Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universitat Wien aufgestellt (http://www.ub.tuwien.ac.at)

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

TECHNISCHE UNIVERSITAT WIEN

DISSERTATION

Systematic Performance Analysis and Interpretation for
Parallel and Distributed Programs with Aksum

ausgefuhrt zum Zwecke der Erlangung des akademischen Grades eines
Doktors der technischen Wissenschaften unter der Leitung von

0. Univ.-Prof. Dipl. Ing. Dr. Thomas Fahringer
Institut fir Informatik, Leopold-Franzens Universitét Innsbruck

eingereicht an der Technischen Universitat Wien
Fakultat fur Informatik

von

Clovis Seragiotto Junior
Matrikelnummer: 0327222

Wien, am 12. Oktober 2005

Abstract

With applications growing more complex everyday, it becomes also more difficult to
understand the interaction between their components and the factors that are
responsible for loss of performance. An unmanageable number of variables may
affect and degrade the efficiency of an application, making it necessary to resort to
performance analysis tools in order to achieve even an acceptable level of
performance.

Performance analysis tools rely on instrumentation and monitoring tools to perform
measurements and collect data. Since two instrumentation tools seldom use the same
protocol to communicate with other tools or to represent the performance data
collected, integrating a performance analysis tool and an instrumentation/monitoring
tool may require a reasonable amount of time, implying dependence on a specific tool
and, in some cases, on a language or environment. In this dissertation, we propose a
standard format for both representation of performance data and communication with
instrumentation and monitoring tools. These formats are generic enough to allow their
use with several programming languages and paradigms, covering not only the
requirements of the current generation of performance tools, but also the capabilities
of instrumentation and monitoring tools available today, besides being platform
neutral.

We aso developed a fast and powerful instrumentation and monitoring engine for
Javathat makes use of the formats we proposed. Our tool, called Twilight, is based on
state-of-the-art technology for instrumenting and monitoring Java programs, allowing
both source code and bytecode instrumentation. Twilight has arich set of metrics; itis
written entirely in Java and provides high-level support for dynamic bytecode
instrumentation, presenting a view similar to the original source code that hides
details about the structure of the bytecodes instrumented. In addition, Twilight has full
support for distributed Java applications, providing useful performance metrics
specific for distributed programs.

Nevertheless, an instrumentation and monitoring tool provides only the means to
carry out the performance analysis of an application. It can easily generate an amount
of data that cannot be fully analyzed even by the most skillful performance analyst, a
situation that becomes far worse when one needs to compare the performance of
several executions. For this reason, we also created a sophisticated and highly
customizable performance analysis tool called Aksum, which allows one to generate
several experiments for different input parameters, decides automatically which
pieces of an application must be instrumented, and outputs a condensed yet significant
analysis of the application’s performance. By using JavaPSL, a Java-based language
we developed for specification of performance problems, Aksum alows one to
incorporate the definition of new problems that were not envisaged when Aksum was
developed. Aksum conducts the performance analysis in a systematic way using an
overhead classification system, and also interprets the performance data gathered by
the instrumentation tool; Aksum’s output is not simply a collection of charts or

absolute numbers, but normalized values that allow the easy identification of
problems that require immediate attention.

This dissertation also shows how the problem of performance analysis can be
formalized using reinforcement learning techniques, such formalization, which we
integrated into Aksum, can be used to justify many decisions taken by a tool for
automatic performance analysis.

Finally, we conducted several experiments using real-world applications, which
validated the ideas described in this work.

Acknowledgments

| express my gratitude to my advisor, Prof. Thomas Fahringer, who guided me until
this dissertation reached its final shape.

| thank the members of the Aurora research project and the staff of the Institute of
Scientific Computing for the help they provided over the last years.

Thanks are also due to the members of the APART research group, who helped me
especially during the design of instrumentation interfaces.

Contents

O g (oo [F o (oo OSSR 11
000 I Y/ o) £V 1 o o 12
1.2. Contributions Of ThiS TNESIS.......cccoiiiiiiee e 15
R O 1 11 1 17

12281, o o L. ST 19
P20 I N o g 1] (= (1 = SSSSRN 19

2.1.1. Shared Memory SYStEMS......ccccvcvieiieciiccee e 19
2.1.2. Distributed-memory SYSIEMSccooereririiiiere e 23
2.2. Programming and Execution Models for Sequential and Parallel Processing..24
2.2.1. Message-passing MO ..o 24
2.2.2. FOrK-JOIN MOGEcccveeiie et 25
2.2.3. HYBrIAd MOGE ... 26
2.2.4. Generic Distributed Multithreaded Modelccooeveeiiiininie e 27
2.2.5. Data ParalleliSm MOdE!coooveieiieeeeceree e 28
2.3. PerformanCe ANalYSIS......ccve ittt 29
ZRC T DT - Y @] 1 1= o i o] o ISR 29
2.3.2. Transformation, Visualization, and Analysis of Performance Data........... 29
2.3.3. Temporal Performance Overheads.............ccoeverinineniiniecceese e 30
2.3.4. SOUrces Of OVEINEA.........cooueiiiiieeeee e 31

3. REGEA WOIK ...ttt sreenne e 35
3.1 Front-end INErfaCES.oceiiieece s 35
3.2. Tools for Automatic Performance ANalYSIScocovererererienieeiesese e 36
3.3, TOOISTON JAVAL....eeiiiiieieee et 39
3.4. Other Approaches for Performance ANalYSIS........ccovverereneeieeiese e 41

4. INStrumentation INLEITACEScceoveiiiiieee e e 43
4.1, SIR DESCIIPIION. ...cueitistiriesiieieeee ettt bbbt snesnenne s 44

4.1.1. TRE EIEMENE SIT ..ot e 44
4.1.2. The Elements group and inheritanCeccocovevenenenieeieienesesec e 44
4.1.3. The Elements unit and @li@S.........ccoccereeieriieiiineeesee e 45
4.1.4. The Elements codeRegion, callee, expression, loopControl, lower, upper,
stride, and SChEAUITINGcooiviicieccee e e 47
4.1.5. The Elements variable and variableRef ..o, 53
4.1.6. The Element 0CATONcooiiiiieiiieseee s 54
A.1.7. OPEN ISSUBS ...ttt sttt s e b b sie e sre e e e nneenns 54
A.2. EXAIMPIES......eiecee ettt sttt e re e nre e 55
4.2.1. MUItiple ASSIGNMENTS.......oiviiiiriiiieieeeee et 55
4.2.2. Inheritance and CONSLIUCLOIScocuireereeiierie et 55
4.2.3. If Constructs and FUNCiONS Calls.........ccoevveeeieereceseee e 56
4,24, LOOP CONSITUCES.....cvviiiieieiiiiesieeesieeesieessseessssesssssesssssesssssesssseessnsnesssenas 57
B @ | 2 S SPS 57
4.2.6. POINtEr FUNCLIONS ..ottt e 58
4.2.7. Overloaded FUNCHIONS.........cccviieieeieeieseee e 58

4.2.8. 10 StatementS and LOCALION.........coveeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee et 59

4.3. MIR DESCIIPLION ...ttt ettt sttt e snenne s 59

4.3.1. TNE SIR REQUESLccueiieeiiieee e e 62
4.3.2. The SNapshot REQUESL............coiririieeeeeres e 62
4.3.3. The Instrumentation REQUESLoccuveiiiiiieie e 64
4.3.4. The Control REQUESLoiiiirieieiee e 67
4.3.5. The Measurement DOCUMENT........cocoieiieeiienieseeiesee e 68
G Y = {0 £ SRR 70
A.3.7. IMBITICS ..ottt sttt b et b et st nre e 70
A4, SUMIMBIY ...eveteeteeiee st e st sie et se s b e e s s e e besee s seeab e e s e s se e s b e e s e nanenneenesnneeneenns 71
Modeling of performance data and problems............ccccveviievie e, 73
5.1. Experiment-related Dala...........cccorererirenirieieiese e 74
5.2. Filters and Statistics for Experiment-Related Data..........cccceevvevieciieevciecnieen, 76
5.3. Performance Property SpeCifiCationccccveverereneneneeeseeeeeee e 78
5.3.1. The Interface Property and the Abstract Class SmpleProperty................ 78
5.3.2. INEFTICIENCY .o e 79
5.3.3. L0a IMBDEIANCE.......ccuiiieiiiieeieeee e e 80
5.3.4. Temporal OVErNEAAS...........coceiiriririeeeiee e 82
I AV L= = o (0] 0= g =SSOSR 82
5.4.1. OverheadFOrANYEXECULIONc.ooiiiieiieeeeese e 83
5.4.2. NONSCA@DIHITY ...occuveiiieiie e 84
5.5. Property INSEANIELION.cooveiiiirie e 84
N IS W 1= SR 86
LS (W = 01 1 o S 87
6.1. SIR @Nd SIR REQUESES.......ccueeiieiesieerie ettt s 88
6.2. INStrumentation REQUESES..........cceiiiiririeneeieeeie et 90
6.2.1. Instrumenting SOUrce COUES.........cccvueiriieiiiciee e 90
6.2.2. Instrumenting Class FIlES..........ccciiiiieiiceee e 93
6.2.3. Dynamic Instrumentation Without XMLcccceoveiiiiieie e, 96
6.3. CONEIOl REQUESES.......coviieieiieieeesieste sttt 96
6.4. Performance Data and MELIICS........coovririiiiinisiereee e 96
6.5, SUMIMEAIY ...ttt r e e sne e n e e nreenneenne 98
T AKSUM . ettt ettt b et b et et r e e e e ae e 101
80 N (o g] = (S 101
7.2. The EXPeriment ENQINE.......ccviieiie et snne e 104
7.2.1. Application Files, Command Lines and Directories............ccocevvvrerennne 104
7.2.2. Application INput Parameterscceevveiiie e 106
7.2.3. Generation of Application INSLANCES.........cccovirerinereneeeeee e 108
7.2.4. Storing Application INStANCES........ccceeiiiiiie e 109
7.2.5. When the Instrumentation Takes PlaCe.........cccccevveveveeneeseseese e 109
7.2.6. Compilation and EXECULIONcceceeieeeiieeiieeieesreesieeseeesree e sseesneens 110
7.3. The Instrumentation and Monitoring ENGINE..........cccoverinerieeieenenesese e 110
7.3.1. The Engine for Static Instrumentation............ccccceevveeveesieenie s esee e 110
7.3.2. The Engine for Dynamic INStrumentationcoccvevevieeieneneneseeseenne 111
7.4. The SEarCh ENQINE......cc.oo ittt 113
7.5. The Instrumentation and Monitoring SYySeMcccovverererieierese e 114
7.5.1. Modification of Command Lines and Application Fles..........cccccceeeuneee 115
7.5.2. Creation of an ApPlICatioN VIEWccceeieieiinieneneseeeeee e 116
7.5.3. Providing Call StaCks.........ccoiviiiiiiiieiece e 117
7.5.4. Insertion of Probesin the AppliCationcocovverenienieeienesese e 117

7.5.5. Generation of Experiment-related Datain JavaPSL Format 118

8. A Learning Agent for Performance ANalYSISccocuveieeiiecieesie e 119
8.1, BACKGIOUNG......ccueiiiiirieeieieeeee ettt 119

G O I o 1< o | £ TS 119
8.1.2. ReiNfOrcemMent LEAIMNINGcovrereriereeieiesie s 120
8.1.3. Techniques for Solving Reinforcement Learning Problems.................... 123

8.2. Modeling Performance Analysis as a Reinforcement Learning Problem....... 124

8. 2.1, DEFINITIONS ...ttt sttt 125
8.2.2. States, ACtions, and REWAITS..........coocveeeiieieiee e eere e saeee e 127
8.2.3. Similarities and BIaSesS.........ccccvierriiriiiiereee e e 130

8.3, SUMIMAIY ...ttt r e an e e 131
O, EXPEITMENTS ... ciie ettt ettt st e e be e be e esb e e s reeebeesneeenteennneenreens 133
9.1. Static Analysis of Fortran AppliCaioNS..........cccooererereninenieieee e 133
9.1.1. LAPWO Material Science AppliCationccccveieeiieeeieeiieeiie e eses e 133
0.1.2. BD-PUC ...ttt e et ne e r e ae e e 137
0.1.3. BaCKWard PriCIiNG.....ccceciuieiieeiie e citeeseessiee e sree s sree e sreesneesseesnneens 138

9.2. Static Analysisof aJava APPlICALTONcceveiererirereeeee s 140
9.3. Dynamic Analysis of aJava AppliCation..........cccccveveeiieeiiecieesie e esee e 143
9.4. Dynamic AnalysisUsing aLearning Agentccccooevererereeneenene s 145
9.4.1. TeMPESE 1000......ccueeerereerieriesiestesieseseeeesee e ste e ssesse e sseeseessessessessessenes 145
O @ = I | 147
OO0 g Tox [T =T o] ISR 151
0 0 O 11] 11 14 o S 151
10.2. FULUIE WOTK ...ttt et 152
N 153
B. DTDSTOr SIR @0 MIRccuiiiiiiiieieesese e 157
C. SIR EXAMPIE ...ttt 161
D. A Framework for Solving Reinforcement Learning Problems............cccccvenee. 165
E. The FOrmat Of Class Fil€Suooieeiiece et 169
E.L DEfINITIONS. ...ceiiieieieee e e 169
E.2. ClasS FIl@ FOrMEL.........cccoeeeiieeee st 170
E.3. The Constant POOIccccoiiiiiiiinieieeeesee e e 171
E.4. Fields and MEthOOSccoveeiieiesiccie et 174
EL5. ATITDULES ...t s 176
E.6. Valid ClaSS FIlES......cceeieeeeceee ettt 181
E.7. Determining Successors and PredeCessors.... ..o vieevee e esieesie e 181
E.8. Detecting Natural Loops and Synchronized BIOcKS............ccocvieninciincniene 182

F. Bugs Found in the Java APl an Sun’sVirtual Machine..........ccccooveeeeveviieccieee, 185
G. OVErNEA PrOPEITIES. ...c.e ettt nne s 187

RE I EINICES. ...ttt ns s en s nsnn s snsnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn 198

1

I ntroduction

Technology advances constantly try to improve the performance of applications.
However, complex interactions between hardware and software (operating System,
libraries, and user application) commonly impose performance penalties that are
difficult to detect and to analyze. A lack of in-depth knowledge about the technologies
used and the abstractions they offer leads to underutilization of the hardware and
software resources of modern computers. This is especially true for parallel
architectures.

Historically, scientists have been responsible for testing innovative technology for
parallel computers. Scientific computing is characterized by an ailmost exclusive focus
on performance, which motivated the creation of new programming models in order
to make it possible to obtain the most performance with the minimum effort in new
computer architectures. Some of these models have offered powerful abstractions,
hiding aimost completely the underlying architecture from the programmer and
leaving most of the optimization work to compilers. HPF [59], for example, achieved
partial success, but even with support from industry and research, it has never become
predominant, mainly because it is too constrained in its data distribution features and
difficult to be supported by compilers and runtime systems, resulting in programs that
suffer from performance problems out of user’s control.

Although languages that emphasize productivity without sacrificing performance
are till focus of research (like Fortress [2] and Chapel [15]), interfaces like MPI [50]
became de facto standards, even though they represent “the assembler level of parallel
programming for networks of computers’ [93, 15]. Programming so close to the
machine level can potentially result in very fast applications, but also requires a deep
understanding of the computer architectures, how machines are connected, and how
software and hardware interact. This led to generations of biologists, physicists,
chemists, and many other researchers that have to spend a considerable amount of
their time to study and program complex computer architectures; consequently, tools
that help developers in analyzing the performance of their applications have grown in
importance.

For many researchers, however, especialy for those who only occasionally require
parallel computing facilities, the cost of parallel computersis prohibitive. On the other
hand, while users demand more computation power, studies have reported that
computers commonly have long idle times [1, 55]. In this context, distributed
computing represents a cost-effective alternative to dedicated paralel computers,
delivering great performance by using CPU cycles of idle machines, in extreme cases
even more than the most powerful parallel computers (SETI@home reports an
average of 60 Teraflops [32]). This fact, alied to the inherent distribution of certain
kinds of applications, the potential for incremental growth, and the possibility of
sharing data and expensive peripherals, contributed to the popularity of distributed
systems not only in research, but also in the industry.

12 1 Introduction

Despite its young age, Java has gained widespread acceptance as a development
language for distributed systems. Besides being secure, robust, portable, and
architecture neutral, Java has a built-in support for threads and synchronization,
achieving in some cases performance similar to C or C++ [83, 87]. Unfortunately,
many abstractions provided in Java are misused or misunderstood and, once again,
tools for the performance analysis of applications that use these abstractions became
extremely important, since the hidden complexity may create complicated interactions
that impose severe performance penalties.

The application’s user (who sometimes is also the application developer) is the
person who ultimately decides if the performance of the application is adequate or
not. In order to be useful and profitable, each application, whether an earthquake
simulator or a distributed chess game, has some performance requirements that must
be achieved. The classical approach for performance anaysis consists of several
cycles of running an application with a monitoring tool, analyzing the data the tool
generates, and modifying the application based on the analysis. This is a quite
mechanical, time-consuming, and tedious process, automating it, even partially, can
enormously accelerate the performance analysis. Nevertheless, the possibilities of
automation in severa steps of the analysis have been only partially or not explored.
For instance, traditional performance analysis tools are unable to combine and relate
performance data generated from multiple application executions with different input
parameters, and visualization tools do not scale well for long-running applications or
if there is large number of processorsinvolved [92, 108], overwhelming the user with
data and charts and leaving him or her their interpretation. Not unimportant is also the
ability of atool to adapt to new architectures or programming paradigms, and how
easy it isto incorporate knowledge into the tool.

The main goal of thiswork is to automate the analysis step, providing the user with
condensed yet useful information on which to ground changes in the application code
or execution environment that lead to improved performance. Paralel to the
development of this goal, we want to make the development of extensible
performance analysis tools in general easier, by proposing ideas and representations
that promote the integration between tools.

1.1. Motivation

Among the many still open problems in the field of automatic performance analysis,
we identified and selected some that we consider important, and directed our research
aiming to overcome them. Although we always focused on paralel and distributed
applications, many of the topics discussed here are also an issue in the anaysis of
sequential applications.

1. Complex integration of instrumentation/monitoring tools with performance
analysistools

Performance analysis involves reasoning about the structure of a program, collecting
performance data during the program’s execution (or executions), and analyzing the
data collected. Frequently there is already an instrumentation/monitoring tool that can
create a representation of the program structure, insert and remove code (probes) to
monitor the program, and monitor the program execution, generating the data needed.
Nevertheless, it is also often the case that such atool usesits own formats to represent
data or, even worse, that the representation, as well as the interfaces the tool offersto
communicate with other tools, depend on a specific environment or language.

1.1 Motivation 13

Integration with an instrumentation/monitoring tool is a time-consuming activity,
and deciding for one tool can mean a life commitment, potentially limiting or
hindering further developments in the future, for instance, if the
instrumentation/monitoring tool is discontinued, if it is not updated often, or if it is not
ported to some platform. Ideadly, it should be possible to add or replace an
instrumentation/monitoring tool with few or no changesin the rest of the system.

A performance analysis tool can therefore benefit from:

a standard representation for the program structure, not so detailed as an abstract
syntax tree generated by a compiler front-end but still with enough information to
allow sophisticated reasoning;

a standard representation for the performance data generated during the monitored
execution of the program; and

a standard set of requests and responses to be used in the communication between
performance analysis tool and instrumentation/monitoring tool.

Moreover, as we do not want to bind tools to any specific language or platform, the
format used in the representations, requests, and responses needs to be machine and
language neutral.

2. Knowledge about performance problems is difficult to integrate into
per formance analysistools

Although there are severa well-known formats to describe tracing and profiling
information such as SDDF (Pablo Self-Describing Data Format) [1], ALOG [58] or
Vampir Tracefile Format [98], there does not exist a generic way to describe
performance problems, which is important to build comprehensive performance
analysis tools that can be more easily adjusted for new programming languages and
computer architectures.

Most existing performance tools are limited to temporal or spatial overheads (e.g.
execution and communication times, cache misses) but do not provide higher-level
performance information such as performance properties (e.g. scaling behavior, load
imbalance). Tools frequently hard-code performance information, which is awkward
to be reused by other tools or to be extended for novel programming paradigms and
target machines. Additionally, performance information that is not normalized is
difficult to interpret and compare. For instance, absolute number of cache missesfor a
specific code region has very little meaning without being compared against cache-hit
counts for the same region.

A generic specification language for experiment-related data (e.g. information
about program versions, code regions, target machine, and profiling or tracing
information) and performance properties can be used as a standard performance
information interface to describe wide classes of performance problems for a large
variety of programming languages and target architectures. Such a language can be
used to build higher-level performance analysis technology that accesses experiment-
related data or performance properties in order to compute, for instance, new
performance properties. Finally, a generic specification language can aso be used by
other tools such as compilers or transformation tools to access performance
information in a portable way.

14 1 Introduction

3. Instrumentation and monitoring tools for Java are not portable or are based
on obsolete interfaces

Javais arelatively new language, but it has evolved with impressive speed compared
to other languages like C or Fortran. In the last ten years, Java has been constantly
corrected and improved; new features were introduced while superseded methods,
classes, and even complete APIs were deprecated and removed.

The profiler interface of Java was no exception. Introduced with Javaversion 1.1 in
1997, it was enhanced several times until, for reasons discussed in Chapter 2, it was
deprecated in September 29, 2004, when J2SE 5.0 was officially released. The new
APl introduced for monitoring and profiling is faster, more robust and portable,
attending the needs of modern applications. The old API, however, is still used in
several instrumentation, monitoring, and performance analysis tools. In fact, we do
not know of any tool that makes use of the new profiler API.

Profiler tools based on the old profiler API are subject to portability problems, as it
requires the use of C or C++. Moreover, many counters and timers (like the number of
times a thread entered a critical section, or the CPU time of an arbitrary thread) are
not available and must be programmatically determined. Finally, if one is interested
in some event in some specific piece of code, it is necessary to activate this event for
the entire application (which introduces a reasonable overhead) and filter the events
that refer to the region of interest. For example, a tool interested in entries and exits
only for amethod M in class C would be notified whenever any method in any classis
invoked or finishes.

The new profiler API can still be accessed using C and C++, but alarge subset of its
functionality is available aso through the Java APIs. Several counters and timers
were introduced, as well as the possibility of dynamically instrumenting class files,
which is useful if the source code is not available. In addition, with dynamic
instrumentation one can control where the code must be monitored and for how much
time, avoiding the “all or nothing” approach which was the only alternative prior to
J2SE 5.0. An instrumentation tool built using the new profiler APl is therefore
portable, simpler, and faster.

4. Performance analysis tools cannot compare several executions and are
difficult to extend and customize

There is no single technique that can be successfully applied to the performance
analysis of al sorts of programming models and languages. Unfortunately,
performance analysis tools usually alow only one technique to be applied; for
example, they provide either post-mortem or online analysis, or an analysis based on
either trace files or profiles. It is often aso the case that the algorithm a tool uses to
search for performance problems is so deeply “hardcoded” that the tool cannot be
easily extended (or it cannot be extended at all) to incorporate advances in the field of
performance analysis. Tools may also not alow the user to input knowledge about a
specific application to be analyzed, like code regions that are known to be free of
performance problems or that are likely to contain a performance problem.

Expert and non-expert users can therefore benefit from a customizable tool for
performance analysis into which knowledge can be plugged. Furthermore, as some
performance problems may require several executions of an application to be
identified (for instance, with different problem sizes, libraries, and execution
parameters), atool for performance analysis must allow the easy generation of several

1.2 Contributionsof ThisThesis 15

experiments for different input parameter values. This would also allow studying the
influence of different input parameters in the application’ s performance.

1.2. Contributionsof ThisThesis

We developed solutions for the problems pointed out above which were recognized in
the performance analysis community. Indeed, this thesisis based on articles published
since 2001 describing our contributions [38, 39, 126, 127, 128, 129, 130, 131].

1. Easer integration between instrumentation/monitoring tools and
performance analysistools

We created a rich XML-based representation of programs written in Fortran, Java, C,
and C++, which is suitable for performance analysis. Actually, this representation
uses many ideas common to procedural and object-oriented programming, and can be
extend to support other languages in the future. We also designed an XML-based
protocol for the communication between instrumentation/monitoring tools and
performance anaysis tools. Our design covers the typical operations present in
today’ s instrumentation tools and the needs of current performance analysistools.

We do not require that everything that can be described with our representation be
described, or that an instrumentation/monitoring tool fully support al of the possible
operations in the communication protocol we propose. For example, when generating
the XML representation from a binary file, less information will be available
compared to one generated form the source code. The representation in this case may
be extremely reduced, but it will till be valid.

We chose XML because it is language and platform independent and because there
is already extensive support for traversing XML documents in several languages.
With little or no effort, performance tools could change the target language or
platform, or even be extended to analyze and compare programs running in
heterogeneous environments.

2. Java-based language for specification of perfor mance bottlenecks

We developed a generic performance specification language based on Java for
modeling experiment-related data and performance bottlenecks in distributed and
paralel programs. This language employs several object-oriented concepts, like
polymorphism, abstract classes, and reflection, to describe performance problems.
Our language allows, for instance, to describe new problems based on existing ones
and to relate problems among each other. We aso defined some mechanisms, like
filter and statistics, to help in restricting performance analysis to specific experiment-
related data, and to compute statistics based on arbitrary sets of performance values.

3. A portable instrumentation/monitoring tool based on state-of-the-art
advancesto the Java platform

We developed Twilight, a tool for both static and dynamic instrumentation of Java
programs. To our knowledge, Twilight is the first instrumentation tool that makes use
of the instrumentation and monitoring features recently introduced to the Java
platform.

Twilight can parse Java source codes and instrument any code region with a single
entry point (multiple exit points are allowed). Class files (bytecodes) can also be
parsed and have instrumentation inserted or removed, with the advantage that the

16 1 Introduction

changed version can be dynamically reloaded. Twilight can measure several metrics,
some of them directly, using the new monitoring API (like the accumulated garbage
collection time or the accumulated time a thread has blocked to enter or reenter a
critical section), and some indirectly, through instrumentation of the Java APl (like
number of times a hash table was resized or time spent receiving messages in RMI
cals).

Twilight was designed to work in a distributed environment, alowing remote
connections from other tools. Such tools may be built in any language and run on any
platform, since all communication with Twilight uses the XML-based protocols
described above.

4. An extensible and customizable perfor mance analysis tool

We developed Aksum, a highly customizable and flexible system for semi-automatic
search of performance problems. In Aksum, the search for performance problems
(properties) is user-controllable by restricting the performance anaysis to specific
code regions, by creating new or modifying existing property specifications and
property hierarchies, by providing thresholds that define whether a property is critical,
and by indicating conditions under which the search for properties can stop. Based on
the performance properties that must be computed, Aksum automatically determines
the raw performance data to be collected and, if the user does not specify code regions
to look at, decides which code regions must be instrumented. Following the
recommendations of Pancake [108], Aksum allows the user to change the
“perspective” from which datais viewed and, through a filtering mechanism, examine
properties at various levels of detail.

Aksum can generate multiple experiments and compare their performance outcome,
thanks to an integrated experiment manager, which allows the user to provide a set of
input parameters (like problem and machine sizes, or options for the compiler) and
how they can be combined to generate several experiments. Since complex interaction
in the application may lead to livelocks or starvation, preventing the application’s
completion for some sets of input parameters, the experiment manager also alows
providing the amount of time an experiment has to finish.

Aksum supports currently Fortran and Java applications through interfaces with two
different instrumentation and monitoring systems. SCALEA [147] and Twilight
(Chapter 6). The modular architecture of our tool alows, however, the integration of
severa other instrumentation and monitoring toolsin arelatively easy way.

5. Systematic performance analysis based on overhead classification

There is a cause-consequence relationship between the overheads and the
performance problems that are commonly found in applications. Once this
relationship is known, it can be used to steer the process of performance analysis,
since it provides hints about which aspects of the analysis should be better explored
and which can be postponed. We studied this relationship and used it to guide the
process of searching performance bottlenecksin Aksum.

6. Interpretation of performance data

Many overheads found in an application are irrelevant for the performance, or are not
so important when compared to other overheads and to the problems that they cause
in the application performance. Nevertheless, tools for performance analysis usually

1.3 Outline 17

leave the interpretation of the performance data to the user: They provide severa
absolute numbers and charts but without indicating which of them require more
attention and without providing a way of comparing these number and charts with
each other.

In Aksum, performance data is always converted to a single value, called severity.
Severity values are built in such a way that larger values correspond to the most
severe problems, that is, atotal order relationship between the problems found can be
built using the severity values. Moreover, there are an upper and a lower bound for
severity values, which alows one to quickly estimate the magnitude and importance
of aproblem in the overall performance.

7. Performance analysis based on reinfor cement learning

We formalized several concepts used in performance analysis and used this
formalization to propose a new way of modeling the performance analysis problem
based on reinforcement learning. Reinforcement learning is a branch of artificial
intelligence based on trial-and-error and, therefore, well suited for solving inherently
empirical problems. At the same time, reinforcement learning has a strong theoretical
background that can be used to justify the pragmatic decisions taken during the
performance analysis of an application.

8. Improvement in the quality of the Java API and in the Java virtual machine

During the development of Aksum and Twilight, we could find several bugs in the
Java APl implementation and in the Sun’s Java virtual machine. We have always
submitted these bugs to Sun, and most of them were fixed. These bugs are listed in
Appendix F.

1.3. Outline
The rest of thisthesisis organized as follows:

Chapter 2 shows computer architectures and programming models at which our
work istargeted. We also define some terms used throughout the thesis.

Chapter 3 discusses some work related to ours, some of which served as source of
inspiration for many ideasin thisthesis.

Chapter 4 explains our proposal for XML-based interfaces for instrumentation tools
and their potential to reduce the effort to adapt performance analysistools.

In Chapter 5, we propose a powerful representation for performance data and
properties written in Java. The representation assumes the models outlined in Chapter
2. This chapter also shows how a normalized value can be computed for several
performance properties.

Chapter 6 shows a sophisticated instrumentation and monitoring tool for Java,
based on the ideas discussed in Chapter 4. The tool is based on some state-of-the art
advances in the Java platform.

Chapter 7 details our tool for semi-automatic performance analysis, Aksum: how it
systematically looks for performance problems in an application and how it interprets
the performance data collected in order to provide useful information to the user.

Chapter 8 introduces a new approach for improving the efficiency of
instrumentation and analysis using reinforcement learning techniques.

18 1 Introduction

Chapter 9 shows experimental results that illustrate the efficacy of our approach
using several real-world applications.

Chapter 10 summarizes and concludes the thesis, outlining future work.

M odel

New computer architectures and programming models are constantly being devel oped
or improved, while others are superseded and die out. In this chapter, we show current
trends and delineate the scope of our work by presenting an overview of computer
architectures found today and the programming models typical for such architectures.
We also define some terms common in the field of performance analysis that will be
used throughout our work, many of which common to several architectures and
programming models.

2.1. Architectures

Traditionaly, and specially when dealing with parallel computing, computer
architectures were classified using the taxonomy developed by Flynn [42]:

Single Instruction, Single Data (SISD) refers to conventional sequential machines;
given a stream of instructions and the data to be processed, these machines will
execute one instruction at atime, for asingle piece of data.

Single Instruction, Multiple Data (SIMD) refers to machines which can process
only one instruction atime, but for several pieces of data simultaneously.

Multiple Instructions, Multiple Data (MIMD) refers to machines able to execute
several instructions simultaneously for different (and possibly independent) pieces
of data.

This classification is of little help now, as multiple general-purpose processors are
dominant [23]. Moreover, most CPUs today include some degree of parallelism, like a
set of SIMD instructions or hyper-threading technology, which makes the term
“conventional sequential machine” sound not quite correct.

There has been some divergence when classifying system architectures, especially
those for high performance computing [7, 20, 23, 30, 43, 145]. The literature tries to
reflect the current trends in the market by employing several criteria, like memory
organization, type of interconnection, and programming model likely to be used in a
given architecture, but no consensus has been achieved yet, and some terms are
abused or loosely and subjectively employed. As new architectures come to the
market, current classifications need to be extended, adapted or relaxed; authors are
still debating about a taxonomy which is useful and where every architecture can be
unmistakably classified. In this work, we will adopt a generic model made up of
complete computers connected to each other through a communication network.
Some special cases of this model are discussed in the following.

2.1.1. Shared Memory Systems

A system with severa processors sharing a global address space is called a shared
memory [23], tightly coupled or multiprocessor system [144]. In particular, the
system is called symmetric multiprocessor, or SMP, if the cost of a memory accessis

20 2Model

the same for all processors in the system. In contrast, in a non-uniform memory access
(NUMA) system, each processor has a local memory and the cost of accessing the
memory varies depending on the access being local or not.

In an SMP system, the memory is usually connected to the processors through a
shared bus, as depicted in Figure 1(a). Since processors may access the bus only one
at atime, the bus may become a source of contention and cause the processors to stall.
For thisreason, SMP systems usually have a small number of processors.

The NUMA architecture, shown in Figure 1(b) has been designed to overcome the
scalability problem of SMP. In this architecture, each processor (or each small set of
processors) has its own local memory, which allows parallel accesses to the memory
as long as each processor does not access the local memory of other processes. The
hardware may provide avirtually or physically shared address space [23], but this task
may also be left to the software (the operating system kernel or a runtime library
routine) [132]. In either case, the system is aso called distributed shared memory
(DSM) system if coherent replication is also provided, that is, if the value obtained
when amemory location isread is the last value written to that location [23].

Processor . Processor Processor . Processor
| | | |
Cache Cache Cache Cache

Bus Memory Memory
Memory I nterconnection
(8) SMP system (b) NUMA system
Figure 1. Shared memory systems
»13 expander boards
M C | - C 1l s
o
M C | - C M| =
oy
o U
W C | - C M|
o
I :£ C C :%: g
- / - i E
=
PCI - ! PCl || &
o
A
PCI I = pet | |2

! “ZunFireplane Interconnect

Figure 2. Architecture of Sun Fire E25K

2.1 Architectures 21

Sun Fire E25K [136], illustrated in Figure 2, is an example of a NUMA shared-
memory system. It supports up to 18 board sets, each of which composed of a
memory/CPU board, an 1/0 board, and an expander board. Each memory/CPU board
contains 4 CPUs and a memory capacity of 64 Mbytes (16 Mbytes per CPU). All
board sets are connected to each other through three 18x18 crossbars Sun Fireplane
Interconnect, two of which responsible for keeping the memory coherence, and the
other responsible for data transfer between boards. A CPU/memory board has two
halves, and each half contains two CPUs. The latency (time for a single data item to
be delivered from memory to a CPU) depends on which memory bank is accessed,
and isshownin Table 1.

Owner of the memory bank accessed | Time and clock cycles

Same CPU 180ns, 27 cycles
The other CPU on the same half of | 193ns, 29 cycles
the board

A CPU on the other half of the board | 207ns, 31 cycles

A CPU on another board (data in the | 333ns, 50 cycles
coherence directory cache)

A CPU on another board (data not in | 440ns, 66 cycles
the coherence directory cache)

Table 1. Latency for Sun Fire E25K (best case)

Another example of a NUMA shared-memory system is the HP 9000 Superdome
[62], whose architecture is illustrated in Figure 3. The basic components in this
architecture are cells (or cell boards), crossbar backplanes, and 1/0 subsystems. The
system supports a maximum of 16 cells (eight in the left cabinet, eight in the right
cabinet), where each cell is an SMP with up to eight processors and 64 Mbytes of
memory. The four crossbars are fully connected to each other, and each of them is
connected to up to fours cell boards. All links have the same bandwidth and latency,
and three latency domains exist: cell local (memory and CPU on the same cell),
crossbar local (memory and CPU in different cells, but the cells are connected to the
same crossbar), and crossbar remote. Table 2 shows the average latencies for HP 9000
Superdome assuming an equally distributed traffic to all memory controllers.

Our third example of aNUMA system is the SGI Altix 3000 series [159]. C-Bricks,
M-Bricks, and R-Bricks are some of the basic components in this system. A C-Brick
is composed of two SMP nodes, each of which containing 2 processors and up to 16
Mbytes of memory. A M-Brick is like a C-Brick, but without processors, which
allows one to add more memory to the system without having to add more processors.
R-Bricks are routers connecting M-Bricks and C-Bricks in a fat-tree network
topology, as shown in Figure 4. This picture illustrates the current largest possible
configuration, with 128 C-Bricks (512 processors) represented as small squaresin the
center, circles representing R-Bricks, and lines representing the connection (cables)
between the bricks. The cables have different sizes, and the latency of memory
accesses depends on these sizes and on the number of routers needed to reach the
memory in another brick. Table 3 shows the maximum number of hops in the fat-tree
topology, as well as the bandwidth for NUMAIink™ 4, the technology used to

22 2 Mode

implement the network in SGI Altix 3700 Bx2, which is the newest model of the

series.

L-.ll.u._ _.a.__ﬁ.:“'

ADCE50IT)

Figure 3. Architectur e of HP 9000 Superdome

246ns
330ns
371ns
417ns

440ns

Number of CPUs | Time

16
32

128

Table 2. Average latenciesfor amemory accessin HP 9000 Superdome

Y/

AN
W/ A\
000 0

\

\2_1_5

gy

N/ M

”Mm,«s\\\%
i
o

<o
x«r

/
1

I

/W5 N
K/ AN NN\ TR

W

ANNUIRW (N

gy

\|

Wy

O/ oA.vo"%o"”"‘
NGRS 16) AR
r”‘z«« /

e».

N
A
//

N
L
N, AN IIEIIN
AN N\ a8/ T)

S

Level 2 Router

r dual " fat tree" interconnect topology in the SGI Altix 3000 series

CESSO

Figure 4. 512-pro

2.1 Architectures 23

Maximum number | Bandwidth Maximum number of
of processors (Mbytes/s/processor) | hops

16 1600 3

32 1600 4

64 800 4

128 800 5

256 800 5

512 800 7

Table 3. Bandwidth and maximum number of hopsfor NUMAIlink™ 4

The SGI Altix 3700 Bx2 is an example of a Massively Parallel Processing system
(MPP). MPPs “employ sophisticated packaging and a fast dedicated proprietary
network so that a very large number of processors can be located in a confined space
with high-bandwidth and low-latency communication.” [23] Although the first two
examples given aso fit in this definition, they are not considered MPPs (for instance,
in the list of the world's top 500 supercomputers [146]) because they were devel oped
and marketed for purposes other than high performance computing [30].

2.1.2. Distributed-memory Systems

A distributed memory system is made up of several complete computers connected
through some kind of scalable network, which is used in the communication between
the several processors and memories in the system [23]. Communication between
processors in different machines is done transmitting data from the memory of a
processor (the sender) to the memory of other processor (the receiver) through the
network. We will cal node any computer connected in the distributed memory
system, and use the term site to refer to some set of nodes. A site usually encompasses
the nodes that belong to a sub-network or organization.

Distributed memory systems may be built up from shared memory systems,
including MPPs. The Columbia Supercomputer [99], for example, is a distributed
memory system composed of thirteen SGI Altix 3700 and eight SGI Altix 3700 Bx2
(described above). Because it was built up from MPPs, the Columbia Supercomputer
is also considered an MPP, being currently ranked third on the list of the world’s top
500 supercomputers (June 2005).

Clusters represent a specia case of distributed-memory systems that use
standardized high-performance local area networks (LANSs) like Myrinet [97],
Infiniband [65], and QsNet [114], and commonly have a front end that “acts as an
intermediary between a collection of compute servers and a large number of users at
terminals or remote machines’ [23]. The term “cluster” is somewhat controversial: In
[7], the NUMA systems described in Section 2.1.1 are considered clusters as well,
whilein [30] it is advocated that the term cluster should be applied only to commaodity
clusters, which comprise exclusively “commodity computing subsystems and
commercia networks such that the computing nodes are developed and employed in
standalone configurations for broad (even mass) commercia markets and the
networks are dedicated to the private use of the cluster (non-worldly).” This
recommendation is adopted in the list of the world’ s top 500 supercomputers.

24 2 Modéd

Two subclasses of commodity clusters are particularly important: Constellations are
clusters where “there are more microprocessors in a node than there are nodes in the
commodity cluster” [30]; Beowulf clusters are clusters based on commodity off-the-
shelf hardware and open source operating system [9], although some authors also
consider it possible to have a Beowulf cluster that uses a commercial operating
system like Windows [139, 140].

The list of the world's top 500 supercomputers contains currently 304 clusters and
79 constellations (the remaining 117 computers are MPPs). MareNostrum [142], for
example, which is ranked fifth on the ligt, is the fastest supercomputer in Europe and
the fastest cluster in the world. MareNostrum is composed of 2406 IBM dual-
processor BladeCenter JS20 servers connected by a Myrinet network and using Linux
as operating system. Ranked 172nd on the same list is the fastest constellation in
Europe and fifth fastest constellation in the world, a Sun Fire 25K/6900 Cluster in the
RWTH Aachen University (not that it is not called Sun Fire 25K/6900 Constellation).
The system is built up from Sun Fire 25K servers (described in Section 2.1.1),
containing atotal of 672 processors.

In this work, we will employ the term cluster only to commodity clusters,
reserving the generic term distributed system to non-dedicated networks of
autonomous workstations, where computers may have owners, are not centrally
managed, and can be connected to each other not only through aloca area network,
but also through a metropolitan or wide area network (MAN/WAN), like the Internet.

2.2. Programming and Execution M odelsfor Sequential and Par allel
Processing

Fundamental for the programming and execution models used in this work is the
concept of process. A processis the abstraction of a program in execution, consisting
of an execution environment and one or more threads of control. The execution
environment contains resources and an address space that are shared among all the
threads, and also some resources which are private for each thread in the process, like
registers and the stack. The real implementation of threads in an operating system
may not reflect the abstraction above (notably in Linux), but this is not relevant for
our programming models.

2.2.1. M essage-passing M odel

In the message-passing model, there is a collection of single-threaded processes that
communicate with each other through explicit I/O operations (network transactions),
represented at the user level as send and receive operations. The send operation
“gpecifies a local data buffer that is to be transmitted and a receiving process
(typically on a remote processor)”, while the receive operation “specifies a sending
process and a local data buffer into which the transmitted data is to be placed” [23].
As shown in Figure 5, the matching send and receive cause a data transfer between
one process and the other.

In the context of this work, the message-passing model is represented by Fortran
programs written using MPI-1 (Message-Passing Interface version 1). MPI “specifies
the names, calling sequences, and results of subroutines to be called from Fortran
programs, the functions to be called from C programs, and the classes and methods
that make up the MPI C++ library” [50].

2.2 Programming and Execution Models for Sequential and Parallel Processing 25

In MPI-2, it is also possible to make use of shared memory and have multiple
threads of execution, but we will not cover these cases. With MPI-1, a fixed number
of identical processes, which operate on different pieces of data, is created at startup;
new processes are neither created after the startup nor destroyed before the program
ends. Such programs are referred to as SPMD (single program multiple data).

Receive Y
from P
match
Address Y
Send Xto Q
Address X Local process
Local process address space
address space
Process P Process Q

Figure5. User-level send/receive message-passing abstraction [23]

2.2.2. Fork-join Model

The fork-join model, shown in Figure 6, is one of the programming models we ded
with. The process executes a program subdivided into sequential and parallel regions.
A process may dynamicaly create, synchronize, and terminate threads during
execution of the program. In a sequential region only one thread within the process,
called the “master thread”, is active (executes the code in the region), while in a
paralel region severa threads may be active simultaneously. The master thread
creates (forks) new threads at the beginning of a parallel region. At the end of the
paralel region, the active threads synchronize and all except the master thread
terminate (join). Active threads exchange data by using the shared memory.

It is implementation and language dependent if the threads are really created at the
beginning of a paralel region and terminated at the end, or, which may be less
expensive, if they are created when the execution starts and just switch from the state
inactive to active when the parallel region starts and from active to inactive at the end.
The distribution of the computational load among active threads within a parallel
region is language and implementation dependent as well.

The fork-join model as above described is adequate for shared memory systems or
single SMP nodes in a distributed memory system (specially constellations, described
in Section 2.1.2). In the context of this work, the fork-join model is represented by
Fortran programs written using OpenMP (MP stands for Multi Processing). OpenMP
is “acollection of compiler directives, library routines, and environment variables that
can be used to specify shared-memory parallelism in C, C++ and Fortran programs’

[107].

26 2 Modéd

8
25
38 ,)
(Fork)
D
w® .9
g8
Y VY VY VN
< Join >
E_" /
25
g%

Figure 6. Fork-join programming model

2.2.3. Hybrid M odel

The hybrid model, shown in Figure 7, can be seen as a generalization of the message-
passing model and the fork-join model. As in the fork-join model, each process is
subdivided into sequential and paralel regions and may dynamically create,
synchronize, and terminate threads. In addiction, active threads associated with
different processes use generic send and receive operations to exchange data. These
operations can be executed in both sequential and parallel regions. Note that this
model reduces to the fork-join model if thereis only one process, and to the message-
passing model if there is always only one active thread per process.

The hybrid model is adequate for distributed memory systems composed of shared
memory subsystems. In the context of this work, the hybrid model is represented by
Fortran programs written using both MPI-1 and OpenMP.

8 ——send—»
o c)
=) <-——receive—
38 Y
(Fork)
|
T . send——
® S)
BF receive—
ST Y YYVYY
(Join
8 ——send—
T c .
=.2 ~+——recelve—
g @ /

Figure 7. Hybrid programming model

2.2 Programming and Execution Models for Sequential and Parallel Processing 27

2.2.4. Generic Distributed Multithreaded M odel

The generic distributed multithreaded model, shown in Figure 8, is a generalization of
the hybrid model. Each thread may create (fork) new threads at any time, and it may
or may not await the end of other thread. In fact, athread may even wait for the end of
threads that it did not create, or it may end only when the machine is shut down.

G arin

+—receive—
(Fork)
Fork (Fork) send—s
- receive—
' (Fork)
\4 v send—»
- receive—
Y - receive—
Fork ~——receive— Yl v
send—> v

\/

Figure 8. Generic multithreaded model

Threads in a process communicate with threads in another processes using the
operations send and receive, but protocols may be used to create higher-level
operations implemented on top of send and receive, like remote procedure calls (RPC)
or remote method invocations (RMI).

Threads are created not only to increase the parallelism, but aso to improve the
throughput or to simplify the application design; therefore, there need not be a 1-to-1
mapping between threads and processors. The use of send and receive operations,
however, will be found in applications targeted at distributed memory systems. In this
work, the generic distributed multithreaded model will be represented by programs
written in Java, in particular using the following models:

Client-server model

A set of processes called servers, running on powerful computers and responsible
for the main computation, waits for requests from other (remote) processes called
clients. The client may use only few resources of the machine where it runs
(typicaly only network connections and a graphical user interface), in which case
itiscalled athin client, or it may be responsible also for some computation, when
itiscalled afat or thick client.

N-tier model

A specia case of client-server model, where servers may also act as clients of
other servers and each server is responsible for some piece of the logic that solves
aproblem. A Three-tier model is the most typical case, where the client represents
the first tier, the server responsible for the computation is the second tier, and a
database server the third.

Peer-to-peer model

28 2 Modéd

Several processes act simultaneously as server and client and are responsible for
the same logic. Each process (peer) may forward a piece or al of its work to other
peers for several reasons; for instance, a peer is overloaded, or it is not able to
fulfil arequest (but knows a peer that might be). The peer-to-peer model can also
be combined with the client-server model; for instance, each peer may be client of
adatabase server.

Genericdistributed
multithreaded model
b Javaapplications

Hybrid model
b Fortran applications
using OpenMP and MPI-1

Fork-join model

b Fortran applications using
OpenMP

M essage-passing model
b Fortran applications
using MPI-1

Figure 9. Relationship between the generic distributed multithreaded model, the hybrid model,
the fork-join model, and the message-passing model.

Figure 9 shows the relationship of the models we cover in our work. Applications
that fit the hybrid model (including the message-passing and the fork-join model) will
be called “parallel applications’, while applications that fit the generic distributed
multithreaded model but not the hybrid model will be called “ distributed applications’
(if they are intended for making use of more than one node) or “concurrent
applications’ (if they are intended for using only one node).

2.2.5. Data Parallelism Modd

Some algorithms can be seen as a sequence of identical (or at least very similar) steps
applied to different pieces of a regular data structure, like vectors or matrices. The
parallelism inherent in these agorithms, called data parallelism, is realized by
assigning pieces of datato different processes, which then execute the computation on
the data received.

Programs following the data parallelism model are usually automatically converted
to one of the previous models by a compiler, which makes such programs easier to
understand and maintain. As the data granularity is often too small, the programmer
needs to insert directives in the code in order to help the compiler to determine the
best data distribution. HPF (High Performance Fortran [59]) is a well-known example
of a data parallel language; a traditional compiler for this language, the Portland
Group's HPF compiler [113], can generate, from HPF programs, equivalent SPMD
programs that make use of MPI, PVYM [141], or sockets and shared memory to
exchange data.

We will not deal directly with this model, although later we will show the
performance analysis of hybrid OpenMP/MPI-1 programs automatically generated by
the Vienna Fortran compiler [8] from programs following the data parallelism model.

2.3 Performance Analysis 29

2.3. Performance Analysis

There are several places one can look at in order to carry out the performance analysis
of an application: its source code can be examined [135, 154], the compiled code, or
one or more executions of the application, possibly for different sets of input values.
The last case is the focus of our work.

Some basic steps can be identified in the performance analysis. data collection, data
transformation, and data visualization or interpretation. These steps are discussed in
the following.

2.3.1. Data Collection

Data collection refers to the process of obtaining performance data from an
application in execution. The two main techniques for collecting performance data are
tracing and profiling. Tracing typically consists in generating detailed log files that
contain time-stamped records representing events significant in the program execution
[43]. Tracing alows determining causal relationships between events (which may
requires a synchronized clock for applications that make use of more than one node),
for instance by identifying well-known event patterns that are indicative of
performance problems [36, 158].

Profiling consists of measuring and recording the value of some metric whenever
specific events occur. Wall clock execution time, CPU execution time, time spent
sending messages, and number of cache misses are examples of metrics. They can be
measured, for instance, at specific intervals (which is known as sampling) or when the
execution flow reaches some point in the code. Profiling helps one to find where and
when an application is spending more time or any other resource, like bandwidth.

The process of inserting in the application extra code for profiling and tracing is
called instrumentation. The code can be inserted statically, that is, before the
application is executed, or dynamically, while the application is running. We call
instrumentation tool any tool that can instrument an application, and monitoring tool
any tool that can effectively collect the data. If the tool can both instrument the code
and collect data, it will be called instrumentation and monitoring tool. Such tools are
commonly libraries or autonomous agent, but note that they are not responsible for
deciding which events should be traced or profiled and, consequently, what must be
instrumented.

2.3.2. Transformation, Visualization, and Analysis of Performance Data

The data collected is usually output in a generic format and needs to be transformed
before it can be visualized or analyzed; moreover, the amount of data generated may
be too large to be examined by a person. Typica transformations group the data
according to some criteria, compute statistics like average or maximum, and create
data structures out of the collected data that are suitable for some sort of analysis.

The transformed data can be displayed, commonly using elaborate graphical user
interfaces, or automatically analyzed, sparing the user the interpretation of the data,
which can be very painful for non-expert users, as Figure 10 shows. The analysis can
be done while the application is running, in which case it is called online or dynamic
analysis. The term post-mortem analysis (or static analysis) is used for the anaysis
done after the program has executed.

30 2 Mode

A | I AP
i,

Figure 10. Jumpshot-4[111], atool for performance visualization of parallel programs.

A tool that can interpret the data collected, output conclusions about the
performance of an application, and pinpoint which code regions are the culprits for
the low performance is called a performance analysis tool. It is also the task of the
performance analysis tool to decide which events should be profiled or traced; these
events need to be carefully chosen, as a high level of detall may perturb the
performance (probe effect) and change the program behavior, hiding performance
problems, creating new ones, and even preventing the application from running. A
popular technique today consists in successive event refinements, where more specific
and fine-grained events are selected depending on the performance problems that are
found. Other techniques are discussed in Chapter 3.

2.3.3. Temporal Performance Overheads

The total temporal overhead in an application execution can be approximately
modeled depending on the execution model. We will adopt one definition for parallel
and one for distributed applications.

In order to define the total temporal overhead for parallel applications, we need two
executions of an application: one, called the sequential execution, employs only one
processor, while the other, called the parallel execution, uses more than one processor.
Both executions must use the same set of input parameters and the same application
code. Assume that the sequential execution spent Ts units of time and that the parallel
execution spent T, units of time using a set of g processors, al of them identical to the
processor used in the sequential execution. From [43], we define the total temporal
overhead T, as:

To = qu = Ts

2.3 Performance Analysis 31

This definition poses some problems. First, due to time or space constraints, it may
be impossible to have a set of input parameters (or, more specificaly, a problem size)
for which the application can be sequentially and parallel executed. Second, the
parallel execution time may not be a lower bound, since an increased number of
processors is likely to increase also the amount of available memory, registers and
cache, which may reduce the number of accesses to the main memory and the use of
virtual memory, consequently also reducing the execution time. Finally, we assumed
that the same application code is used for both the sequential and the parallel
execution, even though a code that has been adapted for being used with several
processors may contain overheads that are not present in a version optimized for the
sequential execution. Nevertheless, this model is useful to estimate the amount of
unidentified overhead, defined below.

For distributed and concurrent applications, we will model the total temporal
overhead of a code region r as the difference between the wall clock execution time
and the CPU execution time of r. Again, this model may not reflect the rea total
temporal overhead. The reason lies in the nature of the typical distributed and
concurrent applications; they may create several threads that do remain most of the
timeidle, for instance to improve the application’ s throughput or responsiveness. But,
as it happens with the representation for parallel applications, this model may be
useful to estimate the unidentified overhead in some situations.

2.3.4. Sour ces of Over head

In the following, we discuss some temporal overheads and their sourcesin light of the
architectures, programming and execution models already defined. The overheads are
presented hierarchically based on classifications found in the literature [6, 13, 96,
147]. The classification shown does not imply, however, that al overheads are
measurable in any situation.

Data Movement: data moved from one entity to other
- Filel/O: datamoved from afile to the memory and vice versa
- Locd (thefile and the memory belong to the same node)
- Read
- Write
- Remote (file and memory belong to different nodes)
- Read
- Write
- Communication: data moved, through explicit 1/O operations, from the local
memory to the remote memory and vice versa
- Point-to-point: only two nodes are involved in the transfer
- Receive
- Send
- Collective: more than two nodes are involved in the transfer
- Remote memory: data moved from the local memory to the remote memory
and vice versa; the transfer is controlled by hardware in the presence of asingle
address space
- Load
- Store
- Local memory: memory transactions in asingle node
- Load: dataisload from the memory to the processor

32 2Modd

- Store: datais stored in the memory
- Level 3tolevel 2: data moves from the tertiary cache to the secondary cache
- Level 2tolevel 1: data moves from the secondary cache to the main cache
- TLB miss: the Translation Lookaside Buffer had to be updated
- Pagefault: apage of the virtual memory does not map to any page framein
the physical memory and needs to be loaded
Synchronization
- Single address space: locks, semaphores, condition variables, anong others
- Multiple address space: involves processes that do not share the same address
space and therefore need to make use of explicit 1/O operations (like barriersin
MPI programs running on distributed memory systems)
Additional computation: reflects changes in the parallel version of an application
compared to the original sequential version
- Algorithmic changes: results from changes in the algorithm
- Implementation changes: results from changes done by a compiler
Control of parallelism: code to manage parallelism
- Initialization and finalization of resources
- Threads
- Processes
- Sockets
- Scheduling: computation of work to be assigned to different processes and
threads
Loss of paralelism: caused by imperfect parallelization of a program
- Unparallelized code: executed sequentially
- Partially paralelized code: executed by several, but not all, processes or
threads available
- Replicated code: executed by several processes or threads with the same input
data

Idedlly, this classification should be complete and orthogonal [22], that is, “any
source of overhead should be classifiable within the scheme” and “no source of
overhead should appear in two different categories, unless one of the categories is a
subset of the other.” [13]. On the other hand, orthogonality may be in practice
impossible if the available technology does not allow a monitoring tool to definitely
classify an overhead source. For instance, loading a value from the memory implies
that the value will be also copied into the caches, and a monitoring tool may not be
able to detect this overlapping.

Assuming that the overheads above account separately for the total temporal
overhead, their sum constitutes the identified overhead, while the difference between
the total temporal overhead and the identified overhead is called unidentified
overhead [6].

In general, overheads cannot be completely removed from an application; for
example, data must be brought at least once from the memory to the cache, and
programs based on the message-passing model will aways contain some
communication overhead. One can, however, try to reduce the overheads in the
process of tuning an application (for a generic or specific hardware or software
environment), until the performance requirements are met. For example, as temporal
overheads commonly identify time that a processor is idle, one can try to overlap the

2.3 Performance Analysis 33

computation of other threads and the idle time caused by the overhead. Another
technique is to reduce an overhead to the detriment of other. For instance, by inlining
a function one can reduce the overhead of calling a subroutine and returning, but at
cost of increasing the space requirements.

As already mentioned, overheads may not necessarily imply that a processor isidle.
Technologies like hyper-threading, for example, allows other threads to execute
during the cycles one thread is waiting for a value loaded from the main memory (or
some other resource, which is called latency tolerance [23]). In processors that
implement these technologies, the cost of a cache miss can be compensated and is
more difficult to analyze.

3

Related Work

The traditional and most intensively studied approach for the performance analysis of
applications consists in monitoring their executions (possibly using an instrumented
version and several sets of input parameters) and inferring some conclusion about the
performance using the data collected during the monitoring process. Several issues in
this process were attacked, in different ways, by many researchers; in this chapter, we
discuss some of these issues and how they were dealt with, as well as some alternative
approaches adopted.

3.1. Front-end I nterfaces

The task of writing a parser or adapting an existing parser for specific purposes (in
our case, for instrumenting an application) is far from trivial. This motivated the
development of various formats and interfaces aiming to be a neutral layer between
parsers (front ends) and other tools.

The Program Database Toolkit PDT [85] uses compile-time information to create a
complete database of high-level program information structured for well-defined and
uniform access by tools and applications. PDT is composed of 1) “intermediate
language (IL) analyzers,” which are interfaces to existing parsers; 2) a relatively
compact and portable program database, containing the information generated by the
IL analyzer on source constructs (including source code locations); and 3) a C++
interface, called DUCTAPE, for the program database. Currently, PDT provides IL
analyzers for the C/C++ front end of EDG [33], for the Fortran 77/90 front end of
Mutek Solutions Ltd., and for the Fortran 77/90/95 parser of Cleanscape Inc. [17].

GENOA [27] is a portable, language-independent querying mechanism with
traversal and iteration operators for abstract semantics graphs (ASGs), which are
abstract syntax trees annotated with semantic information. Using GENII, a
specification that describes the data model of the ASG built by a particular front end,
the author of GENOA wrote interfaces for four C++ front ends (Cin, Cfront, REPRISE
and EDG).

ASTLOG [21] was developed as a Prolog variant for doing syntactic-level analysis
for C/C++ programs (Prolog was not used in order to avoid the overhead of
trandating the source syntactic structures into the form of a Prolog database.)
ASTLOG needs a C/C++ compiler front end that provides a (C++) interface to the
syntactic and semantic data structures built during the parse of a given program; the
version of ASTLOG presented in [21] used the abstract syntax tree provided by the
program analysis group of Microsoft Research.

WHIRL [156] is the binary representation used in the SGI Pro64 compiler (now
Open64 compiler suite [105]), designed to support compilation of program code
written in C, C++, Fortran 77, Fortran 90, and Java to multiple target processor
architectures. WHIRL has in fact 5 levels: very high, high, mid, low, and very low,
where the higher the level, the closer the representation to the source code, and the

36 3 Related Work

lower the level, the closer the representation to the machine code. The Open64
infrastructure includes a near commercial-quality front end for Fortran 90 from Cray
and gcc-based front ends for C and C++; it is used, for example, in the Open64/d
project [106], which builds software tools for source-to-source transformation of
programs.

JavaML [5] is an XML representation of Java programs similar to an abstract
syntax tree and with enough information to be converted back to the source code from
which it was generated. The author of JavaML adapted the front-end of the Jikes
compiler [72] to generate JavaML representations from Java programs, and suggested
that the representation could be extended for other object-oriented languages.

3.2. Toolsfor Automatic Performance Analysis

Instrumentation of the source code and post-mortem analysis is a long-established
technique for performance analysis. Kappapi [35] employs a post-mortem
performance analysis to search for performance bottlenecks based on trace files of
PVM [141] applications. The tool tries to detect patterns in trace files that match
performance-problems patterns in a knowledge base (which cannot be modified by
the user) an presents suggestions about how the performance of the application can be
improved.

Finesse [96] directs the user to the overheads found in the application, and provides
guidance for eliminating such overheads. Based on static instrumentation, Finesse
focuses on shared memory programs, but its performance analyzer, which tries to find
performance overheads, cannot be configured by the user.

Poirot [56] is the design of a software tool that does not depend on any specific
programming environment. To build such a design, Poirot's authors gathered several
performance tools with the goal of formalizing performance bottlenecks of a paralel
program. The search agorithm in Poirot uses a database containing predefined
performance bottlenecks to be searched for.

Gerndt and Krumme [51] proposed hypotheses and successive refinements
(discussed below) in the design of a performance anaysis environment for
applications using SVM-Fortran, a shared-memory paralel programming language
based on Fortran 77. The environment they proposed has two set of rules: proof rules,
containing information about how to prove a hypothesis, and refinement rules, which
determine which hypotheses should be tested if a given hypothesis is proven. Their
static approach requires that the application be compiled and executed again after a
refinement.

The popularity of techniques based on online instrumentation and analysis, which
eliminate the necessity of compile and execute the application several times, has
constantly increased since Paradyn [89] was released ten years ago. Based on
dynamic instrumentation and monitoring of applications, Paradyn was the first tool
able to carry out automatic online performance analysis. Among its severa
components is the Performance Consultant, which automatically searches for
performance problems while the application is running through hypotheses and
successive refinements [14, 19]. This technique consists in inserting more detailed
instrumentation in those places in the application where problems have already been
found (that is, hypotheses were proved as true); for example, if a problem isfound in
an instrumented subroutine, then instrumentation is inserted to monitor the loops and
cals in that subroutine. At the same time, if no problem is found in a given piece of

3.2 Toolsfor Automatic Performance Analysis 37

code (hypothesis were proved as false), the instrumentation is removed in order to
avoid the overhead that the instrumentation code incurs. Paradyn also looks at the call
stacks to find functions that executed often and consequently are likely to be
application bottlenecks [118]. Paradyn uses Dyninst [60] to dynamically insert
instrumentation in or remove instrumentation from a running application. Even
though Paradyn is highly configurable (a configuration language is provided to
request specific performance data), the Performance Consultant does not allow the
user to modify the existing definition of performance problems or to define new
performance problemsto be searched for.

MATE [92] can monitor PVM applications, detect performance bottlenecks, and
modify them in order to improve the performance. MATE also uses Dyninst to insert
dynamically the code responsible for generating events and sending them to a central
analyzer, as well as to manipulate the image of the process in memory when the
application has to be tuned. The tuning can be automatic, if the user does not provide
any information about the application, or cooperative, if the user prepared the
application for tuning (for instance, by describing what can be changed to obtain
better performance).

As mentioned in Section 2.3.2, instrumentation and monitoring may considerably
perturb the execution of an application; moreover, the amount of data generated
during the execution of monitored applications has always been a concern for
performance analysis, aggravated by the increasing number of processes used to
execute parallel applications. This motivated the use of statistical techniques that try
to infer conclusions from a not fully instrumented application. PHOTON [149] uses
sampling techniques to limit the amount of traced events and consequently the amount
of data generated. The sampling may be time-based (an event is traced every t units of
time), counter-based (every k-th event is sampled), or random (an event is traced with
probability |). The tool uses a modified MPI library (based on MPICH 1.2.2 [94]),
where the header of each message contains a timestamp and a source code location
identifier if and only if the event that originated the message is sampled.

Vetter and McCracken [151] used a statistical approach to detect scalability
problems in MPI applications, basically by computing the correlation between the
machine size and the communication time of code regions. A high correlation in a
code region indicates that the communication time becomes larger when the machine
size grows, which means that such code region may hinder the scalability of the
application. The size of the trace files generated during the monitoring of an
application depends on the machine size and the number of sites in the application
where communication occurs, but does not depend on the execution time of the
application.

The statistical approach of Santiago, Rover, and Rodriguez [123] was based not
only on communication times, but on several metrics, like writes per second per disk,
address trandation, page faults per seconds, and accesses to system buffer cache to
read or write. Varying the problem size, the algorithm, and the compiler options
(controllable factors), they generated several experiments, computed the correlation
coefficient between the metrics and the execution time, and used analysis of variance
(ANOVA) to determine the influence of the controllable factors on the metrics.
Finaly, they applied multidimensional data analysis techniques to find (cluster) the
metrics that account for most of the variation in the data. Clustering techniques were
also used in [88] and [152].

38 3 Related Work

A system for controlling instrumentation overhead, which makes use of an
instrumentation cost model [61], was incorporated into Paradyn. The system has two
types of costs: predicted and observed. To compute the predicted cost of the
instrumentation inserted, the model uses the cost of each instrumentation primitive
(which is knows precisely) and an expected frequency of execution, which is
estimated using a static model of procedure call frequency and adjusted at runtime.
The observed cost is computed by converting to time the cost in machine cycles of the
instrumentation (which is measured using a kind of “meta-instrumentation”); the
conversion is approximate, using empirical values. Thresholds for the amount of
instrumentation overhead tolerated can be defined by the user.

The use of open and modular architectures for developing performance analysis
tools has also increased, which facilitates their adaptability and extensibility for new
architectures, languages, and program paradigms. TAU [91, 133] is a program and
performance analysis tool framework for high-performance parallel and distributed
computing. TAU can generate profiles and trace filesfor C, C++, Fortran 90, Java and
Python codes; the user can either insert manually the instrumentation code (calls to
the TAU library) or specify which routines are to be instrumented, so that TAU can
instrument them automatically. The automatic instrumentation of C, C++ and Fortran
90 is done using PDT (described in Section 3.1) for source codes, and Dyninst
(described above) for binaries, while the automatic instrumentation of Java programs
Is done at runtime using the JVMPI, a (now deprecated) monitoring and profiling
interface [71], and native C functions. In any case, code regions like loops,
conditionals, and calls cannot be automatically instrumented, only functions. TAU has
also components for storing the data in a database and for visualization of the data
generated during the execution by the instrumentation code.

EARL [158] is a language designed to describe event patterns of message-passing
programs based on trace files. Implemented as an extension of high-level script
languages (currently Tcl, Perl and Python), EARL provides abstractions that hide the
trace file details. On the top of EARL, the EXPERT [157] performance tool was
implemented. EXPERT is an automatic event-trace analysis tool for MPI and
OpenMP applications that searches the traces for execution patterns indicating low
performance and quantifies them according to their severity. Together with OPARI
[104], a source-to-source trandation tool for instrumenting OpenMP applications
written in Fortran, C, or C++, EARL and EXPERT make up KOJAK [78], atool set
for automatic performance analysis of parallel programs.

SCALEA [147] is a tool for instrumentation, monitoring and post-mortem
performance analysis of paralel programs written either in HPF or in Fortran using
OpenMP and MPI. SCALEA has a profiling library whose functions can be
automatically inserted by the instrumentation system in the source code or manually
added by the user. The fine-grained instrumentation system alows one to instrument
not only functions but also several other code regions, like loops, function calls, and
I/0O operations. SCALEA contains a visualization tool, interfaces to database systems
(to store the profiling data generated during the execution) and also supports multiple
experiment performance analysis, which allows to compare and to evaluate the
performance outcome of several experiments.

Autopilot [117] is a software infrastructure that can be used to build adaptive
paralel and distributed software. It provides a set of C++ classes to create sensors
(pieces of software inserted in the application to monitor its behavior), actuators

3.3 Toolsfor Java 39

(components that change the application's behavior), and decision procedures (rules
that govern the changes ordered by the actuators based on the data read from the
Sensors).

The members of the APART Esprit IV working group have formalized the
knowledge that developers acquired by analyzing the performance of their
applications over the yearsin order to concisely express the knowledge that until then
had only been hardcoded in performance analysistools. APART designed ASL (Apart
Specification Language [40]) to specify experiment-related data and performance
properties. ASL uses an object-oriented model to describe experiment-related data,
and functions and constraints to specify performance properties. ASL has been
extended severa times, which resulted in a rather complex language, being now
unclear how efficient it can be implemented, which has yet to be done. The ideas and
the knowledge present in ASL, however, have been used in some tools mentioned in
this chapter (Kappa-pi, KOJAK).

The use of artificial intelligence techniques to find performance problems is aso
registered in the literature. Vetter [150] applied decision trees [115] to find problems
INn message-passing systems. He used trace files from a set of small programs with
examples of efficient and inefficient MPI behavior to train the decision tree for a
specific hardware and software environment. Later, real programs were classified
using the rules recorded in the tree, and problems found were mapped back to the
source code.

Many of the tools mentioned above (SCALEA, Paradyn, Kappapi, EXPERT,
Finesse) use the concept of overhead classification, discussed in Section 2.3.4, to
organize the output of the performance analysis. Paradyn also uses overhead
classification to conduct a systematic performance analysis, athough the
classification used is smaller than the one used in our work. Tools based on trace file
analysis, such Kappa-pi and EXPERT, carry out the performance analysis also in a
systematic way using databases that describe performance problems. EXPERT can
also interpret the performance data by weighting the problems found using the
application’ s total CPU time.

With the exception of SCALEA, al these tools concentrate on the analysis of a
single experiment, while our work also focuses on multi-experiment analysis. In
addition, our work is the only to use reinforcement learning to conduct the anaysis
process.

3.3. Toolsfor Java

Commercial and research tools for performance analysis of Java applications have
been built since Java was released a decade ago. Although many of the ideas and
principles used in Java are not new, its openness, popularity, and ubiquity, as well as
the speed at which it has been evolving, contributed to create a prolific research
environment in the field of performance analysis.

JVMPI (Java Virtual Machine Profiler Interface) was introduced with Java 1.1
“intended for tools vendors to develop profilers that work in conjunction with Sun's
Java virtual machine implementation.” [71]. This interface was always considered
experimental and, as its definition indicates, no implementation of the Java virtual
machine other than Sun’s had to support it (although many did). A profiler agent,
written in C or C++, could use this interface to communicate with the Java virtual
machine, issuing controlling requests and retrieving information about the program in

40 3 Related Work

execution and the virtual machine; the agent could also register to be notified when
certain events happened, like thread creation, method entries and exits. Since VMPI
had some stability problems and impacted on the performance of the virtual machine
[102], it was deprecated as of J2SE 5.0 (Java 1.5) and substituted by JVMTI, the Java
Virtual Machine Tool Interface [73]. JVMPI is scheduled to be removed from the next
major release of Java (Java SE 6).

JVMTI has the same principles of JVMPI, but a richer and more elaborated
interface, without incurring the same performance penalty that VMPI did. The set of
events for which an agent can register is larger, and WVMTI aso allows the dynamic
change of the bytecodes of a method, which could be done before only by using
JVMDI, the (now deprecated) Java Virtual Machine Debug Interface [70].

In Java 1.5, the Java APl was aso improved, providing a subset of the functionality
found in JVMTI. The monitoring and management APl provides, for example,
information about the amount of memory used, and also timers for obtaining:

per thread CPU time and user time (with nanoseconds precision but not
necessarily nanoseconds accuracy);

time each thread spent trying to enter a critical section or waiting to be notified by
another thread;

time spent in garbage collection;

time spent in JIT compilation.

In addition, the instrumentation API introduced in Java 1.5 allows one to change the
bytecodes of classes dynamically and to intercept classes before they are loaded,
which makes it possible to create sophisticated instrumentation and monitoring agents
written purely in Java (and therefore platform independent).

The current generation of tools does not make use of these new features yet. JPMT
[53] generates trace files of the execution of Java applications, being able to monitor
creation and destructions of threads, object allocation, garbage collection, and
synchronization operations. Similar to TAU (described above), the tool uses VMPI
and a C++ library to monitor the application, but it can also rewrite the bytecodes
dynamically in order to avoid the overhead of JVMPI, which generates events for all
method entries and exits. Process scheduling information can also be traced, but only
in Linux, using the Linux Trace Toolkit. The user must provide a configuration file
informing the events, methods, and threads to be traced.

JS[16, 52] is an instrumentation tool that generates trace files containing important
thread events, which can later be displayed using Paraver [80]. J S originally captured
cals to specific functions used in the Java virtual machine in order to probe them;
later, it has been updated to use IVMPI. Since JIS records scheduling information,
which only the operating system can provide, it cannot run on any platform.

Intel® VTune™ [31] is aprofiling tool for Intel machines (I1A-32 and Itanium) also
based on JVMPI. VTune constructs a call graph of the application using the
notification mechanism of JVMPI (an event is generated at each method call) and, by
using sampling techniques, determines the path in the call graph that consumes the
most time in the application.

Paradyn-J [101] was a prototype of a tool to analyze Java applications and their
interactions with the Java virtual machine. The tool worked by intercepting the Just-
In-Time (JT) compiler of the virtual machine, so that pre-compiled versions of

3.4 Other Approaches for Performance Analysis 41

methods were loaded instead of the dynamically compiled version generated by the
virtual machine (that is, only the methods for which the authors wrote a pre-compiled
version could be monitored.) Paradyn-J was based on Paradyn (described above), but
was discontinued because it depended on a specific implementation of the Java virtual
machine and would need to be changed for every new virtual machine released.

Veneer [161] is a “virtual Java virtual machine” that runs on the top of any Java
virtual machine and acts as a controlled environment where Java applications can run.
In particular, Veneer alows the dynamic instrumentation of methods, a feature used
in JUDI [161] to measure execution times of code regions. The overhead of Veneer is
still high, but both tools are still in early development stages.

ProbeMeister [110] is an instrumentation tool capable of deploying probes into
remotely running Java applications; it uses JDI, the Java Debug Interface [68] to
connect to remote virtual machines and dynamically insert or remove instrumentation
code. As JDI is not part of the Java Application Programming Interface, one needs to
have it available on each Java virtual machine where the application runs.

3.4. Other Approachesfor Performance Analysis

The difficulty in managing the data generated by monitoring tools for hundreds or
thousands of processes and threads, the high cost of modifying the code of an already
implemented program, and the need of predicting the outcome of an application
execution in an environment that is for some reason unavailable motivated the
development of performance estimators and application simulators.

P’T [37] is an interactive performance estimator for regular scientific Fortran
programs. P°T uses a sequential profile run of an instrumented version of the
application to analyze so as to obtain values for program unknowns (like average loop
counts). These values, together with a program representation generated by a Fortran
front end, are used to estimate the influence of several parameters in the application
outcome for other machine sizes: load imbalance, number of transfer (send/receive)
operations, amount of data transferred, network contention, transfer time, computation
time, and number of cache misses.

Clement and Quinn [18] built an analytical model targeted at Dataparalel C [54]
applications. Using an instrumented run of the application to be modeled and
specifications of the architecture where the application will run, a symbolic equation
for the application execution time, having as coefficients several system parameters,
is generated as a linear function of machine and problem sizes. The system parameters
(cache, page faults, latency for interprocessor communications and bandwidth
characteristics for different communication patterns) are estimated using multiple
linear regression techniques such as linear least-square error. Like in P°T, the authors
acknowledged that communication patterns are more recognizable and predictable in
data paralel languages. Nevertheless, such languages could not deliver the
performance achieved with, for instance, MPI; they were difficult to optimize, which
is one of the main reasons that explain why HPF failed to gain popularity among
programmers[25, 57, 81].

PerformanceProphet [112] can be used to model and simulate parallel applications
that make use of explicit message-passing and shared-memory constructs (like those
found in OpenMP and MPI, which are de facto standards today). The two main
components of PerformanceProphet are Teuta, an UML-based modeling tool, and
Performance Estimator, responsible for the simulation of the application using

42 3 Related Work

discrete events. Each code region represented in the model has a cost function
associated, which provides its estimated execution time. The cost function is defined
by the user, for instance, by running an instrumented version of the application with
different sets of input data and then using some statistical technique to create the
function. Teuta can output the UML model as C++ classes, which is the format the
Performance Estimator accepts as input.

Scal-Tool [134] uses measurements of hardware event counters obtained from
application executions on DSM machines for different number of processors. The
measurements are used to model, with relative low cost, the effect of insufficient
caching space, synchronization, and load imbalance on the scalability of the
application. The model can be used not only to support the programmer in the early
stages of the application development, but also to estimate the impact of using faster
or slower secondary caches, interconnection networks, and synchronization support,
or the impact of increasing the size of secondary cache sizes.

Vetter and Worley [153] propose the use of performance assertions, a source code
annotation system that allows the user to specify a performance expectation for a
given code region. For example, the user may specify that the number of instructions
per cyclein aloop must be greater than 40% of the peak value that can be achieved on
the machine where the program runs. The system can be used for raising performance
exceptions (if an assertion fails) and validate performance models. As usuad,
assertions can be disabled when the user knows that all performance assertions are
true.

4

| nstrumentation I nterfaces

Many performance tools rely on performance information (overheads, trace files, etc.)
commonly obtained by statically instrumenting the source code or dynamically
instrumenting an executable. In the best case, developers of performance analysis
tools need to integrate their tools with instrumentation engines for different languages
and platforms; in the worst case, they need to build themselves separate
instrumentation engines, a tedious and time consuming effort.

We propose a Standardized | ntermediate Representation as an interface between
instrumentation engines and higher-level performance tools. The SIR isintended to be
an abstract representation for procedural and object-oriented programs. Basicaly, a
SIR contains information about statements and directive types (e.g. OpenMP) with
very little details on their structures, being simpler than intermediate languages like
WHIRL (used in the Open64 compiler suite [105]). This simplicity, which oriented
the design of SIR, was based on the fact that higher-level performance tools
commonly only have two requirements: they need to know the type of a statement in
order to make a decision about specific instrumentation requests or performance
analysis, and they need eventually to map the problems found back to the source code.
SIR would not suitable, for instance, for a tool trying to determine the best register
allocation for a program.

We aso propose a set of Monitoring and I nstrumentation Requests and responses
for the communication with instrumentation engines. This set, which we call MIR,
comprehends the needs of performance tools and the ideas behind the current
instrumentation techniques without specifying the techniques themselves. This idea
has aso been used in OMIS [86], although MIR has a strong link with the code being
instrumented and monitored, which OMIS does not keep.

Based on the idea of SIR and MIR, higher-level performance tools can request the
generation of the program representation for arbitrary programs. The performance
tool can then traverse this representation and request the instrumentation of specific
code regions. Important is that the generation of a SIR based on a specific input
program as well as the actual instrumentation is done by an external tool. On the basis
of SIR and MIR, higher-level performance tools are provided with a high-level and
portable instrumentation/profiling/monitoring interface for a broad variety of
programming languages without dealing with low-level details such as
instrumentation, tracing, etc.

In the following sections we describe and exemplify the format of SIR for Fortran
95, Java, C, and C++ programs, we aso describe the format of monitoring and
instrumentation requests and responses. As extensive support already exists to
traverse XML documents, we chose to define the SIR and MIR using XML.

44 4 |nstrumentation Interfaces

4.1. SIR Description

A SIR is an XML document representing a Fortran 95, Java, C or C++ program
(referred to simply as input program in the rest of this chapter). A valid SIR may
contain several types of elements, the most important of which are sir, unit, and
codeRegion. All the elements are described in detail in this section, which also gives
the markup declarations (element type declarations and attribute-list declarations) that
must compose the DTD describing the syntax of SIRs (the full DTDs can be found in
Appendix B).

A tool that generates SIRs does not need to represent all elements described in this
specification in order to be SIR compliant; nevertheless, the tool must document that,
if the generated SIR does not contain a certain element or attribute, thisis not because
the element is absent in the input program, but because the tool chose to ignoreit.

4.1.1. The Element sir
Theroot of any SIR isgiven by asir element. A sir element must specify:

the “main” language the input program is written in (for instance, if a Java
program uses native C functions, the language must be Java, not C);

at least one group (for instance, a class; see Section 4.1.2) or a program unit (for
instance, a function; see Section 4.1.3).

Moreover, if it is known that the program communicates with other programs
(processes or threads) by sending and recelving messages, the messagePassing
attribute may be specified with the value true (default: false); similarly, if
communication is done (also) through shared memory, the sharedMemory attribute
may be specified with the value true (default: false).

The markup declarations representing these requirements are given below:

<! ELEMENT sir (variable*, (group|unit)+)>
<! ATTLI ST sir
| anguage (fortran|javalc|cpp) #REQUI RED
nessagePassi ng (true| fal se) #l MPLI ED
sharedMenory (true|fal se) #l MPLI ED>

4.1.2. The Elements group and inheritance
The group element is used to represent an organizational, non-executable unit:

modules in Fortran;

packages, classes, interfaces, array types, and enumsin Java;

namespaces and classes, as well as structs and unions that define methods, in
C++.

Any group element must specify:

the type of the group it represents (with the attribute type);
aunique identifier (with the attribute id).

The type used for Java arrays and enums and for C++ structs and unions is class,
while the type used for C++ namespaces is package. A group element may also
specify the name of the group it represents (using the attribute name) and the internal
name the compiler assigned to the represented group (with the attribute internal). In

4.1 SIR Description 45

C++, aliases of namespaces are ignored, as well as any alias for a class, struct or
union name created with typedef. This rule holds also for struct and union namesin C.
A group element contains also zero or more group elements and zero or more unit
elements. The declaration of variables (or fields) is represented with the element
variable, described in Section 4.1.5.

When representing a class or interface, a group element may specify superclasses
and superinterfaces using the element inheritance; this element accepts either the
identifier or the name of a superclass or superinterface (with the attributes id and
name respectively). The name must be used when the identifier is not available, since
determining such an identifier may not be trivial.

Finaly, a group may contain a location element, to provide where the group has
been declared (see Section 4.1.6). If the URI of alocation in a group element is left
unspecified (or the entire location element), and if the immediate element containing
this group element is either a group element representing a class or interface, or a unit
element representing a method, one must assume that the URI of both elements
(container and nested) is the same.

The requirements for agroup element inaDTD are given below:

<! ELEMENT group (inheritance*, |ocation?, variable*, (group|lunit)*)>
<! ATTLI ST group
id | D #REQUI RED
type (nodul e| package| cl ass|interface) #REQU RED
name CDATA #| MPLI ED
i nternal CDATA #l MPLI ED>
<! ELEMENT i nheritance EMPTY>
<! ATTLI ST i nheritance
id | DREF #l MPLI ED
name CDATA #l| MPLI ED>

The language of the input program imposes certain additional restrictions; one
should assume that these restrictions are also respected in the group elements of any
SIR (athough thisis not enforced):

a group element representing a Fortran module may not contain any group
element;

a group element for C++ may be nested only in a group element representing a
namespace;

in agroup element representing a Java class, the inheritance element must always
be specified (except if the represented classis java.lang.Object);

the name element is never specified in a group element representing a Java
anonymous class (the internal element, however, may be);

the name of a Java class or interface must not be fully specified (that is, it must
not contain package names), as the full name can be always derived from the SIR
structure. In particular, nested classes must not contain the name of the class they
are nested within.

4.1.3. The Elementsunit and alias
The unit element is used to represent:

functions, subroutines and the main program in Fortran;
methods in Javaand C++;
functionsin C and C++.

46 4 Instrumentation Interfaces

Any unit element must specify:

the type of the unit it represents,
aunique identifier.

A unit element specifies, through the attribute name, the name of the unit it
represents. The unit element may aso specify the language of the unit represented
(attribute language), which is useful when representing C methods linked to Java or
Fortran programs. It may also specify an internal, compiler-assigned name for the unit
it represents (attribute internal).

Furthermore, a unit element must specify the attribute instrumentable with the value
false (the default is true) if the tool that generates the SIR knows that the unit cannot
be later instrumented (e.g. it is a library function, but the instrumentation tool can
only instrument the source code). Finally, the attribute virtual must appear with the
value false (the default istrue) if, and only if, one of the following conditionsistrue:

the unit element represents a Java method declared as private,
the unit element represents a C++ method not declared as virtual.

Nested in a unit element there are zero or more unit elements, zero or more group
elements, and zero or more codeRegion elements. Similar to group elements, a unit
element may also contain a location element, to provide the location where the unit
has been declared (see Section 4.1.6). If the URI of alocation in a unit element is | eft
unspecified (or the entire location element), and the immediate element containing
this unit element is either a group element representing a class or interface, or a unit
element representing a method with the same language attribute, one must assume
that the URI of both elements (container and nested) is the same.

The declaration and use of variables are represented with the elements variable and
variableRef, described in Section 4.1.5. When representing a method, function or
subroutine, a unit element must specify the method (or function, or subroutine)
signature by specifying the attribute arguments and providing the identifiers of
variables, as described also in Section 4.1.5.

When representing a Fortran function or subroutine, a unit element may specify a
name under which the function or subroutine may also be caled using the alias
element.

Note that the fact a function or method isinlineisignored.
The syntactic requirements for aunit element inaDTD are given below:

<! ELEMENT uni t (alias?, location?, variable*, variabl eRef*,
(group| uni t| codeRegi on) *) >
<! ATTLI ST uni t
id | D #REQUI RED
type (function|subroutine| program nmethod) #REQU RED
name CDATA #l MPLI ED
argunent s | DREFS #| MPLI ED
virtual (true|false) #l MPLI ED
i nternal CDATA #l MPLI ED
| anguage (fortran|javalc|cpp) #l MPLI ED
i nstrumentabl e (true|fal se) # MPLIED
>
<! ELEMENT al i as (#PCDATA) >

4.1 SIR Description 47

The language of the input program imposes certain additional restrictions; one
should assume that these restrictions are also respected in the unit elements of any
SIR (although thisis not enforced):

only a unit element representing a Fortran function or subroutine may be nested
within a unit element representing a Fortran subroutine, function, or main
program,

the nesting level for unit elementsin asir element representing a Fortran program
iIsat most 2;

for Java and C++ programs, the name used in the unit element representing a
constructor must be the same name used in the group element representing the
class where the constructor has been declared;

for Java programs, the name used in the unit element representing a class or
interface initializer must be &It;clinit>. The “correct” name would be <clinit>,
but the characters < and > may not be used in an element’ s attribute;

for Java programs, <init> must be the name used in the unit element
representing an instance initializer;

a group element may be nested within a unit element only if the first represents a
Java class and the second a Java method (but even if a class is declared inside a
method, it may be represented simply nested within the class the method is
member of);

only unit elements representing Java classes, Java methods and C functions may
be nested within a group element representing a Java class,

a unit element may not be nested within another unit element if the sir element
represents a C or C++ program.

4.1.4. The Elements codeRegion, callee, expression, loopControl, lower, upper,
stride, and scheduling

A codeRegion element is used to represent a sequence of specific executable program
statements and directivesin a unit.

Any codeRegion element must specify:

the type of the program statement it represents in the input program (element
type);
aunique identifier (element id).

A codeRegion element contains zero or more nested codeRegion elements and zero
or more nested group elements (in Java, it is adlowed that a class is declared inside a
method). It may also contain:

a location element to provide the location of the represented program statement
(see Section 4.1.6);

a callee element, giving the identifier or the name of a method invoked or a
function or subroutine called (details under the item call, below);

an expression element, giving information about an expression (or expressions)
evaluated before the represent code region executes (more details below);

a loopControl element, giving information about the start, stop, and increment
expression (or expressions) evaluated by certain kinds of loop constructs (details
under the items loop and forall, below);

48 4 Instrumentation Interfaces

elements variable and variableRef to represent the declaration and use of variables
(described in Section 4.1.5).

Because of the complexity and diversity of the different languages and
programming models, we do not intend to define a fixed set of allowed types that a
codeRegion element must follow. In fact, different instrumentors may have their own
favorites on what types of code regions are distinguished. However, in the following,
we do provide a predefined set of types based on our experiences, which should be
regarded only as a recommendation rather than a full specification. In the rest of this
section, a codeRegion element with a certain type x will be called an xCodeRegion
element for brevity.

assignment
Corresponds to an explicit scalar assignment in the input program, that is, using the
operator = and, in the case of Java, C and C++, also the operators ++, --, +=, * =, and
so on (see the type vector below for vector assignments).

Multiple assignments in a single statement (like failed = (file = openFile()) ==
NULL) should be represented by using nested expression elements, but may be also
represented by expanding the assignments to several assignmentCodeRegion el ements
(respecting the evaluation order). See an examplein Section 4.2.1.

block

Some language constructs are composed of several blocks. For instance, the if
construct has then, elseif (in Fortran), and else blocks, and the constructs switch and
SELECT are composed of several blocks to be executed depending on the value of an
expression. Instead of creating a new kind of block for each of these constructs, the
SIR just defines the generic type block, which can be used in any situation. A block
can also be used to represent an arbitrary sequence of statements in the input program
which cannot be represented by any of the types described in this section.
- f

Corresponds to the if construct in Java, C, C++, and Fortran. An ifCodeRegion
element has one or more nested codeRegion elements, the type of which must be
block. The codeRegion elements inside the first blockCodeRegion element
corresponds to the if part of the if construct, and the other blockCodeRegion elements,
if present, to the else or else if part. Each blockCodeRegion element (except the one
corresponding to the “else” part of the if construct) may contain also an expression
element representing the constructs that are evaluated in the respective condition (see
an example in Section 4.2.3). The expression evaluated in the if part of an if construct
may be also represented as a codeRegion element immediately before the codeRegion
element representing the if construct; the use of a nested expression element is
preferred, though.

Note: else if is alowed only in Fortran; therefore, when representing a Java, C or
C++ program, at most two blocks are allowed nested within an ifCodeRegion el ement.

switch
Corresponds to the switch construct in Java, C or C++, and to the SELECT
construct in Fortran. The codeRegion elements nested within a switchCodeRegion
element must have the type block; each of them correspondsto a“case”’ (including the
“default case”) of the switch or SELECT construct. The presence or absence of an
implicit jump after each “case” must be inferred from the language attribute of the

4.1 SIR Description 49

unit or sir element containing the switchCodeRegion element. Moreover, a
switchCodeRegion element may have one expression element representing the
condition evaluated by the switch or SELECT construct (as in expression elements for
ifCodeRegion elements). Although the use of an expression element is the preferred
way of representing such a condition, it may also be represented by a codeRegion
immediately before the codeRegion representing the switch or SELECT construct.

loop

Corresponds to any kind of loop in the input program: for, while, do...while in Java,
C and C++; DO, DO WHILE (but not FORALL) in Fortran. A loopCodeRegion
element may have either an expression element representing the stop condition
evaluated by the represented loop construct (as in expression elements for
ifCodeRegion elements) or a loopControl element representing the start, stop and
increment expressions in these three kinds of loop constructs: for (Java, C and C++),
DO (Fortran). An exampleis shown in Section 4.2.4.

Jjump
Corresponds to an unconditional jump in the input program (break, continue, and
return in Java, C and C++, throw in Java and C++, goto in C and C++, and GO TO,
CYCLE, EXIT, and RETURN in Fortran). Note that a call to the function longjmp is
not considered a jump. If the return construct being represented returns a value
computed from an expression declared in front of the return statement, this expression
should be represented in an expression element nested within the jumpCodeRegion.
Alternatively, it may also be represented as one or more codeRegion elements
immediately before the jumpCodeRegion element representing the return construct.
The same is valid for the representation of throw constructs, that is, the expression
computing the object to be thrown may be represented either as a nested element
within the jumpCodeRegion or as one or more codeRegion elements immediately

beforeit.

cal
In Fortran, corresponds to a function or subroutine call or to a statement for
dynamic storage allocation or deallocation (ALLOCATE, DEALLOCATE, and
NULLIFY). In C, it corresponds to a function call, and in C++ to a function call,
dynamic storage allocation and deallocation (new and delete) or a method invocation.
In Java, it corresponds to a method invocation or dynamic storage allocation (new).

The creation of class instances, which usually includes dynamic allocation and a
method (constructor) invocation, must be represented as a single callCodeRegion, as
if only the constructor were invoked.

Nested within a callCodeRegion element there must be one callee element giving
either the identifier of the function, subroutine or method invoked (or “supposed” to
be invoked in the case of virtual methods) or, if the identifier is not available, the
name of the invoked unit. In C++, when alocating or deallocating memory for atype
that cannot be represented as a unit in the SIR (like int), the callee will be new or
delete, respectively. An expression element may also appear nested within a
callCodeRegion element, indicating assignments and other function calls or method
invocations that are performed before the represented call is executed, the results of
which will be used as arguments of the call or invocation. Alternatively (but not
preferably) these assignments and calls (or invocations) may be represented as
codeRegion elements appearing immediately before the codeRegion representing a
cal or invocation.

50 4 Instrumentation Interfaces

In indirect calls (for instance, with function pointers), only the signature of the
method invoked must be specified for the callee. See an example in Section 4.2.6.

io (Fortran specific)

Corresponds to an 1O statement in Fortran (like PRINT or OPEN). As with
callCodeRegions, expression elements may appear nested within an ioCodeRegion to
represent other function calls performed before the 10 statement is executed. An
exampleis shown in Section 4.2.8.

try, catch (Javaand C++ specific), finaly (Java specific)
Correspond to the construct try...catch...finally in Javaor try...catch in C++.

where (Fortran specific)

Corresponds to the WHERE construct in Fortran. A whereCodeRegion element has
one expression element, which represents the condition evaluated by the WHERE
construct (in the same way the expression element for ifCodeRegion elements), and
one or two nested blockCodeRegion elements. The codeRegion elements inside the
first blockCodeRegion correspond to the where part in the WHERE construct, while
the second blockCodeRegion, if present, corresponds to the el sewhere part.

forall (Fortran specific)

Corresponds to the FORALL construct in Fortran. Different of loopCodeRegions, a
forall CodeRegion element has one loopControl element for each index, representing
the start, stop and increment expressions of the index. It may also contain an
expression element representing the condition (“scalar mask”) evaluated for each
iteration. An example is shown in Section 4.2.5.

vector (Fortran specific)
Corresponds to an explicit vector assignment in the input program. A
vector CodeRegion may contain also an expression element representing functions
called before the assignment take place (for instance, C = log(A)).

OpenMP directive | paralléel...codeRegionin SR
PARALLEL ParallelRegion

DO ParallelLoop
SECTIONS ParalleSections
SINGLE parallelSingle
WORKSHARE parallelWorkshare
MASTER parallelMaster
CRITICAL parallel Critical Section
ATOMIC parallel Atomic
BARRIER parallelBarrier
FLUSH parallelFlush
ORDERED parallelOrdered

Table 4. Mapping from OpenM P directivesto parallel...codeRegions

4.1 SIR Description 51

Furthermore, motivated by OpenMP [107], we aso defined a set of
parallel...codeRegions, which can, in fact, be applied to any similar shared-memory
paradigm. Table 4 shows the mapping of OpenMP directives to the corresponding
parallel...codeRegions.

parallelRegion
Corresponds to a code region executed by several threadsin parallel.

parallelLoop

Corresponds to a work-sharing construct that distributes the iterations of a loop
among severa threads. The loop is represented by a nested |oopCodeRegion element.
A scheduling element may aso be nested to inform the scheduling type (static,
dynamic, guided, or runtime) and, if applicable, the chunk to be used. Findly, if
threads that finish the work they have been assigned do not need to wait until other
threads also finish their work, the nowait attribute must be specified with the value
true (default: false).

parallel Sections
Corresponds to a work-sharing construct that distributes the execution of several
code regions among several threads. Nested within such a codeRegion element there
may be only blockCodeRegions, each of which representing a code region that is
assigned to a thread. If threads that finish the work they have been assigned do not
need to wait until other threads also finish their work, the nowait attribute must be
specified with the value true (default: false).

paralelSingle
Used to group a sequence of code regions that must be executed by only one thread;
this sequence is represented by one or more codeRegion elements nested within the
parallel SngleCodeRegion. If the other threads do not need to wait that the thread that
executes the code regions finishes its work, the nowait attribute must be specified
with the value true (default: false).

parallelWorkshare
Corresponds to a work-sharing construct that distributes the execution of several
code regions among several threads. Nested within a parallelWorkshareCodeRegion
there may be any number of codeRegion elements (of any type); the way the
execution of the code regions is distributed among threads depends on the library that
implements the construct.

If threads that finish the work they have been assigned do not need to wait that
other threads also finish their work, the nowait attribute must be specified with the
value true (default: false).

parallelMaster
Used to group a sequence of code regions that must be executed by only one thread,
called the master thread; this sequence is represented by one or more codeRegion
elements nested within the paralle-master CodeRegion.

parallel Critical Section
Used to represent a critical section. Nested within this element there may be any
number of codeRegion elements. A unique name may be specified (in the attribute
critical SectionName) to identify a set of critical sections that must be executed by
only onethread at atime. Among the parallel...CodeRegions, thisis currently the only
one that may be used nested within a sir element representing a Java program. In

52 4 |Instrumentation Interfaces

Java, however, it is not in general possible, at compile time, to determine a name to
give to the parallelCriticalSectionCodeRegion, but the expression evaluated to
compute the lock to be acquired should be represented either as an expression element
nested within the parallelCritical SectionCodeRegion (preferredway) or as one or
more codeRegion elements immediately before the
parallel Critical SectionCodeRegion element representing the synchronized construct.

paralel Atomic
Used to inform that an assignment is performed atomically. Nested within a
parallel AtomicCodeRegion element there may be only one codeRegion eement,
namely an assignmentCodeRegion, which must represent the atomic assignment.
Atomicity achieved through library invocations (for instance, using the package
java.util.concurrent.atom) must be represented ordinarily with a callCodeRegion.

parallelBarrier
Corresponds to a language construct that synchronizes all threads within the
dynamic scope of a parallel region. Barriers used through library invocations must be
represented ordinarily as a callCodeRegion.

parallelFlush
Corresponds to an explicit construct that provides consistency between athread (the
one that executes the construct) and the main memory.

parallelOrdered
Corresponds to a construct that ensures that a sequence of code regions “is executed
in the order in which iterations would be executed in a sequential execution” of aloop
[107]. Nested within a parallelOrderedCodeRegion there may be any number of
codeRegion elements (of any type).

As we said, the types of the code region are language and programming model
specific and cannot be fully specified by the list recommended above. However, the
set of types could be the basis for a custom definition.

The requirements for a codeRegion element in a DTD are given below. Note that
the DTD does not (and cannot) enforce semantic rules involving the type attribute of
codeRegion elements, like the fact that a callee element may appear only immediately
inside a callCodeRegion element.

<! ELEMENT codeRegi on (call ee?, location?, variable*, variableRef*,
schedul i ng?, (expression|loopControl)*,
(codeRegi on| gr oup) *) >
<! ATTLI ST codeRegi on
id | D #REQU RED
type CDATA #REQUI RED
critical Secti onNane CDATA #| MPLI ED
noWait (true|fal se) #l MPLIED
>
<!-- The recommended code regi on types include
(bl ock| assign|loop|if|sw tchlwhere|junp|call]io|ltry|catch|finally]|
par al | el Regi on| paral | el Loop| paral | el Secti ons| parall el Single|
paral | el Wor kshare| paral | el Master| parallel Critical Section
paral | el Atomi c| parall el Barrier|parallel Fl ush| parall el O dered|
vector|forall)
-->
<! ELEMENT cal | ee EMPTY>
<I ATTLI ST cal |l ee
id | DREF #| MPLI ED

4.1 SIR Description 53

name CDATA #| MPLI ED
>
<! ELEMENT expression ((codeRegi on| group)+))>
<! ELEMENT | oopControl (| ower?, upper?,stride?)>
<! ELEMENT | ower (codeRegi on+)>
<! ELEMENT upper (codeRegi on+)>
<!l ELEMENT stride (codeRegi on+)>
<! ELEMENT schedul i ng EMPTY>
<! ATTLI ST schedul i ng
type (static|dynam c|guided|runtinme) #REQU RED
chunk CDATA #l MPLI ED>

The order of codeRegion elements in the sir, as well as the way they are nested,
reflect the syntactical order and nesting of the represented program statements in the
input program the sir represents. For instance, if the program statement (or sequence
of program statement) A appears in the input program before the program statement
(or sequence of program statements) B, then the codeRegion element representing A
must appear in the SIR before the codeRegion element representing B.

4.15. The Elementsvariable and variableRef

The variable element represents the definition of a variable (scalar or array). Each
variable must have an attribute of unique id, and can have optional attributes like a
name, a type, and dimensions. If dimensions is defined as -1 or if it is omitted, then
the variable is ssimply a scalar. For arrays, the lower bound and upper bound of each
dimension can be specified with one nested element dimension, while the index
attribute indicates which dimension is being described. The type used for a variable
element is language dependent (that is, this specification does not dictate the name
under which the type of a variable must be represented), but it should be used
consistently throughout the input program representation.

As usual, the location element informs where a variable is declared in the input
program.

The DTD segment for variable element is given below:

<! ELEMENT vari abl e (Il ocation?, dinmension*)>
<! ATTLI ST vari abl e
id | D #REQUI RED
name CDATA #| MPLI ED
t ype CDATA #l| MPLI ED
di mensi ons CDATA #| MPLI ED
>
<! ELEMENT di nensi on EMPTY>
<! ATTLI ST di nensi on
i ndex CDATA #REQUI RED
upper Bound CDATA #REQUI RED
| ower Bound CDATA #REQUI RED
>

As method, function and subroutine arguments are in fact variables, they are aso
represented as such; in addition, the attribute arguments of a unit will contain alist of
identifiers referring to the variables that are arguments in the unit.

References to variables in each unit and code region are represented by variableRef
elements. Each variableRef element must specify targetld, which is used to identify
the variable that it references. The optional attribute accessType can also be provided
to indicate if the variable is read, written, or both. The DTD segment for variableRef
element is given asfollows:

54 4 |nstrumentation Interfaces

<! ELEMENT vari abl eRef EMPTY>
<I ATTLI ST vari abl eRef

target|d | DREF #REQUI RED

accessType (read | wite | readwite) #l MPLIED
>

4.1.6. The Element location

A location element represents the location of a unit, a program statement, a variable
declaration, a directive or a sequence of program statements and directives in a file.
The location element contains attributes for representing the start line, the start
column, the end line and the end column the represented code occupiesin a“file” (not
necessarily al of them need to appear in the element). The location of afileis given
by the attribute uri, and does not need, in fact, to refer to afile, but to any resource. If
the resource where the represented code is defined is not the same as the resource a
nested unit, program statement or directive is defined, the location element in the
nested unit or program statement must also be specified.

The requirements for alocation element inaDTD are given below:

<! ELEMENT | ocati on EMPTY>

<! ATTLI ST | ocati on
startLi ne CDATA #l MPLI ED
st art Col umm CDATA #| MPLI ED
endLi ne CDATA #| MPLI ED
endCol unmm CDATA #I| MPLI ED
uri CDATA #l MPLI ED>

An example that uses the location element is shown in Section 4.2.8. The syntax of
auri attribute can be found in [116].

4.1.7. Open Issues

Templatesin C++ and Java are not represented.

Overloaded operators in C++ are not represented, although they may represent
rather complex functions.

firstprivate, lastprivate, reduction in OpenMP are not represented; it is not clear if
they should be.

Extra compiler information is not represented. Sometimes, it is possible to
determine through compiler analysis the real method that is going to be invoked
(or a set of possible methods). The same is valid for indirect function calls. For

instance:
if (condition) nyfunction = nax el se nyfunction = nin;
x = nyfunction(10, 20);
or

Shape s;
if (condition) s = newCrcle(...) else s = new Square(...);

s.draw();

Even if the compiler has thisinformation, it cannot be represented in the SIR.

4.2 Examples 55

4.2. Examples

4.2.1. Multiple Assignments

This example shows two ways of representing several assignments appearing in a
single statement, as well as how variables are represented.

C code:
int fail ed;
FI LE* f;
failed = (f = fopen("file.txt", "r+")) != NULL;

SIR mapping using the element expression:
<unit type="function" name="fopen" arguments= "vl v2"
i nstrument abl e="fal se" id="ul">
<vari abl e type="char*" id="v1l"/>
<vari abl e type="char*" id="v2"/>
</unit>

<variabl e type="integer" nane="failed" id="v3"/>
<variabl e type="FILE*" name="f" id="v4"/>
<codeRegi on type="assignment" id="al"> <!-- failed = ... -->
<vari abl eRef targetld="v3" accessType="wite"/>
<vari abl eRef targetld="v4" accessType="read"/>
<expressi on>
<codeRegi on type="assi gnnent" id="a2"> <!-- f = ... -->
<vari abl eRef targetld="v4" accessType="write" />
<expr essi on>
<codeRegi on type="call" id="c1"> <!-- fopen() -->
<callee id="ul"/>
</ codeRegi on>
</ expressi on>
</ codeRegi on>
</ expr essi on>
</ codeRegi on>

SIR mapping without the element expression:

<codeRegi on type="call" id="c1"> <!-- fopen() -->
<cal |l ee id="ul"/>

</ codeRegi on>

<codeRegi on type="assi gnment" id="al"> <!-- f = ... -->
<vari abl eRef targetld="v4" accessType="wite"/>

</ codeRegi on>

<codeRegi on type="assignment" id="a2"> <!-- failed = ... -->
<vari abl eRef targetld="v3" accessType="wite"/>
<vari abl eRef targetld="v4" accessType="read"/>

</ codeRegi on>

4.2.2. Inheritance and Constructors

This illustrates the mapping of inheritance and constructors of Java classes, as well as
method (in this case, constructor) invocations.

Java code:
package exanpl e;
class Myd ass extends java.awt . Button
i mpl enents Runnabl e, java.aw.event. KeyLi stener {
MyCl ass(String s) { super(s); }

56 4 Instrumentation Interfaces

SIR mapping:
<group type="package" nanme="java" id="pl">
<group type="package" name="lang" id="p2">
<group type="interface" nanme="Runnable" id="i1"/>
</ group>
<group type="package" name="awmt" id="p3" instrumentabl e="fal se">
<group type="cl ass" nane="Button" id="cl">
<unit type="nmethod" name="Button" arguments="v1" id="ml">
<vari abl e type="java.lang. String" id="v1l"/>
</unit>
</ group>
<group type="package" name="event" id="p4">
<group type="interface" name="KeylLi stener" id="i1"/>
</ group>
</ group>
</ group>
<group type="package" nanme="exanple" id="p5">
<group type="cl ass" nane="M/C ass" id="c2">
<unit type="method" nane="M0C ass" id="n2">
<codeRegi on type="call" id="crl1">
<cal l ee id="nl">
</ codeRegi on>
</unit>
</ group>
</ group>

4.2.3. If Constructs and Functions Calls

This example illustrates the mapping of an if construct in C to an ifCodeRegion,
including the use of the elements blockCodeRegion, callee, and expression.

- Ccode:

if (f(n) >g(m) {
a = 10;

} else {
flag = fal se;

}

SIR mapping:
<!-- assune that the id of f is "f" and the id of gis "g" -->
<codeRegi on type="if" id="i1"> <l-- if (...) -->
<codeRegi on type="bl ock" id="i2">
<expressi on>
<codeRegi on type="call" id="i3"> <!-- f(n) -->
<callee id="f"/>
</ codeRegi on>
<codeRegi on type="call" id="i4"> <l-- g(m -->
<cal lee id="g"/>
</ codeRegi on>
</ expr essi on>

<codeRegi on type="assignnment" id="i5"/> <l-- a =10 -->
</ codeRegi on>
<codeRegi on type="bl ock" id="i6"> <!-- else -->
<codeRegi on type="assignnment" id="i7"/> <l-- flag = false -->

</ codeRegi on>
</ codeRegi on>

4.2 Examples 57

4.2.4. Loop Constructs

This example illustrates the mapping of a for loop in C (or C++ or Java) to a
loopCodeRegion, including the use of the element loopContral.

C/C++/Java code:
for(i =fg(5), j = 4; i <= gh(100) & j <= m(8); i += hi(2), j++) {

SIR mapping:
<!-- assunme that the functions have identical ids and nanes -->
<codeRegi on type="loop" id="il">
<l oopControl > <l-- | -->
<l ower> <!-- fg(5) -->
<codeRegi on type="call" id="i2">

<callee id="fg"/>
</ codeRegi on>

</ | ower >
<upper> <!-- gh(100) -->
<codeRegi on type="call" id="i3">

<cal l ee id="gh">

</ codeRegi on>

<codeRegi on type="call" id="i4">
<cal lee id="m"/>

</ codeRegi on>

</ upper >
<stride> <!-- hi(2) -->
<codeRegi on type="call" id="i5">

<callee id="hi"/>
</ codeRegi on>
</stride>
</l oopControl >

</ codeRegi on>

4.2.5. FORALL

This example illustrates the mapping of a FORALL loop in Fortran to a
forall CodeRegion, including the use of the element loopControl.

Fortran code:
FORALL (i = fg(5):gh(100):hi(2), j = 4:m(8), op(i) < op(j))

END FORALL

SIR mapping:
<!-- assunme that the functions have identical ids and nanes -->
<codeRegi on type="loop" id="i1l">
<l oopControl > <l-- | -->
<l ower> <!-- fg(5) -->
<codeRegi on type="call" id="i2">

<callee id="fg"/>
</ codeRegi on>

</ | ower >
<upper> <!-- gh(100) -->
<codeRegi on type="call" id="i3">

<cal l ee id="gh">
</ codeRegi on>
</ upper >
<stride> <!-- hi(2) -->

58 4 Instrumentation Interfaces

<codeRegi on type="call" id="i4">
<callee id="hi"/>
</ codeRegi on>

</stride>
</l oopControl >
<l oopControl > <l-- | -->
<upper> <l-- m(8) -->
<codeRegi on type="call" id="i5">

<cal l ee id="m"/>
</ codeRegi on>

</ upper >

</l oopControl >

<expression> <l-- op(i) <op(j) -->
<codeRegi on type="call" id="i6">

<cal l ee id="op"/>
</ codeRegi on>
<codeRegi on type="call" id="i7">
<cal l ee id="op"/>
</ codeRegi on>
</ expr essi on>

</ codeRegi on>

4.2.6. Pointer Functions
This example shows the mapping of pointer functionsin C.

C code:
void sort(void *array, int size
int (*cnpfunc)(const void *, const void *)) {

cnpfunc(a, b);

SIR mapping:
<unit type="function" name="sort" argunents="v1l v2 v3" id="f1">
<vari abl e nane="array" type="void*" id="v1"/>
<vari abl e name="size" type="int" id="v2"/>
<vari abl e nane="cnpfunc"
type="(int)(const void *, const void *)" id="v3"/>

<codeRegi on type="call" id="c2">
<cal |l ee id="ul"/>
</ codeRegi on>

</unit>

4.2.7. Overloaded Functions
This example shows the mapping of overloaded functionsin Fortran.

Fortran code:
| NTERFACE PHI
FUNCTI ON | PHI (X)
| NTEGER | PHI, X
END FUNCTI ON | PHI
FUNCTI ON RPHI (X)
REAL RPHI, X
END FUNCTI ON RPHI
END | NTERFACE PHI

4.3 MIR Description 59

SIR mapping:

I function contents not inportant

<unit type="function" name="IPH " arguments="v1" id="f1">
<vari abl e name="X" type="INTECER' id="v1"/>
<al i as>PHI </ al i as>

</ unit>

<unit type="function" name="RPH " arguments="v2" id="f2">
<vari abl e name="X" type="REAL" id="v2"/>
<al i as>PHI </ al i as>

</unit>

4.2.8.10 Statements and L ocation

This example shows a piece of Fortran code mapped to a SIR including the location
element, and also how an 10 statement is mapped to an element in the SIR.

Fortran code:
file F1.f90

col um 123456789012345678901234
line 1: SUBRQOUTI NE f (x)

line 2: REAL :: X

line 3: | NCLUDE " F2. f 90"

li ne 4: END SUBROUTI NE f

file F2.f90

colum 12345678901234567890
line 1: PRI NT *, foo(1)

SIR mapping:
<!-- assunme that the id of PRINT is "print"
and the id of foo is "foo"-->
<unit type="subroutine" name="f" id="i1">
<l ocation startLine="1" start Col um="5" endLi ne="4" endCol um="20"
uri="file:///honel/joelprograns/F1l.f90"/>
<codeRegi on type="io" id="i2">
<l ocation startLine="1" start Col um="5"
endLi ne="1" endCol um="19"
uri="file:///hone/joelprograns/F2.f90"/>
<expressi on>
<codeRegi on type="call" id="i3">
<l ocation startLine="1" start Col um="14"
endLi ne="1" endCol um="19"/>
<cal l ee id="foo0"/>
</ codeRegi on>
</ expr essi on>
<callee id="print"/>
</ codeRegi on>
</unit>

4.3. MIR Description

This section describes the format of several kinds of requests used to control the
instrumentation and monitoring of an application, as well as the format of the
responses expected from these requests. There are four types of requests that can be
used:

60 4 Instrumentation Interfaces

SIR: arequest for the SIR of a set of programs in an application;

Snapshot: arequest for the current status of an application in execution;
Instrumentation: arequest for instrumenting the application;

Control: arequest for altering the instrumentation of the application or to get the
value measured by the instrumentation code.

:AnalysisTool | :InstrumentationT ool |

| |
L SIR

|:] analyze(SIR)
Instrumentation
request
start

> :InstrumentedApplication |

|
' «create»; :MonitoringTool
1 :OperatingSystem

instrument(codeRegionl ds)

W start/end(probe)
>

|

|

SR |

measurement | :

| I

I

measure() L

Measurement R r;] ____rér_n;;:l |
document easu [

finished()

T meewremems(performanceDath X

Figure 11. I nteractions between toolsusing MIR (post-mortem analysis)

The UML Interaction Diagram in Figure 11 shows one possible interaction between
tools that use MIR to communicate with each other in a post-mortem anaysis
scenario with static instrumentation. The Analysis Tool sends a SIR request to the
Instrumentation Tool asking for the SIR of the sources to be instrumented. The SIR is
generated and sent back to the Analysis Tool. By analyzing the SIR received, the
Analysis Tool decides what to instrument and sends an instrumentation request to the
Instrumentation Tool containing the code regions to be instrumented. The
Instrumentation Tool instruments the code and returns identifiers for the probes
inserted. After the instrumented sources have been compiled, the Analysis Tool starts
the Instrumented Application, possibly with an embedded Monitoring Tool (e.g. a
library linked in the application) that collects performance data, like values of
hardware counters or operating system timers. When the Instrumented Application

4.3 MIR Description 61

finishes, the performance data collected is sent back to the Analysis Tool where they
can be analyzed.

:AnalysisTool

— Start

;l :InstrumentedA pplication

| :InstrumentationMonitoringT ool «create»

1
loop) *[whilethe I
/" instrumented getCallStack() |
applicationis q
running] callStack

analyze(SIR) I
| Instrumentation
request l recuest

instrument(codeRegionl dg{}/

loop J P start/end(probe)
:OperatingSystem

i measure() |
' measure() | (€---------

measurement
--------- >

Measurement
document
aggregateData(rawData)

measurements(performanceData) i

T

Control anal yze(performanceD.elta)I
request I
|

—{__change(probelds)

N |

IN._remove(probel ds) ‘ITI
|
- finished()
finished() rl/
|

X
: X
Figure 12. I nteractions between tools using MIR (dynamic analysis)

Figure 12 shows another possible scenario, now with dynamic analysis and
instrumentation. While the instrumented application is running, the Analysis Tool
sends to the Instrumentation and Monitoring Tool 1) Snapshot requests, in order to
find the subroutines that are executed, 2) SIR requests, so as to get details about the
application structure, 3) Instrumentation requests, to insert probes that collect

62 4 Instrumentation Interfaces

performance data about code regions, and 4) Control requests, in order to change the
data that is collected or remove probes that are too intrusive or that never measure
anything.

The syntactic and semantic rules of the four request types and their responses are
described in the following.

4.3.1. The SIR Request

A SIR request is used in order to obtain the SIR of one or more programs that make
up an application. The SIR generated can be analyzed and its code region identifiers
used to instrument the application; a SIR request aso specifies where the programs
must be written back after the SIR has been instrumented.

SIR requests are simple; besides the root element, sirreq, there may be only one
other kind of element, resource, which names the “files” (more generally speaking,
resources) used to generate the SIR (attribute in) and where they should be written
back after the instrumentation (attribute out).

The following DTD describes the syntax of a SIR request

<! ELEMENT sirreq (resource+)>
<! ELEMENT resource EMPTY>
<I ATTLI ST resource

i n CDATA #REQUI RED

out CDATA #l| MPLI ED>

The syntax of the in and out attributes is defined by RFC 2396: Uniform Resource
Identifiers (URI) [116]. For instance, the following request could be used to get a
program from the Web (along with a file needed to its compilation) and write it on the
local disc:

<sirreg>
<resource
in="http://ww.fictive.conm mul.c"
out="file:///hone/clovis/mul.c">
<resource in="ftp://anonynous@i ctive. com prototypes. h">
</sirreqg>

4.3.2. The Snapshot Request

A snapshot request is used to get information about some entities of an application in
execution: sites, nodes, processes, and threads. The request itself is ssmple and small
(it has only the root element, snapshotreq), while the response may contain not only
the entities enumerated above, but also call stacks of the execution.

The following DTD describes the syntax of a snapshot request:

<! ELEMENT snapshotreq EMPTY>
<! ATTLI ST snapshotreq
site (true|fal se) #l MPLIED
node (true|fal se) #l MPLIED
process (true|fal se) #l MPLIED
thread (true|fal se) #l MPLIED
naned (true|false) #l MPLIED
st ack CDATA #l| MPLI ED
freeze (true|fal se) #l MPLIED>

4.3 MIR Description 63

The attributes site, node, process, and thread specify which entities must be present
in the snapshot (the default value is implementation dependent). The attribute named
specifies if the snapshot must also contain the names (if available) of the entities in
the snapshot, as the default is the generation of snapshots only with identifiers for
these entities. The attribute stack specifiesif the call stack of the execution is wished,
and how deep it must be. The default value for stack is zero, that is, no call stack.
Finally, the attribute freeze specifies the state of the entities after the snapshot request:
if true, they will be suspended and will not make any progress until another snapshot
request, with the attribute freeze set to false, is received.

The following DTD, which describes the syntax of a snapshot, is more complex,
though (the root element is snapshot):

<! ELEMENT snapshot (site*, node*, process*, thread*)>
<! ELEMENT site (node*|(process*, thread*))>
<I ATTLI ST site
i d CDATA #REQUI RED
name CDATA #l| MPLI ED>
<! ELEMENT node (process*, thread*)>
<! ATTLI ST node
i d CDATA #REQUI RED
nanme CDATA #l| MPLI ED>
<! ELEMENT process (thread*]|stack*)>
<I ATTLI ST process
i d CDATA #REQUI RED
name CDATA #l| MPLI ED>
<!l ELEMENT thread (stack*)>
<! ATTLI ST t hread
i d CDATA #REQUI RED
name CDATA #| MPLI ED
master (true|fal se) #l MPLI ED>
<! ELEMENT st ack (#PCDATA) >

Each entity in a snapshot has a unique identifier that can be used in an
instrumentation request, as shown later. The names of the entities appear if available
and if the snapshot request specified the attribute named with value true. The attribute
master is used to specify whether a certain thread in the snapshot is the master thread
in the process, in which case it appears with the value true (the default value is false.
It makes sense only for applications with multithreaded processes (e.g. using OpenM P
[107], hybrid OpenMP/MPI, multithreaded MPI). Finally, each stack element
describes, in an application dependent format, a stack frame. The maximum number
of stack elementsin athread or process element is limited by the value of the attribute
stack in the snapshot request.

The following example shows a snapshot request for a Java program and the
snapshot received as answer:

<snapshotrequest naned="true" stack="3">

<snapshot >

<t hread id="15" nanme="AW- Event Queue-0">
<stack>j ava. | ang. Qbj ect . wai t </ st ack>
<stack>j ava. am . Event Queue. get Next Event </ st ack>
<st ack>j ava. awt . Event Di spat chThr ead. punpOneEvent For Hi er ar chy
</ st ack>

</t hread>

<thread i d="16" name="DestroyJavaVM'/ >

<thread i d="1" name="main"/>

64 4 Instrumentation Interfaces

<stack>j ava. | ang. Thread. j 0i n</ st ack>
<st ack>App. mai n</ st ack>
</t hread>
</ snapshot >

4.3.3. The Instrumentation Request

Instrumentation requests are issued before or during the program execution so as to
instrument an application. They may refer to code regions (using identifiers obtained
from a SIR document) and entities like processes and threads (using identifiers
obtained from a snapshot document).

The code generated through an instrumentation request is called a probe. An
instrumentation request may actually generate several probes, one for each code
region specified in the request. A probe has, at every instant, a value associated to it,
which corresponds either to the last value measured by the probe or to the aggregation
of this value and previously measured values. This value will be called here probe
value.

Each probe receives also a unique identifier called probe identifier, which can be
used to retrieve the probe value, as well asto ater the probe or even removeit.

The following DTD describes the syntax of an instrumentation request. The
definition of the elements site, node, process, thread was omitted, as it is the same as
in the snapshot request (Section 4.3.2).

<! ELEMENT instrreq (
codeRegi on*,
metric*,
event *,
measuring?,
site*, node*, process*, thread*)>
<! ATTLI ST instrreq
defaults (true|fal se) #l MPLI ED
activated (true|fal se) #l MPLIED
flush (true|fal se) #l MPLI ED>

<! ELEMENT codeRegi on EMPTY>
<I ATTLI ST codeRegi on

from CDATA #REQUI RED

t o CDATA #l VPLI ED>

<! ELEMENT netric EMPTY>
<I ATTLI ST nmetric
name CDATA #REQUI RED>

<! ELEMENT event EMPTY>

<! ELEMENT neasuring (aggregate*)>
<I ATTLI ST neasuring
delivery CDATA #| MPLI ED
desti nation CDATA #| MPLI ED
i nterval CDATA #| MPLI ED
duration CDATA #| MPLI ED>

<! ELEMENT aggregate EMPTY>

<I ATTLI ST aggregate
function (AVERAGE| MAXI MUM M NI MUM SUM VARI ANCE) #I MPLI ED
group CDATA #l MPLI ED>

<l-- group contains SITE NODE PROCESS THREAD METRIC -->

T

4.3 MIR Description 65

he root of an instrumentation request is the element instrreq. Inside it the

following elements are allowed:

The codeRegion element, with the attributes from and to. These attributes contain
the identifier of a unit or codeRegion element in a SIR, and delimit the beginning
and end of aregion to be monitored in the input program. Some metric will be
measured at the beginning and at the end of the region, and the probe value will be
the difference between these two values. If the to or the from element is omitted,
then the metric will be measured only at the beginning or at the end of the code
region (no difference will be computed). The concept of “valid” region, however,
is application dependent—one instrumentation tool may alow to define a region
that begins in a function and ends in other, while another tool not. Several
codeRegion elements may be present in a single instrumentation request.
The metric element, defining which metric should be measured for the region of
interest. Several metric elements may be present in a single instrumentation
request. Possible values for metrics depend on specific implementations (see
Section 4.3.7).
The event element, indicating that event traces must be generated for the region of
interest. The format of the event traces remains to be defined and is not covered in
this specification.
The measuring element, which defines:
how often, in milliseconds, measurements must be done (attribute interval).
The default value is zero, which means that the measurements are done only
when the code region defined with the element codeRegion is executed.
how often, in milliseconds, values measured are automatically delivered
(attribute delivery). The default value is zero, which means that the values are
not automatically delivered; they must be retrieved through a control request
(see Section 4.3.4). The value -1 has a specia meaning: the values are
delivered every time they are measured.
where values measured must be delivered (attribute destination). Values are
aways delivered as measurement documents (see Section 4.3.5), but the
default value for the destination attribute is application dependent. The format,
though also application dependent, must follow the URI syntax [116].
how long, in milliseconds, a measurement takes (attribute duration). The
default is zero; anon-zero value T means that the measurement must be done at
instant K, then at instant K + T, and that the difference between the two values
measured must become the probe value.
A measuring element may contain aggregate elements, to indicate that
measurements must be grouped according to certain statistic functions
(AVERAGE, MINIMUM, MAXIMUM, SUM, and VARIANCE). If no aggregate
element is specified, or if it is specified with no function, then the probe value will
always be the last value measured; otherwise, it will be the value returned by one
of these functions (or values, if more than one function is specified). Aggregate
elements may also specify levels of grouping when computing statistics with the
attribute group. For example, instead of having the maximum among all process,
one can say that the maximum should be grouped by processes by specifying
group="PROCESS' .
The thread, process, node, and site elements, specifying the identifiers of threads,
processes, nodes, and sites for which measurements must be taken. The format of
an identifier for any of these elements must be obtained from a snapshot document

66 4 Instrumentation Interfaces

(see Section 4.3.2). Two symbols, however, have a specia meaning for an
identifier: the asterisk, which means “al,” and the question mark, which means
“the current entity” (or “the entity doing the measurement”). For instance,
<process id="*"> means that the measurement must be taken for all processes
related to the application, while <process id="7?"> means that the metric must be
measured only in one process, namely the one that is doing the measurement
itself. Question marks are useful, for instance, when taking measurements for a
code region. In fact, if an instrumentation request specifies a code region but no
entity, the question mark is assumed as “identifier” for the elements thread,
process, node, and site.

Note that there is a difference between arequest that specifies

<process id="P1"/>

and one that specifies

<process id="P1">
<thread="*">
</ process>

The first request asks for one single value, measured for the process P1, while the
second request asks for several values, one for each thread of process P1.

An instrumentation request may aso have three attributes. flush, activate, and
defaults. When the flush attribute has the value true, the current instrumentation
request is flushed, together with all the previous instrumentation requests where the
attribute flush was false or absent. One particular conseguence is that only now SIRs
may be parsed back to source code (now aso with instrumentation code). The
attribute activate, if specified with the value true, indicates that the measurements
must start as soon as the instrumentation is flushed. When the value is false (or the
attribute is absent), the probe starts inactive, and a control request (see Section 4.3.4)
will be needed to activate it. The attribute defaults, if specified with the value true,
indicates that the request should not create probes, but only set default values for the
other elements and attributes, which can potentially make the next requests shorter.
When the value is false (or the attribute is absent), one or more probes will be created.

The response to an instrumentation request is a probe document, the syntax of
which is defined as follows:

<! ELEMENT probes (probe+)>

<! ELEMENT probe EMPTY>
<! ATTLI ST probe
i d CDATA #REQUI RED>

Each nested probe element represents a probe inserted; if more than one code
region was specified in the instrumentation request, then there will be more than one
probe element, one for each probe created. The attribute id of a probe identifies the
probe inserted; it may be used later in a control request and also to identify avaluein
ameasure document (see Section 4.3.5).

If the instrumentation request does not generate a probe (because it is just setting
default values) the response will be smply <ok>.

4.3 MIR Description 67

The following example shows how to measure the number of bytes sent and
received in the network for threads 1045 and 1032 blocked to enter in a critical
section. This value is measured every time any thread executes the code region with
identifier c1, and the maximum of the values measured is sent every second to the file
/tmp/foo.txt.

<instrreg>
<codeRegi on from="cl"/>
<netric name="NET_SEND'/ >
<netric name="NET_RECV'/>
<measuri ng
del i very="1000"
destination="file:///tnp/foo.txt"
<aggregate functi on="NMAXI MUM'/ >
</ measuri ng>
<t hread="1045"/>
<t hread="1032"/ >
</instrreq>

If, instead of <aggregate function="MAXIMUM"/>, we had used <aggregate
function="MAXIMUM" group="METRIC" />, we would have created a level of
grouping for the statistics, and two values would be sent every second: the maximum
of number of bytes sent (metric NET_SEND) and the maximum of number of bytes
received (metric NET_RECV). If we had used <aggregate function="MAXIMUM"
group="METRIC THREAD” /> we would have created two levels of grouping, and
four values would be sent every second: the maximum of number of bytes sent for
thread 1045, the maximums of bytes sent for thread 1032, the maximum of number of
bytes received for thread 1045, and the maximums of bytes received for thread 1032.

If we had used <thread id="7?"> instead of the thread identifiers, the metrics
NET_SEND and NET_RECV would be measured for each thread, but the
measurements for any thread T would be taken only when T executed the code region
cl. By using <thread id="*">, however, the measurements would be taken for all
threads every time any of them executed the code region cl.

4.3.4. The Control Request

A control request is used to access the probe created through an instrumentation
request. With control requests and the probe identifiers returned by the
instrumentation requests (see Section 4.3.3) it is possible to change the
instrumentation or retrieve the values it measures.

The root of a control request is the ctrireq element. The DTD giving the syntax of
control requestsis given below:

< ELEMENT ctrlreq (
pr obe+,
metric*,
nmeasuri ng?,
site*, node*, process*, thread*)>
<I' ATTLI ST ctrlreq
flush (true|fal se) #l MPLI ED
action (VALUE| ACTI VATE| DEACTI VATE| RESET| REMOVE) #REQUI RED>

The element probe specifies, with the attribute id, the identifier returned by a
previous instrumentation request. Several probe elements may be specified in the
same request.

68 4 Instrumentation Interfaces

The attribute action defines the effect of this control request on the probe(s).

Possible actions are:

- VALUE: The last value measured (or the last aggregation) is returned as a
measurement document (see Section 4.3.5); the instrumentation does not
change.

- ACTIVATE: The measurements start to be taken for the specified probe(s). If
they already were active, nothing happens.

- DEACTIVATE: The measurements stop to be taken for the specified probe(s).
The perturbation generated by the probe(s) should be minimal.

- RESET: Resets the aggregations associated with the specified probe(s). All the
measurements taken for that probe(s) until the moment of this request will be
forgotten, asif the probe had just been inserted.

- REMOVE: Invaidates the specified probe, possibly removing the
instrumentation.

The attribute flush, as well as the elements metric, measuring, site, node, process,
and thread are equivalent to their counterparts in an instrumentation request. If left
unspecified, the previous settings associated with the specified probe(s) remain
unaltered.

The following example removes the probes p1 and p2:

<ctrlreqg>
<probe id="pl"/>
<probe id="p2"/>
<action type="REMOVE"/ >
</ctrlreg>

This example returns the last value measured for probe p2:

<ctrlreqg>
<probe id="p2"/>
<action type="VALUE">
</ctrlreg>

Finally this example changes the probe p3 to measure every 4 seconds the time that
spent sending messages in node mynode.ac.at:

<ctrlreqg>
<probe id="p3"/>
<action type="RESET"/>
<metric nanme="NET_SEND'/ >
<l-- NET_SEND neans tine spent sendi ng nmessages -->
<neasuring interval ="4000"/ >
<node id="nynode.ic.at"/>
</ctrlreg>

4.3.5. The M easur ement Document

The response to a control request whose action has the type VALUE, as well as the
document sent automatically if the probe is associated to a delivery interval different
from zero, is a measurement document, the syntax of which is defined as follows:

<! ELEMENT neasurenent (neasurenent)*>
<I ATTLI ST neasur enment

probel d CDATA #| MPLI ED

siteld CDATA #l MPLI ED

nodel d CDATA #l| MPLI ED

processl d CDATA #l MPLI ED

4.3 MIR Description 69

t hreadl d CDATA #l MPLI ED
val ue CDATA #l| MPLI ED>

A measurement document is generated from a set of tuples (probeld, siteld, nodeld,
processid, threadld, metric, value), where null is also a possible value for siteld,
nodeld, processid, and threadld (in a pure sequential program, for instance, all of
them can be null). Each tuple corresponds either to the value measured for some
metric or to an aggregation of values (average, maximum, minimum, sum, variance);
for the aggregations average, sum, and variance, siteld, nodeld, processld and
threadld will always be null.

In order to generate the document in a compact form, the following algorithm is
applied (where we call last defining request the instrumentation request that created a
probe or the control request that last modified it):

1. Generation: For each tuple, a measurement element is generated using the valuesin
the tuple as the values of the respective attributes in the element. Note that there is no
attribute for metric.

2. Sorting:

If two measurement elements ml and m2 have the same value for the attribute
probeld but different values for the attribute siteld, then m1 must appear in the
document before m2 if the site in ml was neither an asterisk nor a question mark
and it has been specified before the site in m2 in the last defining request of the
corresponding probe. A similar ruleis applied if two measurement elements have:
- the same value for the attributes probeld and siteld but different values for the
attribute nodel d;
- the same value for the attributes probeld, siteld, nodeld but different values for
the attribute processld;
- the same value for the attributes probeld, siteld, nodeld, and processid but
different values for the attribute threadlid.
If two measurement elements ml, generated from tuple t1, and m2, generated
from tuple t2, have the same values for the attributes probeld, siteld, nodeld,
processld, and threadld, then ml must appear in the document before m2 if the
metric in t1 was specified before the metric in t2 in the last defining request of the
corresponding probe. This rule guarantees that the metric a measurement element
refersto can always be inferred from the last defining request.

3. Compression:

Remove what can be inferred from the last defining request:

- If the document is the response to a control request whose action has the type
VALUE, then the attribute probeld is removed from all measurement elements
if the document contains values for only one probe.

- An attribute siteld, nodeld, processid and threadld is removed if its value is
null or if the last defining request for the probe did not specify an aggregation
and used neither an asterisk nor a question mark as identifier of the
corresponding site, node, process or thread.

If there is still more than one measurement element, a new “root” measurement
element, without any attribute, is generated to nest the other measurement
elements.

70 4 Instrumentation Interfaces

If there is a measurement element M and an attribute a such that the value for
attribute a is the same in each of the e ements nested in M, then the attribute a is
removed from all nested elements and added to M.

The following example shows an instrumentation request that measures the number
of threads for nodes c1 (containing the processes pl and p2) and c2 (containing the
process p3) in the site isc, as well as a possible measurement document generated for
the values measured (comments between <-- and --> are not generated):
<instrreqg>

<metric nanme="THREAD_COUNT"/ >
<site id="isc">
<node id="cl1">
<process id="*"/>
</ node>
<node id="c2">

</ node>
</site>
</instrreq>

<neasurenent> <!-- site isc -->
<measurenent> <!-- node cl -->
<measur ement processld="p2" val ue="3"/>
<nmeasurenment processld="pl" val ue="4"/>
</ measur enment >
<measurenent> <!-- node c2 -->
<measur ement processld="p3" val ue="5"/>
</ measur enent >
</ neasur enent >

If the instrumentation request had specified the aggregate element with the attribute
function = MAXIMUM, the measurement document would be simply:

<measurement siteld="isc" nodel d="c2" processld="p3" val ue="5"/>

4.3.6. Errors
Responses to requests may also return errors instead of a normal answer according to
the following syntax:

<! ELEMENT errors (error)+>
<! ELEMENT error (#PCDATA) >

where each error element contains an application-dependent error message. For
example:
<errors>

<error>File not found: mmc</error>
</errors>

4.3.7. Metrics

Each metric has a unigue name. The attribute name in the element metric specifies the
unigue name of the metric. Metric can be tempora (e.g. wall clock time), spatial (e.g.
memory allocated), counter (e.g. number of function calls), and hardware counter
(e.g. Leve 2 cache misses). The name and the number of metrics supported are
dependent on specific implementations of the instrumentation and monitoring tool.
Each implementation should provide a metric catalog that documents its supported

44 Summary 71

metrics. As a performance tool may work with different instrumentation and
monitoring tools, a metric may need to be associated with a name space. Section 6.4
provides and explains an exhaustive list of all performance metrics that we used in our
work.

4.4. Summary

This chapter has shown how to represent programs in several languages (Fortran, C,
C++, and Java) using a neutral format defined in XML, and proposed a standard set of
requests and responses for communicating with instrumentation engines. This
approach not only reduces the dependence of performance tools on a specific
instrumentation tool, but also increases their portability, making it possible to support
new languages and instrumentation tools at low cost.

A compromise was sometimes necessary in order to unify under a single SIR
element several constructs that fundamentally represent the same idea. For example, a
C++ programmer may find it strange that a namespace is called a "package”, and an
object-oriented purist might complain that a call element is used to represent a
method invocation. Another problem is that not aways a lowest common
denominator can be found; some concepts are specific for only one language or
paradigm and do not have a parallel in other languages.

We must also note that not everything that can be represented with SIR must be
represented, nor does an instrumentation engine need to fully support al of the
possible requests in this document to be "MIR compatible’. For example, when
generating the SIR from a binary file, less information will be available compared to
the SIR generated form the source code. The SIR in this case will be extremely
reduced, but it will still be valid.

5

Modeling of Performance Data and Problems

This chapter describes JavaPSL, a generic performance specification language for
modeling experiment-related data and performance properties of sequentia,
distributed and parallel programs. Performance properties characterize a specific
negative performance behavior of a program and are defined over experiment-related
data. JavaPSL isintended to be used as a standard performance information interface
that can model alarge variety of performance information, and enable portable access
to performance information. By using JavaPSL, one can build sophisticated
performance tools, for example to provide automatic bottleneck analysis.

JavaPSL uses powerful Java mechanisms, in particular, polymorphism, abstract
classes, and reflection, to describe performance properties. Moreover, JavaPSL
provides meta-properties (defined as Java abstract classes) so as to describe new
properties based on existing ones and to relate properties to each other. JavaPSL was
inspired by ASL (see [40] and Section 3.2), but while there is no compiler for ASL,
JavaPSL can be compiled with any Java compiler, which makes it easy for a
performance analysis tool to use knowledge represented in JavaPSL.

Performance properties are related to the code regions were they are found through
experiment-related data. JavaPSL filters and statistics classes can be used to restrict
performance analysis to specific experiment-related data, and to compute statistics
based on arbitrary sets of performance values.

Figure 13 shows a design of a generic performance tool that tries to automatically
find all performance bottlenecks of a program by using JavaPSL. The program files
are input to the performance tool. An experiment decision system requests
performance data from one or more profiling/tracing/prediction tools, which is then
stored by JavaPSL classes describing experiment-related data. Based on this data and
pre-defined property specifications, a bottleneck analysis system computes a set of
performance properties, which are stored together with experiment-related data as
JavaPSL classes.

A cyclic search process for performance bottlenecks is invoked, during which the
bottleneck analysis system computes, examines and stores performance properties,
and initiates additional performance experiments through the experiment decision
system. If al bottlenecks—specified in the performance property specification
repository—are found or a time limit is reached the search is stopped and
performance bottlenecks can be visualized or further examined. Moreover, not only
performance tool builders but also the user can be given the possibility to add new
properties and change or delete existing ones in the performance property
specification repository.

74 5 Modeling of Performance Data and Problems

Input
programs
Performance profiling/
tracing/prediction tools
xz /V

Experiment decison ||

system
l / Experiment-related data and
. perfor mance properties
Bottleneck analysis & (represented with JavaPSL
system W

I

Disol . Performance property
'Spt?ytﬁa orkmance specification (represented
ottienecks with JavaPSL)

PERFORMANCE BOTTLENECK
ANALYSISTOOL

Figure 13. Design of a performance tool that automatically triesto find all performance
bottlenecks by using JavaPSL

This chapter presents severa examples that show how to model performance
properties of an application, including non-scalability, load imbalance, inefficiency,
and various overheads such as synchronization, communication, loss of parallelism,
control of paralelism, late sender, and cache misses. We focus on JavaPSL as a
performance specification language and on its flexibility to describe large classes of
experiment-related data and performance properties.

5.1. Experiment-related Data

An experiment refers to a sequential, parallel or distributed execution of a program on
agiven target architecture. Every experiment is described by experiment-related data,
which includes information about the application code, the machine on which the
code has been executed, and measurements obtained from the execution.

JavaPSL uses the syntax and semantic rules of the Java programming language in
order to specify experiment-related data. Figure 14 visualizes the JavaPSL classes for
experiment-related data by using UML (Unified Modeling Language [119]).

An application (program) may have a number of code versions (implementations),
each of them consisting of a set of source files. Every source file is identified by a
URI (Uniform Resource Identifier [116]) and has one or several static code regions
(ranging from the entire program to single statements) whose location is specified by
startLine, startColumn, endLine and endColumn (positions where the region begins
and ends in the source file). A code region p that statically contains code region c is
the parent of c if there is no other code region that p statically contains and that also
contains c. In this case, ¢ is one of the children of p.

Versions are aso associated with one or severa experiments. Each experiment is
executed with a set of input parameters. The semantics of an input parameter says if
the parameter is machine-size related, problem-size related, or neither.

5.1 Experiment-related Data 75

— Expenment
Application description Input Parameter
HICIERE, startTime narne
ST g.n|value
1 getMumberOfThreadsr) sernantics
getMumberOfProcessesl)
1n 1 1.0 |gethumberOflodes()

ﬂﬁ 1
“arsioh 1 ‘Q\x Event
description 0.1 0..n 0 _plprocessld
. threadld
1 FegionSummary timeStamp
processid type
1..n threadld
SourceFile 0 n gethodel)
LR getNode) getCodeRegion()
getCodeRegion()
getContents() 1
1.n .
<LBALM 3 \ Cnd.eRegmn
CodeRegion Type startLine Mode
LOOP startColumn narne
METHOD endLine nurnberOfFrocessors
INVOCATION =ndtelumh
A [Re getintFactar])
' getFloatFactor)
01 getCacheMissPenaltyilevel : int)

Figure 14. Experiment-related data

A region summary (profile information) represents an execution of a code region by
a certain process and thread in some node (machine). Similar to code regions, region
summaries have also a parent-child relationship: Let r,t be the region summary
representing an execution of code region p in thread T, and r.t the region summary
representing an execution of code region ¢ * p also in thread T. If the execution of p
started when the execution of c started or before, and finished when the execution of ¢
finished or later, then r,, is the parent of r. (and r. is one of the children of rp) if there
isno coderegiong(g! pandg?! c) for which an execution in thread T:

started when the execution of p started or later, and
finished when the execution of p finished or before, and
started when the execution of ¢ started or before, and
finished when the execution of ¢ finished or later.

Metrics measured during the execution must be represented in a subclass of
RegionSummary specific for a given environment (e.g. a parallel Fortran application
using message-passing or a distributed Java using RMI) as shown in Section 7.5.5.
For example, subclasses of RegionSummary may provide information about
execution, synchronization, communication, and waiting time, or about hardware
metrics like cache misses or number of floating-point instructions executed.

A set of events can also be used to obtain performance information. Each event has
a least a type, the location where it originated (code region, node, process, and

76 5 Modeling of Performance Data and Problems

thread), and the time it occurred (time stamp). As with region summaries, one can add
event information specific for a given environment by extending the class Event.

Each node has specific characteristics which, as shown later, are important for
evaluating the performance of an application: its number of processes, its int factor,
which gives the relative power of the machine when executing integer operations, its
float factor (similar in concept to the int factor), and the penalty for a cache miss. The
power of a machine for integer or floating pointing operations can be computed using
benchmarks like SPECint95 [138], as long as the powers of all nodes are comparable
and one can say how a node is faster than other. Additional characteristics may be
added by extending the class Node.

With the present advanced monitoring and profiling technologies (e.g. dynamic
profiling [89], hardware profiling [1], and source code profiling [91, 147]), there is
basically no barrier to represent experiment-related data for arbitrary paralel and
distributed programs.

7]
A “<enums=
<<|nterface=> Felatian
Fllter | JEQUALS
MORE_RESTRICTIVE
accept(: T} : boolean LESS_RESTRICTIVE
compareTo(Filter<T=) : Relation MO COMPARABLE
N
SourceFile

regions() : CodeRegion
regions(; Filter<CodeRegion=) . terable<? extends CodeRegion:

/ . ..
e Statistics
_ TEL
{{mteﬁa.:';}}— J otatistics(: lterable=<? extends T=)
lterable gething) : float

wz_ __ |getMaxi) : float
getfveragel) : float
getstdDew) : float

teraton) ; terator<T=

I,f getsurm() : float
,|r getsquareSum() : float
gettaxObject) : T
terable and getMinObject() : T

terator belongs

to the Java AP count() : int

getValuel - T) : float

Figure 15. Statistics, Filtersand Iterable objects

5.2. Filtersand Statisticsfor Experiment-Related Data

Figure 14 shows several aggregations, denoted by an arrowhead line with adiamond a
at its base. Following the Iterator pattern [47], aggregate objects (those pointed to by
the arrow) are represented in JavaPSL with Iterable objects, which allow them to be
accessed without exposing their internal structure. For example, the method

5.2 Filtersand Statistics for Experiment-Related Data 77

summaries of an Experiment instance can be used to obtain an aggregate object that
iterates over all region summaries of this experiment. Optionally, a filter can be
passed as a parameter to this method. In this case, the aggregate object returned will
provide access only to the summaries satisfying the filter condition(s) and restricting
the performance analysis to a subset of the data. Finally, statistics about an iterable
object may be computed using the class Statistics. Figure 15 shows the relationship
between Filters, Satistics and Iterable objects using SourceFile objects.

Filters must implement the interface Filter<T>, the most important method of
which, accept, verifies whether an object of type T is accepted or rejected by the
filter. A partial-order relationship is also defined between filters: if filter f; is more
restrictive than filter f, (denoted f; > f,), then the set of objects returned using the filter
f1 is contained in the set returned using filter f,, and atool may use this fact to speed
up the iteration, for instance by caching the set of objects returned and using the
cached value with more restrictive filters.

The abstract class Satistics provides statistical methods for specific performance
information (e.g. communication time of aregion summary), which must be provided
by overriding the method getValue in a subclass of Satistics.

In what follows we present a brief example to demonstrate the usage of filters and
statistics under JavaPSL (for clarity, code related to partial-order relationship was
dropped):
filter = new Filter<CodeRegi on>() {

1

2 publ i c bool ean accept (CodeRegi on c) {

3 return c.getType() == CodeRegi on. Type. LOOP;
4 }

5 }s

6 aggregate = sourceFile.regions(filter);

7 statistics = new Statistics<CodeRegi on>(aggregate) ({
8 publ i c get Val ue(CodeRegi on ¢) {

9 return c.getEndLine() — c.getStartLine() + 1
10 }

1}

12 average = statistics.getAverage();

13 stdDev = statistics.getStdDev();

Lines 1 to 5 create a filter that accepts only code regions that represent loops, line 6
creates an iterable object representing the code regions in the source file sourceFile
that satisfy the filter condition, and lines 7 to 11 create an object to compute statistics
over the size of loops in that source file. Finally, lines 12 and 13 determine the
average and standard deviation for the size of loops in the sourcefile.

A special filter called CodeRegionFilter, which selects those region summaries that
refers to a specific code region, is already predefined in JavaPSL as follows (checks
for non-null arguments were omitted for brevity):

public class CodeRegionFilter inplements Filter<Regi onSummary> {
private final CodeRegi on region
publ i c CodeRegi onFilter(CodeRegion c) { region = c; }

public bool ean accept (Regi onSumary rs) {
return rs. get CodeRegi on() . equal s(region);

}

public Rel ation conpareTo(Filter<RegionSumrary> f) {
return f !'= null && f.region == region ?

78 5 Modeling of Performance Data and Problems

Rel ati on. EQUALS : Rel ati on. NON_COVPARABLE

}
}

5.3. Performance Property Specification

A performance property (eg. load imbaance, synchronization overhead)
characterizes a specific negative performance behavior of a program and is defined by
three components:

holds: boolean value that determines whether a property holds or not.

confidence: normalized value between 0 and 1 that indicates the degree of
confidence in the correctness of the value of holds. A confidence value 1 means
that the value of holdsis very likely to be correct. The closer the confidence value
isto 0, the more uncertain the correctness of holds is. Defining confidence values
for performance properties is based on empirical observations. For instance,
properties based on measurements and predictions may, respectively, yield higher
and lower confidence values.

severity: normalized value between 0 and 1 that indicates the importance of the
property. Severity value O means that the property has little importance whereas a
severity vaue 1 may imply a detrimental effect on the overall performance.
Severity values can therefore be used to concentrate performance tuning on the
most important performance propertiesfirst.

JavaPSL uses syntax and semantic rules of the Java programming language in order
to specify performance properties and experiment-related data. In the following
sections we introduce the key concepts to specify performance properties and show all
the properties we defined in our work.

5.3.1. TheInterface Property and the Abstract Class SimpleProperty

All JavaPSL performance properties implement the common interface Property,
which includes specific methods to express the hold, confidence and severity value of
al properties. The value returned by getSeverity is undefined if the method holds
returns fal se.
public interface Property {

bool ean hol ds();

fl oat get Confidence();
float getSeverity();

}

Properties need also to define constructors, otherwise they cannot be instantiated.
I ssues about instantiation are covered in Section 5.5.

Many performance properties obey a generic pattern: they compute a severity value
which, if greater than O, indicates that the property holds; the confidence value is per
default set to 1. In order to incorporate this generic pattern for performance properties
we created an abstract class with the name SmpleProperty.

public abstract class SinpleProperty inplements Property {
protected float severity;
publ i c bool ean hol ds() { return severity > 0; }
public float getConfidence() { return 1; }
public float getSeverity() { return severity; }

5.3 Performance Property Specification 79

In order to define a novel simple property, commonly only a constructor must be
provided to compute a normalized severity value (between 0 and 1). In the following
we describe and discuss several important ssmple properties. These definitions make
use of the factor weight(c), which denotes the ratio between the execution time of
code region ¢ and the overall execution time of an experiment and assures that the
severity of the property for code regions with smaller execution times is also small,
even if these code regions considered alone are problematic.

Because JavaPSL does not prescribe the information present in subclasses of region
summaries (that is, how one can retrieve specific measurements for the execution of a
code region), we will make use of the following utility methods:

getExecutionTime(codeRegion, experiment): computes the maximum execution
time of the given code region in the given experiment.

power (codeRegion, experiment) computes an estimation of the total computational
power of the machines used to execute the given code region in the given
experiment. The estimation may use for instance the int factor of the machine (see
Section 5.1), or the float factor, or a combination of both, depending on the
characteristics of codeRegion.

power (regionSummary) computes an estimation of the computational power of the
machine regionSummary.getNode() considering the characteristics of
regionSummary. For example, if regionSummary only has floating point
operations, the estimation will use only the float factor of the node.

5.3.2. Inefficiency

Given a paralel experiment, the efficiency [79] of a code region is defined as I'Sr ,
axty

where Ts is the sequential execution time, Tp the parallel execution time, and q the
number of processing units that execute the code region. Usually, the efficiency lies

between é (worst case) and 1 (maximum efficiency).

This definition is adequate if all processors participating in the parale experiment
are equal, but it will lead to wrong conclusions if they have different computational
powers. Therefore, we define the efficiency of the execution of a code region ¢ with a
set of processors u compared to the execution of the same code region with a more
powerful set of processorsw as:

T(c,u)., P(u)
T(c,w) P(w)
where T is the execution time of a code region for a set of processors, and P is the

power of a set of processors (computed through benchmarks). Note that the above
definition of efficiency reduces to the “traditional” oneif al processors are equal.

In this new definition, the efficiency usually lies between % (worst case) and 1
W

efficiency(c,u, w) =

(maximum efficiency). Values beyond these extremes are in practice also possible,
however: a value below % indicates that the execution time with a more powerful
w

set of processors is worse then the execution time with the less powerful set, while a

80 5 Modeling of Performance Data and Problems

value greater than 1 shows a gain above the expected (for example, doubling the
computational power causes the application to run three times faster).

As performance properties reflect some negative performance behavior, we define
the severity of the property Inefficiency for code region ¢ and sets of processors u and
W as.

Oif efficiency(c,u,w) > 1,

weight(c) if efficiency(c,uw) < .-

P(w)
L - efficiency(c,u,w)” weight(c) it T £ efficiency(c.uw) £ 1.
1- P(u))) P(W)))

P(w)
The factor ﬁ guarantees that the severity reaches its maximum value when
- PW)
the execution time of ¢ with set w equals the execution time of ¢ with set u.

The property Inefficiency istherefore defined using JavaPSL as:

1 public class Inefficiency extends SinpleProperty {

2 public Inefficiency(CodeRegi on cr, Experinent expW

3 Experi ment expU, CodeRegi on basis) {
4 float execTi meU = get ExecutionTi ne(cr, expl));

5 fl oat execTi meW = get Executi onTi me(cr, expW;

6 fl oat basi sExecTi me = get ExecutionTi ne(basi s, expUl)

7 float ratio = power(expU) / power(expW;

8 float eff = (execTineU / execTineW * ratio;

9 float weight = execTineU / basi sExecTi ne;

10 if (eff > 1) severity = 0;

11 else if (eff < ratio) severity = weight;

12 el se severity = (1/(1-ratio))*(1-eff)*weight;
13 }

14}

The constructor of Inefficiency receives as arguments a code region cr, the
inefficiency of which is to be computed, an experiment expW, executed with set of
processors W, an experiment expU, executed with set of processors U, and a code
region basis, the maximum execution time of which corresponds to the execution time
of experiment expU. Using the utility method getExecutionTime, the property
computes the execution time of cr in expU (execTimeU, line 4) and expW
(execTimeW, line 5) as well as the execution time of basis in expU (basisExecTime,
line 6), and using the utility method power, the property computes the ratio between
the computational powers (line 7). Finally, the property computes the efficiency of the
code region cr (line 8), the weight of this code region in the experiment (line 9), and
the severity of the property (lines 10 to 12).

5.3.3. Load Imbalance

Given a code region c executed in N processors, ps, P2, ---, Pn, We define the workload
workload(c, p;) of ¢ when executed in processor p; as

workload(c, pi) = E(c, pi) © power (pi)

5.3 Performance Property Specification 81

where E(c, p;) is the execution time of ¢ when executed by processor p;, and power (pi)
is the power of processor p;.

The total workload of code region c is defined as:

twl (c) = § workload(c, p,).
i=1
Next we define the ideal workload of code region c for processor px (LE k£ n) asa
fraction of the total workload proportional to the power of pk, that is:

Wl (c, p,) = twl(c)” —POer(Pe)

[]

a power(p;)

i=1
and, if iwl(c, px) <workload(c), we define the overload in code region ¢ when
executed by processor py as

iwl(c, p,)

overload(c, p,) =1- workload(c, p,)

(Note that overload lies always between 0 and 1.)
Finally, the severity of Loadlmbalance in code region c is defined as

mialx(overload(c, p,))” weight(c) .

The property Loadlmbalance can therefore be defined using JavaPSL as.

1 public class Loadl nbal ance extends SinpleProperty {
2 publ i c Loadl mbal ance(CodeRegi on cr, Experinent exp,
3 CodeRegi on basis) {
4 float total Power = 0, total Wrkload = 0;
5 CodeRegionFilter cfil = new CodeRegionFilter(cr);
6
3
7 /1 computes total Power = g power(p;) and
i=1
3
8 /1 total Workload = g workload(cr, p;)
i=1

9 for(Regi onSummary rs : exp.sunmaries(cfil)) {
10 fl oat power = power(rs);
11 float workl oad = get ExecutionTi me(rs) * power;
12 t ot al Power += power;
13 t ot al Wr kl oad += wor kl oad;
14 }

n
15 /1 conmputes nmaxOverload = malx(overload(cr,pi))

i=
16 fl oat maxOverload = O;
17 for(RegionSummary rs : exp.sunmaries(cfil)) {
18 fl oat power = power(rs);
19 float workl oad = get ExecutionTi me(rs) * power;
20 float ideal Wrkl oad = total Wrkl oad * (power/total Power);
21 i f (workload > ideal Wrkl oad) {
22 float overload = 1 - ideal Wrkload / workl oad;
23 maxOver | oad = Mat h. max(maxOver| oad, overl oad);
24 }

25 }

82 5 Modeling of Performance Data and Problems

26

27 /1 conmputes the severity

28 float weight = UWil.getExecutionTinme(cr, exp) /
29 Util.get ExecutionTi me(basis, exp);
30

31 severity = maxOverl oad * wei ght;

32 }

33}

The constructor of Loadlmbalance receives as arguments a code region cr, the load
imbalance of which is to be computed, an experiment exp which executed cr, and a
code region basis, the maximum execution time of which corresponds to the
execution time of experiment exp. The first loop in the constructor (lines 9 to 14)
computes the total workload of code region cr and the total computational power used
to execute cr in the experiment given; the second loop (lines 17 to 25) computes the
maximum overload in cr. Finaly, the constructor computes the weight of cr in the
experiment (lines 28 and 29) and the severity of the property (line 31).

5.3.4. Temporal Overheads

For every individual tempora overhead we can specify a unique performance
property, the severity of which is computed as the ratio of the corresponding
measurement (e.g. synchronization or message passing time) and a reference value
(for instance, the execution time of the region or the entire program).

The definition of performance properties for temporal overheads is straightforward
if there is atool able to do the measurements needed. Assume that there is a subclass
FullRegionSummary of RegionSummary which can provide measurements for the
metric communication time through the method getCommunicationTime. The
property CommunicationOver head can be defined as following:
public class Conmuni cati onOverhead extends Sinpl eProperty {

publ i ¢ Communi cati onOver head(Ful | Regi onSunmmary rs,

CodeRegi on basis) {
severity = rs.get Comruni cati onTime() / get Executi onTi me(basis);

}
}

Many other overhead properties are defined in Appendix G.

5.4. Meta-properties

A meta-property is an abstract property whose definition depends on a set of already
defined properties, possibly known only during the execution time. Although this
requires the use of Java reflection capabilities, JavaPSL definition of class
MetaProperty hides the utilization of the Javareflection library from the user.

The public methods of MetaProperty are:

add(C ass<Property> propertyC ass, Object...arguments)
An instance of the property propertyClass is created and added to the meta
property. The elements of arguments are used as parameters for the constructor of
propertyClass.

add(Cd ass<Property>[] propertyd asses, hject...argunents)

54 Meta-properties 83

An instance of each property in propertyClasses is created and added to the meta
property. The elements of arguments are used as parameters for the constructor of
each property in propertyClasses.

boolean alHold()
Determinesif all of the properties that have been added to the meta-property hold.

boolean anyHolds()
Determines if at least one of the properties that have been added to the meta-
property holds.

float getAvgSeverity()
float getStdDevSeverity()
float getMaxSeverity()
float getMinSeverity()

Statistical methods that return the average, standard deviation, maximum, and
minimum of the severity values among all of the holding properties added to the
meta-property.

float getAvgConfidence()
float getStdDevConfidence ()
float getMaxConfidence ()
float getMinConfidence ()

Statistical methods that return the average, standard deviation, maximum and
minimum of the confidence values among all of the holding properties added to the
meta-property.

The properties OverheadFor AnyExecution and NonScalability, defined in the
following, are examples of meta-property usage.

5.4.1. Over headFor AnyExecution

This abstract property verifiesif asingle property holds for a code region cr in at least
one experiment, setting the severity to the maximum severity and the confidence to
the minimum confidence among all properties that hold.

public abstract class Over headFor AnyExecuti on
extends Metaproperty inplements Property {
prot ected Over headFor AnyExecuti on(C ass<Property> property,
CodeRegi on cr, Experiment[] experinments, CodeRegion basis) {
for (Experinment exp : experiments) {
add(property, cr, exp, basis);
}

publ i c bool ean hol ds() { return anyHolds(); }
public float getConfidence() { return getM nConfidence(); }
public float getSeverity() { return get MaxSeverity(); }

Based on the meta-property OverheadFor AnyExecution, we can now easily create
concrete properties to verify if thereis at least one execution of aregion for which an
overhead property holds:

public class Conmuni cati onOver headFor AnyExecuti on
ext ends Over headFor AnyExecution {

84 5 Modeling of Performance Data and Problems

publ i c Comuni cati onOver headFor AnyExecut i on(
Experi ment parall el Exp, Regi onSunmary rankBasi s,
CodeRegi on r) {
super (Conmuni cat i onOver head. cl ass, parall el Exp, rankBasis, r);

}

public class Synchroni zati onOver headFor AnyExecuti on
ext ends Over headFor AnyExecution {
publ i c Synchroni zati onOver headFor AnyExecut i on(
Experi ment parall el Exp, Regi onSummary rankBasi s,
CodeRegion r) {
super (Synchroni zat i onOver head. cl ass, parallel Exp, rankBasis, r);

}

5.4.2. NonScalability

The scalability of a parallel application reflects the execution behavior for changing
machine and problem sizes. Based on a set of experiments, we say that a code region
scalesif its efficiency is nearly the same for every experiment in the set.

By quantifying “nearly the same” as the difference between the maximum and the
average inefficiency, we can define the property NonScalability based on the property
Inefficiency as follows:

1 public class NonScal ability extends Metaproperty {
private float severity;

2
3
4 publ i c NonScal ability(CodeRegi on cr, Experinment[] setExpW
5 Experi ment expU, CodeRegi on basis) {
6 for (Experiment expW setExpW ({

7 add(I nefficiency.class, cr, expW expU, basis);

8

9

}

severity = get MaxSeverity() - getAvgSeverity();
10
11 public bool ean hol ds() { return severity > 0; }

12 public float getSeverity() { return severity; }
13 public float getConfidence() { return 1; }

The constructor of NonScalability receives as arguments: a code region cr, the non-
scalability of which is to be computed; a set of experiments setExpW; an experiment
expU, executed with set of processors U and such that U is less than the
computational power of any set of processor used to execute an experiment in
setExpW; and a code region basis, the maximum execution time of which
corresponds to the execution time of experiment expU. Now, the constructor just need
to compute the severity of several instances of Inefficiency keeping al arguments
fixed, except for expW (lines 6 to 8). Finaly, the severity is computed as the
difference between the maximum and the average severity values for all instances of
Inefficiency created.

5.5. Property Instantiation

Properties need to be instantiated in order to be used by a performance analysis tool.
The tool does not know, however, what a property intends to compute, and it might
need to create instances with all possible combinations of performance data whose
type is compatible with the parameters of the property constructor. This has two
undesirable effects:

5.5 Property Instantiation 85

Properties need to mix validation code with the logic for computing the severity.

A large number of meaningless properties will be created, which consumes time
and memory.

In JavaPSL, each property may have a static method (that is, a method that does not
need an instance to operate on) defining the rules for property instantiation. Let P be a
property, the constructor of which has n parameters po, ps1, ..., Pn-1. Given an index
i<n, alist A of arguments (ao, ay, ..., &.1) already fixed, and a list C of candidate
arguments, the method must return alist C' of arguments such that, for each element c
in C’, an instance of P created with arguments pp = ap, p1 = &, ..., Pies = &1, Pi = CIS
significant.

The method signatureis:

public static Object[] argunentAnal yzer (
nject[] args, int index, nject[] candi dates)

where args corresponds to the list A, index to the index i, candidates to the list C, and
thereturn valueto thelist C'.

The following example shows the method argumentAnalyzer for the property
Inefficiency, defined in Section 5.3.2. Recall that the constructor receives four
arguments: a code region, an experiment, a second experiment with a less powerful
set of processes, and the code region representing the main program. The example
shows only the principles of the method argumentAnalyzer, with ellipsis ... denoting
code that has been omitted for clarity.

public static Qbject[] argunentAnal yzer(
bject[] args, int index, Object[] candidates) {
switch (index) {
case O:
/'l for the first argunent:
/1 all code regions are acceptable
return candi dat es;

case 1: {
/1 for the second argunent:
/1l accepts only experinments that executed (CodeRegi on)args| 0]
/1 with nore than one thread
Arrayli st <Experinent> |ist = new Arrayli st <Experinment>();

return al.toArray();

}

case 2: {
[l for the third argunent:
/'l selects only the experinents that:
/1 1. executed (CodeRegion)args[O0]
/1 2. were started with the same i nput paraneters as
/1 (Experinent)args[1]
/1 3. executed using fewer nodes than (Experinent)args[1]
ArraylLi st <Experiment> |ist = new ArraylLi st <Experi nent>()

return list.toArray();

}

case 3:
/Il for the forth argunent:

86 5 Modeling of Performance Data and Problems

/1 finds the code region in <candi dates> corresponding to
/1 the main programin (Experiment)args[1l] and return it
CodeRegi on[] main = new CodeRegi on[0] ;

main[0] = ...

return main;

}
}

5.6. Summary

In this chapter, we introduced JavaPSL, a generic performance specification language
for modeling experiment-related data and performance properties of distributed and
parallel programs. Performance properties characterize a specific negative
performance behavior of a program and are defined over experiment-related data.

JavaPSL uses powerful Java mechanisms like polymorphism, abstract classes, and
reflection, to describe performance properties. In addition, JavaPSL provides meta-
properties—defined as Java abstract classes-in order to describe new properties based
on existing ones and to relate properties among each other.

Performance properties can be related to the code regions that cause them through
experiment-related data. JavaPSL filter and statistics classes can be used to restrict
performance analysis to specific experiment-related data, and to compute statistics
based on arbitrary sets of performance values.

A variety of pre-defined performance properties are supported to analyze one or
several experiments, which examine, for instance, the load imbalance or the
scalability behavior of a program.

We propose JavaPSL to be a standard performance information interface to model a
large variety of performance information, to build sophisticated performance tools
(e.g. to provide automatic bottleneck analysis), and to enable portable access to
performance information. This interface is intended to be used by performance tools,
compilers, program transformation systems, etc.

6

Twilight: An Instrumentation-monitoring Agent for Java

Executed on the same virtual machine where the program to be analyzed runs,
Twilight is a Java thread that remains most of the time inactive, waiting for
instrumentation and monitoring requests, carrying on the requests that arrive, and
sending back the response to these requests. Requests and responses are always XML
documents following the syntax for instrumentation and monitoring requests defined
in Chapter 4. Written purely in Java, Twilight runs, as a Java agent, in any virtual
machine that supports Java 1.5. A Java agent is characterized by:

aJAR file, containing the agent’s code;

a boolean attribute that indicates if the agent may redefine (change) the class files
after the Java virtual machine has loaded them (in Twilight, this attribute has the
valuetrue);

aclass path, which is appended to the virtual machine’ s boot class path; and
amethod premain.

The method premain of an agent is executed before the method main of the
application. This means the agent can embed itself in the Java virtual machine before
the application starts running. The method premain of Twilight basically just opens a
socket that listen to instrumentation and monitoring requests, and creates the thread
that will process these requests when they arrive.

Application % g ;_—_m 1 Application
= ¢ o | < |3
Java API il % (= Java API
I é T - -
Jitns/ Mactioe Virgs/ Mackne
= Application
Application f% ﬁ? PP
= E
Java API G E — Java API
] I
Virtd/ Machoe Frs/ Hackze

Figure 16. Twilight

88 6 Twilight: An Instrumentation-monitoring Agent for Java

Figure 16 shows several virtual machines, each of which containing an “embedded
Twilight agent”, and how an analysis tool can use the Twilight agents to instrument
and monitor a Java application. Note that there is always only one “application” being
executed on the virtual machine. Although this application may conceptually contain
or be composed of several other sub-applications, Twilight (like the virtual machine
itself) cannot see how an application is internally organized. For example, a web
server written in Java may host several unrelated services; in this case, Twilight will
monitor the web server (and, indirectly, also the services provided), but will not see
any distinction between the “conceptual applications.”

Since many computers are behind a firewall, an issue that arises when
communicating through sockets is security. Java supports transparent access through
firewalls at TCP and UCP level by using proxies based on the SOCK'S protocol [69]
A proxy server, however, must be running to redirect connections between the
analysis tool and Twilight agents.

XML is often criticized due to its excessive overhead, in particular for its large
document sizes compared to binary files. For this reason, Twilight may also work
assuming compressed communication, in which case all documents exchanged
between the Twilight and the Analysis tool are compressed using the DEFLATE
compression algorithm [26] provided in the Java API. Thisis the same algorithm used
in popular compression tools like gzip and WinZip.

In order to use Twilight as an instrumentation and monitoring agent, one just needs
to have a single JAR file installed and start the virtual machine providing the
installation path as a Java agent, for instance:

java -javaagent:~/Twilight.jar HelloWwrld

Twilight also provides classes and methods that can be used independently of the
agent technology.

As the virtual machine can provide the stack frame of any thread through an
invocation of an APl method, it is straightforward for Twilight to attend snapshot
requests. How Twilight deals with other kinds of requests is examined in the rest of
this chapter.

6.1. SIR and SIR Requests

Twilight can generate the SIR (Sections 4.1 and 4.3.1) from Java source codes or
class files. The source code must be valid according to the Java Language
Specification [74] and its name must end with .java. Class files must be valid
according to the Java Virtual Machine Specification [75, 84] and its name must end
with .class. Twilight does not accept the attribute out in a SIR request for a classfile,
as class files are never written back after the instrumentation, but automatically
reloaded in the virtual machine (see Section 6.2).

When generated from Java source codes, the SIR will represent the hierarchy of
packages, classes, and methods. In addition, for each method, the SIR will contain
loops, conditionals, (if and switch constructs), exception handling (try...catch.. finally
blocks), critical sections (synchronized blocks and methods), method invocations
(including creation of objects and arrays), and assignments. We used JavaCC [67] to
write the source code parser used in Twilight. The bytecode parser we wrote is based

6.1 SIRand SIR Requests 89

on the specification of the class file as defined in the Java Virtua Machine
Specification. No tool was used to build the bytecode parser.

When generated from class files, the SIR will represent the hierarchy of packages,
classes, and methods. Method invocations, synchronized blocks, creation of objects
and arrays, and the mgjority of loops are also represented. Twilight detects natural
loops, that is, loops that have only one entry point, using the algorithm described in
[95] for detection of natural loops (the main ideas of this algorithm are delineated in
Section E.8). Since the Java programming language does not have a goto instruction,
it is impossible to create a Java program containing loops with more than one entry
point; therefore, one can expect that all loopsin aclass file are also natural loops. We
must note, however, that nothing prevents an optimizing compiler or a code
obfuscator from generating a non-natural loop from a natural loop, even though we do
not know of any such compiler (and we do not see any point in analyzing obfuscated
code).

Some information present in the source code is also lost during the compilation, so
that equivalent source code constructs may be compiled to the same sequence of
instructions, like the loops (a) and (b) shown in Figure 17. This situation arises in
Twilight every time two natural loops with the same header are found: it isimpossible
to know if they were originated from a single loop in the source code or from a loop
nested in other. We analyzed 166 class files in the Java API (al the files in the
package java.lang and subpackages) and found 241 natural loops, 8 of which had the
ambiguity problem just discussed. By examining the respective source codes, we
determined that 7 cases refer to a single loop, while only one case refers to a loop
nested in other. Based on this result, we set Twilight to interpret ambiguous natural
loops always as a single loop.

do { do {
i ++: do {
if (i <= 10) continue; i +4+;
j++; }V\h||e(| <= 10):
} while (j < 10); j
} while (j < 10);
@ (b)

Figure 17. Semantically equivalent constructs that
are compiled to the same sequence of bytecodes

Both the detection of natural loops and the detection of synchronized blocks require
the computation of successors and predecessors of each instruction in the code, which
can be complicated in Java by exception handlers. Consider for example the following
code:

try {
a();

} b();

catch (InterruptedException e) {
c();
d();

}

finally {

e();

90 6 Twilight: An Instrumentation-monitoring Agent for Java

Besides b(), also c¢() and e() are possible successors of a() ; similarly, a(), b(),
c() and d() are, al of them, possible predecessors of e(). On the one hand,
successors and predecessors that are product of exception handlers may create cycles
which, in some cases, are detected (falsely) as natural loops; on the other hand, we
cannot simply ignore the code in exception handlers because it may redly contain
loops. In Appendix E, we show details about how exception handlers are compiled,
how successors and predecessors can be detected, and how we detect only real natural
loops and synchronized blocks.

Location information in a SIR generated from class files will aways refer to the
original source code from which the class files were compiled, which alows one to
analyze the class file and relate the analysis back to the source code. Note that
location information will be present in the SIR only if the class file was a so generated
with such information, that is, if the compiler created the class file with debug
information.

If a class from which the SIR was generated refers to another class that was not
mentioned in the corresponding SIR request, then Twilight adds the referred class
automatically to the SIR, but only what is enough to resolve the references. For
example, body of methods will not be added, nor methods that the first class does not
refer to. This procedure is recursively applied also to the referred classes that are
added. When generating the SIR from bytecodes, Twilight can also work in “deep”
mode, which means that all of the methods in the referred classes will be added to the
SIR, as well as the code of these methods. Some classes, called “forbidden”, are
aways ignored when a deep SIR is generated, however; these are the classes
belonging to the Java APl and the classes that belong to the Twilight package. The set
of forbidden classes can be augmented to include, for example, libraries that are
known to have good performance.

Appendix C shows an example of SIR generated from a compiled Java program.

6.2. Instrumentation Requests

The instrumentation code inserted in the application through an instrumentation
request is called a probe. Twilight handles the probe insertion differently for source
code and for class file instrumentation. When instrumenting the source code, Twilight
will write back the new source code with probes. When instrumenting class files,
Twilight will insert the probes directly in the bytecodes and ask the virtual machine to
reload the new, instrumented version of the class. Therefore, source code
instrumentation is suitable for static instrumentation, while bytecode instrumentation
IS adequate for dynamic instrumentation, as the instrumented version becomes
effective immediately.

The attributes from and to in the element codeRegion of an instrumentation requests
must refer to code regions in the SIR directly nested in the same element, and the SIR
must have been previously generated through a SIR request. Note that the SIR is
always generated so as to guarantee that any code region has a single entry point.

6.2.1. Instrumenting Sour ce Codes

Source code instrumentation in Java is tricky; naive probe insertion may lead to
invalid source codes according to the Java Language Specification. Moreover, when
instrumenting a code region, we must be aware that an exception may be thrown at
any time during the execution of this code region, causing it to finish abnormally.

6.2 Instrumentation Requests 91

Consider, for instance, the class bel ow:

1 class Exanple {

2 final int ¢ = 4;

3 voi d nmet hod() ({

4 int d=f(c);

5 int ¢ =f(d);

6 int b =f(c);

7 Systemout.println(d +" " +c +" " +Db); // prints 567
8 }

9 int f(int arg) { return arg + 1; }

10}

Now, suppose that we want to measure the execution time of the code region
starting at line 4 and ending at line 6. Twilight’ s approach is the following:

1. A construct try { ...} finally { ...} isinserted around the code region; the start
probe, which starts the measurement, is inserted right before the construct, and the
end probe, which ends the measurement, is inserted in the finally block. This
guarantees that, even in there is a jump to outside the code region (for instance,
because of an exception thrown), the end probe will be executed. Note that &start
probefi must be before, not inside, the try block; otherwise, if an exception were
thrown when the code in &start probefi is executed, &nd probefi would also be
executed.

cl ass Exanpl e {
int ¢ = 4;
voi d nethod() ({
<start probe>
try {
int d
int c
int b

f(c);
f(d);
f(c);

}
finally {

<end probe>
}

Systemout.println(d +" " + ¢ +" " + b);

}

int f(int arg) { return arg + 1; }

}

2. As the try block creates a new scope, the declaration of al variables in the
instrumented code region must be moved to outside the try block, otherwise these
variables will not be visible when the block finishes (like the variables b and d in the
example). Note that only the declaration is moved, not the initialization.

cl ass Exanple {
int ¢ = 4
voi d nmet hod() {
<start probe>
int d, c, b;
try {
d = f(c);
f(d);
f(c);

}
finally {
<end probe>

c
b

92 6 Twilight: An Instrumentation-monitoring Agent for Java

}

Systemout.println(d + " " +c¢c +" " + b);

}
int f(int arg) { return arg + 1; }

}

3. Findly, in order to prevent that any of the variables moved is confused with an
instance variable (like the local variable c in the example, which hides the instance
variable c), the moved variables are renamed, as well as references to them.

cl ass Exanpl e {
int ¢ = 4
voi d nmethod() {
<start probe>
int d$twilight, c$twilight, b$twilight;

try {
d$twilight = f(c);
chtwilight = f(dStwilight);
b$twilight = f(c$twilight);
}
finally {
<end probe>
}
Systemout. println(d$twilight+" "+c$twilight+ " " + b$twilight);

}

int f(int arg) { return arg + 1; }

}

Except for the instrumentation code, the rewritten class and the original one are
equivalent. Note that the reference to the instance variable c, like the first f(c), was not
renamed.

Twilight also allows to instrument the expressions evaluated inside the constructs if,
while, for, do ... while, switch and synchronized, as well as the expression of a return
statement. For these cases, the code is rewritten in an equivalent way that allows the
instrumentation of the expression. Consider, for instance, the code fragment bel ow:

while (FO) { ... }

If the invocation of method f() is instrumented, the code is first rewritten in an
equivalent away as shown:
bool ean exp$1;

exp$l = f();
while (exp$l) {

exp$l = f():
}

Now, the invocation of method f() can be normally instrumented.

Twilight cannot break complex expressions, however. For instance, if the
expression in the previous example were g(f()), Twilight could rewrite the code so as
to insert probes that instrument the entire invocation g(f()), but it would not be able
to insert probes to measure only the invocation of method f().

Synchronized methods are also rewritten if instrumented. Consider the method
below:

6.2 Instrumentation Requests 93

synchroni zed void method() { ... }

When instrumented with Twilight, the method becomes:
void met hod() {

<start probe>

try {
synchroni zed (this) {

}

}
finally {

<end probe>
}

}

Except for the instrumentation code, the rewritten method is equivalent to the
original one. Static methods are rewritten similarly, but using the lock associated to
the class where the method is declared instead of this.

Care is aso needed in order to instrument the body of constructors. Consider the
following example:
cl ass MyW ndow extends java.aw . Di al og {

MyW ndow(j ava. awt . Frane parent Franme) {
super (parent Frame, "My Wndow', true);

According to the Java Language Specification, the invocation of the superclass
constructor—super (parentFrame, "My Window", true) in the example—must be, if
present, the first statement in the constructor and, consequently, we cannot insert any
start probe before it. Nevertheless, according to the Java Virtual Machine
Specification, a class file is alowed to have code before the invocation of the
superclass constructor as long as the code does not refer to the instance being
initialized. Twilight can then solve the problem of instrumenting the body of a
constructor in two steps:

1. The body of the constructor is temporarily assumed to start after the invocation
of the superclass constructor, that is, the start probe is inserted after the
invocation of the superclass constructor.

2. When the compiled class is loaded in the virtual machine, Twilight intercepts
the loading, parses the compiled class, moves the start probe to the point before
the invocation of the superclass constructor, and then return the class to the
virtual machine, so that the loading process can go on.

6.2.2. Instrumenting Class Files

With class file instrumentation, it is possible to dynamically insert probes during the
execution of an application. If amethod is being executed when a probe is inserted, it
continues to run without the probe. The version containing the inserted probe will be
used in all new invocations (unless the probe is later removed; see Section 6.3).

The instrumentation of class files is analogous to the instrumentation of source
files, with the difference that all instrumentation is done at the bytecode level. For
example, thetry { ... } finally { ... } block explained in Section 6.2.1 is also needed

94 6 Twilight: An Instrumentation-monitoring Agent for Java

when instrumenting class files, but it is inserted already “compiled”’, as well as the
start and end probes.

In the following, we show in details how instrumentation in class files is done. An
instrumented class file must obey certain constraints, otherwise the Java virtual
machine will refuse to execute it. These constraints, as well as the format of class
files, are described in Appendix E.

Assume that we want to instrument the code region R starting at offset x and ending
at offset y+n-1 in the code C of a method in a class, where n is the size of the last
instruction of R. Assume also that R is a code region with a single entry point but with
multiple exit points, that is, outside R there are jumps only to the beginning of R or to
outside R, and inside R there are jumps to the beginning of R, to some other
instruction in R, and to outside R, as shown:

<goto x>
x: <first instruction of R>)
. — Code region to instrument
p: <sone non-branch instruction>
<goto x>
<goto p>
<goto g>
q: <goto r>
y: <l ast instruction of R>
y+n: ... —
r: <sone instruction>

<last instruction of C

Step 1. Twilight adds the start probe just before R. The end probe is inserted
immediately after R, and also before any instruction inside R that causes the control
flow to jJump to outside R. After this step, the code becomes:

<goto x>

X: <start probe>
X1: <first instruction of R>

pi: éébne non- branch instruction>
;tho Xq1>
<goto p;>
<goto e>

e: ;éﬁd pr obe>

q:: <goto ri>

yi. <last instruction or R>
yitn: <end probe>

r.: <some instruction>

6.2 Instrumentation Requests 95

where X1, Y1, pP1, Qi, and rp correspond the updated offsets for the instructions
originally at offsetsx, y, p, g, and r. Note that each instruction after the start probe had
its offset changed and therefore any reference to an instruction after the start probe
was updated. This was done as following: Given an instruction K, with offset k, and
an instruction N referring to K using offset k, if the offset of K changes to k; after the
probe insertion, then:

If N is outside R and K is the first instruction of R, N needs not be updated; it
aready refers to the start probe added just before K (first <goto x> in the
example).

If N and K areinside R and an end probe was added just before K, N is updated to
refer to the end probe added (< goto g> in the example).

Otherwise, N is update to continue referring to K, now using k;.

These rules guarantees that, in the case of ajump to the beginning of R from outside
R, the start probe is executed, but from inside R not. They also guarantee that, if the
control flow leaves R for any reason other than an exception, the end probe is
executed.

Step 2: Twilight also changes the code so that, if an exception is thrown and not
caught, the end probe is executed before the control flow |eaves the instrumented code
region. The idea is that Twilight catches the exception and rethrows it after having
executed the end probe. Twilight inserts code just after R to rethrow the exception,
and code after C to execute the end probe, as shown:

X: <start probe>

X1 <first instruction of R>

Vi <l ast instruction of R>

yi+n: <goto yl+n+4>

y1+n+3: <athrow> ;throws the object on the top of the operand stack

yl+n+4: <end probe>

<last instruction of C (originally)>
W, <end probe>
<goto yl+n+3> ; this is nowthe last instruction of C

Now, Twilight looks for the first exception handler that is active for the entire code
region C, that is, it looks in the table of exception handlers of C for the smallest i for
which the exception handler H; = (s, fi, hj, tj)) of Cissuchthat 5 £ x; and f; 3 y;. A
new exception handler, H = (x1, y1, W, <any exception>), is added before H;, where w
is the offset of the exception handler code. If there is no such H;, then the handler is
added at the end of the table. Finally, any exception handler H; = (s, fj, h;, t;) of C such
that 5 £ x; and f; = y; is changed to H;’ = (s, yi+n+3, h;, t;). Twilight assumes there
are not exception handlers that partially overlap, that is, given exception handlers Hy
= (s, f1, hy, t1) and Hy = (s, T, hy, to) such that s; £ s, then f1 3 f,. Thisis aways the
case for class files compiled from Java programs.

What are the effects of these changes? If an exception is thrown when R is
executed, the added exception handler guarantees that the flow branches to w. The
end probe is executed and the flow branches to y;+n+3, where the exception is

96 6 Twilight: An Instrumentation-monitoring Agent for Java

rethrown. The exception will either be caught by some existent exception handler or,
if there is no matching handler, cause the abrupt termination of the method, exactly as
it would happen if there were no instrumentation.

6.2.3. Dynamic I nstrumentation Without XML

Twilight also provides an interface for dynamic class file instrumentation that is not
based on SIR and MIR; in this case, one must parse the class file oneself.
Nevertheless, for cases where the entire method is to be instrumented, that is, the code
region is the method body, no parsing is needed. The input data for thisinterfaceis:

The class to be instrumented

The methods in the class to be instrumented

The offsets of the instructions defining the begin and the end of the code regions
to be instrumented (if not given, the method body is used as the code region)

The methods to be invoked when the code region starts, when it ends normally,
and when it ends abruptly, through an exception.

6.3. Control Requests

Requests for modifying a probe or retrieving measured values work with both source
code and bytecode instrumentation. A request for modification is used to change the
metrics measured or to alter the interval at which the values measured are delivered,
while a request for value retrieval is used to get the values measured for the probe,
which is useful when the probe is not configured to deliver automatically the values
measured. The modification becomes effective immediately.

Requests for removing a probe are supported only for probes inserted directly in the
classfile. Asit happens with probe insertion, if a method is being executed when one
of its probes is removed, then it continues to run with the probes. The version without
probes will be used in new invocations.

Requests for activate and deactivate a probe are currently not supported.

6.4. Performance Data and Metrics

Performance data measured with Twilight can be sent upon request or at regular
intervals to a given destination. In addition, Twilight may send the data when the
virtual machine shuts down, for example to afile, an FTP server, or an analysis tool
(like Aksum, see Chapter 7) listening to performance data at some port. Performance
data are sent always as M easurement Documents, described in Section 4.3.5.

Twilight can currently measure thirty-three metrics, which are shown in Table 5.
Moreover, Twilight can be linked with PAPI [109], which in addition allows the
measurement of hardware counters (this will make Twilight platform dependent,
however.)

Metric Name Description

WC TIME Wall clock time.

CPU_TIME CPU time.

LOADED_CL_TOTAL Number of classes loaded since the application
started.

LOADED_CL_CURR Number of classes currently loaded.

UNLOADED_CL Number of classes that have been unloaded.

COMP_TIME Time spent with just-in-time compilation.

6.4 Performance Dataand Metrics 97

Metric Name Description

GC _COUNT The total number of garbage collections that have
occurred.

GC TIME The accumulated garbage collection time.

HEAP_ MEM_USAGE
NON_HEAP MEM_USAGE
NON_FINALIZED OBJECTS

THREAD_COUNT
DAEMON_THREAD_COUNT
THREAD WAITED _COUNT

THREAD_WAITED_TIME
THREAD_BLOCKED_COUNT
THREAD_BLOCKED_TIME
STRING_CREATION
ARRAY_COLLECTION_RESZE
HASH_COLLECTION_RESZE

NET_SEND

NET BYTES SEND
NET RECV

NET BYTES RECV
NET BLOCKED RECV

NET_INIT
NET_CLOSE
NET_ACCEPT
RMI_SEND
RMI_BYTES SEND
RMI RECV
RMI_BYTES RECV
RMI_BLOCKED_RECV

Amount of used heap memory, in bytes.

Amount of used non-heap memory, in bytes.
Number of objects for which finaization is
pending.

The current number of live threads.

The current number of live daemon threads.

Total number of times a thread has waited for
notification, that is, number of times a thread
waited in the methods Object.wait, Thread.sleep,
LockSupport.parkUntil, LockSupport.parkNanos,
LockSupport.park, and Thread.join.

The accumulated time a thread has waited for
notification.

Total number of times a thread blocked to enter or
reenter acritical section.

The accumulated time a thread has blocked to
enter or reenter acritical section

Number of invocations of StringBuffer.toString()
and StringBuilder.toString().

Number of times a Vector or ArraylList was
resized.

Number of times a Hashtable, HashMap,
WeakHashMap or IdentityHashMap was resized.
Time spent sending messages through sockets.
Number of bytes sent through sockets.

Time spent receiving messages without blocking.
Number of bytes received through the network.
Time spent waiting for the first byte when reading
from the network.

Time spent initializing connections.

Time spent finalizing connections.

Time spent waiting for a socket to connect.

Time spent sending messages in RMI calls.
Number of bytes sent in RMI calls.

Time spent receiving messages in RMI calls.
Number of bytesreceived in RMI calls.

Time spent waiting for the first byte when reading
from the network in RMI calls.

Table 5. Metrics supported in Twilight (time alwaysin milliseconds). Metricsin italicsrequire
Twilight to instrument also the Java API

In order do measure some of the metrics in Table 5 (those in italics), some classes
in the Java APl must be also instrumented. The instrumentation is inserted
dynamically, according to the following requirements:

98 6 Twilight: An Instrumentation-monitoring Agent for Java

NET_INIT needs that the methods bind and connect of class java.net.Socket are

instrumented.
NET CLOSE needs that the method close of class java.net.Socket is
instrumented.
NET_ACCEPT needs that the method accept of class java.net.Server Socket is
instrumented.

NET_RECV, NET_BYTES RECV and NET_BLOCKED_RECV need that the
input stream returned by the method getlnputSream of class java.net.Socket is
instrumented.

NET_SEND and NET_BYTES SEND need that the output stream returned by the
method getOutputStream of class java.net.Socket is instrumented.

RMI_XXX metrics need the instrumentation of the method

Object invoke(java.rmi.Remote, java.lang.reflect.Method, Object[], long)

in any class that implements the interface java.rmi.server.RemoteRef or
java.rmi.server.ServerRef. This method carries out remote method invocations.
The instrumentation inserted measure the values for the corresponding NET_XXX
metrics.

STRING_CREATION needs the instrumentation of the method toString in the
classes java.lang.StringBuffer and java.lang.StringBuilder.
ARRAY_COLLECTION_RESIZE needs the instrumentation of the methods
ensureCapacity in class java.util.ArrayList and ensureCapacityHelper in
java.util.Vector.

HASH_COLLECTION_RESIZE needs the instrumentation of the method rehash
in class java.util.Hashtable, as well as the instrumentation of the method resize in
the classes java.util.HashMap, java.util.ldentityHashMap, and
java.util.WeakHashMap.

Note: The instrumentation for NET_XXX and RMI_XXX metrics follows the Java
2 APl Specification and, unless the specification changes, will work also in future
versions of Java. On the other hand, as there is no official documentation about which
methods are responsible for resizing a Vector, ArrayList, HashTable, HashMap,
| dentityHashMap, and WeakHashMap, the instrumentation for
ARRAY_COLLECTION_RESIZE and HASH_COLLECTION_RESIZE depends on
specific implementations of these classes. We used as reference the classes in the
version 5.0 of the Java Runtime Environment (JRE) distributed by Sun Microsystems
[66]. The resizing methods, although not officialy documented, are unlikely to
change, as they have been the same in the last versions of the Sun JRE and are also
used in other JRES, like IBM’s [63]. Also note that datagram sockets are currently not
supported.

The API is instrumented for measuring some metric only if there is at least one
probe in the code that requires the metric to be measured. If, during the execution, the
probe is removed or have its set of metrics changed, and there is no probe that needs
the metric anymore, the instrumentation is removed (but it may be reinserted later, if
necessary).

6.5. Summary

In this chapter, we described Twilight, a library based on state-of-the-art Java
technology which can insert probes in the source code of a Java application and
dynamically insert and remove probes in the bytecodes of a running Java application.

6.5 Summary 99

Twilight can measure several metrics, some obtained directly from the Java virtual
machine and some obtained through instrumentation of the Java API.

Both source and bytecode instrumentation can be very tricky in Java, because each
code region may end through an exception, that is, any code region has potentially
more than one exit point, and because the rules that govern the format of sources and
class files may never be broken, even partially, or the application cannot be compiled
or executed. We presented these rules and showed how Twilight deals with (and in
some cases circumvents) them.

Twilight adopts the XML-based formats proposed in Chapter 4 to exchange
information with other tools, which ensures that an application that wants to
communicate with Twilight can be written in several languages, not only in Java. For
example, one can write a monitoring tool for Java programs using a script language
like Perl or Python. Finaly, we must note that, although we developed Twilight
having performance analysis in mind, one could also use Twilight for implementing
other instrumentation-based algorithms, like dynamic detection of race conditions
[124] or likely invariants [34].

Aksum

Aksum has been designed to be a multi-experiment analysis tool, to a high degree
independent of hardware and programming paradigm; it provides the user with a
uniform and highly customizable interface to instrument an application, access and
analyze performance data relative to several experiments, define how experiments are
generated and executed, control the end of the search process, and define the search
output. Once this info has been provided (or the default values have been accepted),
Aksum automatically conducts performance analysis without any user interference

7.1. Architecture

Figure 18 depicts Aksum’s architecture. The user portal, illustrated throughout this
chapter, provides a user-friendly way of input the data necessary for the search. The
experiment engine, described in Section 7.2, launches the experiments considering the
platform where the application will run. The instrumentation and monitoring engine,
described in Section 7.3, is responsible for monitoring and instrumenting the
application independently of the language or paradigm utilized; it relies on an
instrumentation and monitoring system to instrument the user’s application and
generate raw performance data, which is processed and stored in the experiment data
repository, where the experiment engine also stores data. The search engine, detailed
in Section 7.4, coordinates the entire search process and, using the data in the
experiment data repository, tries to detect performance problems (called performance
properties) in the application. The user-provided data, which influence the search
process, flow from the user portal to the Search engine, while the output of the search
process flows from the Search Engine to the user portal.

Aksum «--- Dataflow
<— Control flow
S PR
P Experiment data <] User-defined
/ repository N .
7 N properties
| \\\

Vs ! N —
L . e
i Experiment ! \q-{ Instrumented
| engine ! application

v |

Search _ | Instrumentationand |_| .

; < L) Instrumentation

engine monitoring engine o

and monitoring
4 ~ A system
o ! A
A i :
/—'—’—'x
Standard f—
User —
________ i -4 Application
-

Figure 18. Aksum'sarchitecture

102 7 Aksum

Currently, we use SCALEA [147] and Twilight (Chapter 6) as instrumentation and

monitoring systems. SCALEA is responsible for instrumenting Fortran programs,
while Twilight for the instrumentation of Java programs. We also use the abstract

syntax tree generated by the front end of VFC [8], so that we can traverse the

structure of Fortran programs and inform SCALEA which code regions must be
instrumented.

sisw LsdXxe
doxs
....................... prnsi |
uodeud]
po|ey [1hsuiddy
10 peINoeXe
suddy 127 fespl
14 sanuadoid

EEp
aouewloyad ppy

aindwo)d

pepue

«WweBS NP

[1]suiddy

$30.1N0s JuswNIsuU |

sjuaw Ladxe popus
dois [1hsuiddy
[A11nyssa00ns papus [1Jisulddy]

poley
[1hsuiddy

[1hsuiddy
10 puB 1IBM

peles
[1hsuiddy

peINoeXd [1hsuiddy
N\ Bulddy e 40 UoNNoBXe 1eIS

[espl _/

So| 1} Uo[fedl|dae pue
Saul| puewwWod sbuey)

«wesSN P

auibu3g Bu1JolIuo |\ pue uoirelusWN ISU |

«WRBAS N I»

auibug yoress

auibu3 wewiedx3

Figure 19. Interaction between the engines of Aksum (static instrumentation). The stereotype
«IM System» denotes an activity delegated to the Instrumentation and Monitoring System

7.1 Architecture 103

uoeBWINAISU| sjuow edxe
doxs dos

pa|tey [1suiddy
10 paINJeXe
su(ddy 152

siuaw Lidxe papue
doxs

[1]suiddy
pole}

[1Jsuiddy

fenaas1wiodsoeyo]

uoRIBLINISUL

uoIRILBWINIISU
auyey

9p0d 8y} JuBWINISU|
«WRSASIN P

[1hsuiddy

saiuedoud 10 P 1BM

amndwo)d

pepue peres
[1hsuiddy [1hsujddy

aous pabueyo
hou pip >ess o]

erRp
aouewJoyed ppy
«wosfsIP»

peLes
[1]suiddy

peInoexe [1lsuiddy
sulddy 152 JO UONNIBXA RIS

[espl _/

>oess |eo B
«wosfSNI»

SS[1Fuonedljdde pue
Sau|| puewwod abueyd
«wesASIN I

auibug Hu1iojuo N puUe UoITeILBINIISU | auibug yorees auibuz Juewedx3

Figure 20. I nteraction between the engines of Aksum (dynamic instrumentation). The stereotype
«IM System» denotes an activity delegated to the Instrumentation and Monitoring System

104 7 Aksum

Aksum uses JavaPSL (Chapter 5) to define and customize performance properties
in a systematic and portable way. Aksum has several pre-defined performance
properties (such as inefficiency or load imbalance), stored in the Standard properties
repository, but the user may also define and store new properties in a User-defined
properties repository. Instances of performance properties found in an application can
be grouped, filtered, and displayed in several dimensions as well as plotted on charts.

Aksum may request the instrument of the application before the compilation and
execution (static instrumentation), in which case the instrumentation remains the same
during the entire application analysis, or it may request the instrumentation while the
application is running (dynamic instrumentation), in which case instrumentation is
added on demand.

Figure 19 depicts, using UML Activity Diagrams [119], the interaction between the
search, experiment, and instrumentation and monitoring engine during the search
using static instrumentation; Figure 20 shows the interaction between the engines for
dynamic instrumentation. In order to improve the throughput, Aksum creates other
threads of control not shown in the diagram; for instance, the Instrumentation and
Monitoring Engine sends the request for the call stacks of several processes in
parallel. In the rest of this chapter we describe how the search process in Aksum and
how the engines and the user portal work together to carry out the performance
analysis of an application.

7.2. The Experiment Engine

The experiment engine of Aksum is responsible for launching experiments. This
section defines what exactly an experiment is for Aksum, and how experiments can be
automatically launched for different input parameters.

7.2.1. Application Files, Command Lines and Directories

An application consists of various files-denoted application files in the remainder of
this chapter—which are divided into instrumentable and noninstrumentable files.
Instrumentable files are source codes that must be statically instrumented for
performance metrics (overheads and timing information) whereas non-instrumentable
files refer to source codes the user does not want to be instrumented and any other
files necessary to execute an application (e.g., makefiles, scripts, input files,
executable files). Files shared among applications (for instance, libraries) may or may
not be included as application files. The inclusion of application files in Aksum is
shown in Figure 21.

7.2 The Experiment Engine 105

EBX

File Edit Search Help

BlEney ol]

" Application parameters | Comp. & exec. | Output |

|f Performance properties |/ Application files
Codes to he instrumented Other files
(L achbug.java = | cladybugiresources'closeFile.gif
|mLadybugClassFile java Cladybugresources help.gif
(gLadybugClassLoader.java Cladybug'resources ladybug.gif
|giLadybugClassRewriter.java — | Cladybugiresourcesladybugico.gif
(Locks. java Crladybugresourcesib.gif
|WRCException.java CrladybugresourcesopenFile.gif
|y RuntimeExceptionMessageResourc C:ladybugbuild.xml
|y RuntimeExceptionMessages.java C:ladybugladybug.policy
('staticLadybg.java Crladyhug'manifest.mf
[LIl java =
|gWeakHashtable.java
|g'guitFileChooserResources.java
giguiFlatTree.java
(g guiHelpWindow.java
| giguiLadybugGULjava
| gguitOutputWindow. java |l
| gguivHatchery. java
(gguitwHatchery_AboutBox.java =

ALY {m} A me,
4] | i | 1]

Figure 21. Adding instrumentable and non-instrumentable application filesto Aksum

For instrumentable files, the user can aso select the code regions that should be
analyzed (see Figure 22). If not specified, then Aksum assumes that the entire file
must be analyzed. Although instrumentable files make more sense when Aksum
instruments the application statically (Section 7.3.1), they also have a meaning in
dynamic analysis, denoting files that the user knows beforehand that must be
instrumented. We explore further this case in Section 7.3.2.

The user may specify, for each application file, the phases of the experiment where
thefileis needed. The experiment engine needs to know if afileis needed to start the
compilation, the execution, both or neither. Files needed to start the compilation or the
execution need special care, as described in Section 7.2.5.

The user must also provide the compilation and execution command lines, as well
as the directory where the application is compiled and the directory where it is
executed. The user may input command lines as usual, that is, as they are normally
input without Aksum, as long as they do not refer to any application file using
absolute paths. Absolute paths referring to application files in the compilation
command line should be made relative to the directory where the application is
compiled, and absolute paths in the execution command line need to be made relative

106 7 Aksum

to the directory where the application is executed. Alternatively, the procedure shown
in Section 7.2.4 may also be used.

S CARMIP roxy\src\Proxy. java

Source File Selected Begions
this.os = os; | ¥38,9,49, 10}
this.isHost= isHost; (112, 13, 137, 14
this.osHost = osHost; (178, 13, 191, 40)

1
public Ohject call) throws (OException {
bte[] buf = new byte[2048 + 2048];
int n;
wehile (n = is.readbuf) I=-1114
osaweritedbut 0, n;
o= fushi;
if twverhose) {
echoBytesibuf, n;
i
1
return null;
i
private synchronized void echoBytesiyte] buf, int
synchronized (Proxy.class) {
Systerm.out printinfisHost +" -=" + osHost + "1 —

T |]
38,0

&
el

Add | Delete OK Cancel

Figure 22. Selection of regionsto analyze

7.2.2. Application Input Parameters

An application input parameter defines a string that should be replaced in some or all
of the application files and in the execution and compilation command lines before
the application is compiled and executed. An application input parameters v is defined

by the quintuplet (name(v), searchSring(v), valuelist(v), filSet(v), semantics(V)),
where:

name is a unique name that identifies the parameter v;

search3ring represents the string to be substituted,;

valuelist denotes the list of values the search string will be replaced with;

fileSet describes the set of application files in which the search string will be
searched and replaced; and

semantics indicates if the parameter is machine or problem-size related (or neither
of them).

If, for al input parameters, every search string is replaced in the associated file set
with one of the values in the value lists, the resulting set of files is called an
application instance. Formally:

7.2 The Experiment Engine 107

Definition 7.1. Let (vy,...,vn) be the list of application input parameters. A set of
application files is an application instance denoted Applnst(svl,...,svn)iif "1,
1£i £ n, the string searchString(vi) has been substituted by a strings, of valueList(vi)
in every file of fileSet(v;)

The generation, compilation, and execution of an application instance is caled an
experiment.

Figure 23 shows how the user defines input parameters using the user portal. Four
input parameters are shown: Number OfThreads, DatabaseServer, KnapsackCapacity,
and Algorithm. Specifically, for the parameter Algorithm, we have:

name=Algorithm

search3ring=backtracking
valuelist=(tabu_search,tabu_search,simulated_annealing)

fileSet={ C:\ks\build.xml}

semanti cs=miscellaneous (neither machine nor problem-size related)

% Aksum FEX
File Edit Search Help

am ¥ 8 BB =] @]
Application parameters rCump.&exec. | Outpurt |

i Performance properties r Application files |
Machine and problem sizes: Split
MumberQThreads DatahaseSener kKnapsackCapacity Algotithm '
11 pahostparunivie ac.at 100 ahu_search

1{2,4,8} miriarm.wibk.ac.at {100,150} tabu_search

52,81 localhost a0 zimulated_annealing
&% Associate Algorithm with files

=

Application files Associated files
Knapsack.java C:ks'bhuild.zml |
Query.java
Uitil javva Edit Parameter
iaframework'GeneticAlgorithm.java
iaframework'SimulatedAnnealing.java 22 Name: |Alg|:|r|1hm |
iaframework'TahooSearch.java -

Search string: backiracing |
i] i [» | Semantics: i_! Machine-size related

i_' Problem-size related

i@ Miscellaneous

oK | ‘ cancel |

Figure 23. Definition of input parameters

108 7 Aksum

7.2.3. Generation of Application Instances
The experiment engine generates application instances according to the following
policies:
Let (vi,...,vn) be the list of input parameters, and (si,...S,) €lements in
valueList(vi), . . ., valuelist(v,), respectively. Applnst (svl,...,a,n) is created iff
position(s,) =position(svj)" i,j: L£i jEn, where position(s,) denotes the
position of an element s, in valueList(v).
Let wy = Applnst (s, ,...,s,) and w, :Applnst(s'vl,...,s'v). Then w; is generated
(and later on executed) before w, iif $k such that 1£kE£n and
position(s,) £ position(s'v_) "I, LEi £k This option enables the specification

of an order for the generation and execution of application instances, which can be
important when defining checkpoints (see Section 7.4).

For instance, given the parameters
(p,“-mp2’, (“-mp=1", “-mp=4"), {myScript.sh}, machine-size related)

(q1 “THREADS = 1", (“THREADS = 2”, “THREADS = 4”)1 {myscrlptSh}’
machine-size related)

then two application instances are created, the first with the strings “-mp 2" and
“THREADS =1" substituted in the file myScript.sh respectively by “-mp 1" and
“THREADS=2", and the second instance with them replaced with “-mp 4" and
“THREADS =4",

For convenience, a value between braces has a special meaning in a value list,
denoting a set of values. For instance, the vaue list ("-mp = {1, 2, 4, 6, 8}") is
equivaent to ("-mp = 1", "-mp = 2", "-mp = 4", "-mp = 6", "-mp = 8"). In particular,
the string “a:b:c” inside braces, where a, b, and ¢ are real numbers, is a specia
shortcut for “ay, ..., @, wherez= gb- a), c{ and" j,0£j£z g=a+]*c The
previous example could also have been written as ("-mp = {1, 2:8:2}").

Elements in the value list of an input parameters may also refer to other input
parameters using their names prefixed with a dollar sign ($). Given a list of input
parameters (vi,...,Vn), if the k-th element of valueList(v;) refers to variable v; using the
string $name(v;), then, if i <j, the string $name(v;) is substituted by the k-th element
of valueList(v;). For example, suppose that five application instances must be
generated. The file computation.c must have the string MS replaced with 10 in the
first application instance, 20 in the second, and so on. The file Computation.java al so,
but the string to be replaced is RS. We can use the input parameters:

(p, “MS’, (“{10:50:10} "), { computation.c}, problem-size rel ated)

(g, “RS’, (“$p"), { Computation.java}, problem-size related)

These parameters are equivalent to:

(p, “MS’, (*107,“20",“30",“40" ,“50"), { computation.c}, problem-size related)

(9, “RS’, (“$p”,“$p",“$p”,“$p”,“$p”), { Computation.java} , problem-size related)
And these parameters are equivalent to:

7.2 The Experiment Engine 109

(p, “MS’, (*10",“207,“30",40",“50"), { computation.c}, problem-size rel ated)
(9, “RS’, (107 ,“20”,%30",“40",“50"), { Computation.java} , problem-size related)

The use of sets and references in value lists may greatly simplify the definition of
input parameters. Moreover, both compilation and execution command lines may
refer to any input parameter using its name. For example, for an execution command
line like “run.sh $p”, the real execution command line used when executing the third
application instance would be “run.sh 30" (assuming the parameter p as above).

7.2.4. Storing Application Instances

Application instances need to be stored in the file system. The experiment engine
creates a directory for all application instances and stores each instance in its own
subdirectory, where the necessary directory tree is aso created. For example, for the
ninth application instance, the file /home/joe/prototype/main.c will be stored (after the
input parameters have been substituted) under the directory
<applnstancesDir>/9/home/joe/prototype (with the name main.c), where
<applnstancesDir> is the directory that the experiment engine created for all
application instances.

For a smooth compilation and execution of an application instance, any file in the
application being analyzed should use relative references (that is, references relative
to the location of the file itself) to refer to other files in the application. If this is
impossible or unwanted, the user must create an additional input parameter and
associate it to any file that uses absolute references, so that they are replaced with the
correct directories. The value list of this input parameter must have only one element,
namely the string $absExpDir followed by the absolute directory name to be replaced.
$absExpDir is a specia string that the experiment engine replaces, when generating
the files for the k-th application instance, with <applnstancesDir>/k. For example, if
the file /home/jane/app/script.sh refers to other application files in the directory
/home/jane/app always using /home/jane/app, the following parameter may be used.

(p, “/homeljane/app”, (“$absExpDir/homeljane/app”), {/homeljane/app/script.sh},
neither problem nor machine-size related)

The extra input parameter guarantees that the correct files in each application
instance are used, and not the original ones. $absExpDir is aso alowed (and
replaced) in the compilation and execution command lines.

On the other hand, references to files that do not belong to the application (like
libraries) need to be absol ute.

7.2.5. When the Instrumentation Takes Place

If Aksum is configured to do static instrumentation, then the source files must be
instrumented before the generation of application instances begins, as the
instrumented sources and not the original ones, will be used in the generation (static
instrumentation is described in Section 7.3.1).

Regardless of which instrumentation mode is used, static or dynamic, both the
compilation and the execution command lines may need to be changed, for example
in order to link the application with instrumentation libraries. Therefore, the
experiment engine asks the instrumentation and monitoring system to change the
compilation and execution command lines accordingly. This is not enough, however,
as commands to compile and execute the application may be spread also in scripts and

110 7 Aksum

other application files, and therefore the search engine also provided all application
files marked as needed to start the compilation or execution (see Section 7.2.1) to the
instrumentation and monitoring system, which examines and modify them if needed.
These modifications are described in Section 7.5.

7.2.6. Compilation and Execution

Using the compilation command line provided by the user and modified by the
instrumentation and monitoring system, the experiment manager replaces any special
string (see Sections 7.2.3 and 7.2.4) with the associated value and, finaly, compiles
the application instance. If the compilation fails (detected by examining the return
value of the compilation), the experiment manager aborts immediately.

Similarly, the execution command line (already changed by the instrumentation and
monitoring system as well as by the experiment manager) is used to execute the
application instance. If the execution fails, the experiment manager may, depending
on the user’s choice:

abort
try to execute the same application instance again, or
just skip this application instance and go to the next experiment.

Moreover, if the execution fails, the experiment engine uses an optional termination
command line, which can clean up everything left by an execution that finishes
abnormally. This is specialy necessary in multi-experiment analysis, where the next
experiment may start only if the last one did not leave any rubbish behind, like
zombie processes and open sockets.

The experiment engine notifies the search engine each time an execution ends
successfully, and also after the last experiment has finished, successfully or not.

7.3. The Instrumentation and M onitoring Engine

The instrumentation and monitoring engine decides what must be instrumented in the
application, without specifying how the instrumentation is done (which is left to the
Instrumentation and monitoring system). Aksum has in facts two engines for
instrumentation and monitoring, one suitable for dynamic instrumentation and one
appropriate for static instrumentation. Both engines are described in the following.

7.3.1. The Enginefor Static Instrumentation

This engine decides what must be instrumented in the source files of an application. It
receives a neutral representation of the application structure created by the
instrumentation and monitoring system (Section 7.5), analysis its units (methods in
the case of Java, procedures and the main program in the case of Fortran) and decides
which code regions need to be instrumented.

A unit has zero or more blocks selected for analysis. Each block is selected as
described in Section 7.2.1. In the simplest case, nothing in the unit is selected for
analysis, and the unit is just skipped. The second simplest case occurs when the entire
unit is selected for analysis, that is, there is only one block, covering the whole unit.

The engine instruments all blocks selected for analysis in an application which are
“big enough”, that is, that have N or more statements, where N is a user-defined

7.3 The Instrumentation and Monitoring Engine 111

number (the best value for N is discussed in Chapter 9). Inside each selected block,
we instrument:

any loop that is not nested in other loop;

any loop that is nested in other loops but is not the only nested statement;
subroutine calls and method invocations, but only if the subroutine caled or
method invoked has N statements or more.

If any code region begins in a block but ends outside, the block is “rounded up” to
include the end of the code region.

Suppose, for instance, that the following Java method is completely selected for
analysis, and that this method, as well as the method createMatrix, has more than N
statements, but the methods someComputation and println do not.

void conmpute() {

(B int[][] matrix = createMatrix();
int sum= 0 ;
for(int i =0; i <L; i++) {

AX for(int j =0; j <C j++) {
C sum += soneConputation(matrix[i][j]);
}

}

\ System out. println(sum;

}

The code region A is instrumented because the method compute has more than N
statements; code region B, an invocation of a method with more than N statements, is
also instrumented. Code region C is a loop not nested in any other loop, so it is
instrumented too. The loop nested in C is not instrumented, as it is the only statement
nested in C. The invocations of someComputation and printin are also not
instrumented, as these methods have less than N statements.

After the application has been instrumented, the instrumentation engine notifies the
experiment engine that the generation of application instances may start.

7.3.2. The Engine for Dynamic I nstrumentation

This engine decides what must be instrumented in the application during its execution
by analyzing the files executed. The engine asks periodically for the call stacks of the
execution and instruments the units (methods or subroutines) found, according to the
following algorithm:

Wil e the application instance is running

Sl eep sone tinme

Ask for the call stacks of all processes that make up the
execution

Ask for a view, in each process, of the application structure
containing the units found in the call stacks

Merge the views obtained fromdifferent processes in a single view

For each unit in the application and in each process
Instrument the unit itself
[Instrunent all code regions in the unit]

The time the engine sleeps varies according to the behavior of the application. At
the beginning, the engine asks frequently for the call stacks in expectation of finding
“hot spots”, that is, units where the application spends most of the time. As long as

112 7 Aksum

the call stacks do not change, the “time to sleep” increases at each step. If new units
appear in the call stack, the “time to sleep” is reset to a small value and the engine
starts again to ask for call stacks frequently.

Providing the call stacks and a view of the application, as well as doing the real
instrumentation, is responsibility of the Instrumentation and Monitoring System
(Section 7.5). As the engine needs to merge application views from different
processes, the elements in the view need to be comparable for equality, as detailed in
Section 7.5.2.

It deserves note that, when instrumenting dynamically Java applications, the
instrumentation may not become effective immediately. When a method is
instrumented, only its next executions will use the instrumented version; invocations
in the call stack at the time the instrumentation was inserted will still use the old
version of the method. Although Java alows to pop invocations off the stack, thisisa
problematic approach as the global state of the application (for example, open files or
global variables) cannot be reverted to what it was before the method was invoked. As
this postponed instrumentation may pose a problem for long-running methods, Aksum
allows the user to specify, under “instrumentable files’, those files that must be
instrumented as soon as the execution begins, so that the first execution of the method
already uses the instrumented version.

The engine may operate in two modes: refining or non-refining. In refining mode,
only methods are initially instrumented. Later, if the search engine (described in
Section 7.4) finds a performance problem with some method, it informs the
instrumentation engine that the analysis in that method needs to be refined, and only
then the code regions in the method are instrumented. Firstly, only code regions
immediately nested in the problematic method will be instrumented; if performance
problems are found in any of the newly instrumented code region, the instrumentation
engine is informed again and repeats the refinement process for the problematic code
regions (see column “Search Engine” in Figure 20). The use of call stacks and
refinement is the same approach adopted in more recent versions of Paradyn [89, 118]

While the dynamic instrumentation used in Paradyn becomes effective
immediately, the instrumentation inserted in a method in Java becomes active only for
the next executions of this method, that is, refining mode may be inadequate for Java
applications with long-running methods. For this reason, Aksum offers also the non-
refining mode where, for each method in a class, all code regions found in the method
(besides the method itself) are instrumented. This approach would be excessively
intrusive for static instrumentation, but it makes sense for dynamic instrumentation
because only methods found in the call stack are selected for instrumentation.
Furthermore, the representation of the application generated from binary files, which
is probably the case when doing dynamic instrumentation, is considerably less rich
than that generated from the sources, there not having many code regions inside a
method to instrument. The non-refining mode can go even further and asks for the
instrumentation of methods that may be invoked in the future, which are found by
recursively examining the code of the methods in the stack. Note, however, that this
search is inherently inexact, as in general the real method invoked is determined only
when the invocation occurs. A potential problem with the both refining and non-
refining mode is that several code regions (like get and set methods) are executed
often but have an insignificant execution time. For this reason, it is possible to specify
in Aksum when a code region is too small to be instrumented. By default, Aksum

7.4 The Search Engine 113

considers a code region “small” if it contains less than five code regions immediately
nested and these code regions either are also small or have a nesting level less than
two.

Every time an application instance finishes the execution, the engine repeats the
steps above to the new instance, until all instances have been executed.

7.4. The Search Engine

The Search engine coordinates the search process; it seeks out performance properties
in the application using the data generated by the other engines and stored in the
Experiment data repository.

Properties are hierarchically organized into tree structures called property
hierarchies, which are used to tune and prune the search for performance properties.
For example, one may assume that, if an application is efficient, there is no need to
compute its load imbalance. This assumption can be encoded in a specific property
hierarchy by placing the property Loadlmbalance under the property Inefficiency.
Another example would be the definition of a property hierarchy without any
communication properties when it is known that the application is encoded as an
OpenMP code and runs on a shared memory machine.

Each node in the property hierarchy represents a performance property and is
described by two elements:

Performance property name: the name of the performance property associated
with this node; the property definition is stored in a property repository (defined
by the user or provided by Aksum).

Threshold: avalue that is compared against the severity value of each instance of
the property represented by this node; if the severity valueis greater than or equal to
this value, then the property instanceis critical and will beincluded in the list of critical
properties.

Figure 24 shows a property hierarchy with six properties, and how the property
Loadlmbalance is customized. There are four standard property hierarchies provided
by Aksum, covering message passing, shared memory, mixed parallel programs, and
distributed Java programs, but the user can define and store new property hierarchies
from scratch or based on these predefined hierarchies. The reference code region for
every property node in the predefined property hierarchies is per default set to the
main program.

The process of searching for performance properties usualy finishes when all
application instances have been executed. In addition, Aksum supports the definition
of checkpoints to stop the search for properties before the end of the last experiment.
A checkpoint is a Boolean function defined as follows:

op(severity(property, code region, number of experiments)) relop value
whereop 1 {maximum, minimum, average, standard deviation} and

rlopT {>,3, <, £, = 1}. Any property and any code region are also valid values
for property and code region.

The following checkpoint, for instance, means that the search must stop if the
severity of the any property in any code region is greater than 0.6.

114 7 Aksum

maxi mum(severity(any property, any code region, 1)) > 0.6

EBX

File Edit Search Help

BEry e

Application parameters |/ Comp. & exec. r Outpurt |
Performance properties |/ Application files

Property hierarciy:
[java.lneficiency
[[java.Lnadlmbalance|
D java. GCOverhead
|j| java. SynchranizationOwarhead
D java.MetBlockedReceive Overhead
|j| java RuIBlockedReceiveOverhead

Property configuration

Important onby it severity is greater than: III.1|

To compute reference values, use:) Outermost loop
_ Immediate Subroutine

® Whole Program

OK Cancel

Figure 24. Property hierarchy and property customization

Figure 25 shows a checkpoint definition that stops the search process if the average
inefficiency for the entire program in the last 5 experiments is above 0.75 with
standard deviation less than or equal to 0.1.

£ Checkpoints

Stop the search if:
Function] Fropery Code RegionFile | # Experiments | Relation | Severity
A java. Inefiicie... a|= 0.74a
and |STOY [javalnefficie. . al== .1

Add Delete | OK Cancel

Figure 25. Checkpoint definition; the coderegion isblank, which means* any code region”

7.5. The Instrumentation and Monitoring System

Tools for instrumenting and monitoring applications have different requirements,
inputs, and outputs. This section describes the extra layer that needs to be added to an

7.5 The Instrumentation and Monitoring System 115

instrumentation and monitoring tool so that it can communicate with Aksum. This
layer, called IM-interface in the rest of this section, isolates al details specific for a
given tool, so that the other engines of Aksum can work unaware of the kind of tool
used, the platform where the application runs, and even the language in which the
application has been written.

An instrumentation and monitoring tool to which an IM-interface has been added
congtitutes an instrumentation and monitoring system. We currently have two
instrumentation and monitoring systems; one connects Aksum to SCALEA [147], the
other to Twilight (Chapter 6). In the following, we describe the operations an IM-
interface needs to add to an instrumentation and monitoring tool so that the last can be
used in Aksum.

7.5.1. Madification of Command Linesand Application Files

The IM-interface must analyze the command lines which compile and start the
application and change them accordingly so as to satisfy the requirements of the
instrumentation and monitoring system utilized. Aksum gives the IM-interface not
only the compilation and execution command lines, but also any files needed to
compile and start the application (see Section 7.2.5), like scripts.

The IM-interface does the best effort to recognize compilation, linkage and
execution commands in the files given; this means that there is no guarantee that the
IM-interface will find all command lines that need to be change or that it will not
mistakenly change a line in the file that should not be changed. The following rules
are used to detect the commands of interest in an application file:

Build files (Twilight)

Build files are XML documents used by Ant [3], a popular tool for managing Java
projects. Any valid XML document whose root element is project is considered to be
abuild file. Similarly, any element javac in a build file is considered an element that
compiles the application, and any element java is considered an element that executes
the application. This rule accords with [3] and with all applications we analyzed that
make use of Ant. For example, the following line, which compiles al sources in
directory myApp, is recognized as a compilation command in abuild file:

<j avac includes="nyApp/*.java"/>

Other files (SCALEA, Twilight)

The IM-interface looks for lines that match against either a compilation pattern, a
linkage pattern or a execution pattern. We have determined some common patterns
based on the applications we have analyzed; for example, the following pattern,
written as aregular expression [46], is used in the IM-interface for SCALEA to detect
a compilation command line for Fortran programs:

\'s* (90| pgf 90| £ 77 g77| \ $SFCI \ $\ (FC\) [\ $\ { FC\ } | \ $F90| \ $\ (FO\) | \ $\ { F9O\
VSV (F7T7V) [VS\{F77\}) (. *)\ s+-c\ s+

This pattern detects a call to a Fortran compiler (like $(F77) or f90) with the switch
—C. The following lines, for instance, would be detected as compilation command
lines:

f77 —c hello.f
${F90} —mt -Cb —c hello.f90

116 7 Aksum

The IM-interfaces for both SCALEA and Twilight allow the user to overwrite the
compilation, linkage and execution patterns.

After a compilation, linkage or execution command line is recognized, it is
modified according to the requirements of the underlying instrumentation and
monitoring tool.

7.5.2. Creation of an Application View

The IM-Interface must provide a view of the application to be analyzed that is to the
highest degree language and platform independent and, at the same time, detailed
enough to alow a deep and fast analysis. This view is called in Aksum the program
tree. For Fortran programs, we use the abstract syntax tree generated by the VFC front
end to build the program tree, while for Java programs, we use the SIR generated with
Twilight.

Each node in the program tree is labeled so as to identify the structure it represents
in the application. The following structures, which are enough for the analysis that
Aksum carries out, may be represented in a program tree:

modules (Fortran)

classes (Java), labeled modules in a program tree;

programs (Fortran)

methods public static void main(String[]) in Java, labeled program in a program
tree;

procedures (Fortran), labeled subroutine in a program tree;
methods (Java), labeled subroutine in a program tree;

loops;

procedure calls (Fortran), labeled call in a program tree;
method invocations (Java), labeled call in a program tree;
conditionals;

assignments;

complex conditionals (switch in Java, SELECT in Fortran);
where (Fortran);

try, catch, findly (Java);

jumps;

OMP loops and parallel loops (Fortran);

critical sections (synchronized methods and blocks in Java).

Besides its label, a node may contain a name (when representing a module or a
class) or a reference to another node (when representing a method invocation or
procedure call). Figure 26 shows a program tree representing a small Java class.

7.5 The Instrumentation and Monitoring System 117

class C{
public static void
mai n(String[] args) {
int a=1;
int b;
while (a < 5) {
b += a * a;
f(b);

subroutine
name: f

}

static synchronized void
f(int n) {

\

program

assignment

critical
section

Figure 26. Example of a program treefor a Java class

An IM-interface for a static instrumentation system (that is, one that instruments the
sources before they are compiled) receives, as input for creating the program tree, the
instrumentable files that compound the application (see Section 7.2.1). An IM-
interface for dynamic instrumentation receives as input a process that participates in
the application execution and a set of subroutines from which the program tree will be
generated (the process and the subroutines are obtained from a call stack, described
below). In both cases, the output is the program tree. For the dynamic case, the
program tree will contain at least the subroutines given as input; in addition, the IM-
interface must guarantee that, given two nodes n and m, where n belongs to the
application tree of process p and m to the application tree of process g, then
n.hashCode() = = m.hashCode() and n.equals(m) if, and only if, n and m refers to the
same code region in the application. This is needed because Aksum must merge the
application trees obtained from different processesin asingle tree (see Section 7.3.2).

7.5.3. Providing Call Stacks

The IM-interface for a dynamic instrumentation system (like Twilight) must be able
to provide the call stacks of every process participating in the application execution.
Each process may have several threads, and each thread has at every instant a call
stack. Therefore, when asked to provide call stacks, the IM-interface outputs a set of
pairs &, S,fi where each pair represents a process p that participates in the execution
of the application and the call stacks s, of all threadsin process p. Each call stack s, of
process p is itself a set of pairs &, ¢ifi where each pair represents the call stack c¢; of
thread t in process p. Finally, each call stack c; is represented as a list of subroutines
(r1, r2, ..., 'n), where subroutine r; is called from subroutineri.1 " i, 1<i £n.

7.5.4. Insertion of Probesin the Application

The IM-interface needs to insert probes in the application in order to measure the
metrics Aksum needs for the performance analysis. The IM-engine accepts as input

118 7 Aksum

for this operation the regions to be instrumented, the performance properties
(described in Section 7.4) that will be used in the analysis and, for dynamic
instrumentation, also the process where the probes must be inserted. The regions are
the output of a request for the application view, while the process is the output of a
request for the stack traces.

The IM-interface loads the performance properties given and parses them in order
to determine which metrics the property needs. After that, the IM-interface uses the
instrumentation and monitoring tool to add the probes needed to measure those
metrics.

7.5.5. Generation of Experiment-related Data in JavaPSL Format

The profiles generated by the instrumentation tool must be converted to the JavaPSL
format (Chapter 5), which is used in Aksum. The IM-interface parses the profiles and
creates instances of the classes describing experiment-related data explained in
Section 5.1.

We recall, also from Section 5.1, that there must be a subclass of RegionSummary
specific for a given instrumentation and monitoring tool, that is, a subclass that can
represent the metrics that the tool can measure (or a subset of them). We created
subclasses for Twilight and SCALEA which can provide a map with the values for all
metrics these tools can measure. For example, in order to get the garbage collection
time of aregion summary r generated with Twilight, one must write:

r.getTimngMetrics().get(GC Tl M)

7.6. Summary

This chapter presented Aksum, a highly flexible and customizable multi-experiment
performance analysis tool that can automatically conduct a set of experiments and
detect the performance bottlenecks in these experiments. A particular unique feature
of Aksum is its ability to search for performance problems in multiple experiments,
whereas most existing tools restrict their analysis to single experiments. As we will
see in Chapter 9, the output of Aksum can be presented at various levels of detail and
summarized into line charts so as to immediately guide the user to the most critical
performance properties detected. In addition, properties can be freely added to or
removed from Aksum; the user can specify properties by using JavaPSL (described in
Chapter 5).

8

A Learning Agent for Performance Analysis

While the analysis techniques used in Aksum are effective to find performance
problems, our ad hoc approach lacked a more forma model that could be used to
explain the decisions taken during the analysis and to justify their correctness. We
wanted to use a well-established theory to model the performance analysis problem,
but we also wanted a theory which, when implemented, performed as good as or
better than the implementation we already had.

We chose reinforcement learning to model the performance analysis problem for
two reasons. The trial-and-error nature of reinforcement learning resembles closely
the empirical character of performance analysis, and, differently of other forms of
learning, no expert teacher is required to tell the agent the correct actionsto take.

In this chapter, we provide a short background on agents and reinforcement
learning, and describe the modeling of performance analysis problems as
reinforcement learning problems.

8.1. Background

Starting in 1952, Arthur Samuel employed many ideas of reinforcement learning used
today to write programs for checkers [204]; his work is regarded as the earliest
successful research on machine learning. Although reinforcement learning is almost
so old as the study of learning in artificial intelligence, it was not an especially active
area in research until its revival in the early 1980s. In fact, the field of reinforcement
learning as studied today dates only from the late 1980s. In the following, we define
some important concepts needed to understand our work on reinforcement learning in
performance analysis.

8.1.1. Agents

Russel and Norvig [121] define agents as “anything that can be viewed as perceiving
its environment through sensors and acting upon that environment through effectors.”
Agents also have goals; in particular, a rational agent is one that, based on what its
sensors perceive and on the knowledge it has, takes the right action, that is, the action
expected to help the agent to achieveits goal.

A learning agent, as shown in Figure 27, has, besides sensors and effectors, aso a
performance element, a learning element, a problem generator, and a critic. The
performance element decides, based on the perceived state of the environment, the
action that should be taken in order to achieve the agent’s goal. The learning el ement
defines the agent’s goals using the knowledge from the performance element about
which actions were taken in the past and some feedback about their effect,
determining how the agent can achieve a better performance in the future. Using an
external set of performance standards, the critic evaluates the success of the actions,
which is needed because the agent has no means to know if the response of the

120 8 A Learning Agent for Performance Analysis

environment is good or not. Finaly, the problem generator suggests ways of expand
the knowledge available.

As an example, consider a simple agent playing chess that needs to decide what to
do for a given board configuration. Perhaps the agent has aready seen this
configuration several times before in other games, and knows that, in seventy percent
of those games, moving the queen one square left ended with the agent’s victory. As
the agent’s goal is winning the game, there is some evidence that moving the queen
one sguare left is agood move. The problem generator, however, may suggest that the
gueen should now move forward, because the agent still does not know the
consequences of this move and because there is no guarantee that moving the queen
left will lead to the victory anyway. After having moved the queen forward and
waited the adversary’s move, the sensors realize that agent was checkmated, so the
critic tranglated this information as “bad move’. The learning agent uses the translated
information to update the knowledge, so that the next time the queen is not moved
forward for that board configuration and, perhaps, aso for similar board
configurations.

Performance
standards
" Sensors <'|
Critic
feedback
m
)
changes <
Learning | | ® performance)
element element >
knowledge 3
D
learning goals =
Effectors >
Problem | 4
generator Agent

Figure 27. General model of learning agents [137]

8.1.2. Reinfor cement L earning

The more widely studied forms of machine learning, like artificial neural networks
and decision trees, are based on the concept of supervised learning, a technique where
the agent cannot act autonomously but must be trained by ateacher that tells the right
action (output) to take at a given situation (input). From the presented training data
(input/output pairs), the agent must be able to generalize and predict the correct output
for any unseen inputs.

Reinforcement learning is a form of machine learning where the agents are never
told the right actions to select given the perceived environment’s state. For each

8.1 Background 121

action taken, the agent receives a scalar feedback from the environment, called reward
or reinforcement, which is the only measure of how good or bad the action was.
Consequently, the agent must learn the right action to take by trial-and-error, and
learning and evaluation of the system occur concomitantly.

Reinforcement learning is seen as a class of problems and not as a set of techniques
—any method suitable for solving a reinforcement learning problem is considered a
reinforcement learning method. In a reinforcement learning problem, the agent and
the environment interact at each step t of a sequence of discrete time steps; the agent
perceives through its sensors the environment’'s state s, T S, where S is the set of
possible states, and selects action a; 1 A(s), where A(S) represents the set of actions
that can be performed when in state s. At the next time step, the agent receives a
reward ris1 1 R and the environment’ s state changes to s+1. The interactions between

agent and environment are shown in Figure 28. The continuous case is also possible,
but we will not deal with it here.

——» Agent

state s reward r, action a,

M1

——

ES(Environment
| S

Figure 28. Agent-environment interactionsin reinforcement learning [137]

The following example dialogue, taken from [77], presents an intuitive way of
understanding the interaction between the agent and its environment. As this example
shows, the environment may be non-deterministic, that is, when applied to the same
state, the same action may produce different rewards and lead to different states (like
action 2 in state 65).

Environment: You arein state 65. Y ou have 4 possible actions.
Agent: I’ll take action 2.

Environment: You received areinforcement of 7 units. You are now in state 15.
Y ou have 2 possible actions.

Agent: I'll take action 1.

Environment: You received areinforcement of -4 units. You are now in state 65.
Y ou have 4 possible actions.

Agent: I’ll take action 2

Environment: You received areinforcement of 5 units. You are now in state 44.
Y ou have 5 possible actions

122 8 A Learning Agent for Performance Analysis

A policy p isamapping from each states1 S and action al A(S) to the probability
p(s, a) of selecting the action a when in state s. The agent’s goal is choosing a policy
that maximizes the expected return value, where the return R; is some function of the
reward sequence after time step t. For example, one could use the sum of the rewards
until thefinal step T asreturn:

R =l thop tlhat.. trr

For some problems, however, there is no clear final step, and the interaction
between agent and environment continues infinitely. For these cases, one may use the
discounted return, which is the infinite summation:

_ S«
Rt - a g r"[+k+1
k=0

The parameter g, 0 £ g < 1, is called discount rate. It can be seen not only as a
mathematical trick to bound the sum (if the sequence {ry} is bounded), but also as a
way to assign the importance of future rewards. values near to 1 puts more emphasis
on future rewards than values near to 0. Discounted return can aso be used for the
finite case.

As we said, the agent must maximize the expected return value, since the
environment may be non-deterministic. If (i1, S+1) depends only on (s, &), that is, if
one needs only the last state and an action to predict the possible outcome (reward and
state transition), we say that the environment satisfies the Markov property and call it
aMarkov Decision Process, or MDP. In addition, if the number of possible states and
actions is finite, we say that the environment is a finite MDP, for which much of the
theoretical work in reinforcement learning has been written. The performance for a
reinforcement learning system with the Markov property is better, and therefore many
problems where the environment does not satisfy the Markov property are modeled as
approximations of MDPs.

For an MDP, we will use P2 to denote the probability of changing to state s’ if
action ais executed when in state s, that is:

P2 =Pris.,=s]s =53 =3}.

In the same way, R . is used to denote the expected reward of executing action a

sS

when in state sif the state changesto s':
R2 =Er.s =sa =as, =s}.

We aso define the state-value function VP(s) as the expected return when the
environment is in state s and the agent follows then policy p, and we define the
action-value function QP(s, a) as the expected return when the environment is in state
s, the agent takes action a, and then starts following policy p. Assuming discounted
returns, and using E,{ } to denote the expected value if the agent follows policy p,
VP(s) and QP(s, a) can be defined formally for MDPs as:

sy ,

VP (9 =E{Rls =9 =E, 18 0"fs = sg,

|

k=0

8.1 Background 123

k
g rt+k+1

o

Q°(s,a) = Ep{Rt|st =sa =a}= Epi
|

=
1

S =S& = a['J
3 Y
We say ’that apolicy p is better than or equal to a policy p’ (denoted asp 2 p’) if
VP(s) 3 VP (9) " ol S. Thereis at least one policy, called optimal policy, that is better
than or equal to any other p9|icy. All optimal polices are denoted p; they share the
same state-value functi onV (called the optimal state-value function) and the same
action-value function Q (called the optimal action-value function). V' and Q are
defined as:

V'(s) :mgaxvp(s)," sl S and
Q' ()= maxQ” (s.a)," sl Sal A(9).

It can also be proven [137] that:
V(9 =max§ PER 2 +av'(s)].

The last equation expresses how the values of a state and its successor states are
related. In afinite MDP with N states, there will be N equationsin N unknowns. Such

an equation system, called Bellman optimality eguation, has a unique solution. If P
andR & are know, one can in principle solve the system, determining V' and,

consequently, the optimal policy p’: any policy that assigns a non-null probability to
the actions that lead to the next best state.

An equation the express the relationship between the value of a state and the values
of its successor states can also be derived for Q (s, a):

Q(sa) =4 PR +gmaxQ (s.a)|.

Determining the optimal policy is even easier when the values for Q*(*s, a) are
known: for each state s, one just needs to select the action for which Q (s, a) is
maximal.

Although it may seem that the reinforcement learning problem is now solved,
severa assumptions made in this section limit the utility of the solution just presented.
First, the number of states must be small enough, which is not true for many real-
world problems (the game of checkers, for example, has an estimated number of 10™®

legal states [125]). Second, the dynamics of the environment (P andR %) must be

known. Finally, the environment satisfies the Markov property. “Reinforcement
learning can be clearly understood as approximately solving the Bellman optimality
equation, using actual experienced transitions in place of knowledge of the expected
transitions” [137].

8.1.3. Techniquesfor Solving Reinfor cement L ear ning Problems

Many techniques have been proposed to solve reinforcement learning problems. In
this section we show two of them, Sarsa [120, 143] and one-step Q-learning [155],
which are the techniques we implemented in our framework for solving reinforcement
learning problems (described in Appendix D). We also discuss policies for selecting
actions.

124 8 A Learning Agent for Performance Analysis

Let s be the environment’s state at step t, and a; the action the agent selects. The
action generates a reward ry; and changes the environment’s state to .1 at the next
time step, when the agent chooses the action a.+1. The rule for updating Q(s;, &) using
the Sarsaagorithmis:

Qs.a) ~ Qs,a) +ar +1 Qs 8) - As,a)]
while the rule for updating Q(s;, &) using one-step Q-learning is:

Qs.a) = Q(s,a) *aln, +1 maxQ(s.,,8)- Qs.a,))]

In both equations, a is a small constant step-size parameter and, under certain
conditions, it can be shown that the learning action-value function Q does converge to
optimal action-value function Q in both algorithms. Note that Q-learning does not
depend on the action selected at step t+1 to update the learning action-value function.

The question left is: Which action should be selected at time step t, that is, which
policy should the agent follow? A natura choice could be the greedy policy, which
always selects the action with the largest expected reward. Always being greedy,
however, may prevent the agent from exploring the environment and discovering
actions that may produce better rewards. At the other extreme, we could choose a
totally random policy, which does explore the environment but never exploits the
knowledge acquired during the exploration.

One solution for the dilemma between exploiting and exploring is being most of the
time greedy, but with a small probability e selecting a random action. This policy,
called e-greedy policy, is popular but suffers from a problem: it explores all actions
with equal probability, that is, the fact that some actions are more likely to bring good
rewards than othersis totally ignored during the exploration.

Another solution, called Softmax policy, ranks the actions according to their
expected rewards, attributing higher probabilities to actions with higher expected
rewards. If the Gibbs-Boltzmann distribution is used, we have that the probability of
selection action a from the set A of possible actions when at state sis:

eQ(s,a)/t

Pr(a) = é eQ(s,b)/t
bl A

where t is a parameter caled temperature. Smaller values for the temperature
increase the greediness of action selection, while higher values increase its
randomness.

One convergence condition for the Sarsa algorithm is that the followed policy
converges in the limit to the greedy distribution, while the convergence criteria for Q-
learning is independent of the policy chosen. For this reason, Sarsa is called an on-
policy agorithm, and Q-learning an off-policy algorithm.

8.2. Modeling Perfor mance Analysis as a Reinfor cement L earning
Problem

Performance analysis can be seen as a reinforcement problem where the agent’s goa

is to find in a short time many performance problems and with as little as possible

interference in the application’s behavior. Because reinforcement learning is based on

trial and error, it would take the agent too much time to learn the right actions for a

8.2 Modeling Performance Analysis as a Reinforcement Learning Problem 125

given state if the performance analysis were post-mortem and the instrumentation
static, since the reward would come only after the application finished executing. For
this reason, we modeled only the dynamic performance analysis as a reinforcement
learning problem.

As usual, the first challenge when modeling real-world problems is deciding which
elements are significant when solving the problem and which are not. An excessive
number of variables added to the problem definition may slow down the resolution:
the agent has more signals to perceive and process, and it may take some time until
the agent finally realizes that a variable has little or no significance for the problem.
On the other hand, a model represents a type of biased knowledge, where the agent is
told which signals can be safely ignored according to someone’ s point of view (points
of view, however, are not aways right). Another challenge is converting the result of
actions to a scalar value that the agent can use as reinforcement, which may also
contain a biased view of the problem and therefore will be transferred to the agent.

This section discusses how we modeled the problem of (dynamic) performance
analysis and the rationale behind our model.

8.2.1. Definitions

The following definitions will be used when modeling performance analysis as a
reinforcement learning problem. Because our focus was the analysis of Java
programs, we will often use the terms class, method, and method invocation, although
these terms could be substituted with similar ones from other program paradigms (like
“module”, “subroutine” and “ subroutine call”).

Definition 8.1. Let C be the set of classes used by an application, and M(c) the
set of methods of classc1 C. A stack trace of the application is a sequence [y,
My, ..., mJ of method invocations, where " j, 1 <j £k, m 1 UM (c) and m_,

dc

was invoked by method m.

At every instant of the application execution, each live thread has a non-empty
stack trace. Let E be the set of all pairs (stack trace, thread) that can be observed
during the application execution, and E; the set of pairs that are observed at some
instant i; for a single pair (€ = [my, my, ..., mJ, t) T E;, and C and M(c) as defined
above, we have the following notations and definitions:

Methods(e) = {m¥m,j (1L £ j £ kUm=m} are the methods in the stack trace e.
Classes(e) = {c¥m(mT M(c) C Methods(e))} are the classesin the stack trace e.
Classes*(E) = UCIam(h) arethe classesin all stack traces of E;.

() E,
The size of E; is defined as Size(E)) =(x,s), wherex is the average length of the
stack traces in E and s the standard deviation. We say that Sze(E)) =
(x,.s,) overlaps Sze(E,) = (x,,s,) if and only if:
[%- s *+s]CIX -8, x, +8]* A&
The average number of classes is defined as NC(Ej) =(y,r), wherey is the
average cardinality of Classes*(h) for al stack traces h in E; and s the standard
deviation. We say that NC(E,) = (y,,r,) overlapsNC(E,) = (Y, .r,) if and only if:

126 8 A Learning Agent for Performance Analysis

[y_u- r.u’y_u-'-ru](;’[y_v- rv’y_v+rv]1 ’CE

Definition 8.2. Let SummarySet denote the set N” N” R? R? Let P be the set of
all processes that make up an application execution at instant i, and E and E; as
defined above. SackSummary: E® SummaryS&et is defined as

SackSummary(E;) = (JP|, |Classes* (E)|, Sze&(Ei), NC(E))

Moreover, we say that the stack traces observed at instant u and v are similar if
Sze(E,) overlaps Sze(E,) and NC(E,) overlaps NC(E,).

A stack summary condenses important information about the stack traces at some
instant i. Aswe will see later, an agent will be able to take a decision for a stack trace
that has never been before based on a similar stack trace.

Definition 8.3. Let SabilityLevel | N be afiniteset suchthat 01 StabilityLevel.
The function SackSability: N ® SabilityLevel is defined as:
StackStability(x) =y U x3 yU" wi Stability(w>y b w>x)

SackSability maps any natural number X to the highest value in StabilityLevel that
Is less than or equals to x. This function is used to describe the stability level of stack
traces given the time the stack trace has not changed. For example, if SabilityLevel =
{0, 15000, 30000, 60000, 120000} and the methods in the stack trace have not
changed in the last 95000 milliseconds, StackSability will be 60000. Since asking for
the stack traces introduces overhead in the application execution, we can use the fact
that a stable stack trace is not likely to change in order to avoid the overhead of
constantly asking for stack traces.

Definition 8.4. Let r be aprobed code region, T atime interval, C the (estimated)
time the probe execution adds to the execution time of r, and K an amount of
time that is large enough to consider C as insignificant. Let y be the number of
times r was executed during the time interval T and x the average execution time
during the sameinterval, T 3 x. We define the probe effect PE: N" N ® [0,1] as:
1laex- Ko .
= xy If CEXEK
%T C-Kg)
PE(X,y) =10 if x>K

i)
I minagyg if x<C
1 eT g

The function PE models the interference of the probe in the execution of a code
region: the shorter the execution time of r and the more often r is executed, the larger
becomes the probe effect. It is easy to see that y cannot be greater than T/x and that

"X ¥, Y2 (Y2>y1 P f(XY2) 3 f(X,y1)). Therefore:
min(PE(x, y)) = PE(x,0) =0

8.2 Modeling Performance Analysis as a Reinforcement Learning Problem 127

i x- K

if CEXE£K

max(PE(x, y)) = max%E?ﬁ(Igiz 10 if x> K
X .
% Tt x<c

~

|
Consequently, 0 £ PE(x,y) £ 1.

If thereis aprobe b in a code region, we denote the execution time, as measured by
the probe b, as time(b), and the number of times the code region (and the probe) was
executed as count(b). Thus we can define the probe effect in terms of probes as

ProbeEffect(b) = PE(time(b),count(b))

Definition 8.5. Let ¢ be an instrumentable code region in the application. If cisa
method (and consequently is not nested in any instrumentable code region), we
say that the level of ¢, denoted as level(c), is 0. Otherwise, level(c) = 1+level(p),
where p is the code region where c is immediately nested. The set of code
regions in amethod mwith level nis denoted as CodeRegions(m, n).

Using the definition of level, we can define the size and the depth of a method.
Given a method m, its size, denoted as size(m), is the cardinality of the set
CodeRegions(m, 1). The depth of m, denoted as depth(m), is the value g such that
CodeRegions(m,g+1) is empty and CodeRegions(m,g) is not, that is, depth(m) is the
maximum level among the code regions in the method. These definitions are useful
when amethod is instrumented, as we will seelater.

Definition 8.6. Let B be the set of probes in an application, r a code region
containing a probe, and t = [to, t;] atime interval. Let Wy denote the properties
found in r a time t,, and W; the properties found in r at time t;.
Inactivity: B® N isdefined as:

- 10if W, =W,

Inactivity(b) = |)
it - t, otherwise

In other words, Inactivity measures for how much time the set of propertiesin a

code region has not been updated.

8.2.2. States, Actions, and Rewards

Assume that the set SackStability (Definition 8.3) and the constants T, C, and K
(Definition 8.4) are defined, and let SummarySet denote the set N'N'R?* R?
(Definition 8.2). The set of states in the performance analysis problem is defined as:

S = StackStability E SummarySet E { RepentanceState, Removal Sate}

An element of StackSability will be caled a SabilityState, and an element of
SummarySet will be called a SummaryState.

The set of actionsin the performance analysis problem is defined as:

A = { Repent, DoNothing, RequestStackTrace} E
{ InstrumentCodeRegion(s, d) ¥4(s, d) 1 N?} E
{ RemoveProbe(t, f) 12(t,) T N?}

128 8 A Learning Agent for Performance Analysis

RequestSackTrace
StabilityState SummaryState

DoNothing
Repent InstrumentCodeRegions(s,d)

RepentanceState Removal State
RemoveProbes(t,f)

Figure 29. Transition graph for the performance analysis problem

The actions the agent chooses for every state are rewarded (or punished). In the
following, we describe which actions are allowed for each state, the effect of that
action in the environment, and the rewards received. We will use names starting with
REWARD _and PENALTY _ to describe positive and negative constants values used as
rewards, concrete values for these constants, as well as for SackSability and the
constants T, C, and K are shown in Section 9.4. The transition graph for the
performance analysis problem is shown in Figure 29.

RequestStackTrace

Action alowed when a some SackSability state. The stack traces of the
application are retrieved, and StackStability and StackSummary are computed (the
values will be used to determine the next SummarySate and SabilityState). The
reward for this action is PENALTY _STACK_ REQUEST, if the stack traces are equal
the previous stack traces, or PENALTY_STACK_REQUEST +
REWARD_ STACK_CHANGED, if they are not. Note that the agent will be punished
for having requested the stack traces (because the request introduces overhead in the
execution), but the punishment will be reduced by a positive reward if the stack has
changed, because the change can potentially bring more knowledge to the agent.

DoNothing
Action alowed at any StabilityState, which just causes the transition to a
SummarySate and has reward 0.

InstrumentCodeRegions(s, d)
An action alowed in the SumamryState which instruments each code region c in
each method m of the application if, and only if, ¢ has never been instrumented and
the both following conditions are true:

- size(m) 3 sor depth(m) 2 d or there exists a code region ¢’ that invokes m, and
a performance property was found in ¢’

- level(c) = 0, or a performance property was found in p, where p is the code
region where cisimmediately nested.

8.2 Modeling Performance Analysis as a Reinforcement Learning Problem 129

The environment keeps an interna representation AppStruct of the application
structure (classes, methods, code regions). Before starting the instrumentation, the
environment checks if AppStruct contains enough information about the methods
found in the last stack trace retrieved, that is, if the code regions of each method in the
stack trace are present in AppStruct. If not, then AppStruct is updated.

Both updating AppStruct and instrumenting the application are a source of overhead
in the application execution (note that we are not talking yet about the instrumentation
overhead, but about the overhead of inserting instrumentation). The reward for this
action is PENALTY UPDATE_STRUCT + PENALTY_INSTRUMENTATION if
AppStruct had to be updated, or PENALTY _INSTRUMENTATION otherwise.

Removel nstrumentation(i,f)
Action alowed at the Removal Sate, which removes any probe b in the application
if any of the following conditionsistrue:

- Inactivity(b) 3 i, or
- ProbeEffect(b) 3 f

The reward for this action is PENALTY_REMOVE_INSTRUMENTATION if some
probe was removed.

Repent
Repent evaluates how good or bad the agent is doing its task, being the only action
alowed at the Repentance state. For each code region ¢ with probe b, let Gy 4(b) be
the set of performance properties that were found in ¢ and which were aready
present in ¢ the last time the action Repent was executed. Let Gpen(b) be the new
properties found in ¢ and which are also present in the code region where c is nested,

and letG_, (b) be the new properties which are not. PropertyReward(b) is defined as:

PropertyReward(b) =
God(b) © REWARD_OLD PROPERTY +
Grenw(b) © (REWARD_NEW_PROPERTY + extra)
G, (b)” (REWARD_NEW _PROPERTY + extra)

where

REWARD _NEW_PROPERTY >
REWARD_NEW_PROPERTY >
REWARD_OLD_PROPERTY

and extra = REWARD_EXPLANATION_FOUND if ¢ has no nested code region,
and O otherwise.

PropertyReward attributes a larger value to new properties than to old properties,
and an even larger value if the property is not present in the parent code region. In a
sense, PropertyReward measures the degree of “surprise” when a property is found: if
a property is found in code region c, we expect to find it again the next time we look
at c. It will also be no big surprise if the property isfound in a code region nested in c.
On the other hand, a property found in ¢ which was not present in the parent of c
appeared “out of nothing” and represents new possibilities of exploration. The extra
argument is only an extra reward given to new properties found in a code region
where the instrumentation cannot be refined, which means that the cause of a
performance problem must be in that code region, and not in a nested code region.

130 8 A Learning Agent for Performance Analysis

Now, we define the utility of probe b as:

ProbeUtility(b) = PropertyReward(b) —
max{ PropertyReward(b), REWARD_NEW_PROPERTY }" ProbeEffect(b)
ProbeUtility uses the probe effect as a discount factor for the property reward. Note
that, in the worst case, the probe effect can even nullify the value of the properties

found. At the same time, REWARD NEW PROPERTY aso acts as a negative
reinforcement for code regions where few or no properties are found.

Finally, the reward of the Repent action is computed as

& ProbeUtility(b)

bl B |B| where B is the set of all probes.

8.2.3. Similarities and Biases

A problem the agent must face while acting is what to do when a state that has never
been seen before is encountered. Our generic framework for solving reinforcement
learning problems (shown in Appendix D) provides support for similar states, which
are states used when the agent has no basis to make an informed decision about the
best action to choose. In this case, the agent will select the best action for one of the
similar states (instead of choosing randomly an action), which is called
generalization. The agent must know, however, what makes two states “similar.”

Since the RepentanceSate and the RemovalSate are unique, we just need to
consder SabilityStates and SummaryStates. Nevertheless, SabilityStates are
themselves a measure of similarity, because they classify the time the stack has not
changed as some “ stability level” (see Definition 8.3), while SummaryStates already
define the concept of similarity (using the average size of stack traces and the average
number of classes in the stack). Therefore, it is straightforward to find similar statesin
the model we defined.

Sometimes, however, there is no similar state, and the agent must select an action
without any information about the possible outcome. While this is not a problem in
theoretical reinforcement learning, which under certain conditions usually guarantees
the a solution is found provided that a state is visited infinitely often, in practice it is
useful to integrate some knowledge in the agent that informs which actions are more
likely to bring good rewards. This integrated knowledge is called a bias.

Action InstrumentCodeRegions(sy, do) is more likely to bring a good reward than
action InstrumentCodeRegions(s;, d;) if either s> s, and dy >=d; or 55 =5 and
do > ds.

Rationale: Instrumenting small methodsis likely to introduce alarger probe effect,
S0 it makes sense to instrument first larger methods.

If D and S are both bounded subsets of N, and if InstrumentCodeRegion(s, d) is

defined only if (s, d) T S D, then abias can alternatively (but not equivalently) be
expressed as.

sas(s.q) - (1D} @)+ (max(s)- o

(max{D} - min{D}) + (max{s}- min{s})
We will say that InstrumentCodeRegions(sy, do) is more likely to bring a good

reward than InstrumentCodeRegions(s;, d1) if bias(sy, do) > bias(s;, di). This
definition makes the biases of all InstrumentCodeRegion actions comparable to

8.3 Summary 131

each other, alowing the creation of a totaly ordered set of
I nstrumentCodeRegions actions.

Action Removel nstrumentation(to, fo) is more likely to bring a good reward than
action Removel nstrumentation (ty, f;) if either to > t; and fop >=f; or tp = t; and
fo>f1.

Rationale: The longer the time a probe has been inactive, the less likely is finding
a performance property in the probed code region, and the larger the probe effect
is, the more likely a bad reward in the future is. Therefore, it makes sense first to
remove probes that have been inactive for more time or those that introduced
larger probe effects.

If Removel nstrumentation(i,) is defined only if (i,f) T |I' F, where | and F are
bounded sets, then a totally ordered set of Removel nstrumentation actions can be
created in the same way as described for InstrumentCodeRegion actions.

8.3. Summary

In this chapter, we provided a background on reinforcement learning and
demonstrated how it can be used to model the performance analysis problem in order
to provide a foundation to the decisions taken during the analysis process. We also
defined formally some concepts used in performance analysis, like the probe effect or
the state of a stack trace.

Reinforcement learning greatly simplifies the design and implementation of a
performance analysis tool, as one just needs to define actions, without having to
define the “search agorithm” itself, which is any of the agorithms for solving the
reinforcement learning problem. This simplicity makes it easier to add new actions.
Moreover, values for many parameters that must be manually adjusted by the user in
the traditional analysis agorithm (like minimum size a method must have to be
instrumented) are dynamically adjusted over the search process through the trial-and-
error mechanism of reinforcement learning.

On the other hand, reinforcement learning introduces a few other parameters that
must be set by the user, like the constants a and | (see Section 8.1.3). Another
drawback is that al theoretica guarantees in reinforcement learning are
asymptotically true: States must be visited and actions must be executed an infinite
number of times. Therefore, in order to speed up the reinforcement learning process, it
IS necessary to introduce biases that indicate the paths likely to lead faster to the
agent’s goal.

In Section 9.4, we show experimental results that confirm the utility of our
approach.

9

Experiments

In this chapter, we demonstrate the efficacy of our approach for detecting
performance problems with seven different applications, three written in Fortran and
four written in Java

amaterial science kernel (see Section 9.1.1);
aphotonic application (see Section 9.1.2);

afinancial application (see Section 9.1.3);

adistributed graph algorithm (see Section 9.2);
adistributed backtracking framework (see Section 9.3);
agame (see Section 9.4.1);

adistributed database (see Section 9.4.2).

Details about each application and the execution environment are described under
the respective sections. We used Aksum to carry out the performance analysis and
either SCALEA (for Fortran applications) or Twilight (for Java applications) to
instrument the code and to collect performance metrics during the application’s
execution. We used the performance properties described in Section 5.3, except for
those that had no support of the respective instrumentation tool. For example, neither
instrumentation tool can measure overhead due to creation of threads, therefore we
did not use the property ThreadInitializationOverhead,

9.1. Static Analysisof Fortran Applications

This section presents the performance anaysis for three Fortran applications; the
experiments were all conducted on an SMP cluster with 16 quad nodes connected
through Fast Ethernet. Aksum itself was executed on a Sun workstation Ultra 1/170.

9.1.1. LAPWO Material Science Application

LAPWO [10] calculates the effective potentia of the Kohn-Sham eigen-value
problem. Implemented as a Fortran 90 MPI code, it has been examined with four
problem sizes (representing 8, 16, 32 and 64 atoms) and five machine configurations
(1, 4, 8, 16 and 32 CPUs). Due to alack of memory, however, the last problem size
could not be executed with only one CPU. Each line shown in the charts of this
section refers to the execution of LAPWO for a single problem size and different
machine sizes.

For al problem sizes, the code inefficiency increases for larger machine sizes (see
Figure 30), and this is the most critical aspect of LAPWO (which Aksum indicates by
placing the property Inefficiency at the top of the critical property list, as shown in
Figure 31). The highest values for this property, however, appear only in the main
program, which suggests that no code region is alone responsible for the inefficient
behavior of LAPWO. In fact, Aksum shows that the causes for the inefficiency cannot

134 9 Experiments

be explained by any property in particular, but it lies in the combination of several
properties:

ReplicatedCode (Figure 32)

LAPWO contains several replicated code regions that are not parallelized and
executed by al CPUs. The cumulative effect of these regions (LAPWO 35,
LAPWO_ 10, LAPWO_38, LAPWO 15 and LAPWO_47) stands out in the main
program (LAPWO_59), responding for about 25% of the execution time.

MessagePassingOver head (Figure 33)
This severity of this property also increases with larger machine sizes and, since
message passing is cumulative, the worse values always appear in the main program.

ControlOfParallelismOverhead (Figure 34)
Again, acumulative property whose value stands out in the main program.

ExecutionTimelLoadlmbalance (Figure 34)

The code distributes a set of atoms onto the processes, but for the problem sizes
tested it is not always possible to distribute them equally onto a set of CPUs. Besides
the main program (LAPWO_59), the code regions most affected by this distribution
are LAPWO 28, LAPWO_25, LAPWO0_40 and LAPWO_43.

| Inefficiency — (315, 9, 1496, 15) [LAPWD_59]
Inefficiency - (315, 9, 1496, 15) [LAPWO_59]
SEvErity (3

—a— EXP_6, EXP_7, EXP_8, EXP_9
90 —d— EXP_11, EXP_12, EXP_13, EXP_14
8O —s— EXP_1, EXP_2, EXP_3, EXP_4
70
50 I Property Visualization I
50 Yiew: Source Code:
40 |Prnpenies V| -
20

Critical Properties: 155§ CR LAPWO_S 9 BEGIN
20 @ 3 Inefficiency - ALLOCATER&all:ncom + 3), r{l:nrad), wali==
10 @ CLAPWO58 0.92 & Torce = .FALSE
@ ¥ B(P_0 1 execution threadis) dfakil) = 1
Machine Size @ ¥ ExXP_4 32 execution thread(s)
4 8 16 32 oW (315, 9, 1496, 15) [LAPWO_ '515$ LCRILARIHO-Z[BECI
& ¥ Dyr. Code Region (9672} 1= S
o 2 LAPWO. 59 0,86 cifakil) = dfak(i- 1" (@ ") - 1)
- : 4849 CONTINUE
O [LAPWO_59 0.80 155 EMD CR L
o [LAPWO_59 0.76 = =
[s R | 1496, 15

Figure 30. Inefficiency in LAPWO

9.1 Static Analysisof Fortran Applications 135

l— Property Visualization —I

Yiew: Source Code:

|Pruper1ies v|

Critical Properties:

&= [Inefficiency

& [T MonScalability

&[] ReplicatedCode

L MeszzagePassingOvearhead

@ [ControlOfParallelismOwerhead
@ [ExecutionTirmeLoadlimbalance

& MessagePassingloadimbalance

[»

os5e

Figure 31. Propertiesfound in LAPWO

20

ReplicatedCode - (315, 3, 1496, 15) [LAPWD_59]
SevErity (%)

—a— BXP_&, EXP_7, EXP_8, BEXP_9

—A— BEXP_11, ExP_12, BEXP_1%, EXP_14

—a— BXP_1, BEXP_2, BEXP_3, EXP_4

View:

Source Code:

|Prnpenies - ‘

Critical Properties:
@ [ReplicatedCocle
@ CILAPWO_58 0.25

@ w7 B(P_2 8 execution thread(s)
@ ¥ EXP_0 1 execution thread(s)

€W (315, 9, 1496, 15) [LAPWO_59
@ ¥ Reference Dyn. Code Regioh (S

& [LAPW0_59 0.24

& [LAPWio_59 0.22

@ [LAPW0_59 0.20

@ [LAPWio_59 0.18

@ [LAPW0_59 0.17

[Lapnio_59 0.16

e [LAPW0_58 0.15

© [Lapnio_59 0.13

Machine size
4 g 15 32

e [LAPW0_58 0.12
e [LAPio_58 0.13
- [LAPWo 59 0.11

Lol

DOUBLE PEECISION, ALLOCATABLE o2 gel(;)
DOUBLE PRECISION, ALLOCATABLE @ woowlQg)
DOUBLE PRECISION, ALLOCATABLE :: buf3i)
COMPLEX(KIND=8), ALLOCATABLE - ggi;,)
COMPLEX(KIND=8), ALLOCATABLE :: qonew(, 1)
INTEGER 306300

I

COMMON frapipriv/ mpi_bottom, mpi_status_ignare,
&ore

15155 CR LAPWO_53 BEGIN
ALLOCATEMRall:ncom + 33, r{lnrady, value(l:nrach)
force = FALSE
dfak(l) = 1.

15155 CR LAPWO_2 BEGIN
DO 4849 = 2, 41
dfak(i) = dfakii - 1) * (2 =iy - 1)
4843 CONTIMUE
ISIS§ EMND CR

* atan(l.)

[(]

[»]
1473, 9

Figure 32. ReplicatedCode property in LAPWO

136 9 Experiments

MessagePassingOverhead — (315, 9, 1496, 15) [LAPWO_59] I
MessagePassing Overhead - (315, 8, 1496, 15) [LAPWO_59]
Sewerity i)
—es— BXP_§, EXP_7, EXP_8, EXP_9
4 EXP_16, EXP_17, EXP_18, EXP_19
16
14 —=— EXP_11, EXP_12, EXP_13, EXP_14
12 —s— EXP_1, EXP_2, EXP_3, EXP_4
10
8
6 View: Source Code:
|Prupenies vl =
4 COMMON Jmpiprivy mpi_tbottom, mpi_stat
2 Critical Properties: dore
[-NEs| assingOverhead ||
Machine 5ize @ [LAPWO 59 0.17 ISIS5 CR LAPW(O_S59 BEGIN i
4 8 16 32 & B LAPWo_59 0.15 ALLOCATE(yka(Lncom + 3), r(1 nrac), val
O [LAPWO 59 0.14 force = .FALSE.
& Lapwo_53 0.10 ClLl = L
-] LAPYIO_43 0.10 SIS TR LAPWO_2 BEGIN
& [LAPWID 58 0.08 B DO 4843 = 2, 41
& [LAPW0_43 0.08 dfakil) = dfak(i- " (2 <) - 1)
& LAPWO 59 0.08 4849 CONTINUE
o [LAPWO_432 0.08 S5 END @R
o [LAPWO 59 0.07 Bi = 4 * atan(l)
& [LaPn_43 0.07 safp = sqried. * pi)
@ [LAPWID 55 0.05 sgriz = sori(2.)

& LaPW0_43 0.05
@ [LAPW0 58 0.05

e vl |

Ll

1496, 15

Figure 33. Overhead caused by message passing in LAPWO

ControlOfParallelismOverhead — (315, 9, 1496, 15) [LAPWO_59] I
ControlOfParallelismOverhead - (315, 9, 1456, 15) [LAPWD_59]
Severity (%)

—s— EXP_16, EXP_17, BXP_18, EXP_19
—&— EXP_6, EXP_7, EXP_8, EXP_9

12
—=— EXP_11, EXP_12, BXP_13, EXP_14

10 —se— EXP_1, EXP_Z, BXP_3, EXP_4

3

Visualiza
& View: Source Code:
|Prnpenies V| =
4 COMMON Jrpiprivy mpi_bottom, mpi_stat
Critical Properties: &ore

2 e 4 ComrolOfParallelismOverhead - ||

& [LaPWo_58 0.13 || |isiss cr Lapwo_s 9 BEGIN —
Machine Size 3 LAPWO_59 0.12 ALLOCATEka(l ncom + 23, ril nrad), val
4 3 16 & [LAP 58 0.10 force = .FALSE

& [LAPW0_59 0.10 GENE = 1
& EQLAPWO.59 0.10 IS5 CR LAPWO_2 BEGIN
&[5 LAP 58 0.09 DO 4849 = 2, 41
& [0 LAP0 58 0.09 dfakil) = dfak(i- 1" (2% - 1)
@[3 LAPWO_59 0.07 4843 CONTINUE
&5 Lepwo 58 0.07 IS¢ END CR
& [LaPWo 59 0.07 pi = 4 * atandl)
& [LAPWO 59 0.06 sofpy = sordd. * piy
&[5 LAPI 58 0.06 sgn2 = sor2.)
@ [IMIT_PARALLEL 0 0.05
& [LAPWO 2 0.05 = 1496, 15

Figure 34. Overhead caused by control of parallelismin LAPWO

9.1 Static Analysisof Fortran Applications 137

ExecutionTimel oadlmbalance — (315, 9, 1496, 15) [LAPW0_59]

ExecutionTimeloadimbalance - (315, 9, 14396, 15) [LAPW0_53]
Sewerity (%)
—s— EXP_7, EXP_8, EXP.9
& EXP_16, EXP_17, EXP_18, EXP.19
10
—=— EXP_11, EXP_12, EXP_13, EXP_14
8 —%— EXP_2, BXP_3, EXP_4
& I Property Visualization I
4 Yiew: Source Code:
‘Prnuemes v‘ Eﬂg‘lg B =
2 - - index = 1
Critical Properties: CLOSE (UNIT = &)
- @ [£9 MessagePassingOverhead ki CLOSE (UNIT = 21)
Machine Size || &= (9 ControlOfParallelismOverhead OFEM {UNIT =6, FILE=fharmes, POSITION ="appenct)
4 g 18 & [ExecutionTimeLoadimbalance QPEM (UNIT =21, FILE=iname21, POSITION="append)
g
@S LAPWO.3S 011 15155 CR LAPYO_28 BEGIN
LAPWO 55 0.08 DO 50 jatom = nstart, nstop
@ [LAPWO0_ 28 0.08 w20 = 0.
@ [LAPWO0 25 0.08 w2 =0 =
@ [LAPW0 59 0.08 w22 = @ u
@ [LAPWI0_59 0.07 ﬁgii _ g'
@] LAPWO_28 0.07 w22Zmsr = 0
&] LAPWO_25 0.07 Ww2l=0
& [LAPWOo_40 0.07 w2lm = 0
©- [LaPwio_28 0.05 w2 s = 0. -
& [LaPwio_25 0.05 | [ssssssssssmmmmmmmm] v
@ [| APVIO 43 0 05 hd 1088, 15

Figure 35. ExecutionTimel cadl mbalance property in LAPWO

9.1.2.3D-PIC

The 3D-Particle-In-Cell [48] is an application written in Fortran90 and MPI that
simulates the ultrashort laser-plasma interaction in a three dimensional geometry. It
can presently run with seven different problem sizes (1, 4, 9, 12, 16, 25 and 36 CPUSs).

Aksum’s analysis show that the inefficiency of this code tends to grow for larger
problem sizes (Figure 36), which is caused mainly by the high message passing
overhead in subroutine SEND_BD, invoked from within the loop marked as
MAIN_12 (Figure 37). Aksum also directs the user to the most time-consuming MPI
cal (Figure 38).

Inefficiency— (233,9, 341, 15) [RELATIVISTIC_PLASM.

EXP_2, EXP_3, EXP_4, EXP_S, EXP_6, EXP_O

SEVErty (%)
50
40
—
30 I Property Visualization I
View: Source Code:
20 - T TS, T, O, T, PRI ¥ PHPToL, UaS_HEYIT_A, U
‘PFDDERIES v| &n_y; gas_begin_z, gas_cells_x, gas_cells_y, gas_cells_z, gas_z—
. i &gas_z2, gas_|z1, gas_|z2, dh_ow, p_charge, new_run, |pio, ft
10 Critical Properties: _ &cht_for_h, itmax, t_zip, v_out_min, e_zip, i_rkd4, en_max, plnk_
& [Inefficiency &lnb_y, version, go_array, go_bd_array, ien_max, iarg_may, ie
@ [RELATIVISTIC_PLASM A_PROPAGATION & &may, ion_inc, absorb_num, abs_coef, field_out, nop, num_su

©- [RELATIVISTIC_PLASM A_PROPAGATION =

15155 EMND CR

&surface tolerance, hx_to_hz, hy_to_hz, e_limit, ack)

4 9 12 16 @ [MAIN_7Z 050 T
& [MAN_12 0.50 CALL mpi_finalizefrc)
@ [RELATIVISTIC_PLASM A_PROPAGATIO 1515 END CR

© [RELATIVISTIC_PLASM A_PROPAGATIO

& [MAIN 73 0.45

O I MAIN_12 0.45

€= [RELATIVISTIC_PLASM &_PROPAGATION =]
e

EMND PROCRAM relativistic_plasma_propagation

1
-

] I

Figure 36. Inefficiency in 3D-PIC

138 9 Experiments

MessagePassingOverhead — (811, 9, 2556, 15) [MAIN_12]

EXP_2, EXP_3, EXP_4, EXP_5, EXP_B, BXP_0

Severity (%)
40
35
20
I Property Visualization I
25
View: Source Code:
20 - B e L Tl P = e e
|Pr0perl|es v| Jbd_und2, i4, 2 * grid_z) + i) = JZhn¥ + 2, nny + 4, | —
15 &i5)
Critical Properties: ENDDO
10 L =53] MessagePassingCverhead I EMDDO
< e CIMAIN_12 0,40 =] . C&L;snd_bq(g;id_xhgndgg gridl_? qgabg_arrellj\é ngw!_, é
-9 oW, J_bd_up, J_bd_nortn, J_ba_south, J_bd_dn, j_bd_ds, ||
EIMAN.73 040 &_bd_us, jx, Jy, j2z, go_bel_down, go_be_up, go_bd_north, gg

€[] RELATIVISTIC_PLASMA_PROPAGATIO & go_bd_dn, go_bd_ds, go_bc_un, oo_bd_us, neighbaurs, n

4 a 12 11 @ 7] RELAT IVISTIC _PLASM.A_PROPAGATIO &, igg_down, igg_up, igg_north, igg_south, igo_ds, igg_dn, ig
© [SEND_BD_146 0.40 Bicic_un)
- EIMAN_12 0.37 o_nhew = 0
@ A MAN_FT 0.37 pn_insert = 0

[ImE

igg_recy = ({{{{liga_recv + iqg_up) + igg_down) + igg_no
- [RELATIVISTIC_PLASM A PROPAGATION | B (LS - [a5LBED 25 [T, & (EELIE) - IFEL0E
& [RELATIVISTIC _PLASMA_PROPAGATION | [T =] 0
N

e b 2558, 15

Close

Figure 37. Overhead caused by message passing in 3D-PIC

I\-'IessagePassingO\a'erhead —(2202,16, 2203, 60

ExP_2, EXP_3, BEXP_4, EXP_5, EXP_G, EXP_O

Sewerity (3
20
is I Property Visualiz ation I
Yiews Source Code:
10 ‘Prugram Units, Property Severity v| ;g;"\’:; neighboursimyd + 1,T) B
Critical Properties: CALL mpi_s.end(j_bd_dnwr.](l, 1, 2 griq_w * grid_z, mpi
&le_precision, idown, tag, mpi_comm_world, ierm
5 © O RELATIVISTIC_PLASMA_PROPAGATION 1 [] ENDIF
@ [MAIN_732 = IF ineighboursimyid + 1, 2) .GE.) THEM
@ 2 man_12 iup = neighbours{myid + 1, 2)
& [F1SEND_ED_146 tag =0) S)
@ [MPI_RECY CaLL mpi_recw{j_bd_down(l, 1), (2 * grid_» * grid_z, mpi_
4 2 12 16 = &le_precision, iup, tag, mpi_comm_world, status, ierr)
@022 MessagePassingOverhear ENDIF ||
&~ 0.20 MessagePassingOverhead IF {neighbaursirmdd + 1, 1) GE 03 THEM &
@9 0.19 MessagePassingOverhead idown = neighboursimyid + 1, 1) [
@[0.1% MessagePassingLoadimbalance tag =0 - 4 =
@016 MessagePassingLoadimpalance]w] ; Rl lE R St ol SN
e Eo] 2203, 60

Close

Figure 38. Most time consuming MPI call in 3D-PIC

9.1.3. Backward pricing

The backward pricing application implements the backward induction algorithm to
compute the price of an interest rate dependent product [29]. The backward induction
algorithm has been implemented as an HPF code based on which the VFC compiler
[8] generates a mixed OpenMP/MPI code.

Based on the user provided input data, the search engine of Aksum automatically
determines that seven performance properties in the property hierarchy are critical for
this code (see Figure 39), where the properties are presented in ascending order of
severity. As usual, the user portal displays initially only the property names for those
instances whose severity is above the user-defined threshold (we set it to 0.01). The
property instances can be shown by expanding each property name. For every
instance the corresponding program unit and severity value is indicated. In the
backward pricing application, the most serious performance property is

9.1 Static Analysisof Fortran Applications 139

ExecutionTimeLoadl mbalance, which has an instance that holds for the main (entire)
program with severity value 0.80 (see the entry BW_HALO 3 0.80). The same

property holds for the sub-region of the main program indicated by the entry
BW_HALO_20.80.

The severity of the ExecutionTimeLoadl mbalance property instances for the entire
application increases with the number of execution threads (not shown in Figure 39),
from 0.01 for 2 CPUs to 0.80 for 64 CPUs. This behavior also explains the increasing
severity values for the Inefficiency property (varying from 0.05 for 2 CPUsto 0.79 for
64 CPUs — see the Inefficiency diagram in the upper right window of Figure 39) and
the poor scaling behavior (the severity of property NonScalability is 0.56 for the main
program). All other properties in the property hierarchy have lower severity values
(SynchronizationOverhead: 0.01, MessagePassingOverhead: 0.17 with 64 CPUs, for
the other machine sizes 0.00).

I Property Visualization I
View: Source Code:
| Properties - |
Properties: EMP_S, EXP_E, EXP_T, P4, ExP_1, ExP_], EMP_2
@ [ExecutionTimeLoadimbalance TEVRAY (5
@ [Inefficiency T

© £ Monscalability

@ [UnparallelizedCodeOverhead
@] MessagePassingOverhead 507 e g
@ [MessagePassingLoadimbalance -
@ [SynchronizationOverhead

(S
| -

View: =24 5

Machire fize

54

| Properties ~

hpip + 1) = hplp) + sizedharripinde:;
hhihpdpihadp + 1) - 1) = harrip)®index
ENDDO
1S15% EMD CR

Properties:
@ [ExecutionTimeloadimbalance
§ CIew_HALD_Z 0.80

@ ¥ EXP_3 64 execution thread(s)
W (549, 9, 61, 15) [BW_HALO_2]

-

15155 CR BW_HALO_2 BEGIN

© ¥ Reference Dyn. Code Region {16|
@ CIBW_HALO_Z 0.80 :
@ W EXP_3 64 execution threac(s)
@ W (35, 9, 63, 15) [BW_HALD_3]
@ ¥ Reference Cyh. Code Region (16
® CJew_11 053
@ ¥ EXP_2 64 execution thread(s)
B -np 4 -np 16
W nodes=4 nodes=16
B cd fooed fhornefclovisfprotfhm
B P16
BT 4
W (129, 9, 192, 15) [BW_11]
¢ ¥ Reference Dyn. Code Region (16
W Experiment; EXP_Z 64 executig
W Node: gsr401/0.0
W Execution time: 1264922 1us
W User time: 5820000us

3272

CALL bwihh, hp)
15155 END CR

15153 END CR

EMD PROCEAM bwy_halo

SUBEOUTIME bwihh, hg)

INTEGER, PARAMETER. : jmax = 1244
INTEGER, PARAMETER :: nr_steps = 3650

IHPF$ PROCESSORS r{l:number_of_processarsd)

INTEGER. hh:)
INTEGER. hp(:)

-

W Data mowernent overhead:

[*]

61, 15

Figure 39. Snapshots of Aksum’s property visualization for the Backward Pricing application

[¥]

The main program calls the subroutine BW, which calls subroutine
COMPUTE_SLICE. Asthe properties Inefficiency and NonScalability are not critical
for COMPUTE_SLICE, and since the critical instances of these properties have

140 9 Experiments

always approximately the same value for both the main program and the subroutine
BW, we conclude that performance tuning should mainly concentrated on subroutine
BW.

9.2. Static Analysis of a Java Application

We conducted a variety of experiments with All-Pairs Shortest Path, an application
that finds the length of the shortest path between every pair of vertices of a graph. It
was built using DPPEJ, the IBM framework for distributed Java applications [28].
DPPEJ is built on the top of RMI; its APl “provides conceptually similar functionality
to the one-sided communication APIs available in the Messaging Passing Interface
(MPI) standard.”

The experiments are a combination of different machine and problem sizes. For
machine sizes, we used 1, 4, 7, 9, and 11 DPPEJ daemons (a DPPEJ daemon is one
thread running on one JVM). For problem sizes, we chose 500, 1000, and 1500
vertices.

Code and data are transferred to each daemon at the beginning of the execution
using the DPPEJ APl (which uses RMI). Each daemon runs the same code with a
subset of the data, and one daemon combines the solutions found in each daemon,
generating the global solution.

The experiments were executed using a heterogeneous set of nodes:

Four Pentium 111 Xeon nodes (operating system: Linux);

Three Sun Blade 1500 workstations (operating system: Solaris);
One AMD Athlon PC (operating system: Windows 2000);

One Pentium 4 notebook (operating system: Windows XP);
Two Sun Blade 150 workstations (operating system: Solaris).

&

o)

0 50 100km C;'(/-- ﬂ\/}\-'
v 50 100m)
¢ AMD Athlon PC
L9
CEECH REPUBLIC 1 bertium 4 Notebook
GERMANY ™ 2 Sun Blade 150
Ay (~—.__ SLOVAK]
N T
3 Sun Blade 1500 f.-.-"'ﬁ Linz

N, VIENN/

% Salzburg -
— e, =
o '\-\.‘__ ;

-
o s [

4 Pentium |11 Xeon

i T
i e T
& LIECH. Innsbruck Graz 1
L e * P
STy s W) M ~THUNG
SWILZ £ - Klagenfurt, x\
7 R N i
Wy I a -h'\.___
? ¢)
¢ SLOVENIA
ITALY A r
; ¢ ¢
To—"~5 CROATIA
r‘\\K.-\-- .-A\'-\.

Figure 40. Nodes and sites used when analyzing DPPEJ

9.2 Static Analysisof aJavaApplication 141

The Sun Blade 1500 workstations are located in the city of Innsbruck, Austria,
while the other nodes are located in Vienna. These two cities are approximately 600
kilometers apart. In Vienna, the Linux nodes make up one site, and the remaining
machines another site. Thisis represented in Figure 40.

Figure 41 shows the problematic code regions that Aksum found. Each code region
is displayed with its type (e.g. LOOP represents while, do... while, and for loops, and
TRY represents the try...catch...finaly constructs), the name of the source code
where the code region is (the source code itself is also displayed, although Figure 41
does not show it), and the position of the code region in the source (start line, start
column, end line, end column). The last three numbers correspond to the minimum,
average, and maximum severity values for the performance properties found in that
code region. Under each code region, Aksum shows the performance properties found
and, under each property, the problem sizes used in the experiment where the
performance property was found. Finaly, below each problem size, the experiments
that used that problem size are shown, where the three last numbers always indicate
the minimum, average, and maximum values for the severity values in the nodes
below in the tree. The nodes in the output tree can be reorganized so as to show, for
instance, first the properties, then the experiments, and then the code regions. Note
also that the number of threads shown for each experiment corresponds to the DPPEJ
daemons plus the main thread (the one that only distributes the data).

The code region BLOCK in the file ASPTest.java corresponds to the main program.
Asthisregion only waits for the end of the computation, it can be ignored.

Critical Properties:

¢ W BLOCK in ASFTestjava (15,18, 56, 74) [0.185, 0.9, 0.993]
¢ W javaWaitingOwerhead [0.745, 0.948, 0.993]
¢ ¥ ProblemSize: S=1500 [0.951, 0.977, 0.953]
o= W EXP14 - [2005-02-23] - 2 nodes, 2 processes, 2 threads [0.993, 0,993, 0.993)
o= W= EXPZ - [2005-02-23] - 12 nodes, 12 processes, 12 threads [0.982, 0,982 0.983)
o= W= EXPS - [2005-02-23] - 10 nodes, 10 processes, 10 threads [0.978, 0,978, 0.978]
o= W= EXPE - [2005-02-23] - 8 nodes, 8 processes, 8 threads [0.978, 0,978, 0.878]
o= W= EXP11 - [2005-02-23] - 5 nodes, 5 processes, Sthreads [0.951, 0,951, 0.951]
o= ¥ ProblemSize: S=1000[0.912, 0,964, 0.921]
o= ¥ ProblemSize: 5=500[0.745, 0,903, 0.968]
o W java RMIBlockedReceiveOverhead [0.185, 0,185, 0.124]
o W TRY in ASPBroadcastjava (47,11, 196, 13 [0.121, 0,734, 0.92E]
o W LOOF in ASPBroadcastjava (145,18, 179,183 (0117, 0,633, 0.819]
o W LOOP in ASPBroadcastjava (74, 25 107, 253 [0.113, 0,478, 0.703]
o W LOOP in ASPBroadcastjava (172, 20,178, 200 [0.153, 0.345, 0.457]

Figure 41. Propertiesfound

o W TRY in ASPEroadcastjava (47, 11,196, 13 [0.121, 0.688, 0.986]
o= W javanefficiency [0.321, 0.832, 0.936]
o= W javaiaitingOverhead [00121, 0,589, 0.82]
o= W java RMIBlockedReceiveOverhead [0.148, 0148, 0.1449]
o W LOOP in ASPEroadcastjava (145,18, 179 183 [0.117, 0,605, 0.814]
o= W javataitingOverhead [00117F, 0,588, 0.819]
o= W java lnefiiciency [0.56, 0,629, 0.724]
o= W java RMIBlockedReceiveCOverhead [0.142, 0,142, 0.1448]
o W LOOP in ASPEroadcastjava (74, 25, 107, 258 [0.113, 0,478, 0.703]
o= W java)iaitingOverhead 0113, 0,478 0.703]

Figure 42. Propertiesfound - details

142 9 Experiments

The performance properties found in the code region TRY in the file
ASPBroadcast.java are detailed in Figure 42: Inefficiency, WaitingOverhead, and
RMIBlockedOverhead. Based on that we can conclude:

Adding more nodes does not speed up the execution of the application very much
(property Inefficiency). In particular, high values like 0.986 indicate that the
parallel execution time is almost the same as the sequential execution time.

The time spent waiting for something done in other threads is significant (property
WaitingOverhead).

Some time is also spent blocked waiting for the result of remote method
invocations (property RMIBlockedRecei veOver head).

The loop at (145, 18, 179, 18) is nested in the code region TRY described above.
By inspecting the source code (not shown), it is possible to see that this loop is
executed by only one DPPEJ daemon, which is responsible for collecting the output
of the other DPPEJ daemons. Figure 42 shows that the values for the severity are near
those valuesin the TRY region, which means that this loop isthe real culprit.

The loop at (74, 25, 107, 25) is executed by all DPPEJ daemons except one. The
property RMIBIlockedReceiveOverhead was not found in this loop, which reflects the
fact that this loop does not wait for the computation done in other daemons, as the
previous loop does. The property Inefficiency was not found, as we set it to compare
experiments only with the sequential version (and the sequential version does not
execute this loop, only the previous one).

Finally, the properties in the loop at (172, 20, 178, 20), which is also nested in the
code region TRY, are shown in details in Figure 43. This loop is inefficient, and the
property Loadlmbalance, aso found in this loop, indicates that the reason for the
inefficiency is a poor work distribution. Note that the loop is inefficient only for the
experiments using eleven DPPEJ daemons; these are exactly the only experiments
that use the slower nodes. In fact, by inspecting the source code, we see that the
distribution of data among the DPPEJ daemons is static and does not take into account
the speed of the nodes processing the computations (that is, slow nodes receive the
same amount of data as fast nodes).

¢ W LOOP in ASPBroadeastjava (172 20,178, 200 (0153, 0.337, 0.497]
o W javalnefiiciency [0.153, 0,345 0.497]
¢ ¥ ProblemSize: 3=1500[0.497, 0.497, 0.457]
o= W= EXPZ - [20058-02-23] - 12 nodes, 12 processes, 12 threads [0.497, 0,497, 0.497]
¢ ¥ ProblemSize: 3=1000 [0.385, 0.385, 0.384]
o= ¥ EXP1 - [2005-02-23] - 12 nodes, 12 processes, 12 threads [0.385, 0.385, 0.3849]
¢ ¥ ProblemSize: 5=500 [0.153, 0.153, 0.153]
o= W= EXPO - [2005-02-23] - 12 nodes, 12 processes, 12 threads [0.153, 0153, 0.153]
o W java Loadlimbalance [0.266, 0.325, 0.383)]
¢ ¥ ProblemSize: 3=1500[0.383, 0.383, 0.383]
o= W EXPZ - [2005-02-23] - 12 nodes, 12 processes, 12 threads [0.283, 0.383, 0.383]
¢ ¥ ProblemSize: 3=1000 [0.266, 0.266, 0.266]
o= ¥ EXP1 - [20058-02-23] - 12 nodes, 12 processes, 12 threads [0.266, 0.266, 0.266]

Figure 43. Propertiesfound - details

The instrumentation overhead is very reasonable. For a problem size of 1500
vertices, the instrumentation overhead using the four Pentium nodes was 34%, and for
the entire set of nodes 11%.

9.3 Dynamic Analysis of aJavaApplication 143

9.3. Dynamic Analysis of a Java Application

We analyzed a distributed application built using JavaSymphony, a “high-level Java-
based programming paradigm for parallel and distributed systems ... built as a Java
class library that allows the user to control parallelism, load balancing and locality at
ahigh level. The communication between two different machinesis built on the top of
RMI.” [76] In the application analyzed, one must find all different possibilities to
move a number of n identical objects along m consecutive positions. The problem is
solved using a backtracking algorithm where the sub-problems obtained at various
steps are dynamically distributed among the nodes used in the application, that is, idle
nodes receive additional sub-problems from busy nodes. Details about the problem
and the backtracking algorithm can be found in [41].

The experiments were executed using a heterogeneous set of nodes:

Four Sun Blade 1500 workstations (operating system: Solaris);
Three Sun Blade 1500 workstations (operating system: Solaris);
One AMD Athlon PC (operating system: Windows 2000);

Four Pentium 111 Xeon nodes (operating system: Linux);

Two Sun Blade 150 workstations (operating system: Solaris).

The second set of Sun Blade 1500 workstations is located in the city of Innsbruck,
Austria, while the other nodes are located in Vienna. The experiments were executed
with four, seven, eight, twelve and fourteen nodes, added in the same order as listed
above. The problem size chosen has five objects and six positions, which yields
701149020 solutions. The application has long-running methods that are executed
only once, so Aksum had to run in non-refining mode. All communication between
Twilight and Aksum was compressed, and a proxy between Aksum and some of the
nodes (the workstations in Innsbruck and the Pentium I11 nodes) was responsible for
forwarding request and response documents through firewalls.

The first performance problem we noticed was the presence of unidentified
overhead in several code regions. Unidentified overhead is a property in the
repository of standard properties that computes the difference between the wall clock
time and the sum of CPU time, waiting time (as defined by the metric
THREAD_WAITED_TIME in Section 6.4), and time blocked in network operations.
For one of the code regions this was a curious result, considering that this code region
should just wait until all the nodes finish their tasks, that is, the wall clock time and
the value of the metric THREAD_WAITED_TIME should be ailmost the same and no
unidentified overhead should be detected. Looking at the code, we located a bug in
that code region that caused the thread executing it to spin in aloop instead of leaving
the CPU. This bug had a negative impact on the execution time, because the node
where this code region was executed also had to solve part of the problem. By fixing
the bug, the unidentified overhead disappeared in several regions (those that were
actively computing the solutions for the problem) and changed to waiting overhead in
the others (those that were waiting the answer computed in other nodes), and the
execution time of the application decreased accordingly; in the sequential case, for
example, it was cut by half, from 20.6 minutes to 10.1 minutes in a Sun Blade 1500
workstation.

Further analysis showed that the application has an inefficiency problem, that is,
adding more nodes does not yield the expected performance gain, although this
problem tends to decrease as the number of nodes added increase. Although the work

144 9 Experiments

is distributed to the nodes dynamically, we detected that the main cause for the
inefficiency isthe load imbalance. A small but noticeable time blocked waiting for the
answer to a remote method invocation (property RMIBlockedReceive) was also
detected for larger number of nodes. Figure 44, Figure 45, and Figure 46. show the
properties found: Inefficiency, RMIBlockedReceiveOverhread, and Loadl mbalance.

- W javalnefficiency [0.109, 0,29, 0.467]
o= W METHOD inWorker java (33, 1, 95, 13 [0.109, 0.282, 0.467]
o= W [NVOCATION inWarker java (38,1, 89, 13 [0.109, 0.281, 0. 46E]
¢ W LOOP inWorkerjawa (88,1, 89,13 [0.109, 0.281, 0.466]
o= ¥ Mumberof Processes = 4 [0.466, 0,466, 0.466]
o= ¥ Mumber of Processes =12 [0.3594, 0.354, 0.354]
o= ¥ Mumberof Processes =8 [0.24, 0.24, 0.24]
o= ¥ Mumber of Processes =14 [0.236, 0.236, 0.236]
o= T Mumberof Processes =7 (0104, 0109, 0.104]
o= W METHOD inWorker java (161, 1, 193, 13 [0.109, 0.281, 0.46A]
o= W [NVOCATION inWarkerjawa (181, 1, 182, 13 [0.188, 0.302, 0.464]
o= W METHOD inWork java (86, 1, 87, 11 [0.188, 0.302, 0.464]
o- W LOOP inWork jawva (26, 1, 87, 1) (0188, 0,202, 0.464]
o- W= LOOP inWork jawa (26, 1, 87, 13 (0188, 0.202, 0.464]

Figure 44. I nefficiency in the code analyzed

o W java RMIBlockedReceiveCverhead [0.01, 0.062, 0.139]
o= W METHOD in Worker java (38,1, 95, 13 [0.041, 0.094, 0.1 34]
o= W= LOOF inWarker java (88, 1, 89, 13 [0.038, 0.092, 0.13f]
o W [MVOCATION inWorker jawa (38,1, 89, 17 [0.039, 0.092, 0.136]
o= ¥ Mumher of Processes = 14 [0.136, 0136, 0.1 36
o= ¥ Mumberof Processes =12 [0.125, 0,125, 0.124]
o= ¥ Mumher of Processes = 7 [0.066, 0.066, 0.066]
o= ¥ Mumberof Processes = 8 [0.0328, 0.039, 0.039]
o= W= WMETHOD in Worker java (161, 1, 193, 13 [0.038, 0.092, 0.136]
o= W LOOP inWorker java (165, 1, 169, 13 [0.023, 0.05, 0.081)]
o= W |RVOCATION inWWarker java (168, 1, 169, 137 [0.023, 0.05, 0.081]
o= W INVOCATION inWarker java (161, 1,162, 13 [0.019, 0.042, 0.061]
o= W WMETHOD in Worker java (116, 1,138, 13 [0.01, 0.012, 0.014]
o= W= LOOP inWorkerjava (127,01, 129 13 [0.01, 0.012, 0.014]
o= W |RVOCATION inWWarker jawva (128, 1,129, 137 [0.01, 0,012, 0.0114]

Figure 45. Overhead caused by RM|

¢ W java.Loadimbalance [0014, 00251, 0.33]
o- W LOOP inWork.java (86, 1, 87, 13 [0.143, 0024, 0.33]
o- W= LOOP inWoark jawa (86, 1, 87, 1) [0.142, 0.24, 0.33]
o= W [NVOCATION inWorkerjava (181, 1,182, 13 [0.14, 0,239, 0.33]
o- W= METHOD inWork jawva (36, 1, 87, 13 [0.141, 0,238, 0.33]
o= W= METHOD inWorker java (28, 1, 895, 10 [0.219, 0,274, 0.3249]
o- W= METHOD inWorker java (161, 1,193, 13 [0.221, 0.275, 0.329]
o= W [NVOCATION inWorkerjava (38,1, 89, 13 [0.221, 0,275, 0.3249]
oW LOOF inWWorkerjava (83,1, 89,13 [0.22, 0.275, 0.329]
o= ¥ Mumberof Processes =4 [0.328, 01.329, 0.3249)
o= ¥ Mumberof Processes=8[0.22 0.23 0.23]

Figure 46. Load imbalance in the code analyzed

9.4 Dynamic AnalysisUsing alLearning Agent 145

9.4. Dynamic Analysis Using a L ear ning Agent

We analyzed two applications using the reinforcement learning approach described in
Chapter 8. The constant values used are shown in Table 6.

Defined in Name Value
Section 8.1.3 Policy e-greedy
e 0.1
Agent agorithm Sarsa
g 0.9
a 0.1
Section 8.2.1, Definition 8.3 StahilityLevel { 2000, 5000,
10000, 30000,
60000} :
Section 8.2.1, Definition8.4 T 1500 ms
C 1ms
K 40 ms
Section 8.2.2 PENALTY_STACK_REQUEST -3
REWARD_STACK_CHANGED +2
PENALTY_UPDATE_STRUCT -5
PENALTY_INSTRUMENTATION -5
PENALTY_REMOVE_INSTRUMENTATION -5
REWARD_OLD_PROPERTY +5
REWARD_NEW_PROPERTY +10
REWARD_NEW_PROPERTY* +15
REWARD EXPLANATION FOUND +5
Section 8.2.3 S {1,2,3,4,5,6}
D {1,2,3,4,5
| {455,755, 105 s}
F {0.35,0.55,0.75}

Table 6. Parameter valuesfor the performance analysis using a reinfor cement lear ning agent

9.4.1. Tempest 1000

Tempest 1000 [24] is a highly interactive Java applet with several objects moving on
the screen. This applet, shown in Figure 48, could not be analyzed using our
traditional technique for dynamic analysis, because the perturbation created by the
probes inserted rendered the game irresponsive. In contrast, using the reinforcement
learning agent, the speed (or at least the perceived speed, which is what is important
in an interactive application) did not change except for occasional, short freezes,
which became less and less often as the run went on.

The source code of Tempest 1000 is not available, so we decided to include also the
AWT API in the analysis, which is responsible, anong others, for painting graphics
and images and for processing events (like mouse and window events). The AWT
API has a public and a private part, the public part being composed of the packages
java.awt.*, and the private of vendor-specific packages, both of which available for
Sun’s Java distribution.

We ran two experiments. The first used only one node, running both the code and
acting as 1/0 device, while the second experiment (shown in Figure 47) used two
nodes, one running the game code and the other acting as a graphic display where
input events were also generated. Aksum was always executed on a different node.

146 9 Experiments

Tempest 1000

Figure 47. Aksum analyzing Tempest 1000

For the first experiment, no property could be found; for the second, however,
Aksum found several regions with a reasonable synchronization overhead, all of them
related to event processing (like the methods handleEvent and dispatchEvent) and
screen painting (like the methods paint and drawStuff), as Figure 49 shows. Since
every access to the I/O device must be synchronized, and considering that, when
using two nodes, the place where inputs and outputs are generated is not the same
place where they are processed, we conjectured that the reason for the
synchronization overhead is that the larger amount of time needed to process events
remotely makes it more likely to have two concomitant access to the 1/0 device (for
example, the mouse pointer moves while the game' s screen is updated).

279860 <

Jumps Left: 4

Figure 48. Snapshot of Tempest 1000 with several moving objects

9.4 Dynamic AnalysisUsing alLearning Agent 147

Critical Properties: Source Code:
P e e T B T e e E o L e P A P
o= W javalavtiEventQueue javaid56,1,473 1) METHOD/dispatchEvent [0.2489, 0.249, 0.248] onentisFocusablef,
o= W javalavlEventQueue javadf3, 1,464 1) INVOCATION dispatchEvent [0.218, 0.219, 0.2149] }
o= W javalawlCaomponent java(3807 1,4032,1) METHODVdispatchEventimpl [0.249, 0.248, 0.249] }
o= W javalawliComponent java(4031 1,4032,1) INVOCATION handleEvent [0.218, 0.218, 0.218]
o W javalavtiContainer java(2010,1,2034,1) METHODidispatchEventimpl [0.249, 0.248, 0.248] public void handleEventiAWTEvent e)
o W javalawbiContainer java(2024,1,2026,1) INVOCATIONidispatchEventimpl [0.219, 0.219, 0.218] intid = e.getD(;
< W sunfawtmotifMComponentPeer java(3g4,1,411 1) METHOD/handleEvent [0.243, 0.243, 0.245] =
o W sunawbmolifMC omponentPeer javal395,1,396,1) INVOCATION paint [1.218, 0.218, 0.218] switchiic) { -
o« W sunfawliRepainttrea java(179,1,228,1) METHOD/paint [0.248, 0.248, 0.248] case PaintEvent PAINT.
o WP cunfawbiRepaintdrea java(205,1,228,1) LOOP [0.218, 0.218, 0.218] It Got native painting
o W= sunfawbRepainttrea javai216,1,217,1) INVOCATIONupdate Component [0.108, 0,195, 0.195] paintPending = false;
o W= Ternp1000 java METHOD drawStuff [0.244, 0.244, 0.244] JiFallthrough to next staternent
o W Temnp1 000, java INVOGATION drawe_stuff_to_screen [0.181, 0.181, 0.181] case PaintEvent UPDATE:
o wp- Temp1000 java METHOD draw_stuff_to_screen [0.22, 0.22, 0.22] If Skip all painting while layouting and all UPDATES
o W javalawtiComponent java(3803,1,3804,1) METHODUdispatchEvent [0.198, 0.198, 0.198] IFwihile waiting for native paint
o W [avarawliCornponent java(3803,1,3904,1) INVOCATION/dispatchEventimpl [0.151, 0151, 0.151] if flisLayouting && !paintPending) {
o W sun/awtRepaintireajavai239,1,240,1) METHOD/updateCornponent [0.15, 0.15, 0.15] paintarea.paintdarget false);
}
return;
case MouseEvent MOUSE_PRESSED:
if (target == e.getSource() && WilnputEventie).isConsumed && shou
] 1 [[
3841

Figure 49. Synchronization overhead found in Tempest 1000

9.4.2. One$DB

One$DB [103] is an open source version of Daffodil DB, acommercial Java database.
Our experiment with One$DB consisted in inserting several records in a simple set of
tables, the structure of which is shown in Figure 50. The experiment used four nodes,
one acting as a database server, and the other three as clients issuing concurrently
SQL statements to update the database (one hundred INSERT statements for each
table in the database for each client). We analyzed only the performance of the clients
and, as usual, Aksum was executed on node that was not used in the experiment.

During the analysis, the only problem found was an excessive garbage collection
overhead. Figure 51 shows that one of our classes, called Test, contains a method
caled update. This method, which extends from line 52 to 73 in the source file,
contains a loop, which contains an invocation to method update in other of our
classes, called Update. This invocation concentrates all garbage collection overhead.
Now, looking at class Update, we see that it has a method called update, which
invokes the method close in class DaffodilDBConnection, which belongs to the
One$DB API. Again, the garbage collection overhead is concentrated in this single
invocation. In the method close of class DaffodilDBConnection, we can see that the
garbage collection overhead is concentrated in the invocations to the method gc:
System.gc (line 382 in the source file) and Runtime.getRuntime().gc (line 383 in the
source file), one following the other. System.gc and Runtime.getRuntime().gc are two
equivalent ways of explicitly invoking the garbage collector.

Overhead due to garbage collection is inherent to Java, but garbage collection is
usually performed transparently and at steps; an explicit invocation causes a very
complex and expensive algorithm to run even when this is not needed, and causes the
application to pause while the collection is performed. Actualy, Sun is very clear
about explicit callsto the garbage collection: “Don't call System.gc(). The system will
make the determination of when it's appropriate to do garbage collection and
generally has the information necessary to do a much better job of initiating a garbage
collection” [45].

Since even one single explicit invocation is already objectionable, the use of two
consecutive invocations is unjustifiable, being so useful as ordering a list twice. In
fact, after having removed both invocations and recompiled the One$DB library, we
reduced the execution time of our test application in 83% (from 146 seconds to 25
seconds). Note that garbage collection still occurs, but the decision on when it is

148 9 Experiments

initiated is left entirely to the Java virtual machine, which, as our results show, can
really make a better decision.

CREATE TABLE Cust oner (
i d | NTEGER AUTO NCREMENT PRI MARY KEY,
name VARCHAR(20) NOT NULL,
address VARCHAR(20) NOT NULL,
del i very VARCHAR(20) NOT NULL

)

CREATE TABLE Product (
id | NTEGER AUTO NCREMENT PRI MARY KEY,
name VARCHAR(20) NOT NULL

)

CREATE TABLE Supply (
id | NTEGER AUTO NCREMENT PRI MARY KEY,
product | d | NTEGER REFERENCES Pr oduct (i d)

)

CREATE TABLE Product Order (
id | NTEGER AUTO NCREMENT PRI MARY KEY,
productld | NTEGER REFERENCES Product (id),
clientld | NTEGER REFERENCES Cust oner (i d),
orderDate DATE NOT NULL

)

Figure 50. SQL statementsdescribing the structure of thetablesused in the experiment;
AUTOINCREMENT isan extension in One$DB, meaning that the default value for thefield
comes from a sequence number generator kept by One$DB for the table

Critical Properties: Source Code:

. e 7o 1 B —— :
o- W Update javai32,1,48,1) METHOD/update [0.865, 0.865, 0.865) | connection = null:
o W Update javar47,1,48 1) INVOCATIONclnse [0.791, 0.781, 0.791] cosestue

o W infcoidaffodilidhjdociDafodiDBConnection java(367,1,386,1 METHOD/close [0.804,0.804, 0.804] | e

o W infeofdaffodifdbidbeiDatiodiDEConnection java(382,1,383,1) INVOCATIONIge [0.397, 0,387, 0.397) | Runtime. getRuntimeq.ged;
o W infcofdaffodiidbidbcDaiodiiDBConnection java(383,1,384,1) INVOCATIONIgC [0.39,0.39, 0.39] | \ cateh (DException g} {

o W Testjava(52,1,73,1) METHOD/update [0.714, 0.714,0.714] | throw & getSglException(getLocalsQ), =]
o W Test java(58,1,67,1) LOOP [0.488, 0.488, 0.485] | a

o W Toctjava(Ba,1,64,13 INVOCATION/update [0.24, 0.24, 0.24] (]] | lﬂ;lz .
:

Figure 51. Garbage collection overhead in One$DB

An excerpt of the analysis performed by the agent when analyzing One$DB (on the
nodes names mary, laura and grace) is shown below.

Executi ng <Request stack>
Requesti ng stacks
The stacks changed.
Reward: -1,
next state: SummaryState
#P=3, #cl asses=10, St ack size=(6.67+2.49), d asses=(1. 10+0. 30)

Executi ng <l nstrunment CodeRegi ons si ze=5, depth=4>

Preparing programtree of process 22050@ aur a

URIs: [
i n/co/daffodil/db/jdbc/ DBDat aSour ce. cl ass,
coni daf f odi | woods/ rmi / server/ Rm Server Server Si de_St ub. cl ass,
coni daf f odi | woods/ rmi / Rm Server. cl ass,
i n/fco/daffodil/db/rm /Rm Daffodil DBDri ver. cl ass,
MyDat aSour ce. cl ass, Test.class, Update.class]

9.4 Dynamic Analysis Using a Learning Agent

Preparing programtree of process 1799@r ace
Preparing programtree of process 5789@mary

22050@ aura: I nstrunenting
5789@mary: | nstrumenting
instrumented: |
probe pl: procedure or nethod get Connection in
in.co.daffodil.db.rni.Rm Daffodil DBDriver
uri =i n/co/daffodil/db/rm /Rm Daf fodi | DBDri ver.java
probe p2: procedure or nethod update in
Test
uri =Test.java

1.094% i nstrunent ed

Reward: -10, next state: RetirenmentState

Executi ng <RenoveProbes if inactivity 3 30 or probeEffect 3 0.55>
Reward: 0, next state: Repentance

Executi ng <Repent >
Eval uating probe utility
probe p4: procedure or nethod update in Update/uri=Update.java
i nvoked 27 tines/exec.tine=12538
properti es={ GCOver head: 4 i nstances}, 1 new property

Probe utility: 5/4-1=0
Reward: -1, next state: StabilityState,stability=2s

Executi ng <Request stack>
Requesti ng stacks
Steps without change in the stacks: 7
next state: SummaryState
#P=3, #cl asses=8, St ack si ze=(6.00+2.83), C asses=(1. 13+0. 33)

Executi ng <RenoveProbes if inactivity 3 18 or probeEffect 3 0.55>
Renmovi ng probe p3: procedure or method main in
Test/uri =Test. | aval/ never invoked/exec.tine=0/properties={}:
inactive for long tinme

149

10

Conclusion

In this dissertation, we addressed many open problems in the field of performance
analysis, we proposed novel solutions for these problems, and showed how our
proposals were successfully applied to severa practical problems and how they
eventually led to improvement in the performance of some applications. In this
section, we outline the main contributions of our work and possible directions for
future research.

10.1. Contributions

We tackled the problem of integration between instrumentation, monitoring and
performance analysis tools by proposing a rich interface for the communication
between tools (MIR) and a structural representation for applications written in Java,
Fortran, C or C++ (SIR) that capture most of the needs and requirements of
performance analysis as it is done today. Since SIR and MIR are language and
platform neutral, they reduce the dependency not only on a specific tool but aso on
particular programming environments or paradigms. Besides having shown several
use cases, we defined the rules that map program constructs to SIR elements, and
completely defined the grammar of SIR and MIR documents.

We showed data layouts optimized for use in performance anaysis and how they
can be accessed through Java interfaces and used to specify performance problemsin
an application. These interfaces, in conjunction with some utility classes, constitute
JavaPSL. We demonstrated how JavaPSL can be used to specify simple and complex
performance properties, ranging from overheads to inefficiency or load imbalance for
a set of heterogeneous nodes. Performance properties provide a normalized value,
called severity, which allows them to be compared to each other and, consequently,
directs the performance analyst’ s attention to the most severe problems.

We developed Twilight, a sophisticated instrumentation and monitoring tool that
uses the most recent advances in the Java platform to instrument and collect
performance data. Twilight was entirely written in Java, which means that, if you can
run your Java application on a specific platform, then you can also attach Twilight to
monitor the application. Twilight can parse and instrument both source and compiled
Java codes, being able to insert probes in and remove probes from an application in
execution. In particular, the bytecode parser we wrote for Twilight detects much of
the original structure in the source code: packages, classes, methods, method
invocations, synchronized blocks, and loops. Finally, Twilight can aso profile the
Java API and provide interesting metrics, like number of strings created or number of
bytes sent due to remote method invocations. Important as well is the fact that
Twilight has full support for SIR and MIR.

We created Aksum, a highly flexible and customizable performance analysis tool
that automatically conducts a set of experiments and detect the performance
bottlenecks in these experiments. The cause-consequence relationship between

152 10 Conclusion

overheads is used to perform a systematic performance analysis based on overhead
classification. Aksum is, to a high degree, independent of hardware and programming
paradigm: we showed the performance analysis of programs written in Fortran and
Java running on different platforms and with different operating systems.

By using the concept of severity, Aksum can interpret the performance data
collected, such that the output naturally guides the user to the most critical
performance properties detected. The customization possibilities that Aksum offers
virtually alow the creation of one's persona performance analysis tools. input
parameters and files that make up an application can be defined and combined;
performance properties can be freely added, configured or removed; the end of the
search process can be controlled; the output can be grouped, sorted, filtered, and
displayed in a multitude of ways. Internally, Aksum can be easily extended to support
other instrumentation tools besides those that are currently supported.

We defined numerically concepts like probe effect, inactivity of a probe, and
similarity between two stack traces, and then we proposed a way of formally
modeling performance analysis as a reinforcement learning problem by showing how
the ideas of performance analysis can be mapped to the states, actions, and rewards of
a reinforcement learning problem. We integrated our reinforcement learning agent
into Aksum, and showed how it can be used to efficiently search for performance
problems in an application. Through reinforcement learning, Aksum can adjust
automatically several parameters necessary in dynamic analysis, like time between
requests for stack traces, size of methods to instrument, and when instrumentation
must be removed. Furthermore, the design and implementation of performance
analysis technigues based on reinforcement learning is simplified, since there are
already many algorithms for solving the generic reinforcement learning problem.

10.2. FutureWork

Some issues that have been partially or not addressed at all in our work are possible
research directions for the future:

Tracefiles

Trace files constitute an import source of information about the behaviour of an
application; nevertheless, they were practically ignored during our work: no
performance property that uses trace information was defined, and traces were
only mentioned en passant in the chapters about Twilight and SIR/MIR. Trace
files also introduce more overhead than profiles; therefore it will be needed to
validate the strength of Aksum in the presence of trace files.

Security

We never addressed in practice the general problem of security during the
development of Aksum and Twilight. However, this is a matter of paramount
importance in any tool targeted at distributed systems.

Reuse of knowledge base

Our reinforcement learning agent never uses knowledge acquired in previous
executions, because we felt that applications behave so differently from each other
that it does not make sense to reuse, in the anaysis of one application, the
knowledge base generated during the analysis of other application. We need to
check how true this conjecture is and perhaps insert more variables in our model.
Moreover, we can study the influence of other learning techniques, like planning,
on our algorithm for reinforcement learning.

XML

An XML document is a well-formed data object according to the XML specification
[36]. An XML document contains at least one element, and each element may have a
set of attributes and may be nested within other elements. The (unique) element in the
XML document that is not nested is called the root element. For instance, in
<staff>

<enpl oyee matr="B001" name="John Doe" marriedTo="A003"/>

<enpl oyee matr="B002" nanme="John Smith"/>

<enpl oyee matr="A003" nanme="Jane Doe" narriedTo="B001"/>
</staff>

<staff> and <employee> are elements, while matr, name and marriedTo are attributes
of the element <employee>.

A DTD (Document Type Definition) is a set of markup declarations that defines the
grammar for a class of XML documents. An XML document that has an associated
DTD and complies with it is said to be valid. For example, the previous example is
valid according to the following DTD:

<! ELEMENT staff (enployee)+><!-- neaning: a staff element may contain -->

<l-- one or nore enployee elenments -->
<! ELEMENT enpl oyee EMPTY> <!-- neani ng: an enpl oyee el enent may not -->
<l-- contain any text or nested elenent -->
<! ATTLI ST enpl oyee <l-- meaning: an enployee elenent: -->
matr | D #REQUI RED <!-- nust have the attribute matr, a string -->
<I-- not used as the value of any other -->
<I-- IDattribute in the sane XM. docunent -->

name CDATA #REQUI RED <!-- nust have the attribute name, a string -->
marriedTo | DREF #INPLIEEb <!-- may have the attribute marri edTo, -->

<l-- a string with the sane value of -->
<l-- any other IDattribute in the -->
<!-- sane XML docunent -->

DTDs have alimited type capability and a different syntax from XML documents;
this motivated the development of XML schemas. An XML schema is itself an XML
document that describes the structure and constrains the contents of XML documents
by following the XML schema language specification [160]. The corresponding XML
schemafor the DTD above could be

<?xm version="1.0" encodi ng="UTF-8"?>
<xs:schema xm ns: xs="http://ww. w3. or g/ 2001/ XM_Schema" >
<l-- corresponds to ATTLI ST enployee ...in the DID -->
<xs: el enent name="enpl oyee" >
<xs: conpl exType>
<xs:attribute name="matr" type="xs:|1D' use="required"/>
<xs:attribute name="nanme" type="xs:string" use="required"/>
<xs:attribute name="marri edTo" type="xs:|DREF"/>
</ xs: conpl exType>
</ xs: el ement >

154 A XML

<l-- corresponds to ELEMENT staff (enployee)+ in the DID -->
<xs: el enent name="staff">
<xs: conpl exType>
<xs: sequence maxQccur s="unbounded" >
<xs: el enent ref="enpl oyee"/>
</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >
</ xs: schema>

General rules for translating DTDs to XML schemas can be found in [20]; in
addition, the type restrictions shown in Table 7 and Table 8 should be used when
converting the DTDs presented in Section 4 to XML schemas.

Element Attribute Typein the XML Schema
location startLine nonNegativel nteger
location startColumn | nonNegativel nteger
location endLine nonNegativel nteger
location endColumn | nonNegativel nteger
location uri anyURI

scheduling | chunk positivel nteger
variable dimensions | nonNegativel nteger
dimension | index positivel nteger
dimension | lowerBound | integer

dimension | upperBound | integer

Table 7. Typesto be used when convertingto XML Schemathe elementsand attributes of the
DTD describing the SIR grammar

Element Attribute Type in the XML Schema
thread omp-master | boolean

resource in anyURI

resource out anyURI

snapshot site boolean

snapshot node boolean

snapshot process boolean

snapshot thread boolean

snapshot freeze boolean

measuring delivery nonNegativel nteger
measuring destination | anyURI

measuring interva nonNegativel nteger
measuring duration nonNegativel nteger

measurement | value decimal
instrreq activate boolean
instrreq defaults boolean
instrreq, ctrlreq | flush boolean

155

Table 8. Typesto be used when converting to XML Schema the elements and attributes of the

DTD describing the MIR grammar

B

DTDsfor SIR and MIR

SIR.dtd

<! ELEMENT sir (variable*, (group | unit)+)>

<! ATTLI ST sir
| anguage (fortran | java | ¢ | cpp) #REQUI RED
nessagePassi ng (true| fal se) #l MPLI ED
sharedMenory (true|fal se) # MPLIED

>

<! ELEMENT group (inheritance*, |ocation?, variable*, (group|lunit)*)>
<! ATTLI ST group

id | D #REQU RED

type (nodule | package | class | interface) #REQU RED

name CDATA #| MPLI ED

i nternal CDATA #l MPLI ED
>

<! ELEMENT i nheritance EMPTY>
<! ATTLI ST i nheritance

id | DREF #| MPLI ED

nane CDATA #| MPLI ED
>

<!-- either id or nane nust be specified -->
< ELEMENT unit (alias?, location?, variable*, variabl eRef*,
(group | unit | codeRegion)*)>
<! ATTLI ST uni t
id | D #REQU RED
type (function | subroutine | program| nethod) #REQUI RED
name CDATA #l MPLI ED
argunent s | DREFS #| MPLI ED
virtual (true|false) #l MPLIED
i nternal CDATA #l MPLI ED
| anguage (fortran | java | ¢ | cpp) #l MPLI ED
i nstrumentabl e (true|fal se) # MPLIED
>

<! ELEMENT al i as (#PCDATA) >

<! ELEMENT codeRegi on (callee?, location?, variable*, variableRef*,
schedul i ng?, (expression | |oopControl)*,
(codeRegi on | group)*)>
<I ATTLI ST codeRegi on
id | D #REQUI RED
type CDATA #REQUI RED
critical Secti onName CDATA #| MPLI ED
noWait (true|fal se) #l MPLIED

>
<!-- The recommended code regi on type include
(bl ock| assign|loop|if|sw tch|where|ljunp|call]io|ltry|catch|finally]|

vector|forAll

158 B DTDsfor SIR and MIR

par al | el Regi on| paral | el Loop| paral | el Secti ons| parall el Single|

paral | el Wor kshare| paral | el Master| parallel Critical Section

paral | el Atom c| parall el Barrier|parallel Fl ush| parall el O dered)
-->

<! ELEMENT cal | ee EMPTY>
<! ATTLI ST cal |l ee
id | DREF #| MPLI ED
nane CDATA #| MPLI ED
>

<! ELEMENT expression ((codeRegi on | group)+)>

<! ELEMENT | oopControl (lower?, upper?, stride?)>

<! ELEMENT | ower (codeRegi on+)>

<! ELEMENT upper (codeRegi on+)>

<I ELEMENT stride (codeRegi on+)>

<! ELEMENT schedul i ng EMPTY>

<! ATTLI ST schedul i ng
type (static | dynamic | guided | runtine) #REQU RED
chunk CDATA #l| MPLI ED

>

<! ELEMENT | ocati on EMPTY>

<! ATTLI ST | ocati on
startLi ne CDATA #| WPLI ED
st art Col unm CDATA #| MPLI ED
endLi ne CDATA #| MPLI ED
endCol unmm CDATA #| MPLI ED
uri CDATA #| MPLI ED

>

<! ELEMENT vari abl e (location?, dinmension*)>
<I ATTLI ST vari abl e
id | D #REQUI RED
name CDATA #| MPLI ED
t ype CDATA #l| MPLI ED
di mensi ons CDATA #| MPLI ED
>
<! ELEMENT di nensi on EMPTY>
<! ATTLI ST di nensi on
i ndex CDATA #REQUI RED
upper Bound CDATA #REQUI RED
| ower Bound CDATA #REQUI RED
>
<! ELEMENT vari abl eRef EMPTY>
<! ATTLI ST vari abl eRef
targetld | DREF #REQUI RED
accessType (read|wite|readwite) #l MPLIED
>

MIR.dtd

<l-- COWN -->
<! ELEMENT site (node*|(process*, thread*))>
<I ATTLI ST site

i d CDATA #REQUI RED

nanme CDATA #| MPLI ED>

<! ELEMENT node (process*, thread*)>
<! ATTLI ST node
i d CDATA #REQUI RED

name CDATA #| MPLI ED>

<! ELEMENT process (thread*]|stack*)>
<I ATTLI ST process

i d CDATA #REQUI RED

name CDATA #l| MPLI ED>

<! ELEMENT thread (stack*)>
<! ATTLI ST t hread
i d CDATA #REQUI RED
name CDATA #| MPLI ED
onpMaster (true|fal se) #l MPLI ED>

<! ELEMENT stack (#PCDATA) >
<I-- SIR Request -->
<! ELEMENT sirreq (resource+)>

<! ELEMENT resource EMPTY>
<! ATTLI ST resource

i n CDATA #REQUI RED

out CDATA #| MPLI ED>

<!-- Snapshot Request -->

<! ELEMENT snapshotreq EMPTY>

<! ATTLI ST snapshotreq
site (true|fal se) #l MPLIED
node (true|fal se) #l MPLIED
process (true|fal se) #l MPLIED
thread (true|fal se) #l MPLIED
naned (true|fal se) #l MPLI ED
stack CDATA #| MPLI ED
freeze (true|fal se) #l MPLI ED>

<!-- Snapshot -->
<! ELEMENT snapshot (site*, node*, process*,
<!-- Instrunentation Request -->

<! ELEMENT instrreq (
codeRegi on*,
metric*,
event *,
measuri ng?,
site*, node*, process*, thread*)>
<I ATTLI ST instrreq
defaults (true|fal se) #l MPLI ED
activated (true|false) #l MPLIED
flush (true|fal se) #l MPLI ED>

<! ELEMENT codeRegi on EMPTY>
<I ATTLI ST codeRegi on

from CDATA #REQUI RED

t o CDATA #| MPLI ED>

<! ELEMENT netric EMPTY>
<! ATTLI ST netric
nane CDATA #REQUI RED>

t hr ead*) >

159

160 B DTDsfor SIR and MIR

<! ELEMENT event EMPTY>

<! ELEMENT neasuring (aggregate*)>
<I ATTLI ST neasuring
del i very CDATA #| MPLI ED
destinati on CDATA #l MPLI ED
i nterval CDATA #I MPLI ED
duration CDATA #| MPLI ED>

<! ELEMENT aggr egate EMPTY>

<! ATTLI ST aggregate
function (AVERAGE| MAXI MUM M NI MUM SUM VARI ANCE) #| MPLI ED
group CDATA #l MPLI ED>

<l-- group contains SITE NODE PROCESS THREAD METRIC -->

<!-- Instrunmentation Probe -->
<! ELEMENT probes (probe+)>
<! ELEMENT probe EMPTY>
<! ATTLI ST probe
i d CDATA #REQUI RED>

<!-- Value of a Measurenent -->

<! ELEMENT rneasur enent (mneasurenent)*>
<I ATTLI ST neasur enment

pr obe CDATA #| MPLI ED

siteld CDATA #1 MPLI ED

nodel d CDATA #1 MPLI ED

processld CDATA #| MPLI ED

t hreadl d CDATA #I MPLI ED

val ue CDATA #1 MPLI ED>
<!-- Control Request -->

<

ELEMENT ctrireq (

pr obe+,

metric*,

nmeasuri ng?,

site*, node*, process*, thread*)>

<I ATTLI ST ctrlreq

flush (true|fal se) #l MPLI ED

action (VALUE| ACTI VATE| DEACTI VATE| RESET| REMOVE) #REQUI RED>

<l-- Error -->

<! ELEMENT errors (error)+>
<! ELEMENT error (#PCDATA) >

<l-- Standard answer -->
<! ELEMENT ok EMPTY>

C

SIR Example

Figure 52 shows a Java program with aloop, a synchronized statement, and method
invocations. These are currently the constructs that Twilight can detect when
generating the SIR from a compiled Java program.

1 import java.util.List;

2

3 class Example {

4 private float addMoreTaxes(float f) {

5 return f * 1.05f;

6 }

7

8 final float sun(List<Float> vlist, TaxCal cul ator txc) {
9 float sum = 0;

10 synchroni zed (vlist) {

11 for(int i = vlist.size(); i >=0; i--) {
12 float f = vlist.get(i);

13 sum += addMor eTaxes(txc. addTaxes(f));
14 }

15 }

16 return sum

17 }

18}

Figure 52. Source code

1 <?xm version="1.0"?>

2 <sir | anguage="j ava">

3 <group type="cl ass" nanme="Exanple" id="_1">

4 <i nheritance id="_4"/>

5 <l ocation uri="Exanple.java"/>

6 <unit type="nethod" nanme="addMoreTaxes" id="_20"
argunent s="par0Q0" virtual ="fal se">

7 <variabl e id="par0Q0" type="float"/>

8 </unit>

9 <unit type="nethod" nanme="Exanple" id="_21">
10 <codeRegi on type="call" id="_22">

11 <callee id="_5"/>

12 <l ocation startLine="3"/>

13 </ codeRegi on>

14 </unit>

Figure 53. Beginning of class Example, methods addM oreTaxes and default constructor

Figure 53 shows the first lines of the SIR generated by Twilight, with line 3 starting
the definition of class Example. This class extends (line 4) the class with id _4 (class
java.lang.Object, shown in Figure 56, line 54) and it was compiled from the file
Examplejava (line 5). Lines 6 to 8 contains the definition of method addMoreTaxes,
because this method has only one multiplication and one assignment, the SIR does
show contain any code region. Note that, because the method is declared private, its

162 C SR Example

definition in the SIR has the attribute virtual set to false (see Section 4.1.3). Lines9to
14 show the definition of the default constructor of class Example. A Java compiler
must generate a default constructor if the source does not define any. The default
constructor just invokes the constructor of the superclass, whose id is _5. This
constructor is shown in Figure 56, line 55.

15 <unit type="nethod" nanme="suni id="_23"
argunent s="par1l par2">

16 <variable id="parl" type="java.util.List"/>

17 <variabl e id="par2" type="TaxCal cul ator"/>

18 <codeRegi on type="parallel Critical Section" id="_24">

19 <l ocation startLine="10"/>

20 <codeRegi on type="call" id="_25">

21 <cal l ee id="_10"/>

22 <l ocation startLine="11"/>

23 </ codeRegi on>

24 <codeRegi on type="I|oop" id="_26">

25 <l ocation startLine="11"/>

26 <codeRegi on type="call" id="_27">

27 <callee id="_11"/>

28 <l ocation startLine="12"/>

29 </ codeRegi on>

30 <codeRegi on type="call" id="_28">

31 <callee id="_17"/>

32 <l ocation startLine="12"/>

33 </ codeRegi on>

34 <codeRegi on type="call" id="_29">

35 <cal lee id="_19"/>

36 <l ocation startLine="13"/>

37 </ codeRegi on>

38 <codeRegi on type="call" id="_30">

39 <cal l ee id="_20"/>

40 <l ocation startLine="13"/>

41 </ codeRegi on>

42 </ codeRegi on>

43 </ codeRegi on>

44 </unit>

45 </ group>

Figure 54. Method add

Figure 54 shows the definition of method sum (lines 15 to 44). Fina methods are
virtual in Java, so the attribute virtual does not appear (thedefault value for this
attribute is true). The synchronized block that encloses most of the method’'s code
starts at line 18 and ends at line 43. Lines 20 to 23 show the invocation to method
with id _10. Thisis the method size of class java.util.List, shown in Figure 56, line
72. Note that, although this invocation belongs to the loop in the source code, the
algorithm we use for loop detection places the invocation outside the loop (because
the method is invoked only once). Lines 24 to 42 shows the definition of the loop
corresponding to the lines 11 to 14 in the source code. Lines 26 to 29 show the
invocation to method with id _11. This is the method get in class java.util.List (see
Figure 56, line 73). The value returned by the method get belongs to the class
java.lang.Float, and it must be converted to a value of primitive type float before it
can be assigned to the variable f (see line 12 in the source code). The code for the
conversion is automatically generated by the compiler, in a process caled automatic
unboxing: an invocation to the method floatValue of class java.lang.Float. The
invocation is shown from line 30 to line 33, and the definition of method floatValue is

163

shown at line 61 of Figure 56. Lines 34 to 37 contain the invocation to method
addTaxes of class TaxCalculator (shown in Figure 55). Finally, lines 38 to 41 contain
the invocation to method addMoreTaxes.

46 <group type="cl ass" name="TaxCal cul ator" id="_18">

47 <i nheritance id="_4"/>

48 <unit type="nethod" name="addTaxes" id="_19"
argunent s="par4" instrunmentabl e="fal se">

49 <variabl e id="par4" type="float"/>

50 </unit>

51 </ group>

Figure 55. Class TaxCalculator

52 <group type="package" nane="java" id="_2">
53 <group type="package" nanme="lang" id="_3">
54 <group type="cl ass" nane="Qbject" id="_4">
55 <unit type="nethod" nanme="Qbject" id="_5"
i nstrument abl e="fal se"/>
56 </ group>
57 <group type="interface" name="Iterable" id="_9"/>
58 <group type="cl ass" nane="Float" id="_12">
59 <i nheritance id="_13"/>
60 <i nheritance id="_16"/>
61 <unit type="nethod" nane="fl oat Val ue" id="_17"
i nstrunent abl e="fal se"/>
62 </ group>
63 <group type="cl ass" name="Nunmber" id="_13">
64 <i nheritance id="_4"/>
65 <i nheritance id="_15"/>
66 </ group>
67 <group type="interface" name="Conparable" id="_16"/>
68 </ gr oup>
69 <group type="package" name="util" id="_6">
70 <group type="interface" name="List" id="_7">
71 <i nheritance id="_8"/>
72 <unit type="nethod" nane="size" id="_10"
i nstrument abl e="fal se"/>
73 <unit type="nethod" name="get" id="_11"
ar gunent s="par 3" instrumentabl e="fal se">
74 <variabl e id="par3" type="int"/>
75 </unit>
76 </ group>
77 <group type="interface" name="Col |l ection" id="_8">
78 <i nheritance id="_9"/>
79 </ group>
80 </ gr oup>
81 <group type="package" nanme="io" id="_14">
82 <group type="interface" name="Serializable" id="_15"/>
83 </ group>
84 </ group>
85 </sir>

Figure 56. Classes of the Java API directly or indirectly used in the class Example

Figure 55 contains the definition of class TaxCalculator and one of its methods,
addTaxes. The class was inserted in the SIR just to resolve the reference to the
method addTaxes in the method add, shown in the previous figure. For this reason,
other methods that the class might have, as well as the code of method addTaxes, are
not inserted. Note also that the method addTaxes is marked as non-instrumentabl e.

164 C SR Example

Finally, Figure 56 shows the classes and methods of the Java API that were used in
the class Example. Some of these definitions—class java.lang.Number (line 63) and -
interfaces java.lang.lterable (line 57), java.util.Comparable (line 67),
java.util.Collection (line 77), and java.io.Serializable (line 81)—were not used directly
in class Example, but for the classes in the Java APl themselves. For example, the
class java.lang.Float extends the class java.lang.Number, which implements the
interface java.io.Serializable.

D

A Framework for Solving Reinforcement L earning Problems

We developed a generic framework in Java for solving reinforcement learning
problems. Figure 57 shows the classes that compose this framework with their
respective methods.

QLearningAgent(in e : Environment)
solveProblem()

actsUpon
Agent K>
discountRate : float 1 1
Agent(in e : Environment)
loadKnowledge() «interface»
persistknowledge() Environment
dumpKnowledge() reset()
getActionValue(in s : State, in a : Action) : float getLastReward() : float
getSimilarStates(in s : State, in set : Set<State>) : Iterable<State>| getCurrentState() : State
getDefaultActionValue(in s : State, in a : Action) : float isCurrentStateTerminal() : boolean
setActionValue(in s : State, in a : Action, in v : float) getActions(in s : State) : Action[]
maxActionValue(in s : State) : float getTimeStep() : int
solveProblem() actionPerformed(in a : Action)
T
O !
ZF 1 | follows perceives 1 \
1
‘affectedBy
1
1
1
SarsaAgent 1 ||
alpha : float Vi
SarsaAgent(in e : Environment) «interface: «nterface> K-
solveProblem() Siate Action
7 1
] 1
- [findsBest
QLearningAgent ! i
alpha : float || I'
1
|
1

«interface»
Policy
1 nextAction(in s : State, in g : Agent) : Action

!

EGreedy Softmax
epsilon : float temperature : float
nextAction(in s : State, in g : Agent) : Action nextAction(in s : State, in g : Agent) : Action|

Figure57. Framework for solving reinforcement problems
The interface Environment characterizes the reinforcement learning problem. It has
the following methods:

void reset()
Puts the environment in an initial state.

166 D A Framework for Solving Reinforcement Learning Problems

float getLastReward()

Returns the reward obtained from the last execution of an action on the
environment.

Sate getCurrentState()

Returns the current state of the environment.

boolean isCurrentStateTerminal ()

Veifiesif the current state of the environment isaterminal state.
Action[] getActions(State s)

Returns all possible actions for the given state.

int getTimeStep()

Returns the number of actions executed in the environment.

void actionPerformed(Action a)

Informs the environment that the agent decided for the given action.

Agent is an abstract class that acts upon an Environment, which is given as
argument to the Agent’s constructor. One method in the Agent is abstract and must be
defined in the subclasses: solveProblem(), which solves the reinforcement learning
problem using a particular algorithm. Besides solveProblem() and the get and set
methods used to obtain and define the policy and the discount rate, the other methods
of an Agent are:

Agent(Environment €) throws java.io.l OException

Creates an agent, initializing the environment where the agent operates and
loading a knowledge base, if there is one. Throws an 10Exception if there is
knowledge base but it cannot be |oaded.

void loadKnowledge() throws java.io.lOException

Reads the file containing the knowledge base and loads the knowledge found
there. The value of the property learning.agent.kb is used as the name of the file;
if the property is undefined, the default name for the knowledge base is used:
learning.kb. Throws an 10Exception if an I/O error occurs when loading the
knowledge base.

void persistknowledge() throws java.io.l OException

Writes the knowledge of the agent to a file. The value of the property
learning.agent.kb is used as the name of the file; if the property is undefined, the
default name is used: learning.kb. Throws an IOException if an 1/O error occurs
when writing the knowledge base.

void dumpKnowledge()

Dumps the knowledge of the agent to the standard output.

float getActionValue(State s, Action a)

Returns the action-value of s and a for policy p, which is the expected return
starting from s, taking the action a, and then following policy p, where p is the
policy used in the agent. There are two special casesto consider: 1) the state s has
already been seen before, but the action a has never been performed when at state
s; and 2) the state s has never been seen before, but the agent has some knowledge
about similar states. For the first case, the value returned will be the same value
returned by the method getDefaultActionValue(s, a). For the second case, the
agent examines sequentially the similar states {s;, S, ..., sn} returned by
getSmilarSates(s, T), where T is the set of all states the agent has some
knowledge about, and returns the first expected reward found. If no reward is

167

found (because there is no state similar to s, or because the agent has never
performed the action a for any of the similar states), the value returned is also be
the same value returned by the method getDefaultActionValue(s, a).

Iterable< Sate> getSmilar Sates(Sate s, Set< Sate> set)

Returns states from a set that are similar to a given state s. The default
implementation of this method simply returns an empty Iterable. Subclasses
should override this method if possible.

float getDefaultActionValue(Sate s, Action a)

Returns the initial value for an action if executed when the environment is in the
given state. The default implementation of this method returns O.

float maxActionValue(Sate s)

Returns the value for the action with the best value among all of the possible
actions for the given state s.

void setActionValue(State s, Action a, float v)

Defines as v the value of action a if executed when the environment is at the given
state s.

The classes SarsaAgent and QLearningAgent extend the basic Agent class by
implementing the method solveProblem using respectively the algorithms Sarsa [120,
143] and Q-learning [155]. Both algorithms depend on alpha, a constant step-size
parameter.

The interface Policy has only one method, nextAction, which determines the best
action the Agent g should execute for state s. There are two concrete implementations
for this interface: EGreedy and Softmax. Given the possible actions ay, ay, ..., a, for
state s:

EGreedy chooses most of the time the action with the best action value, that is,
EGreedy selects an action ac such that g.getActionValue(sas) 3
g.getActionValue(s,a), " i, L£i £n, but with probability e chooses randomly

some other possible action.
g.getActionValue(s,a) /t

Softmax chooses an action a for state s with probability ——

i=1

eg.getActionVaIue(s,ai)/t

wheret isapositive parameter called temperature.

E

The Format of Class Files

In this appendix, we describe the binary representation accepted by the Java virtual
machine. This representation is hardware and operating system independent, and is
called class file because it is normally (but not necessarily) stored in a file with the
extension .class. It is fundamental to understand this representation in order to
manipulate it, as Twilight (described in Chapter 6) does.

E.1. Definitions

The Java virtual machine specification [75, 84] defines areas whose function is
common to all virtual machines, although their format depends on specific virtual
machine implementations. These areas are listed below.

heap: area from which memory for objectsis allocated. The heap is shared among
all threads, being created when the virtual machineisinitialized.

method area: area where data about loaded classes and interfaces are stored. Like
the heap, it is shared among all threads.

runtime constant pool: stores symbols from the constant pool of a class (see
section E.3); there is one runtime constant pool for each class or interface loaded.
virtual machine stack: area where frames (defined below) are stored. Each thread
has a stack, created when the thread is started.

native stacks: area for the stacks of native methods

frame: area created when a method is invoked, and destroyed when the invocation
finishes, whether normally or because an exception is thrown. The memory for the
frame is allocated from the virtua machine stack of the thread that invoked the
method. A frame is composed of a local variable table, an operand stack (both
described below) and a reference to the runtime constant pool of the class where
the invoked method was declared.

local variable table: storeslocal variables, including the arguments received in the
method invocation.

operand stacks: store partia results computed by a method, as well as parameters
for methods to be invoked and the return values of these methods.

pc register: program counter register, which stores the address of the instruction
being executed. Thereis one pc register per thread.

The virtual machine has support for several primitive types (like char, boolean, and
float), but only the following types are allowed for variables in the local variable table
and for values in the operand stack: integer, float, long, double, object reference (a
reference to an object), and return address (the address of an instruction, see section
E.7). The primitive types boolean, byte, char, short, and int are always represented as
integer values in the operand stack and in the local variable table. Variables of type
long and double occupies two positions in the local variable table, while other
variable types occupies only one position. Similarly, values of type long and double

170 E The Format of Class Files

occupies two positions in the operand stack, while other value types occupy only one
position.

E.2. Class File Format

A classfileis a sequence of bytes that defines the characteristics and the behavior of a
class. Single values with 2, 4, and 8 bytes are built by concatenating consecutive
bytes, always in big-endian order (higher-order bytes first). The description of the
classfile format below will use a notation similar to the C language. Moreover, it will
use matrix notation to represent the severa tables a class file may have, but because
the elements in these tables have variable size, they cannot be seen exactly as matrices
in the C language. The notation u2, u4, and u8 will be used to represent unsigned
values of, respectively, 2, 4, and 8 bytes.
class file {

u4 magi c_nunber;

u2 mnor_version;

u2 maj or_version;

u2 constant_count _plus_1;

constant constant_tabl e[constant_count_plus_1 — 1];

u2 access_fl ags;

u2 this_class_index;

u2 super_cl ass_index;

u2 interface_count;

u2 interface_table[interfaces_count];

u2 field_count;

field field table[field count]

u2 met hod_count;

nmet hod nmet hod_t abl e[met hod_count]

u2 attribute_count;

attribute attribute table[attribute_count];

magi ¢_nunber :

The first four bytes of class file represent a “magic number,” which must always
be OxCAFEBABE.

nmi nor _version, nmjor_version:

Represent the version of the class file format used. A Java virtua machine may
accept or refuse a given version.

const ant _count _plus_1:

Contains the number of constants in the constant pool plus 1.

const ant _pool :

A table of structures indexed from 1 to constant_count_1 — 1, which contains
constants and symbols the class file refers to, like methods and fields. The format
of thistable is described in section E.3.

access_fl ags:

A mask of flags containing properties of the class or interface the file refers to.
Figure 58 describes the meaning of the bits in this mask when they are on.
this_class index:

Index, in the constant pool, of the constant that represents the class or interface
defined by the classfile.

superclass_index:

If the class file represents the class j ava. | ang. Obj ect, super cl ass_i ndex iS 0.
If the class file represents any other class, super cl ass_i ndex must be the index,

171

in the constant pool, of the constant representing the superclass of the class
defined by the class file; otherwise, it must be the index of the constant
representing the classj ava. | ang. Obj ect in the constant pool.

— theclass or interfaceis public

» the class was declared fina

» must be always on; used for
compatibility questions

» the classfile represents an
interface

» the classfile represents an
abstract class or interface

» the class was generated by the
compiler (synthetic)

» the classis an annotation type

» the classisan enum type

Figure58. Mask of flagsfor a class

i nterface count:

Contains the number of entriesin the interface table.

interface_table:

Table containing indices, in the constant pool, of entries representing the
interfaces implemented or extended by the class or interface represented by the
classfile. Itisindexed from Otoi nt erface_count —1.

field count:

Contains the number of entriesin the field table.

field table:

Table, indexed from O to fiel d_count — 1, containing information about the
fields declared in the class or interface represented by the class file (inherited
fields are not represented). Section O describes thistable in details.

met hod_count :

Contains the number of entriesin the method table.

met hod_t abl e:

Table, indexed from O to met hod_count — 1, containing information about the
methods declared in the class or interface represented by the class file. Inherited
methods are not represented in this table, described in details in Section O.
attribute_count:

Contains the number of entriesin the attribute table.

attribute_table:

Table, indexed from O to attribute_count — 1, containing extra information
about the class or interface the class file represents. Attribute tables are described
in Section E.5.

E.3. The Constant Pool

The constant pool is a table where each entry represents some symbol or constant the
class file refers to at some moment. For instance, if a code of a method contains an
invocation like:

172 E The Format of Class Files

Systemout.println(3.9);

acompiler must generate, in the constant pool of the classfile, entries representing the
class system the static field out (name and type), the method printin (name,
parameter type, and return type) and the constant 3. 9.

Class names are represented in the constant pool using its fully qualified form, that
IS, containing the name of the package the class belongs to. Furthermore, for historical
reasons, Slashes, not dots, are used to separate the names of packages and
subpackages. Consequently, the name of the class [em]java.lang.Object, for example,
is represented as [em]java/lang/Object.

A field typeis represented by a string of characters called field descriptor, encoded
according to the rules shown in Table 9.

Sring Type represented
byte
char
double
float
int
long
&lass namefi | reference
short
boolean
reference to amatrix dimension

o —|molo|m

— N

Table 9. Coding for types; &lass namefiis a completely qualified class name

A field of type doubl e, for example has its type represented by the letter D, while a
field of type double[][] has its type represented by [[D, and a field of type
java.util.List hasits type represented by Lj ava/ | ang/ Li st ;.

Similarly, a method descriptor encodes the type of arguments and return value of a
method. It is composed of zero or more characters, between parenthesis, representing
the argument types, followed by a string of characters representing the type of the
return value. The codes used for arguments and the return value are the same as the
codes used for fields, with only one difference: v is used to represent the return value
of avoid method. For example, the descriptor of the method

voi d foo(long,java. awm . Conponent[],int)
iS(J[Lj ava/ awt / Conponent ; 1) V.

The structure of each entry in the constant pool is different, being determined by the
first byte. There are currently eleven different structures:

Constant _Utf8 {
ul tag;
u2 | ength;
ul[l ength] string;
}
t ag, the first byte in the structure, must be 1. The following two bytes contain the

size of the following byte array, and the remaining bytes encode a string of characters

173

using the format known as Utf8 [148], but dlightly modified (the null byte is
represented using 2 bytes, and any character is encoded using at most 3 bytes).

Const ant _I nteger {
ul tag;
ud val ue;

}
t ag must be 3. The following four bytes represent a 32-bit integer constant in big-
endian format.

Const ant _Fl oat {
ul tag;
ud val ue;
}
tag must be 4. The following four bytes represent a float constant encoded using

the |EEE 754 floating point single format [64].

Constant _Long {
ul tag;
u4 hi gh_order_bytes;
ud4 | ow_order _bytes;
}
tag must be 5. The remaining eight bytes represent a 64-bit long constant in big-
endian format. A constant of type long is considered as occupying two positions in the
constant pool, that is, the existence of a constant of type long at position n implies the
existence of position n+l, even though there may be nowhere in the class file a
reference to this extra entry. This is regarded as a design mistake of the Java virtua
machine.

Const ant _Doubl e {
ul tag;
u4 hi gh_order_bytes;
ud | ow order_bytes;
}
tag must be 6. The remaining eight bytes represent a double constant encoded
using the IEEE 754 floating-point double format [64]. Similar to long constants,
double constants also “fill” two entries in the constant pool.

The remaining structures contain only indices to other entriesin the constant pool:

Constant _C ass {
ul tag;
u2 class_nane_i ndex;

}
Represents a class or interface. tag must be 7, and the index refers to a

Const ant _UTF8 with the fully qualified name of the class or interface represented.

Constant _String {
ul tag;
u2 val ue_i ndex;
}
Represents a string constant. tag must be 8, and the index refers to a
Constant UTF8 contai ning the value of the string.

Const ant _Nanme_and_t ype {
ul tag;
u2 nane_i ndex;
u2 descri ptor_index;

}

174 E The Format of Class Files

Represents a field or method without specifying its class. tag must be 12;
name_i ndex refers to the entry in the constant pool with a Constante_Utf8
containing the name of the field or method, and descr i pt or _i ndex refersto the entry
in the constant pool with a Constant _Utf8 containing the field type or method
descriptor.

Constant _Field {
ul tag;
u2 class_or_interface_index;
ud nane_and_type_index;

}

Represents a field in some class or interface tag must be 9
class_or_interface_index refers to the entry in the table with the
Const ant _Cl ass representing the class or interface where the field was declared;
name_and_t ype_i ndex refers to the entry with the Const ant _Name_and_t ype that
represents the name and type of the field.

Const ant _Met hod {
ul tag;
u2 cl ass_index;
ud4 nane_and_t ype_i ndex;
}
Represents a class method, being similar to a Const ant _Fi el d (except for the fact

that t ag must be 10).

Constant _Interface_method {
ul tag;
u2 interface_index;
ud4 nane_and_type_i ndex;
}
Represents an interface method, being similar to a Constant _Field and to a

Const ant _Met hod (except for the fact that t ag must be 11).

E.4. Fieldsand Methods

A class file contains a table describing the fields declared in the class or interface
represented, and another table describing the declared methods. Any of these tables
may have size 0. The structures:

field {
ul access fl ags;
u2 nane_i ndex;
u2 descri ptor_index;
u2 attribute_count;
attribute attribute table[attribute count];

}
and

met hod {
ul access_fl ags;
u2 nane_i ndex;
u2 descri ptor_index;
u2 attribute_count;
attribute attribute table[attribute_count];

}
make up the field table and the method table, respectively. The meaning of each field

issimilar for both structures.

access_fl ags:

175

A mask of flags containing properties of the class or interface the file refers to. The
meaning of the bitsin this mask (when they are on) is shown in Figure 59 (for fields)
and Figure 60 (for methods).

nane_i ndex:
Index, in the constant pool, of the Constant _Ut f 8 with the name of the field or
method.

descri pt or _i ndex:
Index, in the constant pool, of the Const ant _Name_and_t ype with the field type or
method descriptor.

attri bute_count:
Contains the number of entriesin the attribute table.

attribute_table:
Table, indexed fromOtoattri bute_count — 1, containing extra information about
the method or field represented. Attribute tables are described in Section E.5.

— declared public

declared private

declared protected

declared static

declared fina

declared volatile

declared transient

synthetic (not present in the
source code)

enum element

Figure 59. Mask of flagsfor fields

— declared public

declared private

declared protected

declared static

declared fina

declared synchronized

bridge method, generated by the
compiler

declared with a variable number
of arguments

declared native

declared abstract

declared strictpfp

synthetic method, not present in
the source code

Figure 60. Mask of flagsfor methods

il

Ninsnn

176 E The Format of Class Files

E.5. Attributes

Attributes provide extra information about a class, field, method or another attribute.
The generic structure of each attribute is:

attribute {
u2 nane_i ndex;
ud attribute_ | ength;
ul info[attribute_ | ength];

}
where

name_i ndex IS an index, in the constant pool, of a Constant_Utf8 containing the
name of the attribute;

attribute_| engt h isthe length of the attribute, excluding the first 6 bytes; and
i nf o: contains more information about the attribute.

Currently, eleven attributes are defined as part of the class file specification: Code,
ConstantValue, Deprecated, EnclosingMethod, Exceptions, InnerClasses,
LineNumberTable, LocalVariableTable, Sgnature, Synthetic, and SourceFile, of
which three must be recognized by any virtual machine (Code, ConstantValue, and
Exceptions), three must be recognized in order to implement the Java libraries
(InnerClasses, EnclosingMethod, and Synthetic) and one must be recognized by
virtual machines that accept class files whose maor version is 49 or above
(Sgnature). However, nothing prevents a compiler from emitting an attribute that
adds functionality to a class, and nothing prevents a particular Java virtua machine
from utilizing this attribute. On the other hand, a class or interface must not have its
semantics changed when used in other Java virtual machine that does not recognize
the attribute, nor can a Java virtua machine reject a class file that does not contain
some attribute not defined in the class file specification.

Code {
u2 nane_i ndex;
ud attribute | ength;
u2 max_stack;
u2 max_| ocal s;
u4 code_l engt h;
ul code[code_Il engt h];
u2 handl er _tabl e_| engt h;
{
u2 start_pc;
u2 end_pc;
u2 handl er _pc;
u2 catch_type
} handl er _tabl e[handl er _table | ength];
u2 attribute count;
attribute attribute table[attribute_count];

}
Contains the code of a method that is neither native nor abstract.

- nane_i ndex isthe entry of a Const ant _Ut f 8 in the constant pool representing
the word “Code.”

- attribute_| engt histhesizeof the attribute, excluding the initial six bytes.

- max_stack is the maximum size the operand stack (see Section E.1) may
reach during the execution of the code.

- max_| ocal s providesthe size of the local variable table (see Section E.1).

177

code_l engt h isthe size of the code array.

code contains bytes representing Java virtual machine instructions. The
position of an instruction in this array is called instruction’s offset but, since
many instructions accept operands (and consequently do not occupy exactly
one byte), the offset of the n-th instruction will seldom be n. The execution of a
method always starts at offset O (the offset of the first instruction).

handl er _t abl e_| engt h contains the number of entriesin handl er _t abl e.
handl er _tabl e is a table where each entry describes how the Java virtua
machine must handle exceptions thrown during the execution of instructionsin
the code array. If, during the execution of instruction with offset off, an
exception is thrown, then the handl er _t abl e of the code is searched for the
first entry (start _pc, end_pc, handl er _pc, cat ch_t ype) such that start_pc
£ off < end_pc and such that catch_type is either O or the index, in the
constant pool, of a Constant _Cl ass representing the class of the exception
thrown or one of its superclasses. If such entry is found, then the execution
branchesto handl er _pc.

attribute_count containsthe number of entriesintheattri bute_tabl e.
attribute_table contains attributes providing extra information about the
code, like the attributes LineNumberTable and LocalVariableTable defined
below.

Const ant Val ue {

}

u2 nane_i ndex;
ud attribute_ | ength;
u2 constant_val ue_i ndex;

Represents the value of a constant field, that is, afield declared as static and final.

nane_i ndex isthe entry of a Const ant _Ut f 8 in the constant pool representing
the word “ConstantValue.”

attribute_ | engthis2.

constant _value_index is the entry of a Constant_Double,
Const ant _I nt eger, Constant _Fl oat, Constant _Long, Or Constant _String
in the constant pool representing the constant value.

Depr ecat ed {

}

u2 nane_i ndex;
ud attribute_ | ength;

Marks a class, method or field as deprecated.

nane_i ndex isthe entry of a Const ant _Ut f 8 in the constant pool representing
the word “ Deprecated.”
attribute | engthisO.

Encl osi ngMet hod {

}

u2 nane_i ndex;

ud attribute | ength;
u2 cl ass_i ndex;

u2 net hod_i ndex;

178

E The Format of Class Files

Provides nesting information about the class represented by the classfileif the class
is either local (that is, it has a name and is immediately enclosed by a method) or
anonymous. Call this class C.

name_i ndex IS the entry of a Const ant _Ut f 8 in the constant pool representing
the word “EnclosingM ethod.”

attribute_ | engthis4.

class_index is the entry of a Constant_Cl ass in the constant pool
representing the innermost class that encloses the declaration of C.

met hod_i ndex isthe entry of a Const ant _Nanme_and_t ype in the constant pool
representing the method where C is immediately enclosed. The method must
belong to the class referenced by cl ass_i ndex. If C is not immediately
enclosed in any method, then met hod_i ndex isO.

Exceptions {

}

u2 nane_i ndex;

ud attribute_ | ength;

u2 exception_count;

u2 exception_tabl e[exception_count];

Describes the exceptions a method may throw.

name_i ndex IS the entry of a Const ant _Ut f 8 in the constant pool representing
the word “Exceptions.”

attribute lengthis2+ 2" exception_count.

excepti on_count containsthe number of entriesin excepti on_t abl e.
exception_table contains indices of Constant _Class entries in the
constant pool representing the types of classes the method is declared to throw.

I nner C asses {

}

u2 nane_i ndex;
ud4 attribute_| ength;
u2 cl ass_count;
{
u2 inner_class_info_index;
u2 outer_class_info_index;
u2 inner_nane_i ndex;
u2 inner_class_access_fl ags;
} class_table[class_count];

Provides information about nested classes or interfaces. This attribute must be
present in the attribute table of the nested class (or interface) as well asin the attribute
table of the enclosing class (or interface). Moreover, there must be an entry in the
cl ass_t abl e of this attribute for each nested class represented by a Const ant _d ass
entry in the constant pool

name_i ndex isthe entry of a Const ant _Ut f 8 in the constant pool representing
the word “InnerClasses.”
attribute lengthis2+ 8 class_count.
cl ass_count containsthe number of entriesincl ass_t abl e.
cl ass_t abl e provides detailed information about enclosing or nested classes.
Each entry in the table has the following information:
- inner_class_info_index istheentry of aConst ant _d ass inthe
constant pool representing some nested class C.

179

- outer_class_info_index istheentry of aConst ant _d ass inthe
constant pool representing the class immediately enclosing the declaration
of C. If Cisalocal class, thenouter _cl ass_info_i ndex iSO

- inner_name_i ndex isthe entry of aConst ant _Ut f 8 in the constant pool
containing the name with which C was declared. If C is an anonymous class,
theni nner _nane_i ndex iSO.

- inner_name_access_fl ags isamask of flags describing properties of C.

‘ ‘ ‘ ri g‘ure‘z 61‘ d(—“,-scr‘ibﬁs t?e r‘nez‘anl Tg of t‘he‘bits in this mask when they are on.
|

— declared (or implicitly) public
declared private
declared protected
declared (or implicitly) static
declared final
declared interface
declared abstract
synthetic (not present in the
source code)
The classis an annotation type
The classis an enum type

Figure 61. Mask of flagsfor nested classes

IRy

Li neNunber Tabl e {
u2 nane_i ndex;
ud attribute_ | ength;
u2 |ine_nunber_tabl e_| ength;

{

u2 start_pc;
u2 |ine_nunber;
} line_nunber_table[line_nunber_table_ |ength];
}
Contains the correspondence between offsets of instructions in the compiled code
(see the attribute Code above) and the line numbers of the source code from which the

class represented by the class file was compiled.

- nane_i ndex isthe entry of a Const ant _Ut f 8 in the constant pool representing
the word “LineNumberTable.”

- attribute lengthis2+4" |ine_nunber_table_|length.

- line_number table Iength contains the number of entries in
i ne_nunber _tabl e.

- line_nunber _tabl e isatable where each entry indicates the offset of the first
instruction (start_pc) associated to a line number (Iine_nunber) in the
source code.

Local Vari abl eTabl e {
u2 nane_i ndex;
ud attribute | ength;
u2 | ocal _variabl e_table_I| ength;
{
u2 start_pc;
u2 | ength;
u2 nane_i ndex;
u2 descri ptor_i ndex;

180 E The Format of Class Files

u2 index;
} local variable_table[local _variable_table_length];

}
Contains information about local variablesin the code of a method (see the attribute

Code above)

- name_i ndex isthe entry of a Const ant _Ut f 8 in the constant pool representing
theword “LocalVariableTable.”

- attribute lengthis2+ 10" |ocal variabl e_tabl e_| ength.

- local variable table |length contans the number of entries in
| ocal _variabl e_table.

- local _variable_table is a table where each entry provides information
about one local variable. The name and type of the local variable are given by
the Constant_Utf8 entries in the constant pool a nanme_index and
descri pt or _i ndex respectively. The variable is active in the offset range
[start_pc, start_pc + | engt h), and its index in the local variable table (see
Section E.1) isgiven by i ndex.

Si gnature {
u2 nane_i ndex;
ud attribute_ | ength;
u2 signature_index;

}
Contains the signature of a class, method, or field. A signature encodes type

information which is not part of the Java virtual machine type system but is used by
compilers, debuggers, and the reflection API, like generics and parameterized
methods.

- name_i ndex isthe entry of a Const ant _Ut f 8 in the constant pool representing
the word “ Signature.”

- attribute_lengthis2.

- signature_index is the entry of a Constant_Utf8 in the constant pool
representing a method, field or class signature.

Synt hetic {
u2 nane_i ndex;
ud attribute_ | ength;
}
Marks a class, method or field as synthetic, that is, as not present in the source code.
Alternatively, the class, method or field may have a bit in its access_fl ags (see
Sections E.2 and E.4).

- name_i ndex isthe entry of a Const ant _Ut f 8 in the constant pool representing
the word “ Synthetic.”
- attribute_lengthisO.

SourceFile {
u2 nane_i ndex;
ud4 attribute_| ength;
u2 source_file_index;

}
Provides the name of the source from which a class file was compiled.

181

- nane_i ndex isthe entry of a Const ant _Ut f 8 in the constant pool representing
the word “ SourceFile.”

- attribute lengthis2.

- source_file_index is the entry of a Constant _Utf8 in the constant pool
representing a name of the sourcefile.

E.6. Valid Class Files

A classfile must satisfy severa rulesin order to be considered valid. Theserules are
verified by the Java virtual machine:
when the class or interface is loaded, that is, when its binary representation is
found and an object java.lang.Class is built, representing the class,
when the class or interface is linked, that is, when its binary representation,
already loaded, is combined with the Java virtua machine so that it can be
executed; and
when atype, method or instruction is referenced for the first time.

The restrictions verified at each moment are distinct and not checked twice. For
example, the Java virtual machine verifies only once, when the classis linked, that the
name of each field is valid or that no local variable is read before it isinitialized; it is
also verified only once, the first time method X invokes method Y, if method X does
have the permission to invoke method Y .

An error, that is, an object belonging to the class java.lang.Error, is thrown if the
verification fails.

E.7. Determining Successor s and Predecessor s

Algorithms for data-flow analysis, among which the one for detecting natural loops
mentioned in Section 6.2.2 and described in Section E.8, need to know the possible
successors and predecessors of each instruction in the method's code. Some
instructions may have only the following instruction as successor, like the instruction
IADD, which pops two integer values off the operand stack, adds the values, and push
the result back onto the operand stack. Other instructions have no successor at al, like
RETURN, which finishes the method execution. A small set of instructions, called
conditional branches, may have two successor instructions: the following instruction
and the instruction at the given offset, like IFEQ &offsetfi which pops an integer value
off the operand stack and jumps to the instruction at &offsetfionly if the popped value
is 0. Oneinstruction, GOTO, always cause the execution to branch to the given offset,
so the successor of this instructions will be the instruction at the given offset (a
GOTO is caled an unconditional branch). Finally, the instructions TABLESWITCH
and LOOKUPSWITCH, may have severa offsets to which the execution may branch;
the instructions at these offsets are the possible successors.

One must deal with exception handlers (see the attribute Code in Section E.5) when
determining successors. Recall that an exception handler is a quadruple (start_pc,
end_pc, handler_pc, catch type). Therefore, each instruction with offset in the range
[start_pc, end pc) has the instruction at offset handler_pc also as a possible
SuCCessor.

Besides the instructions cited above, there are two instructions that particularly
complicate the computation of successors: JSR (jump to subroutine) and RET (return
from subroutine). These instructions are used to implement an interna subroutine;

182 E The Format of Class Files

JSR pushes the address of the following instruction (the “return address’) and causes
the execution to branch to a given offset in the method’s code. RET reads a return
address from the local variable table and causes the execution to branch to the address
read (note that everything happens inside the code of a single method). This means
that, in the general case, if there is an execution path between an instruction JSR and
an instruction RET, the instruction following JSR must be included as a successor of
RET. The instructions JSR and RET are traditionally used to implement the
try.finally construct.

The instructions JSR and RET makes the validation of aclass file more difficult and
slower. The allowed interactions between these two instructions has never been
formally specified by Sun, and the restrictions on correct Java virtua machine code
seem to be created “ ad-hoc and specific to the particular subroutine labeling algorithm
that Sun’s verifier uses’ [82]. The instructions JSR and RET will be forbidden as of
Java 6 (class files with major version number 3 50) [100].

E.8. Detecting Natural L oops and Synchronized Blocks

In order to find natural loops in a class file, one must first determine al pairs of
instructions (m, n) such that n is a successor or m and such that al execution paths
from the first instruction to m include the instruction n. n is said to dominate m, and
the pair (m, n) is called a back edge. Next, one must determine all instructions from
which m can be reached without passing through n. The instructions found, m, and n
constitute a natural loop.

The branch caused by exception handlers, as well as the instructions JSR and RET,
may generate back edges which, although theoretically belonging to a loop, are not
part of any loop written by the programmer; they are an incidental result of the
compilation of some other construct, which may have nothing to do with a loop (we
detect this, for example, with the compilation of synchronized blocks). Since loops
are implemented with conditional and unconditional branches, it makes sense to
exclude branches caused by exception handlers, JSR, and RET when determining
back edges. Nevertheless, we must considerer conditional and unconditional branches
inside exception handlers and inside subroutines generated by pairs JSR/RET.

According to the definition of natural loop, it is not always possible to detect that
two loops are nested in the source code. Consider, for instance, the code shown if
Figure 62: Loop a: is nested in loop b:, but because it is impossible, from b:, to
reach the back edge, the loops are considered digoint. We had to adopt a pragmatic

a: while (true) {
try {
doSonet hi ng() ;
}
cat ch (Doi ngSonet hi ngException e) {
b: for(User user : |oggedUsers) {
war n(user) ;
}
return;
}
done();
//the conpiler generates goto a: here, so creating a back edge

}

Figure 62. Nested loopsthat cannot berecognized as such using only the algorithm for
detection of natural loops

183

approach and consider that loop X enclosesaloop Y if the range of offsets for loop Y
contains the range of offsets for loop Y. Although a compiler need not follow this
“rule” when generating code, we have not found any compiler which does not.

Detecting synchronized blocks is comparatively easier, not only because of their
strict rules in the Java programming language, but also because the Java virtua
machine contains only two instructions, MONITORENTER and MONITOREXIT,
that deal with entering and leaving monitors. MONITORENTER enters the monitor
associated with an object (the one whose reference is at the top of the operand stack),
while MONITOREXIT exits the monitor associated with an object.

In the code of a method there may be more than one MONITOREXIT instruction
generated for each MONITORENTER (see Figure 63); nevertheless, one, and only
one MONITOREXIT instruction is executed for each instruction MONITORENTER,
that is, there must not be an execution path that allows to leave a method such that a
monitor is exited more or less often than the numbered of times it was entered. Note
that this rule is enforced by the Java programming language but not by the Java
virtual machine.

By determining the successors of each MONITORENTER, one can find the
corresponding set of MONITOREXIT instructions. The instruction
MONITORENTER, the set of MONITOREXIT instructions found, and the
instructions that belong to the successors of MONITORENTER and to the
predecessors of the MONITOREXIT instructions found constitute a synchronized
block. When determining successors, one can safely ignore branches due to exception
handlers: since it is impossible to have a synchronized block that starts outside an
exception handler and ends inside of it, there must be at least one normal execution
path that reaches a MONITOREXIT instruction from a MONITORENTER,; if not,
then there is no way of leaving the method normally and al instructions that can be
reached from the MONITORENTER are in the synchronized block (which means that
there must be an infinite loop inside the synchronized block).

Synchronized blocks may be nested, which means that, when analyzing the
execution flow, more than one instruction MONITORENTER may be found before
the first MONITOREXIT is reached. We assume that, when traversing the code in

while (condition()) { off1l: invoke nethod condition()
push reference to this
synchroni zed (this) { MONI TORENTER
if (...) { .
MONI TOREXI T
return; RETURN
}
if (...) { .
MONI TOREXI T
conti nue; GOTO of f1
}
} — NMONI TOREXI T
}

Figure 63. Code generated for a synchronized block

184 E The Format of Class Files

depth-first mode, a MONITOREXIT instruction aways refers to the last
MONITORENTER seen, which is also how the compilers we tested generate code for
nested synchronized blocks.

F

Bugsin theJava APl and Sun’sVirtual Machine Found
During the Development of Aksum and Twilight

The status of these bugs can be monitored at:

htt p://bugs. sun. conf bugdat abase/ i ndex. j sp.

Bug 1D | Description Status (Aug 31, 2005)
4487689 | JList.setSelectedValue() throws Fixed
ArraylndexOutOf BoundsException on empty
list
4635001 | "." in PATH causes Runtime.exec to execute In progress
wrong file
4655449 | Fork in Runtime.exec() hogs processor when Fixed when Sun ported
interrupted the implementation of
processes from Solaris to
Linux
4662505 | Ilegal ArgumentException with empty JTree Fixed
and key event
4681235 | JOptionPane.showDialog prints stack trace In progress
when thread is interrupted
4696499 | New tree model asked about nodes of previous | Fixed
tree model
4704316 | APl documentation doesn't tell that KeyEvent | Fixed
constructor has been deprecated
4772326 | copy to clipboard from JList fails Fixed as aresult of fix
for bug #4487689
4793099 | Keyboard generates concurrent ActionEvents In progress
on Solaris/Linux
4801250 | URL .equals inconsistent with RFC1738 and Fixed
InetAddress
4835595 | PixelGrabber + setenv DISPLAY slower in In progress
Javal.4
5003341 | class redefined through In progress
Instrumentation.redefineClasses can't use
native methods
5053401 | SIGSEGYV instantiating class redefined through | Fixed

I nstrumentation.redefineCl asses

186 F BugsintheJava APl and Sun’s Virtual Machine Found During the
Development of Aksum and Twilight

Bug 1D | Description Status (Aug 31, 2005)

5053831 | Illegal AccessError after Instrumentation. Fixed asresult of fix for
appendToBootstrapClassL oaderSearch bug #5055293

5053975 | static initializer invoked again after Fixed asresult of fix for
appendToBootstrapClassL oaderSearch bug #5055293

5065264 | Program needs one minute to finish if Fixed
JM X ConnectorServer.start fails

5070671 | Arrays.binarySearch can't infer int[] In progress

5073047 | MetalLookAndFedl.setCurrentTheme ignored | In progress

5096167 | null class name crashes VM if Fixed
ClassFilelL oadHook is enabled

6191049 | javalang.lnstrumentation.redefineClass and Fixed asresult of fix for
-Xfuture cause VerifyError bug #5092850

6298117 | getWaitedTime and getWaitedCount return Fixed

wrong information

The following bugs have been recently submitted and were not assigned an ID yet.

Instrumentation.redefineClasses ignores class redefinition (internal review ID:
513666)
VM spec statement about Sun's compiler isfalse (internal review ID: 523809)

G

Overhead Properties

Assume that there is a class FullRegionSummary that extends RegionSummary and
provides all overheads defined in Section 2.3.4, as shown in Figure 64.

FullRegionSummary

getE xecutionTime()
getCommunicationTime()
getSynchronizationTime()
getLossOfParallelis m()

getControlOfP arallelism()
getDataMovementOverhead ()
getFilelOOverhead()
getLocalFilelOOverhead()
getLocalReadOverhead()
getLocalWriteOverhead()
getRemotelOOverhead()
getRemoteReadOwerhead()
getRemoteWriteOverhead()

getP cintToPointCommunicationOverhead()
getSendO\erhead()
getReceiveOverhead()
getCallectiveCommunic ationOverhead()
getRemoteMemoryOwerhead()
getRemoteMemoryLoadOverhead()
getRemoteMemoryStoreOverhead()
RegionSummary getLocalMemoryOverhead()
getLoadDataOverhead()
getStoreDataOverhead()
getCachelLewel3ToCachelevel2Overhead()
getCachelLewel2ToMainCacheOverhead()
getTLBMissOverhead()

getP ageFaultOverhead()
getSingleAddressSpaceSynchronizationOverhead()
getMultipleAddressS paceSynchronizationOwerhead()
getAlgorithmicChangesOverhead()
getimplementationChangesOverhead()
getResourcelnitializationOverhead()
getTheadInitializationOverhead()
getProcess InitializationOverhead()
getSocketlnitializationOverhead()
getResourc eFinalizationOverhead()
getThreadFinalizationOverhead()
getProcess FinalizationOverhead()
getSocketFinalizationOwerhead()

getS chedulingOverhead()
getUnparallelizedCodeOverhead()

getP artiallyParallelizedCodeOverhead()
getReplicatedCodeOverhead()
getldentifiedOverhead()

Figure 64. A region summary with several methods for retrieving metrics

188 G Overhead Properties

The following properties can then be defined:

Communication overhead
The severity of CommunicationOverhead is computed as the ratio of the value
returned by getCommunicationTime and the execution time of a reference code
region, for example the main program.
public class Conmuni cati onOver head extends Sinpl eProperty {
publ i ¢ Communi cati onOver head(Ful | Regi onSunmmary rs,

CodeRegi on basis) {
severity = rs.get Conmuni cationTine() / getExecutionTi ne(basis);

}
}

Synchronization overhead
The severity of SynchronizationOverhead is computed as the ratio of the value
returned by getSynchronizationTime and the execution time of a reference code
region, for example the main program.
public class Synchroni zati onOver head extends Sinpl eProperty ({
publ i ¢ Communi cati onOver head(Ful | Regi onSummary rs,

CodeRegi on basis) {
severity = rs.get Synchroni zationTi me()/ getExecutionTi ne(basis);

}
}

Loss of parallelism overhead
The severity of LossOfParallelismOverhead is computed as the ratio of the value
returned by getLossOfParallelism and the execution time of a reference code region,
for example the main program.
public class LossOfParallelisnmOverhead extends SinpleProperty {
public LossCOf ParallelisnOverhead(Full Regi onSummary rs,

CodeRegi on basis) {
severity = rs.getLossOfParal lelisn() / getExecutionTi me(basis);

}
}

Control of parallelism overhead
The severity of ControlOfParallelismOverhead is computed as the ratio of the
value returned by getControl OfParallelism and the execution time of a reference code
region, for example the main program.
public class Control O ParallelisnmOverhead extends SinpleProperty {
public Control O Parall el i smOver head(Ful | Regi onSunmary rs,

CodeRegi on basis) {
severity = rs.getControl O Parall elism()/getExecutionTi ne(basis);

}
}

Data movement overhead
The severity of DataMovementOverhead is computed as the ratio of the value
returned by getDataMovementOverhead and the execution time of a reference code
region, for example the main program.

189

public cl ass Dat aMbvenent Over head extends Sinpl eProperty {
publ i c Dat aMovenent Over head(Ful | Regi onSummary rs,
CodeRegi on basis) {
severity = rs. get Dat aMovenent Over head()/ get Executi onTi ne(basi s);

}
}

File 1/0 overhead
The severity of FilelOOverhead is computed as the ratio of the value returned by
getFilelOOverhead and the execution time of a reference code region, for example
the main program.

public class Filel OOverhead extends SinpleProperty {
public Filel OOverhead(Ful | Regi onSunmary rs, CodeRegi on basis) {
severity = rs.getFil el OOverhead() / getExecutionTi me(basis);
}
}

Local file 1/0 overhead
The severity of LocalFilelOOverhead is computed as the ratio of the value returned
by getLocalFilelOOverhead and the execution time of a reference code region, for

example the main program.

public class Local Fil el OOver head extends Sinpl eProperty {
public Local Fil el OOver head(Ful | Regi onSunmary rs,
CodeRegi on basis) {
severity = rs.getlLocal Fil el OOver head()/ get Executi onTi ne(basi s);

}
}

Local read overhead
The severity of LocalReadOverhead is computed as the ratio of the value returned
by getLocalReadOverhead and the execution time of a reference code region, for
example the main program.

public class Local ReadOver head extends Sinpl eProperty {
publ i c Local ReadOver head(Full Regi onSunmmary rs,
CodeRegi on basis) {
severity = rs.getlLocal ReadOverhead() / get ExecutionTi ne(basis);
}
}

Local write overhead
The severity of LocalWriteOverhead is computed as the ratio of the value returned
by getLocalWriteOverhead and the execution time of a reference code region, for
example the main program.

public class Local WiteOverhead extends SinpleProperty {
public Local WiteOverhead(Ful | Regi onSunmmary rs,
CodeRegi on basis) {
severity = rs.getLocal WiteOverhead() / getExecutionTi ne(basis);
}
}

190 G Overhead Properties

Remote /O overhead
The severity of Remotel OOverhead is computed as the ratio of the value returned
by getRemotelOOverhead and the execution time of a reference code region, for
example the main program.
public class Renotel OOver head extends Sinpl eProperty {
publ i c Renot el OOver head(Ful | Regi onSunmary rs,

CodeRegi on basis) {
severity = rs. get Renmot el OOverhead() / get Executi onTi ne(basi s);

}
}

Remote read overhead
The severity of RemoteReadOverhead is computed as the ratio of the value returned
by getRemoteReadOverhead and the execution time of a reference code region, for
example the main program.
public class Renpt eReadOver head extends Sinpl eProperty {
publ i c Renot eReadOver head(Ful | Regi onSummary rs,

CodeRegi on basis) {
severity = rs. get Renot eReadOver head() / get Executi onTi ne(basis);

}
}

Remote write overhead
The severity of RemoteWriteOverhead is computed as the ratio of the vaue
returned by getRemoteWriteOverhead and the execution time of a reference code
region, for example the main program.
public class RenoteWiteOverhead extends SinpleProperty {
public RenoteWiteOverhead(Full Regi onSunmary rs,

CodeRegi on basis) {
severity =rs.get RenoteWiteOverhead() / getExecutionTi ne(basis);

}
}

Point to point communication overhead

The severity of PointToPointCommunicationOverhead is computed as the ratio of
the value returned by getPointToPointCommunicationOverhead and the execution
time of areference code region, for example the main program.
public cl ass Poi nt ToPoi nt Communi cati onOver head

extends Sinpl eProperty {
publ i ¢ Poi nt ToPoi nt Comruni cat i onOver head(Ful | Regi onSummary rs,
CodeRegi on basis) {
severity =rs. getPoi nt ToPoi nt Conmruni cati onOver head() /
get Executi onTi ne(basi s);

Send overhead
The severity of SendOverhead is computed as the ratio of the value returned by
getSendOverhead and the execution time of a reference code region, for example the
main program.

191

public class SendOver head extends Sinpl eProperty {
public SendOver head(Ful | Regi onSummary rs, CodeRegi on basi s){
severity = rs. get SendOverhead() / getExecutionTi ne(basis);

}
}

Receive overhead
The severity of ReceiveOverhead is computed as the ratio of the value returned by
getReceiveOverhead and the execution time of a reference code region, for example
the main program.

public cl ass Recei veOver head extends Sinpl eProperty {
public Recei veOver head(Ful | Regi onSurmary rs, CodeRegi on basi s){
severity = rs. get Recei veOverhead() / getExecutionTi ne(basis);

}
}

Collective communication overhead
The severity of CollectiveCommunicationOverhead is computed as the ratio of the
value returned by getCollectiveCommunicationOverhead and the execution time of a
reference code region, for example the main program.

public class CollectiveConmuni cati onOverhead extends SinpleProperty {
public Coll ectiveCommunicati onOver head(Ful | Regi onSummary rs,
CodeRegi on basis) {
severity =rs.getCollectiveComunicationOverhead () /
get Executi onTi ne(basi s);

Remote memory overhead
The severity of RemoteMemoryOverhead is computed as the ratio of the value
returned by getRemoteMemoryOverhead and the execution time of a reference code
region, for example the main program.
public cl ass RenoteMenoryOver head extends Sinpl eProperty {
publ i c Renot eMenoryOver head(Ful | Regi onSunmary rs,

CodeRegi on basis) {
severity = rs. get Renot eMenoryOver head()/ get Executi onTi ne(basi s);

}
}

Remote memory load overhead
The severity of RemoteMemoryLoadOverhead is computed as the ratio of the value
returned by getRemoteMemoryLoadOverhead and the execution time of a reference
code region, for example the main program.

public class RenoteMenorylLoadOver head extends SinpleProperty {
publ i c Renot eMenoryLoadOver head(Ful | Regi onSunmary rs,
CodeRegi on basis) {
severity =rs. get Renot eMenoryLoadOver head() /
get Executi onTi ne(basi s);

192 G Overhead Properties

Remote memory store overhead
The severity of RemoteMemoryStoreOverhead is computed as the ratio of the value
returned by getRemoteMemorySoreOverhead and the execution time of a reference
code region, for example the main program.
public class RenoteMenorySt oreOver head extends Sinpl eProperty {
publ i c Renot eMenorySt or eOver head(Ful | Regi onSummary rs,
CodeRegi on basis) {

severity =rs. get Renot eMenorySt or eOver head() /
get Executi onTi ne(basi s);

Local memory overhead
The severity of LocalMemoryOverhead is computed as the ratio of the value
returned by getLocalMemoryOverhead and the execution time of a reference code
region, for example the main program.
public class Local MenoryOver head extends Sinpl eProperty {
public Local MenoryOver head(Ful | Regi onSunmary rs,

CodeRegi on basis) {
severity = rs.getlLocal MenoryOver head()/ get Executi onTi ne(basi s);

}
}

L oad data overhead
The severity of LoadDataOverhead is computed as the ratio of the value returned
by getLoadDataOverhead and the execution time of a reference code region, for
example the main program.
public cl ass LoadDat aOver head extends Sinpl eProperty {
publ i c LoadDat aOver head(Ful | Regi onSunmary rs,

CodeRegi on basis) {
severity = rs. getlLoadDat aOverhead() / get ExecutionTi me(basis);

}
}

Store data overhead
The severity of SoreDataOverhead is computed as the ratio of the value returned
by getSoreDataOverhead and the execution time of a reference code region, for
example the main program.
public class StoreDataOverhead extends SinpleProperty {
public StorebDataOverhead(Full Regi onSumary rs,

CodeRegi on basis) {
severity = rs.getStoreDataOverhead() / getExecutionTi ne(basis);

}
}

Cache level 3 to cache level 2 overhead
The severity of Cachelevel3ToCachelevel20verhead is computed as the ratio of
the value returned by getCachel evel3ToCachelevel20verhead and the execution
time of areference code region, for example the main program.

193

public class CachelLevel 3ToCachelLevel 20ver head extends Si npl ePropert y{
publ i c CachelLevel 3ToCacheLevel 20ver head(Ful | Regi onSummary rs,
CodeRegi on basis) {
severity =rs. get CacheLevel 3ToCachelLevel 20ver head() /
get Executi onTi ne(basi s);

Cache level 2 to main cache overhead
The severity of Cachelevel2ToMainCacheOverhead is computed as the ratio of the
value returned by get Cachel.evel2ToMainCacheOverhead and the execution time of
areference code region, for example the main program.
public class CachelLevel 2ToMai nCacheOver head extends Sinpl eProperty {
publ i ¢ CacheLevel 2ToMai nCacheOver head(Ful | Regi onSunmmary rs,
CodeRegi on basis) {

severity =rs. get CacheLevel 2ToMai nCacheOver head() /
get Executi onTi ne(basi s) ;

TLB miss overhead
The severity of TLBMissOverhead is computed as the ratio of the value returned by
getTLBMissOverhead and the execution time of a reference code region, for example
the main program.

public class TLBM ssOver head extends Si npl eProperty {
public TLBM ssOver head(Ful | Regi onSummary rs, CodeRegi on basi s){
severity = rs.get TLBM ssOver head() / get Executi onTi me(basis);
}
}

Page fault overhead
The severity of PageFaultOverhead is computed as the ratio of the value returned
by getPageFaultOverhead and the execution time of a reference code region, for
example the main program.

public class PageFaul t Over head extends Sinpl eProperty {
publ i c PageFaul t Over head(Ful |l Regi onSumary rs,
CodeRegi on basis) {
severity = rs. get PageFaul t Over head() / get Executi onTi me(basis);

}
}

Single address space synchronization overhead
The severity of SngleAddressSpaceSynchronizationOverhead is computed as the
ratio of the value returned by getSngleAddressSpaceSynchronizationOverhead and
the execution time of areference code region, for example the main program.

public class SingleAddressSpaceSynchroni zati onOver head
ext ends Sinpl eProperty {
publ i c Singl eAddr essSpaceSynchroni zati onOver head(
Ful | Regi onSummary rs, CodeRegi on basis) {
severity =rs. getSi ngl eAddr essSpaceSynchroni zati onOver head() /
get Executi onTi ne(basi s);

194 G Overhead Properties

Multiple address space synchronization overhead
The severity of MultipleAddressSpaceSynchronizationOverhead is computed as the
ratio of the value returned by getMultipleAddressSpaceSynchronizationOver head and
the execution time of areference code region, for example the main program.

public class MiltipleAddressSpaceSynchroni zati onOver head
ext ends Sinpl eProperty {
public Miltipl eAddressSpaceSynchroni zati onOver head(
Ful | Regi onSummary rs, CodeRegi on basis) {
severity =rs.getMiltipl eAddressSpaceSynchroni zati onOver head() /
get Executi onTi ne(basi s);

Algorithmic changes overhead
The severity of AlgorithmicChagesOverhead is computed as the ratio of the value
returned by getAlgorithmicChagesOverhead and the execution time of a reference
code region, for example the main program.

public class Al gorithm cChagesOver head extends Sinpl eProperty {
public Al gorithm c ChagesOverhead(Full Regi onSunmary rs,
CodeRegi on basis) {
severity =rs.get Al gorithm cChagesOverhead() /
get Executi onTi ne(basi s);

Implementation changes overhead
The severity of ImplementationChagesOverhead is computed as the ratio of the
value returned by getlmplementationChagesOverhead and the execution time of a
reference code region, for example the main program.
public class | nplenmentati onChagesOver head extends Sinpl eProperty {
public I nplenentationChagesOver head(Ful | Regi onSummary rs,
CodeRegi on basis) {

severity =rs. getlnpl enentati onChagesOverhead() /
get Executi onTi ne(basi s) ;

Resource initialization overhead
The severity of ResourcelnitializationOverhead is computed as the ratio of the
value returned by getResourcelnitializationOverhead and the execution time of a
reference code region, for example the main program.
public class ResourcelnitializationOverhead extends SinpleProperty {
public ResourcelnitializationOverhead(Ful | Regi onSummary rs,
CodeRegi on basis) {

severity =rs.getResourcelnitializationOverhead() /
get Executi onTi ne(basi s);

Thread initialization overhead
The severity of ThreadslnitializationOverhead is computed as the ratio of the value
returned by getThreadlnitializationOverhead and the execution time of a reference
code region, for example the main program.

195

public class ThreadlnitializationOverhead extends SinpleProperty {
public ThreadlnitializationOverhead(Full Regi onSunmmary rs,
CodeRegi on basis) {
severity =rs.getThreadlnitializationOverhead() /
get Executi onTi ne(basi s);

Process initialization overhead
The severity of ProcessinitializationnOverhead is computed as the ratio of the
value returned by getProcessinitializationOverhead and the execution time of a
reference code region, for example the main program.
public class Processlnitializati onOverhead extends SinpleProperty {
public Processlnitializati onOverhead(Full Regi onSunmmary rs,
CodeRegi on basis) {

severity =rs.getProcesslnitializationOverhead() /
get Executi onTi ne(basi s);

Socket initialization overhead
The severity of SocketInitializationOverhead is computed as the ratio of the value
returned by getSocketlnitializationOverhead and the execution time of a reference
code region, for example the main program.
public class SocketlnitializationOverhead extends SinpleProperty {
public SocketlnitializationOverhead(Full Regi onSummary rs,
CodeRegi on basis) {

severity =rs.getSocketlnitializati onOverhead() /
get Executi onTi ne(basi s);

Resource finalization overhead
The severity of ResourceFinalizationOverhead is computed as the ratio of the value
returned by getResourceFinalizationOverhead and the execution time of a reference
code region, for example the main program.
public class ResourceFinalizationOverhead extends SinpleProperty {
publ i c ResourceFi nalizati onOver head(Ful | Regi onSummary rs,
CodeRegi on basis) {

severity =rs. get ResourceFinalizationOverhead() /
get Executi onTi ne(basi s);

Thread finalization overhead
The severity of ThreadsFinalizationOverhead is computed as the ratio of the value
returned by getThreadFinalizationOverhead and the execution time of a reference
code region, for example the main program.

196 G Overhead Properties

public class ThreadFi nalizati onOverhead extends SinpleProperty {
public ThreadFi nalizationOverhead(Full Regi onSunmary rs,
CodeRegi on basis) {
severity =rs.get ThreadFi nalizati onOverhead() /
get Executi onTi ne(basi s);

Process finalization overhead
The severity of ProcessFinalizationOverhead is computed as the ratio of the value
returned by getProcessFinalizationOverhead and the execution time of a reference
code region, for example the main program.
public class ProcessFinalizati onOverhead extends SinpleProperty {
publ i c ProcessFinalizationOverhead(Ful | Regi onSummary rs,
CodeRegi on basis) {

severity =rs.get ProcessFinalizationOverhead() /
get Executi onTi ne(basi s);

Socket finalization overhead
The severity of SocketFinalizationOverhead is computed as the ratio of the value
returned by getSocketFinalizationOverhead and the execution time of a reference
code region, for example the main program.
public class SocketFinalizati onOverhead extends SinpleProperty {
publ i c Socket Fi nalizationOverhead(Full Regi onSunmary rs,
CodeRegi on basis) {

severity =rs. get Socket Fi nali zati onOver head() /
get Executi onTi ne(basi s);

Scheduling overhead
The severity of SchedulingOverhead is computed as the ratio of the value returned
by getSchedulingOverhead and the execution time of a reference code region, for
example the main program.

public class Schedul i ngOver head extends Sinpl eProperty {
publ i c Schedul i ngOver head(Ful | Regi onSummary rs,
CodeRegi on basis) {
severity = rs.get Schedul i ngOverhead() / getExecutionTi ne(basis);
}
}

Unparallelized code overhead
The severity of UnparallelizedCodeOverhead is computed as the ratio of the value
returned by getUnparallelizedCodeOverhead and the execution time of a reference
code region, for example the main program.
public class UnparallelizedCodeOverhead extends SinpleProperty {
public UnparallelizedCodeOverhead(Full Regi onSunmary rs,
CodeRegi on basis) {

severity = rs.getUnparallelizedCodeOverhead () /
get Executi onTi ne(basi s);

197

Partially parallelized code overhead
The severity of PartiallyParallelizedCodeOverhead is computed as the ratio of the
value returned by getPartiallyParallelizedCodeOverhead and the execution time of a
reference code region, for example the main program.
public class PartiallyParallelizedCodeOverhead
ext ends Sinpl eProperty {
public PartiallyParallelizedCodeOverhead(Ful | Regi onSummary rs,
CodeRegi on basis) {

severity = rs.getPartiallyParallelizedCodeOverhead() /
get Executi onTi nme(basi s) ;

Replicated code overhead
The severity of ReplicatedCodeOverhead is computed as the ratio of the value
returned by getReplicatedCodeOverhead and the execution time of a reference code
region, for example the main program.
public cl ass ReplicatedCodeOver head extends SinpleProperty {
public ReplicatedCodeOverhead(Ful | Regi onSummary rs,
CodeRegi on basis) {

severity = rs. getReplicatedCodeCQverhead() /
get Executi onTi ne(basi s);

Unidentified overhead
Under the extra assumption that all processors used in a paralel experiment are
identical, unidentified overhead can be computed as defined in Section 2.3.3: Using
the sequential execution time of a code region, obtained from the summary
seqSummary, the paralel execution time, obtained from the summary parSummary,
and the number of processors used in the parallel experiment, one can compute the
absolute unidentified overhead and then the severity of the property as the ration
between the absolute unidentified overhead and the execution time of areference code
region, for example the main program.
public class UnidentifiedOverhead extends SinpleProperty {
public UnidentifiedOverhead(Full Regi onSunmary seqSunmary,
Ful | Regi onSunmary par Sunmary,
CodeRegi on basis) {
float sequential Time = seqSummary. get Executi onTi ne();
float parallel Time = par Sumary. get CodeRegi onTi me() ;
int n = parSunmary. get Experi nent (). get Nunmber O Processors();
float unidentifiedOverhead =

parall el Time — sequential Tine/n —
par Sunmary. get | denti fi edOver head();

severity = unidentifiedOverhead / getExecutionTi ne(basis);

References

10.

11.

12.

13.

14.

A. Acharya, G. Edjldi, and J. Sdtz. “The Utility of Exploiting ldle
Workstations for Parallel Computation.” In Proceedings of 1997 ACM
Sgmetrics International Conference on Measurement and Modeling of
Computer Systems. Seattle, USA. June 1997.

E. Allen, D. Chase, V. Luchangco, JW. Maessen, S. Ryu, G. L. Steele, S. T.-
Hochstadt. The Fortress Language Specification Version 0.618.
http://research.sun.com/projects/plrg/fortressO618.pdf, retrieved on July 14,
2005.

Apache Ant. http://ant.apache.org/, retrieved on March 31, 2005.

R. A. Aydt. “SDDF: The Pablo Self-Describing Data Format.” Technical
Report, Department of Computer Science, University of Illinois. April 1994.

G. J. Badros. “JavaML: A Markup Language for Java Source Code.” In 9th
International World Wide Web Conference. Amsterdam, The Netherlands. May
2000.

M. K. Bane and G. D. Riley. “Automatic Overheads Profiler for OpenMP
Codes.” In Second European Workshop on OpenMP. Edinburgh, Scotland, UK.
September, 2000.

G. Bel and J. Gray. “High Performance Computing: Crays, Clusters, and
Centers. What Next?” Technical Report MSR-TR-2001-76, Microsoft Research,
2001.

S. Benkner. VFC: The Vienna Fortran Compiler. Scientific Programming, 10S
Press, The Netherlands, 7(1):67-81, 1999.

Beowulf Project Overview. http://www.beowulf.org/overview, retrieved on
June 26, 2005.

P. Blaha, K. Schwarz, and J. Luitz. WIEN97, Full-potential, Linearized
Augmented Plane Wave Package for Calculating Crystal Properties. Institute of
Technical Electrochemistry, Vienna University of Technology. Vienna, Austria.
1999.

S. Browne, J. Dongarra, N. Garner, K. London, and P. Mucci. “A scaable
cross-platform infrastructure for application performance tuning using hardware
counters.” In Supercomputing '00: Proceedings of the 2000 ACM/IEEE
conference on Supercomputing (CDROM). Dallas, Texas, USA, 2000. IEEE
Computer Society.

P. A. Buhr and A. S. Harji. “Concurrent Urban Legends.” Concurrency and
Computation: Practice and Experience 17(9):1133-1172, John Wiley and Sons.
June/Jduly 2005.

J. M. Bull. “A Hierarchical Classification of Overheads in Parallel Programs.”
In Proceedings of the First IFIP TC10 International Workshop on Software
Engineering for Paralledl and Distributed Systems. London, UK, 2000.
Chapman & Hall, Ltd.

H. W. Can, B. P. Miller, and B. J. N. Wylie, “A Callgraph-Based Search
Strategy for Automated Performance Diagnosis’, in Proc. Of the European
Conference on Parallel Computing. Germany, August 2000.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31

32.

33.

199

D. Cdlahan, B. L. Chamberlain, H. P. Zima. “The Cascade High Productivity
Language.” In 9th |International Workshop on High-Level Paralle
Programming Models and Supportive Environments (HIPS 2004). IEEE
Computer Society, April 2004.

D. Carrera, J. Guitart, J. Torres, E. Ayguadé and J. Labarta. “An
Instrumentation Tool for Threaded Java Application Servers.” In Xlll Jornadas
de Paralelismo. Lleida, Spain. September 2002.

Cleanscape FortranLint Fortran source code analysis tool.
http://www.cleanscape.net/products/fortranlint/index.html, retrieved on July 1.
M. J. Clement, M .J. Quinn. “Multivariate Statistical Techniques for Paralel
Performance Prediction.” In Proceedings of the 28th Hawaii International
Conference on system Sciences. Hawaii, USA. January 1995.

E. D. Collins. Loop-Based Automated Performance Analysis. Presentation at
the Paradyn/Condor Week, March 2005.

A Conversion Tool from DTD to XML Schema.
http://www.w3.0rg/2000/04/schema_hack, retrieved on March 4, 2005.

R. E. Crew. "ASTLOG: A Language for Examining Abstract Syntax Trees." In
Proceedings of the Conference on Domain-Specific Languages, October 1997.
M. E. Crovella And J. J. LeBlanc. “Parallel Performance Prediction Using Lost
Cycles Analysis” In Proceedings of Supercomputing '94. |IEEE Computer
Society. Washington D.C., USA. 1994.

D. E. Culler, J. P. Singh, A. Gupta. Paralledd Computer Architecture: A
Har dwar e/ Softwar e Approach. Morgan Kaufmann Publishers, Inc. 1999.

N. Darcy. Tempest 1000.

http://www.boomahtrix.btinternet.co.uk/mainsite/ Templ000/tempest.htm,
retrieved on September 13, 2005.

S. J. Deitz. High-Level Programming Language Abstractions for Advanced and
Dynamic Parallel Computations. PhD Thesis, University of Washington. 2005.
P. Deutsch. DEFLATE Compressed Data Format Specification version 1.3.
http://www.is.edu/in-notes/rfc1951.txt, retrieved on March 9, 2005.

P. T. Devanbu. “Genoa: A Customizable, Language-and-front-end |ndependent
Code Anayzer.” In Proceedings of the Fourteenth International ACM
Conference on Software Engineering. ACM Press, 1992.

Distributed Parallel Programming Environment for Java.

http://www.al phaworks.ibm.com/tech/dppgj, retrieved on July 28, 2005.

E. Dockner and H. Moritsch. Pricing Constant Maturity Floaters with
Embedded Options Using Monte Carlo Smulation. Aurora Technical Report
Aur99 04, University of Vienna. Vienna, Austria. January 1999.

J. Dongarra, T. Sterling, H. Simon, E. Strohmaier. “High Performance
Computing: Clusters, Congstellations, MPPs, and Future Directions.”
Communications of the ACM, 7(2), 51-59, March/April 2005.

J. Donnel. Java Performance Profiling using the VTune™ Performance
Analyzer.
http://www.intel.com/cd/software/products/asmo-na/eng/vtune/219355.htm,
retrieved on July 9, 2005.

T. Durkin. SETI Researchers Sift Interstellar Static for Signs of Life. Xcell
Journal. 2004.

Edison Design Group. Compiler Front Ends for the OEM Market.
http://www.edg.com, retrieved on July 1, 2005.

200

34.

35.

36.

37.

38.

39.

40.

41.

42.

&

45,

46.

47.

48.

49,

50.

51,

M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. “Dynamically
discovering likely program invariants to support program evolution.” In IEEE
TSE, 27(2):1-25, Feb. 2001.

A. Espinosa, T. Margalef, and E. Luque. “ Automatic Performance Evaluation of
Parallel Programs.” In IEEE Proc. of the 6th Euromicro Workshop on Parallel
and Distributed Processing. IEEE Computer Society Press, January 1998.
Extensble Markup Language (XML) 1.0 (Second Edition).
http://www.w3.org/TR/REC-xml, retrieved on March 4, 2005.

T. Fahringer. “Estimating and Optimizing Performance for Parallel Programs.”
In IEEE Computer 28(11):47-56. November 1995.

T. Fahringer, M. Gerndt, Tianchao Li, B. Mohr, C. Seragiotto, H.-L. Truong.
Monitoring and Instrumentation Requests for Fortran, Java, C and C++
Programs. Aurora Technical Report AuR_04-17, University of Vienna Vienna,
Austria. 2004.

T. Fahringer, M. Gerndt, Tianchao Li, B. Mohr, C. Seragiotto, H.-L. Truong.
Sandardized Intermediate Representation for Fortran, Java, C and C++
Programs. Aurora Technical Report AuR_04-18, University of Vienna. Vienna,
Austria. 2004.

T. Fahringer, M. Gerndt, B. Mohr, F. Wolf, G. Riley, J. L. Traff. “Knowledge
Specification for Automatic Performance Analysis.” APART Technical Report.
Zentraingtitut fir Angewandte Mathematik, Interner Bericht. August 2001.

T. Fahringer, A. Jugravu, B. Di Martino, S. Venticinque, H. Moritsch. “On the
Evaluation of JavaSymphony for Cluster Applications.” In Proceedings of the
IEEE International Conference on Cluster Computing CLUSTER 2002.
Chicago, Illinois. September 2002.

M. J. Flynn. “Some Computer Organizations and Their Effectiveness.” |IEEE
Transactions on Computing C-21(September): 948-960.

|. Foster. Designing and Building Parallel Programs. Concepts and Tools for
Parallel Software Engineering. Addison-Wesley Publishing Company. 1995.
Free On-Line Dictionary of Computing. http://www.foldoc.org, retrieved on
June 5, 2005.

Frequently Asked Questions about Garbage Collection in the Hotspot™ Java™
Virtual Machine. http://java.sun.com/docs/hotspot/gcl.4.2/fag.html, retrieved
on September 26, 2005.

J. E. F. Friedl. Mastering Regular Expressions, 2nd edition. O'Rellly &
Associates. July 2002.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns; Elements of
Reusable Object-Oriented Software. Addison Wesley Longman, Inc. 1995.

M. Geisder. Interaction of High Intensity Ultrashort Laser Pulses with
Plasmas. Vienna University of Technology, 2001.

W. Gropp, E. Lusk, N. Doss, A. Skjellum. “A high-performance, portable
implementation of the MPI message passing interface standard.” Parallel
Computing, 22(6), 789-828. September 1996.

W. Gropp, E. Lusk, A. Skjellum. Using MPI: Portable parallel Programming
with the Message-passing Interface, Second Edition. The MIT Press. 1999.

M. Gerndt, A. Krumme. “A Rule-based Approach for Automatic Bottleneck
Detection in Programs on Shared Virtual Memory System.” In Proceedings of
2nd International Workshop on High-Level Programming Models and
Supportive Environments. Geneva, Switzerland, 1997.

52.

53.

55.

56.

S7.

58.

59.

60.

61.

62.

63.

64.

65.

66.
67.

68.

69.

70.

201

J. Guitart, J. Torres, E. Ayguadé, J. Oliver, and J. Labata “Java
Instrumentation Suite: Accurate Analylsis of Java Threaded Applications.” In
2nd Workshop on Java for High Performance Computing (part of the 14th ACM
International Conference on Supercomputing ICS00). USA, 2000.

M. Harkema, D. Quartel, R. van der Me, and B. Gijsen. “JPMT: A Java
performance monitoring tool.” In Proceedings TOOLS-2003, USA, 2003.

P. J. Hatcher and M. J. Quinn. Data-Parallel Programming on MIMD
Computers. The MIT Press, Cambridge, Massachusetts, 1991.

D. G. Heap. Taurus: A Taxonomy of the Actual Utilization of Real UNIX and
Windows Servers. January 2003.
http://www.ibm.com/serverd/library/pdf/taurus.pdf, retrieved on July 27, 2005.
B. R. Helm, A. D. Maony, and Stephen F. Fickas. “ Capturing and Automating
Performance Diagnosis. The Poirot Approach.” In Proceedings of the Sth
International Symposium on Parallel Processing, 606-613. April 1995.

R. Hempel and D. W. Walker. “The Emergence of the MPI Message Passing
Standard for Parallel Computing.” In Computer Standards and Interfaces 21:51-
62. 1999.

V. Herrarte and W. Lusk. “Studying parallel program behavior with upshot.”
Technical Report ANL-91/15, Argonne National Laboratory. 1991.

High Performance Fortran Forum. High Performance Fortran Language
Specification Version 2.0.

http://dacnet.rice.edu/Depts/ CRPC/HPFF/versions/hpf2/hpf-v20/index.html,
retrieved on June 29, 2005.

J. K. Hoallingsworth, B. P. Miller, J. Cargille. “Dynamic Program
Instrumentation for Scalable Performance Tools” In Scalable High
Performance Computing Conference (SHPCC) 1994, May 1994.

J. K. Hollingsworth and B. P. Miller. “An Adaptive Cost Model for Parallel
Program Instrumentation.” In EuroPar 1996. Lyon, France. August 1996.

HP 9000 Superdome technical white paper, May 2005.
http://h71028.www7.hp.com/ERC/downl oads/5982-4000EN.pdf, retrieved on
June 24, 2005.

IBM developer kit for Linux.

http://www-106.ibm.com/devel operworks/javaljdk/linux140/, retrieved on May
18, 2005.

IEEE Standard for Binary Floating-Point Arithmetic. ANSI/IEEE Standard.
754-1985.

InfiniBand® Trade Association. http://www.infinibandta.org, retrieved on June
27, 2005.

Java Technology. http://java.sun.com, retrieved on March 11, 2005.

Java Compiler Compiler™ (JavaCC™). https://javacc.dev.java.net, retrieved on
March 7, 2005.

Java™ Debug Interface. http://java.sun.com/j2se/1.5.0/docs/guide/jpdaljdi,
retrieved on July 5, 2005.

Java Networking and Proxies.
http://java.sun.com/j2se/1.5.0/docs/guide/net/proxies.html, retrieved on
September 27, 2005.

Java™ Virtual Machine Debug Interface Reference.
http://java.sun.com/j2se/1.5.0/docs/guide/jpda/jvmdi-spec.html, retrieved on
July 9, 2005.

202

71.

72.
73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

Java™ Virtual Machine Profiler Interface (JVMPI).
http://java.sun.com/j2se/1.5.0/docs/guide/jvmpi/jvmpi.html, retrieved on July 9,
2005.

Jikes. http://jikes.sourceforge.net/, retrieved on July 11, 2005.

JVM™ Tool Interface Version 1.0.
http://java.sun.com/j2se/1.5.0/docs/guide/jvmti/jvmti.html, retrieved on July 9,
2005.

B. Joy, G. Stelle, J. Godling, G. Bracha. Java™ Language Specification (2nd
Edition). Addison-Wesley-Professional. 2000.

JSR 924: Java™ Virtual Machine Specification. Maintenance review of changes
to the Java™ Virtua Machine Specification, Second Edition for J2SE 1.5.
http://jcp.org/en/jsr/detail 2d=924, retrieved on March 7, 2005.

A. Jugravu and T. Fahringer. “JavaSymphony, a Programming Model for the
Grid.” Journal for Future Generation Computer Systems-Grid Computing:
Theory, Methods and Applications, Promotional Issue. January 2005.

L. P. Kaebling, M. L. Littman, and A. W. Moore. “Reinforcement Learning: A
Survey”. Journal of Artificial Intelligence Research 4:237-285. 1996.

KOJAK: Kit for Objective Judgement and Knowledge-based Detection of
Performance Bottlenecks. http://www.fz-juelich.de/zam/kojak/, retrieved on
July 4, 2005.

V. Kumar, A. Grama, A. Gupta, and G. Karypis. Introduction to Parallel
Computing: Design and Analysis of Parallel Algorithms. Benjamin/Cummings.
1994,

J. Labarta, S. Girona, V. Pillet, T. Cortés, L. Gregoris. “DiP: A Paralel Program
Development Environment.” In 2nd International EuroPar. Lyon, France,
August 1996.

C. Lazou. “Fortran 2000 Evolves to Meet Challenge of Large Scale Numeric
Applications.” In News on HPCN Europe and the European Commission.
http://www.hoise.com/primeur/01/articlessmonthly/CL-PR-09-01-1.html,
retrieved on July 8, 2005.

X. Leroy. “Java bytecode verification: agorithms and formalizations.” In
Journal of Automated Reasoning, 30(3-4):235-269. 2003.

J. P. Lewis and U. Neumann. Performance of Java versus C++.
http://www.idiom.com/~zilla/ Computer/javaCbenchmark.html,

retrieved on July 14, 2005.

T. Lindholm, F. Yélin. The Java™ Virtual Machine Specification (2nd
Edition). Addison-Wesley-Professional. 1999.

K. A. Lindlan, J. Cuny, A. D. Maony, S. Shende, B. Mohr, R. Rivenburgh, C.
Rasmussen. “A Tool Framework for Static and Dynamic Analysis of Object-
Oriented Software with Templates.” In Proceedings of SC2000. Maryland,
USA. November 2000.

T. Ludwig and R. Wismueller. “OMIS 2.0; a Universal Interface for Monitoring
Systems.” Lecture Notes on Computer Science, 1332:267—276. 1997.

J. Marner. Evaluating Java for Game Devel opment.
http://www.rolemaker.dk/articles/evaljava, retrieved on July 14, 2005.

J. M. Mdard. “A Role for Pareto Optimality in Mining Performance Data.”
Computation: Practice and Experience 17(1):27-48, John Wiley and Sons.
June/July 2005.

B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K. Hollingsworth, R. B. Irvin,
K. L. Karavanic, K. Kunchithapadam, and T. Newhall. “The Paradyn Paralel

90.
91.

92.

93.

94,

95.

96.

97.
98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

203

Performance Measurement Tool.” In IEEE Computer 28, 11, 37-46. November
1995.

T. M. Mitchell. Machine Learning. WCB/McGraw-Hill. 1997.

B. Mohr, D. Brown, and A. Maony. “TAU: A Portable Paralel Program
Analysis Environment for pC.” In Proceedings of CONPAR 94 - VAPP VI.
University of Linz, Austria, LNCS 854, 29-40. September 1994.

A. Morgko, O. Morgko, J. Jorba, T. Margalef, and E. Luque. “Automatic
Performance Analysis and Dynamic Tuning of Distributed Applications.” In
Parallel Processing Letters 13(2):169-187. World Scientific, June 2003.

mpC Workshop: Integrated Parallel Programming System for Heterogeneous
Networks of Personal Computers.
http://www.atssoft.com/downloads/mpc_workshop_white.pdf, retrieved on July
13, 2005.

MPICH: A Portable Implementation of MPI.
http://www-unix.mcs.anl.gov/mpi/mpich, retrieved on July 7, 2005.

S. S. Muchnick. Advanced Compiler Design and Implementation. Morgan
Kaufmann Publishers. 1997.

N. Mukherjee, G.D. Riley, and JR. Gurd. “Finesse: A Prototype Feedback-
guided Performance Enhancement System.” In Euromicro Workshop on
Parallel and Distributed Processing PDP’ 2000. January 2000.

Myrinet. http://www.myri.com/myrinet, retrieved on June 1, 2005.

W. E. Nagel, A. Arnold, M. Weber, H.-C. Hoppe, and K. Solchenbach.
VAMPIR: Visudization and analysis of MPI resources. Supercomputer
12(1):69-80. January 1996.

NAS Computing Resources - Columbia Supercomputer.
http://www.nas.nasa.gov/Resources/Systems/columbia.html, retrieved on June
26, 2005.

New Java SE Mustang Featuree Type Checking Verifier.
https.//jdk.dev.java.net/verifier.ntml, retrieved on August 31, 2005.

T. Newhal and B. P. Miller. “Performance Measurement of Dynamically
Compiled Java Executions.” In Proceedings of the ACM 1999 Conference on
Java Grande. USA, 1999.

K. O'Hair. The JVMPI Transition to JVMTI.

http://java.sun.com/devel oper/technical Articles/Programming/jvmpitransition,
retrieved on July 9, 2005.

One$DB. http://www.daffodildb.com/one-dollar-db.html, retrieved on
September 14, 2005.

OPARI: OpenMP Pragma And Region Instrumentor.
http://www.fz-juelich.de/zam/kojak, retrieved on July 4, 2005.

Open64 Compiler Tools. http://open64.sourceforge.net, retrieved on March 31,
2005.

Open64 Project a Rice University. http://www.hipersoft.rice.edu/open64/,
retrieved on July 1, 2005.

OpenMP Application Program Interface Version 2.5. http://www.openmp.org/
drupal/mp-documents/spec25.pdf, retrieved on June 3, 2005.

C. M. Pancake. “Exploiting Visualization and Direct Manipulation to Make
Parallel Tools More Communicative.” In Applied Parallel Computing, edited by
B. Kagstrom et al., Springer Verlag. Berlin. 1998.

PAPI; Performance Application Programming Interface.
http://icl.cs.utk.edu/papi, retrieved on March 7, 2005.

204

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

123.

124,

125.

126.

P. Pazandak and D. Wells. “ProbeMeister: Distributed Runtime Software
Instrumentation.” In First International Workshop on Unanticipated Software
Evolution. Spain, June 2002.

Performance Visualization for Parallel Programs.
http://www.lcrc.anl.gov/~dvorak/teragrid/experiments, retrieved on June 19,
2005.

S. Pllana, T. Fahringer, and F. Breitenecker. “Performance Modeling and
Predictions of Parallel and Distributed Programs with PerformanceProphet.” In
The 2005 International Conference on Parallel Processing. Performance
Evaluation of Networks for Parallel, Cluster and Grid Computing Systems.
Oslo, Norway. 2005.

The Portland Group™: PGHPF Compiler User's Guide.
http://www.pgroup.com/doc/pghpf_ug/hpfug.htm, retrieved on July 26, 2005.
Quadrics homepage.

http://www.quadri cs.com/quadrics/QuadricsHome.nsf/Display Pages/Homepage,
retrieved on June 27, 2005.

J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, San
Mateo, California.

RFC 2396: Uniform Resource Identifiers (URI): Generic Syntax.
http://www.ietf.org/rfc/rfc2396.txt, retrieved on March 4, 2005.

R. L. Ribler, J. S. Vetter, H. Simitci, and D. A. Reed. “Autopilot: Adaptive
Control of Distributed Applications.” In Proceedings of the 7th IEEE
Symposium on High-Performance Distributed Computing. July 1998.

P. C. Roth and B. P. Miller, "Deep Start: A Hybrid Strategy for Automated
Performance Problem Searches.” In Euro-Par 2002. August 2002.

J. Rumbaugh, I. Jacobson, G. Booch. The Unified Modeling Language
Reference Manual. Addison Wesley Longman, Inc. 1999.

G. A. Rummery and M. Niranjan. On-line Q-learning using connectionist
systems. Techincal Report CUED/F-INFENG/TR 166. Engineering Department,
Cambridge University. 1994,

S. J. Russel and P. Norvig. Artificial Inteligence: A Modern Approach. Prentice
Hall, Inc. 1995.

A. L. Samuel. “Some Studies in Machine Learning Using the Game of
Checkers.” IBM Journal of Research and Development, 3(3):210-229. 1959

N. G. Santiago, D. T. Rover, and D. Rodriguez. “A Statistical Approach for the
Analysis of the Relation Between Low-level Performance Information, the
Code, and the Environment.” In International Conference on Parallel
Processing Workshops. 2002.

S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. “Eraser: A
Dynamic Data Race Detector for Multithreaded Programs.” In ACM
Transactions on Computer Systems 15(4):391-411. 1997.

J. Schaeffer, J. C. Culberson, N. Treloar, B. Knight, P. Lu, and D. Szafron. “A
World Championship Caliber Checkers Program.” In Artificial Intelligence
53(2-3):273-289.1992

C. Seragiotto and T. Fahringer. “Aksum: A Performance Analysis Tool for
Parallel and Distributed Applications.” In Performance Analysis and Grid
Computing, edited by V. Getov et al. Kluwer Academic Publishers, ISBN 1-
4020-7693-2. Boston, USA.. October 2003.

127.

128.

129.

130.

131.

132.

133.

134.

135.

136.

137.

138.

139.

140.

141.

142.

143.

144.
145.

205

C. Seragiotto and T. Fahringer. “Analysis of Distributed Java Applications
Using Dynamic Instrumentation.” In Proceedings of Cluster 2005.
M assachusetts, USA. September 2005.

C. Seragiotto and T. Fahringer. “ Automatic Search for Performance Problemsin
Parallel and Distributed Programs by Using Multi-Experiment Analysis.” In
Proceedings of HiPC 2002. Bangalore, India. December 2002.

C. Seagiotto and T. Fahringer. “Modeling and Detecting Performance
Problems for Distributed and Parallel Programs with JavaPSL.” In Proceedings
of Supercomputing 2001. Colorado, USA. 2001.

C. Seragiotto, T. Fahringer, M. Geisser, G. Madsen, H. Moritsch. “On Using
Aksum for Semi-Automatically Searching of Performance Problems in Parallel
and Distributed Programs.” In Proceedings of 11th Euromicro Conference on
Parallel Distributed and Network-based Processing (PDP 2003). Genoa, Italy.
2003.

C. Seragiotto and T. Fahringer. Performance Anaysis for Distributed and
Parallel Java Programs.” In Proceedings of |IEEE International Symposium on
Cluster Computing and the Grid (CCGrid). Cardiff, UK. 2005.

M. Singhal and N. G. Shivaratri. Advanced Concepts in Operating Systems.
Distributed, Database, And Multiprocessor Operating Systems. McGraw-Hill,
Inc. 1994.

S. Shende and A. D. Maony. “Integration and application of TAU in parallel
Java environments.” Concurrency and Computation: Practice and Experience.
15:501-519. John Wiley & Sons, Ltd. 2003.

Y. Solihin, V. Lam, and J. Torrellas. “Scal-Tool: Pinpointing and Quantifying
Scalability Bottlenecks in DSM Multiprocessors.” In Proceedings of
Supercomputing'99. Portland, USA. November 1999.

SQL Server Query Execution Plan Analysis. http://www.sgl-server-
performance.com/query_execution_plan_anaysis.asp, retrieved on June 17,
2005.

Sun Fire E25K/E20K Systems Overview Manual.
http://www.sun.com/products-n-sol utions/hardware/docs/pdf/817-4136-11.pdf,
retrieved on June 23, 2005.

R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. The
MIT Press. Cambridge, USA. 1998.

Standard Performance Evaluation Corporation (SPEC). http://www.spec.org,
retrieved on March 3, 2005.

A. J. van der Steen and J. J. Dongarra. “Overview of Recent Supercomputers -
2004.” http://www.top500.0rg/ORSC/2004, retrieved on June 27, 2005.

T. Sterling. Beowulf Cluster Computing with Windows (Scientific and
Engineering Computation). The MIT Press, 2001.

V. S. Sunderam. “PVM: A Framework for Parallel Distributed Computing.”
Concurrency: Practice and Experience, 2, 4, 315-339, December, 1990.
Supercomputador MareNostrum, Barcelona Supercomputer Center.
http://www.bsc.org.es/resources/marenostrum,es.htm, retrieved on June 27,
2005.

R. S. Sutton. “Generalization in reinforcement learning: Successful examples
using sparse coarse coding.” In Advances in Neural Information Processing
Systems: Proceedings of the 1995 Conference. MIT Press. Massachusetts, USA.
A. S. Tanenbaum. Modern Operating Systems. Prentice Hall, Inc. 1992.

A. S. Tanenbaum. Structured Computer Organization. Prentice Hall, 1999.

206

146.
147.

148.

149.

150.

151.

152.

153.

154.

155.

156.

157.

158.

159.

160.

161.

Top500 Supercomputer sites. http://www.top500.org, retrieved on June 1, 2005.

H.-L. Truong and T. Fahringer. "SCALEA: A Performance Analysis Tool for
Parallel Programs.” Concurrency and Computation: Practice and Experience
15(11-12):1001-1025, John Wiley and Sons. September 2003.

The Unicode Consortium. The Unicode Standard, Version 4.0.0, defined by:
The Unicode Sandard, Version 4.0. Addison-Wesley, 2003.

J. S. Vetter. “Dynamic Statistical Profiling of Communication Activity in
Distributed Applications.” In Proceedings of the 2002 ACM SGMETRICS
International Conference on Measurement and Modeling of Computer Systems.
Cdlifornia, USA. 2002.

J. S Vetter. “Peaformance Anaysis of Distributed Applications Using
Automatic Classification of Communication Inefficiencies.” In Proceedings of
the 14th international conference on Supercomputing. Santa Fe, New Mexico,
USA. 2000.

J. S Vetter and M. O. McCracken. “Statistical Scalability Anaysis of
Communication Operations in Distributed Applications.” In Proceedings of
ACM S GPLAN Symposium, Principles and Practice of Parallel Programming.
2001.

J. S. Vetter and D. A. Reed. “Managing Performance Analysis with Dynamic
Statistical Projection Pursuit.” In Proceedings of the 1999 ACM/IEEE
Conference on Supercomputing. Oregon, USA. 1999.

J. S Vetter and P. H. Worley. Asserting Performance Expectations. In
Proceedings of SC2000. Maryland, USA. November 2000.

Visua Studio .NET Code Analysis On Demand. http://www.fmsinc.com/dotnet/
Analyzer, retrieved on June 17, 2005.

C. J. C. H. Watkins. Learning from Delayed Rewards. Ph.D. thesis, Cambridge
University. 1989.

WHIRL Intermediate L anguage Specification.

http://prdownl oads.sourceforge.net/open64/whirl.pdf, retrieved on July 1, 2005.

F. Wolf and B. Mohr. “Automatic Performance Anaysis of MPI Applications
Based on Event Traces.” In Proc. Of the European Conference on Parallel
Computing. Germany, August 2000.

F. Wolf and B. Mohr. “EARL - A Programmable and Extensible Toolkit for
Analyzing Event Traces of Message Passing Programs.” In Proceedings of 7th
International Conference, HPCN Europe 1999, 503-512. April 1999.

M. Woodacre, D. Robb, D. Roe, and Karl Feind. The SGI® AltixTM 3000
Global Shared-Memory Architecture. http://www.sgi.com/pdfs/3474.pdf,
retrieved on June 25, 2005.

XML Schema Part 1: Structures. http://www.w3.0rg/TR/xmlschema-1, retrieved
on March 4, 2005.

K. Yeung, P. H. J. Kelly, and S. Bennett. “Dynamic Instrumentation for Java
Using a Virtua JVM.” Performance analysis and grid computing. Kluwer
Academic Publishers, ISBN 1-4020-7693-2, 2004.

L ebend auf

Angaben zur Person
Name
Staatsangehorigkeit
Geburtsdatum

Schul- und Berufsbildung
Janner 1999 — November 2000

Fachgebiet
Diplomarbeit

Marz 1995 — November 1998

Marz 1990 — November 1993

1982-1989

Clovis Seragiotto Jlnior
Brasilien
08.01.1975

Magister der Naturwissenschaften - Institut fir
Mathematik und Statistik, Universitat S50 Paulo
(Brasilien) und gefordert von FAPESP (Stiftung fir die
Forderung der Forschung des Bundeslandes S&o Paulo)

Informatik, Schwerpunkt ,, Concurrent Programming

Automatische Erkennung von ,, Race conditions® in
Java-Programmen

Bakkalaureus der Computerwissenschaften -
Ingtitut fir Mathematik und Statistik, Universitat Sdo
Paulo (Brasilien)

Elektronische Datenverarbeitung, Technische
Bundes ehranstalt S&o Paulo (Brasilien)

Grund- und Hauptschule

