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Abstract

Eddy current effects are usually not taken into account in micro magnetic simulations

of magnetization reversal of magnetic nano-structures. The net contribution of eddy

currents is assumed to be already included in the damping parameter of the Landau-

Lifshitz-Gilbert equation (LLG). The increasing demand of ultra-fast switching in

magnetic nanostructures demands a more accurate model for high-speed switching

in conducting ferromagnetic materials. It is apparent that eddy currents which are

induced by high frequency fields with rise times of < 0.1 ns affect the magnetization

behavior of the conducting ferromagnetic materials.

In this work a micromagnetic eddy current method was developed that allows arbi-

trary geometries, requires no mesh outside the ferromagnetic particles, and uses a

stable integration scheme. It simultaneously sol\res the Landa.u-Lifshitz-Gilbert equa-

tion and the quasi-,static Maxwell equations using a hybrid finite element/boundary

element method (FEM/BEM). The eddy current field is introduced as part of the

total effective field and is directly calculated from the space time behavior of the

magnetization rate of change. The boundary conditions of the eddy current field at

infinity are taken into account using a FEM/BEM scheme. The resulting system of

differential algebraic equations is solved using a backward differentiation method.

From the derived eddy current diffusion equation the critical particle size and conduc-

tivity range that leads to pronounced eddy current effects on magnetization reversal

of magnetic nano-structures is determined.
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It is shown that the size of the particles, which designates the coherence of the spin

structure, is essential for the eddy current net contribution to the effective damping

parameter, which is a function of particle size and electric conductivity, and directly

influences the magnetization reversal process in sub-micron permalloy structures.

Recapitulating: In this thesis a theory that explains eddy current effects in single

and multi-domain particles was developed. Based on the theory a model was de-

rived that predicts eddy current contributions in multi-scale particles, which allows

to design and predict the behavior of materials that will be usedin future magnetic

recording heads as well as in magnetic data storage medias .



Kurzfassung -

In herkömmlichen mikromagnetischen Simulationen vOn Ummagnetisierungsprozessen

magnetischer Nanopartikeln werden \iVirbelströme nicht berücksichtigt. Der 'Wirbel-

strombeitrag wird als ein Teil des DämpfungsparaIl1ters der Landau-Lifshitz-Gilbert

Gleichung betrachtet. Der steigende Bedarf an ultraschnellem Schaltverhalten in lei-

tenden Ferromagneten macht genauere Modelle für das Ummagnetisierungsverhalten

von magnetischen Nanopartikeln notwendig.

In dieser Arbeit wird ein mikromagnetisches \Virbelstrom-Modell basierend auf einer

Finite-Element Methode vorgestellt, das das Modellieren von allgemeinen Strukturen

erlaubt, kein Finite-Element Gitter für den Aussenraum benötigt und ein stabiles

Integrationschema verwendet. Dieses Model löst die Landau-Lifshitz-Gilbert Gle-

ichung und die Ma.xwell-Gleichungen gleichzeitig in einer quasistatischen Näherung

mit einer kombinierten Finite Element/Boundary Element Methode. Hierbei werden

die Wirbelströme als Teil des totalen effektiven Feldes in das Gleichungssystem inte-

griert und direkt aus dem zeitlichen Verhalten der Magnetisierungsänderung berecll-

net. Die Randbedingungen im Unendlichen werden durch ein Randintegralschema

berechnet. Das resultierende System von Algebraischen und Differentialgleichungen

wird mit einer Backward Differentiation Methode gelöst. Die Diffusionsgleichung

für \\Tirbelströme wurde abgeleitet und daraus die kritische Partikelgröße sowie die

Leitfähigkeit bestimmmt, die notwendig sind, damit die Wirbelströme einen essen-

tiellen Beitrag zum Magnetisierungsprozess von magnetischen Nanopartikeln leisten.
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Es wird gezeigt, da..,>sdie Partikelgröße, die der bestimmende Faktor für die Koheränz

der Spinstruktur ist, den Beitrag der \Virbelströme zum effektiven Dämpfungsparameter

bestimmt. Desweitern wird gezeigt, dass der Dämpfungsparameter eine Funktion der

Partikelgröße und der elektrischen Leitfähigkeit ist und einen direkten Einfluß auf das

Ummagnetisierungsverhalten von Submikrostrukturen hat.

Zusammenfassend wurde in der vorliegenden Arbeit eine Theorie entwickelt, die den

Effekt von \Virbelströmen in Partikeln mit einer oder mehreren Domänen beschreibt.

Von dieser Theorie ausgehend wurde ein Modell hergeleitet, das den Beitrag von

\IVirbelströmen in Partikeln über mehrere Größenskaien vorhersagt. Das ermöglicht

es, das Verhalten von Materialien vorherzusagen und Materialien mit erwünschten

Eigenschaften zu entwickeln, die in zukünftigen magnetischen Schreibleseköpfen als

auch in ma.gnetischen Speichermedien zum Einsatz kommen können.
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Chapter 1

Introduction

The main motivation to develop a dynamic micromagnetic model that includes eddy

currents is the importance of accurate calculations of time dependent micromagnetic

processes for magnetic data storage (hard disk recording, magnetic random access

memory MRAM) at high data rates and the demand for ultra-fast switching in rnag-

netic naollstructures, that compromise submicron elements of ferromagnetic material,

usually Permalloy. Computational micromagnetics presents an efficient tool to study

these kind of ultra fast spin dynamics.

The notion of spin and spin-dynamic was introduced by the conceptual breakthrough

offered by quantum mechanics. In the 1935 paper of Landau and Lifshitz [16] and

in the 1956 paper of Gilbert [6] a complementary view to spin motion based on the

interaction between conservative precession around the spins effective field and a dis-

sipative damping associated with this movement was introduced. Kikuchi [53] was

the first who investigated the minimum switching time when magnetization motion

is essentially governed by precession. The influence of dissipative damping was taken

care of by the introduction of a so called damping term which is mainly governed by

a damping constant.

Eddy currents are usually not taken into account in micro magnetic simulations of

11
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magnetization reversal of magnetic nan~structures. The net contribution of eddy

currents is assumed to be already included in the damping parameter of the Landau-

Lifshitz-Gilbert equation of motion. These kind of assumptions are no longer ap-

plicable for magnetic particles in magnetic fields with field rise times of less than 0.1

ns and a conductivity a of more than 1.106 (nm)-l.

Several models and methods were presented in the past to analyze the influence of

eddy current effects on magnetization dynamics. These include the two-dimensional

quasi-static model by Della Torre and Eicke [39] and the one-dimensional dynamic cal-

culations by Sandler and Bertram [40]. Mayergoyz et al [50] presented a self-consistent

11Umerical solution of the magnetic diffusion equation and the Landau-Lifshitz equa-

tion and showed the effect of eddy currents for different conducting materials.

In this work a three-dirnensional finite element dynamic micromagnetic model 111-

cluding eddy currents was developed. The model simültaneously solves the Landau-

Lifshitz-Gilbert (LLG) equation and the qua..c;istatic Maxwell equation using a hybrid

FE/BE method. A finite element method with a linear basis function is used to dis-

cretize the conducting region n. To calculate the magnetization vector on each node

of our mesh an additional discretization, the delaunay-voroni discretization, was used

to calculate the exact volume around each node, which proved to be more accurate

than the ma..c;s-lumping method that had been used before. The boundary element

method is used to map the boundary conditions of the magnetic field at infinity on

equivalent boundary conditions on the surface of the conducting region n, which re-

duces the necessity of a mesh to n, allowing arbitrary geometries. The FEM/BEM

method is described in detail in chapter 2. The magnetization dynamics are gov-

erned by the Landau-Lifshitz-Gilbert equation of motion, which is derived out of

the principles of magnetization motion, starting from quantum mechanical concepts

and lagrangian formulation, found in chapter 3, and the basic magnetic principles

summarized in chapter 4. The eddy current field is introduced as an additional part
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of the effective magnetic field in the Landau-Lifshitz-Gilbert (LLG) equation and is

directly calculated from the space time behavior of the magiletization rate of change.

The derivation of the eddy current field is explained in chapter 6, and the numerical

techniques are described in chapter 7.

Chapter 8 explains the theory of eddy current effects on the precession and damping

term of the LLG equation. The model is used to investigate the impact of eddy cur-

rents on the magnetization behavior of materials with different conductivity and size,

the results and conclusions are given in chapter 9. Finally, in chapter 10, a method for

the calculation of the effective damping parameter as a function of particle size and

electric conductivity is presented and used to extract the eddy current contribution

from the effective damping constant.



Chapter 2

Finite Element and Boundary

Element Method.

The hybrid FEMjBEM approach retains the advantages of both, differential equation

and integral equation approaches. The general procedure for a hybrid technique

requires that the region of interest be enclosed by an artificial boundary. Maxwells

equations are then sohred by a differential equation approach such as the finite element

method (FEM) inside the artificial boundary and by an integral equation approach in

discretized form such as the boundary element method (BEM) outside the artificial

boundary. Although use of BEM on and outside the artificial boundary results in

a full dense matrix, convergence of an approximate solution to the exact solution is

guaranteed without a change in the location of the.artificial boundary. This method

will be introduced in detail for the solution of the Poisson and the Laplace equation,

as the former are used in the following chapters to solve the micromagnetic equations.

14
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2.1 Poisson and Laplace Problem

The aim is to find a solution U, that approximates the exact solution u of the Pois-

son and Laplace equation which are both elliptic partial differential equations. In 3

dimensions, the problem is to find a twice-differentiable real-valued function u of real

valued variables X, y, z in a region n in JR3 with a closed boundary f.

In the following HI (n) belongs to the Sobolev spaces and L2(n) is the space of square

integrable functions on the (bounded) domain n. Vilesearch for a solution u E HI (n)

which satisfies the Poisson/Laplace equation at given proper boundary conditions:

Dirchlet boundary conditions apply on f d C fand Neumann boundary conditions

apply on fn:= f \ fd.

TIle Poisson equation (named after its discoverer Simon-Denis Poisson) is of the form

-.6.u = f 111 n

that satisfies Dirchlet boundary conditions

u = Ud on fd

and Neumann boundary conditions

du
-d = 9 on fnn

where f E L2(n), Ud E HI(n) and 9 E L2(fn).

The Laplace equation (named after Pierre-Simon Laplace) is defined as

.6.u = 0 in n

The same boundary conditions apply as for the Poisson equation.

(2.1.1)

(2.1.2)

(2.1.3)

(2.1.4)
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2.2 The Weak Formulation

The weak formulation (often also called variatiorlal formulation) is the starting point

in finite element analysis. The Poisson equation is recast in the weak form by multi-

plying it by an arbitrary weight function w

with HI the standard Sobolev space which is also the Ansatz function and integrating

over the domain of the problem n,•

•

- r b.u. wdv = r f. wdv.Jo. Jo.
By USillg the vector derivative identity

'\l. (w'\lu) = w6u + ('\lu) . ('\lw)

and using the divergenz theorem

1'\l. (F)dv =1F . da

the weak formulation of the Poisson Problem is derived

l '\lu. '\lwdv - r w. du da = r f. wdv .Jo. Jf' dn Jo.

2.3 The Galerkin Discretization

(2.2.1)

(2.2.2)

(2.2.3)

(2.2.4)

(2.2.5)

In order to solve the Poisson problem numerically, the weak formulation is discretised

witha linear basis function 'r/ with a set of linear basis vectors ('r/I , ... ,'r/N), where N

is the dimension of the solution space S of U. Furthermore the weighted residual

function w is redefined and the finite element solution U is developed in a serial
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expansion in terms of the linear basis function rJ

111 - rJj

U - L 1LkrJk.
k

(2.3.1)

Inserting Equations 2.3.1 into the weak formulation of the Poisson equation 2.2.5, we

obtain

•

r (\7 L1LkrJk) . \7rljdv -19 . rJjda = r f. rJjdvln k r ln
which can be rewritten to

and simplified to a system of linear equations

where A is the Stiffness Matrix

and b the Right Hand Side of the system of linear equations

(2.3.2)

(2.3.3)

(2.3.4)

(2.3.5)

(2.3.6)

The stiffness matrix A is sparse, symmetric and positive definite resulting in 1 solution

of the system of linear equations 2.3.3 has in JR.3, which gives the Galerkin solution

(2.3.7)
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2.4 Boundary Element Method

The basic steps in the boundary element method are quiet similar to the finite element

method. First a integral equation has to be formed from the Poisson equation by using

a weighted integral equation and then using the Green-Gauss theorem

r \7u. \7wdv - r w. du da = r f. wdv.Jn Jr dn ./n
Equation 2.4.1 is the starting equation of the finite element method. To derive the

starting equation for the boundary element method the Green-Gauss theorem is ap-

plied again on the second integral, which gives

r \7u. \7wdv - r w. du da
Jn Jr dn

1 1 dw 1 du- u.6wdv+ u.-da- w.-da
n r dn r dn

= lfowdVo

(~.4.2)

(~.4.3)

In the Galerkin FEM the weight residual function was set to TJ, one of the basis

functions used to approximate the solution u. For the boundary element method w

is the fundamental solution of the Poisson equation in ]RN. For N = 3 the weighted

residual function w is

where T = v(a - xF + (ß - xF + (T - xF and is singular at the point (a,ß,,) E n.
Taking from Equation 2.4.3 the domain integral and using the property of the Dirac

delta function on it

•
1

w=-
47fT

1u.6wdv

-luoö(a-x,ß-y,,-z)dv = -u(a,ß,,) (a,ß,,)En

(2.4.4)

(~.4.5)

(2.4.6)

replaces the integral by a point value. Using this expression in 2.4.2 recasts it to

r dw r du r
u(a, ß,,) + Jr u. dn da = Jr w . dn da + Jn f . wdvo (a,ß,,) E n (2.4.7)
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For the Laplace equation f = a applies and the last term of the right hand side of

equation 2.4.7 vanishes. Then the equation contains only boundary integrals and is

referred to as a boundary integral equation. The values of u can relate either to points

inside the solution domain or to points on the boundary of the solution domain. In

the later case, one has to calculate the limit (a, ß, ,) - r and it is necessary to

distinguish if the point is at a smooth boundary position (i.e. point with a unique

tangent) or at a not smooth boundary position (i.e. a corner).

Taking these considerations into account, a generalized expression can be defined with

P denoting the point (a, ß, ,)

1 dw 1 duc(P)u(P) + u. -d da = w. -d da.
r n r n

(2.4.8)

where

c(P) = { t
21T

if PEn

if PEr and r smooth at P
if PEr and r not smooth at P

(2.4.9)

•

with e being the inner solid angle.

Equation 2.4.8 involves only the surface contributions of u and ~;~at the point P.

Once these surface contributions are known, the value of u on any point P inside the

region n can be calculated .

Thus the major advantage of the boundary element method compared to the finite

element method is that the overall size of the problem is reduced by one dimension

(from volumes to surfaces). But the major drawback of the boundary element method

is that a fundamental solution must be found in the first place and there a many linear

problems (e.g. nonhomogeneous equations) for which fundarnental solutions are not

known.
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Figure 2.1: Domain of interest is divided into triangular elements (2D).

2.5 Mesh Generation

In the finite element method, the domain of interest is divided into a set of connected

basic elements (e.g. triangles, tetrahedrons,etc), this process being called a regu-

lar triangulation, see Fig.2.1 To achieve a regular triangulation with finite elements

several conditions have to be taken into account which were defined by Ciarlet [1]

• The vertices of the mesh coincide with the points where the basis function is

one.

• The elements of the triangulation do not overlap .

• Each face on the surface of the body belongs either to rD or rN.

The creation of 3-dimensional geometries and the mesh are done with sophisticated

commercial software such as GID [2]. Once a. regular triangulation T was generated,

a proper basis function for the solution space 5 of the numerical solution U in the

domain n has to be chosen. The Hat function is a very common choice as a basis

function for the space 5, see Fig.2.2, which is defined for every node (x), y), z)) of the

finite element mesh

(2.5.1)

As the Galerkin discretization uses isoparametric elements, the same polynomials

(linear basis functions) for the approximation of the geometry and the solution are
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1.

Figure 2.2: Hat-function.

used, and it is very easy to construct the stiffness matrix A and the right hand side

b as the sum over all elements T and surface triangles E.

(2.5.2)

and b the right hand side of the system of linear equations

(2.5.3)

The stiffness matrix is calculated on an element by element basis, and afterwards the

contributions to the local matrix are assembled to a global stiffness matrix.

If the vertices of a tetrahedron element T are given by (Xj', Yj', Zj') with j' ranging

from 1 to 4 then the volume of the element I T 1 will be defined as follows

1 xj' Yj' zj'

1 1 Xj'+l Yj'+l Zj'+l (2.5.4)IT 1= 6det
1 Xj'+2 Yj'+2 Zj'+2

1 Xj'+3 Yj'+3 Zj'+3

where the local numbering j' of the element is chosen in such a way that the right

hand side of equation 2.5.4 will be positive.

In order to evaluate the contribution of each finite element to the stiffness matrix,
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so-called shape functions are introduced on each tetrahedron T:

recast in matrix form

1 x Y Z 1 Xj' Yj' Zj'

1 Xj'+l Yj'+l Zj'+l 1 Xj'+l Yj'+l Zj'+l
'T/j' = det \ det

1 Xj'+2 Yj'+2 Zj'+2 1 Xj'+2 Yj'+2 Zj'+2

1 Xj'+3 Yj'+3 Zj'+3 1 Xj'+3 Yj'+3 Zj'+3

and its derivative

(2.5.5)

(2.5.6)

(

Yj'+2Zj'+1 - Yj'+3Zj'+1 - Yj'+lZj'+2 + Yj'+3Zj'+2 + Yj'+l Zj'+3 - Yj'+2Zj'+3 )

-Xj'+2Zj'+1 + Xj'+3Zj'+1 + Xj'+lz.i'+2 - Xj'+:lZj'+2 - Xj'+lZj'+3 + Xj'+2Zj'+3

Xj'+2Yj'+1 - Xj'+3Yj'+1 - Xj'+lYj'+2 + Xj'+3Yj'+2 + Xj'+lYj'+3 - Xj'+2Yj'+3

(2.5.7)

and with all indices understood as modulo 4, the contribution of element T to the

stiffness matrix entries can be calculated

(2.5.8)

Using a mapping from the finite element number and the local node index to the

global node index

(T,]') -t j, (2.5.9)

the entries of the element stiffness matrix Ark' are sununed up to the global stiffness

matrix Ajk' For the right hand side of Equation 2.5.3 the first term is evaluated by

transforming the coordinates into the center of gravity which allows the approximation

(2.5.10)
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and the second term can be evaluated in a similar way.

Dirchlet boundary conditions can be implemented by replacing their non-diagonal

values in the matrix with zero, the diagonal values with unity and incorporating the

known node entries in the right hand side.



Chapter 3

Principles of Magnetization Motion

In this chapter the equations which are needed to describe the magnetic motion

of magnetic spins as well as the magnetization rate of change will be presented,

laying emphasis on the iiltimate links between quantum mechanical concepts and the

parameters employed in applied magnetism. The analysis of magnetization motion

starts by considering an ab initio formulation to derive the gyromagnetic equation

for a single spin. Through the introduction of spatial degrees of freedom a unified

and self contained three dimensional variational approach for the general form of

the equation of motion is derived. From the general form the well known Browns

equations, including the general surface contributions and the underlying boundary

conditions from volume interactions can be deduced. At last damping is introduced in

a phenomenological way, leading to the well known Landau-Lifshitz-Gilbert equation

of magnetization motion. The contribution of eddy currents on the magnetization

dynamics will be discussed in the following chapters in detail, but for now shall be

mentioned here only by introducing a modified damping parameter.
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3.1 Quantum-Mechanical Concepts

A magnetic moment M is associated with the electrons angular momentum L and the

same can be assumed for the electrons spin [3], The relation between the electrons

spin and its intrin,sic magnetic moment is given by

M = ,S

where, is the gyromagnetic ratio and is expressed as

(3.1.1)

(3.1.2)

with 9 being the gyromagnetic splitting factor or Landé factor and Ii the Planks

constant. In context with equation 3.1.2 the Bohr magneton JLB

(3.1.3)

with qe and me the charge and the mass of the electron, respectively has to be nega-

tive.

To determine the magnetic moment M correctly, the electrons total angular momen-

tum J consisting of the angular momentum L and the spin S, J = L + S, has to be

taken into account. Once Equation 3.1.1 is modified accordingly, based on the quan-

tum mechanical theory of angular momentum, a general expression for the Landé 9

can be obtained
3

9 = - + S(S + 1) - L(L + 1)2J(J + 1).
2

(3.1.4)

Depending on material properties the gyromagnetic splitting factor can be approxi-

mated to be either equal to 1, which is the case for spinless particles (S = 0, J = L), or

equal to 2, which is the fact when all orbital contributions to the angular momentum

are disregarded (S = J, L = 0). The latter case is most common for ferromagnetic

metals, as the orbital contributions are found to be rather small, which was shown
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by C. T. Chen et al. [4] who investigated the quantitative values of orbital to spin

magnetic moment ratios.

The time evolution of the mean value of quantum mechanical operators associated

with measurable physical quantities provides the link between quantum and classical

mechanics. Such an operator is called an observable.

The mean value (A) of an observable A evolves in time according to the Schrödinger

equation

(3.1.5)

where H is the Hamiltonian operator.

Having defined a general expression for the time evolution of an observable, it is

possible to determine the time evolution of the magnetic moment M in an arbitrary

external magnetic field. Since M does not explicitly depend on time the second term

ill equation 3.1.5 vanishes and the mean value is expressed as

(3.1.6)

with the Hamiltonian H = -M. B.

To derive the precession movement of the spin, the x component of the commutator in

equation 3.1.6 has to be expanded and bearing in mind that B is a classical quantity,

yields

[AIx, H] _,2[Sx, SxBx + SyBy + SzBz]

_ _,2 By[Sx, Sy] _,2 Bz[Sx, Sz]'

_,2[Sy, SxBx + SyBy + SzBz]

_,2 Bx[Sy, Sx] _,2 Bz[Sy, SzJ.

[1\1z, H] = _,2[Sz, SxBx + SyBy + SzBz]

_,2 Bx[Sz, Sx] - ,2By[Sz, Sy].

(3.1.7)

(3.1.8)

(3.1.9)
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The Spin is an angular momentum operator and obeys the usual commutation rules

[Sx,Sy] - ihSz

[Sy,Sz] - ihSx

[Sz,SxJ - ihSy (3.1.10)

which are substituted into Equations 3.1. 7-3.1.9 and one obtains

[1\1x, H]

[1\1y, H]

[1\1z, H]

ih""/(BzSy - BySz)

ih,2(BxSz - BzSx)

ih,2(BxSy - BySx)' (3.1.11)

The cyclic permutation as shown above allows to recast Equation 3.1.6 to

d
dt (M) = ,( (M) x B). (3.1.12)

Equation 3.1.12 gives the time evolution of the mean value of the magnetic moment

M in an arbitrary external field. The classical equivalent can be expressed in terms

of the magnetization M, by being defined as the magnetic moment, and applying for

B = /loH
dM&' = /lo,(M x H). (3.1.13)

Furthermore the gyromagnctic constant, and the penneability of free space /lo can

be lumped into a new gyromagnetic constant '0
,0 = -P,o, > 0 (3.1.14)

which applied to the equation 3.1.13 results in the well known form for the precessional

motion of the magnetization

dM
- = -,o(M x H).
dt

(3.1.15)



28

Figure 3.1: Precessional motion of magnctiz;ation.

The applied field can be either time independent or time dependent. The first case

results in a constant precession of the magnetization vector and a constant angle

between the magnetic field and the magnetization, meaning tImt the energy - fJ,(M ..

H) remains unchanged, which can be easily shown by multiplying Equation 3.1.15

successively with Hand M

d
- (M . H) = 0 and
dt

d 2
dt (1\1 ) = O. (3.1.16)

For the dependant case the applied field is substituted with the angular velocity vector

w = ,oH
dM- = -(M x w).
dt

(3.1.17)

and describes the precessional motion of the magnetization vector around w. Figure

3.1 visualizes Equation 3.1.17 and shows that dlYlj dt lies continuously in a plane

perpendicular to the angular velocity vector describing an instantaneous precessional

motion of magnetization.
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3.2 Lagrangian Formulation ofthe Equation ofMo-

tion

In the last section the precessional motion of the magnetization vector was derived.

80 far, no transfer of the kinetic and potential energy associated with macroscopic

motion to kinetic energy of microscopic thermal motion has been taken into account.

For a magnetization field this transfer can be either through microscopic thermal

motion of spin waves or through a coupled or associated field, like strain fields or the

eddy current. The details of the transfer. mechanism are too complex to be intro-

duced into the field equations explicitly. To include these transfer mechanisms into

the field equations a phenomenological damping term is introduced. The different

contributions to damping contained in this damping term have to be determined ex-

perimentally.

In principle a damping of a physical system generates a force in opposition to the

macroscopic driving force. A steady state is maintained when, the energy gain from

the driving force is balanced by the energy loss from the damping force. If the fQrces

are not equal, energy is either gained (if the driving force is larger) or lost (if the

damping force is larger), which results in a acceleration or deceleration of the macro-

scopic motion, respectively.

In the simplest case where many different damping forces but no resonance phenom-

ena occur, the damping force is proportional to the rate of change of the magnetization

field of the system.

3.2.1 Lagrangian formulation

A common way to introduce such a damping term is to use the Lagrangian formulation

of the equation of motion and adding a velocity dependant term which is derived from
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a quadratic function of the time derivatives of components of the magnetization field,

the Rayleighs dissipation function[5].

Given the magnetization field M = M(r, t), the equation of motion of an undamped

magnetization field in Lagrangian form is given by

!i_bL_[M_,M_] __ bL_[M_,M_] = 0
dt bM bM .

The Lagrangian of the magneti2ation field is defined as follows

L1M, M] = T[M, M] - UlM]

with T being the kinetic and U the potential energy.

By adding a dissipative force term

bR[M]
bM

to Equation 3.2.1 an equation for a damped magnetization field is derived

d bL[M,M] bL[M,M] bR[M] = o.
dt bM - bM + bM

R is a Rayleigh dissipation functional and is defined

(3.2.1)

(3.2.2)

(3.2.3)

(3.2.4)

(3.2.5)

with 'TIbeing the average damping parameter for the sample, which is an approxima-

tion of the damping mechanisms. The functional R could be recast to take nonuniform

damping into account but it would not be possible to calculate and measure all the

variety of mechanisms that contribute to local damping.

Substituting the Lagrangian expressioninto Equation 3.2.4, to separate the kinetic

and potential energy contributions and using the following identities

bU[M]
0 (3.2.6)

oM
-

bR[M]
'TIM (3.2.7)-

oM



one obtains an expression for a dampened magnetization motion

!£ 8T[M, M] _ 8T[M, M] _ 8U[M] M = 0
dt 8M 8M 8M + TJ •

3.2.2 Landau-Lifshitz-Gilbert Equation
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(3.2.8)

(3.2.9)

(3.2.10)

Equation 3.2.8 imposes the problem that the kinetic energy T of the classical La-

grangian depends on dynamical variables that are not defined for quantum spin op-

erators which makes it impossible to derive an expression for the kinetic energy of a

rotating body in classical mechanics that corresponds to the spin of an elementary

particle in quantum mechanics.

But an approximation can be gained if we set the damping parameter TJ equal to zero.

In this case the remaining terms of Equation 3.2.8 can be compared with Equation

3.1.13. Further the added damping term in 3.2.8 can be looked at as a damping field

that reduces the effective field and changes the torque exerting on the magnetization

field. Then one can argue that by adding the same damping term to the effective

field in 3.1.13 a comparable equation of motion for a damped magnetization field is

obtained.

This equation can be written in the following form

aM [OM]- = ILo1M x H- TJ- .at at
The form of Equation3.2.9 is due to Gilbert [6]. It can be shown to be equivalent to

the older form due to Landau and Lifshitz [16] by multiplying both sides of Equation

3.2.9 with Mx yielding

M x a: = M x (1Lo1M x [H _ rIa:]) .
The second term on the right hand side can be recast by making use of the following

vector identity

A12aM = M (M. OM) _ Mx (M x OM). sm m m (3.2.11)
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with IMI = AIs. Inserting this vector identity in Equation 3.2.10 and applying the

new expression to 3.2.9 yields

(3.2.12)

R.earranging the terms in Equation 3.2.12 and using the gyromagnetic constant TO

from 3.1.14 leads to the old form of the Landau-Lifshitz equation

with

a~ = -1uM x H - ÀM x (M x H)
ut

(3.2.13)

TO TJ1]10= 2 and À= 22 2' (3.2.14)
1+ Î'o 1]2 1\1; 1+ TU 1] 1\ls

Taking the above presented equation but using the Gilbert constant Q and the gyro-

magnetic constant TO

Q = ToTI1\ls (3.2.15)

the usually designated Landau-Lifshitz-Gilbert equation of magnetization' motion is

obtained

(3.2.16)



Chapter 4

Micromagnetics

The history of micromagnetics starts with a paper of Landau and Lifshitz on the struc-

ture of a wall between two anti parallel domains published in the year 1935, and with

several papers written by Brown in 1940. A detailed treatment of micromagnetism

is given by Brown in his 1963 book [8]. In the following years micromagnetics was

limited to the use of standard energy minimization approaches to determine domain

structures and the classical nucleation theory was used to determine magnetization

reversal mechanisms in regimes with an ideal geometry. Starting in the mid-1980s

an increased interest in micromagnetism due to the availability of large-scale com-

puting power was investigated which enabled the study of more realistic problems

morecomparable'with experimental data. One of the first achievements was the fact

that energy minimization addresses in principle only specific nucleation fields for the

selected system and not the state of the regime after magnetization reversal. There-

fore, a lot of research was done in the development of dynamic approaches using

simulations based on the Landau and Lifshitz equation of motion, which is the most

common technique in use today. Another important part of micromagnetic calcula-

tions is the develoPlnent of techniques to calculate magnetostatic fields, low frequency

field approximations.

33
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Micromagnetism is a continuum theory to describe magnetization processes on a sig-

nificant length scale which is large enough to replace atomistic magnetic moments by

a continuous function of position and small enough to reveal the transitions between

magnetic domains [9]. Due to the rapid increase in computational power numerical

micromagnetics has become an essential tool to characterize magnetic materials as

used in high density magnetic recording and magneto-electronics [10]. The precise

understanding of the magnetization reversal process is essential in the development of

ultrahigh density storage media [11]and magneto-electronic devices [12]. The numer-

ical integration of the equations of motion, which describe the dynamic response of a

magnetic system under theinfluence of an external field, provides a detailed under-

standing of the microscopic processes that determine the macroscopic magnetic prop-

erties like switching time and switching field. In addition to external parameters like

the applied magnetic field and the temperature, the magnetization reversal process

significantly depends on the interplay between the physicaljchen1ical microstructure

of a magnet and the local arrangement of the magnetic mornents.

A very important tool in micromagnetics is the finite element method which is a

highly flexible application that helps to describe magnetization processes in more de-

tail, since it is possible to incorporate the physical grain structure and to adjust the

finite element mesh according to the local magnetization. An efficient error indicator

can be defined by making use of a conservation law inherent to the physics of the

problem. In order to treat the magnetostatic interactions of distinct magnetic parts,

the finite element method can be combined with a boundary clement method. The

discretization of space of the partial differential equations which govern the magneti-

zation dynamics leads to a stiff system of ordinary differential ~quations. To reduce

the calculation time for time integration of the combined set of differential equa-

tions, preconditioned backward differentiation methods are used rather than Adams

or Runge-Kutta methods.
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4.1 Basic Principles of Micromagnetics

The basic concept of micromagnetism is to replace the atomic magnetic moment by

a continues function of position. As mentioned before in continuum theory the local

direction of the magnetization moment can be described by a polarization vector

m
J = ILoM = /Lo-V

(4.1.1)

where the magnetic polarization J is prQportional to the magnetization m per unit

volmne V, ILo being the magnetic penneability of vacuum.

In the following sections the magnetization M will be used rather than J and the .

magnetization is assumed to be a continues vector-field M(r)

M(r) = !l1s7~) (4.1.2)

with r the position vector and !I{~the saturation magnetization of the material.

The second principle of micromagnetism treats the magnitude of the magnetization

only as a function of the temperature. The modulus of M is

(4.1.3)

defined to be a function of temperature and independent of the local magnetic field,

which allows to describe the magnetic state of a system uniquely by the directions

cosines b( r) of the magnetization

M = b(r).Ms. (4.1.4)

In a meta-stable equilibrium state the directions cosines minimize the total Gibbs

free energy of the system.

4.2 Total magnetic Gibbs free Energy

The total magnetic Gibbs free energy consists of several energy contributions which

are derived from classical electrodynamics, condensed matter physics, and quantum
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mechanics. The aim is to derive a continuous expressions for the energy that de-

scribes the interactions of the spins with the external field, the crystal lattice, and

the interactions of the spins with one another: The latter consists of long-range mag-

netostatic interactions and short-range quantum-mechanical exchange interactions.

The equilibrium distribution of the magnetization is determined by the minimization

of the competitive effects of the micromagnetic energy contributions:anisotropy en-

ergy, exchange energy, magnetostatic fields and Zeeman energy.

4.2.1 Anisotropy Energy

The anisotropy term rcfers to the fact that the properties of a magnetic material are

dependent on the directions in which they are mea..,>ured.The anisotropy itself has

a number of possible origins such a..,>:crystal magneto-crystalline anisotropy,

shape anisotropy and stress anisotropy.

magneto-crystalline anisotropy

The magneto-crystalline anisotropy is an intrinsic contribution of the material having

its origin in the atomic level. For materials with a large anisotropy a strong coupling

between the orbital angular mOl~1entumand the spin can be observed, which results

in a non-spherical shape of the atomic orbital.

Due to this shape the orbits prefer to lie in certain crystallographic directions. The

spin-orbit coupling then assures a preferred direction for the magnetization called the

easy direction. To rotate the magnetization away from the easy direction consumes

energy, anisotropy energy. As might be expected the anisotropy energy depends on

the lattice structure.

The energy term for uniaxial anisotropy, found III hexagonal crystals like Cobalt
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(Co )is given by

E = .KV sin2 () + higher terms. (4.2.1)

Here ()being the angle between the easy direction and the magnetization, .K being the

anisotropy constant, V the volume of the sample and the lügher terms are normally

neglected as their contribution is small. This system with one easy direction has two

energy minima separated by an energy maximum, resulting in an energy barrier that

leads to hysteresis.

For cubic anisotropy, found in Iron and Nickel the energy term will he given by the

following expression

E = .KoV + .KI V(bib~ + b~b~+ bib~) (4.2.2)

•

where bi are the direction cosine, the cosine of the angle between the magnetization

direction and the easy axis, respectively.

shape anisotropy

The shape anisotropy can be described in analogy with dielectric materials by refer-

eing to the magnetization producing fictitious free poles at the surface, which leads

to a demagnetization field Rd that opposes M. Figure 4.1 shows a sample with an

anisotropic shape with a magnetic field applied in two perpendicular directions.

The energy increases with increasing demagnetization field Hd. For an ellipsoid of

revolution it can be shown that the energy is

E = - .Keff sin () (4.2.3)

and has the same form as the uniaxial anisotropy with () being the angle between the

long axis of the sample and the magnetization direction and the Keff is an expression
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Figure 4.1: Sample with an anisotropic shape with a magnetic field applied in two
perpendicular direction~: (right) parallel to the short axis; here the free poles are
separated by a relatively short distance, leading to a. large Rd, (left) parallel to the
long axis; poles separated by a ~maller distance, which leads to a small value of Rd'

based on the demagnetization factor~ of the long Na and short l'h a..x.isof the sample

and the magnetization .Ms

(4.2.4)

The demagnetization factor~ Na and Nb are geometry dependent so that Keff for

sphere is

• and for a needle like geometry is

stress anisotropy

Kefr = 0

A;J2
Keff = -J.lo_s .

2

(4.2.5)

(4.2.6)

In addition to magnetocrystalline anisotropy, there is another effect related to spin-

orbit coupling called magnetostriction, which is related to the phenomenon of stress

anisotropy. Magnetostriction arises from the ~train dependence of the anisotropy con-

stants. Upon magnetization, a previously demagnetized crystal experiences a strahl
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that can be measured as a nmction of applied field along the principal crystallographic

axes. A magnetic material will therefore change its dimension when magnetized.

The inverse affect, the change of magnetization with stress as well occurs. A uniaxial

stress can produce a unique easy axis of magnetization if the stress is sufficient to

overcome all other anisotropies. The magnitude of the stress anisotropy is described

by two more empirical constants known as the magnetostriction constants and the

level of stress.

4.2.2 Exchange Energy

The exchange energy forms an important part in he covalent bond of solids and in

ferromagnetic coupling. The exchange energy between two spins is given by

(4.2.7)

where I is the exchange Integral and SI and S2 are atomic spins. This direct exchange

coupling is an idealization and applicable only to a few materials. Many other models

exist such as itinerant electron ferromagnetism and indirect exchange interaction or

Ruderman-Kittel-Kasuya- Yoshida (RKKY) interaction. However, Equation 4.2.7 is

the form usually taken for the exchange interaction where the value of I depends on

the detailed atomic properties of the material.

To actually calculate the exchange energy, one can be take advantage of the fact that

it is essentially short ranged and can be expressed by a slllnmation of the nearest

neighbors. Further assuming a slowly spatially varying magnetization the exchange

energy can be written

Eexch = IS2 L L CP;j
i j(nn)

(4.2.8)

with the summation carried out only over the nearest neighbors and where CPij rep-

resents the angle between the two neighboring spins i and j. Further it should be
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mentioned that equation 4.2.8 gives the energy in reference to the energy state where

all spins are aligned in the same direction. This approach is legal as long as it is done

consistently.

Making the approximation for small angles that

(4.2.9)

than the first order Taylor expansion gives

(4.2.10)

where Si is a position vector joining lattice point i and j. Substituting 4.2.10 into

4.2.8 gives

Eexch = 152 L L I(Si . V')bjl
i j(1In)

(4.2.11 )

where the first sum is over all lattice points i and the second sum is over all nearest

neighbors of i. The first summation can be transformed into a integral over the whole

sample. The result is tImt for a cubic crystal

•
1152 1

Eexch = - !l12 (V'M)2dV
vas

with a being the lattice constant and (\7 !l1f is defined as

(4.2.12)

(4.2.13)

Equation 4.2.12 is an integral that relates fundamental atomic properties to the spa-

tial derivation of the magentization in the continuum approximation. The atomic

properties are taken into account through the exchange 1which is in micromagnet-

ics terms a phenomenological constant that can be determined experimentally. By

defining a constant A that includes all atomic properties, here for a cubic lattice

152

A=-
a

(4.2.14)
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the final expression for the exchange energy is derived

112
Eexch = 1112 A(\7M) dV

s v

with A being called the exchange constant.

4.2.3 Magnetostatic Field

(4.2.15)

There are two kind of magnetostatic fields, Olle that arises from external sources which

can be implementedeasily and a second that arises from the magnetization distribu-

tion itself, which will be described in detail here. To calculate the magnetostatic or

demagnetizing field Rd one starts from Maxwell equations

\7(Rd + M) - o.

(4.2.16)

(4.2.17)

Since the curl of the demagnetizing field is zero it is possible to derive it from a scalar

potential

(4.2.18)

and by substituting 4.2.18 into the governing Maxwell equations from above, one

yields a diffusion equation for the scalar potential

(4.2.19)

Equation 4.2.19 is similar to the poisson equation in electrostatics which allows to

define a volume magnetic charge density p

p = -'\7. M. (4.2.20)

Thus the magnetostatic field can be derived by sohring 4.2.19 for the scalar potential

that is subject to boundary conditions which determine the continuity of the normal
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component of -LE = Hd + M and of the tangential component of Hd
Il{)

o (4.2.21)

(4.2.22)

where n is a unit vector pointing outward from the surface.

In terms of the scalar pot.ential the equivalent boundary conditions are

c/YOllt

-M.n

(4.~.~3)

(4.~.~4)

Although having its origins at the atomic level, the response of a magnetized body

due t.o the magnetization dist.ribution is governed by its surface, as shown above.

Having derived the governing equat.ions and boundary conditions for the potential

and demagnetizing field, they can be written as follows

(4.2.25)

(4.~.~6)

The

c/Y(r) = __ 1_ r \7. M(f) dV + _1_ r M(f) . ndB
47rp,0 Jv Ir - fi 47r/1{J J s Ir - fi

1 1(r - f)\7 . M(f), 1 1(r - f)M(f) . n 'Hd = --- , dV + -- , . dS
47r/1'0 v Ir - rl3 47rllo, s Ir - rJ3

integrals above can be interpreted as fields arising from volume and surface

charges densit.ies p = - \7 . M and (j = M . n respectively.

To finally calculate the tot.al energy of the system it is necessary to integrate over the

whole volume as follows

Ernag = ~ r Hd . MdV (4.~.27)
2 Jv

which involves a six fold integration, meaning that although it is an elegant solution,

it may not be the best form for numerical computation.

4.3 Browns Equations

The formulation of classical micromagnetics is achieved by minimization of the total

energy. The aim is to achieve a minimum energy stat.e for each single contribut.ing
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term, so that an overall energy minima is achieved. In some cases this can lead to

competitive mechanisms, like with the ferromagnetic exchange energy and the mag-

netostatic energy, explained below.'

The minimization of the ferromagnetic exchange energy aligns the magnetic moments

parallel to each other, whereas the minimization of the magnetostatic energy favors

the existence of magnetic domains. The magnetocrystalline anisotropy energy de-

scribes the interaction of the magnetization with the crystallattice. Its minimization

orients the magnetization preferably along certain crystallographic directions. The

minimization of the Zeeman energy of the magnetization in an external field rotates

the magnetization parallel to the applied field.

The to be to minimized total energy can be expressed as follows

(4.3.1)

where Ha is the external applied field and Eanis, the anisotropy energy density.

The Ininimization approach uses standard variational principles. Setting the the first

variation of the total energy with respect to the magnetization to zero results in two

equations, a surface equation and a volmne equation.

The surface equation from variational principle is

2A [b x ab] = 0an
ab

::}-=oan (4.3.2)

since b. Z~= 0 by virtue of b . b = 1. The volume equation is

[
2A 2 ]b x !vIs \7 b + Hd + Ha + Hanis = 0

where Hanis, the anisotropy field, is defined as

H _ 1 aEanis
anis - - .A1sßb'

By recasting equation 4.3.3 one derives the following expression

b x Heff = 0

(4.3.3)

(4.3.4)

(4.3.5)
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with Reff being the effective field of the form

Recapitulating the derivation shown above yields that the effective field He!!

R __ 8Etat
cff - 8M

(4.3.6)

(4.3.7)

is the negative variational derivative of the total magnetic Gibbs free energy.

The volume equation 4.3.3 states that the equilibrium solution is found by aligning

the magnetization parallel to the local fields. The equation 4.3.2 to 4.3.6 are referred

to as Browns equations and form the basis of classical micromagnetic approach to the

solution of stationary problems.



Chapter 5

Micromagnetics and LLG Equation

The aim of micromagnetic calculations is the better understanding of magnetic ma-

terials and their interaction with external fields. Breaking down the materials into

atomic ma.gnetic moments, the influence of external fields can be best described by

the Inotion of the magnetic moments in these fields, by taking the properties of the

materials into account.

In the last two chapters the basic tools, the Landau-Lifshitz-Gilbert equation of

Inotion
aM
at

'0 Q( 2) (M x H) -,0 111( 2)M x (M x H)l+Q s l+Q
(5.0.1)

and the total magnetic Gibbs free energy

whose negative variational derivative gives the effective field Reff

(5.0.2)

(5.0.3)

were derived. The first term is the exchange contribution Hexch and the second is

the anisotropy field Hanis were defined in the previous chapter. The third and fourth

term, the applied and the demagnetizing or magnetostatic field are calculated from

45
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Maxwell equations [14]. The magnetostatic field Hd is an irrotational field and is

calculated by applying the magnetostatic potential ep into the conditional Maxwell

equation

\7. Hd -\7.M (5.0.4)

\7 x Hd - 0 (5.0.5)

\7 . (\7ep) - \7 .M. (5.0.6)

The equations above are solved using a method described by Fredkin and Koelder

[13].

The applied field Ha is a solenoidal field that is produced by external currents ja-

The governing conditional equations are

\7. Ha - 0

\7 x Ha - Ja.

By substituting 5.0.3 into 5.0.1 one obtains

(5.0.7)

(5.0.8)

(5.0.9)

a modified Landau-Lifshitz-Gilbert equation of motion that describes the dynamic

magnetization process in a given sample.

In the equation above the precession and the damping term are governed not only

by the contributing fields and intrinsic properties of the sample but also by the phe-

nomenological Gilbert damping constant Œ. The Gilbert damping term includes all

the damping forces of a system. Damping involves loss of energy from macroscopic

motion of the local magnetization field by transfer of energy to microscopic ther.mal

motion. There are different kind of mechanisms involved such as coupling of the mag-

netization field to spin waves, lattice vibrations, effects of polycrystalline structure,
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strains, crystal defects and eddy currents. Especially in high conductivity materials

(J > l05(r2mt1 and high frequency fields the contribution of eddy currents become

more important. In the following chapt.er a theory will be presented to extract the

eddy current contribution from t.he damping term.



Chapter 6

Eddy Currents

Since 1955, a number of different damping mechanisms had been studied [15]-[38] and

the results have shown that the damping mechanism is very complex and different

for each material, but for metallic ferromagnets it was found that eddy currents are

the dominant mechanism.

The rate of magnetization and remagnetization in ferromagnetic materials is governed

by damping mechanisms. Damping is about transfer of loss of energy from the macro-

scopic motion of the local magnetization field to the microscopic thermal motion. It

should be mentioned that the local magnetization field M( r) is the expectation value

of the magnetic moment per unit volmne due to spins and orbital motion of unpaired

electrons averaged. over a few lattice cells.- The orbital motion is not discussed III

detail, it is rather included by adjusting the gyromagnetic ratio (see chapter 3).

The mechanisms by which the energy transfer occurs include the coupling of the

magnetization field to spin waves, lattice vibrations, the effects of polycrystalline

structure, strains, crystal effects such as voids and foreign atoms, and eddy currents.

So far eddy current effects are usually not taken into account in standard magnetic cal-

culations, that are based on assumptions of quasistatic approximation, small material

conductivity or that the contribution of eddy currents is included in the dimensionless

48



49

damping constant of the LandauLifshitz-Gilbert equation.

The main motivation to develop a dynamic micromagnetic model that includes eddy

currents is the importance of accurate calculations of time dependent micromagnetic

processes for magnetic data storage (hard disk recording magnetic, random access

memory MRAM) at high data rates and the demand for ultrafast switching in mag-

netic nanostructures. Espe"cÏally for magnetic recording heads with field rise times of

less than 0.1 ns and a high conductivity () of 0.6 107(nm)-1, the assumptions above

are no longer applicable.

Several eddy current methods have been presented in the past. These include the two-

dimensional qUaSistatic model by Della Torre and Eicke [39] and the one-dimensional

dynamic calculation by Sandler and Bertram [40]. A hybrid method for three-

dimensional eddy current problems that is based on the solution of the differential

equation for the current density and the magnetic field where the Bio-Savart law is

used to calculate the field intensity of the magnetic field on the surface was introduced

by Kalimov and co-workers [41]. Serpico and co-workers [42] developed a finite differ-

ence scheme that is applied to the analysis of eddy currents with the Landau-Lifshitz

equation as a constitutive relation.

We developed a three-dimensional finite element dynamic micromagnetic model in-

cluding eddy currents. Our model simultaneously solves the Landau-Lifshitz-Gilbert

(LLG) equation and the quasistatic Maxwell equation using a hybrid finite element/

boundary element (FE/BE) method. A FE method with a linear basis function is

used to discretize the conducting region n. To calculate the magnetization vector

on each node of our mesh a Voronoi tessalation was used to calculate the exact vol-

ume around each node. The boundary element method is used to map the boundary

conditions of the magnetic field at infinity on equivalent boundary conditions on the

surface of the conducting region n, which reduces the necessity of a mesh to n. The

eddy current field is introduced as an additional part of the effective magnetic field
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in the LLG equation, and is directly calculated from the space time behavior of the

magnetization rate of change.

6.1 Eddy Current Model

To formulate the eddy current model we consider a conducting region n with the

conductivity cy and the magnetic penneability p,. Eddy currents are induced inside

the region by applying an external magnetic field which changes the magnetization.

The dynamic magnetization process in he conducting region is described by the LLG

equation of motion

where

8M, 0<10at = -,oA1 x Heff - A1sM x (M x Heff) (6.1.1)

10 = 1:00<2 (6.1.2)

and 0< is a dimensionless damping constant (the modified Gilbert damping collstant

without the eddy current damping effects) and ,0 is the electron gyromagnetic ra-

tion. The effective field Heff is composed of the anisotropy field Hanis, the exchange

contributions Hexeh, the applied field Ha, the magnetostatic field Hd and to take care

of eddy current effects an eddy current field Heddy is introduced:

(6.1.3)

6.1.1 Eddy Current Diffusion Equation

To derive the conditional equations for the eddy current field one starts with the

Maxwell equations .. In electromagnetics we have the electric and magnetic fields

E, H, the electric and magnetic flux densities D, B, and the constitutive relations

D - €E

B JLH

(6.1.4)

(6.1.5)
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where E is the permittivity, 11, the magnetic penneability which is defined

(6,1.6)

(6.1.8)

(6.1.9)

(6.1.7)

with P,o being the penneability of free space and Xm the magnetic susceptibility.

'\Triting here the Maxwells Equations in terms of E and B,

E DE = V' x ~ B - aE - jsDt p, '

DB
-=-V'xEDt

V'. EE = 0

V'.B=O (6.1.10)

with appropriate boundary conditions and initial conditions understood. Notifying

that js is an independent current source term depending on the problem it mayor

may not be added. In the following definition all the material parameters E, p" a are

free to be symmetric positive definite tensor functions of space, but as we impose the

restriction that they should be independent of time.

In the following we consider to solve the Maxwells Equations for a good conductor,

which is defined by the condition

DE
E Dt «aE . (6.1.11)

(6.1.12)

. Equation 6.1.11 depends not only on the material parameters a and E, but also on

the time rate of change of the electric field E. Taking 6.1.11 into account, Maxwells

equations can be simplified by neglecting the displacement current E~~ altogether.

This is called the low-frequency approximation, diffusion approximation or eddy cur-

rent approximation. A detailed mathematical analysis which gives a justification to

the approximation is given in [43].

The modified Maxwells equations with the constitutive relations are defined as follows

V' x ~ B = aE + js
p,



öB
-=-\7xE
öt

\7. t::E = 0

\7.B=O

with B = J.Lo(H + M). The equation 6.1.12 and 6.1.15 are recast to

\7 x J.Lo(H + M) = /1.0(1 + Xm)(JE + js

and by neglecting js and splitting the the current (JE = j in two components
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(6.1.13)

(6.1.14)

(6.1.15)

(6.1.16)

(6.1.17)

(6.1.18)

with jfrec being free currents and jmat being material currents the following equation

is derived

\7 x J.Lo(H + M) = J.LO(jfree + jmat). (6.1.19)

Material currents and the magnetization are connected through the following identity

(6.1.20)

if applied to the equa.tions above the following condition equations are derived

\7 x H = (JE

\7.H=-\7.M

(6.1.21)

(6.1.22)

By splitting the field H = Hd + Heddyinto two parts, in an irrotational field and in

a solenoidal field, two set of equations with different source terms are obtained. As

the source of the eddy current field is a current induced in the sample similar to the
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applied field, it can be treated as a solenoidal field. Therefor the resulting conditional

Maxwell equations are

\7. Heddy - 0

\7 X Heddy - Jeddy

(6.1.23)

(6.1.24)

with jeddy being the eddy current source term. To calculate the eddy current field the

curl operator is applied on equation 6.1.24

The term \7 x \7 x is recast by using the following vector identity

\7 x \7x = \7(\7.) - \7 . (\7)

and equation 6.1.25 is rewritten to

\7 (\7 . Heddy) - \7 . (\7Heddy) = \7 X i>ddy.

(6.1.25)

(6.1.26)

(6.1.27)

As defined above, the divergence of the eddy current field H(.>ddy is equal to ~ero

meaning that the first term in 6.1.27 vanishes. The current is recast in terms of the

electric field

i>ddy = aE

and introduced in 6.1.27

Applying Faradays law in differential form

oB
\7 xE=--ot

and 6.1.3 to 6.1.29 yields

6H (OHa oHd oHeddy OM)
- eddy = -aMo 7ft + 7it + ot + 7ft

(6.1.28)

(6.1.29)

(6.1.30)

(6.1.31)
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Considering that for soft magnetic materials the change of the applied and the mag-

netostatic field over time is much smaller than the magnetization [44] a diffusion

equation for the eddy current field is derived

(6.1.32)

•
This equation is true everywhere in space but has to be adjusted for the material

components for the different regions of interest.

The Poisson equation 6.1.32 for the eddy current field inside and outside of the con-

ducting region is

{

äH
(JII ~ + a" 8M,..,0 ät ,..,0 ât6HL-ddy = o (6.1.33)

with the boundary condition at infinity, Heddy = o. To solve the partial differential

equation and to derive a unique solution, appropriate boundary conditions for the

eddy current field have to be found.

6.1.2 Boundary Conditions

The tangential component of the boundary condition on the surface of the conducting

region an is• Hin Hout 0n X eddy - n X eddy = . (6.1.34)

where n is the unit vector pointing outward from n. Another boundary condition

is on the normal derivative of the eddy current field Heddy. It is derived by starting

with equation 6.1.29 and expanding the derivatives of aE

\7 X (\7 X Heddy) = a\7 X E + \7a X E (6.1.35 )

a term is gained in \7a. The conductivity is piecewise constant, which means that

this term vanishes inside and outside of n. However, \7a is singular at the boundary



55

Small, finite area

I~E: ..?/
Infinltly thin test volume

Figure 6.1: Infinitely thin test volmnen on the boundary 80..

where a has a jump discontinuity and thb puts a surface load (delta function) to the

right-hand side of 6.1.30. Because of the second derivatives on the left-hand side, the

net result is that the normal derivative of HLoddy is discontinuous at the houndary.

To calculate the jump discontinuity, equation 6.1.27 is integrated over an infinitely

thin test volume n straddling a small portion of the boundary 80. see Fig.6.1,

(6.1.36)

Taking the equation above and applying Gausss theorem, which is defined as follows

l \7. FdV =1F .nda (6.1.37)

(6.1.38)
•

with F being a vector field, V the volume and S a given enclosed surface with an

outward pointingunit normal n, to convert 6.1.36 into an integral over the boundary

8n,

r. (da n . \7)Heddy = - r da n x jeddy'Jän Jan
The dominant contributions come from two surfaces parallel to the conducting sur-

face 80., just inside and just outside 0., with unit normals da along -n and +n,

respectively. Thence equation 6.1.38 is converted to a surface integral over n n 80.

that involves the differences between the two sides of 80.. Since the test volume n is

arbitrary, the integrand must vanish identically on the surface 80.. Furthermore since

jeddy exists only inside the conducting region and is zero outside of 0. the following
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expression for the boundary condition is derived

(n . V')H~dY - (n . V')H~~y = -n x jeddy

6.2 Calculation of the Eddy Current Field

(6.1.39)

In the previous section a diffusion equation for the eddy current field for the whole

region ~3

_ 6H _ _ (aHa aHd aHeddy aM)
eddy - (jJLo at + at + at + at

and the governing boundary conditions

(6.2.1)

Hinn X eddy n X HOlltt.-ddy

-n X jcddy

(6.2.2)

(6.2.3)

at the interface between the conducting region n and ~3 \ n are derived. To find

a solution, the diffusion equation is treated like any other normal partial differential

equation.

The Poisson equation 6.2.1 is solved by taking advantage of the linearity of 6.1.33

and the solution is split into two parts

(6.2.4)

with H~dY being the solution of the inhomogeneous and H~dY the homogeneous part

of the partial differential equation. Defining the contributions of the solutions to the

separate regions of the problem

Hoody = {
H~dY + H~dY

H~dY
(6.2.5)

it is found that H~dY is zero outside of n.
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eddy current field inside of n

H~dY is the particular solution that solves the following inhomogeneous boundary

problem

(6.2.6)

The appropriate boundary condition needed to solve 6.2.6 for H~>ddY on the surface

an of the conducting region is

with the current term jeddy, which is substituted by the curl of the eddy current field

\7 x H~ddY'

.0 (n . \7)H~ddY = -n x j<.>ddy. (6.2.7)

eddy current field outside of n

H~dY is the homogeneous particular solution of the eddy current diffusion equation.

It is a solution of the Laplace equation

•
with the following boundary conditions

H2;ollt _ H2;in _ Hl ;in
eddy eddy - eddy

(6.2.8)

(6.2.9)

which puts the constrain on the solution that the eddy field inside is the same as the

eddy field outside, and

( ")H2;out ( ")H2;in - 0n. v eddy - n. v <.>ddy- (6.2.10)

that the normal derivative of each component of the eddy current field inside of n is

equal to the normal derivative of each component of the eddy current field outside.

From 6.2.8 to 6.2.10 it can be deduced that the components of HZ>ddy can be written
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in analogy to the potential solution of a magnetic dipole sheet.

1 2;in (1)Heddyll . \7 --, da +
an r-r

2 1 2;out (1)Heddy = Heddy II . \7 --, do.
an r-r

(
8(r) _ 1) (H2;out

47r eddy
H2;in)

eddy (6.2.11)

with the boundary condition 6.2.10 it can be recast to '

2 1 1 ( 1) (8(r) ) 1Heddy = Heddyll . \7 --, do. + -- - 1 Heddy
an r - r 47r

(6.2.12)

where 8(r) is the solid angle subtended by an at r.

The final solution of the eddy current field is composed of the homogeneous anel the

inhomogeneous solution of the eddy current diffusion equation.

The equations 6.1.1 to 6.2.10 are a coupled system of Landau-Lifshitz-Gilbert and

quasi-static Maxwell equations that is solved by a hybrid finite element/boundary el-

ement(FE/BE) method. For the region n a finite element method with the Galerkin

weak formulation is used. For the llon-conducting region JR:3 \ n a boundary element

(BE) method is used to map the boundary conditions (BC) of the magnetic fieldat

infinity on equivalent BC on the surface of n a..<; presented by Fredkin and Koehler [45].



Chapter 7

Numerical Technique and

Algorithm

In this chapter the numerical Inethod and algorithm used to solve the coupled sys-

tem of Landau-Lifshitz-Gilbert and quasi-static Maxwell equations 6.1.1 to 6.1.32 is

presented. A set of three equations, two differential equations, the Landau-Lifshitz-

Gilbert equation of motion

and the eddy current diffusion equation for the H~dY field, .•
aM
at

io aio ( )--2M X Heff - ( 2)Mx Mx Heff
1+ a !vIs 1+ a

1 aH~ddY aH~dY aM
.6Heddy = a11'0 a + a/LO a + a/LO-at t t

(7.0.1)

(7.0.2)

and one algebraic equation, the Laplace equation for H~dY'

(7.0.3)

has to be solved. In addition two further equations governing the demagnetization

field are solved. This set of differential and algebraic equations (DAEs) is an initial

value problem and is solved using an implicit differential-algebraic (IDA) solver. The

59
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initial value problem is integrated using a backward differentiation formula (BDF)

method implemented in a variable-order, variable-step form. Applying the BDF on

the DAE system results in a nonlinear algebraic system that is solved with a Newton

iteration. This leads to a linear system for each Newton correction that is solved with

a scaled preconditioned generalized minimum residual (SPGMR) method [46].

7.1 Implicit Differential. Algebraic Solver

IDA is a general purpose solver for the initial value problem for systems of differ-

ential algebraic equations (DAEs). The implicit differential algebraic solver is based

on DASPK [47], [48] and in the solution of the underlying nonlinear system uses an

inexact Newton/Krylov (iterative) rather than the Newton/direct method at each

time step. The Newton/Krylov method uses the generalized minimal residual (GM-

RES) linear iterative method [49], and compared to direct methods requires almost

no matrix storage for solving the Newton equations.

IDA soh'es the initial value problem for the DAE system in the general form

F(t,y,y) = 0 (7.1.1)

wherey and F are vectors in ]RN (in our case N = 9J) of the form•
yj = yj ( ~~d' )

Heddy

1 2 3b, Heddy, H~>ddy é ]R (7.1.2)

with t being the time and j is the node index with values from 1 to J. The initial

conditions

y(to) = Yo, y(to) = Yo (7.1.3)

gIven. The initial vectors Yo and Yo are not arbitrary and must be consistent with

7.1.1.
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The implicit differential solver integrates the system 7.1.1 with backward differentia-

tion formula (BDF) methods which are implemented in a variable-order, variable-step

form. The method orders range from 1 to 5 and the BDF of order k is given by the

following multistep equation

k

L CY.n,iYn-i = hny n
i=O

(7.1.4)

with Yn and Yn being the computed approximations to Yn(tn) and Yll(tn), respectively,

and the step-size hn is

(7.1.5)

CY.ll,i are coefficients that are uniquely determined by the order k and the step-size his-

tory. Applying the backward differential formula method to the differential algebraic

system 7.1.1 results in a nonlinear algebraic systerll which h3.<;to be solved at each

step
k

G(Yn) = F(tn,Yn,h;:.l LCY.n,iYn-d = 0
i=O

(7.1.6)

The nonlinear system 7.1.6 is solved using a Newton iteration, which leads to a linear

system for each Newton correction of the form

(7.1.7)

where Yn(m) is the mth approximation to Yn and J is a an approximation of systems

Jacobian

(7.1.8)

where CY. - an,ol hn, and it changes whenever the step size changes or the method

order.

An iterative method is used to calculate the solution of the approximated Jacobian

7.1.7, namely, the scaled preconditioned GMRES, denoted SPGMR.
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The equation 7.1.7 is written abstractly as

Ax = b (7.1.9)

and to solve it, a preconditioned matrix P is sought that approximates A, with an

easy to solve linear form of

Px = b. (7.1.10)

The preconditioning matrix P is obtained by using an incomplete LU factorization

(ILU), where

P=LU (7.1.11)

and LU is obtained from a Gauss elimination procedure. Preconditioning is applied

to the left side of 7.1.9 and scaling is introduced by a diagonal scaling matrix D, with

the weights Wi as diagonal elements. Thus the system that is solved with the GMRES

method is

or
- -

Ax = b.

(7.1.12)

(7.1.13)

7.1.1 Error control

Vlhile integrating, the system estimates a mean norm En of the local truncation error

at the nth time step, that has to satisfy the inequality

IIEnllwrTILs< 1 (7.1.14)

and imposes a tolerance on the local errors by way of the weighted root mean square

(wrms) norm, defined as

(7.1.15)
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with the superscript i denoting the ith component and Wi the ith weight

(7.1.16)

The scalar relative error tolerance (rtol) and the absolute error tolerance (atal) per-

mit to define an allowed error per step and Ums a. control of the magnitude of the error.



Chapter 8

Eddy Current and Magnetization

In the recent years the increasing denland for ultra-fast switching in magnetic nanos-

tructures lead to more accurate models for high-speed switching in conducting fer-

romagnetic materials. It is apparent that eddy currents which arc induced by high

frequency fields with rise times of < 0.1 ns effect the magnetic behavior of conducting

ferromagnetic materials.

Several models treating different kind of problems were developed. Mayergoyz et

al. [50] presented a self-consistent numerical solution of the magl1etic diffusion equa-

tion and the Landau-Lifshitz equation for linearly and circularly polarized applied

magnetic fields and showed the effect of eddy currents für different conducting ferro-

magnetic films. L. Torres et al. [51] developed a 3-dimensional micromagneticmodel

that included eddy currents and investigated the magnetization behavior for high

conductivity materials.

To understand the influence of eddy current contributions on magnetic nano-scale

structures, the very basic mechanism that governs the magnetization process has to

be investigated.

In the last chapters the theory to describe the magnetization processes of magnetic

structures, a 3-dimensional finite element/boundary element model that includes eddy

64
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Figure 8.1: Domain of interest discretized with tetrahedral basis-functions.

current effects, was developed. It will be used to investigate in detail the effect of

eddy currents (here the eddy current field) on the magnetization reversal of cubic

single domain particles.

8.1 Finite Element Discretization

To be able to simulate the magnetization motion of the magnetic moments the con-

ducting region is discretized with the finite element method with linear basis functions,

see Fig. 8.1. On every node of the discretized region is a magnetization vector, for

whom the equation of magnetization motion is solved.

The magnetization M of a system can be expressed in terms of a magnetization m

per unit volume V.
M=m

V
(8.1.1)

To calculate the magnetization vector on each node of our mesh an additional dis-

cretization was used to calculate the exact volume around each node. First a Delaunay
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Figure 8.2: Delaunay- Thiangulation.

triangulation, which is the triangulation with empty circumspheres, is calculated by

computing a convex hull. The trinagulation lifts the input sites to a paraboloid by

adding the sum of the squares of the coordinates. It computes the convex hull of

the lifted sites, and projects the lower convex hull to the input. Each region of the

Delaunay triangulation corresponds to a facet of the lower half of the convex hull.

Facets of the upper half of the convex hull correspond to the furthest-site Delaunay

triangulation. Once the triangulation is finished the Voronoi diagrams are calculated.

And with the Voronoi points a convex volume around each node is constructed, see

Fig. 8.2.

The volume of the voronoi diagram gives a partition of the total volume, with mutu-

ally distinct volumes surrounding each node of the finite element mesh. This volume

is used to define a magnetic moment and the effective field at each node point [52].

Given the magnetic field and the effective field for each node point, the LLG equations

becomes a system of ordinary differential equations. To summarize the discretization

scheme is as follows:

1. Linear finite elements are used to discretize Gibbs energy as a function of the

magnetization

2. The magnetostatic boundary value problem for the magnetic potential and the

eddy current diffusion equation are solved using standard finite element tech-

mques
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3. A magnetic moment and the corresponding effective field are defined at each

node of the finite element grid using the voronoi partition

4. The resulting differential algebraic system of equation is solved using an implicit

time integration scheme.

8.2 Precession and Damping Term

The behavior of magnetic moments in magnetic structures is described as presented

earlier by the Landau-Lifshitz-Gilbert equation. The motion of the magnetic spins is

composed of a precession and a dampened motion, presented by the precession term

and the damping term, respectively.

To analyze these two terms in detail, a permalloy nanocube with an edge length

of 27nm and 1195 nodes was discretized into 5649 tetrahedrons with 862 surface

elements. The nanocube is initially magnetized uniformly in positive z-direction and

exposed to an external field of Bext = p,oHext = -lOOuzrnT. The LLG equation is

solved for the nanocube with two different damping values. Investigated is the path

of the magnetization vector over time, see Fig. 8.3, with a high damping of a = 1,

see Fig. 8.4, and with alow damping of a = 0.1, see Fig. 8.5.

From the figures 8.4 and 8.5 the influence of the damping parameter on the precession

as well as on the damping term, and therefor on the whole magnetization reversal time

can be deduced. The major difference, considered from the magnetization reversal,

is that for a high damping the precession of the magnetization vector is minimized

and the damping motion is Inaximized, resulting, for a given applied field, in a fast

magnetization reversal. For low damping, the precession motion is the dominant

factor in the magnetization reversaI.

Hence, the minimum magnetization reversal time occurs when

amin = 1 (8.2.1)
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Table 8.1: Magnetization reversal results for a 27 nm cube in an applied field of
Hext = -800uzmT with 0: values ranging from 1 to 0.005. M; gives the time for
the magnetization to reach the xy-plane in units if ns, and .Af'; gives the time for the
magnetization to reach -0.99 A1s in units of ns.

0: A1] A12
z z

1.0 0.180 0.219
0.5 0.207 0.255
0.2 0.278 0.376
0.1 0.415 0.567
0.08 0.483 0.664
0.06 0.564 0.810
0.04 0.569 0.947
0.02 0.614 1.173
0.01 0.592 1.646

0.005 0.831 2.148

which is consistent with analytical results obtained by Ryoichi Kikuchi [53]. For

0: < 1, the magnetization vector M moves faster, but rotates around the external

magnetic field so that the net travelling time between the initial and the final state

becomes longer .

8.2.1 Magnetization Reversal

To derive the magnetization reversal time in dependency of the damping constant 0:,

simulations were performed for an 27nm cube under the influence of an applied field

of Hext = -800uzmT with different values for 0:, see Table 8.1. The magnetization

reversal curves of the magnetization vector in z-direction from its initial state in

+z-direction to its final state in -z-direction were investigated and the reversal time

was recorded at two spots of the magnetization reversal. A1; gives the reversal time

values of the magnetization vector while it is lying in the x-y plane andA1'; gives the
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Figure 8.6: Magnetization reversal as a function of Damping constant a versus time
(ns), for a = 1,0.5,0.2,0.1.

•

magnetization reversal time shortly before the magnetization reversal is complete, see

Figures 8.6 to 8.8 and Table 8.1 for the calculated values. By decreasing the damping

constant the magnetization vector starts to precess around the external field which

takes it longer to reach its final equilibrium condition. The values of M~ and M;
were plotted over time in Fig. 8.9 to derive a correlated behavior of the magnetization

reversal time and the damping-constant. The Figures 8.6 to 8.8 show that the reversal

time and the value of the Gilbert damping constant are not linearly but exponentially

correlated.
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Figure 8.8: Magnetization reversal as a function of Damping constant a versus time
(ns), for a = 0.04,0.02,0.01,0.005.
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In the last sections the influence of the Gilbert damping constant on the magnetiza-

tion reversal was investigated. A high damping leads to a fast magnetization reversal

and for low damping it takes the system longer to reach an equilibrium state.Eddy

currents are normally not taken into account as a stand alone factor. The under-

lying assumptions on this fact are either quasi-static approximation, small material

conductivity, or that the net contribution of eddy currents is already included in the

value of the damping parameter in the Landau-Lifschitz-Gilbert (LLG) equation.

Several attempts were made to include the eddy current effects as a separate contribu-

tion to the magnetization process. L. Torres et al. presented a standard 3-dimensional

finite difference model, where they solved the LLG equation in conjunction with quasi-

static Maxwell equations by introducing the eddy currents with the electric field E

approach [54].

In the model presented in this thesis, eddy current effects are introduced as a eddy

current field Heddy which is directly derived out of the magnetization rate of change.

Taking a closer look at the eddy current diffusion equation

• aM aHcddy
ŒJLO-a = .6Hcddy - (jILO at - t

(8.3.1)

the change of the magnetization with time can be deduced as the source term of the

eddy current field. Meaning that the eddy current field can be approximated as

aM
HeddY:= -at

(8.3.2)

being proportional to the magnetization rate of change. The advantage of this ap-

proach is that the direct influence of the eddy current effects on the precession and

on the damping can be studied. The eddy current field is directly introduced as an
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additional contribution to the precession

Irol
---2 M x Heddy
1+0:

and to the damping term

Irolo:--2M x (Mx HeddY).
1+0:

(8.3.3)

(8.3.4)

In Figure 8.10 the eddy field Heddy and its two torque contributions on the magneti-

zation path are visualized. For small damping reversal is governed by gyromagnetic

precession. The precessiollal motion causes a high öl: which in turn gives rise to an

eddy current field. The Dl: vector is in a plane perpendicular to the applied field.

The first term 8.3.3 produces a torque in the precession polar plane with a phase shift

due to the direction of the magnetizatioll motion. The phase shift leads to a slowing

down of the precession movement which is visualized by plotting either the Mx or the

My component over time, once with and once without eddy current contributions,

see Fig. 8.12.

The second term, which is always normal to the precession contribution of the eddy

current field, prod uces a torque in the direction of the applied field acting in the

negative azimuthal direction. This term helps to trigger the precessional switching

of the magnetization. But once the intermediate state of magnetization reversal is

reached the eddy current field leads to a slowingdown of the magnetization reversal

process, shown in Fig. 8.11. This is due to the torque which is produced by the eddy

current damping contribution, which results in a magnetization vector pointing away

from the normal magnetization reversal path, shown in Figure 8.10.
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Figure 8.11: Time evolution of Mz for a Permalloy nanocube of 27 nm edge length,
a conductivity of Cf = 1.109 (nm)-l and ex = 0.1 under the influence of an applied
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Figure 8.12: Time evolution of Mx for a Permalloy nanocube of 27 nm edge length,
a conductivity of Cf = 1.109 (nm)-l and ex = 0.1 under the influence of an applied
field of 200mT.
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8.4 Demagnetization Field and Eddy Currents

In our derivation of the eddy current diffusion equation we have made several ap-

proximations by omitting the change of the applied field Ha with time and also the

change of the demagnetization field Hd with time.

The first approximation, the omission of the applied field in our derivation, is justified

when the rise time of the applied field is shorter than the precession period. As shown

in the previous chapter eddy current effects in small particles are mainly due to gy-

romagnetic precession. For slow varying external field the field can be approximated

as constant during one precession period and therefore the ()~a can be neglected in

the eddy current diffusion equation.

The omission of the demagnetization field Hd is somewhat more delicate. The de-

magnetization field of a cubic sample can be approximated by a demagnetization field

of a sphere, as shown by Amikan Aharoni [56]. This means that a value of '" 1111s is

expected.

Simulations were performed with a 27 nm edge length nanocube and a saturation

magnetization of 1 T. The average demagnetization field was found to be '" 1 in

units of the saturation magnetization. To investigate the influence of the demagneti-

zation field Hd on the magnetization reversal process including eddy currents, it was

substituted in the eddy current diffusion equation

(
8M 8Hd) 8Heddy

C7/-Lo ~ + ~ = 6H(.>ddY - C7/-Lo 8 .ut ut t
(8.4.1)

Simulation were performed with the old diffusion equation and the modified diffusion

equation. The calculations show that the change of the demagnetization field with

time does not change the magnetization reversal process concerning the eddy current

effects, as shown in Fig. 8.13. The demagnetizing field Hd is proportional to -M. Thus

the inclusion of Hd in 8.4.1 is similar to a small change in the conductivity, which

turns out to be negligible.
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8.5 Conclusions

In this chapter magnetization reversal simulations of cubic nano scale samples were

performed. The impact of different values of the damping parameter on the magneti-

zation reversal process was shown and the magnetization reversal time as a function

of the damping value was derived. Small damping gives rise to gyromagnetic preces-

sion and therefore a large change of magnetization with time. It is shown that eddy

current effects in small particles are a consequence of gyromagnetic precession.

The inclusion of eddy current effects in our calculations show that eddy currents lead

to a faster switching of the system at the beginning of the magnetization reversal

process. But in the intermediate state of magnetization reversal it leads to a slowing

down which takes the system longer to reach the equilibrimn state.

The magnitude of the contributions of eddy currents on the damping parameter are

not specified easily and will be discussed in more detail in the following chapters.



Chapter 9

Eddy Currents in Sub-Micron

Permalloy Structures

In the last chapters it was shown that the dynamic process of magnetization rever-

sal is governed by the Landau-Lifshitz-Gilbert equation which was simulated with a

3-dimensional micromagnetic finite element/boundary element model. In this model

each computational cell experiences an effective magnetic field deriving from the total

free energy of the system. Gibbs free energy consists of four contributions: exchange,

demagnetization, anisotropy and Zeemann. In addition to the mentioned contribu-

tions eddy current effects have been included, as the materials used have an appre-

ciable conductivity. From Faradays law, time variations of magnetic induction give

rise to an electric field and a current respectively. By means of Ohms and Amperes

law, this current induces a new contribution to the total magnetic field, which is

called eddy current field HeddY. This eddy current field is incorporated into the total

effective field and the change of the magnetization reversal process is investigated.

E. Martinez et al. have developed a micromagnetic model where they calculated the

eddy current field by means of the electric field with Bio-Savarts Law. They inves-

tigated the influence of eddy currents on reversal processes in nanocubes depending
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on sIze.

In this chapter we use our model to analyze the relevancy of eddy current contribu-

tions to the magnetization switching of Permalloy nanocubes. Especially the impact

of eddy currents and its governing diffusion equation on the magnetization behavior

of materials with different conductivity and size is investigated.

9.1 Diffusion Equation and Material Parameters

The eddy current diffusion equation shows that the eddy current field is directly

derived out of the magnetization rate of change, which itself is calculated out of the

Landau-Lifshitz-Gilbert equation of motion. To analyze the dependency of the field

expression on the material parameters, which are essential in the design of magnetic

nanostructures, it is necessary to derive a diInensionless expression of the conditional

equations that describe the magnetization process.

By substituting the time t with T

1 1 1--- -
A18/0 t T

and the eddy current field Heddy with the normalized field heddy

h Heddy
eddy = A1s

and further substituting die = x a dimensionless for the inhomogeneous-differential

equation of the eddy current field is derived

2 (aheddy am)L:.heddy = a . A1s . /0 . d aT + aT
where a is the conductivity, A1s the saturation magnetization, /0 the electron gyro-

magnetic ratio, d the dimension of the sample and m = MI Ms.

The dimensionless expression of the diffusion equation shows that it is linearly de-

pendant on the conductivity and quadratically dependant on the dimension of the

sample.
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9.2 Eddy Currents and Material Parameters

The dimensionless expression of the eddy current diffusion equation shows that the

eddy current field is dependent on the size of the sample and on the conductivity

of the material used. To illustrate the effect of eddy currents, permalloy nanocubes

with different edge lengths and different conductivities were simulated. The cubes

were discrcti~ed with a specific number of tetrahedrons to keep the same elemental

size for each sample of 3.4 nm. An external field B = -200 uzmT was applied to

the nanocubes, which were initially magnetized in +z-direction. The applied field in-

creases from ~ero linearly to its final value at 0.1 ns and remains constant thereafter.

First, simulations were performed with a nanocube of 27 nm edge length with two

different conductivity values, a = 1.107 (Slm)-l and a = 1.109 (Slm)-l, shown in

Fig. 9.1.

The simulations show that the switching starts at the boundary and begins to prop-

agate into the sample. During this process the eddy currents induce an eddy current

field that triggers the precessional switching of the Inagnetization. Furthermore it can

be seen from the simulations performed that the magnetization process starts earlier

for high conductivity materials and also leads to a faster magnetization reversal as

compared with the simulation results obtained in chapter 8. This can be interpreted

as an effectively 11igher damping caused by eddy currents. Taking a closer look at the

precession movement by plotting the x-direction of the magnetization M over time

it can be deduced that a high conductivity leads to a slowing down of the preces-

sion movement once the intermediate state of magnetization reversal is reached, see

Fig. 9.2.

The next simulations were performed with 20 and 27 nm edge length nanocubes

to investigate the impact of the sample size on the eddy current contribution to the
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Figure 9.1: Magnetization M in z-direction as a function of time under an applied
field of B = -200 uzmT and Q' = 0.1. Black line with eddy currents and a =
1.107(Om)-I, red line with eddy currents and a = 1.109(Om)-I.
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Figure 9.2: Magnetization M in x-direction as a function of time under an applied
field of B = -200 uzmT and Q = 0.1. Black line with eddy currents and a =
1.107(Om)-I, red line with eddy currents and a = 1.109(Om)-I.
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magnetization switching. In the diffusion equation the size imposes a quadratic de-

pendency on the eddy current behavior and should result in a bigger effect compared

to the conductivity as its effect is of linear nature. The results obtained by the simu-

lations show, as expected, a bigger impact of the size of the sample on the relevance

of the eddy current contribution to the magnetization reversal process, see Fig. 9.3.

Meaning that, the bigger the sample the bigger the eddy current effect. Taking a

closer look at the precession movement,' see Fig. 9.4 shows that an increase of the

sample size leads to a faster precession in the beginning but slows down once the

intermediate state of magnetization reversal is reached. The faster precession is seen

as an increase in the amplitude of the Mx(t) plot in Fig. 9.4, whereas the slowing

down leads to a decrease of the Mx(t) amplitude.

9.3 The Eddy Current Diffusion Parameter

In the last section the influence of the sample size a.nd its conductivity on the magni-

tude of the eddy current contribution to the magnetization reversal process has been

investigated. The two material parameters were separately analyzed regarding their

impact on the eddy current effect. But by plotting the diffusion parameter

of the diffusion equation

2 (OheddY am)6heddy = (J • A1.~. ID . d aT + aT

(9.3.1)

(9.3.2)

for a given magnetization rate of change, a connection between the size, the con-

ductivity and the applied field can be derived. The parameter is plotted to give

the magnetization rate of change as a function of conductivity and size, as shown in
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Figure 9.3: Magnetization M in z-direction of a Permalloy nanocube with different
sizes as a function of time under an applied field of B = -200 uzmT and Cl: = 0.1.
Black line with eddy currents, a conductivity of (J = 1.109(nm) -I and an edge length
of 20 nm, red line with eddy currents, a conductivity of (J = 1.109(nm)-1 and an edge
length of 27 nm.
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Figure 9.4: Magnetization M in x-direction of a permalloy nanocube with different
sizes as a function of time under an applied field of B = -200 uzmT and a = O.l.
Black line with eddy currents, a conductivity of (j = 1.109(nm)-1 and an edge length
of 20 nm, red line with eddy currents, a conductivity of (j = 1.109(nm)-1 and an edge
length of 27 nm.
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Fig. 9.5.

Micromagnetic simulations were performed to give the magnetization rate of change

for each contour line in Fig. 9.5, as shown in Fig. 9.6. The contour lines give the

development of the size-conductivity interaction for a given applied field.

That means that the same magnetization behavior can be achieved by varying the

conductivity and the size of the sample with respect to the course of the correspond-

ing phase curve.

For example: Marking a point A on the red curve in Fig. 9.7 and making the cor-

responding magnetization reversal simulations, doing the same for a second point B,

which has different rnaterial parameters, the same magnetization behavior is simu-

lated, shown ill Fig. 9.8.

9.4 Eddy currents and Critical Size of Single Do-

main Behavior
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Figure 9.5: Contour lines of the constant prefactor of the eddy current diffusion
equation for a fixed magnetization rate. Red line, function for high eddy current
contributions (corresponds to red line in Fig. 9.6). Black line, function for low eddy
current contributions (corresponds to black line in Fig. 9.6.
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The initial state is basically magnetized along the easy axis and is called the single

domain or flower state. This kind of state is found in the 20 nm and 27 nm samples.

Once a field is applied the magnetization reversal process starts and simulations show

for these sizes a coherent rotation of all magnetic'spins in the system. The magneti-

zation reversal is uniform over time.

In the 33 nm sample, the initial state is a flower state as well, but once the field is

applied and although the magnetization reversal starts uniform, it develops into a so

called a twisted flower state, a very incoherent spin structure.

In the 40 nm sample, on the other hand, a vortexis formed and wanders through the

sample until the system reaches an equilibrium state.

Theresults of these simulations show that there is a critical size [57]where the flower

state of the single domain particle (20 nm and 27 nm) collapses, becomes unstable

and develops through cur ling into a. vortex state configuration (40 nm). This tran-

sition is accompanied by an intermediate configuration which is largely nonuniform,

the twisted flower state configuration(33 nm).

Taking these results and setting them in context to the change of the eddy current

contribution, leads to the conclusion that the eddy current effect contribution is con-

nected to the coherence of the magnetic spin structure.

In small particles with a uniform magnetization reversal all the spins are in phase

and their single eddy current contributions add up to one big contribution. Once

the magnetization reversal becomes nonuniform, as in the twisted flower state, many

spins are in different phases and their contributions do not add up anymore leading

to a small eddy current contribution. For bigger sanlples a more uniform magnetiza-

tion reversal is found, a vortex state configuration, leading to a more significant eddy

current contribution.
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Figure 9.9: Magnetization M in z-direction of a 33 nm nanocube as a function of
time under an applied field of B = -200 uzmT and et = 0.1. Black line without eddy
currents and et = 0.1, red line with eddy currents, alpha = 1 and a conductivity of
a = 1.109(Dm)-I.
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Figure 9.10: Magnetization M in z-direction of a 40 nm nanocube as a function of
time under an applied field of B = - 200 uzmT and ex = 0.1. Black line without eddy
currents and ex = 0.1, red line with eddy currents, alpha = 1 and a conductivity of
(J = 1.109(rlm)-I.
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9.5 Conclusions

From the eddy current diffusion equation the governmg material parameters, the

conductivity and the size, which influence the contributions of the eddy currents to

magnetization reversal were derived by normalizing the fields and making the equation

dimensionless. The derived diffusion parameter was plotted for a given magnetization

behavior. The resulting phase diagram gives the size over the conductivity and shows

that the same magnetization behavior can be achieved by varying the conductivity

and the size in respect to the contour lines for a given magnetization rate of change.

Furthermore it is shown that the size of the sample has a bigger impact on the eddy

current contribution compared to the conductivity. Size simulations have further

shown that the critical size for a single domain behavior, defined as the maximum

size at which magnetization reversal proceeds by rotation in unison, for a cubic sample

is lower than 33 nm edge length.

Three kinds of mechanisms of magnetization reversal were found to define the reversal

process: spin rotation in unison, non-uniform rotation, and vortex motion.

The size investigations and their impact on the eddy current contributions have shown

that the magnitude of the eddy current effect depends on the coherence of the spin

structure as follows:

In small particles with a uniform magnetization reversal all the spins rotate in unison

and their single eddy current contributions add up to one big contribution. But

once the magnetization reversal becomes nonuniform, as it is the case of the twisted

flower state, the spins rotation is not in unison and their contributions do not add

up anymore leading to a small eddy current contribution. For bigger samples a more

uniform magnetization reversal is found, the vortex configuration, leading to a more

significant eddy current contribution.
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Chapter 10

Influence of Eddy currents on the

Effective Damping Parameter

The influence of eddy currents on magnetiza.tion dynamics may be incorporated into

standard micromaglletic by the use of an effective damping parameter as originally

proposed by Chikc'1zumi [58]. However, his theory only applies for large particle where

magnetization reversal is dominated by domain wall motion.

Several models were presellted in the past to describe ma.glletization reversal processes

for small particles alld the transition lengths from multi- to single-domain parti-

cles, like by Rave, Fabian and Hubert [59] and Schabes and Bertram [60], how-

ever those methods did not include eddy currents. Mayergoyz et al.[61] presented a

self-consistent numerical solutioll of the magnetic diffusion equation and the Landau-

Lifshitz equation for linear and circularly polarized applied magnetic fields and showed

the effect of eddy currents for different conducting ferromagnetic films. L. Torres et

al. [62] developed a micromagnetic model that included eddy currents and investi-

gated the magnetization behavior for high conductivity materials.

In this chapter we use the 3-dimensional micromagnetic model that includes eddy

current effects to derive a method to calculate the effective damping parameter as

98
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a function of particle size and electric conductivity for single domain particles. Vye

use this model to simulate magnetization reversal processes in sub-micron permalloy

structures and investigate the total energy of the system under different applied fields

and different material parameters. From the change of energy with time an effective

damping parameter is calculated [63]. By comparing the calculated effective parame-

ter with the imposed damping constant value, the net eddy current contribution to

the dynamic magnetization processes is determined.

10.1 Model

In order to derive how the damping parameter is related to the change of energy

with time we first recall the LLG equation and the eddy current diffusion equation

in dimensionless form.

To describe the dynamic magnetization process in single domain particles, we start

from the Landau-Lifshitz-Gilbert equation of motion, whereby all vector quantities

Heff and Heddy are normalized by the saturation magnetization 1I1s, as shown for the

effective field
M

m=-
1I1.~

(10.1.1)

with /-lo being the permeability of free space. Furthermore a reduced time T is intro-

duced

(10.1.2)

where 10 > 0 denotes the gyromagnetic ratio. \Vith the conventions defined in equa-

tion 10.1.1 and 10.1.2 a dimensionless expression for the Landau-Lifshitz-Gilbert

equation is derived

2 am
(1 + 0: ) aT = - (m x heff) - o:m x (m x heff) (10.1.3)
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where et is a dimensionless empiric damping parameter: called Gilbert damping con-

stant. The effective field in 10.1.3, which is composed of the anisotropy contribution

hani, the exchange field hex eh , the applied field ha and the magnetostatic field hM:

is derived from a variational analysis, as the coefficient of the first variation of the

Gibbs free energy functional [64].

Eddy current effects are introduced by an eddy current field heddy: which is a part

of the effective field heft", and is calculated by solving the eddy current diffusion

equation. Applying the vector normalization and the reduced time on the diffusion

equation yields
2 (DheddY am)6heddy = (J' Als. /0 . d aT + aT (10.1.4)

where (J is the conductivity and d is the diInension of the particle. The dimensionless

expressiori. of the conditional equations shows that the diffusion of the field is linearly

dependent on the conductivity and quadratically dependant on the size. Equation

10.1.3 and 10.1.4 are a coupled system of LLG and quasi-static Maxwell equations

and are solved by a hybrid finite element/boundary element mcthod [65] [66]:

10.2 Eddy Currents and the Effective Damping

Parameter

To determinc the contribution of eddy currents on the total energy dissipation rate of

a dynamic micromagnetic system a self-consistent criteria proposed by Albuquerque

[63] is used.

The energy dissipation rate depends only on intrinsic material parameters and on

the actual magnetization motion. By disregarding the damping term in 10.1.3 a

constant applied field would result only in a precessional motion of the magnetization

and therefore leave the cnergy of the system constant. Consequently no energy is
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dissipated.

The introduction of damping results in an irreversible switching of the system, thus

the change of energy over time indicates the magnitude of the dissipation and the

damping parameter, respectively.

The general expression of the rate of change of the systems free energy functional is

given by [64]
oE __ 2/ .am IaT - !l1s heft" aT dl . (10.2.1)

Equation 10.2.1 shows that the change of energy is proportional to the change of mag-

netization iutegrated over the whole volume, meaning that by rearranging the LLG

equation and substituting it into 10.2.1 an expression for the damping parameter a:

can be derived.

Starting from the Gilbert form of the Landau-Lifshitz-Gilbert equation in the di-

mensionless form

am (am)aT = - m x hefT + a: m X aT .
Multiplying equation 10.2.2 respectively with hefT and ~r;yields

am ( am)heff. aT = -heff . (m X heff) + a:hcfT. m X aT
and

am am am am ( am)-.-=--'-.(mxhcff)+a:-. mx- .aT aT aT aT aT
The first term on the right hand side in 10.2.3 and the second term on

(10.2.2)

(10.2.3)

(10.2.4)

the right

hand side in 10.2.4 vanish as the cross product of two identical vectors are zero.

Furthermore the following vector identity

A. (B X C) = -C. (B X A) (10.2.5)

is used on the second term of equation 10.2.3, which recasts the two equations to

(10.2.6)



102

and

(om)2 om .OT = - OT . (m x he,r).

Substituting equation 10.2.7 into equation 10.2.6 yields

h.•. : ~a(~~)'

(10.2.7)

(10.2.8)

which is the integral kernelon the right hand side of 10.2.1. By substituting 10.2.8

into 10.2.1
oE. 2! (om)2OT = -nAIs OT dV.

and rearranging the new expression yields

n = __ 1 . [OEI! (Om)2dV].111} OT OT

(10.2.9)

(10.2.10)

Since the damping parameter from 10.2.10 is calculated from the simulation results it

is called the dynamic damping parameter ne. For single domain particles, we assume

that the magnetic system is rotating in unison as a single magnetic vector. In this

case equation 10.2.10 can be approximated with

= __1 . [0(E)/(0(m))2]
ne 111; OT OT (10.2.11)

its equivalent for a macrospin. Once the magnetization rate of change with and

without eddy current effects has been obtained the damping parameter ne, obtained

during the dynamical calculations, can be compared with the imposed damping value

n, see Fig. 10.1. Hence the net eddy contributions are determined.

10.3 Permalloy Single Particle Simulations

Simulations are made with cubic permalloy single domain particles of 20nm / 27nm /

33nm / 40nm edge length and a resistivity of 1.10-8/1.10-9 r2m. An external applied

field of Bext = J1,oHext= -100/200/800 uzmT is applied to the nanocube, which is
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Figure 10.1: The dynamic damping parameter Q:e over time for a 27nm edge length
nano particle with and without eddy current contributions at an applied field of
100mT.
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conductivity of {J = 1.107(Om)-1 and a high conductivity of {J = 1.109(Om)-1 at an
applied field of 200nlT.

initially magnetized in +z-direction. The external field increases from zero linearly

to its final value at O.lns and remains constant thereafter.

consistency check

First we performed simulations with {J = O. As there are no eddy current effects

the dynamic calcula.ted (te is equal to the imposed damping constant (x, shown in

Table 10.1. ete is obtained by averaging over the simulated values in Fig. 10.1 to 10.3.

influence of conductivity

Simulations of 27nm particles with a resistivity of 1.lO-70m show an increase of the

damping constant by 6 percent in an applied field of 100rnT. A lower resistivity of

1.lO-90m leads to an increase 10 percent, shown in Fig. 10.3.
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applied field

By increasing the field to 200mT the contribution of the eddy currents decreases to

a value of 5 percent and vanishes for fields lügher than 800mT. If the external field

is high the magnetic field created by eddy currents becomes negligible. The eddy

current field is proportional to the change of the magnetization with time but in

addition it is also a function of time according to the eddy current diffusion equation

10.1.4. At the beginning of the reversal process, the eddy current field is zero and it

will increase with time at a certain rate which depend on cr"o and d2 only and does

not depend on Hext. On the other hand the time for magnetization reversal decreases

with increasing Hext. For large external fields the particle becomes reversed before a

significant eddy current contribution is built up.

SIze

For smaller particles (edge length of 20nm) the contributions of the eddy currents to

effective damping are 4 percent, shown in Fig. 10.2, and show the same behavior as the

27nm particles concerning resistivity and field strength. Increasing the particle size

to 33mn, however, the critical transition length from homogeneous to inhomogeneous

magnetization reversal is reached. The magnetic field created by the eddy currents

becomes non-uniform, resulting in an incoherent spin structure leading to a vanishing

eddy current contribution to damping of less than 1 percent. All the simulation results

are summarized and shown in Table 10.1.

10.4 Conclusions

A model was introduced to calculate the contribution of the eddy currents to the

effective damping of the system. Relating the change of the total energy with time

to the change of the magnetization with time an effective damping was calculated.
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Table 10.1: Gives the simulation and calculation results for the dynamic damping
parameter in dependency of field strength, conductivity and size of the sample.

Time (ns) Size (nm) Hext (mT) (J (Çlm) 0' O'e O;e/O;

1.0-2.2 20 200 0 0.1 0.101 1
1.0-2.2 20 200 1.10-9 0.1 0.104 2.97
1.0-2.2 27 200 0 0.1 0.103 1
1.0-2.2 27 200 1.10-8 0.1 0.106 2.91
1.0-2.2 27 200 1.10-9 0.1 0.108 4.85
1.5-4.0 27 100 0 0.1 0.1 1
1.5-4.0 27 100 1.10-9 0.1 0.11 10

Any effective damping lügher than the imposed Gilbert damping constant has to

be attributed to eddy currents. In small particles, eddy currents may increa ...<;ethe

effective damping by up to 10 percent. It was shown that the magnitude of the

contribution of eddy currents to the energy dissipation of the system depends on

material parameters like the conductivity and the size of the particles. The lower the

resistivity of a system the lügher the eddy current effect. In the regime of uniform

rotation, the eddy current distribution to damping increases with particle size.
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