derived data. Figure 3.8 shows the architecture of Chimera. Virtual Data Language

acts as an interface between application calls and Chimera operations. It provides

facilities for common database definitions and query declarations, which can be

performed on databases. Virtual data applications can use Chimera information in
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Figure 3.8: Chimera architecture [FVWZ02].

conjunction with components implemented within a data Grid in order to deploy

application requests. Query results can be represented in a direct graph structure

specifying the virtual relations among data. The most important entities of interest

in Chimera are:

• Transformation - indicates a program execution information by describing the

attributes of the execution process and its properties e.g. a program name,

location, version.

• Derivation - indicates a transformation execution information by describ-

ing the dataset information being related to performed transformations e.g.

dataset name, execution time, property values.

• Data object - indicates an item name generated by a derivation process, rep-

resenting a logical file name abstracting from an actual location of a file. Any

data object is associated with a set of metadata describing the object.

The information about a derivation or transformation process can be provided by a

user or generated form different access interfaces. A logical transformation is iden-

tified by its unique name, the namespace defining the range of the name, and a

number of the transformation version. It might include several derivations, repre-

senting various transformation parameter values. VDL defines two data derivation

operations, which are stored in the virtual data catalog, when executed by the lan-

guage interpreter: (1) Transformation (TR) generates an object, and (2) Derivation

(DV) generates an invocation.
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The virtual data language builds upon SQL language and provides SQL query ex-

pressions over transformations and derivations by using metadata describing logical

file names and transformation, derivation, as well as application names.

3.1.6 myExperiment

myExperiment [RGS07] provides a virtual research platform for workflow manage-

ment in e-Science applications. It support collaborative work among scientists en-

abling them to exchange their knowledge more efficiently. It enables scientist to view

workflows from other scientist or research groups as well as to publish their own re-

search results in form of workflows. myExperiment is implemented as a website. It is

available at www.myexperiment.org. The two main myExperiment components are

users and contributions [GDR07]. Contributors represent workflow objects that can

be organized using the myExperiment platform. Each user has access to a private

section, containing a users personal information and a public section, containing in-

formation that users share with each other. There are several types of contributions

as listed in the following:

• Workflows - represent the main objects in myExperiment. Statistic informa-

tion about workflows such as view and download count is recorded.

• Groups - users can create and join groups, which have a title and a description.

All groups are declared as public.

• Packs - are a set of objects or contributions.

• Files - various files can be saved in myExperiment.

• Experiments - workflows are invoked within experiments. Every experiment

includes a description, a name, and a job. A job can have a different running

status.

• Site announcements - managed by site administrators.

• Ownership - contributions can be shared depending on the type definition,

which can be public, friend or group.

myExperiment offers user authentication facilities provided by OAuth, which is an

open protocol to allow secure API authorization in a simple and standard method

from desktop and Web applications. It is generally a protocol service, which allows

users to specify and register keys and attach privileges to them.
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Object resources are also known as contributables e.g. files, workflows and packs.

myExperiment distinguishes between two different levels of object abstraction:

• high-level - some of the contribution metadata is not displayed and

• low-level abstraction - all recorded metadata can be viewed

It further defines the Contribution Model [Ale08] with following structural con-

straints:

• Contributions - represent objects and may have one contributable abstraction,

providing following resource details: contributor id and type, date, attached

permissions, and number of views and downloads.

• Contributables - unique abstraction name of one contribution. Only files, work-

flows and packs may appear as contributables.

• Contributors - can own many contributions, and specify permissions and policy

definitions.

Contribution tables consists of types and ids while using contribution ids to specify

relations between contributables and contributors.

myExperiment also supports resource versioning, which indicate how a particular

resource was deployed over a period of time. Figure 3.9 illustrates the myExperiment

website.

3.1.7 PAYGO

PAYGO [MCD+07] is a data integration architecture inspired by the concept of

dataspaces [FHM05] for achieving web-scale data integration emphasizing pay-as-

you-go data management. The pay-as-you-go principle (the cloud principle as well)

states that the system needs to be able to incrementally evolve its understanding of

the data it encompasses as it runs. In PAYGO there are sets of schemata that are

clustered into topics. Semantic mappings among sources are the core of the data

integration system. Queries are posed as keywords and are routed to the relevant

sources.

The PAYGO architecture evolves traditional data integration techniques to han-

dle the scale and heterogeneity of structured Web data. Table 3.3, which was repro-

duced from [MCD+07] provides a comparison of the components in traditional data

integration and the PAYGO architecture.
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Figure 3.9: The myExperiment user interface.

Traditional Data Integration PAYGO Data Integration

Mediated Schema Schema clusters
Schema mappings Approximate mappings
Structured queries Keyword queries with query routing
Query answering Heterogenous result ranking

Table 3.3: Comparison of components in traditional data integration and the
PAYGO architecture [MCD+07].
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Instead of a mediated schema as used in traditional data integration, PAYGO has

a repository of schemata that are clustered by topic. Schema mapping in PAYGO is

fundamentally approximate, with a simple statement that two schemata are related

to each other and belong to the same cluster in the extreme case. Unlike a traditional

data integration system where schemata are mapped to a single mediated schema,

PAYGO proposes that schema mappings can exist between any pair of sources.

Instead of query answering, PAYGO involves ranking.

An instantiation of the PAYGO data integration architecture developed at Google

is shown in Figure 3.10. A metadata repository stores all schemata and mappings

that are known by the system. It also tracks the lineage of the mappings in the

system such that when a mapping is changed, other mappings that depend on it are

reconsidered. For schema mapping the Corpus-based schema matching technique

[MBDH05] is used. The query answering component generates a structured query

from the given query, routes it to the relevant sources, and then ranks the answers

coming from the multiple sources.

3.1.8 Linked Data

Linked Data [HB11, BHBL09] provides a flexible publishing paradigm, which makes

it easier for data consumers to discover and integrate data from large numbers of

data sources. In particular, Linked Data provides:

• A unifying data model based on RDF, which has been especially designed for

the use case of global data sharing.

• A standardized data access mechanism by committing itself to a specific pat-

tern of using the HTTP protocol. It allows data sources to be accessed using

generic data browsers and enables the complete dataspace to be crawled by

search engines.

• Hyperlink-based data discovery. This allows hyperlinks to be set between

entities in different data sources, which enables Linked Data applications to

discover new data sources at run-time.

• Self-descriptive data. Linked Data eases the integration of data from different

sources by relying on shared vocabularies and making the definitions of these

vocabularies retrievable.

According to [HB11] a significant number of individuals and organizations have

adopted Linked Data as a way to publish their data, not just placing it on the wen
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Approximate schema mapping: In the presence of heterogeneity

at web scale, we cannot assume that exact semantic mappings be-

tween data sources exist. Not only is it hard to create such map-

pings and maintain them at web scale, but given the extremely

broad domain range of the data we must handle, it is not even clear

if there always exists a single correct mapping. Thus, schema map-

pings in PAYGO are fundamentally approximate. At the most ex-

treme case, a schema mapping can simply be a statement that two

schemata are related to each other and belong to the same cluster.

In other cases, the schema mapping may be the output of an auto-

mated schema mapping module, and hence be partially uncertain.

At the other end of the spectrum, a human will inspect a mapping

and correct it if necessary, thus deeming it certain. Unlike a tra-

ditional data integration system where schemata are mapped to a

single mediated schema, in PAYGO schema mappings can exist be-

tween any pair of sources. Therefore, a query in PAYGO can be re-

formulated over many intermediate and data source schemata thus

allowing for greater semantic integration. This is similar in spirit to

the multiple reformulations as in a peer data management system

(PDMS) [21].

Keyword queries with routing: The vast majority of queries on

the web are keyword queries; thus, we assume that queries to a

PAYGO-based system will be posed as such. Of course, in cases

where the user-interaction can support query refinement, we may

solicit help from the user to structure the query. Hence, as a first

step, we take a keyword query and try to reformulate it as a struc-

tured query. These reformulations, of course, produce necessar-

ily uncertain queries. We then proceed to select the relevant data

sources, but we need to do so in a different way since our mappings

are approximate and schemata of sources are organized in clusters.

We term this entire process query routing.

Heterogeneous result ranking: Finally, due to the approximate

nature of mappings and keywords in PAYGO, there no single true

answer to a given query. Instead, query answering in PAYGO in-

volves ranking. Ranking is complicated by the fact that our query

and mappings are approximate to start with, and that we handle

multiple heterogeneous properties (e.g., we need to compare an-

swers from deep web sources, Google Base and unstructured sources).

Before we discuss the components of PAYGO in more detail, we

emphasize two over-arching principles underlying the architecture.

Pay-as-you-go integration: At web-scale, integration is an on-

going process. The process starts with disparate data sources, and

incrementally improves the semantic glue amongst them. Thus,

over time, the data sources are increasingly integrated thereby im-

proving the ability to share data between them. However, at any

point during the ongoing integration, queries should be answered

as best possible using the available and inferred semantic relation-

ships. This approach is unlike a traditional data integration system

that requires more complete knowledge of semantic relationships.

In PAYGO, we emphasize a set of mechanisms that enable us to im-

prove the semantic relationships over time. The mechanisms are a

combination of automated techniques that find and/or suggest rela-

tionships, and of techniques that involve feedback from users about

such guesses. As we describe the components below, we highlight

the opportunities for employing these mechanisms.

Modeling uncertainty at all levels: As is clear from the discus-

sion above, a system based on the PAYGO architecture needs to

model uncertainty at multiple levels: data, semantic mappings and

queries. It is desirable that PAYGO have a principled and uniform

formalism for modeling uncertainty at all these levels, so uncertain

decisions made at one level can propagate appropriately to the other

levels. Developing such a formalism for modeling uncertainty is a

Figure 1: An instantiation of the PAYGO data integration ar-

chitecture.

subject of ongoing work, and involves balancing multiple compet-

ing desiderata: generality and expressive power, ease of use and

understandability, and the ability to process queries and data effi-

ciently. Hence, our current focus is first on clearly understanding

the requirements for such a formalism.

3.1 A PAYGO-based Data Integration System
Based on the architecture described above, we have begun to

build a research prototype PAYGO-based data integration system

at Google for managing web-scale heterogeneity. Here, we briefly

describe the elements of this system and some of our initial research

directions. Figure 1 shows the different components of the system.

Themetadata repository: The metadata repository stores the schemata

and the mappings currently known to the system, and provides a

query interface over this collection for use by the other components

of the system. As described earlier, while we do not have a single

mediated schema for the system, some schemata in the repository

may be treated in a special way. For example, we may choose a
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Figure 3.10: An instantiation of the PAYGO data integration architecture.
[MCD+07]
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but using Linked Data to ground it int the Web, which results in a global dataspace

that the authors call the Web of Data [BHBL09]. Figure 3.11 shows the Linking

Open Data cloud as of November 2010, which is based on metadata from the LOD

Cloud group [lod11]. Colors classify datasets by topical domain.

In order to connect existing data management system and business applications,

Linked Data provides the addition of extra technical layer to connect these systems

into the Web of Data. Publishing patterns provide the mechanisms for the integra-

tion of these systems and applications. Figure 3.12 shows the most common Linked

Data publishing patters in the form of workflows, from structured data of textual

content through to Linked Data published in the Web [HB11]. Basically, publishing

relational data as Linked Data is realized with the use of relational database to RDF

wrappers. Static input data, such as CSV files, Excel spreadsheets, XML files or

database dumps are converted using RDFizing tools [rdf08] in order to be published

as Linked Data. Textual document can be passed through a Linked Data entity

extractor such as Calais [cal11] and Ontos [ont11], which annotate documents with

the Linked Data URIs of entities references in the documents.
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Figure 3.11: Linking Open Data cloud as of November 2010 [HB11].



3.1. Large-Scale Data Management Systems 53

Figure 3.12: Linked Data publishing options and workflows [HB11].
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3.2 Small-Scale Data Management Systems

3.2.1 SEMEX - Platform for personal information manage-

ment and integration

The SEMEX system (short for SEMantic EXporer) [DH05, CDH+05] is a platform

for personal information management and integration focusing on desktop search. It

offers search-by-association, thereby taking a step towards the vision of the Personal

Memex [BW45]. To enable browsing by association, Semex constructs a database

of objects and associations between them. The database is created automatically

from information extracted from multiple types of data sources. It provides a single

logical view of the personal information of a user based on meaningful objects and

associations.

SEMEX Architecture

Figure 3.13 provides an overview of the architecture of SEMEX. SEMEX has three

submodules: (1) the domain management module plays the central role by providing

and managing the domain model; (2) the data collection module is responsible for

data extraction, integration, cleaning and indexing; and (3) the data analysis module

analyzes data for search and browsing [DH05].

The system provides access to data stored in multiple applications and sources,

such as the typical personal information groups like emails, address book contacts,

pages in the user’s Web cache, documents (e.g. Latex, Bibtex, PDF, Word, and

Powerpoint) in the user’s personal or shared file directory, and data in more struc-

tured sources (e.g. spreadsheets and databases). SEMEX creates a data repository

of objects and associations. The repository is represented as RDF store, Jena [jen11]

is used to retrieve data from the store. In order to keep the information in the repos-

itory up to date, SEMEX periodically crawls the desktop to extract instances and

associations in an incremental mode.

By extracting data from multiple sources SEMEX creates instances of classes

in the domain model. The domain model includes a set of predefined classes such

as Person, Publication, and Message, and associations such as AuthorOf, Cites,

Sender, MentionedIn. In SEMEX personal information sources are integrated us-

ing a mediation schema over a set of personal information sources defined by a

domain ontology. There are multiple modules for the extraction of associations. In

order to combine all these associations, SEMEX automatically reconciles multiple

references to the same real-world object. All this information can be browsed and
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full-tex t keyword-search. M y L ife B its [10] views per-
sonal da ta as a graph of documents: nodes rep-
resent documents and annota tion metada ta; edges
represent the annotate rela t ionship, where a file can
be annota ted by another file, by manually added
tex t or audio. P laceless Documents [6] annota tes
documents with proper ty / value pairs, and groups
documents into overlapping collections according to
proper ty values. L ifeStreams [9] views personal in-
forma tion as a sequence of documents in chronolog-
ical order.

W hile the above P I M systems all capture some
aspect of personal da ta and provide convenience for
informa tion access in cer tain modes, none of them
can sa tisfy the user needs sta ted in the scenarios.
T he fundamental reason is tha t they do not suppor t
a logical view of one’s personal da ta. In fact , among
these P I M systems, only M y L ife B its manages to ex-
plici t ly capture associa t ions, but it captures associ-
a tions a t a coarse granularity: i t does not dist in-
guish di  erent classes of instances or di  erent types
of associa t ions. Fur ther, the above P I M pro jects
all consider informa tion a t the document level. A s
a result , they cannot integra te structured da ta in a
semantically meaningful way, or e  ect ively facili ta te
reference reconcilia t ion. E ven reconciling di  erent
versions of the same document in these systems is
di  cult .

T he H aystack pro ject [11] models personal in-
forma tion as ob jects and associa t ions between ob-
jects, and has successfully leveraged this model for
personalized informa tion presenta tion. However,
H aystack mainly focuses on informa tion rendering,
and has not addressed the problems of da ta integra-
tion, da ta cleaning, and da ta analysis, which will be
the emphasis of our research.

3 Our Solution

In this sect ion we propose Semex (shor t for S E M an-
tic E X plorer). We first present Semex architecture,
and then address several key technical issues. For
each of them, we sta te the challenge in the P I M
contex t and briefly propose our solution. In [3] we
gave more details and compared our solutions with
the rela ted work .

3.1 S yst e m a rch i t ect u re

F igure 1 depicts the components of Semex. T he key
is to provide a logical view of one’s personal informa-
tion, based on meaningful ob jects and associa t ions.
T his logical view, described by a domain model, is
provided by construct ing a da tabase of instances
and associa t ions, called association database, which
complements current da ta storage. We now de-
scribe the three sub-modules of Semex.

Email Webpage PDF Latex Bibtex AddrBook Word Powerpoint Spreadsheet Database 

Extractor Integrator 

Instances Associations 

Reference 
Reconciliator 

Association Database 

Data Analyzer Searcher Browser 

User Interface 

Indexer Index 

Domain Model 

  Data Analysis Module Domain 
Management 
Module 

  Data Collection Module 

Domain Model 
Manager 

F igure 1: Semex archi t ect ure. Semex has t hree sub-
modules: t he domain management module plays t he
cent ral role by prov iding and managing t he domain
model; t he da t a collect ion module is responsible for da t a
ex t ract ion , int egra t ion , cleaning and index ing; t he da t a
analysis module analy zes da t a for search and browsing.

D o m ai n m an age m en t m o d u le: Semex provides
a default domain model and meanwhile suppor ts
model personaliza tion. T he domain model manager
component learns from previous integra tion and
browsing experiences to suggest possible domain-
model evolution.

D a t a collect ion m o d u le: Semex begins by ex-
tract ing da ta from multiple sources using a set of
ob ject-and-associa t ion extractors. Reference recon-
ciliator reconciles multiple references to the same
ob ject , and the results are stored in the association
database. T hese instances fur ther enable more ex-
tract ion (such as associa t ion ment ionedIn) and facil-
i ta te the integrator to integra te ex ternal structured
da ta sources. F inally, instances are indexed for fast
access.

D a t a an al ysis m o d u le: T he browser and searcher
components o  er its users an interface tha t com-
bines intuit ive browsing and a variety of query fa-
cili t ies (see F igure 2). Fur ther, data analyzer ana-
lyzes people’s informa tion and act ivit ies, and trig-
gers cer tain notifica tions and alarms when an event
occurs (for example, when a user opens a document ,
Semex will repor t the number of the user’s acquain-
tances occurring in the document).

3.2 R eference reconci l ia t ion

Since the da ta Semex manages is very heteroge-
neous, i t is crucial tha t the da ta instances mesh to-
gether seamlessly. In da ta ex tract ion Semex gener-
a tes references: each reference par tially specifies an
instance of a par ticular class; and several references
may refer to the same real-world ob ject . The rec-
onciliation algorithm partitions the set of references

3

Figure 3.13: The architecture of SEMEX [DH05].
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queried through the domain model. It offers an interface that combines browsing

and querying options. Figure 3.14 shows a sample screenshot from browsing the

SEMEX data repository. Keywords can be typed into the search box and SEMEX

returns all the objects that are somehow associated with the keyword. It classifies

the resulted objects into their classes (Person, Publication, etc.)

F igure 2: A sample screenshot of t he Semex int erface.
T he user can formula t e ei t her a key word query ( top left )
or a more sp ecific select ion query (bot tom left ). Semex

displays all t he informa t ion abou t a par t icular indiv id-
ual and enables browsing t he informa t ion by associa-
t ion . A s seen in t he bot tom of t he right pane, Semex

needs to reconcile mul t iple references to t he same real-
world ob ject .

in each class, such that each partition corresponds
to a single unique real-world entity, and different
partitions refer to different entities.

Reference reconcilia t ion is a hard problem in gen-
eral. Most of the previous works considered tech-
niques for reconciling references to a single class
(see [1] for recent surveys). However, in the P I M
contex t there exist instances of multiple classes and
rich associa t ions between the instances. T hough we
can apply previous methods to each type of refer-
ences in isola tion, we miss the rich informa tion car-
ried in the associa t ions. Fur thermore, the previous
techniques assume there are several a t tributes as-
socia ted with every reference, and therefore a rea-
sonable amount of informa tion to consider in rec-
oncilia t ion. In the P I M contex t , a reference (such
as one to a person) often has values for only one or
two a t tributes. F inally, most previous techniques
assume each a t tribute has a single value. In the
P I M contex t , some a t tributes (e.g., person email)
are multi-valued, so the fact tha t two a t tribute val-
ues are di  erent does not imply tha t the two refer-
ences refer to di  erent real-world ob jects.

In [5] we described a reference reconcilia t ion algo-
rithm tha t is well suited for the P I M contex t . T he
key idea is to make ex tensive use of associa t ions
as ex tra evidences. For example, given two refer-
ences to persons, we will consider whether they have
authored the same paper or have common email
contacts to help decide whether to reconcile them.
To facili ta te exploit ing this informa tion, we prop-
agate informa tion between reconcilia t ion decisions
for di  erent pairs of references. For example, when

we decide to reconcile two papers, we obtain addi-
tional evidence for reconciling the person references
to their authors. T his, in turn, can fur ther increase
the confidence in reconciling other papers authored
by the reconciled persons.

3.3 O n- t he-fl y d a t a i n t eg r a t ion

O ne of the main ob ject ives of Semex is to lever-
age the logical view of personal informa tion as an
anchor into which we can integra te ex ternal da ta
sources on-the-fly. T he key is to establish the
semantic rela t ionship between the ex ternal da ta
source and the Semex domain model. Formally,
it takes as input the domain model and an external
schema (wrapped to a relational database schema
or an XML schema), and generates a set of queries
such that evaluating the queries on the external data
source will generate a set of class and association
instances of the domain model.

P revious works divided schema mapping into two
separa te steps (surveyed in [14]). In the first ,
called schema matching, we find candidate corre-
spondences between the a t tributes of two schemas.
In the second, referred to as query discovery [13], we
build on exact correspondences and crea te mapping
expressions tha t specify how to transla te da ta from
one schema to another. Note the gap between the
output of the first step and the input of the second
step. User’s input is impor tant to choose the ex-
act correspondences from the candida te ones to fill
in the gap. M anually filtering inappropria te candi-
da tes is often tedious and requires a good under-
standing of the domain model, so contradicts the
spirit of on-the-fly integra tion. T his is especially
true in the P I M contex t , where many ob ject classes
may have a t tributes with common names (such as
name and t it le).

Fur thermore, previous works assumed schemas
for mapping are fixed and well established. In the
P I M contex t , however, the integra tion process may
involve extending the user’s domain model when it
misses some required classes or associa t ions.

We propose exploit ing the associa t ions for prun-
ing inappropria te ma tching candida tes, ra ther than
requiring users to do it by hand. Specifically, we
explore the heurist ic tha t a da tabase tuple seldom
corresponds to several real-world ob jects tha t are
not associa ted with each other. T he logical view we
provide trea ts associa t ions as first-class ci t izens and
enables applying this intuit ion.

3.4 Person al i nfo r m a t ion sea rch

T he most impor tant usage of a P I M system is to aid
finding informa tion on one’s desk top and we now
demonstra te several da ta search modes.

4

Figure 3.14: A sample screenshot of the Semex interface [CDH+05].

The data repository is further used to enable on-the-fly information integration.

This is done by leveraging the logical view of personal information provided by the

SEMEX system. In particular, the logical view is used as an anchor into which

eternal data sources are integrated on-the-fly. It takes as an input the domain

model and an external schema and generates a set of queries such that evaluating

the queries on the external data source will generate a set of class and association

instances of the domain model [DH05].

3.2.2 iMeMex: A Personal Dataspace Management System

iMeMex, which is referred to as being a unified solution to personal information

management in [BpDG+07] was influenced by the vision of a personal informa-

tion management system named Memex (memory extender). iMeMex is a software
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platform which handles a personal dataspace of an individual. Personal dataspace

contains all the personal information stored by one certain user [BpDG+07].

iMeMex provides data management functionalities such as querying, updating,

performing backup and recovery operations. Furthermore, iMeMex provides a so-

lution to close the gap between the structure of the information inside files and the

outside structure of the information provided by file and folder hierarchies. Key

to this approach is to represent all available data using a single graph data model,

called iDM [DS06].

iMeMex Architecture

The iMeMex software platform provides an own data model called iMeMex Data

Model (iDM) and a new query language called iMeMex Query Language (iQL). The

idea is to represent unstructured, semi-structured and structured data inside a sin-

gle model. Resource Views represent data elements within the iDM and allow to

be linked to each other in directed graph structures. iMeMex includes two impor-

tant sublayer: iQL Query Processor and Resource View Manager. The main task

of the iQL Query Processor is parsing iQL queries and creating concepts how to

query them. iMeMex introduces a logical layer, called Resource View Layer that

provides an abstraction from underlying substructure and data sources such as file

systems, email servers, network shares, iPods, RSS feeds, etc. Figure 3.15 shows il-

lustrates the architecture of iMeMex. The Resource View Manager (RVM) includes

four major components: (1) Data Source Proxy, (2) Content2iDM Converters, (3)

Replica&Indexes Module, (4) Synchronization Manager.

The Data Source Proxy is connected to various types of subsystems. It implies

a set of Data Source Plugins that are used for data representation from different

subsystem types into the form of the iDM graph structure. Currently iMeMex

provides a plugin set for file systems, IMAP email servers and RSS feeds. The

Content2iDM Converter additionally converts the content information extracted

from the data source proxy component into iDM graph structure establishing further

information provided by the structure of the iDM subgraphs. iMeMex offers at the

moment converters for XML and LATEX.

The Replica&Indexes Module contains a Resource View Catalog All resource

views are registered within that catalog. For each resource view component this

module offers an option to create a replica and/or an index of the data source.

A replica component is responsible for creating copies of data resources within the

RVM and could be used for replication of all resource views that were extracted from

remote data sources. Because of the trade-off between the distributed data that has
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Figure 3.15: The iMeMex architecture [DS06].

Figure 3.16: iDM represents heterogeneous personal information as a single resource
view graph [Dit06].
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to be queried and then shipped versus local data the iMeMex system must consider

various strategies while creating replicas. The main task of the index module is to

create particular data structures in order to improve the look-up times. A created

index of the resource views can not retrieve the original content information of

the components that were deployed while creating the index, and therefore the

replication itself is not provided by the indexing task.

The Synchronization Manager provides a persistent update function for all reg-

istered data sources. After registration of a new data source in the RVM, the

Synchronization Manager analyzes data content of the data source and provides

information about the definition of created resource views to the Replica&Indexes

Module. The Synchronization Manager scans permanently the data sources, regis-

tered by the RVM layer, checking for updates while synchronizing the catalog with

the generated indexes and replicas.

iDM is used as a representation model for all kind of data including unstruc-

tured, semi-structured and structured data within a basic graph model establishing

resource views that are linked to each other forming directed graph structure. Fig-

ure 3.16 illustrates how iMeMex maps heterogeneous personal data into a single

resource view graph.

3.2.3 Google Desktop Search

Google desktop search is a freeware desktop search tool propagated by Google. It

features a Google-like Web interface that offers an easy way to search for personal

information.

The tool provides a keyword search mechanism over a variety of personal resources

including emails, file directories, video and music files, photos, viewed web pages,

and more by indexing the supported data types [Inc08b]. It generates file and other

relevant user data copies every time a user views the data allowing the user to access

the stored information afterwards. As a result, a user can access and find needed

information even after it has been deleted.

The Google Desktop tool is running a local Web server which listens to port 4664.

The application handles only local request in order to provide more security [AAS07].

Figure 3.17 shows the Google desktop search interface.

3.2.4 Phlat and Windows Desktop Search

Phlat [CRDS06] is a search system for personal data providing an user interface

that enables a label facility for personal data such as file directories, personal audio
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Figure 3.17: The Google Desktop interface.
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and video files, email, and more. A basic keyword search in conjunction with a

specification of particular properties of saved personal information provide effective

search results. Additionally, users can define personal information metadata, which

describes the stored data more in detail and helps achieve better results of desired

information.

Design Principles

The Phlat design introduces several core principles and criteria to be supported by

Phlat as listed in the following:

• Unify text entry and filtering - a user can perform a query statement by using

a filter, a keyword, or both.

• Current search criteria has to be persistently visible - all used filter, keywords

and the order of returned search results, while performing searches, has to

maintain visible for users at any time.

• Provide rapid query iteration - effective search results and sophisticated result

updates should be provided.

• Allow iteration based on recognition - the applied results should provide a reuse

facilities to explore the result more in detail.

• Allow for abstraction across property values - a user should be able to perform

a unified query on various personal information independent of the underlying

data types.

• User Interface has to support both tagging and filtering - one unified interface

design should provide filter and tag facilities.

• Integration with file system/email operations - common data manipulation

facilities such as copy/paste, drag and drop should be supported by the user

interface.

Architecture

Phlat is implemented in Microsoft Visual C# and builds upon the Windows Desktop

Search engine. All user personal information such as file directories, emails, audio

and video files, including web-related information such as caches are indexed. Fur-

thermore a declaration of user-defined metadata of the stored personal information

enriches the index and provide more sophisticated search results.

The Phlat user interface consists of three main areas as illustrated in Figure 3.18:
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Figure 3.18: The Phlat interface [CRDS06].

The Query Area provides the basic information about search and query proper-

ties, indicating a status and a quality of the results. Various property filters can be

attached to any query affecting the displayed results.

The Filter Area consists of six filters: Tags, Saved Queries, Path, People, Date,

and Type. Every filter displays its property value, filtering the provided query re-

sults. Filter area provides various types of filter abstractions, which can be associ-

ated with particular data elements more sophisticated search results.

The Results Area presents results in a table-like view, displaying properties above

the actual results. Results can be ordered by each property represented by a column,

consisting of the query result, the path directory of shown results, and additional

tags. Users may browse through displayed search results and use them for defining

new queries.

3.3 Summary

An overview of the above described large and small scale data management systems

providing some dataspace features is given in Table 3.4. The described projects can

be related to the work of this thesis. jSpace is the name of the scientific dataspace

system developed as part of this work. It is discussed deeply within the next chap-

ters. However, we briefly relate jSpace with the efforts and projects of the previously
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Scale Data management system #

Large scale system

DSpace 1
Storage Resource Broker (SRB) 2
integrated Rule-Oriented Data Systems (iRODS) 3
IBM Webshpere Information Integrator 4
Chimera 5
myExperiment 6
PAYGO 7
Linked Data 8
jSpace 9

Small scale system
SEMEX - Platform for personal information man-
agement and integration

10

iMeMex - Personal Dataspace Management Sys-
tem

11

Google Desktop Search 12
Phlat& Windows Desktop Search 13

Table 3.4: Large and small scale data management systems providing dataspace
features.

described projects.

Influenced by the vision of dataspaces introduced in [FHM05] the personal datas-

pace management system iMemex with an own data model, abstracting from un-

derlying substructures of data sources, and a new query language is presented in

[BpDG+07]. However, this system is limited to personal information management,

handling data of an individual while not considering dataspace management facil-

ities for large scale purposes. Another personal information management system

is SEMEX [DH05, CDH+05]. It integrates personal information and accesses data

sources using wrappers. The schemas of the data sources are matched and mapped

automatically to the domain model. According to [HKF+09], SEMEX can be seen

as as domain-specific dataspace proposal that relies on domain knowledge to match

schemas to the given integration schema and reconcile references automatically

Other discussed projects like iRODS [MRW05], SRB [MWR05], and the IBM’s

commercial product Websphere Information Integrator [Con05] have considered some

dataspace concepts such as a metadata catalog and a logical name abstraction con-

cepts in their architecture; however key dataspace paradigms, like (a) support for cre-

ation of semantically rich relationships among participants and (b) semantic search

and query capabilities based on these relationships, are not taken into consideration.

PAYGO [MCD+07] represents a large-scale, multi domain dataspace proposal

that offers limited integration and provides keyword-based search facilities for the
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deep Web. Another approach towards evolving the Web into a global dataspace

represents Linked Data [HB11]. It provides a publishing paradigm in which not

only documents, but also data, can be a first class citizen of the Web, thereby

enabling the extension of the Web with a global dataspace based on open standards

- the Web of Data. DSpace [DSp11] represents a large-scale open-source solution for

the preservation of digital contents, designed especially for universities and libraries

but not limited to them.

A first approach towards realization of dataspaces regarding the Grid is given

in [EBT06]. The Grid Physics Network Virtual Data System, formerly known as

Chimera [FVWZ02], provides a virtual data system for managing and tracking differ-

ent aspects of various data transformations and its results in workflow (composition

of services) environments stored in a virtual data catalog, where the produced data

and the steps being used to produce the data can be later retrieved for further

analysis. This approach, compared to the e-Science life cycle data model that will

be discussed in the next Chapter, is more dataset oriented managing the workflow

information, while the Life Cycle data model aims on describing the entire rela-

tionship information while performing scientific studies, including information on

researchers, research goal specifications, data preparation tasks, data analysis tasks,

and produced results, which can be published for further discovery and experimen-

tation.

myExperiment [GDR07] provides a virtual research platform for workflow man-

agement in e-Science applications, allowing scientist to easy the collaborative work

and exchange their knowledge more efficiently. It enables scientist to view work-

flows from other scientist or research groups as well as publish their own research

results. However, the main work here is focused on knowledge exchange in form

of workflows with no regards of tracking down background data source information

associated with scientific experiments. Both systems, Chimera and myExperiment

are targeting to model relationships from primary and derived data through collect-

ing provenance data of executed workflows. However, dataspace search and query

features are not tightly focused.

In addition to the above mentioned systems, there are a number of research

institutions around the world influenced by the vision of dataspaces working on

their dataspace realization and publishing own approaches towards rising the ab-

straction level at which data is managed. We summarize most important additional

approaches in the following very briefly. Most of them are considering dataspaces

in term of personal information management. For example Yukun et al. describe in
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[LM08] a personal dataspace management system, named OrientSpace, which imple-

ments data integration and data query functions. They introduced the CoreSpace

framework, which represent a subspace of the personal dataspace containing only

objects that are frequently accessed by the owner. The data model used is based

on the vertical data model, which takes a vector to describe attributes of an object

(ObjectID, AttributeName, AttributeValue). Another dataspace management ap-

proach is proposed by Lei et al. in [JZY08]. It introduces the Galaxy data model,

which is an extension of the iMeMex Data Model in order to better consider security

issues, primarily access policies.

Comparison Matrix

The following table shows a comparison matrix of the above described systems and

tools with regard to key-dataspace features. The systems are identified by their

number given in Table 3.4.

Dataspace feature 1 2 3 4 5 6 7 8 9 10 11 12 13

Semantic Integration x x x x x

Advanced querying x x x x x x x

Enriching keyword x x x x x

Property search x x x x

Semantic relationships x x x x x

Browse by relationship x x x x x

UpdateMechanism x x x x x x x x x

Full control of the data x x x x x

Automatically updates x x

Schema first x x x x x x

No schema x x x

Ranking query results x x x x x

RDF x x x

OWL x x x

MetadataCatalog x x x x x x x x x x x

Own data model x x x x x x x x x

Keywordsearch x x x x x x x x x x x x

Large scale dataspaces x x x x x x x x

Securityissues x x x x x x x x

Managing sub-dataspaces x

Role management x x x x x x x x

Usergroups x x x x x x x x x

Table continues on the next page.
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Dataspace feature 1 2 3 4 5 6 7 8 9 10 11 12 13

Registration wizard x x x

Learning features x

Autonomic features x

Own query language x

Table 3.5: Dataspace features comparison matrix.





Part II

Methodology and Concepts





Chapter 4

Semantic Relationships among

Dataspace Participants

“There is a reciprocal and iterative relationship between the world

of ideas, hypotheses and mental constructs and the world of data

or observations.”

In: Realising the power of data-intensive research (Draft 1.1),

September 2010 by

Malcolm Atkinson and David De Roure

4.1 Introduction

In the data management community many different (data) models were developed

over the past decades in order to handle the emerging semantic heterogeneity of

rapidly increasing data resources and the need of interconnected usage in many sci-

entific applications. The demand for managing multiple data sources with different

data models is also rapidly expanding. Modern collaborations in science are very

often based on large scale linking of databases that were not expected to be used

together when they were originally developed.

Within the distributed database community, database integration approaches

traditionally focus on structural heterogeneity. However, in many scientific appli-

cations, there is additionally a strong demand to solve problems of semantic het-

erogeneity. Therefore the need for intelligent management systems providing access

to those heterogeneous and often distributed data sources and allowing to search,

query, and share them as a single information source, has never been greater.
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Web and grid1 technologies were influenced by the achievements and the progress

made within the data management community . Since the late 1990’s, the semantic

web [BLHL01] has being introduced as the new web generation for computer-based

exploitation, in front of the human-based exploitation. Therefore several languages

have been defined as W3C standards for representing data (XML [xml11] ), resources

(RDF [rdf04b]), and knowledge (OWL [owl04]).

In parallel grid technology has traversed since the 1990’s different phases of gen-

erations – from computational grid [Fos01] (concerning, e.g., job scheduling, system

information services, life cycle management) to data grid [CFK+99] (concerning,

e.g., distributed data access, metadata management, data replication), and recently

to semantic and knowledge-oriented grids (this terms denote several development

directions, including data mining, semantic, and knowledge grids). However, the

idea of managing dataspaces rather than databases introduced by Franklin et. al

in [FHM05] has only recently started to influence the web and grid technology

providers. The key issue in realization of dataspaces lies in the power of the re-

lationships framework. Semantically rich described relationships are going to be

the backbone of an intelligent dataspace systems with the necessity to improve and

maintain dataspace relationships.

In this chapter we discuss the development and evaluation of a scientific datas-

pace model for creation, representation, and maintaining of semantically enriched

relationships among distributed dataspace participants. In Section 4.2 we introduce

a scientific data model that we call e-Science life cycle supporting intelligent preser-

vation of the complete data life cycle in e-Science applications. It represents the

outcome of an elaboration study on how dataspace concepts can support e-Science

applications and has lead our research to the development of the e-Science life cy-

cle ontology on top of which we build our platform. In Section 4.3 we elaborate

what data items are considered as dataspace participants in the scientific dataspace

and how relationships among them can be semantically enriched. Finally, in Sec-

tion 4.4 we describe related works regarding the resource space model and conclude

this chapter in Section 4.5. In order to separate the theoretical model described

in this chapter, we tried to distinguish the dataspace model with the implementa-

tion of the OWL based e-Science life cycle ontology, which is discussed in Chapter

refsec:ontology.

1The grid is an infrastructure that enables flexible, secure, and coordinated resource (high-end
computers, databases, scientific instruments, networks, etc.) sharing among dynamic collections
of individuals and institutions.
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4.2 Scientific Dataspace Model

In order to elaborate how dataspace concepts can support e-Science, we have in-

vestigated what happen, or better what should ideally happen to data in e-Science

applications. The result of this investigation is an iterative and hierarchical model

with five main activities, represented in Figure 4.1, which we define as following:

The e-Science life cycle - a domain independent ontology-based itera-

tive model, tracing semantics about procedures in e-Science applications.

Iterations of the model - so called e-Science life cycles - organized as

instances of the e-Science life cycle ontology, are feeding a dataspace, al-

lowing the dataspace to evolve and grow into a valuable, intelligent, and

semantically rich space of scientific data [EMB08].

First we provide an overview of these activities and then in Section 4.2.1 a more

detailed discussion.
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Figure 4.1: The e-Science life cycle.

At the beginning of the life cycle targeted goals are specified, followed that a data

preparation step including pre-processing and integration tasks is fulfilled. Following

that appropriate data analysis tasks are selected and applied on the prepared dataset

of the previous step. Finally, achieved results are processed and published, which

might provoke further experimentation and consequentially specification of new goals

within the next iteration of the life cycle. The outcome of this is a space of primary
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and derived data with semantically rich relationships among each other providing

(a) easy determining of what data exists and where it resides, (b) searching the

dataspace for answers to specific questions, (c) discovering interesting new datasets

and patterns, and (d) assisted and automated publishing of primary and derived

data.

Each activity in the life cycle shown in Figure 4.1 includes a number of tasks that

again can contain a couple of subtasks. For instance, the activity Prepare Data cov-

ers, on a lower level of abstraction, a data integration task gathering data from mul-

tiple heterogeneous data resources that are participating within an e-Infrastructure.

This task consists of several steps that are organized into a workflow, which again is

represented at different levels of abstraction - from a graphical high level abstraction

representation down to a more detailed specific workflow language representation,

which is further used to enact the workflow.

4.2.1 e-Science Life Cycle Activities

1 Specify Goals - Scientists specify their research goals for a concrete experiment,

which is one iteration of the entire life cycle. This is the starting activity in the

life cycle. A textual description of the objectives, user name, corresponding

user group, research domain and other optional fields like a selection of and/or

references to an ontology representing the concrete domain is organized by this

activity.

2 Prepare Data - Once the objectives for this life cycle are either specified or

selected from a published life cycle that was executed in the past, the life cycle

goes on with the data preparation activity. Here, it is specified which data

sources are used in this life cycle in order to produce the final input dataset,

by the data integration process. For example, the resource URI, name, and

a reference to the OGSA-DAI2[KAA+05] resource file might be recorded in

case OGSA-DAI is used. The final dataset as well as the input datasets are

acting as participants in the dataspace and are referenced with an unique id.

Additionally, the user specifies a short textual description and optionally some

keywords of the produced dataset.

3 Select Appropriate Tasks - In this activity the data analysis tasks to be applied

on the prepared dataset are selected. In e-Science applications it is mostly the

2OGSA-DAI is the de facto standard for data access and integration for relational and XML
data as well as file resources.
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case that various analytical tasks, for instance the widely used data mining

techniques, are executed successively. The selected tasks, which are available

as web and grid services, are organized into workflows. For each service, its

name and optionally a reference to an ontology describing the service more

precisely is captured. Also for the created workflow, its name, a short tex-

tual description, and a reference to the document specifying the workflow are

recorded.

4 Run Tasks - In this activity the composed workflow will be started, monitored

and executed. A report showing a brief summary of the executed services and

their output is produced. The output of the analytical services used might be

represented in Predictive Model Markup Language (PMML) [Dat08], which

is a standard for representing statistical and data mining models. PMML

documents represent derived datasets, thus they are managed as participants

of the scientific dataspace and considered as resources by this activity.

5 Process and Publish Results - This is the most important activity in order

to allow the underlying dataspace to evolve and grow into a valuable, pow-

erful, semantically rich space of scientific data. Based on the settings of the

user, one automatically publishes the results of the analysis tasks as well as

all semantical information captured in the previous activities. Different pub-

lishing modes allow to restrict access to selected collaborations, user groups,

or research domains.

The proposed five phases, also called e-Science activities of the life cycle model for

e-Science applications can be seen as an iterative hierarchical workflow presented in

its most abstract level. Each phase can be drilled down into more precisely described

sub-workflows. An example can be described using the select appropriate tasks

activity, which in most e-Science applications covers on a lower level of abstraction

the orchestration of a number of services to be executed successively organized as

workflow, as for example the NIGM-Service [EHL+08] of one of our sample e-Science

applications described in Chapter 8.2. We can see from this, that the orchestration

of tasks, services, etc. into workflows as well as their intelligent preservation has

become significantly important for e-Science applications.

4.2.2 The Scientific Resource Space Model

Scientific experiments described by the e-Science life cycle are referred to as Life

Cycle Resources (LCR). They are organized as points of a 5-dimensional space,
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where dimensions represent the five e-Science life cycle activities. In particular, the

Scientific Resource Space (SRS) is defined as

SRS(GS,DP, TS, TE,RP ),

whereas GS,DP, TS, TE, and RP denote the names of the dimensions of the SRS.

They represent abbreviations of the five e-Science life cycle activities. Since we have

developed an OWL ontology that reflects the concepts of the e-Science life cycle

model described above, we give in Table 4.1 an overview of the abbreviations and

their associations with OWL class names of that ontology. The ontology itself is

however described in detail in Chapter 5.

SRS(GS,DP, TS, TE,RP )

SRS axis name
e-Science life cycle

activity name OWL class name
GS Specify Goals GoalSpecification
DP Prepare Data DataPreparation
TS Select Appropriate Tasks TaskSelection
TE Run Tasks TaskExecution
RP Process & Publish Results ResultPublishing

Table 4.1: Definition of names of the SRS axes and their mapping to the e-Science
activities and corresponding OWL class names.

A dimension of the space can be regarded as a 1-dimensional space. Table 4.2

lists the names of the e-Science life cycle activities defined and their definitions in

the scientific dataspace model.

Coordinates of a dimension represent the individuals of the corresponding e-

Science life cycle activity. Coordinates have a name, a set of properties and a set

of individuals that are interconnected via those properties. Coordinates are defined

as IXi = {name, P, E}, with Xi ∈ {GS,DP, TS, TE,RP} and i ∈ {1, ..., 5}, where

P refers to the set of properties defined for the coordinate and E refers to the set

Activity Name Definition

Specify Goals GS = {IGS1, IGS2, ..., IGSn}
Prepare Data DP = {IDP1, IDP2, ..., IDPn}
Select Appropriate Tasks TS = {ITS1, ITS2, ..., ITSn}
Run Tasks TE = {ITE1, ITE2, ..., ITEn}
Process & Publish Results RP = {IRP1, IRP2, ..., IRPn}

Table 4.2: Dimensions of the scientific dataspace.
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of elements that are connected to the coordinate and name represents the activity

name. Elements are instances of classes of the e-Science life cycle ontology. Please

refer to Chapter 5 on a detailed description of the instances and classes that form

together an LCR in the e-Science life cycle ontology.

Figure 4.2 illustrates axis GS having five coordinates. It represents the dimen-

sion “goalSpecification” of the multidimensional Scientific Resource Space.

Figure 4.3 illustrates a 2-dimensional SRS showing the GoalSpecification and

the DataPreparation dimension. A point in the multidimensional Scientific Re-

source Space represents a set of instances of corresponding e-Science life cycle ac-

tivities that are interconnected within the dataspace. Interconnected coordinates

indicate that instances are participating the same e-Science life cycle experiment.

An instance of a class (represented by a coordinate) can participate in multiple ex-

periments, whereas an experiment can only have one instance on each axis. For

example, there can be more than one experiment having the same goals specified,

therefore using the same GoalSpecification instance, but there is only one instance

of each e-Science life cycle activity defined in an iteration of the model. The point

depicted in Figure 4.3 LCR(IGS4|IDP4) represents the e-Science life cycle iteration

(resource) that consists of the two referenced coordinates IGS4 and IDP4.

Figure 4.4 illustrates a 3-dimensional space. In general a 3-dimensional Scien-

tific Resource Space connects three 2-dimensional Scientific Resource Spaces. The

illustrated example in Figure 4.4 connects the following three 2-dimensional Scien-

tific Resource Spaces : SRS(GS,DP ), SRS(GS, TS), and SRS(TS,DP ). Therefore

each 2-dimensional SRS holds Life Cycle Resources defined as

LCR(Ix1m|Ix2n) = vi

{
Ix1m Ix2n

}
with m, n ∈ Z0, x ∈ SRS(), |SRS| = 2.

The point depicted as LCR(IGS4|IDP4|ITS4) in Figure 4.4 represents a Life Cycle Re-

source with three instances of the e-Science life cycle activities “Specify Goals”, “Pre-

pare Data” , and “Select Appropriate Tasks”. In general, a point in a 3-dimensional

Scientific Resource Space is defined as:

LCR(Ix1m|Ix2n|Ix3p) = vi

{
Ix1m Ix2n Ix3p

}
with m, n, p ∈ Z0, x ∈ SRS(), |SRS| = 3

axis GSIGS1 IGS2 IGS3 IGS4 IGS5

Figure 4.2: The “goalSpecification” dimension of the SRS.
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axis GSIGS1 IGS2 IGS3 IGS4 IGS5

axis DP

IDP1

IDP2

IDP3

IDP4

IDP5

LCR(IGS4|IDP4)

Figure 4.3: 2-dimensional scientific resource space.

Information about actions taken within an activity is saved as RDF graph with the

individual as root element.

axis GSIGS1 IGS2 IGS3 IGS4 IGS5
axis GSIGS1 IGS2 IGS3 IGS4 IGS5

axis DP

IDP1

IDP2

IDP3

IDP4

IDP5

LCR(IGS4|IDP4)

axis GSIGS1 IGS2 IGS3 IGS4 IGS5

axis DP

IDP1

IDP2

IDP3

IDP4

IDP5

LCR(IGS4|IDP4)

axis TS

ITS5
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ITS3

ITS2

ITS1

LCR(IGS4|ITS4)

LCR(IGS4|ITS4) LCR(IGS4|IDP4|ITS4)

Figure 4.4: 3-dimensional scientific dataspace.

Spaces with more than three dimensions are hard to project on 3-dimensional

images. One way is to split the n-dimensional cube into multiple 2-dimensional cubes

and to position them accordingly. In Figure 4.5 we try to visualize the 5-dimensional

life cycle resource space. We should keep in mind that the five 2-dimensional points
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depicted in Figure 4.5, actually form together a single point in the 5-dimensional

space, therefore represent a single LCR.

axis DP

IDP1

IDP2

IDP3

IDP4

IDP5

axis GSIGS2 IGS3 IGS4 IGS5

axis TE

ITE1

ITE2

ITE3

ITE4

ITE5

axis TS

ITS1
ITS2

ITS3
ITS4

ITS5

axis RP

IRP1
IRP2

IRP3

IRP4

IRP5

LCR(IGS3|IDP4)

LCR(IGS3|IRP3)

LCR(ITE3|IRP3)

LCR(ITS4|ITE3)

LCR(ITS4|IDP4)

Figure 4.5: 5-dimensional scientific dataspace.

A point in the multidimensional space connects coordinates (i.e. individuals of

the five e-Science life cycle activities) that are participating within a LCR. A LCR

can therefore be defined as a vector:

vi

{
IGSj IDPk ITSl ITEm IRPn

}
with j, k, l,m, n ∈ N representing the index of the five participating coordinates.

Mathematically the 5-dimensional space is defined as a n× 5 matrix as follows:

A = (ai5)


a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

...
...

...
...

...

an1 an2 an3 an4 an5



Elements of the matrix are defined as aij with i = 1, ...,m (the index of coordinates
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corresponding to a LCR) and j = 1, ..., 5 (the index of the e-Science life cycle

activity). Each element represents an individual of an e-Science life cycle activity.

The index j represents the dimension of the space i.e. the first column (elements

ai1) of the matrix represents the dimension “Specify Goals” and the last column

(elements ai5) represent the dimension “Process & Publish Results”. Thus columns

represent the dimensions of the multidimensional space and rows represent points

(LCR) of the space. Points in the space can also be combined of coordinates having

different indexes e.g. a LCR using individual p of the dimension “Specify Goals” can

contain instances with different index on the other dimensions. This is important

when a researcher re-uses an available individual within another iteration of the

e-Science life cycle. For example, when applying the same analysis method on a

different dataset (that is a different instance of the “Prepare Data” activity). Let’s

assume that the three instances IGS3, ITE3 and IRP3 are being re-used within a new

e-Science life cycle experiment. This indicates that the acting researcher has applied

a new analysis method on a new prepared dataset, but re-used the same instance of

the dimension “Specify Goals”, “Run Tasks” and “Process & Publish Results”, thus

working on the same study, executing the analytical methods on the same machine

and publishing the results using the same publication modes as in his previously

conducted experiments. The corresponding LCR is illustrated in Figure 4.5 and

denoted as

LCR = vi

{
IGS3 IDP4 ITS4 ITE3 IRP3

}
with i ∈ N, i < n

n is the number of rows in the corresponding matrix and is equal to the amount of

LCRs. This measure indicates the state of the scientific dataspace.

If we assume that the LCR depicted in Figure 4.5, has the highest available

index in the dataspace, therefore represent its actual state, we can organize the

5-dimensional scientific dataspace in the following 4× 5 matrix:

ALCR = (I45)


IGS1 IDP1 ITS1 ITE1 IRP1

IGS2 IDP2 ITS2 ITE2 IRP2

IGS3 IDP3 ITS3 ITE3 IRP3

0 IDP4 ITS4 0 0



The positions I14, I44 and I45 contain the value 0, which indicates that there still

does not exist an individual of the dimensions 1, 4 and 5 having index 4. With

an increasing number of life cycle experiments the resource space and therefore
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the matrix ALCR is growing. However, the index is separately updated for each

dimension and only when a new individual of the corresponding life cycle activity

is being created.

The Scientific Resource Space Model together with the e-Science life cycle rep-

resent our basis on top of which we build our dataspace support platform, which is

further described in the following sections.

4.2.3 The Environment of Dataspaces in e-Science

Figure 4.6 shows the environment of the e-Science life cycle. In particular, there

is a set of participants participating to one ore more activities of the e-Science life

cycle. Each activity feeds the dataspace with new participants, as for example the

activity Specify Goals adds new domain ontologies, the activity Prepare Data adds

new final input datasets as well as OGSA-DAI resource files, and the activity Select

Appropriate Tasks adds new workflow description documents, while the activity Run

Tasks adds new PMML documents describing the data mining model applied, and

finally the activity Process and Publish Results adds new documents visualizing the

achieved outputs. All these participants belong to at least one or more e-Science

life cycles, expressed as instances of the ontology describing its relationship and

interconnection to a great extend.

Each iteration of the life cycle will produce new instances and properties of the

ontology. Based on the publishing mode, set by the scientist who accomplished the

life cycle, the whole instance will automatically be published into the dataspace and

thus is available to other users of a wider collaboration with respect to other research

areas. We distinguish between four publication modes as listed in the following:

1. free access - the life cycle resource is publicly available, no access rights are

defined.

2. research domain - the life cycle resource is restricted to members of the research

domain the scientist who conducted the experiment belongs to.

3. collaboration - the life cycle resource is restricted to members of a collaboration

defined among multiple research groups

4. research group - The life cycle resource is restricted to members of the research

group the scientist who conducted the experiment belongs to.

Users will have access to sets of participants available in the scientific dataspace,

depending on their assigned role. By this, the concept of managing sub-dataspaces
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Figure 4.6: Environment of a scientific dataspace.

is realized. A sub-dataspace contains a subset of participants and a subset of re-

lationships of the overall dataspace. There can be sub-dataspaces setup for differ-

ent domains, then for different research collaborations and even for single research

groups. Scientific experiments that were published using the free access mode, will

participate in the overall dataspace, thus its participants and the life cycle instances

are accessible for every one having access to the scientific dataspace. In order to

access data of a specific life cycle iteration, that was published using the research

group mode, it will be necessary to be member of that specific research group, as

the data will be participating only in the corresponding sub-dataspace.

Once a new iteration has been accomplished using at least some activities from

other life cycle instances, both the new life cycle document and the one containing

activities that were re-used will get an additional relationship. We can conclude
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Figure 4.7: Three layers of abstraction for e-Science life cycles.

from this, that the dataspace is evolving with an increasing number of life cycles.

Catalogs and repositories for ontology instances that manage these LCRs organized

as RDF trees will provide search and browsing features. The development of an

appropriate repository providing rich functions to insert, update and delete as well

as to semantically search LCRs on a multi-institutional level is discussed in Chapter

6.

Figure 4.7 illustrates three layers of abstraction of the e-Science life cycle. On

top, there are the classes and properties defined in the ontology, which models the

concepts of the five e-Science life cycle activities and their interconnection, in short

the e-Science life cycle. Instances of this ontology, represent specific cycles of the

model for a specific e-Science application. To be precise, one instance represents a

specific experiment of an e-Science application. However, we can see that with an

increasing number of applied scientific experiments using the e-Science life cycle, we

get an increasing number of instances of the ontology, each represented by a single

RDF tree. This layer is called the life cycle view representation, as it represents

different cycles of the model e.g. from different domains.

The interconnection of these large amount of diverse scientific experiments, de-

scribed within instances of the ontology (as single RDF trees) represents the scientific

dataspace in its most abstract view, where participants are the instances of the on-

tology and relationships are the connections among these files. Thus the bottom

layer is called the dataspace representation.

As mentioned above, once a new life cycle is created that uses some bits of another

already defined life cycle, both corresponding instances will be interconnected by
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the uses-bits-of relationship. We can see that in this high abstraction level also

relationships are evolving with an increasing number of applied scientific experiments

by using the life cycle model.

4.3 Relationships in the Scientific Dataspace

Scientific dataspaces will be set up to serve a special subject, which is on one hand to

semantically enrich the relationship of primary and derived data in e-Science appli-

cations and on the other hand to integrate e-Science understandings into iterations

of the life cycle model allowing scientists to understand the objectives of applied e-

Science life cycles. Figure 4.8 illustrates what is considered as dataspace participant

and relationship, respectively by breaking a typical very generic scientific experiment

into its major pieces, which we organize into three categories (1) primary data, (2)

background data, and (3) derived data. A typical scientific experiment consists of

Figure 4.8: Semantic relationship in e-Science applications organized be the e-
Science life cycle ontology.

three types of dataspace participants:
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1. an input dataset taken from a source database,

2. a set of functions (analytical methods) used to analyze the input dataset (com-

monly organized into a scientific workflow), and

3. the derived results, which represent the outputs of the experiment i.e. plots

and histograms, reports, or publications.

Those dataspace participants are stored in corresponding data repositories of

the scientific dataspace. Their interconnection is semantically rich described by

dataspace relationships. They are modeled in RDF as individuals and properties of

the e-Science life cycle ontology and organized in multiple RDF trees within an RDF

store [KC04] supporting the the SPARQL query language for RDF [PS08, C+08].

SPARQL contains capabilities for querying required and optional graph patterns

along with their conjunctions and disjunctions. The results of SPARQL queries can

be results sets or RDF graphs.

Experiments described by the ontology are referred to as Life Cycle Resources

(LCRs). A LCR in fact represents the semantic relationship among dataspace par-

ticipants. In the following section we discuss how such scientific experiments can be

described by the e-Science life cycle ontology.

The scientific dataspace consists of four major kinds of interconnected databases:

(1) primary databases for storing input datasets, (2) background databases for stor-

ing analytical methods used to analyze an input dataset, (3) derived databases

for storing results of analyses tasks, and (4) RDF databases for storing instances

of the e-Science life cycle ontology. However, depending on the underlying data

preservation used to store dataspace participants for the long term, it could also be

collections of datasets organized in a particular data preservation system. This is

further described in Chapter 6, where we introduce the architecture of our scientific

dataspace platform. Although, we use in the following the term database to refer

to a collection of dataspace participants. Figure 4.9 (a) illustrates the main entities

of a typical scientific experiment in the breath gas analysis application (see Section

8.3) and (b) shows their corresponding databases and how they are organized in

the scientific dataspace. An important point here is the RDF-store containing re-

lationships among primary, background and derived data items that participate in

breath gas experiments in terms of individuals and properties of the e-Science life

cycle ontology. The dataspace as depicted in Figure 4.9 (b) represents an instance

of a breath gas analysis dataspace like it is deployed as an experimental framework

for the Breath Research Institute of the Austrian Academy of Sciences. This is
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described more precisely in Chapter 8, where we evaluate the scientific dataspace

paradigm on top of real e-Science applications. A large-scale scientific dataspace

scenario with multiple geographically distributed databases is presented in Chap-

ter 7. Our main contribution in this context is the creation of semantically rich

relationships among data items of scientific experiments described in RDF.

Based on the relationships, answers to specific questions, such as the following:

A “I have detected a model error and want to know which derived data products

need to be recomputed.”

B “I want to check if insopiration is different to expiration of breath gas dataset

x. If the results already exist, I’ll save hours of computation.”

C “Is there any experiment done on the volatile organic compound isoprene on

exhaled breath gas in the context of cholesterol level in blood?”

can be answered by submitting SPARQL queries to the RDF store, which manages

the relationships.
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Figure 4.9: Organization of dataspace participants and their semantic relationships
from a single scientific study in the scientific dataspace.

Experiments are being successively refined, by the acting researcher until the

study either shows a significant result (e.g. regarding one of our two real e-Science

applications this might be the definition of accurate methods for estimation of blood

gas levels of certain biomarker values from breath gas samples) or ends up in a
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modification of the intended defined goal specification for that experiment. We are

aware that we rely on active participation of members from the scientific community

the dataspace is deployed to in order to establish large scale scientific dataspaces.

Therefore, we provide a simple graphical user interfaces (such as the e-Science life

cycle composer composer and the e-Science life cycle Search and Query panel )

that can easily be used by scientists from diverse research domains, especially by

non-computer scientists, which is indeed a major requirement from any e-Science ap-

plication. However, we suspect that young-researchers (Master and PhD students)

will be the major users who will use the portal in terms of conducting experiments,

while senior researcher will most likely interact with the portal in terms of sub-

mitting requests. Once a dataspace is deployed to a global research community

we expect that it enforces building of collaborations among their participating re-

search institutions as it supports the community in exchanging data and knowledge.

This will build the basis for automation-based analysis on top of life cycle resources

collected in the dataspace.

Figure 4.10 gives an overview of participants and their relationships in the sci-

entific dataspace. The figure also shows End Point References (EPRs) from specific

e-Science life cycle activities to dataspace participants. Basically, an EPR points to

a specific dataset, that is a dataspace participant representing either a primary, a

background, or a derived dataset of a scientific study. A typical study includes:

1. a single primary dataset (also referred to as the Final Input DataSet - FIDS 3)

2. multiple background datasets and also

3. multiple derived datasets.

Figure 4.10 illustrates in particular EPRs and the different kinds of dataspace par-

ticipants to which EPRs are pointing to. The figure also shows from which e-Science

life cycle activity EPRs are originating.

As depicted in the figure the activities Prepare Data, Select Appropriate Tasks,

Run Tasks have EPRs to dataspace participants. The activity Process&Publish

Results has an EPR to a publication, which is available in the internet e.g. hosted

on the PubMed resource. The latter kind of EPR is a either a simple HTTP-URL or

3The FIDS represents the dataset that is used as input for an analysis task. For instance,
in the breath gas analysis application a dataset containing raw breath gas data (e.g. breath air
measurements from a mass spectrometer) is retrieved from an external data source. However this
dataset is not the FIDS, because it will be further prepared for a breath gas analysis task (e.g. if
only specific measurements should be analyzed). The FIDS therefore represents the final dataset
that results from a data preparation task.
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Figure 4.10: Relationships among dataspace participants in the scientific dataspace.

a digital object identifier (DOI) if available, such as the following examples, which

point to a scientific publication in the breath gas analysis domain.

http : //www.ncbi.nlm.nih.gov/pubmed/21234569 (4.1)

10.1007/s00285-010-0398-9 (4.2)

The DOI System [doi11] is as independent as possible from specific technology

implementations. For web applications, the DOI name may be expressed as a HTTP

URI. The method for doing so is simply to prepend the DOI with http://dx.doi.org/.
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There is no need to replicate the publication into the a data repository of the

scientific dataspace since todays online libraries are well organized and publications

there are well preserved for the long run. It is also not needed to access the publica-

tion from within the dataspace. All that is required in this context is to provide the

user the HTTP-URL and DOI, respectively where to find the publication. However,

it is possible to store the publication as background dataspace participant within a

dataspace repository.

The other kind of queries point to datasets that are either being used in the

LCR or have been generated as a result of the LCR. These datasets are considered as

dataspace participants and have a certain type, which is either primary, background,

or derived.

To sum up the above introduced multi-layer concept for creation and organization

of semantic relationships among participants of a scientific dataspace we provide a

overview of the abstraction layers in Figure 4.11. At first, supported by the ontology,

a model independent from the various e-Science domains is set up. Then this model

is applied to describe domain-specific iterations of the e-Science life cycle, which

describe the relationship among data participating within the scientific dataspace,

illustrated as different abstraction layers in Figure 4.11.

One iteration of the e-Science life cycle has, in short, a goal specification, a set of

input data (primary data), a set of output data (derived data), a set of background

data, and a set of activities describing what has been done to the input datasets

in order to produce the output datasets. These datasets, illustrated as PD, DD,

and BD in the bottom layer in Figure 4.11 are populating the scientific dataspace.

They are enriched with semantic relationships among each other and described by

its corresponding life cycle resource (LCR1, LCR2, LCR3 ), which are instances of

the e-Science life cycle ontology. LCRs are represented as RDF Graphs and stored

within a RDF store thus they can be discovered with submitting SPARQL queries

to that RDF store.

4.4 Related Work

The proposed Web Resource Space Model [ZXS08] represents a semantic data model

for specifying, storing, managing and locating web resources by appropriate classi-

fying of resources. It enables users or applications to operate on web resources by

an SQL-like query language. A web resource space is defined as a multi-dimensional

classification space where dimensions are discrete. It consists of a name and a

set of axis, denoted as RS(X1, X2, ..., Xn). Each axis X1 represents a classification
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Figure 4.11: Abstraction layers of scientific dataspaces (PD - Primary Data, DD -
Derived Data, BD - Background Data).

method. Xi is partitioned by a set of coordinates denoted as X1 =< Ci1, Ci2, ..., Cim >.

A point in the space, determined by one coordinate at every axis, represents a set

of resources of the same category.

A coordinate C represents a set of resources, denoted as R(C). Resources rep-

resented by axis Xi are the union of all the resources represented by its coordinate:

R(Xi) = R(Ci1)∪R(Ci2)∪...∪R(Cin). The semantics of a coordinate is represented

by name, basic datatype, and a set of concepts. The semantics of a coordinate is

regulated by the semantics of its axis. A coordinate regulates a set of points. An

axisname represents higher classification level that its coordinates. A resource space

regulates a set of axes and the refined classification relationship. A resource is de-

termined by locating the point it belongs to and by selecting from the resource set

according to its name and content description.

The semantics of axis and coordinate can be formally defined or informally
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defined. For example, the semantics of a coordinate can be defined by a set of

concepts, which regulate the semantics of the resources it may contain.

The Web Resource Space Model is designed for managing web resources, such

as web pages, photos, geographical information, or bio-information that is available

on the web. It represents exactly the opposite approach to our scientific dataspace

paradigm. While in the Web Resources Space Model data is kept in its original stor-

age solution, we face the challenge to automatically enrich the data with semantics

and to preserve it into a storage solution, which fits best for the research community

the dataspace system is deployed for.

Obviously, there are major design considerations that distinguish both approaches,

however some concepts from the Web Resource Space Model have influenced us in

designing the Scientific Resource Space Model, which implements the e-Science life

cycle introduced in Chapter 4.2.

4.5 Summary

In this chapter we have introduced the scientific dataspace model along with the

e-Science life cycle, which models the major procedures of conducting an e-Science

experiment. These procedures are modeled in five phases, which we name the e-

Science life cycle activities. They classify at a high level of abstraction the activities

a scientist is carrying out when performing a scientific experiment. Individuals of

the life cycle model represent descriptions of conducted experiments and thus aim

at understanding (1) what for a specific experiment was applied, (2) which data

resources were accessed, (3) what transformations on these data resources were ap-

plied, (4) what analysis were performed, and finally (5) what results where achieved.

We introduced our internal representation of iterations of the e-Science life cycle as

Life Cycle Resources (LCR). LCRs are organized in the scientific resource space

model as points of a 5-dimensional space, where dimensions represent the five e-

Science life cycle activities. We then have described the environment of a scientific

dataspace, by showing the all datasets and that are present in the data life cycle

of the conduction of an e-Science experiment. Finally, we have derived from the

dataspace environment what kind of relationships exists among identified datasets

and analyzed how we can semantically enrich them using an ontology. An End Point

Reference (EPR) concept, that provides a mechanism to systematically reference to

datasets from e-Science experiments and studies has also been introduced. The web

resource space model was described as related work closing this chapter.





Chapter 5

The e-Science Life Cycle Ontology

“We have to do better at producing tools to support the whole

research cycle.”

In a talk to the national Research Council in Mountain View on

January 11, 2007 given by

Jim Gray

5.1 Introduction

In this section we introduce a new ontology called e-Science life cycle ontology,

which we use as a semantic model for the creation, organization, representation and

maintenance of semantically rich relationships in Life Cycle Resources (LCRs) using

the scientific dataspace model described in Section 4.2. The model involves essential

concepts of the scientific dataspace paradigm. Thanks to its domain independent

applicability it can easily be used in any e-Science application. These concepts are

organized in the e-Science life cycle ontology. It provides the basis for presenting

generic scientific studies as LCRs with well defined relationships among their par-

ticipating datasets. On the other hand the e-Science life cycle ontology supports the

scientific dataspace paradigm with primitives that can specify concrete relationships

among primary, background, and derived data of these LCRs.

The e-Science life cycle ontology can be seen as the heart of the underlying

dataspace-based support platform. It is used to share common understanding of

the structure of scientific studies among a research community. For example, sup-

pose several different research centers conduct breath gas analysis studies. If these
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research centers share and publish the same underlying ontology of concepts for con-

ducting breath gas studies, then software programs can extract and aggregate knowl-

edge from these different research centers. The aggregated information can then be

used to answer user queries or as input data to other applications (e.g. automation-

based breath gas analysis). Figure 5.1 gives an overview of the main concepts of

the e-Science life cycle ontology. Principally, ontologies are used for communication

e-Science Life Cycle Ontology

Participants

Activity

Dataspace

Scientist

Publication Mode

Metadata

Figure 5.1: Main concepts of the e-science life cycle ontology.

(between machines and/or humans), automated reasoning, and representation and

re-use of knowledge [CHST04]. To enable re-use of domain knowledge consolidated

within scientific studies exposed as LCRs was one of the driving forces behind the

development of the e-Science life cycle ontology. In this context domain knowledge

is represented in semantic descriptions about scientific studies. In particular, ac-

tivities of the e-Science life cycle such as the data preparation activity (providing

descriptions about the input dataset used) or the select appropriate task activity

(providing descriptions about the analytical methods applied to an input dataset)

provide rich semantics about a conducted scientific study. With the help of the

e-Science life cycle ontology we can describe scientific experiments according to the

specification and implement a software program (e.g. a web service) that guides the

scientist through the experiment conduction independent of the e-Science applica-

tion domain. It is further possible to analyze domain knowledge since a declarative

specification of the process of conducting studies is available with the e-Science life

cycle ontology.

However, the ontology itself is not the goal in itself. It is rather a definition

of a set of concepts and their relations for other software programs to use. In the
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research carried out in this thesis the ontology represents the concepts to model the

entire life cycle in a scientific study. By this we provide with the e-Science life cycle

ontology a framework for the management of semantically enriched relationships

among datasets that participate in the data life cycle of the conduction of a scientific

study. The software program that uses the ontology and its built knowledge base is

represented by the software components of the scientific dataspace support platform.

5.2 Applied Methodology

As the first step in building the e-Science life cycle ontology we have selected a

methodology supporting phases of the development process. Typically such a de-

velopment process is organized in several phases. For the e-Science life cycle on-

tology development process we have selected the On-To-Knowledge methodology

[SAB+03], as the most appropriate methodology because it provides the most accu-

rate description of each phase through which an ontology passes during its lifetime.

Other related methodologies for developing an ontology are described within the

related work section of this chapter in Section 5.6.

The phases of the On-To-Knowledge methodology [SES02, SAB+03] are illus-

trated in Figure 5.2. The On-To-Knowledge approach consists of five phases and

starts with a feasibility study to identify the concepts involved and to focus the

domain for its application. During the kick-off phase, the requirement specification

for the application is acquired. This includes knowledge sources (e.g. domain ex-

perts identified during the feasibility study). Through an analysis of that knowledge

sources, a first basic ontology is developed containing most relevant concepts and

relationships. It is modeled on a conceptual level. During the next phase, the refine-

ment, knowledge is elicited with domain experts, which enlarges the ontology with

more fine-grained concepts and relations. The approach ends up with a formaliza-

tion phase, where the refined ontology is transferred into a formal representation

language, such as OWL. This ontology further serves as a base for developing a pro-

totype application to evaluate the ontology in the next phase (the evaluation). It

might be necessary to perform several refinement-evaluation cycles before all require-

ments are met. To reflect changes to the ontology being developed, a maintenance

and evolution phase is considered in the On-To-Knowledge approach.

The most important issue building the e-Science life cycle ontology was to capture

and uncover the e-Science life cycle knowledge by identifying the key concepts and

relationships described in the previous chapter. The identification of general abstract

terms related to defined life cycle concepts such as the participants including primary
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1. On-To-Knowledge: Semantic Web Enabled Knowledge Management 19

Fig. 1.11. Methodology for On-To-Knowledge

worksheets TM-1, TM-2, AM-1, semi-formal description, target ontology and
ontology-based application. Below every activity the most important steps of
the activity are sketched. Refinement, evaluation and maintenance may need
to be performed in iterative cycles.

The approach consists of five major phases. It starts with a feasibility
study (based on CommonKADS) to identify the parties involved, to focus
the domain for the ontology-based application and to support go/no-go deci-
sions for projects. During the kick-off phase, the requirement specification for
the ontology-based application is acquired. It contains, among other things,
valuable knowledge sources (e.g. domain experts identified during the feasi-
bility study) and documents (e.g. index lists useful in building the ontology).
Through analysis of the knowledge sources, a baseline ontology is developed
that usually contains the most relevant concepts and relations of the focused
domain and is modelled on a conceptual level. During the next phase, the re-
finement, knowledge is elicited with domain experts, which serves to enlarge
the ontology with more fine-grained concepts and relations of the domain.
The approach ends with a formalization phase, where the refined ontology is
transferred into a formal representation language, such as OIL. This target
ontology serves as a base for developing a prototype application to evaluate
the target ontology in the next phase, the evaluation. The prototype helps to
check whether the initial requirements from the kick-off phase are fulfilled. It
may be necessary to perform several refinement-evaluation cycles before all
requirements are met, which leads to the deployment of the ontology within
the target application.

Figure 5.2: Methodology for On-To-Knowledge [SAB+03].

data, background data, and derived data, then life cycle activities, research domain

and researcher, was an initial point in defining the classes and their relations to

each other as main ontology concepts. The more specific concepts describing for

example the life cycle activities more in detail such as data preparation activity,

which background data it uses, and what kind of output data it produces, were

identified next. Required semantic relationships between identified concepts were

declared providing a higher complexity level while appropriate notation indicating

the relation role between classes was identified.

There was great emphasis on defining authentication concepts based on a pub-

lication mode of a particular life cycle provided by a scientist who executed the

corresponding life cycle. While going more into detail defining specific ontology

concepts, a certain rework was occasionally required in order to guarantee the con-

sistency of the ontology. Finally, ontology use case scenarios and applications were

applied to identify further classes and relations providing more knowledge about the

ontology. The ontology was created using Protégé Ontology Editor and Knowledge

Acquisition System [Sta10].
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5.3 e-Science Life Cycle Ontology Development

In this section we are going to illustrate and describe how we applied the On-To-

knowledge methodology processes [SAB+03] in the development of the e-Science Life

Cycle Ontology.

5.3.1 Feasibility study

In this phase we have collected metadata about real scientific study in coopera-

tion with scientists from the application domain. This allowed us to understand

the semantics of the data and relationships involved in the process of conducting a

scientific study in a specific application domain. Furthermore it allowed us to inves-

tigate the general concepts and to elaborate the process describing the model and

application usage. We illustrate identified people who are involved in the e-Science

life cycle ontology and show a usage scenario in Figure 5.3.

Semantic Repository

e-Science Life Cycle 
Ontology

Senior
Scientist

PhD, Master
Students

Ontology 
Engineer

Domain
Ontology

Domain 
Expert

Evaluate/
Maintain

Define

Search&Query

Create 
LCRs

LCRs

Figure 5.3: Identified people involved in the e-Science life cycle ontology.

Typically, senior scientists will interact with the ontology in terms of submitting

search and query requests (e.g asking for LCRs from a specific person, organization,

or research field) while PhD, and master students are continuously feeding the se-

mantic repository with new individuals describing their scientific studies. On the

other hand there is an ontology engineer, who is responsible for maintaining the

ontology and for the evaluation in case changes were applied to the ontology. We

also identified a domain expert as involved person, who provides an ontology for his
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research domain with a defined vocabulary of terms used in the application domain

the e-Science life cycle ontology and its underlying dataspace support platform is

deployed to. This usage of a domain ontology in conjunction with the e-Science life

cycle ontology is considered optional, since there are still many research domains,

without a domain ontology that defines their common vocabulary.

The next section presents the basic concepts and their taxonomies, which are

covered by the e-Science life cycle ontology as identified with collected metadata

about a real scientific study during the feasibility study.

5.3.2 Kickoff

In this phase we specified all requirements for the e-Science life cycle ontology tar-

geting the main concepts such as the participants, activity outputs, main activity

tasks, more detailed domain and goal identification, ontology design models with

respect to data sources involved, use cases and user role definitions, including the

concepts and relationships identification. As knowledge source we mainly used the

previously collected metadata about real scientific studies from the Non-Invasive

Blood Glucose Measurement application1, which have to be reflected by classes and

properties in the ontology. Additionally the scientific dataspace model introduced in

Section 4.2 and the environment of scientific dataspaces elaborated in Section 4.2.3

served as knowledge source to specify the dataspace-related requirements for the on-

tology (e.g. the need to model different types of dataspace participants). Last but

not least senior researchers from both evaluating e-Science applications (see Chapter

8) have provided valuable inputs for specifying the requirements, based on which we

created a semi formal description of the ontology.

The life cycle of conducting a scientific study comprises various steps, each step

focusing on a different aspect or task. Therefore, a major concept in the e-Science

life cycle ontology represents the e-Science life cycle activity. At the highest level

the ontology covers all five activities of the e-Science life cycle. Figure 5.4 illustrates

the concept taxonomy of life cycle activity.

Each activity has one or multiple references to either a primary, a background,

or to a derived dataset, which is considered as dataspace participant in the ontology.

There are different types of background and derived datasets that can be produced

or accessed during the process of conducting a scientific study. We have considered

some in the e-Science life cycle ontology that were relevant in our two e-Science

1This application is described in Chapter 8 in Section 8.2.
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Life Cycle Activity
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Result 
Processing & 
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Figure 5.4: Lice cycle activity concept taxonomy.

applications. However, depending on an application domain, there might be addi-

tional domain specific kinds of such datasets. The concept taxonomy of this types

of dataspace participants and its corresponding subtypes are shown in Figure 5.5.

Data Mining ontology as shown in the figure represent a typical background dataset,

however they investigation is out of scope of this work.
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ResultsetFinal Input 
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Figure 5.5: Dataspace participant concept taxonomy.

Another key concept defined in this phase is the publication mode concept. Since,

it is important for a scientist who accomplished a study to share it with different

kind of people, research teams, or groups, we have modeled several publication modes
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that can be attached to a specific LCR. The publication mode concept taxonomy is

shown in Figure 5.6.

Publication Mode

Single Person Research Group Collaboration 
Project

Research 
Domain

Figure 5.6: Publication mode concept taxonomy.

Since it was a major requirement to keep the e-Science life cycle ontology do-

main independent we have not provided much more concept taxonomies. However,

we have used as much as possible a generic approach to model the concepts of the e-

Science life cycle more precisely e.g. using the attribute triple <Concept, Attribute

Name, Attribute Value>. This allows to specify domain-independently the at-

tributes that are needed in a specific application domain. For instance, in the breath

gas analysis domain it is necessary to model, which mass spectrometer was used

to generate raw data prepared in the final input datasetindexFinal input dataset.

Therefore an attribute Mass Spectrometer Type can be defined as individual of the

generic concept Attribute Name, which can be connected to any concept defined in

the ontology. This generic concept of describing domain-specific attributes is shown

in Figure 5.7.

5.3.3 Refinement

In this phase we have modeled and formalized the abstract concepts and relation-

ships specified in previous processes. In order to formalize the presented conceptual

model we transformed it into a standard ontology language. We have decided to use

the Web Ontology Language (OWL) [W3C04] because of the expressivity of the DL

language, which is underpinning OWL and the ability to perform reasoning over the

ontology. This assures that the ontology can be built in a logically consistent form in

which the structure implied by the descriptions is complete. Moreover, this enabled

us to take advantage of the reasoning at development time. The e-Science life cycle

ontology has been modeled using the Protégé Ontology Editor [Sta10] supported

by the Pellet reasoner [pel11], which enables to check consistency of a developing

ontology.
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Figure 5.7: Generic metadata concept and example.

Every OWL class, defined by a user, is a subclass of a predefined class owl:Thing

and therefore each individual is member of this class. LifeCycle class represents

a central OWL class related with five main activities as shown in Figure 5.8. We

define a class LifeCycle as a subclass of the predefined class owl:Thing. A constraint

owl:maxCardinality defines a value, which specifies the number of property values

individuals of a class may contain at most, in this case a LifeCycle may contain

at most one value of each of the declared properties: hasGoalSpecification, has-

DataPreparation, hasTaskExecution, hasTaskSelection, hasResultPublishing, which

refer to the five main life cycle activities. Furthermore, we specify that the class

LifeCycle may only be executed by scientist, and that each lifeCycle is published

by a particular publication mode. Figure 5.9 gives a more detailed illustration of

a publication mode. Life cycles may be published in the dataspace and thus is

available to other users of a wider collaboration with respect to other research ar-

eas. We distinguish between five publication modes: (1) Person, represented by a

class Person, meaning that only selected persons may view the published results,

(2) research domain, represented by a ResearchDomain class, while restricting the

results to certain domains, (3) Collaboration, represented by a Collaboration class

with restrictions to particular collaborations, and (4) Research group, restricting the

published life cycles to some particular research groups, represented by the Research
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Figure 5.8: e-Science life cycle - activity relations.
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Figure 5.9: e-Science life cycle - publication mode.
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Group class. Figure 5.9 provides further relationships indicating that a class scien-

tist is derived from the class Person while being member of some research groups

and belonging to certain research domains.

Each activity feeds the dataspace with new participants, which are categorized

into tree different participant subgroups: background data, primary data and de-

rived data. The concepts identifying the different participant subgroups are illus-

trated in Figure 5.10, and defined as subclasses of the class Participant. All these

participants belong to at least one or more e-Science life cycles.

The scientific dataspace itself is modeled as set of data sources - the so called

dataspace participants - and relationships describing their interconnections. A par-

ticipant of the scientific dataspace paradigm described in this work is a dataset that

either represents input data to a scientific experiment, or it represents the analyti-

cal method being used within that experiment, or it is a dataset that has emerged

during execution of an experiment. We therefore classify four types of participants:

(a) primary data participants - the input dataset, (b) background data participants

i.e. an analytical method (web service, Matlab script, etc.), (c) derived data partic-

ipants - emerged datasets, and (d) other data participants. Appropriate DBMSs for

storing these three types of datasets need to be set up by a dataspace administrator

when deploying the dataspace for a specific scientific community. The decision what

DBMS to select depends on the schemas of the corresponding datasets, to be used

by the scientific community, to whom the dataspace is deployed for. Figure 5.10

shows how the dataspace is modeled in the e-Science life cycle ontology.

For instance in the breath gas research domain primary data consists of the

breath gas measurements, calculated by different types of mass spectrometers and

integrated with corresponding laboratory values of the probands. This data is man-

aged as relational data by a MySQL DBMS. Datasets taken from this datasource,

for analysis within a scientific breath gas experiment are considered as final input

datasets indexFinal input dataset. A final input dataset represents a primary par-

ticipant. This dataset is replicated into a “primary” database, which is specifically

set up for managing primary data participants in order that data used within a

scientific experiment can be accessed even when the original data and its structure

have been moved, changed or access rights to its datasource have been modified.

This replication process contributes to serve long-term data preservation within the

scientific dataspace. It has effect only on primary datasets, as other datasets are

emerging during execution of the experiment, therefore can be saved directly into

their corresponding DBMS. Background data participants typically represent the
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subclass

subclass
subclass

Participant

BackgroundData

PrimaryData

DerivedData

LifeCycle
isUsedIn

describesRelationshipAmong

OtherData

subclass

Dataspace

participatesIn participatesIn

consistsOf consistsOf

GoalSpecification

ResultPublishing

DataPreparation

TaskSelection

TaskExecution

Figure 5.10: OWL classes and properties regarding the dataspace participants and
relationships of the scientific dataspace implementation.

analytical methods (mainly Matlab scripts) being used in breath gas analysis ex-

periments. Their outcomes (histograms embedded in XML or HTML documents

describing them) represent derived data sources. The brath gas analysis applica-

tion, its datasets and their usage within a real-world breath gas study are described

in Section 8.3.

Depending on the e-Science application, also other kind of data sources can par-

ticipate. For instance the breath gas analysis scientific community has established

a “volatomics” data base, which records basic metadata of finished (already pub-

lished) studies of exhaled breath. This data source is regarded as data source with

type “other” and can refer to a set of life cycle resources that correspond to a study.

Each participant is described by some metadata. This is captured by the OWL

class metaData, which is a generic class for describing instances according to user-

defined or application oriented attributes and their values. An instance of the class

metaData typically has the form of a triple ‘instanceID, attribute, value’. For ex-

ample, a short textual description of a participant would look like ‘participant073’,

‘description’, ‘breath gas analysis measurements taken from 20 probands at sleep
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laboratory 1’, which means that the instance ‘participant073’ of the OWL class par-

ticipant has a metadata attribute ‘description’ whose value is ‘breath gas analysis

measurements taken from 20 probands at sleep laboratory 1’. With this data de-

scription concept it is possible to describe nearly any metadata about nearly any

instance of the e-Science life cycle ontology. Thus, scientists can independently de-

scribe participants according to their needs. Figure 5.11 illustrates how dataspace

participants are described by the metaData and corresponding OWL classes.

hasAttributes

describes

MetaDataAttributeName

AttributeValue

Participant

correspondsTo

isDescribedBy

describes

AnyClass

isDescribedBy

Figure 5.11: Data description concept in the e-Science life cycle ontology.

Relationships among the above described types of dataspace participants are

semantically rich described by the instances and properties defined in a life cycle

resource. The relationships are managed by the RDF store. Any data source of

type “primary”, “background”, or “derived” within the dataspace is participating

within at least one life cycle resource, which describes their interconnection to a

great extent. Relationships among participants within the scientific dataspace model

how datasets (primary, background, or derived participant) were used in scientific

experiments. That means, whenever a dataspace participant is retrieved by some

kind of supported search&query mechanisms, the requesting user will automatically

receive additional information about

• which experiments the participant is involved in,

• what the purposes of these corresponding experiments were,

• which other participants are also involved in these experiments, therefore are

interconnected to the received participants,

• who the creator of the participant is, which research group he corresponds to

and how to contact him.
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This information is meant to be the semantically rich relationship among par-

ticipants of the scientific dataspace described by the classes and properties of the

e-Science life cycle ontology.

The implemented solution to store links in the e-Science life cycle ontology is

illustrated in Figure 5.12. A link to a dataspace participant is considered as an End

Point Reference (EPR) in the e-Science life cycle according to the EPR-Framework

as introduced in Section 4.3 in the previous chapter. Therefore links among datas-

pace participants are represented by its EPRs defined by instances and properties of

the e-Science life cycle ontology. This means that multiple dataspace participants

that are referenced with EPRs by a specific Life Cycle Resource (LCR) are inter-

connected and thus have a relationship. This relationship is defined by the EPR

class of the e-Science life cycle ontology and semantically enriched by instances and

properties of its corresponding LCR. Figure 5.12 shows the classes and properties

of the e-Science life cycle ontology that are related to managing EPRs.

Figure 5.12: OWL classes and properties of the e-Science life cycle ontology regard-
ing EPRs.

A concrete example is given in Figure 5.13. There we illustrate a possible RDF

tree with instances and properties from the ontology that represent an EPR to a
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primary dataset, which is stored in an iRODS server. In the e-Science life cycle

ontology we provide an ERP class that is connected to two other classes, EPR-Type

and EPR-Value with properties defined among them as illustrated in Figure 5.13.

The type stores as a literal what type of EPR it is (e.g. iRODS). The EPR-Value

class stores as a literal the URI that is pointing to the dataspace participant. Using

iRODS this could be e.g. the path to the dataset stored within the iRODS server.

Participant

<backgroundData>
functions.zip

<primaryData>
fids.hdf5<derivedData>

report.zip

LifeCycleResource
ID:LCR111111

participates-In

describesRelationshipAmong

EPR
EPR_1

EPR-Value
irods://abauser:..

hasEPR
hasEPR

...

hasEPR

......

...

isEPRof

EPR-Type
irods

hasValue

hasType

Figure 5.13: e-Science life cycle ontology instances and properties of a concrete
example of an EPR.

5.3.4 Evaluation

The consultation with scientists from our driving research applications2 have led

to more fine-grained concepts and relations as described above. In this phase we

demonstrate the usage of the implemented ontology. The e-Science life cycle ontol-

ogy is evaluated in the context of two real e-Science applications. Several life cycle

resources were created using simple forms, where domain experts from both applica-

tions have provided detailed information about conducted studies of their research

domain. We manually created individuals of the OWL classes defined in the ontol-

ogy with the data collected from real scientific studies. In this evaluation phase the

Protégé individual editor was used to create individuals, which form several LCRs.

The SPARQL query language is used to extract the ontology knowledge using the

2Non-Invasive Blood Glucose Measurement and Breath Gas Analysis see Chapter 8
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build-in SPARQL query panel of Protégé. A real LCRs is presented in Appendix B.

We defined some test queries that address the kind of requests we expect researchers

would like to submit to the ontology.

A query submitted, will receive not only the matching data but also data of its

interconnected e-Science activities allowing a user to explore the query results more

in detail, discovering e.g. which analytical methods were applied on a particular

input dataset, the end point reference to its derived resultset and its corresponding

publications. In the following we illustrate some concrete SPARQL query examples

that have been used in this evaluation phase:

SPARQL Query Example 1

Let’s assume a user would like to list all LCRs having NIGM3 workflows selected as

appropriate task within the activity Select appropriate Task and the scientists they

were executed by. A concrete SPARQL query might look as follows:

PREFIX owl: <http://localhost/LifeCycleOntology.owl#>

SELECT ?LifeCycle ?TaskSelection ?Scientist ?WorkflowName

WHERE {

?LifeCycle owl:hasTaskSelection ?TaskSelection.

?LifeCycle owl:isExecutedBy ?Scientist.

?TaskSelection owl:hasWorkflow ?Workflow.

?Workflow owl:workflowName ?WorkflowName.

FILTER regex(?WorkflowName, "nigm", "i")

}

A list of results is displayed in Figure 5.14.

Figure 5.14: SPARQL query example 1 results in Protégé .

The select statement consists of ?LifeCycle ?TaskSelection ?Scientist ?Workflow-

Name data variables that are returned in the query result. The SPARQL results are

3Non-Invasive Blood Glucose Measurement (NIGM) represents our first real e-Science applica-
tion on top of which the dataspace support platform is evaluated. This application is described in
detail in Section 8.2
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represented in a table form, whereas every row represents one query answer and each

variable used in the select statement represents a column in the result table. We

match all workflow names containing the case-sensitive expression NIGM, indicated

by ”i”.

SPARQL Query Example 2

Furthermore, let’s say a scientist wants to apply a NIGM-analysis on acupuncture

point HE GU4. If the results already exist, he or she could save hours of compu-

tation. We might specify a following query to provide a answer to this particular

question:

PREFIX owl: <http://localhost/LifeCycleOntology.owl#>

SELECT ?LifeCycle ?GoalSpecification ?Keywords ?Visualisation

WHERE {

?LifeCycle owl:hasGoalSpecification ?GoalSpecification.

?GoalSpecification owl:hasDescriptionData ?DescriptionData.

?LifeCycle owl:hasTaskExecution ?TaskExecution.

?Visualisation owl:isVisualisationOf ?TaskExecution.

?DescriptionData owl:keywords ?Keywords.

FILTER regex(?Keywords, "meridian\index{Meridian} HE GU", "i")

}

The results of the above specified query are displayed in Figure 5.15:

Figure 5.15: SPARQL query example 2 results in Protégé.

As we can see a user has found some already published visualizations on meridian

HE GU, which can be now explored more in detail by further exploring its corre-

sponding LCR.

4This is an acupuncture point on the Large Intestine Meridian according to Traditional Chinese
Medicine
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SPARQL Query Example 3

Suppose we need to know which datasets were used while performing a particular

LCR executed by a scientist called Mayer, and which research groups he is member

of. A corresponding SPARQL statement may look as follows:

PREFIX owl: <http://localhost/LifeCycleOntology.owl#>

SELECT ?lLifeCycle ?DataSet ?Scientist ?LastName ?ResearchGroup

WHERE {

?LifeCycle owl:isExecutedBy ?Scientist.

?DataSet owl:isDataSetOf ?DataPreperation.

?Scientist owl:isMemberOf ?ResearchGroup.

?LifeCycle owl:hasTaskExecution ?TaskExecution.

?Scientist owl:lastName ?LastName.

FILTER regex(?LastName, "mayer", "i")

}

The results of the above defined query are displayed in Figure 5.16:

Figure 5.16: SPARQL query example 3 results in Protégé.

As shown in the figure, the query results provide information about particular

datasets executed by a certain scientist. Additionally, we display a scientist’s unique

id, last name and the scientist’s research group. Having found the needed informa-

tion, a user can e.g. further explore what analysis task was applied on a discovered

dataset, the concrete workflow, the workflow report, the results and its correspond-

ing visualizations.

SPARQL Query Example 4

Let’s assume we have found some interesting results published in a dataspace but

have no access to the published data so as to explore the details of the executed

life cycles. We can search for the publication mode of published results in order to

receive an access permission:
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PREFIX owl: <http://localhost/LifeCycleOntology.owl#>

SELECT ?LifeCycle ?Scientist ?Visualisation ?PublicationMode

WHERE {

?LifeCycle owl:isExecutedBy ?Scientist.

?TaskExecution owl:hasVisualisation ?Visualisation.

?LifeCycle owl:isPublishedBy ?PublicationMode.

?Visualisation owl:visualisationName ?VisualisationName.

FILTER regex(?VisualisationName, "nigm", "i")

}

The results of the above defined query are displayed in Figure 5.17:

Figure 5.17: SPARQL query example 3 results in Protégé.

Knowing the particular life cycle iteration information and the corresponding pub-

lication mode, a user can either ask for permission or become a member of the

particular research group, the life cycle is restricted to, in order to receive access to

needed results, which act as participants in a scientific dataspace.

5.3.5 Maintenance and Evolution

In this phase we describe how the e-Science life cycle ontology is maintained. Since

the scientific research methodology is not static; it changes and is assumed to be

changed (evolution), so does the specification for the e-Science life cycle ontology

change. To reflect these changes, the e-Science life cycle ontology must be main-

tained frequently, as are other software components of the underlying dataspace

support platform .

One point that should be mentioned in this context is that maintenance of ontolo-

gies in general is a primarily organizational process [SAB+03]. Ontologies require

strict rules for their update-delete-insert processes. It is therefore essential to thor-

oughly test possible effects to the application before applied changes to the ontology
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can be switched-over to a new version of the ontology. As shown in Figure 5.2, the

On-To-Knowledge methodology foresees an iterative process within the last three

phases in order to provide well defined and evaluated ontologies prior to their de-

ployment in real world applications. We strictly follow this approach, since it has

beed verified to be effective in various ontology using applications.

5.3.6 Life Cycle Ontology Properties

Object properties are relationships among concepts defined by the ontology. Logi-

cal characteristics of relationships (e.g. functional, transitive, symmetric, reflexive)

as well as their domain and range restrictions are fundamental concepts of OWL,

that help to provide a well defined specification for the e-Science life cycle. Other

OWL concepts such as bounded lists, property restrictions, cardinality constraints

guarantee that the process of conducting a scientific study is followed according to

the specification defined by the e-Science life cycle ontology.

A declaration of a object or data type property alone, does not imply which

individuals are related to each other. By the use of range and domain statements

we can define which classes are related to each other. A restriction domain indicates

that the subject of such declared property has to belong to related instance of a

class.

For example, a property domain of execute is restricted to individuals of the class

scientist. A range statement indicates that the objects of the property range have

to belong to an instance of the defined class, which means that the property range

is restricted to individuals of the class lifeCycle. Let us look at a definition of

the hasDescriptionData object property. It also includes defined inverse properties

describes, which interchanges a direction of a range and domain relation of the

hasDescriptionData property. We use an owl:unionOf statement to create an union

of individuals of the classes listed inside the statement, restricting the property only

to individuals of these classes. The property range is restricted to individuals of a

class descriptionData.

In the next example we declare a hasGoalSpecification object property defining

that individuals of a class lifeCycle belong to instances of a class goalSpecification.

Furthermore we declare a owl:FunctionalProperty as a subclass of rdf:property. This

property definition may contain one value for each object at most, which means that

one particular life cycle instance may include only one individual of a class goalSpec-

ification. The following tables summarize all defined object and data properties and

their restrictions defined in the e-Science life cycle ontology. Object properties are
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resented in Table 5.1 and data properties in Table 5.2.

Object Property Range Domain inverse Property

hasPrimaryData dataResource dataSet usedToGenerate

belongsToDomain researchDomain scientist isDomainOf

hasCollaborativeGroup ResearchGroup Collaboration inCollaborationWith

hasDataPreparation DataPreparation LifeCycle

hasDataSet DataSet DataPreparation isDataSetOf

execute Scientist LifeCycle isExecutedBy

hasGoalSpecification GoalSpecification LifeCycle

hasMembers Scientist ResearchGroup isMemberOf

hasReferenceTo DomainOntology GoalSpecification

hasReportFile ReportFile TaskExecution isReportFileOf

hasResultPublishing ResultPublishing LifeCycle

hasServiceOntology ServiceOntology Service isServiceOntologyOf

hasTaskExecution TaskExecution LifeCycle

hasTaskSelection TaskSelection LifeCycle

hasVisualisation Visualisation ResultPublishing isVisualisationOf

hasVisualisation Visualisation TaskExecution isVisualisationOf

hasWorkflow Workflow TaskSelection isWorkflowOf

hasWorkflowDocument WorkflowDokument TaskSelection isWorkflowDocumentOf

isPublishedBy PublicationMode LifeCycle isPublicationModeOf

isUsedFor Workflow Service usesService

isResourceFileOf DataPreparation ResourceFile

usedToGenerate DataSet DataResource

hasEPR Participant LifeCycle isEPRof

Table 5.1: Excerpt of object properties.

Data Type Property Domain Range

firstName Person &xsd;string

lastName Person &xsd;string

age Person &xsd;integer

homepage Scientist &xsd;string

birthDate Person &xsd;date

Table continues on the next page.
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Data Type Property Domain Range

country Person &xsd;string

state Person &xsd;string

phone Scientist &xsd;string

email Scientist &xsd;string

title Scientist &xsd;string

keywords DescriptionData &xsd;string

description DescriptionData &xsd;string

name DescriptionData &xsd;string

reportURL ReportFile &xsd;anyURI

resourceURI DataResource &xsd;anyURI

serviceOntologyReference ServiceOntology &xsd;anyURI

visualisationReference Visualisation &xsd;anyURI

visualisationType Visualisation &xsd;anyURI

resourceFileDescription ResourceFile &xsd;string

resourceFileReference ResourceFile &xsd;anyURI

workflowReference Workflow &xsd;anyURI

workflowName Workflow &xsd;string

Table 5.2: Data type properties.

5.4 Reasoning the e-Science life cycle ontology

Knowledge described by an ontology is sharable, understandable to machines, and

supports the enrichment of data sources and relationships at the semantic level.

However, in order to get the most out of an existing ontology and its defined indi-

viduals the usage of a reasoner is essential. A reasoner is an important component

for working with OWL ontologies. If possible all querying of the e-Science life cycle

ontology should be done using a reasoner. This is because knowledge in the ontol-

ogy might not be explicit and a reasoner is required to deduce implicit knowledge

so that the correct query results can be obtained. Pellet [pel11] is an open-source

OWL reasoner that provides standard reasoning services for OWL ontologies. The

Jena Semantic Web Framework for Java [jen11] provides an in-process interface to

the Pellet reasoner that is used in conjunction with the search component of the

dataspace support platform .



114

The following inference problems are often considered in practice according to

the W3C Recommendation of OWL 2 Direct Semantics [W3C10].

• Ontology Consistency

• Ontology Entailment

• Ontology Equivalence

• Ontology Equisatisfiability

• Class Expression Satisfiability

• Class Expression Subsumption

• Instance Checking

• Boolean Conjunctive Query Answering

In the following we provide some reasoning examples in order to explore some

of the effects of applying reasoning in the e-Science life cycle ontology. There is

a number of inferences that can be made, both about the classes defined in the

ontology (for example discovering that class definitions are inconsistent), and about

the instances of the ontology (for example discovering that a particular instance is

inferred to be a member of a particular class).

Ontology consistency is a mandatory first step before any other reasoning service

can be done, since any consequence can be inferred from inconsistency. The con-

sistency of a set of axioms should be checked and it should be verified if the input

axioms do not contain contradictions. Below is an inconsistency example regarding

a LRC of the e-Science life cycle ontology. Let’s define the following 6 axioms.

(1) lifeCycle hasGoalSpecification max 1

(2) LCR234 type lifeCycle

(3) GS478 type goalSpecification

(4) GS452 type goalSpecification

(5) LCR234 hasGoalSpecification GS478

(6) LCR234 hasGoalSpecification GS452

In (1) we put a cardinality restriction to the property hasGoalSpecification with

the OWL class lifeCyce specifying that an instance of the class lifeCyce can have

only one hasGoalSpecification property assigned. In (2) we define a new instance of

that class lifeCyce, which is LCR243. In (3) and (4) we define two new instances of
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the class goalSpecification. In (5) the instance GS478 of the class goalSpecification

is connect to LCR243 and in (6) a second instance of the class goalSpecification

(GS452) is connected to the same lifeCycle instance, which would mean that a

specific LCR has in fact two different goals defined. This, however does not make

any sense in regard of the e-Science life cycle, plus it is not consistent with the

cardinality restriction defined in (1). A reasoner would therefore declare the ontology

as inconsistent.

Using the semantics defined in the following 8 input axioms, we exemplify infer-

ences about the e-Science life cycle ontology and individuals as listed below.

Input axioms:

(1) executes inverseOf isExecutedBy

(2) activity equivalentTo (goalSpecification or dataPreparation)

(3) goalSpecification disjointWith dataPreparation

(4) LCR234 isExecutedBy scientist1

(5) DP67 type dataPreparation

(6) LCR234 hasDataPreparation DP67

(7) hasDataPreparation inverseOf belongsTo

(8) LCR313 hasDataPreparation DP67

Some inferences:

scientist1 executes LCR234 (1,4)

DP67 type activity (2,5)

dataPreparation subClassOf activity (2)

DP67 type not goalSpecification (3,5)

DP67 belongsTo LCR234 and LCR313 (6,7,8)

Another example described in words in this context would be e.g. if we query

for let us say all LCRs of a given person. Since the ontology distinguishes between

a scientists and students (both inheriting from the class person) we would not get

all results if the SPARQL query does not explicitly specify that it is a scientists.

However, this is not always possible since in some cases the requesting user might

not know it. Applying a reasoner in preface to the query execution, enables us to

provide a better result set.

5.5 Scope of the e-Science life cycle ontology

An ontology in general is a collection of concepts and their relations to one an-

other established by a community that wants to use a common semantic for sharing
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knowledge, information or data. The e-Science life cycle ontology aims at proving

a common language for sharing or exchanging scientific studies independent of any

application domain. However, depending on the application domain there might

be domain ontologies such as the Cell Type Ontology [BRA05] etc. to be used in

conjunction with the e-Science life cycle ontology.

EXPO [SK06] represents an ontology for scientific experiments that contain over

200 concepts about experimental methods. It is available in OWL-DL and it was last

modified in 20065. It provides a structure to describe common concepts of scientific

experimentation as experimental goals, experimental methods and actions, types of

experiments, rules for experimental design, etc. Expo can be seen as part of a gen-

eral ontology of science that should formalize scientific tasks, methods, techniques,

etc. It represents a well-defined ontology with a large amount of definitions that

allow to describe scientific experiments up to a high level of detail. However, the

developers of EXPO doesn’t take much into account that the process of describing

a scientific experiment is definitely seen by acting scientists as something undesired.

The developers of EXPO argue that “convenient tools will need to be developed to

enable practicing scientists to annotate their own experiments ... We envisage such

tools will, for example, ask the user to describe the domain of the experiment, if

the experiment involved any hypotheses, what experimental results support or reject

hypotheses, etc.” So far EXPO has not been evaluated in real e-Science applications.

Based on our experiences during the development and evaluation of the e-Science

life cycle ontology we believe that it is hard to get researchers to accept that they

have to fill out a large number of forms during the process of executing an exper-

iment. We think that this acceptance is crucial for the success and broad usage

of an ontology. It is therefore a challenge to find the balance between providing

well-defined semantics about scientific experiments and requesting information from

the acting scientists. As much as possible should of course happen automatically,

however there are some information that cannot be captured unless from the acting

person. For example, if we have a research portal attached to the application do-

main, where the scientific experiments are conducted, then information about the

responsible person (e.g. his affiliation, email, etc.) can automatically be captured.

However, it is still not possible to get information such as the intended goals of a

specific experiment.

In the e-Science life cycle ontology we have therefore tried to keep the number of

experiment descriptions that have to be provided by the acting scientists very small

and on the same time we tried to get as much as possible from its semantics.

5http://sourceforge.net/projects/expo/files/
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Another related work regarding the e-Science life cycle ontology is The Ontology

for Biomedical Investigations (OBI) [OBI11]. The Ontology for Biomedical Investi-

gations project is developing an integrated ontology for the description of biological

and clinical investigations. The current release of the ontology is from July 2011,

which indicates that the project is active in contrast to the Expo ontology, where

the latest release goes back to 2006. The latest complete version of the ontology is

available online6. The ontology includes a set of universal terms, that are applicable

across various biological domains, and domain-specific terms relevant only to a given

domain. It is being built under the Basic Formal Ontology (BFO) [BFO11], which

is focused on the task of providing a genuine upper ontology, which can be used

in support of domain ontologies developed for scientific research. OBI support the

annotation of biomedical investigations, regardless of the particular field of study.

Therefore many ontologies and external resources are imported into OBI, some of

them are depicted in Figure 5.18. The problem that comes with importing many

external resources is that reasoning becomes slower and the ontology is harder to

navigate.

What makes the e-Science Lifecycle Ontology unique in contrast to the above

described related ontologies is that it models not only the process of conducting

scientific experiments, but it also provides a framework for the preservation of the

experiments including their data (primary, background, and derived datasets). This

is challenged by the EPR-Framework, which allows to define references (End Point

References) to real datasets stored in a data preservation system. Figure 5.18 illus-

trates the environment of the e-Science life cycle ontology, by showing an upper and

lower ontology that will be used in conjunction with the e-Science life cycle ontology.

The figure also shows additional related ontologies including their upper and lower

ontologies. These ontologies include EXPO and OBI. They are related in the way

that they also consider in some way in their concepts the process of conducting an

experiment. However, we would like to note that they are not part of the e-Science

Lifecycle Ontology, rather they are co-existing ontologies differently approaching to

describe and annotate scientific experiments.

An upper ontology is a model of the common objects that are generally appli-

cable across a wide range of domain ontologies. It employs a core glossary that

contains, the terms, and associated object descriptions, as they are used in various,

relevant domain sets. There are several standardized upper ontologies available for

use, including Dublin Core [DCM11], Basic Formal Ontology (BFO) [BFO11], and

Suggested Upper Merged Ontology (SUMO) [SUM11]. A list of available domain

6http://purl.obolibrary.org/obo/obi.owl
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Figure 5.18: Environment of the e-Science lifecycle ontology.

and upper ontologies describing concepts of particular research domains is provided

at the Semantic Web Wiki7. In the e-Science life cycle ontology we use the Dublin

Core Metadata terms together with other standards that are used within OWL such

as RDF, RDFS, and XSD. Figure 5.19 shows all the ontology prefixes that we have

used in this context. At the moment we don’t use any domain specific vocabular-

ies and standards such as the Unified Medical Language System (UMLS) [UML11],

which is popular in the biomedical domain. However, we believe that we might also

utilize such external vocabularies in the future, in particular after gaining experience

and feedback from real usage of the e-Science life cycle ontology within applications

of breath research. The ontology prefixes are listed in Figure 5.19.

5.6 Alternative Approaches to develop an Ontol-

ogy

The goal of this section is to present the main methodologies for ontology creation.

A methodology is defined by IEEE [IEE08] as a comprehensive, integrated series of

7http://semanticweb.org/wiki/Ontology
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Figure 5.19: Ontology prefixes.

techniques or methods creating a general system theory of how a class of through-

intensive work ought be performed [GPFLC04]. The ontology development process

deals with identifying the most crucial activities which are performed while creating

ontologies. There are three main Types of activities [GPFLC04]:

• Ontology management activities - task identification, arrangement, and exe-

cution time is managed by this activity including control and quality facilities

for performed tasks.

• Ontology development oriented activities - describes the most important issues

considering ontology development such as the ontology environment, referring

to how and where the ontology will be used, the ontology specification, con-

ceptualization, formalization and implementation, addressing the main devel-

opment steps, and finally the ontology application.

• Ontology support activities - include a knowledge discovery, evaluation and

documentation process while building ontologies.

In the following we present some of the most important methodologies for building

ontologies.

5.6.1 Unschold and King’s method

In 1995 Unschold and King introduced in [Usc96] the first method for creating

ontologies. The main process includes four building steps, which are:

1. Purpose identification - specification of the relevant application domain terms,

goals, ontology purpose and user identification.
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2. Ontology building process - key concepts identification and term relationships

of the specified domain, textual descriptions and definitions of classes and

relationships are provided. We distinguish here between three different concept

strategies in order to build an ontology:

• the bottom-up strategy - first the specific concepts such as a dataSet or

workflowDocument are identified and then a more general abstraction

is modeled grouping the concepts for example into derivedData partici-

pants of a dataspace. As a result we receive more detailed concepts while

increasing a inconsistency risk and requiring more rework.

• the top-down strategy - first an abstract concept is modeled and then

a specification of this model. This results in a less consistent model,

requiring greater rework and more effort.

• the middle-out strategy - this approach specifies the core concepts and

basic classes which for example are represented through different partic-

ipant categories such as backgroundData, primaryData and derivedData,

Then, we specify the concepts on the top such as participant and con-

cepts on the bottom such as workflowDocument representing a particular

derived data output document.

3. Evaluation - the ontology is evaluated using appropriate application environ-

ments.

4. Documentation - the notation, concepts and their relationships should be doc-

umented.

5.6.2 Grueninger and Fox’s Methodology

In 1995 Grueninger and Fox proposed in [GF95] a formal building an evaluation

concept for designing ontologies. The core methodology processes are:

1. scenario identification - the ontology development is application scenario re-

lated, providing solutions and a formal knowledge model of the classes and

relationships which will be used while building ontology;

2. informal competency question elaboration - represent the informal questions,

expressed in natural language, that should be answered using the implemented

ontology;
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3. terminology specification - using the extracted content and knowledge of a

ontology, one can identify the terminology indicating the concepts and their

relations;

4. formal specification of competency questions using formal terminology - the

informal questions, expressed in natural language, are formally represented;

5. axioms specification using first order logic - term definition of a ontology using

axioms; and

6. completeness theorem specification - condition definition providing the com-

plete answers to the competency questions.

5.6.3 Methontology

Methontology was introduced in 1997 in [GPFLC04] by the Ontology Group at

Universidad Politecnia de Madrid, allowing building knowledge level ontologies. The

core task processes while creating ontologies using Methonology are:

1. glossary of terms specification - term definition of the relevant domain of in-

terest is specified, including concepts, instances, properties representing the

relationships among the concepts, textual descriptions, synonyms, etc;

2. concept taxonomy specification - after the terms are identified, a concept tax-

onomy is specified providing a hierarchy model definition. Each of the in

Unschold and King’s method introduced strategies (top-down, bottom-up,

middle-out) can be applied here;

3. ad hoc binary relation diagram specification - the relationships among concepts

are defined specifying the domains and ranges of each relation;

4. the concept dictionary specification - property and relationship specification

describing the previous generated taxonomy concepts, including all domain

related concepts, their instances and relationships;

5. detailed specification of the ad hoc binary relations - detailed description of

the concept dictionary in form of a relation table representing the Object

Properties;

6. detailed attribute specification - all attributes specified in the concept dictio-

nary are described in detail, including the name, the value types, domain and

ranges, representing the Data Type Properties;
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7. detailed class attribute definition - all class attributes specified in the concept

dictionary are described related to the class they belong to;

8. detailed constants definition - each constant specified in the term glossary is

described;

9. formal axiom definition - formal axiom table, including the logical expressions,

description, name, corresponding concepts and attributes, is generated;

10. rule definition - ontology rule definition, including the name, description, ex-

pression describing the rule, concepts and relations; and

11. instance definition - instance specification, including the name, the concept

the instance belong to and the attribute values.

5.7 Summary

The e-Science life cycle is the heart of our scientific dataspace paradigm. The

e-Science life cycle ontology addresses the precise description of scientific experi-

ments by taking advantage of the well-defined semantics of the Resource Description

Framework (RDF) [rdf04b] and the expressive formal logic-based OWL language

[owl04]. The ontology is used to trace semantics about procedures in e-Science

applications.

To systematically design and build the ontology, we carefully selected a methodol-

ogy to help us during the process of the ontology implementation. The methodology

supports the development in organizing the ontology primitives and specifying their

basic characteristics in details. We started with understanding the principal terms

and concepts used in the e-Science life cycle and then we followed the recommended

phases of the On-To-Knowledge methodology.

The profound knowledge about iterations of the e-Science life cycle, consoli-

dated within instances of the ontology represents a relationship model for scientific

dataspaces, because it provides (a) creation, (b) representation, and (c) search-

ing of semantically rich relationships among dataspace participants. Realization of

a scientific dataspace paradigm will highly contribute to the development of data

preservation frameworks for e-Science.

With the help of the e-Science life cycle ontology, it is possible for scientists to

describe, execute and share their e-Science experiments with others. Furthermore,

it is feasible to search for published instances of the life cycle or even for instances

of single activities of the life cycle. In such a way, a scientist could search for all
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published goal specifications corresponding to his research domain, by searching for

a given domain name. The dataspace will then provide not only the published in-

stances of the activity, but also the complete instance of the e-Science life cycle,

including the inputs of other activities and its corresponding results. In addition,

it will provide similar life cycle iterations from the repository by using the semanti-

cally rich relationships described by the ontology. With this in mind, it will be easier

for research groups to engage collaboration, provide knowledge transfers within col-

laborations and among different research groups with respect to different research

areas.

In conclusion, the e-Science life cycle is likely to unify the process of publishing

primary, derived, and background datasets as well as their interconnection and make

it easy for scientists to register and describe new e-Science experiments and for users

to find, explore and understand these applied experiments. Examples of concrete

life cycle resources are provided in Chapter 8 and in Appendix B as part of the

experimental evaluation in two different real-world e-Science applications.



Chapter 6

A Dataspace-Based Support

Platform jSpace

“A preservation environment manages communication from the

past while communicating with the future.”

In: Towards a theory of digital preservation, The International

Journal of Digital Curation. Vol 3, No 1, 2008 by

Reagan Moore

6.1 Introduction

A lot has been written lately about the need to store and archive important data from

scientific studies and complete experiments (including primary, derived, and back-

ground data) to meet today’s mandates of various government regulations. With

more and more data being stored electronically, how does a research organization

keep this information safe and accessible for years to come when? There has not

been any one digital storage technology used to meet the challenge of “forever” data

preservation [Har03]. This chapter discusses generic use cases in Section 6.2 and

in Section 6.3 the architecture of such a support platform, which we named jSpace.

jSpace provides tools that form together a dataspace-based support platform, where

the preservation of dataspace participants and semantic enrichment of dataspace

relationships are realized. A reference implementation is described in Section 6.4

and finally in Section 6.5 this chapter is concluded. jSpace is build on top of the
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e-Science life cycle described in the previous chapter. This model addresses the

precise description of scientific experiments by taking advantage of the well-defined

semantics of the Resource Description Framework (RDF) and the expressive for-

mal logic-based OWL language. jSpace allows to construct semantic data about

experiments at a high abstraction level, which hides from the scientist most of the

underlying complexity involved in the process, such as working directly with RDF

or writing SPARQL queries. If used in conjunction with a modern preservation sys-

tem, such as iRODS [RMH+10], jSpace can furthermore support the preservation of

dataspace participants and relationships to be available in the long run.

6.2 Generic Use Cases

We apply a use-case driven, object-oriented process, using the UML as a notation

for its models. Therefore we first describe the use cases supported by the system,

before we discuss architectural components that have been selected to best achieve

the use cases. The use case diagram depicted in Figure 6.1 gives an overview of the

use cases implemented by jSpace.

Scientific Dataspace Support Platform

Search&Query
Dataspace

Browse 
Dataspace

Create Life 
Cycle Resource

Visualize Life 
Cycle Resource

Scientist

Cache Request

Generate 
Query 

Set Publication 
Mode

Submit
Query

«extends» «includes»

«includes»

«includes»

«includes»

RDFStore

Dataspace
Participant

«includes»

Create Index

«includes»

Figure 6.1: Overview of the use cases of the system.
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6.2.1 Search&Query Dataspace

Search&Query Dataspace provides scientists to interact with the dataspace in terms

of submitting Search&Query requests. dataspace systems in general are supposed

to support a simple keyword-based search and a more powerful query interface

[HFM06]. We should keep in mind that Search&Query scientific dataspaces is of

exploratory nature, therefore an iterative process, which can be described as fol-

lows.

At first, a Search&Query request is submitted via the Search&Query interface

to the system. Such a request can be expressed in many different formats (a single

keyword or a set of keywords or a SPARQL query - for advanced users). Then a

SPARQL query is generated (if the request in not already expressed in SPARQL) and

submitted to the RDF store, which executes the query. The results are represented

as RDF data and are returned to the requesting client where they are displayed. The

result set in this first iteration of the Search&Query process contains all available life

cycle resources the requester has access to and that match the query he submitted

(e.g. those life cycle resources that contain the keywords he entered). Users might

reduce the number of matched life cycle resources by applying filters. In a further

iteration of the Search&Query process the user submits queries to retrieve data

items that were used in the life cycle resources he has explored. Such data items

include primary (e.g. an input dataset such as breath gas measurement samples),

background (e.g. analytical methods such as a Matlab 1 script or a scientific workflow

document), and derived data (e.g. visualized results such as histograms from the

analysis task). This kind of data is retrieved by submitting structured queries to

the corresponding participant of the scientific dataspace. Depending on the type of

the data source it can be SQL, XQuery, or any other query language supported by

the underlying data source.

Based on the e-Science life cycle, search and query services can be provided for

all participants of the scientific dataspace. Hence, it is possible to forward a keyword

query to all participants, which has the aim to identify relevant datasets. However,

each query submitted to the scientific dataspace, will receive not only the matching

data but also data of its followed e-science activities. For instance, considering a

data mining project it will be possible to receive what mining task were applied to

a discovered or prepared dataset, the concrete workflow, the workflow report, the

results presented in PMML and its corresponding visualizations.

1Matlab is a numerical computing environment and programming language
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6.2.2 Browse Dataspace

Browse Dataspace is a task of type “Search&Query Dataspace” but specializes the

way how the user is exploring the dataspace. It is actually a Search&Query activity

(the same subtasks, Generate Query, and Submit Query are included), but has a few

extra processes that go above and beyond the usual Search&Query activity. These

extra processes are e.g. visual presentation of the dataspace, no filters except the

publication modes are applied to the query, which is submitted to the RDF store. In

other words, the browse function generates a let’s say “select*from dataspace”

considering the access rights of the requesting user. Note that only semantic de-

scription (i.e. dataspace relationships expressed as individuals and properties of

the e-Science life cycle ontology) are returned to the user and not the entire datas-

pace with all participants. Browse Dataspace can only be utilized by human actors,

whereas Search&Query Dataspace is also of use for applications.

6.2.3 Create Life Cycle Resource

Create Life Cycle Resource represents the use case where a scientist enters informa-

tion about the scientific experiment he or she is currently conducting. This process

creates a new life cycle resource and includes the following steps. First a local copy

of the e-Science life cycle ontology is loaded into memory of the local machine by

the Life Cycle Composer and a Jena-based ontology graph model is created. Then,

individuals of classes of the ontology are created as instructed by the scientist. That

means that the classes of each e-Science life cycle activity are being instantiated in

this step. Setting a publication mode is also done by creating individuals of the

corresponding classes on the e-Science life cycle ontology. For each individual a new

index is being requested and included into the individual. In particular for each

activity of a Life Cycle Resource a unique ID is being generated. Once a new LCR

is accomplished an unique ID will be attached to each of the five e-Science life cycle

activities of that LCR. These IDs form together a key to uniquely identify the LCR.

Such a key might look like the following:

oeaw-aa:4.1.3:5:9:12:23:24 (6.1)
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The first item of the key (oeaw-aa2 in the example above) indicates the orga-

nization to which the dataspace instance3 is deployed and the second (after the

semicolon) indicates the version of the ontology. That follows (after the second

semicolon) the ids of the corresponding e-Science life cycle activities. Activity ids

are separated by a colon. The first item of the key refers to the activity Specify

Goals, the second to Prepare Data and so forth. This index concept is flexible with

changes to the ontology. For instance if an new version of the ontology is developed

and let us assume an activity is added to the e-Science life cycle, then an additional

id will be added to the key. Important in this context is to specify the correct

order of activities (e.g. data preparation should/must be after goal specification).

The indexes are managed by the Dataspace Indexer and the indexing mechanism is

described more precisely in Section 6.3.4.

Finally, a SPARQL/Update4 query is generated and submitted to the RDF store

by the Search&Query processor. This will add the new instance of the e-Science

life cycle into the RDF store to be discoverable and therefore re-useable by other

scientists.

6.2.4 Visualize Life Cycle Resource

Visualize Life Cycle Resource represents the use case where a single life cycle resource

is being visualized in order to visually provide an overview of its interconnected

dataspace participants that correspond to the life cycle resource. Also the semantic

information stored within each e-Science life cycle activity will be visually presented

to the user within this use case.

6.3 jSpace System Architecture

This section provides a high level overview of the technical architecture for the

dataspace-based support platform jSpace. It outlines the technologies used to pro-

vide a system for broad collaboration and participation in a distributed network

2oeaw-aa is the identification code of the Breath Research Institute of the Austrian Academy
of Sciences, to which a scientific dataspace is deployed as experimental framework in the context
of our evaluation study, described in Section 8.3.

3Multiple interconnected instances of the dataspace support platform build up a large-scale
dataspace. This is introduced and described in detail within Chapter 7.

4SPARQL/Update is an update language for RDF graphs. It uses a syntax derived from
SPARQL. Update operations are performed on a collection of graphs in a Graph Store. Operations
are provided to change existing RDF graphs as well as create and remove graphs with the Graph
Store. http://jena.hpl.hp.com/ afs/SPARQL-Update.html
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Figure 6.2: Holistic view of the system architecture [EB10].

for scientific experiments and studies in various application domains. In facilitat-

ing interoperability through standards, jSpace helps its users to enhance scientific

expertise, promote professional collaboration, and raise the level of their output.

The architectural components that have been selected to best achieve the use cases

presented in the previous section are presented as main entities of the architecture

in Figure 6.2.

They are in particular the Life Cycle Composer - for creation of e-Science life

cycle resources, the RDF store - for storing those resources, the Life Cycle Visualizer

for visualizing them, the Dataspace Indexer - for indexing the participants and

relationships, the Search&Query Processor for allowing scientists to find those life

cycle resources, and the Dataspace Browser for exploration of the dataspace. These,

with each other cooperating software programs represent the environment in which

the Scientific Dataspace is able to grow and evolve into a space of well preserved

scientific data. They also provide the organization and retrieval of scientific data

within the dataspace.
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Figure 6.3: IGT of a concrete example in the breath gas analysis application domain.

6.3.1 Search&Query Processor

Searching and querying a dataspace in general is not like querying a database. In

a dataspace we need to drift away from the one-shot query to query-by-navigation.

Users will have to pose several queries, which results in an Information Gathering

Task (IGT). IGT was introduced by Halevy et al. in [HFM06] as one of the major

principles of a dataspace system.

In jSpace this task is implemented as an iterative process of submitting different

types of queries. Figure 6.3 illustrates two iterations of the IGT of a concrete

example in the breath gas analysis application domain. The information a scientist is

gathering in the first iteration, illustrated in Figure 6.3 (a) represent semantics about

applied e-Science experiments, like what were the research goals, what dataset was

used, what analytical methods, etc. Due to the fact that dataspace participants as

well as their relationships are precisely described by instances of the classes of the e-

Science life cycle ontology, therefore organized as RDF resources, the Search&Query

Processor is built on top of the SPARQL query language [PS08] and its processor,

which has been accepted as a W3C recommendation for querying RDF resources.
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Queries posed in the first iteration of the IGT are therefore submitted to the RDF

store, which organizes all available instances of the ontology. This query is expressed

as SPARQL query constructs and it will lead the scientist to those resources he

or she might be interested in. After the scientist has identified those resources

(scientific experiments) that he or she is interested in, he or she might continue

his IGT with a second iteration. The information that can be gathered within this

second iteration, illustrated in Figure 6.3 (b) represents the datasets itself that are

used within previously identified resources. Such datasets are for example the input

dataset used, or the dataset derived from selected scientific experiments. In order

to apply such kind of deeper searching and querying a more sophisticated query is

submitted in the second iteration of IGT to the scientific dataspace in particular

to the corresponding DBMS that participates in the dataspace. Depending on the

data preservation system used to store the datasets of scientific studies it can be

expressed in a different query language. In our reference implementation that is

discussed in Section 6.4, we have successfully been using the Jargon Java Library

[jar11] to access and query for a dataset stored in an iRODS server that we have set

up for our prototypical implementation.

The Search&Query Processor consists of a Query Interpreter and a Query Trans-

lator. The query interpreter receives a request, which can be expressed in either as

SPARQL-Query or as a keyword or set of keywords. The request is forwarded to

the Query Translator, who generates a SPARQL query (if not yet already expressed

in SPARQL) out of the keywords. This SPARQL query is then submitted to the

RDF store. Figure 6.4 provides an UML activity diagram of the above described it-

erative information gathering task, which implements the previously introduced use

case ‘Search&Query Dataspace” in jSpace. The diagram is organized into swimlanes

showing the responsibility for actions. Each activity is briefly described in Table 6.2.

Activity Guard Condition Description

Pose Query The scientist or an application poses a

query. This query can be expressed in

different formats as described in Section

6.3.1

Log Query The query is logged within the system log.

In particular, type, timestamp, user, and

role are logged with the query.

Table continues on the next page.
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Activity Guard Condition Description

Request PubMode The Search&Query Processor requests the

publication mode and maps it to the user

role.

Interpret Query The query is parsed and interpreted.

SPARQL If it is a SPARQL query, no transforma-

tion is needed, therefore can be directly

submitted to the RDF store.

keyword Keyword-based queries are forwarded to

the Query Translator.

other Other indicate that the requester is al-

ready in a further iteration of the infor-

mation gathering task. Such requests are

submitted to the data sources in the sci-

entific dataspace to retrieve a particular

dataspace participant (dataset that par-

ticipates in a previously selected LCR)

Translate Query Keyword requests are translated into a

SPARQL query, including the publication

mode and user role of the requester.

Submit SPARQL

Query

The SPARQL query is submitted to the

RDF store.

Execute SPARQL

Query

The RDF store executes the SPARQL

query.

Submit Query The SQL Query is submitted to a specific

datasource in the dataspace.

Execute Query The datasource executed the SQL Query.

Display Results The results are displayed.

Explore Results The requester explores the results and op-

tionally continues the information gather-

ing task by posing another query, there-

fore starting a new Search&Query Itera-

tion.

Table 6.1: Description of the activities and guard conditions in the use case

“Search&Query Dataspace”.
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Figure 6.4: UML activity diagram of the IGT implemented in jSpace.

6.3.2 RDF Store

The RDF store manages the e-Science life cycle resources. A life cycle resource

consists of a couple of instances of the OWL classes and their properties defined in

the e-Science life cycle ontology. These instances, consolidated within a life cycle

resource (LCR) describe on a semantically high level a scientific experiment. Life

cycle resources are expressed in RDF. Once a new LCR is composed via the Life

Cycle Composer by a scientist, a new life cycle resource is created, indexed and

added to the RDF store. This process in described in Section 6.3.3. In Figure 6.5

we illustrate major classes and properties that correspond to a life cycle resource.

6.3.3 e-Science Life Cycle Composer

The e-Science life cycle composer enables a scientist to describe his scientific exper-

iments. It guides him through the five e-Science life cycle activities, creates new

instances of them, and attaches them to a new life cycle resource. It communi-

cates with the indexing engine, which provides unique indexes for new instances of

e-Science life cycle activities and adds the new indexes into its index structure, the

index matrix. This indexing mechanism is described more precisely in Section 6.3.4.

In real world scenarios it might often be the case that instances of an e-Science

life cycle are being reused. For example, the instance of the e-Science life cycle

activity “Specify Goal” will be used several times in many iterations of an e-Science
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Figure 6.5: OWL classes and properties of an e-Science life cycle resource.

life cycle, because the specified goals don’t change during investigations on the same

study, whereas the activity “Select Tasks” or “Run Tasks” might change in almost

every e-Science life cycle.

To further explain this, let’s assume a breath gas analysis scientist is working on a

study, which has the goal to provide a manuscript describing behavior of the volatile

organic compounds (VOCs) acetone, acetonitrile, and isoprene in exhaled breath. In

order to fulfill the above introduced study the researcher first (in the first iteration

of the life cycle) takes a look at the expired and inspired concentration (measured

in ppb) of the three VOCs in the breath gas samples. Then, in a second iteration

he investigates the concentrations by splitting the samples into male and female

samples and finally, in a third iteration of the life cycle, the researcher examines the

relation of breath isoprene in the context of smoker, non-smoker, and ex-smoker. In

all these three iterations of the e-Science life cycle the specified goal does not change

as they correspond to the same study conducted by a single researcher.
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Now, to ease the researcher during conducting the above experiments, the e-

Science life cycle composer allows to simply re-use already defined life cycle instances,

thus it is not necessary to always describe all five e-Science life cycle activities, which

of course would be a sticking point of the system.

The e-Science life cycle composer can be seen as the feeding interface to the

scientific dataspace. It is the appropriate and easy to use way to enter semantically

rich information about how the participating data items in the dataspace are related

and interconnected together. Strong requirement here is to provide a simple and

clear interface that can easily be used by scientists from diverse research domains,

especially for non-computer scientists. The definition of guidelines to be followed

by Master and PhD students when conducting a scientific study represents an es-

sential task which, if applied forcefully can lead to evolution of the dataspace into

a semantically rich large-scale scientific data space.

Once an iteration of the life cycle is complete the user can set a publication mode

to the created life cycle resource, which restricts access to the resource.

The above described example is illustrated as activities in the UML activity

diagram in Figure 6.6. The diagram shows how the use case Create Life Cycle Re-

source is implemented in jSpace. The diagram is organized into swimlanes showing

the responsibility for actions. Each activity is also briefly described in Table 6.2.

Activity Guard Condition Description

Create New LCR Creates an empty life cycle resource.

Load Ontology Loads the e-Science life cycle ontology.

Create Model Creates the Jena ontology model.

Create Activity Creates an empty e-Science life cycle ac-

tivity.

Describe Activity The process of entering information about

the conducted experiment.

Create Individual Creates individuals of corresponding

classes of the e-Science life cycle ontology.

Index Individual Generates an index for the created indi-

vidual.

Activity complete The activity is complete if all mandatory

individuals were created.

Activity not com-

plete

The iteration continues until the activity

is complete.

Table continues on the next page.
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Activity Guard Condition Description

Add to LCR Adds the activity to the RDF-graph that

represents the life cycle resource.

LCR complete If the life cycle resource is complete, which

means the all five e-Science life cycle ac-

tivities were created and described accord-

ingly, the life cycle resource will be vali-

dated.

LCR not complete In this case the Scientist continues with ei-

ther creating a new activity or by search-

ing and applying available activities in or-

der to complete the life cycle.

Search Activity Searches for existing e-Science life cycle

activities can then be re-used. This is

a sub-activity, which invokes the activity

graph illustrated in Figure 6.4. The activ-

ity graph nested in it is executed and the

sub-activity is not exited until the final

state of the nested graph is reached. The

results are displayed into the Life Cycle

Composer.

Modify Activity For the purpose of applying changes to re-

used activities. Also, if the life cycle re-

source was not valid

no changes Indicates that no changes were applied

to a selected e-Science life cycle activity,

therefore can be re-used (added to the life

cycle resource) without creating a new in-

dex.

changes The e-Science life cycle activity will be

changed therefore a new index will be cre-

ated. This activity could either be a se-

lected one from the search results or a

newly created that need to be changed be-

cause validation was not ok.

Validate LCR Checks consistence of the created life cycle

resource (RDF-graph.)

Table continues on the next page.
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Activity Guard Condition Description

ok If the created life cycle resource is valid it

will be saved in the RDF store.

not ok If the life cycle resource is not valid, then

it is necessary to modify corresponding ac-

tivities. This iteration continues until the

created life cycle resource is valid.

Create

SPARQL/Update

Query

Creates a SPARQL/Update query, which

inserts the life cycle resource into the RDF

store

Store LCR Stores the life cycle resource in the RDF

store.

Table 6.2: Description of the activities and guard conditions in the use case “Create

Life Cycle Resource”.

6.3.4 Dataspace Indexer

The purpose of the Dataspace Indexer (DI) is to organize life cycle resources, in-

cluding their subscription. DI implements a storage and indexing mechanism for the

Scientific Resources Space model described in Section 4.2.2. Life cycle resources are

represented as points of a 5-dimensional space, where dimensions represent the five

e-Science life cycle activities. Coordinates of a dimension represent the instances of

the corresponding activity. A distinct set of instances with one coordinate on each

axis is represented by a point in the space, therefore forms a life cycle resource.

The Dataspace Indexer organizes representations of the life cycle resources in a

flat table. Each row in the table represents a life cycle resource. The first column

stores the index of the life cycle resource. In the other columns the indexes of

instances of the five e-Science life cycle activities are stored. The first life cycle

resource created will have index 1 in all five corresponding individuals of the e-

Science life cycle activities. Starting from the second life cycle resource the index

assigned to a previous life cycle activity might occur again. This is for the purpose

that an instance might be reused within another life cycle resource. Individuals of

the second life cycle are therefore subscribed with either index 2 or index 1. The

third row in Table 6.3 allows an index up to 3, because here again individuals are

attached to either a new index 3 or in case of re-use to the corresponding index of
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Figure 6.6: Activity diagram attached to the use case “Create Life Cycle Resource”.

the re-used individual, which is in the current state of the dataspace either 1 or 2.

However, in order to generalize this indexing mechanism let’s say Ix are the indexes

I of a life cycle activity x ∈ {GS,DP, TS, TE,RP}. Then Ix can be defined as the

interval

[1, n] := {i ∈ N|1 ≤ i ≤ n}

where n is the total number of life cycle resources available in the dataspace. For

example, IGS represents the indexes over the life cycle activity “Goal Specification”.

Individuals of that life cycle activity, are therefore indexed by elements of the interval

[1, n]. Each individual corresponds to a life cycle resource (LCR). Thus, we define

iLCRy(x)

as the index i of of an individual of a life cycle activity x ∈ {GS,DP, TS, TE,RP}
that corresponds to the life cycle resource y. If the total number of LCRs n is equal
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to the index i of the individual of an life cycle activity x corresponding to LCR n,

which means:

n = iLCRn(x)

we can derive that individuals of the corresponding life cycle activity x were not

re-used within the dataspace. In case that

n > iLCRn(x)

we know that individuals have been reused by the scientist in other life cycle re-

sources. Then the difference between n and i indicates the total amount of re-used

individuals for the corresponding life cycle activity x.

Additionally, we organize two metadata attributes (DS-P and ONT-V together

with the indexes in the flat table of the DI. DS-P (dataspace platform) provides im-

portant information about where (at which location/dataspace platform) as specific

LCR was conducted, in case we deal with a multi-institutional dataspace infrastruc-

ture5. ONT-V indicates the version of the ontology. Table 6.4 is an extract of a

index table from the DI showing a view concrete example of keys organized by the

DI. This index concept is flexible with changes to the ontology. For instance if an

new version of the ontology is developed and lets assume an activity is added to

the e-Science life cycle, then an additional ID will be added to the key. Important

in this context is to specify the correct order of activities (e.g. data preparation

should/must be after goal specification). Having the version number of the ontology

in the index schema, it will be possible to map it always to the right activity and

LCR, respectively.

Having the indexes organized by the DI in the above described manner, it allows

us to quickly evaluate the state of the dataspace in terms of calculating specific

measures such as (total number of unique LCRs, number of reran LCRs, etc). Also

questions like - What activity was re-used most? - can simply be answered without

the need to access any RDF store. The examination of dataspace measures allows

to monitor system usage and thus helps improving the system.

6.3.5 e-Science Life Cycle Visualizer

The dataspace browser represents a useful tool for exploring multiple life cycle re-

sources. It provides an overview when a large number of life cycle resources are

5Such a scenario is discussed in terms of large-scale scientific dataspaces in Chapter 7
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LCR GS DP TS TE RP
1 1 1 1 1 1
2 i ∈ {1, 2} i ∈ {1, 2} i ∈ {1, 2} i ∈ {1, 2} i ∈ {1, 2}
3 i ∈ {1, 2, 3} i ∈ {1, 2, 3} i ∈ {1, 2, 3} i ∈ {1, 2, 3} i ∈ {1, 2, 3}
...

...
...

...
...

...
k i ∈ {1, 2, ..., k} i ∈ {1, 2, ..., k} i ∈ {1, 2, ..., k} i ∈ {1, 2, ..., k} i ∈ {1, 2, ..., k}
...

...
...

...
...

...
n i ∈ {1, .., k, .., n} i ∈ {1, .., k, .., n} i ∈ {1, .., k, .., n} i ∈ {1, .., k, .., n} i ∈ {1, .., k, .., n}

Table 6.3: Flat table storing indexes of individuals of the e-Science life cycle activi-
ties.

LCR DS-P ONT-V GS DP TS TE RP
...

...
...

...
...

...
...

...
311 uibk 1.1 157 263 25 311 311
312 uibk 1.1 157 264 25 312 312
313 uibk 1.1 158 264 25 313 313

...
...

...
...

...
...

...
...

356 uibk 1.1 162 307 28 356 356
366 uibk 1.1 162 307 28 366 366

Table 6.4: Example flat table storing LCR indexes.

returned from querying the dataspace. However, in the case a single life cycle re-

source is selected or returned it is more appropriate to visualize it showing more

details and thus providing the scientists an easy way to learn about the scientific

study the life cycle resource is corresponding to. The e-Science Life Cycle Visualizer

visualizes single iterations of the e-Science life cycle. It receives a life cycle resource

and visualizes it, by illustrating the properties set in each life cycle activity. This also

includes metadata about the life cycle resource and the defined publication modes.

This tool represents an additional and optional tool, which is independent of the

core architecture. Anyhow, it represents a useful tool, which might be helpful, when

users want to get better insights into single life cycle resources during exploration

of the dataspace.

6.3.6 Dataspace Browser

The dataspace browser is a tool that allows the user to navigate trough the e-Science

life cycle resources available in the dataspace in a visual way. It is implemented as

a portlet for easy integration into a community portal. It submits requests to the

Query Processor. These requests are SPARQL queries attached with the role of
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the requesting user. The most important issues here is to consider the role of the

user, as based on it, the user will see more or less e-Science life cycle resources.

For instance the scientific dataspace may contain life cycle resources to which the

publication mode Researcher was assigned. Such life cycle resources should be only

accessible for the researcher who created the resource. Therefore, the request from

the Dataspace Browser will include the role of the user. The Query Interpreter

interprets this request, which means that the appropriate publication modes to

which the user has access are extracted from the user role. The Query Translator

then considers these publication modes in the SPARQL query that is submitted to

the RDF store. The response represents RDF-data and is used as input for the

dataspace browser.

There are a number of tools available that visualizes RDF data. Depending on

the scientific application needs, an appropriate tool can be integrated to the web

portal of the community the scientific dataspace is deployed to. Welkin [MC04]

has been used in one of our e-Science applications to provide a visual interface for

browsing the dataspace and in particular its life cycle resources. Figure 6.7 shows

the GUI of Welkin with a test dataset loaded. It currently visualizes real data from

the Breath Gas Analysis application (see Chapter 8.3).

The dataset loaded into Welkin consists in this example of three particular life

cycle resources, each representing individuals and properties of the e-Science life cy-

cle ontology from a concrete real breath gas analysis study. Such a dataset represent

a typical result set retrieved from querying the dataspace in the first iteration of the

search and query process. Scientists might use Welkin to further browse the results

set, until they found the resources they are interested in and therefore want to fur-

ther investigate by loading its primary, background, and derived data. Alternatively

they might explore the result set as a textual list. By double click on a node more

information about the resource is shown in the GUI as depicted in Figure 6.7.

6.4 Reference Implementation

A prototype of jSpace has been implemented and tested with small research groups

within our e-Science applications. More details about this applications are provided

in Chapter 8. Guidelines defining mandatory descriptions for experiments were

elaborated in cooperation with scientists from the applications. This prototype is

based on the Jena framework with MySQL databases to provide persistent RDF data

storage. We used the persistent ontology model provided in the Jena framework in

order to create and store LCRs according to the concepts defined in the e-Science
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Figure 6.7: The Welkin RDF Visualizer [MC04] visualizing three life cycle resources.

Life Cycle ontology. A dataspace client has a local copy of the ontology, which is

used by the RDF Store Connection Manager to create a local ontology model. This

model is then used to create new instances and properties according to the ontology.

In this prototype we have used the iRODS system as underlying data preservation

system to store datasets of conducted e-Science experiments. The iRODS Integrated

Rule-Oriented Data System [RMH+10] can be used as a data repository for storing

participants of the scientific dataspace. The main advantage of using iRODS as data

repository is that dataspace participants can be identified using an Uniform Resource

Identifier (URI). An URI is usually described as a string of characters used to identify

a name or a resource on the internet. It provides a simple and extensible means

for identifying a resource. This identification mechanism enables interaction with

representations of the resources over a network using specific protocols. Schemes

specifying a concrete syntax and associated protocols define each URI. The java URI

interface provides constructors for creating URI instances from their components or

by parsing their string forms, methods for accessing the various components of an
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instance, and methods for normalizing, resolving, and relativizing URI instances.

iRODS uses the URI schema to provide access to its files. In the following we

introduce iRODS EPRs. These are EPRs that point to dataspace participants stored

in a iRODS dataspace repository.

In iRODS each file that is managed within an iRODS server can be accessed

through its URI. Therefore the accessing user has to provide his username and

password, which is included in the iRODS URI to authenticate himself and to allow

iRODS to proof wether the requestor has the necessary access rights for the requested

dataset. The iRODS URI schema is described below.

irods : //username : password@host : port/path (6.2)

This is a good way to instantiate a file object, because the URI contains all the

necessary login information. Password can be included in the URI or (more safely)

sent separately. In our approach only the path will be saved within instances of the

e-Science life cycle ontology. Username and password are not available outside of the

dataspace support platform. A standard iRODS user is used within the platform to

communicate with the iRODS server. The other necessary information to construct

the iRODS URI such as host and port will be save locally within a properties file.

The iRODS EPR therefore is consolidated using the iRODS URI Schema. An

example of an iRODS URI is given below.

irods : //rods : rods@localhost : 1247/home/rods/tesfile (6.3)

Of course not the complete URI as shown above will be stored in the LCR, be-

cause then the iRODS user and password could be used to access other dataspace

participants to which the user has no access rights.

In the case a user wants to attach additional documents (e.g. publications)

to a LCRs, an iRODS EPR will be saved in the RDF tree of the corresponding

LCR. The publication is then considered as background dataspace participant. This

might be useful, when the acting scientist who accomplishes an experiment want to

attach multiple publications or even other not published documents such as technical

reports to the LCR.

During the implementation our focus was however put on the semantic markup

layer as illustrated in Figure 6.8. There are multiple data preservation systems that

provide efficient mechanisms to manage datasets and files. The jSpace architecture

is flexible to the usage of any underlying data preservation system. It therefore de-

pends on the application domain to choose an appropriate system for the dataspace
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Figure 6.8: Semantic markup and physical dataset layer of the scientific dataspace
support platform.

participants layer shown in Figure 6.8. Important criteria for the selection of such a

system is the ability to identify a specific dataset in the preservation system using a

kind of End Point Reference (EPR). In the iRODS this is realized using the iRODS

URI Schema, where all information needed to access a concrete dataset in an iRODS

server is defined.

The e-Science life cycle composer, a tool implemented in Java provides an easy

graphical user interface to researchers allowing to describe and publish scientific

experiments. It organizes text fields for pre-defined descriptions of scientific ex-

periments in five tabs according to their activity. For instance the TaskSelection

activity, shown in the e-Science Life Cycle Composer GUI in Figure 6.9, requires to

fill in a brief textual description and some corresponding keywords and to upload
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Figure 6.9: The e-Science life cycle composer GUI.

an archive file of the analytical methods being used in the experiment. The acting

research group in the example shown in Figure 6.9 mainly uses Matlab for their

calculations. A typical background dataset therefore is the collection of Matlab

functions used in an experiment compressed as zip archive. Once an experiment has

been finished, it can be published into the scientific dataspace by a single click on

the OK button of the GUI. The information entered is used to create a new LCR,

which then is saved in the corresponding RDF store. Connection details about local

and global RDF store as well as about the corresponding data preservation system

(is in this case settings of the server deploying iRODS) are stored in a configuration

file. Using the Jargon Java API the e-Science life cycle composer communicates with

the iRODS server, which is dedicated to host dataspace participants and stores the

uploaded datasets into the iRODS directory. Besides, a LCR is created and stored

in the local and global RDF store, depending on the publication mode set by the

user. The LCR is consolidated as instances and properties of the e-Science life cycle

ontology.

This prototype of jSpace implements the data warehouse alike approach in order

to provide efficient access to scientific experiments that were conducted at different

research centers. Figure 6.10 illustrates this approach, showing two scientific datas-

pace instances that are connected to a global centralized RDF store. Local stores
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Figure 6.10: Global centralized RDF store connecting two scientific dataspace in-
stances.

should guarantee high performance for scientists working on the local site. Scientific

studies being conducted at any research lab that participates in a dataspace envi-

ronment are stored in local stores as long as access should be limited to researchers

of the local organization. Once researchers want to share their experiments with

other external collaborators or make them public to the scientific community, its

corresponding LCRs will be stored in a central global store, which is shared with

other dataspace instances.

We simulate a second dataspace instance. The Connection Manager handles a

connection to a global and one to a local RDF store. Figure 6.11 illustrates one

global RDF store, where metadata of scientific experiments (LCR) that are public

to the community is stored. There are three scientific dataspace instances illus-

trated, each deployed for a specific research group, which might be geographically

distributed. Every dataspace instance has their own local RDF store to organize

metadata of experiments that should be available only for the local organization. A

Publication/Update Manager commits new LCRs to the global store. On the phys-

ical dataset layer each dataspace instance deploys at least a single iRODS Server,

where datasets used in an experiment are stored.

The jSpace Search and Query Panel is a tool that enables the user to submit

search and query requests to the scientific dataspace. The RDF store is queried,

which means that dataspace relationships are queried using this prototype. This is

the first iteration of the search and query process described earlier. In the second
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Figure 6.11: Local and global RDF store in a scientific dataspace environment.

iteration also the datasets of conducted experiments (dataspace participants) are

queried. The Search and Query Panel is implemented as Java GUI with three

tabs, the KEYWORD-tab, the SPARQL-tab, and the BROWSE-tab. A Screenshot

showing the SPARQL-tab is given in Figure 6.12.

It allows to submit SPARQL queries to either the local RDF store or a global

store if available. The local RDF store represents the RDF store of the local scientific

dataspace instance. Querying the global store means that the query is submitted

also to the other RDF stores from other dataspace instances that are participat-

ing in a large-scale scientific dataspace. This means that a large-scale scientific

dataspace consists of multiple local scientific dataspace instances and therefore re-

sult in a distributed collection of RDF stores. Since the structure and the layout

of all RDF stores is based on the same e-Science Life-Cycle Ontology, it can eas-

ily be queried using the adaptive distributed SPARQL query processor, SPARQL-

ADERIS [LKMT10a], which is integrated into jSpace. The integration of jSpace

and SPARQL-ADERIS, which results in a distributed semantic data infrastructure

is described earlier in this chapter. The Query results are integrated and shown to
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Figure 6.12: The jSpace Search and Query Panel showing the SPARQL-tab.

the user in the BROWSE-tab. The output format can be selected. Text, JSON,

RDF, and XML can be generated. Predefined SPARQL queries are available by

clicking on the buttons Q1 to Q8. The configuration of the local and global RDF

stores such as databases connections, etc. can be changed using the menu entry

under File/Config.

In the KEYWORD-tab the user simply types in one ore more keywords, selects

whether he wants to query the local or the global RDF store and the output format.

Optionally he can define a search filter (this in not yet fully implemented). By

clicking on the SUBMIT -button a SPARQL query with the keywords as FILTER

regex expression is generated and shown in the SPARQL-tab. The BROWSE-tab

currently simply shows the results of the query in the format chosen by the user.

6.5 Summary

Currently, three breath gas research teams from one of our driving e-Science appli-

cation produce at an average 48 breath gas experiments in three different studies in

a single week. The total size of a LCR of a typical breath gas experiment including

its primary, derived, and background datasets amounts to approximately 7 MB. The

average number of triples that correspond to a single LCR is 170 with an average size
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of 150 KB stored in Jena’s SDB triple layout. From this we can estimate the total

size of the scientific dataspace after six month with a single research lab involved to

roughly 8.7 GB with about 8160 triples in the local RDF store (approx. 50K triples

in three years). In regard to the Berlin SPARQL benchmark [BS09], which states

that the overall runtime for executing 50 query mixes on a 250K triples Jena SDB

test dataset is short above one minute, we can be confident that the presented so-

lution provides reasonable performance. Based on this high-level estimation jSpace

might need to scale up not before three years of deployment. However having mul-

tiple organizations or even various related e-Science application domains involved,

it might be much earlier.

Scalability can be achieved by interconnecting multiple dataspace instances,

which leads to a large-scale scientific data space infrastructure. Such a scenario

is discussed in Chapter 7.

The e-Science life cycle has been applied as relationship model for the scientific

dataspace. Jena SDB Version 1.3.1 with MySQL Version 5.0.67 as underlying rela-

tional DBMS is used to implement multiple local and one global RDF stores. For

the search and query interface we provided Joseki SPARQL Server Version 3.4 as

HTTP interface. A number of most important queries, such as {Get me all exper-

iments with VOC ‘keyword’}, and {Get me all experiments from researcher ‘name’

where specified goal includes ‘keyword’}, or {Get me all experiments with ANY key-

word equals ‘keyword’ and input dataset ‘datasetName’ is used} were predefined in

SPARQL to enable the breath gas researcher to easy interact with the SPARQL

query interface.

We are aware that we rely on active participation of members from the scientific

community in order to establish a large scale scientific dataspace for breath gas

analysis. Therefore we provide a simple interface that can easily be used by scientists

from diverse research domains, especially for non-computer scientists, which was a

major requirement from our driving application. However, we suspect that young-

researchers (Master and PhD students) will be the major user group of the e-Science

life cycle composer, while senior researcher will most likely interact with the system

in terms of submitting requests.

The jSpace architecture provided in this chapter is based on top of exiting li-

braries and software components such as the Jargon java API for storage and re-

trieval of dataspace participants within an iRODS server. Also, the java framework

for building semantic web applications, called Jena and the SPARQL-ADERIS li-

brary for adaptive distributed query processing on top of multiple RDF stores have

been integrated into the jSpace architecture. They all form in conjunction with the
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jSpace Java API the fundament of the scientific dataspace support platform on top

of which multiple application can be build. The main contribution in this context

therefore represents the jSpace Java API, that provides all needed methods to con-

struct semantic data about experiments, which hides from the scientists most of the

underlying complexity involved in the process. Within a reference implementation

we have utilized the jSpace API in the context of two implemented Java tools: (a)

the e-Science Life Cycle Composer to create and store scientific experiments into

the dataspace and (b) the jSpace Search&Query Panel to retrieve existing scientific

experiments from the dataspace.





Chapter 7

Realizing Large-Scale Scientific

Dataspaces

“What is needed is a data environment that supports multiple

domains, multiple disciplines and enables secure but verified access

to research data.”

Scientific Computing World, Issue 116, February/March 2011

Chris Molloy (VC for corporate development at IDBS)

7.1 Introduction

In many scientific applications we can find multiple databases that are interlinked

in some way. Scientists typically access a dataset, analyze it using some analytical

methods or scientific workflows and finally process and store their results locally.

However, many data-intensive e-Science applications face the issues of an inability

to integrate data across multiple domains and therefore a failure to get out the most

value of the large and increasing amount of data they are producing.

During our investigations we came to the conclusion that an appropriate solution

to this issue can either be a) to address and extend current data management systems

and develop methods to provide better interactions among each other by the means

of standard interfaces or, b) to start with the creation of semantically rich described

relationships among those existing databases. Since the first approach is likely to

be a long-term challenge that might result in a never-ending story, we have chosen

to investigate the latter approach. It can best be established if the complete life

cycle of data in e-Science applications is addressed. Therefore we started a bottom

up approach to develop a scientific dataspace paradigm.
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A typical small-scale research group, which is very common in the European and

the US research landscape has been introduced in Chapter 2 in Section 2.5. There,

we described the problems scientists face due to the lack of efficient scientific data

management mechanisms. It is hardly possible to re-run a scientific experiment after

the responsible scientists has left the research group, to recall the only one of the

described problems. Our response to that was described in the previous chapters

in detail. We have developed the e-Science life cycle ontology and on top of it the

scientific dataspace support platform to support members of a research group e.g. in

determining what data exists and where it resides. So far we have been considering

that the dataspace is deployed for a single research group. However, in this chapter

we introduce large-scale dataspaces, that is a collection of multiple interconnected

existing dataspace instances.

We provide a large-scale scientific dataspace architecture overview in Figure 7.1.

It illustrates a scenario with three geographically distributed dataspace instances
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Figure 7.1: Large-scale scientific dataspace architecture overview.
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at participating research groups. The research groups are collaborating in terms of

collaborative science, e.g. scientific studies are being exchanged, and conducted in

cooperation very frequently. At each research center an instance of the dataspace

support platform jSpace and its underlying infrastructure is deployed. It provides

local users who are employed at the corresponding research group to preserve seman-

tically enriched scientific studies including all related data (primary, background,

and derived data). This results in a distributed data environment for the research

community that is interested in the scientific studies conducted in multiple cooper-

ating research groups. The large-scale scientific dataspace is therefore consolidated

of multiple interconnected dataspace instances, each deployed for a single research

group. It can be accessed from a web portal or using the jSpace API from within

an application.

In this chapter we consider large distributed collections of scientific studies and

introduce capabilities of our scientific dataspace paradigm for above mentioned large-

scale purposes. This includes also the ability to support multiple research domains

and disciplines. We present large-scale scientific dataspaces as a semantic data

infrastructure that integrates multiple geographically distributed Resource Descrip-

tion Framework (RDF) [KC04] data stores supporting SPARQL [PS08, C+08] using

an adaptive distributed SPARQL query processor [LKMT10a, LKMT10b]. The se-

mantic data infrastructure represents a large-scale scientific dataspace with multiple

scientific dataspace instances connected.

The rest of this chapter is organized as follows. First we discuss in Section 7.2 how

scalability can be achieved in the scientific dataspace paradigm we presented. Then

we discuss in Section 7.3 the large-scale semantic data infrastructure implementing a

horizontal scalability approach, and in Section 7.4 we present a synthetic large-scale

dataspace that is generated to evaluate the scientific dataspace support platform.

In Section 7.6 we provide a performance evaluation and in Section 7.7 we briefly

discuss alternative solutions for distributed SPARQL query processing, which is a

core part of large-scale scientific dataspaces. Finally we conclude this chapter in

Section 7.8.

7.2 Scalability in Scientific Dataspaces

Vertical scalability in the scientific dataspace is the ability to increase the capacity

of an existing dataspace platform - for example, adding new storage power to an

existing RDF store to provide storage space for more LCRs or migrating to a server

with larger hard disk drives to provide storage space for more datasets from scientific
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studies. On the other hand, horizontal scalability is the ability to connect multiple

dataspace entities so that they work as a single logical unit, a large-scale dataspace.

Since vertical scalability is in this context not relevant our focus is on horizontal

scalability. Extending the storage space of an existing server can easily be applied if

necessary. In the following we address horizontal scalability issues for the scientific

dataspace.

As already mentioned earlier, we have considered in our scientific dataspace

paradigm databases or other data storage and preservation systems that host (a)

accessed datasets, (b) analytical methods or scientific workflows used, and (c) de-

rived results as dataspace participants interconnected by dataspace relationships.

On the one hand we consider on a lower level of abstraction the contents of this

databases itself as dataspace-participants, i.e. the final input datasetindexFinal in-

put dataset or a single analysis function (e.g. a Matlab-file) used within a specific

scientific experiment. On the other hand we consider on a higher abstraction level

complete dataspace instances as participants of a large-scale dataspace connecting

multiple dataspace instances that might be from different domains and disciplines.

Therefore, there are different levels of abstraction regarding the contents of the sci-

entific dataspace. They are illustrated in Figure 7.2 on top of a concrete example

from the breath gas analysis application domain. In the lowest abstraction level,

participants of the scientific dataspace represent concrete datasets that were used

within an experiment. They form together a Life Cycle Resource (LCR). In a par-

ticular real experiment from one of our e-Science applications deploying a scientific

dataspace, these participants are

(a) Pi1 - the final input datasetindexFinal input dataset (primary data),

(b) Pj1 - the analytical method e.g. as Matlab scripts and functions organized in

a Matlab-file (background data), and

(c) Pk1 - the resulted analysis report generated using e.g. Matlab’s publish func-

tion (derived data).

These participants are stored in corresponding databases, as depicted in Figure

7.2. The relationship among these participants is semantically rich described by

individuals and properties of the e-Science life cycle ontology.

On the next abstraction level the databases DB1, DB2, and DB3 represent par-

ticipants forming the scientific dataspace SDS1, which is an instance of a scientific

dataspace as was deployed as experimental framework for one scientific application

(see Chapter 8.3). On the top level we illustrate a large-scale dataspace, that arise
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Figure 7.2: Levels of abstraction of breath gas analysis dataspace participants.

when multiple dataspaces deployed for different organizations are interconnected

e.g. multiple breath gas analysis research institutions engage research collabora-

tions, each running their own breath gas dataspace. In this scenario the dataspaces

itself represent participants of the large-scale dataspace. Such scenarios require

scalability of the scientific dataspace paradigm, which is important when multiple

research organizations, each having deployed their own dataspace, engage collab-

orations and agree on sharing their scientific dataspaces and life cycle resources,
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respectively.

Horizontal scalability can therefore be achieved by interconnecting multiple datas-

pace instances, which leads to a large-scale scientific data space infrastructure. Con-

necting multiple scientific dataspace instances is twofold:

1. on the physical dataset layer, the storage solution that was selected by a

dataspace administrator at dataspace setup needs to be made accessible for

users of other dataspace instances and

2. on the semantic markup layer, which manages the semantic relationships

among dataspace participants multiple RDF stores needs to be integrated.

Security mechanisms to provide users of a dataspace instance access to datas-

pace participants of another dataspace instance are not addressed by this work. It

is rather outsourced and currently being developed within another research project.

Within the ABA-project [aba11], we are developing a framework for advanced breath

analysis that includes both, preservation and advanced execution of breath gas anal-

ysis studies on a multi-institutional level. The complete life cycle from calculation of

substances and concentrations in exhaled breath air up to the creation of manuscripts

is being addresses. Due to protection of data privacy, as patient data is involved in

the life cycle of a breath gas analysis study, all sensitive data will be stored locally

at the research center and access is restricted to users with adequate permission

rights. We therefore focus scalability issues on the semantic markup layer. In the

very common scenario where more than one dataspace instance is set up at multiple

research centers, which work together in terms of collaborative science, each center

hosts their own RDF store for storing their life cycle resources. This results in a

distributed RDF data environment.

There are two main approaches to handle the problem with multiple RDF stores.

1. Global centralized RDF store

2. Distributed RDF Storage

Both approaches are feasible with the architecture of jSpace described in Section

6.3. There might be use case scenarios and application domains where one approach

fits better due to scale of the dataspace infrastructure or legal issues of participating

institutions, etc. Also, a hybrid approach is plausible, for instance, when multiple

already deployed dataspaces of homogenous application domains will be merged

into a large-scale multi-disciplinary dataspace infrastructure. We discuss such a

scenario in Section 7.3.4. Approach 1 (having a global centralized RDF store) was
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already discussed in Chapter 6 along with the architecture of jSpace. It was also

implemented within a jSpace prototypical implementation described in Section 6.4.

In the following we briefly discuss the second approach (distributed RDF storage)

regarding the problem with addressing multiple RDF stores.

Distributed RDF Storage

This solution requires a middleware that supports federated SPARQL query process-

ing. Currently, concepts from traditional approaches of federated query processing

systems are adapted to provide integrated access to RDF data sources. Basic idea

is to query a mediator, which distributes subqueries to local RDF stores and in-

tegrates the results. Figure 7.3 illustrates this approach. It shows two dataspace

Middleware
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Figure 7.3: Middleware connecting two local RDF stores of two scientific dataspace
instances.

instances with their local RDF stores joined by an appropriate middleware that

supports distributed SPARQL query processing.

SPARQL-ADERIS [LKMT10b] is an approach based on distributed query pro-

cessing, where data from multiple repositories are used to construct partitioned

tables that are integrated using an adaptive query processing technique supporting

join reordering, which limits any reliance on statistics and meta-data about SPARQL

endpoints , as such information is often inaccurate or unavailable, but is required

by existing systems supporting federated SPARQL queries. SPARQL-ADERIS ex-

tends existing approaches in this area by allowing tables to be added to the query

plan while it is executing, and shows how an approach currently used within re-

lational query processing can be applied to distributed SPARQL query processing.
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SPARQL-ADERIS has been used to provide a semantic data infrastructure as dis-

cussed in Section 7.3. Other related works are described in Section 7.7 at the end

of this Chapter.

A SPARQL endpoint is a SPARQL protocol service as defined in the SPARQL

Protocol for RDF specification [PS08]. A SPARQL endpoint enables users to query

an RDF store via the SPARQL language. Results are typically returned in one or

more machine-processable formats. Therefore, a SPARQL endpoint is mostly con-

ceived as a machine-friendly interface towards an RDF store. Both the formulation

of the queries and the human-readable presentation of the results should typically

be implemented by the calling software, and not be done manually by human users

[sem09].

7.3 Semantic Data Infrastructure

Individual research centers often have a tendency to hold much of their data pri-

vately, however, where there is mutual benefit in doing so they may be motivated

towards exposing data using standard interfaces for example in the case of RDF, us-

ing the SPARQL query language [PS08] and protocol [C+08]. We have developed an

infrastructure to support a scenario in which dataspace instances are located at mul-

tiple research centers (approach 2 discussed in Section 7.2), which work together in

terms of collaborative science. In addition to functional requirements, other issues,

including quality of service and security, are considered as well. In such a scenario

each centre hosts their own RDF stores containing their experimental metadata,

which results in a distributed RDF data environment.

Scientists are not required to interact with RDF data directly, or be aware of the

details concerning how it is maintained and queried. The scientist utilizes jSpace

[EB10] to construct semantic data about experiments, which hides from the scientist

most of the underlying complexity involved in the process, such as working directly

with RDF or writing SPARQL queries. Therefore either the e-Science life cycle

composer can be used to collect information about a conducted scientific study or

forms integrated into an application’s portal, if available could be used as well.

In the latter case jSpace Java API is used to transform the collected information

into individuals and properties of the e-Science life cycle ontology. jSpace further

creates a life cycle resource and indexes it within the index server of the dataspace.

jSpace finally publishes the life cycle resource into the local RDF store. These steps

are hidden by jSpace. They are fulfilled for every scientific study that is being

inserted into the dataspace.
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7.3.1 Software Architecture Design Overview

There are many components that build the basis for the semantic data infrastructure,

e.g. it is necessary to include a distributed SPARQL query processor in order to

enable the system to access multiple RDF stores. In Figure 7.4 we show these

components as a layered architecture.
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Figure 7.4: Layered architecture of the scientific dataspace support platform.

Different user interfaces can be used to communicate with the infrastructure.

The e-Science Life Cycle Composer and the jSpace Search and Query Panel are

simple Java GUIs that we have described in the previous chapter. Protégé will

only be used by administrators for maintenance of the e-Science Life Cycle ontology

e.g. applying changes or upgrading to a newer version of the ontology. We use the

Jargon Java API to communicate with the iRODS preservation system for storing
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and retrieving dataspace participants and the Jena Java API to access a single RDF

store, which host the dataspace relationships. jSpace Java API is being used to

create a LCR according to the classes and properties defined by the e-Science life

cycle ontology. Finally, the SPARQL-ADERIS component is being used to access

multiple RDF stores.

From the UML sequence diagram shown in Figure 7.5 it can be seen that on

submission of a search request to the global large-scale scientific dataspace via the

jSpace Search and Query Panel, it first selects the Home-Platform and then forwards

it to the selected platform. We distinguish Home- and External Platforms. A Home-

Platform is the platform where the requesting scientist is assigned to, e.g. the

dataspace platform of the research group where the scientist is working. Therefore,

all other dataspace platforms are referred to as External-Platforms. The SPARQL

request is then decomposed in to sub-queries and send to the SPARQL-Endpoints

of all dataspace instances using the SPARQL-ADERIS component. The results are

further being integrated and returned to the requestor as RDF data.
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Figure 7.5: Sequence diagram showing the calls for submission of a search request.

Figure 7.6 shows on the left hand the components and their interaction of a

single dataspace instance. The boxes marked in color represent existing APIs and

systems that are used as part of the underlying infrastructure. On the right hand
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Figure 7.6: Overview of the components of a single dataspace instance.

we show a second scientific dataspace support platform in order to illustrate that

a large-scale scientific dataspace is consolidated of multiple local RDF stores and

iRODS servers.

The heart of jSpace is the component that preserves the life cycle resources.

It is named LCR Preserver . Figure 7.7 gives an overview of the component and

how it can be accessed. There are multiple interfaces to the LCR Preserver. This

component is also responsible for preserving the dataspace participants.

We provide multiple tools to search and query for life cycle resources; either

the jSpace Search&Query Panel, or a console, or Joseki ’s SPARQL Server Web-

Interface can be used. In the latter two only SPARQL queries are supported, whereas

using jSpace Search&Query Panel also keyword queries can be submitted. jSpace

translates given keywords into an adequate SPARQL representation using SPARQL

FILTER functions like regex to identify RDF literals. Different output formats such

as JSON, N3, or RDF can be selected, allowing the result set to be further processed

by a semantic web tool such as the Welkin RDF Visualizer presented in Section 6.3.6.

Depending on the user request the LCR Preserver queries the local or the global

RDF store. In this case global RDF store stands for the single logical unit that is

consolidated of the local RDF stores from multiple dataspace platform instances, as
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Figure 7.7: LCR Preserver and its interfaces addressing the semantic markup layer.

illustrated in Figure 7.6 in the colored dashed box. The global RDF store therefore is

represented as multiple RDF stores, each deployed on a different dataspace instance.

Therefore once the global RDF store is selected the LCR Preserver uses a distributed

SPARQL query processing component that is integrated into the jSpace API. As

previously mentioned, we used SPARQL-ADERIS to be this component within a

prototypical implementation. The prototypical implementation is described in Sec-

tion 7.3.3.

On the other side the LCR Preserver is used to store new generated life cycle

resources into the local and the global RDF store. Those newly created life cycle

resources from the e-Science life cycle composer are already equipped with an index

key that is uniquely identifying its instances of the e-Science life cycle activities. The

LCR preserver can take either an LCR object or an LCR XML file as an input. Both

represent the information about a scientific study needed to create individuals and

properties of the e-Science life cycle ontology, which is done by the LCR Preserver.
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7.3.2 Discussion

Depending on the preservation solution chosen by the research community the datas-

pace is deployed to, it communicates with the preservation system using standard

interfaces - for example in our prototypical implementation we use the iRODS system

for storing dataset of e-Science studies (as illustrated in Figure 7.7). Communication

with the iRODS Server is done using the Jargon iRODS client API. It basically could

also talk to a single DBMS, such as MySQL where dataspace participants are stored,

it could also be a collection of databases deployed using the OGSA-DAI solution for

distributed data access and management. In this case LCR Preserver would use the

OGSA-DAI Client toolkit [SHJ+04] to communicate with the data resources. How-

ever, the underlying data preservation solution for storing dataspace participants

is independent of the semantic layer meaning the preservation of semantically rich

described dataspace relationships preserved by the LCR Preserver.

7.3.3 Prototypical Implementation

In a prototype of the semantic data infrastructure , illustrated in Figure 7.8, we set

up three RDF repositories hosting real data of scientific experiments from one of our

two e-Science applications at three different locations and queried them using a dis-

tributed query processor, SPARQL-ADERIS [LKMT10a], that supports federated

SPARQL queries over multiple RDF data sources each of which are accessible via

the SPARQL query language and protocol. The distributed query processor decom-

poses federated queries into sub-queries that are sent to individual data resources,

the results of which are processed using relational database operators (joins, unions,

projections, etc.) to answer the federated query. The component requires limited

metadata (e.g. statistics) about the data contained in individual RDF repositories

as it is based on an adaptive approach that applies recent work on adaptive query

processing in relational database systems in an RDF context. Query processing is

done in an almost entirely adaptive fashion, joining data as it becomes available

and modifying join order based on monitoring information gathered at runtime.

We have chosen to use this component as its adaptive approach towards optimiza-

tion is beneficial in this application’s widely distributed, autonomous, service-based

environment, where repositories may behave unpredictably and are constantly up-

dated meaning that accurate statistics, which are required by static optimizers, are

unavailable. The global RDF store in this prototype is made up of the three local

RDF stores, that are accessible via an SPARQL Endpoint by the SPARQL-ADERIS

component.



7.3. Semantic Data Infrastructure 165

rdf
source NSPARQL

rdf
source 2SPARQL

rdf
source 1SPARQL

RESULTS

QUERY
RESULT

Parsing

Execute
source
queries

adaptive
integration

FEDERATED
SPARQL
QUERY

SPARQL-ADERIS

Dataspace
Participant

Dataspace
Participant

Relationship

Dataspace 1

Add participants
and create 

relationships

Query
participants/
relationships

Dataspace 2

Dataspace N

jSpace

KEYWORD 
QUERY

BREATH GAS 
ANALYSIS

EXPERIMENT

QUERY
RESULT

...

...

Figure 7.8: Integration of geographically distributed dataspace instances using dis-
tributed RDF query processing.

For this prototypical implementation we have used the LCR Preserver described

in Section 7.3 to communicate with an iRODS server using the Jargon Java API.

iRODS release 2.5 has been used to store basic dataset from e-Science experiments.

Figure 7.9 illustrates the use of the LCR Preserver for the physical dataset and the

semantic markup layer. It illustrates the three local RDF stores on the semantic

markup layer. Together they form the global RDF store that is queried by the

SPARQL-ADERIS component integrated into the e-Science Search&Query Panel.

On the physical dataset layer we used a single iRODS server to store all datasets

from the e-Science experiments applied. However, with the current release 2.5 of

the iRODS system it is also possible to connect multiple iRODS servers together.

The focus in this work was however on the semantic markup layer, as mentioned in

the introduction to this chapter.

In Appendix A we describe step by step how to set up and configure the dataspace-

based support platform presented in this work. We use the same configuration as

in the prototypical implementation presented above, meaning that we use iRODS

2.5 as underlying data preservation system for storing the dataspace participants

along with the SPARQL-ADERIS component for distributed access of multiple RDF

stores.
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Figure 7.9: LCR Preserver and e-Science Search&Query Panel extended for large-
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7.3.4 Multi-Disciplinary Scientific Dataspace

In this scenario we assume that each dataspace was already deployed for a specific

virtual organization where the acting scientists are feeding the dataspace continu-

ously with their regularly running experiments. The global centralized RDF store

approach was chosen to support exchange with a second virtual organization of the

same domain.

Many research groups in e-Science have collaborations among each other, espe-

cially in related research areas. For example, the breath gas analysis research group,

that has evaluated our scientific dataspace paradigm keeps regularly meetings with

a research group that is working on breath cancer research. The idea is to exchange

information and knowledge to enhance the change of discoveries in both fields. If we

assume that each research group has its own dataspace instance running and since

both research domains are related scientific fields, it might be the case that scientists

would like to share their scientific studies among each other. In particular, it might

be the case that a researcher from the breath gas analysis domain wants to share a

specific scientific study along with all participating datasets (primary, background,
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Figure 7.10: Large-scale scientific dataspace infrastructure [EB10].

and derived datasets) with his colleagues from the other related research field. Hav-

ing on both sites a dataspace instance, as we assume for this multi-disciplinary

example, it will be necessary to interconnect them in an efficient manner. This can

easily be realized without concerns on heterogeneity issues, since both dataspace

sites are based on top of the e-Science life cycle, that domain independently de-

scribes scientific studies. Their interconnection would lead to a multi-disciplinary

large-scale scientific dataspace among the breath gas analysis and the breath cancer

research domains, as illustrated in Figure 7.10.

In order to utilize this arising large-scale dataspace, it will be necessary to provide

a distributed RDF storage solution on top of global RDF stores. Because we have a

scenario where at least one site (breath gas analysis) has already multiple dataspace

instances interconnected using the approach with a single global RDF store. LCRs

that should be exchanged among different research teams are published into this

global RDF store. In the example shown in Figure 7.10 the breath cancer research

group has a single dataspace instance with a local and a global RDF store and the

breath gas analysis domain has two dataspace instances connected with a single RDF

store. In this scenario, we have set up both global RDF stores as SPARQL Endpoint

and query them using the SPARQL-ADERIS distributed SPARQL query processing

component, that is integrated in jSpace. We thus have a hybrid approach (merging

a dataspace of the global centralized RDF store approach with the distributed RDF

Storage approach) as was introduced in Section 7.2.
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Total number of triples 569 822 1,020 1,413 10,242 98,891 467,047
Number of LCRs 1 3 6 60 300 600 3,000
Number of activities 5 15 30 300 1,500 3,000 15,000
Number of metadata indi-
viduals

11 33 66 660 3,300 6,600 33,000

Number of scientists 3 9 18 180 1,200 2,400 12,000
Number of participants
(primary, background,
and derived)

5 15 30 300 1500 3,000 15,000

Number of EPRs 3 9 18 180 1,200 2,400 12,000
Total number of indi-
viduals

34,200 171,000

Table 7.1: Number of individuals in the synthetic LCR datasets of different sizes.

7.4 A Synthetic Large-Scale Dataspace

In order to test scalability we generated a synthetic large-scale dataspace on the

semantic markup layer. During the Austrian Grid project we collected semantic

information about a small number of different scientific studies in the breath gas

analysis application. This information was used to manually generate some real

LCRs using Protégé [Sta10] to test the e-Science life cycle ontology and the dataspace

paradigm. A concrete LCRs from the above mentioned real e-Science application

is described in detail within Appendix B. However, in order to evaluate scalability

and performance of the large-scale dataspace approach presented in this chapter we

generated a large amount synthetic LCRs. We used the real LCRs from the breath

gas analysis application (see Chapter 8.3) as templates for generating synthetic

LCRs. Therefore some contents, especially literals might be duplicated. These real

LCRs typically have 3 End Point References (EPRs) that point to a dataset stored

in the iRODS server set up for our experimental evaluation. We generated seven

different datasets containing from a single LCR with 569 triples up to 3,000 LCRs

with 467,047 triples in total. Table 7.6 provides some meta information such as the

number of various individuals and total number of triples and individuals about the

LCR datasets generated. If we assume that the average size of a primary participant

is around 10 MB1, that an average background participant size is around 3 MB, and

that an average derived dataset again is around 10 MB in size, then the scientific

dataspace will have a total size of approx. 105,5 GB2 with 3,000 LCR.

1This is a realistic average file size according to researchers from the breath gas analysis appli-
cation

2The dataset with 3,000 LCRs generated contains 3,000 individuals of primary participants and
6,000 individuals of derived participants and 6,000 individuals of background participants. Thus
3,000*10 MB + 6,000*10 MB + 6,000* 3 MB result in 108,000 MB.
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7.5 Towards Cloud-Enabled Dataspaces

Recently ensembles of distributed, heterogeneous resources, or clouds, have emerged

as popular platforms for deploying large-scale and resource-intensive applications.

After grid computing [FKT01b], cloud computing [BBG11, AFG+09] has recently

emerged as the paradigm for the next generation of large-scale scientific computing

and data management with the main advantage in eliminating the need for hosting

expensive hardware.

Some attempts to tackle the problems have been made by applying grid comput-

ing. However, grid research promised but not delivered fast, interoperable, scalable,

resilient, and available systems. Grids have been used mainly in research envi-

ronment; grids have not been accepted by business and industry [FA11]. Cloud

computing is definitely the latest trend in computing technology. It represents a

style of computing, strongly supported by major vendors and many IT service con-

sumers, in which massively scalable high throughput/performance IT-related ser-

vices are provided from the internet to multiple customers on demand [FA11]. This

means that computing is done in a remote unknown location (out in the internet

clouds) rather than on a local desktop. Cloud computing brings together distributed

computing concepts and development outcomes, and business models. Many data

center providers such as Google, Amazon, IBM, Microsoft, Salesforce had begun to

establish data centers for hosting their applications in different locations to accord

redundancy, reliability [BYV+09]. The infrastructures based on cloud computing

concepts, enable conducting scientific as well as business studies and use of tasks

addressing large-scale data management . A cloud exploits the concepts of services

and Service Oriented Architectures (SOA), virtualization, and web technology and

standards. Virtual Machines (VMs) are provided to the user as a service like the

Amazon Elastic Cloud Compute (EC2) [Inc08a].

An approach towards cloud computing for e-Science is introduced in [WLG+08].

There an e-Science Cloud (Figure 7.11) is introduced, as a cloud offering core cloud

services at the bottom layer followed by core e-Science cloud services such as work-

flow, data management, service management, etc. in the middle layer and on top of

it domain specific services.

Core services of the dataspace (e.g. Search Study, Create Study) can be seen

as an extension of the e-Science cloud introduced in [WLG+08]. In the following

we discuss briefly the concepts of a cloud-enabled scientific dataspace, which we

name dataspace cloud. However, this work has not been implemented as part of

this thesis, it is rather an outline of what we target to investigate within our planed
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There are limits to what can be achieved with Cloud Computing; highly interactive 
tasks requiring graphically rich interfaces may not work well as web applications. As 
will be seen, CARMEN utilises one such application - the Signal Data Explorer [2]– 
that is deployed on the users’ desktop, and so the project is taking the liberal approach 
of using web-based services where possible, but supporting desktop services where 
necessary. 

The Cloud computing approach was attractive for meeting the CARMEN require-
ments largely because of the significant amount of data that will be stored and ana-
lysed by scientists. Current estimates put this in excess of 100TB by 2010 for the 20 
neuroscientists involved in the project, though if video capture of neuronal activity 
continues to supersede electrode-based recording this may be a serious underestimate. 
Where there are huge amounts of data to be processed, it is more efficient to move the 
computation to the data rather than the other way around [3]. This requires having 
computational resources closely coupled to the servers holding the data. Cloud com-
puting offers the chance to do this if the cloud is internally engineered with fast net-
working between the storage and compute servers. 

 

 
Figure 1. An e-Science Cloud 

Figure 7.11: An e-Science cloud [WLG+08].

future works.

The Scientific Dataspace Cloud

In order to cloud-enable our scientific dataspace platform we need to establish the

dataspace components described in the previous section on a data cloud. Data access

services should be consequently mapped to the activities defined by the e-Science

life cycle model. However, the first step towards a cloud-enabled dataspace support

platform would be to follow the Software as a Service (SaaS) approach. A SaaS

platform is formed by integrating an operating system, middleware, development

environment, and application software, and encapsulated such that is provided to

clients as a service [FA11]. jSpace belongs to the category of SaaS clouds. This

implies that the dataspace features provided by the means of methods in the jSpace

Java API in conjunction with a variety of third-party Java APIs and applications,

need to be exposed as services. Furthermore it will be necessary to package the com-

ponents of the scientific dataspace support platform on a VM and more importantly

to provide a service oriented interface for client-server communication.

Figure 7.12 provides an overview of the scientific dataspace cloud. We distinguish
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a Dataspace-Relationship Cloud and a Dataspace-Participants Cloud. The first rep-

resents an RDF-Store where individuals and properties of the e-Science Life Cycle

ontology are persistently stored in terms of LCRs and the latter one basically stores

the datasets that correspond to a LCR. Key services are the dataspace services as

illustrated in the figure. This group of services include services for creation, search,

load, execution, management and publication of scientific studies. These dataspace
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Figure 7.12: The scientific dataspace cloud.

services are briefly described in the following.

• Search Study - the Search Study Service is used to search for available studies

in the dataspace. The search request has to consider available access rights

of the user who submits the search request. A query is submitted to the

Dataspace-Relationship Cloud, retrieving metadata about studies that match

the query.

• Load study - once a study has been found and selected for further investiga-

tions, it can be loaded from the dataspace into the user interface (portal or a
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problem solving environment). An option could be to select which data (pri-

mary, background, and derived) should also be loaded besides the metadata

of the study. This service retrieves all corresponding datasets that belong to

a specific study from the Dataspace-Participants Cloud.

• Create study - this will create an empty template/structure of a study. It helps

to keep the structure of a study among the research community to which the

dataspace-cloud belongs.

• Execute study - once a study is ready for execution, it can be executed using

execution services on either a single computer, or a high-performance cluster

(this might be provided as compute cloud services, this is not illustrated in

Figure 7.12) depending on the user requirements.

• Publish study - this service allows to publish the study into the dataspace

cloud, thus it will be available for the long term. Registered users who have

access rights for the study will be able to search for it as well as to load it.

• Create report - a brief report of a single/multiple studies can be generated.

The contents of the report need to be elaborated with a domain expert.

They above described dataspace services address the full life cycle of a study by

applying the e-Science life cycle model. They map the e-Science life cycle activities

to activities a scientists in doing while conducting a study.

Besides the dataspace services we also need to address user management services

and standard data access services. Standard data access services are needed to

provided the scientists access to the datasources he or she might be interested in.

We call such a data source an external datasource, since it is outside of the dataspace

cloud.

The scientific dataspace cloud will be utilized in conjunction with a problem

solving environment, where scientists conduct their studies on a regular basis. The

preservation of the conducted studies and their publication into the dataspace cloud

has to happen on the fly with out the need to to interact with RDF data directly,

or be aware of the details concerning how it is maintained and queried. Dataspace

services construct semantic data about scientific studies and organize their persistent

storage in the dataspace cloud (that is the dataspace-relationship and dataspace-

participants cloud). However, additionally scientific studies can be searched and

published into the dataspace cloud from a web portal, which usually is set up for a

specific scientific community to share existing knowledge and data. Once, dataspace

functions are implemented as services they can easily be called from a web portal.
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In Figure 7.13 we illustrate a concrete example of a typical breath gas analy-

sis study using the Matlab problem solving environment in conjunction with the

scientific dataspace cloud. The example shows Matlab files that are being created

and executed by the breath gas scientist and the dataspace services that are called

from within Matlab for two basic user cased: (a) publish study (this includes create

study) and search study.

Scientific Dataspace
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Front-end

Middle Tier
Application Logic

Dataspace Tier
Back-end

BGA 
DB

MATLAB

1. create study

studyDescription.m
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loadData.m
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    & execute Study

executeStudy.m

anyAnalysisFunction.m

4. plot results

plotData.m

anyPlotFunction.m

Publish Study
Service

5. publish

dsPublish.m

HTML ReportHTML ReportHTML Report

PUBLISH STUDY

6. search study

Search Study
KEYWORD

DS-Services

Data Access 
Service

External Database
hosting Breath Gas Analysis 

Raw Data

Primary 
Datasets

Derived 
Datasets

Background
Datasets

Dataspace-Participants 
Cloud

Dataspace-Relationships 
Cloud

RDF

LCR-1

RDF

LCR-2RDF

LCR-n

Figure 7.13: Matlab-dataspace cloud example.

The example depicted in Figure 7.13 illustrates the three tiers, their components

and interactions. Dataspace services implement the functionality needed in order
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to (1) publish data belonging to a scientific study into the corresponding datas-

pace clouds, (2) create, maintain and semantically enrich relationships among those

participants, and (3) search and query the scientific resources based on semantic

web technologies as described earlier in this work in the Chapters 5 and 6 respec-

tively. On the client tier a Matlab client is interacting with the dataspace services.

Breath gas researchers are mainly using Matlab for their experimentations. In most

scenarios, the researcher first loads all values of a the dataset he or she is inves-

tigating into the Matlab structure. This is done using an implemented data load

Matlab-function (loadData.m). Then the breath gas researcher selects the values he

is interested in for the current experiment, e.g. selection of all ex-smokers. The out-

puts of this selection process, which is done within Matlab are twofold: (1) A new

Matlab MAT-structure containing the selected data. This represents the final input

datasetindexFinal input dataset and is therefore stored as primary dataset in the

Dataspace-Participants Cloud. (2) The Matlab function itself (selectData.m), which

is responsible to select the required data. This M-file represents the background data

and is therefore saved as background dataset.

Several analysis functions might be implemented by the breath gas researcher and

applied to the final input dataset. Such Matlab functions also represent background

data, thus are saved correspondingly. For easier handling an empty Matlab file

named executeStudy.m is provided, which will be used in all experiments. The

breath gas researcher may add their own implementations into it or import external

analysis functions. These functions calculate the derived data, which are usually

input to a plot function. Again, an empty template (plotData.m) is prepared to be

used by the researcher. Finally, we provide a publish function (dsPublish.m), which

generates an XML report of the conducted study including plots, if used, by taking

advantage of Matlabs publishing feature. This report is saved as derived dataset

into the corresponding dataspace cloud. Such guidelines defining concrete activities

and documentation policies, which guide users through the e-Science live cycle are

crucial for an successful deployment of the dataspace cloud.

7.6 Performance Evaluation

Local and global RDF stores are tested with the above described LCR datasets.

The local RDF store is implemented as MySQL database with the Jena SDB triple

layout. The seven LCR datasets of Table were loaded into the RDF store using

Jena’s Persistent Ontology Model implemented in jSpace as described in Section

6.4. For the global RDF store each LCR dataset was set up as SPARQL Endpoint
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LCR
dataset
no.

DB
size
(MB)

Ontology source File size

1 0.5 http://www.gridminer.org/e-sciencelifecycle/lco-1LCR.owl 43 KB
2 0.65 http://www.gridminer.org/e-sciencelifecycle/lco-3LCR.owl 77 KB
3 0.8 http://www.gridminer.org/e-sciencelifecycle/lco-6LCR.owl 107 KB
4 1 http://www.gridminer.org/e-sciencelifecycle/lco-60LCR.owl 191 KB
5 6.8 http://www.gridminer.org/e-sciencelifecycle/lco-300LCR.owl 1.6 MB
6 57,1 http://www.gridminer.org/e-sciencelifecycle/lco-600LCR.owl 16,5 MB
7 273,7 http://www.gridminer.org/e-sciencelifecycle/lco-3000LCR.owl 82,5 MB

Table 7.2: LCR datasets file and database sizes.

to be accessible through the Joseki SPARQL Server. File and database sizes of the

LCR datasets and the URIs of their corresponding ontology source files are listed in

Table 7.2. Ontology source files are mapped to a locally available duplicate of the

file in order to provide better performance.

To improve the load time performance for the global RDF store we transformed

the OWL files into the N-Triple format, which is not smaller in size in comparison to

the OWL file format, but can be processed faster by the Joseki SPARQL server due

to its structure. The bar graph shown in Figure 7.14 shows load times of the LCR

datasets 1 to 5 of the local and the global RDF store. For a better interpretation of

the bar graph we put the load time of the last two LCR datasets (6 and 7) into a

separate diagram (see Figure 7.15).

Figure 7.14: LCR dataset (1-5) load times of the local and global RDF store.
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Figure 7.15: LCR dataset (6,7) load times of the local and global RDF store.

Load times of the local RDF store are much longer due to the MySQL database

back-end, whereas the SPARQL Endpoint set up for the global RDF store work

directly with the N-Triple files. The global RDF store is distributed across three

sites. On each site the LCR dataset was loaded. Query answering is made up of

query execution and result formatting. Both response times (query execution and

result formatting) for the LCR dataset number 5 having 300 synthetic LCRs on

the local RDF store is shown in the bar graph in Figure 7.16 and in Figure 7.17

for the global RDF store, respectively. The test queries are listed in Appendix A,

where we provide a hands-on tutorial setting up the dataspace support platform and

performing some sample LCR and queries.

We can interpret from the response times of both RDF stores plotted in the above

two bar graphs that the query execution time on the global RDF store is approx.

80% less than in the local RDF store. This is mainly due to the MySQL database

backend used by the local RDF store. However, there is a time consuming load

time in preface to the query execution, where information about the distributed

SPARQL Endpoints is gathered before the actual query can be performed. This

process accounts for 85% at an average of the query execution time. Thus, we can
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Figure 7.16: Response times of query answering in the local RDF store with the
LCR dataset number 5 (300 synthetic LCRs).

Figure 7.17: Response times of query answering in the global RDF store with the
LCR dataset number 5 (300 synthetic LCRs).

say that the local RDF store provides better performance regarding an average size

LCR dataset. This was actually the intention as we mentioned in Section 7.2 that

local RDF stores should guarantee high performance for the local site. However, the

performance provided by the global RDF store is also at a reasonable level.

Regarding larger datasets we identified that total response times of the global

RDF store rises constantly still providing reasonable response times (approx. 5

seconds with the largest LCR dataset having in total 467,047 triples and 3,000

LCRs), whereas the local RDF store needs up to 16 seconds. This mainly depends
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on the size of the result set the query retrieves, since the result formatting is a time

consuming task with large number of triples returned. Figure 7.18 shows the graph

representing response times of all LCR datasets.

Figure 7.18: Total response times of query answering in the local and global RDF
store.

7.7 Alternative Solutions for Distributed SPARQL

Query Processing

In this section we briefly discuss alternative solutions for distributed SPARQL query

processing. In particular, DARQ [QL08], SemWIQ [L+08], SPARQL-DQP [AAC11],

and DAI-RDF [KK09].

The DARQ engine [QL08] is an extension of the Jena-embedded query engine

ARQ to support federated SPARQL queries. It requires attaching a configuration file

to the SPARQL query, with information about the SPARQL endpoint , vocabulary

and statistics. DARQ applies logical and physical optimizations, focused on using

rules for rewriting the original query planning (so as to merge basic graph patterns

as soon as possible) and moving value constrains into subqueries to reduce the size of

intermediate results. Unfortunately DARQ is no longer maintained. Since DARQ

uses predicates to decide where to send triple patterns, no ?s ?p ?o queries are

supported. Some other limitations and known issues include that joins using blank
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nodes and GRAPH and DESCRIBE is not supported. Also query optimization will not

support many endpoints or triples.

Very similar to the DARQ approach the SemWIQ [L+08] system also contains a

mediator service that distributes the execution of SPARQL queries. Heterogeneous

data sources (available as CSV files, RDF datasets or related databases) are accessed

by a mediator through wrappers. Queries are expressed in SPARQL and consider

OWL as the vocabulary for the RDF data. SemWIQ uses the Jena’s SPARQL

processor ARQ to generate query plans and it applies its own optimizers. These

optimizers mainly consist in rules to move down filters or unary operations in the

query plan, together with join reordering based on the application of an iterative

dynamic programming algorithm. The system has a registry catalog that indicates

where the sources to be queried are and the vocabulary to be used is.

SPARQL-DQP [AAC11] is another approach that uses relational database DQP

techniques and SQL optimization techniques to generate and optimize query plans

to be executed against RDF datasets available as SPARQL endpoints . It is based on

the transformation of a subset of SPARQL queries into their equivalent SQL queries,

the extension of an existing relational database DQP system, named OGSA-DQP

[LMC+09] to generate optimization query plans across distributed RDF datasets,

and the use of the OGSA-DAI [AHH+07] framework for the robust execution of

those queries and for managing direct and indirect access to datasets following the

WS-DAI recommendation [AKP+06].

DAI-RDF [KK09] is a service-based RDF database middleware suite, which ex-

tends the OGSA-DAI middleware to support RDF data processing activities includ-

ing SPARQL query language, ontological primitives, and reasoning functions. It

basically adds a set of activities to the OGSA-DAI activity framework allowing to

combine DAI-RDF activities with any existing OGSA-DAI activity, such as data

compression, data conversion, and data transfer activities. DAI-RDF activities are

categorized into four main groups, 1) SPARQL Activity, 2) Reasoning Activity, 3)

Graph Management, and 4) Ontology Handling Activities. According to the perfor-

mance results in [KK09] the middleware suite provides reasonable performance for

constructing distributed RDF applications.
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7.8 Summary

This work represents an important contribution for research communities that want

to offer participating individuals access to semantically rich described scientific stud-

ies on a multi-institutional level. Beyond this, the experimental environment cur-

rently implemented has allowed us to investigate the scientific dataspace paradigm

introduced in the previous chapters using data provided by breath gas analysis re-

searchers. It is based on top of multiple geographically distributed data sources,

taking advantage of a distributed SPARQL query processing component. This com-

ponent integrates data from sources that support the SPARQL protocol, however

an alternative exists in the form of the Open Grid Forum (OGF) Data Access and

Integration Service (DAIS) Working Group’s specifications for accessing RDF data

resources [EGKMP+09], also supporting the SPARQL query language but offering

a potentially more flexible set of interfaces. The application we have presented pro-

vides a scenario in which we can evaluate the use of these interfaces in a practical

setting, in particular to learn lessons about how best to achieve the efficient and

scalable distributed data integration that the application requires. We believe that

the e-Science life cycle ontology, utilized in the context of a scientific dataspace

in conjunction with the tools we have described, will provide a valuable means by

which scientists from diverse e-Science applications can disseminate the results of

their experiments within their community.

The performance analysis presented allowed us to evaluate the architecture on

top of a synthetic large-scale scientific dataspace. However, since the synthetic LCRs

within the dataspace are based on several real world scientific studies from our two

e-Science applications, we believe that it represents realistic numbers regarding the

performance and scale of involved datasets. Within the next chapter we introduce

these two reals world e-Science applications and describe the ongoing utilization of

their dataspace instances. Due to the early stage of deployment and the lack of a

large amount of life cycle resources in both application domains it is however hard to

provide significant numbers and bar graphs about their performance and scalability.

This was actually our motivation to apply an evaluation regarding scalability and

performance on a synthetic large-scale dataspace, as presented in this chapter.





Part III

Evaluation and Conclusions





Chapter 8

Experimental Evaluation in

e-Science Applications

“In our data-centric world, the typical lifecycle of an investigation

starts with the discovery of resources, followed by their acquisition.

The actual conduct of the work comes next, in collaboration with

project members, followed by the publication of resulting papers,

data and methods - all of which then benefit from curation.”

In: Realising the power of data-intensive research (Draft 1.1),

September 2010 by

Malcolm Atkinson and David De Roure

8.1 Introduction

The dataspace support platform presented in this thesis contributes to the devel-

opment of methodologies and associated informatics to support preservation of the

complete life cycle of scientific studies including their primary, background, and de-

rived datasets. Within this chapter we present an experimental evaluation in two

different e-Science applications including a performance evaluation of jSpace. The

e-Science applications are in particular

1. Non-Invasive Health Parameter Prediction based on Traditional Chinese

Medicine, and

2. Breath-Gas Analysis for Molecular-Oriented Detection of Minimal Diseases.

In the latter application the dataspace platform will be further developed within

a new granted three years application driven research project [aba11]. We expect
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that in this application the corresponding dataspace will evolve to a large scale

and semantically rich space of breath research related scientific data within the

ongoing decade. Unfortunately, in the first application there is no funding to further

provide maintenance and administration of the dataspace. However, we were able to

elaborate and evaluate the dataspace paradigm in an early stage of development. We

have learned many lessons and received valuable feedback from this first application,

which was an important input for the second application.

First we introduce both e-Science applications providing some background infor-

mation on each application domain and exemplify for each application a concrete

scientific experiment and its mapping to an e-Science life cycle resource in jSpace.

8.2 Non-Invasive Health Parameter Prediction

based on Traditional Chinese Medicine

According to the basic TCM theory, the human body has 14 acupuncture merid-

ians, which are a secret to our biological and medical knowledge. Within the China-

Austria Data Grid (CADGrid) project [cad11] investigations on how high-tech mea-

surement and its technologies can support the exact estimation of the meridian sta-

tus are observed. Therefore an e-Infrastructure supporting computation and data

management services as well as access to meridian measurement databases is set

up among participating research institutions in China and Austria. The analytical

techniques used (electro signal and subcutaneous impedance measurement) have col-

lected huge amounts of data referred to as meridian measurement data, which again

as a result of followed data analysis, have produced a large number of derived data

products. In order to use this large amount of valuable information, it was necessary

to make available a space of data with semantically rich relationships accessible for

other research groups targeting different research areas.

The CADGrid infrastructure provides an Intelligence Base offering commonly

used models and algorithms as WS-I and WSRF-compliant services as well as com-

pute and storage resources. It is equipped with WEEP [JKB08], a workflow engine

allowing researchers to execute a number of pre-selected services in a controlled and

efficient way.

An e-Health service aiming in the treatment of diabetic patients was the first

output of commonly achieved research results within the scientific collaboration.

This service, called the Non-Invasive Blood Glucose Measurement Service, in short
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NIGM-Service, was the first application on top of the CADGrid infrastructure. Non-

Invasive Blood Glucose Measurement (NIGM) [EHL+08] represents a new method

by measuring electro-signals in human body meridians to get blood glucose values

without injuring the fingers or any other part of the body. It is a real non invasive

method at all and it covers also other measurements which are necessary in internal

medicine.

The NIGM workflow is described more precisely in the following Sections, as it

represents the basic experiment for the creation of semantically rich relationships

among dataspace participants in this application. A real NIGM study is used in

order to exemplify the e-Science life cycle.

8.2.1 NIGM Use Case Scenarios

The NIGM application measures human blood glucose values accurately and con-

veniently by the use of a special medical meridian measurement instrument and

the CADGrid infrastructure. The data obtained by this instrument is referred to

as meridian measurement data and can be analyzed by the meridian electro infor-

mation transmission model to derive human blood glucose values. This model is

implemented as a complex grid-based computing process that executes a number of

compute intensive algorithms. The controlled execution of this process is done by

the Non-Invasive Blood Glucose Measurement Service (NIGM-Service) [BEH+08].

The method is based on the meridian-theory. Each of these longitudinally dis-

tributed lines on our human body has its main points called source points, totally

24 [ZJLL04].

The electro signal measurement instrument sends an electric signal (white noise)

into one meridian source point and measures the corresponding signal output at

another source point either on the same meridian or on another meridian.

The NIGM-Service covers the process of computing patients glucose values from

these meridian measurements. The service consists of the execution of several algo-

rithms, each one available as a standalone CADGrid service within the CADGrid

Intelligence Base. Using the workflow engine WEEP [JKB08], a predefined workflow

representing the NIGM workflow is deployed and available as one service within the

CADGrid Intelligence Base. Figure 8.1 illustrates the NIGM-workflow.

It presents a novel non-invasive method for accurate estimation of blood glucose

values based on electro-transformation measures in human body meridians. The

method has two main benefits, by splitting the process of vital parameter estimation

into an evolvable, personalized data mining process and a rather simple source signal
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Figure 8.1: The Non-Invasive Glucose Measurement Service (NIGM-Service).

emitting and recording phase: first, the infrastructure can easily be applied to other

target values and second, improvements to the involved data mining services and

process will directly result in a more precise and robust estimation of the values.

8.2.2 NIGM Dataspace Participants

Table 8.1 lists all datasets that are involved in a typical NIGM study as described

above. These datasets are considered as dataspace participants and thus are repli-

cated within the data preservation system iRODS. Table 8.1 also gives information

about the sizes and types of the datasets and provides a brief description of its

content. Each dataset is interlinked with the LCR, in particular with the corre-

sponding activity of the LCR. The interlinking is done using the EPR-Framework,

which provides an unique reference to a dataset stored in the iRODS Server.

The input dataset (fids.zip) of a typical NIGM experiment consist of input value

pairs representing meridian measurements from a specific patient. The size of such

an input dataset depends on the number of measurements taken from the patines.

One meridian measurement generates around 1000 to 10000 value pairs. Typically

for each patient 50 meridian measurements and equally many measures are applied

using the conventional invasive blood glucose method. The resulting typical size

of the input dataset is approx. 10MB on average. The NIGM workflow instance
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Dataset Type Size (kb) Description

fids.zip primary 10240 This represents the final in-
put datasetindexFinal input
dataset for a typical NIGM
study. It is

NIGM.gwa background 1024 NIGM workflow instance
used within this study

PMMLmodel.xml derived 2048 Patient specific model is
used to predict blood glu-
cose value for the considered
particular patient.

Table 8.1: Dataspace participants in a typical NIGM study.

(NIGM.gwa) being used within the study is saved as background dataspace par-

ticipant. Since the algorithms are continuously being improved, we preserve the

version that was used within a specific study. The NIGM workflow is described

in WS-BPEL (Web Services Business Process Execution Language) [Org07] and its

size is less than 1MB. The final result of the whole workflow represents the initial

model set up for predicting blood glucose values. In particular the NIGM workflow

builds an individual health model for each considered person. This model is pa-

tient specific and has the form of a neural network, which is stored in a PMML file

(PMMLmodel.zip) and typically not larger that 2MB on average.

8.2.3 NIGM Example Life Cycle Resource

In the following we exemplify a LCR based on a real NIGM study. In particular we

show the Goal Specification activity of the e-Science life cycle. Figure 8.2 illustrates

a graphical representation of the RDF tree regarding that activity. We describe

what information is recorded as individuals and properties of the e-Science life cycle

ontology in terms of a concrete NIGM study.

The green rectangles in the figure represent the values of datatype properties

defined in the e-Science life cycle ontology. The dashed lines represent the datatype

properties. The rounded white rectangles represent individuals of the OWL classes

defined in the ontology. Solid lines are representing object properties. We can see

from the figure that there is one domain specific attribute defined, which has as name

“Meridian-Name” and corresponding value is “HE GU”. Since this information is

too specific, we decided to include it as a domain specific attribute. Also three key

words are defined, which support discovery of the LCR.
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Figure 8.2: Goal specification activity of an example NIGM LCR.

Other activities of the LCR include descriptions of the input dataset and pro-

vide related background information on the NIGM study as described above. This
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Individual axiom Count (single LCR)

ClassAssertions axioms 28
ObjectPropertyAssertion axioms 37
DataPropertyAssertion axioms 76

Table 8.2: Individual axiom counts of the NIGM LCR.

includes information about the algorithms used in the NIGM workflow as well as on

the resulted neural network model. Table 8.2 provides counts of individual axioms

for the LCR of the above described NIGM example.

8.3 Breath Gas Analysis for Molecular-Oriented

Detection of Minimal Diseases

Breath gas analysis (BGA) is an emerging new scientific field with a large scientific

community spread all over the world and with a promising significant impact on

many application domains. Recent results suggest that early detection of different

kinds of cancer is possible by means of breath gas analysis far beyond the scope of

available diagnostic methods. There is strong evidence that specific kinds of cancers

can be detected using the concentration pattern of volatile compounds in exhaled

air [PCC+03, Rob05].

The growing international community of gas researchers is addressing many dif-

ferent studies of exhaled breath including sources of endogenously-derived gases,

such as skin, urine, faeces and flatulence. They are continuously developing new

analytical methods, collecting pilot data for cancer and other diseases and iden-

tifying marker compounds. Breath gas researcher are investigating and screening

for hundreds of compounds in the exhaled breath. The analytical instruments and

techniques used include GC-MS1, PTR-MS2, SIFT-MS3, IMS4 as well as various

statistical and data mining techniques supporting identification of specific markers.

Currently, during the investigations – mainly performed using the common Matlab

language and computing environment – a large number of new different sampling

and analytical techniques for breath gas measurements are being developed.

The purpose of breath gas analysis scientific dataspaces [ELS+09] is to enable

collaborating scientists and institutions (a) access to distributed breath gas data

1Gas Chromatography Mass Spectrometric
2Proton-Transfer-Reaction Mass Spectrometry
3Selected-Ion-Flow-Tube Mass Spectrometry
4Ion Mobility Spectrometry
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and analytical resources collected and developed at different research institutions

around the world and (b) to easily contribute to and leverage the resources of an

international- and national-scale, multi-institutional environment. This will strongly

support global collaborations of scientists, improve decisions and increase the chance

and scope of discoveries in the breath gas research domain. In this context there is

a need for a supporting information infrastructure allowing scientists to keep track

of their e-Science studies and to publish corresponding results of breath gas analysis

experiments linked together with their source data and semantics about the purpose

of the experiments.

Source data obtained from previously mentioned analytical methods are referred

to as breath gas measurement data and are saved, together with corresponding pa-

tient data, locally at each research center. These data represents the fundament

for simulation and modeling by the acting research group, e.g. observation of the

correlation between isoprene breath content and cholesterol level in blood. Such

breath gas experiments, if evaluated on large amount of real data allow a more de-

tailed analysis including e.g. gender-specific relation with respect to age-dependency

[KAS+08]. The output of these analyses aims at defining a large number of predic-

tions and might provoke further experimentation, which in turn may take days or

weeks depending on computational and human resources available. However, the

resulting derived data, that have arisen from the research task represent valuable

information not only to the acting research group but also to other groups with

respect to other main focuses.

Breath gas research specific dataspaces will be set up to serve a special subject,

which is on the one hand the relationship of source data (exhaled breath measure-

ment data) and its derived data (e.g. specific cancer markers) in breath gas analysis

experiments and on the other hand to integrate scientific understandings into these

applied experiments.

8.3.1 BGA Use Case Scenario

The use case scenario depicting the current sequence of events in conducting breath

gas analysis experiments is illustrated in Figure 8.3, which is reproduced from the

position paper [DFL+09]. It presents an overview, with the Server being an isle-

system gathering the data. Import and export activities on this system are protected

by smart card security measures. Steps 2 to 4 present the collection and subsequent

transfer (i.e. manual import) of personal data to the server. Steps 5 to 7 involve

the collection and preprocessing of the probands analysis data. Step 8 is the actual
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Figure 8.3: Use case depicting the current sequence of events [DFL+09].

analysis done using a workstation employing Matlab.

The implementation of a secure infrastructure, which provides the needed ser-

vices for breath gas researcher to efficiently and securely perform steps 1 to 7 was

part of the project described in [DFL+09]. However, the work described in this

chapter focuses more on the evaluation of jSpace in the breath gas scientific com-

munity and we therefore assume that a secure and isolated database storing mass

spectrometer and patient data is already set up and administered by the correspond-

ing Regional Head Service as described in [DFL+09]. In the following we refer to

this database as the source database.

We are aware that in order to successfully establish a large-scale scientific datas-

pace for the breath gas analysis community with a large amount of well described

experiments of exhaled breath, we rely on active participation of members of the

scientific community. Therefore we have - in cooperation with leading breath gas

researchers - defined a number of actions that a researcher is conducting during
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the process of performing breath gas studies. We have then mapped the specific

actions to activities of the e-Science life cycle. We also indicate “where” (i.e. on

the community portal or within Matlab or in the breath research lab) these actions

should be taken. Actions, their corresponding e-Science life cycle activities, and the

“place” or “tool” where they are taken are listed in Table 8.3.

Action Description e-Science life cycle

activity

Place

1 Login to the system. GoalSpecification Portal

2 Definition of the goals of the study. GoalSpecification Portal

3 Collection of the probands analysis

data (mass spectrometer and patient

data, covers Steps 1-7).

DataPreparation Lab/

Questionnaire

Software

4 Formulation and submission of a

query to the source database. This

action generates the final input

dataset, which will be included into

the dataspace as participant marked

with type “primary data”.

DataPreparation Portal

4 Selection/development of the analyt-

ical method for analyzing the pre-

pared dataset. This action generates

the analytical methods, which will be

included into the dataspace as partic-

ipant marked with type “background

data”.

TaskSelection Matlab

5 Execution of the analytical methods. TaskExecution Matlab

6 Process the results and export them

using Matlab’s publication function

into XML . This action generates

the results report, which will be in-

cluded into the dataspace as par-

ticipant marked with type “derived

data”.

ResultPublishing Matlab

7 Set publication mode to conducted

experiment.

ResultPublishing Portal

Table 8.3: Definition of breath gas analysis actions and their mapping to e-Science

life cycle activities.
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Dataset Type Size (kb) Description

fids.zip primary 3072 This represents the final in-
put datasetindexFinal input
dataset.

studyMat.zip background 1024 All analytical methods used
to analyze the final input
dataset

reportMat.zip derived 3072 Matlabs publishing report.

Table 8.4: Dataspace participants in a typical BGA study.

Based on this common understanding we have designed and implemented the

tools that support the breath gas researchers in conducting their breath gas studies

according to the above described actions.

8.3.2 BGA Dataspace Participants

A typical BGA study includes several datasets. Some are being accessed, others are

being generated during the conduction of the study. Table 8.4 gives an overview of

the types and sizes of datasets of a typical BGA study.

Final input datasets are being created after steps 1 to 7 of the use case described

above. They can be retrieved by submitting a query to one of the breath gas research

source databases available to the acting researcher. However, in order to handle the

issue that data and probably also structure of the data might change over time,

we replicate this dataset into the iRODS system. A typical final input dataset is

less than 3 MB in its Matlab structure (.mat file), which is a binary data container

format used by Matlab. It may include arrays, variables, functions, and other types

of data. It is organized in three blocks as follows:

(1) patient data - includes all collected data of different test persons such as

proband value (e.g. height, weight), burden (e.g. smoker/nonsmoker), labor

value (e.g. blood parameter), etc.

(2) the system information block manages all system settings for the two databases

like all users with their corresponding user groups, studies with their question-

naires, different mass spectrometers with status, container types with status,

and

(3) the analysis data part includes all information on a specific measurement of

a sample such as mass spectrometer type, used container, collection date,
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measurement date, data (substances with concentration and additional infor-

mation), etc.

In a typical BGA-study the analytical methods include several Matlab functions,

each of them is in a separate M-file (ASCII-text files containing Matlab commands

and functions). Typical size of a single M-file is less that 500 KB. In the major of

cases two different Matlab functions were used within a single study, resulting in a

typical background dataset size of approx. 1 MB on average.

Once the breath gas researcher has accomplished his experiment, he can publish

the results of his analysis. Therefore we take advantage of Matlab’s publishing

function, which lets you export results as plots or as complete reports. Using the

Matlab editor, researchers can automatically export their Matlab results, including

Matlab scripts into XML and various other file formats, e.g. HTML or LaTeX.

Since typical breath gas experiments include plotting functions, this dataset usually

includes images in the open PNG format. Typical size is less that 3 MB.

Figure 8.4: Main entities of a breath gas analysis experiment and their organization
into dataspace participants and relationships.

In addition there are special databases set up (RDF Stores) for storing individuals

and properties of the e-Science life cycle ontology, which are defined in RDF [rdf04b].

Figure 8.4 gives an overview of the types and sizes of data from a single real breath

gas analysis experiment. The figure also shows what data is considered as dataspace

participant and how relationships are consolidated and semantically enriched.
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Since in this application patient data is involved and due to legal requirements

on such highly sensitive personal data, security and privacy issues are of utmost

importance. Thus within applications in the breath gas analysis research domain

all participating databases including the RDF store are isolated, monitored, and re-

stricted to a single point of access, hence implementing strict access control. Details

about the access control mechanisms and the security considerations in general are

described in [DMF+09, DFL+09].

8.3.3 BGA Example Life Cycle Resource

In the following we discuss a real breath gas analysis study in the context of the

e-Science life cycle and describe their outputs and how data is organized by the

scientific dataspace. At first the breath gas study is described in textual form.

Users can define their own attributes and add values to it, e.g. attribute Description

contains a textual description of the goals of the study. This data is, together with

information about the acting researcher (research group, department, publication

mode) saved as individuals of the e-Science life cycle ontology in the RDF store. A

snapshot of a simplified RDF graph of a real breath gas experiment is illustrated in

Fig. 8.5. The complete RDF graph is described in Appendix B. The snapshot shows

a life cycle resource, which describes the relationship of the participants depicted

in the figure. Green rectangles represent the values of datatype properties and the

ellipses represent individuals of corresponding OWL classes from the e-Science life

cycle ontology. Table 8.5 provides counts of individual axioms of the complete LCR

example. The participants represent primary, background, and derived data of the

breath gas experiment. Participants are described with attributes and their values,

which the acting breath gas researcher defines while conducting the experiment. In

the breath gas analysis domain there is a set of attribute names predefined to be

followed by scientists for a consistent description of breath gas analysis experiments.

Data access is done using the OGSA-DAI client and a certificate. In most sce-

narios, the researcher first loads all values of the dataset he is investigating into the

Matlab structure. This is done using an implemented data load Matlab-function

(loadData.m), which communicates with an OGSA-DAI client. Then the breath

gas researcher selects the values he is interested in for the current experiment, e.g.

selection of all ex-smokers. The outputs of this selection process, which is done

within Matlab are twofold: (1) A new Matlab MAT-structure containing the se-

lected data (fids.mat). (2) The Matlab function itself (selectData.m), which is

responsible to select the required data.
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Figure 8.5: Snapshot of an RDF graph of a sample breath gas experiment.

Several analysis functions might be implemented by the breath gas researcher

and applied to the final input dataset. Such Matlab functions also represent back-

ground data, thus are saved correspondingly. For easier handling we provide an

empty Matlab file named executeStudy.m, which will be used in all experiments.

Breath gas researchers may add their own implementations into it or import exter-

nal analysis functions. These functions calculate the derived data, which are usually

input to a plot function. Again an empty template (plotData.m) is prepared to be

used by the researcher. Finally we provide a publish function (dsPublish.m), which

generates an XML report of the conducted experiment including plots, if used by

taking advantage of Matlab’s publishing feature. This report is then zipped and

stored in the preservation system, i.e. iRODS.

Based on these investigations we have created guidelines for breath gas re-

searchers, defining concrete activities and documentation policies, which guide users

through the e-Science life cycle. An empty Matlab-template with named files is also

created for a better comprehension. Figure 8.6 shows Matlab m-files of the template,
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Figure 8.6: Screenshot of the Matlab-template for BGA studies.

which are used to structure a BGA study into its representative phases according

to the e-Science life cycle.

We furthermore implemented a first prototype of a web portal for the breath

gas analysis application. The portal supports the features that are provided by the

e-Science Life Cycle Composer and the jSpace Search&Query Panel introduced in

Section 6.4. A screenshot of the web portal is shown in Figure 8.7. It is built us-

ing the GoogleWeb Toolkit (GWT), which allows to build and maintain complex

yet highly performant JavaScript front-end applications in the Java programming

language. It utilizes the jSpace java API to construct semantic data about experi-

ments, which hides from the scientist most of the underlying complexity involved in

the process, such as working directly with RDF or writing SPARQL queries.
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Individual axiom Count (single LCR)

ClassAssertions axioms 29
ObjectPropertyAssertion axioms 45
DataPropertyAssertion axioms 100

Table 8.5: Individual axiom counts of the BGA LCR.

8.4 jSpace Experimental Evaluation

Creating semantically rich relationships among datasets that participant in the e-

Science lifecycle is an important part of the dataspace support platform for providing

well-preserved scientific experiments. The relationship creation has to be efficient to

minimize perturbation of the e-Science application from which scientific experiments

should be preserved. The complete process of creating an LCR in the dataspace

includes (a) the creation semantic relationships among its datasets, (b) the indexing

of each activity in the LCR, and (c) the preservation of both, the individuals and

properties of the experiment into the RDF Store and its participating datasets into

an appropriate data preservation system such as the iRODS system. This process

is referred to the jSpace preservation process in the following.

Since jSpace aims at providing a methodology and a Java API to support this

process it has to scale with the number of clients, the size of datasets included in sci-

entific experiments and the amount of relationships among them. The experimental

evaluation uses an initial prototype of jSpace (v1.2).

The performance overhead is an important factor in determining the system

scalability and acceptability. Greater the performance overhead of a system the less

scalable a system is, and less scalability, among others, means less suitability for

e-Infrastructure and vice versa. For these reasons, we evaluated jSpace for perfor-

mance overhead on both, a real world NIGM and a BGA study and discuss the

results.

8.4.1 Experimental Setup

The following setup was used for our performance evaluation on the jSpace preser-

vation process in both application scenarios.

For the execution of the BGA study, we used a desktop computer running Win-

dows XP x64 Edition on an Intel Core 2 Quad CPU with 2.66 GHz and 4 GB of

RAM. The BGA study was executed within Matlab version 7.7.0 (R2008b). The

BGA study basically checks if there is some correlation in inspiration and expiration
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Figure 8.7: Web portal for breath gas analysis researchers to interact with the
scientific dataspace.

of exhaled breath air for samples separated according for smoking behavior. It re-

ceives the data directly from within Matlab. The input dataset is represented in the

Matlab data structure. The study includes three steps: (1) preparation of the data

from the input data set that is in the Matlab structure, (2) execution of the tasks,

which are breath gas analytical methods implemented as Matlab functions, and (3)

plotting the results and preparing a report in the HTML format, which contains

figures from plotting the results.

The NIGM performance results were elaborated on a Linux server running Fedora

Core 5 on an Intel Pentium D 930 CPU with 3 GHz and 4 GB of RAM. The server

hosts all the services relevant for the execution of the NIGM workflow shown in

Figure 8.1. The following software versions have been used Globus Toolkit 4.05

[The11b], WEEP Version 1.2.1[JKB08], OGSA-DAI WSRF 2.2 [AHH+07] exposing
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Description Best Time Worst Time Avg. Overhead (time) % Overhead
With jSpace PP 159380ms 162425ms 1623ms 1.64%
Without jSpace PP 156800ms 158453ms - -

Table 8.6: Performance overhead of the jSpace preservation process in the NIGM
application.

a MySQL 4 database with the meridian measurement test datasets collected with

the meridian measurement instrument. A detailed performance evaluation on the

NIGM application was conducted in [BEH+08], on top of which Prewe build our

jSpace performance evaluation for that application. The NIGM service consists of

the following algorithms, deployed as WS-I and WSRF-compliant CADGrid services:

(1) System Identification, (2) Kalman Filtering, (3) Fast Fourier Transformation, (4)

Combination Service, and finally (5) Back Propagation Neural Network.

The performance of the jSpace preservation process was tested on a macbook pro

running Mac OS X version 10.7.1 on an 2.4 GHz Intel Core 2 Duo processor with

5 GB of RAM. The installed software components include iRODS 2.4.1 [iRO11],

Jargon 2.4 [jar11], Jena 2.6.4 [jen11] and the current version of the jSpace API

which is 1.2.

8.4.2 jSpace Performance Evaluation on NIGM

For the performance overhead of the jSpace preservation process (jSpace PP) in the

NIGM application, the NIGM service as explained in Section 8.2 was executed with

the dataspace system and without. The jSpace preservation process was conducted

subsequent to the NIGM workflow. A comparison of the results of the execution

was performed. The results of the performance overhead are shown in Table 8.6,

which reflects that jSpace has on average 1.64% performance overhead. Best Time

and Worst Time in Table 8.6 are the total execution times including the execution

time of the NIGM-workflow. In the worst case a performance overhead of 2660ms

was recorded and in the best case the overhead was 1301ms.

Figure 8.8 shows how the performance overhead of the jSpace preservation pro-

cess is consolidated into its three phases. The creation of semantic relationships

takes the greatest part, almost 50% of the total time needed to preserve an NIGM

study, directly followed by the preservation phase with approx. 40%. The indexing

phase accounts for approx. 10%.

In some application scenarios, it might be not so important to replicate the

input dataset, since the end point references defined by jSpace might be sufficient.

However, in this experiment we have chosen to replicate the data from the dataspace
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Description Best Time Worst Time Avg. Overhead (time) % Overhead
With jSpace 9855ms 12078ms 1275ms 12.14%
Without jSpace 7915ms 8001ms - -

Table 8.7: Performance overhead of jSpace in the BGA application.

participants layer, which include the input dataset as well as the result dataset and

the NIGM workflow. The performance overhead of the preservation phase is mainly

caused by replicating the input dataset into the iRODS system. The input dataset

used in this experiment had the typical size of 10 MB, whereas all other participating

datasets where in all not larger that 3 MB on average.

Figure 8.8: Distribution of the performance overhead among the phases of the jSpace
preservation process (average on preservation of 100 NIGM-LCRs).

8.4.3 jSpace Performance Evaluation on BGA

For the second application domain we have executed a typical breath gas analysis

experiment with the jSpace preservation process subsequently to the study execution

and without it. The study has been executed one hundred times in order to elaborate

significant average performance results. The performance overhead is shown in Table

8.7, which reflects a performance overhead of approx. 11.63% on average.

We argue that the performance results presented in Table 8.7 represents a re-

markable low performance overhead, which is most likely due to the relatively small
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sizes of dataspace participants in this application. Therefore the preservation phase

of the jSpace preservation process is quite small. Dealing with larger datasets we

are facing a great increase in the performance overhead which is mainly the result

of a longer preservation phase time. This is discussed in more detail with larger

test datasets in further experiments in the Section 8.4.4. The distribution of the

performance overhead to the three phases of the jSpace preservation process is given

in Figure 8.9 and in Figure 8.10 we illustrate the performance overhead in relation

to the total execution time of the BGA study.

Figure 8.9: Distribution of the performance overhead among the phases of the jSpace
preservation process (average on preservation of 100 BGA-LCRs).

Another important factor, which influences the performance results is the amount

of reused Life Cycle Activities (LCA) within the LCR that is being inserted to the

dataspace. In another experiment where we have been successively reusing the five e-

Science life cycle activities in the BGA study starting with only one refused activity

until all five activities of the randomly generated LCR represented reused activities.

We executed the BGA study for each LCR one hundred times. Table 8.8 shows the

performance overhead for this experiment.

The graph in Figure 8.11 clearly shows that the performance overhead reduces

with an increasing number of reused life cycle activities. This is due to the fact that

jSpace does not store duplicates of the same life cycle activity. Once an activity is

identified as a reused one, jSpace queries for the corresponding activity individual

from the RDF Store, compares it with the activity to be inserted and in case its
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Figure 8.10: Distribution of the performance overhead among the phases of the
jSpace Preservation Process (average on preservation of 100 LCR) in relation to the
total execution time of the BGA study.

No reused LCA Best Time Worst Time Avg. Overhead (time) % Overhead
1 8769ms 9389ms 1078ms 13.55%
2 8612ms 9146ms 813ms 10.23%
3 8540ms 8981ms 733ms 9.22%
4 8370ms 8971ms 524ms 6.6%
5 8229ms 8549ms 337ms 4.25%

Table 8.8: Performance overhead of jSpace in the BGA application with reused
LCA.

attributes are equal, jSpace reuses the activity that is already stored in the RDF

Store. This reused actually means that only the object properties to and from

the activity are being created. The individual of the activity itself is not created

again. The same is true for the indexing of that activity and the preservation of its

datasets. Therefore the total time of the jSpace preservation process is shorter when

using reused activities within an LCR. In the last run, we generated a LCR that is

reusing all five LCA, which means that no new LCR individual will be created. The

average performance overhead after conducting the jSpace preservation process one

hundred times with that LCR is 337ms. This number represent the time needed

for (a) retrieving the corresponding individuals from the RDF store, and (b) the

comparison of its attributes with the attributes of the activity to be inserted.
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Figure 8.11: Performance overhead of the jSpace preservation process with different
number of reused LCA.

8.4.4 Impact of Large Values of Dataspace Participants in

jSpace

Scientific experiments can be data-intensive and involve complex computation over

large volumes of input data. It is important for any data preservation system to

perform well in such scenarios. The iRODS system that is used in conjunction with

jSpace for the persistent storage of dataspace participants provides great perfor-

mance in handling large-data sets.

However, the semantic markup layer provided by jSpace, allows to answers search

requests without accessing initial dataspace participants based on the semantic re-

lations described by individuals of the ontology. We can reason from this that there

is no direct relation or impact on the jSpace performance regarding the volume of

dataspace participants being processed on the semantic markup layer. The seman-

tic markup layer and the dataspace participants layer is introduced in Figure 6.8

in Section 6.4 The reason for this no impact/relation is that jSpace stores a refer-

ence in particular an end point reference to the dataspace participant being used

and persistently stored in iRODS. This makes the jSpace system ideal for scientific

experiments consuming data where the original data resource might not be modi-

fied or removed frequently. On the other side dealing with remarkably large values

of primary datasets, one should consider the overhead in replicating the data into

the preservation system iRODS. This however is important since the experiment

would otherwise not be preserved for a rerun in the future. We have shown in the
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performance evaluation with two different applications that the overall performance

overhead is little significant in relation to the total study execution time. In both ex-

periments we have included the replication of the data into the iRODS system. The

performance results showed that the percentage of the preservation phase, which is

doing the replication of the datasets into iRODS is approx. 40% for the NIGM study

and approx. 2% in the BGS study of the complete jSpace preservation process. So

it might make sense up to a certain size of input data to replicate the dataset into

the iRODS system. We have conducted some further experiments in order to show

how jSpace in conduction with the iRODS system scales with the size of datasets

from the dataspace participants layer. A number of randomly generated LCR were

executed with different input data sizes ranging from 10 MB up to 2.5 GB. Each

LCR was inserted multiple times in order to get solid average performance numbers.

The results are presented in Figure 8.12.

Figure 8.12: Performance overhead of the jSpace preservation process with different
input dataset sizes.

It is important to mention that in both applications the maximum dataset ac-

cessed did not exceed 100 MB. We are aware that this situation might change over

time in particular in the breath gas analysis domain as new mass spectrometer in-

struments have emerged, which can calculate much faster the volatile compound

in exhaled breath. However, we believe that the overhead in replicating the input
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dataset still pays off, since it enables researcher to rerun a BGA study even after a

long time period, when the original data source might have been changed or is not

available anymore.

8.4.5 Dataspace Reusability Measures

In general the examination of dataspace measures allows to monitor system usage

and thus helps improving the system.

The dataspace reusability measure is an important measure to express how useful

the scientific dataspace might be for an acting research group in the application

area to which the dataspace is deployed. In order to measure it, we first have to

elaborate the number of reused Life Cycle Activities (LCA) using the dataspace

indexer introduced in Section 6.3.4. In order to do this, we request the current

indexKey from the dataspace indexer. An indexKey has the form of an LCR key

as exemplified in Section 6.2.3 in Listing 6.1 The current indexKey represents the

key of the last LCR inserted into the dataspace. Its indexes therefore represent the

highest indexes in each lifecycle activity. Having the key we simply retrieve the total

number of LCRs in the dataspace from the highest index or directly from the index

table, which is described in Section 6.3.4. If we define LcrKeys as the set of all keys,

the cardinality of this set represents the total number of LCRs in the dataspace and

thus is equal to the highest index i of all lifecycle activities in the current indexKey:

LCRCount = |LcrKeys| = (max)iLcrKeys

where (max)iLcrKeys represents the maximum of all indexes in the set of LcrKeys.

For the calculation of the reusability measure we further need the amount of distinct

life cycle activities in the dataspace. We therefore define LCA-Indcount(x) as the

sum of all distinct LCA individuals of x, where x is one activity from the set of

e-Science life cycle activities: x ∈ LCA = {GS,DP, TS, TE,RP}.

LCA-IndCount =
n∑

i=0

(distinct)LCA-Ind(x)

For example LCA-IndCount(GS) represents the total number of distinct individuals

of the e-Science life cycle activity GoalSpecification. The LCA-IndCount values in

each activity must be equal to the highest index of the corresponding activity in the

current indexKey that we derive from the dataspace indexer because it contains the

last added LCR including its either reused or new generated LCAs to the dataspace.

Having this two important measures, LCRCount and LCA-IndCount defined, we



208

can further define the dataspace reusability for an e-Science life cycle activity as

following:

DSReusability(LCA(x)) =
LCA-IndCount(x)

LCRCount

The value this measure can receive will always be in the interval [0, 1] since the

relation of the two counts is always that:

LCA-IndCount(x) ≤ LCRCount

The DSreusability(LCA(x)) measure can be interpreted in such a way that the closer

the value is to 1, the less reused activities and the more distinct activities are in

the corresponding LCA. Furthermore the closer the value is to 0 the more LCAs are

reused and the less distinct LCAs are in the corresponding LCA.

The above measure represents the data space measure for a single LCA. We fur-

thermore define the global dataspace reusability DAreusability, as a measure to express

how much the activities in general are being reused in the dataspace independent

from a specific LCA. We define this measure as follows:

DSReusability =

∑
DSReusability(LCA(x))

|LCA|

where |LCA| represents the cardinality of the set of LCA, which is five in the

current version of the e-Science life cycle model. Again this measure will always be

in the interval [0, 1] since
∑

DSReusability(LCA(x)) will not exceed 5.

We argue that an optimal value for this measure is around 0.5 in general. This

would indicate that there is a fair division of reused and newly generated LCAs in

the dataspace. A too high value would indicate that LCAs are being reused too

often, which has the effect that not much new data is added to the dataspace and a

too low value would indicate that the amount of available studies in the dataspace is

high but the LCRs are too different from each other. However, we believe that the

values for the dataspace reusability in each LCA should be interpreted differently.

For example having a low dataspace reusability measure in the data preparation

activity, gives an indication that the initial input datasets used for the studies are

quite similar to each other whereas a high value would indicate that they are different

from each other. Therefore we think that the global dataspace reusability measure

is differently to interpret than the corresponding values for each LCA. However, the

real interpretation of this measures can only be done after a longer period of time

in which the dataspace is intensively used by an acting research group. Currently



8.4. jSpace Experimental Evaluation 209

this is being faced within a new three years research project in cooperation with a

leading breath gas analysis institution as previously mentioned.

8.4.6 Experiences

A brief discussion on the experiences that were learned from the development and

performance evaluation of the jSpace system is provided as follows:

• The methodology jSpace is using to preserve LCR into the dataspace is fairly

lightweight in the sense that it only captures minimal information from the

researcher who accomplishes the scientific experiment and all other process-

ing like the creation of semantically rich relationships with individuals and

properties of the e-Science life cycle ontology and their organization within

an RDF store is done automatically. Furthermore, it promises to be perfor-

mance efficient as it does not have an impact on the volumes of the dataspace

participants involved in regard of the semantic markup layer.

• Since the semantical layer containing the dataspace relationships is indepen-

dent from the physical storage of the dataspace participant, jSpace can work

with different data preservation systems and storage solutions.

• Since the e-Science life cycle ontology is kept domain independently and in-

cluded a way to describe domain-specific metadata separately from the core

concepts of the e-Science life cycle model, jSpace can be deployed to many

application domains.

• Many scientist are already used to some tools and therefore might not want

to change their analysis environment. Since we were considering in our archi-

tecture to make the interface to the scientific dataspace independent of any

analysis tool, we can support different tools available for scientific investiga-

tions (e.g. Matlab, Octave, GridMiner, etc.). Through the jSpace Java API

we provide interfaces for accessing data from and publishing data into the

dataspace for almost any application scenario.

• During our evaluation of jSpace in the BGA application we have identified that

experiments on exhaled breath gas are being successively refined [iterations of

action 4-6 in Table 8.3], by the acting researcher until the study either shows

a significant result (i.e. definition of accurate methods for estimation of blood

gas levels of certain biomarker values from breath gas samples) [prepare action

7 ] or ends up in a modification of the intended defined goal specification
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for that experiment [modify goals and restart action 2 ]. However, in both

cases several iterations of the e-Science life cycle are being performed. Some

instances of e-Science life cycle activities have been reused in another iteration

of the life cycle, for instance when a breath gas researcher executes the same

final input dataset on a slightly refined analytical method. In this case the goals

defined and the data prepared for that experiment did not change, therefore its

corresponding instances of the e-Science life cycle activities have been reused

within new iterations of the life cycle. This led us to the definition of dataspace

reusability measures.

8.5 Summary

In the previous part of this thesis we have introduced the e-Science life cycle ontol-

ogy, whose major goal was to semantically enrich the existing relationship among

primary, derived, and background datasets that emerge during the life cycle of sci-

entific data. We have also introduced the architecture of jSpace, which is dataspace-

based support platform and provided details about the implementation as well as

its realization for large-scale scientific dataspaces. A performance evaluation on a

synthetic large scale dataspace was also provided testing existing technologies in

conjunction with the jSpace API.

In this Chapter we have described two promising new e-Science applications,

whose collaborating organizations have deployed the scientific dataspace paradigm.

We elaborated how the scientific experiments are consolidated, what actions are

involved in terms of data access, analysis, and publication. We have also showed

how the full life cycle of data of the experiments is organized by the corresponding

scientific dataspace.

The jSpace system was experimentally validated using the two applications with

multiple real scientific experiments. NIGM experiments use different services and

activities to access and pre-process data in comparison to the scientific experiments

from the breath gas analysis application. First, in this chapter, an introduction on

each application domain was given. Performance overhead of the jSpace system and

its components were investigated, and it was shown that the overhead is reasonable

according to the benefits the scientists have with an evolving scientific dataspace.

Generally the performance overhead of the jSpace preservation process is quite

static, since it mainly depends on the semantic descriptions provided by the user and

the sizes of participating datasets. In relation to the execution time of a scientific

study, it actually is of little significance. As we have seen in several experiments the
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overhead done is always lower than 15% in the BGA application where experiments

are quite fast. This is because currently breath gas analysis researcher mainly per-

form their experimentations within Matlab and the typical size of input datasets is

not larger that 3MB directly imported into Matlab. Therefore the total execution

time of a typical BGA study does not exceed the one minute upper limit.

In the NIGM application this is a bit differently, since web services are invoked

remotely to execute the NIGM-workflow, and input data size is larger and is obtained

from a database. However, even with a greater performance overhead that with the

BGS study, it is still of little significance in relation to the total execution time

for an NIGM study. The average performance overhead with less than 2% in our

experiments show an even lower overhead in comparison to the BGS study.

The impact on the performance of jSpace for large values of dataspace partic-

ipants was investigated as well. It proved that there is no relation between the

volume of dataspace participants and the semantic markup layer provided by jS-

pace, if the input dataset is not replicated into the iRODS system. Since jSpace

generates a reference, in particular an End-Point Reference (EPR) organized by the

EPR-Framework to the input dataset, it is in fact not necessary to do the replica-

tion, which as the performance results have show, can be time intensive for large

datasets. We argued that dataspace participants up to a certain size should be

replicated into a preservation system such as iRODS in order to be independent on

possible changes that might happen to the datasource.

There are many different tools available for scientific investigations (e.g. Mat-

lab, Octave, GridMiner, etc.). Many scientist are already used to some tools and

therefore might not want to change their analysis environment. Therefore, we were

considering in our architecture to make the interface to the scientific dataspace in-

dependent of any analysis tool. We provided interfaces for accessing data from and

publishing data into the dataspace.
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Conclusions

“Religion hinges upon faith, politics hinges upon who can tell the

most convincing lies or maybe just shout the loudest, but science

hinges upon whether its conclusions resemble what actually

happens”

Ian Stewart

9.1 Summary of the Research

Central to the thesis is the scientific dataspace paradigm called jSpace, which is a

novel approach to scientific data preservation since it preserves datasets from scien-

tific studies including their background and derived datasets and interrelates them

by individuals and properties of the e-Science life cycle ontology. Our research has

resulted in an approach, which allows to address the full data life cycle in order

to provide well preserved replicas of scientific studies in any e-Science application.

jSpace therefore supports the interaction among specific research groups by the

means of advanced scientific data management in e-Infrastructures. A key goal of

the research conducted in this thesis has been to investigate an approach to invent a

suitable relationship paradigm for the creation, representation and advanced search-

ing of relationships among primary, background, and derived datasets in scientific

studies. Mainly because of the nature of datasets participating in scientific stud-

ies we considered semantic web technologies such as OWL [owl04], RDF [rdf04b],

and the SPARQL query language and protocol [PS08] as underlying technology for

creation and management of semantically rich described relationships among those

interrelated but disparately managed datasets. Semantically rich described rela-

tionships among datasets of scientific studies and in an higher level of abstraction
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among participants of a distributed dataspace is the key to the scientific dataspace

paradigm introduced in this work. To support the thesis that a scientific datas-

pace environment can deliver significant value to distributed research groups that

collaborate in terms of collaborative science we have:

• invented a suitable relationship paradigm for the creation, representation and

advanced searching of relationships among participants of a scientific datas-

pace,

• developed an OWL ontology that addresses the full data life cycle in scientific

studies considering accessed and derived, as well as background datasets,

• proposed an appropriate indexing mechanism for uniform organization of sci-

entific data life cycle resources, and

• experimentally implemented large-scale dataspaces with geographically dis-

tributed scientific data and collaborating scientists on top of two different real

world e-Science applications.

The dataspace paradigm presented in [FHM05] is further developed by consid-

ering its major research challenge “managing relationships among participants” in

order to explicitly support the existing relationship among primary, background,

and derived data in scientific collaborations. In the rest of this chapter we detail

the results of our research, indicate directions for possible future extensions, and list

publications that have resulted from our research on topics related to this thesis.

9.2 Research Contributions

Within this thesis we identified and addressed several research challenges related

to the vision of dataspaces that were introduced in [FHM05]. However, during our

research we somehow drifted away from the mainstream driven dataspace research

and considered to follow a slightly different vision, which is the realization of a

scientific dataspace paradigm that considers dataspace concepts and semantic web

technologies. The scientific dataspace paradigm supports the phases of the e-Science

life cycle and integrates them to an advanced scientific dataspace support platform.

Figure 9.1 depicts the realization of the proposed components presented in this

thesis by concrete results of our work except the preservation system, which is

supplemented by the open-source data grid software iRODS [iRO11], because it is

to our best knowledge the best standard component for digital preservation.
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Figure 9.1: Realization of the scientific dataspace paradigm.

The jSpace scientific dataspace framework developed has been designed and de-

veloped domain independently without having any e-Science application in perspec-

tive. The experiments and evaluations have been in the CADGrid [agr10] and the

Austrian Grid [cad11] project [agr10]. The results of the evaluation show the appli-

cability of the system in these domains.

In the following we list the major contributions of this thesis.

• e-Science Life Cycle Ontology - We developed a specialized model, named

the e-Science life cycle for semantic enrichment of dataspace relationships by

the use of an OWL ontology.

The intelligence of the proposed e-Science life cycle lies in its capability as

customizable relationship model for scientific dataspaces, as it covers the cre-

ation, representation and searching of semantically rich relationships among

participants of a dataspace. It enables researchers to find not only relevant

primary data in connection with its derived data, but also lots of semantics

about what was initially done with the data, such as which data preprocess-

ing methods have been applied, which data mining and analysis models have

been used, which result visualizations are available etc. Furthermore it points

to relevant background and ontological data, such as descriptions of applied

services, models, research domains etc.

All this information is meant to be the semantically rich relationship among
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primary and derived data described by the e-Science life cycle ontology. Ad-

ditionally scientists will retrieve information about the goals specified, which

domain it corresponds, and whom to contact in case of interest for engag-

ing collaborations, in short, users will understand for what reason a specific

e-Science life cycle was applied, which we summarize be the meaning of e-

Science Understanding.

• Long-Term Preservation Framework for Scientific Studies - To support

long-term preservation the complete life cycle of data in e-Science applications

is addressed and a framework for their intelligent storage and management

has been designed and prototypically implemented. The framework has been

evaluated on top of two real world e-Science applications. The framework also

includes an intelligent indexing mechanism that uniquely identifies dataspace

participants and their relationships as they are participating in multiple life

cycle resources. The indexing mechanism also supports a large-scale scenario

as described below. The profound knowledge of iterations of the e-Science

life cycle consolidated within individuals and properties of the ontology has

allowed us to provide well-preserved RDF-trees that form together with their

liked dataspace participants a rich preservation framework for scientific studies.

The preservation framework allows to preserve scientific studies almost domain

independently. It can easily be ported to any e-Science application, since the

e-Science life cycle ontology is being kept domain independent. Tools for the

creation of life cycle resources (e-Science life cycle composer) as well as for

searching and querying the dataspace (e-Science life cycle Search and Query

panel) have been developed as Java stand alone applications. Their Java

classes and methods were organized into a Java dataspace API (see below).

In the second real world e-Science application (breath gas analysis) the proto-

typical implementation of a web portal has been done in order to prototype a

web based interface to the framework.

• Large-Scale Scientific Dataspace Platform - The idea to support mul-

tiple domains, multiple disciplines and to enable secure but verified access

to research data have become the leading motivation for the development of

our large-scale scientific dataspace platform. The intelligent interconnection

of multiple dataspace instances, where each dataspace instance is acting as a

single participant of a larger dataspace has allowed us to realize large-scale

dataspaces.
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Local RDF stores hosting semantically enriched relationships of locally avail-

able dataspace participants provide high performance on local requests and

at the same time are available to be combined and interconnected with other

local RDF stores, thus form a distributed RDF data environment, that is the

global RDF store. Using the SPARQL-ADERIS distributed SPARQL query

processing component we, were able to support search and query interfaces

on top of this large-scale dataspace. A prototypical jSpace implementation

with multiple geographically distributed RDF stores has been developed. To

evaluate scalability of the prototype several synthetic large-scale dataspaces

with up to 3000 LCRs with approx. 460,000 triples have been generated.

A performance evaluation on top of that architecture was applied showing a

performance results at reasonable level.

• jSpace Java API - A Java API providing all needed methods to construct

semantic data about experiments, which hides from the scientist most of the

underlying complexity involved in the process, such as working directly with

RDF or writing SPARQL queries is provided. The Java dataspace API pro-

vides a model for management of life cycle resources (LCRs) within a dis-

tributed data environment. In particular, methods for creation, representa-

tion, maintenance, and advanced searching of LCRs is supported. The API

included methods to set up a local RDF store based on a relational database.

The store can be used to permanently store life cycle resources.

• Applicability to Domains - The jSpace Scientific Dataspace platform devel-

oped has been designed and developed domain independently without having

any e-Science application in perspective. The experiments and evaluations

have been in the CADGrid and the Austrian Grid project with two different

e-Science applications. The results of the evaluation show the applicability of

the system in these domains.

9.3 Open Issues and Future Research Directions

During the research in this dissertation, several possibilities for expanding this work

have been observed. While these do not detract from the conclusion of the disserta-

tion, they do provide suggestions for improving the system to make it more elastic

regarding scalability as well as practicable and user-friendly in a typical e-Science

application. In this section we briefly describe our proposals for future work.
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Generally, there are many potential extensions of this work towards a compre-

hensive, productive, and high-performance scientific dataspace infrastructure for

research collaborations among multi-disciplinary research groups. Below we outline

two promising future research avenues and discuss a third one more precisely. The

first is an adaption of provenance related approaches to support full automatically

creation of relationships among dataspace participants and the second is an abil-

ity to provide autonomous based analyses on top of relationships and participants

from existing scientific studies in the dataspace. The latter one is currently being

addressed in the context of a new three years research project funded by the Federal

Ministry for Transport, Innovation and Technology (BMVIT) and Austrian Science

Fund (FWF) called Dataspace Support Platform for Breath Gas Analysis. Within

this new project the dataspace support platform presented in this thesis will be

further developed and deployed to a core of early adopters from a leading Breath

Gas Analysis research group.

The third potential extension of this work, which is described in the following

paragraph more precisely deals with a modern approach to address scalability of the

scientific dataspace in an elastic manner.

Elastic Large-Scale Dataspaces

This work was mainly undertaken in the context of the Austrian Grid and the China-

Austria Data Grid project, both research projects in the field of grid technology.

Anyhow, the work presented in this thesis is kept more or less independent from

any grid-specific middleware, which was a major design criteria. For example, we

have chosen the iRODS data grid solution as underlying data preservation system to

preserve dataspace participants for the long run, instead of selecting an architecture

that is based on the grid middleware Globus toolkit [The11b] in conjunction with the

de facto standard for grid-based database access and integration software OGSA-

DAI [AHH+07], which is a common architectural pattern in many grid-based e-

Infrastructures. Grid technology had a strong impact on many computer science

research institutions around the world. Many e-Science applications have been build

on the grid technology. Recently ensembles of distributed, heterogeneous resources,

or clouds, have emerged as popular platforms for deploying large-scale and resource-

intensive applications. After grid computing, cloud computing has now emerged as

the paradigm for the next generation of large-scale scientific computing and data

management with the main advantage in eliminating the need for hosting expensive

hardware.

Scientists still have their grid environments in place and can benefit from them



218

using leased cloud resources whenever needed [OPF10]. This paradigm shift that

emerged recently affected many grid service and infrastructure providers in both data

and computational respects and opened new challenges that need to be analyzed,

such as the integration of the new paradigm into existing environments, applications

on them, and security.

Within the uprising cloud computing initiative we identified that elasticity (e.g.

how elastic the need for cloud-based resources can be handled) represents a future

research direction within both data and compute cloud applications. The extension

of the large-scale dataspace approach presented in this thesis to support a cloud-

based infrastructure represents therefore a potential future research direction to be

investigated at our research group.

The CloudMiner [The11a] is the follow-up project from the successful GridMiner

project [BJT05]. Data management within CloudMiner will be based on the scien-

tific dataspace concepts presented in this thesis and an elastic large-scale dataspace

approach will be investigated. In this context the cloud simulation framework pre-

sented in [CRB+11] might be used for validating various scheduling and optimization

strategies at a larger scale.

9.4 Research Publications

Below is a list of publications that have resulted from our research on topics related

to this thesis (order by: most recent comes first):

• Ibrahim Elsayed, Gregory Madey, and Peter Brezany. “Portals for collabora-

tive research communities: two distinguished case studies.” Concurrency and

Computation: Practice and Experience, volume 23, Issue 3, pages 269-278,

March 2011.

• Ibrahim Elsayed and Peter Brezany. ”Towards large-scale scientific dataspaces

for e-Science applications.” In M. Yoshikawa, X. Meng, T. Yumoto, Q. Ma, L.

Sun, and C. Watanabe, editors, DASFAA Workshops, volume 6193 of Lecture

Notes in Computer Science, pages 69-80, Tsukuba, Japan, 2010. Springer.

• Ibrahim Elsayed, Thomas Ludescher, Philip Masser, Thomas Feilhauer, and

Peter Brezany. “Grid-based scientific dataspace support platform for breath gas

analysis.” In J. Volkert, T. Fahringer, D. Kranzelmueller, R. Kobler, and W.

Schreiner, editors, Proceedings of the 3rd Austrian Grid Symposium, volume

269, pages 154-168, Linz, Austria, 2010. Austrian Computer Society.



9.4. Research Publications 219

• Ibrahim Elsayed, Steven Lynden, Isao Kojima, and Peter Brezany. “Semantic

data infrastructure to support a scientific dataspace for breath gas analysis.”

In Proceedings of the UK e-Science All Hands Meeting, Cardiff, UK, 2010.

• Marco Descher, Thomas Feilhauer, Thomas Ludescher, Philip Masser, Bernd

Wenzel, Peter Brezany, Ibrahim Elsayed, Alexander Whrer, A Min Tjoa, and

David Huemer. “Position paper: Secure infrastructure for scientific data life

cycle management.” In ARES ’09: Proceedings of the 2009 International Con-

ference on Availability, Reliability and Security, pages 606-611, Washington,

DC, USA, 2009. IEEE Computer Society.

• Ibrahim Elsayed, Thomas Ludescher, Konrad Schwarz, Thomas Feilhauer, An-

ton Amann, and Peter Brezany. “Towards realization of scientific dataspaces

for the breath gas analysis research community.” In IWPLS ’09: Proceedings of

the 1st International Workshop on Portals for Life Sciences, UK, 2009. CEUR

Workshop Proceedings, ISSN 1613-0073, UK, September 14-15.

• Peter Brezany, Ibrahim Elsayed, Yuzhang Han, Ivan Janciak, Alexander Whrer,

Lenka Novakova, Olga Stepankova, Monika Zakova, Jianguo Han, and Ting

Liu. “Inside the NIGM Grid Service: Implementation, Evaluation and Exten-

sion.” In SKG ’08: Proceedings of the 2008 Fourth International Conference

on Semantics, Knowledge and Grid, pages 314-321, Washington, DC, USA,

2008. IEEE Computer Society.

• Ibrahim Elsayed, Jianguo Han, Ting Liu, Alexander Whrer, Fakhri A. Khan,

and Peter Brezany. “Grid-Enabled Non-Invasive Blood Glucose Measurement.”

In ICCS ’08: Proceedings of the 8th international conference on Computational

Science, Part I, pages 76-85, Berlin, Heidelberg, 2008. Springer-Verlag.

• Ibrahim Elsayed, Adnan Muslimovic, and Peter Brezany. “Intelligent datas-

paces for e-science.” In Proceedings of the 7th WSEAS international confer-

ence on Computational intelligence, man-machine systems and cybernetics,

pages 94-100, Stevens Point, Wisconsin, USA, 2008. World Scientific and

Engineering Academy and Society (WSEAS).

• Ibrahim Elsayed, Peter Brezany, and A Min Tjoa. “Towards Realization of

Dataspaces.” In DEXA ’06: Proceedings of the 17th International Conference

on Database and Expert Systems Applications, pages 266-272, Washington,

DC, USA, 2006. IEEE Computer Society.
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Appendix A

jSpace Tutorial: How to set up a

jSpace dataspace infrastructure

Within this Appendix we describe step by step how to set up and configure a

dataspace-based support platform for an e-Science application. In this context we

also describe how to insert scientific studies and search for them using the tools

described within this thesis. A virtual image with all below described software com-

ponents that form together the dataspace-based support platform is provided for

download at the jSpace website [EB11]. Figure A.1 gives a visual overview of the

software components and their interactions of the virtual machine.

A.1 Installed Software Components

The following is a list of all installed software components including their release

versions.

• iRODS 2.5

• JOSEKI 3.4.3

• SPARQL-ADERIS

• PROTEGE 4.1 BETA

• jSPACE 1.1

A.1.1 iRODS

The iRODS open-source data grid software version 2.5 is tested with the following

clients. Details about the configuration and username/passwords as well as the
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Virtual Machine OS: Linux Ubuntu 10.04 Server

Local RDF Store Global RDF Store
SPARQL EndpointSPARQL Endpoint
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Figure A.1: Overview of software components of the virtual machine.

commands on how to start and stop each version of the iRODS Server can be found

in the INSTALLATION-LOG part of this Appendix.

a) i-Commands Client - several i-Commands are tested, see the installation log

below. More information on the i-commands client including a comprehensive

tutorial is available online at: http://www.irods.org/index.php/Tutorial

b) iRODS Web Browser Client-Since the virtual machine is(was)not accessible

from outside the iRODS Web Browser was installed local and is integrated

into the Apache web-server running on locally. It can be accessed at:

http://localhost/rodsweb

c) Java Client using Jargon the Java API for iRODS. A client that accessed the

iRODS Server is implemented and tested.
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A.1.2 JOSEKI

The Joseki RDF server is set up and tested with sample queries and different output

formats. Details on how to start and configure Joseki on the virtual machine can

be found in the installation log below. Once started with the default configuration

the server will running at: http://localhost:2020/

A.1.3 SPARQL-ADERIS

SPARQL-ADERIS is tested within jSpace, see Section jSPACE and the installation

log, respectively.

A.1.4 PROTEGE

Protege is tested with the e-Science Life Cycle Ontology (version 3.0). Details on

how to start and use protege with the above mentioned ontologies can be found in

the installation below.

A.1.5 jSPACE

jSpace is tested with a local RDF Store and a global RDF Store. The global store

represents the collection of multiple distributed RDF-Stores. Therefore multiple

RDF stores where set up as SPARQL enpoints to be accessible by the SPARQL-

ADERIS distributed SPARQL query processing component that is integrated in

jSpace. A real data set from the Austrian Grid project was distributed across

multiple RDF stores to test jSpace with a global RDF store. jSpace is tested with

several sample SPARQL queries on top of that real test data. More information on

this test data in given in the next Section. Technical details e.g. how to start jSpace

and submit queries, etc can be found in the installation log below.

A.2 Test Data

The test data available from the Austrian Grid project includes a description of

three real breath gas analysis studies. It was collected from breath researchers using

forms. These forms were then used to create individuals and properties of the e-

Science life cycle Search and Query panel using the individual editor embedded in

the Protege software. The results are three life cycle resources based on real breath

gas analysis studies. These life cycle resources where inserted into the local RDF
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store using jSPACE. The test data is also available as SPARQL Endpoint via the

JOSEKI RDF Server. In Table A.1 is a list of available SPARQL endpoints set up

to access the above described test data (Life Cycle Resources) from the Austrian

Grid Project.

No Location URL LCR No

1 Vienna http://lela.gridlab.univie.ac.at:2021/sparql.html LCR1
2 Dornbirn http://fz-ppe.uclv.net:2030/sparql.html LCR2
3 Tsukuba http://db02.hpcc.jp:2020/sparql LCR3

Table A.1: Set up SPARQL-Endpoints hosting real test data.

A.3 Installations-Log

--------------------------------------------------------

------------------- INSTALLATION-LOG -------------------

--------------------------------------------------------

- PREPARATIONS -

----------------

Java 6 SDK (1.6.0.24 is installed)

JAVA_HOME=/usr/lib/jvm/java-6-sun-1.6.0.24

XAMPP 1.7.4 includes:

PHP 5.3.5

Apache 2.2.17 /username: lampp password: password

MySQL 5.5.8 /username: root password: password

phpMyAdmin 3.3.9 /username: root/pma password: password

FTP username: nobody password: password

Start XAMPP (as root):

/opt/lampp/lampp restart

install subversion:

apt-get install subversion

-------------

- iRODS 2.5 -

-------------

iRODS 2.5 directory: /home/user/development/iRODS-2.5/

Command to install iRODS: irodssetup

Include additional promts for advanced settings: no

Build an iRODS server: yes

Make this Server ICAT-Enabled: yes

iRODS zone name: abaZone

iRODS login name: rods

Password: password

Download and build a new Postgres DBMS: yes

New Postgres directory: ../postgres-9.0.3

New database login name: ibrahim

Password: password

PostgreSQL version: postgresql-9.0.3

ODBC version: unixODBC-2.2.12
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Include GSI: no

Save configuration (irods.config): yes

---irods 2.5 configuration in config/irods.config---

$DATABASE_TYPE = ’postgres’;

$DATABASE_ODBC_TYPE = ’unix’;

$DATABASE_EXCLUSIVE_TO_IRODS = ’1’;

$DATABASE_HOME = ’/home/user/development/postgres-9.0.3/pgsql’;

$DATABASE_LIB = ’’;

$DATABASE_HOST = ’ubuntu’;

$DATABASE_PORT = ’5432’;

$DATABASE_ADMIN_PASSWORD = ’password’;

$DATABASE_ADMIN_NAME = ’ibrahim’;

$IRODS_HOME = ’/home/user/development/iRODS-2.5’;

$IRODS_PORT = ’1247’;

$SVR_PORT_RANGE_START = ’’;

$SVR_PORT_RANGE_END = ’’;

$IRODS_ADMIN_NAME = ’rods’;

$IRODS_ADMIN_PASSWORD = ’password’;

$IRODS_ICAT_HOST = ’’;

$DB_NAME = ’ICAT’;

$RESOURCE_NAME = ’demoResc’;

$RESOURCE_DIR = ’/home/user/development/iRODS-2.5/Vault’;

$ZONE_NAME = ’abaZone’;

$DB_KEY = ’123’;

$GSI_AUTH = ’0’;

$GLOBUS_LOCATION = ’’;

$GSI_INSTALL_TYPE = ’’;

---irods 2.5 configuration in config/irods.config---

--------------

- Test iRODS -

--------------

a) start iRODS Server:

----------------------

cd into iRODS directory:

./irodsctl start

b) test i-commands client:

--------------------------

After installation completed successfully update the PATH:

PATH=/Users/ibrahim/development/iRODS/clients/icommands/bin:$PATH

establish a session to use the i-commands client:

iinit

Enter your current iRODS password: rods

imiscsvrinfo --> display info about the iRODS server

ils

ls > testfile --> create a testfile with ls input

iput testfile --> insert the testfile

iput /home/user/development/data/testfile2 --> insert another

testfile
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ils -l --> show files in iRODS including the replica number,

resource on which it is stored, the size and date, as well

as a flag and the name.

ils -L --> shows also the physical path of the files in the

iRODS storage

resource. Files are saved/replicated in

/home/user/development/iRODS/Vault/home/rods/

iget -f testfile --> copies the file into iRODS root directory

(overwrites local copy)

iquest --> SQL-like command syntax for iCAT queries

iquest "select sum(DATA_SIZE), RESC_NAME where COLL_NAME like

’/abaZone/home/rods%’" --> returns data size and resource name

iexit --> log out

c) set up iRODS Web Browser Client

----------------------------------

svn checkout http://extrods.googlecode.com/svn/trunk/

extrods-read-only

symbolic link under Apache’s htdocs directory

pointing to this web directory:

cd /opt/lampp/htdocs

ln -s /home/user/development/iRODS/extrods-read-only/

clients/web rodsweb

make sure htaccess-per-directory and symbolic-link

is allowed in Apache’s config file

in <Directory "/opt/lampp/htdocs">

--> Options Indexes FollowSymLinks MultiViews

--> AllowOverride All /opt/lampp/etc/httpd.conf

Change owner of extrods folder:

sudo chown -R user:user extrods-read-only

extract extjs.zip and rename the folder to extjs

rename extrods-read-only to extrods

update symbolic link:

cd /opt/lampp/htdocs

ln -s /home/user/development/iRODS/extrods/clients/web rodsweb

then go to:

http://localhost/rodsweb

Host/IP: localhost

Port: 1247

username: rods

Password: rods

d) Use Jargon - Java API for iRODS (2.4.1)

------------------------------------------

to get jargon download jargon2.0.5.jar from:

http://code.google.com/p/extrods/downloads/list

create a Java project in eclipse and add jargon to the

java Build path.

add iRODSTestClient.java from

/home/user/development/jargon/test

to the project.

Run iRODSTestClient.java to test the client.

add IRODSMetaDataTest.java from

/home/user/development/jargon/test

to the project.

Run IRODSMetaDataTest.java to test the meta data functions with
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the iRODS server.

----------------

- Joseki-3.4.3 -

----------------

Download Joseki-3.4.3.zip from:

http://sourceforge.net/projects/joseki/files/Joseki-SPARQL/

Joseki-3.4.3/joseki-3.4.3.zip/download

Unzip to:

/home/user/development/Joseki

make the scripts executable:

chmod u+x bin/*

Set the JOSEKIROOT environment variable to

/home/user/development/Joseki

in the environment file:

sudo nano /etc/environment

----------------------------------

- Test Joseki-3.4.3 installation -

----------------------------------

a) Start Joseki Server:

-----------------------

cd $JOSEKIROOT

execute:

bin/rdfserver

b) Test Joseki Server:

----------------------

Go to: http://localhost:2020/query.html

1) in the top box type in the following Select query:

-----query begin------------------------------------

PREFIX books: <http://example.org/book/>

PREFIX dc: <http://purl.org/dc/elements/1.1/>

SELECT ?book ?title

WHERE

{ ?book dc:title ?title }

-----query end--------------------------------------

Select an output format

Click on "Get Results"

Result: Query results in the selected output format

2) in the bottom box type in the following Construct query:

-----query begin------------------------------------

PREFIX dc: <http://purl.org/dc/elements/1.1/>

CONSTRUCT { $book dc:title $title }

WHERE

{ $book dc:title $title }

-----query end--------------------------------------

Click on "Get Results"

Result: an RDF graph with the query results

------------------------

- Protege_4.1_beta.218 -
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------------------------

Provides full support of OWL 2.0

Download Zip archive from:

http://protege.stanford.edu/download/protege/4.1/zip/?C=M;O=D

Extract to:

/home/user/development/Protege_4.1_beta

------------------------------------------

- Test Protege_4.1_beta.218 installation -

------------------------------------------

a) start Protege:

-----------------

cd into Protege directory:

cd into /home/user/development/Protege_4.1_beta

execute the command in run.sh:

java -Xmx500M -Xms250M \

-Dlog4j.configuration=file:log4j.xml \

-DentityExpansionLimit=100000000 \

-Dfile.encoding=UTF-8 \

-classpath bin/felix.jar:bin/ProtegeLauncher.jar \

org.protege.osgi.framework.Launcher

b) test Protege with Ontology from the TONES repository:

--------------------------------------------------------

e.g. the family ontology

OWLViz requires that Graphiz (www.Graphiz.org) is installed and

the path to the DOT application is set properly (in options).

c) test Protege with the e-Science life cycle Ontology:

-------------------------------------------------------

1) Start Protege as in a)

2) Select "Open OWL ontology from URI"

3) type in the URI:

http://www.gridminer.org/e-sciencelifecycle/

lifecycleontology_v3.0.owl

4) Explore the ontology using Protege

-----------------

- SPARQL-ADERIS -

-----------------

There is no need to install SPARQl-ADERIS as a standalone tool

or to use the SPARQL-ADERIS GUI, because the SPARQL-ADERIS

API is invoked in jSpace and will be used within jSpace to

query multiple RDF stores.

---------------------------

- jSpace-1.0 installation -

---------------------------

Unzip jSpace-1.0.zip into

/home/development/jSpace-1.0

setup local RDF store for jSpace:

Start MySQL database (xampp):

sudo /opt/lampp/lampp start

create a new database named "lifecycle" in MySQL using phpMyAdmin
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in xampp

cd into jSpace directory:

cd /home/development/jSpace-1.0

execute setup:

ant setup

jSpace Configuration is currently hard-coded and can be find in the

file jSpaceSetup.java in the org.gridminer.jspace.config package

---RDF-Store Settings----------------------------

DB_URL = "jdbc:mysql://localhost:3306/lifecycle";

DB_USER = "root";

DB_PASSWD = "password";

DB = "MySQL";

DB_DRIVER = "com.mysql.jdbc.Driver";

Source = "http://www.gridminer.org/e-sciencelifecycle/

lifecycleontology_v3.0_LCR1.owl"

-------------------------------------------------

Results: A local RDF store is set up and data (the e-science life

cycle ontology including individuals and properties) is

being loaded into the RDF store.

----------------------------

- Test jSpace installation -

----------------------------

a) start e-Science life cycle composer:

---------------------------------------

cd into jSpace directory:

cd /home/development/jSpace-1.0

ant compose

b) test e-Science life cycle composer:

---------------------------------------

Fill out the forms in each tab then click on OK.

open a Web browser and got to:

file:///home/user/development/jSpace-1.0/LCR234.xml

to see the created life cycle resource in XML file format.

Results: A file is being created in XML format to represent a

complete life cycle resource (LCR). Either this file could be

parsed or data is taken directly from the GUI in order to create

the individuals and properties of the e-Science life cycle ontology.

Alternatively the protege individual editor could be used as was

done with the test data from the Austrian Grid project.

c) start jSpace Search&Query Panel:

-----------------------------------

cd into jSpace directory:

cd /home/development/jSpace-1.0

ant search

d) test jSpace Search&Query Panel with a the local RDF store:

-------------------------------------------------------------

cd into jSpace directory:

cd /home/development/jSpace-1.0

ant search

go to File/Config and check the configuration for the local RDF store:

it should be the following:
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---------------------------------------------

DB URL: jdbc:mysql://localhost:3306/lifecycle

DB TYPE: MySQL

DB USER: root

DB PASSWORD: password

DB DRIVER: com.mysql.jdbc.Driver

--------------------------------------------

Close the configuration window

Select the SPARQL tab

Type in a Sparql Query or choose one of the predefined queries by

clicking on the buttons in the right bottom corner of the GUI.

Select the Local RDF store

Chose an output format

Click on SUBMIT to submit the query

Go to the BROWSE tab to see the results, alternatively you can

click on "Open in System Editor" to open the file with the results

in the system editor

e) test jSpace Search&Query Panel with multiple (global) RDF stores:

-------------------------------------------------------------------

To test the jSpace Search&Query Panel with multiple RDF stores

(that is the global RDF store), we need first to set up multiple RDF

Stores. Since SPARQl-ADERIS is used as adaptive SPARQL

query processor and it requires each RDF store to be available

as SPARQL Endpoint we define some RDF stores as SPARQL

Endpoints using Joseki.

cd to the Joseki root directory:

cd $JOSEKIROOT

vienna.ttl is the Joseki configuration file for a SPARQl Endpoint.

It is configured to access the dataset lco1.nt in the directory

abadata in the memory model. To change the dataset

change find the following in the vienna.ttl config file:

-----------------------------------------------------------------

_:vienna rdf:type ja:RDFDataset ;

rdfs:label "Live Cycle Ontology" ;

ja:defaultGraph

[ a ja:MemoryModel ;

rdfs:label "LCO" ;

ja:content [ ja:externalContent <file:abadata/lco1.nt> ]

] ;

.

-----------------------------------------------------------------

lco1.nt represent a single life cycle resource as individuals and

properties of the e-Science life cycle. The data was collected

in the Austrian Grid project and is described below. The folder

abadata contains also lco2.nt and lco3.nt, which are just

different life cycle resources.

Start the Joseki server with that config file to set up the

SPARQL-Endpoint, which is then running on this host.

bin/rdfserver --port 2010 vienna.ttl

Equally we set up 2 other SPARQL Endpoints on the

same host but on different ports to have multiple RDF stores:

bin/rdfserver --port 2020 vienna2.ttl
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bin/rdfserver --port 2030 vienna3.ttl

Now, once the three RDF stores are up and running as Sparql

Endpoints we can query them using the embedded

SPARQL-ADERIS Sparql Query processor in jSpace.

Start the jSpace Search&Query Panel:

cd into jSpace root directory:

cd /home/user/development/jSpace-1.0

ant search

check the configuration for the global RDF store in

File/Config

Point to the three set up Sparql endpoint. Alternatively any

Sparql endpoint from the list below can be selected.

Close the config window. Go to the Sparql tab. Select

Global RDF store, choose an output format and a query

from the predefined queries (or type in another query) and

click in SUBMIT.

Results are shown in the BROWSE tab and a file is

generated with the result-set from the query.

sample SPARQL queries

---------------------

In the following there is a list of some sample queries that

were executed on the local and global RDF stores hosting

the test data from the Austrian Grid project. These queries

can be dropped into the jSpace Search&Query panel by

clicking on the small buttons in the predefined queries area

of the jSpace Search&Query GUI.

Test Query1:

--------------------------------------------------------------------

PREFIX owl: <http://localhost/LifeCycleOntology.owl#>

SELECT ?lifeCycle ?goalSpecification ?dataPreparation ?taskSelection

WHERE {

?lifeCycle owl:hasGoalSpecification ?goalSpecification.

?lifeCycle owl:hasTaskSelection ?taskSelection.

?lifeCycle owl:hasDataPreparation ?dataPreparation.

}

--------------------------------------------------------------------

Test Query2:

-----------------------------------------------------

PREFIX owl: <http://localhost/LifeCycleOntology.owl#>

SELECT ?s ?p ?o WHERE { ?s ?p ?o }

-----------------------------------------------------

Test Query3:

-----------------------------------------------------

PREFIX owl: <http://localhost/LifeCycleOntology.owl#>

SELECT ?s ?p WHERE { ?s ?p owl:i.elsayed }

-----------------------------------------------------

Test Query4:
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-------------------------------------------------------

PREFIX owl: <http://localhost/LifeCycleOntology.owl#>

SELECT ?lifeCycle ?goalSpecification ?p ?o

WHERE {

?lifeCycle owl:hasGoalSpecification ?goalSpecification.

?lifeCycle ?p ?o. }

-------------------------------------------------------

Test Query5:

-----------------------------------------------------

PREFIX owl: <http://localhost/LifeCycleOntology.owl#>

SELECT ?member ?p ?o

WHERE {

owl:researchGroup_1 owl:hasMembers ?member.

?member ?p ?o

}

-----------------------------------------------------

Test Query6:

------------------------------------------------------

PREFIX owl: <http://localhost/LifeCycleOntology.owl#>

SELECT ?lifeCycle ?goalSpecification ?dataPreparation

?taskSelection ?metadata

WHERE {

?lifeCycle owl:hasGoalSpecification ?goalSpecification.

?lifeCycle owl:hasTaskSelection ?taskSelection.

?lifeCycle owl:hasDataPreparation ?dataPreparation.

?goalSpecification owl:hasMetadata ?metadata.

?metadata owl:keywords ?.

}

------------------------------------------------------



Appendix B

A concrete Life Cycle Resource

from a real Breath Gas Analysis

Study

Within this Appendix we exemplify a life cycle resource (LCR) from a real breath

gas analysis application. A visual illustration of OWL classes and properties of a

single slightly simplified LCR is given in Figure B.1. The figure shows selected OWL

classes and their object and datatype properties of the e-Science life cycle ontology

that correspond to an LCR. It gives an overview of the semantic relationships orga-

nized within a LCR. Ellipses represent the values of datatype properties. Rounded

rectangles represent the OWL classes and the edges among them represent object

properties. In order to give a clear abstract overview of the main concepts of an

LCR and to avoid crossing edges we are not illustrating all object properties defined

in the e-Science life cycle ontology.



B.1. Life Cycle Activities 253

firstName
person

lastName

age

phone

email

state

homepage

title

research
Domain

metadata

hasDescriptionData/
describes

isDomainOf/
belongsToDomain

description

keywords

attributeValue

attribute

attributeName

scientist

student

subDomain

goalSpecification

dataPreparation

EPR

hasEPR/
isEPRof

hasMetadata/
describes

type

value

participant

primaryData

backgroundData

derivedData

hasPrimaryData/
belongsToDataPreparation

taskSelection

hasBackgroundData/
belongsToTaskSelection

taskExecution

hasDerivedData

hasMetadata/
describes

hasMetadata/
describes

hasMetadata/
describes

hasMetadata/
describes

hasMetadata/
describes

resultPublishing

hasMetadata/
describes

hasDerivedData

lifeCycle

isExecutedBy/
executes

publicationMode

isPublishedBy/
isPublicationMode

collaboration

reserachGroup

hasPublicationModehasPublicationMode

hasPublicationMode

hasPublicationMode

isMemberOf/
hasMembers

inCollaborationWith/
hasCollaborativeGroup

Figure B.1: Classes and properties of a single LCR.

B.1 Life Cycle Activities

In the following we provide for each activity of the e-Science life cycle in own figure

illustrating the instance of the activity of a concrete LCR from the BGA application.

Figure B.2 illustrates the goal specification activity. Figure B.3 illustrates the data

preparation activity. Figure B.4 illustrates the task selection activity. Figure B.5

illustrates the task execution activity. Figure B.6 illustrates the result publishing

activity.
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Figure B.2: Classes and properties of the goal specification activity of a concrete
BGA LCR.
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Figure B.4: Classes and properties of the task selection activity of a concrete BGA
LCR.
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LCR.
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Figure B.6: Classes and properties of the result processing activity of a concrete
BGA LCR.
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B.2 Individuals of the e-Science life cycle onto-

logy

Selected individuals of the e-Science life cycle ontology describing the above intro-

duced LCR resource are listed in the following in the Notation3 (N3) RDF syntax

[n311]. Prior to the listing of the individuals we give selected classes and their cor-

responding object and datatype properties defined in the ontology. The listing is

organized into groups separated by comments. We choose the N3 syntax since it is

much more compact and readable than the XML RDF syntax [rdf11].
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####################################################################

# Class representing a lifecycle resource

####################################################################

default:lifeCycle

a owl:Class ;

rdfs:subClassOf owl:Thing ;

rdfs:subClassOf

[ a owl:Restriction ;

owl:maxCardinality "1"^^xsd:int ;

owl:onProperty default:hasResultPublishing

] ;

rdfs:subClassOf

[ a owl:Restriction ;

owl:maxCardinality "1"^^xsd:int ;

owl:onProperty default:hasTaskSelection

] ;

rdfs:subClassOf

[ a owl:Restriction ;

owl:maxCardinality "1"^^xsd:int ;

owl:onProperty default:hasGoalSpecification

] ;

rdfs:subClassOf

[ a owl:Restriction ;

owl:maxCardinality "1"^^xsd:int ;

owl:onProperty default:hasDataPreparation

] ;

rdfs:subClassOf

[ a owl:Restriction ;

owl:maxCardinality "1"^^xsd:int ;

owl:onProperty default:hasTaskExecution

] ;

rdfs:subClassOf

[ a owl:Restriction ;

owl:onProperty default:isPublishedBy ;

owl:someValuesFrom default:publicationMode

] ;

rdfs:subClassOf

[ a owl:Restriction ;

owl:allValuesFrom default:scientist ;

owl:onProperty default:isExecutedBy

] .

####################################################################

# Classes representing the e-Science life cycle activities

####################################################################

default:activity

a owl:Class .

default:goalSpecification

a owl:Class ;

rdfs:comment "The goalSpecification activity of the e-science life cycle.";

rdfs:subClassOf default:activity ;

rdfs:subClassOf

[ a owl:Restriction ;
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owl:onProperty default:hasMetadata ;

owl:someValuesFrom default:metadata

] ;

owl:disjointWith default:resultPublishing , default:taskExecution ,

default:dataPreparation , default:taskSelection .

default:dataPreparation

a owl:Class ;

rdfs:comment "The dataPreparation activity of the e-science life cycle.";

rdfs:subClassOf default:activity ;

rdfs:subClassOf

[ a owl:Restriction ;

owl:onProperty default:hasMetadata ;

owl:someValuesFrom default:metadata

] ;

rdfs:subClassOf

[ a owl:Restriction ;

owl:onProperty default:hasEPR ;

owl:someValuesFrom default:EPR

] ;

owl:disjointWith default:resultPublishing , default:taskExecution ,

default:goalSpecification , default:taskSelection .

default:taskSelection

a owl:Class ;

rdfs:comment "The taskSelection activity of the e-science life cycle." ;

rdfs:subClassOf default:activity ;

owl:disjointWith default:resultPublishing , default:taskExecution ,

default:goalSpecification , default:dataPreparation .

default:taskExecution

a owl:Class ;

rdfs:comment "The taskExecution activity of the e-science life cycle." ;

rdfs:subClassOf default:activity ;

rdfs:subClassOf

[ a owl:Restriction ;

owl:onProperty default:hasMetadata ;

owl:someValuesFrom default:metadata

] ;

owl:disjointWith default:resultPublishing , default:goalSpecification ,

default:dataPreparation , default:taskSelection .

default:resultPublishing

a owl:Class ;

rdfs:comment "The resultPublishing activity of the e-science life cycle." ;

rdfs:subClassOf default:activity ;

owl:disjointWith default:taskExecution , default:goalSpecification ,

default:dataPreparation , default:taskSelection .
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####################################################################

# Classes for managing dataspace participants

####################################################################

default:participant

a owl:Class .

default:primaryData

a owl:Class ;

rdfs:subClassOf default:participant .

default:backgroundData

a owl:Class ;

rdfs:subClassOf default:participant .

default:derivedData

a owl:Class ;

rdfs:subClassOf default:participant .

default:EPR

a owl:Class ;

rdfs:subClassOf owl:Thing ;

rdfs:subClassOf

[ a owl:Restriction ;

owl:onProperty default:isEPRof ;

owl:someValuesFrom default:primaryData

] ;

rdfs:subClassOf

[ a owl:Restriction ;

owl:onProperty default:isEPRof ;

owl:someValuesFrom default:backgroundData

] ;

rdfs:subClassOf

[ a owl:Restriction ;

owl:onProperty default:isEPRof ;

owl:someValuesFrom default:derivedData

] .

####################################################################

# Classes for managing publication modes

####################################################################

default:researchDomain

a owl:Class ;

rdfs:subClassOf owl:Thing ;

rdfs:subClassOf

[ a owl:Restriction ;

owl:onProperty default:hasMetadata ;

owl:someValuesFrom default:metadata

] ;

rdfs:subClassOf

[ a owl:Restriction ;

owl:onProperty default:isDomainOf ;

owl:someValuesFrom default:scientist

] .
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default:subDomain

a owl:Class ;

rdfs:subClassOf default:researchDomain .

default:researchGroup

a owl:Class ;

rdfs:subClassOf owl:Thing ;

rdfs:subClassOf

[ a owl:Restriction ;

owl:onProperty default:hasMetadata ;

owl:someValuesFrom default:metadata

] ;

rdfs:subClassOf

[ a owl:Restriction ;

owl:onProperty default:inCollaborationWith ;

owl:someValuesFrom default:collaboration

] .

default:collaboration

a owl:Class ;

rdfs:subClassOf owl:Thing ;

rdfs:subClassOf

[ a owl:Restriction ;

owl:onProperty default:hasCollaborativeGroup ;

owl:someValuesFrom default:researchGroup

] .

default:publicationMode

a owl:Class ;

rdfs:subClassOf owl:Thing ;

rdfs:subClassOf

[ a owl:Restriction ;

owl:onProperty default:hasPublicationMode ;

owl:someValuesFrom default:collaboration

] ;

rdfs:subClassOf

[ a owl:Restriction ;

owl:onProperty default:hasPublicationMode ;

owl:someValuesFrom default:researchDomain

] ;

rdfs:subClassOf

[ a owl:Restriction ;

owl:onProperty default:hasPublicationMode ;

owl:someValuesFrom default:person

] ;

rdfs:subClassOf

[ a owl:Restriction ;

owl:onProperty default:hasPublicationMode ;

owl:someValuesFrom default:researchGroup

] .

default:scientist

a owl:Class ;

rdfs:subClassOf default:person ;

rdfs:subClassOf
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[ a owl:Restriction ;

owl:onProperty default:isMemberOf ;

owl:someValuesFrom default:researchGroup

] ;

rdfs:subClassOf

[ a owl:Restriction ;

owl:onProperty default:belongsToDomain ;

owl:someValuesFrom default:researchDomain

] ;

rdfs:subClassOf

[ a owl:Restriction ;

owl:onProperty default:executes ;

owl:someValuesFrom default:lifeCycle

] .

default:metadata

a owl:Class ;

rdfs:comment "This class describes any individual according to the self-defined attributes." ;

rdfs:subClassOf owl:Thing ;

rdfs:subClassOf

[ a owl:Restriction ;

owl:onProperty default:describes ;

owl:someValuesFrom default:researchDomain

] ;

rdfs:subClassOf

[ a owl:Restriction ;

owl:onProperty default:describes ;

owl:someValuesFrom default:researchGroup

] ;

rdfs:subClassOf

[ a owl:Restriction ;

owl:onProperty default:describes ;

owl:someValuesFrom default:participant

] ;

rdfs:subClassOf

[ a owl:Restriction ;

owl:onProperty default:describes ;

owl:someValuesFrom default:dataPreparation

] ;

rdfs:subClassOf

[ a owl:Restriction ;

owl:onProperty default:describes ;

owl:someValuesFrom default:taskExecution

] ;

rdfs:subClassOf

[ a owl:Restriction ;

owl:onProperty default:describes ;

owl:someValuesFrom default:goalSpecification

] .

####################################################################

# Selected object properties

####################################################################

default:hasAttribute
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a owl:ObjectProperty ;

rdfs:domain default:metadata ;

rdfs:range default:attribute .

default:isExecutedBy

a owl:ObjectProperty ;

rdfs:domain default:lifeCycle ;

rdfs:range default:scientist ;

owl:inverseOf default:executes .

default:hasMetadata

a owl:ObjectProperty ;

rdfs:domain

[ a owl:Class ;

owl:unionOf ( default:goalSpecification

default:researchDomain

default:dataPreparation

default:researchGroup

default:taskExecution

default:participant

default:taskSelection)

] ;

rdfs:range default:metadata ;

owl:inverseOf default:describes .

default:hasResearchDomain

a owl:ObjectProperty .

default:hasMembers

a owl:ObjectProperty ;

rdfs:domain default:researchGroup ;

rdfs:range default:scientist ;

owl:inverseOf default:isMemberOf .

default:isPublicationModeOf

a owl:ObjectProperty ;

rdfs:domain default:publicationMode ;

rdfs:range default:lifeCycle ;

owl:inverseOf default:isPublishedBy .

default:hasTaskSelection

a owl:FunctionalProperty , owl:ObjectProperty ;

rdfs:domain default:lifeCycle ;

rdfs:range default:taskSelection .

default:isEPRof

a owl:ObjectProperty ;

rdfs:domain default:EPR ;

rdfs:range default:participant ;

owl:inverseOf default:hasEPR .

default:hasPrimaryData

a owl:ObjectProperty ;

rdfs:domain default:dataPreparation ;

rdfs:range default:primaryData ;

owl:inverseOf default:belongsToDataPreparation .
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default:isDomainOf

a owl:ObjectProperty ;

rdfs:domain default:researchDomain ;

rdfs:range default:scientist ;

owl:inverseOf default:belongsToDomain .

default:isMemberOf

a owl:ObjectProperty ;

rdfs:domain default:scientist ;

rdfs:range default:researchGroup ;

owl:inverseOf default:hasMembers .

default:hasBackgroundData

a owl:ObjectProperty ;

rdfs:domain default:taskSelection ;

rdfs:range default:backgroundData ;

owl:inverseOf default:belongsToTaskSelection .

default:inCollaborationWith

a owl:ObjectProperty ;

rdfs:domain default:researchGroup ;

rdfs:range default:collaboration ;

owl:inverseOf default:hasCollaborativeGroup .

default:hasResultPublishing

a owl:FunctionalProperty , owl:ObjectProperty ;

rdfs:domain default:lifeCycle ;

rdfs:range default:resultPublishing .

default:EPRvalue

a owl:DatatypeProperty ;

rdfs:domain default:EPR ;

rdfs:range xsd:string .

default:belongsToDataPreparation

a owl:ObjectProperty ;

owl:inverseOf default:hasPrimaryData .

default:hasDataPreparation

a owl:FunctionalProperty , owl:ObjectProperty ;

rdfs:domain default:lifeCycle ;

rdfs:range default:dataPreparation .

default:belongsToTaskSelection

a owl:ObjectProperty ;

owl:inverseOf default:hasBackgroundData .

default:hasCollaborativeGroup

a owl:ObjectProperty ;

rdfs:domain default:collaboration ;

rdfs:range default:researchGroup ;

owl:inverseOf default:inCollaborationWith .

default:isPublishedBy

a owl:ObjectProperty ;
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rdfs:domain default:lifeCycle ;

rdfs:range default:publicationMode ;

owl:inverseOf default:isPublicationModeOf .

default:hasEPR

a owl:ObjectProperty ;

rdfs:domain default:participant ;

rdfs:range default:EPR ;

owl:inverseOf default:isEPRof .

default:executes

a owl:ObjectProperty ;

rdfs:domain default:scientist ;

rdfs:range default:lifeCycle ;

owl:inverseOf default:isExecutedBy .

default:describes

a owl:ObjectProperty ;

rdfs:domain default:metadata ;

rdfs:range

[ a owl:Class ;

owl:unionOf ( default:dataPreparation

default:researchDomain

default:goalSpecification

default:researchGroup

default:taskExecution)

] ;

owl:inverseOf default:hasMetadata .

default:belongsToDomain

a owl:ObjectProperty ;

rdfs:domain default:scientist ;

rdfs:range default:researchDomain ;

owl:inverseOf default:isDomainOf .

default:keywords

a owl:DatatypeProperty ;

rdfs:domain default:metadata ;

rdfs:range xsd:string .

default:hasGoalSpecification

a owl:FunctionalProperty , owl:ObjectProperty ;

rdfs:domain default:lifeCycle ;

rdfs:range default:goalSpecification .

default:hasTaskExecution

a owl:FunctionalProperty , owl:ObjectProperty ;

rdfs:domain default:lifeCycle ;

rdfs:range default:taskExecution .

default:lastName

a owl:DatatypeProperty ;

rdfs:domain default:person .

default:hasDerivedData
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a owl:ObjectProperty ;

rdfs:domain

[ a owl:Class ;

owl:unionOf (default:taskExecution default:resultPublishing)

] ;

rdfs:range default:derivedData .

default:hasPublicationMode

a owl:ObjectProperty ;

rdfs:domain default:publicationMode ;

rdfs:range

[ a owl:Class ;

owl:unionOf ( default:researchDomain

default:researchGroup

default:collaboration

default:person)

] .

######################################################################

# Selected datatype properties ##

######################################################################

default:attributeValue

a owl:DatatypeProperty ;

rdfs:domain default:attribute ;

rdfs:range xsd:string .

default:country

a owl:DatatypeProperty .

default:EPRtype

a owl:DatatypeProperty ;

rdfs:domain default:EPR ;

rdfs:range xsd:string .

default:homepage

a owl:DatatypeProperty ;

rdfs:domain default:person .

default:Name

a owl:DatatypeProperty ;

rdfs:domain default:metadata ;

rdfs:range xsd:string .

default:firstName

a owl:DatatypeProperty ;

rdfs:domain default:person ;

rdfs:range xsd:string .

default:description

a owl:DatatypeProperty ;

rdfs:domain default:metadata ;

rdfs:range xsd:string .

default:email
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a owl:DatatypeProperty ;

rdfs:domain default:person .

default:state

a owl:DatatypeProperty ;

rdfs:domain default:person .

default:age

a owl:DatatypeProperty ;

rdfs:domain default:person .

default:attributeName

a owl:DatatypeProperty ;

rdfs:comment "The name of an attribute."^^xsd:string ;

rdfs:domain default:attribute ;

rdfs:range xsd:string .

######################################################################

# Selected individuals of a concrete LCR

######################################################################

### The LCR individual ###

default:lifeCycle_1

a default:lifeCycle ;

rdfs:comment "This class forms the e-science life cycle by connecting the five e-science

life cycle activities and attaching a publication mode and a reference to the scientists

who executed the study."^^xsd:string ;

default:hasDataPreparation

default:dataPreparation_12 ;

default:hasGoalSpecification

default:goalSpecification_13 ;

default:hasResultPublishing

default:resultPublishing_22 ;

default:hasTaskExecution

default:taskExecution_22 ;

default:hasTaskSelection

default:taskSelection_19 ;

default:isExecutedBy

<http://localhost/LifeCycleOntology.owl#f.schoepf> ;

default:isPublishedBy

default:publicationMode_1 .

### Individuals of the five life cycle activities and their corresponding descriptions ###

default:goalSpecification_13

a default:goalSpecification ;

rdfs:comment "The goalSpecification activity of an e-science life cycle." ;

default:hasMetadata default:metadata_3 .

default:metadata_3

a default:metadata ;

rdfs:comment "Metadata about a goalSpecification activity" ;

default:describes default:goalSpecification_13 ;
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default:description " A pilot study to define typical characteristics of the trace gas

compounds in exhaled breath of non-smokers and smokers to assist

interpretation of breath analysis data from patients who smoke

with respiratory diseases and lung cancer."@en ;

default:keywords "trace gas compounds"@en ,

"respiratory diseases"@en ,

"lung cancer"@en .

default:dataPreparation_12

a default:dataPreparation ;

rdfs:comment "The dataPreparation activity of an e-science life cycle." ;

default:hasMetadata default:metadata_4 ;

default:hasPrimaryData

default:primaryData_1 .

default:metadata_4

a default:metadata ;

rdfs:comment "Metadata about a dataPreparation activity" ;

default:describes default:primaryData_1 , default:dataPreparation_12 ;

default:description " Exhaled breath (analyzed using proton PTRMS) for 370 volunteers

(81 smokers, 210 non-smokers, 79 ex-smokers)"@en ;

default:keywords "smokers"@en ,

"ex-smokers"@en ,

"non-smokers"@en ,

"PTR-MS"@en .

default:taskSelection_19

a default:taskSelection ;

rdfs:comment "The taskSelection activity of an e-science life cycle." ;

default:hasBackgroundData

default:backgroundData_1 ;

default:hasMetadata default:metadata_6 .

default:metadata_6

a default:metadata ;

default:describes default:backgroundData_1 , default:taskSelection_19 ;

default:description " This background dataset includes all MATLAB functions used in the

experiment, including Liliefors test, repeated measure analysis

of variance (ANOVA, Kruskal-Wallis)."@en ;

default:keywords "receiver-operator-characteristics (ROC) curves"@en ,

"Liliefors test"@en ,

"Kruskal-Wallis"@en ,

"ANOVA"@en .

default:taskExecution_22

a default:taskExecution ;

rdfs:comment "The taskExecution activitiy of an e-science life cycle." ;

default:hasDerivedData

default:derivedData_1 ;

default:hasMetadata default:metadata_7 .

default:metadata_7

a default:metadata ;

rdfs:comment "The metadata about a taskExecution activity." ;

default:describes default:taskExecution_22 , default:derivedData_1 ;

default:description " Volatile organic compounds corresponding to product ions at
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seven mass-to-charge ratios (m/z 28,42,69,79,93,97,123) in

the PTR-MS spectra differentiate between smokers

and non-smokers"@en ;

default:keywords "differentiation smokers and non-smokers"@en ,

"Youden index (YI = 0.43)"@en ,

"product ions"@en ,

"mass-to-charge ratios (m/z 28,42,69,79,93,97,123)"@en .

default:resultPublishing_22

a default:resultPublishing ;

rdfs:comment "The resultPublishing activity of an e-science life cycle." ;

default:hasDerivedData

default:derivedData_2 , default:derivedData_1 .

default:f.schoepf

a default:scientist ;

rdfs:comment "A scientists affiliation and contact details."@en ;

default:age "31"^^xsd:string ;

default:belongsToDomain

default:breathGasAnalysis ;

default:email "e@mail.com" ;

default:homepage "http://www.myhomepage.com" ;

default:executes default:lifeCycle_1 ;

default:firstName "Felizitas" ;

default:lastName "Schoepf" ;

default:state "Austria" .

### Individuals related to datasets of the LCR ###

default:primaryData_1

a default:primaryData ;

rdfs:comment ""^^xsd:string ;

default:belongsToDataPreparation

default:dataPreparation_12 ;

default:hasEPR default:EPR_1 ;

default:hasMetadata default:metadata_4 .

default:EPR_1

a default:EPR ;

rdfs:comment "The EPR to a primary dataset from a dataPreparation activity." ;

default:EPRtype "iRODS"@en ;

default:EPRvalue "Vault/abazone/fids12.zip"@en ;

default:isEPRof default:primaryData_1 .

default:backgroundData_1

a default:backgroundData ;

rdfs:comment "A backgroundData set from the taskSelection activity." ;

default:belongsToTaskSelection

default:taskSelection_19 ;

default:hasEPR default:EPR_2 ;

default:hasMetadata default:metadata_6 .

default:EPR_2

a default:EPR ;

rdfs:comment "The EPR of a background data set." ;
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default:EPRtype "iRODS"@en ;

default:EPRvalue "Vault/abazone/methods.zip" ;

default:isEPRof default:backgroundData_1 .

default:derivedData_1

a default:derivedData ;

rdfs:comment "The derived data participant of a life cycle." ;

default:hasEPR default:EPR_3 ;

default:hasMetadata default:metadata_7 .

default:EPR_3

a default:EPR ;

rdfs:comment "The EPR of a derived data set." ;

default:EPRtype "iRODS"@en ;

default:EPRvalue "/Vault/abazone/results22.zip"@en ;

default:isEPRof default:derivedData_1 .

default:derivedData_2

a default:derivedData ;

rdfs:comment "This is the derived data participant representing the manuscript";

default:hasEPR default:EPR_4 ;

default:hasMetadata default:metadata_8 .

default:EPR_4

a default:EPR ;

rdfs:comment "The EPR to a scientific publication representing the

output of a specific study." ;

default:EPRtype "URL"@en ;

default:EPRvalue "http://www.iop.org/EJ/article/1752-7163/2/2/026002/jbr8_2_026002.pdf"@en ;

default:isEPRof default:derivedData_2 .

### Individuals regarding the scientific domain of the LCR ###

default:breathGasAnalysis

a default:researchDomain ;

rdfs:comment "A research area/scientific domain."@en ;

default:hasMetadata default:metadata_1 ;

default:isDomainOf default:f.schoepf ;

...

defautl:isDomainOf default:otherUsers.

default:metadata_1

a default:metadata ;

rdfs:comment "This is a brief description of the breath gas analysis domain." ;

default:describes default:breathGasAnalysis ;

default:description " Breath Gas Analysis is an emerging new scientific field with

a growing international scientific community addressing many

different breath gas studies in terms of investigating and

screening of hundreds of compounds in exhaled breath gas." ;

default:keywords "breath gas analysis"@en ,

"volatile organic compound"@en ,

"exhaled breath gas"@en .
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