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Kurzfassung

Das Standardmodell der Elementarteilchenphysik beschreibt alle derzeit bekannten funda-
mentalen Materieteilchen sowie deren Wechselwirkungen, namlich die starke, die schwache
und die elektromagnetische Kraft. Obwohl das Standardmodell bei der korrekten Beschrei-
bung experimenteller Ergebnisse im Rahmen der Messgenauigkeit grofie Erfolge verzeichnen
kann, wird angenommen, dass es eine effektive Theorie ist, die nur fiir die derzeitig erreich-
baren Energien Giiltigkeit hat. Um physikalische Phénomene auch bei hoheren Energien
beschreiben zu konnen, muss das Standardmodell erweitert werden. Der aussichtsreichste
Kandidat hierfiir ist das Minimale Supersymmetrische Standard Model (MSSM), dem das
Konzept der Supersymmetrie zugrunde liegt. Das MSSM sagt die Existenz von sogenann-
ten supersymmetrischen Teilchen zu den bisher bekannten Teilchen voraus. Die Suche nach
diesen supersymmetrischen Teilchen ist deshalb eines der wichtigsten Ziele des Large Hadron
Colliders (LHC) am Kernforschungszentrum CERN, bei dem geniigend hohe Energien zur
Verfiigung stehen sollen, um Kollisionen zu erzeugen, die die Existenz von Supersymmetrie
bestatigen.

Unter diesen supersymmetrischen Teilchen befinden sich die Partnerteilchen der Fermio-
nen, die Sfermionen, sowie fiinf physikalische Higgsbosonen. Um diese Teilchen entdecken

zu konnen, sind genaue Vorhersagen ihrer Zerfallskanile und Verzweigungsverhaltnisse er-
forderlich.

In dieser Arbeit werden die Zerfalle von Higgsbosonen in zwei Sfermionen und ihre gekreuzten
Kanale analysiert. Von groflem Interesse sind dabei die Sfermionen der dritten Generation,
weil man annimmt, dass sie wegen ihrer starken Yukawakopplungen sowie ihrer Links-Rechts
Mischung sehr leicht sind. In der Berechnung der Zerfallsbreiten werden die vollstandigen
elektroschwachen Einschleifen-Korrekturen berticksichtigt. Aufgrund der Tatsache, dass in
diesem Prozess fast alle Parameter des MSSM renormiert werden miissen und daher eine
grofle Anzahl von Feynmangraphen berechnet werden muss, gestaltet sich diese Aufgabe
als ziemlich schwierig. In bestimmten Zerfallskanélen, vor allem fiir grole Werte des Pa-
rameters tan 3, fiihrt das On-shell Renormierungverfahren zu inakzeptablen Ergebnissen,
sodass eine Verbesserung notig ist. Dieses Problem kann durch eine Redefinition des Tree-
levels gelost werden, indem die fermionischen Masses und die trilinearen Kopplungen als
DR GroBen behandelt werden. Die Entwicklung um diesen redefinierten Tree-level fiihrt
daraufhin zu verniinftigen Ergebnissen. Um die benétigten DR und On-shell Gréfen in kon-
sistenter Weise zu erhalten, muss die Umrechnung von den DR auf die On-shell Gréfien
und umgekehrt sorgfaltig behandelt werden. Die starke Verwicklung der in diesem Verfahren
auftretenden Parameter machen die Entwicklung eines ausgekliigelten Iterationsverfahrens
notwendig.
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Abstract

The Standard Model of elementary particle physics describes all presently known fundamen-
tal particles that make up all matter as well as their interactions, i.e. the strong, weak, and
electromagnetic forces. Despite its great success in explaining experimental results correctly
within the scope of precision measurements at current particle accelerators, it is believed to
be an effective theory valid only at energies accessible by today’s particle accelerators. There-
fore, the Standard Model has to be extended to describe physics also at higher energies. The
most promising candidate is the minimal supersymmetric extension of the Standard Model
(MSSM). Based on the concept of supersymmetry, it predicts the existence of supersym-
metric particles to every fundamental known particle. The search for supersymmetry is one
of the primary goals of the Large Hadron Collider (LHC) at the CERN laboratory which
should be ready for use in 2007, producing collisions at sufficiently high energies to detect
the superpartners many theorists expect to see.

Among these supersymmetric particles are the partners of the fermions, called sfermions, as
well as the five supersymmetric counterparts of the Higgs boson in the Standard Model. For
a discovery, precise predictions for their decay modes and branching ratios are necessary.

In this thesis, we study in detail the decays of Higgs bosons into two sfermions, as well as
the corresponding crossed channels. In particular, the sfermions of the third generation are
interesting because one expects them to be lighter than the other sfermions due to their
large Yukawa couplings and left-right mixings. We will calculate the full electroweak one-
loop corrections in the on—shell renormalization scheme. Owing to the fact that almost all
parameters of the MSSM have to be renormalized in this process and hence a large num-
ber of graphs has to be computed, the calculation is very complex. Despite this complexity,
we have performed the calculation in an analytic way. As we will see, in some cases the
on-shell scheme will lead to unacceptable results in certain decay channels which makes an
improvement necessary. Especially this is the case in the decay modes involving down—type
sfermions for large values of the parameter tan 3. This problem can be solved by defining an
appropriate tree level in terms of DR running values for the fermion masses and the trilinear
couplings. The expansion around this new tree level then no longer suffers from bad con-
vergence. In order to get consistently all needed DR running and on-shell masses, we have
to pay special attention to the shifting from the DR to the on-shell renormalization scheme
and vice versa. Since the parameters involved in these calculations are very entangled, we
have to perform a sophisticated iteration procedure.
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Chapter 1

Supersymmetry

The Standard Model (SM) of elementary particle physics [1, 2] is an impressively successful
theory of quarks and leptons and their electroweak and strong interactions. It is a gauge
theory described by the gauge group SU(3)¢c ® SU(2);, ® U(1)y in which the electroweak
SU(2),®U(1)y symmetry is spontaneously broken to the U(1) gy, electromagnetic symmetry.
The mechanism of spontaneous electroweak symmetry breaking (EWSB) [3] is based on the
nonvanishing vacuum expectation value v of the fundamental scalar field in the SM, the
Higgs field, to give masses to all particles which couple to the Higgs boson, in particular
to the W* and Z° weak vector bosons. Although the SM describes almost all phenomena
presently known at energies up to ~ 100 GeV, there are several fundamental questions that
remain unanswered:

e Hierarchy problem

One of the main arguments to extend the SM is the solution of the hierarchy problem.
The SM does not explain the scale of EWSB. Phenomenologically, the mass of the
Higgs particle is expected to lie in the range of the EWSB scale, i.e. v ~ 250 GeV. In
the SM, radiative corrections to the Higgs mass (squared) depend quadratically on the
UV cut—off A where new physics should appear, since the masses of scalar particles
are not protected by chiral symmetries. Therefore, the Higgs boson is unstable against
quantum corrections, leading to a natural mass close to the high scale A.

o FElectroweak symmetry breaking
In the SM, the masses of fermions and gauge bosons are generated by the Higgs mecha-
nism which is parameterized by the Higgs boson & and its potential V' (h) oc uh? + \h?.
However, this potential is introduced by hand and without any deeper justification for
a negative squared mass parameter u? which accounts for the typical ‘mexican hat’
potential with its minimum away from h = 0.

o Gauge coupling unification
Despite its enormous success in confirming nearly all experimental data in high preci-
sion measurements, the SM cannot be the final truth in understanding nature but is
rather an effective theory valid only at energies nowadays reachable at particle accel-
erators. Therefore, it is expected that there exists a Grand Unified Theory (GUT) at
a high scale in which the fundamental forces are treated by means of one single gauge
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Supersymmetry

group. However, the most recent measurements of the coupling show that unification
within the SM is not possible.

e (Cosmological issues

One of the most fundamental open questions is the origin of the observed baryon asym-
metry of the universe. Although the SM fulfills all the requirements for baryogenesis [5],
the electroweak phase transition is too weak to preserve the generated baryon asymme-
try. Therefore, baryon asymmetry generated at the electroweak phase transition claims
for new physics at the electroweak scale.

In addition, the cosmic microwave background data strongly indicate that only about
5% of the total matter density of the universe consist of quarks leptons of the SM, while
there is about five to six times more mass in the form of invisible cold dark matter.
Unfortunately, the SM does not have a reliable candidate with the right properties to
form this cold dark matter.

Therefore, the Standard Model has to be extended to describe physics also at higher ener-
gies. In the early 70’s, J. Wess and B. Zumino found an attractive symmetry relating the
two fundamental species of elementary particles, bosons and fermions, by a supersymmetry
transformation,

Q| Fermion) = | Boson) Q| Boson) = | Fermion) . (1.1)

In such supersymmetric models each particle of a certain type gets a superpartner with equal
mass and the same quantum numbers but differs in spin by 1/2. Due to this boson « fermion
symmetry the scalar masses are protected from quadratically divergent loop corrections, as
the masses of the fermions are protected by chiral symmetry, providing an elegant solution
to the hierarchy problem.

Since none of the predicted supersymmetric particles have been observed, SUSY must be a
broken symmetry. If this supersymmetry breaking is of a certain type known as soft breaking
6], it doesn’t forfeit some of its advantages, e.g. it does not reintroduce quadratic divergences
of scalar particle masses (squared).

Even though theories including SUSY have to explain why the masses of the predicted
superpartners are that high and up to now there is no direct evidence that the fundamental
structure of nature is supersymmetric, such theories provide many remarkable features:

e Hierarchy problem

One of the main reasons for introducing SUSY theories is their ability to solve the
hierarchy problem [7]. By grouping fermions and bosons together in supermultiplets,
the putative quadratically divergent radiative fermionic corrections to the Higgs bo-
son mass are cancelled by the corresponding bosonic loop contributions of opposite
sign. Hence, SUSY stabilizes the hierarchy in the sense that the ‘natural’ mass of the
Higgs boson lies in the range of electroweak symmetry breaking which is no longer in
contradiction with a very high GUT scale.

o [Llectroweak symmetry breaking
As already indicated, in the SM an effective Higgs potential V' (h) oc u2h? + Ah* with
p? < 0 is introduced ‘by hand’ to achieve EWSB. In renormalizable (supersymmetric)



theories, however, the mass parameters which enter in the Lagrangian are also scale—
dependent, and renormalization group equations (RGEs) can be used to evolve the
parameters from the unification scale of the order of 10'® GeV down to the weak scale
of order 10? GeV. In case of the Higgs mass parameter p, the large top quark Yukawa
coupling is responsible for a negative value of u? of the correct order of magnitude at
the electroweak scale, thus providing a plausible explanation of the origin of EWSB
8, 9].

Gauge coupling unification

It can further be shown that in the minimal supersymmetric extension of the SM,
the extrapolation of the low energy values of the gauge couplings unify at a scale
Mgyt =~ 3 x 10'® GeV [10], well in agreement with the limits on the proton lifetime.

Cold dark matter

As we have seen, supersymmetric models can solve many problems which the SM
suffers from. However, without any additional structure, they can give rise to baryon
and lepton number violation at unacceptable levels, e.g. proton decay can be mediated
by the superpartners of quarks, i.e. p — 7’e™. The non-observation of such decays has
lead to the introduction of a discrete symmetry known as R—parity [11], to forbid such
decays and to ensure baryon and lepton number conservation in an elegant way. As a
consequence, the lightest supersymmetric particle (LSP) is absolutely stable, and, if
electrically neutral it serves as a nice cold dark matter candidate.



Chapter 2

The Minimal Supersymmetric
Standard Model

The simplest and most attractive extension of the Standard Model is the Minimal Super-
symmetric Standard Model (MSSM). As indicated by its name, ‘minimal’ means in this case
that the number of superfields and interactions is kept as small as possible. In particular, the
field content of the MSSM consists only of the SM fields and their supersymmetric partners,
and an additional Higgs doublet.

e Gauge fields

In order to respect the SU(3)c®@SU(2),®@U(1)y gauge symmetry of the SM, the spin-1
gauge bosons are described by the corresponding vector superfields. In particular, the
eight gluons of QCD, G7;, get eight spinf% partners G* called gluinos, the SU (2) gauge
bosons W/i get three winos W' as partners and the U(1) gauge boson B, gets a bino
B. Note that since SU(2); x U(1)y is broken in the SM, the winos and the bino
do not form mass eigenstates but mix with fields with the same charge but different
SU(2), ® U(1)y quantum numbers.

Superfield | spin-1 | spin-1/2 | SU(3)c @ SU(2), @ U(1)y Names
Ve G}, G* (8,1,0) gluons, gluinos
Vi W Wi (1, 3,0) W-bosons, winos
1% B, B (1,1, 0) B-boson, bino

Table 2.1: Gauge supermultiplet fields in the MSSM.

e Matter fields
The matter content of the SM is described by three generations of leptons and quarks,
i.e. for each generation two SU(2), fermion doublets and three singlets for the right-
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handed fermions,

L:(VL), E = ¢, Q:(ZL), D=d,, U=u,.
L

Therefore, one generation of the SM is represented by five left—chiral superfields which
contain the leptons and quarks given above plus their supersymmetric partners, the
sleptons and squarks:

(2.1)

E:(’fL>, Bog,. @:(“f), Ded, =i, (2.2)
€r, dL
Superfield | spin—1/2 | spin-0 | SU3)c®@ SU(2), @ U(1)y Names
Q (UL, dL) (uLa jL) (37 27 %)
quarks, squarks
Ue iR i (3,1, -
f (x 3 families)
D¢ dr ds, (3,1, 2)
L (vp,er) (UL, €r) (1, 2,-1) leptons, sleptons
Ee er &% 1,1, 2) (x 3 families)
Hl (1—:[117[:[12) (H117H12) (17 27 '1>
o higgsinos, Higgs
H, Hl H2 Hj, H2 (1,2, 1)

Table 2.2: Chiral supermultiplet fields in the MSSM.

e Higgs sector
Contrary to the SM, two chiral superfield doublets with hypercharges £1 are required
to break SU(2); x U(1)y invariance and to give masses to both up— and down-type
fermions. One reason is that if there was only one single chiral superfield doublet,
the gauge symmetry would suffer from a fermion triangle gauge anomaly. This can
easily be seen from the conditions for anomaly cancellation, Tr[Y?] = Tr[T3Y] = 0,
where T3 and Y denote the third component of the isospin and the weak hypercharge,
respectively, and the electric charge given by () = T5+Y/2. In the SM these conditions
are satisfied by a complete generation of SM fermions. To cancel the contribution from
one superfield doublet, one needs a second doublet to get a consistent quantum theory.
The two Higgs doublets and their superpartners, the higgsinos H?, are given as follows:

H! Hl
Hl:(H%)’ HQZ(H§)7
- H! - H!
H, = 1 = 22 )
() (i)



The Minimal Supersymmetric Standard Model

2.1 MSSM Lagrangian
The complete Lagrangian of the MSSM can be written as
Lyssm = Liinetic — Vy — Ve — Vb = Vg + Lot » (2.4)

where Linetic stands for both the standard kinetic terms for each particle and their interac-
tions with the gauge bosons.

The interactions described by the potentials Vx are all restricted by supersymmetry, and
the last term (Lgof) includes the SUSY-breaking terms.

In general, interactions in the MSSM have two different sources:

e Superpotential
The superpotential for the MSSM is given by

AAAAAAAAAA

W = ey |h HILTE® + ha HIQID® + hy HO'U — uﬁ[{ﬁg] , (2.5)

where the hatted quantities f[}, Q',L7,U, D, F are the chiral superfields given in Ta-
ble 2.2. Due to better readability we have suppressed all colour, weak isospin and
generation indices.

The superpotential determines two kinds of interactions mentioned in eq. (2.4). Firstly,
the Yukawa potential V4 can be obtained by replacing two superfields in the superpo-
tential by the corresponding fermionic fields and the remaining superfield by its scalar
representative,

Ve = e [heHILIE + hyHIQI D¢ + hoHQIU® — uﬁ[{ﬁg]

+ ey | BB + h T{Q) D + b QT

+ ey |hHILES + hatT{QY D + b QU]
+ h.c. (2.6)

The F—term potential V originates from using the equations of motion for the auxiliary
fields F3,

2

- T X &

where the sum is taken over all scalar components ; of the superfields.

e Gauge Symmetry
Apart from the usual SM-like gauge interactions, the MSSM also has terms that are
related to gauge symmetry although they contain neither gauge bosons nor gauginos.
These terms have their origin in eliminating the auxiliary fields D?, therefore they are
called D—terms. The corresponding D—term potential is given by

1 a a
VD=§ZDD : (2.8)



2.2 MSSM spectrum

with

D* = g*pi(T")i; (2.9)

where ¢; are the scalar components of the superfields and 7% denoting the generators
of the gauge group satisfying [T¢, T?| = i fabT*.

In fact, there exists one additional kind of interaction allowed by gauge invariance
involving the gaugino fields. The corresponding potential Vi, is given by

Veus = 120206 X (T wthy + huc., (2.10)

where (¢, 1) are the spin—0 and spin spin—%

spectively, and \* denoting the gaugino field.

components of the chiral superfield, re-

The last term in the full Lagrangian of the MSSM, L, involves the soft SUSY-breaking
terms and can be explicitly written as

R TP o
Ly = m§h|H1|2+m§{2|H2|2—m%2(H1H2+HIH§)+§mggg + MWW

+§M’ BB+ ME|qr|* + M |ag|* + M3|dg|* + MZ| L] + ME|eg|”
tey (heAHID B + haAgH{Q D + hy A QU + )| (2.11)

where we have introduced the SUSY—-breaking mass parameters m%,l, mf%, miy, mg, M, M,
M%, M?J, MIZ), M%, M% as well as the trilinear scalar couplings A., A,, Aqg.

2.2 MSSM spectrum

2.2.1 Higgs sector

In the MSSM, two complex Higgs doublets or eight real scalar degrees of freedom (DOF)
are required to describe electroweak symmetry breaking, i.e. the Higgs scalars acquire non-
vanishing vacuum expectation values (VEVs). From these eight real scalar DOF three are
massless and become the longitudinal modes of the massive vector bosons Z° and W=. The
masses of the remaining five DOF, representing the three neutral Higgs bosons h°, H?, A°
and the two charged ones, H*, can be obtained by expanding the Higgs potential around its
minimum, up to second order in the fields. The scalar Higgs potential in the MSSM is given
by

Vo= mi|H|* +m3|Ho|* — miy(H\Hy + H{HJ)

1 92
+§(92+gl2)(|Hl|2— |H2|2)2+§|H1TH2|2, (2.12)

with m? = m3; +|u|?, where m3; and mj, are soft SUSY-breaking parameters. The quadratic
terms o< |u|? originate from F-terms, and the terms involving four scalar Higgs fields are



The Minimal Supersymmetric Standard Model

derived from the D-term potential. Note that in contrast to the SM, where the strength
of the Higgs self-interaction is an unknown free parameter, the quartic interactions in the
MSSM are completely determined by the gauge couplings g;.

As a next step, electroweak symmetry should be broken down to electromagnetism SU(2), ®
U(1)y — U(1)gm, when the Higgs fields

H} HY H! HF
m= (G )= (i) m= (o) - ()

get nonvanishing VEVs. Having the freedom to make SU(2), gauge transformations, we can
rotate away a possible VEV of one component of the scalar fields. Without loss of generality
we can choose (H)) = 0 at the minimum of the potential, implying that also the VEV
of the negatively charged component of Hj is vanishing, (H;) = 0. Since both charged
components of the Higgs scalars remain unaffected, electromagnetism is not spontaneously
broken, in agreement with experiment. Therefore, only the neutral Higgs boson fields acquire
a nonvanishing VEV | i.e.

(Hy) = (%1 > , (Hy) = ( ,1?2 ) : (2.13)

In order to determine the minimum of the Higgs potential V', we can take m2, in the term
x H{H, to be real and positive, since this is the only piece which depends on the phases
of the Higgs fields; any possible phase in m2, can be absorbed into the phases of H; and
Hy. Thus the product HYHY also has to be real and positive, and, concerning their opposite
weak hypercharge, both phases can be made zero by a U(1)y gauge transformation. As a
consequence, CP invariance cannot be broken spontaneously in the MSSM, which means
that the eigenstates of the Higgs boson are also eigenstates of CP.

For the two Higgs doublets we choose the following common parameterization:

H = ( HY > _ ( v +(¢?+z‘x9)/\/§) Yy =1 (2.14)

Hy o
H+ ¢+
H, = 2 | — 2 ’ Yo, = +1 2.15
’ (HS) (v2+(¢g+zxg>/ﬁ) - 219
The minimum of the Higgs potential can now be obtained easily by solving the equations
ov ov
OHY |0y, OH2 l(11g)—,,

resulting in the two minimization conditions

1

mivy = —miyv — 1(92 +g%) (v} —v3), (2.17)
1
mauy = —miyvn + 1(92 +9%) (v} —v3). (2.18)
Since one combination of the VEVs,
2., 2 2
+
mg =L@ 40d),  mi =L i), (2.19)

2 2



2.2 MSSM spectrum

and hence
2

2m
2 2 02y Z 2
v = ('Ul -+ 'UQ) = W ~ (174 GeV) s (220)
is very well known from experiment, we can express both VEVs in terms of one single
parameter,

tanf = 23>0, 0<p< . (2.21)
(%1 2
Egs. (2.17) and (2.18) may now be written as
1
mi = —mi,tanf3 — émzz cos 23, (2.22)
1
mi: = —m?2,cotf+ §m2Z cos 2. (2.23)

Therefore, the Higgs sector at tree level only depends on two free parameters.
The Higgs mass spectrum is obtained by evaluating the second derivatives of the Higgs
potential, taken at its minimum,

M2,Higgs . 1 82V

0 75 OmoH, (2:24)

(HY)=wn

At tree level, ij’Higgs splits into four independent 2 x 2 mass matrices which can be separately
diagonalized. In terms of the original gauge eigenstate fields, the mass eigenstates are given

by
H° cosa  sino @Y
( h? ) B ( —sina cosa ) ( qﬁé ) ’ (2.25)
G° _ —cosf3 sinf %
( A° > B ( sin 3 cosf3 ) ( Xé ) ’ (2.26)

G* —cosf sinpf oF
(Hi) B ( sin (3 cosﬁ)(gbgt) ’ (2.27)

The Goldstone bosons G° and G* are ‘eaten’ by the longitudinal components of the massive
vector bosons Z° and W¥, respectively. The five remaining physical Higgs bosons form two
CP-even states (h°, H°), one CP-odd state A° and the two charged Higgs bosons H*. As
already mentioned above, the two free parameters in the Higgs sector are conventionally
chosen to be the mass of the pseudo-scalar Higgs boson A° and the ratio of the two VEVs,

mao , and tan 3. (2.28)

The remaining parameters such as the masses and the mixing angle o can be expressed using
these free parameters as

1
Mio o = 3 [mi‘o +my F \/(mio +m%)? — 4m?ym% cos? 3| (2.29)
my. = mio+miy, (2.30)
2 2
tan2a = tan2ﬁm‘2407+m22, —g <a<0 (2.31)

Mo — My
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2.2.2 Sfermion sector

The sfermion mixing is described by the sfermion mass matrix in the left-right basis ( fr, fR),
and in the mass basis (f1, f2), f =t,b or 7,

m?  aymy ~ m2 0 _
L T 1
M3 = ( ! = (RY) Of 2 RS, (2.32)

2
army My, fa

where RY is a 2 x 2 rotation matrix with rotation angle 67,

i cosef siné’f
fj = ( —sinff cosf; )’ (2.33)

which relates the mass eigenstates fi, 1= 1,2, (mjz1 < mf2) to the gauge eigenstates fa,

a=L,R, byﬁ:Rfafa and

mJ%L = M{z@ it (I} —e;sin®6y) cos 28 m +m7 (2.34)
m?R = M{20, by TEr sin®6y cos 28 m2 + m?[ , (2.35)
aj = Ay —p(tanp) 2" (2.36)

Mg, My, My, Mp and Mg are soft SUSY-breaking masses, Ay is the trilinear scalar coupling
parameter, p the higgsino mass parameter, [ ?L denotes the third component of the weak
isospin of the fermion f, e; the electric charge in terms of the elementary charge ey, and Oy
is the Weinberg angle.

The mass eigenvalues and the mixing angle in terms of primary parameters are

1
2 = Z(m? 2 2 2 )2 2,2
Mpe = 9 <me +my F \/(me m];R) + 4afmf> , (2.37)

—aym
cosfl; = 1 (0<0;<m), (2.38)

2 2 20n2
V0, —m? )2 + ajm

and the trilinear breaking parameter Ay can be written as

1
meA; = Q(mfﬁ - mfg) sin 20 +my p (tanﬁ)*yﬁL : (2.39)

The mass of the sneutrino 7, is given by

V.

1
m; = M; + 5 m% cos203. (2.40)

2.2.3 Chargino and Neutralino sector

The fermionic superpartners of the gauge bosons, the gauginos, and the superpartners of the
Higgs bosons, the higgsinos, mix to form mass eigenstates called charginos and neutralinos.
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The charginos are therefore the superpartners of the gauge bosons W and the charged
Higgs bosons H*. In Weyl representation, the chargino fields [12]

Yt = (=W, HY) Y~ = (—iW™,H), (2.41)

enter in the mass term of the Lagrangian in the following form:

L= —% (vr07) - ( )0( )ET ) : ( 1/; > +h.c., (2.42)

with

B M \/ﬁmwsinﬁ
xo(( ) Vi), "

Since we work in the CP—conserving MSSM, the mass matrix X can be diagonalized by two
real 2 X 2 matrices U and V' according to

Mgt 0

UXV™! = ( ) : mge] < [mgsl. (2.44)

0 Mg+
In Dirac representation, the mass eigenstates are related to the gauge eigenstates by

o Vs
Xi = (Uij o) (2.45)

As these matrices are only of rank 2, the mass eigenvalues can be given analytically:

1
mii = 5 M? + 1% +2m3, F \/(M2 + 2+ 2m?,)? — 4(m¥, sin 23 — pM)? | (2.46)

The superpartners of the neutral gauge bosons, Bu and Wj, and of the neutral Higgs bosons,

H? and HY, mix to form four neutral mass eigenstates called neutralinos. In the interaction
base one can combine the four Weyl states as

W) = (—iB, —iW?, HY, HY). (2.47)
In terms of the vector ¢/° the neutralino mass terms in the Lagrangian are
L o 0
L = —5(@@) Y9+ he., (2.48)

where we used the neutralino mass matrix defined as

M 0 —Mgswy cos B mzsy sin 3
- 0 M mycy cos B —mygey sin 3 (2.49)
—myzSw cos 3 mycy cos 3 0 —

myzswsin B —mgew sin 8 — 0
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We use the short forms sy and ¢y for the sine and the cosine of the Weinberg angle.
Due to the Majorana nature of the neutralinos, the matrix can be diagonalized using only
one single rotation matrix,
-1 .
2Y 7~ = diag(mgg, mgg, myg, mygy), Imgo| < mgg| < [mg| < |myl, (2.50)

where we again assume the mixing matrix to be real and allow the eigenvalues to be negative.
The 4-component Majorana spinors for the neutralino fields can be constructed as

o= Ziy, (2.51)

with the corresponding mass term Lagrangian

1 4

=0 ~0



Chapter 3

Renormalization

Nowadays, experiments at particle accelerators have reached such a high precision that mod-
els in elementary particle physics can be studied at the quantum level. Therefore, theoretical
predictions of observables performed in the Born approximation are not sufficient anymore
and have to be improved by the inclusion of higher order corrections in perturbation theory.
Practically this means that one is confronted with the calculation of a large number of Feyn-
man diagrams with loops illustrating integrals over indefinite momenta. In general, these
integrals are divergent for large momenta and therefore have to be treated in a proper way.
In order to give such expressions a physical meaning, the divergences have to be absorbed
into the fields and parameters of the Lagrangian — this redefinition, which can be achieved
in various ways, is called renormalization procedure.

In this thesis, we will make use of the so—called multiplicative renormalization. In this scheme
all bare parameters and fields entering in the original Lagrangian are replaced by their cor-
responding renormalized ones, which are obtained by the multiplication with appropriate
renormalization constants:

9o — Zyg = (Hégg)g, (3.1)

1
oo — 2% = <1+§5Z¢>¢. (3.2)

Expanding the renormalization constants Z, and st/ ? around the value 1, the original La-
grangian splits into a renormalized Lagrangian and a part containing the counter terms dg
and 6Z,, i.e.

In order to absorb the divergences mentioned above and to give the parameters a well-defined
meaning, these counter terms have to fulfill several requirements depending on the chosen
renormalization scheme.

In this thesis, we use the on—shell renormalization scheme [13] as far as is possible in the
decay processes considered. In this scheme the finite parts of the renormalization constants
are determined e.g. by the condition that the propagator of each particle is exactly at its
physical mass. The main advantage of this on—shell approach is that it identifies the renor-
malized parameters with observable and, therefore, scale-independent quantities. However,

13
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we will see that applying this scheme will lead to unacceptable results in certain decay chan-
nels which makes an improvement necessary.

In the following we will review some results from the renormalization of the Standard Model
and discuss the renormalization of two—point—functions, one of the main ingredients when
performing radiative correction within the on—shell scheme. Furthermore, we give all renor-
malization conditions of the parameters needed for the explicit calculation.

3.1 SM gauge sector

The gauge sector of the Standard Model is not affected by its minimal extension, the MSSM.
Thus, the treatment of the electroweak gauge sector is identical to the renormalization proce-
dure in the SM, which is discussed in detail in [14, 15]. For the gauge fields the renormalization
constants are given by

W — (14 362Zw) W, , (3.4)
(Au ) - ( L 507a0 50247 ) (Au ) | (3.5)
Zu %5ZZA 14+ %5ZZZ Zu

Since the photon stays massless also after renormalization, only the weak gauge bosons Z°
and W¥ receive mass corrections, i.e.

mi, — miy, 4+ omiy, m3, — m% + 0m%. (3.6)
Decomposing the vector two—point—functions and the associated self-energies into their
transverse and longitudinal parts,

ki, ki,

DU(R) = —igu (K = mify) =g — “5° I () =252 (%), (3)
: , kuko\ a Fuky
PZII)/(I{:) = —tGw (k2 - mi)aab - Z<g/w - 22 )HTb(k2) - Z%HL[)(I{P) ) (38)

with a,b = {A, Z}, the corresponding renormalized self-energies in

k
—> .
Ve 1744 M =iet(k) FZ’;(k) e (k)

m v

can be written as
(k%) = V(K + (K —mi,) 02" — omiy, (3.9)
(k%) = TPk + 5 (K —m?2) 62 + L (K> — m}) 62" — Suém?,  (3.10)

valid for both the transverse and longitudinal parts with m? = ém? = 0. Applying the
on-shell renormalization conditions to T'% (k),

Rel'® (k) (k) = 0, lim LRefab(k)g(k) = —e'(k), (3.11)

2 2 v
k2=m2 k2—m2 k2 —m
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which means that the poles of the propagators are determined by the physical (pole) masses
and the residua are set to 1 on shell (k* = m?), the counter terms are given by

62 = —Rell§*(m2), 62" = —Rell}(mj), (3.12)
a 2 a

§7% = MReHTb(mg), a#b, (3.13)

om% = RellZZ(m%),  om? = Rell¥"(m2), (3.14)

. - a
with II(m?) = 51I(k?)| ,_ .
Since the weak mixing angle is a derived quantity in the on—shell scheme, determined by the
condition my = myzcw (cw = cosfy) [13], its renormalization constant can be expressed
in terms of the mass counter terms of the weak gauge bosons,

2 2 2 2 2 5.2
ocyy _ omyy  dmy osyy Gy Ocy (3.15)
& om? m% sk, sk '

W W z W w Cw

3.2 Electric charge

For the renormalization of the electric charge one only has to renormalize one single vertex,
for which usually the electron—positron—photon vertex is taken. In requiring for the renor-
malized elementary charge to describe the electromagnetic coupling in the Thomson limit,
i.e. for on—shell external particles and vanishing photon momentum,

a(p) T (p, p) u(p) = iea(p)yu(p), (3.16)

p?=m2
the counter term for the electric charge in eg = e 4 de is given by

1 sy 1 1. sy 1142(0)
T gAML W DS aZA L T TAA gy o 2V T\
2 +CWQ 2 T ( )+CW m?

(3.17)

However, the scale of high energy processes lies in the range of hundreds of GeV and thus
far away from the Thomson limit. In addition, contributions of light hadrons in IT144(0) lead
to large theoretical uncertainties [16, 15]. To avoid this problem, we use as input an effective
MS running coupling at ) = my, where the contributions from light fermions are already
absorbed [17, 18],

1
o (m2) = a ~ : (3.18)
M2 1— Aot (my) — 127.7

Here, « is the fine structure constant given in the Thomson limit, o = 1/137.036, and

o a (5 55 o
Aofs(m) = — (g + 5 (1 + ;)) + A (M) + Aafoy(m%) (3.19)
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where Aaep(m2) ~ 0.031497687 are the leptonic and Aal”) (m2) = 0.02769 & 0.00035 are
the hadronic contributions [19]. The counter term for the electric charge de is then given by

% — (471T) 62[42Nfef(A+log )+ZZNfef( & >
+4Z(A+log Q2)+i<A+logﬂ?2 )—22<A+log QQ)],

myy,

k=1 Xn =1 H;

(3.20)

with xf = mz V my < myz and x; = m,. N(]; is the colour factor, Né = 1,3 for (s)leptons
and (s)quarks, respectively. A denotes the UV divergence factor A =2/e —~+logdm, with
v being the Euler-Mascheroni constant v = lim (Zk 1 k — log m) ~ 0.577216.

3.3 Renormalization of two—point functions

Before we will turn to the renormalization of the remaining parameters and fields of the
MSSM which we will need in our calculations, i.e. the ones of the Higgs and sfermion sector,
we will have a short look on the subject of renormalizing two—point functions, as they are
the basic building blocks for calculating higher order corrections.

3.3.1 Scalar particles with mixing

According to multiplicative renormalization, the unrenormalized fields ¢y ; and mass param-
eters mg; in the bare Lagrangian

= _(bgﬂ 5Z-j (@ﬁ” + mal) ¢O,j (321)

are replaced by the corresponding renormalized ones, i.e.

L= —¢]0; (00" +m7) ¢;, (3.22)
bo; = Z ¢5k = (6jn + 2 0Z5) b1 + O(627) (3.23)

For the full renormalized two—point—function

k
—>

¢; ——»—— —>—— M = iTy;(k?) = i6;;(k>—m3?) + ill;; (k)

we demand the on—shell renormalization conditions

Rel';;(k?) o, =00 lim

s Reli(k?) = 1. (3.25)
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Inserting the renormalized self-energy II;(k?) = TI;;(k%) + HEJC-)(k‘Q) with the self-energy
counter—term

(k) = —6; om2 + 5 (K —m?) 6Z; + L (K — m?) 62, (3.26)
into eq. (3.25) leads to
dmi = Rell(m3), (3.27)
2 ..
6Z;; = Tt - Re IL;;(m35) i £, (3.28)

3.3.2 Fermionic particles with mixing

Like in the previous chapter we have the same structure for the physical as well as for the
bare Lagrangian:

L= 05 (i —mi) i, (3.30)
Lo = o0 (i P —mos) o, - (3.31)

The relation between the unrenormalized and the renormalized quantities is given by attach-
ing multiplicative renormalization constants to the unrenormalized fermion fields v, and
the mass parameter Mo, 1.€.

Yo = (6 + 20Z5 P+ $6Z5 PRty (3.32)
Yo, = Gu(0a+ 2628 P+ 1575 Py) (3.33)
mo; = mﬁ—émz, (334)

where the ‘dagger’ T in 5ZZ-IZ R indicates hermitian conjugation with regard to the spinor
indices. For the renormalized one particle irreducible (1PI) two—point—function

LN M = i (k) Ts; (k) (k)
Y, ¥ R R

with the renormalized self-energy

(k) = KP IL(k)+ §PrIIE(K) + 105" (k) Py, + 11" (k) PR (3.35)
we require the on—shell renormalization conditions
Re Dy (k) u;(k) . =0, lim Relyi(k)u;(k) = wi(k) (3.36)
=m? k2—m?2 K — M,

Inserting the counter—term Lagrangian

oL = QLZ (}%PLCz? + kPRCZIj — CE’LPL — CE’RPR)wj, (337)
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into £0 =L+ 5£,

k

—
Y > o > Wi

M = i( fPLCE + §PRCE
S,L S,R

we get for the coefficients C’Z?}

Ck = Yozk+ oz, (3.38)
CE = Loz + oz, (3.39)
O3t = L(mi6ZE +my6ZE) + 6,5 my, (3.40)
Cot = Y(mi0zZf + my6ZLT) + 65 m,. (3.41)
Thus the renormalized self-energies can be written as
nt = mk+ 102k +ozE), (3.42)
0% = mf o+ 1(6z8 + 621, (3.43)
M55 = 105 — L(my0ZE +m; 628 — 6,5 6m,, (3.44)
fIZ.Sj’R = Hfj’R — 1(m 525- +m,; 5ZjLZ-T) — 05 0m; . (3.45)

Taking the renormalization conditions in eq. (3.36) into account, we obtain the counter terms
for the mass parameter and the wave—function corrections

1
om; = 7Re [mi (Hﬁ(mi) + Hﬁ(mi)) I (my) + HZ’R(mZ-)] . (3.46)
2
075 = ———s Relm2 1L (my) + i, TEmy) + ms 5" +my TSR] (3.47)
? J
625 = —TUm)) 4 5 I (m) — 113 (m,)|
_mi% (T (k) + TUE(R)) -+ TS5 (k) + T ()| , (3.48)
k2—m2

i

and the corresponding right—-handed terms, 5Z1(j$)’R = 5ZZ-(]-S )’L(L < R).

3.4 Sfermion sector

According to the results of section 3.3, where we have derived the mass corrections and the
wave—function renormalization constants in terms of self-energies, these counter terms are
given in the sfermion sector by

dm%* = Re H{;(m}) (3.49)
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and
0Z] = —Reltf(m?), i=(1,2), (3.50)
7 2 7 o
0z}, = ———5 RelIjj(m7), i#]. (3.51)
fi fi

In order to renormalize the parameters entering in the sfermion mass matrix M? (see

eq. (2.32)), we have to look at its counter term 5/\/1;,

) INTEC A i INTEL 7 INTEU i
M = (6R') 0 , | R+ (R) 0 , |R +(R)) . , |OR’.

me 5mf2 me
(3.52)
with
spi = —( smbr meoshi g (3.53)
cos@f~ sinef f

The renormalization constant of the rotation matrix lej is determined such as to cancel the
anti—hermitian part of the sfermion wave—function corrections,

(624, — 62 )R, . (3.54)

(@9
=y
S
Il
o] =

ol

=1

Therefore, the counter term for the sfermion mixing angle 07 is given by [22, 23]

R ! ) = L F (m2 F (2
o0; = 1 (02 -9zh) = 2 ) Re (Ify(m2) + Ty (m2)) . (3.55)
and thus
1, . i :
5(M?)w - 95 Z (szk)TRe [Hil(m%) + Hlfk(mi)}Rl}; (3.56)
k,l=1

The counter terms of the remaining free parameters of the sfermion mass matrix are deter-
mined, if possible, through their tree-level relations in order to absorb all corrections from
other parameters in the considered matrix element [24, 25]. In this way we get the counter
terms for the trilinear couplings (see eq. (2.39))

STANY J ot
0A; = —(Af—u(tanﬁ)_ﬂf )ﬂ—k(—u—QlﬁL an §

om?
t —21§L LR
(2 00 tan gy 2 4

mpy

(3.57)
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with dm? p = %((Sm%1 —5m3;2) sin 207 + (mf;1 -
constants for the soft SUSY-breaking masses

m%) cos 20700 as well as the renormalization
Mg p,i

5M5,D,E(f) = 5m§~1 sin? 0F + 5m§~2 cos? 07 + (mf;l —m%) sin 207 00F — 2my dmy

—6m? cos 23 efs%/V + 2m?% sin 2363 efs%,[, — m% cos 23 ef5s%,[, )

(3.58)

However, in the on-shell scheme, there is a subtlety concerning the soft SUSY-breaking
parameters in the 11-element of My, i.e. M5 and M}, where we additionally have to include

UV-finite shifts [24, 25]. At the DR scale the soft SUSY-breaking parameters Mg ; enter
both in the up— and down-sfermion sector. At one-loop level, however, Mg ; obtain different
shifts in the up— and down-sfermion sector. In this work, we define Mc% ;g = M% i(d) =
3;1 cos” 07 + m% sin? 9f~— risz — mi cos 26(I3" —eysiy) to be the on-shell parameter in the
down—sfermion sector (d = b, 7), therefore we get

M (@) = Mg ;(d)+0Mp ;(d) — M ; (1) (3.59)

m

with

2
f1
—6m? cos 23 (I?L — essyy) + 2mYsin 2363 (I?L —essty)

5Méi(f) = 5m?;100529f—|—5m3;28in20f—(m —m?;Q)siDZHfé@f—me5mf

+m% cos 23 e;dsy - (3.60)

3.5 Higgs sector

The renormalization of the Higgs mixing angle « is treated in a similar way as the sfermion
mixing angle 0. Consider the mass matrix of the CP-even Higgs bosons hY and HY (cf.
section 2.2.1),

pgo gy — [ SO+ oSt By —sineos S + m)
’ —sin B cos B(m%, +m%)  cos® Bm?, + sin® fm
m?2 0
= (RHO)T- ( 5{0 "> ) ~RHO, mpo < Mo (3.61)
hO

with the rotation matrix

RI" = Rij(oz):< (3.62)

cos o  sin o
—sina  cos«o

Analogously to the case of the sfermion mixing angle, the renormalization constant of the
rotation matrix Rgo is determined such as to cancel the anti-hermitian part of the Higgs
wave—function corrections,

2

0 1 0 0 0
ORG = > 10z —0ZIT)RYS (3.63)
k=1
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which leads to the counter term

1 1
(Mo —mio)

Note that the indices the wave—function renormalization constants 5Z50 are interchanged

due to the conventional nomenclature labelling the light Higgs boson by an index 1 and the

heavy one by an index 2.

As stated in section 2.2.1, the parameter tan 3 plays a central role in the MSSM. Due to
its close connection to spontaneous symmetry breaking, it enters in almost all sectors of the
MSSM and, as a consequence, has a major effect on most MSSM observables. Though not
directly connected to measurable quantities, the applied renormalization scheme determines
its physical meaning and its relation to observables. In fact, several renormalization schemes
for tan (8 suffer from specific disadvantages, leading either to gauge dependences or numerical
instabilities [26]. However, in this thesis we apply the renormalization of tan 3 proposed by
[20, 21]. The mixing angle (3 is fixed by the condition that the renormalized A°~Z° transition
vanishes at p*> = m?,, ie.

ImIT 4050 (m%) = 0, (3.65)
which gives the counter term
dtan 8 9
= ImlII : :
tan 3 my sin 23 mllgoz0(ma0) (3.66)
AY : ZY M= —i k' (k%) € (k
_____ i = 1 AZ( ) €u< )

Figure 3.1: A°Z° mixing self-energy relevant for the renormalization of tan 3.



Chapter 4

Higgs decays into sfermions in the
MSSM

4.1 Introduction

The search for a Higgs boson is the primary goal of all present and future high energy
experiments at the TEVATRON, LHC or an ete~ Linear Collider. Whereas the Stan-
dard Model (SM) predicts just one Higgs boson, with the present lower bound of its mass
my > 114.4 GeV (at 95% confidence level) [27], extensions of the SM allow for more Higgs
bosons. In particular, the Minimal Supersymmetric Standard Model (MSSM) contains five
physical Higgs bosons: two neutral CP—even (h° and H°), one neutral CP-odd (A°), and two
charged ones (H¥) [28, 29]. The existence of a charged Higgs boson or a CP-odd neutral one
would give clear evidence for physics beyond the SM. For a discovery precise predictions for
their decay modes and branching ratios are necessary. In case supersymmetric (SUSY) parti-
cles are not too heavy, the Higgs bosons can also decay into SUSY particles (neutralinos x?,
charginos )N(ff, sfermions fm), HY A — )2?)”(? (4,7 = 1...4), H, A — fx; (k1 =1,2),
HO A® — . f. (m,n =1, 2), HF — Xy, H* — fmﬂ; At tree level, these decays
were studied in [30, 31]. In particular, the branching ratios for the decays into sfermions,
HO A° — £ fn , can be sizeable depending on the parameter space [32, 33]. The SUSY-QCD
corrections to the decays into sfermions have also been calculated [34, 35].

In this thesis, we study in detail the decays of Higgs bosons into two sfermions, {h°, H°, A’} —
f; f] and Ht — tNiIN)j as well as the crossed channels f, — le,S. In particular, the third gen-
eration sfermions t;,b;, and 7; are interesting because one expects them to be lighter than
the other sfermions due to their large Yukawa couplings and left-right mixings. Since A"
only couples to fr—fr (left-right states of f), and due to the CP nature of A%, A% — f,f;
vanishes. (This is valid also beyond tree level for real parameters in the MSSM.) We will
calculate the full electroweak one-loop corrections in the on—shell scheme. Owing to the fact
that almost all parameters of the MSSM have to be renormalized in this process and hence
a large number of graphs has to be computed, the calculation is very complex. Despite this
complexity, we have performed the calculation in an analytic way.

22



4.2 Tree level

4.2 Tree level

First, we review the tree-level results [32]. For the neutral Higgs fields we use the notation
HY = {h° H° A° G}, t/t stands for an up-—type (s)fermion and b/b for a down—type one.

/

Following [28, 29] the Higgs—Sfermion—Sfermion couplings for neutral Higgs bosons, Giins

can be written as

af

ijk

v]

= G(H,sz*fj) - [RfG{R,k(Rf)T] : (4.1)

The 3rd generation left-right couplings G{ r for up— and down-type sfermions are given by

o - —V2hymyco + gzmz(IPF —eisy ) Sarp — 5 ( Ay o+ 150)
b _%(At Ca + ,Usa) —\/ﬁhtmtca + gzmzets%,vsaw
(4.2)
ab B V2hymysa + gzmz(IF —eys2)sass %(Ab S T [Cq) (43)
bt %(Ab Sq + ﬂca) \/thmbsa + gzmzebs%[,saﬂg ’ '
GiRJ = G{RJ with a - a —7/2, (4.4)
. 0 —1<Atcﬁ+,u35)
GtLR,:S = —V2h i ’ g (4.5)
3 <At g+ p Sﬁ) 0
. 0 —£<Ab8g+,u0g)
G%R,:S = Vo | | ’ ) (4.6)
3 (Ab sp + p Cﬁ) 0

where we have used the abbreviations s, = sinz, ¢, = cosx and sy = sin fy. « denotes the
mixing angle of the {h°, H’}-system, and h; and h;, are the Yukawa couplings

gmsg gmy
hy = —>F——— hy = ————. 4.7
' V2myy sin 3 ’ V2myy cos 3 (47)
The couplings of the charged Higgs boson to two sfermions are given by
Gﬁ?l = G(H+£;'kl~7j) = Gl])'t;l = [REGtIf)R,l(Rb)T] N (4.8)

]

o _ hymy sin 3 + hymy cos 3 — WT;’V sin23  hy(Apsin § + pcos ) (49)
LR hi(A; cos B+ psin ) hymy cos B+ hymysin 8 )

- hymy sin 8 + hymy cos f — 2% sin 23 hy(A; cos  + psin 3
Gy = | o Ve A , ) . (4.10)
’ hy(Apsin 3 + pcos 3) hymy, cos B + hymy sin 3
Starting with the tree-level interaction Lagrangian for the three neutral Higgs bosons,

L = GLHf, (k=123), (4.11)
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the Feynman amplitude is simply given by

Mtree — ZG}E

ijk *

(4.12)

The tree-level decay width for the process HO(p) — f;(k1) + E(kg) then becomes

o= Ne [dk 1 [dPky 1 ;
ree ( 170 _ C 1 2 4¢4 f o2
P (Hy = fify) = Mg /(27r)3 25, /(27r)3 o, )0 (k=) |Gil
k

Ne k(mfo, m%,m%)
_ Hp 3fz fi |Gf |2 (413)
167y,
k

with the totally symmetric Kdllen function r(z,y,z) = \/(z — y — 2)? — 4yz and the colour
factor N(]; = 3 for squarks and N(]; = 1 for sleptons, respectively.
Analogously, the decay width for the charged Higgs boson H™ is given by

2

_ Ng w(m3;,,m2 m? ) .
rtree( g+ {Z A ‘ |Gt |2 4.14
(1 10 o lG (a.14)
//ﬁ. 7 t;
/ /
A A
ot 7 7
H)eemeeee <« ZG,ijk Hf———>—--« G
\ \
& &
\ \
AN f AN b
J J

Sh

Figure 4.1: Tree level diagrams for Hy — f; fj and Ht —

4.3 One—loop Corrections

Following the recipe of multiplicative renormalization, we replace the bare parameters and
fields in the Lagrangian by the corresponding renormalized ones, i.e. we attach renormaliza-
tion constants to each coupling and field. In case of the Higgs—Sfermion—Sfermion interaction
Lagrangian

Lo = (GL) (HY 10+ (Gh)° (1) 0 (4.15)
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the relations between the unrenormalized (bare) and renormalized (physical) fields and cou-
plings are

(61" = 6, +sGl% (G2)° = G+ 660, (4.16)
(H))" = (5kz+;5250) : (HY)" = (5u+;52 VH; (4.17)
fo = (5ii/+%5zgj,) Iy i = (5ii,+%5zfi/)£;, (4.18)
o= (5jj/+%5z;‘;/) s b = (5jj,+%5zj’?j,)5j/, (4.19)

where we have used the notation H," = {H" G} for the charged Higgs and Goldstone
boson, respectively. Note that due to the CP properties of the neutral Higgs bosons, the
CP-even Higgs bosons (h° and H°) don’t mix with the CP-odd ones (A° and G°), i.e
6ZH° =0 for k = (1,2) and [ = (3,4). The bare Lagrangian £, can then be written as a
sum of the renormalized Lagrangian £*" plus its counter terms 0L,

Ly = Eren+5£, (4.20)
= GLHD ff + G H D, (4.21)
5L = —SGIYHY i — 8GO AT, (4.22)
which leads to the one-loop corrected (renormalized) couplings Glf o and Gf;’fen.
Glren = GIL o+ AGL, = GIL 466110 4+ 6610 46611 (4.23)
Ghren — G L AGE = GB 4G 4 66T+ 5GT) (4.24)

5Gf;(,:),5G£: @) and 5G’f ) and the corresponding terms for the couplings to the charged
Higgs boson stand for the vertex corrections, the wave—function corrections and the coupling
counter—term corrections, respectively. The full one-loop corrected decay widths for the

neutral as well as the charged Higgs boson decays are then given by

. Ng k(m? Mi0: T m2,m%)
a3 fi’ S
T(H — ff) = s G2 + 2Re (Gl - AGT) | (4.25)
H
o Ne w(my e, mi,m2 )
D(H* —1ib;) = TGl [\Gm\uzf{e(@;’l Afol)] . (4.26)

Due to the lengthy formulae, we give the explicit form of the vertex corrections, (5ij(,: ) and
s

ij1 > in Appendix C.1.

For the CP-even Higgs bosons the wave-function corrections 5Gi;(,z” ) can be written as

1 0
Gl — 5 575Gl + 620, L, 4 67l G{]l] , (4.27)
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with the implicit summations ¢, j',1 = (1,2). The wave—function renormalization constants
are determined by imposing the on—shell renormalization conditions (see chapter 3),

07 = —Reltl(m?), i=(1,2), (4.28)
F 2 . . F
5Z£ = m Rer( ) s 1,) = (1, 2), 1 # 715 f # Ve,u,’ra (429)
fi f]
0Z{i = —Relljy (mp), k=12, (4.30)
2
hy hy

The explicit forms of the off-diagonal Higgs boson and sfermion self-energies, HH and Hf],

as well as the derivatives of the diagonal ones, Hka and IT/, are given in Appendix B.

1)

Due to its CP-nature, the Higgs boson A° cannot only mix with its associated partner in
the mass matrix, the neutral Goldstone boson G°, but also with the weak vector boson Z°.
Therefore, we split the wave—function corrections into the diagonal ones,

scify i = IRelszf, +62f+ 6245 |Gl (4.32)
SGIW = 6 1 sGITD (4.33)

and combine the amplitudes coming from A°-G° and A°-Z° mixing in the following conve-
nient way. First we show that the sum of the parts coming from the propagators of Z° and
G" outside the loops is independent of the gauge parameter £ = £z. In a general Re—gauge

kl /7 /7
p A //} a 7
A2 : A0 ____(i
N %
/2 fo

Figure 4.2: A®~Z° contribution and A°-GY wave—function correction

the amplitudes of the two graphs of Fig. 4.2 are given by

M7 = (—zp”HAz(ﬁ))ﬁ%@(—gW (-0 )( ig2 2hy) (ko) (4.34)

—&m?,

ME = (iHAG(p2)> g ial, . (4.35)

1
p*—&m3
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Contracting the Lorentz indices in M?,

p”(—gumt(l—f)M) (ki+ke)” = —(1— LW) <m; —m%), (4.36)

p?—Emy p? —&m3,

and eliminating IT4g in favor of T4z by using the Slavnov—Taylor identity [20]

p’Iaz(p?) +imzllac(p®) =0, (4.37)
we find the sum M?% + M€
- i 2
L N SR N SR (RN €l Y o
M Py ) 92 2almy, =) ( P n}
2 H 2 .
I Az of - (4.38)

p?—E&my  my

Finally we use the identity

gz (m3 —m%) = imy G, (4.39)
to obtain the result
fw,AZ+AG ANfZH+G 2 2 iMaz(m3o) G{m
5G1§3 b= M (7" = mi) = = myz (p? —m3) (p? — Em3)
[ - m%((ﬁ —&mz) — (1 - 5)1?2) +p*(0° - m%)}
= Ty mi) G, (4.40)

mgz

The gauge dependence of the propagators of the Z° and G in Fig. 4.2 is completely removed.
However, there still remain gauge dependences from vector particles and Goldstone bosons
in the loops of I147 which cancel against their counter parts in the vertex, wave—function
and counter—term corrections.

In a similar manner we can sum up the amplitudes stemming from Ht-G* and H*-W*
mixing. Using the Slavnov—Taylor identity

Pgw (p°) — mwIlue(p?) = 0 (4.41)

(where H and G now certainly denote the charged Higgs and Goldstone bosons) as well as
the relation between the W*&:b; and G*ib; couplings,

% RglR?'l (mtgl - m%j) = my G§?2 ; (4.42)

the wave—function corrections for the charged Higgs boson decays can be written as

w) _ L[ b el
0Gi" = 5 |0Z0Gly + 023Gl + 0211 Gy

} i 5G£T)(w,HW+HG) (4.43)

ijl
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with

- 1 o~
to(w,HW+HG b

(4.44)
The coupling counter—term corrections originate from the shifting of the parameters in the
Lagrangian. In the case of the CP—even Higgs bosons, h’ and H?, they can be expressed as
(k=1,2)

5l — |sRF .Gl (RN + RF-5GE,, - (RN + RT-GI,, - (5R )T] (4.45)

ijk ij

As we have fixed the counter terms for the sfermion and Higgs mixing angle by means of
egs. (3.55) and (3.64),

1 P P 1
00; = (62{,—624), b = - (628" — 5215 | (4.46)
we can write the coupling counter—term corrections as
5GI = (s Gl 425 G 007 + e G S0+ [Rf 3G (Rf)T] o (A7)

where we have introduced the antisymmetric symbol ¢;; with €15 = 1. The derivative § in
eq. (4.47) indicates that the variation is taken with respect to all parameters except the
mixing angle o. Using the relations

5GL. s 5G], ;
5o =~ Ghes o = Gl (4.48)

we can ‘absorb’ the counter terms for the mixing angles of the outer particles, da and 667,

into the wave-function corrections 5Gf;(,zu ) yielding the symmetric wave—function corrections

m

SCRT = el [R50 g (R (4.49)
given by
smm) _ Locof o i L F s i L ~
OGN = (62, + 6Z1) Gl + (020, +02),) Gl + L (62 + 62i1) Gy

(4.50)

Note that in this symmetrized form momentum—independent contributions from four—scalar
couplings and tadpole shifts cancel out.
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The explicit forms of the counter terms SG{ Ry for k =1,2 are given by

o F oh om
(5G£R,1)11 = _\/ihf my Co (h—ff + m—ff) —gzMzey 53%/[/ Sa+p
09z  0mgz = Of
+gysmy(I2F—ers%,)s0 ( + + ) 4.51
gzmz( f £5W)Sats 9z My tars ( )
o f (5hf f hf
(6GI 1)y, = h_f(c:{m)12 -7 (0Af ca+ 0 sa) (4.52)
s P oh om
f _ f f
(T = —V2hrmyco( G245 )
89z Omg dst o3
W Sa a 4.53
+gzmzefsws +ﬁ(gz + My + S%/V +ta+ﬂ ( )
for the sfermion couplings to the Higgs boson h° and
o F oh om
(5G£R,2)11 = _\/ﬁhf myg Sa (h—ff + m—ff) +gzmgzey 53%4/ Catp
3L 2 09z | omg
—gzmz(Iy" —ersyy)Cars| —— + —— —tasg 08 | , (4.54)
9z mz
S F 5hf f hf
(0GT5s) 1y = h—f(c;ﬁm)12 ~ 75 (04r 50 = dpuca) (4.55)
o F oh om
! _ f f
(0GLra)yy = —V2hymysa (h—f + m—f)

0 ) 5s?
9z 22 ‘ZW—tawcw) (4.56)

2
—9zmz€fSw Ca+ﬁ(
gz mz S

for the couplings to H°.
The higgsino mass parameter y is fixed in the chargino sector, u = Xao, where p enters in
the chargino mass matrix X [24, 25],

- M V2myy sin 8 B
= (amans ) o= 030, 430

With the definition of the Yukawa couplings, eq. (4.7), the counter term dh; can be further
decomposed into

(4.58)

Ohy  _ 5_g+% 5mw+{—(§032ﬁ}5tanﬁ

a sin® 8 [ tan 3

for { doo }—type sfermions. The explicit forms of these counter terms and the corresponding

self-energies are given in Appendix B.
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The CP-odd Higgs boson A° only couples off-diagonally to the sfermions through terms
proportional to Yukawa couplings. Therefore, the counter—term corrections simply read

Fle oh 1 coS sin
sGI) = th{23 ﬁhfa(Af{ g}w{mg}). (4.59)

Analogously to the decays of the CP—even Higgs bosons, the sum of the wave—function and
counter—term corrections of the charged Higgs boson can be expressed as

GG = GG 4 [RT 3G - (RYT] -+ 0GR (4.60)

ij1 ij1 ij ij1

with the symmetrized wave—function corrections

5thwsymm) (5ZZ€/+5ZZ{ )Gt]1+ (5Zb +5Zb )th/1_+_ 5Zﬁ+th

171 ijl °

(4.61)

The single elements of the matrix corresponding to the variation with respect to the cou-
plings, 0G5 ,, are given explicitly as follows (cf. eq. (4.9)):

& ~ib ohy 0 ) Sh, 0 5
(0GTr1)1, = hbmbsﬁ(—b + %y Sﬁ) + htmtcﬁ< e M ﬁ)

hs mp s hy my cg
_% 25( iZlVVVV cos 23 Mannﬁﬁ) (4.62)
(5GLR1) = 5:[) (GLR 1)y + (0 Apss + Aydsg 4 dpucs + pudeg) (4.63)
(5G£LBR71)21 = (Zit (GtLbR gy + he(8Ascs + Abcs + bpusg + p10sg) (4.64)
(5G'§R71)22 = hymyeg (5/Zt + %mbb + (SCCZ) + hymysg (5:: + %m: + %) (4.65)

4.4 Infrared divergences

Analyzing the virtual corrections in more detail, i.e. the vertex and wave—function corrections
with one single photon in the loop, one finds that the corresponding amplitudes are divergent.
These infrared divergences (IR) originate from massless photons which, for small momenta,
lead to divergent integrals. In order to regularize the divergent expressions, we introduce a
small photon mass A in e.g.

a1 1 1 m?
_ dd = 2—1
op? im? q(q2 - N)[(g+p)?—m?]| ._ C2m? < vl )

p=m?

(4.66)

which diverges for A — 0. Following a theorem of Bloch and Nordsieck [36], the IR-
divergences can be cancelled by the inclusion of real Bremsstrahlung processes which contain
one additional single photon in the final state. In the case of the decay of the charged Higgs
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Figure 4.3: Real Bremsstrahlung diagrams relevant to cancel the IR-divergences in H* (p) —
ti(k1) + bj(—ky).

boson, this means that the real photon emission process H*(p) — #;(k1) + zj(—kg) + v(ks)
has to be calculated. The Feynman amplitudes of the diagrams in Fig. 4.3 are given by

*

ilhks) = iGh(—eo) (- 2).

ky-e*
ib . 1
(k3) G'Ul( )< €t kl . ]{]3> ’

M = Gf;’l( ieO(Qp—kg)H)

1
(p— ks)? —m%
MP = szﬂ( ieges(2ky + k3)u)

(ky +k3)
S YR R N 141
which leads to the decay width
e = QTJZZ+ / (2:;521& / (23%& / (Qj;fSEg (3" (= kot k= ks LM
~ T D [ a5 [ e
(o i R T
o e T T ) o

Using the phase-space integrals I,, and I, in the convention of [15],

d3ky ko d3 d’ks 4 1

Le-tn 2E1 2E2 2E3 ( 1Ry 3) (:EQ]{“]{];;) (ilen kg)

(4.68)



32

Higgs decays into sfermions in the MSSM

where the plus signs belong to the momenta of the outgoing particles k; and k3 and the minus
signs to the momenta p and ks, the real Bremsstrahlung decay width can be expressed as

~ ~ NC 7
W (2 2[, 2 2.2 2.2
D, — 716773mH+ |Gij1\ (—eo) [mlﬁloo +e;m; I + ebmjlgz

— €t€b<(m§{+ — mlz — m?)[m — [2 — [1)
- et<(m§ — miﬁ — m?)[m — [1 — [0)

+ €b<<77ll2 — m?_l.y_ — m?)[()z — [2 — [0>:| .
(4.69)

Analogously, the real Bremsstrahlung contributions to the neutral Higgs boson decays are

Ne f 2 2(, 2 2
167T3mH2 |Gz]k| (_€0€f> (mz [11 + mjlgz — [2 — [1

D(HY = fif) =
+ (g —m? m§)1’12> . (4.70)

The corrected (UV— and IR—convergent) decay widths for the physical value A = 0 are then
given by

U
R
U
R
U

Fcorr(HIS N fz j)
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(4.71)
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Fcorr(HJr N Ez j)
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(4.72)

4.5 Improvement of One—loop Corrections

Having collected all pieces which are necessary for a reliable calculation of the decay widths,
i.e. the vertex, wave—function and counter—term corrections to make the result UV—convergent
as well as the real Bremsstrahlung processes to cancel the IR divergences, we could perform
a numerical analysis which shows the contributions of the higher—order corrections. However,
in the case of bottom squarks and tau sleptons, especially for large tan 3 the corrections to
the decay widths can be very large in the on—shell renormalization scheme. If the corrections
are negative, the one-loop corrected width can even become negative and therefore unphysi-
cal. Hence the perturbation expansion around the on—shell tree level is no longer reliable. It
has been shown in [37, 38| that, in the case of the decays into bottom squarks, the source of
these large corrections are mainly the counter terms for m; and the trilinear coupling A, in
particular the SUSY-QCD corrections. However, despite the absence of strong interactions
for the decay into tau sleptons, the corrections become extremely large. This problem can
be solved by defining an appropriate tree level in terms of DR running values for m ¢ and
Ay. The expansion around this new tree level then no longer suffers from bad convergence.



4.5 Improvement of One-loop Corrections

Correction to my

First we review the improvement of the perturbation expansion by using DR running bottom
quark masses, following [38, 39, 40].

If the Yukawa coupling hy is given at tree level in terms of the pole mass my;, the one-loop
corrections become very large due to gluon and gluino exchange contributions to the counter
term dmy,. The large counter term caused by the gluon loop is absorbed by using SM two—
loop RGEs in the MS scheme [38, 39, 40]. Thus we obtain the SM running bottom quark

mass My (Q)sm:

_ m MS _
Q) - (&ﬂs) o) 5 (4.7

T (M) $t

The ratio (mb(Q)g/T&/ mb(mb)ng&) can be expressed as

( (2)
- 05(0[(‘;) (Q)/ﬂ-) (mb < Q S mt)’
QRS ] cslasT(my)/m)
1 (11 )33 cs(a?(@Q)/m) es(al® (my)/m)
@ @ (@>m),
( co(as (my) /) es(as™ (my) /)
where we have used the functions
23 \ 23
cs(x) = (Fx) (14 1.175z) (mp < Q <my),
4
7 \7
ce(x) = (éx) (1+1.3982) (Q > my),
and the two—loop RGEs for a; [40],
Inln <&
127 6(153 — 19n,) A7
agz) (Q) = Q2 - 33— 92 Qf Q2 ! ) (474)
ny ny

with ny =5 or 6 for m, < Q < m, or Q > my, respectively. For the SM DR running bottom
quark mass at the scale () = m; we use the MS equation

2) 2
e 4 s s

with K, = 12.4 and then convert to DR using one-loop running c(Q):

i Qsn = (%) )5 — 24D, (4.76)
b\""b ) SM
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In the MSSM, for large tan § the counter term to my can be very large due to the gluino—
mediated graph [37, 41, 42]. Here we absorb the gluino contribution as well as the sizeable
contributions from neutralino and chargino loops and the remaining electroweak self-energies
into the Higgs sfermion-sfermion tree-level coupling. In such a way we obtain the full DR
running bottom quark mass

my(Q)mssm = 1p(Q)snt + My (Q) - (4.77)

The explicit form of the electroweak contribution to the counter term dm,(Q) is given in
Appendix B.9.

Correction to Ay -
The second source of a very large correction (in the on—shell scheme) are the counter terms
for the trilinear coupling A . (see eq. (2.39)),

5 2 2 ) .
§Ap, = Mip _ Mig OMbr dptan B + potan (. (4.78)
Mp,r Mp,r M+

Again, the big bottom mass correction dmy, contributes to dA4,, but also the counter term
of the left-right mixing elements of the sfermion mass matrix, dm?2p, gives a very large
correction for higher values of tan 5. In particular, in the case of the decay into staus, this
is the main source for the bad convergence of the tree-level expansion. As in the case of the
large correction to my,, we redefine the Higgs—sfermion—sfermion tree-level coupling in terms
of DR running A, ,(m o). Because of the fact that the counter terms 64, , (for large tan f3)
can become several orders of magnitude larger than the on-shell A;, we use Ab,T(m 40) as
input [38]. In order to be consistent we have to perform an iteration procedure to get all the
correct running and on—shell masses, mixing angles and other parameters. This procedure is
described below.

4.6 Method of improvement

In this section we will explain in detail how we can improve the perturbation calculation
for the sbottom and stau case by using DR running values for m; and A, , in the Higgs—
sfermion-sfermion tree-level couplings. Since we take DR running values for A, and A, as
input and all other parameters on—shell we will have to pay attention to the sbottom and
stau sector in order to get consistently all needed running and on—shell masses, mixing angles
and other parameters. Here we adopt the procedure developed in [38] and also extend it to
the electroweak case.

Stop sector:

We start our calculation in the stop sector. Because all input parameters in the stop sector are
on-shell we obtain the on-shell masses mg, , m;, and the stop mixing angle ¢; by diagonalizing
the stop mass matrix in the ¢, -tp basis, see chapter 4.2. The running stop masses my, and

the mixing angle ég are calculated at the scale QQ = Q; = ,/m;,mz, by adding the appropriate
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counter terms to the on—shell values in

mt{,( 0= m§i+5m§i, (4.79)
omi = Rellj(m?), (4.80)
éf( g) = 9{-0—(59{. (4.81)

The electroweak parts of the sfermion self-energies Hzfz(m?) are given in Appendix B.4 and

the SUSY-QCD contributions, HiUSY*QCD(m?) are given in eqs. (25)-(27) in [34]. Here

and in the following all running parameters X(Q) are related to their on-shell values X
by X(Q) = X + 60X, with §X being the full one-loop counter term — also including the
SUSY-QCD parts. According to eq. (3.55) we fix the sfermion mixing angle by

I P AN 1 ; ;
0 = (5212—6221)_WR<3 (nfam2) + 1 m2)) - (4.82)

For DR running 7, we use the formulae from section 4.5 with the obvious substitutions
my — my and K, = 10.9 for the top—case. Next we evaluate the running parameters My(Q)

and M (Q) by inserting the running values mt%_(Q), 0:(Q), 114 (Q)mssn, Mz(Q) = my +dmy,
B(Q) =3+ 603 and Oy = Oy — —— (‘Sm—w — i’:—;) into the equations

sin Oy mw
Mé = m?l cos? 0; + mt% sin® 0y — mi — m3, cos 23 (I}* —e;sin® Oy | (4.83)
Mé = mtg1 sin® 0; + mi cos? 0; — m? — m7 cos 23 e, sin® Oy . (4.84)

For the running value of A; we use

. in 20- .
A = (2 —m2) 2 i cot B, (4.85)

my

where we have taken running i(Q) = p+ (60X ) (cf. eq. (4.57)).

Sbottom sector:

In the sbottom sector we have given all parameters on—shell except the parameter for the tri-
linear coupling, A,(Q), which is running. First we calculate 17, (Q; )mssu from eq. (4.77) at the
scale Q5 = /My Ty . From the stop sector we already know the running values of M, tan 5

and p. Then we diagonalize the sbottom mass matrix using 7, (Q;)vssm, MQ,tanB, i and
on-shell M, which is near its running value My, to obtain the starting values for Ty,

and ég. The on-shell sbottom masses m; and the mixing angle 6; are calculated from their

running values by subtracting the appropriate counter terms, i.e. mgv = fn%(Q) — 5m§,

0; = éB(Q) — 00;. Now we can compute the running value for Mp. Using the relation
2

M3 = mgl sin” 6 + mli cos® 0 — mi — m% cos 23 e, sin® Oy (4.86)
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we get Mp = (M2 +6M2)Y2 =~ Mp + 6M2 /(2M ) with

5M12~) = 5m§1 sin? 0; + 5m%2 cos? 0; + <mlg)1 —mi) sin 260; 00; — 2my, dmy,
—6m3 cos 23 ey sin’ Oy + 2m7 sin 23 0.3 e, sin? Oy
—m?, cos 23 ey, dsin? Oy (4.87)

and dmy, = My (Q;)Mmssm—my. Because the parameters involved in these calculations are very
entangled, e.g. Mp depends on the dm; which themselves depend on Mp, we have to per-
form an iteration procedure.

Iteration procedure:

Here we will describe in detail the procedure how we obtain all necessary on—shell and running
parameters. For convenience, we shortly denote all masses, parameters, couplings etc. for a
certain n > 1 in the iteration by XM, As starting values X© we take on-shell masses and

parameters (except Ay which is running) and the couplings derived from these quantities.

The only exceptions are the standard model running fermion masses Th}o) = ms(Q)sm. My

shortly stands for the full DR running fermion masses, 1 (Q)mssu-
The single steps of the iteration procedure are the following:

1. The running stop masses and the stop mixing angle are calculated as explained
above by mt?(”) = mtg_ + 6m§(”) (AA’("*U) and étﬂn) =0; + 59?) (AA’("*U).

2. 1" = rnygn + omy" (X0D)

3. my) =my +omy (X1 and
sin? ég{;) = sin? Oy + Osin? Oy " with dsin2 Oy, ™

Ccos Oy (M—W _ 57”2) (A0-D)

mw myg

4. The running value of tan g3, tan B(") = tan 8 + d tan B,

1 N
with § tan 5 = 7% ImII 40 0 (X(”_l)) tan § [21].
My sin

9. ﬂ(") =+ 5,u(n) with 5,u(") = 6 X9 (‘,’{’(nfl))'

6. The soft SUSY—breaking masses Mg()j are calculated from mtﬁ’?), étgn), 1y (Qr)™, m(Z’”,
sin? é‘(f[}) and tan B(”).

7. We compute the running A, by using running values in eq. (4.85):

R sin 20
A = <m? (n) _ 2 (n)) i

H (1) 3(n)
t1 to min) + H cot ﬁ



4.6 Method of improvement

37

8. In the sbottom sector we obtain 5m,()n) from the running values already calculated

in steps 1.-7., like mg’f’, él()n) or m}"’, and the remaining masses, couplings etc. from

xXm-1),
9. mé") = mb,sM + (Sml()n)

10. We receive the running sbottom masses, mé@, and the mixing angle, é(") by solving

the mass eigenvalue problem with the running values of Mg), M g 5 (n . A, ,

and tan B(")
11. The on-shell sbottom masses mg_(") = m2™ — (5m~ (Q(") at the scale Qé") =

5 (n) ~ (n) (n) _ pn) (n)
my mi) ,andQ 05 —595 )

12. 5M2(") = (5m~ ) sin 20; +(5m ) cos 20; + <m mz ) sin 26; (5(915")—27%1, (m,()")—mb>

— 5mZ ") cos 23 ey sin? Oy + 2m% sin 23 §3™ ¢, sin? Oy
— m2 cos 23 e, dsin® Oy ™.
(Remember that the values without a hat (") are on—shell ones!)

1(5M
2 Mp

13. MY = Mp + 5

14. In the sneutrino sector we calculate the running sneutrino mass

mﬁf”’ =mZ —|—5m§7(n) (AA’("*U) and Mg ) = 52 () ; 7 (n cos 2™ see also eq (4.83).

Vr

15. In the stau sector the values for running m(n) m(”> etc. are calculated like in the steps

8-13 in the sbottom sector with the evident substltutlon b — 7 for the corresponding
parameters and My — Mz, Mp — M.

16. All couplings are recalculated with the new running parameters — xn,

The iteration starts with n = 1 and ends, when certain parameters are calculated precisely

#(n)
1=

e = 1078, We have checked the consistency of this procedure by computing the on-shell Mp
and running Mg from the sbottom sector by using

= {rmy, MD, ms, E} For € we choose

enough for a given accuracy, i.e.

2 _ 2 2g 2 2o 2 2 .2
Mg = mj sin” 0 +mj cos”™ 0 —my —myz cos20 ey sin” Oy (4.88)
M% = m%l cos® 0 + mi sin® 0; — M7 — Mm% cos 23 <I,‘?L—eb sin? QW) : (4.89)

which are equal (up to higher—order corrections) to the on-shell input My and running Mg
from the stop sector.

For easier reading the single steps of the iteration procedure of the stop and sbottom sector
are depicted in the flowchart in Fig. 4.4.
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END START

compare
my, M, Af :mf +6mt2i
0; =0; + 00;
recalculate
all couplings
mt = mtysM + 5mt
Mj
My, =m, +om,
Sw=Sw + O0Sw
OM, .
B=p+0p
f=p+op
2 _ 2 2
mg, =g — 5m5i -
6, =0; — 00; Mao
My = Mpsm + 0y, -

Figure 4.4: Simplified flowchart for the iteration procedure. For details see section 4.6.
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4.7 Numerical results

In the following numerical examples, we take for the standard model parameters my; =
91.1875 GeV, my = 80.45 GeV, sin® Oy = 1 — m¥, /m%, a(mz) = 1/127.7, m; = 178 GeV,
my = 4.7 GeV, m, = 1.777 GeV and {m,, mq, m., m., ms,m,} = {5.38,5.38,0.511, 1500,
150,106} MeV for 1%t and 2°¢ generation fermions. M’ is fixed by the gaugino unifica-

tion relation M’ = - tan®?6y, M, therefore the gluino mass is related to M by m; =

(as(mg) /) sin® Gy M. In order to reduce the number of parameters in the input param-

_ _ 10 _ 10 _ _ _ _ _
eter set, we assume My = My, = My, = 7Mp, = Mj, = My, = M@m = Mﬁl,g =
Mp, , = Mg, , = Mg, , for the first, second and third generation soft SUSY-breaking masses

as well as A = A, = A, = A, for all (s)fermion generations, if not stated otherwise.

4.7.1 Decay processes into the light Higgs boson

Fig. 4.5 shows the tree-level, the full electroweak and the full one-loop corrected (electroweak
and SUSY-QCD) decay width of #, — #;h° as a function of the lighter stop mass, mg,
where Mg, is varied from 300 to 700 GeV. To get a larger mass splitting for the top squarks,
we relax the conditions for 3rd generation squarks and take My, = 500 GeV. All other
SUSY-breaking masses are fixed at 300 GeV. For the remaining input parameters we choose
{mao, i, M, A} = {120,1000, 250, —800} GeV and tanf = 20. At m;; = 203 GeV and
mz, = 429 GeV one can identify two pseudo-thresholds originating from ty — byH* and
ty — by H™T in the wave—function correction, respectively.

T T T T T T
5 ;-
=
4| !
3,
/\3_ T
=
Ty 2 _
7
& 1t -
—
ol _

200 250 300 350 400 450
my, [GeV]
Figure 4.5: Tree-level (dotted line), full electroweak corrected decay width (dashed line) and

full one-loop (electroweak and SUSY-QCD) corrected width (solid line) of #, — #,h° as a
function of my, .

In Fig. 4.6 the radiative corrections to the decay width of £, — ¢;h° as a function of tan 3 are
quite constant in the considered region of the parameter space and make the perturbation
expansion reliable also for large tan 3. The dotted, dashed and solid lines correspond to the
tree—level, full electroweak corrected and full one-loop corrected decay widths, respectively.
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Whereas the SUSY-QCD corrections reduce the decay width up to —10%, the electroweak
corrections stay well below 3%. At tan/3 ~ 20.5 one can see a pseudo-threshold t, —
Y5t entering in the sfermion wave—function corrections. As input parameters we take the
values {m o, u, A, M, M} = {120,450, —300, 300,250} GeV as well as My, = 600 GeV for
kinematical reasons.

D(iy — £1h0) [GeV]

tan (8

Figure 4.6: Tree-level (dotted line), full electroweak corrected decay width (dashed line) and
full one-loop (electroweak and SUSY-QCD) corrected width (solid line) of #, — £1h° as a
function of tan j.

In Fig. 4.7 we show two kinds of perturbation expansion for T'(by — byh°) with {m o, s,
A, M, Mg} = {200,550, 450,200,300} GeV and Mp, = 600 GeV: First we show the tree—
level width, given in terms of on—shell input parameters (dotted line). The dashed and dash—
dot—dotted lines correspond to the on—shell electroweak and SUSY-QCD corrected one-loop
widths, respectively. For both corrections one can clearly see the invalidity of the on—shell
perturbation expansion, which leads to an improper high decay width. The second way of
perturbation expansion is given by the dash—dotted and the solid line which correspond to
the improved tree-level and improved full one-loop decay width, respectively. Here we take
the same input parameters as in the first case but with running A = 450 GeV. It is clearly
seen that one needs the improvement as described in section 4.5 and 4.6.

4.7.2 Decays of the CP—even heavy Higgs boson

In Fig. 4.8 we show the tree level and the corrected widths to H? — t1t; for tan /= 30 and
{Mg, A, M, i} = {250,300, 120,300} GeV as a function of the mass of the CP-odd Higgs
boson, m 0. As can be seen for larger values of m o, the radiative corrections decrease
and make the electroweak corrections comparable to the SUSY-QCD ones. Due to top
and bottom squark loops in the Higgs wave-function corrections, two pseudo-thresholds
HO — byby, H® — 151, appear at mo ~ 671 and m 0 &~ 745 GeV, respectively.

In Fig. 4.9 the dependence of the decay width I'(H® — #,#,) as a function of tan 3 is given.
In the considered region the electroweak corrections have different sign compared to the
SUSY—-QCD ones and, for larger values of tan 3, are the dominant contributions. Again,
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Figure 4.7: Two kinds of perturbation expansion: the dotted line corresponds to the on—
shell tree-level width, the dashed and dash—dot—dotted lines correspond to electroweak and
SUSY-QCD corrected on—shell one-loop width, respectively. The dash—dotted line corre-
sponds to the improved tree-level, and the solid line to the (full) improved one-loop width.
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Figure 4.8: Tree—level (dotted line), full electroweak corrected decay width (dashed line) and
full one-loop (electroweak and SUSY-QCD) corrected width (solid line) of H® — £, as a

function of m 0.

sbottom loops entering in the Higgs wave—function corrections cause a pseudo—threshold
H® — byby for tan 8 &~ 25.6. As input parameters we have chosen {m 4o, u, A, M, MQ} =
{800., 500, 550, 120, 300} GeV.

As in the case of T'(by — b1h?), we show two kinds of perturbation expansion for T'(H? — b;b;)
in Fig. 4.10. Owing to the extremely large counter—term corrections dm; and 64, in the
on-shell scheme, the perturbation expansion around the on-shell tree level leads to unac-
ceptably big corrections even for lower values of tan # and, moreover, to improper negative
decay widths. The dotted, dashed and dash—dot—dotted lines, which correspond to the on—
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Figure 4.9: Tree-level (dotted line), full electroweak corrected decay width (dashed line) and
full one-loop (electroweak and SUSY-QCD) corrected width (solid line) of H® — #;¢; as a
function of tan j.

shell tree—level, electroweak and SUSY-QCD corrected widths, respectively, show this first
expansion using the input parameters {m o, u, A, M, MQ} = {800, —300, 300, 120, 300} GeV.
The second perturbation expansion, where these large counter—term corrections are absorbed
into the tree level, is given by the dash-dotted and the solid line which correspond to the
improved tree-level and improved full one-loop decay width, respectively. The input param-
eters are the same as above, but with DR running A = 300 GeV. The corrections are now
relatively small indicating that the (improved) tree level is already a good approximation
for the full one—loop corrected decay width.

4.7.3 Decays of the CP—-odd neutral Higgs boson

In Fig. 4.11 we show the tree-level and the corrected widths to A° — #,t, for tan 3 = 15 and
{mao, A, M, M} = {700, =500, 120, 300} GeV as a function of the higgsino mass parameter
i. The electroweak corrections are about 10-15% an thus comparable to the SUSY-QCD
ones. At u ~ —242 GeV one can identify the pseudo-threshold £, — ¥}t coming from the
sfermion wave—function corrections.

Fig. 4.12 shows the tree-level, the full electroweak and the full one-loop corrected decay
width of A® — #,t, as a function of the lighter stop mass, mg,, where Mg is varied from 140
to 410 GeV. As input parameters we choose {m 4o, u, A, M'} = {900, 250, 300, 120} GeV and
tan § = 7. Again, in a large region of the parameter space the electroweak corrections are
comparable to the SUSY-QCD ones. The pseudo-threshold at m; ~ 306 GeV originates
from #, — Y9 in the wave—function correction.

Fig. 4.13 displays the decay widths of the crossed channel £, — #; A° as a function of A,.
As can be seen, the electroweak corrections are as large as the SUSY-QCD ones in the
considered region. The values of the input parameters are tan 8 = 35, {m 4o, u, M, MQ} =
{150, 240, 300, 300, } GeV, and Ay = 700 GeV for all trilinear couplings except A;. With the
relations for the SUSY-breaking masses given at the top of this section but with My, =
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D(H® = biby) [GeV]
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Figure 4.10: Two kinds of perturbation expansion: the dotted line corresponds to the on—
shell tree-level width, the dashed and dash—dot—dotted lines correspond to electroweak and
SUSY-QCD corrected on—shell one-loop width, respectively. The dash—dotted line corre-
sponds to the improved tree-level, and the solid line to the (full) improved one-loop width.
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Figure 4.11: Tree—level (dotted line), full electroweak corrected decay width (dashed line)
and full one-loop (electroweak and SUSY-QCD) corrected width (solid line) of A° — #,t,

as a function of u.

500 GeV we provide a quite acceptable mass splitting in the stop sector.

In Fig. 4.14 we show the decay width T'(A° — b1b,) as a function of the trilinear couplings A
for {m 40, u, M, My} = {800, =300, 300,300} GeV and a large value for tan 3, tan 3 = 30. As
can be seen, the on—shell expansion dramatically suffers from bad convergence; the dotted
line corresponds to the on—shell tree—level width, the dashed line to the electroweak and the
dash—dot—dotted line to the SUSY-QCD one-loop width. After a redefinition of the tree
level in terms of DR running my and A,, the corrections lie in an acceptable range.

Fig. 4.15 shows the behaviour of the decay width F(BQ — lN)lAO) for large tan 3 for two kinds of
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Figure 4.12: Tree-level (dotted line), full electroweak corrected decay width (dashed line)
and full one-loop (electroweak and SUSY-QCD) corrected width (solid line) of A% — #t,
as a function of my,.
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Figure 4.13: A;—dependence of the tree-level (dotted line), full electroweak corrected (dashed
line) and full one-loop corrected (solid line) decay widths of #, — #; A°.

perturbation expansion. The dotted and dash—dot—dotted lines correspond to the tree-level
and full one-loop decay widths in the pure on—shell scheme. For large tan 3 one can clearly
see the invalidity of the perturbation series, leading to a negative decay width. In the second
case we show the expansion around the tree-level decay width, given in terms of DR running
Ay and my. The dash—dotted line corresponds to the improved tree-level and the solid one
to the one-loop decay width. Up to tan (3 ~ 35 the corrections stay relatively small which
indicates that already the (improved) tree level is a good approximation for F(ZSQ — ElAO). As
input parameters we take the values {m o, u, A, M, MQ} = {150, —220, 500, 200, 300} GeV
as well as Mp, = 500 GeV for kinematical reasons.

In Fig. 4.16 the A° decay into two staus is given as a function of tan 3. Despite the absence
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Figure 4.14: Full one-loop corrections to A° — byby for two kinds of perturbation expan-
sion depending on the trilinear couplings A. The dotted, dashed and dash—dot—dotted lines
correspond to the on—shell tree-level, electroweak and SUSY-QCD corrected decay widths,
respectively. The dash—dotted line corresponds to the improved tree—level, and the solid line
to the improved one—loop corrected width.
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Figure 4.15: tan f—dependence of F(ZBQ — Z~91A0) for two kinds of perturbation expansion.
The dotted and dash—dot—dotted lines corresponds to on—shell tree-level and full one-loop
width, respectively, the dash—dotted line corresponds to improved tree—level and the solid
line shows the full improved one—loop width.

of SUSY-QCD corrections the perturbation expansion around the on—shell tree level (dotted
line) leads to an improper negative decay width (dashed line) coming from large O(h?) cor-
rections. As input parameters we take {m 4o, u1, A, M, M5} = {800, 400, —500, 120, 300} GeV.
The dash—dotted line corresponds to the improved tree-level and the solid line shows the im-
proved one—loop width for the same input parameters as above and running A = —500 GeV.
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['(A° — 717 + c.c.) [GeV]

tan (8

Figure 4.16: On-shell tree-level (dotted line) and full electroweak on—shell corrected decay
width (dashed line) of A° — 7,7, as a function of tan 3. The dash—dotted and solid lines
correspond to improved tree-level and full improved one-loop decay widths, respectively.

4.7.4 Decays of the charged Higgs boson

Finally, we show two plots of the decay widths of the charged Higgs boson H™ into a top and
a bottom squark. Again, we show two kinds of perturbation expansion for T'(H" — 5151) in
Fig. 4.17, showing the invalidity of the on—shell scheme for large values of tan 3 as well as the
expansion around the improved tree level. The dotted, dashed and dash—dot—dotted lines,
which correspond to the on—shell tree-level, electroweak and SUSY-QCD corrected widths,
respectively, show this first expansion using the input parameters {m 4o, pu, A, M, MQ} =
{800, —260, 150, 120,300} GeV and A, = —700 GeV. The second perturbation expansion is
given by the dash—dotted and the solid line which correspond to the improved tree-level and
improved full one-loop decay width, respectively.

In Fig. 4.18 we show the decay width T'(H+ — 51132) as a function of the trilinear couplings A
for {m o, 1, M, Mz} = {800, 250, 300,300} GeV and tan # = 20. As in the case of the decay
of CP-odd Higgs boson A° see Fig. 4.14, the on-shell expansion dramatically suffers from
bad convergence; the dotted line corresponds to the on—shell tree-level width, the dashed
line to the electroweak and the dash—dot—dotted line to the SUSY-QCD one-loop width.
After a redefinition of the tree level in terms of DR running m;, and A,, the corrections are
visibly smaller.
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Figure 4.17: Two kinds of perturbation expansion: the dotted line corresponds to the on—
shell tree-level width, the dashed and dash—dot—dotted lines correspond to electroweak and
SUSY-QCD corrected on-shell one-loop width, respectively. The dash—dotted line corre-
sponds to the improved tree-level, and the solid line to the (full) improved one-loop width.
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Figure 4.18: Full one-loop corrections to H* — #1by for two kinds of perturbation expan-
sion depending on the trilinear couplings A. The dotted, dashed and dash—dot—dotted lines
correspond to the on—shell tree-level, electroweak and SUSY-QCD corrected decay widths,
respectively. The dash—dotted line corresponds to the improved tree-level, and the solid line
to the improved one—loop corrected width.



Appendix A

Electroweak Interactions in the
MSSM

In this chapter we give all couplings which are necessary for the calculation of electroweak
corrections to Higgs decay processes into sfermions. For the whole set of Feynman rules and
a complete list of all terms of the MSSM Lagrangian we refer to [43].

A.1 Higgs—Sfermion—Sfermion couplings
For the neutral and charged Higgs fields we use the notation HY = {h°, H° A° G°}, H! =

{H*,G*,H",G"} and H, = (H)* = {H,G",H",G"}. t/t stands for an up-type
(s)fermion and b/b for a down-type one. Following [28, 29] the Higgs-sfermion-sfermion

couplings for neutral Higgs bosons, G{jk, can be written as
Gl = GURT) = [RIGLu (R . (A1)
The 3rd generation left-right couplings G{ ., for up— and down-type sfermions are given by
i _ —V2himyco + gzmy(IPF —eis%,) 501 s —%(At Co + 1Sq)
LR1 —%(At Ca + 1154) —V2hmyca + gzmzesiysats
(A.2)
i V2hymysa + gzmz (I —eysdy)savs %(Ab S+ [iCq)
GLR,l = hy \/— 2 ) (A-3)
ﬁ(Ab So T ,uca) 2hymys, + gzMzepSyySa+ps
G{R,Q = G{RJ with a - a — /2, (A.4)
- 0 —£<Ath—|—,LLSﬁ>
Girs = —V2h | ? , (A.5)
3 (At cg+ s@> 0
- 0 —1<Ab85+/l05>
Girs = —V2h, | ? , (A.6)
5 <Ab Sg+ p Cg) 0

48



A.2 Higgs—Fermion—Fermion couplings

G{RA - G{R;,, with 8 — 3 — /2, (A7)

where we have used the abbreviations s, = sinz, ¢, = cosx and sy = sin #y. « denotes the
mixing angle of the {h°, H°}-system, and h; and h;, are the Yukawa couplings

gmy gmyp

hy = —————, hy = —————. A8
' V2myy sin 3 ’ V2myy cos 3 (A8)
The couplings of charged Higgs bosons to two sfermions are given by (I = 1, 2)
FFr %5 5 z 5 A\ T
olf = a(HEf) = ol = (Rf Glh (R ) B (A.9)
ij

_ hymy sin 3 + hym. cos ngst hy( Ay sin B + 1 cos
GtLbRJ:(bb@ttﬁ B hy(Apsin 3+ p ﬁ)>’(A_1O)

hi(A; cos B+ psin 3) hymy, cos B+ hymy sin 3

i B hymy sin 8 + hymy cos 3 — 9mW sin23  hy(A; cos 4 psin ) (A1D)
L hy(Apsin B + p cos 6) hymy cos B+ hymysin 3 ]

] ] . s
Glhy = Giny  with 8 — §-— 7 (A.12)
f" denotes the isospin partner of the fermion f, i.e. t' = b, lN); = {; etc. Note that only the

angle ( explicitly given in the matrices above has to be substituted; the dependence of 3 in
the Yukawa couplings has to remain the same.

The Feynman rules for the Higgs—sfermion—sfermion couplings are (for k =1,...,4; [ = 1,2)
a .fz yal gz
// //
-« «
// 7 // =
7 — 3 iGLy Hf ———>———4 iGY,
\\ \\
* *
N AN
\\ ~ \\ ~
i b;

A.2 Higgs—Fermion—Fermion couplings

For the Higgs—fermion—fermion couplings the interaction Lagrangian reads

4
L= sl Hff Z T HO fy f+Z[H+t ylPR+ylPL)b+hc} (A.13)

k=1 = =1
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with the couplings

t mgcosa ht b __ my sin _

51 = ~Y9smmpsmp — — 5008, 51 = 95micosd — ﬁsina,
i he o ~ h
3 T T Ymysnd = T yESIRE, 5= T mmmems = T VBOOSQ
st = ig—"gn‘;?;ﬁ = z% cos 3, sy = igimz"ntfwnﬁ = z% sin 3,
sh = Gy = i%sinﬁ, s = — g = —i%cosﬁ,
o= 9%l = hicosf, vi = g7t = Iysingd,
3/5 = gﬁ”;’;w = hysin 3, yg = —g\/gzsw = — hycosf.
(A.14)
The Feynman rules for the couplings to the Higgs bosons are
f t
is] .. RO HO
A i —mmmeel P 1PL)
ial~s LAY GO
f b

A.3 Higgs—Gaugino—Gaugino couplings

The interaction Lagrangian for Higgs bosons and gauginos is given by

9 4
g =0 ~ -9 =0 Y
L = 5 E H/SXJF}%kXSn_Zi E HISXZ F}?qzk75X9n
k=1 k=3

2 4
-9 Z H/g i:r (E‘}FkPR + F]'JirkPL) )?;r +1g Z H/g )Z(:r (FZ'FI@PR + F]-JEkPL) X}F
k=1

k=3
2
—g > | H X (FfPa+ FiPL) R 4+ he (A.15)
=1
with
e
Foe = gk |:Zl3Zm2 + Z3Zyp — tan Ow (Z13 21 + Zm3le)i|
d
+§k |:Zl4Zm2 + ZmaZip — tanbw (ZiuZm + Zm4Zl1>] = F,., (A.16)
1
Fir = —5 (eVaUp — diViaUp) (A.17)

V2



A.4 Vector boson—Fermion—Fermion couplings o1

and
1
ER = dio [‘/;1214 + %(Zlg + Zj1 tan HW)VzQ] ,
1
FE = —epio [Uille - E(Zm + Zj1 tan 9W)Ui2] . (A.18)

U,V and Z are rotation matrices which diagonalize the chargino and neutralino mass ma-

trices (see chapter 2.2.3), and dj, and e, take the values

d, = {—cosa, —sina, cos 3,sin 8}, er, = {—sina, cosa, —sin 3, cos G} .

Xi
—1ig (F;'erkPR + F;Z-rkPL) ...h°, HO
HY -
—g (FiuPr+ FiuP) .. A%GY
Xi
X7
—igF? 0 770
Hl(c) _______ Z-g‘Flmk ...h , H
—gF) . (Pr— Ppr) LAY GO
Xon
Xi
S —ig (EﬁPR + Fz%kPL)
Xt

A.4 Vector boson—Fermion—Fermion couplings
The Lagrangian describing interactions of vector bosons to fermions in the MSSM is given

by

L = —ce Aufy'f — g2 Z) [V (CLPL+ CLPR)f
_9 + o AR = At
ﬂ(wu o Pufy + W v Pufi ) (A.19)
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where Cf and C} are defined as Cf = I3 — eps, and C} = —eys?,. Here and in the
following the arrows T and | attached at (s)fermions denote up— and down—type (s)fermions,
respectively.

I fy
—teefy, A
Ay, 20 WE —igz7u(CLPL + ChPr) .- Zp,
_@'%’yuPL . let
I3 1y

A.5 Vector boson—Gaugino—Gaugino couplings
The interaction of a vector boson with two gauginos is described by the Lagrangian
£ = X" (OFP+ OfPR) W+ g X0(O5 P + O Pr) i Wy
e Ay XIS+ 9270 A" (O Py + O P 3}
+ 227030 (07 + O Py 19, (A.20)

with the 4 x 2 coupling matrices for the W*-chargino-neutralino vertex
OZIJI = Zi2‘/j1 — %Zm‘/jz, Oz}]% == iQUjl + %ZZBU]Q ) (A21)

and the symmetric 2 X 2 and 4 X 4 coupling matrices

O;JL = —VaVji — 3ViaVio + bijsiy (A.22)
O;f = _UilUjl — %UZ’QUJQ + 51‘3'8%/[/ , (A23)
O;/J.L = —%ZZ‘;),Z]‘B + %ZZAZJA = - O;/]'R' (A.24)

Zij, Uij, Vij are the neutralino and chargino mixing matrices, respectively.

X5 ()
Wk 09 Yy (OiLjPL + Of}PR)

(X))
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Xj

A.6 Four—Scalar couplings (F— and D—terms)

In this section we will derive all couplings involving four scalar particles in the MSSM. These
interactions have two different sources originating from ‘ F—term’ and ‘ D—term’ contributions,
which build up the complete scalar potential V' = Vi + Vp discussed in the following.

A.6.1 F—term potential
We start with the superpotential
W = hyColpHY + hy bgbp HY 4 hy 7 HY — byt Hy — hy Uit  H? — hy 70, H?

from which we can derive the F—term interaction potential Viy = —L;,,; = F F; with F; = gz“/,

where A; denotes all scalar (super)fields numbered by the index i, 4; = {tr, bL, U, 7, R bR,
TR’ Hloa Hg’ H12> Hl}
The potential Vi then reads

Ve = (hetpHY —hybpHE ) (he T HY —hy b HY) + (ho bpHY = hy trHy ) (o U HY — hy T H3)
+ hi (6 HY — by HY') ((.HY — by Hy ) + hy (b HY — 6 HYY) (b HY — {,HY)
+ B2 FRHY 7 HY + h2 7gHY 7 HY + W2 (77 HY — 02 HY ) (FL HY — 0, HY)
+ (hobrby, + ho7r7y) (ebibr + ho 7)) + hi (Erty) (Exir)

+ (hobrty + he7rit) (hobiptr + he iy ) + b2 (ErD}) (£01)

= S G F) 03 | (b + ) + 02 [P (i + 77
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+ B2 HL (Fin + b5br) + b2 |H2® (bpbg + E301) + h2 |H2|* (F7n + 0200,
— W2 (G b HY Hy + byt Hy HY) — hi (b HY HY + 630, HY HY)

— K2(F o, HY HY + 027 HY HY)

~ hehy <E*RERH12*H2° DI HY H? + by p HY HY + f}}BRH{)*}E)

o+ 13 ((Tde) (Filr) + (Frbe) (5i0n) ) + 13 (b ) (b1bm) + (i) (F1br) )
+ b2 (ﬁéﬁ%}j%R + %;;ﬁm:%R>

+ hyhs (EEBL%;%R + by bRTRAL + G bRTh + B;ELD:%R) (A.25)

with the couplings of the neutral Higgs bosons and sfermions in the first line, those of the
charged Higgs bosons in the second, the couplings of a neutral Higgs boson with a charged
one and two sfermions and the four—sfermion couplings. Note that in the detailed calculation
of the Feynman rules for the four—sfermion couplings we have to take care about the colour
flow, see section A.6.5.

Transforming the interaction fields into the mass eigenstate fields,

H) = Ul—f-%[COSOzHO—SinOzhO+i(—COSﬁGO+SiHﬁAO)] :

H? = —cosfG™ +sinBH™,
(A.26)
H} = sin3Gt +cosBHT,
H} = v+ 5 [sinaH’+cosah’+i(sin G + cos § A%)]
fo = Rfl fi = coseffl — siné’ffg,
. - . . (A.27)
fr = RLf = sinfy f1 + cosbf fa,
we simplify our notations as follows:
1
= = 3 [SmQQ (R")? — sin 2a R°H® + cos2a (H®)? + sin23 (A”)? — sin 23 A°G®
1 ~
+ cos?f (G0)2] = 5 Hidy HY. (A.28)
1
]H§}2 = 3 [coszoc (h°)? + sin 2a h"HY + sin*a (H°)? + cos?3 (A")? + sin 23 A°G?

]_ .
+sin?f (G°)2] = S Hy cy HY, (A.29)
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1 1
sin?BHYH™ — =sin2B HTG™ — 5 sin28 H- Gt + cos?8GTG™ = 3 HYdo H

= =
(A.30)
1 1 p
}Hzlf = cos’BH H + -sin28H G~ + 3 sin2B8 H Gt +sin’G TG~ = 3 Htdy, H,
(A.31)

with H? = {n°, H°, A°, G°}, H; = {H*,G* H~,G"}, H;, = (H})' = {H-,G~,H*,G*}

and
sinc —1sin2a 0 0
_ 1 2
o —58in2a  cos*a 0 0
U= 0 0 sin —3sin23 |’ (A.32)
0 0 —% sin23  cos?B
cos?ar % sin 2av 0 0
; lsin2a  sina 0 0
o= | 2 L , (A.33)
kil 0 0 cos’3  §sin2f
0 0 % sin28  sin?p
) 1 .-
sin“/3 —5sin2f 0 0
_ 1 2
P —3sin2B  cos“f 0 0
da = 0 0 sin’f  —isin23 |’ (A.34)
0 0 —2sin23  cos?f
cos’8  $sin2p 0 0
1. . 2
P 3sin23  sin“f 0 0
i 0 0 cos?(3 % sin 23 (A.35)
0 0 % sin23  sin?g

A.6.2 D—term potential

The D—-term potential reads

3 8
1 2aY iy a na
Vo = §(DD+Z§:1DD +a§1DD) (A.36)

with D' = g’ A7 % 6,;A;, D' = gAZ%;” Ay and D = g A7 =2
U(1)-hypercharge, SU(2)-weak isospin and SU(3)-strong interaction. The matrices o, and

Mg are the well-known Pauli and Gell-Mann matrices. A; stands for the scalar (super)fields,

A% . .
¥=* A; being the terms according to

Ai = {Qaza UaDaEa H17H2}7

(i) 2o(R) om ooh



56 Electroweak Interactions in the MSSM

(MY (i _(H N _( H,
me ()= (i) ()= (i)

The U(1)-hypercharge term reads with

Y= QoL - Yi =l Y=l (A.37)
/ ~ ~ ~ ~
0= L[5 (v vy i) - - ]

f

Inserting the Pauli matrices

1 (01 o (0 — 3 (1 0
a-(l 0), a-(i O)’ =4 _1 ) (A.39)

we get for the electroweak parts

D' = g (EEZBL + by Ly + D27 + 0 + HYPHY + HP*HY + Hy HY + HS*H%) )
D = —if (iby = bydy + 0 — 70, + HYH = HEHY + HY HS — HS'H} ) |
D* = & (Fde —biby + oy — 7+ |HY - | B+ |H - | S

= 9> iR+ Y (1 Hif*) .
f

i=1,2

Hi| + I

(The meaning of I?,; should be clear.)

J
When we take the square of the single terms we have to take care about the colours of the
sfermion fields. The result is

2

oo = [ (i) - viliig)] + [l < s s ]

23 (V3 Fife) = Yy, i) (181 |17 = Ve + 2 ) b,
(A.40)

D'D'+ DD = g {((E}EL) o) (i) + 750, + |HO |2 + |3 |3
+ HYHPHSHY + By BSHEHY + ((I,) + 77, ) (HE HY + HS*H3)

b (B2 + 737, ) (HYHE + 1)) } | (AAD)
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D0t = ST (i) [(efe) - (FLF) + (Fifo) - (G o)
[
EOWAGID (120" — |2 + |3~ | )} (A.42)

where we have used (I 3L) and [ BLI;’/L = —i. Now we are able to calculate the Feynman
rules, beginning with the ea51est ones, those of two sfermions and two neutral Higgs bosons.

A.6.3 Higgs—Higgs—Sfermion—Sfermion
H,ngOfo] couplings
The interesting part in the F~term potential for this coupling is (see eq. (A.25))
Ve D R2|HY|* (Tnig + i) + 02 |HY|® (bbr + bb) + b2 |HY|® (Fi7w + 7571)
2

h P s s h

h

= Z fHOCleO <fRfR+foL> Z fHkazH05wf fi (A.43)

where in the last step we have transformed the sfermion interaction fields to the mass eigen-
state fields (see eq. (A.27)) and made use of the relation Rf Rf1 + RZQR;; = 0;j .

From the D—term potential we need the terms oc Hp H} flf] of

12

1 o o
Vo 5 5 (DD +DDY) ~ LN (v, fifu = Yy fada) (|0 - | HS)°)
f
SR (1 - ).
Using the abbreviations defined in egs. (A.28) — (A.35), we get

9 P, Fnf b —d
o L > [(I“ + (I8 —ey) t%v)foL +ey t%vafR} H; <CZZ ; CZl) 1
s

= LS| - et eyt RLRS (U - &) 07
f
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9 i f s f
Z EHIS <Ckl Zz) Hy eifj fifi (A.44)
f
with
7 1
ezfj 22 {(I?L — epsiy) R Rfl + efSWRz];R;; : (A.45)
W

Therefore the Feynman rule for this coupling becomes

0
Hk ‘\\ s’ fz

A —1 h?‘ Cil 51']' + 92 (CZZ - Ci;l) e{]:| :

H ,j' H l+ fz fj couplings
For the couplings of the charged Higgs bosons and two sfermions we start with the interaction
potential

Ve D R2|HL (Gnig + bjbn) + 02 |H2® (bpbr + T500) + h2 |H2|? (Fy7w + 020,

h? I h2 : S
- 2 HdL Hl—(t;tR+b;bL)+7bH;dZZH;(b*RbR+tth)
hg + ogb o (k x ~ ok~ h? v af - f ey
o By Hy (R vi) = Y St <fRfR+foL>.
!

To get the Feynman rule for this coupling we have to calculate the first (nontrivial) term of
the S—matrix;

h? ; O I
Sp) = =i S [doifld s (Fada o FF) ol (A.46)
f

with
i) =alal 10)  and  (F]=(0]aib

k
for two incoming Higgs bosons (H,' and H; ) and two outgoing sfermions (sfermion f; and
anti-sfermion f])
Contracting the sfermions gives (here we use a short notation neglecting all space coordinates
and momenta, p; belongs to the particle with index 1)

. h; - ,
SO = - Z;fdﬁm/d‘*x(maibj S Hy (RERL Fify + RIR]L T 7)ol 0)
f
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h r3 r3 Py ry; .
- —iy L], <R{2Rf2—|—lelRf1) /d4:pez(pi 20 (0] HyyHy sl af, 0)
f

where we have used

(0]as(p) f(2)|0) = ai(pi) fi(a) = Gure®® (A.47)
(0100 f ()| 0) = 0j(py) () = bjye”®" (A.48)

In the contractions of the Higgs fields we have to take care of the Higgs creation and an-

nihilation operators e.g. aL+ which can create a Higgs boson Ht and therefore gives two

contributions from H," and Hj :

H:(f)aH;,(pk/) = Oppr €7 (A.49)
I—
0010
_ o001 i
Hy(@agsow) = | | g 90| © (A.50)
0100/,
(0| :HtH, - H+a ,\O} = H'H. aH+aH, +H'H, aH+aL,

;‘4—1
X Ok O+ (001 Ok3 + On2 Oka + On3 Okt + Opa Ok2)

X (01 613 + G2 614 + O3 611 + Gpa O12)

0010 0010
000 1 000 1
= om0 0 0 L oo o | A5
o100/ \o100/)
For the Feynman amplitude M we finally get
0010 0010
h3 ; 000 1 10001
— f /' nf f f
M = 222(RZ2R2+RR>CZM+ 1000 |10 0
! 0100/ 0100)

= -1 Z h; (szQRfQ + szl Rfl) dil :
f
The D-terms read with egs. (A.40), (A.42) and (A.28)—(A.35)

12 ~ - ~ ~
Vo > LS (Vi Fiafra  ViFaadue) (112~ |2
f
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- £ (fih) (a2 - |Ha)7)
f

2
g F - 5 i s
= @ Z [( - [:;L cos 20w — ef512/V> szlR;'cl + efS%/Vszzsz} H (le - di;l)Hl Jifi
f
2 i
P g b i — % r
= S H(dy—d)H R (A.52)
f
with
~ 1 ~ ~ ~ ~
fi}; = % [( - IJ:;}L cos 20w — efs%,) szlel + efS%/VRf;R;;} (A.53)

Analogously to the previous calculation we get for the Feynman amplitude

M = =i P - dy). (A.54)
f

In the Feynman rule we have to take into consideration that only the terms o lej are valid

for a coupling with sfermions and not the terms o lej/ !

A —1 h?/ dgl szlR;'[l + h?f diz szzsz + ngij;' (le - dll‘%l)}

H,SH["fo]' couplings
The terms of the superpotential Vr which are necessary for calculating these couplings can
be picked out of eq. (A.25):
Ve o = (T HY HY + byl HY HY) — (50, HY HE + Ty HE HY)
— R2(7j0-HY" H} + 07, HY HY)
~ hehy <E*RBRH12*H2° 4 bR HY H? + b g HY HO + f}l;RH?*H21> (A.55)

Accordingly to the abbreviations before we introduce a few more coupling matrices for better
reading:

Hg*hfz1 = %[cosah0+sinaHO—i(cosﬁAO+sinﬁGO)] [COSﬁHJr—'—SiHﬁGJF}
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cosacos cosasingd 0 O H*
L 6 +0 10 ~on|] sinacosf sinasind 0 0 Gt
ﬁ(h’H’A’G) —icosQﬁ —%sin?ﬁ 0 0 H~
—isin28 —isin®3 0 0 G~
1 ~
Lo gor gt A.56
Ja ek ( )
* * 1 7 *
()" = 5 (Hpe iy (A57)

H} HY

H [?

HY H?

H H}

H} HY

H) H?

H* H)

[—sinah0+cosaHO —i(sinﬁAO —COSBGO)] [sinﬁH’ —CosﬁG’}

Sl -

0 0 —sinasinf sinacosf H*
I o 770 0 ~nf] O O cosasinf3  —cosacosf3 G*
ﬁ(h’H’A’G) 0 0 —isin? 3 %sinZﬁ H-
0 0 Lsin2p —icos? 3 G~
1 ~
7 HY & T HF (A.58)
* * 1 7 *
()" = s (Hpe i) (A.59)

% [—sinah0+cosaH0—i(sinﬁA0 —COSBGO)} [cosﬁH+—|—sinﬁG+]

—sinacos —sinasing 0 0 H*
1 6 170 40 A0 cosacos 3  cosasin 3 0 0 Gt
ﬁ(h’H’A’G) —%sir2125 —jsinQQ 0 0 H~
icos” 3 5 sin 23 0 0 G~
1 —~
— HY O HF (A.60)

V2
1

(H"HY) = = (H,S cZ}’O*Hl*) (A.61)

% [cosozho +sina H® — i (COSBAO —I—sinﬁGO)] [sinﬁH_ — COSﬁG_}
0 0 cosasinf —cosacospf HT
. . e "
T PRt el |
0 0 —isin?p Lsin2p G-
% HY 0+ (A.62)
(agm) = s (mpdinr) (A6

After inserting this into eq. (A.55) we get
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1 o
Ve D -5 > <h§ Fify HY LV HE + hohy frf HO LT °+H+> + he. (A.64)
f
Rotating the sfermion fields into the mass eigenstate fields (see eq. (A.27)) gives
1 Y E
Ve D _ﬁ Z (3 RARL o + hghy RERL [I™%) HYH J )
Z <h2 RLRL (HYCL " H)* + hyhy RLRL (HYCLT H l*)*) hify

and with

0 0 _ f.0 * 0 1 01 — .0
<C’d +H+> - (Cgl +> A= (Cgl +> (1 0) (1 o) Hy <C£l’ +> '

-~

14X4

(look at the index I which is I’ = 3,4 for | = 1,2 and vice versa !) we arrive at

Z RARS (W 03 (™)) + RERD bl (el O+ (i) )|

< HY H f; fi (A.65)

Now the Feynman rules take the form

N P4
" i [Rf R (13 e 02 (fi)')

s N f f/ ff .0+ 0+
N + Ry Rl (4 (7))

Be careful which Higgs boson you should take in a particular graph! As an illustrative
example we give the result for a coupling which we will need in the main part of this work:

[Rﬁ’l R, (h? cos asin B + A sin o cos 3)

s AN + R§2R§2 hihy (sin acsin 3 + cos ac cos 3)
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Here we have to take the negative charged Higgs boson H~ (the H* would not be allowed
due to charge conservation).

Setting k = 2 and [ = 3 leaves

i . -
5 [FLRSy (WER™ 137 ) + R R hub () |
= % [R§1R§1 (ki cos asin B+h; sin avcos 3) + R§2R§2 hihy(sin asin f4-cos ac cos ﬁ)] .
The D-term potential terms coming from the off-diagonal Pauli matrices o}, and o7, are
given by

1
Vb 2 3 (D'D' + D*D?)
> () + o) (HEHY + Y HY) + ((Bi00) + 77, ) (HYHE + H3'HS)
9 0 b0+ 77+ 0 0+ +
= 0) + 77 ) S [(HY i)+ HY G |
( L 2,2 k Cki l
-~ 2
+ (ide) + 700 ) 2 [Hp i + (B H) |
22
2
g bO t,0
= 2—\/5 [( tLbL +7/ TL) ( kl’+ Hl+ +H£C§d +Hl+>
+ ((BEEL) + 7*21%) (H,g c;ﬁ’lOJ“HfL + H} (cf;’lo/Jr)*HlJF)]
- MZRJ‘ R (i + (i) ) HRHT £ ). (A.66)

which results in the Feynman rules

4 -
Hl \\ V. fl
N ’
N i
N P
N
N i g fpf ( fo+ (f’ 0+)
> ——= R Ry <c +(c )
/N 1 kil kU
/// \\\ \/5 9
s AN
/7 N
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A.6.4 Higgs—Higgs—Higgs—Higgs
The 4-Higgs couplings are only coming from the D—terms, and therefore we have (see
eqs. (A.40)-(A.42))

g° 2 2 2 2]? ¢ 2 2 2 2]

Vo o S|l - |7+ 2 - 3|+ ||~ 3 a2 |
2
g 2 2 2 2 * * * *

+ L DH;)) 2+ |HOP Y + HY H2HY H) + HY HYE? Hf} C(A6T)

or in a more compact way
1 )
Vo O g(g2 + gl2) (Hi*HZ Hz*Hz) g }HZ*HZ‘ (A68)

HY)HYH? H? couplings
The 4-neutral Higgs couplings are obtained from the following term of the D—term potential,

1 2
Vo o <(g*+g®) (|H[ - |HS") (A.69)

which can be expressed in components,

Vo O 3 29; [((h0)2 - (HO)2>c052a + ((A°)2 - (GO)?)cos 28 + 2(h0H0 sin 20
w

2
+ A%G0sin 25)} , (A.70)
as well as in index notation (see eqgs.(A.28), (A.29), (A.32) and (A.33)),

Vb D

32 2 Z HyH) H, Hy (Cklcmn + Cklcmn Cglcf'rm - Cl/zlcénn> . (A.71)
W k,lmmn

To get a special coupling out of the potential we either can sum over all indices an then pick
out the single terms which belong to the required coupling or we symmetrize the coupling
matrices ¢® and ¢’ in eq. (A.71), fix the indices belonging to the Higgs fields HY and take
a combinatorial factor for multiple counting into consideration. Here we choose the second
possibility:

g9’ b

Vp D 3222, HkHz HO HO <C(k;lcmn) +C(kzc n) — c(klcfnn) c(,dcmn)> x CF  (A.72)

(no sum over indices, this is respected in the combinatorial factor!) Here the brackets around
the indices denote symmetrization and CF stands for a combinatorial factor, which is given
for a general coupling (h°)*(H°)*(A%)¢(G®)¢ with a +b+ c+d = 4 by

_— (3)'<4;a)'<4—z—b)'(4—a;b—0) LN
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In the Feynman rule we have to take the symmetry factor (SF) of the diagram into account
(n! for n equal neutral particles):

0 [0
Hk;‘\ Val m
AN Ve
AN Ve
\ Ve
AN Ve
\ / 2
\ Ve g =~ =~ ~ ~ ~ ~ ~ =~
N / . b b t t b t t b
mn mn mn mn
N 7 Ci1.C + ¢/, C(1.,C Ci1C
s 32¢yy,
7/ AN
7 AN
e AN x CF x SF
Ve AN
/7 AN
// AN
HlO/ v HO

As an example we take the coupling h® H°(A%)2. For the indices we choose k = 1,1 = 2 and
m = n = 3. The combinatorial factor then is given by

o= () (2)(3) e

so the interaction Lagrangian reads with (note that the matrices b and o are symmetric)

~ - - - - - ~ - 1 ~ - ~ - - -
b B P e i _ bbb bbb
(c(12033) + C12C33) — Cl12C33) — 0(12033)> =3 <012C33 + 133t 013023>

boq b P i s 1
- (Clbcgg + cl5ch; + Cl{3¢53> T bt } -3 sin 2arcos 20 5

and therefore

2

L = _85;2 sin 2a cos 28 h" H(A°)?. (A.74)
Cw
hO \ vl AO
\\\ ///
\\\\ //// g2
h. — i ——5—sin 2a.cos 23
// \\\ 4CW
//// \\\\
HO /7 AN A0

HH H}H_ couplings
Like in the case of 4—neutral Higgs boson couplings we get the 4—charged Higgs couplings
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from the D—term potential
Ly 2 2|2 112\
Vb D g(g +47) <’H1} — |H,| )
9 2
= 8’;2 [H‘ ( sin 268G + cos 2ﬁH+> +G ( —c0s 238G + sin QBH’L)} .(A.75)
Cw
In index notation this reads with the abbreviations defined in eqgs. (A.28) —(A.35)

Vb D 320 Z HH H'H, (dildb +dd dildfnn—dildim), (A.76)
Wklmn

To be able to pick out the various couplings out of eq. (A.76) in the same way as we did in

the case of the neutral Higgs bosons we first must express all fields in one single base, H,"
or H, :

2
g ; .
Vp D e k%;nH,j HMHLHY <dk;ld vd A —dd n—d',;ldmn>mt, (A.77)

FooF i 7 lox 0 1ox
(dil dﬁln)mt N (dgl)mt rot a /Z/ldkl/ (12 2 202)1/1 df (12)(2 %2)71/” '

Now we can symmetrize the rotated coupling matrices as before if we want to fix the indices
in the Higgs fields. The combinatorial factor CF stays the same but we don’t have to take a
symmetry factor in the Feynman rule because of charged particles:

+ +
Hk‘ \\ // Hm
AN Ve
AN 7
X ¥
\\ //
AN 7 ~ ~
3 —ig 29 (dgld vdLd —dd — ddb ) x CF
// \\ rot, symm
(/ \»
7 AN
/// \\\
H," S HY

A.6.5 Sfermion—Sfermion—Sfermion—Sfermion

As we already mentioned before, we have to take care about the colour indices in this term
of the superpotential,
W D hlot HY + hy bsb  HY + h, 77, HY — hy tb  HY — hy bt H? — h, 7o H?
(A.78)
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which leads to the F'—term potential
Vi > bi(fhfe) (fif) + 1 (bkbe) (Vibr) + B2 (7472 (7i7)
b B2 (Ee) () + (k) (i) + 2 (i) (727)
+ hyhy (E;BL%;;%R + L bRTaL + D bRTh + IB}}?LD;‘%R>

= X () Fife) + Gadi) G ) + bty (Fafufidu+ Fafidi )|
f
(A.79)

fzfjfkﬁ couplings
With the initial and final states for the first term,

i) = als(p1)bL, (p2)]0),
(fl = (0laia(k1)bjs(k2),

we get for the S—matrix element

S}? = /d4x (f| : Line(2): |i) = —ih% RL R RS, RY,

[t o)ty (P P o ) @0 als (o)L, (2)10) v
(A.80)

In order to evaluate the vacuum expectation value we make use of Wick’s theorem in taking
all possible contractions:

S}(}i) - _ih? anlele;RtJ;Q (27T)454(p1 +p2—k1—kz) arpr s
X (5im6047’ 6jn5,3ﬂ’ 5ql56’6 6pk5a’7 + 5im5a'y’ 5jq5ﬂ6’ 57115,3’6 6pk50/'y
+ 5ip5aa’ (5]'”555/ 5ql56’6 5mk57’7 + 5ip5aa’ 5jq5ﬂ6’ 5mk5'y’7 5n156’6) (A81)
In the last equation we have used the notation
5aﬁ'y5,a/ﬁ/'y/5/ = 5040/ 5ﬁﬁ’ 577’ 555/ ) - aBys,a/Ba'f = 501'\/ 5[36 (A82>
and
Rl,, = RLRLRLE]. (A.83)

The corresponding D-term potential is given by (see egs. (A.40) and (A.42))

12 o s o o
Vo 2 %Z(Yﬁ(ﬁjﬁ)—YfR(fEfR))(YfL(fEfL)—YfR(fng)>
f
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LS (i) i) (A84)
f

Rotating the sfermion fields into their mass eigenstates, fL = sz1 ﬁ-, fR = RZJ; fi, the D—term
potential for four sfermions reads

2
J ] ] f f f Fx Fx
Vo 2 8 Z [R{JL’“Z * t%VYJ?LR{JL’“l + tIz/VY}?RR{J%l - t%/[/YfLYfR <szjkl + Ri};zz‘jﬂ (fz fJ) (fk fl)
f
= Z CZJ;}i:;z(fz*fJ) (fzﬁ) ; (A.85)
f

where we have used the relation ¢’ = g tan 6y, as well as the abbreviations
. _ pfpf pf pf fr _ pfpf pf pf
R = Ry Ry Ry Ry Rl = RipRjp R Ry, - (A.86)

Like in the calculation of the Yukawa coupling terms in the previous section we get for the
Feynman amplitude

M= =i [(CH+ Ol bastns + (CH; + CLL ) bastin] (A.87)

Both, F'— and D-terms, result in the Feynman rule

fk'y "\\ //' fz’a
"™ A . ; ; ; ;
NS —ih3 [(szjkl + Rilij) 0as0py + <szlkj + Rijz‘l) 5aﬁ5w6]
A 4
N —i[(Cff+ ;) dands + (CH; + CLLL) Busdan]
/// \\\
fis” N fis

fzf, f,;fl' couplings
For the second term of eq. (A.79) we take the initial and final states
(i) = aj(p)bl, (p2)]0)
(fl = (Olaia(ki)bjs(k2)
which leads with
frio o F o F F ff/ . FoF Fro_
Rl = BRI RLRLR, Rii = RLR) Rl Rl, (A.88)

to the Feynman amplitude

M = —i (BRI + 1 RIE) busds (A.89)
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For the D-term potential we get with the eqgs. (A.40) — (A.42)

2

Vo > ST ((RI) Ui R - 3G Ui )
f
g* e s - - -
5 Xfi (V5 (Fife) = Vi (Fidn) ) (v, UE 1) = Y, (P T)) (A.90)
and with a little bit of cosmetics we have
g Z { {(tw (Y;,Y7,) - )Rfjjl 1 (Y5, Y7, ) RIE — 6, (v;, Y7, ) RS
— 8, (Y, Y5 Rﬁlsz} Sapbys + 2RW aéaﬁw} o s fls
Z Cz'];]ljl,aﬁvé ﬂ’&ﬁaﬂiﬁ% : (A.91)
f
The Yukawa and electroweak contributions to the Feynman rule are then given by

flgf\f\\ 2 fioc

(12 pf'f 2 pl i A AfF Ff
~ —1 <hf Ryi7 +h ’Rz’jkll)>504556’y - Z(Oijkl,aﬁ'yzS + Cklij,fyéaﬁ)

fifj ffi couplings
The Feynman rule for couplings with two sfermions and two 'family partner’ sfermions can
be obtained from eqgs. (A.40), (A.42) and (A.79):

Viyp O Z{hfhf(f;:‘th)(fsz)"‘—
f
g’2 rx o T 7 S & 203
+ 2 (v i) = Y3 ) (v, 2 ) - ¥3, (i)
Z{hfh R{j;? + 8R{J§5 98 [Y Y: Rf]’;jl +Y},Y; R{;j;; Y;,Y: R{]f;f;
f

— YV R,ﬁ{i}j]}(ﬂ*ﬂ) (fih)
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= 2 [hfhf R +O£J;l} (F K (Fih) (A.92)
f
fr N L Ji
\\ //
\\ // . . . -
—ihshy (RIS + Rify) —i(0ff+ off)
// \\
// \\
h? N

ﬁf,f,;fl' couplings
For the coupling with two sfermions f; and two family partner sfermions with different
isospin, f/, we get with egs. (A.40) and (A.42)

Vo o 3| - LU + (v, i) - ¥y, i)
(v;, (G di) - v, (i )|

2 ~ 2 12 ~ 2 ~ 2 ~ 2 2.
9" ffi g Wy It ff1 !
= E { - _Rz‘jkLl +5 [Y~ Ye Ry + Yf Y:RRZ.]-,;} - Yf Y‘RRz‘jifz) - YfRYfi Rl};lijzp] }
f

8 8 fr fi 17kl R f! Lo f
< (f ) (e f) = (B e h). (A.93)
f
flz ~\\ // fl
N\ Ve
AN Ve
w A
AN 7/
N (CFF L of'i
//V\\ -t <Cijkl + Oklz’j)
Ve N
Ve AN
A *
Ve \
Ve N\
2 7/ AN ~
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fzfj'f,'cfl couplings
Finally, eqs. (A.41) and (A.79) give the Feynman rule for the mixed four—sfermion coupling,

~ ~ 2 2 2 ~ o~ 2 2
Veeo D Y (= hhpfadidi fn+ T Rififi 1)
f

_ Fifie 9 pFFTR e e
- Z <_ hfthjz’kl " +ZRijkl L) i* ]/ l:;* l (A-94)
f
with
Fiffe — pf pi pf pf iFff — pi pl Rl Rl
Rijkl "= RilRﬂRklRlQ’ Rz’jkl b= RilelelRll' (A-95)
‘f]é ~\\ // fz
AN 7
AN Ve
A nd
AN /7
N Fi7 e [P ife 90 pipih
//V\\ _ththjik:l — th’hf/leij — ZERijkl
7/ AN
A %
7/ AN
A // \\ ~,
fi” N

A.7 Vector boson—Sfermion—Sfermion couplings

The interaction Lagrangian of a vector boson and two sfermions is given by

L = —ieef A, fro"fj—ignzl 20 fr 0" f; + (—z’ % W, RIRIfr 0" f +h.c.) ,
(A.96)
with the abbreviations
= Cf RIR + O} RLR), (A.97)

and gz = g/ cosby, Cf = I}* — e;s?, and Cf = —eps,.

i
k%/
//1 —1ie eféij(kl + kQ)N N AH
Aps Z0 NS, ) )
\ igz 2l + ks) Ty
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o fri
1 //
n % -9 Lfpf
W, AAAY Y =075 Rt i (ke 4 k)
\
/{:x\\ N
N i

A.8 Gaugino—Fermion—Sfermion couplings

The interaction Lagrangian of the chargino—sfermion—fermion couplings is given by
L = f (zg} Pp+ k! PL> i+ (z{; Pr+ k]! PL> 5
+ 5 (Pl Pe) i i X (D P+ K PR) 1 Fr (A9)

with the coupling matrices

lzij = _gv}leflT + thV}QRZfQT ) lf} = —nglRZJ-} + hflUJ'?szQl ,
i i ] ) (A.99)
7 7 7 7
kijT = hfl UJ'2Ri1T ) kijl = thijRill .
fr fi
fi———»——- i Pr+ Ky L) fri === i1 Pr + K[ )
Xj o
o i 0 fi
/ /
/ /
e ed
i i
Jr i(li}PL + kijiPR) fi i(li} P+ k) PR)
Xi X

For the neutralino—sfermion—fermion couplings the Lagrangian reads

L = f(aszPR + bszPL)fég fi+ Xn <aszPL + blkaR> 1 (A.100)
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with the coupling matrices

al, = hZwRhL+gfl ,RL, bl = hZwRL+ gff R (A.101)
and
fg/f =2 ((ey — [?L> tan Oy Zy1 + [?LZIQ) : ff;k = —V2e; tan Oy Zy,; - (A.102)

x takes the values {3,4} for {down, up}-type case, respectively.

/s’ J;z /
/
/
£
// 7 3 ~ 7 3
f Z'(aszPL + bszPR) fi =—==>»——= Z'(akaR + bszPL)
Xi Xi

A.9 Higgs—Vector boson—Vector boson couplings

The interaction Lagrangian describing the couplings of one Higgs boson to two gauge bosons
in the MSSM is given by

m :
L = 922 z [cos(a — B)HZ)) Z — sin(a — B)h°Z)) Z°F]
+gmw | cos(a — B)HOW:W_“ — sin(a — ﬁ)hOW:W_“}
— gz M Sy G’_VV/:r Z% 1 gsywmpy G_WJA“ + h.c. (A.103)

With the usual form of rotation matrices, used throughout this paper,

o cos¢ sin ¢
Rkl(¢) - ( —Singb COSgb )kl ’ (A104)
the Feynman rules can then be written as
Z W
197 mzRop(a— )G ...Zg
[ — | .
ig mw Rog(a— ) g W

Z Wy
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Appendix B

Self—energies and counter terms

Here we give the explicit form of the self-energies needed for the computation of the one-loop
decay widths {h°, H?, A%} — f.f; and H* — #;b;.

B.1 Diagonal Wave—function corrections — derivatives
of Higgs boson self-energies

The conventional on—shell renormalization conditions for the diagonal wave—function renor-
malization constants are given in terms of the derivatives of the corresponding self-energies
(see chapter 3),

0Zfi = —Relljy (m}), (B.1)
where the dot in H(k:Q) denotes the derivative with respect to k2. In the following we list the

single contributions of the Higgs wave-function corrections. The derivatives of the CP—even
Higgs bosons h? and H depicted in Fig. B.1 are given as follows:

. 0 .
Hka A sk [4mf mig)Bo(mig,mfc,mf) Bo(mho,mf,mf)] (B.2)
. 0 .
Hka 7 = C mnk: Bo(mio,mf 7mf) (B3>
f mmn=1
- 770 =0 1 4 .
Mg = )y 9 Z (Fpt)? K(mx% +mygg)® — mig>Bo Bo} (th,WLZo >mig)
m,n=1
(B.4)
2
. HO,~+ 1 -
I * = - (dn)? g’ Z [((Fr:nk)Q (FJmk>2> ((mijg + mf}j{ - mig)Bo - Bo)
m,n=1
+dmgrmer FiF L FE L BO] (mho,mi+,mi+) (B.5)
2
e = L 19z mZ>2 Z [(24 OmO. )']2((:05204121(]‘;) — 25sin 2« B(k))zB
kk - (47’(')2 9 4 kmYmn ) - mn mn 0

75
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f Xons Xt
e T s hY R -----¢  $--—-- h)
f Xoi X
f”L HO + ZO; Wi
// \\\
e et f
foi H)* A%, G Hyf
ZO; W:t Wy Wt
R --—--8 G- Y h) ----- ~ ----- h)
ZO. W:I: wz,wi
Figure B.1: Diagonal self-energies of CP—even Higgs bosons h° and H°
4 . )
+4 Z sin2[a + ﬁ - §(k - 1)] (Cm—Q,n—Q) BO:| (mhoamHO amHO)
m,n=3
2
mn g mW o / k;) gZ mz
E mznjl [ L (1= Badan) (14 ) ALY — T2
. n A 2z 2 2 2
x sinfa + 3 — 5(1{: —1)] C’mn] Bo(mhg,mH;;, my ) (B.6)
“HOV 1 92 - 2 2 2 2 2
1T, = — e 5 ; (le(a—ﬁ)) [(thg—i—Zm mW)BO + QBO} (mho S M miy)
1 Q% - 2 2 2 2
_(47T)2 Z Z (le;(a_ﬁ)) [(thg‘f'ZmH&Q— )Bo+230:| (mho,mHo ’mZ)
=1
(B.7)
- 170 1
A i)y (ng(a—ﬁ)) [4g mWBO(mho,mW,mW) + 2meZBo(mho,mZ,mZ ]
(B.8)
- HO ghost 1 2 92 2 2 g% 2
Ik = - (47)2 (R%(Oé—ﬁ)) [EmWBO(mh? My, My ) + mZBo(mho,mZ, )]



B.1 Diagonal Wave—function corrections — derivatives of Higgs boson self-energies

The derivatives of the CP-odd Higgs boson A° depicted in Fig. B.2 are given as follows:

f In
€<
/ \\\
!
__________ AO AO _____,\ ;;______AO
N /
\\"l/
f fm
X0 A G G*
//// \\\\
__________ AU AO _____*\ /.______AO
N 7/
X0 Xi h' HY H*
Z0 W=

2 .
__(471')2 Z Né (35)2 |:Bo(m12407 m?c, m?:) + mioBo(mio, m?, m?)] (Bl())
1 2 .
F(f 27 2 2 2
_(471')2 Z NC (Gmn3) BO(onamfmamfn> (Bll)

4
1 .
_(47T)2 92 Z (Fr?zn3)2|:<(m>29n _mf(%)Q _m1240>BO BO] (mAOam20 amig)

;n=1
(B.12)
1 2
i ” 2 (B + (Fpa)?) (s + iy — ) B — Bo)
m,n=1
—dmm  Fly Fly BO} (m%o,m2. ,m2y) (B.13)
1 m 2 4
Z Z
(47’(’) ( ) ZZ Akl 2 Bo(on,mho,mHo)

k=1 1=3

1 m 2
+ )22(9 ) Bo(ma, mie, i) (B.14)
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- —cos20 sin(a + ) —sin24 sin(a + )
wi =

& cos 203 cos(a+ ()  sin2f cos(a + )
. 0 2
H:% v i) % Z Ry(a 2 [(2m?40 +2mho mZ> By + ZBO] (m?o, mho, m%)

=1
1 .
G 92 | (2m2 + 2m3y = miy) By + 2Bo | (m30, miy -, miy) (B.15)

The diagrams in Fig. B.3 show the diagonal charged Higgs boson self-energies entering in
the wave—function corrections. In this section, we will denote up— and down—type (s)fermions

by f;/f; and f,/f,, respectively.

fi X0 hi; A
/// \\\
H+ —_—— _.>___H+ H+ ——-)——’I \l‘___)___H“F
\\ ;
\\_”//
Fri X H,;;G*
r 0. +
fim Z0 W
/"'\\
// \\ ;\M/\/Z
H+ ___,__,’\ Ig___,___HJr H+ —_—— "‘—'H+
\ /
\\_)’/
fNTn H+ HO

Figure B.3: Self-energy diagrams of the charged Higgs boson H™ relevant for the calculation
of diagonal wave—function corrections.

I f
H11 =

. cos 25+ hf sin 5) ((m?cT + m?:l — m%-]-&-)BO - Bo)
f {f1}

+dhygmy hymy sin 3 cos 3 BO] (mﬁﬁ,m%, m?T)} (B.16)

4 2
ﬂﬁ+7>~< = 29222 [( nml (Ffml)2)><(m?29n +mf~<:§ _m%ﬁL)BO_BO)
m=1 n=1

+ dmgo mg +Frfm1Ffm1BO] (M3, m?(?n, m;:)] (B.17)
2
~HY f 1 f fifin2 2 2 2 2
H11 - (477')2 f%}NC Zl (GnTTni) BO(mH+,mf~lm,mf~Tn) (B18)
={f m,n=
2
. 1 m ~ m ~ 2
HﬁJr’H - (47T)2 Z [(_1)ng?w(1+5ln)14;1(7173 + gZTZR%L(OH_ﬁ)Cln]
m,n=1

5 (2 2 2
x Bo(mi+, Mo mH;{)
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1 gmyy
T (47)2 ( 9 ) Bo(mip, m%o, miy) (B.19)
1 .
TanEY o T | (4mds = 32) By + 2By (miy, miye, X2)
1 1 .
(4W)2g%(§ — 5124,) [(4mH+ mZ)BO + QBO] (M, mis, my)

1 g? 2

- ()2 1 Z (Rw(&—ﬁ)) [(2mH+ + 2myo — mW)BO + QBO] (Mms, myo, miy)

k=1

1 g 2 2

- (47‘(‘)2 Z [(QmH+ + Qon mw)BO + 2Boi| (mH+> on, mW) (BQO)

B.2 Off—diagonal Wave—functions corrections — Mixing
of CP—even Higgs bosons

According to chapter 3, the off-diagonal wave—function renormalization constants of the
external sfermions are given by

07} = G —) Rellf;(m} ), i#J- (B.21)
fz f]

The single contributions are as follows.

Hgo,f(]@) _ _(472r)2 ZNéslsQ [(4mf ]gQ)BO(k{m?,m;) + Ao(m?))] (B.22)
f

2

07 1
H{—IQ ’f(kQ) = (47T)2 Z Z Nf GTfLmleTL2 (k2 mf am?fn)

f mmn=1

[\

Z Z NZ h2 Cl2 +9 (011)2 — cly) mm)AO( my ) (B.23)

m

[\')

f m=1
HO X0/, 9 1 9 - 0 2 2 2 2 2
H12 (k ) = _(47T)Qg anlanQ[((mi%+m2%) —k )Bo(k? ’mf(?n’mf(%)
m,n=1
+ Ag(mo ) + Ao(m?{g)] (B.24)
2
. 1
Hllq2 X (kQ) = - (471')2 92 Z |:2m FIr (ananmZ + Frj—mlan2> Bo(k’ m;;ﬁm?@‘t)
m,n=1

+ <F1mn1F1Jr ananm2) (Ao(m?(ﬁl) + AO (m?(:g)

+ (2, +m2, — k) By(K2, m2, | mfﬁ))] (B.25)
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Figure B.4: Diagrams showing the off-diagonal mixing of the CP—even Higgs bosons h° and

HO
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(B.26)
1 2
Hﬁo,\/(kﬁ) _ _(47r)2 % Z [(2k2+2m§{r—m%/)30(k27m§{r,m%/) + 2A0(miy)
=1
1
= Ao(my:) + e <(2k2+2m§{?+2 —my) Bo(k* miy .m7)
+240(m%) — Ao(mgm))] Ru(a—B)Rula—F)  (B.27)
1
Hng’VV(kQ) = —W sin(2a — 2(3) (Qng%BO(kQ, m%v, miy,) + gzmyBo(k*, m%, mQZ))
(B.28)
HHO,ghosth o in(2a — 2 9_2 2B k:2 2 2 é QB k:2 2 2
12 (k%) = (4n)? sin(2a — 23) 5 Mw o(k™, myy, miy) + L "z o(k”, mz, my)
(B.29)

B.3 Diagonal Wave—function corrections — derivatives
of sfermion self-energies

According to chapter 3, the diagonal wave—function renormalization constants of the external
sfermions are determined by the derivatives of the sfermion self-energies,

07} = —Rellf(m%), (B.30)

where the dot in H(kZ) denotes the derivative with respect to k2. The single contributions
are listed below.
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Figure B.5: Diagonal sfermion self-energies



82 Self-energies and counter terms

4
H{zx = Z [ b{kl) ) : ((m?(g + mfc — mi) By — Bo)

k=1

l\’)

+ dmgomy alkb{k BO] (mf , m?(g, m;)

(471r)2 S [ (OR)? + ) - ((my +miy = m2) By — Bo)

+dmgrmy kml@fk BO] (mf ,m%, m#) (B.31)
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fHLH § :§ : 2
Hii - (47T)2 — £ mik zmk Bo(mf 7mf 7mHg)

i 3o S GGl ot iy e
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v _(4;)2% 2 (R R [2B0 + (2m2 +2m% —miy) Bo|(m, m?, ,m},)

H

B.4 Sfermion self-energies

For the fixing of the sfermion mixing angle 6; we need the off-diagonal elements of the
sfermion self-energies, Hlfj = Hzfj(m%) In the following, YLf /R denotes the weak hypercharge,

f
Yig =

can be found in Appendix A. Additionally, we use the abbreviation RZ%IZ’ R{;RflRéR{;.

= 2(I} SL/R _ ef). The short forms for various products of sfermion rotation matrices

4
nhx = Z [ zkajk; + b{kb{k) (Ao(m o) + AO(mf) + (m?{g + mfc - m%) BO)

) 2
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f ?
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2
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m=1 ,

E gz Z {Nf (v =) R e iyl BRI iy R,
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Hf;F:Hf;f:fHF , Hf;ﬁ:Hf,,fAf_)Z;ﬂ ,

oo v ~IU =) (B.44)
f’F, — fvf/ £ f7F’ o f,f/ ~ ~

;" =1 (f' = F"), I = 11; (ff = F"),

where the sub—/superscript F denotes values belonging to first and second generation scalar
fermions with same isospin as f (e.g. Fy = {@y, &} for the stop case, ...), F’ sfermions with
different isospin etc.

2
f 1 £r s ~ ~ ~
" = (4m)? Z (hf“ diy szlR o+ hi dik szR 2T Y fiJ;' (dhe — de)>A0(m§{,j)
k=1
i : i
( )2 B ; <h3‘ Cgk dij + 9 6 (CZk Ci;k))/‘lo(m%{g) (B.45)
~ 1 1 B ~
Hszv - (47)2 4 (eoef)?0i5A0(N?) + W 292R{1R51A0(m%v)
1
+ (4@2 ((Cf )’RLRI + (Ch) Rg;RjQ)AO(mZ) (B.46)
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B.5 A"Z’-mixing

The scalar—vector mixing self-energy, Il4z(k?), is defined by the two—point function

k
Pu=—— Z M = —i k' TLyz(k?) € (k)
1 .
HQZ = —wmz stﬁZNé [J:Z’L hfc Bo(mio,m?c,m;) (B.47)
f
X" i - 2 2
I, = WQQQZ Zszg Om [m 0 By + (my oMy O)Bl} (mAO’mxo’mxi) (B.48)
kl=1
~t Z / /
Iy, = (47)? 299z Z [(Fljl?, O — Fiis Olf)mﬁ(BO +B1)
k=1

+ (Fils Off = Fily OfFymyy B (mo, m2,m2,) - (B.49)

~ 1 ~ ~
), = _WngZNgz;’l G{23(30+2Bl)(m30,mf ,m? ) (B.50)
!
9 2 4
H vt gzmz
7 = e ;;A’”‘QRM—M @) (Bo +2B1) (mio, mipg, miyy) (B.51)
2
[ g
%, = (in)? Z sin(2a—273) Z Bo—Bl)(on,mHo,mZ) (B.52)

B.6 H'W't—mixing

The scalar—vector mixing self-energy, I gw (k?), is defined by the two—point function

k
Ht-—>=>- W/j M = —i k' Ty (k%) GZ(M
1 !
H{{W - Wﬂg Z Ng‘ (mfiyllBl<mH+ame7mfl) meleBl(m%”’m?ﬁ’m;T))

f={f}
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Figure B.7: AZ-mixing self-energies

(B.53)
2
1
M = (e >3 myg (FOk + BLOR) (Bo + By)
k=1 =1
+ g (F5 O + B OR) By (mie m2 m2y)  (B54)
P 1 g Ff pfi o
m, = — i NE G By R (Bo + 2B1) (e ,m3 m3 ) (B.55)
f={f1}
2
1 g n
HgW = _(47_(_)21 Z |:(_1) ng(1+51n)A( +meZR2m(a+ﬁ)Cln] mn(ﬁ_a)
m,n=1
X (BO +231)(m§{+,m1{+,mho) (B56)
w 1 92mW =
Ogw = _—(47T)2 72 ;le(a—ﬁ)R%(Q_ﬁ)(BO_Bl)(mH+amh0amW) (B'57)



B.7 W self-energies 87
h fin
Ht > wH+ Ht-->-1¢ AN T
\\\-)’/
fT me
Xi i,
Ht > w+ Ht-->-1¢ AN T
\ \-)’//
Xi H,;
W+
H* __*_% W+
hy
Figure B.8: H*W T-mixing self-energies
B.7 W™ self-energies
For the calculation of the mass counter term of a gauge boson V (V = W= Z%) dm? =
ReIT%, (m? ), we need the transverse part of the vector self-energy IT%.,(k?) from
k
—
v, v, M = —i e (k) (9" Ty (K?) + bk T1 (k) ) €5 (k)
(B.58)
Smw \ 7’ A Ao(mj,)
(m—w) = th sin? mf — + h2 cos®3 By(myiy, mfl,me)
gen. T
g9’ 2 2 2 9 2 2 2
_ mTBOO(mW,mfl,me)+§Bl(mw,mfl,mﬁ) (B.59)
W
om i g 2 7 7 2
w _ f 1 pll 2 2 2
(m—W) = F Z N Z <Rm1Rn1> BOO (mW, mem’ mfln) (B60)

gen. m,n=1
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Figure B.9: W self-energies
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Here, f; and f| denote up— and down-type (s)fermions of all three generations, respectively.

(i%v)f B 47r24m ZNfZ< ) z) (B.61)

gen m=1
% 4
(smW X o g_iz 20L OR Bn — (OL)2 + (OR)2 %
T T AmEml, ke Yk Mgr Mxo Bo Ik 1k
W k=1 1=1
(m B, +mf~<? Bo+Ao(m;z) —2300>](mw,m207mik+)
(B.62)
omw i 1 g9’ L 2 2 2 2
(m—w) RGP (Rua=0)) Buotmiy. . i)

+ Boo(miy, mig+, m%0) + Boo(miy, mg+, mGO)] (B.63)
omw\" 1 g iAW )+2Y Ag(m2y) (B.64)
my (47)% 8m3, OV H O '

5mW Ve . 1 g_2
my o (4m)? 2

+ sty Bo(miy, miy, A*) + siyty Bo(miy, miy,, m%)] (B.65)

5mW VV+V+ghost 1 92
my (4m)? 2m3,

S%/V (8300 + 7m12/VB() + 2m12/VBl) (m%/Va m12/Va )‘2)
+e (8300 - Tmd, By + 2mgvgl) (m2y,m2, m3)
—S%VAO()\2) - C%VAO(mQZ) - 3A0(m%/)] (B.66)

B.8 7' self-energies

Accordingly to eq. (B.58) the mass counter—term contributions to the Z° boson are as follows:

5mZ fr 1 92
( mz > = o g 2 Ve [20h Chm o= (€ + (CRF)
f

<A0(m;) + m?c By — 2By + m7 Bl>] (m7, mfc, m;) (B.67)

omy i1 _ LZ
mz m 7

2
Z BOO mZ7 }mam}n) (B68)

m,n=1
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omy d 1 g2 2 3 P
(22} = L SN (LRI + (CLRE?) o) (B9)
Z ¥ m=1
(st X7 1 g2 4 7\ 2
(52) = i 3 (0h) omsp msgymsy B+ B+ Autny
kd=1
— 2300] (mZ,mio,mi?) (B?O)
5mZ Xt 1 92 2 ’ ’ ’
(52) = G ag 2 ol Otmg me: 5o (100 + 018) »
k=1
<m2Z By + m?(;r By + Ao(m?(;r) -2 Boo)} (m3, mi+,m +) (B.71)
S\ T 12 & )
(52) = v | o2 (Rerats—e0) B i)
k=1 =3
2
+ cos?(20y) Z Boo(m?, mzkﬂ quz)} (B.72)
k=1

(%ZY - (471r)2 877;{2140 migg) + 2005"(2) ZAO H*)} (B

(%) - ) <g7z sin?(a— 3) Bo(my, mio, my) + % cos*(a—f) x
Bo(m, migo, my) +9° sly Bolmiy, iy me)) (BT
5mZ WW +W +ghost 1 gQCIQ/V ) 5 ) ) ,
( my ) T ()2 m [4300 iy Bo + §mZBO iz B = 2A0(mW)}
(m, miy, miy) (B.75)

B.9 Fermion self-energies

In our notation, the fermion self-energy II(k) is defined through the relation

k
f—= o M= iatk) k) ulk)
with
(k) = kP, IIE(k)+ §PpIIR(k) + I5E (k) Py + I19F (k) Py (B.76)

Thus the mass counter term for quarks and leptons is given by (see also section 3.3.2)

Smy = % Re [my (IT*(my) + 1% (my)) + 1155 (my) + 9% (my)] (B.77)
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Note that for quarks and leptons (contrary to charginos), the left— and right-handed scalar
parts of II(k) are equal, II°%(k) = II9%(k). The single contributions to dm; are as follows:

Hj)

Hy!

f/

Figure B.11: Fermion self-energies

sm )k 1 2 4
(m—ff) - (47)2 [Z(SiP(Bo - By) + Z(siﬁ (By + Bl)} (m?,m?)m%g) (B.78)
k=1 k=3
1t 9
5mf [T H 1 1 fr2 N2 my p g ) ) )
(m—f) T (4m)? k:1 {5((%) + (Wi, ) >B1 - m—fyk Y. Bo (mf,memH;r)
(B.79)
Sm fx° 1 2 4 ] o i
( mff) = ) > 2 P (0)?) B — 2 af b By
m=1 k=1 |
9 M7,) (B.80)
smy iyt 1 2 2 2 . G )
(Ff> P 3D 2+ (U)?) Br = % kf 1h Bo
m=1 k=1 - ]
2
My, Myer M ) (B.81)
Sme\ 7 1
< f) =y o) iy, X my) (B.82)
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oy 12 1 f f foif

<m—f) =~ (D2 + (Chp) B aclc mo] nf i) (B83)
omy fwe 1 g2
<m—f> =l 2 Dl i) .

B.10 Chargino self—energies

Since the higgsino mass parameter p is fixed in the chargino sector, the counter term du
reads [24, 25]

5,u = 5X22 =

N | —

2
> UiaVia (g + Ty + T+ TG) - (B.85)
k,l=1

with the chargino self-energies Il = Il (m?2,). U and V are two real 2 x 2 matrices which
Xi

diagonalize the chargino mass matrix,
T Mot 0
UXV' = Mp = X1 .
0 mx;

The single left— and right—handed parts of II;; can be found by comparing the coefficients
accordingly to eq. (B.76).
fermion-sfermion contribution:

fn H); H;
//’4\\ //"\\
~+ // \\ ~ ~+ // \\ ~
XJ WX,L X] TXL
f DY
v, Z° W
X X X; X
i Xi

2 . I
5/ () =~y 20 N6 D [kt Bk m ) B3 Ba? )
!

mi m) flm

, i i f
(k2 = — SN, [z LBk w3 m )+k:nlikn1j31(k2,m%,m%m)]
f
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2
1 ~ ~ ~ ~
SL.fr1.2y ! fi . 2 2 2 Irqf
Hz’j (k' ) = (47?)2 ;NCZI [melniikmlj Bo(k? amfpmflm) +mf1k7rzil7r1j X
BO(k27 m%a m?me)]
1 2 PP P F
SR.frp.2y  _ ! fiqf 2,2 2 fr f
Hij (k? ) = (471)2 ;ch_l [mekmlilnij Bo(k? amfpmflm) +mfllrr1ik7’rlj X
Bo(k?,m?,, m}m)] (B.86)
Higgs/gaugino contribution:
o 1 2 4
i) = S { kS @;lpjﬂl;l P+ FLFy, PR> B
k=1 =1

~

(FF P+ B Pr) BO] (., )

Xp

(B.87)

4
[k (EIEZF}%I P+ E@Fﬁgz PR) B
=1 1—1

Hgf(k’) = _(4;)2922

- My (Eﬁlljﬁl P+ Fgllszﬁz PR) BO] (K2, még, miﬁ)

(B.88)
(k) = —@ 2625, [;431 + zmijBo} (K m2, X2) (B.89)
7' (k) = — (4;)2 292 g { K (0;50;5 Pp+ OO0k PR) B,
2y (OO Pu -+ OFOE P Bl (2, i )
(B.90)
k) = - (4;)2 2 g? 24: { ¥ (0,{;0,5]. P+ OfOF PR) By

+ 2my (0};0,5]. P, + OLO}, PR) Bo] (K, mZy, m3y)

(B.91)



Appendix C

Vertex corrections

In the following sections we give the explicit formulae of the electroweak contributions to the
vertex corrections of the decays {h°, H°, A°} — f,f; and HT — #;b;. For the SUSY-QCD
contributions we refer to [34].

C.1 A} fo7 vertex

The vertex corrections to hY — f; fj which are depicted in Fig. C.1 are given as follows:

fo) _ sof@HPD fv.fHH) Fwxf1) F.f3%) fw,Vss)
oGy = 5ka +5ka +5GZJkX + OGN +0GTy

+ 50;‘},: YV o 5G{j,§ S8) 4 5G{j,§ YY) 5@5‘];’”““" + 5G{],ff i) ()

5Gf(UHff)

The single contributions correspond to the diagrams with three scalar particles ( ik

and (5ij . HHS )) three fermions <(5Gf VXD and (5ij . XX ) three particles with one or two

vector bosons (5 ik e Gf(v ,SS)

) and two scalar or two vector particles <5 ik

and 5G{](,: V) ) in the loop. The vertex corrections due to the mixing of the outer particles,
i.e. the Higgs and sfermion mixing terms (5Gf vhHIE) 0 5G£;(,: M%) will be combined with

the counter terms of the Higgs and sfermion mixing angles, da and 59};, see .

The vertex corrections from the exchange of one Higgs and two sfermions are

fw,Hff
5sz<,€ )

2 2 2
mnk zml n]lC()(mf’mhg?mfj?mHoamf ’mfn>
m,n=1 [=1

2
iml <mf7mh07mf 7mH+7mf/ 7mf/>

mnk ]nl

mnlll

95
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(C.2)

with the standard two—point function Cj [44] for which we follow the conventions of [15].
The graph with two Higgs particles and one sfermion in the loop leads to

2 2
L 1 ) i
v,fHH gzmg )
5G{j(k FHH) - _ P 1 Z Z(2+5km(5mn)! (cos 20 A _ 25in 20 Bff%) X
m,n=1 [=1
Glf;m G{]n CO <m§'~17 mig7 m2~ja m%7 m}%?ﬂ, mi%>

L gzmyg g ) T N
a2 > D sinfa+ - 5 (k= 1)] Crnsinz %

m,n=3 l=1

ol af

2 2 2 2 2 2
itm G Co (mﬁ_, Mo, MYz, Mg g0, 5 mHg)

2
5 [0 L (1) 1+ ) AL

myn=1 [=1

_gzmz
2

elil fo’cvo<m?,mig,m2~ m2,,m2 ., m? ) (C.3)

sinfac + 3 — g(k‘ —1)] C’mn] X

ilm ~ jin 7 Hit UUHE
with
A _ —sinfa + 3 — Z(k — 1)] cosla + 3 — Z(k —1)]
mn cosla + 3 — Z(k —1)] sinfa +8—-5(k—1)] )’

AR = AN -p)

mn

) (k—=1)sin(a+p)  sinja+ 38— 5(k —1)]
B ( sinfjo4+ 6 —%(k—1)] (k—2)cos(a+f3) > ’

~ B cos 23 sin 23
Conn - = (sinQﬁ —COSQﬁ) ' (C.4)

For the gaugino exchange contributions we get

4
- 1 - - . -
5Gf;(,§’>‘ff) — (47T>2ZF(m%,mig,m%,m;(?,mf,mf;sg,sg,b{l,a{l,afl,bfl>
=1
1 < F iR
2 2 2 oS ot g f gf Lf
+(47r)2 ZF<mf}’mh2>mfj>m>zf>mf”mf’vSk , — 5y, ,k:il,lil,ljl,kﬂ> , (C.5)
=1
- . 1 4 - - ~ -
5G{j(:,fxx) = W ZF(m%,mZg,m%,ch,m;(gn,mi?;—gFl?nk,—gﬂ?nk,bfm,afm,afl,bfo
l,m=1
1 o F o F
2 2 2 . T+ I+ gl gf
+ ZF(mﬂ,mhg,mﬂ,mf,,m%,mﬁ, —gFt, —gﬁ}mk,kim,lim,lﬂ,kﬂ> ,

I,m=1
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(C.6)
where F'(...) shortly stands for
F<m%7 m?)a m; MOa Mla M2; go 7g(I]J7 gfa gfa gfa g%) = <h1M1+h2M2>BO(mga M127 M22>
+ (hoMO—Fthl)Bo(m%, Moz, M12> + (hoMO—FhQMz)Bo(mg, Moz, M22)
+ [Q(gé%gfgf—kgégfgé) Mo My My + ho Mo (M7 + M5 —mg) 4+ hy My (Mg + M3 —m3)

+ hg My (M2+ M2 —m?) ]C’O(ml,mo,mQ, M2, M2, M2) (C.7)

with the abbreviations ho = (959195’ + 95'919%) , ha = (959195 + 90°91'97) and ha = (5’97 95"

+g59itg%). For up-type sfermions F;\, = F;!, and for down—type sfermions the chargino
indices are interchanged, ﬁ}jnk =F. .

We split the irreducible vertex graphs with one vector particle in the loop into the single
contributions of the photon, the Z—boson and the W-boson,

v,V SS v,7SS v,ZS55S) (v,WSS
GV = sallvn9 4 5G4 sGIeS) (C.8)

In order to regularize the infrared divergences we introduce a photon mass A. Thus we have

forss) 1 f 2 2 2 \2 2 2
5G1]k ! - (47T)2 (eoef) Gz]k V( f 7mh07mfj>/\ ’mfi’mf}) ) (09)
f(v,258) f 2 2 2 9
(FGU/,C = 2gZ Z Gmnk im Znj V(mf,mho,mf,mz,mf ,mfn)
m,n=1
2
gz 2 2 2 2 2 2
( ZZZ:LGm]l Zle Qk( B) V<mh07mf, f‘i,mZ7mHl0,mfm>
3 m=
_( ZZGWZ ijl 2.k(a—0) V(mf,mf,mio,mQZ,mf ,mzl()),
=3 m=1
(C.lO)
2
sGIewss) 1 9—226’ RfRfRf/Rf/V m2,,m%  m?,,m% . m>
ijk - (471‘) 2 mnk fa hoa 7 wo Mg 5 T

m,n=1

[3L

fo Rf Rf Rl,k(@_ﬁ) V<mh°’mf ,m?;i,mgv,mQ m%ﬂ)

jml Hl+ )

s\m

G{T‘)fll Rf Rl}k(a—ﬁ) V<m§ amf amigﬂm%ﬁhmf/ 7m2 ) )

x\m

)
IBL 2 2
P

(C.11)
where we have used the vector vertex function

V (i, m3 m3, M3, M2 MZ) = =By (m, M3, M3 ) + Bo(m?, M3, M)+ Bo(m3, M3, M)
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+ (—2m2+m?+mE— M2+ MP+ M) co(mf,mg,mg,Mg,Mf,Mg) (C.12)

and the rotation matrix Ry,

Ru(é) = ( cos ¢ S““b)kl. (C.13)

—sin¢ cos ¢

The Z°-sfermion-sfermion couplings z . can be found in Appendix A.7.
The vertex corrections coming from loops with two vector bosons and one sfermion are given

by

GIEVVE) = salv 2D o sqle W) (C.14)
with
2
" 1 m
5G{](k ZZf)  _ _(47T)2 922 z Ror(a Z [4Bo<mho,mz,mz) Bo<m ?;m,mzz>
m=1
— B()(mf, j;m,mQZ> — (mig 2mf —2m2 —4mf +2mZ)
C(O (mf 7mh07mf ) }maméamzZ>:| sz;n ZTJ;]- (C15)
and
2
siowwi — L gmw g 53 a8 (i ) = Bo (S iy, )
ijk (471')2 A 2k — 0 h%) W w 0 fo o w
— Bo<mf ,mf, ,m%,v> — <mho me}_mej_4m —|—2mW>
C’o<m 2y m m?, ,m%v,mWﬂRfRf <R ) . (C.16)

We split the irreducible vertex graphs with two scalar particles into the contributions from
two Higgs bosons, two sfermions and the corrections stemming from Higgs—sfermion loops,
ie.

f@88)  _ fo,HH) F@.ff) fw.f ) F. F17)
oGy = (SGU,C +5G”k —|—(5GU,C —|—(5GU,C + 0G5,

LOGIWFR) L §GIWFF) | sGI0FR) | saf ') | safwl) (@ y)

ijk ijk ijk ijk ijk
with
2
1
5Gf];’ w = _(471)2 gZ;nZ Z (24 0kmOmn)! <005204Ak) — 2sin 2« B(k))

m,n=1

<hfcmn(5w +g ( —d n)e{j)Bo (mig, mi%, mig)
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4L _gzmz isin[a—kﬁ—z(k‘—l)]é X
(47'(')2 4 S~ 2 m—2,n—2
(hicf;m(slj + QQ(Cz)nn - Cfnn)eii) By <mi2127 m%{gﬁ m%fg)
1 2 1 pipf 4 120 RERE L 2gh g\
- (471')2 Z <h /dmnRilel + hfdmnRiQRjQ +9g (dmn - dmn)fzy) X
m,n=1
m ~
1) L (160143 AL
m . m ~
SIZIE Gl g 5 T (k- 1) cmn] By (miy oy ).
(C.18)
o h2 2 i _ _ . _
f.ff) _ f f f f f{ pf f 2 2 2
5Gijk - _W Z Gnmk |:Rz]mn+Rmnz]+NC <Rznm]+Rm]ln>:| BO <mh27 mfma mfn>
m,n=1
97 - f 1 3L 2 f 2.2 pf f
- (471')2 Gnmk |:<Z - (QIf _ef)efSW> Riijn + efSWRiﬁnn] (NC + 1)
m,n=1
x By (mig, m?;m, m?n) , (C.19)
N 2 - 2 .
Fwf 7y _ 1 7 2 pff, s il 9 | i (2 oS i
m,n=1
vt vivf R, v{v RIS — v YR,
+2szj};%n }BO <migam?§/nam%/l> s (020)
~ 22 f 2 2 ~ 2 ~ 2 ~ ~ 2
5Gf(vyff) _ NC ZGf hehs RffF +RffF +g_2 2 nyf+1 RffL
ijk = (47r)2 nmk Fref\ imn ijnm 4 wiLtr ijmn
m,n=1
i s, tvindl, - el | |
x By (mig,m%ﬂ,m}n) , (C.21)

and
2

~U 3 2, Nf g2 2 2 f~f€/
salw s — e 7 ZGf {(t%vaYf—1>R- n

ijk (471')2 4 nmk ijmn

+ 82, vy rl/n

ijmn
m,n=1
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iymn mnij f
n

—2 /YRl _ 2 y/'vIglio }Bo <mig,m2¢/ ,m3 ) :
(C.22)

For various products of sfermion rotation matrices we have introduced the short forms

iv _ pfpf iR f = RIRI R R

. o (C.23)
szﬁcl = szzszRiQleza RfCJJ;Fl = szlR;'tQRilleQ .

Note that the contributions from eqgs. (C.21, C.22) originate from the mixing of 2 squarks
and 2 sleptons, where f denotes the 'family partner® of the fermion f with the same isospin
and from the same generation, i.e. t = v, or 7; = b;. .

The contributions due to the exchange of sfermions from the other two generations, F,,, are
given by

FwFF) _ s~fw.ff); Fw.FE) _ s ~f@fhf .
5Gijk = 5Gz‘jk (f — F) , 5Gijk = 5Gijk (f — F) ) (C 24)
5G£(Z,F/F’) _ 505(:’}?/}&)(]6/ N F’), 5G£(:,F/ E) _ (5G£-(:’f/f/)(f/ N F’),

where the sub—/superscript F denotes values belonging to first and second generation scalar
fermions with same isospin as f (e.g. Fy = {ii, ¢} for the stop case, ...), F” sfermions with
different isospin etc.

The diagrams with one Higgs boson and one sfermion in the loop lead to

2
~ ~ 1 ~ - ~ - ~
f(v,Hf 2 2( b 2 2 2
5Gij(k )= - (4m)2 Z G{ml (hf Ciz Omj + g <Ckl - C’/;l>€£1j) By (mf;, My, mfm>
I,m=1

1

1
T V2,

2
I 2 10+ 2 b0+ f pf h,0+ bE,0+
Z Gimi ((th e+ hy, Ck;,z+2)Rj1Rm1 + hy by, <Ck;l + Ck,l+2>
;m=1
o 2 ) o
’ 9 ( io+ b,0+ ! 2 2 2
<RIy = ()" + i) RflR,il) By (2 m2,e,m?, )

+ie 7, (C.25)

with hy = {h;,0} and hy = {hy, h.} for the decay into {squarks, sleptons}, respectively.
i < j stands for both terms before with ¢ and j interchanged. The Higgs—sfermion coupling

matrices cgl and elfj can be found in Appendix A.6.

Finally, for the vertex graphs with two vector bosons we obtain

o 4 2 . 2 .
WG = o g Rzk(a—ﬁ)KC{) RLR] + () R{QR;;] By (miy, m, m? )
2 ~ ~
gy 9w Rl ) RE BBy (i, miy,miy ) (C.26)
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Figure C.1: Vertex and photon emission diagrams relevant to the calculation of the virtual

electroweak corrections to the decay width hY — fi fj
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C.2 A'f, f, vertex

Like in the previous section the single contributions to the vertex corrections to A° — f; fg
(see Fig. C.2),

01 = G 4 oGl 1 66N 4 oG
+ 86TV + 6GIWTD sally D v sall D+ 6GIEAY, (Cam)
correspond to the diagrams with three scalar particles ((56’{22 HID and (5G{§§’HH}C )), three

fermions (5G{§§’W D and 5G{2§ XX ), one vector particle (5G{§§’V)) or two scalar particles
<(5G{2§ I and (5G{2§ D) ) in the loop. (5G{2§ AZm) Jenotes the correction due to the mixing
of AY and Z° and (5G{§§’AG) is the Higgs mixing transition A°-G°.

As shown in [45] we can sum up the A°ZY and A°G° transition amplitudes which leads to

v,AZ) v,AG) i ;
5G{23 e 5G{23 = Ty Maz(m%o) Gl - (C.28)
The explicit form of the A%~Z° self-energy, I147(m?%,), is given in app. B.5. The vertex
corrections from the exchange of three scalar particles, i.e. one Higgs/two sfermions and two
Higgs-bosons/one sfermion are given by

FwHF) 1 P 2 9 9
5G123 - _(471')2 ZIZGmnBszan]ka(mf7mA07mfj7mH07mf 7mf>
m,n k=1
1
- Z ZGmngG{WQkGﬁkC{)(mf,m‘io,mf,mH+, m2, m fn> (C.29)
mn=1 k=1

2 2 4
oo F 1 m
flv,fHH gzmgz
M P ICACINNRED 3) S AT
= k=3 [=1

2 2 2
.,on,mf, Fm 7mH27mHlo>

(GHGI o i iy i,

fo fo CO (mffi)mioam%am%namé+’m%{+>) )

im2 ~ jml
(C.30)
with the abbreviation

N —cos2f sin(a + ) —sin2f sin(a + )
Ko = ( cos2f3 cos(a+ ) sin20 cos(a + f3) ) .
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With the generic fermion vertex function F(m?2, m2 m3, My, My, My; g8, &, 91t g, g%, g%)
defined in eq. (C.7) the gaugino loop contributions can be written as

4
foxin _ 1 ) Foaf of b
5G12§X - (47T)2ZF<mf7mA07mf7 7mf7mf;837 837bzk7 ik ]k’b_]k>
k=1
1 2
2 2 N RN A AT Y
+(47r)2 F<mf,mA0,mf,m +, My, My} S5 , —S3 ,k‘lk,lzk,ljk,k:]k>
k=1
4
for 1 2 o0 o0 f f o f
0G1a3 = (47)2 ZF(mf 7mA07mf 7mf7m)227m)2?7ZgF}k37 —19F s, bz‘k7a’ik;7aj17 bjl)

2
1 = .~ FooFF T
+ ZF(m mi‘o,m mf/,mﬁ,mﬁ;ng,:&s, —nglJ,gg, k{k,l{k, lfl, k:fl> ,

2 £ i
(4m)* =
(C.31)
with i, = Fit, for up-type sfermions and Fjr, = Fif, for down-type sfermions.
The vertex graphs with one vector and two scalar particles in the loop,
SGlg" = 56l + 568D + sl )

are given by

v 1
5G{237 = (47T) (€0€f) G123 V(mf,mio,m A2 mfamf>
va
5G123 = 4’7'(' QgZ Z GmnB zzfm 5] V<m on,mf 7mZ7mf ’mfn>

z'

9
Z Z ijk szlk( -0) V(on,mf,mf,mQZ,ng,mfgm>

k,m=1

2'

gz 2 2 2 2 2
Z szk; mj le( —f) V(mf mf,on,mZ,mf ,mHg>,

5G{§§7W) = g Z Gmn3 Rf Rf Rf,lR V( f ) m,240a mf ) m12/Va m?u ) mfcl >

m,n=1

g 71
e Z G;,{ﬂ RfR V<mAO,mf ,m%,m%v,m%ﬁ,m%,n)

: 5 2
¢ 9
e 2\/_ E szfﬂ Rf RfV<m f,on,mW,mf, ,mH+>, (C.33)

the vector vertex function V(m?, m3, m2, M2, M}, M%) can be looked up in eq. (C.12).
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For the vertex graphs with two scalar particles in the loop we obtain

s — Z Gnmgl St RL 4N (R{nm]+RfW)] By (me,m?, ,m? )
m,n=1
2 9% Z nm3{ {( (2[f —ef)efsw> R{]Lmn + efcsWRfﬁm] (Né +1)
m,n=1
+ (I?L —ef)efs%,[, [Nf (Rf]mn—Fanm]) —I—anm] +R{nﬂn]}
X B()(mio,mf ,m? )
~ e Moy m;anmg (RIn,+ R ) Bo(mim? w2 ), (C3)
SIS = e S5l (4 0 (i k)l ) B i)
k=3 m=1

N 2 _ 2/9) co2 B — (B2 —a2/9) sin -
LVIIEY 6 [{ [ [2)eos b= (I, 9/>Slnﬁ}R£ﬂRf1

2 imk 2 2 2\ &
( o h% + h% — g°) sin B cos 3 .

thyhyp 0k R, RY,

BO (mio, m?{;ra m%ﬂ)
— 1. (C.35)

The abbreviations used in the equations above are the same as in the case of h) — f; fj, see
section C.1.
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C.3 H+££j vertex

Using the definitions for various generic vertex functions and products of couplings from the
previous chapters we get for the vertex corrections,

(v, Hff") ib(v, HH f) (v, ff) flv,£% h(v,7SS)
5GU1 5G”1 + 5GU1 + 5GU1 X4 5GU,C ) 4 5G”1 "
+ 6D (C.36)

The single contributions are given as follows:

5GZ§1U HIFY mnl n]k C10 <m m%—j+, mgj, ng, mtgm’ mgn>
m,n=1 k=1
(C.37)
2
v 1
s = Z [ Vg mw (1 + 01) AW + g, mZng(a—i—ﬁ)Cu}
szthbleO <mt ) mH+7 mb 5 mtgm’ mig, mé;)
igm
g L Z sz3 mJQCO (m? 7m%{+amz am2 >m,240am12/v>
L1 v -
_ (4n)? 9 Z [(—1) gmw(1+01)A," + 9z mZng(omLﬁ)Cu} X
k,l,m=1
Gm]kGlmlCO <mtgz’ m?‘ﬁr? mb 7mb ’mH+’ mi%)
igm
s Z GhysGbaCo (2 w2 2 iy i) (C.38)
4
1 .
b(v,
5%(1 X (i) ZF<mtgi,m12q+,m§j,m>zg,mt,mb;y’f,yﬁ,bfk,aﬁk,aﬁ-k,bﬁk) (C.39)
k=1
F,f%
5ka N _
1 i
" (4n) ZZF(mt ’mH+’mb 2 T, TR0, Mgt —gFy, —gFiky bl zkalﬂa k'l)
k=1 1=1
R
_(471')2 ZF(mt 7mH+7mb 7mb7m>~<l+7m>~<O gF’lkl’ gF’lkazl?lzl? ]k’b >

(C.40)

- 2 2 m2 A2 m2.m2
le = e eoetebG”l V<mti’mH+’mbj’)\’mti’mbj>
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1
2 ~ib
+—= eperG V(miﬁ,m m A2 m§{+,m2>

(47)? t b’ i
1
_(47T)2 egengl V( mg,» M, 2o mire, N mb 7mH+> (C.41)
th(v,ZSS) Py
5G”§ - )2 Z Z Gmnl Zim nj V(m mH+,mb 7mZ7m mbn>
m,n=1
1 1 2
+(47T)2 92(5 — 57 ) Z thj1 sz V<mH+7mb ,m mZ,mHJr’m?m)
m=1
1 1 2 )
_(471‘)2 g%<§ sy ) Z Gﬁ)ﬂl “mj V<m§ ’mtgpm?{ﬂm%am%m,m?fr)
m=1
(C.42)
(v, W S5S) 1 @ S i i )
5GU1 - (47r)2 2\/5 Z Zijk Rillewk V<mH+,mb ,m mW,mHo,mbm>
m=1 k=1
1 gz 2 3
_(477)2 2.9 Z ZGka Rt lewkv<mb 7mt 7mH+7mW7m ,ng) ,
m=1 k=1

(C.43)

with wy, = {cos(a — ), sin(a — 3), —i}y.

2
. 1 - .
5Gf§’1 HH) - 22 NG Z [ )Ygmw (1 +511)A;§€1) +meZR2k(a+ﬁ)Cu} X
k=1
2 2 t0+ 2 2 b,0+ i pb
[((ht - E)Ckz + (hy — 5 )(Ck l+2) )R;le
+ <Cf£ oy (CZt:’zTé)*) R§2R§)‘2} By <m§{+, My mir;)
1 o
( e 9277\1/V_V [ (h?+hi—g?*) sin ZﬁRt Rb + htthZ'?ZR?Q] By <m12q+,m1240,m12,v>
(C.44)
2
o 1 2
t(v,ff) b f (.2 pbt 2 pib g f b
5Gz]1 - _W Z Gnml {N <h Rm?m + h Rznﬁl]) Z |:(2N - 1)Rm€n]
iy (YEYERD, ViR, — vivARD:,
—YWW%»H&@@%@,W>

2
1 UrT T b
~ T 2 i (bR RE R + 2 R TR R ) Bo (e m, m)

(C.45)
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2
5G§;)EUFF nml( 5 Rfle Ru }%d1 —|—hth Rt Rb Ru2R
m,n=1
+ hoha R}y R, RY, R, )Bo (miﬁ,md ,mg )
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Figure C.3: Vertex diagrams relevant to the calculation of the virtual electroweak corrections
to the decay width H* — tNZ-bj. In the fourth row, f; and f, denote up— and down-type
sfermions of all three generations, respectively.



Bibliography

[1] S. L. Glashow, Nucl. Phys. 22 (1961) 579; S. Weinberg, Phys. Rev. Lett. 19 (1967) 1264;
A. Salam, in “Elementary Particle Theory”, ed. N. Svartholm, Almqvist and Wiksells,
Stockholm (1969) p. 367.

[2] M. Gell-Mann, Phys. Lett. 8 (1964) 214; G. Zweig, CERN-Report 8182/TH401 (1964);
H. Fritzsch, M. Gell-Mann and H. Leutwyler, Phys. Lett. B 47 (1973) 365; D. J. Gross
and F. Wilczek, Phys. Rev. Lett. 30 (1973) 1343; H. D. Politzer, Phys. Rev. Lett. 30
(1973) 1346; G. 't Hooft, Marseille Conference on Yang-Mills fields (1972).

(3] P. W. Higgs, Phys. Rev. Lett. 13 (1964) 508; ibid. Phys. Rev. 145 (1966) 1156; F. En-
glert and R. Brout, Phys. Rev. Lett. 13 (1964) 321; G. S. Guralnik, C. R. Hagen and
T. W. B. Kibble, Phys. Rev. Lett. 13 (1964) 585; T. W. B. Kibble, Phys. Rev. 155
(1967) 1554.

[4] W. Marciano, in Proceedings of the Eighth Workshop on Grand Unification, 16-18
April, 1987, Syracuse University, Syracuse, NY, ed. K. Wali (World Scientific, Singapore,
1988), pp. 185-189.

[5] A. D. Sakharov, JETP Lett. 91B, (1967) 24.
. Girardello and M. T. Grisaru, Nucl. Phys. B 194 (1982) 65.

. Witten, Nucl. Phys. B 188 (1981) 513; ibid Nucl. Phys. B 202 (1982) 253; N. Sakai,
. Phys. C 11 (1981) 153; S. Dimopoulos and H. Georgi, Nucl. Phys. B 193 (1981) 150;
. K. Kaul and P. Majumdar, Nucl. Phys. B 199 (1982) 36.

L

E

Z

R
[8] L. E. Ibanez and G. G. Ross, Phys. Lett. B 110, 215 (1982).
[9] L. Alvarez-Gaume, M. Claudson and M. Wise, Nucl. Phys. B 207, 96 (1982).
[10] U. Amaldi, W. de Boer and H. Furstenau, Phys. Lett. B 260, 447 (1991).
[11] G. R. Farrar and P. Fayet, Phys. Lett. B 76 (1978) 575.
[12] H. E. Haber and G. L. Kane, Phys. Rept. 117 (1985) 75.

D

[13] D. A. Ross and J. C. Taylor, Nucl. Phys. B 51 (1973) 125 [Erratum-ibid. B 58 (1973)

643]; A. Sirlin, Phys. Rev. D 22 (1980) 971.

[14] M. Bohm, H. Spiesberger and W. Hollik, Fortsch. Phys. 34 (1986) 687.

110



BIBLIOGRAPHY

[15]
[16]

[17]

[18]

[19]

[20]

[21]

22]
[23]

[24]

[26]

[27]

[28]

[29]

[30]

[31]

A. Denner, Fortsch. Phys. 41 (1993) 307.
H. Burkhardt, F. Jegerlehner, G. Penso and C. Verzegnassi, Z. Phys. C 43 (1989) 497.

H. Eberl, M. Kincel, W. Majerotto and Y. Yamada, Nucl. Phys. B 625 (2002) 372
larXiv:hep-ph/0111303].

W. Oller, H. Eberl and W. Majerotto, Phys. Rev. D 71 (2005) 115002 [arXiv:hep-
ph/0504109).

F. Jegerlehner, Nucl. Phys. Proc. Suppl. 131 (2004) 213 [arXiv:hep-ph/0312372].

A. Dabelstein, Z. Phys. C 67 (1995) 495 [arXiv:hep-ph/9409375]; Nucl. Phys. B 456
(1995) 25 [arXiv:hep-ph/9503443].

P. H. Chankowski, S. Pokorski and J. Rosiek, Phys. Lett. B 274 (1992) 191; Nucl. Phys.
B 423 (1994) 437 [arXiv:hep-ph/9303309]; 497.

J. Guasch, J. Sola and W. Hollik, Phys. Lett. B 437 (1998) 88 [arXiv:hep-ph/9802329).
H. Eberl, S. Kraml and W. Majerotto, JHEP 9905 (1999) 016 [arXiv:hep-ph/9903413].

H. Eberl, M. Kincel, W. Majerotto and Y. Yamada, Phys. Rev. D 64 (2001) 115013
larXiv:hep-ph/0104109].

W. Oller, H. Eberl, W. Majerotto and C. Weber, Eur. Phys. J. C 29 (2003) 563
larXiv:hep-ph/0304006].

A. Freitas and D. Stockinger, Phys. Rev. D 66 (2002) 095014 [arXiv:hep-ph/0205281].

R. Barate et al. [LEP Working Group for Higgs boson searches|, Phys. Lett. B 565
(2003) 61 [arXiv:hep-ex/0306033].

J. F. Gunion and H. E. Haber, Nucl. Phys. B 272 (1986) 1 [Erratum-ibid. B 402 (1993)
567).

J. F. Gunion, H. E. Haber, G. L. Kane and S. Dawson, The Higgs Hunter’s Guide,
Addison-Wesley (1990).

H. Baer, D. Dicus, M. Drees and X. Tata, Phys. Rev. D 36 (1987) 1363; J. F. Gunion
and H. E. Haber, Nucl. Phys. B 307 (1988) 445 [Erratum-ibid. B 402 (1993) 569];
K. Griest and H. E. Haber, Phys. Rev. D 37 (1988) 719.

A. Djouadi, J. Kalinowski and P. M. Zerwas, Z. Phys. C 57 (1993) 569; A. Djouadi,
P. Janot, J. Kalinowski and P. M. Zerwas, Phys. Lett. B 376 (1996) 220 [arXiv:hep-
ph/9603368]; A. Djouadi, J. Kalinowski, P. Ohmann and P. M. Zerwas, Z. Phys. C
74 (1997) 93 [arXiv:hep-ph/9605339]; A. Djouadi, Mod. Phys. Lett. A 14 (1999)
359 [arXiv:hep-ph/9903382]; G. Bélanger, F. Boudjema, F. Donato, R. Godbole and
S. Rosier-Lees, Nucl. Phys. B 581 (2000) 3 [arXiv:hep-ph/0002039].

111



112

BIBLIOGRAPHY

[32]

[33]

[34]

[35]

[36]
[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

A. Bartl, K. Hidaka, Y. Kizukuri, T. Kon and W. Majerotto, Phys. Lett. B 315 (1993)
360; A. Djouadi, J. Kalinowski, P. Ohmann and P. M. Zerwas, Z. Phys. C 74 (1997) 93
[arXiv:hep-ph/9605339).

A. Bartl, H. Eberl, K. Hidaka, T. Kon, W. Majerotto and Y. Yamada, Phys. Lett. B
378 (1996) 167 [arXiv:hep-ph/9511385] and references therein.

A. Bartl, H. Eberl, K. Hidaka, T. Kon, W. Majerotto and Y. Yamada, Phys. Lett. B
402 (1997) 303 [arXiv:hep-ph/9701398].

A. Arhrib, A. Djouadi, W. Hollik and C. Junger, Phys. Rev. D 57 (1998) 5860
[arXiv:hep-ph/9702426].

F. Bloch and A. Nordsieck, Phys. Rev. 52 (1937) 54.

R. Hempfling, Phys. Rev. D 49 (1994) 6168; L. J. Hall, R. Rattazzi and U. Sarid, Phys.
Rev. D 50 (1994) 7048 [arXiv:hep-ph/9306309]; M. Carena, M. Olechowski, S. Poko-
rski and C. E. M. Wagner, Nucl. Phys. B 426 (1994) 269 [arXiv:hep-ph/9402253];
D. M. Pierce, J. A. Bagger, K. T. Matchev and R. j. Zhang, Nucl. Phys. B 491 (1997)
3 [arXiv:hep-ph/9606211].

H. Eberl, K. Hidaka, S. Kraml, W. Majerotto and Y. Yamada, Phys. Rev. D 62 (2000)
055006 [arXiv:hep-ph/9912463].

E. Braaten and J. P. Leveille, Phys. Rev. D 22 (1980) 715; M. Drees and K. i. Hikasa,
Phys. Lett. B 240 (1990) 455 [Erratum-ibid. B 262 (1991) 497]; A. Mendez and A. Po-
marol, Phys. Lett. B 252 (1990) 461.

S. G. Gorishnii, A. L. Kataev, S. A. Larin and L. R. Surguladze, Mod. Phys. Lett. A 5
(1990) 2703; bid Phys. Rev. D 43 (1991) 1633; A. Djouadi, M. Spira and P. M. Zerwas, Z.
Phys. C 70 (1996) 427 [arXiv:hep-ph/9511344]; A. Djouadi, J. Kalinowski and M. Spira,
Comput. Phys. Commun. 108 (1998) 56 [arXiv:hep-ph/9704448]; M. Spira, Fortsch.
Phys. 46 (1998) 203 [arXiv:hep-ph/9705337].

M. Carena, S. Mrenna and C. E. M. Wagner, Phys. Rev. D 62 (2000) 055008 [arXiv:hep-
ph/9907422].

P. H. Chankowski and S. Pokorski, arXiv:hep-ph/9707497, in Perspectives on Super-
symmetry, ed. by G. L. Kane (World Scientific, 1997); K. S. Babu and C. F. Kolda,
Phys. Lett. B 451 (1999) 77 [arXiv:hep-ph/9811308].

M. Kuroda, arXiv:hep-ph/9902340.

G. 't Hooft and M. J. G. Veltman, Nucl. Phys. B 153 (1979) 365; G. Passarino and
M. J. G. Veltman, Nucl. Phys. B 160 (1979) 151.

C. Weber, H. Eberl and W. Majerotto, Phys. Lett. B 572 (2003) 56 [arXiv:hep-
ph/0305250].



Curriculum Vitae

Dipl.-Ing. Christian Weber
Schiffmiihlenstrafie 57/1/10

1220 Wien

Geboren am 16. Februar 1974 in Horn (A).
Verheiratet (Ingrid Riedl), ein Kind (Anna, 10. November 1995).

Ausbildung, Berufspraxis

1980 — 1984 Volksschule

1984 — 1992

Okt 1993 — Jun 2001

Jun 2001 — Okt 2004

seit Aug 2001

Schénberg am Kamp (A)

Gymnasium

BG/BRG Krems (A)

Studium

Techn. Physik, Technische Universitat Wien
Diplomarbeit (Mai 2001):

“Yukawa coupling corrections to Higgs boson decays
into sfermions in the Minimal Supersymmetric

Standard Model”

Dissertation “Electroweak Corrections to
Higgs boson Decays into Sfermions in the
Minimal Supersymmetric Standard Model”

Anstellung am Institut fiir Hochenergiephysik der OAW
Tatigkeitsbereich: Mitarbeit in der SUSY-Gruppe

113



List of Publications

K. Kovaiik, W. Oller and C. Weber,
“Precise predictions for SUSY processes at the ILC,”, [arXiv:hep-ph/0506329].

K. Kovaiik, C. Weber, H. Eberl and W. Majerotto,

»

“Full O(a) corrections to ete™ — fif;”,
Phys. Rev. D 72 (2005) 053010 [arXiv:hep-ph/0506021].

K. Kovaiik, C. Weber, H. Eberl and W. Majerotto,

o

“Complete one-loop corrections to eTe™ — fl i
Phys. Lett. B 591 (2004) 242 [arXiv:hep-ph/0401092].

C. Weber, H. Eberl and W. Majerotto, -
“I'mproved full one-loop corrections to A° — fifo and fo — f1 A7,
Phys. Rev. D 68 (2003) 093011 [arXiv:hep-ph/0308146].

C. Weber, H. Eberl and W. Majerotto,
“I'mproved full one-loop corrections to A° — Gi1Go and G — G A°”,
Phys. Lett. B 572 (2003) 56 [arXiv:hep-ph/0305250].

W. Oller, H. Eberl, W. Majerotto and C. Weber,
“Analysis of the chargino and neutralino mass parameters at one—loop level”,
Eur. Phys. J. C 29 (2003) 563 [arXiv:hep-ph/0304006].

C. Weber, H. Eberl and W. Majerotto,

“Full electroweak one-loop corrections to A® — fl :j”, larXiv:hep-ph/0210354].

114



