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Abstract

Eddy current effects are usually not taken into account in micro magnetic simulations
of magnetization reversal of magnetic nano-structures. The net contribution of eddy
currents is assumed to be already included in the damping parameter of the Landau-
Lifshitz—Gilbert equation (LLG). The increasing demand of ultra-fast switching in
magnetic nanostructures demands a more accurate model for high-speed switching
in conducting ferromagnetic materials. It is apparent that eddy currents which are
induced by high frequency fields with rise times of < 0.1 ns affect the magnetization
behavior of the conducting ferromagnetic materials.

In this work a micromagnetic eddy current method was developed that allows arbi-
trary geometries, requires no mesh outside the ferromagnetic particles, and uses a
stable integration scheme. It simultaneously solves the Landau-Lifshitz-Gilbert equa-
tion and the quasi-static Maxwell equations using a hybrid finite element/boundary
element method (FEM/BEM). The eddy current field is introduced as part of the
total effective field and is directly calculated from the space time behavior of the
magnetization rate of change. The boundary conditions of the eddy current field at
infinity are taken into account using a FEM/BEM scheme. The resulting system of
differential algebraic equations is solved using a backward differentiation method.
From the derived eddy current diffusion equation the critical particle size and conduc-
tivity range that leads to pronounced eddy current effects on magnetization reversal

of magnetic nano-structures is determined.

e



It is shown that the size of the particles, which designates the coherence of the spin
structure, is essential for the eddy current net contribution to the effective damping
parameter, which is a function of particle size and electric conductivity, and directly
influences the magnetization reversal process in sub-micron permalloyv structures.

Recapitulating: In this thesis a theory that explains eddy current effects in single
and multi-domain particles was developed. Based on the theory a model was de-
rived that predicts eddy current contributions in multi-scale particles, which allows
to design and predict the behavior of materials that will be used in future magnetic

recording heads as well as in magnetic data storage medias.



Kurzfassung

In herkémmlichen mikromagnetischen Simulationen von Ummagnetisierungsprozessen
magnetischer Nanopartikeln werden Wirbelstrome nicht beriicksichtigt. Der Wirbel-
strombeitrag wird als ein Teil des Dampfungsparamters der Landau-Lifshitz-Gilbert
Gleichung betrachtet. Der steigende Bedarf an ultraschnellem Schaltverhalten in lei-
tenden Ferromagneten macht genauere Modelle fiir das Ummagnetisierungsverhalten
von magnetischen Nanopartikeln notwendig. |

In dieser Arbeit wird ein mikromagnetisches Wirbelstrom-Modell basierend auf einer
Finite-Element Methode vorgestellt, das das Modellieren von allgemeinen Strukturen
erlaubt, kein Finite-Element Gitter fiir den Aussenraum benétigt und ein stabiles
Integrationschema verwendet. Dieses Model 16st die Landau-Lifshitz—Gilbert Gle-
ichung und die Maxwell-Gleichungen gleichzeitig in einer quasistatischen Naherung
mit einer kombinierten Finite Element/Boundary Element Methode. Hierbei werden
die Wirbelstrome als Teil des totalen effektiven Feldes in das Gleichungssystemn inte-
griert und direkt aus dem zeitlichen Verhalten der Magnetisierungsanderung berech-
net. Die Randbedingungen im Unendlichen werden durch ein Randintegralschema
berechnet. Das resultierende System von Algebraischen und Differentialgleichungen
wird mit einer Backward Differentiation Methode gelost. Die Diffusionsgleichung
fiir Wirbelstrome wurde abgeleitet und daraus die kritische Partikelgrofe sowie die
Leitfahigkeit bestimmmt, die notwendig sind, damit die Wirbelstrome einen essen-

tiellen Beitrag zum Magnetisierungsprozess von magnetischen Nanopartikeln leisten.



Es wird gezeigt, dass die Partikelgréfle, die der bestimmende Faktor fiir die Koheranz
der Spinstruktur ist, den Beitrag der Wirbelstrome zum effektiven Dampfungsparameter
bestimmt. Desweitern wird gezeigt, dass der Dampfungsparameter eine Funktion der
PartikelgroBe und der elektrischen Leitfahigkeit ist und einen direkten Einflufl auf das
Ummagnetisierungsverhalten von Submikrostrukturen hat.

Zusammenfassend wurde in der vorliegenden Arbeit eine Theorie entwickelt, die den
Effekt von Wirbelstromen in Partikeln mit einer oder mehreren Doménen beschreibt.
Von dieser Theorie ausgehend wurde ein Modell hergeleitet, das den Beitrag von
Wirbelstromen in Partikeln Uber mehrere Groflenskalen vorhersagt. Das ermaoglicht
es, das Verhalten von Materialien vorherzusagen und Materialien mit erwiinschten
Eigenschaften zu entwickeln, die in zukiinftigen magnetischen Schreiblesekopfen als

auch in magnetischen Speichermedien zum Einsatz kommen konnen.
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Chapter 1
Introduction

The main motivation to develop a dynamic micromagnetic model that includes eddy
currents is the importance of accurate calculations of time dependent micromagnetic
processes for magnetic data storage (hard disk recording, magnetic random access
memory MRAM) at high data rates and the demand for ultra-fast switching in mag-
netic naonstructures, that compromise submicron elements of ferromagnetic material,
usually Permalloy. Computational micromagnetics presents an efficient tool to study
these kind of ultra fast spin dynamics.

The notion of spin and spin-dynamic was introduced by the conceptual breakthrough
offered by quantum mechanics. In the 1935 paper of Landau and Lifshitz [16] and
in the 1956 paper of Gilbert [6] a complementary view to spin motion based on the
interaction between éonservative precession around the spins effective field and a dis-
sipative damping associated with this movement was introduced. Kikuchi [53] was
the first who investigated the minimum switching time when magnetization motion
is essentially governed by precession. The influence of dissipative damping was taken
care of by the introduction of a so called damping term which is mainly governed by
a damping constant.

Eddy currents are usually not taken into account in micro magnetic simulations of

11



magnetization reversal of magnetic nano-structures. The net contribution of eddy
currents is assumed to be already included in the damping parameter of the Landau-
Lifshitz-Gilbert equation of motion. These kind of assumptions are no longer ap-
plicable for magnetic particles in magnetic fields with field rise times of less than 0.1
ns and a conductivity o of more than 1.10% (Qm)~!.

Several models and methods were presented in the past to analyze the influence of
eddy current effects on magnetization dynamics. These include the two-dimensional
quasi-static model by Della Torre and Eicke [39] and the one-dimensional dynamic cal-
culations by Sandler and Bertram [40]. Mayergoyz et al [50] presented a self-consistent
numerical solution of the magnetic diffusion equation and the Landau-Lifshitz equa-
tion and showed the effect of eddy currents for different conducting materials.

In this work a three-dimensional finite element dynamic micromagnetic model in-
cluding eddy currents was developed. The model simultaneously solves the Landau-
Lifshitz—Gilbert (LLG) equation and the quasi static Maxwell equation using a hybrid
FE/BE method. A finite element method with a linear basis function is used to dis-
cretize the conducting region 2. To calculate the magnetization vector on each node
of our mesh an additional discretization , the delaunay-voroni discretization, was used
to calculate the exact volume around each node, which proved to be more accurate
than the mass-lumping method that had been used before. The boundary element
method is used to map the boundary conditions of the magnetic field at infinity on
equivalent boundary conditions on the surface of the conducting region €, which re-
duces the necessity of a mesh to 2, allowing arbitrary geometries. The FEM/BEM
method is described in detail in chapter 2. The magnetization dynamics are gov-
erned by the Landau-Lifshitz—Gilbert equation of motion, which is derived out of
the principles of magnetization motion, starting from quantum mechanical concepts
and lagrangian formulation, found in chapter 3, and the baSic magnetic principles

summarized in chapter 4. ‘The eddy current field is introduced as an additional part
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of the effective magnetic field in the Landau-Lifshitz-Gilbert (LLG) equation and is
directly calculated from the space time behavior of the magnetization rate of change.
The derivation of the eddy current field is explained in chapter 6, and the numerical
techniques are described in chapter 7.

Chapter 8 explains the theory of eddy current effects on the precession and damping
term of the LLG equation. The model is used to investigate the impact of eddy cur-
rents on the magnetization behavior of materials with different conductivity and size,
the results and conclusions are given in chapter 9. Finally, in chapter 10, a method for
the calculation of the effective damping parameter as a function of particle size and
electric conductivity is presented and used to extract the eddy current contribution

from the effective damping constant.



Chapter 2 v

Finite Element and Boundary

Element Method

The hybrid FEM/BEM approach retains the advantages of both, differential equation
and integral equation approaches. The general procedure for a hybrid technique
requires that the region of interest be enclosed by an artificial boundary. Maxwells
equations are then solved by a differential equation approach such as the finite element
method (FEM) inside the artificial boundary and by an integral equation approach in
discretized form such as the boundary element method (BEM) outside the artificial
boundary. Although use of BEM on and outside the artificial boundary results in
a full dense matrix, convergence of an approximate solution to the exact solution is
guaranteed without a change in the location of the artificial boundary. This method
will be introduced in detail for the solution of the Poisson and the Laplace equation,

as the former are used in the following chapters to solve the micromagnetic equations.

14
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2.1 Poisson and Laplace Problem

The aim is to find a solution U, that approximates the exact solution u of the Pois-
son and Laplace equation which are both elliptic partial differential equations. In 3
dimensions, the problem is to find a twice-differentiable real-valued function u of real
valued variables z,y, z in a region €2 in R?® with a closed boundary T

In the following H'() belongs to the Sobolev spaces and L¥(Q) is the space of square
integrable functions on the (bounded) domain §2. We search for a solution u € H'(f2)
which satisfies the Poisson/Laplace equation at given proper boundary conditions:
Dirchlet boundary conditions apply on I'y C I' and Neumann boundary conditions
applyon I';, ;=T\ [y.

The Poisson equation (named after its discoverer Simon-Denis Poisson) is of the form
Y—Au=f in Q | (2.1.1)

that satisfies Dirchlet boundary conditions
u=ug on Iy (2.1.2)

and Neumann boundary conditions

Z—Z=g on [, (2.1.3)

where f € L?(Q), ug € H'(Q) and g € L*(T,,).

The Laplace equation (named after Pierre-Simon Laplace) is defined as
Au=0 in (2.1.4)

The same boundary conditions apply as for the Poisson equation.
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2.2 The Weak Formulation

The weak formulation (often also called variational formulation) is the starting point
in finite element analysis. The Poisson equation is recast in the weak form by multi-

plying it by an arbitrary weight function w
we HL(Q) :={we H'(Q)|w=0o0nTp} (2.2.1)

with H! the standard Sobolev space which is also the Ansatz function and integrating

over the domain of the problem 2,

- / Ay - wdv = / f - wdv. (2.2.2)
Q Q
By using the vector derivative identity
V- (wVu) = whAu + (Vu) - (Vw) (2.2.3)

and using the divergenz theorem

AV(HM:/F%a (2.2.4)

r

the weak formulation of the Poisson Problem is derived

Vu - Vwdv — /w . Z—uda = / f - wdv. (
Q

r n

o
N
o

N’

Q

2.3 The Galerkin Discretization

In order to solve the Poisson problem numerically, the weak formulation is discretised
with ‘a linear basis function n with a set of linear basis vectors (m,...,nn), where N
is the dimension of the solution space S of U. Furthermore the weighted residual

function w is redefined and the finite element solution U is developed in a serial
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expansion in terms of the linear basis function 7

w = 1
U = Z Uk Nk - (231)
& .

Inserting Equations 2.3.1 into the weak formulation of the Poisson equation 2.2.5, we

obtain
/(V Zuknk) - Vndv — /g -njda = / f-njdv (2.3.2)
Q . r Q

which can be rewritten to

Zuk/ Vi - Vndv — /g -nida = / f - n;dv (2.3.3)
. Q r Q
and simplified to a system of linear equations
A-U=b (2.3.4)
where A is the Stiffness Matrix
Ajk = / Vnk : andv (235)
Q
and b the Right Hand Side of the system of linear equations
b = / fmdv+ /g - n;da (2.3.6)
Q r

The stiffness matrix A is sparse, symmetric and positive definite resulting in 1 solution

of the system of linear equations 2.3.3 has in R3, which gives the Galerkin solution

U=> . (2.3.7)
k




18

2.4 Boundary Element Method

The basic steps in the boundary element method are quiet similar to the finite element
method. First a integral equation has to be formed from the Poisson equation by using

a weighted integral equation and then using the Green-Gauss theorem

/Vu-de'U—/w-———da— /f wdv. (2.4.1)
Q r

Equation 2.4.1 is the starting equation of the finite element method. To derive the
starting equation for the boundary element method the Green-Gauss theorem is ap-

plied again on the second integral, which gives

/ Vu - Vwdv — /w d—uda = (2.4.2)
0 r dn
dw du
— [ u-Dwdv+ [ u-—da— [ w-—da f - wdv. (2.4.3)
Q r dn r dn Q _

In the Galerkin FEM the weight residual function was set to 7, one of the basis

functions used to approximate the solution u. For the boundary element method w
is the fundamental solution of the Poisson equation in RY. For N = 3 the weighted

residual function w is.

1
= - 244
w o | ( )

where r = /(@ — z)2 + (B8 — )2 + (v — z)? and is singular at the point (a, 3,7) € €.
Taking from Equation 2.4.3 the domain integral and using the property of the Dirac

delta function on it
/ u-Dwdv = (2.4.5)
Q . :
- / u-dla—z,0—y,y—2)dv = —u(a,,7) (a,B3,7) € (2.4.6)
Q

replaces the integral by a point value. Using this expression in 2.4.2 recasts it to

u(a, B,7) + /u-@da = /w : @-da-i-/f cwdv. (o, B3,7) € Q (2.4.7)
r dn r dn O
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For the Laplace equation f = 0 applies and the last term of the right hand side of
equation 2.4.7 vanishes. Then the equation contains only boundary integrals and is
referred to as a boundary integral equation. The values of u can relate either to points
inside the solution domain or to points on the boundary of the solution domain. In
the later case, one has to calculate the limit (o, 3,7) — I and it is necessary to
distinguish if the point is at a smooth boundary position (i.e. point with a unique
tangent) or at a not smooth boundary position (i.e. a corner).

Taking these considerations into account, a generalized expression can be defined with

P denoting the point («, 3, 7)

dw du
- —da = - —da. 2.4.
c(P)u(P)—{—/ru dnda /rw dnda (o, B,7) € 2 (2.4.8)
where :
1 ifPeQ
¢(P) = 3 if P €T and I smooth at P (2.4.9)
2% if P € I" and I" not smooth at P

with © being the inner solid angle.

Equation 2.4.8 involves only the surface contributions of u and Z-Z at the point P.
Once these surface contributions are known, the value of u on any point P inside the
region {2 can be calculated.

Thus the major advantage of the boundary element method compared to the finite
element method is that the overall size of the problem is reduced by one dimension
(from volumes to surfaces). But the major drawback of the boundary element method
is that a fundamental solution must be found in the first place and there a many linear
problems (e.g. nonhomogeneous equations) for which fundamental solutions are not

known.
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Figure 2.1: Domain of interest is divided into triangular elements (2D).

2.5 Mesh Generation

In the finite element method, the domain of interest is divided into a set of connected
basic elements (e.g. triangles, tetrahedrons,etc), this process being called a regu-
lar triangulation, see Fig.2.1 To achieve a regular triangulation with finite elements

several conditions have to be taken into account which were defined by Ciarlet [1]

e The vertices of the mesh coincide with the points where the basis function is

one.
e The elements of the triangulation do not overlap.

e Each face on the surface of the body belongs cither to I'p or I'y.

The creation of 3-dimensional geometries and the mesh are done with sophisticated
commercial software such as GID [2]. Once a regular triangulation T was generated,
a proper basis function for the solution space S of the numerical solution U in the
domain €2 has to be chosen. The Hat function is a very common choice as a basis
function for the space S, see Fig.2.2, which is defined for every node (z;, y;, ;) of the
finite element mesh

M5(Tk; Ui, 26) = 0 (J,k=1,...,N). - (25.1)

As the Galerkin discretization uses isoparametric elements, the same polynomials

(linear basis functions) for the approximation of the geometry and the solution are
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Figure 2.2: Hat-function.

used, and it is very easy to construct the stiffness matrix A and the right hand side

b as the sum over all elements T and surface triangles E.

Ajk = ZAVTU : Vnkdv (252)

TeT
and b the right hand side of the system of linear equations
bj=2/f-nj+2/g-njda. (2.5.3)
TeT?T EcEVE
The stiffness matrix is calculated on an element by element basis, and afterwards the
contributions to the local matrix are assembled to a global stiffness matrix.
If the vertices of a tetrahedron element T are given by (zj,yj, 2;-) with j' ranging

from 1 to 4 then the volume of the element | T' | will be defined as follows

1 l‘j' le Zj/

L xyi yyrer 254

| T |= (l—jdet (2.5.4)

Tjiv2 Yjr+2 2542
1 Zjis yj43 2543
where the local numbering j' of the element is chosen in such a way that the right
hand side of equation 2.5.4 will be positive.

In order to evaluate the contribution of each finite element to the stiffness matrix,



so-called shape functions are introduced on each tetrahedron T

o (@e, Yoy 2w0) = 650 (5K =1,...,4) (2.5.5)

recast in matrix form
T Y z

Tirvr Y41 S5 \ det Tj+1 Yi+1 S+

n; = det

Ti+2 Yj+2 <42 Ty+2 Yjr+2 <j+2

— b pd
[ S S S Y

Tj43 Yjr+3  Zjr43 Tj'+3 Yj'+3 <j'+3

and its derivative
1

V'I]j'(.'l:, Y, Z) = -6_-|T

Yjr+22541 = Yy 432541 — Yjr412542 T Y3257 42 + Yjr4125943 — Y5 422543
—TjyoZj41 + Ti4325041 + Tijp1Zi42 — Tja3Zjrpe — Tyje125r43 + Tjry225043

Tjp2Yir41 — Tj43Ys41 — Tj Yy 2 + Ti43Yjre2 + TiaYjr 43 — Tip2lji43

(2.5.7)
and with all indices understood as modulo 4, the contribution of element T to the

stiffness matrix entries can be calculated

A}:kl = / anl ° (vnk’)dv. ' (2.58)
T

Using a mapping from the finite element number and the local node index to the

global node index

(T.5) — J4, (2.5.9)

the entries of the element stiffness matrix A7, are summed up to the global stiffness
matrix Ajx. For the right hand side of Equation 2.5.3 the first term is evaluated by

transforming the coordinates into the center of gravity which allows the approximation

|T]

/ f * 75 ~ Tf(xs,ys, zs) (2510)
T
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and the second term can be evaluated in a similar way.
Dirchlet boundary conditions can be implemented by replacing their non-diagonal
values in the matrix with zero, the diagonal values with unity and incorporating the

known node entries in the right hand side.



Chapter 3
Principles of Magnetization Motion

In this chapter the equations which are needed to describe the magnetic motion
of magnetic spins as well as the magnetization rate of change will be presented,
laying emphasis on the intimate links between quantum mechanical concepts and the
parameters employed in applied magnetism. The analysis of magnetization motion
starts by considering an ab initio formulation to derive the gyromagnetic equation
for a single spin. Through the introduction of spatial degrees of freedom a unified
and self contained three dimensional variational approach for the general form of
the equation of motion is derived. From the general form the well known Browns
equations, including the general surface contributions and the underlying boundary
conditions from volume interactions can be deduced. At last damping is introduced in
a phenomenological way, leading to the well known Landau-Lifshitz—Gilbert equation
of magnetization motion. The contribution of eddy currents on the magnetization
dynamics will be discussed in the following chapters in detail, but for now shall be

mentioned here only by introducing a modified damping parameter.
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3.1 Quantum-Mechanical Concepts

A magnetic moment M is associated with the electrons angular momentum L and the
same can be assumed for the electrons spin [3]. The relation between the electrons

spin and its intrinsic magnetic moment is given by
M =1S (3.1.1)
where 7 is the gyromagnetic ratio and is expressed as

7=2’};;B-<0 (3.1.2)

with ¢ being the gyromagnetic splitting factor or Landé factor and & the Planks

constant. In context with equation 3.1.2 the Bohr magneton pp

_ gch
"~ 2m,

(3.1.3)

with ¢, and m, the charge and the mass of the electron, respectively has to be nega-
tive.

To determine the magnetic moment M correctly, the electrons total angular momen-
tum J consisting of the angular momentum L and the spin S, J = L + S, has to be
taken into account. Once Equation 3.1.1 is modified accordingly, based on the quan-
tum mechanical theory of angular momentum, a general expression for the Landé g
can be obtained

3

g=5+S(S+1) - LIL+1)2J(J +1). (3.1.4)

Depending on material properties the gyromagnetic splitting factor can be approxi-
mated to be either equal to 1, which is the case for spinless particles (S =0, J = L), or
equal to 2, which is the fact when all orbital contributions to the angular momentum
are disregarded (S = J, L = 0). The latter case is most common for ferromagnetic

metals, as the orbital contributions are found to be rather small, which was shown
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by C. T. Chen et al. [4] who investigated the quantitative values of orbital to spin
magnetic moment ratios.

The time evolution of the mean value of quantum mechanical operators associated
with measurable physical quantities provides the link between quantum and classical
mechanics. Such an operator is called an observable.

The mean value (A) of an observable A evolves in time according to the Schrodinger
equation

d

1 J0A
| a;(A) = i—f'L('A’Hl) +

ot

) (3.1.5)

where H is the Hamiltonian operator.

Having defined a general expression for the time evolution of an observable, it is
possible to determine the time evolution of the magnetic moment M in an arbitrary
external magnetic field. Since M does not explicitly depend on time the second term

in equation 3.1.5 vanishes and the mean value is expressed as
Loy = Lom H), (3.1.6)
I i/ = ¢ iy y 1=y, 2 1.
dt ih y

with the Hamiltonian H = —M - B.
To derive the precession movement of the spin, the £ component of the commutator in

equation 3.1.6 has to be expanded and bearing in mind that B is a classical quantity,

yields
(M;,H] = —~°[S;,S;Bz + S,B, + S.B.)
= _FYQBy[SIa Sy] - 72Bz [Sx, Sz]- (3-1.7)
[M,,H) = —~°[Sy,S:B: + SyB, + S.B.]
= —7'B:[Sy, Sz = ¥*B.[Sy, S (3.1.8)
[M.,H] = —%°[S.,S:B: +S,B, + S.B,]

= _72‘82[52)532] - 72By[SZ)Sy]' (31.9)
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The Spin is an angular momentum operator and obeys the usual commutation rules

S2,S,] = ihS.
S,,S.] = ihS,
S, S.) = ihS, (3.1.10)

which are substituted into Equations 3.1.7-3.1.9 and one obtains

(M., H] = iky*(B.S, — B,S.)
[M,,H] = ihv*(B.S. — B.S:)
[M.,H] = ik’ (B.S, — B,S.). (3.1.11)

The cyclic permutation as shown above allows to recast Equation 3.1.6 to

;—lt(M) =v((M) x B). (3.1.12)
Equation 3.1.12 gives the time evolution of the mean value of the magnetic moment
M in an arbitrary external field. The classical equivalent can be expressed in terms
of the magnetization M, by being defined as the magnetic moment, and applying for
B = uoH

dM

—= = noy(M x H). (3.1.13)

Furthermore the gyromagnetic constant ¥ and the permeability of free space 1o can

be lumped into a new gyromagnetic constant -y,
Yo=—py>0 (3.1.14)

which applied to the equation 3.1.13 results in the well known form for the precessional

motion of the magnetization

%g=~MMxH) (3.1.15)
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Figure 3.1: Precessional motion of magnetization.

The applied field can be either time independent or time dependent. The first case
results in a constant precession of the magrmti@tion vector and a constant angle
between the magnetic field and the magnetization, meaning that the energy —u(M -
H) remains unchanged, which can be easily shown by multiplying Equation 3.1.15

successively with H and M

d d, |
E(M-H)—O and %(M)—O. (3.1.16)

For the dependant case the applied field is substituted with the angular velocity vector

w = vH

% = —-(M x w). (3.1.17)
and describes the precessional motion of the magnetization vector around w. Figure
3.1 visualizes Equation 3.1.17 and shows that dM/dt lies continuously in a plane
perpendicular to the angular velocity vector describing an instantaneous precessional

motion of magnetization.
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3.2 Lagrangian Formulation of the Equation of Mo-
tion

In the last section the precessional motion of -the magnetization vector was derived.
So far, no transfer of the kinetic and potential energy associated with macroscopic
motion to kinetic energy of microscopic thermal motion has been taken into account.
For a magnetization field this transfer can be either through microscopic thermal
motion of spin waves or through a coupled or associated field, like strain fields or the
eddy current. The details of the transfer. mechanism are too complex to be intro-
duced into the field equations explicitly. To include these transfer mechanisms into
the field equations a phenomenological damping term is introduced. The different
contributions to damping contained in this damping term have to be determined ex-
perimentally.

In principle a damping of a physical system generates a force in opposition to the
macroscopic driving force. A steady state is maintained when, the energy gain from
the driving force is balanced by the energy loss from the damping force. If the forces
are not equal, energy is either gained (if the driving force is larger) or lost (if the
damping force is larger), which results in a acceleration or deceleration of the macro-
scopic motion, respectively.

In the simplest case where many different damping forces but no resonance phenom-
ena occur, the damping force is proportional to the rate of change of the magnetization

field of the system.

3.2.1 Lagrangian formulation

A common way to introduce such a damping term is to use the Lagrangian formulation

of the equation of motion and adding a velocity dependant term which is derived from
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a quadratic function of the time derivatives of components of the magnetization field,

the Rayleighs dissipation function(5].

Given the magnetization field M = M(r, t), the equation of motion of an undamped

magnetization field in Lagrangian form is given by

d LM, M) SLM,M] _

dt  §M M 0.

The Lagrangian of the magnetization field is defined as follows
LM, M] = T[M,M] - U[M]

with T being the kinetic and U the potential energy.

By adding a dissipative force term

IR[M]

M

to Equation 3.2.1 an equation for a damped magnetization field is derived

dSLM,M] SLM,M] N SRM]
dt M M M

0.
R is a Rayleigh dissipation functional and is defined

RM] = g/M~Md3r

(3.2.1)

(3.2.5)

with 1 being the average damping parameter for the sample, which is an approxima-

tion of the damping mechanisms. The functional R could be recast to take nonuniform

damping into account but it would not be possible to calculate and measure all the

variety of mechanisms that contribute to local damping.

Substituting the Lagrangian expression into Equation 3.2.4, to separate the kinetic

and potential energy contributions and using the following identities

UM _
M

SR[M] :
— =7

oM
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one obtains an expression for a dampened magnetization motion

déTM,M] STIM,M] _ sUM]

a= 2
T M SN nM = 0. (3.2.8)

3.2.2 Landau-Lifshitz—Gilbert Equation

Equation 3.2.8 imposes the problem that the kinetic energy T of the classical La-
grangian depends on dynamical variables that are not defined for quantum spin op-
erators which makes it impossible to derive an expression for the kinetic energy of a
rotating body in classical mechanics that corresponds to the spin of an elementary
particle in quantum mechanics.

But an approximation can be gained if we set the damping parameter 7 equal to zero.
In this case the remaining terms of Equation 3.2.8 can be compared with Equation
3.1.13. Further the added damping term in 3.2.8 can be looked at as a damping field
that reduces the effective field and changes the torque exerting on the magnetization
field. Then one can argue that by adding the same damping term to the effective
field in 3.1.13 a comparable equation of motion for a damped magnetization field is
obtained.

This equation can be written in the following form

oM oM
ot ot

The form of Equation 3.2.9 is due to Gilbert [6]. It can be shown to be equivalent to

= oYM x [H N— (3.2.9)

the older form due to Landau and Lifshitz [16] by multiplying both sides of Equation
3.2.9 with M x yielding

M x 86_1\;[ =M x (MYM X [H - T/@@l\f]) (3.2.10)

The second term on the right hand side can be recast by making use of the following

vector identity

oM oM oM '
2 — — —
M- =M <M = > M x (M X — ) (3.2.11)
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with |M| = M. Inserting this vector identity in Equation 3.2.10 and applying the

new expression to 3.2.9 yields

oM
—— = poYM x H — (17)*nM x (M x H) — (po7)*n’

oM
2_
T M;

T (3.2.12)

Rearranging the terms in Equation 3.2.12 and using the gyromagnetic constant o

from 3.1.14 leads to the old form of the Landau-Lifshitz equation

™M
% = =M x H—= AM x (M x H) (3.2.13)
with
2
, Yo : Yol
- — d N\ =2 ——MM—. 3.2.14
= T gz 1+ 12 M2 (3.2.14)

Taking the above presented equation but using the Gilbert constant a and the gyro-

magnetic constant vy

a = yonM, (3.2.15)

the usually designated Landau-Lifshitz—Gilbert equation of magnetization motion is

obtained
oM a
(1+ az)— = —v(M x H) - 701\4/

T M x (M x H). (3.2.16)



.Chapt'er 4
Micromagnetics

The history of micromagnetics starts with a paper of Landau and Lifshitz on the struc-
ture of a wall between two antiparallel domains published in the year 1935, and with
several papers written by Brown in 1940. A detailed treatment of micromagnetism
is given by Brown in his 1963 book [8]. In the following years micromagnetics was
limited to the use of standard energy minimization approaches to determine domain
structures and the classical nucleation theory was used to determine magnetization
reversal mechanisms in regimes with an ideal geometry. Starting in the mid-1980s
an increased interest in micromagnetism due to the availability of large-scale com-
puting power was investigated which enabled the study of more realistic problems
more comparable with experimental data. One of the first achievements was the fact
that energy minimization addresses in principle only specific nucleation fields for the
selected system and not the state of the regime after magnetization reversal. There-
fore, a lot of research was done in the development of dynamic approaches using
simulations based on the Landau and Lifshitz equation of motion, which is the most
common technique in use today. Another important part of micromagnetic calcula-
tions is the development of techniques to calculate magnetostatic fields, low frequency

field approximations.

33
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Micromagnetism is a continuum theory to describe magnetization processes on a sig-
nificant length scale which is large enough to replace atomistic magnetic moments by
a continuous function of position and small enough to reveal the transitions between
magnetic domains [9]. Due to the rapid increase in computational power numerical
micromagnetics has become an essential tool to characterize magnetic materials as
used in high density magnetic recording and magneto-electronics [10]. The precise
understanding of the magnetization reversal process is essential in the development of
ultrahigh density storage media [11] and magneto-electronic devices [12]. The numer-
ical integration of the equations of motion, which describe the'dynamic reéponse of a
magnetic system under the influence of an external field, provides a detailed under-
standing of the microscopic processes that determine the macroscopic magnetic prop-
erties like switching time and switching field. In addition to external paraméters like
the applied magnetic field and the temperature, the magnetization reversal process
significantly depends on the interplay between the physical/chemical microstructure
of a magnet and the local arrangement of the magnetic moments.

A very important tool in micromagnetics is the finite element method which is a
highly flexible application that helps to describe magnetization processes in more de-
tail, since it is possible to incorporate the physical grain structure and to adjust the
finite element mesh according to the local magnetization. An efficient error indicator
can be defined by making use of a conservation law inherent to the physics of th-e
problem. In order to treat the magnetostatic interactions of distinct magnetic parts,
the finite element method can be combined with a boundary clement method. The
discretization of space of the partial differential equations which govern the magneti-
zation dynamics leads to a stiff system of ordinary differential equations. To reduce
the calculation time for time integration of the combined set of differential equa-
tions, preconditioned backward differentiation methods are used rather than Adams

or Runge-Kutta methods.
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4.1 Basic Principles of Micromagnetics

The basic concept of micromagnetism is to replace the atomic magnetic moment by
a continues function of position. As mentioned before in continuum theory the local

direction of the magnetization moment can be described by a polarization vector

m .
J= /L()M = ,U()v (411)

where the magnetic polarization J is proportional to the magnetization m per unit
volume V, jip being the magnetic permeability of vacuum.
In the following sections the magnetization M will be used rather than J and the -

magnetization is assumed to be a continues vector-field M(r)

M(r) = Ms-r%l’-"l (4.1.2)

with r the position vector and M, the saturation magnetization of the material.
The second priuciple of micromagnetism treats the magnitude of the magnetization
only as a function of the temperature. The modulus of M is

M| = M,(T) (4.1.3)

defined to be a function of temperature and independent of the local magnetic field,
which allows to describe the magnetic state of a system uniquely by the directions

cosines b(r) of the magnetization
M = b(r)M;. (4.1.4)

In a meta-stable equilibrium state the directions cosines minimize the total Gibbs

free energy of the system.

4.2 Total magnetic Gibbs free Energy

The total magnetic Gibbs free energy consists of several energy contributions which

are derived from classical electrodynarmnics, condensed matter physics, and quantum
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mechanics. ‘ The aim is to derive a continuous expressions for the energy that de-
scribes the interactions of the spins with the external field, the crystal lattice, and
the interactions of the spins with one another." The latter consists of long-range mag-
netostatic interactions and short-range quantum—mechaniceil exchange interactions.
The equilibrium distribution of the magnetization is determined by the minimization
of the competitive effects of the micromagnetic energy contributions:anisotropy en-

ergy, exchange energy, magnetostatic fields and Zeeman energy.

4.2.1 Anisotropy Energy

The anisotropy term refers to the fact that the properties of a magnetic material are
dependent on the directions in which they are measured. The anisotropy itself has
a number of possible origins such as: crystal magneto-crystalline anisotropy,

shape anisotropy and stress anisotropy.

magneto-crystalline anisotropy

The magneto-crystalline anisotropy is an intrinsic contribution of the material having
its origin in the atomic level. For materials with a large anisotropy a strong coupling
between the orbital angular momentum and the spin can be observed, which results
in a non-spherical shape of the atomic orbital.

Due to this shape the orbits prefer to lie in certain crystallographic directions. The
spin-orbit coupling then assures a preferred direction for the magnetization called the
easy direction. To rotate the magnetization away from the easy airection consuies
energy, anisotropy energy. As might be expected the anisotropy energy depends on
the lattice structure.

The energy term for uniaxial anisotropy, found in hexagonal crystals like Cobalt
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(Co)is given by
E = KV sin® 6 + higher terms. (4.2.1)

Here 6 being the angle between the easy direction and the magnetization, K being the
anisotropy constant, V' the volume of the sample and the higher terms are normally
neglected as their contribution is small. This system with one easy direction has two
energy minima separated by an energy maximum, resulting in an energy barrier that
leads to hysteresis.

For cubic anisotropy, found in Iron and Nickel the energy term will be given by the

following expression
E = KoV + K,V (bb3 + b3b3 + b3b3) (4.2.2)

where b; are the direction cosine, the cosine of the angle between the magnetization

direction and the easy axis, respectively.

shape anisotropy

The shape anisotropy can be described in analogy with dielectric materials by refer-
eing to the magnetization producing fictitious free poles at the surface, which leads
to a demagnetization field Hy that opposes M. Figure 4.1 shows a sample with an
anisotropic shape with a magnetic field applied in two perpendicular directions.

The energy increases with increasing demagnetization field Hy. For an ellipsoid of

revolution it can be shown that the energy is
E=—Kgsinf (4.2.3)

and has the same form as the uniaxial anisotropy with 8 being the angle between the

long axis of the sample and the magnetization direction and the K.g is an expression
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Figure 4.1: Sample with an anisotropic shape with a magnetic field applied in two
perpendicular directions: (right) parallel to the short axis; here the free poles are
separated by a relatively short distance, leading to a large Hq, (left) parallel to the
long axis; poles separated by a smaller distance, which leads to a small value of Hq.

based on the demagnetization factors of the long N, and short N, axis of the sample

and the magnetization M;
1
Keg = §(N,, — Ny M2 (4.2.4)

The demagnetization factors N, and N, are geometry dependent so that Keg for
sphere is

Kug =0 (4.2.5)

and for a needle like geometry is

stress anisotropy

In addition to magnetocrystalline anisotropy, there is another effect related to spin-
orbit coupling called magnetostriction, which is related to the phenomenon of stress
anisotropy. Magnetostriction arises from the strain dependence of the anisotropy con-

stants. Upon magnetization, a previously demagnetized crystal experiences a strain
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that can be measured as a function of applied field along the principal crystallographic
axes. A magnetic material will therefore change its dimension when magnetized.

The inverse affect, the change of magnetization with stress as well occurs. A uniaxial
stress can produce a unique easy axis of magnetization if the stress is sufhicient to
overcome all other anisotropies. The magnitude of the stress anisotropy is described
by two more empirical constants known as the magnetostriction constants and the

level of stress.

4.2.2 Exchange Energy

The exchange energy forms an important part in he covalent bond of solids and in

ferromagnetic coupling. The exchange energy between two spins is given by
Eexch = —2181 . 82 (427)

where [ is the exchange Integral and S; and S; are atomic spins. This direct exchange
coupling is an idealization and applicable only to a few materials. Many other models
exist such as itinerant electron ferromagnetism and indirect exchange interaction or
Ruderman-Kittel-Kasuya- Yoshida (RKKY) interaction. However, Equation 4.2.7 is
the form usually taken for the exchange interaction where the value of I depends on
the detailed atomic properties of the material.

To actually calculate the exchange energy, one can be take advantage of the fact that
it is essentially short ranged and can be expressed by a summation of the nearest
neighbors. Further assuming a slowly spatially varying magnetization the exchange

energy can bhe written

Eexen =15 > " 4 (4.2.8)

i j(nn)
with the summation carried out only over the nearest neighbors and where ¢;; rep-

resents the angle between the two neighboring spins ¢ and j. -Further it should be
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mentioned that equation 4.2.8 gives the energy in reference to the energy state where
all spins are aligned in the same direction. This approach is legal as long as it is done
consistently.

Making the approximation for small angles that
¢i; = |b; — by (4.2.9)
than the first order Taylor expansion gives
Ib; — bj| = |(s; - V)bj] (4.2.10)

where s; is a position vector joining lattice point ¢+ and 7. Substituting 4.2.10 into
4.2.8 gives

Eexn = 152> Y " |(si- V)b (4.2.11)

i j(nn)

where the first sum is over all lattice points ¢ and the second sum is over all nearest
neighbors of 7. The first summation can be transformed into a integral over the whole

sample. The result is that for a cubic crystal

1S? 1 9
— 4.2.12
Eoien _A ” MS?(VM) dV (4.2.12)

with a being the lattice constant and (VM)? is defined as
(VM)? = (VM,)* + (VM,)* + (VM) (4.2.13)

Equation 4.2.12 is an integral that relates fundamental atomic properties to the spa-
tial derivation of the magentization in the continuum approximation. The atomic
properties are taken into account through the exchange I which is in micromagnet-
ics terms a phenomenological constant that can be determined experimentally. By
defining a constant A that includes all atomic properties, here for a cubic lattice

18
N a

A (4.2.14)
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the final expression for the exchange energy is derived

1

Eexc = 370
T M2

/ A(VM)?dV (4.2.15)

with A being called the exchange constant.

4.2.3 Magnetostatic Field

There are two kind of magnetostatic fields, one that arises from external sources which
can be implemented easily and a second that arises from the magnetization distribu-
tion itself, which will be described in detail here. To calculate the magnetostatic or

demagnetizing field Hy one starts from Maxwell equations

VXHd = 0 (4216)
V(Hg +M) = 0. (4.2.17)

Since the curl of the demagnetizing field is zero it is possible to derive it from a scalar
potential

H,=-V¢ (4.2.18)

and by substituting 4.2.18 into the governing Maxwell equations from above, one

yields a diffusion equation for the scalar potential
Vi =V M. (4.2.19)

Equation 4.2.19 is similar to the poisson equation in electrostatics which allows to

define a volume magnetic charge density p
p=—-V- -M. (4.2.20)

Thus the magnetostatic field can be derived by solving 4.2.19 for the scalar potential

that is subject to boundary conditions which determine the continuity of the normal



component of =B = Hy + M and of the tangential component of Hy
1o
n- (Bout - Bin) = 0 (4221)
nx (Hd;out — Hd;in) =0 (4222)

where n is a unit vector pointing outward from the surface.

In terms of the scalar potential the equivalent boundary conditions are

ou = Pin (4.2.23)
g B¢ o _ .
877, out 87?, in o M-n (4-_,4)

Although having its origins at the atomic level, the response of a magnetized body
due to the magnetization distribution is governed by its surface, as shown above.
Having derived the governing equations and boundary conditions for the potential

and demagnetizing field, they can be written as follows

1 [ V-M@#) ., 1 /M(x")-n ,
r)=— —dV + —dS 4.2.25
o0 =~ |, A g oA (4.2:25)
1 [ (c=HV-MF) ., 1 /(r—f)M(f)-n ,
= — 1V d 4929
Hom o [y g a2

The integrals above can be interpreted as fields arising from volumne and surface
charges densities p = —V - M and o0 = M - n respectively.
To finally calculate the total energy of the system it is necessary to integrate over the
whole volume as follows

1

Erag = —/ H, - MdV (4.2.27)

2 Jv

which involves a six fold integration, meaning that although it is an elegant solution,

it may not be the best form for numerical computation.

4.3 Browns Equations

The formulation of classical micromagnetics is achieved by minimization of the total

energy. The aim is to achieve a minimum energy state for each single contributing
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term, so that an overall energy minima is achieved. In some cases this can lead to
competitive mechanisms, like with the ferromagnetic exchange energy and the mag-
netostatic energy, explained below.’

The minimization of the ferromagnetic exchange energy aligns the magnetic moments
parallel to each other, whereas the minimization of the magnetostatic energy favors
the existence of magnetic domains. The magnetocrystalline anisotropy energy de-
scribes the interaction of the magnetization with the crystal lattice. Its minimization
orients the magnetization preferably along certain crystallographic directions. The
minimization of the Zeeman energy of the magnetization in an external field rotates
the magnetization parallel to the applied field.

The to be to minimized total energy can be expressed as follows

H
Eio = / [ﬂ?2 (VM)2 + Eanis - NOM . (Ha + Td)] dv ‘ (431)
Vv s

where H, is the external applied field and E,,;, the anisotropy energy density.

The minimization approach uses standard variational principles. Setting the the first
variation of the total energy with respect to the magnetization to zero results in two
equations, a surface equation and a volume equation.

The surface equation from variational principle is

Job Jdb
2A|lbx —| = — = 4.3.2
[Xan] 0 =>3n 0 (432)
since b - g% = 0 by virtue of b - b = 1. The volume equation is
2A _,
b x ]—[V b + Hd + Ha + Hanis =0 (433)
where H,,;s, the anisotropy field, is defined as
1 OF,
Hopis = —————. 4.3.4
® M, 0b (434)

By recasting equation 4.3.3 one derives the following expression

b x Hyy = 0 (4.3.5)
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with Heg being the effective field of the form

2A
He = Mvzb + Hy + H, + Hapis. (4.3.6)

Recapitulating the derivation shown above yields that the effective field H ;¢

_ 5Et,ot,

Her = =501

(4.3.7)

is the negative variational derivative of the total magnetic Gibbs free energy.

The volume equation 4.3.3 states that the equilibrium solution is found by aligning
the magnetization parallel to the local fields. The equation 4.3.2 to 4.3.6 are referred
to as Browns equations and form the basis of classical micromagnetic approach to the

solution of stationary problems.



Chapter 5
Micromagnetics and LLG Equation

The aim of micromagnetic calculations is the better understanding of magnetic ma-
terials and their interaction with external fields. Breaking down the materials into
atomic magnetic moments, the influence of external fields can be best described by
the motion of the magnetic moments in these fields, by taking the properties of the
materials into account.

In the last two chapters the basic tools, the Landau-Lifshitz—Gilbert equation of
motion

oM o 1o

a 0+ a2)(M “H) - i oy

and the total magnetic Gibbs free energy

M x (M x H) (5.0.1)

H
B = / A (VM)? + Egnis — ptoM - ( H, + == || dV (5.0.2)
v | M2 2

whose negative variational derivative gives the effective field Heg

24
He = ﬁvzb + H,.uis + Hy + H, (5.0.3)

were derived. The first term is the exchange contribution He.q and the second is
the anisotropy field H,,;s were defined in the previous chapter. The third and fourth

term, the applied and the demagnetizing or magnetostatic field are calculated from

45
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Maxwell equations [14]. The magnetostatic field Hy is an irrotational field and is

calculated by applying the magnetostatic potential ¢ into the conditional Maxwell

equation
V-Hy = -V-M (5.0.4)
VxHy = 0 (5.0.5)
V-(Vg) = V-M. (5.0.6)

The equations above are solved using a method described by Fredkin and Koehler
(13].
The applied field H, is a solenoidal field that is produced by external currents j,.

The governing conditional equations are

V-H, = 0 (5.0.7)
VxH, = j, (5.0.8)
By substituting 5.0.3 into 5.0.1 one obtains
oM N Yo 2A 2
o = —(1 n ag)(M X (MV b + Hd +Hd + Hams))
o 2A _,
—’YomM x (M x (MV b + Hy + H, + Han)) (5.0.9)

a modified Landau-Lifshitz-Gilbert equation of motion that describes the dynamic
magnetization process in a given sample.

In the equation above the precession and the damping term are governed not only
by the contributing fields and intrinsic properties of the sample but also by the phe-
nomenological Gilbert damping constant «. The Gilbert damping term includes all
the damping forces of a system. Damping involves loss of energy from macroscopic
motion of the local magnetization field by transfer of energy to microscopic thermal
motion. There are different kind of mechanisms involved such as coupling of the mag-

netization field to spin waves, lattice vibrations, effects of polycrystalline structure,
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strains, crystal defects and eddy currents. Especially in high conductivity materials
o > 10°(2m)~! and high frequency fields the contribution of eddy currents become
more important. In the following chapter a theory will be presented to extract the

eddy current contribution from the damping term.



Chapter 6

Eddy Currents

Since 1955, a number of different damping mechanisms had been studied [15]-[38] and
the results have shown that the damping mechanism is very complex and different
for each material, but for metallic ferromagnets it was found that eddy currents are
the dominant mechanism.

The rate of magnetization and remagnetization in ferromagnetic materials is governed
by damping mechanisms. Damping is about transfer of loss of energy from the macro-
scopic motion of the local magnetization field to the microscopic thermal motion. It
should be mentioned that the local magnetization field M(r) is the expectation value
of the magnetic moment per unit volume due to spins and orbital motion of unpaired
clectrons averaged.over a few lattice cells. The orbital motion is not discussed in
detail, it is rather included by adjusting the gyromagnetic ratio (see chapter 3).

The mechanisms by which the energy transfer occurs include the coupling of the
magnetization field to spin waves, lattice vibrations, the effects of polycrystalline
structure, strains, crystal effects such as voids and foreign atoms, and eddy currents.
So far eddy current effects are usually not taken into account in standard magnetic cal-
culations, that are based on assumpfions of quasistatic approximation, small material

conductivity or that the contribution of eddy currents is included in the dimensionless
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damping constant of the LandauLifshitz-Gilbert equation.

The main motivation to develop a dynamic micromagnetic model that includes eddy
currents is the importance of accurate calculations of time dependent micromagnetic
processes for magnetic data storage (hard disk recording magnetic, random access
memory MRAM) at high data rates and the demand for ultrafast switching in mag-
netic nanostructures. Especially for magnetic recording heads with field rise times of
less than 0.1 ns and a high conductivity o of 0.6 107(Q2m)~!, the assumptions above
are no longer applicable.

Several eddy current methods have been presented in the past. These include the two-
dimensional quasistatic model by Della Torre and Eicke [39] and the one-dimensional
dynamic calculation by Sandler and Bertram [40]. A hybrid method for three- |
dimensional eddy current problems that is based on the solution of the differential
equation for the current density and the magnetic field where the Bio-Savart law is
used to calculate the field intensity of the magnetic field on the surface was introduced
by Kalimov and co-workers [41]. Serpico and co-workers [42] developed a finite differ-
ence scheme that is applied to the analysis of eddy currents with the Landau-Lifshitz
equation as a constitutive relation.

We developed a three-dimensional finite element dynamic micromagnetic model in-
cluding eddy currents. Our model simultaneously solves the Landau-Lifshitz-Gilbert
(LLG) equation and the quasistatic Maxwell equation using a hybrid finite element/
boundary element (FE/BE) method. A FE method with a linear basis function is
used to discretize the conducting region €2. To calculate the magnetization vector
on each node of our mesh a Voronoi tessalation was used to calculate the exact vol-
ume around each node. The boundary element method is .used to map the boundary
conditions of the maénetic field at infinity on equivalent boundary conditions on the
surface of the conducting region 2, which reduces the necessity of a mesh to 2. The

eddy current field is introduced as an additional part of the effective magnetic field
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in the LLG equation, and is directly calculated from the space time behavior of the

magnetization rate of change.

6.1 Eddy Current Model

To formulate the eddy current model we consider a conducting region €2 with the
conductivity o and the magnetic permeability u. Eddy currents are induced inside
the region by applying an external magnetic field which changes the magnetization.
The dynamic magnetization process in he conducting region is described by the LLG

equation of motion

oM i Yy
= = —M x Hep — AZ’M x (M x Heg) (6.1.1)
where
, Yo
= 1.2
I a2 (6.1.2)

and « is a dimensionless damping constant (the modified Gilbert damping counstant
without the eddy current damping effects) and 7, is the electron gyromagnetic ra-
tion. The effective field Heg is composed of the anisotropy field H,,,;s, the exchange
contributions He,.,, the applied field H,, the magnetostatic field Hy and to take care

of eddy current effects an eddy current field Hegq4y is introduced:

Heff = Ha.nis + Hexch + Ha + Hd + Heddy (613)

6.1.1 Eddy Current Diffusion Equation

To derive the conditional equations for the eddy current field one starts with the
Maxwell equations. In electromagnetics we have the electric and magnetic fields

E, H, the clectric and magnetic flux densities D, B, and the constitutive relations
D = ¢E (6.1.4)
B = uH (6.1.5)



o1

where € is the permittivity, 4 the magnetic permeability which is defined

= (1+ xm)Ho (6.1.6)

with ug being the permeability of free space and yx,, the magnetic susceptibility.

Writing here the Maxwells Equations in terms of E and B,

OE 1

e—a—t:Vx ;B—O’E—JS (6.1.7)
0B

V-eE=0 _ (6.1.9)

V-B=0 (6.1.10)

with appropriate boundary conditions and initial conditions understood. Notifying
that js is an independent current source term depending on the problem it may or
may not be added. In the following definition all the material parameters €, u, o are
free to be symmetric positive definite tensor functions of space, but as we impose the
restriction that they should be independent of time.

In the following we consider to solve the Maxwells Equations for a good conductor,

which is defined by the condition

OE
“5 < oE. (6.1.11)

- Equation 6.1.11 depends not only on the material parameters o and ¢, but also on
the time rate of change of the electric field E. Taking 6.1.11 into account, Maxwells
equations can be simplified by neglecting the displacement current e% altogether.
This is called the low-frequency approximation, diffusion approximation or eddy cur-
rent approximation. A detailed mathematical analysis which gives a justification to
the approximation is given in [43].

The modified Maxwells equations with the constitutive relations are defined as follows

1 |
V x =B =0E +js (6.1.12)
I
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0B

- = - 1.1

5 VxE (6.1.13)
V-eE=0 (6.1.14)
V-B=0 (6.1.15)

with B = 1o(H + M). The equation 6.1.12 and 6.1.15 are recast to
V x po(H + M) = po(1 + X )oE + js (6.1.16)
V- p(H+M)=0 (6.1.17)
and by neglecting js and splitting the the current oE = j in two components
J = Jiree %ijm (6.1.18)

with jree being free currents and jn.. being material currents the following equation
is derived

V x :U’O(H + M) = /J'O(jfree +jmat)- | ' (6119)

Material currents and the magnetization are connected through the following identity
V XM = jiat = Xm0E (6.1.20)

if applied to the equations above the following condition equations are derived
VxH=0E (6.1.21)

V-H=-V-M (6.1.22)

By splitting the field H = Hg + Heqqy into two parts, in an irrotational field and in
a solenoidal field, two set of equations with different source terms are obtained. As

the source of the eddy current field is a current induced in the sample similar to the
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applied field, it can be treated as a solenoidal field. Therefor the resulting conditional

Maxwell equations are

V- Heygy = 0 (6.1.23)

V X Heddy = jeddy (6124)

with jeqqy being the eddy current source term. To calculate the eddy current field the

cur] operator is applied on equation 6.1.24
V x (V X Heddy) = V X jeddy- (6.1.25)
The term V x V x is recast by using the following vector identity
VxVx=V(V)=-V-(V) (6.1.26)
. and equation 6.1.25 is rewritten to
V(V Heidy) = V- (VHeddy) = V X jeddy- (6.1.27)

As defined above, the divergence of the eddy current field Hegqy is equal to zero
meaning that the first term in 6.1.27 vanishes. The current is recast in terms of the
electric field

jeddy =oE (6128)

and introduced in 6.1.27
——VzHeddy = _AHeddy =V x (O’E) (6129)

Applying Faradays law in differential form

0B .

and 6.1.3 to 6.1.29 yields

(6.1.31)

H. H oH oM
—AHeqay = —0 g (3 o, eddy 4 )

5 ot T 57
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Considering that for soft magnetic materials the change of the applied and the mag-
netostatic field over time is much smaller than the magnetization [44] a diffusion
equation for the eddy current field is derived

JH oM
AHegay — o lio ae:dy = O~ (6.1.32)

This equation is true everywhere in space but has to be adjusted for the material
components for the different regions of interest.
The Poisson equation 6.1.32 for the eddy current field inside and outside of the con-
ducting region is

aHt{( dy A
Olo—5 + Uﬂoaa—lf Q

. - (6.1.33)

AHegay = {

with the boundary condition at infinity, Heqay = 0. To solve the partial differential
equation and to derive a unique solution, appropriate boundary conditions for the

eddy current field have to be found.

6.1.2 Boundary Conditions

The tangential component of the boundary condition on the surface of the conducting
region Of1 is

n x Hj,, —nx HY, = 0. (6.1.34)

where n is the unit vector pointing outward from 2. Another boundary condition
is on the normal derivative of the eddy current field Heqqy. It is derived by starting

with equation 6.1.29 and expanding the derivatives of cE
V x (V x Heady) =0V xE+ Vo x E (6.1.35)

a term is gained in Vo. The conductivity is piecewise constant, which means that

this term vanishes inside and outside of 2. However, Vo is singular at the boundary
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Figure 6.1: Infinitely thin test volumeS? on the boundary 0f2.

where ¢ has a jump discontinuity and this puts a surface load (delta function) to the
right-hand side of 6.1.30. Becausc of the second derivatives on the left—hé,nd side, the
net result is that the normal derivative of Heqqy is discontinuous at the boundary.

To calculate the jump discontinuity, equation 6.1.27 is integrated over an infinitely

thin test volume straddling a small portion of the boundary 0f2 see Fig.6.1,

Q Q

Taking the equation above and applying Gausss theorem, which is defined as follows

/V-FdV=/F-nda (6.1.37)
v ) ’

with F being a vector field, V' the volume and S a given enclosed surface with an
outward pointing unit normal n, to convert 6.1.36 into an integral over the boundary
o9,

/ (dan - V)Hegy = —/ da n X jeddy- (6.1.38)
0 80

The dominant contributions come from two surfaces parallel to the conducting sur-
face 092, just inside and just outside €, with unit normals da along —n and +n,
respectively. Thence equation 6.1.38 is converted to a surface integral over B
that involves the differences between the two sides of Q. Since the test volume €2 is
arbitrary, the integrand must vanish identically on the surface 2. Furthermore since

Jeddy €xists only inside the conducting region and is zero outside of §2 the following
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expression for the boundary condition is derived

(n- V)Hy, — (- V)HS, = =1 X joday (6.1.39)

6.2 Calculation of the Eddy Current Field

In the previous section a diffusion equation for the eddy current field for the whole

region R3
OH, OH, OHegy OM
—AHeqay = — 2 6.2.1
eddy U“O(at+at+ 5t ot (62.1)
and the governing boundary conditions
nx Hi,, = nxHygL (6.2.2)
(n- V)HY,, — (- V)HYS, = —0 X jeaay : (6.2.3)

at the interface between the conducting region 2 and R3?\ Q are derived. To find

a solution, the diffusion equation is treated like any other normal partial differential

equation.

The Poisson equation 6.2.1 is solved by taking advantage of the linearity of 6.1.33

and the solution is split into two parts
Heddy = Héddy + szdy (624)

with H},4, being the solution of the inhomogeneous and HZ,4, the homogeneous part
of the partial differential equation. Defining the contributions of the solutions to the

separate regions of the problem

Hedd _ Hgddy + H(l)ddy in Q (6 9 5)
T Bz, in R3\Q -

it is found that Hy,,, is zero outside of (.



eddy current field inside of 2

H},4, is the particular solution that solves the following inhomogeneous boundary

problem

' OH! 4, oHZ,,. oM
AHlddy = Uﬂo% + Ol 8t]d“ + THo5

The appropriate boundary condition needed to solve 6.2.6 for Hiddy on the surface

(6.2.6)

0f1 of the conducting region is
(n ’ v):[-Iel,-ddy =—nx jeddy- (627)

with the current term jeqqy, which is substituted by the curl of the eddy current field

1
V x Heddy.

eddy current field outside of )

Hdey is the homogeneous particular solution of the eddy current diffusion equation.

It is a solution of the Laplace equation
AHZy, =0 (6.2.8)

‘'with the following boundary conditions
Holay — Hay = Halg,y (6:2.9)

which puts the constrain on the solution that the eddy field inside is the same as the

eddy field outside, and
(n- V)HZ) — (n- V)HZS, =0 (6.2.10)

that the normal derivative of each component of the eddy current field inside of 2 is
equal to the normal derivative of each component of the eddy current field outside.

From 6.2.8 to 6.2.10 it can be deduced that the components of H2,4, can be written
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in analogy to the potential solution of a magnetic dipole sheet.

. 1 i 1

2 2;out 2;in

cddy = H ), ,n-V da — gy * V - | da +
eddy /em eddy (r - f') ¢ /aQ cddy (r —r ) ¢

(—) r 2;0u iin
< o) _ 1) (H5y — Hiady) (6.2.11)

with the boundary condition 6.2.10 it can be recast to -

HC oy =/ H_ 44,0 - V( ! )da + (Gl(r) — 1) Hly, (6.2.12)
an

r—r T

where O(r) is the solid angle subtended by d at r.

The final solution of the eddy current field is composed of the homogeneous and the
inhomogeneous solution of the eddy current diffusion equation.

The equations 6.1.1 to 6.2.10 are a coupled system of Landau-Lifshitz—Gilbert and
quasi-static Maxwell equations that is solved by a hybrid finite element/boundary el-
ement(FE/BE) method. For the region 2 a finite element method with the Galerkin
weak formulation is used. For the non-conducting region R?®\ Q2 a boundary element
(BE) method is used to map the boundary conditions (BC) of the magnetic ficld at

infinity on equivalent BC on the surface of 2 as presented by Fredkin and Koehler [45].



Chapter 7

Numerical Technique and

Algorithm

In this chapter the numerical method and algorithm used to solve the coupled sys-
tem of Landau-Lifshitz-Gilbert and quasi-static Maxwell equations 6.1.1 to 6.1.32 is
presented. A set of three equations, two differential equations, the Landau-Lifshitz—

Gilbert equation of motion

oM Yo avo
2

= M > Het = 3ra a7

ot 1+a? M x (M x Heg) (7.0.1)

and the eddy current diffusion equation for the Héddy field, -

OH, 44
ot

OHZ, 4, oM
—_— 2
5 + oo T - (7.0.2)

y

AHeagy = 0o + ot
and one algebraic equation, the Laplace equation for Hgddy,

AHZy4, =0 (7.0.3)

has to be solved. In addition two further equations governing the demagnetization
field are solved. This set of differential and algebraic equations (DAEs) is an initial |

value problem and is solved using an implicit differential-algebraic (IDA) solver. The

99
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initial value problem is integrated using a backward differentiation formula (BDF)
method implemented in a variable-order, variable-step form. Applying the BDF on
the DAE system results in a nonlinear algebraic system that is solved with a Newton
iteration. This leads to a linear system for each Newton correction that is solved with

a scaled preconditioned generalized minimum residual (SPGMR) method [46].

7.1 Implicit Differential  Algebraic Solver

IDA is a general purpose solver for the initial value problem for systems of differ-
ential algebraic equations (DAEs). The implicit differential algebraic solver is based
on DASPK [47], [48] and in the solution of the underlying nonlinear system uses an
inexact Newton/Krylov (iterative) rather than the Newton/direct method at each
time step. The Newton/Krylov method uses the generalized minimal residual (GM-
RES) linear iterative method [49], and compared to direct methods requires almost
no matrix storage for solving the Newton equations.

IDA solves the initial value problem for the DAE system in the general form
Flt,y,9) =0 (7.1.1)

where y and F are vectors in R" (in our case N = 9J) of the form

b
Yi =Y | Hlqy b,Hiddy,Hfddy e R (7.1.2)
Hesay
with ¢ being the time and j is the node ihdex with values from 1 to J. The initial
conditions
y(to) = ¥o, ¥(to) = Yo - (7.13)
given. The initial vectors yg and yo are not arbitrary and must be consistent with

7.1.1.
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The implicit differential solver integrates the system 7.1.1 with backward differentia-
tion formula (BDF) methods which are implemented in a variable-order, variable-step
form. The method orders range from 1 to 5 and the BDF of order k is given by the

following multistep equation

k
Z an,iyn—i = h'nyn. (714)
i=0 .

with y,, and y,, being the computed approximations to y,(t, ) and y,(t,), respectively,
and the step-size h,, is

h‘n = tn - tn—l- (715)

oy ; are coefficients that are uniquely determined by the order k& and the step-size his-
tory. Applying the backward differential formula method to the differential algebraic
system 7.1.1 results in a nonlinear algebraic system which has to be solved at each

step
k
G(yn) = F(tn,¥n, ;'Y 0niyn-i) =0 (7.1.6)
=0

The nonlinear system 7.1.6 is solved using a Newton iteration, which leads to a linear

system for each Newton correction of the form

IYn(m+1) = Ynim)] = =G (Yn(m)) (7.1.7)

where yn(m) is the m!* approximation to y, and J is a an approximation of systems

Jacobian

dy Oy 0Oy

where a = ay,0/hn, and it changes whenever the step size changes or the method

J (7.1.8)

order.
An iterative method is used to calculate the solution of the approximated Jacobian

7.1.7, namely, the scaled preconditioned GMRES, denoted SPGMR.
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The equation 7.1.7 is written abstractly as
Az =b (7.1.9)

and to solve it, a preconditioned matrix P is sought that approximates A, with an

easy to solve linear form of

Pz =b. (7.1.10)

The preconditioning matrix P is obtained by using an incomplete LU factorization
(ILU), where
P=LU (7.1.11)

and LU is obtained from a Gauss elimination procedure. Preconditioning is applied
to the left side of 7.1.9 and scaling is introduced by a diagonal scaling matrix D, with
the weights w* as diagonal elements. Thus the system that is solved with the GMRES

method is

(D~'P~'AD)(D"'z) = D-'P~'b (7.1.12)

or

AZ =b. (7.1.13)

7.1.1 Error control

While integrating, the system estimates a mean norm E,, of the local truncation error

th

at the n'" time step, that has to satisfy the inequality

”En-”wrms <1 (7.1.14)

and imposes a tolerance on the local errors by way of the weighted root mean square

(wrms) norm, defined as

(7.1.15)
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with the superscript ¢ denoting the it" component and w? the i** weight
w* = rtol|y’| + atol’ or w' = rtol|y’| + atol. (7.1.16)

The scalar relative error tolerance (rtol) and the absolute error tolerance (atol) per-

mit to define an allowed error per step and thus a control of the magnitude of the error.



Chapter 8
Eddy Current and Magnetization

In the recent years the increasing demand for ultra-fast switching in inagnetic 11an0s-
tructures lead to more accurate models for high-speed switching in conducting fer-
romagnetic materials. It is apparent that eddy currents which are induced by high
frequency fields with rise times of < 0.1 ns effect the magnetic behavior of conducting
ferromagnetic materials.

Several models treating different kind of problems were developed. Mayergoyz et
al. [50] presented a self-consistent numerical solution of the magnetic diffusion equa-
tion and the Landau-Lifshitz equation for li.nearly and circularly polarized applied
magnetic fields and showed the effect of eddy currents for different conducting ferro-
magnetic films. L. Torres et al. [51] developed a 3-dimensional micromagnetic-model
that included eddy currents and investigated the magnetization behavior for high
conductivity materials.

To understand the influence of eddy current contributions on magnetic nano-scale
structures, the very basic mechénism that governs the magnetization process has to
be investigated.

In the last chapters the theory to describe the magnetization processes of magnetic

structures, a 3-dimensional finite element /boundary element model that includes eddy

64
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Figure 8.1: Domain of interest discretized with tetrahedral basis-functions.

current effects, was developed. It will be used to investigate in detail the effect of
eddy currents (here the eddy current field) on the magnetization reversal of cubic

single domain particles.

8.1 Finite Element Discretization

To be able to simulate the magnetization motion of the magnetic moments the con-
ducting region is discretized with the finite element method with linear basis functions,
see Fig. 8.1. On every node of the discretized region is a magnetization vector, for
whom the equation of magnetization motion is solved.

The magnetization M of a system can be expressed in terms of a magnetization m

per unit volume V.

m
= — 1.1
M= 3 (8.1.1)

To calculate the magnetization vector on each node of our mesh an additional dis-

cretization was used to calculate the exact volume around each node. First a Delaunay
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Figure 8.2: Delaunay-Triangulation.

triangulation, which is the triangulation with empty circumspheres, is calculated by
computing a convex hull. The trinagulation lifts the input sites to a paraboloid by
adding the sum of the squares of the coordinates. It computes the convex hull of
the lifted sites, and projects the lower convex hull to the input. Each region of the
Delaunay triangulation corresponds to a facet of the lower half of the convex hull.
Facets of the upper half of the convex hull correspond to the furthest-site Delaunay
triangulation. Once the triangulation is finished the Voronoi diagrams are calculated.
And with the Voronoi points a convex volume around each node is constructed, see
Fig. 8.2.

The volume of the voronoi diagram gives a partition of the total volume, with mutu-
ally distinct volumes surrounding each node of the finite element mesh. This volume
is used to define a magnetic moment and the effective field at each node point {52].
Given the magnetic field and the effective field for each node point, the LLG equations
becomes a system of ordinary differential equations. To summarize the discretization

scheme is as follows:

1. Linear finite elements are used to discretize Gibbs energy as a function of the

magnetization

2. The magnetostatic boundary value problem for the magnetic potential and the
eddy current diffusion equation are solved using standard finite element tech-

niques
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3. A magnetic moment and the corresponding effective field are defined at each

node of the finite element grid using the voronoi partition

4. The resulting differential algebraic system of equation is solved using an implicit

time integration scheme.

8.2 Precession and Damping Term

The behavior of magnetic moments in magnetic structures is described as presented
earlier by the Landau-Lifshitz—Gilbert equation. The motion of the magnetic spins is
composed of a precession and a dampened motion, presented by the precession term
and the damping term, respectively.

To analyze these two terms in detail, a permalloy nanocube with an edge length
of 27nm and 1195 nodes was discretized into 5649 tetrahedrons with 862 surface
elements. The nanocube is initially magnetized uniformly in positive z-direction and
exposed to an external field of Bey = pigHere = —100u,m7T. The LLG equation is
solved for the nanocube with two different damping values. Investigated is the path
of the magnetization vector over time, see Fig. 8.3, with a high damping of o = 1,
see Fig. 8.4, and with a low damping of a = 0.1, see Fig. 8.5.

From the figures 8.4 and 8.5 the influence of the damping parameter on the precession
as well as on the damping term, and therefor on the whole magnetization reversal time
can be deduced. The major difference, considered from the magnetization reversal,
is that for a high damping the precession of the magnetization vector is minimized
and the damping motion is maximized, resulting, for a given applied field, in a fast
magnetization reversal. For low damping, the precession motion is the dominant
factor in the magnetization reversal.

Hence, the minimum magnetization reversal time occurs when

Otpin = 1 (8.2.1)
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Figure 8.3: Trajectory of the Magnetization Vector over time.

68



69

M z-axis (Ms)

Figure 8.4: Trajectory of the Magnetization Vector over time, for high damping.

M z-axis (Ms)

Figure 8.5: Trajectory of the Magnetization Vector over time, for low damping.
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Table 8.1: Magnetization reversal results for a 27 nm cube in an applied field of
Hexe = —800u,mT with « values ranging from 1 to 0.005. M} gives the time for
the magnetization to reach the xy—plane in units if ns, and M? gives the time for the
magnetization to reach —0.99 My in units of ns.

a  M!  M?
1.0 0.180 0.219
0.5 0.207 0.255
02 0278 0.376
0.1 0415 0.567
0.08 0.483 0.664
0.06 0.564 0.810
0.04 0.569 0.947
0.02 0614 1.173
0.01 0.592 1.646
0.005 0.831 2.148

which is consistent with analytical results obtained by Ryoichi Kikuchi [53]. For
a < 1, the magnetization vector M moves faster, but rotates around the external
magnetic field so that the net travelling time between the initial and the final state

becomes longer.

8.2.1 Magnetization Reversal

To derive the magnetization reversal time in dependency of the damping constant «,
simulations were performed for an 27nm cube under the influence of an applied field
of Hext = —800u,mT with different values for «, see Table 8.1. The magnetization
reversal curves of the magnetization vector in z-direction from its initial state in
+z-direction to its final state in -z-direction were investigated and the reversal time
was recorded at two spots of the magnetization reversal. M} gives the reversal time

values of the magnetization vector while it is lying in the x-y plane and M2 gives the
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Figure 8.6: Magnetization reversal as a function of Damping constant « versus time
(ns), for & =1,0.5,0.2,0.1.

magnetization reversal time shortly before the magnetization reversal is complete, see
Figures 8.6 to 8.8 and Table 8.1 for the calculated values. By decreasing the damping
constant the magnetization vector starts to precess around the external field which
takes it longer to reach its final equilibrium condition. The values of M. and M2
were plotted over time in Fig. 8.9 to derive a correlated behavior of the magnetization
reversal time and the damping-constant. The Figures 8.6 to 8.8 show that the reversal
time and the value of the Gilbert damping constant are not linearly but exponentially

correlated.
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Figure 8.7: Magnetization reversal as a function of Damping constant « versus time
(ns), for a = 0.1, 0.08, 0.06, 0.04.
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Figure 8.8: Magnetization reversal as a function of Damping constant « versus time
(ns), for a = 0.04, 0.02, 0.01, 0.005.
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Figure 8.9: Magnetization reversal as a function of Damping constant « versus time
(ns). Black plot: values of M} (time to reach the xy—plane), red plot: values of M2
(time to reach —0.99 ns)
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8.3 Precession and Damping Term including Eddy

Currents

In the last sections the influence of the Gilbert damping constant on the magnetiza-
tion reversal was investigated. A high damping leads to a fast magnetization reversal
and for low damping it takes the system longer to reach an equilibrium state. Eddy
currents are normally not taken into account as a stand alone factor. The under-
lying assumptions on this fact are either quasi-static approximation, small material
conductivity, or that the net contribution of eddy currents is already included in the
value of the damping parameter in the Landau-Lifschitz-Gilbert (LLG) equatidn.
Several attempts were made to include the eddy current effects as a separate contribu-
tion to the magnetization process. L. Torres et al. presented a standard 3-dimensional
finite difference model, where they solved the LLG equation in conjunction with quasi-
static Maxwell equations by introducing the eddy currents with the electric field E
approach [54]

In the model presented in this thesis, eddy current effects are introduced as a eddy
current field Heqqy which is directly derived out of the magnetization rate of change.

Taking a closer look at the eddy current diffusion equation

OHcddy

= (8.3.1)

opo—5— = DHegay — oo

ot

the change of the magnetization with time can be deduced as the source term of the

eddy current field. Meaning that the eddy current field can be approximated as

oM

—_ 2
~ (8.3.2)

Heddy =

being proportional to the magnetization rate of change. The advantage of this ap-
proach is that the direct influence of the eddy current effects on the precession and

on the damping can be studied. The eddy current field is directly introduced as an
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additional contribution to the precession

1Yol
T+ a2M X Heddy (833)
and to the damping term
Yol
1 QQI\/I X (I\/I X Heddy)- (834)

In Figure 8.10 the eddy field Heqay and its two torque contributions on the magneti-
zation path are visualized. For small damping reversal is governed by gyromagnetic
oM

precession. The precessional motion causes a high <= which in turn gives rise to an

eddy current field. The %\L—’l vector is in a plane perpendicular to the applied field.
The first term 8.3.3 produces a torque in the precession polar plane with a phase shift
due to the direction of the magnetization motion. The phase shift leads to a slowing
down of the precession movement which is visualized by plotting either the My or the
M, component over time, once with and once without eddy current contributions,
see Fig. 8.12.

The second term, which is always normal to the precession contribution of the eddy
current field, produces a torque in the direction of the applied field acting in the
negative azimuthal direction. This term helps to trigger the precessional switching
of the magnetization. But once the intermediate state of magnetization reversal is
reached the eddy current field leads to a slowing down of the magnetization reversal
process, shown in Fig. 8.11. This is due to the torque which is produced by the eddy

current damping contribution, which results in a magnetization vector pointing away

from the normal magnetization reversal path, shown in Figure 8.10.
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Figure 8.11: Time evolution of M, for a Permalloy nanocube of 27 nm edge length,
a conductivity of ¢ = 1.10° (Q2m)~! and o = 0.1 under the influence of an applied

field of 200mT.
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Figure 8.12: Time evolution of M, for a Permalloy nanocube of 27 nm edge length,
a, conductivity of ¢ = 1.10° (Qm)~! and o = 0.1 under the influence of an applied

field of 200mT.
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8.4 Demagnetization Field and Eddy Currents

In our derivation of the eddy current diffusion equation we have made several ap-
proximations by omitting the change of the applied field H, with time and also the
change of the demagnetization field Hyq with time.

The first approximation, the omission of the applied field in our derivation, is justified
when the rise time of the applied ficld is shorter than the precession period. As shown
in the previous chapter eddy current effects in small particles are mainly due to gy-

romagnetic precession. For slow varying external field the field can be approximated

OH.
ot

as constant during one precession period and therefore the can be neglected in
the eddy current diffusion equation.

The omission of the demagnetization field Hy is somewhat more delicate. The de-
magnetization field of a cubic sample can be approximated by a demagnetization field
of a sphere, as shown by Amikan Aharoni [56]. This means that a value of ~ %]Ms is
expected.

Simulations were performed with a 27 nm edge length nanocube and a saturation
magnetization of 1 T. The average demagnetization field was found to be ~ % in
units of the saturation magnetization. To investigate the influence of the demagneti-
zation field Hy on the magnetization reversal process including eddy currents, it was
substituted in the eddy current diffusion equation

<8M OHy4 OHeqqy
Olip .

ot

) = AHeddy — Olg (8.4.1)

EZ
Simulation were performed with the old diffusion equation and the modified diffusion
equation. The calculations show that the change of the demagnetization field with
time does not change the magnetization reversal process concerning the eddy current
effects, as shown in Fig. 8.13. The demagnetizing field Hy is proportional to -M. Thus
the inclusion of Hy in 8.4.1 is similar to a small change in the conductivity, which

turns out to be negligible.
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Figure 8.13: Time evolution of M, for a Permalloy nanocube of 27 nm edge length,

a conductivity of ¢ = 1.10° (2m)~! and « = 0.1 under the influence of an applied

field of 200mT: black line, diffusion equation without a—g‘i, red line, diffusion equation
with %ﬂ.
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8.5 Conclusions

In this chapter magnetization reversal simulations of cubic nano scale samples were
performed. The impact of different values of the damping parameter on the magneti-
zation reversal process was shown and the magnetization reversal time as a function
of the damping value was derived. Small damping gives rise to gyromagnetic preces-
sion and therefore a large change of magnetization with time. It is shown that eddy
current effects in small particles are a consequence of gyromagnetic precession.

The inclusion of eddy current effects in our calculations show that eddy currents lead
to a faster switching of the system at the beginning of the magnetization reversal
process. But in the intermediate state of magnetization reversal it leads to a slowing
down which takes the system longer to reach the equilibrium state.

The magnitude of the contributions of eddy currents on the damping parameter are

not specified easily and will be discussed in more detail in the following chapters.



Chapter 9

Eddy Currents in Sub-Micron

Permalloy Structures

In the last chapters it was shown that the dynamic process of magnetization rever-
sal is governed by the Landau-Lifshitz—Gilbert equation which was simulated with a
3-dimensional micromagnetic finite element/boundary element model. In this model
each computational cell experiences an effective magnetic field deriving from the total
free energy of the system. Gibbs free energy consists of four contributions: exchange,
demagnetization, anisotropy and Zeemann. In addition to the mentioned contribu-
tions eddy current effects have been included, as the materials used have an appre-
ciable conductivity. From Faradays law, time variations of magnetic induction give
rise to an electric field and a current respectively. By means of Ohms and Amperes
law, this current induces a new contribution to the total magnetic field, which is
called eddy current field Hegqy. This eddy current field is incorporated into the total
effective field and the change of the magnetization reversal process is investigated.

E. Martinez et al. have developed a micromagnetic model where they calculated the
eddy current field by means of the electric field with Bio-Savarts Law. They inves-

tigated the influence of eddy currents on reversal processes in nanocubes depending
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on size.

In this chapter we use our model to analyze the relevancy of eddy current contribu-
tions to the magnetization switching of Permalloy nanocubes. Especially the impact
of eddy currents and its governing diffusion equation on the magnetization behavior

of materials with different conductivity and size is investigated.

9.1 Diffusion Equation and Material Parameters

The eddy current diffusion equation shows that the eddy current field is directly
derived out of the magnetization rate of change, which itself is calculated out of the
Landau-Lifshitz—Gilbert equation of motion. To analyze the dependency of the field
expression on the material parameters, which are essential in the design of magnetic
nanostructures, it is necessary to derive a dimensionless expression of the conditional
equations that describe the magnetization process.

By substituting the time ¢ with 7

1 1 1
= 1.1
My t T (9-1.1)
and the eddy current field Heqay with the normalized field hedqy
Hega
heddy = . 4 (9.1.2)

and further substituting dx = x a dimensionless for the inhomogeneous-differential

equation of the eddy current field is derived

(9.1.3)

he
Ahedgay =0 - M-y - d2 <6 ddy n 6m>

or ar
where o is the conductivity, M, the saturation magnetization, v, the electron gyro-
magnetic ratio, d the dimension of the sample and m = M/M,.

The dimensionless expression of the diffusion equation shows that it is linearly de-

pendant on the conductivity and quadratically dependant on the dimension of the

sample.
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9.2 Eddy Currents and Material Parameters

The dimensionless expression of the eddy current diffusion equation shows that the
eddy current field is dependent on the size of the sample and on the conductivity
of the material used. To illustrate the effect of eddy currents, permalloy nanocubes
with different edge lengths and different conductivities were simulated. The cubes
were discretized with a specific number of tetrahedrons to keep the same elemental
size for each sample of 3.4 nm. An external field B = —200 u,mT was applied to
the nanocubes, which were initially magnetized in +z-direction. The applied field in-
creases from zero linearly to its final value at 0.1 ns and remains constant thereafter.
First, simulations were performed with a nanocube of 27 nm edge length with two
different conductivity values, ¢ = 1.10" (Qm)~! and ¢ = 1.10° (Qm)~!, shown in
Fig. 9.1.
The simulations show that the switching starts at the boundary and begins to prop-
agate into the sample. During this process the eddy currents induce an eddy current
field that triggers the precessional switching of the magnetization. Furthermore it can
be seen from the simulations performed that the magnetization process starts earlier
for high conductivity materials and also leads to a faster magnetization reversal as
compared with the simulation results obtained in chapter 8. This can be interpreted
as an effectively higher damping caused by eddy currents. Taking a closer look at the
precession movement by plotting the x-direction of the magnetization M over time
it can be deduced that a high conductivity leads to a slowing down of the preces-
sion movement once the intermediate state of magnetization reversal is reached, see
Fig. 9.2.

The next simulations were performed with 20 and 27 nm edge length nanocubes

to investigate the impact of the sample size on the eddy current contribution to the
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Figure 9.1: Magnetization M in z-direction as a function of time under an applied

field of B = —200 u,mT and a = 0.1.

Black line with eddy currents and o =

1.107(2m)~!, red line with eddy currents and ¢ = 1.10%(Qm)~'.
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Figure 9.2: Magnetization M in x-direction as a function of time under an applied

field of B = —200 u,mT and a = 0.1.

Black line with eddy currents and ¢ =

1.10"(2m) "}, red line with eddy currents and ¢ = 1.10°(Qm) .
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magnetization switching. In the diffusion equation the size imposes a quadratic de-
pendency on the eddy current behavior and should result in a bigger effect compared
to the conductivity as its effect is of linear nature. The results obtained by the simu-
lations show, as expected, a bigger impact of the size of the sample on the relevance
of the eddy current contribution to the magnetization reversal process, see Fig. 9.3.
Meaning that, the bigger the sample the bigger the eddy current effect. Taking a
closer look at the precession movement, see Fig. 9.4 shows that an increase of the
sample size leads to a faster precession in the beginning but slows down once the
intermediate state of magnetization reversal is reached. The faster precession is seen
as an increase in the amplitude of the M,(t) plot in Fig. 9.4, whereas the slowing

down leads to a decrease of the M,(t) amplitude.

9.3 The Eddy Current Diffusion Parameter

In the last section the influence of the sample size and its conductivity on the magni-
tude of the eddy current contribution to the magnetization reversal process has been
investigated. The two material parameters were separately analyzed regarding their

impact on the eddy current effect. But by plotting the diffusion parameter
oMy d> (9.3.1)
of the diffusion equation

(9.3.2)

Aheddy:a.]\/[s.%.d?(?_hﬁd_d_y+6_m>

or or

for a given magnetization rate of change, a connection between the size, the con-
ductivity and the applied field can be derived. The parameter is plotted to give

the magnetization rate of change as a function of conductivity and size, as shown in
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Figure 9.3: Magnetization M in z-direction of a Permalloy nanocube with different
sizes as a function of time under an applied field of B = —200 u,mT and a = 0.1.
Black line with eddy currents, a conductivity of ¢ = 1.10°(Qm)~! and an edge length
of 20 nm, red line with eddy currents, a conductivity of o = 1.10°(Q2m)~! and an edge
length of 27 nm.
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Figure 9.4: Magnetization M in x-direction of a permalloy nanocube with different
sizes as a function of time under an applied field of B = —200 u,mT and o = 0.1.
Black line with eddy currents, a conductivity of ¢ = 1.10°(Qm)~! and an edge length
of 20 nm, red line with eddy currents, a conductivity of o = 1.10%(2m)~! and an edge

length of 27 nm.
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Fig. 9.5.

Micromagnetic simulations were performed to give the magnetization rate of change
for each contour line in Fig. 9.5, as shown in Fig. 9.6. The contour lines give the
development of the size—conductivity interaction for a given applied field.

That means that the same magnetization behavior can be achieved by varying the
conductivity and the size of the sample with respect to the course of the correspond-
ing phase curve.

For example: Marking a point A on the red curve in Fig. 9.7 and making the cor-
responding magnetization reversal simulations, doing the same for a second point B,
which has different material parameters, the same magnetization behavior is simu-

lated, shown in Fig. 9.8.

9.4 Eddy currents and Critical Size of Single Do-

main Behavior

In the last section the material parameters which govern the eddy current field con-
tribution were derived and analyzed. The conductivity was shown to increase the
contribution and therefore simulating a higher damping constant value. In addition
it was shown that the size of the sample has an even greater impact on the magneti-
zation reversal.

Therefore additional simulations were performed with increasing size of the permal-
loy nanocube. Beginning with an edge length of 20 nm and increasing it thereafter
to 27 nm, 33 nm and 40 nm. The results have shown that the eddy current effect
increases from 20 to 27 nm, reaches nearly zero with 33 nm, see Fig. 9.9, and increases
again at a size of 40 nm, see Fig. 9.10. To understand this effect the spin structure

of the sample over time was analyzed.
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Figure 9.5: Contour lines of the constant prefactor of the eddy current diffusion
equation for a fixed magnetization rate. Red line, function for high eddy current
contributions (corresponds to red line in Fig. 9.6). Black line, function for low eddy
current contributions (corresponds to black line in Fig. 9.6.
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Figure 9.8: Magnetization M in z-direction of a Permalloy nanocube with different
sizes as a function of time under an applied field of B = —200 u,mT and « = 0.1.
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The initial state is basically magnetized along the easy axis and is called the single
domain or flower state. This kind of state is found in the 20 nm and 27 nm samples.
Once a field is applied the magnetization reversal process starts and simulations show
for these sizes a coherent rotation of all magnetic spins in the system. The magneti-
zation reversal is uniform over time.

In the 33 nm sample, the initial state is a flower state as well, but once the field is
applied and although the magnetization reversal starts uniform, it develops into a so-
called a twisted flower state, a very incoherent spin structure.

In the 40 nm sample, on the other hand, a vortex is formed and wanders throhgh the
sample unti]l the system reaches an equilibrium state.

The results of these simulations show that there is a critical size [57] where the flower
state of the single domain particle (20 nm and 27 nm) collapses, becomes unstable
and develops through curling into a vortex state configuration (40 nm). This tran-
sition is accompanied by an intermediate configuration which is largely nonuniform,
the twisted flower state configuration (33 nm).

Taking these results and setting them in context to the change of the eddy current
contribution, leads to the conclusion that the eddy current effect contribution is con-
nected to the coherence of the magnetic spin structure.

In small particles with a uniform magnetization reversal all the spins arc in phase
and their single eddy current contributions add up to one big contribution. Once
the magnetization reversal becomes nonuniform, as in the twisted flower state, many
spins are in different phases and their contributions do not add up anymore leading
to a small eddy current contribution. For bigger samples a more uniform magnetiza-
tion reversal is found, a vortex state configuration, leading to a more significant eddy

current contribution.
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Figure 9.9: Magnetization M in z-direction of a 33 nm nanocube as a function of
time under an applied field of B = —200 u,mT and a = 0.1. Black line without eddy

currents and o = 0.1, red line with eddy currents, alpha = 1 and a conductivity of
o =1.10%(Qm)"".
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Figure 9.10: Magnetization M in z-direction of a 40 nm nanocube as a function of
time under an applied field of B = —200 u,mT and a = 0.1. Black line without eddy
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9.5 Conclusions

From the eddy current diffusion equation the governing material parameters, the
conductivity and the size, which influence the contributions of the eddy currents to
magnetization reversal were derived by normalizing the fields and making the equation
dimensionless. The derived diffusion parameter was plotted for a given magnetization
behavior. The resulting phase diagram gives thé size over the conductivity and shows
that the samne magnetization behavior can be achieved by varying the conductivity
and the size in respect to the contour lines for a given magnetization rate of change.
Furthermore it is shown that the size of the sample has a bigger impact on the eddy
current contribution compared to the conductivity. Size simulations have further
shown that the critical size for a single domain behavior, defined as the maximum
size at which magnetization reversal proceeds by rotation in unison, for a cubic sample
is lower than 33 nm edge length.

Three kinds of mechanisms of magnetization reversal were found to define the reversal
process: spin rotation in unison, non-uniform rotation, and vortex motion.

The size investigations and their impact on the eddy current contributions have shown
that the magnitude of the eddy current effect depends on the coherence of the spin
structure as follows:

In small particles with a uniform magnetization reversal all the spins rotate in unison
and their single eddy current contributions add up to one big contribution. But
once the magnetization reversal becomes nonuniform, as it is the case of the twisted
flower state, the spins rotation is not in unison and their contributions do not add
up anymore leading to a small eddy current contribution. For bigger samples a more
uniform magnetization reversal is found, the vortex configuration, leading to a more

significant eddy current contribution.



Chapter 10

Influence of Eddy currents on the

Effective Damping Parameter

The influence of eddy currehts on magnetization dynamics may be incorporated into
standard micromagnetic by the use of an effective damping parameter as originally
proposed by Chikazumi [58]. However, his theory only applies for large particle where
magnetization reversal is dominated by domain wall motion.

Several models were presented in the past to describe magnetization reversal processes
for small particles and the transition lengths from multi- to single-domain parti-
cles, like by Rave, Fabian and Hubert [59] and Schabes and Bertram [60], how-
ever those methods did not include eddy currents. Mayergoyz et al.[61] presented a
self-consistent numerical solution of the magnetic diffusion equation and the Landau—
Lifshitz equation for linear and circularly polarized applied magnetic fields and showed
the effect of eddy currents for different conducting ferromagnetic films. L. Torres et
al. [62] developed a micromagnetic model that included eddy currents and investi-
gated the 111ag1ietization behavior for high conductivity materials.

In this chapter we use the 3-dimensional micromagnetic model that includes eddy

current effects to derive a method to calculate the effective damping parameter as
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a function of particle size and electric conductivity for single domain particles. We
use this model to simulate magnetization reversal processes in sub—micron permalloy
structures and investigate the total energy of the system under different applied fields
and different material parameters. From the change of energy with time an effective
damping parameter is calculated [63]. By comparing the calculated effective parame-
ter with the imposed damping constant value, the net eddy current contribution to

the dynamic magnetization processes is determined.

10.1 Model

In order to derive how the damping parameter is related to the change of energy
with time we first recall the LLG equation and the eddy current diffusion equation
in dimensionless form.

To describe the dynamic magnetization process in single domain particles, we start
from the Landau-Lifshitz-Gilbert equation of motion, whereby all vector quantities
H.g and Heqqy are normalized by the saturation magnetization Mj, as shown for the

effective field
H.g M

—_ m =
M, M,
with po being the permeability of free space. Furthermore a reduced time 7 is intro-

duced

heg = (10.1.1)

T = Mot (10.1.2)

where v9 > 0 denotes the gyromagnetic ratio. With the conventions defined in equa-
tion 10.1.1 and 10.1.2 a dimensionless expression for the Landau-Lifshitz—Gilbert

equation is derived

(1+ a2)%r—:- = —(m X heg) — am X (m X heg) (10.1.3)
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where a is a dimensionless empiric damping parameter, called Gilbert damping con-
stant. The effective field in 10.1.3, which is composed of the anisotropy contribution
hani, the exchange field heyen, the applied field h, and the magnetostatic field hy,
is derived from a variational analysis, as the coefficient of the first variation of the
Gibbs free energy functional [64].

Eddy current effects are introduced by an eddy current field heg4qy, which is a part
of the effective field heg, and is calculated by solving the eddy current diffusion
equation.. Applying the vector normalization and the reduced time on the diffusion
equation yields

or or

where ¢ is the conductivity and d is the dimension of the particle. The dimensionless

Heady , I

Dheasy = - My 30 & (10.1.4)

expression of the conditional equations shows that the diffusion of the field is linearly
dependent on the conductivity and quadratically dependant on the size. Equation
10.1.3 and 10.1.4 are a coupled system of LL.G and quasi-static Maxwell equations

and are solved by a hybrid finite element/boundary element method [65] [66]-

10.2 Eddy Currents and the Effective Damping

Parameter

To determine the contribution of eddy currents on the total energy dissipation rate of
a dynamic micromagnetic system a self-consistent criteria proposed by Albuquerque
[63] is used.

The energy dissipation rate depends only on intrinsic material parameters and on
the actual magnetization motion. By disregarding the damping term in 10.1.3 a
constant applied field would result only in a precessional motion of the magnetization

and therefore leave the energy of the system constant. Consequently no energy is
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dissipated.

The introduction of damping results in an irreversible switching of the system, thus
the change of energy over time indicates the magnitude of the dissipation and the
damping parameter, respectively.

The general expression of the rate of change of the systems free energy functional is
given by [64]

‘;—E = —Mf/heﬁ om oy (10.2.1)
-

Equation 10.2.1 shows that the change of energy is proportional to the change of mag-
netization integrated over the whole volume, meaning that by rearranging the LLG
equation and substituting it into 10.2.1 an expression for the damping parameter «
can be derived.

Starting from the Gilbert form of the Landau-Lifshitz—Gilbert equation in the di-

mensionless form

Om Jm
Multiplying equation 10.2.2 respectively with h.g and %—T yields
om Om
heﬁ . .—8_,;.— = _heff . (m X heﬂ') + theﬂ' ° (nl X E) . (1023)

and

Om Om om Oom Jm

il —_—. —_—]. 10.2.4

5 ar = or (m>Xha)tags <mx37) (10-24)

The first term on the right hand side in 10.2.3 and the second term on the right
hand side in 10.2.4 vanish as the cross product of two identical vectors are zero.

Furthermore the following vector identity
A-(BxC)=-C-(BxA) (10.2.5)

is used on the second term of equation 10.2.3, which recasts the two equations to

0m Om
heﬁ' : E = _QF . (m X heﬂ') (1026)



and \
Om om ~
— = - : 10.2.7
(5) -5 mxha (1027)
Substituting equation 10.2.7 into equation 10.2.6 yields
Om om)?
hy- — =a| — 10.2.8
o ~ ¢ ( or > ( )
which is the integral kernel on the right hand side of 10.2.1. By substituting 10.2.8
into 10.2.1 \
JE . om
—=—aM? [ == dV. 10.2.9
or aMs / < 87) ( )
and rearranging the new expression yields
1 JE om\ 2
- [Z=/ [ (Z dv]. 10.2.10
“ M? [aT / / ( or ) ( )

Since the damping parameter from 10.2.10 is calculated from the simulation results it
is called the dynamic damping parameter a,. For single domain particles, we assume
that the magnetic system is rotating in unison as a single magnetic vector. In this
case equation 10.2.10 can be approximated with

=5 [/ (5] @021

its equivalent for a macrospin. Once the magnetization rate of change with and
without eddy current effects has been obtained the damping parameter ., obtained
during the dynamical calculations, can be compared with the imposed damping value

a, see Fig. 10.1. Hence the net eddy contributions are determined.

10.3 Permalloy Single Particle Simulations

Simulations are made with cubic permalloy single domain particles of 20nm / 27nm /
33nm / 40nm edge length and a resistivity of 1.1078/1.107° Qm. An external applied
field of Bext = poHext= —100/200/800 u,mT is applied to the nanocube, which is
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Figure 10.1: The dynamic damping parameter a, over time for a 27nm edge length
nano particle with and without eddy current contributions at an applied field of
100mT.
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F iguré 10.2: The dynamic parameter a, over time for a 20nm and a 27nm edge length
nano particle at an applied field of 200mT.
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Figure 10.3: The dynamic parameter for a 27um edge length particle with a low
conductivity of ¢ = 1.107(2m)~! and a high conductivity of o = 1.10°(Q2m)~! at an
applied field of 200mT.

initially magnetized in +z-direction. The external field increases from zero linearly

to its final value at 0.1ns and remains constant thereafter.

consistency check

First we performed simulations with ¢ = 0. As there are no eddy current effects
the dynamic calculated . is equal to the imposed damping constant «r, shown in

Table 10.1. ¢, is obtained by averaging over the simulated values in Fig. 10.1 to 10.3.

influence of conductivity

Simulations of 27nm particles with a resistivity of 1.1077Q2m show an increase of the
damping constant by 6 percent in an applied field of 100mT. A lower resistivity of

1.107°Qm leads to an increase 10 percent, shown in Fig. 10.3.
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applied field

By increasing the field to 200mT the contribution of the eddy currents decreases to
a value of 5 percent and vanishes for fields higher than 800mT. If the external field
is high the magnetic field created by eddy currents becomes negligible. The eddy
current field is proportional to the change of the magnetization with time but in
addition it is also a function of time according to the eddy current diffusion equation
10.1.4. At the beginning of the reversal process, the eddy current field is zero and it
will increase with time at a certain rate which depend on o, v, and d? only and does
not depend on H.,;. On the other hand the time for magnetization reversal decreases
with increasing H.,;. For large external fields the particle becomes reversed before a

significant eddy current contribution is built up.

size

For smaller particles (edge length of 20nm) the contributions of the eddy currents to
effective damping are 4 percent, shown in Fig. 10.2, and show the same behavior as the
27nm particles concerning resistivity and field strength. Increasing the particle size
to 33nin, however, the critical transition length from homogeneous to inhomogeneous
magnetization reversal is reached. The magnetic ﬁeld created by the eddy currents
becomes non—uniform, resulting in an incoherent spin structure leading to a vanishing
eddy current contribution to damping of less than 1 percent. All the simulation results

are summarized and shown in Table 10.1.

10.4 Conclusions

A model was introduced to calculate the contribution of the eddy currents to the
effective damping of the system. Relating the change of the total energy with time

to the change of the magnetization with time an effective damping was calculated.
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Table 10.1: Gives the simulation and calculation results for the dynamic damping
parameter in dependency of field strength, conductivity and size of the sample.

Time (ns) Size (nm) Hexe (mT) o (Qm) o« ae  w.fa

1.0-2.2 20 200 0 0.1 0.101 1
1.0-2.2 20 200 1.107° 0.1 0.104 297
1.0-2.2 27 200 0 0.1 0.103 1
1.0-2.2 27 200 1.1078 0.1 0.106 2.91
1.0-2.2 27 200 1.107° 0.1 0.108 4.85
1.5-4.0 27 100 0 0.1 0.1 1
1.5-4.0 27 100 1.107° 0.1 0.11 10

Any effective damping higher than the iillposed Gilbert damping constant has to
be attributed to eddy currents. In small particles, eddy currents may increase the
effective damping by up to 10 percent. It was shown that the magnitude of the
contribution of eddy currents to the energy dissipation of the system depends on
material parameters like the conductivity and the size of the particles. The lower the
resistivity of a system the higher the eddy current effect. In the regime of uniform

rotation, the eddy current distribution to damping increases with particle size.
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7043, 2003

Books and book chapters

1.

T. Schrefl, D. Suess, G. Hrkac, M. Kirschner, O. Ertl, R. Dittrich, and J.
Fidler, ” Nanomagnetism” in Advanced Magnetic Nanostructures, D Sellmyer,
R Skomski (Eds), Springer, in press

Talks and conference contributions Invited lectures

and talks

1.

G. Hrkac, Influence of Eddy Current on Magnetization Processes in Sub-Micron
Permalloy Structure, Department of Engeneering Materials, University of Sheflield,
United Kingdom, June 9, 2000



Contributed conference presentations

1.

o

(@3]

G. Hrkac, T. Schrefl, M. Kirschner, F. Dorfbauer, D. Suess, 3D Micromagnetic
Finite Element Simulations Including Eddy currents, 49th Annual Conference
on Magnetism and Magnetic Materials, Jacksonville/Florida, November 7-11,
2004.

D. Suess, M. Albrecht, T. Schrefl, R. Dittrich, M. Kirschner, F. Dorfbauer, G.
Hrkac, J. Fidler, Exchange Spring Multilayer Media for High Density Record-
ing, 49th Annual Conference on Magnetism and Magnetic Materials, Jack-
sonville/Florida, November 7-11, 2004.

. R. Dittrich, T. Schrefl, D. Suess, M. Kirschﬁer, F. Dorfbauer, G. Hrkac, J. Fi-

dler, Optimization of MRAM switching by local variation of the Gilbert damp-
ing constant, 49th Annual Conference on Magnetisin and Magnetic Materials,
Jacksonville/Florida, November 7-11, 2004.

T. Schrefl, M. E. Schabes, D. Suess, O. Ertl, M. Kirschner, F. Dorfbauer, G.
Hrkac and J. Fidler, Partitioning of the Perpendicular Write Field into Head
and SUL Contributions, Intermag Conference 2005, Nagoya, Japan, April 2005.

R. Dittrich, T. Schrefl, M. Kirschner, D. Suess, G. Hrkac, F. Dorfbauer, O.
Ertl, J. Fidler, Thermally Induced Vortex Nucleation in Permalloy Elements,
Intermag Conference 2005, Nagoya, Japan, April 2005.

. G. Hrkac, T. Schrefl, O. Ertl, D. Suess, M. Kirschner, F. Dorfbauer, J. Fidler,

Influence of Eddy Current on Magnetization Processes in Sub-Micron Permal-
loy Structure, Intermag Conference 2005, Nagoya, Japan, April 2005.

D. Suess, T. Schrefl, M. Kirschner, G. Hrkac, J. Fidler, Optimization of exchange
spring perpendicular recording media, Intermag Conference 2005, Nagoya, Japan,
April 2005.

M. Kirschner, T. Schrefl, G. Hrkac, F. Dorfbauer, D. Suess, J. Fidler, Relaxation
times and cell size in nonzero-temperature micromagnetics, 5th International
Symposium on Hysteresis, Budapest, May, 2005
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Poster presentations

1. G. Hrkac, M. Kirschner, T. Schrefl, F. Dorfbauer, D. Suess, J. Fidler, Micro-
magnetic Simultions and Eddy-Currents Ultrabias, Summer School 2004, An-
glet/France, September 12-16, 2004. (poster)

2. M. Kirschner, F. Dorfbauer, G. Hrkac, O. Ertl, P. Speckmayr, T. Schrefl, D.
Suess, Vom Magnetkompass zum Terrabitspeicher - Simulation magnetischer
Datenspeicherung, Scienceweek, Wien, 8.-16. Mai 2004. (poster)

3. D. Suess, T. Schrefl, R. Dittrich, M. Kirschner, F. Dorfbauer, G. Hrkac, Ex-
change spring recording media for areal densities up to 10 Thit/in, JEMS04,
Dresden, Germany, September, 2004. (poster)

4. M. Kirschner, T. Schrefl, F. Dorfbauer, G. Hrkac, D. Suess, J. Fidler, Cell
size dependencies in non-zero temperature micromagnetics, Ultrabias Summer
School 2004, Anglet/France, September 12-16, 2004. (poster)

5. M. Kirschner, T. Schrefl, F. Dorfbauer, G. Hrkac, D. Suess, J. Fidler, Cell
Size Dependencies of Relaxation Times in Nonzero-temperature Micromagnet-
ics, Nanomagnetism and Spintronics - Spring School, Cargese, Corsica, June
2005. (poster) ‘

6. F. Dorfbauer, M. Kirschner, T. Schrefl, D. Suess, G. Hrkac, O. Ertl, J. Fidler,
Analysis of Partially Disordered Nanoparticles, Nanomagnetism and Spintronics
- Spring School, Cargese, Corsica, June 2005. (poster)



