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Kurzfassung

Supersymmetrische Theorien wie das Minimale Supersymmetrische Standardmodel (MSSM)
sagen die Existenz von Partnerteilchen zu den bereits bekannten Elementarteilchen voraus.
Zu diesen zählen unter anderem die sogenannten Neutralinos und Charginos, die Superpart-
ner der Eich- und Higgs-Bosonen.
Sollte nun Supersymmetrie (SUSY) in der Natur realisiert sein, können diese SUSY-Teilchen
bei zukünftigen Beschleunigerexperimenten entdeckt und deren Eigenschaften insbesondere
an einem Elektron-Positron Linearbeschleuniger mit hoher Präzision bestimmt werden.
Die vorliegende Arbeit beschäftigt sich daher in ausführlicher Weise mit der Berechnung
von Observablen zur Neutralino- und Chargino-Produktion in Elektron-Positron Annihi-
lationen im Rahmen des MSSM. Der Schwerpunkt wird hierbei auf die Ermittlung der
zugehörigen Einschleifen-Strahlungskorrekturen gelegt, deren Berücksichtigung unerlässlich
ist, um die geforderte Präzision zu erhalten. Die dafür notwendige Berechnung von hun-
derten von Feynman-Diagrammen wird unter Anwendung spezieller algebraischer Software
durchgeführt. Dabei stößt man jedoch auf drei Probleme: Durch Integration der (quadri-
erten) Feynman-Amplituden über die freien Teilchen-Impulse kommt es zu den sogenannten
ultraviolett- (UV), den infrarot- (IR) und den kollinearen Divergenzen. Diese müssen mittels
spezieller Verfahren behandelt werden, um physikalisch sinnvolle Ergebnisse zu erhalten. Die
UV-Divergenzen können im Rahmen der Regularisierung und anschließender Renormierung
entfernt werden. Das dafür verwendete on-shell Renormierungsschema wird in konsistenter
und detailierter Weise hergeleitet. Besonderer Wert wird dabei auf eine eindeutige Defini-
tion der “weichen” SUSY Brechungsparameter gelegt. IR-Divergenzen entstehen durch Aus-
tausch virtueller Photonen. Sinnvolle Observable können daher nur dann erhalten werden
wenn zusätzlich zu den Schleifen-Beiträgen auch reelle Photonabstrahlung berücksichtigt
wird. Hierbei treten nun die erwähnten kollinearen Divergenzen auf, da Photonen auch
kollinear zu den einlaufenden Elektron- und Positron- Strahlen abgestrahlt werden. Diese
werden durch die endliche Elektronmasse regularisiert. Da die Masse aber im Vergleich
zur Strahlenergie um Größenordnungen kleiner ist, liefern kollineare Photonen sehr hohe
Beiträge zu den Strahlungskorrekturen.
Dies führt zu zwei weiteren Schwierigkeiten. Einerseits müssen die numerischen Probleme
gelöst werden, indem die Beiträge der kollinearen Photonen von der numerischen Integra-
tion über den Phasenraum separiert und analytisch behandelt werden. Andererseits ist es
notwendig höhere Ordnungen dieser großen kollinearen Korrekturen mitzuberücksichtigen,
um ein hinreichendend genaues Ergebnis zu erzielen.
Auch wenn nur die Summe aller Teilbeiträge vernünftige Observable liefert, hat dennoch
eine möglichst physikalisch motivierte Aufspaltung der gesamten berücksichtigten Strah-
lungskorrekturen Vorteile und wird daher ebenfalls diskutiert.
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Abstract

Supersymmetric theories like the Minimal Supersymmetric Standard Model (MSSM) pre-
dict the existence of partner particles to the well-established elementary particles. Among
others are the so-called neutralinos and charginos, the superpartners of the gauge and Higgs
bosons.
If Supersymmetry (SUSY) is realized in nature, the SUSY-particles can be discovered at
future collider experiments. In particular on a linear collider their properties can be deter-
mined at high precision.
Therefore this thesis deals in an extensive way with the calculation of observables in neu-
tralino and chargino production in electron-positron annihilations within the MSSM. Em-
phasis is put on the determination of the corresponding one-loop radiative corrections, whose
consideration is essential to obtain the required precision. The necessary calculation of hun-
dreds of Feynman diagrams is performed by application of special algebraic software.
However, one meets three problems: By integration of the (squared) Feynman-amplitudes
over the free particle momenta, the so-called ultraviolet (UV), infrared (IR), and collinear di-
vergences are introduced. These have to be treated by special techniques to obtain physically
meaningful results. The UV-divergences can be removed within the scope of regularization
and subsequent renormalization. The applied on-shell renormalization scheme is deduced in
a consistent and detailed way. Particular importance is given to a unique definition of the
“soft” SUSY-breaking parameters. IR-divergences originate from the exchange of virtual
photons. Meaningful observables are only obtained, if in addition to the loop-contributions
also real photon emission is considered. In this connection, the mentioned collinear diver-
gences arise, since photons are also radiated off collinearly to the incoming electron-positron
beams. These are regularized by the finite electron mass. But due to the fact, that the mass
is by many orders of magnitude smaller than the beam energy, the collinear photons yield
large contributions to the radiative corrections.
This leads to two difficulties: At one hand, the numerical problems need to be solved. There-
fore, the contributions of collinear photons are separated from the numerical phase-space
integration and further treated in an analytical way. On the other hand, it is necessary to
take higher orders of these large collinear corrections into account, in order to obtain a result
of adequate accuracy.
Even if only the sum of all these components yields a reasonable observable, a physically
motivated separation of the complete considered radiative corrections has its advantages
and is therefore also discussed.
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Chapter 1

Introduction

At present state, the Standard Model (SM) of electroweak and strong interactions [1, 2] of
elementary particle physics describes almost all currently available experimental data with
high precision. Despite its great success, it is a common belief that it can only be an effective
theory describing physics at energies that are available at current collider experiments, and
has to be extended to gain a full picture of fundamental interactions realized in nature. The
reason for that: The SM leaves too many questions unanswered.

• It does not incorporate gravity, the fourth fundamental force.

• There is no explanation for the experimentally found mass spectrum of the matter
particles, the fermions. The masses of the quarks and leptons are free input parameters
of the SM and only accessible by measurement.

• Why are there three generations of fermions?

• How does the mechanism of electroweak symmetry breaking (EWSB) work exactly? In
the SM an additional fundamental SU(2)L doublet field φ of spin 0 and a corresponding
potential V (φ) are introduced just by hand, but until today the experimental evidence,
the expected discovery of the Higgs particle, is missing.

• The SM is based on the U(1)Y ⊗SU(2)L⊗SU(3)C gauge symmetry, a direct product
of three groups each with an own coupling constant. Hence, it cannot be considered as
a true unification of the electroweak and strong interactions. Therefore, it is assumed
that at a higher scale a more fundamental theory, the Grand Unified Theory (GUT),
exists where the three forces are unified in one gauge group described by only one
single gauge coupling. If a model is an effective low-energy limit of such a GUT, the
extrapolation of the three coupling constants up to the GUT scale using renormal-
ization group techniques should meet in one point. Unfortunately this is not exactly
realized in the SM [3].

• Observations in astro-physics yield that a large contribution of non-baryonic, non-
luminous matter to the critical density of the universe is needed, which is also likely to
be non-relativistic [4]. The WMAP satellite measurements [5] of the cosmic microwave
background have shown that this cold dark matter amounts about a fourth of the
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2 Introduction

present energy of the universe. Therefore, a fairly massive and electrically neutral
particle that is stable and has only weak interactions is required, but the SM fails to
offer a candidate for the dark matter problem.

• The evaluation of the radiative corrections to the squared Higgs mass reveals the so-
called naturalness or hierarchy problem. Using a cut-off regularization, it turns out
that the divergent expression is quadratic in the cut-off scale Λ. This scale can be inter-
preted as the point where an effective theory is no longer valid and new physics enters.
In the case of the SM, this scale should be the GUT scale which is of O(1016 GeV).
Phenomenological aspects demand that the mass of the Higgs boson is in the range
of the electroweak scale O(100 GeV), although the mass corrections show that it is
sensitive to the GUT scale. Therefore an unnatural fine-tuning is necessary, so that
the Higgs particle remains to be light.
Even if we deny a physical interpretation of the cut-off scale and use dimensional
regularization, the naturalness problem remains evident. While physics at very high
energies should decouple in the calculation of observables at the electroweak scale, the
Higgs mass persists to be sensitive to possible contributions from heavy particles in
the corresponding loop diagrams.
The corrections to the masses of the gauge bosons and the fermions are protected by
gauge and chiral symmetry against this sensitivity and depend only logarithmically on
the cut-off scale. So it seems that a lack of symmetry is responsible for the naturalness
problem in the Higgs sector.

Several of these mentioned problems can be solved by introducing Supersymmetry (SUSY) [6,
7, 8, 9], which makes supersymmetric theories to be widely considered as the most attractive
extensions of the SM.
Supersymmetry is a symmetry that connects bosons and fermions, mediated by the SUSY
generators Q, which transform fermionic into bosonic states and vice-versa

Q|Fermion〉 = |Boson〉 , Q|Boson〉 = |Fermion〉 . (1.1)

In the beginning SUSY was introduced for less phenomenological but more aesthetical and
purely theoretical reasons. For example it is the most general symmetry that a non-trivial
quantum field theory can possess [10]. If SUSY is made local it is possible to incorporate
gravity and maybe this will help to find a theory where all four fundamental forces are con-
sidered. Supersymmetry is the correct symmetry that helps to solve the hierarchy problem.
Exact SUSY predicts that each known particle has a mirror-particle with the same mass
and quantum numbers, except the spin which differs by 1/2. So the fermionic contributions
to the Higgs mass are supplemented by loop diagrams with their bosonic superpartners,
which cancel the complete cut-off dependence.
Unfortunately no such superpartners to the known particles have been found yet and there-
fore SUSY must be broken. Even then, the hierarchy problem can be solved if the masses
of the superpartners are not too heavy (≤ few TeV). This is the main reason for low-energy
supersymmetry.
Furthermore the additional particles modify the slopes of the renormalization group evolved
gauge couplings and gauge unification is possible. In supersymmetric theories with R-parity
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conservation, the lightest supersymmetric particle (LSP) is stable. If this particle is electri-
cally neutral it can serve as a dark matter candidate. There are several possible candidates
like the superpartners of the neutral gauge bosons and Higgses, the neutralinos.
SUSY can also help to get a better understanding of the EWSB mechanism. In SUSY theo-
ries it is possible to assume a positive squared Higgs mass parameter at the GUT scale. Due
to the heavy mass of the top quark and its superpartners, the evolution downwards yields
a negative value at the electroweak scale. So the typical “mexican hat” shape of the Higgs
potential and as a consequence EWSB itself appear as output of such a calculation and do
not need to be adjusted by hand.
If SUSY is realized in nature, it is expected to be found at the next generation of colliders,
the LHC and a future linear collider (LC). Therefore supersymmetric theories are part of
the most active fields in present elementary particle phenomenology.

This thesis is organized as follows:

Since all calculations are done within the framework of the MSSM, chapter 2 gives a short
introduction to this model and additionally specifies the used conventions.
Chapter 3 considers in detail the regularization and renormalization schemes used in this
thesis. An on-shell scheme for the masses and fields of all SUSY-partners is applied, that is
applicable independent of the corresponding particle mixing characters. Effective renormal-
ization schemes for the fine-structure constant are reviewed.
Afterwards chapter 4 gives a short survey to the structure function formalism in QED.
Starting from the mass factorization theorem, all necessary formulas for the calculation of
universal photonic corrections are presented.
The main topic of this thesis is discussed in chapter 5, the pair production of neutralinos
and charginos in electron-positron annihilation. The calculation of virtual and real correc-
tions are explicitly discussed. The QED corrections are treated using the phase-space slicing
method. Furthermore a physically motivated separation of weak and QED corrections is pre-
sented.
Chapter 6 gives numerical results for several observables: The total cross-section, the forward-
backward and the left-right asymmetry. Further, distributions in the photon energy and the
scattering angle for chargino production with an additional photon in the final-state are
presented.
In appendix A an analytic expression for the necessary counter-term Lagrangian is given.
At last, appendix B defines the MSSM scenario that is used in the numerics. The SPS1a′

scenario serves as benchmark point to perform high precision calculations. The importance
of the translation from DR to on-shell parameters is emphasized.



Chapter 2

The Minimal Supersymmetric

Standard Model

The minimal supersymmetric extension of the SM contains only those fields and couplings
that are necessary for consistency. It it constructed from the following ingredients:

• Minimal particle content:

The MSSM is based on the same gauge group as the SM. SUSY implies, that in
addition to the gauge bosons fermionic superpartners are introduced. These spin 1

2

“gauginos” are the bino B̃, the three winos W̃i and the eight gluinos g̃a for the gauge
groups U(1)Y , SU(2)L and SU(3)C , respectively. The gauge bosons and the gauginos
are combined to vector supermultiplets.
According to the SM, the MSSM contains three generations of leptons and quarks. The
right- and left-handed components are arranged in different chiral superfields together
with their spin 0 SUSY partners, the sleptons and squarks.
In contrast to the SM, two chiral superfields Ĥ1 and Ĥ2 with opposite hypercharge
are needed to cancel chiral anomalies. The scalar components are two Higgs dou-
blets, which give separately masses to the up- and down-type fermions, by their non-
vanishing vacuum expectation values. The fermionic parts are the “higgsinos”, which
mix with the gauginos to form the mass eigenstates of the so-called charginos and
neutralinos. An overview about the particle content in the MSSM is given in Tab. 2.1

• R-Parity conservation:

The most general gauge-invariant and renormalizable Lagrangian would contain terms
of lepton and baryon number violating interactions. To cope with the severe experi-
mental constraints on lepton or baryon number violating processes, whereas the non-
observation of the proton-decay is the most obvious one, a multiplicative symmetry
called R-parity is imposed. It is defined by

Rp = (−1)3B+L+2s , (2.1)

where L and B are the lepton and baryon number, respectively, and s is the spin
quantum number. Hence, ordinary particles have R-parity Rp = +1 and their SUSY-
partners Rp = −1. This has important phenomenological consequences: In collider

4



2.1 Higgs sector 5

Superfield SU(3)C SU(2)L U(1)Y Particle Spin Superpartner Spin

B̂ 1 1 0 Bµ 1 B̃ 1
2

Ŵi 1 3 0 W µ
i 1 W̃i

1
2

ĝa 8 1 0 gµa 1 g̃a
1
2

Q̂ 3 2 1
3

(uL, dL) 1
2

(ũL, d̃L) 0

Û c 3̄ 1 −4
3

ūR
1
2

ũ∗R 0

D̂c 3̄ 1 2
3

d̄R
1
2

d̃∗R 0

L̂ 1 2 −1 (νL, eL) 1
2

(ν̃L, ẽL) 0

Êc 1 1 2 ēR
1
2

ẽ∗R 0

Ĥ1 1 2 −1 H1 0 H̃1
1
2

Ĥ2 1 2 1 H2 0 H̃2
1
2

Table 2.1: Superfield and particle content of the MSSM

experiments, SUSY-particles can only be produced in even numbers. The correspond-
ing decay products contain always an odd number of SUSY-partners. Thus, the lightest
supersymmetric particle (LSP) is absolutely stable.

• Soft SUSY-breaking:

Realistic models must contain SUSY-breaking, although there is no hint how the
SUSY-breaking mechanism works. To be as general as possible, terms are just added
to the Lagrangian that break SUSY explicitly. In order to sustain the solution of the
hierarchy problem, only “soft” terms are considered, who do not reintroduce quadratic
divergences [11].

2.1 Higgs sector

Both complex SU(2)L Higgs doublets that are required in the MSSM acquire a non-vanishing
vacuum expectation value (VEV)

〈H1〉 =

(
v1/

√
2

0

)
and 〈H2〉 =

(
0

v2/
√

2

)
. (2.2)

Thus, the two doublets with opposite hypercharge can be parameterized in the following
way

H1 ≡
(

H0
1

H−
1

)
=

(
(v1 + φ0

1 + iχ0
1)/

√
2

φ−
1

)
, YH1

= −1 , (2.3)

H2 ≡
(
H+

2

H0
2

)
=

(
φ+

2

(v2 + φ0
2 + iχ0

2)/
√

2

)
, YH2

= +1 . (2.4)



6 The Minimal Supersymmetric Standard Model

The tree-level Higgs potential in the MSSM can be written as

VH = (M2
H1

+ |µ|2) |H1|2 + (M2
H2

+ |µ|2) |H2|2 −
(
Bµ εabHa

1Hb
2 + h.c.

)

+
g2 + g′2

8

(
|H1|2 − |H2|2

)2
+
g2

2
|H†

1H2|2 , (2.5)

whereas M2
H1

, M2
H2

, and B are soft SUSY-breaking parameters and µ the MSSM analogue
to the SM Higgs mass parameter. The Higgs self-interaction is determined by the U(1)Y and
SU(2)L gauge couplings g′ and g, in contrast to the SM where it is introduced by hand. The
anti-symmetric ε tensor is fixed by ε12 = −1. A phase-convention for the two Higgs-doublets
can be chosen in such a way that the two vacuum expectation values and the product Bµ
are real.
As a consequence of electroweak symmetry breaking, the gauge bosons receive the masses

m2
Z =

g2 + g′2

4
(v2

1 + v2
2) , m2

W =
g2

4
(v2

1 + v2
2) . (2.6)

Hence, the sum of the squared vacuum expectation values can be related to the experimen-
tally known Z-mass

v2 ≡ v2
1 + v2

2 =
4m2

Z

g′2 + g2
≈ (246 GeV)2 . (2.7)

The mixing angle β is defined through the ratio of the VEV’s

tan β ≡ v2

v1

≥ 0 , 0 ≤ β ≤ π

2
(2.8)

and remains as a free parameter of the theory. By the requirement, that the two ground
states 〈H1〉, 〈H2〉 describe indeed a local minimum of the Higgs-potential,

∂VH
∂H0

1

∣∣∣∣
〈H0

n〉=vn

=
∂VH
∂H0

2

∣∣∣∣
〈H0

n〉=vn

= 0 , (2.9)

the following two restricting conditions are obtained

M2
H1

+ |µ|2 = −Bµ tanβ − 1

2
m2
Z cos 2β , (2.10)

M2
H2

+ |µ|2 = −Bµ cotβ +
1

2
m2
Z cos 2β . (2.11)

The Higgs mass matrix has the form

M2,Higgs
ij =

1

2

∂2VH
∂Hi ∂Hj

∣∣∣∣
〈H0

n〉=vn

. (2.12)

At tree-level and in CP-invariant theories even at higher order, M2,Higgs
ij can be decomposed

into four independent 2 × 2 blocks. A subsequent diagonalization yields the following mass
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eigenstates
(
G±

H±

)
=

(
− cos β sin β

sin β cos β

)(
φ±

1

φ±
2

)
, (2.13)

(
H0

h0

)
=

(
cosα sinα

− sinα cosα

)(
φ0

1

φ0
2

)
, (2.14)

(
G0

A0

)
=

(
− cos β sin β

sin β cos β

)(
χ0

1

χ0
2

)
. (2.15)

The three unphysical Goldstone modes G0 and G± with zero mass are absorbed by the
longitudinal components of the massive vector bosons. The spectrum of physical states
consists of three neutral bosons, two CP-even eigenstates (h0, H0), a CP-odd one (A0), and
two charged (H±) Higgs particles. The original six degrees of freedom in the Higgs potential,
the four soft SUSY-breaking parameters and the two VEV’s are reduced due to the eqs. (2.7,
2.10, 2.11). For the remaining three we choose the common input

mA0 , tan β , and µ .

The tree-level values of the charged and the CP-even Higgs masses and the Higgs mixing
angle α, expressed in terms of these input parameters and the gauge boson masses are

m2
H± = m2

A0 +m2
W , (2.16)

m2
h0,H0 =

1

2

[
m2
A0 +m2

Z ∓
√

(m2
A0 +m2

Z)2 − 4m2
A0m2

Z cos2 2β

]
. (2.17)

tan 2α = tan 2β
m2
A0 +m2

Z

m2
A0 −m2

Z

, −π
2
≤ α ≤ 0 . (2.18)

2.2 Sfermion sector

We assume no generation mixing for fermions and sfermions. The mass matrix for each
generation of squarks or sleptons can therefore be written as

M2
f̃

=

(
(MLL

f̃
)2 +m2

f (MLR
f̃

)∗mf

MLR
f̃

mf (MRR
f̃

)2 +m2
f

)
, (2.19)

with

(MLL
f̃

)2 = m2
Z cos 2β

(
I3L
f − ef sin2 θW

)
+

{
M2

Q̃
for left-handed squarks ,

M2
L̃

for left-handed sleptons ,
(2.20)

MLR
f̃

= Af − µ∗(tan β)−2 I3L
f (2.21)

(MRR
f̃

)2 = m2
Z cos 2β ef sin2 θW +





M2
Ũ

for right-handed u-type squarks ,

M2
D̃

for right-handed d-type squarks ,

M2
Ẽ

for right-handed sleptons .

(2.22)
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MQ̃,L̃ and MŨ ,D̃,Ẽ are soft SUSY-breaking masses and Af are trilinear breaking parameters.

I3L
f is the third component of the weak isospin, ef the electric charge in terms of the

elementary charge and mf the mass of the corresponding fermionic SUSY-partner.

The mass matrix can be rotated by introducing the unitary matrix Rf̃

M2
f̃

= Rf̃†

(
m2
f̃1

0

0 m2
f̃2

)
Rf̃ , (2.23)

which results in the sfermion masses

m2
f̃1,2

= m2
f +

1

2

(
(MLL

f̃
)2 + (MRR

f̃
)2 ∓

√(
(MLL

f̃
)2 − (MRR

f̃
)2
)2

+ 4m2
f |MLR

f̃
|2
)
. (2.24)

2.3 Chargino sector

The fermionic superpartners of the W -boson and charged Higgs boson, called charginos, are
given in the Weyl representation as [12]

ψ+ = (−iλ+, ψ1
H2

) , ψ− = (−iλ−, ψ2
H1

) . (2.25)

The mass term of the Lagrangian in this basis reads

L = −1

2
(ψ+, ψ−) ·

(
0 XT

X 0

)
·
(
ψ+

ψ−

)
+ h.c. (2.26)

with the chargino mass matrix

X =

(
M

√
2mW sin β√

2mW cosβ µ

)
. (2.27)

Without loss of generality the SU(2)L mass parameter M can be chosen to be real. The
mass matrix is rotated using two unitary matrices U and V

U∗XV † = diag(mχ̃±

1
, mχ̃±

2
) , 0 ≤ mχ̃±

1
≤ mχ̃±

2
. (2.28)

The Dirac mass eigenstates can be constructed in two ways. As negatively or positively
charged ones

χ̃−
i ≡

(
χ−
i

χ̄+
i

)
=

(
Uij ψ

−
j

V ∗
ij ψ̄

+
j

)
, or χ̃+

i ≡
(
χ+
i

χ̄−
i

)
=

(
Vij ψ

+
j

U∗
ij ψ̄

−
j

)
. (2.29)

The mass eigenvalues are given by

m2
χ̃±

1,2
=

1

2

[
M2 + |µ|2 + 2m2

W ∓
√

(M2 + |µ|2 + 2m2
W )2 − 4|m2

W sin 2β − µM |2
]
. (2.30)
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2.4 Neutralino sector

The neutralinos are the fermionic superpartners of the U(1)Y and SU(2)L gauge fields Bµ

and W 3µ and of the neutral components of the two Higgs doublets, H0
1 and H0

2 . In the
original interaction base, they can be combined to a vector of four Weyl states

ψ0
j = (−iλ′,−iλ3, ψ1

H1
, ψ2

H2
) . (2.31)

The corresponding bilinear Lagrangian has the form

L = −1

2

(
ψ0
)T

Y ψ0 + h.c. , (2.32)

where we have introduced the neutralino mass matrix

Y =




M ′ 0 −mZ sin θW cosβ mZ sin θW sin β

0 M mZ cos θW cos β −mZ cos θW sin β

−mZ sin θW cosβ mZ cos θW cosβ 0 −µ
mZ sin θW sin β −mZ cos θW sin β −µ 0



.

(2.33)

Due to the Majorana nature, the mass matrix can be diagonalized by using only one rotation
matrix

N∗Y N † = diag(mχ̃0
1
, mχ̃0

2
, mχ̃0

3
, mχ̃0

4
) , (2.34)

with 0 ≤ mχ̃0
1
≤ mχ̃0

2
≤ mχ̃0

3
≤ mχ̃0

4
by definition. The neutralino fields can be expressed as

the Majorana spinors

χ̃0
i ≡

(
χ0
i

χ̄0
i

)
=

(
Nij ψ

0
j

N∗
ij ψ̄

0
j

)
. (2.35)



Chapter 3

Renormalization of the MSSM

3.1 Divergences and regularization

The inclusion of higher order corrections in the calculation of Green functions and S-Matrix
elements beyond the tree-level approximation has two main complications. First, tree-level
relations between the Lagrangian parameters and physical observables are no longer valid. So
the Lagrangian parameters cannot be considered as “physical” quantities, but depend on a
certain definition. Second, the calculation of higher order Feynman diagrams (in momentum
space) leads to the integration over indefinite momenta. Such integrals can diverge for large
momenta (or equivalently in the Fourier-transformed position space, for small distances),
e.g.

∫
d4q

q2 −m2 + iε
. (3.1)

These so-called UV-divergences have to be treated in a proper way. The first step is to give
such integrals an intermediate well-defined meaning, the so-called regularization. Several
regularization schemes are known. The physically best motivated one is perhaps to introduce
a cut Λ on the energy. The integral is now Λ dependent and diverges in the limit Λ → ∞.
However this cut-off scheme is very inconvenient in practical calculations and furthermore
breaks Lorentz invariance. Therefore, we use the schemes discussed in the next sections,
which do not spoil gauge and Lorentz invariance. In a second step, the renormalization
procedure, renormalization constants (RC’s) of the Lagrangian parameters and the fields
have to be introduced. These RC’s absorb the UV-divergences and it is possible to obtain
UV-finite results for Green functions and S-Matrix elements. A theory in which this is
possible in all orders of perturbation theory is called renormalizable. Calculations in finite
orders of perturbation theory are naturally renormalization scheme dependent, but differ
only by higher order contributions.

3.1.1 Dimensional regularization

The definition of regularized expressions in dimensional regularization (DREG) [13] is done
in the following way. An analytical continuation of four-vectors, like momenta and vector
fields, from 4 to D dimensions has to be performed. We introduce the difference between

10
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four and D dimensions by the parameter ε = 4 − D. In general, the integrals of one-loop
Feynman diagrams can be defined by

TNµ1,...,µM
(p1, . . . , pN−1, m0, . . . , mN−1) =

(2πµ)4−D

iπ2
× (3.2)

×
∫

dDq
qµ1

. . . qµM

(q2 −m2
0 + iε)[(q + p1)2 −m2

1 + iε] . . . [(q + pN−1)2 −m2
N−1 + iε]

and can be expanded in a Laurent series around the pole ε = 0. Due the change in the
dimension of the integrals, it necessary to introduce an arbitrary mass parameter µ, which
vanishes in the limit ε→ 0. All UV-divergent integrals have the same pole structure ∝ 1

ε
. The

methods for calculating such integrals are based on the work of t‘Hooft and Veltman [14],
and Passarino and Veltman [15]. Therefore these integrals are known in the literature as
Passarino-Veltman integrals. The scalar integrals up to four propagators in the convention

x

x
p1

q + p1 m1

p2 − p1

m2q + p2

q

m0

m3

pN−1

q + pN−1mN−1

Figure 3.1: Conventions for the Passarino-Veltman integrals.

of A. Denner [16] are

T 1 ≡ A0(m
2
0) , (3.3)

T 2 ≡ B0(p
2
1, m

2
0, m

2
1) , (3.4)

T 3 ≡ C0(p
2
1, (p1 − p2)

2, p2
2, m

2
0, m

2
1, m

2
2) , (3.5)

T 4 ≡ D0(p
2
1, (p1 − p2)

2, (p2 − p3)
2, p2

3, p
2
2, (p1 − p3)

2, m2
0, m

2
1, m

2
2, m

2
3) . (3.6)

The advantage of such a definition compared with eq. (3.2), is quite simple. All arguments
are scalars and no explicit 4-momenta occur, so they are well defined for a later numerical
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evaluation.
As an example, we give the anlytical results for two of the basic scalar integrals

A0(m
2) = m2

[
∆ + 1 + log

µ2

m2

]
, (3.7)

B0(m
2, 0, m2) = ∆ + 2 + log

µ2

m2
. (3.8)

We have defined the divergence parameter

∆ =
2

ε
− γE + log 4π , (3.9)

whereas γE = 0.57721 . . . is the Euler constant. For further analytical solutions of Passarino-
Veltman integrals, we refer e.g. to [17].
Since dimensional regularization retains Lorentz invariance and the tensor integrals TNµ1,...,µM

are symmetric under interchange of the Lorentz indices µi, they can be decomposed in terms
of symmetric Lorentz tensors. The decomposition for some of the tensor integrals in the
convention of [16] is given by:

Bµ = pµ1B1 (3.10)

Bµν = gµνB00 + pµ1p
ν
1B11 (3.11)

Cµ = pµ1C1 + pµ2C2 (3.12)

Cµν = gµνC00 + pµ1p
ν
1C11 + (pµ1p

ν
2 + pµ2p

ν
1)C12 + pµ2p

ν
2C22 (3.13)

The momenta pµi are defined in Fig. 3.1.
In the minimal-subtraction scheme (MS), the terms proportional to 1

ε
, in the MS scheme, the

terms proportional to ∆ are subtracted to give finite results. These renormalization schemes
lead to renormalized expressions. Other renormalization schemes, like the on-shell scheme
as discussed in the next chapter, just differ by finite terms that are additionally subtracted.
To calculate not only one-loop integrals, but a complete Feynman amplitude in DREG, an
extension to D dimensions of the Lorentz covariants (γµ, gµν , . . .) is necessary. For arbitrary
D the metric tensor obeys the trace rule gµµ = D. An extension of the Dirac algebra, can be
defined in the following way:

{γµ, γν} = 2gµν1l → γµγµ = D1l (3.14)

Problems arise if identities that depend on the 4-dimensional nature of objects are involved.
In particular for the validity of Fierz identities, the definition of a D-dimensional γ5, and
relations that come along with the Levi-Civita ε tensor. For example, there is no consistent
definition for the trace Tr(γ5γµγνγργσ) = εµνρσTr1l in D dimensions. However, one can
use the 4-dimensional definition for one-loop corrections in anomaly-free theories without
inconsistencies.

3.1.2 Dimensional reduction

Unfortunately, DREG violates supersymmetry. In DREG vector-fields are reduced from 4
to D dimensions, which affects the corresponding degrees of freedom, respectively. There-
fore, such vector-fields cannot be combined with its fermionic superpartners to a super-
field. A modified version of DREG, dimensional reduction (DRED), was introduced by
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W. Siegel [18]. The usual integration momenta are D-dimensional, equivalently to DREG,
but all other tensors and spinors that are related to vector-fields are kept 4-dimensional.
Working with 4- and D-dimensional objects, one has to introduce two different metric ten-
sors: a 4-dimensional one gµν with gµµ = 4 and a D-dimensional ĝµν with ĝµµ = D. To retain
gauge invariance and field equations, one must demand that

gαβ ĝβγ = ĝαγ . (3.15)

The differences between DREG and DRED can be shown in a simple example, the product
of self-contracted γ matrices and a Passarino-Veltman integral γµγµB0(m

2, 0, m2):

DREG DRED

(4 − ε)(∆ + 2 + log
µ2

m2 ) +O(ε) = 4(∆ + 2 + log
µ2

m2 ) − 2 +O(ε) 4(∆ + 2 + log
µ2

m2 ) +O(ε)

The additional ε in DREG produces, multiplied with the divergence factor ∆ in the B0

integral, a finite term 2. However, this example possibly gives the wrong impression that in
DRED one only needs to consider the ε expansion for the basic integrals TN... and that the
4-dimensional expressions outside are irrelevant in this connection. This can be clarified in
a simple second example

gµνB
µν = gµν(ĝ

µνB00 + pµ1p
ν
1B11) = ĝ µ

µ B00 + p2
1B11 = (4 − ε)B00 + p2

1B11 . (3.16)

Eq. (3.15) “transforms” the 4-dimensional metric tensor outside the basic integral into a
D-dimensional one. This yields the rule, that tensors with traces (e.g. gµνB

µν) and traceless
objects (e.g. Bµν) are regularized differently.
Equivalenty to DREG, we can define a minimal subtraction renormalization that cancels
only the divergent 1

ε
/ ∆ terms. These schemes are called DR / DR .

3.1.3 Constrained differential renormalization

Constrained differential renormalization (CDR) [19] was originally formulated in euclidean
position space. The Feynman diagrams are rewritten in terms of a complete set of singular
basic functions. The renormalization is done by replacing these divergent expressions with
derivatives of well-behaved ones and no intermediate step of regularization is needed. The
mass-less scalar propagator in euclidean x-space has the simple form

∆0(xE) =
1

4π2x2
E

. (3.17)

The UV-divergence for small distances in xE is evident. Based on a set of rules and the
CDR identity

[
1

x4
E

]R
= −1

4
� log x2

EM
2

x2
E

, (3.18)

where xE is the euclidean coordinate and � = ∂µ∂µ, all other renormalized basic functions
can be obtained. A main feature of these functions is, that they are different for trace
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and traceless objects. It was shown in [20] that transforming these basic functions into
Minkowski momentum-space, the renormalization is identical to the DR renormalization at
the one-loop level. The transformation of the CDR identity eq. (3.18) into the Minkowski
momentum space yields

[
−i
∫

d4k

(2π)4

1

k2(k − p)2

]R
=

1

16π2
log

M̄2

−p2
, (3.19)

with M̄ = 2MeγE . In DR this integral is renormalized in the following way

[
−i
∫

d4k

(2π)4

1

k2(k − p)2

]R
=

1

16π2
B0(p

2, 0, 0)
∣∣
∆→0

=
1

16π2
(log

µ2

−p2
+ 2) (3.20)

Both schemes give the same result, if we impose for the arbitrary scales M̄ and µ the relation

M̄2 = µ2e2 . (3.21)

The CDR rules define how the products of singular expressions and operators are properly
renormalized. The combination of CDR rules and the CDR identity allows to construct reg-
ularized quantities for all possible divergent expressions at one loop. Inserting non-singular
expressions, like the regularized D-dimensional integrals of DREG and DRED, the CDR
rules are automatically fulfilled. Therefore the basic functions in CDR and DREG or DRED
are identical if eq. (3.21) is valid. In CDR all Lorentz indices are contracted before the
basic functions are identified. All other objects in a Feynman amplitude are naturally 4-
dimensional. In DRED this is also true, if the contraction of Lorentz indices has been already
performed. This is not valid for DREG, where even after the contraction D-dimensional ob-
jects (with ε terms) can occur. Hence, it can be said that the basic functions in CDR,
DRED, and DREG are identical. For a complete Feynman amplitude CDR and DRED give
the same result, differing from those in DREG.
The algorithmic approach of CDR, to express Feynman amplitudes in terms of basic func-
tions, that are replaced by the corresponding renormalized ones, makes it attractive for
automatized calculations in CDR or DR at the one-loop level. Therefore the CDR scheme
is implemented in Thomas Hahn’s FormCalc package [21] for one-loop calculations in su-
persymmetric models.

3.2 Gauge boson and SM fermion sector

Since the minimal supersymmetric extension of the SM does not introduce further couplings
between the SM particles, the renormalization used for the SM parameters can be taken from
[16]. We use the common technique of multiplicative renormalization. The bare parameters
are split into renormalized ones and their counter-terms

fi → (δij + 1
2
δZL

ijPL + 1
2
δZR

ijPR)fj , mfi
→ mfi

+ δmfi
, (3.22)

m2
W → m2

W + δm2
W , m2

Z → m2
Z + δm2

Z , (3.23)

(
Z
A

)
→

(
1 + 1

2
δZZZ

1
2
δZZA

1
2
δZAZ 1 + 1

2
δZAA

)(
Z
A

)
. (3.24)
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x

x

fj fi Vµ V ′
ν

M = iūi(k)Γ
f f̄
ij uj(k)

Γf f̄ij = δij(k/−mi) + Πij(k)

M = iεµ(k)ΓV V
′∗

µν ε∗ν(k)

ΓV V
′∗

µν = −gµνδV V ′(k2 −m2
V ) − ΠV V ′

µν (k)

Figure 3.2: Two-point functions for mixing fermions and vector-particles.

The two point functions Γff̄ij for fermions and ΓV V
′∗

µν for vector particles are generically
given in Fig. 3.2. The self-energies Π(k) and accordingly the two point-functions Γ(k) can
be decomposed in the following form

Πij(k) = k/PLΠL
ij(k

2) + k/PRΠR
ij(k

2) + PLΠSL
ij (k2) + PRΠSR

ij (k2) , (3.25)

ΠV V ′

µν (k) =

(
gµν −

kµkν
k2

)
ΠV V ′

T (k2) +
kµkν
k2

ΠV V ′

L (k2) . (3.26)

These divergent expressions are renormalized by applying the usual on-shell conditions to
the two-point functions. The renormalized mass parameters are defined to be the physical
masses, i.e. the real parts of the poles of the corresponding propagators. We further demand,
that close to its pole the propagators have tree-level form. As a consequence, an on-shell
particle does not mix with others, and its propagator has residue one. This leads to conditions
for the field renormalization constants.

R̃e Γ̂V V
′∗

µν (k)εν(k)
∣∣∣
k2=m2

V

= 0 V, V ′ = A,Z,W, (3.27)

lim
k2→m2

V

1

k2 −m2
V

R̃e Γ̂V V
∗

µν (k)εν(k) = −εµ(k) , (3.28)

R̃e Γ̂ff̄ij (k)uj(k)
∣∣∣
k2=m2

fj

= 0 , (3.29)

lim
k2→m2

fi

k/+mfi

k2 −m2
fi

R̃e Γ̂ff̄ii (k)ui(k) = ui(k) . (3.30)

The condition R̃e Γ̂AAT (0) = 0 is automatically fulfilled by a Lee identity. Please note that

R̃e only takes the real part of the loop integrals and does not affect the possibly complex
couplings or gamma matrices. The vector boson renormalization constants are obtained as

δm2
Z = R̃e ΠZZ

T (m2
Z) , δm2

W = R̃e ΠWW
T (m2

W ) , (3.31)

δZV V = − R̃e Π̇V V
T (m2

V ) , V = A, Z, W, (3.32)

δZAZ = − 2 R̃eΠAZ
T (m2

Z)

m2
Z

, δZZA =
2 R̃eΠAZ

T (0)

m2
Z

, (3.33)
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with Π̇(m2) =
[
∂
∂k2 Π(k2)

]
k2=m2 . The weak mixing angle sin θW ≡ sW is fixed by the usual

on-shell condition s2
W = 1 − c2W = 1 −m2

W/m
2
Z

δc2W
c2W

=
δm2

W

m2
W

− δm2
Z

m2
Z

,
δs2

W

s2
W

= −c
2
W

s2
W

δc2W
c2W

. (3.34)

The quark mixing matrix is assumed to be diagonal. Therefore no off-diagonal wave func-
tion counter-terms for the SM fermions have to be introduced. Thus we find the fermionic
counter-terms (for simplicity the indices are omitted)

δmf =
1

2
R̃e
[
mf

(
ΠL(m2

f ) + ΠR(m2
f )
)

+ ΠSL(m2
f) + ΠSR(m2

f )
]

(3.35)

δZL = R̃e

[
− ΠL(m2

f ) −m2
f (Π̇

L(m2
f ) + Π̇R(m2

f)) +
1

2mf
(ΠSL(m2

f) − ΠSR(m2
f ))

−mf (Π̇
SL(m2

f) + Π̇SR(m2
f))

]
, (3.36)

δZR = δZL(L↔ R) . (3.37)

3.3 Charge Renormalization

3.3.1 Thomson limit

In the Thomson limit the electric charge is defined by the full electron-positron-photon
vertex at vanishing photon momentum, i.e. for on-shell external particles, and the measured
fine structure constant α = e2/(4π) = 1/137.036. (The renormalization can also be done
for other external charged particles, due to charge universality. It gives the same charge
definition.)
The counter-term δe is defined in such a way that it cancels the complete loop corrections,
the vertex graphs and wave function corrections. In pure QED, the renormalized three-point
function can be written at one-loop level in the form

x

x

M = iεµ(k)ū(p)ΓAψψ̄µ (k, q, p)u(q)

ψ̄(p)

ψ(q)

Aµ(k)

Figure 3.3: QED three-point function

Γ̂Aψψ̄µ = eγµ

(
1 +

δe

e
+

1

2
δZAA + δZf

)
+ eΛAψψ̄

µ = eγµ , (3.38)
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with the charge counter-term δe, the photon and electron/positron wave function corrections
δZAA and δZf , and the vertex corrections ΛAψψ̄

µ . The QED Ward-Takahashi identity for the

three-point vertex function ΓAψψ̄µ (k, q,−q − k) and the two-point function Γψψ̄(q,−q) =

−Γψ̄ψ(q,−q) with vanishing photon momentum is

ΓAψψ̄µ (0, q,−q) = e
∂

∂qµ
Γψψ̄(q,−q) . (3.39)

So the vertex graphs cancel the electron/positron wave-function corrections and we obtain

δe

e
= −1

2
δZAA =

1

2

ΠAA
T (k2)

k2

∣∣∣∣
k2=0

=
1

2

∂ΠAA
T (k2)

∂k2

∣∣∣∣
k2=0

. (3.40)

In the SM and in the MSSM, we have to consider additional loop corrections, including the
γ−Z mixing. An identity similar to the QED Ward identity again relates the vertex graphs
with wave function corrections and we get the counter-term [16]1

δe

e
= −1

2
δZAA +

sW
2cW

δZZA =
1

2

∂ΠAA
T (k2)

∂k2

∣∣∣∣
k2=0

+
sW
cW

ΠAZ
T (0)

m2
Z

. (3.41)

The charge universality, the fact that the on-shell coupling constant of charged particles to
the photon is independent of the species of the charged particles, holds in the SM as well as
in the MSSM. Since the fermionic contributions to the transverse γ − Z mixing cancel at
vanishing photon momentum ΠAZ,ferm

T (0) = 0, we have

δe

e

ferm

= −1

2
δZ ferm

AA =
∑

f

Nf
CQ

2
fe

2

(4π)2

(
B0(0, m

2
f , m

2
f) + 4Ḃ00(0, m

2
f , m

2
f)
)

=
e2

(4π)2

2

3

∑

f

Nf
CQ

2
f

(
∆ + log

Q2

m2
f

)
. (3.42)

The W -contribution to the counter-term is given by

δe

e

W

= − e2

(4π)2

1

6

(
21

(
∆ + log

Q2

m2
W

)
+ 2 r

)
, (3.43)

with r=1/0 in the MS/DR scheme. In the MSSM the additional SUSY contributions are

δe

e

SUSY

=
e2

(4π)2

1

6

[
∑

f̃

2∑

m=1

Nf
C Q

2
f

(
∆ + log

Q2

m2
f̃m

)

+4
2∑

k=1

(
∆ + log

Q2

m2
χ̃+

k

)
+

(
∆ + log

Q2

m2
H+

)]
.

(3.44)

1The sign of the AZ-mixing term depends on the sign of the SU(2) covariant derivative

Dµ = ∂µ + σig2Wµ, which we choose to be σ = +.
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3.3.2 Effective electric charge at high energies

At lower energies, the vacuum polarization effects lead to a partial screening of the electric
charge. Therefore the strength of the electromagnetic interaction grows logarithmically with
the increasing energy scale. So the electric charge in the Thomson limit does not seem to
be a proper input value for the calculation of processes in the GeV or TeV range.
At energies below the Z-pole an effective charge, or fine structure constant, can be defined
by

αeff
QED(Q2) =

α

1 − ∆α(Q2)
, (3.45)

with the finite shift ∆α = ∆αlep + ∆α
(5)
had, the so-called vacuum polarization

∆α(Q2) = 2

(
δe

e
(0) − δe

e
(Q2)

)

QED

= Π′(0) − ReΠ′(Q2) , (3.46)

and Π′(k2) ≡ ΠAA
T (k2)

k2 . Note, that Q2 denotes the squared momentum of the photon. The µ2

scale dependence of Π′(k2) cancels in ∆α(Q2).
In perturbation theory the leading light fermion (mf ≪ Q) contribution is given by

∆α(Q2) =
α

3π

∑

f

Q2
fN

f
C

[
−8

3
+ β2

f −
1

2
βf (3 − β2

f) log(
1 − βf
1 + βf

)

]

=
α

3π

∑

f

Q2
fN

f
C

[
log(Q2/m2

f ) −
5

3
+ O(m2

f/Q
2)

]
, (3.47)

where βf =
√

1 − 4m2
f/Q

2.

The leptonic contribution can be treated perturbatively. It is known up to three loops and
takes at the Z-mass the value

∆αlep(m
2
Z) ≃ 0.031497687 . (3.48)

The corresponding quark loop contribution is substantially modified by low energy strong
interaction effects and the result obtained in perturbation theory is not reliable. Fortunately,
the hadronic contribution for the light quarks ∆α

(5)
had can be calculated from hadronic e+e−-

annihilation data by using the dispersion relation

ReΠ′(Q2) − Π′(0) =
Q2

π
Re

∫ ∞

s0

ds
ImΠ′(s)

s(s−Q2 − iε)
(3.49)

and the optical theorem

ImΠ′(s) =
s

e2
σtot(e

+e− → γ∗ → hadrons)(s) . (3.50)

Recent compilations yield the values ∆α
(5)
had(m

2
Z) = 0.02761 ± 0.00036 [22], ∆α

(5)
had(m

2
Z) =

0.02769 ± 0.00035 [23], ∆α
(5)
had(m

2
Z) = 0.02755 ± 0.00023 [24].
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In an energy range near or above Q2 = m2
Z also the W contributes to the vacuum polariza-

tion. This leads to a gauge dependent result, since a single self-energy is not a measurable
quantity. A more physical definition could be the complete electron form-factor, but far off-
shell, i.e. at high energies, this is also not accessible by experiment. A measurable quantity
is a cross-section, including all self-energy, vertex and box graphs. A more formal definition
is the electric charge in the MS (or DR) scheme. However this is not physical. For exam-
ple, while contributions of heavy particles decouple from physics at low energies, MS (or
DR) parameters can get large contributions of the form log(Q2/Mheavy) with Q2 ≪Mheavy.
However, it is possible to “define” a parameter, where only particles with masses below a
certain scale M2 ≤ Q2 contribute. On the other hand, it is obvious that such a definition
can lead again to problems in the context of gauge invariance, if only the light members of
a gauge group multiplet are taken into account.

3.3.3 Effective renormalization schemes for α at Q = mZ

The discussion in the last chapter shows that the pure on-shell renomalization eq.(3.41)
gives two main problems. At first, the charge in the Thomson limit is far away from the
scale of the corresponding process, which results in a large uncertainty due to higher order
corrections. The second uncertainty comes from the large hadronic contributions, which
cannot be reliably calculated in perturbation theory. So the definition of an effective charge
seems to be necessary [25].
In the αeff

QED(m2
Z) scheme, we use as input the effective QED charge at Q2 = m2

Z

αeff
QED(m2

Z) =
α

1 − ∆α
=

α

1 − ∆αlep − ∆α
(5)
had

≃ 1

128.9
. (3.51)

The corresponding counter-term can be simply calculated:

α̂(Q2) = α + δαOS(Q
2) = α+ δαOS(Q

2) + α
(
ReΠ′(m2

Z) − Π′(0) + ∆α(m2
Z)
)

=
α

1 − ∆α(m2
Z)

+ δαOS(Q
2) + α

(
ReΠ′(m2

Z) − Π′(0)
)
(3.52)

α̂(Q2) denotes the DR parameter at the scale Q2 and δαOS(Q
2) is given by the UV finite

part of eq.(3.41) in the DR scheme, both at one-loop order.
Since ∆α and Π′(k2) contain only the leptonic and the light quark contributions, the resum-
mation in the last line takes higher orders correctly into account and does not spoil gauge
invariance. The inclusion of ∆α in the tree-level definition leads to smaller one-loop correc-
tions. The uncertainty in the hadronic contributions is cancelled in δαOS(Q

2) − αΠ′(0).
In the αMS(m

2
Z) scheme the value of the MS parameter in the SM is used: αMS(m

2
Z) ≃

1/127.9. It is evaluated together with mZ , ΓZ and sin(θW )MS(m
2
Z) from a global fit of

e+e− → ff data at the Z pole. The counter-term is defined by

α̂(Q2) = α+ δαOS(Q
2) = α + δαOS(Q

2) − δαMS(m
2
Z) + α∆αMS(m

2
Z)

=
α

1 − ∆αMS(m
2
Z)

+ δαOS(Q
2) − δαMS(m

2
Z) . (3.53)
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In this definition, the counter-term δαMS(m
2
Z) contains the full SM contributions in the MS

scheme, i.e. eqs. (3.42) to (3.44) at Q2 = m2
Z and r = 1. Please note, that ∆α(m2

Z) and
∆αMS(m

2
Z) are not the same [26, 27], but

∆αMS(m
2
Z) − ∆α(m2

Z) =
α

π

(
5

3
+

55

27
(1 +

αs
π

)

)
− 8α

9π
log

mt

mZ
+

α

2π
(
7

2
log c2W − 1

3
) . (3.54)

The first term are the leading fermionic contributions in O(α) and O(ααs) of the difference
between the scale independent

(
Π′(0) − ReΠ′(m2

Z)
)

and the self-energy Π′(0) at the scale
Q2 = m2

Z . The O(α) term can be easily seen from eqs.(3.42) and (3.47). The second and
third term are the remaining SM top and W contributions. As discussed in the last chapter,
also an effective parameter can be defined, where δαeff

MS
(m2

Z) includes only the contributions

of light fermions [28]. The effective fine structure constant αeff
MS

(m2
Z) is then

∆αeff
MS

(m2
Z) − ∆α(m2

Z) =
α

π

(
5

3
+

55

27
(1 +

αs
π

)

)
,

αeff
MS

(m2
Z) =

α

1 − ∆αeff
MS

(m2
Z)

≃ 1

127.7
, (3.55)

and the corresponding counter-term is given by

δe

e
=

1

(4π)2

e2

6

[
4
∑

f

Nf
C e

2
f

(
∆ + log

Q2

x2
f

)
+
∑

f̃

2∑

m=1

Nf
C e

2
f

(
∆ + log

Q2

m2
f̃m

)

+4

2∑

k=1

(
∆ + log

Q2

m2
χ̃+

k

)
+

(
∆ + log

Q2

m2
H+

)
− 21

(
∆ + log

Q2

m2
W

)]
,

(3.56)

with xf = mZ ∀ mf < mZ and xt = mt. N
f
C is the colour factor, Nf

C = 1, 3 for (s)leptons
and (s)quarks, respectively.

3.3.4 The fine-structure constant in the GF scheme

In the so-called GF scheme we use as input the Fermi constant GF = 1.16637 ∗ 10−5 GeV−2,
which is defined by the muon life time

1

τµ
=

G2
Fm

5
µ

192π3
F

(
m2
e

m2
µ

)(
1 +

3m2
µ

5m2
W

)
(1 + ∆QED) , (3.57)

with F (x) = 1 − 8x − 12x2 log x + 8x3 − x4. By convention, the QED corrections within
the Fermi Model ∆QED are included in this defining equation for GF . Calculating the muon
decay process in the SM (or its extensions) yields the following relation between the Fermi
and the fine-structure constant

GF =
πα√

2s2
Wm

2
W

(1 + ∆r) , (3.58)
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where ∆r contains the remaining radiative corrections. At one-loop level the result for ∆r
can be decomposed in the form

∆r ≡ ∆α− c2W
s2
W

∆ρ+ ∆rrem , (3.59)

with the two dominant contributions ∆α and ∆ρ. ∆α is again the vacuum polarization, and

∆ρ = Re

(
ΠZZ
T (0)

m2
Z

− ΠWW
T (0)

m2
W

)
, (3.60)

which is finite and sensitive to the mZ−mW mass relation. The remainder ∆rrem is typically
of the order of ∼ 0.01.
We can define an effective charge

αF =

√
2s2

Wm
2
W

π
GF ≃ 1

132.5
(3.61)

and include ∆r in the corresponding counter-term of α

α̂(Q2) = α + δαOS(Q
2) = αF + δαOS(Q

2) − αF∆r . (3.62)

Again the uncertainty ∆α in both terms, ∆r and δαOS(Q
2), cancel each other. Note, that

we have used a resummation for ∆r in the last equation. However, this does not correctly
resum the leading contributions ∆α and ∆ρ beyond O(α). A correct resummation up to
O(α2), see ref. [29], can be done by replacing ∆r in eq. (3.62) with

∆rres = 1 − 1 − ∆α

1 + ∆rrem

s2
W + c2W∆ρ

s2
W

. (3.63)

The counter-term for the electric charge in the GF scheme has the form

δe

e
= −1

2
δZAA +

sW
2cW

δZZA − 1

2
∆r . (3.64)

3.4 Higgs sector

In the MSSM two complex Higgs doublets H1 and H2 are required, so the renormalization
is more involved than in the SM. A detailed one-loop renormalization of the MSSM Higgs
sector can be found e.g. in [30, 31]. In this thesis, we restrict the discussion to the case of
tan β. The renormalization of the ratio of the vacuum expectation values is by no means
trivial [32]. In a definition by a specific physical process technical difficulties are introduced.
A process independent renormalization on the other hand leads to gauge dependence and/or
numerical instabilities. A convenient choice, is the condition, that the pseudo-scalar Higgs
field A0 does not mix with the Z vector boson for on-shell momenta. Thus it appears that the
renormalized A0Z mixing self-energy ΠA0Z , defined in Fig. 3.4, has to vanish for p2 = m2

A0 .

Im
[
R̃e Π̂A0Z(m2

A0)
]

= 0 . (3.65)
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x

x
kµ

A0 Zµ M = −ikµΠA0Z(k2)ε∗µ(k)

Figure 3.4: A0Z mixing self-energy

From this constraint a condition for the renormalization of tanβ can be obtained

δ tanβ

tanβ
=

1

mZ sin 2β
Im
[
R̃e ΠA0Z(m2

A0)
]
. (3.66)

Unfortunately, the result is gauge dependent and can lead to big corrections for large tanβ.
It can be improved by taking only the divergent part of the A0Z self energy, which makes
it numerically more stable and in the class of Rξ gauges ξ independent at one-loop level.
We call the first scale independent definition “on-shell” in contrast to the second “DR
renormalization” at a certain scale Q. Both definitions and the translation between them
are used in this thesis.

3.5 Neutralinos and charginos

The on-shell renormalization of the chargino, neutralino and sfermion sector is definitly more
complicated than in the SM sector2. First of all, the mixing between the different particles
has to be taken into account in contrast to the SM fermion sector, where the entries of the
CKM matrix are such small, that they are negligible for our purposes. However, an on-shell
renormalization for the CKM matrix is well-known [34] and a similar approach can be used
for the χ̃±, χ̃0 mixing matrices U , V , and N .
The second problem is more subtle. In the (on-shell renormalized) SM, the masses of the
particles are free and independent parameters of the theory. Contrary, in the SUSY sector of
the MSSM the masses of the charginos, neutralino and sfermions depend on a limited set of
SUSY-breaking parameters. As a consequence, the masses are not independent quantities,
but relations between them occur (even at tree-level). In the neutralino-chargino system,
there are only the free parametersM ′,M , and µ that are not already fixed in the SM or Higgs
sector of the model. One possible way of renormalization is to define on-shell conditions for
only three of the six neutralino-chargino masses. As a consequence, the other four particles
receive loop corrections to the on-shell masses, see e.g.[35]. However, such an approach seems
to be problematic for our purpose, the calculation of observables to neutralino and chargino
pair production. For example, choosing any three of the six masses is “undemocratic” and
the numerical stability strongly depends on the gaugino-/higgsino-character of the three
fixed on-shell masses.
The on-shell renormalization procedure used in this thesis, has been worked out in [36]. In
addition, the formulas given here are also valid for the general MSSM with complex phases.

2For calculations of the one-loop corrections to the neutralino/chargino masses in the DR scheme, we

refer to [33]
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After rotation from the interaction to the mass eigenstate basis, we nevertheless apply the
on-shell conditions eq. (3.29, 3.30) for all six neutralinos/charginos, respectively. Hence, the
introduced wave function and mass counter-terms are

χ̃i → (δij + 1
2
δZ̃L

ijPL + 1
2
δZ̃R

ijPR)χ̃j , mχ̃i
→ mχ̃i

+ δmχ̃i
, (3.67)

where χ̃ stands for both, charginos or neutralinos. These counter-terms are related to the
corresponding self-energies by

δmχ̃i
=

1

2
R̃e
[
mχ̃i

(
ΠL
ii(m

2
χ̃i

) + ΠR
ii(m

2
χ̃i

)
)

+ ΠSL
ii (m2

χ̃i
) + ΠSR

ii (m2
χ̃i

)
]
, (3.68)

δZ̃L
ii = R̃e

[
− ΠL

ii(m
2
χ̃i

) −m2
χ̃i

(Π̇L
ii(m

2
χ̃i

) + Π̇R
ii(m

2
χ̃i

)) +
1

2mχ̃i

(ΠSL
ii (m2

χ̃i
) − ΠSR

ii (m2
χ̃i

))

−mχ̃i
(Π̇SL

ii (m2
χ̃i

) + Π̇SR
ii (m2

χ̃i
))

]
, (3.69)

δZ̃L
ij = cij R̃e

[
m2
χ̃j

ΠL
ij(m

2
χ̃j

) +mχ̃i
mχ̃j

ΠR
ij(m

2
χ̃j

) +mχ̃i
ΠSL
ij (m2

χ̃j
) +mχ̃j

ΠSR
ij (m2

χ̃j
)
]
,

(3.70)

δZ̃R
ii = δZ̃L

ii(L↔ R) , δZ̃R
ij = δZ̃L

ij(L↔ R) , cij = 2/(m2
χ̃i
−m2

χ̃j
) , (3.71)

with δZ̃ ≡ δZ̃±/δZ̃0 and Πii(k
2) the chargino/neutralino self-energies, respectively. The

renormalization constants have the same structure as for the SM fermions, besides the
mixing counter-terms δZ̃

L/R
ij for i 6= j that have been neglected in the SM case. Special care

has to be taken in the chargino sector. In principal, there are two possible ways to build
the chargino Dirac states from the corresponding Weyl spinors and both are used in the
literature. One in which the positively charged chargino is the “particle” and the negatively
is the charge conjugated anti-particle (χ̃+, χ̃+,c) or vice versa (χ̃−, χ̃−,c). The renormalization
is always done for the “particle”, see for example eqs. (3.29, 3.30), and the counter-terms for
the anti-particle are automatically delivered. So, the renormalization constants are oblique
to this definition. To express the difference, we use δZ̃+ for the (χ̃+, χ̃+,c) case and δZ̃− for
(χ̃−, χ̃−,c). The translation from one to the other is just given by a charge conjugation

δZ̃−,L
ik = (δZ̃+,R

ik )∗ , (δZ̃−,R
ik )∗ = δZ̃+,L

ik . (3.72)

In a next step we have to define the neutralino and chargino rotation matrices at one-loop
level. Unless experimental data is available, a process and scale independent fixing seems
appropriate for an on-shell renormalization. We define the counter-terms in such a way
that they cancel the rotation, induced by the anti-hermitian parts of the off-diagonal wave
function corrections

δNij =
1

4

4∑

k=1

(
δZ̃0,L

ik − δZ̃0,R
ki

)
Nkj , (3.73)

δUij =
1

4

2∑

k=1

(
(δZ̃+,R

ik )∗ − δZ̃+,R
ki

)
Ukj , δVij =

1

4

2∑

k=1

(
δZ̃+,L

ik − (δZ̃+,L
ki )∗

)
Vkj . (3.74)
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These counter-terms have indeed the correct UV-divergence, which can be checked by com-
paring the renormalization before rotation in mass eigenstates (where no explicit renormal-
ization constants for the rotation matrices are introduced) with our proposed renormaliza-
tion after rotation [37]. As mentioned above, this fixing is similar to the one for the CKM
matrix. Further, it is shown in [38] that this fixing eqs. (3.73) and (3.74), calculated within
the Feynman-’t Hooft gauge, can be regarded as a gauge independent one.
The renormalization of the gauge eigenstate fields can be expressed in the following form:

(
ψ+
j

ψ̄−
j

)
→

2∑

k=1

[
(V ∗

ij + δV ∗
ij + 1

2
V ∗
kjδZ̃

+,L
ki )PL + (Uij + δUij + 1

2
UkjδZ̃

+,R
ki )PR

]
χ̃+
i (3.75)

(
ψ0
j

ψ̄0
j

)
→

4∑

k=1

[
(N∗

ij + δN∗
ij + 1

2
N∗
kjδZ̃

0,L
ki )PL + (Nij + δNij + 1

2
NkjδZ̃

0,R
ki )PR

]
χ̃0
i (3.76)

This shows, that in principle the counter-terms to the rotation matrices can be absorbed
into redefined wave-function corrections. Inserting the fixing eqs. (3.73, 3.74) yields

(
ψ+
j

ψ̄−
j

)
→

2∑

k=1

[(
V ∗
ij + 1

4
V ∗
kj

(
δZ̃+,L

ki + (δZ̃+,L
ik )∗

))
PL+ (3.77)

(
Uij + 1

4
Ukj

(
δZ̃+,R

ki + (δZ̃+,R
ik )∗

))
PR

]
χ̃+
i ,

(
ψ0
j

ψ̄0
j

)
→

4∑

k=1

[(
N∗
ij + 1

4
N∗
kj

(
δZ̃0,L

ki + (δZ̃0,L
ik )∗

))
PL+ (3.78)

(
Nij + 1

4
Nkj

(
δZ̃0,R

ki + (δZ̃0,R
ik )∗

))
PR

]
χ̃0
i .

As one can see, the same result can be obtained by a redefinition of the wave-function
corrections in a symmetric (hermitian) way

δZ̃
+,L/R
ki → 1

2

(
δZ̃

+,L/R
ki + (δZ̃

+,L/R
ik )∗

)
, δZ̃

0,L/R
ki → 1

2

(
δZ̃

0,L/R
ki + (δZ̃

0,L/R
ik )∗

)
, (3.79)

and setting δNij = δUij = δVij = 0.
From the counter-terms for the on-shell masses and the rotation matrices, the counter-terms
for the mass matrix elements can be directly deduced

δYij = δ
(
NT YDN

)
ij

= δNni (YD)nlNlj +Nni δ(YD)nlNlj +Nni (YD)nl δNlj , (3.80)

δXij = δ
(
UT XD V

)
ij

= δUni (XD)nl Vlj + Uni δ(XD)nl Vlj + Uni (XD)nl δVlj . (3.81)

The diagonalized mass matrices and its corresponding counter-terms are

(YD)nl = δnlmχ̃0
l
, δ(YD)nl = δnlδmχ̃0

l
, (XD)nl = δnlmχ̃±

l
, δ(XD)nl = δnlδmχ̃±

l
. (3.82)
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Inserting the self-energies into the renormalization constants, we obtain

δYij =
1

2

4∑

l,n=1

NniNlj R̃e
[
mχ̃0

n
ΠL
nl(m

2
χ̃0

n
) +mχ̃0

l
ΠR
nl(m

2
χ̃0

l
) + ΠSL

nl (m2
χ̃0

l
) + ΠSL

nl (m2
χ̃0

n
)
]
,

(3.83)

δXij =
1

2

2∑

l,n=1

UniVlj R̃e
[
mχ̃±

n
ΠL
nl(m

2
χ̃±

n
) +mχ̃±

l
ΠR
nl(m

2
χ̃±

l
) + ΠSL

nl (m2
χ̃±

l
) + ΠSL

nl (m2
χ̃±

n
)
]
.

(3.84)

Due to the fact that we applied the on-shell conditions to all six neutralino/chargino masses,
although they are not independent quantities, we have to include additional corrections.
Let us consider the “bare” mass matrices X0, and Y 0 for the charginos and neutralinos,
respectively. We can express them, on the one hand, by a tree-level mass matrix in terms of
the on-shell parameters plus the corresponding counter-terms

Y 0 = Ytree + δcY , X0 = Xtree + δcX . (3.85)

where δcY means the renormalization constants to the parameters in the tree-level mass
matrix. On the other hand it can be expressed as the on-shell mass matrix, which gives the
correct one-loop on-shell masses after diagonalization, plus the renormalization constants
eqs. (3.83, 3.84)

Y 0 = Y + δY , X0 = X + δX , (3.86)

Eliminating the bare matrices we obtain

Y = Ytree + (δcY − δY ) = Ytree + ∆Y , X = Xtree + (δcX − δX) = Xtree + ∆X , (3.87)

Since we have only a limited set of free parameters in the mass matrices, the on-shell masses
cannot be expressed by tree-level relations between the input parameters. Therefore, the
counter-terms cannot be defined in such a way that all entries in the UV-finite shifts ∆Y ,
∆X cancel.
In the on-shell scheme, one starts with the mass matrices Ytree, Xtree. So it is mandatory
to include the UV-finite shifts already at tree-level if one wants to work out the one-loop
contributions in a consistent way.
For a better understanding, we consider the case of the gaugino mass parameter M . The
bare parameter M0 appears in the neutralino mass matrix as element Y22 and also in the
chargino mass matrix in element X11 The corresponding on-shell and bare parameters M
and M0 are related by the counter-term δM

M0 = M + δM . (3.88)

While the bare parameter is unique, the on-shell value depends on the UV-divergent part of
the counter-term. So the fixing of the counter-term can be regarded as the definition of the
on-shell Lagrangian parameter. Different renormalization schemes lead to different counter-
terms to the Lagrangian parameters and thus to different “meanings” of this parameters.
Therefore it is obvious that M cannot be defined by the counter-term δY22 to the neutralino
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mass matrix and simultaneously by the chargino mass matrix counter-term δX11. The same
holds for µ and the parameters already fixed in the gauge and Higgs sector.
Therefore, we define M and µ to be the parameters in the chargino mass matrix

M ≡ X11 ↔ δM ≡ δX11 , µ ≡ X22 ↔ δµ ≡ δX22 (3.89)

throughout the calculation. Within our approach, it is quite natural to define the U(1)Y
gaugino mass parameter M ′ according to

M ′ ≡ Y11 ↔ δM ′ ≡ δY11 . (3.90)

For all other mass matrix elements finite shifts have to be taken into account, e.g.:

M0 = Y22 + δY22 = X11 + δX11 → Y22 = X11 + (δX11 − δY11) = M + ∆M, (3.91)

µ0 = −(Y34 + δY34) = X22 + δX22 → Y34 = −X22 − (δX22 + δY34) = µ+ ∆µ. (3.92)

For completeness, we give a list of all corrections to the neutralino/chargino mass matrix
elements. The variation of the mass matrix in terms of the tree-level values is given by

δcY11 = δM ′ =
δM ′

M ′ Y11, (3.93)

δcY12 = δcY33 = δcY44 = 0, (3.94)

δcY13 = −δ(mZ sin θW cosβ) =

(
δmZ

mZ
+
δ sin θW
sin θW

− sin2 β
δ tanβ

tan β

)
Y13, (3.95)

δcY14 = δ(mZ sin θW sin β) =

(
δmZ

mZ
+
δ sin θW
sin θW

+ cos2 β
δ tanβ

tanβ

)
Y14, (3.96)

δcY22 = δM =
δM

M
Y22, (3.97)

δcY23 = δ(mZ cos θW cos β) =

(
δmZ

mZ

− tan2 θW
δ sin θW
sin θW

− sin2 β
δ tanβ

tanβ

)
Y23, (3.98)

δcY24 = −δ(mZ cos θW sin β) =

(
δmZ

mZ
− tan2 θW

δ sin θW
sin θW

+ cos2 β
δ tanβ

tanβ

)
Y24,(3.99)

δcY34 = −δµ =
δµ

µ
Y34, (3.100)

and

δcX11 = δM =
δM

M
X11, (3.101)

δcX12 =
√

2(δmW sin β +mW δ sin β) =

(
δmW

mW
+ cos2 β

δ tanβ

tan β

)
X12, (3.102)

δcX21 =
√

2(δmW cosβ +mW δ cosβ) =

(
δmW

mW
− sin2 β

δ tan β

tan β

)
X21, (3.103)

δcX22 = δµ =
δµ

µ
X22. (3.104)
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The UV-finite shifts are therefore

∆Y11 = 0 , (3.105)

∆Y12 = −δY12 , (3.106)

∆Y13 =

(
δmZ

mZ
+
δ sin θW
sin θW

− sin2 β
δ tan β

tan β

)
Y13 − δY13 , (3.107)

∆Y14 =

(
δmZ

mZ

+
δ sin θW
sin θW

+ cos2 β
δ tan β

tan β

)
Y14 − δY14 , (3.108)

∆Y22 = δX11 − δY22 , (3.109)

∆Y23 =

(
δmZ

mZ
− tan2 θW

δ sin θW
sin θW

− sin2 β
δ tan β

tanβ

)
Y23 − δY23 , (3.110)

∆Y24 =

(
δmZ

mZ
− tan2 θW

δ sin θW
sin θW

+ cos2 β
δ tanβ

tanβ

)
Y24 − δY24 , (3.111)

∆Y33 = −δY33 , (3.112)

∆Y34 = −δX22 − δY34 , (3.113)

∆Y44 = −δY44 , (3.114)

and for the chargino mass matrix

∆X11 = 0 , (3.115)

∆X12 =

(
δmW

mW
+ cos2 β

δ tanβ

tan β

)
X12 − δX12 , (3.116)

∆X21 =

(
δmW

mW
− sin2 β

δ tanβ

tan β

)
X21 − δX21 , (3.117)

∆X22 = 0 . (3.118)

If we assume a GUT relation of the form M ′ = c tan2 θW M (c = 5
3

in SU(5) and c = 11 in

anomalously mediated SUSY-breaking models) for the DR parameters, the shift ∆Y11 is no
longer zero, but

∆Y11 =

(
2

cos2 θW

δ sin θW
sin θW

+
δM

M

)
Y11 − δY11. (3.119)

Please note, that the UV finiteness of these shifts is a nontrivial check of this method. The so
obtained one-loop corrected mass matrices give after diagonalization the one-loop on-shell
neutralino and chargino masses. The corresponding rotation matrices have the appropriate
values for the counter-terms eqs. (3.73) and (3.74). Note that in the presence of complex
mass parameters this renormalization automatically includes the one-loop definition of CP
violating phases.
For illustration Fig. 3.5 depicts numerical values for the corrections ∆M and ∆µ given as a
function of M and µ and a fixed set for the other parameters. For ∆M the corrections are
in the range of ∆M = −0.2 GeV (white) and ∆M = +0.6 GeV (black). The corrections
∆µ are between ∆µ = −0.4 GeV (white) and ∆µ = +0.5 GeV (dark grey). The difference
between two lines are 0.1 GeV.
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Figure 3.5: The corrections ∆M and ∆µ as a function of M and µ (fixed in the chargino
sector) with the parameters {mA0 , tan β, MQ̃1

, MQ̃, A} = {500, 7, 300, 300, -500} GeV. M ′

fulfills the SU(5) GUT relation.

3.6 Sfermion sector

The on-shell renormalization applied to the fermionic SUSY particles can be naturally ex-
tended to the scalar sfermion sector. We consider the case, where the mixing between gen-
erations is neglected but the chiral L-R mixing is in general allowed. Therefore we introduce
for the two superpartners of a fermion f the wave-function and mass counter-terms in the
form

f̃i → (δij + 1
2
δZ f̃

ij)f̃j , m2
f̃i
→ m2

f̃i
+ δm2

f̃i
, for f̃ = t̃, b̃, τ̃ , . . . (3.120)

The on-shell renormalization conditions for the scalar two-point functions are

R̃e Γ̂ij(k
2)
∣∣∣
k2=m2

f̃j

= 0 , lim
k2→m2

f̃i

1

k2 −m2
f̃i

R̃e Γ̂ii(k
2) = 1 . (3.121)

Then the counter-terms we receive are

x

x

f̃j f̃i
M = iΓf̃ f̃ij

Γf̃ f̃ij = δij(k
2 −m2

f̃i
) + Πf̃

ij(k
2)

Figure 3.6: Two-point functions for sfermions

δm2
f̃i

= R̃e Πf̃
ii(m

2
f̃i

) , (3.122)

δZ f̃
ij =

2

m2
f̃i
−m2

f̃j

R̃eΠf̃
ij(m

2
f̃j

) , δZ f̃
ii = −R̃eΠ̇f̃

ii(m
2
f̃i
) . (3.123)
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The renormalization constant of the mixing matrix Rf̃ is fixed analogously to the neu-
tralino/chargino sector to cancel the anti-hermitian part of the wave-function corrections

δRf̃
ij =

2∑

k=1

1

4
(δZ f̃

ik − (δZ f̃
ki)

∗)Rf̃
kj or δRf̃ =

1

4
(δZf̃ − (δZf̃ )†)Rf̃ . (3.124)

In the next step, we consider the renormalization of the sfermion mass matrix. The counter-
term δ(M2

f̃
)ij to the on-shell sfermion mass matrix is obtained by

δ(M2
f̃
)ij = δRf̃†

(
m2
f̃1

0

0 m2
f̃2

)
Rf̃ + Rf̃†

(
δm2

f̃1
0

0 δm2
f̃2

)
Rf̃ + Rf̃†

(
m2
f̃1

0

0 m2
f̃2

)
δRf̃ .

(3.125)

Expressed in terms of sfermion self-energies it gives

δ(M2
f̃
)ij =

1

2

2∑

l, n=1

(Rf̃
ni)

∗Rf̃
lj R̃e

[
Πf̃
nl(m

2
f̃n

) + Πf̃
nl(m

2
f̃l
)
]
. (3.126)

We again introduce the variation to the parameters in the tree-level mass matrix

δc(M2
f̃
)11 = δM2

Q̃,L̃
+ 2mfδmf + δm2

Z cos 2β
(
I3L
f − ef sin2 θW

)

+m2
Z

(
δcos 2β

(
I3L
f − ef sin2 θW

)
− cos 2β ef δsin

2 θW
)
, (3.127)

δc(M2
f̃
)12 = δ(MLR

f̃
)∗mf + (MLR

f̃
)∗ δmf , (3.128)

δc(M2
f̃
)21 = δMLR

f̃
mf +MLR

f̃
δmf , (3.129)

δc(M2
f̃
)22 = δM2

Ũ ,D̃,Ẽ
+ 2mfδmf + δm2

Z cos 2β ef sin2 θW

+m2
Z δcos 2β ef sin2 θW +m2

Z cos 2β ef δsin
2 θW , (3.130)

with

δMLR
f̃

=

{
δAu − δµ∗ cot β − µ∗ δcot β for u-type sfermions

δAd − δµ∗ tanβ − µ∗ δtan β for d-type sfermions
(3.131)

The UV finite shifts between the tree-level and the on-shell mass-matrix have the form

∆ (M2
f̃
)ij = δc(M2

f̃
)ij − δ(M2

f̃
)ij . (3.132)

We fix the renormalization constants to the free parameters in the sfermion mass matrix in
such a way, that they absorb all one-loop corrections stemming from other parameters in
the same mass matrix entry. As a consequence the UV-finite shifts vanishes. Therefore we
receive the following counter-terms for the trilinear coupling Af

mfδAf =

{
δ(M2

ũ)21 − au δmu +muδµ
∗ cot β +muµ

∗ δcotβ for u-type sfermions

δ(M2
d̃
)21 − ad δmd +mdδµ

∗ tan β +mdµ
∗ δtanβ for d-type sfermions

(3.133)
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We fix Af in the 21-element of the mass matrix but also the corrections in the 12-element
vanish due to the hermiticity of ∆M2

f̃
.

The soft SUSY-breaking parametersMŨ ,D̃,Ẽ are independent for up and down-type sfermions
and can therefore be renormalized independently

δM2
Ũ ,D̃,Ẽ

= δ(M2
f̃
)22 − 2mfδmf − δm2

Z cos 2β ef sin2 θW

−m2
Z δcos 2β ef sin2 θW −m2

Z cos 2β ef δsin
2 θW . (3.134)

Only in the 11-element a UV-finite shift has to be considered. In fact there is only one
parameter MQ̃,L̃ for up and down-type sfermions. We define the on–shell parameter in the
down-type sfermion sector

δM2
Q̃,L̃

= δ(M2
b̃
)11 − 2mdδmd − δm2

Z cos 2β
(
I3L
d − ed sin2 θW

)

−m2
Z

(
δcos 2β

(
I3L
d − ed sin2 θW

)
− cos 2β ed δsin

2 θW
)

(3.135)

and obtain a shift in the 11-element of the up-type sfermion mass matrix

∆(M2
ũ)11 ≡ ∆M2

Q̃,L̃
= (M2

Q̃,L̃
)t̃ − (M2

Q̃,L̃
)b̃ (3.136)

of the form

∆M2
Q̃,L̃

= δM2
Q̃,L̃

+ 2muδmu + δm2
Z cos 2β

(
I3L
u − eu sin2 θW

)

+m2
Z

(
δcos 2β

(
I3L
u − eu sin2 θW

)
− cos 2β eu δsin

2 θW
)
− δ(M2

t̃ )11 . (3.137)

In the most general case, the given formulas can be applied to the (third generation) squark
renormalization. Two simplifications can be done in the slepton/sneutrino sector. First,
there are no sneutrino parameters Au and MŨ and there is only one sneutrino per fermion
generation. Fixing ML̃ in the down–type slepton mass matrix we only get mass corrections
for the sneutrino. If we would fix ML̃ in the sneutrino sector, the sneutrino mass is un-
changed, but both selectron masses and the rotation angle receive corrections. This is one
reason why we fix MQ̃,L̃ in the down–sfermion sector. Second, we can neglect the left-right
mixing for the first generation sleptons, i.e.: ẽL, ẽR and no counter-terms for the mixing
matrix is needed. In consistency with the general case, we fix ML̃1

and MẼ1
in such a way,

that the selectron masses do not obtain one-loop corrections

δM2
L̃1

= δm2
ẽL

+ δ
(
m2
Z cos 2β

(
1
2
− sin2 θW

) )
, (3.138)

δM2
Ẽ1

= δm2
ẽR

+ δ
(
m2
Z cos 2β sin2 θW

)
. (3.139)

Due to a finite shift in ML̃1
, the sneutrino mass obtains the one-loop correction

∆m2
ν̃e

= ∆M2
L̃

= δM2
L̃1

+
1

2
δ
(
m2
Z cos 2β

)
− δm2

ν̃e
. (3.140)



Chapter 4

Structure function formalism in QED

4.1 Mass singularities

Besides the UV-divergences for infinite momenta, that are controlled by the renormalization
procedure as discussed in the last chapter, also singularities for finite momenta appear in
Feynman integrals. Two types of these so-called Landau singularities, the mass singulari-
ties, arise due to vanishing masses. The infrared divergences are connected with vanishing
momenta, the collinear singularities with light-like collinear momenta. Such soft or collinear
singularities appear not only in loop diagrams with virtual soft or collinear massless parti-
cles, but also for real emission of these particles, integrating the phase-space over the soft
or collinear region. In properly defined observables the sum of virtual and real contributions
cancel soft as well as collinear divergences and a physically meaningful result can be ob-
tained.
For our purposes, we have to consider soft singularities in the case where soft virtual photons
are attached to on-shell particles in the tree-level diagrams. In particular, photons attached
to the incoming or outgoing particles, since we do not have to deal with resonances. These
singularities can only be avoided by inclusion of at least the soft part of real photon radia-
tion. The calculation of these corrections is further discussed in chapter 5.3.1.
In QED (or possible extensions, the SM or MSSM), where massless photons are radiated
off from electrons, the masses of the particles act as natural cut-offs and no collinear sin-
gularities arise. Nevertheless, large logarithms of the form log(Q2/m2

e) appear, reflecting
the collinear singularity for me → 0. This can lead to sizeable corrections proportional to
αn logm(Q2/m2

e), order by order in perturbation theory. For high precision experiments it is
necessary to control these corrections beyond order α. Methods were developed to improve
(full one-loop) calculations with such contributions. The QED logarithms can be calculated
in a process-independent way within the so-called structure-function formalism [39, 40]. This
topic will be discussed in the following sections.

4.2 Mass factorization theorem

The structure-function formalism is based on the mass factorization theorem. In the fol-
lowing we concentrate on electron-positron collisions going into two “heavy” particles and

31
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possibly additional undetected “light” particles, i.e. photons or/and electron-positron pairs.
e(p1)e(p2) → X(q1,M1) + Y (q2,M2) (+Z)1. We can define the following kinematical invari-
ants (neglecting the electron mass):

s = (p1 + p2)
2 = 2p1p2, tij = (pi − qj)

2 −M2
j = −2piqj , with i, j = {1, 2} . (4.1)

The reduced kinematical variables, after an arbitrary number of undetected particles have
been emitted by the incoming ee beam, are:

ŝ = (p̂1 + p̂2)
2 = 2p̂1p̂2, t̂ij = (p̂i − q̂j)

2 −M2
j = −2p̂iq̂j , with i, j = {1, 2} (4.2)

We define the fraction of energy carried away by collinear photons as (1 − xi). So, we get
the simple relations:

p̂i = xi pi, q̂i = qi, ŝ = x1x2 s, t̂ij = xi tij (4.3)

The mass factorization theorem links the mass finite hard scattering cross-section σ̂ij→X Y

e, p1

e, p2

i, p̂1

j, p̂2

Γie

Γje

X, q1

Y, q2

σ̂ij

Figure 4.1: Mass Factorization Theorem

with the mass singular cross-section σee→X Y+Z , see Fig. (4.1):

s4 d4σee→X Y+Z

dt11 dt12 dt21 dt22
=

∫ 1

0

dx1

x2
1

∫ 1

0

dx2

x2
2

Γie(x1, Q
2)Γje(x2, Q

2) ŝ4 d4σ̂ij→X Y

dt̂11 dt̂12 dt̂21 dt̂22
(Q2) (4.4)

Eq. (4.4) is the most general form and allows the implementation of cuts on the energies
and angles of the produced particles. Other distributions, or also the total cross-section can
be obtained using Jacobian-determinants. Inserting the relations eq. (4.3), we get the simple
form:

dσ =

∫ 1

0

dx1

∫ 1

0

dx2 Γie(x1, Q
2)Γje(x2, Q

2) dσ̂ij(Q
2) (4.5)

1In this chapter we use for simplicity the writing e for electrons and e for positrons.



4.2 Mass factorization theorem 33

All large logarithms on the right hand side are contained in the so-called splitting, or struc-
ture, functions Γij. They state the probability to find in the particle j at the scale Q2 a
parton i with fraction x of the longitudinal momentum. So (1 − x) is the energy that is
carried away by collinear radiation. This interpretation seems to be absurd, since electrons
and photons are fundamental and not composite particles, but the formalism was taken over
from QCD, where it is quite natural. Therefore, a “particle” electron can be defined as a
cloud of real and virtual “partons”, electrons, positrons and photons.
For ee collisions we have two possibilities: The incoming electron (positron) emits a photon
and propagates further with reduced momentum into the shaded blob, with a probability
defined by Γee (Γee). With the probability Γγe (Γγe) the electron (positron) can be scattered
and a photon carrying the momentum fraction x arrives in the shaded region.
In general, both the splitting functions and the mass-finite cross-section σ̂ depend on the
mass factorization scale Q2. They can be expanded in ascending powers of α and in the case
of the structure functions in powers of Le ≡ log(Q2/m2

e) in the following form:

Γij(x,Q
2) = Γlog

ij (x,Q2) + Γnon−log
ij (x,Q2) (4.6)

Γlog
ij (x,Q2) = δijδ(1 − x) +

∞∑

n=1

(
α

π
)n

n∑

m=1

aijmn(x)L
m
e (4.7)

Γnon−log
ij (x,Q2) =

∞∑

n=1

(
α

π
)n bijn (x) (4.8)

dσ̂ij(Q
2) = dσBorn

ij +

∞∑

n=1

(
α

π
)n cijn (x,Q2) (4.9)

The structure functions can be decomposed into a log and a non-log part. The scale de-
pendence enters only via the logarithmic terms Lme . The coefficients aijmn and bijn can be
obtained in a process-independent way, using renormalization group methods. The hard
scattering cross-section also depends on x due to the reduced momenta p̂i. The coefficients
cijn include all other virtual and real corrections, which are model and process dependent.
Inserting these formulas into eq. (4.4), we see that the process-dependent cross-section cor-
rections mix with the process-independent terms of the structure functions and give terms
proportional to αnLme with n > m. The terms with αnLne are only proportional to the Born
cross-section and are therefore pure process-independent corrections. The so-called leading-
log approximation (LL) considers only these terms.
According to the probalistic interpretation, it is obvious that the splitting functions must
respect the following relations, due to electron number and longitudinal momentum conser-
vation:

∫ 1

0

dx [Γee(x,Q
2) − Γee(x,Q

2)] = 1 (4.10)

∫ 1

0

dx [Γeγ(x,Q
2) − Γeγ(x,Q

2)] = 0 (4.11)

∑

j=e,e,γ

∫ 1

0

dx xΓji(x,Q
2) = 1 (4.12)
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4.3 Evolution equations

For the electron-positron-photon system the so-called evolution equations can be adopted
from the QCD case in the following form [41, 42]:

∂ Γe i (x,Q
2)

∂ (logQ2)
=

α(Q2)

2π
[Pee ⊗ Γe i + Pee ⊗ Γe i + Peγ ⊗ Γγ i](x,Q

2) (4.13)

∂ Γe i (x,Q
2)

∂ (logQ2)
=

α(Q2)

2π
[Pee ⊗ Γe i + Pee ⊗ Γe i + Peγ ⊗ Γγ i](x,Q

2) (4.14)

∂ Γγ i (x,Q
2)

∂ (logQ2)
=

α(Q2)

2π
[Pγe ⊗ Γe i + Pγe ⊗ Γe i + Pγγ ⊗ Γγ i](x,Q

2) (4.15)

For this set of integro-differential equations, we used the multiplicative convolution

[f ⊗ g](x) =

∫ 1

0

dy

∫ 1

0

dz δ(x− yz)f(y)g(z)

=

∫ 1

x

dz

z
f(
x

z
)g(z) . (4.16)

The kernel’s Pij(x) of these equations, the so-called Altarelli-Parisi functions [41, 40], have
at order α the form:

P 0
ee(x) = P 0

ee(x) =
(1 + x2

1 − x

)
+

(4.17)

P 0
ee(x) = P 0

ee(x) = 0 (4.18)

P 0
γe(x) = P 0

γe(x) =
1 + (1 − x)2

x
(4.19)

P 0
eγ(x) = P 0

eγ(x) = x2 + (1 − x)2 (4.20)

P 0
γγ(x) = −2

3
δ(1 − x) (4.21)

Here we have introduced the (+)-distribution, which is defined by

∫ 1

0

dx f(x)(h(x))+ =

∫ 1

0

(f(x) − f(1))h(x) , (4.22)

or

(h(x))+ = lim
ε→0

[
θ(1 − x− ε)h(x) − δ(1 − x− ε)

∫ 1−ε

0

h(y) dy

]
. (4.23)

Inserting these Kernel’s in the evolution equations gives

∂ Γe i (x,Q
2)

∂ (logQ2)
=

α

2π
[P 0
ee ⊗ Γe i + P 0

eγ ⊗ Γγ i](x,Q
2) (4.24)

∂ Γe i (x,Q
2)

∂ (logQ2)
=

α

2π
[P 0
ee ⊗ Γe i + P 0

eγ ⊗ Γγ i](x,Q
2) (4.25)

∂ Γγ i (x,Q
2)

∂ (logQ2)
=

α

2π
[P 0
γe ⊗ (Γe i + Γe i) + P 0

γγ ⊗ Γγ i](x,Q
2) (4.26)
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With a set of input parameters, a solution for this system can be calculated. In the case
of an electron (in the definition of a cloud of partons: electrons, positrons and photons)
we naturally assume that at zero momentum, i.e. Q2 = m2

e, it consists only of an electron
parton without positrons or photons. This results in the boundary conditions

Γee(x,m
2
e) = δ(1 − x), Γee(x,m

2
e) = Γγe(x,m

2
e) = 0 . (4.27)

Looking at the kernel functions we see that only the diagonal ones give large contributions
for the soft-photon limit x → 1. So we make an approximation and put the others to zero.
For the electron structure function, this is equal to the boundary value Γγe(x,Q

2) = 0, in
the language of QCD the so-called non-singlet (NS) case. The three equations (4.13)-(4.15)
decouple and we can concentrate on the electron density function ΓNS

ee . Setting Γγe(x,Q
2) = 0

for all values of Q2 means that we neglect electrons or positrons in loops and also the
corresponding real corrections where electron-positron pairs are emitted. In other words, we
take only corrections with virtual or real photons into account

∂ ΓNS
ee (x,Q2)

∂ (logQ2)
=

α(Q2)

2π

[
Pee ⊗ ΓNS

ee

]
(x,Q2) , (4.28)

ΓNS
ee (x,Q2) = δ(1 − x) +

∫ Q2

m2
e

dk2

k2

α(k2)

2π

[
Pee ⊗ ΓNS

ee

]
(x, k2) . (4.29)

Neglecting the running of α, a solution for this equation can be obtained by an iteration in
the following form

ΓNS,log
ee (x,Q2) = δ(1 − x) +

α

2π

∫ Q2

m2
e

dk2

k2
Pee(x1) ⊗

[
δ(1 − x2) +

α

2π

∫ k2

m2
e

dk
2

k
2 Pee(x2) ⊗ (δ(1 − x3) + . . .)

]
. (4.30)

Using the relation

∫
1

x

(∫
1

x

(∫ 1

x

( ∫
. . .
)
dx
)
dx

)
dx

︸ ︷︷ ︸
n nested integrals

=
logn(x)

n!
(4.31)

we get

ΓNS,log
ee (x,Q2) = δ(1 − x) +

∞∑

n=1

(
α

2π
)n

1

n!
Pn(x)Lne (Q2) , (4.32)

with

Pn(x) = [Pee ⊗ Pee ⊗ . . .⊗ Pee]︸ ︷︷ ︸
n kernels in convolution

(x) ,

=

∫ 1

0

n∏

i=1

dxi Pee(x1) . . . Pee(xn) δ

(
x−

n∏

i=1

xn

)
. (4.33)
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Expanding the kernel function in a series in α

Pee(x) = P 0
ee(x) + αP 1

ee +O(α2) (4.34)

leads to sub-leading log terms. The leading-log result for the electron structure function has
the form

ΓNS,LL
ee (x,Q2) = δ(1 − x) +

∞∑

n=1

(
α

2π
)n

1

n!
P0
n(x)L

n
e (Q

2)

= δ(1 − x) +
α

2π
P 0
ee(x)Le +

1

2
(
α

2π
)2
[
(P 0

ee ⊗ P 0
ee)L

2
e

]
+O(α3) , (4.35)

with the leading-log terms

P 0
ee = lim

ε→0

[
δ(1 − x)(

3

2
+ 2 log ε) + θ(1 − ε− x)

1 + x2

1 − x

]
, (4.36)

1

2
(P 0

ee ⊗ P 0
ee) = lim

ε→0

(
δ(1 − x)

[
2 log2 ε+ 3 log ε+

9

8
− π2

3

]
+ θ(1 − ε− x)×

[
1 + x2

1 − x
(2 log(1 − x) − log(x) +

3

2
) +

1

2
(1 + x) log(x) − (1 − x)

])
.

(4.37)

The correction term −π2

3
in the soft part of 1

2
(P 0

ee⊗P 0
ee) is due to the fact that the energies

of the two soft-photons are not independent, but must obey ǫ1+ǫ2 < ε. The non-logarithmic
(constant) part Γnon−log

ee cannot be obtained in the structure function formalism, but it is
possible to derive it in an explicit way, calculating the required Feynman diagrams.
A convenient way to deal with evolution equations and in particular with the non-singlet
equation eq. (4.28) is to apply the Mellin transformation. The Mellin transformation is
defined by

f̃(z) =

∫ ∞

0

dx xz−1 f(x) , (4.38)

f(x) =
1

2πi

∫ c+i∞

c−i∞
dz x−zf̃(z) . (4.39)

The transform f̃(z) exists, if the integral
∫ ∞

0

dx|f(x)|xk−1 (4.40)

is bounded for some k > 0. Then the inverse f(x) exists for any c > k. So the multiplicative
convolution eq. (4.16) can be written as ordinary product

h(x) = f(x) ⊗ g(x) ↔ h̃(z) = f̃(z). g̃(z) . (4.41)

The evolution equations can then be transformed to linear equations of the Mellin trans-
formed structure functions. In the non-singlet case we obtain

∂ Γ̃NS
ee (z,Q2)

∂ (logQ2)
=

α(Q2)

2π
P̃ee(z). Γ̃

NS
ee (z,Q2) . (4.42)
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The leading-log result can then be simply written in the form

Γ̃NS,LL
ee (z,Q2) = exp

( α
2π
Le(Q

2)P̃ 0
ee(z)

)
, (4.43)

ΓNS,LL
ee (x,Q2) =

1

2π

∫ +∞

−∞
dt x−it−c exp

( α
2π
Le(Q

2)P̃ 0
ee(it+ c)

)
, (4.44)

with

P̃ 0
ee(z) =

3

2
− 2γE − ψ(z) − ψ(z + 2) , ψ(z) = Γ′(z)/Γ(z) , (4.45)

whereas Γ(z) and Γ′(z) are the ordinary gamma function and its derivative. The problem
has then be shifted from expanding expressions in ⊗ products to the evaluation of inverse
Mellin transformations.

4.4 Soft photon resummation

In the famous paper of Yennie, Frautschi and Suura [43], they discussed the infrared di-
vergence problem in a very general way. Summing up the contributions of virtual and
real photons leads to a finite result, order by order in perturbation theory. Furthermore
they have shown that the soft-photon contributions can be summed up to all orders. For
e+e− processes the cross-section is then proportional to exp(β(log ε−γE))/Γ(1+β(s)) with
β(Q2) = 2α

π
(Le(Q

2) − 1) and ε = ∆E
E

the soft-photon cut-off.
Let us now compare this result with our previous leading-log result eq. (4.35). We see indeed
from the expressions proportional to δ(1− x) in P 0

ee and P 0
ee⊗P 0

ee that there are terms that
seem to exponentiate up to all orders (besides the correction term -π

2

3
). Our Question is now:

Can we resum the soft-photon part also in the structure function formalism, but without
introducing an ε cut-off dependence? We define a soft part of the structure function kernel
P 0, soft
ee in the following way

P 0, soft
ee =

( 2

1 − x

)
+

= lim
ε→0

[
δ(1 − x)(2 log ε) + θ(1 − ε− x)

2

1 − x

]
(4.46)

We insert this into eq. (4.35) and extract only the leading terms in the soft-photon limit
x → 1. This provides the possibility to resum a soft (∝ log ε) and a hard (∝ log(1 − x))
part in the following way:

Γsoft
ee (x,Q2) = δ(1 − x) + lim

ε→0

∞∑

n=1

(
α

π
Le)

n

[
δ(1 − x)

(log ε)n

n!

+ θ(1 − x− ε)
1

(n− 1)!

logn−1(1 − x)

1 − x

]

= lim
ε→0

[
δ(1 − x) exp

(α
π
Le log ε

)

+ θ(1 − x− ε)
α

π
Le

1

1 − x
exp

(α
π
Le log(1 − x)

)]

=
α

π
Le (1 − x)

α
π
Le−1 (4.47)
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Due to the resummation of a soft and also a hard part, it is possible to avoid an ε dependence.
Unfortunately, we have not included the complete soft-photon contribution, but only that
part where the n photons can be considered as independent.
Another analytical solution to eq. (4.28) in the soft-photon limit x→ 1 was found by Gribov
and Lipatov [44]. In the asymptotic limit for large z the digamma function ψ(z) behaves
like a regular logarithm

lim
z→∞

ψ(z) ∼ log(z) . (4.48)

By taking again only the leading part of the kernel function, but allowing α to be running,
one obtains

Γ̃GL
ee (z,Q2) = exp

(
η

4
(
3

2
− 2γE)

)
z−

η
2 , (4.49)

ΓGL
ee (x,Q2) =

exp
(
η
4
(3

2
− 2γE)

)

Γ(η
2
)

(− log x)
η
2
−1 , (4.50)

with

α(Q2) = α/

(
1 − α

3π
log

Q2

m2
e

)
+O(α3) , (4.51)

η(Q2) =

∫ Q2

m2
e

dk2

k2

α(k2)

π
=

2α

π
Le(1 +

α

6π
Le) +O(α3) . (4.52)

This is indeed a good approximation for the soft-photon area, as can be checked against the
full result. Now it is possible to combine these two soft-photon results, to have the complete
soft part resummed, but also the leading hard contribution. In the soft-photon limit x ∼ 1,
where the Gribov-Lipatov solution is applicable, the − log(x) term can be replaced by its
first element in the Taylor expansion (1− x). Furthermore, we obtain the (1−x) behaviour
of eq. (4.47) and thus the leading hard terms for x ∼ 1 are correctly included. This solution,
found by Kuraev and Fadin [45] in the context of an O(α2) discussion, has finally the form

ΓKF
ee (x,Q2) =

exp(−1
2
η γE + 3

8
η)

Γ(1 + η
2
)

η

2
(1 − x)

η
2
−1 . (4.53)

Expanding the soft-photon results in α one can see that the Kuraev-Fadin solution ΓKF
ee

contains Γsoft
ee but has additional terms resummed at O(α2). Furthermore, the Kuraev-Fadin

solution shows in the soft limit a very similar form to the YFS term, if we choose α =
const. But there is a big difference to notice. The Kuraev-Fadin solution contains only the
leading-log term η proportional to Le, whereas the YFS term contains the term β with
an additional non-leading log term. For the cancellation of the infrared divergence it is
absolutely necessary to have the factor β instead of η in the soft-photon range. From this
point of view it is mandatory to improve the leading-log result in the soft-photon limit with
this non-leading contribution. So we have to replace η with β just “by hand”.
In principle, the structure functions can be splitted up in a resummed part and a so-called
hard part, e.g.

ΓNS,LL
ee (x,Q2) =

βS
2

(1 − x)
βS
2
−1δV+S + δH(βH) . (4.54)
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Since there is no unique way which parts should be resummed (δV+S) and which not (δH),
there are different procedures known in the literature and they all differ at a certain order
of α. For a review, see e.g.[46]. Which values should we now choose for βS and βH? Due to
the discussion above, βS must have the value β to cancel the infrared divergence. For the
hard part, there is no reason to include also a non-leading contribution in our leading-log
approximation. However, for simplicity we also choose βH = β. In principle, the running of
α can be considered by replacing α with α(1 + α

6π
Le), see eq. (4.52). These additional terms

regard the leading effects of collinear electron-postitron pairs.

4.5 Leading-Log result

We finally present two formulas for the non-singlet leading-log structure function, exact at
O(α3) and differing at O(α4), taken from [47]

ΓNS,KF
ee =

exp(−1
2
β γE + 3

8
β)

Γ(1 + β
2
)

β

2
(1 − x)

β
2
−1

−β
4

(1 + x) +
β2

16

(
− 2(1 + x) log(1 − x) − 2 log x

1 − x
+

3

2
(1 + x) log x− x

2
− 5

2

)

+(
β

2
)3

[
−1

2
(1 + x)

(
9

32
− π2

12
+

3

4
log(1 − x) +

1

2
log2(1 − x) − 1

4
log x log(1 − x)

+
1

16
log2 x− 1

4
Li2(1 − x)

)
+

1

2

1 + x2

1 − x

(
− 3

8
log x+

1

12
log2 x− 1

2
log x log(1 − x)

)

−1

4
(1 − x)

(
log(1 − x) +

1

4

)
+

1

32
(5 − 3x) log x

]
+O(α4) , (4.55)

and

ΓNS,YFS
ee =

exp(−1
2
β γE + 3

8
β)

Γ(1 + β
2
)

β

2
(1 − x)

β
2
−1

[
1

2
(1 + x2) +

β

8

(
− 1

2
(1 + 3x2) log x− (1 − x)2

)

+
1

8
(
β

2
)2
(
(1 − x)2 +

1

2
(3x2 − 4x+ 1) log x+

1

12
(1 + 7x2) log2 x+ (1 − x2)Li2(1 − x)

)]

+O(α4) . (4.56)

Formula one includes a Kuraev-Fadin type resummation of the soft part and all other terms
are hard. The second one resumms the complete result and no hard part (δH) is left. Since
there is no justification why the complete hard part should be resummed, the first formula
seems to be more reasonable from the theoretical point of view. On the other hand, the
second formula is much shorter and more elegant.
We checked the correctness of these two results in the following way. The two structure
functions are expanded in orders of α. One has to keep in mind that the correct expansion
has the structure

ΓNS,LL
ee (x) = δ(1 − x) +

∑

n

αn
(
ΓO(αn)
ee (x)

)
+
, (4.57)
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which follows from the initial condition eq. (4.27) and the normalization condition

∫ 1

0

ΓNS,LL
ee (x)dx = 1 . (4.58)

Then we applied the Mellin transformation and compared this with the exact result of the
Mellin transformed non-singlet equation eq. (4.43) expanded up to O(α3). As expected, we
found perfect agreement.



Chapter 5

Pair Production of Charginos and

Neutralinos in e+e− collisions

5.1 Tree-Level

The tree-level pair production processes for charginos Fig. 5.1, and neutralinos Fig. 5.2,
within the Minimal Supersymmetric Standard Model,

e−(p1) e
+(p2) → χ̃−

i (k1) χ̃
+
j (k2) (i, j = 1, 2) ,

e−(p1) e
+(p2) → χ̃0

i (k1) χ̃
0
j(k2) (i, j = 1, 2, 3, 4) ,

have been already extensively discussed in the literature [48, 49]. The chargino pair produc-
tion is characterized by the s-channel diagrams with photon and Z-boson exchange and the
t-channel contribution by a virtual electron-sneutrino ν̃e exchange.
In the case of neutralino pair production, there is only one s-channel diagram with Z-boson

e� e+ ~��i ~�+j
 e� e+ ~��i ~�+jZ e�
e+

~��i~�+j~�e
Figure 5.1: Tree-level chargino production

exchange, since neutralinos do not couple with photons at leading order. In addition, there
are four diagrams with selectron ẽL,R exchange. Both left and right-handed selectrons are
exchanged via a t-channel and, due to the Majorana nature of the neutralinos, also via a
u-channel diagram. For both production processes we neglect the Feynman-diagrams with
s-channel Higgs-exchange. The e−-e+-Higgs couplings are proportional to the electron mass
me and thus negligible.
Furthermore we neglect two terms in the fermion-sfermion-neutralino/chargino couplings
that are also proportional to the electron mass: The Yukawa parts and the selectron L-R

41
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e� e+ ~�0i ~�0jZ e�
e+

~�0i~�0j~eL;R e�
e+

~�0i ~�0j~eL;R
Figure 5.2: Tree-level neutralino production

mixing. In this limit the couplings conserve chirality, i.e.: left-handed electrons eL couple
only on left-handed selectrons ẽL or electron-sneutrinos ν̃e and right-handed electrons eR
only on right-handed selectrons ẽR. In this chiral limit it is possible to write the t-/u-channel
Feynman-diagrams in the same Dirac structure as the s-channel diagrams, by applying the
Fierz identity

(1 ⊗ 1)αβ,α′β′ =
1

4

(
1 × 1 + γµ × γµ +

1

2
σµν × σµν − γµγ5 × γµγ5 + γ5 × γ5

)

αβ′,α′β

. (5.1)

After this Fierz transformation the tree-level matrix-elements can be expressed in terms of
four independent helicity amplitudes

Mαβ = i
e2

s
Qαβ [v̄(p2) γµPα u(p1)] [ū(k1) γ

µPβ v(k2)] , {α, β} ǫ {L,R} . (5.2)

The bilinear charges Q±
αβ for charginos and Q0

αβ for neutralinos are

Q±
LL = δij +DZ CL Uij , Q±

LR = δij +DZ CL Vij +Dν̃ Ṽij ,
Q±
RL = δij +DZ CR Uij , Q±

RR = δij +DZ CR Vij ,

Q0
LL = DZ CLNij −Du,LLij , Q0

LR = −DZ CLN ∗
ij +Dt,L L∗

ij ,
Q0
RL = DZ CRNij +Dt,RRij , Q0

RR = −DZ CRN ∗
ij −Du,RR∗

ij .

The first index denotes the chirality of the e± current, the second one of the χ̃0,±
i,j current.

We have introduced the projection operators PL/R = P−/+ = 1
2
(1 ∓ γ5), the kinematical

variables
s = (p1 + p2)

2 , t = (p1 − k1)
2 and u = (p1 − k2)

2 , (5.3)

the normalized propagators

DZ =
s

s−m2
Z

, Dν̃ =
s

t−mν̃2

, Dt,L/R =
s

t−m2
ẽL/R

, Du,L/R =
s

u−m2
ẽL/R

, (5.4)

and the coupling matrices

CL = (s2
W − 1

2
)/(s2

W c2W ) , CR = 1/c2W ,

Uij = (s2
W δij − Ui1U

∗
j1 − 1

2
Ui2U

∗
j2) , Vij = Uij(U → V ) ,

Ṽij = V ∗
i1Vj1/(2 s

2
W ) , Nij = (Ni3N

∗
j3 −Ni4N

∗
j4)/2 ,

Lij = (Ni2cW +Ni1sW )(N∗
j2cW +N∗

j1sW )/(4 s2
W c

2
W ) , Rij = Ni1N

∗
j1/c

2
W . (5.5)
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Summing up the final state helicities Mα =
∑

β=± Mαβ, the differential tree-level cross-
section for polarized beams reads

dσtree =
Sij
ϕ

∑

α=±

1

4
(1 + α ξ−)(1 − α ξ+)|Mα|2 dΦ2 , (5.6)

with ξ± the degrees of polarization of the e± beams, ϕ the flux factor, and dΦ2 the 2-particle
phase-space element

dΦ2 =
d~k1

(2π)32k0
1

d~k2

(2π)32k0
2

(2π)4δ(4)(p1 + p2 − k1 − k2) . (5.7)

The symmetry-factor Sij respects the Majorana nature of the neutralinos and has the value
Sij = 1/2 if two identical neutralinos are produced and Sij = 1 otherwise. For the particle
kinematics, we naturally choose the CM system

CMS : ~p1 + ~p2 = 0 = ~k1 + ~k2 .

The momenta of the incoming particles can thus be parameterized as

~p1 = (p0
1, 0, 0, pin) , ~p2 = (p0

2, 0, 0,−pin) , (5.8)

with

(p0
1)

2 = p2
in +m2

1 , (p0
2)

2 = p2
in +m2

2 , (5.9)

p2
in =

(s+m2
2 −m2

1)
2

4s
−m2

2 . (5.10)

The flux factor ϕ is then given by

ϕ = 2
√
λ(s,m2

1, m
2
2) = 4pin

√
s , λ(x, y, z) := (x− y − z)2 − 4yz . (5.11)

In the limit for incoming massless electrons and positrons me → 0, we obtain

p1 =

√
s

2
(1, 0, 0, 1) , p2 =

√
s

2
(1, 0, 0,−1) , ϕ = 2s . (5.12)

The outgoing momenta can be parameterized by the angle θ = ^(~p1, ~k1)

k1 = (k0
1, pout sin θ, 0, pout cos θ) , k2 = (k0

2,−pout sin θ, 0,−pout cos θ) , (5.13)

with

(k0
1)

2 = p2
out +m2

χ̃i
, (k0

2)
2 = p2

out +m2
χ̃j
, (5.14)

p2
out =

(s+m2
χ̃j

−m2
χ̃i

)2

4s
−m2

χ̃j
. (5.15)

The total cross-section can then be obtained by

σtree
tot =

Sij pout

16πs3/2

∫ 1

−1

∑

α=±

1

4
(1 + α ξ−)(1 − α ξ+)|Mα|2 dcos θ . (5.16)
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Although calculated in the CM system, σtot is obviously a lorentz-invariant quantity.
The forward-backward asymmetry is determined by the expression

AFB =
N(θ < π

2
) −N(θ > π

2
)

N(θ < π
2
) +N(θ > π

2
)
, (5.17)

where N(θ < π
2
)/N(θ > π

2
) are the numbers of events with the χ̃0,−

i with momentum

k1 propagating in the forward/backward hemisphere. Since θ = ^(~p1, ~k1) is not lorentz-
invariant, also the forward-backward asymmetry depends on the system where the angle θ
is defined. In our case this is naturally the CM system. So for the 2 → 2 process, AFB for
unpolarized beams can be written in terms of different cross-sections

AFB =
σF − σB

σF + σB
=

2σF − σtot

σtot
, (5.18)

with

σtree
F =

Sij pout

16πs3/2

∫ 1

0

∑

α=±

1

4
|Mα|2 dcos θ , σtree

B =
Sij pout

16πs3/2

∫ 0

−1

∑

α=±

1

4
|Mα|2 dcos θ . (5.19)

The left-right asymmetry for full polarized electrons and unpolarized positrons is obtained
from

ALR =
σL − σR

σL + σR
=

σL − σtot

σtot
, (5.20)

with

σtree
L =

Sij pout

16πs3/2

∫ 1

0

1

2
|ML|2 dcos θ , σtree

R =
Sij pout

16πs3/2

∫ 0

−1

1

2
|MR|2 dcos θ . (5.21)

5.2 Virtual Corrections

For a high precision analysis of the neutralino and chargino sector, the inclusion of higher
order corrections is mandatory. In the following elaborate calculations, a large number of
Feynman diagrams is involved. Hence, it is necessary to use an appropriate computer algebra
tool. For our calculations, the FeynArts 3.2 [50] package consists of all necessary ingredi-
ents to identify all contributing diagrams and to calculate them within the included MSSM
model [51]. This is performed in the ξ = 1 Feynman-’t Hooft gauge. The provided MSSM
model contains the complete MSSM tree-level interaction Lagrangian. We have extended
the model by integrating the renormalization scheme discussed in chapter 3. More details
on this topic are given in the appendix.
The FormCalc 4 [52] package is adopted for the further processing of the Feynman am-
plitudes. Among other things, this tool contracts indices, calculates fermion traces, and
includes the tensor reduction. In the latter case this is done in CDR which is identical to
DR at the one-loop level, as discussed in chapter 3.1.3. The output of FormCalc 4 has the
appropriate form for a further numerical evaluation. For this purpose the Mathematica out-
put is translated into Fortran code. The computation of the one-loop integrals is based on
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the packages LoopTools and FF [53].
The virtual corrections for polarized beams can be written in the form

∫
dσvirt =

Sij pout

16πs3/2

∫ ∑

α=±

1

4
(1 + α ξ−)(1 − α ξ+) 2 Re {(Mα)

†M1
α} dcos θ . (5.22)

The one-loop matrix element M1
α, generically given in Fig. 5.3, consists of all possible

vertex corrections (Fig. 5.4), self-energy (Fig. 5.5) and box (Fig. 5.6) diagrams and the
corresponding counter-terms. We again neglect the electron mass me wherever possible.
The analytic expression for the counter-term Lagrangian is given in the appendix.

Figure 5.3: Generic virtual diagrams. The virtual corrections are structured into vertex,
propagator and box contributions.

5.3 QED corrections

The full one-loop corrections include diagrams with virtual photons attached to the tree-
level diagrams. These contributions are IR divergent and regularized by an infinitesimal
photon mass λ. Concerning chargino and neutralino production, these diagrams cannot be
separated from the residual weak corrections in a gauge invariant and UV finite way. This
can be traced back to the tree-level selectron and sneutrino t-channel diagrams, which in-
troduce the charged current coupling g ≡ e/sw. The same effect can be observed in the SM,
e.g. for W pair production [54]. For pure neutral current processes like e+e− annihilation
processes into third generation fermions or sfermions [55], the gauge invariant and UV finite
separation is possible, due to a Ward identity.
Therefore the cross-sections become IR finite and thus physically meaningful only by inclu-
sion of real photon emission. The fact that IR singularities cancel between virtual and real
soft-photonic corrections is known as the Bloch-Nordsieck theorem[56]. The bremsstrahlung
diagrams for the concerning processes are shown in Fig. 5.7. For both production processes
we naturally have to consider the initial-state-radiation (ISR) from the incoming e± beams.
In the case of chargino production we also have to deal with final-state-radiation radiated
off the produced chargino pair. For neutralino production the photon radiation of the inter-
mediate selectrons ẽL,R has to be considered, but gives a pure IR finite contribution, since
the selectrons are off-shell and no resonances can occur in the t-/u- channel.
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Figure 5.4: Generic diagrams for the different vertex corrections. Seven different classes of
particles are introduced: f for all SM fermions, f1 for e and νe only, f̃ for all sfermions, f̃1

for ẽL,R and ν̃e only, χ̃ for neutralinos and charginos, V for vector bosons, and H for Higgs
and Goldstone bosons.

For the calculation of the real photonic corrections, we use the so-called phase-space slic-
ing method [57]. The singular soft and collinear parts in the bremsstrahlung phase space
are separated from the finite region. Both contributions can be written proportional to
the tree-level cross-section, up to small terms of O(∆Eγ/

√
s) and O(∆θγ), and performed

analytically. The collinear (soft) singularities are regularized by the electron (infinitesimal
photon) mass and cancel the corresponding terms in the virtual corrections.
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Figure 5.5: Generic self-energy diagrams for the s-channel vector and the t/u channel slepton
propagators. FP denotes the class of Faddeev-Popov ghosts. All other particle classes are
the same as in Fig. 5.4.
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Figure 5.6: Generic box diagrams. The notation is taken over from Fig. 5.4.
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Figure 5.7: Bremsstrahlung Feynman diagrams.

5.3.1 Soft-photon region

In the soft-photon area only photons up to a CM (center-of-mass) energy ∆Eγ are considered

dσsoft = −dσtree α

4π2

∫

k0
γ≤∆Eγ

d3~kγ
k0
γ

(
pµ1
p1kγ

− pµ2
p2kγ

+Qχ̃
kµ1
k1kγ

−Qχ̃
kµ2
k2kγ

)2

, (5.23)

whereas Qχ̃ = 0/− 1 stands for the electric charge of the neutralino/chargino respectively.
The three-particle phase space can be gladly separated into the usual two particle phase-
space and the photon phase-space. Both can be integrated independently. The result is
expressed in terms of the soft-photon integrals according to ref. [16]

Iab =

∫

|~kγ |≤∆Eγ

d3~kγ
k0
γ

a.b

a.kγ b.kγ
, (5.24)
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for arbitrary momenta a and b, resulting in

dσsoft = −dσtree α

4π2

(
δISR
soft + δFSR

soft + δISR−FSR
soft

)
, (5.25)

δISR
soft = Ip1p1 + Ip2p2 − 2Ip1p2 , δFSR

soft = Q2
χ̃ (Ik1k1 + Ik2k2 − 2Ik1k2) , (5.26)

δISR−FSR
soft = 2Qχ̃ (Ip1k1 + Ip2k2 − Ip1k2 − Ip2k1) . (5.27)

The integration over the photon phase-space can be performed analytically and the general
solution is given by

Iab = 4π
α a.b

(αa)2 − b2

{
1

2
log

(αa)2

b2
log

4∆E2
γ

λ2

[
1

4
log2 u0 − |~u|

u0 + |~u|+

+Li2

(
1 − u0 + |~u|

v

)
+ Li2

(
1 − u0 − |~u|

v

)]u=αa

b

}
, (5.28)

where v and α are defined by the relations

v =
(αa)2 − b2

2(αa0 − b0)
(5.29)

α2a2 − 2αa.b+ b2 = 0 ,
α a0 − b0

b0
≥ 0 . (5.30)

However, for our purpose we are able to use various simplifications. For the integrals Ik1k1,
Ik2k2, where the two momenta are identical we obtain

Iaa = 2π
{

log
4∆E2

γ

λ2
+
a0

|~a| log
a0 − |~a|
a0 + |~a|

}
. (5.31)

A further simplification can be done for Ip1p1, Ip2p2 , where the electron mass is neglected
whenever possible. Exceptions are the logarithmic terms, which reflect the collinear singu-
larity

Ipipi
= 2π

{
log

4∆E2
γ

λ2
− log

s

m2
e

}
. (5.32)

In the next step we consider the integral Ik1k2 , where we use in the CMS frame the relation
~k1 = −~k2 ≡ ~q

Iab =
2π (a0b0 + |~q|2)

(a0 + b0)|~q|

{
1

2
log

a0 + |~q|
a0 − |~q| log

4∆E2
γ

λ2
− Li2

(
2|~q|

a0 + |~q|

)
− 1

4
log2 a0 + |~q|

a0 − |~q| +

+
1

2
log

b0 + |~q|
b0 − |~q| log

4∆E2
γ

λ2
− Li2

(
2|~q|

b0 + |~q|

)
− 1

4
log2 b0 + |~q|

b0 − |~q|

}

(5.33)

This result can be also applied for the integral Ip1p2 and furthermore the limit me → 0 is
performed

Ip1p2 = 2π
{

log
4∆E2

γ

λ2
log

s

m2
e

− 1

2
log2 s

m2
e

− π2

3

}
. (5.34)
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Considering the integrals Ip1k2, Ip2k1, there is no relation between the two momenta, but we
take again the limit for vanishing electron mass

Ipikj
= 2π

{
log

4∆E2
γ

λ2
log

2 pi.kj
m2
em

2
j

− 1

4
log2

m2
j

(k0
j + |~kj|)2

− 1

4
log2 s

m2
e

− π2

6

− Li2

(
1 −

√
sm2

j

2(k0
j + |~kj|)pikj

)
− Li2

(
1 −

√
s(k0

j + |~kj|)
2pikj

)}
. (5.35)

5.3.2 Collinear region

In the collinear region, we consider hard photons (p0
γ > ∆Eγ) radiated off the incoming e±

beams in a small angle ∆θγ around the beam axis. The photons emit an energy
∑

i(1−xi)p0
i

and as a consequence reduce the beam momenta

{p1, p2} → {p̂1 = x1p1, p̂2 = x2p2} . (5.36)

The beam energy is thus lowered

√
s→

√
ŝ =

√
x1x2 s . (5.37)

First, we consider the general reduced cross-section

σ̂tree(x1, x2, s) =

∫
dσtree(x1p1, x2p2) (5.38)

that has to be calculated in the two-particle sub-phase-space. Afterwards the photon phase-
space is considered by multiplication with a kernel function and a subsequent integration
over the energy fractions xi.
The reduction of the incoming momenta leads to the problem, that we are no longer in the
CM system, since p̂1+ p̂2 6= 0, and we have to perform a Lorentz-transformation. Demanding
that the new momenta fulfill the relations

p̂CMS
1 + p̂CMS

2 = 0 , (p̂CMS
1 + p̂CMS

2 )2 = (p̂1 + p̂2)
2 = ŝ (5.39)

the velocity v (in units of the speed-of-light)

v =
x2 − x1

x1 + x2
(5.40)

for the Lorentz-boost (from the original in the new CMS frame) is obtained. Thus the
incoming momenta in the new CMS are

p̂CMS
1,2 =

√
x1x2p1,2 . (5.41)

Due to its Lorentz-invariance the reduced total cross-section is just given by

σ̂tree
tot (x1, x2, s) = σtree

tot (ŝ) . (5.42)
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Attention is necessary, if cuts on the integration angle θ are applied. To obtain the correct
cross-sections σ̂F,B, the cut on θ has to be transformed in the new CM system. The reduced
forward cross-section for unpolarized beams then reads

σ̂tree
F (x1, x2, s) =

Sij p̂out

16πŝ3/2

∫ 1

c

∑

α=±

1

4
|Mα|2 dcos θ̂CMS , (5.43)

with

c = v

√
p̂2

out +m2
χi

p̂out
, p̂2

out =
(ŝ+m2

χj
−m2

χi
)2

4ŝ
−m2

χj
. (5.44)

The collinear cross-section in the general form reads

∫
dσcoll(p1, p2, ξ−, ξ+) =

α

2π

∫ 1−2∆Eγ/
√
s

0

dx
∑

α=±
Gα(s, x,∆θγ) .

.

[∫
dσtree(xp1, p2, αξ−, ξ+) +

∫
dσtree(p1, xp2, ξ−, αξ+)

]
, (5.45)

with

G+(s, x,∆θγ) =
1 + x2

1 − x

[
log

(
s∆θ2

γ

4m2
e

)
− 1

]
, G−(s, x,∆θγ) = 1 − x . (5.46)

The kernel function G+ reveals the collinear divergence for ∆θγ → 0 and the IR divergence
for x→ 1.
The total, the forward and the left-handed collinear cross-sections thus are

σcoll
tot (s) =

α

2π

∫ 1−2∆Eγ/
√
s

0

dx 2σtree
tot (xs) [G+ +G−] (s, x,∆θγ) , (5.47)

σcoll
F (s) =

α

2π

∫ 1−2∆Eγ/
√
s

0

dx
(
σ̂tree

F (x, 1, s) + σ̂tree
F (1, x, s)

)
[G+ +G−] (s, x,∆θγ) , (5.48)

σcoll
L (s) =

α

2π

∫ 1−2∆Eγ/
√
s

0

dx 2
[
σtree

L (xs)G+ + σtree
tot (xs)G−

]
(s, x,∆θγ) . (5.49)

In the numerical evaluation, the terms proportional to G− are due to the absence of a
collinear singularity in general negligible compared to those proportional to G+.

5.3.3 Finite region

The finite hard bremsstrahlung has to be calculated by integration of the squared tree-level
matrix-element for e+e− → χ̃iχ̃jγ over the three-particle final-state phase-space

∫
dσfinite =

Sij
2s

∫
dΦγ |Mγ|2 , (5.50)

with the three-particle phase-space-element

dΦγ ≡ dΦ3 =
d3~k1

(2π)32k0
1

d3~k2

(2π)32k0
2

d3~kγ
(2π)32k0

γ

(2π)4δ(4)(p1 + p2 − k1 − k2 − kγ) . (5.51)
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For the hard bremsstrahlung process in the finite region, the separation into a two-particle
phase-space and a photon part is no longer valid, and the full three-particle phase space
has to be considered. The parameterization has to be done in such a way, that cuts on the
photon scattering angle θγ and on the photon energy k0

γ can be easily applied. We therefore
choose as parameter input

θγ , η , k0
1 , and k0

γ .

The angles are defined in Fig. 5.8. The plane σ is spanned by the momenta ~p1 and ~kγ, the

x

x

~p1

~p2

~k1

~k2

~kγ
θγ

η

ξσ

ε

Figure 5.8: Parameterization of the three-particle final-state phase-space.

plane ε by ~k1 and ~k2. Due to momentum conservation in the CMS the cut line of these two
planes is ~kγ. The three shown angles are

η = ^(σ, ε) , θγ = ^(~p1, ~kγ) , ξ = ^(~k1, ~kγ) .

The explicit representation of the outgoing momenta is

ki = (k0
i , |~ki|~ei), with |~ki| =

√
(k0
i )

2 −m2
χi

,

and the unit vectors

~eγ = (sin θγ , 0, cos θγ) , (5.52)

~e1 = (cos θγ cos η sin ξ + sin θγ cos ξ, sin η sin ξ, cos θγ cos ξ − sin θγ cos η sin ξ) . (5.53)

Momentum k2 is given by four-momentum conservation. In the CMS frame this is

k0
1 + k0

2 + k0
γ =

√
s and ~k1 + ~k2 + ~kγ = 0.
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The auxiliary angle ξ is likewise determined by momentum conservation

cos ξ =
|~k2|2 − |~k1|2 − |~kγ|2

2|~k1||~kγ|
. (5.54)

The (cut-dependent) cross-section can then be written as

σfinite(∆Eγ ,∆θγ) =
Sij

(4π)4s

∫ (k0
γ)max

∆Eγ

dk0
γ

∫ (k0
1)max

(k0
1
)min

dk0
1

∫ cos ∆θγ

− cos ∆θγ

d cos θγ

∫ 2π

0

dη |Mγ|2 , (5.55)

with

(k0
γ)

max =

√
s

2
− (mχi

+mχj
)2 −m2

γ

2
√
s

, (5.56)

and

(k0
1)

max,min = 1
2τ

[
σ(τ +m+m−) ± |~kγ|

√
(τ −m2

+)(τ −m2
−)
]
, (5.57)

σ =
√
s− k0

γ , τ = σ2 − |~kγ|2 , m± = mχi
±mχj

. (5.58)

From the discussion above, we know that only small cuts ∆Eγ and ∆θγ on the photon energy
and scattering angle are allowed to obtain a numerical result of high precision. Thus, we are
already in a range, where the integrand notices the divergent soft and collinear behaviour
according to

Mγ,soft ∼
1

Eγ
, Mγ,coll ∼

1

p1.kγ
∼ 1

1 − cos θγ
.

The integrand is flattened by transforming Eγ and cos θγ to the new variables [58]

Êγ = log
Eγ√
s
, \cos θγ = log

Eγ
2
√
s

(
1 +

√
1 − 4m2

e

s
cos θγ

)
. (5.59)

Note, that the corresponding Jacobian determinant mimics the correct behaviour of the
integrand near the two poles. For the numerical evaluation, we used the multi-dimensional
integration routines of the CUBA library [59]. This package consists of four algorithms
which use different approaches for the numerical integration. The above discussed integrand
flattening made it possible to obtain a result at a certain precision in less CPU time. We
evaluated the hard bremsstrahlung cross-section with all four routines and found perfect
agreement within the aimed accuracy. This is a good check for the reliability of the numerical
result.
The complete O(α) corrections can then be written as a sum of virtual, soft, collinear, and
finite contributions, all depending on unphysical auxiliary parameters

∆σO(α) =

∫ (
dσvirt(λ) + dσsoft(λ,∆Eγ)

)
+

∫
dσcoll(∆Eγ,∆θγ) +

∫
dσfinite(∆Eγ ,∆θγ). (5.60)

Summing up the contributions in ∆σO(α), we obtain a cut-off independent result. This
has been checked analytically for λ and numerically for ∆Eγ and ∆θγ in the intervals
10−5 ≤ ∆Eγ/

√
s ≤ 10−2 and 10−3 ≤ ∆θγ ≤ 10−2.
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5.3.4 The structure function approach

For precise predictions of chargino and neutralino pair production higher orders beyond O(α)
have to be taken into account. The structure function formalism provides the possibility of
defining process-independent logarithmic QED corrections, which originate from collinear
virtual and real photons radiated off the incoming electron-positron beams, as discussed in
chapter 4

∫
dσtree +

∫
dσuniv =

∫ 1

0

dx1

∫ 1

0

dx2 ΓLL
ee (x1, Q

2)ΓLL
ee (x2, Q

2)

∫
dσtree(x1p1, x2p2) . (5.61)

We use the leading-log structure function of the Kuraev-Fadin type up to O(α3), eq. (4.55)

ΓLL
ee (x,Q2) ≡ ΓNS,KF

ee (x,Q2) . (5.62)

In this approach only a subset (the collinear QED corrections) of the complete O(αn) correc-
tions are taken into account. Therefore, the factorization scale Q does not vanish (as it does
in a complete on-shell calculation), but is a free parameter. Although the variation of Q in
dσuniv can be considered as a higher order effect, an appropriate choice for this scale should
be physically motivated to avoid unnatural terms. Near the threshold, where soft-photons
are dominant, a satisfying choice is Q2 = s, which we use for simplicity also for higher CM
energies. A discussion about this topic can be found e.g. in [54].
The above calculated correction ∆σO(α) already contains the universal terms of O(α)

∫
dσuniv,1 =

∫ 1

0

dx1

∫ 1

0

dx2 ΓLL,1
ee (x1, Q

2)ΓLL,1
ee (x2, Q

2)

∫
dσtree(x1p1, x2p2) , (5.63)

with

ΓLL,1
ee (x,Q2) =

β

4
lim
ε→0

{δ(1 − x)[
3

2
+ 2 log(ε)] + θ(1 − x− ε)

1 + x2

1 − x
} . (5.64)

So we have to subtract them from the complete corrections to avoid double counting.
The final result, where all considered corrections are included is given by

∫
dσcomplete =

∫
dσtree + ∆σO(α) +

∫ (
dσuniv − dσuniv,1

)
. (5.65)

Within the structure formalism the collinear part of the ISR is taken into account by the
integral of the structure functions for both the electron and the positron beam over the
reduced tree-level cross-section, eqs. (5.61) and (5.63). Due to the expansion of the logarith-
mic part of the structure functions, we can write for the total cross-section including ISR in
terms of the total tree-level cross-section σtree and the structure functions ΓLL

ee up to O(αn)

σtree+univ
tot (s) =

∫ 1

0

dx1

∫ 1

0

dx2 ΓLL
ee (x1, Q

2)ΓLL
ee (x2, Q

2) σ̂tree
tot (x1, x2, s)

=

∫ 1

0

dx

∫ 1

0

dx1

∫ 1

0

dx2 δ(x− x1x2) ΓLL
ee (x1, Q

2)ΓLL
ee (x2, Q

2) σtree
tot (xs)

=

∫ 1

0

dx Φ(x) σtree
tot (xs) (5.66)
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with

Φ(x) =
[
ΓLL
ee (Q2) ⊗ ΓLL

ee (Q2)
]
(x)

=
1

2π

∫ +∞

−∞
dt x−it−c

[
exp

( α
2π
Le(Q

2)P̃ 0
ee(it+ c)

)]2
+O(αn+1) ,

= ΓLL
ee (x,Q2)(α→ 2α) +O(αn+1) (5.67)

The rule (α→ 2α) means that α has to be replaced by 2α. Note, that we have inserted in the
intermediate step the Mellin transformed exact NS leading-log solution, which differs from an
analytical solution up to O(αn) at O(αn+1). Therefore, this simplification is only applicable
if the error of O(αn+1) is negligible. As a consequence, it can be used for eq. (5.61) but is
not valid for eq. (5.63). For the forward-backward asymmetry, this simplification cannot be
used in both cases, since we have used the lorentz-invariance of the total cross-section in
the derivation. Further we again have to take care of the correct transformation of the angle
cut.

σtree+univ
F (s) =

∫ 1

0

dx1

∫ 1

0

dx2 ΓLL
ee (x1, Q

2)ΓLL
ee (x2, Q

2)

∫ 1

c

dσtree

dcos θ
(x1x2s) dcos θ , (5.68)

where c is again the cut defined in eq. (5.44).

5.4 Definition of weak and QED corrections

In spite of the impossibility to disentangle the different contributions to the O(α) correc-
tions, it is of special interest to distinguish the genuine weak corrections from the large
and on experimental cuts dependent photon part. In fact, there is no unique way of doing
this. A naive treatment would be to take the pure virtual corrections and set the photon
mass equal to a typical scale of the corresponding process λ ≡ Q. However, this leaves
us with enhanced Sudakov double-logarithms log2 s

m2
e

from virtual soft-photons attached to

the incoming beams, which are cancelled anyway by the corresponding real, soft part (see
eqs. (5.34, 5.35)). Therefore, we take the sum of virtual and soft corrections and extract the
∆Eγ dependent terms as well as the contributions proportional to Le ≡ log s

m2
e
, stemming

from the collinear virtual+soft photons, eq. (5.63)

dσweak = dσvirt+soft(∆Eγ) −
α

π
dσtree

[
log

4∆E2
γ

s
(Le − 1 + ∆γ) +

3

2
Le

]
. (5.69)

The term ∆γ takes the cut-off dependent terms from final state radiation (FSR) and ISR-
FSR interference of eq. (5.25) into account. The sum dσtree + dσweak is identical to the
“reduced genuine SUSY cross-section” within the SPA convention [60]. The full corrected
cross-section can now be obtained by the sum

∫
dσcomplete =

∫ (
dσtree + dσweak

)
+

∫
dσnon−univ +

∫
dσuniv , (5.70)



56 Pair Production of Charginos and Neutralinos in e+e− collisions

with the non-universal QED corrections

∫
dσnon−univ =

∫
dσcoll+finite(∆Eγ) −

∫
dσuniv,1 +

α

π

∫
dσtree

[
log

4∆E2
γ

s
(Le − 1 + ∆γ) +

3

2
Le

]
. (5.71)

A second way to highlight weak corrections is to compare the complete corrected cross-
section (including the hard photon radiation) with an improved tree-level dσtree+univ that
already contains the universal QED corrections.

∫
dσcomplete =

∫
dσtree+univ +

∫
dσresidual , (5.72)

∫
dσresidual =

∫
dσweak +

∫
dσnon−univ . (5.73)

The advantage of such a definition is that it does not require a more or less superficial
splitting of virtual and real corrections. On the other hand, the “residual” corrections include
the non-universal QED corrections. They are in general small, but can be comparable to
the loop corrections, especially the ISR-FSR terms. Furthermore, it can be inconvenient for
technical reasons to include the hard bremsstrahlung process in the definition of a “weak”
correction.



Chapter 6

Numerical Results

With the tools developed in the last chapters, we are able to calculate observables for neu-
tralino and chargino pair production and give precise predictions for experiments at a future
linear e+e− collider (FLC) for a certain set of parameter input. Certainly, if SUSY is realized
in nature and is found at the FLC it will go the other way round, measuring observables
as masses and cross-sections and later on identifying the fundamental SUSY parameters by
comparison of measured and calculated results. However, beyond tree-level the definition of
the SUSY Lagrangian parameters is not unique but depends on the chosen renormalization
scheme. Therefore, the SPA project [60] was established to provide a well defined theoretical
framework, including a consistent set of definitions and input parameters. Furthermore, a
certain SUSY scenario, the CP and R-parity conserving reference point SPS1a′ was proposed
to test computer programs in practice. In our numerical analysis, we therefore concentrate
especially on the SPS1a′ scenario. It is close to the original Snowmass SPS1a benchmark
point but with slight changes to be compatible with all available precision data and actual
mass and cosmological bounds. More details, like the complete list of parameters and how
they are adopted to serve as input for the applied renormalization scheme can be found in
the appendix.
Since we use an on-shell renormalization, the appropriate tree-level for the one-loop calcu-
lation is given in terms of on-shell parameters. On the other hand, our original input is the
SPS1a′ scenario, defined in terms of DR parameters fixed at the scale M̃ = 1 TeV. We there-
fore show the corrections relative to the tree-level in the SPA convention, i.e. calculated in
terms of on-shell masses and DR values for all couplings. Using this tree-level definition, the
relative corrections are the same compared with those calculated in other renormalization
schemes, up to terms of higher order. For this purpose the used DR value at M̃=1 TeV of
the fine structure constant is α = 1/124.997.
In the presented numerical results, we use for the charge renormalization the αeff(mZ)|MS

scheme for neutralino production and the GF scheme for chargino production, as discussed
in section 3.3. In our numerics, ∆r contains the full MSSM one-loop corrections [61] and
the leading two-loop QCD corrections [62]. By calculating the same cross-section in both
schemes, we find good agreement within a few per-mill in the final results.
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6.1 Chargino Production

Fig. 6.1 shows the total cross-section for all three channels of chargino pair production in
the SPS1a′ scenario. The dotted curve depicts the tree-level in the SPA convention. The
dashed and solid lines show the tree-level result together with weak and accordingly with
full corrections.
Due to the large difference between the parameters M and µ, the χ̃±

1 is mainly a wino
and the χ̃±

2 nearly a pure higgsino. The tree-level diagram with photon-exchange only con-
tributes for diagonal chargino production channels. To a large extent this is also valid for
the Z-exchange, snce the wino and the higgsino mix only slightly. In the t-channel sneutrino
diagram, only the Wino component of the charginos contributes. Thus we see the typi-
cal behaviour of the three production channels. Large cross-sections for the diagonal pair
production and a suppressed off-diagonal χ̃−

1 χ̃
+
2 . Due to the CP-invariance of the SPS1a′

scenario, the coss-section of the production processes e−e+ → χ̃−
1 χ̃

+
2 and e−e+ → χ̃+

1 χ̃
−
2 are

identical, therefore only the former ones is shown.
In Fig. 6.2 the complete corrections relative to the improved tree-level, where ISR is already
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Figure 6.1: Total cross-sections for chargino pair production at tree-level {dotted}, with
weak {dashed}, and with complete corrections {solid}.

included, are plotted. Since the soft-photon pole is already absorbed into the tree-level,
we observe moderate corrections even near the threshold. Comparing the various correc-
tions to the total tree-level cross-section for the different production channels Figs. 6.3 and
6.4 some common characteristics can be recognized. Near the threshold the negative soft-
photon contributions dominate. Far away from the threshold, the positive universal QED
corrections partially cancel the large and negative weak contributions. The almost constant
non-universal QED corrections are small and in comparison with other corrections often
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Figure 6.2: Complete corrections relative to the improved tree-level above the particular
production threshold.

negligible. Due to the marginal non-universal QED corrections, the differences between the
two proposed ways to highlight “genuine weak” corrections are quite small. However, this
does not have to be true any longer if cuts on the phase space are applied or distributions
in particle energies or scattering angles are discussed.
Moreover, we present results for the left-right asymmetry ALR of chargino production

in Fig. 6.5. The kinks in the lines can be traced back to so-called normal and anomalous
thresholds. They occur for special combinations of masses in the propagators of a Passarino-
Veltman integral.
In Fig. 6.6 the forward-backward asymmetry at tree-level, and with weak and complete

corrections included, is shown. Furthermore, the relative corrections to the tree-level in SPA
convention are depicted. Both asymmetries obtain sizeable corrections for all three produc-
tion channels. At last, Fig. 6.7 provides an interesting view on the hard bremsstrahlung
process

e−e+ → χ̃−
1 χ̃

+
1 γ . (6.1)

The differential cross-sections dσfinite

dEγ
(∆Eγ ,∆θγ , Eγ) and dσfinite

d cos θγ
(∆Eγ ,∆θγ , cos θγ) are pre-

sented. To avoid mass singularities the angular and energy cuts of θγ > 5◦ and Eγ > 5 GeV
have to be imposed. The two figures impressively demonstrate the singular behaviour in the
soft-photon limit Eγ → 0 and near the collinear region cos θγ → ±1.
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Figure 6.3: Radiative corrections for chargino pair production. The {full, dashed, dotted,
dash-dotted} line corresponds to the {complete, weak, non-universal QED, universal QED}
corrections to the total tree-level cross-section.
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Figure 6.4: Radiative corrections for chargino pair production. The {full, dashed, dotted,
dash-dotted} line corresponds to the {complete, weak, non-universal QED, universal QED}
corrections to the total tree-level cross-section.
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Figure 6.5: Radiative corrections for chargino pair production. Complete corrections to ALR

for all three chargino pair production channels.
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Figure 6.6: Top: Forward-backward asymmetry for chargino pair production at tree-level
{dotted}, with weak {dashed}, and with complete corrections {solid}. Bottom: Complete
corrections to AFB.
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Figure 6.7: Distribution in the photon energy Eγ and in the photon angle cos θγ for e−e+ →
χ̃−

1 χ̃
+
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√
s = 1 TeV. We have imposed angular and energy cuts of θγ > 5◦ and Eγ > 5

GeV.
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6.2 Neutralino Production

The gaugino and higgsino characters of the four neutralino mass eigenstates within the
SPS1a′ scenario are

χ̃0
1 : 98% bino , χ̃0

2 : 92% wino and 7% higgsino ,

χ̃0
3 : 99% higgsino , χ̃0

4 : 92% higgsino and 7% wino ,

calculated from the corresponding absolute-squared of the neutralino rotation matrix entries
|Nij |2. Please note, that the entries of Nij and thus the neutralino characters are renormal-
ization scheme dependent. The given results are the values in the DR scheme and differ
from those in the on-shell scheme at O(α). The lightest neutralino is nearly a pure bino, the
second one a neutral Wino with a small higgsino component and the two heavier states are
higgsino dominated. This is typical for a mSUGRA motivated MSSM scenario.
At tree-level, the s-channel diagram with Z-exchange couples only on the higgsino compo-
nents, and the t-channel selectron diagrams are pure gaugino contributions.
Let us consider the higgsino-Z coupling in more detail. The corresponding term in the
Lagrangian has in the Weyl fermion gauge-eigenstate basis ψH = (ψ1

H1
, ψ2

H2
) the form

L ∝
[
ψ1
H1
σµψ̄1

H1
− ψ2

H2
σµψ̄2

H2

]
Zµ . (6.2)

As one can see a cancellation between the two higgsino contributions occur. In the pure
higgsino limit, where the mixing between gauginos and higgsinos is negligible, the higgsino
mass matrix is of the form

YψH
=

(
0 −µ
−µ 0

)
, (6.3)

and the mass eigenstates denoted as χ0
3,χ

0
4 (both with positive mass eigenvalue µ) are given

by the linear combinations

χ0
3 =

i√
2
(ψ1

H1
+ ψ2

H2
) , χ0

4 =
1√
2
(ψ2

H2
− ψ1

H1
) . (6.4)

Inserting the mass eigenstates into the Lagrangian yields, that only the off-diagonal cou-
plings remain and the diagonal ones are cancelled completely

L ∝
[
χ0

3σ
µχ̄0

4 − χ0
4σ

µχ̄0
3

]
Zµ . (6.5)

This implicates that in the higgsino limit, the diagonal higgsino production is a pure loop-
induced process.
In our discussed scenario the two heavy neutralinos are not pure higgsinos but slightly
mix with the gauginos and thus only a partial cancellation takes place in the diagonal
case. Nevertheless, the total cross-sections for the diagonal higgsino production channels
e+e− → χ̃0

i χ̃
0
i , with i = 3, 4 are below 1 fb and thus neglected in the following numerical

analysis. Due to the large cancellation at tree-level, that no longer occurs in higher orders,
the one-loop corrections are in the range of 30% or higher even below

√
s = 1 TeV. Therefore,

it would be necessary to include the one-loop squared matrix element |M1|2 in a consistent
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way to stabilize the result.
In the R-parity conserving MSSM, the χ̃0

1 is in most scenarios the lightest supersymmetric
particle (LSP) and thus stable to serve as a dark matter candidate. Therefore the χ̃0

1χ̃
0
1

production is of less phenomenological interest. The LSP’s just escape the detector and the
only signal is missing energy. So besides the higgsino channels also the χ̃0

1χ̃
0
1 production is

omitted in the numerics.
Fig. 6.8 shows the total cross-sections for the remaining production processes: The tree-
level approximation in the SPA-convention as well as with weak and complete corrections
included. The Figs. 6.9 and 6.10 depict the individual contributions to the electroweak
corrections for selected production channels. The behaviour is quite similar to the chargino
case: The dominating soft-photon corrections near the threshold, partial cancellation of QED
and weak corrections for high energies, and the negligible non-universal QED corrections.
Conspicuously large are the weak corrections in the χ̃0

2χ̃
0
2 case, but this can be also traced

back to the significant higgsino component in the χ̃0
2 state. This leads again at tree-level

to a suppression of the Z-exchange diagrams and also a partial cancellation of the s and t
channel diagrams occurs.
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Figure 6.8: Total cross-sections for neutralino pair production at tree-level {dotted}, with
weak {dashed}, and with complete corrections {solid}.
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Figure 6.9: Radiative corrections for neutralino pair production. The {full, dashed, dotted,
dash-dotted} line corresponds to the {complete, weak, non-universal QED, universal QED}
corrections to the total tree-level cross-section.
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Figure 6.10: Radiative corrections for neutralino pair production. The {full, dashed, dotted,
dash-dotted} line corresponds to the {complete, weak, non-universal QED, universal QED}
corrections to the total tree-level cross-section.



Appendix A

Feynman-rules

A.1 Definitions

In this appendix we want to discuss the implementation of counter-terms necessary for this
thesis into the FeynArts package. The formulation of Feynman-rules within FeynArts can
be found in the corresponding program manual and in more detail in [63]. The Lagrangian
of a general field theory can be written in the form

L = c ϕi(x)vijϕj(x) + LI(ϕ) , (A.1)

where ϕ stands for all fields ϕi that appear in the Lagrangian and can be of different type.
The pre-factor c is c = 1

2
for real and c = 1 for complex fields. The propagator of a field ϕ

is defined to be the inverse of the matrix operator vij

∆ij(k) = i[v(k)]−1
ij . (A.2)

A general term in the interaction Lagrangian LI can have the form

LI = αi1...in(∂i1 , . . . , ∂in)ϕi1(x) . . . ϕin(x) , (A.3)

with ∂i = ∂ϕi

∂x
. The coupling C is defined as the Fourier transform of the coefficients in

eq. (A.3)

C(ϕi1 . . . ϕin) = i
∑

{1,...,n}
(−1)P α̃i1...in(−ik1, . . . ,−ikn). (A.4)

The overall-factor (2π)4δ4(k1+. . .+kn) that respects the momentum conservation is omitted
in this definition. Notice, that all momenta are defined as incoming. The sum runs over all
permutations of the indices and P denotes the sign of a permutation of anti-commuting fields
among the ϕi. The coupling C is further separated in a momenta-dependent kinematical
part ~Γ that contains the Lorentz and Dirac-structure and a coupling “constant” ~G. Both are
vector-valued quantities. The kinematical part purely depends on the generic structure of
the coupling, i.e. on the type of fields that are involved. The coupling C can thus be written
as

C(ϕi1 . . . ϕin) =
(
~Gϕi1

...ϕin

)T
. ~ΓT (ϕi1

)...T (ϕin )(k1, . . . , kn) , (A.5)
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where T (ϕ) is the generic type of the field ϕ. The kinematic couplings that are of interest
in order to introduce the necessary counter-terms are

~ΓFFVµ =

(
γµ PL
γµ PR

)
, (A.6)

~ΓFFS =

(
PL
PR

)
, (A.7)

~ΓSS =

(
k1.k2

1

)
, (A.8)

~ΓVµVν =




gµν(k1.k2)
gµν

k1µ.k2ν


 , (A.9)

with k1µ = −k2µ. The abbreviations F, S, Vµ denote fermions, scalars and vector fields, re-
spectively. A complete list can be found in the FeynArts manual.

A.2 Counter-term Lagrangian

The counter-term Lagrangian LCT is as usually obtained by splitting the “bare” parame-
ters in the tree-level Lagrangian into renormalized ones and the corresponding renormal-
ization constants, as discussed in chapter 3, and linearly expand the result. The required
counter-term Lagrangian for neutralino and chargino pair production is given together with
the corresponding tree-level Lagrangian (if existent) as follows. First we consider the SM
fermion-neutral gauge boson vertex. The coupling constants are

Aµ , Zµ

f̄

f

=


 GL

ffV

GR
ffV




T

· ~ΓFFVµ

GL/RffA = −ieQf

[
1 +

δe

e
+

1

2
δZAA + δZ

L/R
f

]
− ie g

L/R
f

1

2
δZZA , (A.10)

GL/RffZ = −ie gL/Rf

[
1 +

δe

e
+
δg

L/R
f

g
L/R
f

+
1

2
δZZZ + δZ

L/R
f

]
− ieQf

1

2
δZAZ , (A.11)
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with

gLf =
I3L
f −Qfs

2
W

sW cW
, gRf = −Qf

sW
cW

, (A.12)

δgLf = −gLf
(
δsW
sW

+
δcW
cW

)
− 2QfδsW

cW
, δgRf = gRf

(
δsW
sW

− δcW
cW

)
. (A.13)

The χ̃−
i χ̃

−
j V vertex has similar structure, but the chargino mixing has additionally to be

taken into account. The couplings we derived are

Aµ , Zµ

¯̃χ
−
i

χ̃−
j

=




GL
χ̃−

i χ̃−

j V

GR
χ̃−

i χ̃−

j V




T

· ~ΓFFVµ

GL
χ̃−

i χ̃
−

j A
= ie

[
δij(1 +

δe

e
+

1

2
δZAA) +

1

2
δZ̃−,L

ij +
1

2
(δZ̃−,L

ji )∗
]
− ie

Uij
sW cW

1

2
δZZA ,(A.14)

GL
χ̃−

i χ̃
−

j Z
= − ie

sW cW

[
Uij
(

1 +
δe

e
− δsW

sW
− δcW

cW
+

1

2
δZZZ

)
+ δUij

+

2∑

k=1

1

2

(
δZ̃−,L

kj Uik + (δZ̃−,L
ki )∗Ukj

)]
+ ie δij

1

2
δZAZ , (A.15)

GR
χ̃−

i χ̃
−

j V
= GL

χ̃−

i χ̃
−

j V
(L→ R,Ulm → Vml) , (A.16)

and

δUij = δijδs
2
W − δUi1U

∗
j1 − Ui1δU

∗
j1 −

1

2
δUi2U

∗
j2 −

1

2
Ui2δU

∗
j2 , (A.17)

δVij = δUij(U → V ) . (A.18)

Although neutralinos do not couple with photons at tree-level, the photon-Z boson mixing
has to be taken into account at one-loop level. Thus we find

GLχ̃0
i χ̃

0
jA

= −ie Nij

sW cW

1

2
δZZA , (A.19)

GLχ̃0
i χ̃

0
jZ

= − ie

sW cW

[
Nij

(
1 +

δe

e
− δsW

sW
− δcW

cW
+

1

2
δZZZ

)
+ δNij

+
4∑

k=1

1

2

(
δZ̃0,L

kj Nik + δZ̃0,R
ki Nkj

)]
, (A.20)

GRχ̃0
i χ̃

0
jV

= −GLχ̃0
i χ̃

0
jV

(L→ R,Nlm → Nml) , (A.21)
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Aµ , Zµ

χ̃0
i

χ̃0
j

=




GL
χ̃0

i χ̃
0

jV

GR
χ̃0

i χ̃
0

jV




T

· ~ΓFFVµ

with

δNij =
1

2

(
δNi3N

∗
j3 +Ni3δN

∗
j3 − δNi4N

∗
j4 −Ni4δN

∗
j4

)
. (A.22)

(A.23)

The fermion-sfermion-chargino/neutralino couplings are more involved, and therefore we
give here only the results for those vertices with leptons. For charginos this is the χ̃−

i lν̃l
vertex. The coupling constants are given by

ν̃l

χ̃−
i

l̄

=




GL
χ̃−

i lν̃l

GR
χ̃−

i lν̃l




T

· ~ΓFFS

GL
χ̃−

i lν̃l
= iYl

[
U∗
i2

(
1 +

δYl
Yl

+
1

2
δZR

l +
1

2
δZ ν̃l

)
+ δU∗

i2 +
1

2

2∑

k=1

δZ̃−,L
ki U∗

k2

]
(A.24)

GR
χ̃−

i lν̃l
= −i e

sW

[
Vi1

(
1 +

δe

e
− δsW

sW
+

1

2
δZL

l +
1

2
δZ ν̃l

)
+ δVi1 +

1

2

2∑

k=1

δZ̃−,R
ki Vk1

]
,

(A.25)

whereas Yl is the leptonic Yukawa coupling

Yl =
eml√

2mW sW cos β
, (A.26)
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with the variation

δYl = Yl

(
δe

e
+
δml

ml

− δsW
sW

− δmW

mW

− δ cosβ

cosβ

)
. (A.27)

In case of the first generation the Yukawa part can be safely neglected, due to the vanishing
electron mass. The conjugate coupling with an incoming lepton and an outgoing chargino
is obtained by the interchange

iGL
χ̃−

i lν̃l
↔ (iGR

χ̃−

i lν̃l
)∗ . (A.28)

The χ̃−
i lν̃l vertex has a much richer structure, due to the selectron LR-mixing and the

neutralino Majorana-nature

l̃j

χ̃0
i

l̄

=




GL
χ̃0

i ll̃j

GR
χ̃0

i ll̃j




T

· ~ΓFFS

GL
χ̃0

i ll̃j
= −i

[(
YlN

∗
i3R

l̃∗
j1 +

√
2
e

cW
N∗
i1R

l̃∗
j2

)(
1 +

1

2
δZR

l

)
+ (A.29)

YlN
∗
i3R

l̃∗
j1

(
δYl
Yl

+
δN∗

i3

N∗
i3

+
δRl̃∗

j1

Rl̃∗
j1

)
+

√
2
e

cW
N∗
i1R

l̃∗
j2

(
δe

e
− δcW

cW
+
δN∗

i1

N∗
i1

+
δRl̃∗

j2

Rl̃∗
j2

)
+

1

2

4∑

k=1

δZ̃0,L
ki

(
YlN

∗
k3R

l̃∗
j1 +

√
2e

cW
N∗
k1R

l̃∗
j2

)
+

1

2

2∑

k=1

δZ f̃
kj

(
YlN

∗
i3R

l̃∗
k1 +

√
2e

cW
N∗
i1R

l̃∗
k2

)]
,

GR
χ̃0

i ll̃j
= −i

[(
YlNi3R

l̃∗
j2 −

e N̄iR
l̃∗
j1√

2sW cW

)(
1 +

1

2
δZL

l

)
+ (A.30)

YlNi3R
l̃∗
j2

(
δYl
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+
δNi3

Ni3
+
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Rl̃∗
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)
− e N̄iR
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2sW cW

(
δe

e
− δsW

sW
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+
δN̄i

N̄i

+
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+

1

2

4∑

k=1

δZ̃0,R
ki

(
YlNk3R

l̃∗
j2 −

e N̄kR
l̃∗
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2sW cW
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+

1

2

2∑
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δZ f̃
kj

(
YlNi3R

l̃∗
k2 −

e N̄iR
l̃∗
k1√

2sW cW

)]
,

with

N̄i = Ni1sW +Ni2cW , δN̄i = δNi1sW +Ni1δsW + δNi2cW +Ni2δcW . (A.31)
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The complex expression is significantly reduced in the limit for vanishing Yukawa couplings
and furher neglect of the L-R mixing, which is a valid approximation for the first generation
(s)electrons. The conjugate coupling with an incoming lepton is again obtained by the
interchange

iGL
χ̃0

i ll̃j
↔ (iGR

χ̃0
i ll̃j

)∗ . (A.32)

Besides the latter discussed vertex corrections, counter-terms to the intermediate sfermion
and gauge boson propagators have to be considered. Their task is to include the necessary
mass counter-terms of the intermediate particles and to cancel the corresponding wave-
function corrections, included in the vertex corrections. The bilinear tree-level Lagrangian
for generic mixing scalar fields ϕi (after diagonalization) can be written as

Lbϕ = −ϕ∗
i δij

(
∂µ∂

µ +m2
ϕi

)
ϕj . (A.33)

Introducing the renormalization constants yields

f̃j f̃i = (~Gf̃j f̃i
)T · ~ΓSS

~Gf̃j f̃i
= − i

2

(
δZ f̃

ij + (δZ f̃
ji)

∗

2δijδm
2
f̃i

+m2
f̃i
δZ f̃

ij +m2
f̃j

(δZ f̃
ji)

∗

)
. (A.34)

The bilinear neutral gauge boson Lagrangian is given by the sum of a “classical” and a
“gauge-fixing” part

LbV = Lbcl + Lbfix , (A.35)

Lbcl =
∑

V=A,Z

[
−1

4
(∂µVν − ∂νVµ)(∂

µV ν − ∂νV µ) +
m2
V

2
VµV

µ

]
, (A.36)

Lbfix =
∑

V=A,Z

[
− 1

2ξV
(∂µV

µ)2

]
, (A.37)

where we used for the gauge-fixing a general RξV gauge. The counter-terms to the gauge
parameters δZξV are fixed in such a way that the gauge-fixing Lagrangian Lfix remains
unchanged. In other words, the renormalized Lfix has tree-level form in terms of renormal-
ized parameters. Afterwards we put ξ = 1 for calculations in the Feynman-t‘Hooft gauge,
resulting in

Vµ V ′
ν = (~GV V ′)T · ~ΓVµVν

~GAA = i




δZAA
0

−δZAA


 , ~GZZ = i




δZZZ
m2
ZδZZZ + δm2

Z

−δZZZ


 , (A.38)

~GAZ =
i

2




δZZA + δZAZ
m2
ZδZZA

−δZZA − δZAZ


 . (A.39)



Appendix B

Reference Point SPS1a′

The SPA convention defines a clear theoretical framework for precision calculations within
supersymmetric extensions of the SM, in particular the MSSM. It will serve to extract the
fundamental supersymmetric Lagrangian parameters including the SUSY-breaking param-
eters from future data.
The SM input is fixed by the values given in table B.1. The reference point SPS1a′ is pro-
posed within the SPA project as a benchmark point to test the currently available and future
tools for a supersymmetry parameter analysis. It is defined by a full set of DR parameters
of the CP and R-parity conserving MSSM fixed at the scale M̃=1 TeV, shown in Tab. B.2.
The two vacuum expectation values v1, v2 can be deduced from

tanβ =
v2

v1

, v2 = v2
1 + v2

2 . (B.1)

The DR masses of the gauge bosons and the third generation SM fermions are determined
by

m2
W =

1

4
g2v2 , m2

Z =
1

4
(g2 + g′2)v2 , (B.2)

and

mt =
1√
2
Ytv2 , mb =

1√
2
Ybv1 , mτ =

1√
2
Yτv1 . (B.3)

The SPS1a′ reference point was originally calculated from the following mSUGRA parame-
ters:

M1/2 = 250 GeV sign(µ) = +1

M0 = 70 GeV tan β(M̃) = 10
A0 = −300 GeV

(B.4)

They have been chosen in such a way, that the SPS1a′ scenario is compatible with all high-
energy mass bounds and with the low-energy precision data, as well as with the available
cosmological data. With the help of RGE’s the mSUGRA parameters are evolved from the
unification scale down to 1 TeV using W. Porod’s Spheno 2.2.2 [64]. One reason, why the
extensive MSSM parameter set serves as SPS1a′ definition instead of the small mSUGRA
one is quite simple. The current deviations between different available computer codes, cal-
culating the low-scale parameters from the GUT parameters are not acceptable for precision
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me 5.110 10−4 mt 178.0
mµ 0.1057 mb(m

2
b) 4.2

mτ 1.777 mZ 91.1876
mu(Q

2) 3 · 10−3 GF 1.1664 ·10−5

md(Q
2) 7 · 10−3 1/α 137.036

ms(Q
2) 0.12 ∆α

(5)
had(m

2
Z) 0.02769

mc(m
2
c) 1.2 αMS

s (m2
Z) 0.119

Table B.1: Numerical values of the SM input according to the SPA convention. Masses are
given in GeV, for the leptons and the t quark the pole masses, for the lighter quarks the
MS masses either at the mass scale itself, for c, b, or, for u, d, s, at the scale Q = 2 GeV.

P DR P DR

g′ 0.36355 M ′ 103.22

g 0.64809 M 193.31

gs 1.08419 M3 572.33

Yτ 0.10368 Aτ −445.5

Yt 0.89828 At −535.4

Yb 0.13575 Ab −938.5

M2
H1

2.5586 · 104 M2
H2

−1.4820 · 105

µ 402.87 tan β 10.0

v 242.86 mA0 377.13

P DR P DR

M2
L̃1

3.2853 · 104 M2
L̃3

3.2215 · 104

M2
Ẽ1

1.3360 · 104 M2
Ẽ3

1.2066 · 104

M2
Q̃1

27.758 · 104 M2
Q̃3

22.208 · 104

M2
Ũ1

25.774 · 104 M2
Ũ3

14.791 · 104

M2
D̃1

25.550 · 104 M2
D̃3

25.134 · 104

Table B.2: The SPS1a′ DR Lagrangian parameters at the scale M̃ = 1 TeV (mass units in
GeV). In addition, the Higgs mass mA0 and the vacuum expectation value v are given in
the DR scheme.

studies. For such a comparison of different programs, we refer to [65].
The SPS1a′ input needs to be adjusted to be compatible with the on-shell renormalization
scheme used in this thesis. First of all, a translation from the SUSY DR parameters P(M̃)
to our on-shell definition POS has to be performed by subtraction of the finite parts of the
corresponding on-shell counter-terms δ1P(M̃)

POS = P(M̃) − δ1P(M̃ ) . (B.5)

The used values in this work can be seen in table B.3. For all other parameters that are
free of renormalization conditions, the DR or on-shell values can be used. The difference
is of higher order for the current processes. These on-shell parameters now serve as input
of our used renormalization procedure. For example to calculate the on-shell masses of the
SUSY partners, as depicted in the “lower way” of Fig. B.1. Please note, that before the
diagonalization of the on-shell mass matrix the finite mass-shifts ∆M have to be taken into
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P OS

M ′ 100.32

M 197.03

µ 399.94

tan β 10.31

MẼ1
117.71

ML̃1
183.98

M DR OS M DR OS

mχ̃±

1
181.0 184.2 mχ̃0

1
100.7 97.75

mχ̃±

2
423.4 421.1 mχ̃0

2
181.4 184.4

mẽL
186.9 190.1 mχ̃0

3
408.6 406.9

mẽR
123.6 125.2 mχ̃0

4
423.0 419.6

mν̃e 169.9 172.8

Table B.3: Parameters of the SPS1a′ scenario in the on-shell scheme and the corresponding
DR and on-shell particle masses.

SPA input =


 m11 m12

m21 m22




DR

diag 
 m1 0

0 m2




DR

= DR masses

δ1 δ2

On-shell input =


 M11 M12

M21 M22




OS

diag

∆M


 M1 0

0 M2




OS

= Pole masses

Figure B.1: Two different ways from DR parameters to on-shell masses.

account, as discussed in chapter 3. An independent check can be done by following the
“upper way” of Fig. B.1. After diagonalization of the DR mass matrix the on-shell masses
can be obtained by subtracting the finite parts of the on-shell mass counter-terms δ2mi(M̃)
from the DR masses. Both ways lead to the same mass eigenstates, certainly up to terms of
higher order. This non-trivial check has been performed for all SUSY particles.
Our effective charge renormalization procedures, discussed in chapter 3.3, need as input the
fine-structure constant α in the Thomson limit, the vacuum polarization ∆α

(5)
had and the

Fermi constant GF , which is consistent with the SM input, table B.1.
We use both gauge boson on-shell masses mZ and mW as input in contrast to the SPA
convention, where only mZ is given on-shell and the W -mass is calculated from GF and the
other parameters of the MSSM. For consistency with the SPA convention we thus use for
the numerical value of the W -mass not the measured quantity but the one derived within
the GF -scheme with Spheno 2.2.2 at the SPS1a′ benchmark point

mW = 80.4214 GeV . (B.6)



Bibliography

[1] S. Glashow, Nucl. Phys. 22 (1961) 579; S. Weinberg, Phys. Rev. Lett. 19 (1967) 1264;
A. Salam, in “Elementary Particle Theory”, ed. N. Svartholm, Almqvist and Wiksells,
Stockholm (1969), p. 367.

[2] M. Gell-Mann, Phys. Lett. 8 (1964) 214; G. Zweig, CERN-Report 8182/TH401 (1964);
H. Fritzsch, M. Gell-Mann and H. Leutwyler, Phys. Lett. B 47 (1973) 365; D. Gross
and F. Wilczek, Phys. Rev. Lett. 30 (1973) 1343; H.D. Politzer, Phys. Rev. Lett. 30

(1973) 1346.

[3] J. Ellis, S. Kelley and D.V. Nanopoulos, Phys. Lett. B 260 (1991) 131; U. Amaldi, W.
de Boer and H. Fürstenau, Phys. Lett. B 260 (1991) 447; P. Langacker and M. Luo,
Phys. Rev. D 44 (1991) 817; C. Giunti, C.W. Kim and U.W. Lee, Mod. Phys. Lett. A
6 (1991) 1745.

[4] E.W. Kolb and M.S. Turner, “The Early Universe”, Addison–Wesley, New York, 1990.

[5] D.N. Spergel et al. (WMAP Collaboration), Astrophys. J. Suppl. 148 (2003) 175.

[6] J. Wess and B. Zumino, Nucl. Phys. B 70 (1974) 39; J. Wess and B. Zumino, Nucl.
Phys. B 78 (1974) 1.

[7] J. Wess and J. Bagger, “Supersymmetry and Supergravity”, Princeton Series in Physics,
New Jersey, 1992.

[8] D. Bailin and A. Love, “Supersymmetric Gauge Field Theory and String Theory”, Adam
Hilger imprint, Bristol 1996.

[9] S. Martin, in “Perspectives on Supersymmetry”, Ed. G.L. Kane, World Scientific, Sin-
gapore, 1998 [arXiv:hep-ph/9709356].
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gasse 18, 1050 Wien, Tätigkeitsbereich: Modellrechnungen für LHC und den Linear
Collider im Rahmen des Supersymmetrie-Projektes



List of Publications
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