

Technische Universität Wien
Fakultät für Informatik

Vienna University of Technology
Faculty of Informatics

DIPLOMARBEIT – MASTER THESIS

Software Project Management in Unstable Environments:
Handling Volatile Business Requirements

Induced by Trade-Offs Among Client Stakeholders

zur Erlangung des akademischen Grades (for the obtainment of the academic degree)
Magister (Mag. rer. soc. oec.)

ausgeführt am (conducted at the)

Institut für Rechnergestützte Automation – (E183) – Institute for Computer Aided Design
Forschungsgruppe Industrielle Software – (INSO) – Research Group Industrial Software

der Technischen Universität Wien (at Vienna University of Technology)

unter der Anleitung von (under the supervision of)
Univ.-Prof. Dipl.-Ing. Dr. techn. Thomas Grechenig

durch (by)
Raoul Fortner

Rienößlgasse 17/18
A-1040 Wien

Österreich – Austria

Wien, August 2007

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

2

« Quand tu veux construire un bateau,
ne commence pas par rassembler du bois,

couper des planches et distribuer du travail,
mais réveille au sein des hommes le désir

de la mer grande et large. »

„Wenn du ein Schiff bauen willst,
dann trommle nicht Männer zusammen,
um Holz zu beschaffen, Aufgaben zu vergeben
und die Arbeit einzuteilen, sondern lehre sie
die Sehnsucht nach dem weiten, endlosen Meer.“

“If you want to build a ship,
don't drum up the men to gather wood,

divide the work and give orders.
Instead, teach them to yearn for

the vast and endless sea.”

Zugeschrieben – Attribuée á – Attributed to
Antoine de Saint-Exupéry

(1900 – 1944)

Dedication – Widmung

To Julia, Markus and my entire family – especially my parents
and my grandfather – for their remarkable support and patience.

Für Julia, Markus und meine gesamte Familie – insbesondere meine Eltern
und meinen Großvater – für ihre bemerkenswerte Unterstützung und Geduld.

3

Abstract

Trade-offs or conflicts among client stakeholders about the Business Requirements of a new software
product are a practical problem in complex software projects which is not widely covered by academic
literature. Most sources in Software Engineering literature cover the “human factor” only with regard
to teamwork in the project team, but similar effects on the client side are often neglected. Therefore
this thesis examines the underlying problems and risks in Requirements Engineering and highlights,
how Software Project Manager can face problems with adversarial client stakeholders. The conclusion
provides an overview for Software Project Managers who face such trade-offs or conflicts and supports
them with “Contradictions that SWPM has to consider” as well as a Toolbox with possible measures.
The major contributions of this thesis are the identification of an upcoming topic in Requirements
Management and the related considerations about the nature of this problem and possible solutions.

Kurzfassung

Interessensgegensätze oder Konflikte der Kunden-Stakeholder untereinander über die Business
Requirements eines neuen Softwareproduktes sind ein praktisches Problem in komplexen
Softwareprojekten, das von der wissenschaftlichen Literatur derzeit kaum behandelt wird. Die meisten
Quellen in Software Engineering besprechen den „menschlichen Faktor“ nur beim Teamwork
innerhalb des Entwicklerteams, während ähnliche Effekte auf Kundenseite ausgelassen werden. Daher
untersucht diese Diplomarbeit die zugrunde liegenden Probleme und Risiken im Requirements
Engineering und hebt hervor, wie Software Projekt Manager solche Probleme mit opponierenden
Kunden-Stakeholdern bewältigen können. Die Schlussfolgerungen bieten einen Überblick für Software
Projekt Manager die solche Zielkonflikte bewältigen müssen unterstützt diese „Denkanstössen in Form
von Gegensatzpaaren“ sowie einer Werkzeugkiste an möglichen Maßnahmen. Der wesentliche Beitrag
dieser Arbeit sind die Identifizierung eines aufkommenden Themas im Requirements Management und
die darauf aufbauenden Überlegungen über die Hintergründe und mögliche Lösungen dieses Problems.

Keywords (Schlagworte):
Software Project Management, Requirements Engineering, Requirements Management,
Business Requirements, Volatile Requirements, Anforderungsmanagement

4

Thesis Declaration

I declare that this thesis is my own work and has not been submitted in any form for another degree or
diploma at any university or other institution. Information derived from the published or unpublished
work of others has been acknowledged in the text and a list of references is given.

Vienna, August 2007 Raoul Fortner

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbständig und ohne fremde Hilfe verfasst,
andere als die angegebenen Quellen nicht benützt und die den benutzten Quellen wörtlich oder
inhaltlich entnommenen Stellen als solche kenntlich gemacht habe. Die Arbeit wurde bisher in gleicher
oder ähnlicher Form keiner anderen Prüfungsbehörde vorgelegt und auch nicht veröffentlicht.

Wien, August 2007 Raoul Fortner e.h.

5

Acknowledgements

I have to express my gratitude to all those people who supported the creation of this master thesis

Dr. Thomas Grechenig, Mario Hiermann and the AMMA-group at the INSO

Stephanie Schultz and Disney Germany for figure 1.1

Hannes Eksler and the ITZ

Special thanks go to those friends and colleagues who supported me with their ideas and critics:

Sascha Frühwirth, Martin Spitzer, Alexander Brandstätter,
Martin Strasser, Alexander Fehr and Stephan Binder

Finally I express my deepest gratitude to my family – especially my parents and my grandfather –
for their ongoing support of my studies and their unbelievable patience during the creation of this thesis.

6

CONTENTS

7

Table of Contents

 Dedication (Widmung) 2
 Abstract & Keywords (Kurzfassung & Schlagworte) 3
 Thesis Declaration (Eidesstattliche Erklärung) 4
 Acknowledgements (Danksagung) 5

 Table of Contents 7

List of Figures 9
List of Tables 9

1. INTRODUCTION 10

2. EVOLUTION & PROCESS MODELS OF SOFTWARE ENGINEERING 12
2.1. Selected definitions and meanings of Software Engineering 12
2.2. Taxonomy – Common approaches to Software Engineering 16
2.2.1. Principles and qualities as an engineering discipline 18
2.2.2. Profession: Codification of ethics, education and knowledge 19
2.2.3. Evolution: History and current trends of Software Engineering 23
2.2.4. Quality Management in Software Development: Standards and Models 28
2.2.5. Software Life Cycle and Software Development Life Cycle 31
2.2.6. Software Development Processes: Methods, methodologies and Process Models 33

Paradigms, methods and methodologies 34
(0) Hacker approach: Build-and-fix 35
(1) Linear Process Models: From “stagewise” to the (sequential) Waterfall Model (WF) 35
(2) Evolutionary Process Models: Iterative and Incremental Software Development 37
(3) (Rapid) Prototyping and Rapid Application Development (RAD) 38
(4) Risk-driven Process Model: Spiral Model 39
(5) V-Model: V-Modell 92, V-Modell 97 and V-Modell XT 40
(6) Unified Process (UP), Rational UP (RUP), Enterprise UP (EUP) and OpenUP 40
(7) Agile models: eXtreme Programming (XP), Scrum, Crystal, FDD, ASD, DSDM 40
Selection and tailoring of a Process Model for the real Software Development Process 41

2.3. Software Development: Two significant Process Models 42
2.3.1. Plan-driven: Iterative, use-case-object-oriented Unified Process (UP, RUP) 43
2.3.2. The rise of agile Software Development: eXtreme Programming (XP) 45
2.4. Beyond Development: Maintenance, Reengineering, Evolution and Retirement 48
2.4.1. Maintenance of the original software system 49
2.4.2. Legacy Software, technological change and Software Reengineering 50
2.4.3. (Business-driven) Software Evolution 51
2.4.4. Retirement and migration 52

CONTENTS

8

3. SOFTWARE PROJECT MANAGEMENT AND THE HUMAN FACTOR 53
3.1. Software Project Management in a nutshell 53
3.1.1. Projects and Project Management (PM) in general 54
3.1.2. Characteristics of Software Project Management (SWPM) 56
3.1.3. Planning and Controlling: Time Schedules and Cost Estimation 57
3.1.4. Software Project Managers: Leadership, soft skills and client-team-link(er) 60
3.1.5. Teamwork in Software Development Projects 62
3.2. Environmental influences and risks acting on the project 65
3.2.1. Significant SE-risks and reasons for Software Project Runaways 66
3.2.2. Risk Management for software projects 67
3.2.3. Project Environment Analysis (Projektumfeldanalyse – PUA) 69

4. STAKEHOLDERS AND REQUIREMENTS IN SOFTWARE PROJECTS 70
4.1. Stakeholder(s) in Software Projects: Definition and classification 70
4.2. Requirement(s) in Software Projects: Definition and classification 71
4.3. Requirements Engineering and Requirements Management in Software Projects 73
4.3.1. Requirements Management: Managing all requirements-related activities 75
4.3.2. Requirements Elicitation 76
4.3.3. Requirements Analysis and Modeling 78
4.3.4. Requirements Specification and Documentation 79
4.3.5. Requirements Verification, Validation and Negotiation 80
4.3.6. Change Management and Requirements Traceability 80
4.3.7. Requirements Engineering Good Practices 81
4.4. Significant risks related to stakeholders and requirements 82

5. REQUIREMENT TRADE-OFFS AMONG CLIENT STAKEHOLDERS 86

6. CONCLUSIONS 89
6.1. Contradictions that Software Project Management has to consider

when facing trade-offs or conflicts 89
6.2. Toolbox: Tools that Software Project Management can use

when facing trade-offs or conflicts 91

7. REFERENCES 92
7.1. Reference books 92
7.2. Proceedings, papers and articles 96
7.3. Standards and further online references 99
7.4. World literature 100

CONTENTS

9

List of Figures

Figure 1.1 Inverted pyramid structure of this thesis [Derived from Disney87:123] 11

Figure 2.1 Evolution of SE as an engineering discipline [ZuserGre04:22f quoting Shaw96] 14
Figure 2.2 Attempt for a hierarchical taxonomy of Software Engineering [own work] 17
Figure 2.3 The planning spectrum in Software Engineering [Boehm02:65] 17
Figure 2.4 Computing Curriculum 2005: View on Software Engineering [CC2005:21] 21
Figure 2.5 A Full Range of Software Engineering History and Trends [Boehm06:16] 27
Figure 2.6 Capability Maturity Model – Integrated: Five maturity levels [mdob.larc.nasa.gov] 29
Figure 2.7 Questionable “Life cycle process tree” [Standard ISO/IEC 12207] 31
Figure 2.8 Simple “Build-and-fix” model [Schach96:53] 35
Figure 2.9 One common occurrence of the Waterfall Model in the 1970’s [Boehm76:1227] 36
Figure 2.10 “From a sequential to an iterative lifecycle” [Kruchten04:61] 37
Figure 2.11 Rapid Prototyping Cycle in a sequential development process [Benn95:47] 38
Figure 2.12 Spiral Model of software development [Boehm88:64] 39
Figure 2.13 Two dimensions for tailoring the software development process [RoyceWa98:211] 41
Figure 2.14 Agile and plan-driven home grounds [BoehTur03:58] 42
Figure 2.15 RUP ® development cycle: Disciplines, Phases and Iterations [Kruchten04:Poster] 43
Figure 2.16 XP – Planning & feedback loops with time dimensions [www.extremeprogramming.org] 46
Figure 2.17 General model for Software Re-engineering [Byrne92:230] 50
Figure 2.18 Business-driven Software Evolution [Your92:254] 51

Figure 3.1 PMBOK – Nine Knowledge Areas and related Processes [PMBOK04:8] 55
Figure 3.2 Gantt-chart of a simple Students Project at TUW [A. Fehr, R. Fortner] 58
Figure 3.3 Milestone Trend Analysis of a simple Students Project at TUW [A. Fehr, R. Fortner] 59
Figure 3.4 The software project manager’s problem (timeless diagram) [BoehRos89:903] 60
Figure 3.5 Phases of Team Development [Robbins03] 62
Figure 3.6 Possible team organisations [Benn95:74] 63
Figure 3.7 Team Management Wheel [www.tms.com] 64
Figure 3.8: Key Roles of Teams [Robbins03] 64
Figure 3.9 Different lead times for different risks and projects [BiffHein05:Slide8] 67
Figure 3.10 Risk Exposure Diagram [BiffHein05:Part12] 68
Figure 3.11 Typical “Project Environment” (own work, derived from [PatzRatt04:69]) 69

Figure 4.1 Classification of several kinds of requirements [Wiegers99:8] 71
Figure 4.2 Hierarchical decomposition of Requirements Engineering by Wiegers [Wiegers99:19] 73
Figure 4.3 Requirements engineering activity cycle by Sommerville [Sommer05:17] 73
Figure 4.4 Requirement communication in a diversified development team [MikHeis06:922] 76
Figure 4.5 Comparing the effectiveness of different communication channels [AmNa05:42] 78
Figure 4.6 Root causes of delays from requirement uncertainty [EberMan05:556] 85

Figure 5.1 Model-Clash Spiderweb diagram [BoehPort00:121] 86

List of Tables

Table 3.1 Typical project environment spreadsheet (own work, derived from [PatzRatt04:71]) 69

1 - INTRODUCTION

10

1. INTRODUCTION

“Grau, teurer Freund, ist alle Theorie“
 (Johann Wolfgang von Goethe, Faust I, Studierzimmer: 2038)

There is a real gap between (scientific) theory and daily practice in Software Engineering, which most
of us know quite well, and which is usually camouflaged behind nice theories like the manifold Process
Models already invented for Software Engineering and Software Project Management. It is the gap
between well thought-out sophisticated plans on one hand (project plans, technical plans or any other
kind of plans) and the uncertainties of everyday project reality on the other hand. This gap has various
names, but the most appropriate synonym seems to be simply the “human factor”.

There are many ways how the human factor can influence a Software Project – and there are also many
theories, recipes or “best practices” to somehow master it, one of the newest “silver bullets” in Software
Engineering is the so called “Risk Management (RM)”. However, humans are not like computers or
other machines, as it is quite human to err, change ones opinion or decide to go ones own direction.
Some authors earn a lot of money by writing books on how to recapture the changes that the human
factor brought into a software project – e.g. Tom DeMarco with his manifold books as well as Robert
L. Glass with books and his “Loyal Opposition” in IEEE-Software or the authors of “AntiPatterns”
[Brown98]. But unfortunately nobody ever really found the magical “Philosopher's stone” – neither in the
quite young field of Software Engineering [Brooks95:“No Silver Bullets”], nor in any other engineering
discipline. So we have to go on with regularly improving our theories and permanently learning with
every new project we conduct – and sometimes one learns even more from a failure than from a
success [Glass98:19]. The human factor can influence a software project in many different ways, as it
can cause problems in the development team as well as in the project management itself or on the
client side (“Most software projects are chaotic, unpredictable and hazardous to careers”, [Brown98:xxiv]).

One selected example of these numerous effects will be under examination in this thesis: The various
problems and influences that the “human factor”, within client stakeholders, brings into the process of
Requirements Engineering respectively Requirements Management – and how the Project Management can
somehow master those effects. This is still a wide-area topic, but concise enough to write an interesting
and up-to-date Master Thesis in Software Project Management about it. My personal motivation for
choosing this topic was to combine my experiences in real software projects – especially from Project
SIE during my last year abroad at the French Grande École SUPAERO – with my studies of
“Wirtschaftsinformatik”, a curriculum already combining both aspects of Software Project Management:
Technical education as well as courses in economics and management.

The thesis starts with a survey about the state of the art in Software Engineering and highlights the current
discussion about “home grounds” of plan-driven and agile methods, also in relation to Requirements
Engineering (Chapter 2). Afterwards the human factor in Software Project Management (SWPM) is examined
and focused on considerations about influences from the external environment. Also the manifold
challenges that SWPM has to face, including many trade-off decisions, are underlined (Chapter 3).
Subsequently an introduction to the concepts of Stakeholders, Requirements and Requirements Engineering
underlines the strong relation between Requirements Management and Software Project Management. Also
the main risks and problems in Requirements Engineering are addressed (Chapter 4).

1 - INTRODUCTION

11

The following survey about relations between requirements (process) risks and trade-offs among client
stakeholders provides a brief introduction into the problem which is addressed by this thesis (Chapter
5). The conclusion provides an overview for Software Project Managers who face such trade-offs or
conflicts and supports them with “Contradictions that SWPM has to consider” as well as a Toolbox
with possible measures (Chapter 6). The climatic structure of this thesis is illustrated in figure 1.1.

Figure 1.1: Inverted pyramid structure of this thesis (Derived from [Disney87:123])
(c) Disney - Reprinted with kind permission of Walt Disney Company (Germany) GmbH and Egmont Ehapa Verlag

2 – EVOLUTION & PROCESS MODELS OF SOFTWARE ENGINEERING

12

2. EVOLUTION & PROCESS MODELS
OF SOFTWARE ENGINEERING

“If builders built buildings the way programmers wrote programs,
then the first woodpecker that came along would destroy civilization.”

 (Murphys Law – Weinberg’s Second Law, [Bloch85:86])

Compared to other Engineering Sciences, Software Engineering (SE) is a quite young discipline and
still struggles somehow with its self-definition. While Architecture, Civil Engineering or Mechanical
Engineering exist and evolve since centuries, Software Engineering itself only dates back to the 1960’s,
although the higher-ranking Computer Science has a more comprehensive history. Even within this
short period since 1967/68, the meanings of “Software Engineering” and also the whole discipline have
enormously evolved. Also more and more related domains have somehow been integrated into SE,
which therefore now contains different technological aspects, manifold methodologies, various kinds of
project- and people-management issues as well as the increasing significance of economic needs.

Considering this spectrum, a short chapter about the fundamentals of Software Engineering has to
prioritise strongly, which is done with respect to the complex topic as well as to the needs of the later
culmination of this thesis. Therefore this chapter starts with an overview about the diverse definitions
and meanings of SE, followed by a taxonomy describing various established approaches and the key
elements of SE. Afterwards two state-of-the-art Process Models of SE are displayed more detailed, as
UP and XP are good examples for the current challenges in Requirements Engineering & Management.
Finally a short excursus about Software Re-Engineering and Evolution is given.

2.1. Selected definitions and meanings of Software Engineering

The founding of the term and discipline of Software Engineering in the 1960’s fulfilled an already
noticeable need in computer science and started – like the Internet-predecessor Arpanet – with some
well organised initial aid from the military, namely the North Atlantic Treaty Organization (NATO):

“Discussions were held in early 1967 by the NATO Science Committee ... on possible international actions in
the field of computer science. In the Autumn of 1967 the Science Committee established a Study Group on
Computer Science. ... In late 1967 the Study Group recommended the holding of a working conference on
Software Engineering. The phrase ‘software engineering’ was deliberately chosen as being provocative, in implying
the need for software manufacture to be based on the types of theoretical foundations and practical disciplines, that
are traditional in the established branches of engineering.” [NATO68:8]

Certainly the term was not “invented” by the NATO Study Group on Computer Science, but it was
popularised by the two famous “NATO Software Engineering Conferences” and is therefore often attributed
to their godfather and first conference-chairman Friedrich Bauer from TU München [Bauer93]. The
first conference took place between 7th and 11th October 1968 in Hotel Sonnenbichl in Garmisch-
Partenkirchen (Germany) and was followed by a second – according to Brian Randell “less harmonious
and successful” – conference in October 1969 in Rome. At least after these two conferences, the term
Software Engineering was internationally established, gradually displacing “programming”, and in the
following decades a whole discipline in Computer Science evolved around this term.

2 – EVOLUTION & PROCESS MODELS OF SOFTWARE ENGINEERING

13

Since the 1960’s, the discipline itself progressed and evolved along with the term Software Engineering,
which lead to various definitions of the term by scientists and practitioners, but till today there is no
generally accepted agreement on what SE completely means. Quite the contrary, in some countries (like
the USA and Canada) established engineering bodies even took legal actions to prevent the use of the
term “Software Engineer” as a profession. So the definition, if SE is or is not an engineering discipline is
quite more than an academic question and implies a lot of practical impacts, especially in terms of
money and salary level. On the other hand, since the 1960’s a lot of (excellent) programmers stressed
the definition of programming as a skill, “craftsmanship” (Pete McBreen) or even “art” (e.g. Donald E.
Knuth with his voluminous and still unfinished monographs “The Art of Computer Programming”).

As this thesis strongly supports the engineering-approach underlined by SE-pioneers like Bauer, Boehm
or Brooks and current standard SE-textbooks ([Schach96], [GheJaz03], [ZuserGre04], [Sommer06]), the
following list gives a historical overview about common definitions of SE as an engineering discipline:

● Friedrich Ludwig Bauer 1971 (Chairman of the 1968-NATO-Conference) [Bauer71:530]:
“[Software Engineering]… the establishment and use of sound engineering principles to obtain economically
software that is reliable and works efficiently on real machines”

● Barry Boehm 1976 [Boehm76:1226] (A later recurrence in 1979 is quoted by [ZuserGre04:23]):
“Software Engineering: The practical application of scientific knowledge in the design and construction of
computer programs and the associated documentation required to develop, operate, and maintain them.”

● David Lorge Parnas 1978 [“Some Software Engineering Principles”, reprinted in HofWeis01:257]:
“[Software Engineering is the] … multi-person construction of multiversion software”

● Richard Fairley 1985 [Fairley85]:
“Software engineering is the technological and managerial discipline concerned with systematic production and
maintenance of software products that are developed and modified on time and within cost estimates.”

● IEEE Standards Coordinating Committee 1990 [IEEE90:67]:
“software engineering. (1) The application of a systematic, disciplined, quantifiable approach to the development,
operation, and maintenance of software; that is, the application of engineering to software. (2) The study of
approaches as in (1).” (REMARK: In1983 the IEEE initially stated a less precise definition of SE)

● Ian Sommerville in the 1990s [Sommer06:6] (at the latest in the 6th edition of his textbook):
“Software Engineering is an engineering discipline which is concerned with all aspects of software production from
the early stages of system specification through to maintaining the system after it has gone into use.”

● Helmut Balzert 1996 [Balzert96:36] (who uses the half-German term “Softwaretechnik”)
“… goal-oriented provision and systematic application of principles, methods, and tools for the cooperative,
engineering-like development and deployment of large software systems”

● Ghezzi, Jazayeri & Mandrioli 2003 [GheJaz03:1]
“Software engineering is the field of computer science that deals with the building of software systems that are so
large or so complex that they are built by a team or teams of engineers. Usually these systems exist in multiple
versions and are in service for many years. During their lifetime, they undergo many changes: to fix defects, to
enhance existing features, to add new features, to remove old features, or to be adapted to run in a new
environment.”

2 – EVOLUTION & PROCESS MODELS OF SOFTWARE ENGINEERING

14

Many important SE-issues are spread in these definitions: “engineering principles”, “reliable”, “efficient”,
“systematic, disciplined, quantifiable approach”, “practical application of scientific knowledge”, “technological and
managerial discipline”,” systematic application of principles, methods, and tools”. These terms exemplify, that the
definition of SE as an engineering discipline consequently implies the implementation of engineering
principles (even when the agile movement currently tries to minimize some common SE-practices
which they call too “bureaucratic”). So most of the SE-textbooks highlight more of these principles
including reliability, responsibility (also for human lives, e.g. when constructing software for airplanes
or medical machines), the establishment of a code of ethics, a well defined education and so on.

The difference between programming as an “art” and the engineering approach in SE can be
exemplified as follows: A single programmer designing a simple homepage with a guestbook may do
this without to much knowledge about “engineering” and can bring in “art” and skills in programming.
But as soon as the homepage is supposed to be a professional E-Commerce-solution – e.g. a web
application connected with a goods-database – a solid engineering approach will be necessary to
guaranty values like reliability, security, maintainability, warranty and to cover even the related legal
considerations for E-Commerce. All these issues are part of a professional engineering responsibility.

In 1996 Shaw compared the evolution of SE with the genesis of a professional engineering discipline
and pointed out progressions that fields go through before they reach the level of professional
engineering ([Shaw96], see figure 2.1). As Boehm already defined in 1976 (“practical application of scientific
knowledge” [Boehm76:1226]), Shaw also states that only the professional unification of science and the
commercial (practical) branch can finally lead to a professional engineering discipline. Since 1996, a lot
of further progress has been made, especially by IEEE and ACM (e.g. with the definition of a code of
ethics, a standard curriculum and the promising Software Engineering Body of Knowledge), but the
current status of the entire SE within this diagram is still an open question (A more detailed and up-to-
date overview can be found in [Boehm06:16] and will be presented in chapter 2.2.).

Production

Craft

Commercial

Science

Professional
Engineering

1965-70: Algorithms,
 data structures

Isolated examples
only (algorithms,
data structures,
compler construction)

1980s: Software
 development
 methodologies

Figure 2.1: Evolution of SE as an engineering discipline [ZuserGre04:22f quoting Shaw96]

2 – EVOLUTION & PROCESS MODELS OF SOFTWARE ENGINEERING

15

When comparing the already mentioned contrast between the “art”-approach and the engineering-
approach in programming, one has to avoid misunderstandings: Even a house built by an architect or a
bridge constructed by a civil engineer can also be beautiful art that really prettifies the landscape (e.g.
the famous Golden Gate Bridge). But always more important will be, that their construction follows
strict engineering rules (and even legal regulations) to guarantee a maximum of safety and durability, so
engineering comes first, “art” second. Surely, every comparison between SE and other engineering
disciplines has its limit (as Schach points out: “A civil engineer, if asked to rotate a bridge through 90° or to move
it hundreds of miles, would consider the requester to be bereft of his senses. However, we think nothing of asking a
software engineer to convert …” [Schach96:6]) – but also Schach underlines:

“Perhaps if software engineers treated an operating system crash as seriously as civil engineers treat a bridge
collapse, the overall level of professionalism within software engineering would rise.” [Schach96:5]

An important term for the problems with software development was coined between the 1960s and
1970s to subsume all the well known discontent with software that was “delivered late, over budget and full of
residual faults” [Schach96:4]. This term is “software crisis” – and for a long time the argumentation was,
that SE was found to solve this “crisis”. Nowadays this concept seems out-of-date (and the term itself
an empty buzzword), as the symptoms of the “crisis” are still there and not solved, only diminished
(Schach proposes to call it the “software depression, in view of its long duration and poor prognosis” [Schach96:5]).
Even Robert L. Glass who exposes “16 colossal software disasters” (e.g. Denver International Airport
luggage system or the new air traffic control system for FAA) states in the same book clearly: “I do not
believe in the existence of a software crisis” [Glass98:6]. The most realistic attitude toward this topic – showing
that these are symptoms of overambitious expectations as well as childhood diseases of a quite young
and still changing engineering discipline – is documented by the following appraisal:

“In reality, projects were late because the application was complex and poorly understood by both costumers and
developers and neither had any idea how to estimate the difficulty of the task and how long it would take to solve
it. Although the term ‘software crisis’ is still used sometimes, there is a general consensus that the inherent
difficulties of software development are not short-term problems. New and complex application domains are
inherently difficult to approach and are not subject to short-term, quick solutions” [GheJaz03:4f]

So there seems to be no “crisis”, but a lot of possibilities for advancement and increased (engineering)
professionalism in SE, and even one of its pioneers, David Parnas, later called the word-combination
Software Engineering “an unconsummated marriage” [HofWeis01:Chapter32]. Naturally there are different
views on the solution of these problems: While (the mathematician) Dijkstra saw the problem (during a
later transcript lecture from December 1993 in Austin, Texas) in the “management community” and
“insistence on teamwork”, sources which are more concerned about the “human factor” argue in the
opposite direction: “The major problems of our work are not so much technological as sociological nature”
[DeMaLi87:4]. The second approach is predominant in this thesis.

After this general overview about the current self-concept, definitions and boundaries of Software
Engineering, the following subchapters present the current state-of-the-art in SE in condensed
mainstream-form, as the focus of this thesis doesn’t allow a more in-depth analysis of all ongoing
discussions about each new paradigm, methodology or engineering-approach.

2 – EVOLUTION & PROCESS MODELS OF SOFTWARE ENGINEERING

16

2.2. Taxonomy – Common approaches to Software Engineering

While the entire discipline of Software Engineering has been evolved since the 1960’s, also various
approaches for an optimal (often formalised and well organised) software development process have
been developed and improved. The most characteristic indicators in SE for the increasing engineering-
approach are – beneath general engineering principles and various (programming & design) paradigms
– it’s so called “Process Models”. Since the ending 1960’s, when the first well-defined Process Model –
the Waterfall Model popularised by Winston Royce [RoyceWi70] – replaced the common “code and fix”
approach, various Process Models and methods have been invented to organise the Software
Development Process in a structured way with well defined stages (also called phases or activities) “to
produce high-quality software products reliably, predictably and efficiently” [GheJaz03:385].

But as there is no generally accepted definition and meaning of Software Engineering, there is also no
commonly accepted taxonomy of SE and its key methodologies – and some sources state that this is
explicable, as SE has changed too strongly during the last decades and that especially technological
progress in computer science played a leading role in this continuous re-invention of the whole
discipline. On the other hand, even when programming languages and their paradigms change, at least
some main ideas about the professional and engineering-like handling of a software development
project should be “timeless software engineering principles” [Boehm06:12]. However, almost every established
SE-textbook has its individual taxonomy of Software Engineering which is carefully delimited from
other views, and which leads to various approaches how SE can be structured.

Especially there is a lot of disorder in the appropriate topology of Process Models and any other kind
of models or methodologies related to the software development process, so terms like “Process Model”,
“Process (assessment) framework”, “Process”, “Method(ology)”, “Meta Process” or even “Software Life Cycle” are
mixed in a confusing way (e.g. [KrollKru03:49ff]). While some sources arrange them nearly on the same
level (e.g. [Schach96:52ff], [GheJaz03:403ff], [ZuserGre04:69ff]), other sources develop sophisticated multi-
layer-meta models (consisting of three or more levels) about their hierarchical dependency
([Mayr05:79ff], [AmNa05:6f]) and Sommerville simply classifies agile methods as part of the “rapid
development”-section, far away from the software-process-section of his textbook [Sommer06:93ff and
430ff]. Various attempts for a SE-model-topology even try to establish different technical terms,
sometimes leading to funny creations (e.g. [KrollKru03:49ff] introducing “Low Ceremony” for agile
methods and “High Ceremony” for what less-diplomatic XP-believers normally call “bureaucratic”).

Meanwhile practitioners from the software industry state with some pragmatism, that they normally
mix between predefined process-based methods (e.g. codified industrial standards or Process Models)
and some light-weighted methods in-between (e.g. prototyping and other agile approaches). So practical
researchers already presume the “foreseeable end of the agile hype” [Mayr05:99] and expect that the
pendulum that oscillates between “process monsters” (e.g. CMM/I) and agile methods will stabilise
somewhere in-between [Mayr05:78]. Therefore SE-pioneer Barry Boehm argued during the last years to
“synthesize the best from agile and plan-driven methods to address our future challenges” [Boehm03:46] (underlined by
a quite enjoyable monkey-and-elephant-metaphor), so it appears that within some years a next
generation of Process Models will bring more “balance of agile and plan-driven methods” [Boehm02:69].

2 – EVOLUTION & PROCESS MODELS OF SOFTWARE ENGINEERING

17

As none of the mentioned SE-textbooks provides an appropriate diagram about the taxonomy of
Software Engineering, a simple hierarchical overview about SE as a discipline of Computer Science has
been developed for this thesis (see figure 2.2, supported by figure 2.3 about the SE-planning-spectrum
by Boehm). The details about the mentioned SE-topics will be explained in the following subchapters,
except topics like economics, metrics and tools for Computer Aided Software Engineering (CASE).

Activity level Concerned with

COMPUTER SCIENCE
(“Informatics”)

Various sub-fields & disciplines (e.g. technologies, algorithms &
data structures, computation theory, architectures, programming languages)

↓

Discipline of SOFTWARE
ENGINEERING

Principles, profession (ethics, education, knowledge), evolution
(history & future), paradigms, methods & process models, tools

↓

BODIES (e.g. ISO, IEEE)
SOFTWARE INDUSTRY

ENTERPRISE(S)

International or industrial standards and QM-models for the
assessment & improvement of Software Development

Processes (e.g. CMM(I), ISO 90003, SPICE: ISO/IEC 15504)

↓

General planning of
SOFTWARE (Development)

LIFE CYCLES (SWDLC)
and PROCESS MODELS

Various
 “Method(ologie)s”

(e.g. Object-oriented, iterative,
incremental, risk-driven, agile)

Predefined
“Process Models”

(Frameworks with quite
different scopes, e.g. UP)

↓

INDIVIDUAL
(Software Development)

PROJECT

Customising, tailoring and implementation of one (or
several) Process Model(s) & Method(ologie)s within the
Project (e.g. roles, products & artefacts, activities, iterations, tools)

Figure 2.2: Attempt for a hierarchical taxonomy of Software Engineering [own work]

Figure 2.3: The planning spectrum in Software Engineering [Boehm02:65]

2 – EVOLUTION & PROCESS MODELS OF SOFTWARE ENGINEERING

18

2.2.1. Principles and qualities as an engineering discipline

„The whole trouble comes from the fact that there is so much tinkering with software.
It is not made in a clean fabrication process which it should be.

What we need is software engineering.” (Friedrich L. Bauer in 1968 [Bauer93])

When developing Software in a professional way it is important to keep in mind that SE is an
engineering discipline and the most important value for every engineer is always RESPONSIBILITY.
As an engineer, one is responsible for the developed product and the production process, especially as
clients trust the product and important institutions or maybe even human lives depend on it. Therefore
one has to be aware about the future consequences of all engineering actions, as in the worst case even
legal actions with subsequent penalties or imprisonment are possible (e.g. after a lethal accident).

Surely there are also significant differences between SE and other engineering disciplines, as Mayr
points out (Difficult cost estimation due to the common singularity of each SW-project; high number of different
solutions; individuality of programmers and their performance varieties hinder a solid effort estimation; rapid technological
change; absence of standardised components and modules; “invisibility” of software products hinders effective controls
[Mayr05:55f]). But there are some general engineering principles and qualities – transferred to Software
Engineering – which (should) superpose the entire Software Development Process, regardless which
task is performed. So one of the first engineering principles implemented in SE was the separation of
the engineering stage from the production stage, which lead to the renunciation of the build-and-fix-
approach followed by various Methods and Process Models [RoyceWa98:8]. From all examined SE-
textbooks [GheJaz03] provide the most extensive and striking overview about such general engineering
principles in Software Engineering and their consequences for the product quality:

Software Engineering principles: [GheJaz03:42ff]
(1) RIGOR AND FORMALITY: “a necessary complement to creativity in every engineering activity … There

is no need to be always formal during design, but the engineer must know how and when to be formal”
(2) SEPARATION OF CONCERNS: “The only way to master the complexity of a project”
(3) MODULARITY & (DE-)COMPOSABILITY: “A complex system may be divided into simpler pieces

called modules … Modularity is an important property of most engineering processes and products”
(4) ABSTRACTION: “fundamental technique for understanding and analyzing complex problems”
(5) ANTICIPATION OF CHANGE: “ability of software to evolve does not happen by accident … requires a

special effort … the one principle that distinguishes software most from other types of industrial production”
(6) GENERALITY: “asked to solve a problem, try to focus on the discovery of a more general problem that may

be hidden behind the problem at hand … indeed, it may even be simpler”
(7) INCREMENTALITY: “the desired application is produced as a result of an evolutionary process”

Corresponding software qualities: [GheJaz03:17ff]

Correctness, Reliability, Robustness, Performance, Usability, Verifiability, Maintainability, Repairability,
Evolvability, Reusability, Portability, Understandability, Interoperability

More specific SE-principles will be presented in the following subchapters 2.2.2 (Code of Ethics), 2.2.4
(Paradigms) and 2.2.6 (Development methods and processes).

2 – EVOLUTION & PROCESS MODELS OF SOFTWARE ENGINEERING

19

2.2.2. Profession: Codification of ethics, education and knowledge

Within the last decade, astonishing progress has been made in the international development of some
key elements for a professional SE-discipline, mainly by the first-time-codification of ethical principles,
educational guidelines and the existing engineering knowledge (at the best independent from specific trendy
technologies). Since 1993 the Institute of Electrical and Electronics Engineers (IEEE) as well as the
Association for Computing Machinery (ACM) had – in cooperation with the international Software
Industry and related academic bodies – a leading role in this progress, which is likely just an
intermediate step on the way to a fully developed engineering discipline (“The contents of this Guide must
therefore be viewed as … baseline for future evolution” [SWEBOK04:xx]). But regarding the SE-evolution
discussed in chapter 2.1 and the Shaw-model from 1996 (figure 2.1) these intermediate steps are
important milestones which indicate an increasing level of maturity in Software Engineering. Therefore,
three milestones within this codification-progress are presented:

● Software Engineering Code of Ethics and Professional Practice (IEEE-CS/ACM – 1999)

The “Software Engineering Code of Ethics and Professional Practice (SECEPP)” expands the fundamental
engineering principles presented in chapter 2.2.1, especially by introducing the “ethical” approach,
which is always a delicate question in science and engineering (e.g. when developing military
applications and considering historical examples of obviously ethic-free-engineers like Wernher von
Braun, who developed with the same enthusiasm and professionalism rockets for Adolf Hitler as he did
later for US-President John F. Kennedy, moreover for the first he even abused concentration camp
prisoners as forced labour slaves). The SE-code was developed by a multinational joint task force of the
IEEE-Computer Society and ACM and the final version (5.2) was adopted by IEEE-CS and ACM in
1999. There is a “short” and a “full version” (with many detailed clauses), both determining eight
principles “intended as a standard for teaching and practicing software engineering … ethical and professional
obligations of software engineers” [SECEPP99, background article:84]. The main parts of the short version are:

“Software engineers shall commit themselves to making the analysis, specification, design, development, testing
and maintenance of software a beneficial and respected profession. In accordance with their commitment to the
health, safety and welfare of the public, software engineers shall adhere to the following Eight Principles:
1. PUBLIC: Software engineers shall act consistently with the public interest.
2. CLIENT AND EMPLOYER: Software engineers shall act in a manner that is in the best interests of
their client and employer consistent with the public interest.
3. PRODUCT: Software engineers shall ensure that their products and related modifications meet the highest
professional standards possible.
4. JUDGMENT: Software engineers shall maintain integrity and independence in their professional judgment.
5. MANAGEMENT: Software engineering managers and leaders shall subscribe to and promote an ethical
approach to the management of software development and maintenance.
6. PROFESSION: Software engineers shall advance the integrity and reputation of the profession consistent
with the public interest.
7. COLLEAGUES: Software engineers shall be fair to and supportive of their colleagues.
8. SELF: Software engineers shall participate in lifelong learning regarding the practice of their profession and
shall promote an ethical approach to the practice of the profession.” [SECEPP99]

2 – EVOLUTION & PROCESS MODELS OF SOFTWARE ENGINEERING

20

● Education: Computing Curriculum (CC2005) & SE2004 (formerly CCSE, including SEEK)

In 1998 the IEEE Computer Society and ACM started a Joint Task Force on Computing Curricula
(CC), which should review the outdated Computing Curricula 1991 and develop a new curricula,
originally named CC2001 (to “define Educational Curricula for undergraduate, graduate, and continuing education”
[SWEBOK04:vii]). Due to the rapid technological progress and ongoing diversification of computer
science, in 2001 the CC2001-task-force decided, that one single report was not useful, and there should
be an own report (respectively volume) for each of the following disciplines: Computer Science, Information
Systems, Computer Engineering, Software Engineering and Information Technology (last one added later). So the
most recent report [CC2005] acts more as a survey and provides just a general overview about Software
Engineering and its limitations (see the self-explanatory figure 2.4).

Therefore the software-engineering-community within IEEE-CS and ACM got the mandate for an
own volume within the CC-project, first called “Computing Curriculum Software Engineering (CCSE)” and
later renamed to its current name: “Software Engineering 2004 (SE2004)”. The SE2004 should “provide
guidance to academic institutions and accreditation agencies about what should constitute an undergraduate software
engineering education” [SE2004:1]. The SE2004 contains three main elements:

(1) Guiding principles and characteristics of software engineering graduates (Chapter 3):
“Graduates of an undergraduate SE program must be able to
1. Show mastery of the software engineering knowledge and skills, and professional issues necessary to begin
practice as a software engineer.
2. Work as an individual and as part of a team to develop and deliver quality software artifacts.
3. Reconcile conflicting project objectives, finding acceptable compromises within limitations of cost, time,
knowledge, existing systems, and organizations
4. Design appropriate solutions in one or more application domains using software engineering approaches that
integrate ethical, social, legal, and economic concerns.
5. Demonstrate an understanding of and apply current theories, models, and techniques that provide a basis for
problem identification and analysis, software design, development, implementation, verification, and
documentation.
6. Demonstrate an understanding and appreciation for the importance of negotiation, effective work habits,
leadership, and good communication with stakeholders in a typical software development environment.
7. Learn new models, techniques, and technologies as they emerge and appreciate the necessity of such continuing
professional development.” [SE2004:15f]

(2) The “Software Engineering Education Knowledge (SEEK)” (Chapter 4) – a body of knowledge for
undergraduate programs in software engineering, so “what every SE graduate must know”
[SE2004:1]. The SEEK is hierarchically organised with ten Knowledge Areas (KA), subdivided
into Knowledge Units (KU) and Topics. The Knowledge Areas are: Computing Essentials (CMP),
Mathematical & Engineering Fundamentals (FND), Professional Practice (PRF), Software Modeling &
Analysis (MAA), Software Design (DES), Software Verification & Validation (VAV), Software
Evolution (EVL), Software Process (PRO), Software Quality (QUA), and Software Management (MGT).

(3) Guidelines for curriculum designers (Chapters 5+6): “ways that this knowledge and the skills
fundamental to software engineering can be taught in various contexts” [SE2004:1]

2 – EVOLUTION & PROCESS MODELS OF SOFTWARE ENGINEERING

21

Figure 2.4: Computing Curriculum 2005: View on Software Engineering [CC2005:21]

● (Guide to the) Software Engineering Body of Knowledge (SWEBOK) by IEEE-CS

“Every profession is based on a body of knowledge and recommended practices”
[SWEBOK04:viii]

The “(Guide to the) Software Engineering Body of Knowledge (SWEBOK)” is currently the most controversial
outcome of the mentioned efforts for a professionalisation in Software Engineering. In a nutshell it can
be described as a STRUCTURED, COMMENTED AND SELECTIVE BIBLIOGRAPHY about the
discipline of Software Engineering as well as the knowledge which already exists in the published
literature. SWEBOK claims to promote a consistent view of “Generally Accepted Knowledge“ in software
engineering worldwide, clarify its place and boundaries to other disciplines, provide a topical access and
foundation for curriculum development as well as individual certification and licensing material. It was
edited and published by the IEEE Computer Society – together with partners from the Software
Industry as well as from academic bodies – and it was criticised by other parts of the SE-community as
being too US-(licensing)-centred, textbook-oriented, Anglophone-centred and to strong biased toward
“heavyweight”-methodologies.

SWEBOK structures the “Generally accepted Knowledge” in ten Knowledge Areas (KA) supplemented by
related disciplines. The ten SWEBOK Knowledge Areas (which are further subdivided into detailed
topics) are: Software requirements, Software design, Software construction, Software testing, Software maintenance,
Software configuration management, Software engineering management, Software engineering process, Software engineering
tools and methods, Software quality. The related disciplines are: Computer engineering, Computer science,
Mathematics, Management, Project management, Quality management, Software ergonomics, Systems engineering. For
each KA there are reference materials (book chapters, refereed papers or other recognized sources) and
a matrix relating the reference material to the listed topics [SWEBOK04].

2 – EVOLUTION & PROCESS MODELS OF SOFTWARE ENGINEERING

22

Project SEBOK was started in 1998 by the Software Engineering Coordinating Committee (SWECC),
formed by the IEEE Computer Society (IEEE-CS) and the ACM. So initially the project was – like the
SE-code of ethics and the SE-curriculum – an outcome of joint efforts between IEEE-CS and ACM.
But on the 30th June 2000 the ACM Council decided to withdraw from the project, mainly due to critics
about SWEBOK being the “basis for licensing software engineers” (which was intended by IEEE but not
supported by ACM. Overall for an “international” project a quite US-centred debate about legal
advantages after accidents – e.g. in trials – when using methodologies officially included in SWEBOK).

After 2000 the IEEE-CS continued project SWEBOK with interested partners from research and
industry, so altogether the (Guide to the) SWEBOK evolved in three phases and versions: Strawman
(1998), Stoneman (2000/2001) and the current version Ironman (2004). SWEBOK states, that the guide
was “the product of extensive review and comment” [SWEBOK04:xix], including a review- and voting-process
in which initially 500 people participated, later reduced to 120 in the Ironman-phase. Even so, criticism
was coming also by people, who are still listed as part of the “Review Team” in SWEBOK 2004:

● Grady Booch stated: “The SWEBOK I reviewed was well-intentioned but misguided, naive, incoherent,
and just flat wrong in so many dimensions” (XP-listserv on yahoogroups, 31st May 2003).

● Florida-Tech-SE-professor Cem Kaner published a negative evaluation of SWEBOK:
“excludes modern methods (such as agile development) … SWEBOK’s criteria for inclusion and exclusion
of topics is unsatisfactory … (Much in) SWEBOK is organized strangely, is dated, and many of the
techniques (etc.) are marginal in terms of how often they are used” (Kaners Blog, 27th June 2003)

● Wolfgang Zuser, an Austrian Reviewer, declares: „A significant defect of the project is, that only
Anglophone sources were used“[ZuserGre04:27], which is at least conceded in the limitations of
the guide [SWEBOK04:xix]. This thesis supports this critique, as SWEBOK currently
excludes ideas and concepts which were published in other scientific world languages.

The concept of the project seems to be also a main source of all critics, as SWEBOK distinguished
three knowledge-categories, and only the first one is regarded and included [SWEBOK04:1-3]:

(1) GENERALLY ACCEPTED KNOWLEDGE (“Established traditional practices recommended by
many organizations … should be included in the study material for the SE-licensing examination that
graduates would take after gaining four years of work experience. … specific to the US style of education”)

(2) ADVANCED & RESEARCH KNOWLEDGE (“tested and used only by some organizations”)
(3) SPECIALIZED KNOWLEDGE (“practices used only for certain types of software”).

In the strongly diversified and rapidly changing Software Industry this approach seems to be quite
problematic and subjective, as Software Engineering struggles since the 1960’s to find an appropriate
balance between the “art”- and the “engineering”-approach (see chapter 2.1 and [Boehm02, Boehm03]).
In this context SWEBOK is criticised for pushing the “traditional, heavyweight, rigid, documentation-heavy
approaches”, even when the 2004-version already includes some books by Kent Beck.

Irrespective from SWEBOK other sources (supporting the engineering-approach in SE) also stated the
need for a profound codification of the existing knowledge, e.g. [GheJaz03:531]: “… reuse of previous
knowledge and designs is standard practice in established engineering disciplines … A prerequisite of this reuse is the
ability to codify existing knowledge … software engineering will be considered to have achieved the status of a true
engineering discipline only after we have such handbooks that software engineers can use in their daily work”. Currently
it seems, as SWEBOK has NOT already achieved this status, but it is an interesting intermediate step.

2 – EVOLUTION & PROCESS MODELS OF SOFTWARE ENGINEERING

23

2.2.3. Evolution: History and current trends of Software Engineering

“Panta rhei”
(Heraclitus of Ephesus)

When presenting Software Engineering, the historical approach is quite a logical option – as SE is still a
changeable, evolving and expanding field which continues to struggle with its self-definition as an
engineering-discipline – but it is likely also the most voluminous way to illustrate the topic. Therefore
one has to simplify and prioritise when doing so in a few pages, for which the best example in recent
years is an article by Barry Boehm about the history and future of Software Engineering [Boehm06].

As it is quite hard to top Boehm with all his experience since the 1950’s and his overall quite unbiased
overview, his striking article also builds the foundation of this subchapter (supported by [Fleissner96],
[Mahoney04]). Boehm itself states that “there are many types of software engineering … unlike the engineering of
electrons, materials, or chemicals, the basic software elements we engineer tend to change significantly from one decade to the
next” [Boehm06:12]. Therefore his approach is likely the same as the metaphor of [Mayr05:78] about the
“pendulum” which currently swings and foreseeable stabilises between “process monsters” and agile
methods. But Boehm widely expands this pendulum-approach and presents the entire history of SE-
evolution since the 1950’s as a decade-by-decade sequence of alternating contradictions – for which he
applies the dialectic of the famous German philosopher Hegel (dissolving the contradiction between
THESIS and ANTITHESIS by a SYNTHESIS – in German-speaking science and rhetoric nowadays
often used by the “Dialektischer Fünfsatz”). The quintessence of his “Hegelian View of Software Engineering’s
Past” is a graphical overview of six decades SE-history and current trends (see figure 2.5).

● From the origins of computer science till the 1940’s

The origins of modern computers trace back to the 17th century and the first ideas for mechanical
calculating machines – by people like Wilhelm Schickard, Gottfried Wilhelm Leibnitz, Blaise Pascal –
and the famous analytical engine by Charles Babbage with the worlds first computer programmer Lady
Ada Lovelace [Fleissner96:33ff]. But even when there had been computers before, like mechanical
computers (e.g. Z1 by Konrad Zuse or the Hollerith), simple electromechanical machines (e.g. Zuses
Z2, Z3 and Z4 with relay’s) or the tube-technique used by ENIAC, modern computer science is
strongly related to the “explosive development” [HorHill89:xix] of electronics and semiconductors.

While older “computers” used techniques like relay's or vacuum tubes, the first realization of a
transistor in 1947 revolutionised electronics and later also computer science. The following evolutions
of semiconductors lead to the invention of Integrated Circuits (about 1960 by Texas Instruments as
well as by Fairchild Semiconductor) and microprocessors (in the early 1970s). This laid the electronic
foundations for modern computer science and its hardware. Together with memory, bus and I/O-
ports, microprocessors are still the key components which constitute the hardware, as even modern
computers still trace back to the "von-Neumann-architecture" from 1945. Even when the von-Neumann-
architecture has been improved in details and hardware has made quite big improvements (smaller size,
higher speed, new storage technologies and groundbreaking input/output-devices like mouse’s, laser
printers and LCD-screens), its basic principles remained the same, only challenged by quite few new
paradigms as Harvard architecture or parallel computing [HorHill89]; [Fleissner96].

2 – EVOLUTION & PROCESS MODELS OF SOFTWARE ENGINEERING

24

● 1950’s – “Software Engineering is like Hardware Engineering” [Boehm06:13]

“Everyone in the GD [General Dynamics] software organization was either a hardware engineer or a mathematician,
and the software being developed was supporting aircraft or rocket engineering. People kept engineering notebooks and
practiced such hardware precepts as ‘measure twice, cut once,’ before running their code on the computer. ... On my first
day on the job, my supervisor [...] said, ‘Now listen. We are paying $600 an hour for this computer and $2 an hour for
you, and I want you to act accordingly.’”

In 1956, a software development process was invented (by hardware engineers from various disciplines)
for the air-defence-project “Semi-Automated Ground Environment (SAGE)” – showing, that some kind of
Waterfall-approaches were already common at this time (Boehm even points out, that the process-
elements can also be arranged as an early form of a V-Model). Success was attributed to the fact that
“we were all engineers and had been trained to organize our efforts along engineering lines”. At this time also first
versions of modern programming languages where invented (e.g. FORTRAN, COBOL and ALGOL).

● 1960’s – “Antithesis: Software Crafting” [Boehm06:13f]

According to Boehm “people were finding out that software phenomenology differed from hardware phenomenology in
significant ways ... easier to modify ... did not require expensive production lines to make product copies”. Also more
and more “non-engineering people flooded into software development”, which tempted to program with a “code and
fix”-approach and lead to creative people producing “heavily patched spaghetti code” (and also the birth of
the “hacker culture” and “cowboy programmers”).

On the other hand, the infrastructure got better and mature high-order-languages simplified
programming-practice (e.g. BASIC). The so-called “software crisis” was an upcoming topic, therefore the
famous “landmark” Software Engineering Conferences sponsored by the NATO where held in 1968
and 1969 (see chapter 2.1): “It was clear that better organized methods and more disciplined practices were needed to
scale up to the increasingly large projects and products that were being commissioned.”

● 1970’s – “Synthesis and Antithesis: Formality and Waterfall Process” [Boehm06:14f]

“The main reaction to the 1960’s code-and-fix approach involved processes in which coding was more carefully organized
and was preceded by design, and design was preceded by requirements engineering”. The GOTO-Statement was
questioned (e.g. by Dijkstra, Boehm-Jacopini): “Showing that sequential programs could always be constructed
without goto’s led to the Structured Programming movement” – which had two branches: “formal methods … focused
on program correctness, either by mathematical proof or … via a ‘programming calculus’” and a “mix of technical and
management methods, top-down structured programming with chief programmer teams”. The second branch created
books like “The Mythical Man Month” [Brooks95] or “Psychology of Computer Programming” [Wein04].

“The success of structured programming led to many other ‘structured’ approaches applied to software design.” (e.g.
modularity, cohesion, information hiding, abstract data types and structured design). In 1970 Winston
Royce published his version of the waterfall-model, including ideas like “Requirements-driven process”,
“build it twice” and even the idea of iterations [RoyceWi70]. But it was most frequently “interpreted as a
purely sequential process … These misinterpretations were reinforced by government process standards emphasizing a pure
sequential interpretation of the waterfall model … The sequential waterfall model was heavily document-intensive,
slowpaced, and expensive to use”. Also languages like PASCAL, C, PROLOG and SQL were developed.

2 – EVOLUTION & PROCESS MODELS OF SOFTWARE ENGINEERING

25

● 1980’s – “Synthesis: Productivity and Scalability” [Boehm06:15ff]

“1980’s led to a number of initiatives to address the 1970’s problems, and to improve software engineering productivity
and scalability … organizations spending 60% of their effort in the test phase found that 70% of the “test” activity was
actually rework that could be done much less expensively if avoided or done earlier … could reduce costs through
investments in better staffing training, processes, methods, tools, and asset reuse”. Contractual Standards were
developed to make processes more compliant (e.g. DoD-STD-2167, MIL-STD-1521B) – strongly
reinforcing the waterfall model. The Software Capability Maturity Model (SW-CMM) was invented and
stepwise improved, while at the same time also ISO-9001 developed practices for software: “The threat
of being disqualified from bids caused most software contractors to invest in SW-CMM and ISO-9001 compliance. Most
reported good returns on investment due to reduced software rework … Improved software processes contributed to
significant increases in productivity by reducing rework, but prospects of even greater productivity improvement were
envisioned via work avoidance”.

There were two approaches for work-avoidance: revolutionary (“emphasized formal specifications and
automated transformational approaches to generating code from specifications”) and evolutionary (“mixed strategy of
staffing, reuse, process, tools, and management, supported by integrated environments”). The famous paper “No Silver
Bullet” [Brooks95] from 1986 distinguished between “accidental repetitive tasks” and “’essential’ tasks
unavoidably requiring syntheses of human expertise, judgment, and collaboration”. Brooks promoted solutions like
“great designers, rapid prototyping, evolutionary development … and work avoidance via reuse”. Especially reuse
became an important topic in work avoidance and lead to powerful OS, DBMS, GUI-builder (with
WYSIWYG-editing) and middleware. These effects where supported by the appearance of “very high
level” programming languages, object-oriented programming (OOP) and visual programming,
documented by the invention of C++, Smalltalk, Perl or Turbo Pascal.

● 1990’s – “Antithesis: Concurrent vs. Sequential Processes” [Boehm06:18f]

“The strong momentum of object-oriented methods continued into the 1990’s. Object-oriented methods were strengthened
through such advances as design patterns; software architectures and architecture description languages; and the
development of UML. The continued expansion of the Internet and emergence of the World Wide Web strengthened both
OO methods and the criticality of software in the competitive marketplace”. The importance of Software strongly
increased and the need for short time-to-market “caused a major shift away from the sequential waterfall model
to models emphasizing concurrent engineering of requirements, design, and code … shift to user-interactive products with
emergent rather than prespecifiable requirements”. Boehm qualifies his 1988-risk-driven Spiral Model [Boehm88]
as “process to support concurrent engineering”. Stakeholders got more attention by “software risk management
activities and the use of the stakeholder win-win Theory W” as well as by a “set of common industrycoordinated
stakeholder commitment milestones … Life Cycle Objectives (LCO), Life Cycle Architecture (LCA), and Initial
Operational Capability (IOC)”.

Overall, iterative and evolutionary development methods where an upcoming topic, and simultaneously
the Free Software Movement and Open Source Software Development became more important,
illustrated by the success of Linux. The “increased usability of software products by non-programmers”
challenged the development of “programmer-friendly user interfaces” and lead to more effort in the field of
“human-computer-interaction (HCI)”. New programming languages supported these trends, e.g. Java, PHP,
Visual Basic and C# (which was already on its way for the new millennium).

2 – EVOLUTION & PROCESS MODELS OF SOFTWARE ENGINEERING

26

● Since 2000 – “Antithesis and Partial Synthesis: Agility and Value” [Boehm06:19ff]

“So far, the 2000’s have seen a continuation of the trend toward rapid application development, and an acceleration of the
pace of change in information technology (Google, Web-based collaboration support), in organizations (mergers,
acquisitions, startups), in competitive countermeasures (corporate judo, national security), and in the environment
(globalization, consumer demand patterns)”. Furthermore, Boehm diagnoses an “increasing frustration with the
heavyweight plans, specifications, and other documentation imposed by contractual inertia and maturity model compliance
criteria”, leading to the Agile Manifesto in 2001 and an emergence of agile methods, “such as Adaptive
Software Development, Crystal, Dynamic Systems Development, eXtreme Programming (XP), Feature Driven
Development and Scrum”. But Boehm also underlines the need for analysis of the “home grounds” of agile
and plan-driven-methods: “agile methods were most workable on small projects with relatively low at-risk outcomes,
highly capable personnel, rapidly changing requirements, and a culture of thriving on chaos vs. order” (see figure 2.14).

● Current trends [Boehm06:19ff]

Beside the obvious diagnosis of rapid change and the trend towards more agility, Boehm becomes less
historical and more speculative in identifying important SE-trends, of which the most currents are:

● The emergence of “Value Based Software Engineering (VBSE)” is stressed by Boehm and
linked to the agile movement (“usability improvement via short increments and value-prioritized
increment”). A field, in which he is active and for which he sees increasing priorities –
illustrated by a quote from W. Arthur: “Computers are working about as fast as we need. The
bottleneck is making it all usable”. He predicts an increasing influence of “technology trends” as a
potential for “user value” and evolutionary “I’ll know it when I see it”-design (IKIWISI).

● Therefore in the field of Requirements and Process Models Boehm predicts: “requirements
emergence is incompatible with past process practices such as requirements-driven sequential waterfall process
models and formal programming calculi; and with process maturity models emphasizing repeatability and
optimization. In their place, more adaptive and risk-driven models are needed. More fundamentally, the
theory underlying software process models needs to evolve from purely reductionist ‘modern’ world views
(universal, general, timeless, written) to a synthesis of these and situational ‘postmodern’ world views
(particular, local, timely, oral) … The value-based approach also provides a framework for determining
which low-risk, dynamic parts of a project are better addressed by more lightweight agile methods and which
high-risk, more stabilized parts are better addressed by plan-driven methods”.

● According to Boehm, “Criticality and Dependability” will become a topic with high priority, as
due to “the high and increasing software vulnerabilities of the world’s current financial, transportation,
communications, energy distribution, medical, and emergency services infrastructures, it is highly likely that ...
a software-induced catastrophe will occur between now and 2025” (which he compares to 9/11).

● “Commercial-off-the-shelf (COTS) systems and components” will increase productivity, and
“developers are spending more and more of their time assessing, tailoring, and integrating COTS products”.

● Further integration of Software Engineering and Systems Engineering (as both disciplines
are more and more related and dependent on each other). Reuse and “legacy software
integration” become more important, as well as “Model-Driven Development (MDD) … developing
domain models whose domain structure leads to architectures with high module cohesion and low intermodule
coupling, enabling rapid and dependable application development and evolvability within the domain”.

2 – EVOLUTION & PROCESS MODELS OF SOFTWARE ENGINEERING

27

Figure 2.5: A Full Range of Software Engineering History and Trends [Boehm06:16]

2 – EVOLUTION & PROCESS MODELS OF SOFTWARE ENGINEERING

28

2.2.4. Quality Management in Software Development: Standards and Models

Standards, Models or Frameworks for the assessment and improvement of Software Development
Processes are part of the quality-management-movement that became important in ANY kind of
industry during the 1990’s. Since that time, especially the widespread ISO 9000 (and all related norms
like ISO 9001) became the best know standard in the global business world for establishing a certified
Quality Management System (QMS) in a company. A QMS is a set of policies, monitoring processes and
procedures (therefore quite a lot of documents) that guarantees and improves the quality of the way,
how a company produces its outcome (goods or also services).

The main idea of ISO 9000-related QMS is that a product can only be as good as the way it was
produced – therefore the standard is (like most quality-management-approaches) focussed on the
assessment and improvement of the (production) PROCESS, NOT THE PRODUCT itself.
Meanwhile, in the corporate world it has often become necessary for a company to be independently
audited and “ISO 9001 certified” for being accepted as a supplier and not disqualified from bids.

In Software Development, there are also such kinds of QM-approaches, and they have to be carefully
distinguished from the actual Process Models (which is often not done in an appropriate way, as many
authors mix these topics, e.g. [KrollKru03:49ff] and in a milder form [Mayr05:79ff]):

● PROCESS MODELS (and related standards like ISO 12207) describe the sequence of tasks
and related activities of the Software Development Process itself (see subchapter 2.2.6).

● QUALITY MANAGEMENT APPROACHES like CMM(I), ISO 9001 (& 90003) or
SPICE (ISO/IEC 15504) describe methods to assess, improve or even certify the quality of
the (existing) Software Development Process of a company. All with the aim to guarantee
and standardise the (minimum) quality of external suppliers, as it is quite hard for a big
company (or state-institution) to conduct an in-depth check for each supplier in a big
project (see [ZuserGre04:149ff], [Mayr05:128ff], [Boehm06:17]).

Certainly there are many interesting and mentionable methods for the assessment and improvement of
Software Development Processes, an extensive European overview to Software Process Improvement (SPI)
provides [MessTull99]. But the following survey focuses on the three most important approaches in
international Software Development: CMM(I), ISO 9001 (combined with ISO 90003) and SPICE
(ISO/IEC 15504). Other standards exist, but in the current international Software Engineering practice
they are at least superposed (or even superseded) by the three mentioned approaches, even when there
are other mentionable standards like:

● Industry or military standards (e.g. “MIL-STD-1521B” of the US-Airforce for “Technical
Reviews and Audits for Systems, Equipments and Computer Software”);

● The European BOOTSTRAP-approach, other (trendy) methods like six-sigma or Total
Quality Management (TQM) and the OPM3-approach by the Project Management Institute;

● Norms from national standardisation organisations (e.g. BSI in Britain, AFNOR in France,
DIN in Germany, ÖNORM in Austria or SNV in Switzerland) – though in Software
Engineering they often just publish a copy the international ISO-standard.

2 – EVOLUTION & PROCESS MODELS OF SOFTWARE ENGINEERING

29

● Capability Maturity Model – Integration (CMM & CMMI) by SEI (since 1991)

The first famous QM-model in SE reflects the need of big entities (like the military) for a strict
classification system of their suppliers to “discriminate between capable software developers and persuasive proposal
developers” [Boehm06:17]. So in 1986 the US-Air Force initiated the project for a “Software Capability
Maturity Model (SW-CMM)”, which was developed by the (quite new) Software Engineering Institute
(SEI) at the Carnegie Mellon University (CMU) in Pittsburgh (Pennsylvania). Version 1.0 of the SEI-
SW-CMM was released in 1991. The main idea was to “’help organizations improve their software process’
through ‘the progression from an immature unrepeatable software process to a mature, well-managed software process’”
[Benn95:9 quoting Paulk]. So CMM is not a Process Model but it claims to describe how to get an
effective model. CMM covers many Key Process Areas (KPA) of Software Development which have
to be improved, defines five levels “that measure the path from immaturity to maturity” [Benn95:9] – the so
called “maturity levels” (see figure 2.6) – and describes goals and key practices for the improvement of
each KPA. This is normally a pure in-house activity – therefore CMM is not a certificate like ISO 9001.

During the 1990’s the CMM-approach was also used to develop models for related issues like People
Management (PCMM), Systems Engineering (SECM) or Integrated Product Development IPD-CMM).
Therefore in 2000 the first “Capability Maturity Model Integration (CMMI)” was published by the SEI and
superseded the original CMM (which definitely expires with December 2007). CMMI integrates the
various CMM-approaches to overcome the problematic use of multiple models. In August 2006 the
current version 1.2 was released (573-pages with 22 improvable process areas [CMMI06]), now
renamed as “CMMI for Development (CMMI-DEV)” to distinguish it from future CMMI’s for other
issues. Maybe this complexity and ongoing change is one reason why CMM(I) is often associated with
“frustration” about heavyweight plans: “One organization recently presented a picture of its CMM Level 4
Memorial Library: 99 thick spiral binders of documentation used only to pass a CMM assessment” [Boehm06:19].

Figure 2.6: Capability Maturity Model – Integrated: Five maturity levels [mdob.larc.nasa.gov]

2 – EVOLUTION & PROCESS MODELS OF SOFTWARE ENGINEERING

30

● ISO 9001:2000 and ISO 90003:2004 (since 1997)

While the CMM(I) was invented for the field of Software Development, the ISO 9000ff-series is a
“generic” set of standards for the establishment and assessment of a Quality Management System (QMS)
as well as the final certification (by external and independent auditors) in ANY kind of company or
organisation. ISO 9000ff was invented by the International Organization for Standardization (ISO) and the
first version was released in 1987, including ISO 9000, 9001, 9002 and 9003 (of which the most
comprehensive 9001 became well-known worldwide). In the years 2000 and 2005 the ISO 9000ff-series
was strongly revised, especially the former standards 9002 and 9003 where included in ISO 9001:2000.
Currently ISO 9000ff means: ISO 9000:2005 (QMS – Fundamentals and vocabulary), ISO 9001:2000 (QMS
– Requirements for certifications) and ISO 9004:2000 (QMS – Guidelines for performance improvements).

Therefore the application of ISO 9000ff to Software Development is just a “side-effect” [Mayr05:129], but
the increasing importance of software lead to an exceptional position: Standard ISO 9000-3:1997 was
published in 1997 to explain how ISO 9001 can be applied to software. Due to the later revision of the
9000ff-series, 9000-3 was replaced in 2004 by the ISO/IEC 90003:2004 which “provides guidance for
organizations in the application of ISO 9001:2000 to the acquisition, supply, development, operation and maintenance of
computer software and related support services … identifies the issues which should be addressed and is independent of the
technology, life cycle models, development processes, sequence of activities and organizational structure” [www.iso.org –
ISO/IEC 90003:2004]. It contains “recommendations” and “suggestions” but IS NOT intended as “assessment
criteria”. So ISO 90003 is more comprehensive than CMM(I), as the superior ISO 9001 implies that “the
organization's quality management system should cover all aspects (software related and non-software related) of the
business” [www.iso.org]. But then CMM(I) is more detailed, voluminous and SE-oriented (ISO 9001 &
90003 together are less than 30 pages, while version 1.2. of CMM(I) contains 573 pages). Most sources
state, that a firm which reached CMM-level three normally also passes the ISO 9001-certification.

● ISO/IEC 15504: “Software Process Improvement and Capability Determination (SPICE)”

In June 1992 [Mayr05:132] joint efforts of the International Organization for Standardization (ISO) and
the International Electrotechnical Commission (IEC) lead to project SPICE, with the goal to develop
international standards for Software Development in two counts: For in-house “Process Improvement” and
for the “Capability Determination (or Evaluation)” of potential suppliers. In 1998 the earlier trials lead to
the official Technical Report (TR), which was split in nine parts, most of them published in 1998
(ISO/IEC TR 15504-1 ff). Since 2003 the ISO/IEC 15504 became a fully developed standard, five parts
haven already been published: “Concepts and vocabulary” (Part1); “Performing an assessment” (Part 2),
“Guidance on performing an assessment” (Part 3); “Guidance on use for process improvement (PI) and process capability
determination (PCD)” (Part 4), “An exemplar Process Assessment Model (PAM)” (Part 5) [www.iso.org].

ISO/IEC 15504 (including a reference model related to ISO 12207) is based on an assessment-matrix
with two dimensions: (1) “Process Dimension” (exceeding the pure SW-Development and covering all
related processes in a software business like management, support, organisation, etc.); (2) “Capability
Dimension” (Maturity levels like CMM, but on a six-part-scale: 0: Incomplete process, 1: Performed process, 2:
Managed process, 3: Established process, 4: Predictable process, 5: Optimizing process). According to
[Sommer06:728] SPICE is more “flexible” than CMM(I), while [Mayr05:132] reflects the practitioners
motto “follow CMM(I), certify ISO”.

2 – EVOLUTION & PROCESS MODELS OF SOFTWARE ENGINEERING

31

2.2.5. Software Life Cycle and Software Development Life Cycle

“The series of steps that software undergoes, from concept exploration
through final retirement, is termed the life cycle” [Schach96:8]

Life Cycles are a common concept in many sciences like Biology (where the term obviously comes
from), Business Administration (e.g. Product or Technology Life Cycle) and of course also in
Engineering. Especially in Systems Engineering the life-cycle-concept is an important part of the entire
engineering-process from the first idea until the retirement of the product itself and also its production
facility. Which is relevant, as most sources confirm that SE is quite close to Systems Engineering – and
due to the increasing importance of software in any kind of complex systems (e.g. plants, factories or
airplanes) there is an evident exchange between both disciplines [GheJaz03:13], [Sommer06:34].

Therefore it is quite astonishing that most SE-textbooks do not point out the apparent similarities
between the Software Life Cycle and the Systems Life Cycle (although the trend toward “integration of
software and systems engineering” [Boehm06:22] automatically integrates the Software Life Cycle in a
superposed Systems Life Cycle). In addition, only few SE-sources present the FULL Life Cycle, also
including the retirement-phase (e.g. [AmNa05] with “The Enterprise Unified Process” or [Schach96:8f]).

Instead, many sources don’t distinguish properly between the “Software Development Life Cycle” and the
more comprehensive “Software Life Cycle” (including evolution, migration or retirement) – so for those
textbooks “maintenance” is often the last stage of the “life cycle” (e.g. [RoyceWa98:73ff], [GheJaz03:6f]).
Furthermore, the life-cycle-idea is often mixed with various “Software (Development) Life Cycle Processes”, so
in some diagrams the “cycle” is presented as a waterfall, V or even spiral. This disorder reflects the fact,
that even the underlying international standard ISO/IEC 12207 (1995) for “Software life cycle processes”
which was derived from earlier US-military standards is somehow ambiguous (presenting a “Life cycle
process tree”; distinguishing only five “primary” life cycle processes where “development” is an oversized
conglomerate of 13 quite different activities; “maintenance” also comprises migration and retirement).

Figure 2.7: Questionable “Life cycle process tree” [Standard ISO/IEC 12207]

2 – EVOLUTION & PROCESS MODELS OF SOFTWARE ENGINEERING

32

As “generality” is an important value of an engineering-discipline (see 2.2.1) this thesis supports the more
comprehensive view of [Schach96:8f], [AmNa05] (or similar sources) and assumes:

● There is a significant distinction between the following three terms:

● Software Life Cycle (SWLC: the full Software Life Cycle from first idea till retirement);
● Software Development Life Cycle (SWDLC: covers only the development-activities of SWLC;

sometimes fragmented in several development cycles, e.g. “iterations” and/or “increments”);
● Various “Process Models” (e.g. Waterfall, V, Spiral, Unified Process, Enterprise Unified Process), with

quite different “scopes” [Mayr05:79], describing the required activities or phases of Software
Development. Most of them consider only specific parts of the Software Development Life
Cycle, only few try to cover the full Software Life Cycle (like the EUP described in
[AmNa05]). These Models are basically what ISO/IEC 12207 defines as “Life cycle model”.

● The entire Software Life Cycle (SWLC) is quite similar to the System Life Cycle (SLC):
The SWLC comprises a number of stages (also called “phases”) that every software is going through,
independent of the applied methodology how these phases are performed (e.g. sequential, parallel,
iterative, incremental, object-oriented, agile, model-driven) and independent of the corresponding
Process Model (e.g. Waterfall, V-Model, Spiral, UP, EUP). Even a quite small software project –
performed within some days – will somehow include these phases, even the design has happened with a
pen(cil) on a simple sheet of paper. According to Schach “These phases probably do not correspond exactly to
the phases of any one particular organization … Similarly, the precise name of each phase varies from organization to
organization”. Therefore he brings a concept “chosen to be as general as possible”, which is correct in
comparison to other examined textbooks. These “general” Life Cycle Phases are after [Schach96:8f]:

(1) REQUIREMENTS PHASE: “concept is explored and refined … client’s requirements are elicited”
(2) SPECIFICATION PHASE: “client’s requirements are analyzed and presented in the form of the

specification document … ‘what the product is supposed to do’ … sometimes called the analysis phase”
(3) PLANNING PHASE (Software Project Management Planning): “A plan is drawn up … describing

the proposed software development in detail”
(4) DESIGN PHASE: “First comes architectural design in which the product as a whole is broken down into

components, called modules. Then each module in turn is designed, this process is termed detailed design. …
resulting design documents describe ‘how the product does it’”

(5) IMPLEMENTATION PHASE (Production): “The various components are coded and tested”
(6) INTEGRATION PHASE: “components of the product are combined and tested as a whole … tested by the

client (acceptance testing) …. product is accepted by the client and goes into operations mode”
(7) MAINTENANCE PHASE: (7a) “corrective maintenance (or software repair) … removal of residual

faults”; (7b) “enhancement (or software update) … changes of the specifications and the implementation of those
changes … two types of enhancement: … perfective maintenance, changes that (…) will improve the effectiveness
of the product … adaptive maintenance, changes made in response to changes in the environment”

(8) RETIREMENT: “product is removed from service” (may include migration-tasks for a new system)

There is no generally accepted SWLC-definition, therefore this concept and its phases may be
questioned as well (e.g. missing of validation; no proper separation between maintenance, support and
evolution). But it respects many engineering-principles like generality or modularity (see 2.2.1), is extensive
and is in the development phases quite similar to other textbooks (e.g. [Benn95:45ff], [GheJaz03:6f]).

2 – EVOLUTION & PROCESS MODELS OF SOFTWARE ENGINEERING

33

2.2.6. Software Development Processes:

Methods, methodologies and Process Models

FROM 1970’s “self-fulfilling prophecy: ‘We’d better
hurry up and start coding, because we’ll have a lot of
debugging to do’” [Boehm06:15]

TO “... characteristic of a successful software development
process is the well defined separation between ‘research and

development’ activities and ‘production’’” [RoyceWa98:73]

One of the first steps in SE toward professionalism and a fully-developed engineering discipline was
“the separation of the engineering stage from the production stage” [RoyceWa98:8], which came up at the end of the
1960’s, obviously influenced by hardware-related engineering techniques [Boehm06:14] – and is
nowadays contested by agile approaches which incorporate the client in the development team. Today
there is a wide repertory of Process Models for the Software Development Process, following various
approaches, methods or methodologies and covering quite different scopes of the Software
Development Life Cycle (SWDLC) or even the entire Software Life Cycle (SWLC) – often similar to
the Systems Development Life Cycle (SDLC) or the System Life Cycle (SLC), see subchapter 2.2.5.

There is still no generally accepted taxonomy about these methods and every new approach brings new
questions (e.g.: Is Extreme Programming already a Process Model or just a method for rapid software
development, like [Sommer06:Chapter17] implies, see also figure 2.3). Therefore every textbook has its
own classification of Process Models, also called “Software development process (framework)”, “Life cycle
process” or “Life cycle model” (supplemented by the term “Vorgehensmodell” in German-speaking sources
and “(modèle du) cycle de développement de logiciel” in French). So this subchapter carefully delimits the
practical PROCESS MODELS from quality-management-models like CMM (see 2.2.4) and the more
comprehensive life-cycle-concept (see 2.2.5). Two terms have to be distinguished:

● The SOFTWARE DEVELOPMENT PROCESS is “the way we produce software. It incorporates
the software life-cycle model, the tools we use and the individuals, building the software” [Schach96:28]. So
it is the practical sequence of activities from the beginning of the project till its formal
ending. In professional SE the development process normally follows one (or even several)
Process Model(s), tailored and implemented for the purpose of an individual project.

● A PROCESS MODEL (also called “life cycle model” [Schach96:52ff]) is a structured model
which describes how the entire Software Development Process can be organised, divided
and carried out, mostly within a team and following one or several methods respectively
methodologies. Basically it defines in an abstract way: A “series of steps” [Schach96:52] –
mostly called PHASES – which the project passes through; Their order and how they relate
to one another (e.g. overlapping, iterative); Perceivable transition criteria between the
individual phase (e.g. milestones); Roles in the development-team and their responsibilities;
Required activities and artefacts (e.g. documents, products) within each phase; Possible use
of supporting tools for Computer Aided Software Engineering (CASE) or Computer
Supported Cooperative Work (CSCW). The various existing Process Models aim to “make
the process predictable and controllable … achieve better control of the required qualities of the product”
[GheJaz03:388]. Even if they have quite different “scopes” [Mayr05:79], most of them reflect
the Software Life Cycle (or at least its development part) as presented in subchapter 2.2.5.

2 – EVOLUTION & PROCESS MODELS OF SOFTWARE ENGINEERING

34

When choosing and tailoring a Process Model for a project it has to be considered that “different models
may be suitable for different software projects or for different software development organizations” [Benn95:47] and
“blanket prescriptions for the ‘best methodology for software productivity’ do not exist” [GheJaz03:385f]. In spite of
these remarks, ISO/IEC 12207 (see 2.2.5) claims to provide a common framework for so called “Life
cycle models”, but as newer approaches in SE (open source software, agile movement) obviously exceed
the structure of this 1995-standard, it will not be covered further. Therefore the following condensed
overview only presents the most significant methods and Process Models in SE, trying to cover the full
planning spectrum displayed in figure 2.3 (So minor approaches like Microsoft Solutions Framework
(MSF) [ZuserGre04:96ff], Transformation Model [GheJaz03:413f], Cleanroom or the “S(h)ashimi”-Model are
not covered). Independent of the discussion about the most suitable Process Models “we should at least
introduce each software developer to any defined model. … improvement can take place later” [Mayr05:100].

● Paradigms, methods and methodologies

Like Boehm demonstrates (see 2.2.3, [Boehm06]), the field of paradigms, methods and methodologies in
SE is an ongoing history of contradictions (e.g. sequential vs. iterative, structured vs. object-oriented),
that often influenced the creation of new Process Models. In SE, mainly three kinds of paradigms can
be distinguished and lead to various kinds of “Patterns” and “AntiPatterns” [Gamma94], [Brown98]:

(1) PROGRAMMING PARADIGMS (related to programming languages and coding)
(2) DESIGN & ARCHITECTURAL PARADIGMS (related to the design activities):

The structured paradigm, the first influential SE-approach in the 1970’s and 1980’s, lead to
Structured Analysis and Design (SADT) as well as Structured Programming and Testing. It was
superseded by the object-oriented paradigm which traces back to the 1960’s, advanced in the 1980’s
and had its final breakthrough in the 1990’s. It originated Object Oriented Programming (OOP)
with related languages, Object Oriented Design (OOD) and the Unified Modeling Language
(UML). Significant newer approaches are also Model Driven Development (MDD), Value
Based Software Engineering (VBSE) and Component Based Software Engineering (CBSE)
[Schach96:15f], [ZuserGre04:58ff], [Boehm06:18ff]. Architectural paradigms concern the system- and
software architecture (e.g. in distributed systems: client/server vs. n-tier).

(3) PLANNING & MANAGEMENT PARADIGMS (for projects, processes and phases):
As figure 2.3 shows, there is a wide planning spectrum, ranging from plan-oriented (“’plan’
includes documented process procedures that involve tasks and milestone plans” [Boehm02:64]) to agile
approaches (exaggerations are “death by planning” [Brown98:221ff]) and undisciplined “cowboy”
hacking). Relevant “driven”-approaches are: requirements-driven, plan-driven, risk-driven (referencing
to risk management), “document(ation)-driven” [GheJaz03:409] and agile design approaches like
feature driven (FDD) or test-driven (TDD). Significant process-phase-orders are: SEQUENTIAL
(“a phase should be completed before the next phases can be started” [GheJaz03:404]), ITERATIVE
(“sequence of incremental steps or iterations. Each iteration includes some, or most, of the development
disciplines” [KrollKru03:6]; similar to the Japanese “Kaizen”-concept of continuous improvement
[Mayr05:86]) and INCREMENTAL “builds” [Schach96:60ff], [GheJaz03:410ff] (“whose stages consist
of expanding increments of an operational software product” [Boehm88:63]). Thus Requirements
Engineering and the “inevitable tendency of software requirements to change during the process”
[GheJaz03:390] are increasingly addressed.

2 – EVOLUTION & PROCESS MODELS OF SOFTWARE ENGINEERING

35

(0) Hacker approach: Build-and-fix

Figure 2.8: Simple “Build-and-fix” model [Schach96:53]

Many SE-textbooks introduce the build-and-fix approach (also called “code-and-fix” or “cowboy coding”) as
negative example, how software development should NOT take place (e.g. [Schach96:52f],
[GheJaz03:387], [ZuserGre04:70]). It was common “during the first few decades of software development”
[Benn95:45] and mainly consisted of two steps: (1) Write some code; (2) Fix the problem in the code
(errors, better functionality, new features). So all tasks were performed at the same time and reworked
till the client was satisfied. There was no (formal) separation between requirements, design,
implementation and testing, which “may work well on short programming exercises … is totally unsatisfactory for
products of any reasonable size” [Schach96:53]. There are three primary difficulties with this model:

(1) After some fixes the code is poorly structured, so further maintenance is quite expensive
and less reliable without design documents (due to higher chances for a “regression fault”).

(2) There is often “such a poor match to users’ needs” [Boehm88:61f] that only expensive
redevelopment saves the software from being rejected.

(3) Maintenance is mainly reduced to the initial programmer and its memories.

(1) Linear Process Models: From “stagewise” to the (sequential) Waterfall Model (WF)

“Sequential, or not sequential: that is the question”
(Derived from William Shakespeare, Hamlet, 3rd Act, 1st Scene)

The Waterfall (WF) was the first popular form, how the individual phases of the Software
(Development) Life Cycle (see 2.2.5) were ordered to enforce a disciplined development and push back
the build-and-fix approach. It was named “from the way each phase cascades into the next” [Benn95:46].
Especially in the 1970’s many approaches in SE where somehow called a Waterfall, so there are many
variations of the Waterfall Model, reaching from very rigid sequential approaches to more dynamic
versions with “feedback loops”. But “it has become fashionable to blame many problems and failures in software
development on the sequential, or waterfall, process” [Kruchten04:53]. So many sources focus on the most rigid
“sequential” WF-version (as negative example) and furthermore they often wrongly attribute it to
Royce (e.g. [Schach96:53], [Sommer06:96]). Only few thorough sources point out, that Royce’s famous
1970-paper [RoyceWi70] already pushed back the pure sequential approach, examined its problems and
presented basic solutions for an improvement of the Waterfall model, e.g. [LarBas03:48]: “Many—
incorrectly—view Royce’s paper as the paragon of single-pass waterfall” (see also [RoyceWa98:6ff], [Boehm06:14f]).

2 – EVOLUTION & PROCESS MODELS OF SOFTWARE ENGINEERING

36

Figure 2.9: One common occurrence of the Waterfall Model in the 1970’s [Boehm76:1227]

Exemplified by 1950’s-project SAGE, Boehm points out that “sequential waterfall-type models have been used
in software development for a long time” [Boehm06:13], often named the “stagewise”-approach with “successive
stages” [Boehm88:63] (A “requirements-driven” process obviously influenced by hardware engineers). The
most rigid – pure sequential – form implies that “a phase should be completed before the next phases can be
started, and each phase results in the preparation of one or more documents that form the input to the next phase”
[GheJaz03:404]. Therefore elaborated documents for each phase are the transition criteria to the next
phase, therefore this model is often identified as “document driven”. The “organizations software development
methodology” [GheJaz03:405] often defined a detailed framework how the outputs of each stage should be
produced, leading to various sequential-oriented industrial and military (contractual) standards.

In 1970 Royce examined this popular approach and already stated necessary improvements [RoyceWi70],
leading to an influential “refinement of the stagewise model” [Boehm88:63] (which many textbooks today
present as the source of the Waterfall Model as “conventional” software process). Main ideas where:
“build it twice”-prototyping, interactive iterations between the phases (“as each step progresses and the design is
further detailed, there is an iteration with the preceding and succeeding steps but rarely with the more remote steps in the
sequence”) and “involve the costumer”. This lead to (quite formal) “feedback loops” between successive phases
(to avoid excessive feedback among many stages), as presented in figure 2.9. Later there where more
improvements leading to many (still linearly) variants, one even with “overlapping” phases [Benn95:46f].

The main advantage of this model was that it enforced “much-needed” [GheJaz03:407] discipline and clear
documentation in SE (“to manage and control all the intellectual freedom associated with software development”
[RoyceWa98:6]). Also the validations at the end of each phase improved quality and the model fit to
related systems engineering approaches. But there are also known disadvantages: Too strong
document-driven (can cause misunderstandings as clients are not used to the “language” of
specification-documents); Early commitments and phase rigidity (too early “freeze” of results to
progress to the next phase, e.g. fix requirements before clients really know what they want); “Monolithic”
(“Product is delivered as a whole, months or even years after the requirements were elicited, analyzed and specified … the
application may be delivered when the user’s needs have changed, and this will require immediate rework”
[GheJaz03:408]); Ignores the need for anticipating changes which leads to high maintenance costs.

2 – EVOLUTION & PROCESS MODELS OF SOFTWARE ENGINEERING

37

(2) Evolutionary Process Models: Iterative and Incremental Software Development

„How do you eat an elephant? One bite at a time!” [Kruchten04:60]

Evolutionary Process Models address the major risks and disadvantages of the Waterfall approach, as
they split the rigid, linearly and voluminous workflow of the Waterfall into smaller and therefore more
manageable parts to “avoid a single-pass sequential, document-driven, gated-step approach” [LarBas03:47].

SE-literature is ambiguous about the meaning of “evolutionary” development: While some sources
connect it predominantly with the incremental approach [GheJaz03:410ff], other sources link it to
iterative methods [Sommer06:98], and even Boehm is somehow ambiguous [Boehm88:63, Boehm06:19]
(Some also classify the implementation-oriented Prototyping as evolutionary approach). As newer
sources and significant Process Models (like the Unified Process) increasingly merge iterative and
incremental approaches ([LarBas03:48] identify “compelling evidence of iterative and incremental development’s
(IID’s)”), this thesis supports this broader view of evolutionary development. So “evolutionary development”
can have at least two dimensions, both leading to a series of “mini-waterfalls”:

● ITERATIVE “refinement & rework”: A pure iterative approach (see figure 2.10) means to
rework and refine the ENTIRE software in several iterations till it fits the client-needs and
can be released: “Each iteration includes some, or most, of the development disciplines (requirements,
analysis, design, implementation, and so on)” [KrollKru03:6]. This traces back to “do it twice”-
approaches already recommended in the 1970’s by [RoyceWi70] or [Brooks95] – and
according to [Mayr05:86] also to Japanese “Kaizen”-concepts of continuous improvement.

● INCREMENTAL “growing”: In the (pure) “Incremental Model” [Schach96:60ff] the project is
divided into several useful “builds” (also called “releases”), leading to a sequence of basically
independent developments (Waterfalls) for each build (similar to figure 2.10 when replacing
the word “iteration” by “build” and expanding the catenation between builds to all levels).
This models “stages consist of expanding increments of an operational software product” [Boehm88:63].

Figure 2.10: “From a sequential to an iterative lifecycle” [Kruchten04:61]

2 – EVOLUTION & PROCESS MODELS OF SOFTWARE ENGINEERING

38

The use of iterative and incremental concepts has been eased by object-oriented approaches (and
UML) which allow the division of complex products in manageable parts. Today significant Process
Models (like the Unified Process) mix both concepts and profit from COMBINED ADVANTAGES:
Avoid the “Late Design Breakage” [RoyceWa98:12] of the Waterfall via the possibility to prioritise and
build the most essential, critical or risky parts first. So “risks are usually discovered or addressed during early
integrations … easier and less costly” [KrollKru03:8]. Flexibility for “evolution of requirements” (refine and adapt
changing requirements in a stepwise and controlled way) and detection of “requirements errors” while
design and coding for indisputable parts already started. Initially unclear requirements can be specified
by the client while seeing first builds of the product. Regular feedback to the client and a “continuous
validation of what is being developed” [GheJaz03:413] instead of a “black box” [GheJaz03:390] or “big bang” at
the end of the project [Schach96:62]. “Concurrent engineering” can be applied to parallelise the development
activities (within a team or even with several specialised teams). The development team and the client
“learn along the way” [KrollKru03:8], so their improved knowledge can be incorporated in later iterations.

There are also POSSIBLE RISKS of the iterative and incremental approach: “Evolutionary process may
resemble the old code-and-fix unstructured process. … be careful to retain the discipline introduced by the waterfall model”
[GheJaz03:411]; “can too easily degenerate into the build-and-fix-approach. Control of the process as a whole can be
lost” [Schach96:63]. Expensive rework and rebuilt of already implemented parts can be necessary in case
of big changes in late iterations (e.g. changing the entire architecture). Also the integration of parallel
developed builds which do not fit together can cause problems and a rebuilt. Therefore the real
engineering- and project-management skill is to find the appropriate number, size and duration of
increments and iterations for a specific project (beneath an “architecture first”-approach).

(3) (Rapid) Prototyping and Rapid Application Development (RAD)

A special occurrence of evolutionary development is prototyping, which intends to test possible technical
solutions or minimise problems with understanding and fixing of requirements. A prototype can be a
draft for parts of the User Interface as well as a working demonstration of subsets of the desired
product, so there is “horizontal prototyping” (one level of the system is realised, e.g. the GUI or the
database) and “vertical prototyping” (a limited functional part of the system is realised on ALL levels).
“(Rapid) prototyping” (already popular in the 1970’s [Brooks95]) is a “rapid” initial phase of cyclic
prototype-improvements (e.g. “throwaway prototype” or “proof of concept”, see figure 2.11). It is followed by
the “classical” development process, based on a better requirements-understanding [Schach96:58]. Rapid
Application Development (RAD) is a special form of prototyping (invented in the 1980’s) for data-intensive
applications and is strongly related to CASE-tools [Sommer06:439ff]. “Evolutionary prototyping” can replace
the development cycle, so the prototype is “progressively transformed into the final application” [GheJaz03:412].

Figure 2.11: Rapid Prototyping Cycle in a sequential development process [Benn95:47]

2 – EVOLUTION & PROCESS MODELS OF SOFTWARE ENGINEERING

39

(4) Risk-driven Process Model: Spiral Model

The cyclic Spiral Model was mainly invented and refined by Barry Boehm in the 1980’s (first popular
publication in 1988: [Boehm88]). It combines and refines the iterative and incremental techniques as well
as prototyping. Even when other models also reduce risks, the Spiral Model was the first model
explicitly addressing and minimising risks as intended activity (and is therefore called “risk-driven”). It
iterates in a cyclic form until the product is complete (the number of iterations depends on the risks, so
it is not fully predictable). Each cycle consists of four stages ending with a review (see figure 2.12):

(1) CYCLE’S GOAL DETERMINATION: Determine objectives, alternatives and constraints;
(2) RISK ANALYSIS: Evaluate alternatives; identify and resolve risks (with prototypes etc.);
(3) DEVELOPMENT: Develop the planned products (e.g. design-documents, artefacts, code)

and verify the next-level product(s) – e.g. following Waterfall or evolutionary models;
(4) REVIEW & PLANNING: Review the achieved results and plan the next cycle (iteration).

The radial dimension represents the cumulative costs and the angular shows the progress made in
completing a specific cycle. Each cycle can build on the results of the preceding cycle (enabling
incremental development). The Spiral Model is a generic model (“Metamodel” [GheJaz03:416]) that can
be used with other approaches (“spiral model can accommodate most previous models” [Boehm88:64]). For a
successful application it needs a skilled risk-manager, and as it is quite extensive, the model is mostly
recommended for large and complex projects (“is applicable to only large-scale software … no sense to perform
risk analysis if the cost of performing the risk analysis is comparable to the cost of the project” [Schach96:69]).

Figure 2.12: Spiral Model of software development [Boehm88:64]

2 – EVOLUTION & PROCESS MODELS OF SOFTWARE ENGINEERING

40

(5) V-Model: V-Modell 92, V-Modell 97 and V-Modell XT

The basic V-Model is not a completely new Process model but a further development of the Waterfall
and its phases, tracing back to ideas already raised by Barry Boehm in the late 1970’s [ZuserGre04:72]. Its
main idea is to contrast every development phase (respectively product) of the Waterfall Model with a
corresponding validation (or test) phase on the same abstraction-level. So the Requirements Analysis is
confronted with Acceptance Testing, Design and Architecture is contrasted with Integration Testing
and each implemented module is opposed by Unit Testing. As these opposing phases can be arranged
in V-shape (with the classical Waterfall-phases on the left descending side and the new test-phases on
the right ascending side) the model got its one-character name, also often related to “Validation”.

One prominent realisation of this idea was initiated by the German military in 1986 and has meanwhile
become the official standard of the German government for IT-projects, today also applied by many
companies. Even in Austrian the “Bundesrechenzentrum (BRZ)” (Austrian Federal Computing Centre)
propagates the use of the German “V-Modell”. The German V-Modell has evolved since its first civil
version was published in 1992 (V-Modell 92) and rapid changes in SE stimulated a new version in 1997
(V-Modell 97). In 2005 the latest version V-Modell XT was released – now far beyond the basic Boehm-
concept – and is still evolving [VModellXT]. XT means “Extreme Tailoring” and claims to demonstrate
that the new version has overcome too bureaucratic approaches in the earlier versions of the V-Modell
(criticised by practitioners) and is now more customisable (what needs to be proven in future practice).

(6) Unified Process (UP), Rational UP (RUP), Enterprise UP (EUP) and OpenUP

The Unified Process (UP) – mainly developed in the 1990’s by the “Three Amigos” (Jacobson, Booch,
Rumbaugh [JacoBo99]) – is a successful melting pot of already proven SE-concepts like: iterative and
incremental development (balanced with an architecture-centric approach), object-oriented design with UML and use-
case-driven concepts, risk-addressing, and regular reviews. Therefore it combines the advantages of all these
concepts and easily supports tailoring (e.g. with a light, average and large configuration [KrollKru03:61ff]). The
UP itself is a generic model, but it is intrinsically tied to the US-company Rational (now IBM), as the
“Three Amigos” worked there and were also mainly responsible for the exceeding Rational Unified Process
(RUP) ® – a commercial improvement of the UP-concept that is still evolving. As UP and RUP ® are
“a widely adopted industrial standard” [GheJaz03:444] they will be presented in detail in chapter 2.3.1. The
Enterprise UP (EUP) is an extension that covers the full Software Life Cycle [AmNa05] and will be
discussed in chapter 2.4. Other current extensions are the OpenUP (for open source) and the Agile UP.

(7) Agile approaches: eXtreme Programming (XP), Scrum, Crystal, FDD, ASD & DSDM

The Agile Movement – unified in the “Agile Manifesto” (2001) – is the most recent branch of SE-
methodologies (see 2.2.3) and forms a countermovement against heavyweight approaches (called
bureaucratic “Process Monsters” [Mayr05:78]). Agile models are often a re-invention of already existing
concepts (e.g. prototyping or RAD) so a future “balance of agile and plan-driven methods” [Boehm02:69] is
foreseeable (and necessary to lessen the problems of existing models like “death by planning”
[Brown98:221ff]). Currently “eXtreme Programming (XP)” is the most popular agile concept (see chapter
2.3.2). Other significant agile models are: Scrum, Crystal, Feature Driven Development (FDD), Adaptive
Software Development (ASD) and the Dynamic Systems Development Method (DSDM) [Sommer06:430ff].

2 – EVOLUTION & PROCESS MODELS OF SOFTWARE ENGINEERING

41

● Selection and tailoring of a Process Model for the real Software Development Process

“If you examine the wide array of processes in the industry, you will most likely determine
that you can tailor one (or more) to meet your assessed needs” [AmNa05:289]

When introducing the various Process Models, SE-textbooks often omit an own section for “Tailoring”,
so readers may remain with the impression that Software Project Management (SWPM) only implies to
pick up any Process Model and follow the model in every detail without reflecting the given project
environment. In contrast, customising, “tailoring”, configuring and implementing one (or even several)
Process Model(s) for an individual software development project is a classical and outstanding skill of
an experienced project manager (see chapter 3), and therefore mostly covered in SWPM-textbooks or
practitioners guides (e.g. [Benn95:63f], [RoyceWa98:209ff], [Mayr05:81f]). Modern Process Models (e.g.
RUP, V-Modell XT) already encourage the tailoring of its elements (roles, products & artefacts, activities, size
and number of iterations, tools) for a specific project (e.g. [KrollKru03:61ff] introduce the four different
projects “Deimos”, “Ganymede”, “Mars” and “Jupiter” to demonstrate various RUP-configurations
throughout their book). So “there is no unique, perfect, and ready-to-use process model that can be adopted once and
for all, in all organizations, for all kinds of products or product families” [GheJaz03:418] and “Process tailoring is best
done in an iterative manner: tailor some, implement some, and then repeat.” [AmNa05:290].

[RoyceWa98:Chapter14] brings a striking survey about the necessary consideration when tailoring the
process (even when explained with RUP-vocabulary quite general applicable): He states “two dimensions
of discriminating factors: technical complexity and management complexity” (see figure 2.13). Afterwards he
distinguishes six relevant “process parameters” which affect the process tailoring: SCALE (Size of the project,
scale of the software application, size of the team): 5 people (small), 25 people (moderate size) 125 people (large) and
+625 people (huge); STAKEHOLDER COHESION OR CONTENTION (can range from cohesive to
adversarial); PROCESS & CONTRACT FLEXIBILITY OR RIGOR (required coordination); PROCESS
MATURITY (of the development organisation); ARCHITECTURAL RISK (degree of technical feasibility) and
DOMAIN EXPERIENCE (strongly influences the number of prototype release iterations).

Figure 2.13: Two dimensions for tailoring the software development process [RoyceWa98:211]

2 – EVOLUTION & PROCESS MODELS OF SOFTWARE ENGINEERING

42

2.3. Software Development: Two significant Process Models

“Greece vs. Rome – Two Very Different Software Cultures: Greeks would fit pretty well into the Agile camp, Romans
would be working mightily to improve their CMM level, and Barbarians would say “huh?” if you mentioned either one!”

[Glass06:111f]

There is an extensive repertoire of various Process Models in Software Engineering and only a
representative selection of significant models was shown in subchapter 2.2.6 (A more practical
comparisons of “Modern Software Processes” is given in [AmNa05:286f]). So why is this chapter focusing
on a detailed presentation of Unified Process (UP) and eXtreme Programming (XP)? Not only because they
are “state-of-the-art” in the software industry [EssMey03:2] and were both used in project SIE (see
chapter 1). More important is the fact, that both models reflect very well the contradictions between
plan-driven and agile approaches (a current debate in SE and somehow a continuation of the well-
known “art” versus “engineering” discussion described in chapter 2.1). Furthermore UP and XP are
both practical and matured examples of their respective methodology, even if XP is currently quite
“hype” and UP is already a “compromise” (as it combines the best ideas of many previous models in a
customisable way and is often wrongly related to bureaucratic QM-approaches like CMM, e.g.
[Mayr05:78] calls the RUP absurdly a “Process monster”). Therefore both models are appropriate to show
the current range of underlying SE-concepts in which Requirements Management is embedded

In 2002 Boehm advocated the “best balance of agile and plan-driven methods” but also stated that “each have
strengths and weaknesses” [Boehm02:65ff]. Therefore he compared them for certain criteria and constituted
the idea of “home ground(s)” for both (similar to the Royce-concept in figure 2.13). In 2003 this concept
was refined and now provides a comprehensive set of characteristics for both methods, where also
requirements and the environment play an important role (see figure 2.14): “The home grounds for the agile
and plan-driven methods encompass the sets of conditions under which they are most likely to succeed.” [BoehTur03:58].

Figure 2.14: Agile and plan-driven home grounds [BoehTur03:58]
(* Collaborative, Representative, Authorized, Committed, Knowledgeable; ** Cockburn’s Levels of Software Understanding)

2 – EVOLUTION & PROCESS MODELS OF SOFTWARE ENGINEERING

43

2.3.1. Plan-driven: Iterative, use-case-object-oriented Unified Process (UP, RUP)

“Consider the RUP as a smorgasbord of best practices. Rather than eat everything,
eat your favourite dishes, the ones that make sense for your specific project” [KrollKru03:35]

The Unified Software Development Process (UP) is the result of a continuous evolution in the OO-
community in the 1990’s [ZuserGre04:79f]. In 1987 Ivar Jacobson founded the firm Objectory and
invented a development-approach that introduced use-cases (“The Objectory process defines the core from
which the RUP … later evolve” [AmNa05:8]). In the mid-1990’s three leading pioneers of object-oriented
design (Jacobson, Booch, Rumbaugh – also called the “Three Amigos”, later joined by Kruchten)
partnered up under the roof of Rational Software company and unified their previous work to constitute
the Unified Process (UP) and also the Unified Modeling Language (UML). In 1998 the (commercial) RUP 5.0
came out (a continuation of the Rational Objectory Process ROP 4.0) and the (free) Unified Process as
generic framework was published in 1999 [JacoBo99]. Since then the Rational Unified Process (RUP) was
enhanced as a commercial product by Rational (since 2002 part of IBM), and now includes the
(improved) process itself and supporting web-based tools for an easy customisation of (e.g. own views
for the different roles). RUP ® is now part of IBM’s Rational Method Composer (currently RMC V 7.2).

(R)UP is iterative and incremental – hence has IID-advantages stated in section 2.2.6 (2) – balances rework-
risks with an architecture-centric approach and combines UML-(component)-based object-oriented design, use-case-
driven concepts, risk-addressing, and regular reviews. Basically the RUP ® has two dimensions (figure 2.15):

● 9 DISCIPLINES (“Content-Axis”, UP has only five): 6 technical and 3 supporting disciplines are
passed iteratively (with varying intensity) during the whole SWDLC (unlike the linear WF).

● 4 PHASES (“Time-Axis”): “four major stages … (the) project goes through over time” [AmNa05:15].
Each phase is split in several “controlled” iterations and ends with a review and a milestone.

Figure 2.15: RUP ® development cycle: Disciplines, Phases and Iterations [Kruchten04:Poster]

2 – EVOLUTION & PROCESS MODELS OF SOFTWARE ENGINEERING

44

Readable introductions for all the details of the RUP ® are [Versteeg00], [KrollKru03], [EssMey03],
[Kruchten04], [AmNa05]. Only the most important elements of the RUP ® can be introduced here:

● PRINCIPLES: “Best practices” of the RUP are introduced by [Kruchten04:5ff] (e.g. Develop iteratively,
Manage requirements, Use component-based architecture, Visually Modeling, Continuously verify software quality,
Control Change) and enlarged by [AmNa05:22ff]. Other sources present more general UP-principles:

● “any large software project should be broken into controlled iterations (miniprojects) that provide
increments of the product… Increments can be additive or perfective” [GheJaz03:444]. Iterations
mostly go through all technical disciplines, establishing a serial cycle of requirements,
analysis, design, implementation, testing, and evaluation. This combines the iterative and
incremental approach as described in 2.2.6 (2), avoids the WF-late-design-breakage, allows
early risk detection and “lets you take into account changing requirements” [Kruchten04:23].

● UML is an important factor in the RUP: “the rich collection of languages that constitute UML
provides specific notations to specify, analyze, visualize, construct, and document the artefacts that are
developed in the life cycle of a software system.”; “use cases are employed as the primary means of
communication with stakeholders in the requirements workflow … the main input to the analysis,
design, implementation, and testing workflows”; “software architecture is the primary artefact used for
conceptualizing, construction, managing, and evolving the system being developed” [GheJaz03:444ff]

● Milestones and Reviews at the end of each iteration (or at least each phase) encourage
control, feedback and decision-making: “A milestone consists of delivering an intermediate set of
artefacts that can be subject to quality control via reviews and inspections” [ibid.]. So [GheJaz03:446]
reason: “UP achieves the goals of flexibility and incrementality without retreating to unstructured
development practices … fine-grained iteration steps help in continuous validation and ensure that early
changes in the process may be performed to redirect the development if required”.

● (R)UP-PHASES are quite different to WF-phases. Each UP-phase performs with varying intensity all
disciplines and ends with a major milestone: INCEPTION (Define project scope, estimate cost and schedule,
define risks, develop business case, prepare project environment), ELABORATION (Specify requirements in detail,
identify and validate architecture, evolve project environment, staff project team), CONSTRUCTION (Model, build
and test system; develop documentation) and TRANSITION (System testing, user testing, rework, system deployment).
The appropriate iteration-number for each phase depends on the size and complexity of the project.

● 4 ELEMENTS combine disciplines and phases to form a unique process [Kruchten04:35ff]. Tailoring
to project-needs is advisable ([KrollKru03:61ff], “process must be made as lean as possible” [Kruchten04:30]):

● Up to 30 ROLES (grouped in 5 categories: Analyst, Developer, Manager, Tester, Production
and Support, Additional) define WHO is responsible for certain activities and artefacts.
The mapping is done by the SWPM, multiple mappings are possible [Kruchten04:273ff].

● ACTIVITIES define HOW roles perform their work (“a unit of work that an individual in
that role may be asked to perform and that produces a meaningful result” [Kruchten04:38]).

● ARTEFACTS define WHAT is produced (“tangible products”, e.g. models & model elements,
documents, source code, executables). They are organised in nine artefact sets, corresponding to
the nine disciplines [Kruchten04:277ff] and should be traced with a version-control.

● WORKFLOWS (mostly related to one of the nine disciplines) describe “meaningful
sequences of activities … that produces a result of observable value” [Kruchten04:45]

2 – EVOLUTION & PROCESS MODELS OF SOFTWARE ENGINEERING

45

2.3.2. The rise of Agile Software Development: eXtreme Programming (XP)

“Individuals and interactions over processes and tools
Working software over comprehensive documentation

Customer collaboration over contract negotiation
Responding to change over following a plan

... while there is value in the items on the right,
we value the items on the left more.”

Agile Manifesto 2001 [www.agilemanifesto.org]

“If you want to start
a religious or software war,
issue an edict or manifest”

Ken Orr 2002 [Mayr05:96]

● The Agile Movement and its foreseeable balance with the “traditional” models

Considering the Hegelian SE-history introduced by Boehm (see 2.2.3), agile methodologies are
definitely an “Antithesis”: The agile movement is a COUNTERMOVEMENT officially oriented against
“conventional”, “document-driven”, “heavyweight”, “rigid” or “bureaucratic” software development, as which
many programmers sensed the rise of very formal processes in the 1990’s (but forgot that QM-Models
like CMM(I) and Process Models like the V-Modell where initiated by the military – so they reflected
very rigid clients needs as described in 2.2.4 and needed tailoring in practice). The agile movement is also
loosely linked to two other “hot” SE-topics: FOSS – Free and Open-Source Software (code sharing and other
cooperative “agile” practices are close to well-known FOSS-approaches, see [Raymond99], [Cox00],
[GheJaz03:431], [Ebert07]) and “outsourcing-fears” about process-improvement-models as SPICE or
CMM(I) making (US-)programmers as “suppliers” more easily exchangeable (e.g. Cem Kaner argues with
this against SWEBOK and outsourcing was already addressed in 1992 by Yourdon [Your92]).

Since mid-1990 (while RUP was still in its infancy) some programmers advocated to overcome the
disadvantages of traditional development methods by pushing them away (instead of improving) and
proposed “lighter” alternatives. So 17 of them signed in February 2001 the “Agile Manifesto” (replacing
the previous term “lightweight” by “agile”) and defined agile principles (see quotation above and [Beck00],
[Cockb01], [MarcSuc03]). The agile software development movement started quite dogmatic and provocative
(“The future of our Information Age economy belongs to the agile” [MarcSuc03:9]). So some sources diagnose a
“religious eagerness” [Sommer06:431] or even a “religious war” [Mayr05:78] and there is already a
countermovement against the “agile dogma” (e.g. [StepRose03]), examining the thin line between
“agility” and “fragility”. It is often criticised, that some agile proponents ignore the right side of the
Agile Manifesto, using it as a genial excuse for “cowboy coding” and documentation-avoidance
[Mayr05:96]. But Mayr also concedes that overcoming process-“dinosaurs” would have been impossible
without some provocation. Meanwhile “agile vs. plan-driven” increasingly becomes a false contradiction,
as “traditional” models started to react and integrate useful “agile” practices (e.g. Agile Unified Process
and agile plug-ins for V-Modell XT). So there are “home grounds” for both (see figure 2.14), and some
already forecast the future “balance” between agile and traditional models ([Boehm02], [Mayr05:78],
[BoehTur05]). Also, strictly speaking, agile models are not as new as they claim to be, as evolutionary
development models (iterative, incremental or RAD) are well-known for decades (see 2.2.6). But the agile
movement definitely refined them and pushed them to their limits (with very short iterations and small
increments, strictly bottom-up development and as little planning as possible).

2 – EVOLUTION & PROCESS MODELS OF SOFTWARE ENGINEERING

46

● eXtreme Programming (XP)

“How little can we do and still build great software?” (Kent Beck [MarcSuc03:Inner Cover])

Currently eXtreme Programming (XP) is the best-known “agile” software development method. It was
created by Kent Beck (and colleagues) during the Chrysler-C3-project (payroll systems unification) that
he rebooted in 1996. While Beck and XP became famous (see “XP Series”, [Beck00], [MarcSuc03]), the
C3-project using XP got into troubles (e.g. the customer representative quit due to a burn-out) and was
shut down in February 2000 (ironical, but the huge C3-project was surely the wrong domain as “XP is
not appropriate for every software project … bigger projects have problems when applying it” [ZuserGre04:102]). XP
fits for small teams (and projects) with self-disciplined and self-organised programmers and a
competent client who is willing to be strongly involved in the team (see figure 2.14). Under these terms
one can quickly react to changing requirements (in this case Waterfall & Co. can be called the “Artillery”
and XP a “guided missile” that perfectly hits the “moving target” [MarcSuc03:59]). XP is more a set of
practices than a process, still evolving and – due to its agility – not as well defined as traditional models
(“For some people Extreme Programming (XP) is a new set of rules, for others it is a humanistic set of values, and to
some it is a very dangerous oversimplification” [Don Wells, MarcSuc03:5]). So its most important elements are:

● 5 VALUES: Communication (collaboration and frequent verbal exchange), Simplicity (extras can be added
later), Feedback (from the system via unit tests, from the client via acceptance tests, from the team to the client via user
story estimation), Courage (e.g. to refactor or throw code away), Respect (in the team).

● 4 BASIC ACTIVITIES and RELATED PRACTICES [www.extremeprogramming.org] (see figure 2.16):
● Planning & Listening: User stories, Planning game, Release planning for schedule, frequent small

releases, iteration planning starts each iteration, move people around, stand-up meeting starts each day;
● Coding: customer always available, code Unit Tests first, pair-programme all code, integrate often,

collective code ownership and coding standard, optimisation at last, 40 hours per week, no overtime;
● Designing: Simplicity, Class-Responsibilities-Collaboration (CRC) cards for sessions, reduce risk

with spike (prototype) solutions, no unnecessary functionality, refactor whenever and wherever possible;
● Testing: all code must have and pass unit tests before it can be released, frequent acceptance tests.

Figure 2.16: XP – Planning & feedback loops with time dimensions [www.extremeprogramming.org]

2 – EVOLUTION & PROCESS MODELS OF SOFTWARE ENGINEERING

47

● Agile vs. rigid in Barry Boehm’s “land of metaphor”: The monkey and the elephant

As chapter 2.3 already began with a metaphor (“Greece vs. Rome” [Glass06:111f]), it is just fair to end also
with a notable metaphor that anticipates the future “balance of agile and plan-driven methods” [Boehm02:69]:

Once upon a time, in the land of Metaphor, there lived a monkey and an elephant. They both lived on one side of a wide,
swiftly flowing river. On both sides of the river there were many fruit trees. The monkey was very agile. He could climb to
the top of the fruit trees and eat as much fruit as he needed. The elephant was very tall. He could reach up with his trunk
and eat as much fruit as he needed.

But the trees grew taller. Soon the elephant could not reach enough fruit to eat. But he was strong and self-sufficient. He
found that when he was hungry, he could just pull down a tree and have fruit to eat.
The monkey watched the elephant pull down most of the fruit trees. He was not happy. He said to the elephant, “Don’t
do that! I will climb up the trees and get fruit for you.”
The elephant said, “I am hungry. I am strong. I can do things for myself.”
The monkey said, “You dumb elephant. Soon there will be no trees or fruit for you either.”
The elephant said, “I only work on one problem at a time. Things may change. Maybe more fruit trees will come. Or
maybe the trees will get shorter. If they don’t, I’ll work out a solution then.”
The monkey had to agree. He only worked on one problem at a time too.

Soon there were no more fruit trees left on their side of the river.
The elephant said, “I have a solution. I will go across the river and pull down trees over there.”
The monkey said, “You dumb elephant. That didn’t work on this side of the river, and it won’t work on the other side of
the river. You will starve us both. Let’s duke it out. I am agile and will run rings around you.”
The elephant said, “That is fine with me. I am big and strong and I will pulverize you.”
So they began to duke it out. The monkey ran rings around the elephant. But he was not able to stop the elephant from
trying to pulverize him. The elephant thrashed around with his strong trunk and legs, trying to pulverize the monkey. But
the monkey was too agile, and the elephant missed every time.

It was a hot day. Soon the monkey and the elephant got tired. They sat down and tried to figure out what to do next.
The monkey said, “I am agile. I will just scamper across the river and bring back some fruit.”
He got a running start toward the river and went scamper, scamper, scamper … splott! The river started to carry him
away. “That dumb monkey!” said the elephant. He waded into the river, picked up the monkey, put him on his back,
and waded back to shore. They sat and thought for a long time while the monkey dried out.

Finally the monkey said, “Maybe this is a solution. You can carry me across the river on your back. When we get across,
I can climb the trees and get enough food for us both.” The elephant thought for a moment and answered, “That sounds
like it is worth a try.” So they tried it, and it worked. And they lived happily ever after, until the end of their days.

Some morals to the story:
• Monkeys can do things elephants can’t do.
• Elephants can do things monkeys can’t do.
• Working on one problem at a time may not be a good idea.
• Duking it out may not be a good idea.
• Finding a collaborative win-win solution may be a good idea.

—Barry Boehm [Boehm03:45]

2 – EVOLUTION & PROCESS MODELS OF SOFTWARE ENGINEERING

48

2.4. Beyond Development: Maintenance, Reengineering,
Evolution and Retirement

“As we learned during the Year 2000 (Y2K) crisis, many systems remain in
production decades after they were originally implemented” [AmNa05:33]

It was already stated in subchapter 2.2.5, that there is an important difference between the Software Life
Cycle (SWLC) and the Software Development Life Cycle (SWDLC), as there is still much to do after a
software product has been successfully developed, delivered, installed and has passed the final
acceptance test. The development project may be finished, but the software itself will be in use for a
long time and has to be MAINTAINED, REENGINEERED or EVOLVED until it can be replaced
and enters the end of its life cycle – the RETIREMENT. All this is strongly influenced by the original
development and the achieved Maintainability, Repairability, Portability or Evolvability (see 2.2.1 and
[GheJaz03:23ff]), but many SE-textbooks focus on the development and neglect the time after.
Therefore the wording “Once the system passes all the tests, it is delivered to the costumer and enters the maintenance
phase” [GheJaz03:418] sounds a bit like “... and they lived happily ever after” but doesn’t fully reflect reality.

There are quite different definitions and classifications about the naming of these activities: Schach
divides this “maintenance phase” in three fields (corrective, perfective and adaptive maintenance, see 2.2.5 and
[Schach96:462]). Even if [GheJaz03:23] already questions the term “maintenance” (and slightly proposes
“software evolution”), it adopts the Schach-concept and ads “preventive maintenance” (planned improvements
to prevent future maintenance) [GheJaz03:421]. All four maintenance-terms were already defined in an
IEEE-standard [IEEE90:46]. The amalgamation of maintenance and evolution (“maintenance is
evolutionary developments ... maintenance is continued development”) can also be found in [SWEBOK04:6-3].

In contrast the EUP defines for these activities the “Production Phase” to which it assigns the tasks:
operate systems, support systems, manage change requests, monitor systems, prepare for and recover from disasters
[AmNa05:32]. Furthermore the “Enterprise Unified Process (EUP)” [AmNa05] is the most comprehensive
concept, covering the FULL SWLC and including also business aspects that drive software evolution
(see 2.4.3: Unification of business strategy and IT-strategy). The EUP extends the RUP ® with:

● Two new phases (Production, Retirement) and a 4th support discipline (Operations & Support)
● Seven additional “enterprise disciplines” which also concern the four earlier RUP-phases:

Enterprise Business Modeling, Portfolio Management, Strategic Reuse, Enterprise Architecture, People
Management, Enterprise Administration, Software Process Improvement (SPI).

All these “beyond-development”-concepts are often associated with well known “RE-activities” in Software
Engineering like: Reuse, Refactoring, Reengineering (incl. Reverse Engineering and Redocumentation), Redesign,
Restructuring, etc. In this context a source of MISUNDERSTANDING between engineers and managers
is the term “Reengineering”: While managers associate this term with Business Process Reengineering (BPR)
and therefore with a “radical redesign of business processes” [HamCha94:32], software engineers will think
about Software Reengineering which is defined as “the examination and alteration of a subject system to reconstitute
it in a new form” [ChiCo90:15] (a pure technical “renovation” without any functional change). So what the
manager calls “Reengineering” in the business context, the engineer in his SE-context calls “Software
evolution”. As Information Technology (IT) plays an important role in BPR [Thorp98:55], also some
software-related books mix both concepts and cause misunderstandings, e.g. [YangWa03:2f].

2 – EVOLUTION & PROCESS MODELS OF SOFTWARE ENGINEERING

49

So to avoid misunderstandings, this thesis emphasises the careful distinction between four different
“beyond-development”-activities, using concepts from several sources ([ChiCo90:15], [Tomic94:29ff],
[ZuserGre04:Chapter13], [AmNa05], [Sommer06:Chapter21]):

● Maintenance of the original software (service, support, “repair” of faults, see 2.4.1)
● Software Reengineering (for technological change or to restore maintainability, see 2.4.2)
● Software Evolution (due to – mostly business driven – changed requirements, see 2.4.3)
● Complete Retirement (including migration to a new system, see 2.4.4)

It is self-evident, that in practice, these activities cannot be distinguished as sharp as in theory, and there
is a smooth transitions or even overlapping between some of them. The question is: How long does the
software continue to be the “original” system and when does it become a reengineered or evolved
system? (e.g.: A new GPS navigation system doesn’t change an entire car, but a new motor may do).

Also the decisions about the future of legacy software (maintain, evolve or replace) are not always fully
clear for the responsible engineers and managers: As stated above, they first depend on the original
system and HOW foresighted it was developed (agile products could face future critics about this).
Another criterion are the expected (future) maintenance costs [Sneed: PoloPiat03:201ff], [Sommer06:534ff].
Considering the famous “Laws of Software Evolution” (Lehman et. al.), Sommerville proposes a two-
dimensional decision matrix (system quality; business value of the system) that classifies the various systems and
helps to decide between (partial) replacement and evolution [Sommer06:545ff]. Certainly these activities
imply effort and many textbooks declare (with percentages from 55% to 90% [PoloPiat03:vii]): “Software
maintenance has become the most costly stage of the software life cycle” [YangWa03:1]. But at the same time
Reengineering and evolution are a key factor for OPTIMISATION: Of the software itself in various
dimensions (maintenance costs, technical aspects like the architecture or the data model) and (often
more important) for the optimisation and improvement of related business processes and workflows.

2.4.1. Maintenance of the original software system

Software doesn’t “ware out”, so its maintenance (in terms of repairs, services and support) is not comparable
to the maintenance of other technical systems. It is defined as the “process of modifying a software system or
component after delivery to correct faults, improve performance or other attributes, or adapt to a changed environment”
[IEEE90:46]. This standard already defined the four “classical” categories, adopted by many textbooks,
e.g. [Schach96:462ff], [ZuserGre04:396f], [GheJaz03:23f;420f] and outspoken challenged by [Sommer06:534f]:

(1) Corrective maintenance: “to correct (residual) faults” (original faults or “regression
fault and undesirable behaviours” due to modification [YangWa03:19]);

(2) Adaptive maintenance: make software “usable in a changed (external) environment”
(e.g. new hardware, operation system or databases – also after “disasters”);

(3) Perfective maintenance: “improve qualities like performance, maintainability, or other
attributes”(e.g. Code-Refactoring & Restructuring, maybe also additional functions);

(4) Preventive maintenance: Anticipate future (maintenance) problems, ease maintainability.

In fact, many of these tasks – when not limited to the original system and functions – may already
constitute a new (development) project and lead over to SW-Reengineering and evolution, often also a
contractual question: Which services and “fault reports” are still comprised by the maintenance contract?

2 – EVOLUTION & PROCESS MODELS OF SOFTWARE ENGINEERING

50

2.4.2. Legacy Software, technological change and Software Reengineering

Legacy software is “software that already exists in an organization and usually embodies much of the organization’s
processes and knowledge” [GheJaz03:24]. This normally means “old” software (“old” languages, architectures,
technologies), related to essential business processes and therefore with a high “value”, also because a lot
of money was invested. It is often “mission critical” and linked to other systems, so it cannot be replaced
easily or is considered “irreplaceable” by some users: “Economic and technical constraints make it impossible in
most cases to discard the existing and legacy systems and develop replacement systems from scratch … legacy system
migration strategies are often preferred to replacement” [PoloPiat03:151]. And “old” may be ambiguous, as “new
software becomes legacy software quickly” [YangWa03:1]. A readable survey offers [Sommer06:65ff].

Therefore the main idea of Software Reengineering (also known as “renovation”) is “the examination and
alteration of a subject system to reconstitute it in a new form and the subsequent implementation of the new form”
[ChiCo90:15] (see also [Byrne92], [Hall92]). So just the technical realisation of the system is altered,
optimised or modernised (often supported by CASE-tools), but its functions remain the same (Within
this thesis, new functions already belong to Software Evolution). To avoid a “big-bang”-effect, SW-
Reengineering can happen partially or incrementally, implying prioritisation [Your92:253f]. Today there
is a broad spectrum of Software Reengineering possibilities (code-restructuring, modularisation, program- and
architecture restructuring) [Sommer06:542ff], but the basic concept (see figure 2.17) is still a sequence of:

● REVERSE ENGINEERING: Analyse the (unknown) structure of the legacy system
(requirements, functions, main components & relationships, algorithms, data structure) and create
better representations or documentation (Design Recovery, Redocumentation). At worst this
could be illegal [Lee in Hall92:559], but a “lack of documentation and … poor development …
are the main factors affecting the need for – and the cost of – reverse engineering” [GheJaz03:420].

● Followed by FORWARD ENGINEERING: Classical development cycle, may include
improvement or optimisation as well as Restructuring on the same hierarchical level.

Figure 2.17: General model for Software Re-engineering [Byrne92:230]

Main Reasons: (1) MAINTENANCE PROBLEMS: Often “the source code is the only documentation
available” or the available documentation is “useless” [Schach96:40], which can also cause more regression
faults. “Maintenance is [also] hindered by previous poorly performed maintenance interventions” [GheJaz03:420] which
gets worse with every maintenance. (2) CHANGED (technical) ENVIRONMENT (hard- & software).
(3) OPTIMISATION POSSIBILITIES in the initial system but also with new technologies due to the
pace of technological change (e.g. new hardware- and software possibilities) [ZuserGre04:410]. (2) and
(3) depend, if the initial developer(s) already anticipated upcoming technological trends [Mayr05:41].

2 – EVOLUTION & PROCESS MODELS OF SOFTWARE ENGINEERING

51

2.4.3. (Business-driven) Software Evolution

“To succeed, you need to look beyond IT and consider the larger picture – that of the entire business process
… a business system isn’t successful unless the business is” [AmNa05:116]

As soon as the original requirements of the legacy software are questioned in general – due to changed
needs of users, departments or the entire company – maintenance and Software Reengineering
(technical “renovation”) reach their limits. In this case, when related workflows and business processes
are the primary driver(s), the company could develop a completely new system (“from scratch”) and retire
the legacy system (see 2.4.4). Or – due to the reasons mentioned in 2.4.2 – one may decide to renew
and evolve the valuable legacy system, combined with Software Reengineering (or at least Reverse
Engineering) to transfer the precious elements of the “old” system into a new one (“System evolution is so
common that a development from scratch is the exception” [YangWa03:8]). For extensive and modular legacy
systems a partial evolution and partial retirement is possible [Your92:253f]. Often “a balance must be struck
between the constraints imposed by the existing legacy systems and the opportunities offered by [BPR]” [PoloPiat03:151].

Whether the original authors often used the term Reengineering for both, Software Reengineering and
Software Evolution, the basic idea of (business driven) Software Evolution is not as new as some
“consultant-driven” sources try to suggest (see figure 2.18, [Your92:235ff], [Brown92]). But those ideas
increasingly attracted interest, as they were linked to the upcoming and far-reaching concepts of Business
Process Management (BPM) and Business Process Reengineering (BPR) (“fundamental rethinking and radical redesign
of business processes to achieve dramatic improvements in critical contemporary measures of performance, such as cost,
quality, service, and speed” [HamCha94:32]). Even when Hammer later softened his “radical” approaches:
After Harvard-related consultants declared “Information Technology as an Enabler of Process Innovation”
[Daven97:37ff], the top-management spotlighted these suddenly popular issues and often created an own
Chief Information Officer (CIO). This gave software (departments) much more positive attention, but also
spotlighted problems in this domain (“frequent reality that we cannot demonstrate a connection between money
spent on IT and business results” [Thorp98:xix]) – leading to the fact, that IT-outsourcing has become a key
issue in practice as well as in the related literature (e.g. [ApplAus03:561ff], [Boehm06:22]). Also Component
Based Software Engineering (CBSE) and Commercial Off-The-Shelf-products (COTS) are up and coming.

Figure 2.18: Business-driven Software Evolution [Your92:254]

2 – EVOLUTION & PROCESS MODELS OF SOFTWARE ENGINEERING

52

Since the 1990’s, the potential for optimisation and modernisation with software evolution caused an
ongoing wave of concepts, often related to Information Systems (IS) and Business Intelligence (BI), like:
Information Management (IM), Knowledge Management (KM), Data Warehousing and Data Mining, Enterprise
Application Integration (EAI), Enterprise Resource Planning systems (ERPs) like SAP, Workflow Management
Systems, Costumer Relationship Management (CRM) and with some time delay also E-Government. Meanwhile
even IT-Governance has been covered by Corporate Governance, but currently there is no clear
taxonomy about all these somehow related concepts. A promising approach for a rough classification is
presented by Thorp who distinguishes “Three stages of IT evolution” (Automation of work, Information
Management, Business Transformation) [Thorp98:14]. And one has to consider that also “the misuse of technology
can block reengineering altogether by reinforcing old ways of thinking and old behaviour patterns” [HamCha94:83]

Therefore there are currently movements toward an “integrated strategy” (combination of enterprise
strategy and IT-strategy) like the BTOPP-system (business, technology, organisation, process, people [Thorp98:72])
and many sources examine “the Impact of IT on Strategic Decision Making” [ApplAus03:34ff]. Even leading
management consulting firms have already established specialised branches for IT-related issues. But as
IT-optimisation is therefore increasingly associated with outsourcing and cost-cutting, a project for
Software Evolution implies the increasing risk of frictions and resistance among some stakeholders –
an effect which is not totally new and was already described by Yourdon [Your92:252f].

An extensive concept for the practical combination of software development and evolution with these
business issues provides the “Enterprise Unified Process”, that looks “beyond the needs of a single system” and
addresses “cross-system issues that your IT organization must deal with on a daily basis” [AmNa05:34] (see also
introduction of 2.4 and [Macias01:14f]). A practical example for BPR with Software Evolution – a new
architecture makes a system web-fit and enlarges the business processes – shows [PoloPiat03:151ff].

2.4.4. Retirement and migration

“Software systems do not last forever” [AmNa05:32]

As stated above, partly of fully retirement of software systems is the last phase of the Software Life Cycle.
This is done, when the system is not needed any more or when “further maintenance is not cost-effective”
[Schach96:41]. It is normally initiated by a strategic decision, that Software Reengineering or Software
Evolution are not useful, or lead to a completely new system which replaces the existing legacy system
and incorporates worthy elements of it (maybe supported by some reverse-engineering)
[Sommer06:545ff]. Schach distinguishes therefore a “true retirement” (without replacement) which is very
rare and done when the system is obsolete so “the client organization no longer requires the functionality provided
by the product” [Schach96:41]. The system can also be fully replaced by a COTS-product (e.g. SAP). In
case of a (partly or fully) replacement some projects “treat the retirement of an existing system as a subproject of
the initial development of the system replacing it … but this is just a management convenience; the fact remains that
retirement is still part of the lifecycle of the original system” [AmNa05:33].

Retirement is always a complex task and needs careful preparation. Important tasks are: Analyse legacy
system interactions (“legacy analysis”: current input- and output-data as well as other interactions with
other systems); Determine retirement strategy (“big-bang”-retirement, staged retirement or parallel systems); Test
new system, Migrate users and data (e.g. 95% automatically, rest manually) [AmNa05:71ff].

3 – SOFTWARE PROJECT MANAGEMENT AND THE HUMAN FACTOR

53

3. SOFTWARE PROJECT MANAGEMENT
AND THE HUMAN FACTOR

“There is no cookbook for software management. There are no recipes for obvious good practices.
I have tried to approach the issue with as much science, realism, and experience as possible, but

management is largely a matter of judgement, (un)common sense, and situation-dependent
decision making. That’s why managers are paid big bucks.” [RoyceWa98:xxiv]

As professional Software Development is normally performed by a team of developers within a defined
project, Software Project Management (SWPM) is a key factor for the success of a Software Project. Even if
this thesis strongly supports the engineering-approach in SE (see chapter 2.1), there is no contradiction
to emphasise at the same time the importance of the “human factor” in SE (as underlined by authors
like Tom DeMarco). Engineering means to conduct software projects on engineering principles and
with careful planning (instead of build-and-fix), but it is mainly the responsibility of SWPM to take into
account the human factor when creating and following this plan. Therefore the main ideas of SWPM –
especially those concerning the influence of the “human” factor – will be presented in this chapter.
After a survey of the basic elements of SWPM one significant influence of the human factor in
software projects is picked out: Environmental influences and risks (including also client-side effects). All
this is presented in consideration of this thesis focus: Human risks and influences in Requirements
Management, which also affect the entire SWPM when they are not resolved early.

3.1. Software Project Management in a nutshell

“Successful Project Management needs more than the elaborate utilisation of PowerPoint and MS Project”
(Raoul Fortner, own saying)

Sommerville noticed, that Software Project Management (SWPM) is a too broad topic to be covered only by
a single chapter and it is impossible to give a universal description of all necessary tasks [Sommer06:125].
This is true, as there are manifold kinds of software projects and various ways how to organise, plan
and manage them. Size is an important factor, as it would be quite excessive (and maybe also harmful)
to apply the full SWPM-repertoire within a small and simple project. But normally the problem in SE is
quite contrary, and many projects have a pure technical focus, so systematic SWPM is often absent.

SWPM implies administrative paperwork (time plans, cost estimation and reporting) as well as human-centred
leadership (teamwork, motivation, monitoring, problem- and conflict-solving). Also SWPM has internal
aspects (team) and external aspects (Client, external stakeholders), and mostly the project manager (PM)
has to be the “interface”. The different SE-development methods (see 2.2.6) also influence SWPM:
Some SWPM-books highlight plan-driven SE-models (e.g. RUP-oriented sources like [RoyceWa98],
[Versteeg00]) and other ones support the upcoming Agile Project Management (APM) [August05]. So SWPM
is complex and normally there are three different VIEWS on the project [Mayr05:30ff]: (1) business-view
(Time, Costs and Quality – the “Iron Triangle”); (2) technical view (focused on techniques and delivered
functionalities); (3) sociological view (team-spirit and other human factors). Often the PM’s vita influences,
which view is “privileged”, but experienced PM’s will bring them all together in a reasonable manner.
Therefore only the most significant aspects of SWPM can be highlighted below.

3 – SOFTWARE PROJECT MANAGEMENT AND THE HUMAN FACTOR

54

3.1.1. Projects and Project Management (PM) in general

Significant and readable sources about projects and Project Management (PM) in general are [Karnov02],
[PatzRatt04], [Gareis04], [PMBOK04]. Alternative views are presented in [Fröhlich02], [Gärtner04].

● Projects

A general and commonly used DEFINITION of a project can be found in the „Guide to the Project
Management Body of Knowledge (PMBOK)” which is published by the Project Management Institute (PMI):

“A project is a temporary endeavor undertaken to create a unique product or service. Temporary means that
every project has a definite beginning and a definite end. Unique means that the product or service is different in
some distinguishing way from all other products or services.” [PMBOK04:4]

So projects have CHARACTERISTICS which distinguish them from routine tasks [PatzRatt04:18f]:
● The project is unique and temporary (a one-time job with a definite end);
● Projects are goal- and problem-directed (which may include also “hidden” problems), the

goal(s) should be observable, measurable and achievable (challenging but realistic). If the
goal(s) change(s) during the project, it can become “moving target”-problem;

● Time, budget and human resources are limited (the combined restrictions of time, budget and
goal(s) is often called the “iron triangle”, sometimes goal(s) are substituted by quality);

● The problem can be new, complex and dynamically linked to many different disciplines. The
goal(s) can only be achieved by the multidisciplinary cooperation diverse of skills;

● Projects are embedded into a specific environment in which they have a high relevance
(especially stakeholders who have expectations and/or fears toward the project).

● Because of its “uniqueness” projects have particular risks, especially concerning time
planning, cost estimation and applied technologies. Minimising those risks is important for a
successful project management [ZuserGre04:40].

Projects can be CLASSIFIED according to one or several of the following attributes [Mayr05:28f]:
Size (people, budget, tasks, etc.), Duration, Client-status (internal or external project),
Complexity, (Problem) Domain, Difficulties, Specifics, Relevance and impact, Risk, Costs, Intensity
(full-time or concurrent), Number of subprojects (in case of multi-project management).

● Project Management (PM)

Project Management (PM) is a particular form of Management (directing and controlling a group to achieve a
goal) and is therefore commonly defined as follows (see also figure 3.1) [PMBOK04:6]:

“Project management is the application of knowledge, skills, tools, and techniques to project activities to meet
project requirements. Project management is accomplished through the use of the processes such as: initiating,
planning, executing, controlling, and closing. The project team manages the work of the projects, and the work
typically involves:

- Competing demands for: scope, time, cost, risk, and quality.
- Stakeholders with differing needs and expectations.
- Identified requirements”

3 – SOFTWARE PROJECT MANAGEMENT AND THE HUMAN FACTOR

55

Typically projects and the related Project Management are divided “into several project phases to improve
management control” (also known as the “project life cycle”) [PMBOK04:11]. While Karnovsky defines only
three of them [Karnov02:18], Patzak and Rattay define at least four (with any number of “execution-
phases”). The PMBOK avoids a clear limitation, but presents in its PM-definition five phases (initiating,
planning, executing, controlling, closing) and shows “representative project life cycles” [PMBOK04:13ff].

The activities during the planning-phase and the execution-control-phase (for software projects) are
examined in 3.1.3, therefore only the importance of the first phase is described here: Karnovsky states
“Tell me, how you start a project and I tell you how it ends” [Karnov02:40] which is – according to the
experiences of this thesis author – fully true. A good “kick-off” is the foundation for the essential team
spirit and a harmonious ambience during the entire project, and a bad start is hard to counterbalance
later. Karnovsky defines the project start phase as period between the birth of the project (first idea) and
the formal kick-off which starts the project. It implies the clarification and limitation of the intended
goals as well as a rough estimation about the necessary resources (time, budget, and staff). Also the
project framework must be defined (Responsibilities, Project Management, team structure, etc.). Maybe
a feasibility study or pilot studies are carried out to evaluate the initial idea and clarify open questions.
All this leads to a formal definition and/or contract for the project. Based on this formal agreement,
the kick-of-meeting can take place and the team can start to work (see 3.2). Karnovsky strongly
advocates to find and fix the “godfather” of the project (German: “Pate”), thus a high-rank manager on
the client side who promotes the project and to whom the project management has direct access.

Figure 3.1: PMBOK – Nine Knowledge Areas and related Processes [PMBOK04:8]

3 – SOFTWARE PROJECT MANAGEMENT AND THE HUMAN FACTOR

56

3.1.2. Characteristics of Software Project Management (SWPM)

“Enable the knowledge workers to do what they are being paid for”
(Peter Ferdinand Drucker [Drucker77:273])

Peter F. Drucker – an Austrian-born mastermind in modern US-management sciences – already coined
in his early works the term “knowledge worker” (“An employee whose major contribution depends on his employing
his knowledge rather than his muscle power” [Drucker77:348]). This term seems to be well applicable for
software developers, as Software Projects are quite different from many other kinds of technical
projects (see 2.2.1). Therefore also Software Project Management (SWPM), which is defined as “the process of
planning, organizing, staffing, monitoring, controlling, and leading a software project” [Benn95:3], has characteristics:

● Software Project Management is normally strongly tied to the methods and Process
Models for software development (see 2.2.6). They have a complex relation like a
chicken and an egg (Which was first?): SWPM chooses the Process Model(s) and tailors
the process for the specific needs of an individual project (see figure 2.13 in
combination with figure 2.14). At the same time the Process Model (and its underlying
methodology) strongly influences the way, how SWPM is conducted. Plan-driven
Process Models (e.g. RUP, V-Modell XT) imply guidelines for SWPM [Versteeg00]. Also
for agile Process Models there is something similar like the Agile Project Management
(APM) [August05] (Even if sometimes the combination of agile Process Models and
SWPM seems like a contradiction, as agile approaches where often invented to “free”
programmers from SWPM). So there is no universal form of SWPM, there are many.

● Software Development teams have no “blue collar workers”, as programming implies a
lot of creativity and brain-work, so it is “less deterministic” [Benn95:3] than a classical
production process (software is produced by “projects”, not by a production line). SE
made progress in minimising the negative implications of this fact, with Process Models
(2.2.6) and Software Process Improvement (2.2.4), but the fact cannot be neglected.

● The fact remains, that “software projects are less measurable, more difficult to estimate, and more
dependent on subjective human factors” and even if modern Process Models created a better
framework “this has led to a new problem: developers complained that they were spending too much
time on documentation and too little on the actual development of code” [Benn95:3]. Which leads
back to Peter Drucker who stated in 1977: “highly paid and competent scientists are not allowed
to do their work, but are instead forced to attend endless meetings to which they cannot contribute and
from which they get nothing” [Drucker77:273]. So “a middle ground should be sought between … the
freelance-style project … and the over-standardized, over-documented project” [Benn95:3]. Royce
therefore pleas for “balance” and “pragmatic” in SWPM [RoyceWa98:xxiii-f] and Boehm
highlights the same questions in his “planning spectrum” (see figure 2.3) and the
possible “home-grounds” of divers Process Models (see figure 2.14).

● A critical summary about the consequences of these problems in real practice is given by
Royce: “Software development is still highly unpredictable. Only about 10% of software projects are
delivered successfully within initial budget and schedule estimates” [RoyceWa98:5]

Other SWPM-characteristics are similar to general PM as stated in the introduction of 3.1. and in 3.1.1.

3 – SOFTWARE PROJECT MANAGEMENT AND THE HUMAN FACTOR

57

3.1.3. Planning and Controlling: Time Schedules and Cost Estimation

The planning and control tasks in Software Project Management imply a lot of administrative paperwork
(which should be tailored for the specific needs of the individual project) and in the most extensive
form a Software Project Management Plan (SPMP) can be as comprehensive as described in [IEEE98b:4].
The significant elements of these activities are presented in the following.

● Contracting and effort-estimation

Before the initial idea and request from the client can be specified in a formally signed contract (maybe
with a formal Project Management Plan), software development projects normally start with estimating
the expected effort to fulfil this request (time, money and staff) [Schach96:290ff], [Sommer06:660ff]. The
form of the customer-developer relationship strongly influences the detailed form of the contract
[Benn95:25ff]. There are five basic parameters for cost-estimation for which Royce even provides a
simple formula: “size, process, [capabilities of the] personnel, environment, and required quality” [RoyceWa98:5].
Royce names several popular cost estimation models (e.g. COCOMO, CHECKPOINT, ESTIMACS,
…) but he also warns that a common approach is: “This project must cost $X to win this business. … Here’s
how to justify that cost” [RoyceWa98:28]. A practical list of common approaches provides [ZuserGre04:112]:

(1) “Aus-dem-Bauch-Methode” (Instinctively and formless estimation based on experience)
(2) Analogy method (Similarities to former projects are discovered and adapted)
(3) Multiplication method (The project is split in modules which are estimated exactly and

summarised)
(4) Weighting method (cost-drivers are identified – normally code-lines or functions points – and

the effort is estimated with the help of a defined formula, e.g. in the COCOMO-model)
(5) Percentage method (One single part of the project is estimated in detail and afterwards

extrapolated for the entire project).

● Planning

In Software Projects the planning of tasks, responsibilities, workflows and resources often follows
some specific rules of the applied Process Model (e.g. RUP), but the following planning methods are
quite common in Software Engineering (see [GheJaz03:476ff], [ZuserGre04:120ff], [Sommer06:130ff]):

● A Work Breakdown Structure (WBS) splits the project into components (tasks or objects
[Karnov02:56]) and is a hierarchical tree structure where the root is the project goal. “Once
these pieces have been identified, they can be used as units of work to assign to people” [GheJaz03:477].

● Dependencies and sequences between tasks of a project can be planned with graphs, e.g.
with a PERT-diagram (Program Evaluation and Review Technique) or a “Netzplan”.

● Time Schedules for the individual activities, team members and resources can be
planned with a Gantt-Chart, where each activity, person or resource forms a row and
each time unit (day, week) forms a column. Gantt-Charts are popular, as they provide a
concise overview and can be easily extracted from the Work Breakdown structure.
Figure 3.2 shows a practical Gantt-example from a students project at TU Wien.

Today a lot of software-tools exist to support the planning of projects and the mentioned diagrams,
which also support the detection of the “critical path” (most critical activities that can delay the project).

3 – SOFTWARE PROJECT MANAGEMENT AND THE HUMAN FACTOR

58

Figure 3.2: Gantt-chart of a simple Students Project at TUW [A. Fehr, R. Fortner]

3 – SOFTWARE PROJECT MANAGEMENT AND THE HUMAN FACTOR

59

Anticipating chapter 3.1.4, it has to be emphasised that administrative planning tasks like time
schedules and resource planning cannot be successful and realistic without respecting the human factor.
The planning in software projects is “intimately tied to the problem of how to estimate the productivity of software
engineers” (question of metrics in software engineering) as well as to the problem that “it is often difficult to
specify the software requirements completely a priori” [GheJaz03:461]. So schedules should be prepared together
with the client and the team to make them realistic, “human-oriented” and generally accepted.
“Buffer”-times are recommendable. Further interesting ideas provide [DeMarco97], [DeMarco01],
[Gärtner04].Advices for realistic schedules are given in [ZuserGre04:118ff]: The schedule must not
scamper or demoralise the team. It should be accomplishable but also ambitious enough to guarantee
continuing progress. The product has priority over the schedule. Long tasks should be split in
subprojects to make them more clearly. Subproject should produce a satisfying and motivating result.

● Controlling

Controlling of the ongoing progress is one of the most important tasks for the project management
after the project has been started. It “includes the efficient management of the development team members and
requires constant awareness of the real status of their work on the project” [Benn95:3]. Especially for iterative or
evolutionary development methods it also implies a regularly replanning of the requirements and time
schedules for the next iteration. Therefore “controlling requires the measurement of performance against plans and
taking corrective action when deviations occur” [GheJaz03:460]. How to handle such deviations is a key task for
the project management and requires many of the skills presented in the next subchapter 3.1.4.
Common methods to control the progress in a project are regular status-reports to the project
management in a written form or during periodical meetings (Informal: “Jour-fixe”; Formal: Reviews).

As described in 2.3.1, there can be major or minor milestones that define products (documents, code,
etc.) which should be achieved at a particular point in time. During every formal meeting the project
management checks those milestones and their current estimation. A Milestone Trend Analysis illustrates
those estimations in a demonstrative way: The x-axis is the time-axis of the project, and the y-axis
represents new milestone estimations during a meeting. Commonly the estimations start to shift
rightwards during a project (as illustrated in figure 3.3), identifying future problems at an early stage.

Figure 3.3: Milestone Trend Analysis of a simple Students Project at TUW [A. Fehr, R. Fortner]
(IR: Internal Review; MR: Management Review; E: Design Phase; I: Implementation; T: Test; A: Delivery; P: Project)

3 – SOFTWARE PROJECT MANAGEMENT AND THE HUMAN FACTOR

60

3.1.4. Software Project Managers: Leadership, soft skills and client-team-link(er)

 “I am not sure there is such a thing as management training other than on-the-job experience”
(Walker Royce, [RoyceWa98:xxiv])

As stated at the beginning of 3.1, successful SWPM needs more than the elaborate utilisation of
PowerPoint and MS Project. It requires leadership and a lot of so called “soft skills”. Project Managers
have to reconcile the needs of all project-participants and act as a link(er) between them (see figure 3.4).

Figure 3.4: The software project manager’s problem (timeless diagram) [BoehRos89:903]

Depending on the rules of a project, the competencies of the Software Project Management “can reach
from simple moderation to disciplinal authority” [Karnov02:109]. Also the required professional and managerial
competencies strongly depend on the needs of the conducted project. Therefore the PMBOK defines
“key general management skills that are highly likely to affect most projects” [PMBOK04:21ff]:

● LEADING (Establishing direction; Aligning people; Motivating and inspiring);
● COMMUNICATING (implies knowledge about Sender-receiver models, Choice of media,

Presentation techniques, body language, Management of meetings);
● NEGOTIATING (conferring with others to come to terms with them or reach an agreement, e.g.

about: Scope, cost, and schedule objectives; Changes to scope, cost, or schedule; Contract terms and
conditions; Assignments; Resources);

● PROBLEM SOLVING (Problem definition & Decision-making: Distinguishing between causes
and symptoms. Problems may internal, external, technical, managerial, or interpersonal; Identify viable
solutions, and then making a choice from among them. Once made, decisions must be implemented);

● INFLUENCING THE ORGANISATION (Ability to “get things done”; Requires an
understanding of both the formal and informal structures of all the organizations involved. Influencing
the organization also requires an understanding of the mechanics of power and politics).

3 – SOFTWARE PROJECT MANAGEMENT AND THE HUMAN FACTOR

61

All these skills require “on the job-experience” and they are hardly to teach and learn via books (“That’s why
managers are paid big bucks” [RoyceWa98:xxiv]). But some readable sources which provide “food for thought”
have to be mentioned:

● An all-around tour about InterPersonal Skills for managers (Self-awarness, Communication,
Motivating, Leading, Teaming, Problem Solving) provides [RobHun03].

● An academic introduction about all related aspects of social psychology (Perception and
Interaction) gives [Herkner91].

● More practical advices can be found in the voluminous opus of Friedemann Schulz v.
Thun: Anatomy and four aspects of a message, Problems in interpersonal communication [Thun81],
Communication Styles [Thun89], The “interior team” of a person and related conflicts
[Thun98]. A survey of all these topics for managers is presented in [ThuRup00].

● A timeless Austrian source for all aspects of Body Language is Samy Molcho who
identifies that “The body is the glove of our sole” [Molcho94:20].

● Another Austrian source is communication scientist Paul Watzlawick who became
famous for his entire (voluminous) work, but mostly for his “hammer” and his five
axioms: “One Cannot Not Communicate”; “Every communication has a content and relationship
aspect such that the latter classifies the former and is therefore a metacommunication”; “The nature of a
relationship is dependent on the punctuation of the partners communication procedures”; “Human
communication involves both digital and analog modalities (words are "digital"; non-verbal and analog-
verbal communication are not)”; “Inter-human communication procedures are either symmetric or
complementary, depending on whether the relationship of the partners is based on differences or parity.”

Most SE-textbooks reduce Software Project Management on its technical and administrative aspects. If
the human factor in SWPM is covered at all, it is reduced on its internal dimension, therefore only on
team management and people management (see subchapter 3.1.5), while the considerations about the
same effects on the client side are often missing or hidden in Risk Management (Even if software
project managers could also need a book about “The Psychology of dealing with clients” in many situations,
like Weinberg’s famous book [Wein04]).

A survey about the “customer-developer relationship” gives [Benn95:25ff] (even if human factors are a minor
topic) who states: “Customer relations: In some projects, contact with the costumer is a major activity. This includes
documenting the customer’s requirements, controlling changes required by the customer, handling the customer’s involvement
in the development process, providing reports and organizing reviews and product demonstrations” [Benn 95:3]. External
risks and aspects in SWPM (concerning the client) can also be found in [GerlGerl05].

Royce widely covers the uncertainty and influence of human factors in SWPM. He pleas for two values
in SWPM: “balance … achieve balance among the objectives of the various stakeholders”; “pragmatic … having no
illusions and facing reality squarely” [RoyceWa98:xxiii-f]. He also covers “Adversarial Stakeholder Relationships”
[RoyceWa98:15ff] which will be examined later in this thesis.

Agile Project Management (APM) also covers client stakeholders and states: “Form a Guiding Coalition: The
coalition should have a core of senior managers who have the power, credibility, and experience to lead the change
represented by your project” [August05:71]. This seems like an “agile” version of the Karnovsky-rule, that the
PM should always find a “godfather” for the project among the top-management [Karnov02:42f].

3 – SOFTWARE PROJECT MANAGEMENT AND THE HUMAN FACTOR

62

3.1.5. Teamwork in Software Development Projects

An important sub area of SWPM which is strongly related to the human factor is teamwork (one of the
first sources covering this topic was Weinberg in 1971 [Wein04:143ff]). Therefore modern SE-textbooks
already cover issues like Team Management or People Management by default (see [Benn95:68ff],
[ZuserGre04:169ff], [Sommer06:635ff]). Also standard PM-sources address this issue ([PatzRatt04:53ff],
[PMBOK04:107]). Alternative or practical views are given by [LanBrau85], [DeMaLi87] and [Spreng00].

● Individual, group, team

As stated in 3.1.2, SWPM differs from other forms of PM because programmers are “knowledge
workers”. Therefore Bennatan states: “According to many studies, managing software engineers is more difficult
than managing engineers in most other areas of technology. The typical software engineer (if such a person exists) is often
characterized as being both artistic and logical, as well as possessive and temperamental. These traits can be found in any
group of people, but they appear to be more prevalent among software engineers” [Benn95:68]. According to Bennatan
this explains productivity ratios in SE-teams of 1:5 or even more (what modern development methods
and Process Models as presented in 2.2.6 try to improve). Most software development projects are
organised as teams, even bigger projects are divided to enable smaller teams. According to Bennatan
“the ideal size of a development team is between four and six developers” [Benn95:73]. So to reach an appropriate
proficiency level, a conglomerate of INDIVIDUALS (with no common goal) has to be organised as a
GROUP (to follow a common goal) and should become a real TEAM (where a real synergy-effect
leads to an extraordinary productivity level and a common “team-spirit”) [ZuserGre04:181].

● Team Development

[ZuserGre04:183f] presents the four phases of team development as proposed by Tucker, to which he
later added a fifth phase (see figure 3.5):

(1) FORMING: Team members learn and agree about the common goal(s) in their best behaviour.
(2) STORMING: Competition of ideas and interests leads to first confrontations and power struggles.

Coalitions and cliques are formed and may last. This phase is important for the growth of the team
(and can also end destructive), so conflicts should not be burked but moderated to overcome them.

(3) NORMING: Team members start to coordinate themselves and cooperate in a positive and efficient
way. Common rules and a pleasant behaviour enable real team-work and a factual conflict resolution.

(4) PERFORMING: The group has become a self-organised team and is able to perform on a high level
without much external intervention. Later it can fall back to earlier phases, e.g. after structural changes.

(5) ADJORNING: The project is finished and the team is dissolved, but personal contacts may remain.

Figure 3.5: Stages of Team Development [Robbins03]

3 – SOFTWARE PROJECT MANAGEMENT AND THE HUMAN FACTOR

63

● Organisation and structures

A team has normally an organised structure that strongly influences its rules and workflows. Structures
and organisation deal with “devising roles for individuals and assigning responsibilities for accomplishing projects goals
… motivated by the need for cooperation when the goals are not achievable by a single individual in a reasonable amount
of time … The aim of an organizational structure is to facilitate cooperation towards a common goal” [GheJaz03:483].

The choice of the appropriate organisational structure depends – like the entire SWPM – on the used
SE-methodologies and Process Models, and is also related to the characteristics of the project (size,
duration, etc.). There are structures with centralised control, decentralised control and mixed-control – and all of
them occur in modern SE, which ranges from military software development to (similarly successful)
open source projects. In big companies projects can range across many departments, so the project can
be formed as staff unit, line organisation, matrix organisation or as informal organisation [Karnov02:125ff].

For Bennatan the “hierarchical structure is based on the four cornerstones of management: delegation, authority,
responsibility and supervision. … it is the project manager’s responsibility to select the structure best suited for the project
… the larger the project the more critical the organizational structure becomes” [Benn95:68]. He also distinguishes
three kinds of teams: Democratic teams, chief engineer teams (also called chief programmer teams) and expert teams
(see figure 3.6). Schach adds a fourth (more practical approach), the so called “modern programming team”,
consisting of a team-manager for non-technical management and a team leader for technical
management [Schach96:390ff]. For large projects, this structure can be scaled up, leading to several
independent teams (each with an own team leader) who all report to a common project leader.

Figure 3.6: Possible team organisations [Benn95:74]

Other SWPM-tasks concerning team management are recruiting (“staffing”), appropriate conditions of
work (including breaks and a coffee machine) as well as the entire field of people management (which also
includes giving team members a perspective for their personal career and development beyond the
current project). DeMarco and Lister plea for a human-oriented view in software team management
and state: “The major problems of our work are not so much technological as sociological nature” [DeMaLi87:4].

3 – SOFTWARE PROJECT MANAGEMENT AND THE HUMAN FACTOR

64

● Roles
“All the world's a stage, and all the men and women merely players:

They have their exits and their entrances; and one man in his time plays many parts”
(William Shakespeare, As You Like It, 2nd Act, 7th Scene)

Software development teams can have official (formal) roles as they are defined in the RUP (see 2.3.1),
like Client, User, or Management as well as Project leader, team leader, developer-roles (analyst, architect,
programmer), tester [ZuserGre04:172]. The assignment of roles depends on the project, the used SE-
method and on the enterprise policy (“specialists” vs. “generalists”). Each team member can also have one
or several informal role(s) which are examined by social sciences. One example is the Team Management
Wheel (by Margerison and McCann, based on theories of C.G. Jung) [ZuserGre04:174ff], which describes
possible working styles and work preferences of team members. It can be the foundation for team assessment
and work assignment decisions (see figure 3.7). A similar model is given in [Robbins03] (see figure 3.8).

Related issues concern leadership (authoritarian vs. democratic) [ZuserGre04:184ff], factors and characteristics
for successful teamwork [ZuserGre04:182], [PatzRatt04:56ff], communication in the team [ZuserGre04:179f],
[Sommer06:649], motivation [Sommer06:641] and conflict management [PatzRatt04:368ff]. Most of these issues
imply soft-skills-knowledge as described in 3.1.4, therefore those qualities are not only restricted to the
project managers and are instead recommended (but not formally required) for any team member.

Figure 3.7: Team Management Wheel [www.tms.com]; Figure 3.8: Key Roles of Teams [Robbins03]

● Current challenges in our flat world of globalisation
Currently new challenges arise: Comfortable tools for Computer Supported Cooperative Work (CSCW),
distributed work and virtual teams (with team members located in different places, countries or even
globally distributed on different continents) become increasingly important in our “flat world” of
globalisation and outsourcing. But the use of CSCW-methods and Emails often masks the need for
intercultural competencies in multi-national teams. Even if the underlying technical views are quite similar
(e.g. see [Bénard92] how a Francophone source covers SWPM-problems likewise), but language barriers
and cultural differences often influence the teamwork subtly. Rothlauf describes influences on the
cultural environment of international business [Rothlauf06:48f] and provides an extensive list with
required competencies for international teams [Rothlauf06:115]. A practical survey is given in [Baumer02].

3 – SOFTWARE PROJECT MANAGEMENT AND THE HUMAN FACTOR

65

3.2. Environmental influences and risks acting on the project

“Here be dragons (lat.: Hic sunt dracones)”
(Sign for dangerous or unexplored territories,

attributed to mediaeval cartographers)

Standard-textbooks for Project Management already cover the full spectrum of problematic or risky
“human” influences on a project – including the (also external) “environment”. In contrast, most SE-
textbooks focus on the human factor in the development team, but neglect the same effects on the
client side or cache them as sub-item in topics like Risk Management or Quality Management (where
they are often hardly recognisable). It is likely that this will change in the future, but currently it seems
like most SE-textbooks are too noble to call a spade a spade – maybe because SE still struggles a lot
with so many internal problems (see 2.1) or because in the past the client has been too often blamed
wrongly (So Fröhlich strongly criticises software engineers for commonly shifting the blame to the
client – for which he uses the grave German phrase “Dreiste Schuldabwälzung” [Fröhlich02:65]).

But when one examines well-known “Software Disasters” like the new baggage-handling system at
Denver International Airport (DIA) [Glass98:23ff] or the new air-traffic control system for the US-
Federal Aviation Administration (FAA) [Glass98:56ff] it is not convincing to search the responsibility
solely in Software Engineering, like Scientific America did in 1994 for the DIA-project (while Glass and
DeMarco deliver insights to the complex environment of those projects, see [DeMaLi03a:Chapter 3]).
Both examples show, how a problematic environment can bring a project totally out of control.

But there is also some important responsibility for SE and SWPM: To detect such external problems
early and react accordingly, which may include some uncomfortable communication and negotiations
with the client or other parts of the external environment. Here the fault is also an underdeveloped set
of practices in SE and SWPM that doesn’t comprise considerations about such issues in an appropriate
dimension. Instead, the ideas of pioneers who push frontiers and focus on sociological SE-problems –
like DeMarco, Lister, Glass – are neglected or dismissed by some parts of the SE-community who
search the philosophers stone somewhere else (“art”- or “craftsmanship”-approaches, solely focus on
technical engineering-principles and CMM-levels). Surely not every software project manager is able to
“speak truth to power” [Booch07:12] as direct as Grady Booch did, but caching problems doesn’t help to
solve them (a principle which is already accepted in the storming-phase of SE-team development, see
2.1.5). So obviously there is still a need for more theoretical and practical research in soci(ologi)cal SWPM.

PM-literature covers the risks and influences from the external environment by default, so German-
speaking PM-textbooks present concepts like the “Projektumweltanalyse” [Gareis04:Chapter3] or
“Projektumfeldanalyse (PUA)” [PatzRatt04:68ff], both terms roughly translatable into English as “Project
Environment Analysis” (even if the English term “environment” is also related to ecological issues). A
similar – but not identical – concept in the Anglophone PM-literature is the “Stakeholder Analysis” which
is mostly known and used in the business-context. A related topic, also coming from the corporate
world (corporate finance as well as insurance industry) is the so called “Risk Management” which was
later introduced in Project Management and has – assisted by authors like Boehm [Boehm89], Lister
[Lister97] or DeMarco [DeMaLi03a] – meanwhile also found its place in SE-textbooks [Sommer06:135ff].

3 – SOFTWARE PROJECT MANAGEMENT AND THE HUMAN FACTOR

66

3.2.1. Significant SE-risks and reasons for Software Project Runaways

What is a risk? Project Management knows the overall project risk (“Gesamtrisiko”) which is composed
of individual risks (“Einzelrisiken”) [PatzRatt04:42]. “Risk” needs to be defined particularly for projects
as the concept of Risk Management was originally defined in a business- and military context:

“Project risk is an uncertain event or condition that, if it occurs, has a positive or a negative effect on a project
objective. A risk has a cause and, if it occurs, a consequence. … Project risk includes both threats to the project’s
objectives and opportunities to improve on those objectives.” [PMBOK04:127]

SE-textbooks often provide listings about “typical” risks and problems in software projects, based on
manifold studies (e.g. CHAOS-report from the Standish Group). Some sources associate those problems
with the so called “Software crisis” (e.g. [Versteeg00:2ff]) while other sources deny this concept (“I do not
believe in the existence of a software crisis … Most of those who cry crisis and are trying to sell or promote something are
offering a better technology for building software. But most of the case studies of software failure find that poor management
technique, not poor technology, is the cause of the problems” [Glass98:6]). Irrespective of the reasons “only about
10% of software projects are delivered successfully within initial budget and schedule estimates” [RoyceWa98:5]. Some
significant lists about typical risks, failures and problems in software projects follow below.

● Bennatan discusses “basic problems which a project manager is likely to find in any software project” [Benn95:13f]:
(1) Inadequate initial requirements and frequent changes; (2) Dependence on external sources (vendors,
subcontractors etc.); (3) Difficulties in concluding the project; (4) Frequent replacement of development personnel
(staff turnover); (5) Poor estimates; (6) Inadequate tracking and supervision; (7) Uncontrolled changes

● In 1988 Boehm (also a pioneer in Software Risk Management [Boehm89]) presented a Top-10-list of
risks in software projects, last updated in 1998 (see [Boehm88:70], [GheJaz03:493], [Mayr05:193ff]):

(1) Personnel shortfalls; (2) Unrealistic schedules and budgets; inappropriate application of the process; (3)
Shortfalls in COTS and externally furnished components; (4) Requirements mismatch (mistaken requirements);
(5) User interface mismatch (Developing the wrong UI); (6) Bad architecture, performance and overall quality;
(7) Requirements changes and development of mistaken or wrong functionalities; (8) Dealing with Legacy
software (Inclusion into project or evolution); (9) Shortfalls of externally-performed tasks; (10) Straining
technologies and computer science capabilities over their limits.

● In 1998 Glass wrote an entire book with 16 practical examples (like DIA and FAA) covering seven
reasons for so called “Software Runaways” (mostly based on a 1995-KPMG-study) as there are [Glass98]:

(1) Project Objectives Not Fully Specified; (2) Bad Planning and Estimating; (3) Technology New to
Organization; (4) Inadequate/No Project Management Methodology; (5) Insufficient Senior Staff on the Team;
(6) Poor Performance by Hard/Software-Suppliers; (7) Performance (Efficiency) Problems.

● Versteegen notices ten reasons for project failures and links them to the “software crisis” [Versteeg00:2ff]:
(1) Unclear requirements; (2) Changing technologies; (3) Inadequate communication within the project; (4) Too
late integration (leading to the “Late Design Breakage”); (5) Too strongly document-oriented; (6) Missing or
inappropriate Process Model; (7) Inadequate staff education; (8) Missing (human) resources; (9) Missing quality
management; (10) Neglecting the 80:20-rule(s) for software metrics by Boehm.

● DeMarco and Lister have found five “core risks” for software projects [DeMaLi03b:99]: (1) Intrinsic
schedule flaw; (2) Specification breakdown; (3) Scope creep; (4) Personnel loss; (5) Productivity variation.

3 – SOFTWARE PROJECT MANAGEMENT AND THE HUMAN FACTOR

67

3.2.2. Risk Management for software projects

“If there's no risk on your next project, don't do it” [DeMaLi03a:3] means, that only risky projects are
interesting and profitable. This idea was already stated by Peter F. Drucker in 1975, pursuing ideas from
the Austrian economist Eugen Böhm-Bawerk: “existing means of production will yield greater economic performance
only through greater uncertainty, that is, through greater risk” (later quoted in one of the earliest SE-related Risk
Management books, see [Boehm89:53]). So the quotation “Risk Management is Project Management for adults”
[Lister97] means, that the “manager adopts an adult attitude toward things that might go wrong during the project, a
marked difference from the prevailing can-do attitude … to look problems directly in the eye” [DeMaLi03b:99]. So
Risk Management is pro-active, while Crisis Management is reactive (when the risk already occurred).

● Risk Management as integral part of Project Management

Risk Management is known in many disciplines (corporate finance, insurance industry, etc) but every
domain has its particular needs and therefore Risk Management – which has meanwhile become an
integral part of modern Project Management [PatzRatt04:42] – has been defined for projects as follows:

“Risk management is the systematic process of identifying, analyzing, and responding to project risk. It includes
maximizing the probability and consequences of positive events and minimizing the probability and consequences
of adverse events to project objectives. ... To be successful, the organization must be committed to addressing risk
management throughout the project” [PMBOK04:127f]

Risks are defined in the preceding chapter (3.2.1). Three main categories are distinguished, that can be
applied and continuously refined for a specific domain, company or project [PatzRatt04:47]: Factual
Environment risks (Natural risks and disasters, technical, economical, laws); Social Environment risks (Client,
partner, subcontractor); Internal project risks (Technical, contract, calculation, personnel, organisation, information).
Humans are different and so is their risk tolerance: Important stakeholders may have different attitudes
toward project risks (risk-seeking, indifferent, risk-averse). Therefore a company as well as a specific project
may have a particular “general risk policy”, so the policy of client and developer should fit [PatzRatt04:51].

Risk management isn’t a singular task, the assessment and control of risks has to be continued during
the entire project. Risk Management can be based on qualitative as well as quantitative facts, as there
are significant attributes of risks: Risk PROBABILITY (of occurrence: 0..1 or 0% ..100%); Risk
IMPACT (qualitative or quantitative, e.g. damage or financial loss); LEAD TIME (possible time to
react, see figure 3.9); Risk MANAGEABILITY (is it possible to avoid, transfer, minimise or mitigate
the risk, e.g. with countermeasures); Risk COUPLING (is the risk linked with other risks) [Mayr05:192].

Figure 3.9: Different lead times for different risks and projects [BiffHein05:Slide8]

3 – SOFTWARE PROJECT MANAGEMENT AND THE HUMAN FACTOR

68

● Risk Management in Software Project Management

Risk Management in software projects was already mentioned by Boehm in the 1980’s, when he
proposed the risk-driven Spiral Model (see 2.2.6, section 4) and a related “Software Risk Management
Plan” that consisted of the following elements: “1. Identify the project’s top 10 risk items; 2. Present a plan for
resolving each risk item; 3. Update list of top risk items, plan, and results monthly; 4. Highlight risk-item status in
monthly project reviews, Compare with previous month’s rankings, status.; 5. Initiate appropriate corrective actions”
[Boehm88:70]. In 1989 Boehm proposed a taxonomy for Software Risk Management that is basically still
valid and he already covered quantitative approaches (Risk Exposure, RRL, etc.) [Boehm89]. Later other
authors like DeMarco and Lister covered the topic from a more sociological perspective [DeMaLi03a].

Meanwhile Risk Management is covered in most SE-textbooks by default (see [Benn95:18ff],
[GheJaz03:490ff], [AmNa05:164ff], [Sommer06:135ff]) and it is also an integral part of Process Models like
the RUP [Kruchten04:118ff] and “mature” processes as defined by CMM(I) and ISO 15504 (see 2.2.4).
By contrast, it is still not very well established in practice, as Mayr quotes a 2004-survey which states
“Two thirds of the polled European SW-companies don’t quantify their risks” [Mayr05:194]. Boehm already stated
in 1989 the four main reasons for Risk Management in software projects: (1) Avoiding Disaster (like
runaway budgets and schedules); (2) Avoiding Rework (of erroneous requirements, design and code that typically
consumes 40-50% of the entire costs); (3) Avoiding Overkill (by focusing on critical areas instead of low-level risks);
(4) Stimulating Win-Win situations (for participants).

The main tasks of Risk Management in software projects are therefore [Mayr05:196ff], [BiffHein05]:
● RISK ASSESSMENT: Risk identification (by the team and the client, e.g. brainstorming,

interviews, etc.); Risk analysis (probability, impact and related costs, lead time); Risk prioritisation
and “clustering” (e.g. with Risk Matrix, Risk Exposure calculation – see figure 2.10; often it is too
expensive to cover all risks, so it is recommended to focus on the most significant N risks, e.g. N=10).

● RISK CONTROL: Risk planning (“plan B” for the real occurrence of a risk); Risk Resolution
(Strategies: avoidance, transfer or acceptance, e.g. mitigate the risk with countermeasures); Risk
Monitoring (regularly update of the risk planning with new risks, priorities or measures).

A quantitative approach to Software Risk Management was first given by Boehm in 1989 [Boehm89:6ff]
(UO: Unsatisfactory outcome): RE (Risk Exposure) = (ProbabilityUO) x (Loss of UtilityUO).

RE helps to detect important risks which should be addressed first (see figure 2.10: risks A, C and H).
Boehm also defined the Risk Reduction Leverage (RRL) to choose among countermeasures. RRL is the
cost-benefit ratio for a measure (Difference between RE before and after a measure, weighted with the
costs of this measure). There are many tools supporting quantitative Risk Management in projects.

Figure 3.10: Risk Exposure Diagram [BiffHein05:Part12]

3 – SOFTWARE PROJECT MANAGEMENT AND THE HUMAN FACTOR

69

3.2.3. Project Environment Analysis (Projektumfeldanalyse – PUA)

Another useful technique to detect, assess and control project risks – which is especially famous in the
German-speaking PM-literature – is the “Projektumfeldanalyse (PUA)” (also called “Projektumweltanalyse”),
roughly translatable into English as “Project Environment Analysis” (but without any ecological meanings).
It is similar to the Anglophone “Stakeholder Analysis” or “Force Field Analysis”, but more PM-oriented.

Figure 3.11: Typical “Project Environment” (own work, derived from [PatzRatt04:69])

The PUA is a helpful tool, as the PM is strongly forced to deliberate inconvenient issues in a structured
way (like in Risk Management). So “professional acting replaces spontaneous reacting” [PatzRatt04:68]. The
basic idea of the PUA is, that every project has an environment: People, groups, organisations or
institutions that are relevant and (can) influence (or even jeopardise) the project [Gareis04:Chapter3],
[PatzRatt04:68ff]. There is an internal environment (Project team, project management) and an external
environment (client, competitors, suppliers). These groups can have relations with each other, that can be
strong (e.g. team and project management) or weak (e.g. suppliers). The main PUA-tasks are:

(1) Holistic IDENTIFICATION of the Project Environment (internal, external)
(2) CLUSTERING: Organisational-social groups (int.; ext.) and factual influences (e.g. laws)
(3) ASSESSMENT of the environment and detailed ANALYSIS (see figure 3.11, table 3.1)
(4) Derivation of (counter-)MEASURES AND STRATEGIES

Environment group

(Stakeholder)
Attitude towards the

project (☺)
Relevance and
Influence (1..5)

(+) Expectations
(-) Fears

Measures
Strategies

Client users ☺ 4 (+) Workflow easier Involve
Client managers ☺ 5 (+) Performance, gains …
Client costumers ☺ 3 (+) Web access … E-Commerce

Legacy-system supp. 3 (-) Loss of influence Find new role
Project team ☺ 2 (+) Interesting project …
Competitors 2 (-) Market shares …

Table 3.1: Typical project environment spreadsheet (own work, derived from [PatzRatt04:71])

4 –STAKEHOLDERS AND REQUIREMENTS IN SOFTWARE PROJECTS

70

4. STAKEHOLDERS AND REQUIREMENTS
IN SOFTWARE PROJECTS

“There is a consensus, among both software developers and customers, that the activities of eliciting, understanding, and
specifying requirements are the most critical aspects of the software engineering process” [GheJaz03:392]

Requirements are the starting point for every software project, and their specification is maybe one of
the most important and critical (risky) tasks, as all subsequent activities in Software Engineering build
up on requirements (see Software Life Cycle in 2.2.5). A professional software project cannot start
without any requirements, irrespective of the chosen (and tailored) Process Model which may support
the later refinement and evolution of the requirements (like iterative models as RUP or agile
approaches as XP, see 2.2.6 and 2.3). The cost- and time-estimations as well as the formal contract (see
3.1.3) need a factual base, some – even rough – description about “what” has to be developed.

At the same time, ambiguous, unstable and volatile requirements as well as insufficient Requirements
Management are one of the biggest SE-problems: “A recent European survey showed that the principal problem
areas in software development and production are the requirements specification and the management of customer
requirements” [SomSaw97:vii] (For Austria see [Kappel04:30]). Wiegers states: “Between 40 and 60 percent of all
defects found in a software project can be traced back to errors made during the requirements stage” [Wiegers99:5].

There is a strong influence of the “human factor” on requirements, the stakeholders. The last (14th)
IEEE Requirements Engineering Conference (RE06) in September 2006 focused on this inseparable relation
between stakeholders and requirements [GlinzWie07:18]. Its title “Understanding the stakeholders' desires and
needs” addressed the fact, that Requirements Engineering should primarily satisfy client stakeholders.
Wiegers states: “Nowhere more than in the requirements process do the interests of all the stakeholders in a software
project intersect” [Wiegers99:5]. In view of the focus of this thesis, basic concepts of requirements, stakeholders,
Requirements Engineering and related risks will be described in this chapter, so that they can be applied later.

4.1. Stakeholder(s) in Software Projects: Definition and classification

The term stakeholder was first coined in business sciences in the 1980’s (like the term shareholder),
meaning people who affect or can be affected (by) the goals and activities of a firm. Later this concept
was adopted for projects (meanwhile also in software projects) and is defined as follows:

“Project stakeholders are individuals and organizations that are actively involved in the project, or whose interests may be
positively or negatively affected as a result of project execution or project completion; they may also exert influence over the
project and its results.” [PMBOK04:16]. The IEEE Glossary for SE-Terminology doesn’t define the term until
now [IEEE90]. Macaulay defined stakeholders as “all those who have a stake in the change being considered,
those who stand to gain from it, and those who stand to lose”. Glinz and Wieringa defined for SE: “A stakeholder
is a person or organization who influences a system’s requirements or who is impacted by that system.” [GlinzWie07:19]

Reflecting the internal-external-environment concept presented in 3.2.3, mainly two kinds of
stakeholders are distinguished in software projects: customers and developers [Macias01:4]. Typical customer
roles are: managers, investors, system users, maintenance and service staff, etc. [Hull02:97f], typical developer roles
are described in section 2.3.1. (RUP) and 3.1.5 (teamwork). Identifying, analysing and prioritising
stakeholders is one of the first activities when eliciting requirements [SWEBOK04:2-3f] (see 4.3).

4 –STAKEHOLDERS AND REQUIREMENTS IN SOFTWARE PROJECTS

71

4.2. Requirement(s) in Software Projects: Definition and classification

Wiegers states that “no clear, unambiguous understanding of the term ‘requirement’ exists” [Wiegers99:7]. Also
Sommerville explicates, that the term requirement is not consistently used in the software industry, its
meaning ranges from an abstract description of a service to a detailed (formal) definition of a function or
system service [Sommer06:150]. There are also different views on requirements (user view, developers view),
different hierarchical levels (Sommerville defines two; Wiegers three) and a technical distinction between
process- and product-requirements as well as between functional and non-functional requirements. And the
PMBOK-definition of project management also included the term project requirements (see 3.1.1).

● Definition

The SWEBOK states “A software requirement is a property which must be exhibited in order to solve some problem
in the real world.” [SWEBOK04:2-1] while the IEEE Glossary for SE-Terminology defines requirements as:

“(1) A condition or capability needed by a user to solve a problem or achieve an objective.
(2) A condition or capability that must be met or possessed by a system or system component to satisfy a contract,
standard, specification, or other formally imposed documents.
(3) A documented representation of a condition or capability as in (1) or (2)” [IEEE90:62]

As Wiegers points out, the IEEE-definition includes the users view (“external behaviour of the system”) as
well as the developers view [Wiegers99:6]. Which is one characteristic of (software) requirements: They
are the primary connection between the problem domain (“home of real users and other stakeholders, people whose
needs must be addressed” [LeffWid04:19], full of “needs” and “visions”) and the solution domain (leading to a
design). So Ebert compares the ambiguity of requirements with the list of wishes of a little boy to his
parents: “speedy car, bicycle like at Jos, round ball, toy that Paula brought to the kindergarten” [Ebert05:10].

Figure 4.1: Classification of several kinds of requirements [Wiegers99:8]

4 –STAKEHOLDERS AND REQUIREMENTS IN SOFTWARE PROJECTS

72

● Classification

Basically there are two main kinds of requirements in software projects [Ebert05:11]:
● PROCESS requirements: Process Model, CMM(I)-requirements, roles, organisation, rules or

standards for the specific problem domain (e.g. standard DO-178B for aviation software)
● PRODUCT requirements (see further classification and figure 4.1).

Process requirements will not be covered furthermore, even though Ebert cites the Conway-law, that
structure and architecture of a product reflect the organisational structure of the involved people.
Product requirements can be classified in tow dimensions (see figure 4.1):

● HIERARCHICALLY (three levels, as applied in this thesis and defined in [Wiegers99:7f])

(1) Business requirements are the high-level “business” objectives (or goals) of the customer
(person or organisation) for the software project. They should be captured in a “Project
Vision and Scope”-document and are important to limit the project. “To manage scope creep,
start with a clear statement of the project’s vision, scope, objectives, limitations, and success criteria”
[Wiegers99:12]. All other requirements must align with the business requirements. Other
sources call this a “concept document” [Benn95:48f], and Sommerville recommends to “make
a business case for the system” [SomSaw97:49f]. As described in chapter 2.4.3, IT- and
business-strategies are increasingly growing together, so a common business vision helps
all involved stakeholders to develop and secure a common understanding of the project
in a written form. A software system will only be successful if it serves the business
goals of the costumer(s), so this document also helps the project team [ZuserGre04:224].

(2) User requirements describe “tasks the user must be able to accomplish with the product”
[Wiegers99:7], so they are normally related to workflows and activities of the users. There
are various forms to capture them, depending on the used methodology or Process
Model. The RUP collects “Use Cases” while XP works with “User stories”. Typically they
are written in a natural language and describe in a more or less formal (structured) way –
supported by diagrams or models – the desired functions of the system.

(3) System requirements and functional requirements describe in a very detailed and often also
very formal way the individual functionalities of the system.

● TECHNICALLY
Functional requirements: Functions that the system shall execute to satisfy the business- and
user-requirements. Maciaszek calls this a service statement (“describes how the system should
behave with regard to an individual user or … to the whole user community” [Macias01:22]). A set
of logically related functional requirements is a called a “feature”.

Non-functional requirements and constraints: Describe further characteristics of the system,
like performance, portability, reliability or usability (see 2.2.1). They are also called
“supplementary requirements” or “constraint statements” (“restriction on the system’s behaviour or on
the system’s development” [Macias01:22f]). They can also be described in a quantitative form.

The detailed requirements are normally written down in a document like the “requirements specification”
that describes what “stakeholders expect to be satisfied in the implemented and deployed system” [Macias01:47].

4 –STAKEHOLDERS AND REQUIREMENTS IN SOFTWARE PROJECTS

73

4.3. Requirements Engineering and Requirements Management
in Software Projects

“Before developing any system, you must understand what the system is supposed to do and how its use
can support the goals of the individuals or business that will pay for that system. This involves understanding the

application domain; the system’s operational constraints; the specific functionality required by the stakeholders;
and essential system characteristics such as performance, security, and dependability.” [Sommer05:16]

There is no generally accepted definition of Requirements Engineering and Requirements Management, each
source has its own view. Ebert equates both terms and uses exclusively Requirements Management
[Ebert05:18]. Wiegers takes the opposite direction and finely distinguishes Requirements Development
from Requirements Management, both sub-disciplines of the entire Requirements Engineering (see
figure 4.2) [Wiegers99:19ff]. Sommerville strikes a balance between both views, he sites Requirements
Management in the middle of all requirements-related activities (see figure 4.3) [Sommer05]. And each
sources diagnoses the same problem: “Confusion about requirements terminology extends even to what to call the
whole discipline. Some authors call the entire domain ‘requirements engineering’ while other refer to it as ‘requirements
management’” [Wiegers99:19ff]. SWEBOK avoids both terms “For reasons of consistency” [SWEBOK04:2-1].

Figure 4.2: Hierarchical decomposition of Requirements Engineering by Wiegers [Wiegers99:19]

Figure 4.3: Requirements engineering activity cycle by Sommerville [Sommer05:17]

THIS THESIS builds up on both ideas and uses the following approach (also inspired by Maciaszek
[Macias01:59]): Requirements Engineering is the entire discipline that comprises ALL requirements-
related activities. Requirements Management is in the middle of this discipline, and like Software
Project Management in Software Engineering, Requirements Management is responsible to coordinate
and manage all the other requirements-related activities, and to align them with the superior SWPM.

4 –STAKEHOLDERS AND REQUIREMENTS IN SOFTWARE PROJECTS

74

Ebert points out, that Requirements Engineering is related to many other disciplines like Systems
Engineering, Computer Science and Project Management [Ebert05:18] – one more reasons to equate the relation
between Requirements Engineering and Requirements Management with the relation between SE and
SWPM. Basically Requirements Engineering is not a software-specific task (and happens also in other
engineering disciplines), but this thesis focuses on Requirements Engineering in software projects.

Requirements also had a leading role in the evolution of SE (see 2.2.6), as it was the Waterfall Model that
displaced the “build-and-fix”-approach by establishing the “requirements first”-principle (with the well-
known “Requirements Phase” at the beginning of a project). Later iterative, incremental and evolutionary
approaches tried to minimise the negative side-effects of the sequential Waterfall and created possibilities
to react to changing requirements even when the project was already on its way. Risk-driven (and still
iterative) approaches brought some prioritisation in those iterations and the underlying decisions.
Today agile approaches claim to be the silver bullet for changing requirements. But as agile approaches try
to push back documentation as much as possible, they also seem like a return to those days in SE when
a common joke was: “Don't worry about that specification paperwork. We'd better hurry up and start coding, because
we're going to have a whole lot of debugging to do” [Boehm84:75].

So there are also various forms of Requirements Engineering in SE, depending on the chosen and
tailored SE-method or Process Model for a specific project (see figures 2.13 and 2.14). While the RUP
constitutes “a precise distinction between the requirements and analysis workflows” [GheJaz03:444], eXtreme
Programming (XP) collects user stories (instead of a well defined requirements specification) and
manages them within the “planning game” (see 2.3). According to Sommerville, XP doesn’t try to
anticipate changes (like plan-driven methods) and therefore future changes can weaken the entire
software in a way, that further changes become more and more difficult [Sommer06:435]. XP softens
this side-effect with regularly “refactoring” to simplify the software. But currently the relation between
agile methods and “traditional” Requirements Engineering is still a quite new topics with various
interesting approaches (see [Macias01:34ff], [ZuserGre04:247ff], LeffWid04:383ff], [Ebert05:245ff]), and as
stated in 2.3, the future may bring a reasonable balance between plan-driven and agile methods.
Therefore this thesis focuses on the traditional approaches in Requirements Engineering as defined in
the SWEBOK [SWEBOK04:Chapter2]. Even the “criticised” SWEBOK (see 2.2.2) is balanced enough
to forewarn its readers that “a risk inherent in the proposed breakdown is that a waterfall-like process may be
inferred”. So SWEBOK defines a generic Requirements Process and states:

“The process-based breakdown reflects the fact that the requirements process, if it is to be successful, must be
considered as a process involving complex, tightly coupled activities (both sequential and concurrent), rather than
as a discrete, one-off activity performed at the outset of a software development project.” [SWEBOK04:2-1]

But SEWBOK also states about requirements-related activities: “It is widely acknowledged within the software
industry that software engineering projects are critically vulnerable when these activities are performed poorly.”
[SWEBOK04:2-1]. So the problems of appropriate Requirements Engineering in software projects are
crucial for the entire Software Engineering discipline. Wiegers therefore criticises that “educational
curricula favour technical topics over the softer requirements issues” [Wiegers99:vii] and that “many organizations still
apply ad hoc methods for these essential project functions” [Wiegers99:5].

4 –STAKEHOLDERS AND REQUIREMENTS IN SOFTWARE PROJECTS

75

4.3.1. Requirements Management: Managing all requirements-related activities

As stated above, this thesis assumes that Requirements Management is in the center of Requirements
Engineering (as illustrated in figure 4.3), so it coordinates and manages all requirements-related
activities. Maciaszek supports this view (while other sources limit it to managing requirement changes):

“Requirements have to be managed. Requirements management is really a part of an overall project management.
It is concerned with three main issues:
1. Identifying, classifying, organizing, and documenting the requirements.
2. Requirements changes (i.e. with processes that set out how inevitable changes to requirements are proposed,

negotiated, validated, and documented).
3. Requirements traceability (i.e. with processes that maintain dependency relationships between requirements

and other system artefacts as well as between the requirements themselves)” [Macias01:59f]

Leffingwell points out, that Requirements Management is an ongoing process during the entire project
and defines it as “a systematic approach to eliciting, organizing, and documenting the requirements of the system, and a
process that establishes and maintains agreement between the customer and the project team on the changing requirements
of the system” [LeffWid04:383ff] (see also figure 4.4). As stated above, Requirements Management is
responsible to align all requirements activities with the entire SWPM, as “specific management issues for
requirements development arise in connection with planning; monitoring progress; controlling changes” [Hull02:164].

This relation between requirements, Requirements Management and SWPM is quite complex: Important
decisions (and problems) in the requirements-domain automatically involve the requirements
management and maybe also the superior SWPM – at least when facing decisions or problems with the
Business Requirements or Project Scope, which are highly relevant for the entire project planning (time
schedules, cost estimation, iteration planning, etc.) [LeffWid04:207ff], [Wiegers99:95ff]. Wiegers therefore
states for bigger changes: “Renegotiate project commitments when requirements change” [Wiegers99:53]. In
contrast, the SWPM (and also the Requirements Management) should not interfere with every detailed
requirements- and design-decision, e.g. size and colour of a button (SWPM-relevant only if related
discussions harm the entire project). Typical “engineering” tasks are “elicitation, analysis, specification and
verification” of requirements – Wiegers defines this as “Requirements Development” [Wiegers99:20].

Requirements Management is also responsible for tailoring the Requirements Engineering process
which “varies immensely depending on the type of application being developed, the size and culture of the companies
involved, and the software acquisition processes used.” [Sommer05:16]. Sommerville explains this more practical:
“For large military and aerospace systems, there is normally a formal RE stage in the systems engineering processes and
an extensively documented set of system and software requirements. For small companies developing innovative software
products, the RE process might consist of brainstorming sessions, and the product “requirements” might simply be a short
vision statement of what the software is expected to do.” [ibid.]. Also the requirements-related roles depend on
the project size and team organisation, which determine, if there is a specialised “business analyst” or if
other team members fulfil this role. This relation acts also in the opposite direction: If the requirements
(especially business requirements) are uncertain or “volatile” at the beginning of a project, one may
chose a more iterative-incremental approach as if they are fully clear (see figure 2.14). So Requirements
Management implies also team activities [LeffWid04:33ff], high-level negotiations and organisational
questions like choosing an appropriate Process Model and a software tool for the administration of all
requirements activities. So a lot of SWPM-relevant skills are also relevant in this domain (see chapter 3).

4 –STAKEHOLDERS AND REQUIREMENTS IN SOFTWARE PROJECTS

76

Figure 4.4: Requirement communication in a diversified development team [MikHeis06:922]

4.3.2. Requirements Elicitation

“I just wanted to ask a few questions
... Just one more thing”

(Peter Falk as “Columbo”)

As described in 4.2, requirements are the primary link between the “problem domain” and the “solutions
domain”. Requirements transform (often) diffuse visions and needs for a new (software) product into
(more or less) precise descriptions of the required product. Ideally they define every detail of the
desired product in an unambiguous way, so that those details can be analysed and transformed into a
design, which is then implemented, tested and delivered. In practice, the achievement of such well-
defined requirements is hard work. As Wiegers states: “Don’t expect your customers to present the requirements
analyst with a succinct, and well-organized list of needs” [Wiegers99:139] (see also the Ebert-example in 4.2).

SE-textbooks use the verb “elicit” for this complex and strongly human-oriented task, so “Requirements
Elicitation” has been coined as a technical term to describe all activities which are necessary to gain
utilisable requirement definitions from the costumer. Every domain, project, product and client is different –
and so is Requirements Elicitation. Project size and project domain are influential factors for the
necessary workflow. In a very technical domain – when software engineering is part of systems
engineering – the developers may get very good requirements from their users (which are also
engineers). In a pure business context this can be completely different, as managers often don’t speak
the “language” of engineers – and vice versa. But they have to find a common language, as otherwise
the engineer will not understand the visions and needs of the client – and therefore fail to deliver the
right product. Ebert emphasises the importance of a goal or vision for the product before collecting
requirements, because clearly defined goals always encourage target-oriented work in a project
[Ebert05:87f]. Otherwise – if vision and scope of the project are not precisely defined and not limited by
the underlying contract – requirements will be developed “on the fly”, and may grow uncontrollable.
As described in 2.4.3, the project vision will often be dominated by a Business Vision, which is useful
for writing a vision-document at the beginning, but may also limit the project [ZuserGre04:224]. The
business vision may also be the result of a compromise, and the underdog may become a “negative
stakeholder”. One has to be prepared for everything, as every new project is a different adventure.

4 –STAKEHOLDERS AND REQUIREMENTS IN SOFTWARE PROJECTS

77

According to Wiegers there are three levels of requirements (see 4.2): “business, user, and functional. These
come from different sources at different times during the project, have different audiences and purposes, and need to be
documented in different ways” [Wiegers99:43] (other sources call the business requirements a “concept” and
distinguish more carefully between the activities before and after signing the contract [Benn95:48]).

So in a new project, the elicitation of business requirements is normally the first step in Requirements
Engineering. Often a preliminary form of elicitation in a preceding feasibility (or pilot) study can take
place before the official contract is signed. Once again: Every project is different, size and domain will
also strongly influence, when and how the three levels of requirements can be elicited: “Elicitation,
analysis, specification, and verification don’t take place in a tidy linear sequence: these activities are interleaved,
incremental, and iterative” [Wiegers99124]. Also the responsibilities have to be defined in advance, because
figure 4.4 demonstrates how many communication channels between customer and project team exist
in a complex software project. So SWPM should define firm responsibilities.

Once the project vision is defined and the contract is signed, normally the detailed requirements
elicitation begins. An important starting point (maybe already done before) is the identification, analysis
and prioritisation of client stakeholders who will be “sources” of requirements (once again: firm
responsibilities – who is a source and who takes decisions – help to avoid later problems).

The elicitation is often conducted by a business analyst who “discovers the system requirements through
consultation, which involves customers and experts in the problem domain” [Macias01:49]. In smaller projects a
team member may perform this role. The business analyst has to delve into the DOMAIN, its
STAKEHOLDERS and their NEEDS to elicit the necessary REQUIREMENTS and capture “the
unique character of the organization – the way the business is done here and now or how it should be done” [ibid.].
There are various methods of requirements elicitation with specific advantages and disadvantages
[Schach96:198f], [Macias01:50ff], [Hull02:197ff], [LeffWid04:87ff], [SWEBOK04:2-5f], [Mayr05:137ff]:

● Structured (formal) or unstructured (informal) interviews with customers and domain experts:
“Interviews with domain experts are frequently a simple knowledge transfer process. … Interviews with
customers are more complex. Customers may have only a vague picture of their requirements. They may
be unwilling to cooperate or be unable to express their requirements in understandable terms. They may
also demand requirements that exceed the project budget or that are not implementable. Finally, it is
likely that the requirements of different customers may be in conflict” [Macias01:50f];

● Questionnaires: Efficient way of gathering information from many customers. (Normally used in
addition to interviews. “Passive”, therefore no clarification possible);

● Passive, active or explanatory observation: “Observing the process”;
● Study of documents and existing software systems: forms, policy plans, minutes of meetings,

official correspondence, computer screens, manuals, business domain journals, etc.;
● Prototyping: “most frequently used method of modern requirements elicitation” [Macias01:54];
● Brainstorming and idea reduction: Idea generation and idea reduction; combines various ideas;
● Requirements Workshops: Gathers all stakeholders together. Short but intensely focused period;
● Scenario exploration techniques like passive, active or interactive storyboarding;
● Schach states: “The most accurate and powerful requirements analysis technique is rapid prototyping”

[Schach96:199] (which is maybe true, but it is also more expensive). Maciaszek proposes
Joint application development (JAD) and Rapid application development (RAD) [Macias01:56].

4 –STAKEHOLDERS AND REQUIREMENTS IN SOFTWARE PROJECTS

78

It is obvious, that those people who perform the requirements elicitation should have communicative
competencies and also some of the other “soft skills” as described in chapter 3.1.4. The elicitation
methods presented above cover a wide spectrum, and one should know when to apply which
technique. Figure 4.5. exemplifies those considerations about the appropriate communication channel.

Figure 4.5: Comparing the effectiveness of different communication channels [AmNa05:42]

4.3.3. Requirements Analysis and Modeling

After the requirements have been elicited in an informal (narrative) or formal way, they are analysed,
classified and models are derived from them (ER-diagram, Data Flow Diagram, etc. [Wiegers99:176ff]).
Sommerville gives a practical definition “Analysis: Understand the requirements, their overlaps, and their
conflicts.” [Sommer05:16], while the IEEE Glossary for SE-Terminology defines requirements analysis as.

“(1) The process of studying user needs to arrive at a definition of system, hardware, or software requirements.
(2) The process of studying and refining system, hardware, or software requirements” [IEEE90:62f]

As stated in 4.3.2, requirements are often ambiguous, hardly understandable or even conflicting – all this can be
accidental (different stakeholders have different “viewpoints”) or in the worst case the involved
stakeholders can even be contradictory [GheJaz03:393]. Therefore a requirements analysis takes place
and transforms the various inputs into a homogenous model of the desired system (if possible) – or
detects and highlights existing contradictions, “errors, omissions or other deficiencies” [Wiegers99:46]. In the
end – combined with the other requirements engineering activities and after several iterations – there
should be a coherent view to form a basis for the subsequent design activities.

The traditional view is that the requirements analysis is still part of the “problems domain” and should
not forestall the “solution” (design activities): “Their purpose is to aid in understanding the problem, rather than
to initiate design of the solution” [SWEBOK04:2-6]. This strict separation has become increasingly difficult
in times of object-oriented analysis & design techniques (often based on UML for both domains) and
agile approaches without much formal specification and strong developer-user-interaction.

4 –STAKEHOLDERS AND REQUIREMENTS IN SOFTWARE PROJECTS

79

4.3.4. Requirements Specification and Documentation

When the detailed requirements of the desired software system (user requirements, system requirements) have
been elicited and analysed, they are documented. Normally they are consolidated in the Requirements
Specification Document “which describes what the analysis has produced” [GheJaz03:393]. Wiegers calls this
the Software Requirements Specification (SRS) [Wiegers99:148]. Afterwards this document has to be
verified and discussed with the relevant stakeholders (validation, negotiation) as it is later (in a stable
version) used to develop the design for the new system. Therefore one “must document them [the
requirements, ed.] in some consistent, accessible, and reviewable way” [Wiegers99:48].

A recommendation is made by Sommerville: “Write down the requirements in a way that stakeholders and
software developers can understand” [Sommer05:17]. This helps to avoid later problems, because users are not
used to specification documents and their “language”. So maybe errors are detected very late (e.g. when
the first prototype is presented) and have to be corrected with much more effort.

Style and extensiveness of this document depend on the specific domain, size, type and criticality of the
desired software system (see also 4.3.1). A checklist recommends covering (at least) information about
the DOMAIN, FUNCTIONAL REQUIREMENTS, NONFUNCTIONAL REQUIREMENTS, and
PROCESS REQUIREMENTS [GheJaz03:394]. A glossary for the domain-specific vocabulary and a list
with “open questions” is also highly recommended [ZuserGre04:226].

Each Process Models provides its own templates for the specification document(ation), e.g. the RUP is
mainly based on Use Cases and UML-diagrams. An overview about the requirements-artefacts in the
RUP provide [Kruchten04:157ff], [ZuserGre04:225ff]. The style of this document is formal and SWEBOK
states: “Software requirements are often written in natural language, but, in software requirements specification, this may
be supplemented by formal or semi-formal descriptions … notations should be used which allow the requirements to be
described as precisely as possible … the choice of notation is often constrained by the training, skills and preferences of the
document’s authors and readers.” [SWEBOK04:2-8]. A readable survey can be found in [Ebert05:107ff].

To avoid ambiguities, diagrams and graphical models should be used for overviews and explanations.
Currently the comprehensive Unified Modeling Language (UML) is an internationally established
notation for this. In 1998 the IEEE has released a “Recommended Practice for Software Requirements
Specification” [IEEE98a], including an extensive proposal for the requirements specification document.

Wiegers defines “Characteristics of excellent requirements” for the:

● requirement statements (complete, correct, feasible, necessary, prioritised, unambiguous, verifiable);
● requirement specification (complete, consistent, modifiable, traceable) [Wiegers99:16].

A similar list with alternative priorities is given in [Hull02:89f]. Maciaszek also recommends, that all
requirements should be clearly identified, numbered and hierarchically structured [Macias01:60f]. He
proposes the use of a requirements dependency matrix (or interaction matrix) to detect and control
conflicting or overlapping requirements [Macias01:58f]. This already anticipates the ideas of traceability
and change management.

4 –STAKEHOLDERS AND REQUIREMENTS IN SOFTWARE PROJECTS

80

4.3.5. Requirements Verification, Validation and Negotiation

VERIFICATION is performed within the project team and means that the specification document is
reviewed, to check if it was created or updated correctly and meets all formal criteria (“Check that the
requirements document meets your standards” [SomSaw97:192ff]). Wiegers defines: “Verification activities ensure
that requirement statements are accurate, complete, and demonstrate the desired quality characteristics” [Wiegers99:49].

VALIDATION takes place with the client (stakeholders) and guarantees that the needs of the client are
fully understood and the right product will be delivered. It is normally performed with reviews or
formal inspection and misunderstandings should be clarified before design starts: “Validation: Go back to
the system stakeholders and check if the requirements are what they really need.” [Sommer05:16f].

NEGOTIATION is necessary when conflicting requirements have been detected (“There will always be
conflicts, overlaps and omissions in any set of requirements” [SomSaw97:125]). Requirements can conflict with
each other, or they can also be in conflict with the project scope and vision. These conflicts are often
swept under the carpet [SomSaw97:125], but they have to be resolved, because “You can specify a product
vaguely, but you can’t implement it vaguely” [DeMaLi03b:101]. Conflicts can happen on different requirement
levels, and therefore their solution may involve only the analyst – or in case of serious trouble also the
project management. Normally trade-off decisions are made to solve such conflicts (see 4.3.1 and 6.).

“How do you know when you are done?” is always a tricky question in requirements development. Wiegers
states “No simple, clear signal will indicate when you’re done gathering requirements … you’ll never be completely done”
[Wiegers99:143f], but identifies some indicators for an end: Users can’t think of any more use cases, new use
cases are redundant, new use cases are out scope (therefore a scope is important), new use cases become more and more “low
priority” functions, users propose functions that can be implemented “sometime in the lifetime of the product”.

4.3.6. Change Management and Requirements Traceability

“Change is not a kick in the teeth, but unmanaged change is” [Macias01:61]

Change Management and Requirements Traceability are an integral part of Requirements Management and have
been already defined in subchapter 4.3.1. Every domain has its own characteristics, so “the formality with
which change is managed will depend upon the nature and state of the project” [Hull02:31].

To some extent, changing requirements are normal in a software project, but to keep them under
control the essential questions are: WHICH requirements LEVEL (Business, User, System) is affected?;
WHEN does a change request occur? (Before or after the related part is already designed or even
implemented); What is the IMPACT (costs, effort, etc.) of the change?: “During the early stages, changes can
and must be made with ease so that progress can be made. However, there comes a time at which a commitment must be
made and formal agreement struck. From this time, it is usual to have a more formal arrangement in which changes are
not just inserted at the whim of anyone on the project. Instead a process is used in which changes are first requested or
proposed and then they are decided upon in the context of their impact on the project” [Hull02:31]. It depends on the
nature of the project, who takes this decision, but in serious cases (changing business requirements) the
project management is normally involved. Like SWPM, Change Management is strongly influenced by
the “human factor”, as it implies many tricky trade-off decisions and is affected by (requirements) risks
and stakeholders. These aspects will be pursued in the chapters 4.4. and 5.

4 –STAKEHOLDERS AND REQUIREMENTS IN SOFTWARE PROJECTS

81

But Change Management involves also a lot of data and the administration of manifold dependencies
[Wiegers99:297ff]. Therefore Requirements Traceability is a supporting activity which deals with the storage
and administration of all relevant information about requirements relationships and their changes
[Macias01:62]. Ebert defines three relevant traceability relationships which have to be tracked [Ebert05:179ff]:

● Requirement–Requirement (“Horizontal”, even if different requirement levels are involved);
● Requirement–Other Product (“Vertical”: Related design modules, code, classes, test cases);
● Requirement–Source (Responsible stakeholder/s).

These many-to-many relationships have to be examined or even updated in case of a change (request)
[Hull02:141ff]. In big or difficult projects their administration can be quite complex, often a traceability
matrix is used for this purpose. Therefore a premise for Requirement Traceability are clearly identified,
numbered and hierarchically structured requirements and products (see 4.3.4, [Macias01:60f]).
Requirements Traceability is therefore normally supported by an own database and/or CASE-tool.

4.3.7. Requirements Engineering Good Practices

Wiegers defines in his textbook a “Requirements Bill of Rights” and a “Requirements Bill of Responsibilities” for
Software Customers [Wiegers99:27] – a kind of Code of Ethics (see 2.2.2) for Requirements
Engineering. He also presents the most comprehensive list about “Requirements Engineering Good
Practices” of all examined textbooks (more than 40 practices in seven categories), which is worth to be
summarised (as it will be addressed later) [Wiegers99:38f]:

(1) KNOWLEDGE: Train requirements analysts, Educate user representatives and managers about
requirements, Train developers about the application domain, Create a glossary.

(2) REQUIREMENTS MANAGEMENT: Define a change control process, Establish a change
control board, Perform change impact analysis, Trace each change to all affected work products, Baseline
and control versions of requirements documents, Maintain change history, Track requirements status,
Measure requirements stability, Use a requirements management tool.

(3) PROJECT MANAGEMENT: Select appropriate life cycle (Process Model), Base plans on
requirements, Renegotiate commitments, Manage requirements risks, Track requirements effort.

(4) ELICITATION: Vision and scope (document), Define requirements development procedure, Identify
user classes, Select “product champions”, Establish focus groups, Identify use cases, Hold JAD sessions,
Analyse user workflow, Define quality attributes, Examine problem reports, Reuse requirements.

(5) ANALYSIS: Draw context diagram, Create prototypes, Analyse feasibility, Prioritise requirements,
Model the requirements, Create a data dictionary, Apply Quality Function Deployment.

(6) SPECIFICATION: Adopt a Software Requirements Specification template, Identify sources of
requirements, Label each requirement, Record business rules, Create requirements traceability matrix.

(7) VERIFICATION: Inspect requirements documents, Write test case from requirements, Write a user
manual, Define acceptance criteria.

Other significant sources for “best practices” in Requirements Engineering are: [SomSaw97], [Hull02],
[LeffWid04]. A more academic perspective can be found in [Ebert05].

4 –STAKEHOLDERS AND REQUIREMENTS IN SOFTWARE PROJECTS

82

4.4. Significant risks related to Stakeholders and Requirements

Significant risks in software projects have been discussed in chapter 3.2.1 and it was already stated in
the introduction of chapter 4, that requirements-related tasks are one of the most critical activities in
software development. Many studies are quoted by various sources, all with one message: “Many of the
problems encountered in software development are attributed to shortcomings in the processes and practices used to gather,
document, agree on, and alter the products requirements … the problem areas might include information gathering,
unstated or implicit functionality, unfounded or uncommunicated assumptions, inadequately documented requirements, and
a casual requirements change process” [Wiegers99:4] (see also [Hull02:3f], [Ebert05:23ff]).

A specific problem with requirements errors is, that requirements are the foundation of the entire
development process, and the later an error is detected, the more it costs: “If requirements errors can be
fixed quickly, easily, and economically, we still may not have a huge problem” [LeffWid04:10]. In 1981 Boehm
“found that correcting a requirement error discovered after the product was in operation cost 68 times as much as correcting
an erroneous requirement during the requirements phase. More recent studies suggest this defect-cost amplification factor
can be as high as 200” [Wiegers99:15]. Therefore the listings about significant SE-risks (see 3.2.1) identify
requirements-related risks as one of the most important factors for software project failures (the Top-5-
list of DeMarco and Lister includes two requirement-issues: Specification breakdown and Scope creep).

(Requirements) Risk Management has to detect such risks, prioritise them (by probability and impact)
and address the most important risks early (see 3.2.2). So Requirements Management and Software
Project Management (SWPM) are intimately connected in fulfilling this “risky” task (see 4.3.1). Wiegers
states: “Because requirements play such a central role in software projects, the prudent project manager will identify
requirement-related risks early and control them aggressively” [Wiegers99:79]. Therefore a survey about significant
requirements- and stakeholder-related risks (from relevant textbooks) is given in the following sections.

Why is RE so risky? Cheng and Atlee state that the “challenges faced by the requirements-engineering community
are distinct from those faced by the general software-engineering community, because requirements reside primarily in the
problem space whereas other software artifacts reside primarily in the solution space” (see 4.3.2). Therefore several
consequences from this distinction “cause requirements engineering to be inherently difficult” [ChenAtl07]:

● “Requirements analysts start with ill-defined, and often conflicting, ideas … and must progress towards
a single, detailed, technical specification of the system … The requirements problem space is less
constrained than the software solution space … there are many more options to consider and decisions to
make about requirements”; “Taking into consideration environmental conditions significantly increases
the complexity of the problem at hand, since a system’s environment may be a combination of hardware
devices, physical-world phenomena, human (operator or user) behavior, and other software components.”;

● “Reasoning about the environment includes identifying not only assumptions about the normal behavior
of the environment, but also about possible threats or hazards”;

● “The resulting requirements artifacts have to be understood and usable by domain experts and other
stakeholders, who may not be knowledgeable about computing. Thus, requirements notations and
processes must maintain a delicate balance between producing descriptions that are suitable for a non-
computing audience and producing technical documents that are precise enough for …developers”

● “RE activities, in contrast to other SE-activities, may be more iterative, involve many more players who
have more varied backgrounds and expertise, require more extensive analyses of options, and call for
more complicated verifications of more diverse (e.g., software, hardware, human) components”

4 –STAKEHOLDERS AND REQUIREMENTS IN SOFTWARE PROJECTS

83

● Risks and problems primary related to stakeholders

Stakeholders – in particular Client Stakeholders – are one of the main reasons why the “human factor”
influences software development. Maciaszek states for the domain of Information Systems that they are
“social systems. They are developed by people (developers) for people (customers). The success of a software project is
determined by social factors – technology is secondary” [Macias01:4] (which corresponds with the already quoted
statement “The major problems of our work are not so much technological as sociological nature” [DeMaLi87:4]).

Maciaszek provides a list with reasons why projects fail at the customer end [Macias01:4]:

● Customer needs are misunderstood or not fully captured;
● Customer requirements change too frequently;
● Customers are not prepared to commit sufficient resources to the project;
● Customers do not want to cooperate with developers;
● Customers have unrealistic expectations;
● The system is no longer of benefit to customers.

Other sources mention the problem of “adversarial stakeholder relationships” among client stakeholders
[RoyceWa98:15f, 214], [DeMaLi03b:101]. Reasons for project-failures at the developer end are also well
known, but not in the specific focus of this thesis, even if Fröhlich strongly criticises software engineers
for commonly shifting the blame to the client [Fröhlich02:65]. Considering the ideas of chapter 3.2, the
following statement of Wiegers about Stakeholders in software projects is quite balanced:

“Nowhere more than in the requirements process do the interests of all the stakeholders in a software project
intersect. These stakeholders include customers, users, business or requirements analysts (people who gather and
document customer requirements and communicate them to the development community), developers, testers,
authors of user documentation, project managers, and customer managers.
Handled well, this intersection can lead to great products, happy customers, and fulfilled developers. Handled
poorly, this intersection is the source of misunderstanding, frustration, and friction that can undermine the quality
and business value of the final product” [Wiegers99:5]

● Risks and problems primary related to requirements

Maciaszek provides a list with “requirements risks” [Macias01:59], an adapted version of a similar list in
[SomSaw97:137ff]. A combination of both lists is given below:

● Technical risks (requirement is difficult to implement);
● Performance risks (requirement can adversely affect the response time of the system);
● Safety and security risks (requirement can expose the system to security beaches);
● Database integrity risks (requirement can cause data inconsistency);
● Development process risks (requirement calls for unconventional development methods);
● Implementation technology risks (requirement may require the use of unfamiliar technology);
● Schedule risks (requirement may be technically difficult and may threaten the development schedule);
● Political risks (requirement may prove difficult to fulfil for internal policy reasons);
● External risks (requirement implementation may involve external contractors, etc.)
● Legal risks (requirement is in conflict with current or upcoming laws, regulations, etc.);
● Volatility / Stability risks (requirement is likely to keep changing or evolving during development).

4 –STAKEHOLDERS AND REQUIREMENTS IN SOFTWARE PROJECTS

84

● Risks and problems related to the entire requirements process

“If your organization is serious about software success, it must accept that the days of sliding some vague
requirements and a series of pizzas under the door to the programming department are over” [Wiegers99:26]

Some of the risks in the last section point in the direction of the requirements process. So Wiegers calls
a section in his book “When bad requirements happen to nice people” and provides a list with risks from
“inadequate” requirements processes that threaten project success (“success can be defined as delivery of a
product that satisfies user expectations of functionality and quality at agreed-on cost and timeliness”) [Wiegers99:11]:

● Insufficient user involvement leads to unacceptable products;
● Creeping user requirements contribute to overruns and degrade product quality;
● Ambiguous requirements lead to ill-spent time and rework;
● Gold-plating by developers and users adds unnecessary features;
● Minimal specifications lead to missing key requirements;
● Overlooking the needs of certain user classes leads to dissatisfied customers;
● Incompletely defined requirements make accurate project planning and tracking

impossible.

Ebert compiled a list with typical requirements process risks [Ebert05:26ff], an extension of an earlier
article by him, Lawrence and Wiegers (“The Top Risks of Requirements Engineering” [LawWie01]):

● Overlooking crucial requirements;
● Modeling only functional requirements;
● Inadequate customer representation;
● Uncontrolled requirement changes;
● Representing requirements in the form of designs;
● Not inspecting or validating requirements;
● Attempting to perfect requirements (“Gold Plating”; before beginning construction.

Ebert also presents a list with requirement-related failures which are relevant for SWPM [Ebert05:68ff]:

● Ambiguous requirements;
● Changing requirements;
● Unstable product- or design-basis (in case of software evolution);
● Ad-hoc Requirements Management with unclear responsibilities;
● Gap between customer expectations and project scope;
● Insufficient customer management;
● Aggressive project definition with unachievable milestones;
● Superficial or inaccurate effort- and impact-estimations;
● Project plans not observed;
● Uncontrollable subcontracts with external suppliers.

Many of these risks can lead to the known “moving target syndrome” [Benn95:15], [Schach96:469f]. Therefore
requirements management and SWPM have to recognise early symptoms and address those problems.

4 –STAKEHOLDERS AND REQUIREMENTS IN SOFTWARE PROJECTS

85

● Requirements uncertainty and volatile requirements

Changing or volatile requirements are normal in Requirements Management (see 4.3.6), and
Sommerville states: “Requirements change is inevitable, because the business environment in which the software is used
continually changes—new competitors with new products emerge, and businesses reorganize, restructure, and react to new
opportunities. Furthermore, for large systems, the problem being tackled is usually so complex that no one can understand
it completely before starting system development. During system development and operational use, your stakeholders
continue to gain new insights into the problem, leading to changes in the requirements” [Sommer05:18].

Different types of volatile requirements are defined in [SomSaw97:249ff]: MUTABLE requirements (due
to changes in the environment), EMERGENT requirements (emerge as the system is designed and implemented),
CONSEQUENTIAL requirements (assumptions on how the system will be used turn out to be wrong),
COMPATIBILITY requirements (depend on other equipment or processes).

Requirements uncertainty can also become a big problem: “A key reason for project failures is insufficient
management of changing requirements during all stages of the project life cycle.” [EberMan05:553]. Important
questions – Which requirement level is affected? When does a change request occur? – have already
been addressed in chapter 4.3.6. The crucial question for Requirements Management, Risk Management
and SWPM is also: WHY do requirements change? Are there early warning signs? Ebert and Man have tried to
find root causes and early symptoms for requirements uncertainty and subsequent delays in software
projects (see figure 4.6) – and an absent vision about the project is a leading factor [EberMan05].

This field his highly unpredictable and full of “undiscovered ruins” [LeffWid04:91], so assume: “You will not
get change prediction 100% right and you will not be able to identify all volatile requirements” [SomSaw97:250].
Change Management has a “bureaucratic” side: Administration and tracing of change requests and
related requirements. But it is also a human-centred activity, full of tricky trade-off decisions which will
be discussed in chapter 5. Every project has its own nature and the Project Manager will have to find an
appropriate balance between “freezing” requirements and accepting reasonable changes even late in the
project to satisfy the customer. “During the development of stakeholder requirements there will be a period of rapid
and intense change. At this stage it is not sensible to have a formal change control process in place, because the situation is
too dynamic … However, at some point stability will begin to emerge and the requirements manager can determine when
the requirements are sufficiently stable to subject further changes to a more formal process” [Hull02:168].

Figure 4.6: Root causes of delays from requirement uncertainty [EberMan05:556]

5 – REQUIREMENT TRADE-OFFS AMONG CLIENT STAKEHOLDERS

86

5. REQUIREMENT TRADE-OFFS
AMONG CLIENT STAKEHOLDERS

“You can specify a product vaguely,
but you can’t implement it vaguely”

[DeMaLi03b:101]

Software Project Management (SWPM) is full of trade-off decisions (see chapter 3), and many of them
are directly related to requirements. Already in their influential paper about “Theory-W”, Boehm and
Ross addressed these decisions (see figure 3.4) and proposed the (meanwhile well-known) “WinWin-
approach” to satisfy all stakeholders [BoehRos89]. Their negotiation-strategy has (basically) four steps:

(1) Separate the people from the problem.
(2) Focus on interests, not positions.
(3) Invent options for mutual gain.
(4) Insist on using objective criteria.

In 2000, Boehm addressed these problems again, and presented a more extensive “Model-Clash Spiderweb
diagram” which identifies main trade-offs and conflicting interests between four groups of stakeholders:
Users, Acquirers, Maintainers and Developers (see figure 5.1). Most of these decisions are relevant for
Requirements Management and can influence the requirement risks discussed in chapter 4.4. Therefore
SWPM and Requirements Management have to cooperate to avoid requirement risks induced by such
trade-offs, in particular for decisions which have to be made among adversarial client stakeholders.

Figure 5.1: Model-Clash Spiderweb diagram [BoehPort00:121]

5 – REQUIREMENT TRADE-OFFS AMONG CLIENT STAKEHOLDERS

87

The importance of stakeholders and their interests for the discipline of Requirements Engineering was
recognised by the last (14th) IEEE Requirements Engineering Conference (RE06) in September 2006, which
was focused on this inseparable relation between stakeholders and requirements [GlinzWie07:18]. Its
title “Understanding the stakeholders' desires and needs” addressed the fact, that Requirements Engineering
should primarily satisfy client stakeholders. Wiegers states: “Nowhere more than in the requirements process do
the interests of all the stakeholders in a software project intersect” [Wiegers99:5]. So more and more sources state
that “Stakeholders are a recognized source of significant software project risk” [Woolr07:36].

Therefore textbooks about Requirements Engineering cover by default trade-off-issues. There are
technical and quality trade-offs, concerning decisions about conflicting quality attributes (e.g. Flexibility
vs. Efficiency, etc.) [Wiegers99:204ff]. There are also trade-offs with regard to conflicting, overlapping or
“questionable” requirements – user- or system-requirements. All this is not in the focus of this thesis.

But there is a third kind of requirements trade-offs which is increasingly addressed by scientific sources
and which is the final focus of this thesis: Trade-offs among client stakeholders concerning the
BUSINESS REQUIREMENTS, less diplomatic called “CONFLICTING GOALS”. These issues are
more complicate than the others and affect the entire project much more than the “details” mentioned
above. In the worst case they can challenge the entire project and SWPM can get a very rough task in
such an environment. One paper that addresses these questions – which are strongly related to the
“human factor” in SE – was written by DeMarco and Lister. They have found five “core risks” for
software projects (see 3.2.1), and one risk which was covered in-depth is the so called “specification
breakdown: failure to achieve stakeholder consensus on what to build”:

“In the past, IT projects were most often tasked to satisfy a single user’s requirements. They were relatively easy,
but sadly we finished all such projects years ago. Today a new IT project is likely to affect several different
stakeholders from different parts of the organization, in different locations, with different interests, and little or no
common stake. Perhaps the biggest core risk is that these stakeholders will fail to concur on project goals. Our
data leads us to expect this to happen to a disruptive extent on approximately one project out of seven.

Failure to achieve total concurrence would be no more than an annoyance if all could agree to disagree. We would
end up delivering products that satisfied different stakeholders to differing degrees, with no one left completely out.
Unfortunately, nonconcurring projects seldom play out this way. The problem is that organizational culture might
require all the stakeholders to cooperate, or at least seem to cooperate. This does not make dissent go away, but
forces it underground. And dissent always exists—count on it. New IT products introduce change into
organizations, and change is never uniform in its impact on different constituencies. Our basic rule is Every time
an IT product is delivered, somebody gains power and somebody else loses power. Both the power gainers and the
power losers are, by definition, stakeholders. You can expect some stakeholders on any complex project to be
adversaries. They might not be allowed to act adversarially, but many other possibilities are open to them.”
[DeMaLi03b:99ff]

No other source addressed this problem as direct as this paper, even if [Woolr07:43] states (with a
reference to [DeMaLi03b]): “Although several stakeholders might react similarly, some might be more able to derail
the project – by refusing to make themselves available, withholding approval, using their power to force decisions and
priorities, or adding gratuitous requirements to drag the project down”. Software project managers will find
themselves in an uncomfortable situation when they do not identify this problem and related risks right
in time. And not all of them are as brave as Booch who advocates “Speaking truth to power” [Booch07].

5 – REQUIREMENT TRADE-OFFS AMONG CLIENT STAKEHOLDERS

88

These problems with conflicting business requirements among client stakeholders are covered by
textbooks about Requirements Engineering more diplomatic: Wiegers ties this issue to the excellent
idea of a Vision and Scope Document for the project (see 4.2) and states: “The requirements will never
stabilize if the project stakeholders do not share a common understanding of the business needs the product must satisfy
and the benefits it will provide” [Wiegers99:96]. Therefore he recommends a clear project vision, which
points in the direction of DeMarco & Lister who state: “Failure to concur is clearly a political matter, not a
technical matter. ... Projects that can’t achieve a signoff on the boundary census by the approximate 15 percent point
probably need to be cancelled” [DeMaLi03b:101].

Sommerville and Sawyer also mention the topic and recommend “Plan for conflicts and conflict resolution”
[SomSaw97:125ff] and “Be sensitive to organisational and political considerations” [SomSaw97:69ff]:

“In spite of years of experience, many organisations still do not allow enough time to resolve requirements
conflicts. The reason for this is, perhaps, that conflicts are considered as some kind of ‘failure’ and it is not
accepted to plan for failure. This view is completely wrong. Conflicts are natural and inevitable. They reflect the
fact that different stakeholders in the system have different needs and priorities.” [SomSaw97:125]

“If you understand organisational politics, you are more likely to be able to understand the real rationale for some
requirements … When eliciting requirements, there are a number of things you should watch for as these suggest
organisational and political influences on the requirements: Conflicting goals … Loss or transfer of responsibility
… The organisational culture … Management attitudes and the morale of the organisation … Departmental
differences” [SomSaw97:69f]

One particular stakeholder problem in the context of Software Reengineering and Evolution is
addresses by Yourdon when stating possible rejections of such a new system by the maintenance
programmers of the current legacy system:

“I don’t need any help: Many maintenance programmers are perfectly satisfied with the level or work the are
doing and are sincerely convinced that they are as productive as could be reasonable expected. … Don’t dare
touch my program: From a negative perspective, we might argue that the program represents job security … The
old ways are better” [Your92:252]

Yourdon assumes, that such tricky stakeholder relations are often only resolvable when “the sole living
expert” retires or quits. Or when the senior management has finally decided to stop being “held hostage to
the whims of a single indispensable person” [Your92:258f]. The same cause for conflicting goals in context of
Software Reengineering and Evolution arises, when parts of the senior management feel strongly
connected with a legacy system, because they were (or still are) responsible for its development.

So in software engineering practice it is well known, how conflicting interests and trade-off conflicts
among client stakeholders can affect the entire project or how they make Business Requirements
“volatile”. As shown above, some academic sources already cover this issue, but there is still no
common classification about such conflicts. Some sources address these problems with “prioritisation”-
approaches [Ebert05:183ff] and project scope management. At least it is recommended to make a
business case or vision document on which everybody has to agree [Wiegers99:95ff], [SomSaw97:49ff].
Ebert and Gärtner also address the management-related aspects of this topic and recommend best
practices how to deal and negotiate with such stakeholders [Gärtner04:78ff], [Ebert05:60ff]. Chapter 6
provides an overview about useful considerations and tools for software project managers who have to
handle “volatile” Business Requirements due to trade-offs among client stakeholders.

6 – CONCLUSIONS

89

6. CONCLUSIONS

“Wir stehen selbst enttäuscht und sehn betroffen, den Vorhang zu und alle Fragen offen.”
(Bertolt Brecht, Der gute Mensch von Sezuan, Epilog [Brecht53])

The focus of this thesis covers a topical and complex question in Software Project Management
(SWPM) which is currently not widely covered by academic sources:

How to handle volatile business requirements induced by trade-offs
(or even conflicts) among client stakeholders?

Therefore chapter 3 underlined the manifold challenges that SWPM has to face, including many trade-
off decisions – often influenced by the external environment (see 3.2). Chapter 4 introduced the
concepts of Stakeholders, Requirements and Requirements Engineering as well as the strong relation
between Requirements Management and SWPM. The main risks and problems in Requirements
Engineering where addressed in chapter 4.4. Chapter 5 finally combined those risks with trade-offs
among client stakeholders in Requirements Engineering on the level of business requirements.
Therefore the following conclusions provide a helpful overview for software project managers who
have to face similar problems. They are split in two sections:

● Contradictions that SWPM has to consider when facing trade-offs or conflicts
● A Toolbox for software project managers when facing trade-offs or conflicts

6.1. Contradictions that Software Project Management
has to consider when facing trade-offs or conflicts

● Decision making: System godfather vs. democratic

Karnovsky strongly advocates to find and fix the “godfather” of the project (German: “Pate”), thus a
high-rank manager on the client side who promotes the project and to whom the project management
has direct access – and who can take all critical decisions if necessary. Many other sources recommend
a collaborative working style when deciding about requirements (e.g. Gärtner, Wiegers, Ebert).

Both styles can degenerate (leading to another contradiction: Autocratic versus anarchy). Both styles
have advantages and disadvantages: System godfather is the easy way and enable fast decisions. But it
covers tensions and conflicts, so neglected or adversarial (negative) stakeholders may find other ways to
express their opinion and work against the project. This contradiction can be already decided by the
contract and the internal structures at the client side, but the respective side-effect will be the same.

6 – CONCLUSIONS

90

● Taking sides: Absolute truth vs. tactics

A delicate question: How much honesty is appropriate when facing internal conflicts among client
stakeholders? Can the PM and his team start to collaborate with parts of the client stakeholders to
protect the project? Which influences has this “taking sides” for the relationships to other stakeholders?
Managers often refer to Machiavelli [Machia1532] who recommended partial honesty. Other sources
plea for a neutral and collaborative role. SWPM can get strongly involved in internal conflicts when
starting to collaborate with one side, but project success may require doing so.

● Sophisticated (detailed) organisation and documentation vs. agile methods

This issue was already discussed in chapter 2.3. Figure 2.14 gives an overview about “home grounds” of
each approach. Anyway, agile methods always clame to be more appropiate for volatile requirements,
but they have another problem: Who is the client stakeholder that works with the development team?
This person has much more influence on the project than all other “relevant” stakeholders and may
come in trouble when “his” (or “her”) decissions are not supported by the others.

● Death March projects: Surrender vs. fight it out

DeMarco and Lister recommended stopping a project when a certain percentage of agreement about
the project goals is not achievable. Wiegers recommend a Vision and Scope document but does not say
what to do when this document is not achievable. SWPM has to consider carefully when to stop a
project and which measures are tried before to restart or protect the project (also a finance-issue).

● Ebert: Paralyse vs. Uncertainty

Some sources recommend starting a project before requirements problems prevent everybody from
doing something [EberMan05]. In the same paper, uncertainties are addressed which could be prevented
when starting later. So the question is: When is the project determined enough to start?

● Software Reengineering and Evolution – a particular problem

As exemplified in chapter 5 (and anticipated in chapter 2.4.3), projects which build up on the
reengineering or evolution of existing legacy systems face particular problems. There may be supporters
of the legacy system (technical staff and management staff) which act adversarial to the “new” project.
Also related “Business Process Reengineering” may affect client stakeholders who therefore act
adversarial on the new software project.

● What can Software Project Managers learn from other Engineers?

Other engineering disciplines face similar problems with complex projects, abstract requirements and
trade-offs among their client stakeholders (e.g. architects). What can we learn from them?

6 – CONCLUSIONS

91

6.2. Toolbox: Tools that Software Project Management
can use when facing trade-offs or conflicts

● Apply the WinWin-approach for negotiations [BoehRos89], [Gärtner04:78ff], [Ebert05:60ff]

● Apply the Project Environment Analysis (“Projektumfeldanalyse – PUA”) at an early

stage, in particular for requirements and related stakeholders (see chapter 3.2.3)

● Apply Risk Management to Requirements Management for 5 to 10 important risks

● Use prototyping to make the new product “tangible” and to convince or overcome

adversarial stakeholders

● Search for an appropriate Software Development Process Model for the specific project

environment and tailor it accordingly (see 2.2.6 and 2.3)

● In complex, big and risky environments: Install a steering-committee that takes binding

decisions (even if it is bureaucratic it will help to make conflicts more transparent)

● If desired, use collaborative techniques like stakeholder-meetings, workshops and

conferences

● Insist on a Vision and Scope document (or some other form of general agreement about

the main goals and limits of the project)

● Use Viewpoints to understand the views of different stakeholders and find compromises

● Include also relations between requirements and negative stakeholders (who oppose

this requirement) in Requirements Tracebility

● Make tactical games from negative client stakeholders transparent

7 – REFERENCES

92

7. REFERENCES

7.1. Reference books

[AmNa05] Ambler, Scott W.; Nalbone John; Vizdos Michael J.: The Enterprise Unified Process:

Extending the Rational Unified Process, 2005, Prentice Hall PTR

[ApplAus03] Applegate, Lynda M.; Austin Robert D.; McFarlan F. Warren: Corporate Information
Strategy and Management, 6th (International) ed.: 2003 (1st ed.: 1983), McGraw-Hill

[August05] Augustine, Sanjiv: Managing Agile Projects, 2005, Prentice Hall PTR

[Balzert96] Balzert, Helmut: “Lehrbuch der Software-Technik, Bd. 1.: Software-Entwicklung“ (Volume 1),
2nd ed.: 2000 (1st ed. 1996), Spektrum Akademischer Verlag, Heidelberg

[Baumer02] Baumer, Thomas: Handbuch Interkulturelle Kompetenz, 2002, Orell Füssli Verlag, Zürich

[Beck00] Beck, Kent (2nd ed. with: Andres Cynthia): Extreme Programming Explained – Embrace
Change (Part of “The XP Series”), 2nd (revised) ed.: 2005 (1st ed.: 2000), Addison Wesley,
(German title: Extreme Programming: Die revolutionäre Methode für Softwareentwicklung in
kleinen Teams, 2003, Addison Wesley)

[Bénard92] Bénard, Christian: Les 9 points clés de la conduite d'un projet informatique, 1992, Les Éditions
d'Organisation, Paris

[Benn95] Bennatan, E. M.: Software Project Management – A Practitioner's Approach, 2nd ed.: 1995 (1st
ed.: 1992), McGraw-Hill (UK)

[Boehm89] Boehm, Barry W.: Software Risk Management, 1989, IEEE Computer Society Press

[Brooks95] Brooks, Frederick P.: The Mythical Man-Month: Essays on Software Engineering, 2nd strongly
revised "20th anniversary"-edition (including the 1987-essay "No Silver Bullet - essence and
accidents of software engineering"): 1995 (1st ed. 1975), Addison-Wesley

[Brown92] Brown, Ann (Ed.): Creating a Business-based IT Strategy, UNICOM-Series: Applied
Information Technology, Vol. 14, 1992, Chapman & Hall, London et. al.

[Brown98] Brown, William J. et al.: AntiPatterns – Refactoring Software, Architectures and Projects in Crisis,
1998, John Wiley & Sons, New York (German title: AntiPatterns – Entwurfsfehler erkennen
und vermeiden, 2004, mitp-Verlag, Bonn)

[Cockb01] Cockburn, Alistair: Agile Software Development, 2nd ed.: 2006 (1st ed.: 2001), Addison
Wesley (German title: Agile Software-Entwicklung, 2003, mitp-Verlag, Bonn)

[Daven97] Davenport, Thomas H.: Process Innovation – Reengineering Work through Information
Technology, Reprint 1997 (1st ed.: 1993), Harvard Business School Press, Boston

[DeMaLi87] DeMarco, Tom; Lister Timothy: Peopleware – Productive Projects and Teams, 1987, Dorset
House Publishing, New York (German title: Wien wartet auf Dich! – Der Faktor Mensch im
DV-Management, 1991, Carl Hanser Verlag, München-Wien)

7 – REFERENCES

93

[DeMarco97] DeMarco, Tom: Warum ist Software so teuer? ... und andere Rätsel des Informationszeitalters,

1997, Carl Hanser Verlag, München-Wien (English title: Why does software cost so much?
And other puzzles of the information age, 1995, Dorset House Publishing, New York)

[DeMarco01] DeMarco, Tom: Spielräume - Projektmanagement jenseits von Burn-out, Stress und Effizienzwahn,
2001, Carl Hanser Verlag, München-Wien (English title: Slack – Getting Past Burnout,
Busywork, and the Myth of Total Efficiency, 2001, Random House)

[DeMaLi03a] DeMarco, Tom; Lister Timothy: Bärentango – Mit Risikomanagement Projekte zum Erfolg
führen, 2003, Carl Hanser Verlag, München-Wien (English title: Waltzing with Bears –
Managing Risk on Software Projetcs, 2003, Dorset House Publishing, New York)

[Drucker77] Drucker, Peter Ferdinand: People and Performance – The Best of Peter Drucker on Management,
1977, Heinemann, London

[Ebert05] Ebert, Christof: Systematisches Requirements Management – Anforderungen ermitteln, spezifizieren,
analysieren und verfolgen, 2005, dpunkt.verlag; Heidelberg

[EssMey03] Essigkrug, Andreas; Mey Thomas: Rational Unified Process kompakt, 2003, Spektrum
Akademischer Verlag, Heidelberg-Berlin

[Fairley85] Fairley, Richard: Software Engineering Concepts, McGraw-Hill, 1985

[Fleissner96] Fleissner, Peter; Hofkirchner Wolfgang; Müller Harald; Pohl Margit; Stary Christian: Der
Mensch lebt nicht vom Bit allein …, 2nd ed.: 1997 (1st: 1996), Peter Lang GmbH –
Europäischer Verlag der Wissenschaften, Frankfurt am Main et. al.

[Fröhlich02] Fröhlich, Adrian W.: Mythos Projekt – Projekte gehören abgeschafft. Ein Plädoyer, 2002, Galileo
Press, Bonn

[Gamma94] Gamma, Erich; Helm Richard; Johnson Ralph; Vlissides John: Design Patterns – Elements
of Reusable Object-Oriented Software, 1st ed.: 1994, Addison-Wesley

[Gärtner04] Gärtner, Johannes: Realistisches Projektdesign – Projektarbeit in einer wenig berechenbaren Welt,
2004, vdf Hochschulverlag, ETH Zürich

[Gareis04] Gareis, Roland: Happy Projects!, 3rd (German) ed.: 2006 (1st ed.: 2003), Manz Verlag, Wien

[GerlGerl05] Gerlich, Rainer; Gerlich Ralf: 111 Thesen zur erfolgreichen Softwareentwicklung, 2005, Springer
Verlag, Berlin-Heidelberg

[GheJaz03] Ghezzi, Carlo; Jazayeri Mehdi; Mandrioli Dino: Fundamentals of Software Engineering, 2nd
(International) ed.: 2003 (1st ed.: 1991), Pearson Education @ Prentice-Hall

[Glass98] Glass, Robert L.: Software Runaways – Lessons Learned from Massive Software Project Failures,
1998, Prentice Hall PTR

[Hall92] Hall, P. A. V. (Ed.): Software Reuse and Reverse Engineering in Practice, UNICOM-Series:
Applied Information Technology, Vol. 12, 1992, Chapman & Hall, London et. al.

[HamCha94] Hammer, Michael; Champy James: Reengineering the Corporation: A manifesto for business
revolution, 1994, Harper Business, New York

7 – REFERENCES

94

[Herkner91] Herkner, Werner: Lehrbuch Sozialpsychologie, 5th (revised) ed.: 1991 (1st: 1975: Einführung in
die Sozialpsychologie), Verlag Hans Huber, Bern et. al.

[HofWeis01] Hoffman, Daniel M.; Weiss David M. (Eds.): Software Fundamentals – Collected Papers by
David L. Parnas, 2001, Addison-Wesley

[HorHill89] Horowitz, Paul; Hill Winfield: The Art of Electronics, 2nd (revised) ed.: 1989 (1st: 1980),
Cambridge University Press

[Hull02] Hull, Elizabeth; Jackson Ken; Dick Jeremy: Requirements Engineering, 2002, Springer
Verlag, London

[JacoBo99] Jacobson, Ivar; Booch Grady; Rumbaugh James: The Unified Software Development Process,
1999, Addison Wesley

[Kappel04] Kappel, Gerti; Pröll Birgit; Reich Siegfried et. al. (Eds:): Web Engineering – Systematische
Entwicklung von Web-Anwendungen, 2004, dpunkt Verlag, Heidelberg

[Karnov02] Karnovsky, Hans: Grundlagen des Projektmanagements – Ein Leitfaden für die Projektpraxis,
2002, Paul Bernecker Verlag, Wien

[KrollKru03] Kroll, Per; Kruchten Philippe: The Rational Unified Process made easy: a practitioner's guide to
the RUP, 2003, Addison-Wesley @ Pearson Education

[Kruchten04] Kruchten, Philippe: The Rational Unified Process: an introduction, 3rd ed.: 2004 (1st ed.: 2003),
Addison-Wesley @ Pearson Education

[LanBrau85] Langmaack, Barbara; Braune-Krickau Michael: Wie die Gruppe laufen lernt –Anregungen zum
Planen und Leiten von Gruppen, 1985, Beltz Verlag, Weinheim-Basel

[LeffWid04] Leffingwell, Dean; Widrig Don: Managing Software Requirements – A use case approach, 2nd
ed.: 2004 (1st ed.: 2003), Addison-Wesley @ Pearson Education

[Macias01] Maciaszek, Leszek A.: Requirements Analysis and System Design, 2nd ed.: 2006 (1st ed.: 2001),
Addison-Wesley @ Pearson Education

[MarcSuc03] Marchesi, Michele; Succi Giancarlo; Wells Don; Williams Laurie: Extreme Programming
Perspectives (Part of “The XP Series”), 2003, Addison-Wesley @ Pearson Education

[Mayr05] Mayr, Herwig: Projekt Engineering – Ingenieurmäßige Softwareentwicklung in Projektgruppen, 2nd
(revised) ed.: 2005, Fachbuchverlag Leipzig @ Carl Hanser Verlag

[MessTull99] Messnarz, Richard; Tully Colin: Better Software Practice for Business Benefit – Principles and
Experience, 1999, IEEE Computer Society Press

[Molcho94] Molcho, Samy: Körpersprache, Special edition 1994, Mosaik Verlag, München

[PatzRatt04] Patzak, Gerold; Rattay Günter: Projektmanagement – Leitfaden zum Management von Projekten,
Projektportfolios und projektorientierten Unternehmen, 4th (revised) ed.: 2004, Linde, Wien

[PoloPiat03] Polo, Macario; Piattini Mario; Ruiz Francisco: Advances in software maintenance management,
2003, Idea Group Publishing

7 – REFERENCES

95

[Raymond99] Raymond, Eric S.: The Cathedral and the Bazaar - Musings on Linux and Open Source by an
Accidental Revolutionary, 1999, O'Reilly Media

 Online (regularly revised): www.catb.org/~esr/writings/cathedral-bazaar

[Robbins03] Robbins Stephen P.: Organizational Behaviour, 10th ed.: 2003, Prentice Hall

[RobHun03] Robbins, Stephen P.; Hunsaker Phillip L.: Training in InterPersonal Skills: TIPS for Managing
People at Work, 3rd ed.: 2003 (1st ed.: 1989), Prentice Hall

[Rothlauf06] Rothlauf, Jürgen: Interkulturelles Management, 2nd (revised) ed.: 2006, Oldenburg
Wissenschaftsverlag, München

[RoyceWa98] Royce, Walker (not to mistake for his father Winston W. Royce): Software Project
Management – A unified Framework, 1998, Addison-Wesley

[Schach96] Schach, Stephen R.: Classical and Object-Oriented Software Engineering, 3rd ed.: 1996 (Earlier
Editions: Software Engineering, 1990), IRWIN @ McGraw-Hill

[Shaw96] Shaw, Mary; Garlan David: Software Architecture – Perspectives on an Emerging Discipline,
1996, Prentice Hall

[SomSaw97] Sommerville, Ian; Sawyer Pete: Requirements Engineering – A good practice guide, 1997, John
Wiley & Sons, Chichester et. al.

[Sommer06] Sommerville, Ian: Software Engineering, 8th ed. in German: 2007 (8th English ed.: 2006, 1st
English ed. 1982), Addison-Wesley (Note: All citations refer to the German edition)

[Spreng00] Sprenger Reinhard K.: Aufstand des Individuums – Warum wir Führung komplett neu denken
müssen, 2nd ed.: 2001 (1st ed.: 2000), Campus Verlag, Frankfurt New York

[StepRose03] Stephens, Matt; Rosenberg Doug: Extreme Programming Refactored - The Case against XP,
2003, APress

[Thorp98] Thorp, John: The Information Paradox: Realizing the business benefits of Information Technology,
1998, McGraw-Hill

[Thun81] Schulz von Thun, Friedemann: Miteinander Reden 1: Störungen und Klärungen – Allgemeine
Psychologie der Kommunikation, 41st ed.: 2005 (1st ed.: 1981), Rowohlt Taschenbuchverlag,
Reinbek bei Hamburg

[Thun89] Schulz von Thun, Friedemann: Miteinander Reden 2: Stile, Werte und
Persönlichkeitsentwicklung – Differentielle Psychologie der Kommunikation, 25th ed.: 2005 (1st ed.:
1989), Rowohlt Taschenbuchverlag, Reinbek bei Hamburg

[Thun98] Schulz von Thun, Friedemann: Miteinander Reden 3: Das "innere Team" und situationsgerechte
Kommunikation – Kommunikation, Person, Situation, 14th ed.: 2005 (1st ed.: 1998), Rowohlt
Taschenbuchverlag, Reinbek bei Hamburg

[ThuRup00] Schulz von Thun, Friedemann; Ruppel Johannes; Stratmann Roswitha: Miteinander Reden:
Kommunikationspsychologie für Führungskräfte, 2nd ed.: 2001 (1st ed.: 2000), Rowohlt
Taschenbuchverlag, Reinbek bei Hamburg

7 – REFERENCES

96

[Versteeg00] Versteegen, Gerhard: Projektmanagement mit dem Rational Unified Process, 2000, Springer
Verlag, Berlin Heidelberg

[Wein04] Weinberg, Gerald M.: Die Psychologie des Programmierers – Seine Persönlichkeit, sein Team, sein
Projekt, 2004, mitp-Verlag, Bonn (English title: The Psychology of Computer Programming,
1998, Dorset House Publishing, New York – 25th Anniversary edition)

[Wiegers99] Wiegers, Karl E.: Software Requirements, 1999, Microsoft Press (German edition: 2005)

[YangWa03] Yang, Hongji; Ward Martin: Successful Evolution of Software Systems, 2003, Artech House
Publishers, London Boston

[Your92] Yourdon, Edward: Decline & Fall of the American Programmer, 1992, Yourdon Press @
Prentice Hall PTR, Englewood Cliffs

[ZuserGre04] Zuser, Wolfgang; Grechenig Thomas; Köhle Monika: Software-Engineering mit UML und
dem Unified Process, 2nd (revised) ed.: 2004 (1st ed.: 2001), Pearson Studium, München

7.2. Proceedings, papers and articles

[Bauer71] Bauer, Friedrich L.: “Software Engineering”, In: Information Processing 71 – Proceedings of IFIP
Congress 71 (23rd – 28th August 1971, Ljubljana, Yugoslavia), 1972, North-Holland
Publishing Co., Amsterdam, pp. 530-538

 (Reprinted l972/75 in “Advanced Course in Software Engineering” by Springer Verlag, Berlin)

[Bauer93] Bauer, Friedrich L.: “Software Engineering – Wie es begann”, In: Informatik Spektrum, Springer
Verlag, Vol. 16 (1993), Nr. 5, October 1993, pp. 259–260

[BiffHein05] Biffl, Stefan; Heindl Matthias et. all: „RMVU – Skriptum zur Lehrveranstaltung
Risikomanagement VU“, Lecture notes and slides: Institute of Software Technology and
Interactive Systems (IFS) at TU Wien (http://qse.ifs.tuwien.ac.at), 2005

[Boehm76] Boehm, Barry W.: “Software Engineering”, In: IEEE Transactions on Computers, Vol. C-25
(1976), Nr. 12, December 1976, pp. 1226-1241

[Boehm84] Boehm, Barry W.: “Verifying and Validating Software Requirements and Design Specifications”,
In: IEEE Software, Vol. 1 (1984), Nr. 1, January 1984, pp. 75-88

[Boehm88] Boehm, Barry W.: “A Spiral Model of Software Development and Enhancement”, In: IEEE
Computer, Vol. 21 (1988), Nr. 5, May 1988, pp. 61-72

[BoehRos89] Boehm, Barry W.; Ross Rony: “Theory-W Software Project Management: Principles and
Examples”, In: IEEE Transactions on Software Engineering, Vol. 15 (1989), Nr. 7, July 1989,
pp. 902-916

[Boehm02] Boehm, Barry W.: “Get Ready for Agile Methods, with Care”, In: IEEE Computer, Vol. 35
(2002), Nr.1, January 2002, pp. 64-69

[Boehm03] Boehm, Barry W.: “Agility through Discipline: A Debate” (Kent Beck vs. Barry Boehm), In:
IEEE Computer, Vol. 36 (2003), Nr.6, June 2003, pp. 44-46

7 – REFERENCES

97

[BoehPort00] Boehm, Barry W.; Port Dan; Al-Said Mohammed: “Avoiding the Software Model-Clash
Spiderweb”, In: IEEE Computer, Vol. 32 (2000), Nr.11, November 2000, pp. 120-122

[BoehTur03] Boehm, Barry W.; Turner Richard: “Using Risk to Balance Agile and Plan-Driven Methods”,
In: IEEE Computer, Vol. 36 (2003), Nr.6, June 2003, pp. 57-66

[BoehTur05] Boehm, Barry W.; Turner Richard: “Management Challenges to Implementing Agile Processes in
Traditional Development Organizations”, In: IEEE Software, Vol. 22 (2005), Nr.5,
September/October 2005, pp. 30-39

[Boehm06] Boehm, Barry W.: “A View of 20th and 21st Century Software Engineering”, In: Proceedings of
the 28th ICSE, May 2006, pp. 12-29

[Booch07] Booch, Grady: “Speaking Truth to Power”, In: IEEE Software, Vol. 24 (2007), Nr. 2,
March/April 2007, pp. 12-13

[Byrne92] Byrne, Eric J.: “A Conceptual Foundation for Software Re-engineering”, In: Proceedings for the
Conference on Software Maintenance, 1992, IEEE, pp. 226-235

[ChenAtl07] Cheng, Betty H.C.; Atlee Joanne M.: “Research Directions in Requirements Engineering”, In:
Proceedings of the IEEE Future of Software Engineering Conference (FOSE'07), 2007

[ChiCo90] Chikofsky, Elliot J.; Cross James H. II: “Reverse Engineering and Design Recovery - a
Taxonomy”, In: IEEE Software, Vol. 7 (1990), Nr.1, January 1990, pp. 13-17

[Cox00] Cox, Alan: “Dear Mr Brooks, or: Software engineering in the free software world”, Talk given at
LinuxTag (LinuxDay) July 2000, Stuttgart (Repeated on the 13th Nov. 2000 at TU Wien)

 Online: http://ftp.linux.org.uk/pub/linux/alan/Talks/OGG/transcript.txt

[DeMaLi03b] DeMarco, Tom; Lister Timothy: “Risk Management during Requirements”, In: IEEE
Software, Vol. 20 (2003), Nr. 5, September/October 2003, pp. 99-101
Online: www.systemsguild.com/pdfs/s5req.lo%201.pdf

[EberMan05] Ebert, Christof; Man Jozef De: „Requirements Uncertainty: Influencing Factors and Concrete
Improvements”, In: Proceedings of the 27th International Conference on Software Engineering (ICSE
2005), pp. 553-560

[Ebert07] Ebert, Christof: “Open Source Drives Innovation”, In: IEEE Software, Vol. 24 (2007), Nr. 3,
May/June 2007, pp. 105-109

[Glass06] Glass, Robert L.: “Greece vs. Rome: Two Very Different Software Cultures”, In: IEEE Software,
Vol. 23 (2006), Nr. 6, November/December 2006, pp. 111 -112

[GlinzWie07] Glinz, Martin; Wieringa, Roel J.: “Stakeholders in Requirements Engineering“, In: IEEE
Software, Vol. 24 (2007), Nr. 2, March/April 2007, pp. 18-20

[LarBas03] Larman, Craig; Basili Victor R.: "Iterative and Incremental Development: A Brief History", In:
IEEE Computer, Vol. 36 (2003), Nr. 6, June 2003, pp. 47-56

[LawWie01] Lawrence, Brian; Wiegers Karl; Ebert Christof: “The Top Risks of Requirements
Engineering”, In: IEEE Software, Vol. 18 (2001), Nr. 6, Nov./Dec. 2001, pp. 62-63

7 – REFERENCES

98

[Lister97] Lister, Tim: “Risk Management Is Project Management for Adults”, In: IEEE Software, Vol. 14
(1997), Nr. 3, May/June 1997, pp. 20, 22

[Mahoney04] Mahoney, Michael S.: “Finding a History for Software Engineering”, In: Annals of the History of
Computing, IEEE Computer Society, Vol. 26 (2004), Nr. 1, Jan/March 2004, pp. 8-19

[MikHeis06] Mikulovic Vesna, Heiss Michael: “’How do I know what I have to do?’- The Role of the Inquiry
Culture in Requirements Communication for Distributed Software Development Projects”, In:
Proceedings of the 28th International Conference on Software Engineering (ICSE 2006), pp. 921-925

[NATO68] Naur, Peter; Randell Brian (Eds.): "Software Engineering: Report on a conference sponsored by the
NATO SCIENCE COMITTEE (Garmisch, Germany, 7th to 11th October 1968)", NATO
Scientific Affairs Division, January 1969, Brussels. Online:
http://homepages.cs.ncl.ac.uk/brian.randell/NATO (Including the two original
NATO-reports from 1968 and 1969 as well as photographs of participants and sessions)

[RoyceWi70] Royce, Winston W. (not to mistake for his son Walker Royce): “Managing the Development
of Large Software Systems”, In: Proceedings of the IEEE WESCON, August 1970, pp. 1-9

[Sommer05] Sommerville, Ian: “Integrated Requirements Engineering: A Tutorial”, In: IEEE Software, Vol.
22 (2005), Nr. 1, January/February 2005, pp. 16-23

[Tomic94] Tomic, Marijana: “A possible Approach to Object-Oriented Reengineering of Cobol programs”, In:
ACM SIGSOFT Software Engineering Notes, Vol. 19 (2004), Nr. 2, April 1994, pp. 29-34

[Woolr07] Woolridge, R.W.; McManus D.J.; Hale J.E.: “Stakeholder Risk Assessment: An
Outcome-Based Approach”, In: IEEE Software, Vol. 24 (2007), Nr. 2, March/April
2007, pp. 36-45

7 – REFERENCES

99

7.3. Standards and further online references

[CC2005] IEEE-CS/ACM Joint Task Force for Computing Curricula: Computing Curricula 2005 –
The Overview Report covering undergraduate degree programs in Computer Engineering, Computer
Science, Information Systems, Information Technology, Software Engineering (A volume of the
Computing Curricula Series), 30th September 2005
Online: http://computer.org/curriculum and www.acm.org/education/curricula.html

[CMMI06] Software Engineering Institute (SEI), Carnegie Mellon University (CMU): Capability
Maturity Model® Integration (CMMI) for Development (Version 1.2), August 2006, Pittsburgh

 Online: http://www.sei.cmu.edu/cmmi/models/index.html

[IEEE90] Standards Coordinating Committee of the IEEE Computer Society: IEEE Std. 610.12-
1990, IEEE Standard Glossary of Software Engineering Terminology (Update and expansion of
IEEE Std. 729-1983), Approved 28th September 1990, Published 10th December 1990
(IEEE-Status in August 2007: Active)

[IEEE98a] Standards Coordinating Committee of the IEEE Computer Society: IEEE Std 830-
1998, IEEE Recommended Practice for Software Requirements Specification, October 1998

[IEEE98b] Standards Coordinating Committee of the IEEE Computer Society: IEEE Std 1058-
1998, IEEE Standard for Software Project Management Plans, December 1998

[PMBOK04] Project Management Institute (PMI): A Guide to the Project Management Body of Knowledge
(PMBOK® Guide), 3rd ed.: 2004 (Same title for the German translation)

[SE2004] IEEE-CS/ACM Joint Task Force for Computing Curricula: Software Engineering 2004 –
Curriculum Guidelines for Undergraduate Degree Programs in Software Engineering (A Volume of
the Computing Curricula Series), 23rd August 2004 (see also [CC2005])
Online: http://sites.computer.org/ccse/SE2004Volume.pdf

[SECEPP99] IEEE-CS/ACM Joint Task Force on Software Engineering Ethics and Professional
Practices: Software Engineering Code of Ethics and Professional Practice (SECEPP), 1999 (Final
version 5.2), Online: www.computer.org/certification/ethics.htm or
http://info.acm.org/serving/se/code.htm
(Background Material can be found in: “Computer Society and ACM Approve Software
Engineering Code of Ethics”, IEEE Computer, Vol. 32 (1999), Nr. 10, Oct. 1999, p. 84-88)

[SWEBOK04] Professional Practices Committee of the IEEE Computer Society: Guide to the Software
Engineering Body of Knowledge (SWEBOK), 2004 Version (February 2004), www.swebok.org

[VModellXT] Koordinierungs- und Beratungsstelle der Bundesregierung für Informationstechnik in
der Bundesverwaltung (KBSt) Deutschlands (Federal Government Co-ordination and
Advisory Agency for IT in the Federal Administration of Germany): V-Modell XT
(Extreme Tailoring), February 2005, Berlin, Online: www.v-modell-xt.de

7 – REFERENCES

100

7.4. World literature

[Bloch85] Bloch, Arthur: Murphy's Law Complete – All the reasons why everything goes wrong!, 1990 (1st
ed.: 1985), Mandarin Paperbacks, London

[Brecht53] Brecht, Bertold: Der gute Mensch von Sezuan (English title: The Good Person of Sezuan), 1953

[Disney87] The Walt Disney Company (Ed.), Cavazzano, Giorgio (Drawings): “Die umgekehrte
Pyramide”, In: Walt Disneys Lustiges Taschenbuch Nr. 118 – Donald, der Weltenbummler, 1987,
Egmont Ehapa Verlag GmbH, Berlin (English title: “The inverted Pyramid”), p. 76 - 136

[Eco77] Eco, Umberto: Wie man eine wissenschaftliche Abschlussarbeit schreibt, 10th German ed.: 2003,
C. F. Müller Verlag, Heidelberg (Italian original: „Come si fa una tesi di laurea“, 1st ed.:
1977, Bompiani, Milano)

[Goethe1808] Goethe, Johann Wolfgang von: Faust – Der Tragödie erster Teil, 1st ed. @ Reclam: 1986
(Original: 1808), Reclam, Stuttgart

[Machia1532] Machiavelli, Niccolò: Il Principe (English title: The Prince), 1532

Colophon

Word processing: Microsoft ® Office Word 2003
Typeface: Garamond (Body Text: 12 pts.; Line spacing 1.2)
Language: BE (British English)
Printing: Infotec (Ricoh) IS 2235; HP Color Laserjet 3550

 Paper: XEROX Premier ECF A4 80 - 003R91720 (80 g/m2, bright white 165)
Bookbinding: Red full-linen with golden stamping
Electronic version: www.fortner.at/WINF/2007DiplomarbeitRF.pdf

© Raoul Fortner
A-1040 Wien (Vienna)

Österreich (Austria)
raoul@fortner.at

August 2007

