Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universitat Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

FAKULTAT
FUR INFORMATIK
Faculty of Informatics

Description Methods for
Asynchronous Circuits —
A Comparison

DIPLOMARBEIT
zur Erlangung des akademischen Grades
Diplom-Ingenieur
im Rahmen des Studiums
Technische Informatik
eingereicht von

Robert Najvirt
Matrikelnummer 0526813

an der
Fakultat fir Informatik der Technischen Universitat Wien

Betreuung
Betreuer: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Andreas Steininger
Mitwirkung: Dipl.-Ing. Jakob Lechner

Wien, 27.9.2011

(Unterschrift Verfasser) (Unterschrift Betreuer)

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 = www.tuwien.ac.at

Erklarung zur Verfassung
der Arbeit

Robert Najvirt
Gessayova 25
851 03 Bratislava

Hiermit erklére ich, dass ich diese Arbeit selbstdndig verfasst habe, dass
ich die verwendeten Quellen und Hilfsmittel vollstdndig angegeben habe und
dass ich die Stellen der Arbeit — einschliefllich Tabellen, Karten und Abbil-
dungen —, die anderen Werken oder dem Internet im Wortlaut oder dem Sinn
nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Entlehnung
kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

Abstract

The advances of silicon manufacturing technology make it possible to integrate
billion-transistor systems on a single die but the price to pay is higher parame-
ter variability, resulting in problems with reliability, difficult clock distribution,
high power consumption and more. Proponents of asynchronous circuits claim
them to be a possible solution to most of these problems and they are indeed
becoming an increasingly interesting design choice.

The aim of this work is to describe the most established description meth-
ods for asynchronous circuits, compare them in respect to a number of param-
eters and list their advantages and disadvantages. To further illustrate the dif-
ferences, a simple ring topology network interface controller is described with
all the considered methods and the implications of their use for the description
are indicated. Next, to demonstrate the use of each description method in its
typical field of application, selected parts of the faculty developed SPEAR2
processor are implemented with the methods.

As a result of this work a comparison of seven different description methods
is now available that, unlike the existing literature so far, views these methods
from the same angle, namely a carefully chosen set of criteria. This compari-
son, along with the selected demonstrative examples, could serve prospective
designers of asynchronous circuits when choosing a description method for a
project. At the same time, the extraction of the underlying concepts of the
considered methods along with their comparison is also valuable for a didactic
presentation of asynchronous design.

ii

Kurzfassung

Die Fortschritte in den Siliziumherstellungsverfahren ermoglichen es, Systeme
mit Milliarden von Transistoren auf einem einzigen Chip zu integrieren. Die
Nachteile einer solchen Miniaturisierung sind hohere Parametervariabilitét,
die zu Problemen mit Zuverlassigkeit fithrt, erschwerte Taktverteilung, hoher
Energieverbrauch und andere. Befithrworter von asynchronen Schaltungen be-
haupten, diese seien eine mogliche Lésung von den meisten dieser Probleme
und sie sind tatséchlich eine zunehmend interessante Designmoglichkeit.

Das Ziel dieser Arbeit ist es, die etabliertesten Beschreibungsmethoden fiir
asynchrone Schaltungen zu beschreiben, sie anhand einer Anzahl von Para-
metern zu vergleichen und ihre Vorteile und Nachteile zu benennen. Um die
Unterschiede besser zu verdeutlichen, wurde ein einfacher Ringnetzwerkkon-
troller mit allen den betrachteten Methoden beschrieben und auf die Konse-
quenz derer Benutzung fiir die Beschreibung hingewiesen. Um die Benutzung
von Beschreibungsmethoden in ihren typischen Anwendungsgebieten zu zei-
gen, wurden zuséatzlich gewdhlte Teile von dem auf der Fakultét entwickelten
SPEAR2 Prozessor mit den Methoden beschrieben.

Als Ergebnis dieser Arbeit ist jetzt ein Vergleich von sieben Beschreibungs-
methoden vorhanden, die diese Methoden, im Gegensatz zu der bestehenden
Literatur, vom selben Blickwinkel betrachtet, und zwar durch sorgfiltig aus-
gewahlte Beurteilungskriterien. Dieser Vergleich mit den gewéhlten anschau-
lichen Beispielen kann einerseits zukiinftigen Entwicklern von asynchronen
Schaltungen bei der Wahl einer Beschreibungsmethode fiir ein Projekt von
Nutzen sein. Gleichzeitig aber kann sie durch die Erfassung der grundlegenden
Konzepte der betrachteten Methoden zusammen mit deren Vergleich wertvoll
fiir didaktische Présentationen von asynchronem Design sein.

iii

Table of Contents

Introduction

1 Asynchronous Circuits

1.1
1.2

1.3

2.1
2.2
2.3

24

2.5

2.6

3.1

3.2

Why Asynchronous?
Asynchronous Circuits
1.2.1 Timing models L
1.2.2 Asynchronous communication
1.2.3 Metastability
1.2.4 Typical components
Properties of Asynchronous Circuits
2 Description Methods
Problems in asynchronous circuit design
Production Rule Sets
Asynchronous Finite State Machines
2.3.1 Fundamental Mode Asynchronous Finite State Machines
2.3.2 Burst-Mode Asynchronous Finite State Machines
Signal Transition Graphs Lo oo
24.1 PetriNets e
2.4.2 Signal Transition Graphs
Timed Event/Level Structures
2.5.1 Timed Event/Level Structures
CSP-Based Descriptions L o
2.6.1 Communicating Sequential Processes
2.6.2 Common characteristics
2.6.3 Communicating Hardware Processes
2.6.4 Haste
2.6.5 Balsa e
3 Comparison by Example
The Circuit o
3.1.1 Building Blocks oo L
3.1.2 Motivation for the Choice
The Descriptions
3.2.1 Production Rule Sets,
3.2.2 Asynchronous Finite State Machines

v

15
15
16
19
21
22
23
23
27
29
29
32
32
35
36
38
40

3.2.3 Signal Transition Graphs
3.2.4 Timed Event/Level Structures
3.2.5 Communicating Hardware Processes
3.2.6 Haste
327 Balsa
4 Comparison
4.1 Arbitration
4.2 Concurrency and SeqUENCEl e
4.3 Timing o L
4.4 Asynchronous communication
4.5 Level/Event Sensitivity
4.6 Modularity and Parametrisation
4.7 Level of Abstraction
4.8 SUMMATY v vt e e e e
5 Exemplary Design
5.1 The Processor
5.2 The Examples.
5.2.1 Production Rule Sets L.
5.2.2 Asynchronous Finite State Machines
5.2.3 Signal Transition Graphs
5.2.4 Timed Event/Level Structures
5.2.5 Communicating Hardware Processes
5.2.6 Haste e
5.2.7 Balsa e
Conclusion

65
65
66
66
67
68
69
70
71

73
73
74
74
75
7
7
79
81
82

85

Introduction

Despite the fact that asynchronous circuits have been an active research area for decades,
their commercial application remains marginal. Amongst other factors, this is because
there is a multitude of description method each having different advantages and disadvan-
tages and each being bound to a different tool. The choice, which description method to
learn and which tool to invest in is even more difficult due to the uncertain future of both,
description methods and tools.

However, with the advances in silicon manufacturing technology, making it possible
to integrate billion-transistor systems on a single die for the price of higher parameter
variability, fully synchronous systems are becoming increasingly inefficient and difficult to
design. As a result, asynchronous circuits and systems are becoming an increasingly inter-
esting design choice and impressive circuits from both, academia and industry demonstrate
the potential of this design style.

The objective of this work is to give an overview of established description methods
for asynchronous circuits, compare them in respect to a number of parameters and list
their advantages and disadvantages.

Hopefully, it will be able to serve prospective designers of asynchronous circuits when
choosing, which description method to learn. In addition, the findings could be a valuable
source of information for a didactic presentation of asynchronous design.

The work is structured as follows:

As some readers might not be fully familiar with asynchronous design, Chapter 1
introduces some of its basic concepts, the understanding of which is assumed in the argu-
mentation in the analysis, comparison and discussion. The experienced reader may skip
this chapter.

Chapter 2 introduces the considered description methods and describes them to the
extent that the reader would understand the approach and the underlying concepts.

To further clarify the use of the methods and visualise the fundamental differences
between them a simple circuit is described with all the considered methods in Chapter 3
as a comparative example. A short discussion about the implications and possibilities of
the methods for that particular circuit follows.

Chapter 4 gives a summary of properties of description methods, comparing them
directly.

A second, design example for each of the methods to support the arguments from the
analysis, comparison and discussion is presented in Chapter 5. Parts of a processor core
will be chosen to show the use of a method in its suggested application domain.

Chapter 1

Asynchronous Circuits

This chapter serves as an introduction to asynchronous circuit design for those, who are
not familiar with the concepts. First, motivation for choosing asynchronous circuits is
given. Then, basic concepts such as timing models, signal coding, handshaking and typical
building blocks will be described. Finally, advantages and disadvantages of asynchronous
circuits as compared to synchronous ones will be presented. The information presented in
this chapter is considered prerequisite knowledge in the rest of this work.

1.1 Why Asynchronous?

This whole work is about description methods for asynchronous circuits. But why to
use asynchronous design in the first place? Forshaw and Hahn wrote in their paper [1]
from 1990: “With the advent of more sophisticated ASIC libraries and CAD tools it
becomes increasingly important for the circuit designer to adhere to a synchronous design
methodology.”

No doubt, the rising complexity of integrated circuits required methods for a faster
and more reliable design process. In the synchronous design style, all flip-flops in the cir-
cuit are clocked with the same central clock, the period of which is carefully set to allow
all signals traverse even the longest combinatorial path between two flip-flops (the critical
path) and possible hazards to resolve. This allows to model temporal behaviour separately
from functionality. The advantages of this approach are excellent tool support, efficient
testability and simplicity of design. As those are legitimate arguments for using it, mod-
ern highly integrated chips have been designed almost exclusively using the synchronous
methodology.

Disadvantages of synchronous design according to Forshaw and Hahn include higher
power dissipation and the necessity of clock distribution. This were acceptable problems
compared to the advantages they brought.

In the present, 20 years after the paper has been published, the on-chip transistor
count has increased by three orders of magnitude. Keeping the synchronous timing as-
sumption valid in such highly integrated systems is becoming a painful problem and is
always connected with large performance, power, and area overheads.

As can be seen in [2], only approximately 45% of the clock period represent the actual
computation. The rest includes safety buffers for correct operation under worst case condi-
tions such as high temperature and low voltage, accounting for imperfect clock distribution

(clock skew — the difference in the arrival time of the clock edge at various locations of the
chip) and combinatorial path imbalance (waiting for the critical path to complete even if
it was not utilised in the current computation). With deep submicron technology scaling,
the inherently present parameter variability increases and further degrades the worst case
conditions for certain fault probabilities.

Distributing the high fan-out clock signal over the whole chip area requires a consider-
able length of wires which results in a high parasitic capacitance. Driving a high frequency
signal over this network and still retaining sufficiently steep edges to lower clock skew
requires strong drivers. In high performance microprocessors, clock distribution consumes
up to 40% of the total power [3]. The high dissipation causes problems with power delivery
as well as thermal design.

The area overhead caused by the clock distribution, although usually in the range of
25% can go up to 45% for certain applications [4].

Moreover, the clock wires also act like antennas and radiate the high-frequency clock
signal. This electromagnetic radiation introduces noise which, in signal processing ap-
plications, can alias into the processed frequency band and degrade the quality of such
applications.

Proponents of asynchronous design claim it is the solution for these problems and
evidence their claims with manufactured asynchronous circuits with impressive results
(see Section 1.3 for examples).

1.2 Asynchronous Circuits

Asynchronous circuits, also referred to as clockless or self-timed, are those in which no
global synchronisation by means of a clock signal takes place. Sources of communication
synchronise with the destinations locally for each transfer.

In this section, the timing models used in asynchronous circuit design, the different
possibilities of implementation of asynchronous communication and typical components
asynchronous circuits contain will be described.

1.2.1 Timing models

The assumption that all paths’ delays globally share the same bound is abandoned. Instead,
one of the timing assumptions supporting the asynchronous methodology is used by which
the resulting circuit can be classified. The timing models frequently used in literature are:

Delay Insensitive Circuits that do not depend on any timing assumption for correct
operation are called delay insensitive (DI). In this model, both gate and wire delays can be
arbitrary (but finite). These circuits are insusceptible to parameter changes, be it operating
conditions as temperature and voltage, migration to new process technology or rerouting.
However, as Martin showed in [5], this class is very limited and virtually all practical
circuits fall out of this class.

Quasi Delay Insensitive The least restrictive universally applicable model is called
quasi delay insensitive (QDI). Its only assumption is that signals in certain wire forks
arrive at their destination ‘simultaneously’. More precisely, the difference in latencies of

New consistent data at inputs

PN

SRC DST

\/

Processed, accepting new data

Figure 1.1: Handshaking signals

the fork branches must be smaller than the gate delay of the following logic. Such forks
are called isochronic. Only a fraction of wire forks in a circuit have to be isochronic — no
timing assumption is made about the other wires or the logic. The QDI class of circuits is
Turing-complete, as has been shown in [6].

Speed Independent The timing model which assumes that interconnect delays are
negligible compared to gate delays is called speed independent (SI). In contrast to QDI,
in SI circuits all wire forks are isochronic by definition.

There are also variations of this class in which the circuit is partitioned into smaller
regions. The rather unrealistic assumption of negligible interconnect delay within a circuit
is relaxed to hold only inside those so called equipotential regions. This model is also
referred to as self timed [7].

Bounded Delay Circuits that fall into the bounded delay (BD) class, also referred to
as matched delay or simply self-timed require that both logic and interconnect delays
are bounded much like in synchronous design. However, each logic path is considered
individually whereas in synchronous design one bound has to apply system-wide.

1.2.2 Asynchronous communication

A communication link in asynchronous circuits is called a channel and is composed of
two main parts, the wires carrying the actual data and means of synchronisation between
the sender and the receiver. The synchronisation is called handshaking and is generally
organised as an alternating sequence of a request for communication and the response to
the request, called acknowledgement. One or both of those events can be coincident with
data transfer.

Although a channel is a direct link, the same construct with combinatorial logic added
to the data path is used to implement pipeline stages. A schema of a channel with optional
logic is depicted in Figure 1.1.

The connection points for a channel, which are mostly located directly at the input to
or the output from state holding elements, are also often called ports. This is the rule for
external ports that are intended to connect a circuit to its environment.

Channels can also be categorised by the number of communicating parties. A narrow-
cast channel connects exactly one sender to one receiver. A multicast channel on the other
hand connects one sender with multiple receivers. The handshaking in multicast channels
must ensure that all receivers have processed previous data before the sender can transmit

a new value. Having multiple senders is not possible, since a simultaneous transmission
to the same channel would lead to undefined results and may even cause damage of the
output drivers.

Another parameter of a channel is the direction of the request relative to the direction
of the data exchanged. This determines, whether the sender or the receiver initiate the
communication. If the request comes from the sender, the channel is referred to as a push
channel. In a pull channel, on the other hand, the receiver requests the transmission. If
data are exchanged in both directions, coincident with both, the request and the acknowl-
edgement, the channel is referred to as a biput channel. A port that is on the requesting
side of a channel is called active, while a port waiting for requests to acknowledge is called
passive. This attribute is important for interconnecting black-box circuits, since active
ports can only be connected to passive ports and vice versa.

Channels can also be used purely for synchronisation. They consist only of handshaking
signals and are referred to as dataless or as synchronisation channels. Controlling access
to a shared resource might be an example of the application of such channels (See also
Chapter 3).

Using the request on a channel as a trigger for various actions, mostly however com-
munication on other channels, and delaying the acknowledgement of the request until all
actions complete is called handshake enclosure. A typical example for such behaviour is
a sequencing element, which upon a request on its input port sequentially performs full
handshake cycles on its output ports and only after the last output completes its hand-
shake, the element finishes by acknowledging its input request.

Signal coding

Since most of the timing models for asynchronous circuits allow arbitrary gate delay, it
is not possible to determine when consistent data are present at the end of a logic path,
without observing the data itself. Unfortunately, the usual data coding based on signal
levels, where a positive voltage indicates a ‘1’ and the grounding of a signal indicates a
‘0’, cannot be used because of this fact. As an example, it is not possible to determine
whether the current level on a wire is the new value to be received or whether transition
is still to come without assuming completion and therefore bounding the time allowed for
stabilisation of the signal.

A more complex signal coding is therefore required for most of the timing models
described above, which not only allows to distinguish between a ‘1’ and a ‘0’, but also
provides some separation of successive values. Since this implies the encoding of more
than two states. This is only possible with more than one wire per bit. A coding which
uses two wires per bit is called dual rail.

The act of observing data to determine when new consistent data is present is called
completion detection. The circuit required for completion detection is dependent on the
coding of the observed data. The most common codings are listed below:

Transition signalling Transition signalling (also referred to as rail transition cod-
ing) is the most simple dual rail coding for understanding; for hardware implementation,
it is one of the most complicated. Each bit of data is encoded as a transition on one of two
wires. One wire, called the ‘O-wire’ for example, is used for logic zeros while the other, the

a G !
Yo | 00 11
#0 Y1 | 01 10

(a) State machine (b) Exemplary state assignment

Figure 1.2: The LEDR encoding scheme

‘1-wire’, is used for logic ones. Since each transmitted value corresponds to one transition,
subsequent values can be accurately separated in time. For completion detection, the cur-
rent states of the wires have to be compared to their states from when the last value input
was processed. Thus, a state holding circuit is required for completion detection.

Null convention logic (NCL) In NCL, the two wires represent three different
states. Apart from the two logic values to be encoded, a NULL is added. Usually, NULL
is represented with both wires being at a low level and the logic values with exactly one
of the wires being high. The fourth possible state (both wires being high) is not allowed.

For communication, alternating phases are used: A data phase where the data value is
transfered followed by a NULL phase which serves as a separator between two subsequent
values.

Level-encoded two phase dual rail scheme (LEDR) LEDR also uses phases to
separate subsequent values like NCL, but uses all four possible states that can be encoded
with two wires. Each of the two phases, either referred to as ¢g and ¢; or odd and
even, can be represented by two of the four states available, one for each logic value. The
state assignment is such that the change from one phase to another requires exactly one
transition, no matter what values each phase encodes. Refer to Figure 1.2 for clarification.

N-of-m coding In n-of-m coding, m wires are used while transitions occur on exactly
n of those wires for each data transfer. This gives (7:) possible combinations. Usually, the
highest power of two that fits that number (be it 2¥) limits the amount of useful codes, as
all possible values that can be encoded with k bits will be distributed over these codes.

As can be seen, n-of-m coding is not a dual rail scheme where each bit is separately
encoded in two wires. Instead, the value is distributed over multiple lines without a direct
correspondence between the value and its code. This makes this scheme more difficult to
implement and unsuitable for computation as even simple operations require complicated
combinatorial functions. With n-of-m coding, it is however possible to communicate data
values with less transitions than the number of bits they contain and/or use less wires
than the double of the amount of bits, which gives it a power and area advantage. It is
mostly used for long interconnects or network-on-chip.

Request Request | I~
k} ® Z ® j@
0] ®
Acknowledge Acknowledge
LEDR Data Data po| Data 1 [Data ¢o NCL Data NULL | Data [NULL| Data

(a) Two phase handshaking (b) Four phase handshaking

Figure 1.3: Handshaking protocols

A subset of n-of-m coding is the one-hot coding, where n is always equal 1. As an
example, the most popular 1-of-4 coding uses 4 wires with exactly one having a transition
at each transfer. This gives (;1) = 4 possibilities and therefore 2 bits can be transferred at
a time. This scheme uses the same amount of wires to encode an even number of bits as
the above codes, however, in comparison to them needs only half the number of transitions
to transfer a value.

An overview of different n-of-m codes as well as their implications on area and perfor-
mance can be found in [8].

Handshake protocols

The simplest way to implement an asynchronous channel is to augment a standard data bus
by two wires, a request and an acknowledgement wire. There are, however, two possibilities
how to use those wires to signalise the handshaking events. Either a transition is used for
each event, this corresponds to the two phase handshaking protocol, or one of the logic
levels is used to signalise a pending transition, thus requiring two transitions for each
event (one to bring the wire back to the idle state). The latter possibility is referred to as
the four phase handshaking protocol.

For clarification, Figure 1.3 shows the two protocols and the causal relationships be-
tween events. In the figure, a push channel is assumed and the transitions on explicit
request and acknowledge wires are shown in the top two lines of the figure.

Figure 1.3a shows the two phase protocol with the two causal relationships. First the
sender generates a request by a transition on the request wire. After observing the request
and processing the data, the receiver acknowledges the request by a transition on the
acknowledge wire (1). Only after the sender receives the acknowledgement, it can output
a new value (2).

In Figure 1.3b, the four phase protocol is depicted. Again, the sender starts with a
request which is acknowledged by the receiver upon reception (1). However, when the
acknowledge event reaches the sender, the request wire must be returned back to its idle
state (2). After observing this, the receiver resets the acknowledge wire, too (3). Only after
this cycle is complete, the next value can be transmitted by a new request (4).

The approach of using a standard, one wire per bit data bus augmented by handshaking
wires is called bundled data. Clearly, for correct operation, the request signal is required to
arrive at the receiver later than the data after traversing possible logic. This is implemented
by estimating the worst case timing of the data path and delaying the request signal
accordingly. Since the correct operation of the resulting circuit is depending on a timing

assumption bounding both gate and wire delays, only circuits of the bounded delay class
can make use of such channels.

To design DI, QDI, or SI circuits, dual rail or more complicated signal codings sup-
porting completion detection must be used. Since completion detection will indicate when
consistent new data are present at the inputs of the destination, it can be used instead
of the request signal. Note that while in push channels the data replace the request wire,
in pull channels it is the acknowledge wire which is replaced by completion detection of
the data. Biput channels use completion detection for all handshaking events. The codings
can also be classified by equivalence to handshaking protocols. NCL has a default state
(NULL) to which it has to return, which corresponds to the four phase handshaking pro-
tocol. With transition signalling and LEDR, each transition represents a new value, which
corresponds to the two phase handshaking protocol. N-of-m codes can be used in both
variants, with each n transitions denoting a new value (two phase) or with an idle state
of the wires separating two values (four phase). In Figure 1.3, the equivalence of events
on the request wire of a push channel and the completion detection of the data is shown
using LEDR phases in the two phase handshaking protocol and NCL data validity in the
four phase protocol.

Note that hybrid protocols are also possible where data use a four phase protocol while
the acknowledge uses the two phase alternative or vice versa.

1.2.3 Metastability

In synchronous systems, all registers are controlled with the same clock signal resulting in
virtually simultaneous registration of data. This common clock event allows to assume that
in each cycle, data arrive at the registration points at the same time in the whole circuit.
As there is no such synchrony in asynchronous systems, no two events can be considered
to occur at the same time!. The behaviour of a circuit is thus not only dependent on
communicated data values, but also on the order of event occurrences, which also includes
whether an event has occurred between other events or not.

Where parts of a circuit are not explicitly synchronised using handshaking on dedicated
channels, there is no causal or temporal relationship between events from those parts. Such
events can occur in any order, but also as close to each other that they could be considered
simultaneous, and they are called concurrent. When a circuit is fed with concurrent events
and its behaviour is dependent on the order of their occurrences, the choice between two
virtually simultaneous events cannot be made unambiguously and the circuit can become
metastable.

Metastability is a state of a bistable device where the output is stuck between the two
stable states. The circuit will eventually resolve the metastable state and the output will
turn into one of the stable states. However, no upper bound can be given on the resolution
time [9] which means, that if a circuit prone to metastability is given limited time to resolve
before reading its output (such as in synchronous or bounded delay asynchronous circuits),
there will always remain a certain probability that it will fail. The correct operation of
asynchronous circuits that do not bound gate delay is not affected by the resolution time
of metastability, however the undefined signal level still has to be avoided.

IThis is true at a functional level. In the implementation, some signal arrivals can be assumed simulta-
neous (e.g. isochronic fork in QDI circuits).

ro—y ¥ |
1 1
—o uf
—o vf
1] T T
yo— v oVss

Figure 1.4: An implementation of an arbiter

In properly designed synchronous systems, the only source of metastability are asyn-
chronous external signals and clock domain crossings that can violate the setup and hold
times of the input flip flops. In asynchronous systems, in addition to the sampling of ex-
ternal signal levels, it is the ordering of any two concurrent events, such as the choice of
requests when accessing a shared resource.

1.2.4 Typical components

There are a few building blocks, that solve some of the typical problems in asynchronous
circuits, some of which will be described in this section. Where not stated otherwise, push
channels are assumed in the descriptions. In the figures that show building blocks with
exemplary input/output behaviour represented as tokens, the tokens are ordered by the
time of occurrence with the earliest being at the right hand side.

The two probably most discussed functional blocks in literature are the arbiter and the
synchroniser [10] which both implement functions that require the handling of potential
metastability. The arbiter performs the task of choosing one of requests when these can
occur simultaneously. When both requests are input at the same time, the arbiter makes a
nondeterministic choice and delays the other request, until the chosen request is removed.
An arbiter is called fair, if no request can be delayed infinitely. This means that a fair
arbiter cannot choose one input over the other infinitely many times.

Figure 1.4 shows the implementation of a basic arbiter from [11], often referred to as
a mutual exclusion element in literature. In the figure, x and y are the inputs, —u and —wv
are inverted, unstable, mutually exclusive outputs denoting which input has been selected
and uf with vf are the stable outputs. The main functionality is implemented with the
two logic gates. This part is called the bare arbiter (also, unstable arbiter) and produces
inverted outputs susceptible to metastability. The four transistors form the metastability
filter, an analog circuit preventing metastability to be driven at the outputs.

The synchroniser is used to sample a signal’s value at a given point. It has two
inputs, one accepting requests from the control circuit, the other for the sampled signal
itself. In contrast to the arbiter, which requires requests not to be withdrawn until they
are selected, the signal input of the synchroniser is allowed to change at any time. When
the synchroniser receives a request, it outputs the current value of the signal and holds
this value until the next request arrives. While this function can be implemented with
a simple D flip-flop for signals being stable during the sample period, with signals that
can potentially make a transition at a time very close to that of the request, the circuit
becomes prone to metastability and a metastability filter as in Figure 1.4 has to be used.

Vdd
x o——] :

]
[} 02

weak

-
Vss

Figure 1.5: An implementation of a Muller C-element

Again, no upper bound on the decision time for ambiguous signal states can be given and
such decision is nondeterministic.

The Muller C-element [12], or Muller C-gate, is another building block frequently
used in asynchronous circuits. It performs the function of an AND gate for transitions.
In Boolean logic, the AND gate indicates when both inputs are at a high level but gives
no information about the states of the inputs when at least one is low. Similarly, an OR
gate only indicates when both signals are low. To form the conjunction of transitions, each
transition on the output must indicate transitions on both inputs. The Muller C-element
is a state holding operator that serves this purpose. When both input levels are equal, the
output has the same signal level. When the inputs differ, the output holds its state until
both inputs are equal again. Figure 1.5 shows one possible implementation of a Muller
C-element.

While the above blocks work directly with signals on wires, the following blocks, mo-
tivated by [13], use channels for communication and have a higher abstraction level, since
they only correspond with a hardware implementation when the channels and the hand-
shaking protocols used are defined.

A fork splits one channel into multiple branches. The forward path can be implemented
by simply forking all channel wires without any additional components. However, in the
opposite direction, the signals must be joined so that the input request is acknowledged
only after acknowledges on all output channels are received. This can be implemented with
Muller C-elements.

— OB ®

©®®— F [com

Figure 1.6: A fork block with an exemplary input/output

The join block has inverse functionality to that of a fork. When requests from all
input channels are received, a request on the output channel is generated. Again, this
functionality can be implemented with Muller C-elements. The reverse path, that of the
acknowledgements, can be implemented by forking the acknowledge wire to all input chan-
nels.

A merge can be described as a self-selecting multiplexer. Requests from input channels
are selected one-by-one and passed to the output channel. Once the handshake on the

10

C®® —

con_|) —ees

Figure 1.7: A join block with an exemplary input/output

output channel is completed, the incoming request is also acknowledged and the next
request is selected. If requests on the inputs can occur simultaneously, the merge block must
contain an arbiter to resolve possible conflicts. Where the input requests are guaranteed
by the environment not to occur simultaneously, the merge block can be implemented with
a simpler and faster circuit.

CO®® —

pom_| M @0BR0®

Figure 1.8: A merge block with an exemplary input/output

1.3 Properties of Asynchronous Circuits

In this section, the advantages of asynchronous circuits as well as the most notable disad-
vantages will be listed.

Average case performance The clock period of a synchronous circuit has to be
carefully set to make sure the longest register-to-register path in the whole clock domain
has enough time to produce valid and stable outputs before the next clocking edge even
when it is not used in the current computation. Therefore also rarely used blocks have
to be optimised not to slow down the whole design and optimising other, frequently used
blocks to be faster than the clock period does not bring any benefit.

An asynchronous circuit on the other hand waits for the data to become valid before
registering them, instead of waiting for a global clock signal. This is either done by dual
rail data encoding or a delayed request signal. In both alternatives, the actual register-
to-register delay will depend on the current computation. Therefore when computing on
short paths with a few logic gates only, the circuit is much faster than when computing on
long paths with many gates. As a result, rarely used functions can be left unoptimised and
still have only marginal effects on the overall performance while even slight optimisations
on frequently used paths may have considerable effects, corresponding to Amdahl’s law
[14].

Of course, in a pipeline the throughput of consecutive stages is linked and if one
stage has a constantly limited throughput, the design will not benefit from optimising
the following stages to be faster. However, if one stage is very rarely performing a slow
computation, this will only delay the pipeline for this occurrence and not for the whole
computation and may be left unoptimised.

Lower power In standard synchronous circuits, the global clock signal is driving
all state holding elements with a minimal skew which requires strong drivers and a large

11

distribution tree. The long wires along with the huge fan-out increase the power required
for every transition. The clock, being global has to switch even when only a little part
of the circuit requires it, e.g. when most of the pipeline is stalled because of a branch
misprediction.

A typical technique to address this issue in synchronous design is clock gating. The
circuit is divided into clock islands in which the clock signal can be turned off. This way,
unused parts of the design do not consume dynamic power. However, the partition of the
circuit can be done only in a coarse-grain manner and unnecessary switching can only be
reduced, not avoided.

In asynchronous circuits, there is no clock signal, and switching only occurs in parts
of the circuit currently performing a computation. All other parts are idle and consume
only leakage power.

However, data encoding for DI, QDI and SI circuits can introduce some additional
switching as consecutive values have to be distinguishable by transitions on the wires.
As an example, NCL coding requires two transitions for every transferred bit, LEDR and
transition signalling require one and in 1-of-4 coding, two bits will be transferred with every
transition. Nevertheless, the dynamic power saving in circuits using such codes compared
to their synchronous counterparts is still considerable.

Adaptation to physical variations The problems with variations as described in
the beginning of this chapter, can be solved by using DI, QDI or SI circuits. Those are
inherently free from predefined timing assumptions and operate as fast as the current
environment allows. When a transient delay fault slows down the computation, the circuit
will simply wait for it to finish. No statistical analysis is necessary to adjust the clock
period to tolerate faults with a certain failure rate.

This also applies for operating temperature and the power supply voltage. In syn-
chronous design, the operating conditions such as temperature range as well as the power
supply voltage range are specified, and the clock period is set for the circuit to work under
these conditions. However, the boundaries of these safe operation intervals are worst case
conditions and most of the time (in an average environment) the circuit could safely per-
form better. A DI, QDI or SI asynchronous circuit adjusts to the environment and simply
becomes slower with rising temperature.

Technology migration and modularity As a consequence of the above paragraph,
migration of an existing asynchronous design to a new technology (e.g. from 90 to 45 nm)
does not require any changes to the design (assuming delay insensitive design or similar).
This also greatly simplifies modular design — to use a module a simple interconnection
of data and handshaking signals is sufficient no matter which technology the module was
designed for and which is actually used. No timing requirements have to be fulfilled to
ensure correct operation.

Lower electromagnetic emission As the clocking edge in synchronous circuits is
distributed over a large wire network and triggers a considerable amount of switching
activity, the electromagnetic emissions of such circuits are concentrated around the clock
frequency and its harmonics and, as a result, have high peaks at those frequencies.

12

The emission spectrum of asynchronous circuits is more evenly distributed over the
frequency domain with much lower peaks as synchronisation occurs only between com-
munication partners and not globally. This has advantages for example in devices with
radio receivers which receive less disturbance from the digital signal processing unit and
so achieve a better signal to noise ratio, possibly eliminating the need to switch off the
processor during the reception of a message.

Failure-free arbitration The timing assumption in the synchronous approach,
where each signal is allowed to change at a certain time window can only apply within a
circuit. However, most circuits have to process external events such as interrupts which
are inherently asynchronous. Such signals have to be synchronised before use to avoid
timing faults such as metastability. Also, in clock domain crossings, signals have to be
synchronised to the local clock.

The synchronisation process, for example using a synchroniser as described in the pre-
vious section, can take an arbitrary time to resolve. In synchronous circuits, the maximum
resolution time is limited to allow correct operation with a certain probability. However,
the longer the resolution time, the longer the delay introduced by the synchronisation pro-
cess. The reliability of the circuit is therefore traded for its performance. Asynchronous
circuits allow failure free synchronisation as no time bounds are applied (delay insensitivity
or similar assumed), while not introducing additional delay to the average case.

There are three most notable disadvantages directly resulting from the requirements
of asynchronous circuits.

Larger area Most asynchronous timing models require dual rail or other advanced
signal coding schemes that allow the separation of successive values. This is usually asso-
ciated with a 100% wiring overhead which undoubtedly increases the chip area occupied
by the circuit.

No masking of hazards A considerable advantage of timing assumptions in syn-
chronous and bounded delay circuits is the fact that all activity of combinatorial logic is
ignored in the time between two clock edges. This allows all hazards to be resolved before
a value is read. In DI, QDI and SI circuits, where each transition represents an event,
hazards must be avoided with techniques such as masking with additional gates and small
scale relative timing constraints similar to that of an isochronic fork.

Lack of tools In synchronous design, a vast majority of circuits are described in
either VHDL or Verilog. These are supported by a wide range of high quality tools capa-
ble of code generation, synthesising to netlists for a multitude of back end technologies,
simulation and much more. The tool sets available for asynchronous design, with a few
exceptions, originate from academia and use own description methods as input. A commer-
cially wide accepted design flow with a choice of high quality tools that can interchangeably
be used for various steps is, however, yet missing.

Testability In the testing process of synchronous circuits, the global clock can be
halted which causes the state of the whole circuit to be locked in state holding elements. By

13

added shift registers, the state can be read and/or altered to perform predefined tests. The
testing of asynchronous circuits is more difficult because they cannot be simply globally
halted, redundant logic used for masking hazards can also mask faults, and some faults,
usually timing related, only become observable in certain operating conditions.

Design complexity The design of asynchronous circuits is arguably more difficult
than that of synchronous ones. This is due to the need of local synchronisation in every
path, analysis of the design to show the absence of deadlocks, the elimination of hazards in
logic paths and the identification and meeting of (relative) timing constraints at the lowest
design level. However, the complex design of a low skew, multi gigahertz clock distribution
network for large chip areas in current technology, which is not needed in asynchronous
circuits, mitigates the advantages of synchronous design.

Selected references for implementations of asynchronous circuits include the “Caltech
asynchronous microprocessor” [15, 16], the series of “AMULET” processors [17, 18, 19],
the “MiniMIPS” processor [20], the asynchronous 80C51 microcontroller [21], the ultra-low
power “Lutonium” processor [22] and an asynchronous FPGA architecture [23, 24].

14

Chapter 2

Description Methods

In the beginning of this chapter, the typical problems in asynchronous design are extracted
from the previous chapter, also serving as criteria for the later comparison. The following
parts introduce the most popular description methods for asynchronous design, explain
them and list some of their properties. Though the descriptions of the methods in this
chapter do not fully show all their properties and capabilities, they are meant to be
sufficient to give a good understanding of the methods and their underlying concepts.

2.1 Problems in asynchronous circuit design

The following list shows the typical problems in asynchronous circuit design extracted
from Chapter 1.

Timing Even though the choice of timing models is more related to the circuit synthe-
sis, the timing assumptions inherent to a description method are also very important to
evaluate. Moreover, only methods that allow the specification of time bounds can be used
to describe circuits in the bounded delay class.

Communication The communication in asynchronous circuits has many variants. Pa-
rameters such as the employed handshaking protocol, signal coding, the activeness and
passiveness of ports must all match for successful communication between two circuits.
The possibilities to chose these parameters in the description methods will be evaluated.

Arbitration One of the most important functional block in asynchronous circuits is the
arbiter. While it prevents failure due to metastability, its unnecessary use where requests
are known not to occur simultaneously decreases the performance and increases the area
requirements of a circuit. Description methods thus should allow the description of mutual
exclusion with or without the use of an arbiter. This will be evaluated using a merge block
with optional arbitration. Also note that the metastability filter as part of the basic arbiter
is an analog circuit that cannot be described using other building blocks such as the bare
arbiter.

15

Concurrency Since an asynchronous circuit is a highly concurrent system with explicit
synchronisation required for every communication, it is important to be able to describe it
as such. Description methods should allow the description of concurrent functional block
and the synchronisation between them.

Sequence Every description also contains events that are required to be sequential. For
this purpose, a description method should provide a convenient way to define causal order
between events.

Level/Event sensitivity A description method is said to be level sensitive, when the
behaviour of circuits is described using signal levels. An event sensitive description method
on the other hand, uses events which can range from transitions on wires to complete
synchronised communications for the description of the circuit’s behaviour.

Level of abstraction Similarly to synchronous circuits, a higher level of abstraction
simplifies the design of complex circuits but hides some implementation details that might
be important for simpler circuits. Each description method will be analysed for the ab-
stractions it uses and the effects they have on the expressiveness of the method.

Modularity and parametrisation A key concept allowing feasible descriptions of com-
plex circuits is modularity, which allows commonly used circuit blocks to be described as
modules and then instantiated wherever they should be used. A further improvement is
the possibility to describe parametrised modules which can be assigned parameters at the
time of instantiation, allowing one module to describe several similar circuits thus improv-
ing it’s applicability. It will be evaluated whether the description methods allow previously
described blocks to be reused within another description.

2.2 Production Rule Sets

As the first and at the same time the least abstract description method, the Production
Rule Sets (PRS), originating from the Caltech asynchronous synthesis tools (CAST) [25]
as an intermediate representation, will be described. The description is a summary of [11]
and [26].

Production rules are based on Dijkstra’s guarded commands [27] and have a very similar
notation and semantics. A production rule (PR) is a construct of the form G +— S where
G is a Boolean expression called the guard of the production rule and S is a single or a
comma separated list of assignments. The assignments can only be as simple as setting
variables to a high or low logic level, in the sequel only referred to as true and false. The
notation of an assignment which sets variable x to true is = 1, for setting x to false it is
x]. The guard can be any Boolean expression with one or more variables, however, some
limitations to allow direct mapping to CMOS circuits and their correct operation apply.

The guards are restricted to be stable, which means that if the evaluation of the
guard changes from false to true, it must remain at this value until the execution of
the assignment. Two PRs that assign different values to the same variable are called

16

complementary and implement an operator. It is required, that for the guards G1, G2 of
complementary PRs

Gl'—>:IZT
GQ'—>Z\L

=G V -Gy always holds. In other words, it is not allowed for two PRs to simultaneously
assign different values to the same variable. This property is called non-interference. Ad-
ditionally, if G1 V G2 holds at all times, the variable x is always held at a logic level and
the implemented operator is called combinational. If, however, =G A =G2 can hold at
any time, x will by definition hold its last value in that time and the resulting operator is
called state holding.

The concurrent composition of multiple production rules is called a production rule set
(PRS). The behaviour of circuits described as blocks of interconnected PRSs is equivalent
to the set union of all the PRs they contain with PRs specifying the connecting wires, in
the form of identity functions, added to the set. In case two different PRs G; — S and
G — S have the same assignment at their right hand side, they are replaced by the new
rule G1 V Gy — S.

The correspondence of operators described in PRs and the mapping to their CMOS
implementations is straight-forward, possibly even direct. In a typical CMOS circuit, where
true is represented by a positive voltage while false is represented by pulling a wire to
ground, an operator is implemented by a P-stack of transistors pulling the output high
and an N-stack of transistors pulling it low. The operation of each stack is controlled by
a Boolean function of the inputs. This is equivalent to a simple assignment in PRs as the
controlling functions for the P-stacks and the N-stacks are equivalent to guards of PRs
that set a variable to true or false, respectively. See Figure 2.1 for clarification.

To allow a direct mapping of operators to their implementations, there is a restriction
on the Boolean functions in the guards. For a negative assignment (x), the guard can only
contain non-negated input variables. This allows to connect inputs directly to the gates of
n-channel FETs. For a positive assignment (2 1), only negated forms of input variables can
be used to allow the connection to p-channel FETSs. Note that this limitation is reversed
for some implementations of state-holding operators, where an additional inverter is placed
at the output (e.g. the static implementation as shown below). The requirement of non-
interference for complementary PRs prevents short circuit paths between the positive
voltage supply and ground to be opened in operators by evaluating both guards to true.
However, non-interference does not affect the presence of intermittent short circuits as a
result of dynamic circuit behaviour.

In the implementation, also the difference between combinational and state holding
operators becomes clear. Combinational operators force their output to the supply voltage
or ground at all times. The output always has a ‘strong’ level. The state-holding operator,
however, has states where neither the P-stack nor the N-stack are driving the output,
which remains floating. The implementation has to ensure that its level does not change
until it is driven again. In a dynamic implementation, this is done by timing assumptions
ensuring that the output value will be used (or driven again) before it loses its charge and
changes to an undefined level. An additional capacitor can be used to prolong this time.
In a static implementation, a storage element such as that in Figure 1.5 is added to the

17

Ga

éVss

Figure 2.1: The CMOS implementation of a combinational operator with z being the
variable in the assignment [26].

circuit to drive the output with the value assigned last.

As mentioned before, PRSs are the least abstract description method in this work,
working with single operators, possibly equivalent to a transistor netlist. Handshaking
protocols thus have to be implemented explicitly, every transition needs to be modelled.

As a simple example, the following PRS describes a fork block (see Section 1.2.4) with
dataless push channels using RTZ four phase handshaking with all wires initially low. In
the description, a is the input channel, and y are the output channels and the ack and
req indexes refer to the acknowledge and request wires the channels are composed of. The
optional reset circuitry is omitted.

Qreq F7 Treq 1 yreqT

TQreq 7 Treg \La yTeq\l/
Zack N Yack — aackT
“Zack N "WYack Agck

As can be seen, the first two PRs implement a combinational operator with the identity
function. This can be implemented with a simple wire fork with no transistors needed.
The other two PRs implement a state-holding operator — a Muller-C element. Non-
interference is trivially fulfilled. Stability has to be guaranteed by the environment. In this
case, adherence to the four phase protocol is enough to ensure stability of the guards.

As mentioned at the beginning of this section, PRS are used as an intermediate rep-
resentation in the CAST toolchain [25]. PRS are usually automatically generated using
decompositions and transformations from a higher level description (see Section 2.6.3) but
they can also be used as the design entry description method. Since PRS can already
be straightforwardly mapped to CMOS operators, the further processing of PRS in the
CAST toolchain is already part of the physical design. As a first step, the description is
transformed into extended production rule sets (XPRS), where transistor sizing and gate
ordering are added. The final step is the chip layout design using a place and route tool,
which is also part of the CAST toolchain.

18

2.3 Asynchronous Finite State Machines

A finite state machine (FSM) is a graphical model of an abstract computing device used
to describe the behaviour of programs and digital circuits. It consists of a finite number of
states, a function describing the transitions between the states and a function generating
the outputs. An equivalent model used in formal computer science or mathematics is called
a finite transducer or, if the only output is a Boolean variable (often used as indication
of the acceptance of an input sequence), a finite automaton and both are backed up by
rigorous theory. The two most common FSM models were introduced by Mealy [28] and
Moore [29] and at present, these models are described in virtually every coursebook for
digital design.
Formally, a finite state machine is a sextuplet F'SM = (3,T', 5, s, J,w), where:

e X is the input alphabet

e [is the output alphabet

S is the finite non-empty set of states

Sg 18 the initial state

0 is the state transition function

e w is the output function

At the beginning of a computation, each FSM is in its initial state sp. The actual
operation of an FSM consists of a possibly infinite sequence of atomic computing steps,
each theoretically performed in zero time and incorporating these actions:

e Read the input. Formally, an FSM reads symbols, which are elements of 3, from the
input. For hardware description, the symbols represent states of all input wires.

e Perform a state transition according to the state transition function § : S x X — S.

o Generate output according to the output function w. Formally, an output symbol
from I" is written to an output tape. The symbol can represent states of all output
wires for hardware description.

There are two common alternatives for the output function w for FSMs. For a Moore
FSM, the output function is w : § — I'. That means that the output is only a function
of the current state. In a Mealy FSM, the output function is defined as w : S x ¥ +— T,
therefore making the output dependent on the current state as well as the current input!.
Although the Mealy FSM model seems to be mightier than the Moore FSM model, they
are actually equivalent.

FSMs are most commonly represented in two ways, either graphically or with a table.
The graphical representation is a labelled directed graph in which the vertexes represent
the states, the initial state being drawn thickly, while the edges labelled with input values
(symbols) represent the state transition function. The description of the outputs differs

IThe inputs are only read at the beginning of a computation step and therefore the current input is
always the input that was read before the state transition.

19

" . —_— input (ab)
T state 00 01 10 11
10, 01, ﬁ.ﬂ 1,10, £750/0(s0 | s0 | s0 | sl
00 v v 01 é s1/1| s0 | s1 | sl | sl
00 @
(a) Moore type, graphical representation (b) Moore type, state transition table
11 ab/c

10/0, 11/1’ next state mput (ab)

01,0, @ e o1, S| 00 | 01 | 10 | 11

00/0 01/1 s0 30/0 SO/O 80/0 81/1
00/0 s1 [s0/0|s1/1|s1/1|s1/1

(c) Mealy type, graphical representation (d) Mealy type, state transition table

state

Figure 2.2: An FSM describing a Muller C-element.

between the Moore and Mealy FSM. In a Moore FSM, the output values for each state
are defined in the labelling of the vertexes. In a Mealy FSM, where more output values
are possible for the same state depending on the input, the edges are labelled with the
output that should be generated after the corresponding state transition. An example of
the graphical representation of an FSM describing a Muller C-element with the inputs a,
b and an output ¢ can be seen in Figure 2.2a as a Moore FSM and Figure 2.2c as a Mealy
FSM.

The tabular representation, called state transition table, is a table in which each row
represents one state and each column one input value. For each state, the cells record
the next state the FSM should change to after receiving the input corresponding to the
column. The outputs to be generated, for a Moore FSM, are specified together with the
states, one for each row. A Mealy FSM requires the outputs to be specified in the cells,
one for each row/column combination. As an example, the same state machine like above,
described with a state transition table, can be seen in Figure 2.2b for the Moore FSM and
Figure 2.2d for the Mealy FSM.

Finite state machines are very efficient in describing circuit behaviour because they
model functionality without considering the temporal behaviour of the implementation.
For synchronous circuits, this is appropriate — the typical implementation of a FSM
consists of a register holding the current state carefully clocked such that all combinational
paths have finished evaluation and all signals are stable. The clock edge then initiates a
new computing cycle by updating the state in the register which causes the next state to
be generated.

In asynchronous circuits, however, time cannot be so easily abstracted away. For ex-
ample, it is not possible to input zeros on a multiple wire bus as one symbol and ones on
the same wires as the following symbol without observing the intermittent state of mixed
zeros and ones on the wires as they are switching. Without timing assumptions or limit-
ing the state transition function to use only inputs that can be recognised from previous
ones, it is not possible to know when the switching is finished and the values on the wires
represent a consistent input. Additionally, even when all accepted inputs are such that no

20

Figure 2.3: Example of a FSM fraction that cannot be implemented with a SIC funda-
mental mode AFSM

intermittent value represents a valid input which might cause a wrong transition, the state
transition function must be designed to produce hazard-free outputs even with multiple
inputs changing.

2.3.1 Fundamental Mode Asynchronous Finite State Machines

The approach for the design of asynchronous circuits initiated by Huffman in [30] uses
timing assumptions for both the circuit and the environment.

The environment that Huffman circuits operate in must adhere to the restriction that
after a change on one input wire, the circuit is given enough time to stabilise before
another input is allowed to change. An asynchronous FSM (AFSM) operating in such
an environment is said to operate in single input change (SIC) fundamental mode. The
stabilisation of the circuit is effectively the evaluation of the next-state function resulting in
a state transition which, depending on the state machine’s behaviour, may trigger another
state change for the same inputs. Only after the FSM reaches a stable state, that is, a
state in which for a given input the state transition function assigns the same state to be
the next, the inputs may change again. The minimum time between two input changes
is thus limited by the speed of the FSM and as a logical consequence, the gate and wire
delay within the circuit have to be bounded to be able to determine this time.

A further requirement is that also the signals internally generated as the evaluation of
the next-state function must adhere to the SIC fundamental mode. This is a consequence
of the missing temporal masking of hazards as in synchronous FSMs. Practically, this
means that additional delays have to be inserted in the feedback path of the state signals.

The SIC fundamental mode operation, however, also imposes limitations on the expres-
siveness of a state machine. As an example, consider the behaviour modelled by the FSM
fragment in Figure 2.3. State SO is a stable state with the input values being ‘00’ (only
incoming transition). If the designer wished to change to one state (S1) if a single input
becomes high and to another (S2) if both become high, such an FSM would work without
problems in the synchronous implementation. The SIC restriction, however, makes state
S2 unreachable, as always one of the inputs have to change first and the circuit has to be
given time to perform a state transition, which in this case would change the FSM to the
state S1. This also applies to state signals, where a direct transition from a state encoded
with ‘00’ to a state encoded with ‘11’ is not possible, if the intermittent signal values ‘01’
or ‘10’ could lead to different stable states.

21

2.3.2 Burst-Mode Asynchronous Finite State Machines

To weaken the strong assumptions about the environment in SIC fundamental mode AF-
SMs, burst-mode AFSMs were introduced.

Burst-mode AFSMs also work in fundamental mode, but restricted multiple input
change (MIC) is allowed — predefined sets of transitions, so called bursts, are allowed to
occur concurrently without any timing assumptions placed upon them. Even though AF-
SMs allowing restricted MIC could also be described using one of the formalisms described
above, the term “burst-mode AFSM” also refers to a new state machine formalism. In this
work, every reference to burst-mode AFSMs refers to this formalism.

The formal definition of a burst-mode FSM, taken from [31], reveals the slight dif-
ferences to standard FSMs as described above, especially in the description of the state
transitions. A burst-mode FSM is a labelled directed graph, BM = (V, E, I, O, vq,in, out),
where:

e V is a finite set of vertices (describing the states)
e F is the set of edges (describing the transitions)

e [is the set of inputs

O is the set of outputs

vp 1s the initial state

in is a labelling function describing values of inputs in each state

out is a labelling function describing values of outputs in each state

The edges F C V x V form a relation describing which transitions are possible from
each state. I and O are simply sets of input or output signals respectively, e.g. I = {a, b}
and O = {z} for a circuit with inputs a, b and an output x. At the beginning of its
operation, a machine is in the initial state, vg. The functions in : V — {0,1}”| and
out : V. — {0, 1}|O| assign values of the input and output signals respectively to each
state. While out is equivalent to the output function w in classical Moore-type FSMs (see
the introduction of Section 2.3), the function in, rather than specifying which state the
machine should change to with given inputs, as the state transition function § does, assigns
the values of all inputs to each state, called its unique entry point. This implies, that no
matter from where the machine changes to a state v, the input values have to be exactly
in(v). This does not restrict the expressiveness of the notation, since specifications that
do not meet this requirement can be transformed to valid ones by splitting states.

Although the behaviour of a burst-mode AFSM is described with the set of states,
edges between them and functions labelling the states, in the graphical representation
the more practical labelling functions for the edges are used. The functions are called
trans; : E — P(I) and trans, : E — P(O) and they label each edge with a subset
of input and output signals respectively that change their value between their source and
destination state. In the label, trans; is separated from trans, with a slash and each signal
name is augmented with a ‘=’ or ‘+’ depending on whether the signal changes from true
to false or vice versa.

22

Apart from the requirement for each state to have a unique entry point, there is
another restriction for valid burst-mode AFSM: Given some state, no possible input burst
can be a subset of another one originating from the same state (formally, Vv, uj,us €
V, trans;(v,u1) C trans;(v,u2) = u1 = ug). This is called the maximal set property
and eliminates the possibility of ambiguous behaviour of state machines when, after a valid
input burst, it could either perform a state transition or wait for other inputs to change
to complete another valid input burst.

An example of a tool for circuit synthesis from an AFSM representation is 3D, which
was developed initially at Stanford University and later at the University of California, San
Diego, from where it is currently available. It uses extended burst mode (XBM) AFSMs,
introduced in [32] for circuit descriptions. Those add the possibility of sampling level
sensitive signals as conditions for state transitions and directed don’t cares, which allow to
expand the path between a rising and a falling transition of a signal over multiple states by
describing its value to be undefined in intermittent states. 3D uses the synthesis method
described in [33, 34]. Another example is the toolkit MINIMALIST [35], developed at
Columbia University, which is composed of different tools performing tasks such as state
minimisation, state encoding and logic minimisation.

2.4 Signal Transition Graphs

The first part of this section will describe Petri nets, a powerful graphical description
method commonly used for the modelling of concurrent systems. Signal transition graphs
(STGs) are the most common description method for asynchronous circuits using Petri
nets and will be described in the second part of this section.

2.4.1 Petri Nets

Petri nets (PN) are another graphical representation of an abstract machine performing a
computation, which can be used to describe asynchronous circuits. They were introduced
by C. A. Petri in [36]. An excellent source for information on Petri nets is [37].

Petri nets can be seen as a generalisation of finite state machines — each FSM can
be directly transformed into an equivalent PN (see page 25). The advantages of PNs,
compared to FSMs, are the ability to model concurrent, asynchronous, distributed systems
and non-determinism, which allows the application of PN theory to prove properties like
the absence of deadlocks.

Formally, a Petri net is a sextuple PN = (P,T,F,W, K, M), forming a weighted
directed bipartite graph consisting of interconnected places and transitions.

e P is the finite set of places
e T is the finite set of transitions

F is the flow relation

W is the weight function

K is the capacity function

23

e Mj is the initial marking

In the graphical representation, places are drawn as circles, transitions as possibly
filled rectangles. The flow relation F' C (P x T') U (T x P) defines the arcs of the graph.
Note that since Petri net graphs are bipartite, only interconnections of places with tran-
sitions are possible. The directed arcs define the predecessor/successor relations — all
places connected to a transition with incoming arcs are called predecessor places and ones
connected with an outgoing arc are called successor places. The same applies with places
and transitions reversed.

The state of a PN is given by its marking M : P — Ny, that assigns a non-negative
amount of tokens, depicted as filled circles inside places in the graphical representation,
to each place. The initial marking My describes the marking of a PN at the beginning of
a computation. The weight function W : F' — N assigns each arc a weight, equivalent to
its multiplicity. The capacity function K : P — N assigns each place the maximal amount
of tokens it can hold. A Petri net in which the capacity function is not defined, therefore
all places have unbounded capacity, is called an infinite capacity net. When K bounds
the capacity of places, the resulting net is referred to as a finite capacity net. Each finite
capacity net can be transformed to an equivalent infinite capacity net.

Petri nets in which places are allowed to hold multiple tokens are useful for describing
processes in a higher level. For example, one place could describe a FIFO buffer and the
transitions connected to it would represent events adding and removing objects from that
buffer. When describing circuits, however, PN transitions represent transitions of input
or output signals and whether a place has a token or not is usually implemented as the
logic value of a wire. To keep a close relationship between a PN and the resulting circuit,
1-bounded Petri nets are used for the description of circuits. A Petri net is 1-bounded
when every place has the capacity of maximally one token (formally, Vp € P, K(p) =1).
As each place in a 1-bounded PN can only have one or no tokens, using edges with weight
more than one would permanently disallow the firing of the transition being either the
source or the destination of such an edge. A PN, in which every edge has weight one is
called ordinary. In the following, 1-bounded ordinary Petri nets are assumed. Note that
such PNs can be specified without the weight and capacity function.

The semantics of Petri nets can be described with just a few rules:

e Transitions in which all predecessor places have tokens are enabled.
e All enabled transitions must eventually fire.

e When a transition fires, tokens are removed from all predecessor places and added
to all successor places.

For a better understanding, Figure 2.4 shows a Petri net in three different computation
steps. In the initial marking (Figure 2.4a), only transition ¢; has tokens on all predecessor
places and therefore is enabled. After its firing, the token from p; is removed and added to
p2 (Figure 2.4b), which disables ¢; and enables t5, now being the only allowed event in the
modelled system. After t5 has fired, tokens from both po and p3 are removed and a token
is placed on py4 (Figure 2.4c). This is the final state of the PN as no further transitions are
enabled. Note that this is the only possible execution of this PN.

Figure 2.5 shows Petri net structures that model important types of behaviour often
occurring in asynchronous circuits. In Figure 2.5a, the two transitions are concurrent —

24

O O8N
D1 D2 I—’
p@/tz pQ

) Initial marking
@/2
b3
(b) Marking after the firing of transition ¢

>+ G

(¢) Marking after the firing of both transi-
tions

A%

Figure 2.4: An exemplary Petri net in three computation steps.

each can fire independently of the other and no constraints on their temporal or causal
relationship are given. The structure in Figure 2.5b models synchronisation — ¢; can
only fire when both p; and ps have tokens. The behaviour modelled by the structure in
Figure 2.5c is called conflict. Here, the firing of the two transitions is mutually exclusive —
either t1 or to fires. This is by definition a non-deterministic decision without restricting
properties like fairness. In Figure 2.5d, concurrency and conflict are combined in a structure
called symmetric confusion. Transitions ¢1 and t3 are concurrent, while both being in
conflict with to — either ¢, fires and disables the other transitions, or they fire concurrently
but one of them earlier than t5. Sequential composition is depicted in Figure 2.5e. Here,
to can only fire after the firing of ¢;. The combination of all three, conflict and concurrent
and sequential composition is shown in Figure 2.5f. This behaviour is called asymmetric
confusion. Transitions t1 and to are sequential, t; and t3 are concurrent and ¢, is in conflict
with ¢3. Note, however, that the conflict only occurs when t; fires first.

For simplifying the analysis of different properties of computation models, there are
several subclasses of Petri nets, restricting their structures. Those restrictions allow the
use of more efficient algorithms but also reduce the expressiveness of Petri nets.

e State machines (SMs) are such ordinary PNs, in which each transition has exactly
one predecessor and one successor place i. e. they allow conflict but not synchroni-
sation. Furthermore, the number of tokens in the net does not change throughout
the computation.

e Marked graphs (MGs) are such ordinary PNs, in which each place has exactly one
predecessor and one successor transition i. e. they allow synchronisation, but not

25

b1 P2

T T
Q.0

Y2

(a) Concurrent composition

: b1 P2

Q

b3
(b) Synchronisation

~
G
s

4

?1 I
O, O

p
(c) Conflict

N

3

o
1 P1

b1 D2

11 to t3

ORORO]

(d) Symmetric confusion

A —={o)
A < S

|
- T
p3 Qm D5

(e) Sequential composition (f) Asymmetric confusion

Figure 2.5: Typical Petri net structures

conflict.

e Free-choice nets (FCs) are ordinary PNs, which generalise SMs and MGs. Both
conflict and synchronisation are allowed, but not at the same time. This means, that
each arc going from a place is either the only output arc of that place (no conflict)
or the only input arc to the target transition (no synchronisation).

e Extended free-choice nets (EFCs) are ordinary PNs, which allow conflict and syn-
chronisation at the same time, however they do not allow confusion, i.e. if two places
share a successor transition, then all of those places’ successor transitions must be
shared by both of them.

o Asymmetric choice nets (ACs) are ordinary PNs, which add asymmetric confusion to
the modelling power of EFCs, i.e. for each two places sharing a successor transition,
each successor transition of one of the places must be shared amongst them.

Note that if there is a conflict in SMs, FCs and EFCs, the transitions in conflict are
either all enabled or disabled. ACs allow the disabling of a subset of conflicting transi-
tions — asymmetric confusion. Symmetric confusion, however, is only allowed in general
ordinary Petri nets.

26

There are some properties that describe the dynamic behaviour of Petri nets. Amongst
the most important are:

e Liveness A Petri net is live if in any marking reachable from the initial marking,
there is always at least one enabled transition that can fire. This property ensures
the absence of deadlocks in the PN.

e Boundedness or safeness A Petri net is k-bounded if in any marking reachable
from the initial marking, no place in the net is marked with more than &k tokens.
Furthermore, a 1-bounded Petri net is called safe.

e Persistence A Petri net is persistent, if every transition, once enabled, will stay
enabled until it fires. Note that a persistent PN cannot contain any conflicts (as in
Figure 2.5¢), as several transitions can be enabled with the marking of one place and
all but one are disabled by the removal of the token by the firing transition.

When describing circuits with FSMs, the designer has to specify all possible states of
the circuit and a relation which assigns succeeding states to input events. When describing
with Petri nets on the other hand, all events the circuit can process or generate are
modelled as PN transitions. The places can be thought of as preconditions that must be
fulfilled before an transition can fire and postconditions which become fulfilled with the
firing of the event. Tokens describe the fulfilment of those conditions.

The state of a Petri net is distributed over all places it contains and the computation
is distributed over all transitions that operate independently. This is in correspondence to
actual circuit components that, unless explicitly synchronised, operate independently and
yet are part of a bigger circuit.

2.4.2 Signal Transition Graphs

In general, a computation described with a Petri net consists of a number of events the
occurrences of which are governed by the position of tokens in the net. However, no direct
correspondence of input and output signals to and from a circuit is given.

Signal transition graphs (STGs) are a form of interpreted Petri nets which create
exactly this correspondence. They were introduced in [38], where the set of transitions of a
PN is interpreted as transitions on signals of the circuit described, formally T'= J x {+, —}
where J is the set of all signals of the circuit. For a signal z € J, z denotes a rising (0 — 1)
transition and x_ denotes a falling (1 — 0) transition. Using general transitions, denoted
T4, to represent a transition where the direction is not important is also common. In order
to distinguish between input signals, that is ones controlled by the environment only,
and non-input signals, these are outputs and internal state signals, the input signals are
always underlined. Note that in the original definition in [38], each signal was represented
by exactly two transitions — one rising and one falling. This is no longer required since
present tools accept STGs with multiple transitions of the same signal in the graph.

To improve the readability of the graphical representation, signal transition graphs
introduce some simplifications:

e Transitions are not drawn (as bars or rectangles) but instead replaced by their label.

e Places with one predecessor, one successor and no token are not drawn. Instead, arcs
go directly from their input transition to their output transition.

27

Teo Y
Zx
z
(a) PN with labelled tran- (b) STG with ‘¥’ tran- (c) STG with ‘+’ and ‘-’ tran-
sitions sitions sitions only

Figure 2.6: Comparison of a PN and STG for descriptions of a Muller C-gate

An example of an STG in comparison to a PN, both describing a Muller C-element, is
shown in Figure 2.6. In Figure 2.6a, the behaviour of the element is described with a Petri
net with transitions labelled with signals on which the events occur. The corresponding
STG, using general transitions (x,) is shown in Figure 2.6b. Often, these transitions are
not supported by analysis and synthesis tools and only rising and falling transitions can be
used, which duplicates their amount in the description. The STG with rising and falling
transitions only is shown in Figure 2.6c.

STGs inherit all properties of PNs like liveness or safeness and their structures also
have attributes like SM, MG or FC. However, there are additional attributes that describe
properties associated with the interpretation of the PN transitions in STGs:

o Qutput-persistence is equivalent to PN persistence, however, only considering non-
input transition. An output-persistent STG can thus only have conflicting input
transitions.

e (onsistency is given if, for each signal in an STG, rising and falling transitions are
interleaved in every possible firing sequence. This ensures that every firing of an STG
transition is really a transition on the corresponding output signal instead of a level
assignment which might not change the state of the signal.

Different approaches to the synthesis of STGs have different requirements to the input
specification. For example, the synthesis described in [38] required the input STGs to
be live, safe, free choice nets, satisfying the one-token SM restriction? and be output-
persistent. Many of the requirements can be met by behaviour-preserving transformations.
In the remainder of this work, STGs will not be specially designed or transformed to meet
those requirements.

Examples of tools that can process STG descriptions are Petrify [39], developed at the
Technical University of Catalonia, and SIS [40], developed at the University of California,

2Each SM structure of the STG must contain exactly one token.

28

Berkeley. Both can not only be used to synthesise circuits described with STGs but also
allow analysis, transformations and optimisations of STGs. In both tools, the synthesis
algorithm includes the generation of a state graph, similar to a state machine having all
reachable markings as states, followed by complete state coding, which may require the
introduction of additional state-holding signals.

2.5 Timed Event/Level Structures

In the previously discussed description methods, timing was handled with an implicitly
holding global timing assumption required for the correctness of the description or globally
unrestricted (STGs). With timed event/level structures, one of the description methods
allowing the modelling of timing assumptions or constraints within the circuit will be
presented. Note that for most description methods, there exist timed variants, includ-
ing automata (state machines) [41], Petri nets [42], as well as communicating sequential
processes [43], which will be described in Section 2.6.

2.5.1 Timed Event/Level Structures

Timed event/level (TEL) structures are based on timed event rule structures introduced
in [44] and were first introduced in [45] and presented with slight changes in the formal
definition in [46].

A TEL structure is an 8-tuple T' = (N, so, A, E, R, C, Ry, #) where:

e N is the set of signals

so is the initial state of the signals
e A is the set of actions

F is the set of events

R is the set of rules

C' is the set of constraint rules

e Ry is the set of initially marked rules
e # is the conflict relation

The set of signals N is initialised to so € {0,1}". The set of actions A contains
rising and falling transitions of all signals, similarly to the set of transition labels in STGs,
however, with the addition of the sequencing event $ which does not cause any signal
transition. In contrast to STGs?, TEL structures allow to use the same action multiple
times in a description. For this purpose, the set of events E pairs each action with a
natural number to distinguish between instances.

The rules and constraint rules connect events to form causal and temporal relations
between them. Both are of the form (e, f, [, u,b), where:

e ¢ is the enabling event

3The original formal description by [38]

29

f is the enabled event

[is the lower bound of the timing constraint

u is the upper bound of the timing constraint
e b is a Boolean function over the signals from N

The events, similar to transitions in Petri nets or STGs, fire if the preconditions are
met. When an event fires, the action it contains is processed (for input signals) or generated
(other signals). Sequencing events $ allow to describe behaviour that requires changes in
the state of a TEL structure without changing the state of any signal.

The rules specify the preconditions for the firing of events in a way somewhat similar
to that of places in Petri nets. Each rule connects two events, e with f to put them in
causal and temporal relation. When an enabling event (e) of a rule fires, the latter becomes
marked. A marked rule, the Boolean function (b) of which is true, becomes enabled. There
are two different semantics concerning enabled rules. In disabling semantics, if the Boolean
function of an enabled rule becomes false again by changed signal states, it is reverted to
being marked. In non-disabling semantics, once a rule is enabled, a change in the value of
the Boolean function does not have any impact on the evaluation of the rule. Even though
a differentiation is not part of the formal definition, both semantics can be combined in
a specification. A rule that has been enabled for [time units becomes satisfied. When u
time units elapse since the enabling of a rule, it becomes expired. Once the enabled event
of a satisfied or expired rule fires, it is unmarked similarly to the withdrawal of a token
from a place in a Petri net.

Constraint rules are virtually equivalent to standard rules. The only difference is, that
while standard rules control the firing of events, constraint rules define assertions to be
fulfilled when events fire — all constraint rules that enable an event must be satisfied when
it fires. This essentially means that constraint rules are used for verification only while
standard rules are used for circuit synthesis.

Also note the similarity between TEL structure rules and production rules (see Sec-
tion 2.2). The Boolean function in TEL structure rules can be compared with the guard
of a production rule and the enabled event can be compared with the assignment.

In Figure 2.7, the graphical representation of an exemplary TEL structure describing
a Muller C-element is depicted. The vertices of the graph represent the set of events while
rules are represented by directed arcs going from enabling to enabled events of the rules.
Constraint rules share the same graphical representation with standard rules except for
being marked with a ‘C’. However, there are no constraint rules in this example. If a rule
is initially marked, the corresponding arc is drawn with a dashed line. Furthermore, the
arcs are labelled with the timing constraints and the Boolean function that are part of
the rule. If disabling semantics should be applied to a rule, the label furthermore contains
a ‘d’. A simplification of the representation can also be seen in the figure — node labels
corresponding to events that contain the only instance of an action omit its associated
number. When two or more events contain the same action and therefore more instances
of the latter exist, the label contains the action and the number separated by a slash (e. g.
z+/1).

The behaviour of the circuit described with the TEL structure in Figure 2.7 is as
follows: The rule having z+ as its enabled event (dashed arc) is initially marked. Therefore,

30

Figure 2.7: TEL structure of a Muller C-gate

the value of the Boolean function z A y determines the enabling of the rule. When both
x and y become true, the rule is enabled. Since disabling semantics are to be applied for
the rule, if either x or y return to false before one time unit elapses, the rule is disabled
(marked only) again. After x and y have been true for one time unit, the rule becomes
satisfied and z+ is allowed to fire. Another three time units later, the rule becomes expired
and since it is the only rule enabling the event z+, it must fire by then. By the firing of
z+ the rule is unmarked and the next rule, having z+ as its enabling event is marked. In
a similar fashion, after one to three time units of both x and y being false, z— fires.

The conflict relation # allows to model choice and merge structures. Two events that
are in conflict, denoted ej#eo cannot occur at the same time. Generally, every event is
allowed to fire when, in case of no conflicts, all of the rules enabling it are satisfied and it
must fire before they all are expired. This behaviour is that of a join structure. If, however,
multiple rules share the same enabled event e and have conflicting enabling events, e is
allowed to fire after enough of these rules are satisfied to form a sufficient set. For a set
of rules enabling some event e to be sufficient, the enabling event of every such rule that
is not in the set must be in conflict with the enabling event of some rule from the set.
Therefore, the conflict relation allows to model merge structures or even combine joins
and merges in one structure. For example, event e in Figure 2.8a is allowed to fire after
e1 with e3 or ey with eg have fired. This behaviour is equivalent to that of the STG in
Figure 2.8b, which uses a common output place for the transitions in conflict.

Choice is modelled with multiple rules sharing one enabling event e having conflicting
enabled events. When such an event e fires, all of the rules having it as their enabling
event become marked. However, only one event from each conflict set can fire. A conflict
set is such a set of events in which each event is in conflict with all other events of the set.
That means, that by the firing of an event, all rules enabling events that are in conflict
with that event are unmarked. Which event from a conflict set actually fires, can be the
result of a nondeterministic decision or can be determined by other conditions, such as the
Boolean functions within rules. As an example, consider the TEL structure in Figure 2.8c.
After event e has fired, all three rules become marked, however, by the firing of ey, the
rule enabling e is unmarked and vice versa. Therefore only e; with es or eo with es can
fire. This behaviour is equivalent to that modelled by the STG in Figure 2.8d where the
transitions in conflict share an input place.

An example of a tool that can process TEL structures is ATACS, developed at the
University of Utah. The tool can be used for the synthesis, analysis and verification of timed
circuits. Even though there is no publication about ATACS as such, there are multiple
publications about the algorithms it utilises [47, 48], including a POSET algorithm for an
efficient timed state space exploration [49], and its successful application [50].

31

Conflicts:
e1#es

t1 to t3
€1 €2 €3

\J/]/

t
(a) Three rules with the same enabled (b) An equivalent STG to the TEL
event and conflicting enabling events structure in 2.8a
Conflicts:
e1#tes
t
N / \
e1 es €3 t to i3
(c¢) Three rules with the same enabling (d) An equivalent STG to the TEL
event and conflicting enabled events structure in 2.8c

Figure 2.8: Conflicts in TEL structures with equivalent STGs

2.6 CSP-Based Descriptions

In this section, three of the most common, high abstraction level description methods
comparable to hardware description languages will be presented. Namely, those are Com-
municating hardware processes (CHP), Haste and Balsa. All of these description methods?
are based on Hoare’s Communicating sequential processes (CSP) [51] and, as explicitly
listed in the respective documentation, Dijkstra’s Guarded commands [27], even though
CSP is already based on the latter.

CSP will be described in the first part of this section, since the methods inherit many
common constructs and characteristics from it. In the remainder, the non-CSP related
common characteristics are described, after which each method with its syntax and unique
features will be briefly described.

2.6.1 Communicating Sequential Processes

Communicating sequential processes (CSP) is a formal language for describing concurrent
systems as set of interacting processes. CSP was first introduced in [51], an enhanced
version with formal definitions to form a process algebra that allows formal reasoning
about a system’s behaviour was later published in [52]. Another good source of information
about CSP with more recent information about its use and supporting tools is [53].

The building part of a system in CSP is a process. Every process in CSP is an object,
that engages in various events which describe its interaction with other processes. Formally,

4Even though “languages” might be more appropriate in this case, the term description methods will
be used consistently in this work, since the formerly described methods, e.g. STGs, are no languages and
due to Martin’s statement: “The source notation is a program notation and not a hardware description
language.” in [26].

32

the behaviour of a process is fully described with the set of all possible traces it could
generate and its alphabet. A trace is a list of events occurring during an execution of a
process, or even system. It is equivalent to a firing sequence in Petri nets or a schedule
in distributed systems terminology. The times, when events occur are irrelevant and they
do not have execution times. The alphabet of a process is simply the set of all events a
process can participate in. Note that not all events from the alphabet of a process must
occur in any of the traces it can generate.

In the following, the most important constructs for describing CSP processes will be
described.

There are two predefined special processes, STOP and SKIP. The process STOP
never engages in any events and is therefore used for the description of failure or deadlock,
often as a result of an analysis of a system. SKIP describes a process that successfully
terminates, therefore only engaging in the special event ,/, which by definition can only
occur at the end of a trace. Practically SKIP is often used as a placeholder where the
syntax of a construct requires a process but no operation should be performed.

The most basic operator in CSP is the prefix operator, which is of the form (z — P),
pronounced “x then P”. When this operator is applied to a process, the result is a new
process that first engages in the event x and then behaves according to the description of
P.

Recursion can be used to describe processes with long or even infinite traces. For
example, a clock ticking infinitely long can be described as:

CLK = (tick — tock — CLK)

Furthermore, mutual recursion is also allowed. For example, the clock process can also
be described with:

CLKl = (tick — CLKQ)
CLK2 = (tOCk — CLKl)

The choice construct allows to describe a process the behaviour of which depends
on the first event. The syntax of the choice construct is (¢ — P | b — @), pronounced
“a then P choice b then @7, with P and) having the same alphabet containing events
a and b. Semantically the result is a process which can initially engage in either a or b
and subsequently behaves like P if the first event was a and Q if it was b. Note that this
construct only allows deterministic choice — a cannot be equal to b.

The general choice construct (P [0 Q) is the generalisation of the choice construct
that allows to model processes with nondeterministic decisions. If there are no events
that are initially accepted by both P and @, O behaves exactly like |. The OJ operator,
however, is also applicable where both processes accept the same event initially. In this
ambiguous case, the resulting process will behave like one of these two processes chosen
nondeterministically. Please note that the decision is based on the first event only and
therefore

((a—=b—=P)O(@a—c—Q))#(a— (b= P)O(c—Q)))

as in the left hand description only one of b and c is accepted after a, depending on the

33

nondeterministic decision, while in the right hand description both b and ¢ are accepted
and the (deterministic) choice depends only on which of these two events the process
engages in. Please also note that although replacing all choice operators | with general
choice operators [1 would lead to equivalent descriptions, it is not advisable to do so when
describing circuits due to the difference in the implementation.

The sequential composition operator (P ; Q) allows to describe a process which
behaves exactly like P until it successfully terminates (by engaging in the event /), after
which it behaves like). Essentially, sequential composition is the prefix operator for
connecting whole processes. Since the successful termination event / can occur only at
the end of a trace, it is suppressed when P engages in it to allow continued execution of the
resulting process. As an example, consider the sequential composition of a process which
engages in a and terminates successfully with the process P. The described behaviour is
equivalent to that of the process a then P:

((a - SKIP); P) = (a— P)

A very important operator for describing concurrent systems is the parallel composi-
tion operator (P || @), pronounced “P in parallel with Q”. This creates a process behaving
like two concurrently executed processes interacting by synchronously engaging in events
their alphabets have in common. Here, the alphabets of processes play an important role.

For illustration, consider the following example:

P=(a—c—d—e—P)
Q=0b—oc—e—>d—Q),

the alphabet of P and @ being {a, ¢, d, e} and {b, c,d, e} respectively. Initially, the process
(P || Q) can engage in a, since it is accepted by P and not common to both alphabets
or b by the same reasoning. Since c is an event shared by both processes’ alphabets, both
P and @Q must engage in it simultaneously. Therefore, the only possible second event the
process can engage in is the second of the pair a and b so that both processes are ready to
engage in c¢. After engaging in ¢, the processes deadlock since P is waiting for) to accept
d and vice versa with e. Therefore, in this example

(P|Q)=(a—b—c— STOP|b— a—c— STOP).

Each process can be assigned read-only or read-write access to variables. The variables
cannot be used for communication of concurrent processes in the sense that if a process
is assigned writable access to a variable, the same variable cannot be accessible from any
other process running in parallel. An assignment has the common syntax z := e for the
expression e being assigned to the variable . The expression is always evaluated prior to
the assignment. Variables are useful for the description of processes. The most important
construct serving this purpose is the if-else construct which has the form P €b3 Q. The
result is a process that evaluates the Boolean expression b and then behaves like P if b was
true or @) otherwise. Another typical use of variables is in the short notation for loops
b x @, even though formally they are simply a special case of recursion using the if-else
construct.

As described above, concurrent processes use common events for synchronisation,

34

which is functionally equivalent to dataless handshaking. The exchange of data between
processes is modelled similarly with the use of communication events. These have the
form c.v, where c is the name of the communication channel and v is the exchanged value.
The set of all values communicable over a channel by a process P is called the alphabet of
the channel, denoted ac(P). To distinguish between the generation of a value and its re-
ception and also simplify the use of variables for received values, the sender engages in the
output event clv with v being the value to be transmitted while the receiver engages in the
input event c?v where v is a variable local to the process. Note that in traditional CSP,
by convention, communication channels only allow direct connections of two processes.
Broadcast and multicast channels are not allowed.

As and example for the use of communication events, consider the following process
which repeatedly receives a binary value from the channel left and outputs its inverse on
the channel right:

INV = (left?x — right!(1 —x) — INV).

This kind of communication by means of a joint engagement in an event, which effec-
tively means using implicitly synchronised channels with the handshaking protocols and
other implementation details abstracted away, is a key property of CSP.

2.6.2 Common characteristics

There are many similarities between CSP and the considered CSP based description meth-
ods. There are, however, also some additions and changes that improve the description of
hardware with those methods. Those common to all three methods will be described in
this subsection.

e An important addition to CSP introduced in [54] is the probe. A process, in any state
can accept a set of events while not accepting others. It is suspended until another
process (or the environment) is ready to engage in one of the accepted events. For
the description of hardware, it is important to be able to change the behaviour of a
process (circuit) based on whether an event is pending or not. Choosing a pending
event to be the next accepted event will guarantee immediate engagement without
suspension. A probe of an event is a Boolean expression which evaluates to true
when the event is pending. In hardware, this represents a pending communication
on a channel. Another variant is the dataprobe, which allows access to values from
pending communications.

e In the description methods, there is no such distinction between events and processes
as in CSP. Both are referred to as statements. This also makes the prefix operator
obsolete, since all statements can be composed with the sequential composition op-
erator. Note that when describing the syntax of the methods below, “statement” can
also refer to multiple statements composed sequentially and/or concurrently.

e A synchronised communication like the mutual engagement in events in CSP,
whether associated with a data exchange or not, is performed over channels. To
allow the mapping of descriptions to hardware, all channels as well as variables must
be declared with a predefined type. All methods allow the use of common types a
programmer would expect — signed and unsigned integers with definable bit widths,

35

Booleans, enumerated types as well as composite types like arrays and structures.
The assignment of variables uses the common syntax variable := expression in all
the methods.

e Since all expressions need to be mapped to hardware, only a limited number of sup-
ported operators can be used. All methods support all common Boolean operators,
basic arithmetic operations like addition, subtraction, multiplication, comparison,
and, usually only for expressions that can be evaluated at compile time, division and
exponentiation.

e None of the description methods allows to describe processes recursively. This allows
to determine the required amount of storage directly from the description, since
recursion generally requires dynamic storage (comparable to a stack in software).
However, tail recursion, i.e. recursive calls at the end of a process, procedure or
function just before termination, does not require dynamic storage (stack space)
but, nevertheless, is not allowed. Although several loop constructs as special cases
of recursion are available, they do not support descriptions equivalent to mutual
recursion.

2.6.3 Communicating Hardware Processes

Communicating hardware processes (CHP) is the first of the three description methods in
this work which are based on CSP. CHP is used as the highest abstraction level description
method in the Caltech Asynchronous Synthesis Tools (CAST) [25]. It is described in [26]
as a program notation, not a hardware description language, with a syntax that uses non-
standard characters and therefore cannot be directly input to a computer. In the manual
for CHPsim [55], a simulator for the CHP language, the complete syntax of a machine-
readable CHP description is given. This will be used as a reference for CHP throughout
this work. Another document [56], available only in its incomplete form, describes the
CAST language used as a common input language for tools which are a part of the CAST
toolchain. This language allows the designer to describe a circuit at different abstraction
levels, CHP being at the top end, PRS (see Section 2.2) being the bottom end.

In the following, the fundamentals of CHP and its typical constructs with their syntax
will be briefly described along with differences between CSP and CHP.

e The term “process” is used for an entity describing a circuit block that can be later
instantiated and interconnected.

e The statement skip provides the same functionality as the SKIP process. No state-
ment with the function of STOP is provided.

e Choice and general choice have a similar syntax in CHP as that of CSP:
[expression -> statement [] expression -> statement]

[expression -> statement [:] expression -> statement]

However, these constructs are more similar to Dijkstra’s guarded commands than
CSP. The Boolean expressions are called guards and their evaluation is deciding. If
no guards are true, the process is suspended until a choice can be made. General

36

choice allows nondeterministic decisions when multiple expressions may become true
at the same time, therefore uses an arbiter in the hardware implementation.

e There are three constructs for loops:

*[expression -> statement [] expression -> statement]
*[expression -> statement [:] expression -> statement]
*[statement]

The first have similar behaviour to choice and general choice, however, no loop
construct ever suspends. When at least one guard is true, it is selected and after
the termination of the associated statement, the selection is repeated. When no
guards are true, the construct terminates. When used with only one choice, the first
construct implements a simple while-do loop. The last construct simply repeats a
statement indefinitely.

[

e The sequential composition operator is ‘;’ as in CSP, the parallel composition op-

erator, however, uses a simple comma °,’. Their functionality remains the same as
in CSP. Parallel composition binds tighter, braces can be used to override operator
precedence.

e Variables are declared at the beginning of a process’ body and are local to that
process. As in CSP, they cannot be used for communication between concurrent
processes (since being local) and concurrently composed statements. Apart from
the standard assignment statement using ‘:=’, Boolean variables can be assigned a
positive or negative value by appending a ‘+’ or ‘-’ after the name of such variable.

e For the description of communication in CHP, the statements port, port! expression
and port?variable can be used for dataless synchronisation, output and input, re-
spectively. Additionally, port!port? can be used for a pass, which is a direct retrans-
mission of a value without intermediate storage or processing, and port#? variable
describes a peek, where a value is received but not yet acknowledged so that a sub-
sequent input statement receives the same value. CHP does not support channels
internal to a process, but only external ports, each of which must be defined as a
process parameter. In the definition, the direction of a port is denoted with an ‘1’
or a ‘?’ for output or input ports, respectively. Dataless synchronisation ports are
defined without a direction and type.

e The probe is of the form #port. The dataprobe is limited to a Boolean expression

#{ portl, port2 : expression }

which evaluates to true if the probes of all ports in the list are true and the Boolean
expression, which can refer to ports as read-only variables, also evaluates to true.

A usual CHP description of a circuit consists of process definitions and at least one meta
process, which instantiates CHP processes and describes their interconnection. Common
tasks can be defined in procedures, which can be used as statements in processes, and
functions, which return a value and therefore can be used as expressions. Processes can
also contain meta parameters which can be used for the description of parametrised circuit

37

blocks. For example, a process can describe a FIFO buffer with its width and depth
configurable with two parameters during instantiation.

As already mentioned, CHP is the high-level description method used in tools included
in the CAST toolset, developed at the California institute of technology. It includes tools
for the synthesis and simulation of CHP descriptions. The synthesis process is described in
[26] and includes transformations such as process decomposition, handshaking expansion
and the transformation into PRS, which are described in Section 2.2.

2.6.4 Haste

The next description method based on CSP is Haste. It is the description method used in
the asynchronous circuit design flow supported by the design environment called TiDF.
TiDE has been commercially distributed by Handshake Solutions, which later on became
a part of Philips. Haste was originally known under the name Tangram. Also, its notation
was similar to that of CSP, and therefore also CHP, before it changed to a more verbose
syntax, improving the readability of the code. Detailed information about the syntax and
semantics can be found in the Haste language manual [57].

The most important constructs, syntax examples and some important properties of
the description methods are shown below.

e The term “process” is not used in Haste. A description only contains procedures and
functions.

e Both special processes, SKIP and STOP are available as special statements with
the same name.

e There are several constructs for choice. The if and case constructs known from
common general purpose programming languages are to be used with stable expres-
sions and they terminate if no expressions are true. The select construct, which is
intended to be used with unstable expressions such as channel probes, performs ar-
bitrated selection and suspends until some expression becomes true. The syntax of
the if construct is:
if expression then statement
or expression then statement

else statement
fi

The syntax of selection is very similar, however, without the optional else statement
and using the sel and les keywords.

e The general form of a loop construct is the do construct with the syntax:

do expression then statement
or expression then statement

else statement
od

As in CHP, it has similar functionality to the if construct with repetition until
no expression is true. The optional else clause is equivalent to or true then and
therefore causes the loop statement to never terminate. Other loop constructs are:

38

repeat statement until expression
forever do statement od
for expression do statement od

The first two are special forms of the do construct, however, allow a more efficient
hardware implementation. The for construct can be used to repeat a statement a
bounded number of times, resulting in the instantiation of a counter.

[

e Sequential composition is denoted with a ‘;’ and parallel composition with a ‘|| .
The parallel composition operator binds tighter and brackets can be used to override
operator precedence.

e Variables in Haste can have scopes spanning several procedures and can be accessed
even from concurrent statements. Modifiers can be used to determine whether the
mutual exclusion introduced for concurrent assignments requires an arbiter (arb!)
or not (narb!) and for the purpose of error suppression for read/write accesses from
concurrent statements (narb:) when conflicts are precluded by design. Furthermore,
the £f modifier can be used when a variable should be implemented with a flip-flop
instead of a latch, thus allowing auto-assignment® without the need for an additional
variable for temporary storage.

e Communication statements in Haste have the syntax channel!expression and
channel?variable for an output and input, respectively. The dataless synchronisa-
tion uses the same statements with the symbol ‘-’ in place of the expression or
variable denoting that no data is exchanged and the same symbol is used as the
type for dataless channels. Haste allows channels to be used for communication with
the environment, when being procedure parameters, but also for connecting internal
statements with a handshaked communication. Moreover, each channel can be read
and written to from multiple statements, even concurrent ones. The modifiers broad
and narrow can be used to determine, whether all concurrent receivers should be
involved in a single communication (broadcast channel) or always just a single one
(narrowcast channel). The modifiers arb! and narb! can be used to specify whether
arbitration is needed to resolve conflicts if two or more concurrent output statements
access the same channel and in case of a narrowcast channel the analogous modifiers
arb? and narb? are used for concurrent input conflicts. When channels are used as
parameters, the additional modifiers act and pas can be used to determine whether
the ports should be active or passive.

e The probes in Haste have the syntax probe(channel), inprobe (channel) and
outprobe (channel). The general probe evaluates to true if any action is pending on a
channel, whereas the inprobe and outprobe only denote pending input and output
actions, respectively. The dataprobe (channel) returns the current value on a chan-
nel’s wires and should therefore only be used after an outprobe to guarantee stable
values. For the completion of a handshake, the dataless input (channel?”) can also
be used with channels of other types when the value should be discarded.

5An auto-assignment is such that the variable being assigned is also referenced in the expression of the
assignment statement, e.g. x = x+1.

39

e In addition to synchronised communication over channels, Haste allows the use of
wire-s to represent non-handshaked signals. The value of each internal or output wire
is determined by one expression which is continuously evaluated and therefore may
result in unstable values.

e There are a number of functions which work with unstable expressions, such as
probes an wires. Where constructs require stable expressions, the sample (expression)
function, which introduces a synchroniser with a metastability filter, can be used
to obtain a stable sample for evaluation. The wait(expression) statement sus-
pends until the expression is true. Additionally, the statements edge(expression),
posedge (expression) and negedge (expression) can be used similarly to wait, however,
they terminate only on encountering any, a positive or a negative transition, respec-
tively.

e In Haste, there is a very important distinction between a definition and a declaration
of procedures and functions. A call of a defined procedure or function results in the
instantiation of a dedicated hardware block performing its function at the place of
call. A declaration, on the other hand, results in the instantiation of hardware by
itself. A call of a declared procedure or function activates the existing block, in case
of multiple calls introduces multiplexing of call parameters and results as well as
mutual exclusion of calls. In the description, a definition is denoted with an equal
sign between an identifier and its type while a declaration uses a colon instead.

The aforementioned design environment TiDE [58] includes tools for the analysis,
simulation and compilation of Haste descriptions. During compilation [59], a description
is first translated into a handshake circuit, which is composed of interconnected simple
blocks such as a sequencer or an adder. This representation can then be used for the
mapping onto a user-defined technology library.

2.6.5 Balsa

The last of the three considered description methods based on CSP is Balsa. Balsa is
the name of both the description method, and the tool for circuit synthesis using the
method. Both have been developed at the University of Manchester. Balsa was motivated
by Tangram, the predecessor of Haste/TiDE, which manifests mainly in a related synthesis
method. The full description of the language can be found in [60].

The most common constructs with syntax examples and properties of Balsa are listed
below.

e Like in Haste, the term “process” is not used in Balsa. Instead, a description is
composed of procedures and functions.

e The special processes SKIP and STOP are implemented as the continue and halt
statements, respectively.

e Multiple constructs are provided for the description of choice. Firstly, there are the
common constructs if and case with the same functionality as in Haste. The syntax
of the if construct in Balsa is:

40

if expression then statement
| expression then statement

else statement
end

Then there are two selection constructs for choosing amongst channels. One is select
and the other is arbitrate. They are almost equal with respect to syntax and se-
mantics, the only difference being that the former denotes non-arbitrated selection,
where no two inputs can become true simultaneously, while the latter introduces
arbitration to the selection to resolve possible conflicts. The syntax of the select
construct is:

select channel then statement

| channel then statement
end

It should be noted that selection implicitly evaluates probes of the listed channels
and that within the statements after the selection, the channels behave like read-
only variables. Therefore, they can be directly used in expressions, and assignments
should be used instead of input statements to read a channel value. The handshake
of a selected channel is completed when the corresponding statement terminates.

Balsa has a very universal loop construct with the syntax:

loop
statement
while expression then statement
| expression then statement
also statement
end

The statement between loop and while is optional and it is executed at each loop it-
eration before evaluating the expressions. The expressions are evaluated in sequence,
therefore, when multiple evaluate to true, the first is always chosen. Note that the
expressions must be stable during evaluation. The optional also clause can be used
for statements that should be executed at the end of each loop iteration excluding
the last, where no expression was true, after which the loop construct terminates.
The simpler constructs

loop statement end
loop statement while expression end

can also be used. Even though there is a for construct, this is used to generate
multiples of similar hardware blocks which can be compared to full loop unrolling,
and should not be confused with loops, where the same hardware is used for each
iteration.

Sequential and parallel composition use the same operators as in Haste, ‘;’ and

‘117, respectively. Again, the parallel composition operator binds tighter and square
brackets can be used to override operator precedence.

Variables in Balsa can be declared within procedures and functions and since these
can have overlapping scopes, variables can also be used to exchange data between

41

them. However, implicit mutual exclusion, optionally with arbitration, of concurrent
accesses to variables is not supported by Balsa. Moreover, read-write accesses of
variables from concurrent statements are not allowed. Auto assignment of variables
is allowed in Balsa and the required temporary storage will be introduced by the
compiler.

e The communication in Balsa uses the syntax

channel <- expression
channel -> variable

channel -> channel

channel -> then statement end

for output, input and pass, respectively. The last line shows a construct that waits
for a pending output on the specified channel after which the statement is executed.
As in the selection construct, the channel can be used as a read-only variable within
that statement. The handshake is completed when the statement terminates. Even
though this construct has the same functionality as a select with a single channel,
there is one notable difference. All ports in Balsa are active by default. The only
exception is that when channels are used in a selection, they become passive. This
does not apply to the channel -> then construct, where the channel, even though it is
being probed, remains active. Write access to channels from concurrent statements
is not supported in Balsa.

Dataless synchronisation channels are declared by using the keyword sync, in case
of procedure parameters, sync is used instead of the direction, input or output. The
same keyword is used in the actual communication statement, sync channel, which
performs a handshake on a channel, possibly suspending until the handshake com-
pletes.

e There are no explicit probes in Balsa. The functionality of probes and dataprobes
needs to be described with the handshake enclosure constructs, select, arbitrate or
channel -> then.

The design compiler from the Balsa toolset [61], being also based on Tangram, trans-
lates high-level descriptions into handshake circuits like the TiDE compiler. The most
notable difference between TiDE and Balsa is that Balsa allows the handshake circuits to
be parametrised, thus allowing more efficient implementations.

42

Chapter 3

Comparison by Example

In this chapter, the considered description methods will be illustratively compared by
means of the design of an exemplary circuit with all of these methods. Furthermore,
the examples will serve as additional sources for better understanding of the description
methods.

In the first part of this chapter, the chosen circuit will be informally described and
the motivating factors for its selection will be enlisted. In the subsequent parts, the itera-
tive description of the circuit, starting from its building blocks, with all of the considered
description method will be performed. Possible design choices and their effect on the de-
scription and the strengths and shortcomings of the description methods will be discussed.

3.1 The Circuit

The circuit chosen to be used for the first comparative example is a ring topology network
interface controller. It is a circuit of moderate complexity that provides an attached host
with means of communication using a simple interface and protocol.

Data transported over the network are organised in packets, the head word being used
for addressing using a hop counter which is decremented before leaving each node. If this
counter is zero in a received packet, the whole packet, except for the counter itself, is
delivered to the host attached to the current node.

To avoid deadlocks in the network, which may result from multiple nodes transmitting
simultaneously and therefore blocking the links, the circuit controls access to the network
by passing a privilege token over the ring. This arbitration protocol is equivalent to the
one described by Martin in [26] in the example “Distributed Mutual Exclusion on a Ring
of Processes”. The example in this work adds communication over the ring to this de-
scription in replacement of the CS process. Furthermore, Low and Yakovlev study and
describe different token ring arbiters with Petri nets and STGs in [62]. The equivalent to
Martin’s mutual exclusion example is the “Lazy Ring Protocol”. Again, only the problem
of mutually exclusive access to a shared resource is addressed in their work.

For the communication with the attached host, the circuit provides a data channel
associated with a dataless synchronisation channel in each direction. The synchronisation
channel is used to indicate the end of a transmission. In order to send a message through
the network, the host first communicates the destination address in the form of a number
representing the distance of the destination host from the source, the value zero causing

43

the return of the message to the sender without crossing any network links. The handshake
governing the passing of the address triggers the network arbitration protocol in the circuit
and is not completed until the token has been acquired. The following data from the host
will be delivered to the addressed communication partner by being passed as many times
as the address word specified. After communicating the last word of the message, the host
indicates the end of the packet by a synchronisation on the dataless channel used for this
purpose. Every instance of the circuit, i.e. a node of the network, has a one place buffer.
Note that sending a packet with an address greater or equal to the number of nodes in
the network would cause a deadlock, if it was long enough to fill all the nodes’ buffers.

3.1.1 Building Blocks

The circuit can be divided into two main parts: network arbitration and data handling.
The function of both parts will be informally described below and constructs typical for
asynchronous circuits they might contain will be adverted to. The structure of the circuit
with all external and internal channels is depicted in Figure 3.1.

The first part described, the arbitration block, is responsible for managing access to
the network to guarantee that only one host at a time is transmitting. It is a modifica-
tion of the aforementioned descriptions from [26] and [62]. Two external synchronisation
channels, _R and t_L, are used for requesting and passing the privilege token from and to
neighbours. An internal channel, ¢t U is used for requests to transmit data and signalising
the end of transmission to allow the passing of the token to potentially waiting neighbours.
Furthermore, either an additional channel to the data handling part or access to a shared
variable must be present to prevent passing the token while a data packet is relayed from
one neighbour to another. In the Figure 3.1, this is the channel ¢_hold. It ensures that the
token cannot overtake a packet crossing the network in the same direction which could
lead to a deadlock.

The main building block of this arbitration block is a basic arbiter, which chooses
between the independent requests from either the left-hand neighbour or the attached
host, i.e. t_L or t.U. If the current node is in hold of the token, the chosen request is
acknowledged, else the request is forwarded to the right-hand node, i.e. the t_R port.

The second part is responsible for handling data. The circuit has four data channels in
total, each being associated with a dataless channel used to signalise the end of a packet.
The nomenclature for those channels is as follows: Each data channel has the prefix d while
the associated synchronisation channel is prefixed with e. Then follows an underscore and
one of L, R, U denoting where the channel should be connected to. L and R denote the
left- and right-hand neighbours, respectively, U denotes channels connected to the host
(“up”). Finally, i and o, standing for input and output, denote the direction of the data
transfer. All external ports of the circuit are summarised in Figure 3.1.

When a host initiates a transmission, the token is first requested using the internal ¢t U
channel. Only after the request has been acknowledged, the data is routed through the
network. After the transmission, an additional synchronisation on the ¢_U channel unlocks
the token allowing it to be passed to neighbours again.

Since the arbitration protocol ensures that if a host is allowed to transmit, no data can
arrive on the d_Ri port until the transmission is finished, the data coming from the host
and from the neighbour can be merged without arbitration. The first word of a packet
contains the address and is therefore compared for zero after merging. If the value was

44

0 \) N LY
SIRSIIROIR

| |

CCE CCE
d_Lo O——(O—— e_Ri
Data handling
e_Lo O——O—— d_Ri

ltU lthold
t.L —O——0 Arbitration +—R t_-R

Figure 3.1: The structure of the circuit with external and internal channels, filled and
unfilled circles denoting active and passive ports, respectively.

non-zero, the packet is forwarded to the left-hand neighbour with a decremented address,
otherwise the address is discarded and the following words of the packet will be delivered
to the attached host. However, before being demultiplexed, the data are buffered in a one
place buffer.

3.1.2 Motivation for the Choice

This circuit was chosen, because it contains many constructs that are typical in asyn-
chronous design. The most notable ones being:

Arbitration The selection of requests from the channels ¢_L and ¢t_U must be arbitrated,
since the sources of these requests are independent. This will show the description of
possibly the most important construct in asynchronous circuits — arbitrated selection.

Merging The selection of requests that are a priori known not to occur simultaneously,
as are data from d_Ri and d_Ui' when being merged in this circuit, can be implemented
more efficiently by omitting the arbiter. The difference between the descriptions of arbi-
trated and non—arbitrated selection can therefore be shown.

State holding The description of state holding variables will be demonstrated. Exam-
ples of such variables are one that determines the presence of the token and another that
saves the destination for the current packet.

Buffering The buffer in this circuit will allow to show how to describe data storage and
the necessary input and output channels with sequenced access to the buffer.

! After the privilege token has been acquired.

45

Arithmetics In this circuit, the address value must be compared to zero and decre-
mented if forwarded. With an eight bit wide channel as an example, there will be vast
differences in the comfort of describing those arithmetic operation depending on the ab-
straction level of the description method.

Handshake enclosure In this circuit, handshake enclosure is used for obtaining the
privilege token within the handshake of the address value from the host, or when perform-
ing address manipulation before buffering the data.

Abstraction Two abstractions that simplify the design to the biggest extent are a)
handling multiple bit wide variables and channels as units, not as separate signals and b)
hiding handshaking signals and protocols. Although it is clear that the high level, CSP-
based languages will include these simplifications, the implications of the abstractions will
be observed.

3.2 The Descriptions

This section shows the description of the exemplary circuit. Please note that for the low
abstraction level description methods that require the behaviour of each signal to be
separately described, namely PRS, AFSMs, STGs and TEL structures, only the arbitration
block and a half-adder with dual rail return to zero (NCL) coded inputs and outputs will
be described. Such half-adder could be used for the implementation of the decrement
operation of the address word, and the complexity of the descriptions of even this 2-bit
data path block should demonstrate that describing the full 8-bit data path with those
methods would be unfeasible.

3.2.1 Production Rule Sets

The description of the token ring arbitration block in PRS will start with the basic arbiter
that is needed to ensure mutual exclusion of the requests:

tLpANU— L |
tUsNL—U/|
—t_LrV U+ L*
~t.UrV L+ U?

In the description, the signals ¢t_Lr and t_.Ur are the high active unrestricted external
requests from the left hand neighbour and the attached host, respectively. L and U are
the output signals representing mutually exclusive versions of the requests. The bars above
the signal names denote low active signals and are not part of the PRS syntax. They have
been added to the description for better readability only.

The description of the arbiter is an exact copy from [26], with renamed signals. The
newly introduced signals, L and U, represent the requests after arbitration. Note that since
for both signals, the complementary production rules also have complementary Boolean
expressions in their guards, this PRS describes two combinational operators, more precisely
the two NAND gates that the bare arbiter consists of (see Figure 1.4). However, the analog

46

filter that ensures correct operation in the case of simultaneous requests is missing and
there is no possibility to describe its presence with production rules. Also note that, if the
request lines go high simultaneously, the stability of the PR’s can be violated.

The rest of the PRs deal with the generation of the output signals for requesting the
token and acknowledging requests but also introduce a state-variable “I” which indicates
the presence of the token:

(t_.RAVT)N-UAN=t_ Ly tUa?
U tUyy I
(t_RaVT)N-LA—-tUgA~tholdvst Ly?
L—t.Ly 1
(~UNV ~LYAN-TN—=t RaN=t. LaA-tUs+st Rt
t.LaVvtUs—tRrl

tUp—T7

tLa—T]

In this description, all four PR pairs describe state holding operators. Also, unlike in the
PRS describing the arbiter, the mapping to transistors is not straight forward, as there are
a number of variables that would require an additional inverter before their use as inputs
to either the positive or negative transistor stack.

The function of the circuit can be understood from reading the description with mod-
erate effort. The first two operators generate the acknowledge signals t U4 and ¢_L 4, which
are going to the attached host and the left hand neighbour, respectively. Except for the
t_hold signal needed to suspend the acknowledgement of the left hand neighbour’s request,
they are equivalent. Both acknowledge a request if it is present (-U), the other request is
not acknowledged (—t_L4) and either the token is present at the current node or the right
hand neighbour is passing it by an active acknowledge signal (t_R4VT'). The acknowledge-
ment remains high until the respective request is withdrawn. The next pair of PRs requests
the token from the right hand neighbour (t_Rg) if some of the requests is active (=U V —L)
while the node is not in possession of the token (—7") and none of the acknowledge lines
is high (—=t_La A —t_Uja), including the one from the right hand neighbour (—¢_R4) which
must be low before the next request for correct four phase protocol operation. The last two
PRs describe the state variable T" which represents the presence of the token in the node.
It goes high when the request to the attached host is acknowledged (t-U4) and similarly
it goes low when the request from the left hand neighbour is acknowledged (t-L).

Although describing operators as well as understanding existing descriptions using PRS
is very intuitive and straight forward, the disadvantage of this description method is that
it does not visualise the interconnections hiding behind variable names nor any causality
between different assignments. This makes understanding the dynamic behaviour of a
circuit more difficult. As an example, note that in the description above, there is a race
condition which may cause an erroneous request for a token. The problematic expression
is “=T' A =t_L4” which could produce a glitch if the node was in possession of the token,
the left hand neighbour requested it which would cause t_L 4 to go high immediately and
subsequently T being pulled low. The erroneous request would be generated, if the fork of

47

t-Ra+/
t_Rr—

t-Ur+/ t.Ra—/
t . Ua+

¢ Un—/
t.Ua—

Figure 3.2: The burst-mode AFSM description of the arbitration block

the t_L 4 signal had an unfavourable difference in delay causing it to arrive at the input
of the t_Rp operator after T has already gone low. This could be avoided by introducing
another variable masking this possible source of error.

The description of the NCL half adder with a PRS follows:

Ay A By Sp1,Cp 1
(Ay A Bp) V (A A By) = Sp 1, Cr 1
An A By Sn 1, Cp 4

~Ay A=Ay AN =By A =B+ S, 1, S0 1,Cp 1, Cr |

In this example the advantage of a description method which uses signal levels is apparent.
The three first PRs set the appropriate output signals high when both inputs change from
NULL to either a positive or negative value. The last PR is responsible for resetting the
output signals to NULL when both inputs change to NULL again, as required by the
chosen four phase protocol.

Again, it can be observed that all four operators are state holding. This is necessary
in order to adhere to the prescribed protocol. The C, and C,, operators could also have
been implemented with a single combinational AND and OR gate respectively. However,
this implementation would violate the four phase protocol in that it would output the C),
value before both inputs would change to a valid value and C), would go to NULL before
both inputs were NULL. Both violations are acceptable provided that timing assumptions
prohibit race conditions in circuits using such blocks.

3.2.2 Asynchronous Finite State Machines

The description of the main part of the circuit’s arbitration block with a burst-mode
AFSM is depicted in Figure 3.2. The state names are chosen as lists of positive valued
signals in each state, input and output signals mixed and both without the “t” prefix.
As exceptions, the names of the two idle states where no signal is high show whether the
circuit is in possession of the token in that respective state. This naming scheme was chosen
to show that the unique entry point requirement is fulfilled, that inputs and outputs have
the same values in a state, no matter from where the machine changes to it.

48

t_hold+/

in+/

Figure 3.3: The BM AFSM description of the token holder

The function of the state machine can effortlessly be comprehended from the figure:
Initially the state machine is in the state —token and waits for requests. Depending on
which request will arrive, it changes to one of the following states while generating the
t_Rp request in order to obtain the token. Once the token has been obtained (t-Ra+)
the handshake with the right hand neighbour is completed and the machine turns to a
state where it is in possession of the token and can therefore acknowledge the request. The
function of the rest of the arcs will not be further explained.

The problem with this description, however, is, that an AFSM requires its environment
to adhere to some fundamental mode restriction. This also means, that when one request
arrives in an idle state, no further inputs are allowed to change until the machine stabilises.
This means, that the required arbitration of the two request sources is implicitly assumed
to be done before the signals are fed to the machine. The description in Figure 3.2 is
only correct if t_Lr and t_Ug are (non-inverted) outputs of an arbiter preprocessing these
signals.

The biggest disadvantage of using AFSMs for describing asynchronous circuits is the
impossibility to model concurrency. Unlike production rules, which are all evaluated con-
currently and therefore describing sequential behaviour requires additional effort, state
machines are inherently sequential but there is no way of modelling concurrent events
unless their occurrences do not violate the fundamental mode. As an example, consider
that the t_hold signal is allowed to rise and fall concurrently to the circuit’s operation with
the only restriction being that it must not rise at the time when t_R 4 goes high until an
acknowledge is generated. Adding this behaviour to the AFSM in Figure 3.2 would require
doubling every state with ¢t_hold high in one and low in the other. Instead, a second AFSM
that operates concurrently with the one described above and implements the function of
the t_hold signal is introduced. Please refer to Figure 3.3 for its description. The signals
in and out denote the t_L 4 signal coming from the AFSM in Figure 3.2 and going directly
to the external interface, respectively.

In Figure 3.4, the NCL half adder is described. Here, the difference between describing
simple logic functions as part of an RTZ data flow with level sensitive descriptions, as are
production rules in the previous subsection, and transition (event) sensitive descriptions
can be observed. Although in the NULL to data phase, the descriptions are very similar
since every positive level is caused by a rising edge, in the data to NULL phase, not
all negative levels are caused by falling edges. Therefore in BM AFSMs and other edge

49

Figure 3.4: The BM AFSM description of an NCL half adder

sensitive descriptions, the different output combinations which cause different falling edge
combinations have to be distinguished.

Also note that the higher abstraction level that AFSMs offer by hiding sequencing and
state variables disallows to model the area optimised implementation with simple combi-
national gates for the C), and C}, outputs as described in Section 3.2.1. While changing the
description to output C), after any of the inputs reads a valid negative value is possible,
the fundamental mode operation would require the other input not to change until this
state transition was finished which, of course, is unacceptable.

3.2.3 Signal Transition Graphs

As mentioned in Section 3.1, an STG description of the arbitration block, albeit with-
out the t_hold signal, can be found in [62]. This description was derived from a higher
abstraction level Petri net model in two transformations. In the first step, Petri net transi-
tions were turned into signal transitions leading to an STG with general transitions which
implements the behaviour of the Petri net with a circuit that uses NRZ signalling. In
the second step, the model was expanded to consist of rising and falling transitions only,
therefore describing a circuit with RTZ signalling. In this work, a simpler description was
chosen for better readability of the STG. The difference in functionality can be observed
when the left hand neighbour requests the token and the circuit needs to request it from
the right hand neighbour. After the right hand neighbour acknowledges the request, the
circuit changes to the state of being in possession of the token, which in turn allows the
token to be passed to the left hand neighbour therefore losing it again. In an implementa-
tion, this would lead to a pulse on a variable that would indicate possession of the token
which would make the circuit slower and less energy effective.

In Figure 3.5, which depicts the STG of the arbitration block, the description of the
arbitration of the two request sources can be observed. The topmost place represents the
core functionality of this circuit, the mutual exclusion. Since it is a common predecessor
of both of the request transitions, it creates a conflict therefore allowing only one of
them to fire. The token is returned to this place when the shared resource, in this case

20

Figure 3.5: The STG description of the arbitration block

the network, is free again. Although this allows simple modelling of mutually exclusive
behaviour, explicit specification of OR-behaviour without the need of arbitration is not
possible. As an example, consider the place below the mutual exclusion place, which is
used to start a right hand request cycle in case the token is not present in the circuit. It
is a common predecessor of the t_L 44, t-Ua;+ and t_Rp. transitions therefore introducing
mutually exclusive behaviour amongst them. There is however no marking in which any
two of those would be enabled at the same time which effectively means that no arbiter
is needed to resolve any conflicts. On the other hand, if ¢ Ury and t_Lpry were mutually
exclusive, but known not to occur simultaneously, there is no way to model this without
fully describing the environment’s behaviour within the STG.

The advantages of the possibility to model concurrency with STGs can also be observed
in the description in Figure 3.5. As a first example, consider the transitions of the ¢_hold
signal which can fire concurrently and only affect the circuit’s behaviour when ¢_L 44
is generated. As another example, note that after ¢t_L 4, fires, the communication with
the left hand neighbour is completed and the token from the mutual exclusion place is
returned, therefore allowing a request on t_Ugr to be processed. The sequential execution
of t_Lr_ and t_L4_ before t_Lp, can fire again, required by the RTZ signalling scheme,
is performed concurrently to the operation of the rest of the circuit.

The next example which is the description of the NCL half adder can be found in
Figure 3.6. Although RTZ signalling was specified, this STG uses general transitions for
simplification of the graph and therefore effectively implements a circuit that uses NRZ
signalling. Note however, that even with this description, the resulting circuit would be
compatible with RTZ environments (assuming correct initial signal values), albeit consid-
erably slower and of bigger complexity than circuits designed specially for NCL.

As a brief description of this STG, applying valid values to both inputs will cause two

51

Figure 3.6: The STG description of a half adder

positive transitions and place two tokens in the following column of places. All four transi-
tions prefixed with “t” represent a different combination of input values. After the inputs
are valid, one of them will fire and enable the corresponding output signal transitions.
Once both output transitions have fired, the rst transition can fire leaving the STG in its
initial state.

Here, the problems resulting from using STGs for describing data flow elements can be
observed. Firstly, as already discussed in Section 3.2.2, using a purely transition sensitive
description method for RTZ data flow functions has disadvantages compared level sensitive
methods. In the description of the half adder, this is the reason why the simpler STG
with general transitions was chosen. In order to correctly describe the return to NULL
phase, a considerable amount of additional places, edges and transitions would be needed
since only negative transitions of signals that had positive transitions can be enabled.
Otherwise, the STG would not be consistent by allowing two or more subsequent firings of
a signal’s negative or positive transitions. This applies to both, input and output signals.
The second problem is that all logic operators need to be modelled as Petri net structures.
An AND-operator can to be modelled with a synchronisation structure (Figure 2.5b) while
an XOR—-operator can be modelled with conflict (Figure 2.5¢). These constructs consume
tokens with each use of a term. A simple expression like (A, A Bp)V (A, A By,) which needs
to be evaluated for the generation of the S, output therefore requires two synchronisation
structures (the transitions ¢tpp and tnn) chained to a conflict (the input place to Sy.).

3.2.4 Timed Event/Level Structures

As mentioned in Section 2.5, TEL structures are a hybrid description method combining
the advantages of level sensitive (PRS) and transition sensitive (STG) methods. This also
becomes apparent in the following examples. Please note that in these examples, a default
timing specification [0, 00] is used in all rules (with some exceptions, see below). This
corresponds to the description of delay insensitive circuits where no optimisations based
on timing assumptions can be performed.

The description of the arbitration block is depicted in Figure 3.7. It can be observed,

52

[([)Ep(])] Sdum [([] (])} Conflicts:
—t_hold N\ 7 ox - - P
[1:&1\ / | / \\ t_Rr+#$dum
t_La+ ! t_Rp+ [[0,};0]] Vo tUa+
// | 7t t, A \\ \\\
0.00] |/ NCESH [o,w]\AT L | e
[_'t*LR} // [O’OO} \ [_‘t*RA]\\ [t*RA] /, [O’OO} \\ [_'t*UR}
S e 000NN S leUm)
t-La— [t-Lr] "~ t-Rp— o tUa=
B e R
[t-Ur]

Figure 3.7: The TEL structure of the arbitration block

that compared to the STG description of the same circuit, this graph is considerably
simpler, even though the timing specifications make it a little cluttered at first sight.
Similarly, the implicit sequencing represented by rules allows the Boolean functions to be
considerably simpler than the guards in the PRS description of this block.

Note how the requesting of the token from the right hand neighbour, if necessary, is
implemented. In the initial state, as shown in the figure, only the two sequencing events
$L and $U are enabled. Since they are in conflict, only one can fire and this choice is
the result of arbitration. After one of the events has fired, all four of the initially marked
rules become disabled, since t_Ls— and t_.Us4— are also in conflict. The rule with the
synchronisation event that won arbitration as its enabling event and the corresponding
acknowledge signal as its enabled event is marked and becomes enabled when the circuit
is in possession of the token (signal T'). If the token is not present at the circuit, the rule
with t_Rg+ as its enabled event that also was marked by the firing of $U will become
enabled (and satisfied, since the lower timing constraint is 0), therefore allowing a right
hand request cycle to start. The interesting thing to observe is the event $dum, which
serves only the purpose of disabling the rule having t_Rr+ as its enabled event in order
to prevent it from firing at a later point when T becomes false. Note that the rules with
$dum as their enabled event have the timing constraint [0, 0] and that the rule with ¢_L 4+
as its enabling event and 7T'— as its enabled event has the lower timing constraint 1 which
allows to conclude that the latter of those rules will not change T' until $dum fires. These
constraints ensure the correctness of the model. They must however hold in the resulting
circuit (i.e. the disabling of t_Rr+ must be faster than the causal chain ¢t L4+, T—) for
it to be correct. If it was not possible to define time constraints, additional sequencing
would have to be introduced to ensure that the $dum event always fires before T— can
fire. The chosen specification is therefore also a good example for optimisations using time
constraints.

The description of arbitration is similar to that in STGs, except that the conflict is
simply listed in the conflict relation. In contrary to STGs however, if the environment is
known not to produce two request at the same time, a mutual exclusion can be modelled

93

G+ Go+
Conflicts: ! 2

/r\ 0, /1\
G1+#Ga+ \ [Rg[/\O:D}Gl] !
Gi1—#Gy— [0l |10, 0]
[—|R1] | | [_‘RQ]
SUCI
// [R1 A —Ga] |
Gi— [R2] [RA] Go— Gi1— Go—
(a) With arbitration (b) Without arbitration

Figure 3.8: TEL structures of mutual exclusion elements

Conflicts:
Sp+#Sn+
Cp+#Cp+
Sp_#sn_
Cp_#cn_

[~A, A=A, A =B, A =B]

Figure 3.9: The TEL structure of a half adder

without the need of an arbiter, since Boolean functions in rules can also be used for
mutual exclusion. For a direct comparison, consider the two descriptions of a mutual
exclusion element (with inputs R; 2 and corresponding outputs G 2) using RTZ signalling
in Figure 3.8.

The description of the half adder depicted in Figure 3.9 also shows the advantages of the
hybrid transition/level sensitive description. Even though the description could have been
chosen to be equivalent to the PRS in Section 3.2.1, in this example additional sequencing
is introduced. All of the initially marked (dashed) rules represent equivalent behaviour to
that of PRs assigning a positive value to the output signals. The bottommost rule describes
the condition for the back to NULL assignments of the output signals. In contrast to the
PRS description however, the Boolean functions are not evaluated continuously. The rule
with the back to NULL function is marked only after both outputs have been assigned
a valid value. Even though this behaviour is of little practical importance, the example
shows how the structure of the graph influences the behaviour of the described circuit even
when all Boolean functions are equivalent to those of the PRS.

Another thing to observe in the TEL structure of the half adder are the Boolean condi-
tions of the leftmost rules that enable the negative transitions of the output signals. These
are needed to ensure that events with negative transitions of signals that are already neg-
ative cannot fire. This is equivalent to the consistency property of STGs (see Section 2.4).

54

© 0 N O s W N

e e e
Gl W N = O

Since it is known that one of each pair of signal wires will be positive, it is enough to put
the pair in conflict to ensure that none of those rules remain marked after the reset to
NULL. If this was not the case, the marking would have to be removed by the firing of an
additional rule, just like it was the case in the description of the arbitration block above,
where the sequencing event $dum was used for this purpose.

3.2.5 Communicating Hardware Processes

CHP is the first of the CSP based description methods used in this chapter and also the
first to implement the whole circuit including data flow.

Firstly, the type to be used for data within the circuit is defined to be an 8 bit wide
unsigned integer.

type data_t = {0 .. 255};

The next code listing shows the description of the arbitration block. It is a process with
one parameter, which defines whether an instantiation of the process should be initially
in possession of the token.
process arbitration(t_init : bool)

(holdtoken, t_U, t_L, t_R)
CHP {
var token : bool = t_init;
*[[#t_U -> [token -> skip
[] "token -> t_R
1
{t_U; t_U}, token+
[:1 #t_L -> [token -> skip
[] "token -> t_R
1
{holdtoken ; t_L} , token-

1]
}

This process is, with the exception of the integration of the token holding capability
using the holdtoken channel, an exact copy of the “Distributed Mutual Exclusion on a Ring
of Processes” example from [26] with the syntax from [55].

In the listing, note how each port in the form of a channel hides the subdivision into
a request and acknowledge wire and the handshake protocol, data channels even hide the
usually dual rail data coding, as will be shown in the processes describing the data path
which can be found below. With this abstraction in mind, note the two sequentially exe-
cuted synchronisations on the t_U channel in line 9 which represent requesting access to
the shared resource (the network) and freeing it again. To achieve the expected behaviour
where freeing of the resource is signalised by the withdrawal of the request, NRZ signalling
has to be chosen for the t_U port. Specifying handshaking protocols to be used in imple-
mentations of described circuits is however not possible in the CHP language and must
therefore be offered by the compiler. Furthermore, CHP also does not allow to describe
ports to be active or passive.

For the description of the selection of the request sources’ port probes, the language
construct for arbitrated selection has been used. In case the selection did not require
arbitration, the similar construct with [1 instead of [:1 could be used. Since CHP does
not allow access to variables from concurrent threads, using a Boolean variable to indicate

95

16
17
18
19
20
21

22
23
24
25
26
27
28
29
30
31
32

33
34
35

when the token should not be passed is not possible. Therefore, the holdtoken channel is
used to control the passing of the token. A synchronisation on this channel must occur
before the token is passed to the left hand neighbour. The following listing shows the
process holding, which describes the other connection point of the holdtoken channel.

process holding() (holdtoken, t_hold)

CHP {
*[[holdtoken -> holdtoken
[1 t_hold -> t_hold ; t_hold
]

}

For a successful synchronisation on the holdtoken channel, it must be selected in line 18
of the holding process. If however the t_hold channel is selected, two subsequent synchroni-
sations on the latter have to occur until the control flow returns to the selection, effectively
inhibiting the passing of the token between the first and the second synchronisation.

Apart from the arbitration block described above, the rest of the circuit is composed
of another four processes, which form the data path. From a high level, functional view,
the data channels coming from the two sources are first merged into an internal channel
from which, after being buffered in a one—place buffer, they are demultiplexed to one of
the outputs based on the address counter in the first byte of each packet. The first two
processes, namely handleU and handleR perform the necessary communication with the
arbitration block before the first byte and at the end of each packet. The description of
the handleU process is shown in the code listing below.
process handleU() (d_Ui?, d_mergel! : data_t;

t_U, e_Ui, e_mergel)
CHP {
var end : bool;
*[[#d_Ui -> {t_U ; d_mergel!d Ui?} , end-;
*["end -> [#d_Ui -> d_mergel!d_Ui?
[] #e_Ui -> e_Ui, e_mergel , end+

]

1]
}

The core functionality of the process can be found in line 26. After the probe becomes
true, which ultimately means there is a request from the attached host pending, network
arbitration is performed by synchronising on the t_U port before the data are passed to
the d_mergei port. The rest of the process is composed of a loop that directly passes all
further data from d_Ui to d_mergeil until the host synchronises on the e_ui port, which is
passed to the e_merge1l port and ends the loop, and another synchronisation with the t_U
port after the whole packet has been passed in order to free the token for other service
requests.

Apart from having d_Ri and e Ri as inputs, d_merge2 and e_merge2 as outputs and
synchronising on the t_hold channel instead of t_U at the beginning and the end of an
incoming packet, the process handler is equivalent to the handleU process.
process handleR() (d_Ri?, d_merge2! : data_t;

t_hold, e_Ri, e_merge2)

CHP {
*[[#d_Ri -> {t_hold ; d_merge2!d_Ri?} , end-;

o6

37
38
39
40
41
42

43
44
45
46
47
48
49
50
51
52

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

*["end -> [#d_Ri -> d_merge2!d_Ri?
[] #e_Ri -> e_Ri, e_merge2 , end+
]
] ; t_hold
1]

Since all communication over channels in CHP must be point—to—point and only se-
quentially executed code can make use of implicit merging, a separate process is used to
merge the two of each, d_merge and e_merge channels into one. It is called merge and listed
below. Note that this merge is performed without arbitration, since the communication
with the arbitration block in the handleU and handleR processes ensures that only one
channel at a time will supply data to be merged.

process merge() (d_mergel?, d_merge2?, d_merged! : data_t;
e_mergel, e_merge2, e_merged)
CHP {
*[[#d_mergel -> d_merged!d_mergel?
[1 #d_merge2 -> d_merged!d_merge2?
11,
*[[#e_mergel -> e_merged, e_mergel
[1] #e_merge2 -> e_merged, e_merge2

1]

The last part of the data path is the demux process listed below, which determines the
destination of the packet from the address byte, decrements it if necessary and then routes
the packet to the correct destination.

process demux() (d_merged?, d_Uo!, d_Lo! : data_t;
e_merged, e_Uo, e_Lo)
CHP {
var sink : data_t;
var buffer : data_t;
var up : bool;
var end : bool = false;
*[[#{d_merged : d_merged = 0} -> up+ , d_merged?sink
[1 #{d_merged : d_merged '= 0} -> d_merged?buffer ;
up- , d_Lo!(buffer - 1)
1;
*["end ->
[#d_merged -> d_merged?buffer ;
[up -> d_Uo!buffer
[1 “up -> d_Lo!buffer
] , end-
[] #e_merged -> [up -> e_Uo
[l "up -> e_Lo
1 , e_merged , end+ ;
]
1
1]
}

The variable up is used to determine the destination of a packet and it contains the
result of the comparison of the address byte to zero. The buffer variable describes the
storage used to buffer the incoming stream of data. The variable sink in line 56 does not
serve any special purpose and is only used as a data sink meant to be optimised away by a

o7

76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

104
105

W N =

tool processing the description. It had to be introduced in order to complete the handshake
on the d_merged channel after it has been probed without using the data, since CHP does
not allow to perform handshaking on input ports without storing the communicated value.

Please note that the decrement of the address byte is performed at the output operation
in line 62, therefore after its buffering. The reason for this is that CHP does not allow
manipulation of data prior to its assigning to a variable. The value probe, also used in
the selection in lines 60 and 61, allows to compute a Boolean expression using the probed
data. However, it does not provide any possibility to store or send results of arithmetic
operations.

To complete the description, a meta process has to be introduced that does not describe
any of the circuit’s behaviour but instead instantiates all of the above listed processes, sets
their parameters where available, and specifies their interconnection.

process nic()(d_Ri?, d_Ui?, d_Uo!, d_Lo! : data_t;
e_Ri, e_Ui, e_Uo, e_Lo, t_R, t_L)

META {

instance arb: arbitration;

instance hdg: holding;

instance hlU: handleU;

instance hlR: handleR;

instance dmx: demux;

instance mer: merge;

arb(false);

connect arb.t_U, hlU.t_U;

connect arb.holdtoken, hdg.holdtoken;

connect hdg.t_hold, hIR.t_hold;

connect hlU.d_mergel, mer.d_mergel;

connect hIR.d_merge2, mer.d_merge2;

connect mer.d_merged, dmx.d_merged;

connect hlU.e_mergel, mer.e_mergel;

connect hIR.e_merge2, mer.e_merge2;

connect mer.e_merged, dmx.e_merged;

connect hlR.d_Ri, d_Ri;

connect hlU.d_Ui, d_Ui;

connect hlR.e_Ri, e_Ri;

connect hlU.e_Ui, e_Ui;

connect dmx.d_Uo, d_Uo;

connect dmx.d_Lo, d_Lo;

connect dmx.e_Uo, e_Uo;

connect dmx.e_Lo, e_Lo;

connect arb.t_L, t_L;

connect arb.t_R, t_R

3.2.6 Haste

The first listing of the description using Haste shows the definition of the type used for
the data path, which is an unsigned byte, and the beginning of the declaration of the top
level process nic, which embodies all other processes that describe the circuit.
data_t=type [0..255]

&

nic: main proc(d_Ri, d_Ui ? chan data_t pas
& d_Lo, d_Uo ! chan data_t act

o8

© 0 9 O »

11

12
13
14
15
16
17
18
19
20
21
22
23

& t_L, e_Ri, e_Ui ? chan ~ pas
& t_R, e_Lo, e_Uo ! chan ~ act).
begin
t_hold: var bool narb! := false

& up: var bool narb! narb:
& d_merged: chan data_t narb!
& e_merged, t_U: chan " narb!

In the specification of the external ports in the header of the nic process, it can be
observed how the input and output ports are described as passive and active respectively.
The two variables as well as the internal channels that are declared within the scope of
the nic process are local to that process and can also be accessed from nested scopes. The
processes declared within the nic process, that will be described in the following, can thus
access these resources. Note the various narb specifiers in the declarations which tell the
compiler that no read or write conflicts can occur which would require arbitration to be
resolved.

The next listing shows the description of the arbitration block, which is a process
declaration in the scope of the nic process.

& arbitration: proc().
begin
token: var bool narb! := false
& gettoken: narb proc().

if -token then t_R!~ f£fi
|

forever do

sel outprobe(t_U) then gettoken(); (t_U?" ; t_U?") || token := true
or outprobe(t_L) then gettoken(); (wait(-t_hold) ; t_L?") || token := false
les

od

end

It can be seen that the arbitration process is described, apart from a few exceptions,
very similarly as in CHP. One of the exceptions is the introduction of the gettoken process,
which makes use of the elaborate method of describing hardware sharing in Haste. It
performs the task of requesting the token by synchronising on the t_R port if the circuit is
not in the possession thereof, a task that has to be performed irrespective of which request
is being served. Also note that the token holding functionality is provided by the shared
Boolean variable t_hold which, when set to true, inhibits the passing of the token. The
last thing to note is that in the header of the arbitration process, there are no ports. This
is because all communication directly uses channels that are local to the nic process.

The arbitrated selection of the request sources is described with the sel statement.
There is however no similar statement to describe selection that does not require arbitra-
tion. Although the if statement could be used for this purpose after waiting for one of
the probes to become true, the Haste manual discourages the use of probes expressions in
other than select statements.

The handle process, which is listed below, also uses hardware sharing. In the CHP
description, the process was split into two, mostly equivalent, yet independent processes.
To share the common parts to save hardware, additional multiplexing would have to be
introduced. In Haste, the multiplexing needed for accessing shared resources is introduced
implicitly.

99

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

55
56
57

& handle: proc().
begin
sharedproc: narb proc(d_ch ? chan data_t
& e_ch ? chan 7).
begin
endloop: var bool := false
|
if dataprobe(d_ch) = 0 then up := true
else up := false ; d_merged!(dataprobe(d_ch) -1) fit data_t
fi ;
d_ch?” ;
repeat
sel outprobe(d_ch) then d_merged!dataprobe(d_ch) ; d_ch?”
or outprobe(e_ch) then endloop := true || e_merged!” || e_ch?”
les
until endloop
end

forever do
wait(outprobe(d_Ui)) ;
t_Uu'”
sharedproc(d_Ui, e_Ui) ;
t_ U~

od ||

forever do
wait(outprobe(d_Ri)) ;
t_hold := true ;
sharedproc(d_Ri, e_Ri) ;
t_hold := false

od

end

The sharedproc process, declared in the beginning of the handle process describes most
of the task associated with data. Firstly the address byte is compared to zero in line 31,
after which the variable up is set accordingly. The address byte is decremented and passed
if necessary and the handshake on the d_ch is completed in line 34. After that, all incoming
data are passed to the d_merged until a synchronisation on the e_ch port occurs which, after
being forwarded, causes the process to terminate.

In the body of the handle process, there are two concurrent loops in which the necessary
communication with the arbitration block is performed before the sharedproc process is
accessed to carry out the common task. Here, note how within the sharedproc process only
the d_ch and e_ch channels defined in its header are read. These are assigned one of the
set of the external channels d_Ui and e_Ui or d_Ri and e_Ri when sharedproc is accessed in
lines 45 and 51 respectively.

The demux process listed below is responsible for the distribution of the data packets
including the end handshakes to the output selected by up. Also the one place buffer
is part of this process. Compared to the demux process in CHP, this one is considerably
simpler due to the fact that the d_merged and e_merged channels are only written after the
up variable has been set to the correct value as opposed to the CHP description, where
also the address byte was passed unprocessed.

& demux: proc().
begin
buffer: var data_t

60

58
59
60
61
62
63
64
65
66
67
68
69
70
71

73
74
75
76

0 N D Ok W N

|
forever do
d_merged?buffer ;
if up then d_Uo!buffer
else d_Lo!buffer
fi
od ||
forever do
wait (outprobe(e_merged) ;
if up then e_Uo!~
else e_Lo!~
fi ;
e_merged?”
od
end

The description of the demux process is relatively straight forward. In the first of the
two concurrent loops, the incoming data is read into the buffer and subsequently output
to the chosen destination. In the second loop, the e_merged channel is first probed and
the handshake is completed only after the synchronisation on the chosen external port
to prevent a race condition that could result to the variable up being changed before or
during its reading for the comparison.

To complete the description of the circuit, the the listing below shows the body of
the top level nic process where the processes described above are all run in parallel. As
mentioned earlier, no connections have to be specified since the processes communicate
over channels and variables shared within the nic process, and not over ports local to each
process that would need external connection.
| arbitration() ||

handle() ||

demux ()
end

3.2.7 Balsa

As with the previous design, the description of the circuit with Balsa starts with the
definition of the desired type for the data path and the declaration of the top level proce-
dure, nic with its external ports. Furthermore, the local channels, which will be used for
communication between the procedures the circuit is made of, are declared.

type data_t is 8 bits

procedure nic(input d_Ri, d_Ui : data_t;
output d_Lo, d_Uo : data_t;
sync t_R, t_L, e_Ri, e_Lo, e_Ui, e_Uo) is
local
channel d_mergel, d_merge2, d_merged : data_t
sync e_mergel, e_merge2, e_merged, t_U, t_hold

Balsa, same as CHP, does not allow to define the ports to be active or passive in
the procedure header. However, all ports are by default active and only if the select or
arbitrate statement is used with a channel, it becomes passive, giving the designer an
indirect way to determine this property of ports within the code.

61

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

37

The next listing shows the description of the arbitration block. In line 13, the shared
procedure gettoken is declared which has the same functionality as in the Haste description
in the previous chapter. In line 18, the explicit initialisation of the variable token is per-
formed, since Balsa does not allow to set initial values for declared variables. Apart from
using the shared gettoken procedure, the arbitration procedure is equal to the concurrent
composition of the CHP processes arbitration and holding, which had to be separated
in CHP because no local channels were allowed. The arbitrate statement describes the
arbitration that is required to resolve the concurrent requests. Where no arbitration is
needed, the select statement, which has equivalent syntax, can be used.

Note that in contrast to CHP and Haste, the handshake of a selected, probed channel
is implicitly completed at the end of the associated command, within which the channel
behaves as a variable. This requires the introduction of variables to indicate which channel
was selected if the behaviour after completing the (first) handshake of the latter depends
on the selection. This is also the case in the arbitration block, where two subsequent
synchronisations on the t_U channel have to be performed after it has been selected. In this
case, the variable token, which is dependent on the selection is used in line 25 to perform
the second synchronisation on the t_u channel. Furthermore, it can also be observed in
the loop starting at line 27 which has the functionality of the holding process, where the
variable holdvar had to be introduced to be able to perform two synchronisations after the
selection.

procedure arbitration is
local

variable token, holdvar : bit

sync holdtoken

shared gettoken is

begin

if not token then sync t_R end
end
begin
token := 0 ;
loop
arbitrate

t_U then gettoken() ; token :=1
| t_L then gettoken() ;

sync holdtoken || token := 0
end ;
if token then sync t_U end
end ||
loop
select

holdtoken then continue
| t_hold then holdvar := 1
end ;
if holdvar then
sync t_hold || holdvar := 0
end
end
end

The next listing shows the description of the handleU procedure which is equivalent to
the CHP process handleU (see Section 3.2.5).

procedure handleU is

62

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

70
71
72
73
74
75
76
7

variable endloop : bit
begin
loop
select
d_Ui then sync t_U ;
d_mergel <- d_Ui

end ||

endloop := 0 ;

loop while not endloop then
select

d_Ui then d_mergel <- d_Ui

| e_Ui then sync e_mergel || endloop := 1
end

end ;

sync t_U

end
end

The procedure handlerR (not listed) is, as it was in CHP, very similar to the handleu
procedure with d_Ui, e_Ui, d_mergel and t_U replaced by d_Ri, e_Ri, d_merge2 and t_hold,
respectively.

The procedure merge which merges the data and the synchronisation channels for the
packet ending is listed below.

procedure merge is
begin
loop
select
d_mergel then d_merged <- d_mergel
| d_merge2 then d_merged <- d_merge2
end
end ||
loop
select
e_mergel then sync e_merged
| e_merge2 then sync e_merged
end
end
end

The demux procedure, which is also equivalent to the CHP process demux with two
exceptions is listed below. The first exception is the introduction of the send variable which
is necessary to overcome the limitation of the selection in Balsa. This also eliminates the
need of a variable which terminates the inner loop, since the variable send can be used for
this purpose (line 98). The second and more distinctive difference is that since selected
channels behave like variables within the selection block, the decrement of the address
byte (line 78) can be performed with the probed channel prior to buffering.

procedure demux is

variable buffer : data_t

variable send : bit

variable up : bit

begin
loop

select d_merged then
if d_merged = ® then up := 1 || send := 0

63

78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

102

104
105
106
107

else up := 0 || buffer := (d_merged - 1 as data_t) || send :
end
end ;
if send then d_Lo <- buffer end ;
loop
select
d_merged then
send := 1 ||
buffer := d_merged
| e_merged then
send := 0 ||
if up then sync e_Uo
else sync e_Lo
end
end ;
if send then
if up then d_Uo <- buffer
else d_Lo <- buffer
end
end
while send end
end
end

The last code listing completes the declaration of the top level nic procedure by running
all, internally declared processes in parallel. Note that, same as in Haste, there are no

connections necessary.

arbitration() ||
handleU(Q) ||
handleR() ||
merge() ||
demux ()

end

64

Chapter 4

Comparison

This chapter summarises the information about properties of the considered description
methods from the previous chapters and compares the latter directly. The comparison
is based on various criteria showing the capabilities of the description methods. Each
criterion or group thereof addressing different aspects of asynchronous circuit design is
presented in a separate section.

4.1 Arbitration

When describing the arbitration block of the exemplary circuit in Chapter 3, the descrip-
tion of arbitrated and non-arbitrated selection was discussed for each description method.

Table 4.1 shows a summary of the use of arbitration in the description methods. In
the table, no denotes that the method does not allow to describe circuits requiring the
analog arbiter, implicit means that by definition, every conflict is arbitrated while methods
with the entry selectable offer possibilities to describe both, arbitrated and non-arbitrated
selection. For details, please consult Chapter 3.

Desc. method Arbitration
PRS No
AFSM No
STG Implicit
TEL structures Selectable
CHP Selectable
Haste Selectable!
Balsa Selectable

Table 4.1: Summary of description capabilities for arbitration

The inability to describe arbitration, as with PRSs and AFSMs, causes external ar-
biters to be required for every non-deterministic choice (see also Section 3.2.2). Each group
of input signals that are in conflict thus have to be routed through an arbiter after circuit

'Even though there is only an arbitrated selection statement, there are other possibilities to describe
non-arbitrated selection.

65

synthesis. Where internal signals are in conflict with others, they must be output from the
described circuit and again input after the external arbitration. In STGs, conflicts that re-
quire arbitration can also be modelled as an interface to an external arbiter. The synthesis
tool could then be set to exclude arbitration from STG conflicts. Arbiters described with
another description method or imported from a design library could then be connected to
the dedicated interfaces.

4.2 Concurrency and Sequence

As no implicit synchronisation takes place in asynchronous circuits, every event is concur-
rent to all others that it is not explicitly synchronised with. Therefore a description method
should provide constructs for both concurrent and sequential composition of events.

Table 4.2 shows in a summary whether concurrent and/or sequential composition are
supported in the considered description methods. In the table, yes denotes that a method
provides constructs to simply describe concurrently or sequentially composed events, while
the other three options are used with methods that do not offer such constructs. Implicit
indicates which kind of composition these methods inherently use, no means that it is not
possible to compose events in that particular way and manual means that even though
no construct is provided for such composition, it is possible to describe it manually by
introducing additional variables and states.

Desc. method Concurrency Sequence
PRS Implicit Manual
AFSM No Implicit
STG Yes Yes
TEL structures Yes Yes
CHP Yes Yes
Haste Yes Yes
Balsa, Yes Yes

Table 4.2: Summary of description capabilities for concurrency and sequence

The lack of sequential composition as in PRSs does not limit the expressiveness of
the description method. The lack of concurrent composition as in AFSMs, however, does
impose significant limitations. Every part of a circuit with concurrent operation must
either be serialised, or described with a dedicated AFSM with each synchronisation using
handshakes on dedicated channels.

4.3 Timing

Some description methods require certain timing assumptions about the environment of
the circuit being described to hold for correct operation. These can decrease the possibil-
ities for optimisation or even disallow the description of arbitration.

Table 4.3 shows a summary of timing assumptions made by the considered description
methods. Note that the assumption that signals must adhere to the specified protocol
(which excludes faulty behaviour such as glitches) is not included in the table.

66

Desc. method Timing assumption

PRS Stability of guards
AFSM (Restricted) Fundamental mode
STG Persistence

TEL structures Specifiable

CHP None

Haste None

Balsa None

Table 4.3: Summary of timing assumptions

As known from synchronous circuits, a strong timing assumption greatly simplifies
the design process, verification and even the circuit implementation. However, if the as-
sumption is too strong, it may cause considerable problems such as the area, power and
delay overheads as in synchronous systems. On the other hand, since it is unrealistic for
wires and/or gates to have arbitrary delay, from zero to near infinity, designing circuits
with the minimal timing assumption of isochronic forks in the implementation can also
cause area, power and delay penalties. Only TEL structures allow to trade timing related
optimisations for decreased reliability at the designer’s will.

4.4 Asynchronous communication

There are three important parameters for describing an asynchronous communication
channel — the handshaking protocol (two phase or four phase), which connection point is
active and which passive and the signalling scheme for the data, naturally, except for pure
synchronisation channels. As each of the different combinations of these parameters has
advantages and disadvantages, it might beneficial to be able to use more than one setting
for all the channels within a circuit. Table 4.4 shows which options are available in the
considered description methods.

Note that the physical implementation of communication channels in CSP based meth-
ods is not specifiable. In practise, however, this choice would be possible within the design
environment.

Desc. method Handshaking Active/Passive Signalling
PRS All Yes Delay insensitive?
AFSM All Yes Delay insensitive?
STG All Yes Delay insensitive?
TEL structures All Yes All

CHP Not specifiable No Not specifiable
Haste Not specifiable Yes Not specifiable
Balsa Not specifiable Indirect? Not specifiable

Table 4.4: Summary of description capabilities for arbitration

67

The inability to describe (complete) bundled data circuits with the first three descrip-
tion methods does not have a negative effect on their practicality. These low abstraction
level methods would anyway not be used by a designer to describe the data path of a
circuit. Instead, the control circuit would and can be described with these methods and
appropriate delays determined from the data path’s implementation would be added in
a post-synthesis step. The inability of choosing a handshaking protocol and a signalling
scheme for data in the CSP-based descriptions does also not limit the designer in prac-
tise, since most synthesis tools would offer these choices in the design environment. The
inability of choosing external ports to be active or passive in CHP, however, does impose
a limit since supplementary circuits would be required for the connection of two active or
two passive ports.

4.5 Level/Event Sensitivity

While some description methods are level sensitive and others event sensitive, their ex-
pressiveness is not limited by this choice. Describing the probing of a signal level in a
purely event sensitive method can be done by using the positive and negative transitions
of the signal and changing the state of the circuit to represent which transition occurred
last. Similarly, detecting events in a purely level sensitive description method can be done
by saving the last observed level of the signal and comparing the currently sensed level
with it.

However, certain circuits can more conveniently be described with a level sensitive
description method while the opposite is true for others. Table 4.5 shows what sensitivity
can be described with the considered methods.

For the first four description methods, using separate signals for a circuit description,
the distinction of level and event sensitivity is relatively clear. The CSP-based methods
inherently use events for all communication and are therefore considered event sensitive.
It could be argued that the probing construct present in all three methods allows level
sensitive descriptions, however, since probes only indicate pending events and only the
events can be used for communication, they are not considered as true level sensitive
constructs in this work.

Desc. method Sensitivity
PRS Level
AFSM Event
STG Event
TEL structures Event/Level
CHP Event?
Haste Event /Level®
Balsa Event

Table 4.5: Summary of sensitivity to events or levels

2The use of single rail (bundled data) signalling requires timing constraints which are not specifiable.
3See Section 2.6.5, page 42

68

As stated above, the difference between a level and an event sensitive description
method lies within the comfort of the description of circuits using four phase (level sensi-
tive) and two phase (event sensitive) handshake protocols. For CHP and Balsa, however,
pure event sensitivity means that only channels with implicit handshaking can be used
for communication. This disallows the description of single wire signals because the min-
imal communication medium offered is a synchronisation channel with a request and an
acknowledge wire.

4.6 Modularity and Parametrisation

The use of modularity is a key technique for an effective description of large-scale circuits.
Often, modules described with different levels of abstraction are composed to form bigger
functional units which may again be composed to form a circuit. In this comparison,
however, a description method is considered to support modularity, if it offers capabilities
to compose multiple sub-circuits described with the same method into a bigger circuit.

The possibility of using parameters in descriptions allows more general modules to be
described, which then can be altered to a limited extend during instantiation. This extends
the applicability of predefined modules and thus also increases the importance of design
libraries. A typical example of a parametrised module is a FIFO buffer of variable length
and width.

Table 4.6 shows a summary of inherent modularity and parametrisation support in the
description methods.

Desc. method Modularity Parametrisation
PRS No No
AFSM No No

STG No No

TEL structures No No

CHP Yes Yes

Haste Yes Preprocessor
Balsa Yes Yes

Table 4.6: Summary of description capabilities for arbitration

As stated above, the lack of modularity in a description method does not prevent
the designer from reusing circuits after synthesis. It is the comfort of reusing even small
building blocks within the description that is missing. Parametrisation merely extends the
applicability of modules and thus further increases the comfort.

“Based on [55], there is a wired type which might allow direct (level sensitive) access to wires in CHP,
however, it is not clear from the manual how it is used and what functionality it allows.
SLevel sensitive due to the non-handshaked signal support in Haste, see Section 2.6.4, page 40.

69

4.7 Level of Abstraction

The level of abstraction of a description method can substantially simplify the description
of a circuit. On the other hand, hiding details of the implementation of various constructs
inevitably causes a group of circuits to become indescribable.

Table 4.7 shows the most important abstractions for each description method. A brief
discussion follows. Note that the abstraction of time is not considered in this section, since
timing was compared in Section 4.3.

Desc. method Abstraction

PRS State holding

AFSM Sequencing

STG Sequencing, Conflicts

TEL structures Sequencing, Conflicts

CHP Channels, Types, Arithmetics

Haste Channels, Types, Arithmetics, Multiplexing
Balsa Channels, Types, Arithmetics

Table 4.7: Summary of the levels of abstracion

PRSs describe circuits at a level close to netlists in the form of operators. The most
notable abstraction in PRSs is the description of state holding operators by allowing states
with no value assigned to the output signal. This causes the implementation style of state
holding operators, i.e. static or dynamic, to be unavailable to the designer.

In AFSMs, the most important abstraction is the sequencing of state transitions, which
includes and at the same time hides the next-state function and state coding.

STGs, being more general than AFSMs, abstract not only sequencing of events and
the state holding necessary for that, but also other constructs resulting from concurrent
descriptions. Most notably, this includes conflicts, where the choice of implementation with
or without an arbiter is hidden from the designer.

TEL structures are very similar to STGs regarding level of abstraction. The main differ-
ence is that due to additional Boolean guards in each rule, the abstraction of conflicts does
not disallow to describe a conflict without the need of arbitration in the implementation.

The most important abstractions in CSP based description methods include implicitly
synchronised communication channels, multiple bit wide data types and arithmetics. Haste
additionally abstracts shared access to channels and variables and the multiplexing and
mutual exclusion required for this purpose. Communication channels hide details about
the used handshake protocol, data coding schemes and initial states of the channel wires.
The atomic handling of multiple bit-wide data most notably hides synchronisation related
circuits like completion detection. The description of arithmetic operations with simple
operators within expressions hides complete implementations of circuits like adders and
multipliers.

70

4.8 Summary

The summary of the comparison with all the criteria is shown in Table 4.8. From the
observations made during the description of the exemplary circuit in Chapter 3 and the
comparisons in this chapter, it can be seen, that each description method has its advantages
for the description of some types of circuits, while it is unsuitable for or even precludes the
description of other types. Generally, those description methods working with individual
signals are only useful for very simple circuits or ones that do not handle data, such as
the control flow of larger circuits. With their high abstraction level CSP based description
methods on the other hand are most useful for the description of data processing circuits,
since complex processing blocks can be described with concise procedures.

PRSs are not very practical as a design entry description method. Their primary appli-
cation is the representation of intermediate synthesis results from a higher level description
method. However, given that PRSs allow the description of operators at a very low level,
they can be used to describe templates of operator implementations to be used by the tool
performing the synthesis from a higher level description.

AFSMs can be used for simple circuit descriptions, but the incapability to express con-
currency makes them less suitable for the description of the control flow of larger circuits.
Typically, they would also be generated automatically from a higher level description.

STGs have the very useful property of being very closely related to Petri nets. This
gives a designer the possibility to simply refine a high level Petri net model, which has been
used for various analyses and optimisations, into a circuit with the same properties. This
is most useful for the description of the control flow of complex data-processing circuits.
The only disadvantage for this application is the lack of differentiation between arbitrated
and non-arbitrated selection.

TEL structures have the same application domain as the above mentioned methods,
however, due to the possibility to describe temporal behaviour, they can also be used for
timing related optimisations. Moreover, since both, conflicts as in STGs and guards as
in PRSs are available in TEL structures, it is the only of the four low abstraction level
methods that allows the description of both, arbitrated and non-arbitrated selection, which
is important for the description of control flows of complex circuits.

The three CSP based description methods are suitable for the design entry of large
scale circuits. Synthesis tools can then be used to directly generate netlists or to generate
a description of the same circuit with a less abstract method, allowing the designer to
refine the low-level behaviour. Since these three methods are substantially different from
the other considered methods, it is more interesting to observe the differences between the
former, rather than between the two groups of methods.

CHP is characterised by a very concise syntax, using special characters rather than
words. Balsa is functionally almost equal to CHP and the most notable distinction is a
very verbose syntax. Compared to CHP and Balsa, Haste has more advanced probing con-
structs and special constructs for handling non-handshake signals, allowing it to describe
circuits that would not be describable with the former two methods. Additionally, it al-
lows to access shared resources from concurrent statements which considerably simplifies
a description. One negative property of Haste is the limited support for parametrisation
due to the simple preprocessor used.

71

uostredwod a1} Jo Arewruing :Q°y o[qRT,

SOX 100IIpu] SOX
somewILIy ‘sodA T, ‘sppuuey) JUSAT] o[qryads joN Sox esreq
SOX o[qeymads JoN QUON R) (SLHibE) 1Y
Sox Sox SO
Surxerdiyny ‘sorjeuwy)iry ‘sedA T, ‘S[pUURY) [9A9T/IUSAY o[qryads JoN SOx 91seH
I0ssoo01darg o[qeymads joN QUON R) (CLHBE) 1Y
Sox ON Sox
SorewIIIy ‘sodA T, ‘spouuey)) YA o[qryads JoN SOx JdHD
SOx a[qeyads JoN QUON B) (e HibelE) 1N
ON SOx SOX
syo1guo)) ‘Surouenbag [oA9T /YueAR] v SOx SOINIONIIS TH.L
ON v o[qeyadg I[qBINIS
ON SOX SOX
sjoTguo)) ‘Surusnbog AVEING | v SOx ONES
ON OAT}ISUOSUT ARTO(] 90UD)SISIOJ ot duuy
ON SOX Jrordrg
Surouanbog JUSAT] v ON NSAV
ON OATYISUASUT AR[o(] OPOW [RjUSUIRPUN] (POIdLIISY]) ON
ON SOA [enueN
Surproy 9yelg [0A97] v ordug Sdd
ON QATYISUOSUIL AR[O(] sprens jo Aiqels ON
ALIenpoN OATSSRJ /OATIOY aouenbeg
uooRIISqy KYTAT)ISUDG suRYSpurRH ADUSILINOUO.) POYJOW OS9(]
UOI}eSLIjoWRIR SUI[eusIg uorydunsse gurut J, UOT)eIJIqIY

72

Chapter 5

Exemplary Design

In this chapter, all presented methods will be used to describe an applicable example
related to the design of a processor. In the first part, the considered processor will be
introduced. The second part shows the exemplary descriptions.

The motivation for this chapter is, that in the previous examples, the description
methods have been analysed and compared based on a predefined circuit. Even though
the circuit was carefully chosen to show the properties of a wide spectrum of description
methods, they were not used in their intended application. This chapter will show some
examples that present each description method from a different point of view — what was
it designed to be used for?

5.1 The Processor

In order to visualise how the chosen examples can be relevant in a useful design process,
in contrast to examples of academic significance only, all of the chosen circuits can be em-
ployed in the design of an asynchronous processor. Therefore, the (synchronous) SPEAR2,
Scalable Processor for Embedded Applications in Real-time Environments soft core proces-
sor, developed at the Embedded Computing Systems Group of the Vienna University of
Technology, has been used as a source of exemplary sub-circuits.

The SPEAR2 processor [63] is a four stage pipelined RISC architecture processor that
was designed with the goal of high predictability of application execution times, in order
to be employable in real-time environments. It uses Harvard memory architecture, thus
instruction and data memories are separated. Moreover, both, a ROM and a RAM are
mapped to the instruction memory space, the former to contain boot code and the latter
to save application code accessed by the boot loader through one of the peripherals. The
bit-width of data words is configurable to either 16 or 32 bits. Instructions constantly use
16 bit wide words. There are no caches or speculative load or execution systems, as these
would worsen the worst case performance and rise the complexity of execution timing
analysis, both of which are important in real-time systems. There is a forwarding unit to
prevent long pipeline stalls because of data hazards, when the same register is written
and read in subsequent instructions. The data memory is accessible byte-wise to simplify
memory operations. The processor recognises 122 instructions some of which can contain
conditional execution flags. The register file contains 16 registers, 14 of which are general
purpose.

73

The processor is built modularly — the core contains only essential circuits like the
program counter, the instruction decoder, the ALU, the forwarding unit and the memory
access unit. The rest of the processor, even status flags and frame pointer registers, are
external modules of the processor. This gives the processor a great implementation vari-
ability with a simple addition of custom modules. In a later addition, also an AMBA bus
interface was added to the processor as a collection of extension modules [64].

5.2 The Examples

This part presents the various examples, one for each description method. The chosen
circuits are parts of the SPEAR2 processor, however, they are altered to fit in the asyn-
chronous design style where necessary. These modifications will be adverted to. Neverthe-
less, the examples only show parts of the description of an asynchronous equivalent to
the processor with the same structure and communication channels as in the original syn-
chronous description. Circuits converted in such a way can achieve a similar performance
and size to the original synchronous circuits [65]. However, a redesign of the processor to
utilise the advantages of asynchronous circuits to a bigger extend could lead to a notable
improvement of performance, power and area.

5.2.1 Production Rule Sets

The typical application of PRSs is the representation of intermediate results of circuit syn-
theses as in [25] or the description of implementation templates to be used by the synthesis
tools. The closeness of PRS to netlists allows them to be used for low level circuit optimi-
sations. As an example, [10] introduces the precharge half-buffer (PCHB), a template for
the implementation of functions to be used within pipelines using four phase handshaking
protocols. PCHBs address the problem of long transistor chains of P-FETSs required for
the implementation of the neutrality test. The neutrality test indicates whether all input
variables are in the neutral NULL state, which is required for the back-to- NULL phase in
NCL.

The chosen example is motivated by the PCHB and has a similar implementation style.
The circuit is a binary 2-to-1 multiplexer using NCL coded inputs and control signal, as it
would be used in an asynchronous implementation of the barrel shifter within the ALU of
the processor. The typical implementation with two state holding operators is as follows:

agNcgVbgNep— xg T
ar NegVbiANep— a1 1
—ag A —ap A —bg A by A —eg A —er — g,z

with @ and b being data inputs, ¢ being the control signal and x the output. Each signal
has two wires indexed 0 and 1 due to the NCL coding.

When these multiplexers are interconnected to form a barrel shifter, i.e. 5 stages for
the 32 bit data path, in the back-to- NULL phase, the neutral data values must propagate
through all the multiplexers. This creates an inefficient long logic path with long chains
of P-FETs driving the intermediate signals. As a proposed optimisation, consider the
following implementation of the same multiplexer, inspired by the PCHB.

74

en A (ag NecoVbg Acr) — xo T

enA(ai NeoVby Aer) = xp T
—en +— xg |, 1 |

—zg Az — ne t

oV T nel

There are two additional signals introduced. The en signal enables the evaluation of
the inputs to generate the outputs when being high, and resets the outputs to the neutral
NULL state when being low. The ne signal indicates the NULL state of the outputs when
high.

Using this implementation, resetting the multiplexers to NULL can be performed in
parallel by pulling down the en signal when the data input to the barrel shifter change to
NULL. The ne signals from the various stages can be combined in a single gate or a tree
structure to the signal indicating that the full circuit has reset to the NULL, as required
for delay insensitive implementations.

5.2.2 Asynchronous Finite State Machines

The use of AFSMs can be compared to the use of standard FSMs in synchronous design.
Typical applications are simple control circuits. This, however, only applies to circuits
described directly with the graphical or tabular state machine description. When used to
represent the result of syntheses from higher level descriptions, even complex circuits can
be described as state machines, usually with a substantial amount of states.

In asynchronous circuits, every operator adhering to a handshake protocol and thus
usually state holding, can be described with an AFSM. In this example, the control circuit
for a 4-to-1 multiplexer using four phase handshaking is described. Such multiplexers
are used to select operands for the ALU of the processor. Please find the description in
Figure 5.1.

The multiplexer has four passive input channels, named a, b, ¢ and d in the description.
Since this is a control circuit only, each of the input channels is represented by two wires
only. The first wire using the subscript V indicates valid data on the channel, thus it is
the output of a completion detection circuit and equivalent to a request on the respective
channel. The second wire is the acknowledgement, using the subscript A, and is an output
of the control circuit. To allow the selection of one of the four input channels, the circuit
has a two bit wide control channel with the two bits called ctl0 and cti1, both having
additional indexes 0 and 1 because of the dual rail NCL coding. The wire ctl is the
acknowledgement wire for the control channel. Furthermore, x4 is the acknowledgement
wire of the output channel.

The multiplexer selects a value to be passed by assigning one of eng, eny, en. and eng
a high value. The implementation of the data path can thus consist of AND gates to mask
the input channels and 4-input OR gates for merging the data.

75

av+,bv+,cv+,dv+, av+,bv+,cv+,dv+,
en,A Ctllo+, Ct100+/ Ctlll+, Ctl()1+/ eniD
ena+ enp—+
ra+/ rat/
aa+,ba+,cat+,da+, as+,ba+,cat,da+,
ctla+,ens— ctla+,enp—
aV_7bV_7CV_7dV_7xA_7 GV—,bV—7CV_,dV—,xA—7
Ctllof,ctl()o*/ Ctlllf,ctlolf/
ack_A aa—,ba—,ca—,da—,ctla— aa—,ba—,ca—,da—,ctla— ack_D
ack B ay—,bv—,cv—,dv—,za—, ay—,by—,cv—,dv—,za—, ack_C
Ctllo—,ctl01—/ Ctlll—,ctl()o—/
aa—,ba—,ca—,da—,ctla— aa—,ba—,ca—,da—,ctla—
ra+/ rat/
aa+,ba+,cat,da+, aa+,bat,cat,da+,
ctla+,enp— ctla+,enc—
ayv+,bv+, cv+, dv+, av+,bv+, cv+, dv+,
Ctllo+, ct101+/ lel].1-|-7 Ctho+/
en_B U enc+ en_C

Figure 5.1: The AFSM description of the 4-to-1 multiplexer control circuit

76

Fetch<Decode Decode<>Execute Execute<s Writeback

SRt

<—/

Figure 5.2: The high level PN model of the simplified pipeline

5.2.3 Signal Transition Graphs

STGs have the important property of being essentially labelled Petri nets, therefore al-
lowing all the established PN theory to be applied to them. Moreover, it is common to use
high level PN models of complex pipelined circuits for performance analysis and verifica-
tion of properties like freedom from deadlocks. STGs can be used to refine such a model
to generate control signals for the circuit described. Their use therefore ranges from small
circuits to control circuits for complex circuits.

For the purpose of this example, the pipeline of the processor will be considered as
simplified to a symbolic four stage pipeline with only one feedback path. The chosen
feedback path is the signal going from the decode pipeline register to the fetch stage,
where it controls whether the program counter should be incremented or the computed
jump destination should be used as the next value.

Figure 5.2 shows the high level PN model of the pipeline, where each register is mod-
elled as two latches, enclosed in a shaded rectangle in the figure. The result is a doubly-
latched pipeline as described in [66]. This model can already be analysed to validate the
data flow in the processor and verify essential properties like liveness.

Figure 5.3 shows a very basic refinement of the PN model to an STG that describes
the generation of control signals for the latches, using the approach from [65]. The two
latches replacing each register are called the master and slave latch in the order of the
data flow. In the figure, the M signals, with the number of the register as suffix, are the
control signals for the master latches. .S signals control the slave latches accordingly. It is
assumed, that a high control signal level makes a latch transparent.

Note that the control circuit described in Figure 5.3 could only be used for bounded
delay implementations, after the appropriate additional delays would have been added to
the control lines following the synthesis of the circuit. A more advanced control circuit for
the doubly-latched pipeline is presented in [66].

5.2.4 Timed Event/Level Structures

Although TEL structures can be used equivalently to PRSs and STGs for the same de-
scriptions as above, the main advantage of TEL structures is their ability to describe
timing. Therefore, the typical use case for TEL structures is the description of circuits
with timing based optimisations and the verification of temporal circuit behaviour.

7

O

M1, Sl M2, 52, M3, S34
EONCICMNEIONGHOMNEIONOlo
[)
W ZRONSE ZRONSE 7
M1_ S1_ M2_ S2_ M3_ S3_
Fetch<>Decode Decode<«rExecute Execute+s Writeback

Figure 5.3: The STG refinement of the PN model

To+ r1+
\\\ [0,t1 + t2 — 1] I/l
10, 0] \\‘ [—en] ‘,: 10, 00)
[en A (ao A co Vb A c1)] /'[O,t1—|—t2—1] ' [en A (a1 Aco Vb1 Act)]
// [—\en] \\
v v
ro— xr1—

Figure 5.4: The TEL structure of the 2-to-1 binary multiplexer

For this example, consider the 2-to-1 binary multiplexer from Section 5.2.1. The
proposed implementation used an additional signal en to increase concurrency in the
back-to- NULL phase, and each multiplexer had a signal ne indicating validity /neutrality
of the output value. Using TEL structures, the circuit can be described without the ne
signal as it is used to prevent a non-critical race condition that can be precluded using
a simple timing assumption. Figure 5.4 shows a description of the multiplexer equivalent
to that in Section 5.2.1, with the ne signal omitted. Note that the time required for the
outputs to be pulled back to NULL after en has changed to false is limited by the upper
bound t; 4+ t3 — 1. For the time being, please assume this to be any positive integer.

In order to verify the correctness of the circuit, the environment and its assumed
temporal behaviour has to be modelled, too. Figure 5.5 shows the considered environment.
For better readability, it was chosen to consider only a single multiplexer enclosed by
pipeline registration points. In the figure, the simple TEL structure on the left hand side
shows the acknowledgement generation on the receiver’s side, depending on the validity of
data from the last stage of multiplexers (if there were more in the example). The larger TEL
structure shows the generation of the input signals to the multiplexer, including the en
signal. There are two timing assumptions laid upon the environment in the description.
The first, ¢t; in the rule having $1 and $2 as enabling and enabled events, respectively,
requires the first transition on any of the inputs to occur at least t; time units after
the acknowledgement from the receiver drops to false. The second assumption, to in the
smaller TEL structure, requires the acknowledgement to be generated at least to time
units after the data being input to the receiver have been sensed as valid. Note that apart
from these assumptions, the circuit — most notably, the complete forward path where

78

1
2

Conflicts:
bo+ b1+ co+ aop + #a1+
a1+ 10, o] 1+ bo + #b1+

[0, 0] co + #c1+
AN P oo — a1~
ack+ ap+ [0, o] $1 en+ by — #b1—

¢\ \—/ T\\/ CO_#cl_

\\ [07 OO] \\ [07 OO}
[0, 0] ! [t2, 00] ' a0 Va1 Vbo Vb Ve Ve
[Fzo A —z1] ! [xo V x1] [0, 0] :[tl, o]
| [ack] | [ack]
/I l| [O’ OO}
ack— /’ [—\ao A —ai; A —bg A =bi A —eg A —\01]
[0, o] $,2’
ag— ag en—
° o 0, oc]
[07 OO] [O, oo [Cl]
[0, 0] [co]
ai— [b1] C1—
b1— co—

Figure 5.5: The TEL structure of the environment for the 2-to-1 binary multiplexer

the desired functionality, in this case the barrel shifter, is implemented — is described as
delay insensitive.

Let ¢1 and t9 be any positive integers, either guessed or derived from post-synthesis
circuit timing analysis, with ¢9 including the delay of the acknowledgement wire between
the registration points. Then, t; + to is the minimal time between the return to NULL of
the data output of the last stage of multiplexers and the input of new data to the first
stage. Since t1 + to — 1 (see Figure 5.4) is the maximum time any multiplexer can delay
the return to NULL of its outputs (including the delay of the en wire), it can be seen that
when new data are being input, all stages have already cleared their outputs. A tool can
be used to verify such constraints for circuits of much higher complexity.

5.2.5 Communicating Hardware Processes

For the CSP-based description methods, various parts of the processor’s data path were
chosen. CHP was used to describe a part of the execute stage, with the ALU limited to a
subset of instructions.

The first part of the code defines the necessary data types. It is assumed that the
configuration parameter WORD_W has already been defined. Please note that symbol types,
such as ALUCTRL and CARRYCTRL in this example, are not bound to predefined hardware im-
plementations. In most cases, the implementation can be affected by settings of the design
compiler, however, these types should not be used to exchange data between hardware
blocks described with different description methods, unless the compatibility has been
examined with great care.

type WORD = {0..2 WORD_W-1};
type ALUCTRL = {ALU_NOP, ALU_LDLIU, ALU_LDHI,

79

© 0 N o g ks W

11
12
13
14

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

ALU_AND, ALU_OR, ALU_EOR, ALU_ADD,
ALU_SUB, ALU_CMPEQ, ALU_CMPUGT, ALU_CMPULT,
ALU_CMPGT, ALU_CMPLT,
ALU_NOT, ALU_NEG,
ALU_SL, ALU_SR, ALU_SRA, ALU_RRC, ALU_BYPRI,
ALU_BYPR2, ALU_BYPEXC};
= {CARRY_IN, CARRY_NOT, CARRY_ZERO, CARRY_ONE};
{0..275-1};

type CARRYCTRL
type ALUFLAG
const COND =
const ZERO

const NEG = 2;
const CARRY = 1;
const OVER = 0;

1l
N oW ol

The next part of the code defines the procedure alu, which performs all of the data
related operations.

procedure alu(datal, data2, excvec : WORD;
aluctrl : ALUCTRL;
carryin : {0..1};
res staflag : ALUFLAG;
res result : WORD)

CHP {
var addresult : {0..2" (WORD_W+1)-1};
staflag := 0 ;

[aluctrl = ALU_LDLIU -> result[8..WORD_W-1] := datal[8..WORD_W-1] ,
result[0..7] := data2[0..7]

[] aluctrl = ALU_ADD -> addresult := datal + data2 + carryin ;
result := addresult[®..WORD_W-1] ,
staflag[CARRY] := addresult[WORD_W]

[1 aluctrl = ALU_AND -> result := datal & data2 ;
staflag[COND] := result != 0

[1 aluctrl = ALU_CMPGT ->

[datal[WORD_W-1] != data2[WORD_W-1] ->

addresult := datal + data2 + carryin ;
[addresult = 0 -> staflag[COND] := addresult[WORD_W-1]
[1 addresult !'= ® -> staflag[COND] := ~“addresult[WORD_W-1]
]

[] datal[WORD_W-1] = data2[WORD_W-1] ->
staflag[COND] := “datal[WORD_W-1]

]

[] aluctrl = ALU_RRC -> result[0®..WORD_W-2] := datal[l..WORD_W-1] ,
result[WORD_W-1] := carryin[0] ,
staflag[CARRY] := datal[0]

[1 aluctrl = ALU_BYPEXC -> result := excvec

1;
staflag[ZERO] := result = 0 ,
staflag[OVER] := datal[WORD_W-1] = data2[WORD_W-1]

& result[WORD_W-1] xor datal[WORD_W-1] ,
staflag[NEG] := result[WORD_W-1]

The final listing shows the process execute, which acts as a “wrapper” for the alu
procedure. In its first part, it concurrently reads all the inputs. Then, various multiplexing
tasks are performed in the processor of which the carry selection and the optional bitwise
negation of the second operand are shown in this example. Finally the alu procedure is
called and the result is communicated to the next stage.

80

49
50 process execute() (exedatal?, exedatal2? : WORD;

51 result! : WORD;

52 aluctrl? : ALUCTRL;

53 carry, carryflag : {0..1};

54 negdata : bool)

55 CHP {

56 var v_exedatal, v_exedata?, v_aluexedata? : WORD;
57 var v_aluctrl : ALUCTRL;

58 var v_alucarry, v_carry, v_carryflag : {0..1};

59 var v_negdata: bool;

60 var r_staflag : ALUFLAG;

61 var r_result : WORD;

62 *

63 exedatal?v_exedatal ,

64 exedata2?v_exedatal ,

65 aluctrl?v_aluctrl ,

66 carry?v_carry ,

67 carryflag?v_carryflag ,

68 negdata?v_negdata ;

69 [v_carry = CARRY_IN -> v_alucarry := v_carryflag
70 [1 v_carry = CARRY_NOT -> v_alucarry := "“v_carryflag
71 [1 v_carry = CARRY_ZERO -> v_alucarry := 0

72 [] v_carry = CARRY_ONE -> v_alucarry := 1

73 1,

74 [v_negdata -> v_aluexedata2 := v_exedata2

75 [1] “v_negdata -> v_aluexedata2 := "“v_exedatal2
76 1

77 alu(v_exedatal, v_aluexedata2, v_alucarry,

78 v_aluctrl, v_alucarry, r_staflag, r_result) ;
79 result!r_result

80]

81 }

5.2.6 Haste

Haste was used to describe the complete fetch stage, including instruction memories.

The first two lines define the data types worRD and INSTR data types. As in CHP, it
is assumed that configuration parameters, namely WORD_W, INSTR_RAM_CFG_C, SIZE_BOOT_ROM
and MAP_BOOTROM_CFG_C were defined previously or imported from a configuration file.

The most notable language property shown on this example is the handling of memory.
The two variables iram and brom are arrays of instructions representing the memories. The
keywords ram and rom, respectively, cause memory access interfaces to be generated instead
of memories during synthesis. The direct access to variable arrays instead of the generation
of memory interface signals considerably simplifies the description.

1 WORD=type [0..2" WORD_W-1]

2 & INSTR=type [0..2°16-1]

3 &

4 fetch: proc(f_jmpexe ? chan bool pas

5 & f_jmpdest ? chan WORD pas

6 & f_bromdata, f_iramdata ! chan INSTR act

7 & f_pcnt ! chan WORD act).

s begin

9 iram: ram array [0..2 " INSTR_RAM_CFG_C-1] of INSTR arb:

81

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

© 00 N Ok W N

e e e e
S R W N = O

17
18
19
20
21

& brom: rom array [0..2"SIZE_BOOT_ROM-1] of INSTR
& pcnt: var WORD := 2" MAP_BOOTROM_CFG_C-1
& pcnt_new: var WORD
& jmpexe: var bool
& jmpdest: var WORD
|
forever do
f_jmpexe? jmpexe |
f_jmpdest?jmpdest ;
if jmpexe then pcnt_new := jmpdest
else pcnt_new := pcnt + 1
fi ;
f_bromdata! brom[pcnt_new]
f_iramdata!iram[pcnt_new]
f_pcnt!pcnt_new ;

pcnt := pcnt_new
od
end
5.2.7 Balsa

To also demonstrate the use of Balsa in its typical application, it was used to describe part
of the decode stage. As well as the ALU in the execute stage, the described instruction
decoder only implements a subset of the processor’s instructions.

The first part of the description defines all the required data types including enumer-
ations that are also used in the description of the ALU in Section 5.2.5. Again, note that
these types are symbolic and the hardware implementation of channels and variables with
this type might not be compatible with other description methods.

type WORD is WORD_W bits

type INSTR is 16 bits

type REGADDR is 4 bits

constant INSTR_ADDR_NULL = (0 as array WORD_W - MAP_BOOTROM_CFG_C of bit)

type ALUCTRL is enumeration
ALU_NOP, ALU_LDLIU, ALU_LDHI, ALU_AND, ALU_OR, ALU_EOR,
ALU_ADD, ALU_SUB, ALU_CMPEQ, A LU_CMPUGT, ALU_CMPULT,
ALU_CMPGT, ALU_CMPLT, ALU_NOT, ALU_NEG, ALU_SL, ALU_SR,
ALU_SRA, ALU_RRC, ALU_BYPR1, ALU_BYPR2, ALU_BYPEXC

end

type STACTRL is enumeration
SET_FLAG, SET_COND, SAVE_SR, REST_SR

end

type CARRYCTRL is enumeration
CARRY_IN, CARRY_NOT, CARRY_ZERO, CARRY_ONE

end

The next part of the code shows the procedure decode, which prior to decoding an
instruction chooses whether it should be taken from the boot ROM or the instruction
RAM.

procedure decode(input f_bromdata, f_iramdata : INSTR;
input f_pcnt : WORD;
output imm : WORD;
output aluctrl : ALUCTRL;
output regfwr, staen, useimm, negdatal : bit;

82

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

output stactrl : STACTRL;
output carry : CARRYCTRL;
output regfaddrl, regfaddr2 : REGADDR) is
variable pcnt : WORD
variable decinstr : INSTR
begin
loop
f_pcnt -> pcnt
if #pcnt[MAP_BOOTROM_CFG_C..WORD_W-1] /= INSTR_ADDR_NULL then
f_bromdata -> decinstr ||
select f_iramdata then continue end
else
f_iramdata -> decinstr ||
select f_bromdata then continue end
end ;

The rest of the code contains the case statement that decodes the instruction and
assigns various channels variables that control the function of the processor.

select decinstr then
case (#instr[12..15] as 4 bits) of
-- LDLIU
0b0010 then regfwr <- 1 ||
regfaddrl <- (#instr[0..3] as 4 bits) ||
regfaddr2 <- (#instr[4..7] as 4 bits) ||
imm <- (#instr[4..11] as 16 bits) ||
aluctrl <- ALU_LDLIU |
carry <- CARRY_IN ||
useimm <- 1 ||
staen <- 0 ||
negdata2 <- 0
-- CMP_GT
| ®b1011 then
if (#instr[8..11] as 4 bits) = 0b0010 then
aluctrl <- ALU_CHMPGT ||
regfwr <- 1 ||
regfaddrl <- (#instr[0..3] as 4 bits) ||
regfaddr2 <- (#instr[4..7] as 4 bits) ||
useimm <- O ||n
staen <- 1 ||
stactrl <- SET_COND ||
carry <- CARRY_ONE ||
negdata2 <- 1
end
| O0b1100 .. Ob1110 then
case (#instr[8..11] as 4 bits) of
-- ADD
0b0001 then regfwr <- 1 ||
regfaddrl <- (#instr[0..3] as 4 bits
regfaddr2 <- (#instr[4..7] as 4 bits
aluctrl <- ALU_ADD ||
useimm <- ® ||
staen <- 1 ||
stactrl <- SET_FLAG |
carry <- CARRY_ZERO ||
negdata2 <- 0

) 1
) 1

-- AND
| Ob0101 then regfwr <- 1 ||

83

76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

106
107
108
109
110
111

regfaddrl <- (#instr[0..3] as 4 bits) ||
regfaddr2 <- (#instr[4..7] as 4 bits) ||
aluctrl <- ALU_AND |
useimm <- © ||
staen <- 1 ||
stactrl <- SET_FLAG |
carry <- CARRY_ONE ||
negdata2 <- 0
end
-- RRC
| Ob0101 then regfwr <- 1 ||
regfaddrl <- (#instr[0..3] as 4 bits
regfaddr2 <- (#instr[4..7] as 4 bits
aluctrl <- ALU_RRC |
useimm <- O ||
staen <- 1 ||
stactrl <- SET_FLAG |
carry <- CARRY_ONE ||
negdata2 <- 0

) 1l
) 1l

end
| Ob1111 then

-- LDVEC

if (#instr[8..11] as 4 bits) = 0b101X then
regfwr <- 1 ||
regfaddrl <- (#instr[0..3] as 4 bits
regfaddr2 <- (#instr[4..7] as 4 bits
staen <- 0 ||
aluctrl <- ALU_BYPEXC ||

carry <- CARRY_ONE ||
useimm <- O ||
negdata2 <- 0

end

)
) 1

end
end
end
end

84

Conclusion

The aim of this work to create a comparison of seven of the most established description
methods based on selected criteria that could serve prospective designers of asynchronous
circuits when choosing a description method for a project in addition to being valuable
for a didactic presentation of asynchronous circuits.

After the criteria for comparison were extracted from the principles of asynchronous
circuit design, the description methods were compared with respect to those criteria. A
further comparison was made by systematically describing a carefully chosen exemplary
circuit with all the methods and analysing the results. An additional example showed the
power of each method in its intended application by describing an appropriate part of the
SPEAR2 processor.

The comparison showed that the differences between description methods can be sur-
prisingly extensive, even when comparing methods with approximately the same level of
abstraction. This is especially true for the three CSP-based description methods where
the expected differences were rather insignificant. From the methods that described the
behaviour based on levels or transitions on single wires, TEL structures were found to be
very powerful as they unite the advantages from both, PRSs and STGs, with the addi-
tional possibility to describe timing assumptions. From three CSP-based description meth-
ods that utilise implicitly synchronised channels for communication and synchronisation,
Haste was found to be the most powerful and mature, providing implicitly multiplexed
access to shared resources, a simple description of memory interfaces and constructs for
handling level sensitive single rail wires. Balsa as well as CHP had remarkable limita-
tions in the description of handshake enclosure and CHP was additionally the description
method with the worst documentation, partially disallowing to reason about some of its
properties.

The work also showed that the description of asynchronous circuits does not have to be
a fearsome task and in fact, from the author’s experience during the creation of this work,
once understanding the properties of asynchronous circuits and the problems arising from
the design of highly concurrent systems, the learning curve for the description methods is
surprisingly fast. The only difficulties arise when encountering something the description
method currently used does not support.

Even after decades of research devoted to asynchronous circuits and numerous success-
ful industrial and academic asynchronous circuits clearly demonstrating their superiority
when carefully designed, engineers and decision-makers from the industry remain sceptical
and continue to hold on to the approved synchronous design style. It is the belief of the
author of this work that with further progresses in technology the difference in the perfor-
mance and power consumption of synchronous and asynchronous functionally equivalent

85

circuits will rise to the advantage of the latter. This will eventually force the industry to
invest into the technology resulting in progressively more powerful tools. Also the author
believes that only a few description methods will be used in the future, e.g. from the
three CSP-based description with the same field of application, only one will be used by a
significant majority of engineers resulting in better community support, tool development
and more concentrated investments.

86

Bibliography

1]

[10]

[11]

P. Forshaw and R. Hahn, “Synchronous design: the right technique for digital
ASICs,” in Proceedings of the Third Annual IEEE ASIC Seminar and Exhibit, 1990,
pp. P6/1.1-P6/1.5, Sept. 1990.

J. Cortadella, A. Kondratyev, L. Lavagno, and C. Sotiriou, “Coping with the variabil-
ity of combinational logic delays,” in Proceedings of the IEEE International Confer-
ence on Computer Design: VLSI in Computers and Processors, ICCD 2004, pp. 505—
508, Oct. 2004.

P. Gronowski, W. Bowhill, R. Preston, M. Gowan, and R. Allmon, “High-performance
microprocessor design,” IEEE Journal of Solid-State Circuits, vol. 33, pp. 676-686,
May 1998.

S. Wilton, N. Kafafi, J. Wu, K. Bozman, V. Aken’Ova, and R. Saleh, “Design consid-
erations for soft embedded programmable logic cores,” IEEFE Journal of Solid-State
Clircuits, vol. 40, pp. 485-497, Feb. 2005.

A. Martin, “The limitations to delay-insensitivity in asynchronous circuits,” in Pro-
ceedings of the sixth MIT conference on Advanced research in VLSI, (Cambridge, MA,
USA), pp. 263-278, MIT Press, 1990.

R. Manohar and A. Martin, “Quasi-delay-insensitive circuits are Turing-complete.
invited article,” in Second International Symposium on Advanced Research in Asyn-
chronous Clircuits and Systems, 1996.

C. Seitz, “System timing,” in Introduction to VLSI Systems (C. Mead and L. Conway,
eds.), ch. 7, Reading, MA: Addison-Wesley, 1980.

W. Bainbridge, W. Toms, D. Edwards, and S. Furber, “Delay-insensitive, point-to-
point interconnect using m-of-n codes,” in Proceedings of the Ninth International
Symposium on Asynchronous Circuits and Systems, 2003, pp. 132-140, May 2003.

T. Chaney and C. Molnar, “Anomalous behavior of synchronizer and arbiter circuits,”
IEEE Transactions on Computers, vol. C-22, pp. 421-422, Apr. 1973.

A. Martin and M. Nystrom, “Asynchronous techniques for system-on-chip design,”
Proceedings of the IEEE, vol. 94, p. 1089, June 2006.

A. Martin, “Programming in VLSI: From communicating processes to delay-
insensitive circuits,” Tech. Rep. Caltech-CS-TR-89-1, California Institute of Tech-
nology, 1989.

87

[12] 1. Sutherland, “Micropipelines,” Commun. ACM, vol. 32, pp. 720-738, June 1989.

[13] J. Sparsg, “Asynchronous circuit design - a tutorial,” in Chapters 1-8 in ”Principles of
asynchronous circuit design - A systems Perspective”, pp. 1-152, Boston / Dordrecht
/ London: Kluwer Academic Publishers, dec 2001.

[14] G. M. Amdahl, “Validity of the single processor approach to achieving large scale
computing capabilities,” in Proceedings of the April 18-20, 1967, spring joint computer
conference, AFIPS 67 (Spring), (New York, NY, USA), pp. 483-485, ACM, 1967.

[15] A. Martin, S. Burns, T. Lee, D. Borkovic, and P. Hazewindus, “The design of an
asynchronous microprocessor,” Tech. Rep. Caltech-CS-TR-89-2, California Institute
of Technology, Department of Computer Science, 1989.

[16] A. Martin, S. Burns, T. Lee, D. Borkovic, and P. Hazewindus, “The first asynchronous
microprocessor: The test results,” Tech. Rep. Caltech-CS-TR-89-6, California Insti-
tute of Technology, Department of Computer Science, June 1989.

[17] S. Furber, P. Day, J. Garside, N. Paver, and J. Woods, “AMULET1: A micropipelined
ARM,” in Proceedings of CompCon’94, pp. 476-485, IEEE Computer Society Press,
Mar. 1994.

[18] S. Furber, J. Garside, P. Riocreux, S. Temple, P. Day, J. Liu, and N. Paver,
“AMULET2e: an asynchronous embedded controller,” Proceedings of the IEFEE,
vol. 87, pp. 243-256, Feb. 1999.

[19] J. Garside, S. Furber, and S.-H. Chung, “AMULETS3 revealed,” in Proceedings of the
Fifth International Symposium on Advanced Research in Asynchronous Circuits and
Systems, 1999, pp. 51-59, 1999.

[20] A. Martin, A. Lines, R. Manohar, M. Nystrom, P. Penzes, R. Southworth, U. Cum-
mings, and T. Lee, “The design of an asynchronous MIPS R3000 microprocessor,”
in Proceedings of the 17th Conference on Advanced Research in VLSI, pp. 164-181,
IEEE Computer Society Press, 1997.

[21] H. van Gageldonk, K. van Berkel, A. Peeters, D. Baumann, D. Gloor, and
G. Stegmann, “An asynchronous low-power 80C51 microcontroller,” in Proceedings of
the Fourth International Symposium on Advanced Research in Asynchronous Circuits
and Systems, 1998, pp. 96—-107, 1998.

[22] A. Martin, M. Nystrom, K. Papadantonakis, P. Penzes, P. Prakash, C. Wong,
J. Chang, K. Ko, B. Lee, E. Ou, J. Pugh, E.-V. Talvala, J. Tong, and A. Tura,
“The Lutonium: a sub-nanojoule asynchronous 8051 microcontroller,” in Proceedings

of the Ninth International Symposium on Asynchronous Circuits and Systems, 2003,
pp- 14-23, May 2003.

[23] J. Teifel and R. Manohar, “Highly pipelined asynchronous FPGAs,” in Proceedings
of the International Symposium on Field Programmable Gate Arrays, Feb. 2004.

88

[24]

[25]

[26]

[36]

[37]

D. Fang, J. Teifel, and R. Manohar, “A high-performance asynchronous FPGA: test
results,” in 13th Annual IEEE Symposium on Field-Programmable Custom Computing
Machines, FCCM 2005, pp. 271—-272, Apr. 2005.

A. Martin and M. Nystrom, “CAST: Caltech asynchronous synthesis tools,” in Proc.
of Fourth Asynchronous Clircuit Design Working Group Workshop, June 2004.

A. Martin, “Synthesis of asynchronous VLSI circuits,” Tech. Rep. Caltech-CS-TR-93-
28, California Institute of Technology, Department of Computer Science, Aug. 1991.

E. Dijkstra, “Guarded commands, nondeterminacy and formal derivation of pro-
grams,” Commun. ACM, vol. 18, pp. 453—-457, Aug. 1975.

G. Mealy, “A method for synthesizing sequential circuits,” Bell System Technical
Journal, vol. 34, no. 5, pp. 1045-1079, 1955.

E. Moore, “Gedanken experiments on sequential machines,” in Automata Studies,
pp- 129-153, New Jersey: Princeton University Press, 1956.

D. Huffman, “The synthesis of sequential switching circuits,” Journal of the Franklin
Institute, vol. 257, no. 3-4, pp. 161-190 and 275-303, 1954.

S. Nowick, “Automatic synthesis of burst-mode asynchronous controllers,” Tech. Rep.
CSL-TR-95-686, Computer Systems Laboratory, Stanford University, Dec. 1995.

K. Yun, D. Dill, and S. Nowick, “Practical generalizations of asynchronous state
machines,” in Proceedings of the fourth Furopean Conference on Design Automation,
1993, with the European Event in ASIC Design, pp. 525-530, feb 1993.

K. Yun and D. Dill, “Automatic synthesis of extended burst-mode circuits. I. (Spec-
ification and hazard-free implementations),” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 18, pp. 101-117, feb 1999.

K. Yun and D. Dill, “Automatic synthesis of extended burst-mode circuits. II. (Auto-
matic synthesis),” IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, vol. 18, pp. 118-132, feb 1999.

R. Fuhrer, S. Nowick, M. Theobald, N. Jha, B. Lin, and L. Plana, “MINIMALIST: An
environment for the synthesis, verification and testability of burst-mode asynchronous
machines,” Tech. Rep. CUCS-020-99, Computer Science Department, Columbia Uni-
versity, July 1999.

C. Petri, Kommunikation mit Automaten. PhD thesis, Bonn: Institut fiir Instru-
mentelle Mathematik, Schriften des IIM Nr. 2, 1962. Second Edition:, New York:
Griffiss Air Force Base, Technical Report RADC-TR-65-377, Vol.1, 1966, Pages:
Suppl. 1, English translation.

T. Murata, “Petri nets: Properties, analysis and applications,” Proceedings of the
IEEE, vol. 77, pp. 541-580, Apr. 1989.

89

[38]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

T.-A. Chu, Synthesis of self-timed VLSI circuits from graph-theoretic specifications.
PhD thesis, Massachusetts Institute of Technology, Dept. of Electrical Engineering
and Computer Science, 1987.

J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev, “Petrify:
a tool for manipulating concurrent specifications and synthesis of asynchronous con-
trollers,” IEICFE Transactions on Information and Systems, vol. E80-D, pp. 315-325,
Mar. 1997.

E. Sentovich, K. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha, H. Savoj,
P. Stephan, R. Brayton, and A. Sangiovanni-Vincentelli, “SIS: a system for sequential
circuit synthesis,” Tech. Rep. UCB/ERL M92/41, EECS Department, University of
California, Berkeley, 1992.

R. Alur, Techniques for automatic verification of real-time systems. PhD thesis, Stan-
ford Univ., Stanford, CA, 1991.

P. Merlin and D. Farber, “Recoverability of communication protocols — implications
of a theoretical study,” IFEE Transactions on Communications, vol. 24, pp. 1036—
1043, Sept. 1976.

G. M. Reed and A. W. Roscoe, “A timed model for communicating sequential
processes,” in International Colloquium on Automata, Languages and Programming
on Automata, Languages and Programming, (New York, NY, USA), pp. 314-323,
Springer-Verlag New York, Inc., 1986.

C. Myers, Computer-Aided Synthesis And Verification Of Gate-Level Timed Circuits.
PhD thesis, Stanford Univ., Stanford, CA, 1995.

W. Belluomini and C. Myers, “Timed event/level structures,” in Collection of papers
from TAU’97, pp. 3944, 1997.

W. Belluomini, C. Myers, and H. Hofstee, “Timed circuit verification using TEL
structures,” IEEFE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 20, pp. 129-146, Jan. 2001.

R. Thacker, W. Belluomini, and C. Myers, “Timed circuit synthesis using implicit
methods,” in Proceedings of the Twelfth International Conference On VLSI Design,
1999, pp. 181-188, jan 1999.

C. Myers, P. Beerel, and T.-Y. Meng, “Technology mapping of timed circuits,” in Pro-
ceedings of the Second Working Conference on Asynchronous Design Methodologies,
1995, pp. 138-147, may 1995.

W. Belluomini and C. Myers, “Timed state space exploration using POSETs,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 19,
pp- 501-520, may 2000.

C. Myers, W. Belluomini, K. Killpack, E. Mercer, E. Peskin, and H. Zheng, “Timed
circuits: a new paradigm for high-speed design,” in Design Automation Conference,
2001. Proceedings of the ASP-DAC 2001. Asia and South Pacific, pp. 335-340, 2001.

90

[51]

[52]

[53]
[54]

[55]
[56]
[57]
[58]
[59]

C. Hoare, “Communicating sequential processes,” Commun. ACM, vol. 21, pp. 666—
677, Aug. 1978.

C. Hoare, Communicating Sequential Processes. Prentice-Hall International, UK,
Ltd., 1985.

A. Roscoe, Theory and Practice of Concurrency. Prentice Hall PTR, Nov. 1997.

A. Martin, “The probe: an addition to communication primitives,” Tech. Rep.
CaltechCSTR:1984.5124-tr-84, California Institute of Technology, Feb. 1984.

M. van der Goot and C. Moore, CHPSIM user manual, 2010.

R. Manohar, CAST language description. California Institute of Technology, 1997.
Handshake Solutions, Haste — Programming Language Manual, 2009.

Handshake Solutions, TiDE Manual, 2009.

K. van Berkel, J. Kessels, M. Roncken, R. Saeijs, and F. Schalij, “The VLSI-
programming language Tangram and its translation into handshake circuits,” in Pro-
ceedings of the FEuropean Conference on Design Automation. EDAC, pp. 384-389, feb
1991.

D. Edwards, A. Bardsley, L. Janin, L. Plana, and W. Toms, Balsa: a Tutorial Guide.
Advanced Processor Technologies Group, University of Manchester, 2006.

A. Bardsley, Implementing Balsa Handshake Clircuits. PhD thesis, University of
Manchester, 2000.

K. Low and A. Yakovlev, “Token ring arbiters: an exercise in asynchronous logic
design with Petri nets,” tech. rep., University of Newcastle upon Tyne, Nov. 1995.

M. Fletzer, “SPEAR2 - an improved version of SPEAR,” Master’s thesis, Vienna
University of Technology, Vienna, feb 2008.

J. Mosser, “AMBA4SPEAR2: An AMBA extension module for the SPEAR?2 processor
core,” Master’s thesis, Vienna University of Technology, Vienna, mar 2008.

J. Cortadella, A. Kondratyev, L. Lavagno, and C. Sotiriou, “Desynchronization: Syn-
thesis of asynchronous circuits from synchronous specifications,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 25, pp. 1904-1921,
oct. 2006.

R. Kol and R. Ginosar, “A doubly-latched asynchronous pipeline,” in Proceedings of
the 1997 IEEE International Conference on Computer Design: VLSI in Computers
and Processors, ICCD 1997, pp. 706-711, oct 1997.

91

	Introduction
	Asynchronous Circuits
	Why Asynchronous?
	Asynchronous Circuits
	Timing models
	Asynchronous communication
	Metastability
	Typical components

	Properties of Asynchronous Circuits

	Description Methods
	Problems in asynchronous circuit design
	Production Rule Sets
	Asynchronous Finite State Machines
	Fundamental Mode Asynchronous Finite State Machines
	Burst-Mode Asynchronous Finite State Machines

	Signal Transition Graphs
	Petri Nets
	Signal Transition Graphs

	Timed Event/Level Structures
	Timed Event/Level Structures

	CSP-Based Descriptions
	Communicating Sequential Processes
	Common characteristics
	Communicating Hardware Processes
	Haste
	Balsa

	Comparison by Example
	The Circuit
	Building Blocks
	Motivation for the Choice

	The Descriptions
	Production Rule Sets
	Asynchronous Finite State Machines
	Signal Transition Graphs
	Timed Event/Level Structures
	Communicating Hardware Processes
	Haste
	Balsa

	Comparison
	Arbitration
	Concurrency and Sequence
	Timing
	Asynchronous communication
	Level/Event Sensitivity
	Modularity and Parametrisation
	Level of Abstraction
	Summary

	Exemplary Design
	The Processor
	The Examples
	Production Rule Sets
	Asynchronous Finite State Machines
	Signal Transition Graphs
	Timed Event/Level Structures
	Communicating Hardware Processes
	Haste
	Balsa

	Conclusion

