
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=gpav20

International Journal of Pavement Engineering

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/gpav20

Significance of eigenstresses and curling stresses
for total thermal stresses in a concrete slab, as a
function of subgrade stiffness

Sophie J. Schmid, Rodrigo Díaz Flores, Mehdi Aminbaghai, Lukas
Eberhardsteiner, Hui Wang, Ronald Blab & Bernhard L. A. Pichler

To cite this article: Sophie J. Schmid, Rodrigo Díaz Flores, Mehdi Aminbaghai, Lukas
Eberhardsteiner, Hui Wang, Ronald Blab & Bernhard L. A. Pichler (2022): Significance
of eigenstresses and curling stresses for total thermal stresses in a concrete slab, as
a function of subgrade stiffness, International Journal of Pavement Engineering, DOI:
10.1080/10298436.2022.2091136

To link to this article:  https://doi.org/10.1080/10298436.2022.2091136

© 2022 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

Published online: 05 Jul 2022.

Submit your article to this journal 

Article views: 196

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=gpav20
https://www.tandfonline.com/loi/gpav20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/10298436.2022.2091136
https://doi.org/10.1080/10298436.2022.2091136
https://www.tandfonline.com/action/authorSubmission?journalCode=gpav20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=gpav20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/10298436.2022.2091136
https://www.tandfonline.com/doi/mlt/10.1080/10298436.2022.2091136
http://crossmark.crossref.org/dialog/?doi=10.1080/10298436.2022.2091136&domain=pdf&date_stamp=2022-07-05
http://crossmark.crossref.org/dialog/?doi=10.1080/10298436.2022.2091136&domain=pdf&date_stamp=2022-07-05


Significance of eigenstresses and curling stresses for total thermal stresses in a
concrete slab, as a function of subgrade stiffness
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Ronald Blabb and Bernhard L. A. Pichler a

aInstitute for Mechanics of Materials and Structures, TU Wien, Vienna, Austria; bInstitute of Transportation, TU Wien, Vienna, Austria; cSchool of Naval
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ABSTRACT
Thermally induced stresses of a concrete slab are quantified based on in situ temperature measurements.
PT100A sensors recorded the temperature at four specific depths during 23 days in autumn. Best-fit
quadratic polynomials are used to extrapolate the measured temperatures to the top and the bottom
of the slab. The obtained surface temperature histories are used as boundary conditions for the
solution of the transient heat conduction problem in thickness direction. Postprocessing the thermal
eigenstrains provides access to the eigencurvatures of the plate and to the eigendistortions of the
plate-generators. Stresses resulting from the constrained eigencurvatures of the plate are computed
numerically, for values of the modulus of subgrade reaction amounting to 50, 100, 200, and 300 MPa/
m. Self-equilibrated eigenstresses resulting from the prevented eigendistortions of the plate-
generators are quantified analytically. Daily maxima of tensile stresses in corner regions at the top of
the slab, and in the central region at its bottom, are found in the early morning and in the early
afternoon, respectively. Disregarding the eigenstresses leads to an underestimation of tensile stresses
in corner regions by at least 33% and an overestimation in the central region by at least 26%. The
misestimations increase with decreasing modulus of subgrade reaction.
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1. Introduction

Temperature variations result in thermal stresses of concrete
pavements. Westergaard (1927) analysed thermal stresses
resulting from linear temperature profiles across the thickness
of concrete slabs. Bradbury (1938) developed formulae for esti-
mation of curling stresses in reinforced concrete slabs resting
on a Winkler foundation. Spatially nonlinear temperature dis-
tributions were measured in situ by Teller and Sutherland
(1935). Rooted in the theoretical fundamentals of the linear
theory for slender plates, Thomlinson (1940) subdivided non-
linear temperature distributions into a constant, a linear, and a
nonlinear part. The linear part refers to the effective tempera-
ture gradient and allows for quantification of curling stresses,
see e.g. (Choubane and Tia 1992; Janssen and Snyder 2000; Yu
et al. 2004; NCHRP 2004).

Temperature profiles across the thickness of a pavement
slab are required for quantification of thermal stresses. Direct
temperature measurements were performed, e.g. by Teller and
Sutherland (1935); Armaghani et al. (1987); Choubane and Tia
(1992); Siddique et al. (2005), as well as Bayraktarova et al.
(2021). Spatially continuous temperature profiles are usually
reconstructed from the pointwise measured temperatures
using either quadratic or cubic polynomials (Choubane and
Tia 1992; Mohamed and Hansen 1997; Ioannides and Khaza-
novich 1998; Zhang et al. 2003; Hiller and Roesler 2010). Other

researchers developed methods to estimate the evolution of
temperature in pavement slabs based on ambient climatic
data including the air temperature, the solar radiation, the
wind velocity, and thermal properties of the pavement slab
of interest (Barber 1957; Bentz 2000; Qin 2016).

Structural simulations of pavement slabs can either be car-
ried out in a semi-analytical fashion, see (Höller et al. 2019;
Díaz Flores et al. 2021), or by means of the finite element
method. Choubane and Tia (1992, 1995), and Zhang et al.
(2003) carried out thermal stress analyses for typical service
conditions. Exceptional service conditions were analysed by
Wang et al. (2019a). They performed a multiscale analysis of
thermal stresses resulting from a sudden hail shower. Tabata-
baie and Barenberg (1978) as well as Sii et al. (2014) accounted
for dowels connecting neighbouring slabs. Kuo et al. (1995)
analysed general distributions of temperature and moisture.
Structural analysis of continuous and multi-layered concrete
pavements were analysed by Sarkar and Norouzi (2020) and
Ioannides and Khazanovich (1998). Armaghani et al. (1987)
focused on displacements of pavement slabs subjected to ther-
mal loading. Nonlinear distributions of moisture were ana-
lysed by means of the finite element method, see e.g. (Wei
et al. 2017) and (Liang and Wei 2018), including a definition
of an equivalent temperature gradient. Such equivalent gradi-
ents are theoretically rooted in the Kirchhoff-Love hypothesis.
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The latter states that plate generators remain straight even
under general types of loading. Consequently, in-plane normal
strains are linearly distributed across the thickness of the
plates. This is realistic for concrete slabs, except for a Saint-Ve-
nant-type boundary domain (Barré de Saint-Venant 1855). It
is limited to an in-plane distance from the edge of the plate,
that is virtually equal to the plate thickness (Wei et al. 2019).

The nonlinear parts of real temperature distributions
remain unconsidered in most of the pertinent scientific publi-
cations. This is surprising, because Thomlinson (1940) showed
that nonlinear temperature distributions result in self-equili-
brated thermal eigenstresses. Their significance was exempla-
rily quantified by Choubane and Tia (1992), who studied
monitoring data from Florida. Pointwise recorded tempera-
tures were interpolated quadratically. The effective tempera-
ture gradient was translated into curling stresses, setting the
modulus of subgrade reaction equal to 300 pci (=
81.4MPa/m). The nonlinear part of the temperature distri-
butions was translated into eigenstresses. This way, Choubane
and Tia (1992) showed that the thermal eigenstresses contrib-
ute significantly to the total thermal stresses. This was con-
sidered in a finite element program called ILSL2
(Khazanovich 1994; Ioannides and Khazanovich 1998). Fol-
low-up activities concerned the integration of thermal eigens-
tresses into the equivalent slab thickness concept
(Khazanovich et al. 2001) as well as into NCHRP (2004) and
MEPDG (2008). In addition, Khazanovich et al. (2001) and
Ceylan et al. (2016) emphasised that curling stresses depend
on the properties of the layers on which the concrete slab
rests. The developments discussed in this paragraph provide
the motivation to quantify the significance of eigenstresses
and curling stresses in a concrete slab resting on a Winkler
foundation, and to perform a sensitivity analysis with respect
to the modulus of subgrade reaction.

Once thermal stresses are quantified, they need to be com-
pared with the resistance of concrete in order to assess the risk
of cracking. In this context, Louhghalam et al. (2018) devel-
oped scaling relationships between the thermal eigenstresses
and material and structural properties of pavement and sub-
grade, in the framework of linear elastic fracture mechanics.
The extension towards nonlinear fracture mechanics was
done by Sen and Khazanovich (2021), who proposed the com-
putation of an apparent flexural strength under the consider-
ation of the size effect.

The present study is based on temperature measurements
recorded during 23 days inside a pavement slab located in
Lower Austria. Best-fit quadratic polynomials are used to
extrapolate the measured temperatures to the top and the bot-
tom of the slab. The obtained surface temperature histories are
prescribed as boundary conditions for the simulation of tran-
sient heat conduction in the thickness direction. A fast-conver-
ging series solution for the temporal evolution of the
temperature field is presented. Thermal eigenstrains are quan-
tified by multiplying the coefficient of thermal expansion by
the effective temperature change, measured relative to the
reference temperature. Rooted in the theoretical basics of
Kirchhoff plate theory, the thermal eigenstrains are subdivided
into three parts: (i) a constant part which is the mean value of
the eigenstrain distribution, and which is equal to the

eigenstretch of the plate, (ii) a linear part which is related to
the first moment of the eigenstrain distribution and, therefore,
to the eigencurvature of the plate, as well as (iii) the nonlinear
rest which corresponds to the eigendistortions of the genera-
tors of the plate, see Appendix 1 for details. Stresses resulting
from the constrained eigencurvatures of the plate (= ‘curling
stresses’) are computed numerically, for values of the modulus
of subgrade reaction amounting to 50, 100, 200, and 300MPa/
m. Self-equilibrated thermal eigenstresses resulting from the
prevented eigendistortions of the generators of the plate are
quantified analytically. The evolution of curling stresses,
eigenstresses, and total thermal stresses is quantified in a
quasi-continuous fashion. This allows for assessing the signifi-
cance of curling stresses and eigenstresses to daily maximum
values of total tensile thermal stresses, for all four values of
the modulus of subgrade reaction listed above.

The paper is structured as follows. Section 2 is devoted to
the simulation of transient heat conduction through a temp-
erature-monitored pavement slab made of concrete. Section
3 refers to the quantification of curling stresses and thermal
eigenstresses of a single slab with free edges, in the context
of a sensitivity analysis regarding the modulus of subgrade
reaction. In Section 4, the significance of eigenstresses and cur-
ling stresses for total thermal stresses is discussed. Section 5
contains the conclusions drawn from the presented analysis.

2. Transient heat conduction through a
temperature-monitored concrete slab

2.1. Temperature measurements from structural
monitoring

Temperature measurements refer to a concrete pavement slab
at kilometre 21 of the Austrian highway ‘A2 – Süd Autobahn’.
The thickness h of the slab amounted to 0.25m, see Table 1 for
the geometric dimensions of the slab and the material proper-
ties of the concrete.1 A Cartesian coordinate system is intro-
duced. Its origin is located at the centre of gravity of the
plate, see Figure 1(c). The z-axis points in the thickness direc-
tion and is oriented downwards.

The slab was equipped with four industrial standard-type
temperature sensors ‘PT100A’. As for their installation, the
slab was cut with a diamond-tooth saw, see Figure 1 (a). The
sensors were positioned at depths amounting to 5 cm, 9 cm,
14 cm, and 19 cm. The corresponding z-coordinates read as
z1 = −0.075m, z2 = −0.035m, z3 = +0.015m, and
z4 = +0.065m. After placement of the sensors, the 10 mm

Table 1. Geometric dimensions of the studied pavement slab and material
properties of concrete; values taken from Wang et al. (2019a) are estimates
from multiscale modelling, accounting for corresponding properties of cement
paste and aggregates.

Property Value Source

Length of the slab lx = 5.50m
Width of the slab ly = 2.70m
Thickness of the slab h = 0.25m
Thermal diffusivity a = 1.4× 10−6 m2/s Equation (13)
Coefficient of thermal expansion aT = 1.153× 10−5/◦C (Wang et al. 2019a)
Modulus of elasticity E = 31.76 GPa (Wang et al. 2019a)
Poisson’s ratio n = 0.203 (Wang et al. 2019a)
Mass density r = 2,400 kg/m3
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wide cuts were closed using the resin ‘Roadplast’, see Figure 1
(b). Given that the cuts are rather thin, it is assumed that the
influence of the resin on the temperature distribution in the
studied slab is insignificant.

The temperatures were recorded once every hour, from
00:00 on 23 Sept. to 24:00 on 15 Oct. This resulted in 552
sets of four temperature measurements. Splines are used for
temporal interpolation between the measured values, see
Figure 2. These splines are denoted as Ts(z1, t), Ts(z2, t),
Ts(z3, t) and Ts(z4, t).

2.2. Statement of the transient heat conduction
problem

Heat conduction is a boundary value problem. The field
equation is the heat equation. Focusing on one-dimensional
heat conduction in the thickness direction, it reads as

∂T(z, t)
∂t

= a
∂2T(z, t)

∂z2
, (1)

where T denotes the temperature, a the thermal diffusivity of
concrete, and t the time variable. As the initial condition, a lin-
ear temperature distribution is introduced:

T(z, t=0) = Tbot
ini + Ttop

ini

2
+

[
Tbot
ini − Ttop

ini

] z
h
, (2)

with Ttop
ini and Tbot

ini denoting the initial temperature at the top
and at the bottom of the plate, respectively. As for the
boundary conditions, temperature histories Ttop(t) and
Tbot(t) will be prescribed at the top and the bottom of the
plate, respectively. As the basis for an analytical series sol-
ution, Ttop(t) and Tbot(t) are represented as a sequence of
temperature steps. The latter are described by means of
the Heaviside function H(t − ti). It is equal to 0 for t , ti
and equal to 1 for t ≥ ti:

T z=− h
2
, t

( )
= Ttop

ini +
∑Ni

i=1

DTtop
i H(t − ti) , (3)

T z=+ h
2
, t

( )
= Tbot

ini +
∑Ni

i=1

DTbot
i H(t − ti) , (4)

where Ni denotes the number of considered temperature
steps. DTtop

i and DTbot
i stand for the ith temperature steps

at the top and the bottom surface, respectively. They result
from the temperature histories as

DTtop
i = Ttop(ti)− Ttop(ti−1) , (5)

DTbot
i = Tbot(ti)− Tbot(ti−1) , (6)

with Ttop(t0) = Ttop
ini and Tbot(t0) = Tbot

ini , see also Figure 3.
Temperature steps will be prescribed every three minutes.

Figure 1. Field testing site: (a) cuts hosting the temperature sensors and their cables, (b) condition after closing the cuts with a resin, and (c) vertical positions of the
sensors.

Figure 2. Temperatures measured 5 cm, 9 cm, 14 cm and 19 cm underneath the top surface, from 1 Oct. to 8 Oct.; for the complete database, see Appendix 2; both 7
and 8 Oct. were foggy days with a quite stable temperature, see (Time 2020).
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This requires temporal interpolation and spatial extrapolation
of temperature measurements.

As for temporal interpolation between temperature
measurements, the aforementioned splines (index s) are
used, see Figure 2. They are evaluated every three minutes.
This yields 11,040 sets of four temperature values referring
to 11,040 different instants of time and to four different depths.
Every set of four values is the basis for extrapolating the temp-
erature vertically both to the top and the bottom of the plate.
Following many examples (Choubane and Tia 1992; Mohamed
and Hansen 1997; Ioannides and Khazanovich 1998; Khazano-
vich et al. 2001; Zhang et al. 2003; Hiller and Roesler 2010),
one best-fit quadratic polynomial is employed at every time
instant t:

T(z, t) = A0(t)+ A1(t) · zh+ A2(t) · z
h

( )2
, (7)

see also Figure 4. The 11,040 sets of coefficients A0(t), A1(t),
and A2(t) are functions of the temperatures prevailing at
time t in the four different depths, see Table 2.
The quadratic correlation coefficient amounts on average to
R2 = 0.95. Closed-form solutions for the temperatures at
the top and the bottom of the plate, as functions of the
temperatures in the four different depths of the sensors,
are also given in Table 2. The obtained surface temperature
histories are exemplarily illustrated in Figure 5. The largest
change of temperature within one day occurred on 2 Oct. at
the top surface: the minimum temperature amounted to
7.8◦C, the maximum temperature to 24.7◦C. The deter-
mined and prescribed surface temperature histories
implicitly account for the ambient climatic conditions,
such as the air temperature, the solar radiation, and the
wind velocity.

2.3. Solution of the transient heat conduction problem

The solution to the heat equation for variable temperature at
the top of the plate and constant temperature at the bottom,
documented in Wang et al. (2019a), is extended towards con-
sideration of temperature steps at the top and the bottom sur-
face. This extended solution reads as

T(z, t) = Tbot(t)+ Ttop(t)
2

+
[
Tbot(t)− Ttop(t)

] z
h

−
∑Ni

i=1

(
DTtop

i − DTbot
i

)∑1
n=1

(− 1)n

np
sin

2npz
h

( )

exp −(2np)2
a〈t − ti〉

h2

( )
+

∑Ni

i=1

(
DTtop

i + DTbot
i

)
∑1
n=1

2(− 1)n

(2n− 1)p
cos

(2n− 1)pz
h

( )

exp −(2n− 1)2p2 a〈t − ti〉
h2

( )
,

(8)

where the angled brackets denote the Macaulay operator
〈t − ti〉 = (t − ti + |t − ti|)/2.

The infinite sums in Equation (8) must be truncated. In
order to ensure a well-converged solution, the exponential
functions in Equation (8) are analysed. Their values
decrease with increasing values of both n and 〈t − ti〉. Eval-
uated for the same values of n and 〈t − ti〉, the exponential
function containing (2n− 1)2p2 is larger than the one con-
taining (2np)2. Thus, the following discussion is focused on
the former exponential function. Summands of the infinite
sums in Equation (8) are significant only if the values of
the described exponential functions are larger than or
equal to a small tolerance value tol which is set equal to
1× 10−4:

exp
(
− (2n− 1)2p2 a〈t − ti〉

h2

)
≥ tol . (9)

Figure 3. Representation of the temperature histories at the top and the bottom
of the plate by means of step functions, starting from the initial temperatures Ttopini
and Tbotini , respectively.

Figure 4. Spatial extrapolation of temperatures referring to the positions of the
four PT100A sensors, see the circles, to the top and the bottom of the plate, see
the squares, using the best-fit quadratic polynomial according to Equation (7),
see also Table 2.
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Solving condition (9) for n yields:

n ≤ 1
2

1+
																
− ln (tol) h2

p2 a 〈t − ti〉

√[ ]
. (10)

The number of significant summands n according to
Equation (10) increases as 〈t − ti〉 decreases. Herein, the
smallest value of 〈t − ti〉 amounts to three minutes. This
value yields the largest number of n.

The number of significant summands n according to
inequality (10) decreases with increasing period of time
〈t − ti〉. This provides the motivation to determine the value
of 〈t − ti〉 for which one summand remains to be significant.
Thus, n is set equal to 1 and the resulting inequality (10) is
solved for 〈t − ti〉. This yields

〈t − ti〉 ≤ − h2 ln (tol)
ap2

. (11)

Temperature steps that have occurred in a temporal distance
larger than the right-hand-side of inequality (11) do not influ-
ence the temperature distribution at time t significantly.

2.4. Quantification of the thermal diffusivity of
concrete

The numerical evaluation of the inequalities (10) and (11)
requires a numerical value for the thermal diffusivity a. The
heat Equation (1) clarifies that identification of a requires tran-
sient heat conduction, implying that the temperature must
change with time. The most significant of these changes

were recorded on 2 Oct., see Figure 2. Therefore, a will be
identified such that the simulation of the transient heat con-
duction problem reproduces temperature measurements
recorded on 2 Oct. in a best-possible fashion.

The search interval for the thermal diffusivity is introduced
as a [ [1.0, 2.0]× 10−6 m2/s. Inserting the smallest of these
values, a = 1.0× 10−6 m2/s, together with tol = 1× 10−4,
〈t − ti〉 = 180 s, and h = 0.25m into inequality (10) yields
n ≤ 9.5. Thus, the infinite sums in Equation (8) are truncated
after the first nine terms. Inserting the same values of a, tol,
and h into inequality (11) yields 〈t − ti〉 ≤ 16.2 h. Thus, in
order to obtain a reliable temperature solution at 00:00 on 2
Oct., the simulation must start 16.2 hours earlier. For the
sake of simplicity, the simulation is started 24 hours earlier.
The corresponding temperatures at the top and the bottom
of the plate, see 00:00 on 1 Oct. in Figure 5, serve as initial
values, i.e. Ttop

ini = 12.5◦C and Tbot
ini = 15.4◦C. Temperature

steps are prescribed every three minutes. They are computed
based on Equations (5) and (6) and Table 2. Given that the
simulation covers 48 hours, index i in Equation (8) runs
from 1 to 960.

The search interval of a is subdivided into 40 equidistant
values. For each one of them, Equation (8) is used to compute
the evolution of the temperature field from 00:00 to 24:00 on 2
Oct. The simulated temperature fields are denoted as T(z, t, a).
In order to quantify the quality of reproduction of the 24
measurements (index m) of each one of the four temperature
sensors (indexes s = 1, 2, 3, 4), the root mean square error
(RMSE) between computed and measured temperatures is
minimised:

Table 2. Coordinates of the sensors and of the top and the bottom of the slab; thickness of the
slab; optimal coefficients of best-fit quadratic polynomials (7); and resulting extrapolation
formulae for quantification of the temperature at the top and the bottom of the plate.

z-coordinates of the sensors, the top and the bottom of the slab, and its thickness
z1 = −0.075m, z2 = −0.035m, z3 = +0.015m, z4 = +0.065m
ztop = −0.125m, zbot = +0.125m; h = 0.25m

Optimal coefficients of the quadratic fitting function (7)
A0(t) = −0.12592 Ts(z1, t)+ 0.51231 Ts(z2, t)+ 0.62795 Ts(z3, t)− 0.01434 Ts(z4, t)
A1(t) = −1.24783 Ts(z1, t)− 0.85548 Ts(z2, t)+ 0.20487 Ts(z3, t)+ 1.89844 Ts(z4, t)
A2(t) = +7.48851 Ts(z1, t)− 6.37106 Ts(z2, t)− 8.22573 Ts(z3, t)+ 7.10827 Ts(z4, t)
Formulae providing spatial extrapolation of temperatures to the top and the bottom of the plate
Ttop(t) = T(ztop , t) = +2.37013 Ts(z1, t)− 0.65272 Ts(z2, t)− 1.53092 Ts(z3, t)+ 0.81351 Ts(z4, t)
Tbot(t) = T(zbot , t) = +1.12230 Ts(z1, t)− 1.50819 Ts(z2, t)− 1.32605 Ts(z3, t)+ 2.71194 Ts(z4, t)

Figure 5. Boundary conditions of the transient heat conduction problem: evolution of temperatures at the top and the bottom of the plate, obtained with the extra-
polation function (7); the data shown refer to 1 Oct. to 8 Oct.

INTERNATIONAL JOURNAL OF PAVEMENT ENGINEERING 5



RMSE(a) =
																																															

1
4× 24

∑4
s=1

∑24
m=1

[
T(zs, tm, a)− Texp(zs, tm)

]2√√√√
� min ,

(12)

where Texp(zs, tm) denotes the temperature measurements. The
optimal value of a is obtained as

a = 1.4× 10−6 m2/s . (13)

Notably, a according to Equation (13) is within the expected
range of values as reported by Neville (1995):
a [ [0.6× 10−6; 1.6× 10−6]m2/s. The corresponding mini-
mum of RMSE(a) amounts to 0.4◦C. Simulated temperatures
reproduce the measurements in a satisfactory fashion, see
Figure 6.

2.5. Solution of the heat conduction problem
throughout the entire monitoring period

Inserting a according to Equation (13), tol = 1× 10−4,
〈t − ti〉 = 180 s, and h = 0.25m into inequality (10) yields
n ≤ 8.1. Thus, the infinite sums in Equation (8) are truncated
after the first eight terms. Inserting the same values of a, tol,
and h into inequality (11) yields 〈t − ti〉 ≤ 11.6 h. Therefore,
the temperature solution becomes reliable some 12 hours
after the start of the simulation at 00:00 on 23 Sept. The corre-
sponding temperatures at the top and the bottom of the plate
serve as initial values, i.e. Ttop

ini = 16.4◦C and Tbot
ini = 19.6◦C.

Temperature steps are prescribed every three minutes. They
are computed based on Equations (5) and (6) and Table 2.
Given that the simulation covers 23 days, index i in Equation
(8) runs from 1 to 11,040.

The quality of the reproduction of 540 measurements, from
12:00 on 23 Sept. to 24:00 on 15 Oct., is quantified by means of
the root mean square errors (RMSE) between computed and

measured temperatures:

RMSE =
																																														

1
4× 540

∑4
s=1

∑540
m=1

[
T(zs, tm)− Texp(zs, tm)

]2√√√√
= 0.3◦C . (14)

This very satisfactory result corroborates the value of the ther-
mal diffusivity given in Equation (13). The solution of the heat
conduction problem serves as the basis for the thermo-mech-
anical analysis of thermal stresses.

3. Thermo-mechanical analysis of thermal stresses

3.1. Decomposition of thermal eigenstrains as the basis
for quantification of thermal stresses

Thermal eigenstrains 1exx, 1
e
yy and 1ezz are equal to the coeffi-

cient of thermal expansion, aT = 1.153× 10−5/◦C, see
(Wang et al. 2019a), multiplied with the temperature change,
DT(z, t),

1exx(z, t) = 1eyy(z, t) = 1ezz(z, t) = aTDT(z, t) , (15)

with

DT(z, t) = T(z, t)− Tref , (16)

where Tref denotes the reference temperature at which the
plate is free of thermal strains. Tref is usually related to the
temperature at which the concrete slab sets (NCHRP 2004).
As the temperature sensors were installed in an existing pave-
ment slab for which Tref was not documented, the reference
temperature is estimated as Tref = 17◦C.

The thermal eigenstrains, according to Equations (15) and
(16) are spatially nonlinear along the thickness direction,
because transient heat conduction goes along with spatially
nonlinear temperature distributions, see also Equation (8)
and Figure 6. The structural behaviour of thin plates suggests
to decompose the eigenstrains, at any time instant t, into three
parts: the eigenstretch of the plate, its eigencurvature, and the
eigendistortions of the generators of the plate (Wang et al.
2019a). Rules for this decomposition follow from the
Kirchhoff-Love hypothesis, see Appendix 1. The eigenstretch
of the plate reads as

1e(t) = 1
h

�+h
2

−h
2

aTDT(z, t) dz , (17)

and its eigencurvature as

ke(t) = 12
h3

�+h
2

−h
2

aTDT(z, t) · z dz . (18)

Subtracting from the thermal eigenstrains, aTDT(z, t), the
constant part representing the eigenstretch of the plate, 1e(t),
and the linear part related to its eigencurvature, ke(t) · z, yields
the spatially nonlinear eigendistortions of the generators of the

Figure 6. Temperature profiles referring to 2 Oct.: the circles label measured
temperatures, the solid lines refer to the solution of the heat conduction problem
according to Equation (8), using the surface temperature histories of Figure 5 as
boundary conditions.
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plate

1edist(z, t) = aTDT(z, t)− 1e(t)− ke(t) · z , (19)

see also Figure 7. Analytical expressions for 1e(t), ke(t) and
1edist(z, t), according to Equations (15)–(19), obtained for
temperature profiles representing solutions of the heat
equation, see Equation (8), are listed in Table 3. Numerical
results obtained for 2 Oct. are illustrated in Figure 8.

Thermal stresses are activated, only if thermal eigenstrains
are kinematically constrained or prevented (Wang et al.
2019a). In linear thermoelasticity, the normal stresses read as

sxx = nxx
h

+ mxx

h3/12
z − E 1edist

1− n
, (20)

syy =
nyy
h

+ myy

h3/12
z − E 1edist

1− n
, (21)

see Appendix 1 for the derivation. nxx and nyy, denoting mem-
brane forces per length, are activated if 1e is constrained or
prevented. mxx and myy, denoting bending moments per
length, are activated if ke is constrained or prevented. E stands
for the modulus of elasticity, and ν for Poisson’s ratio, see
Table 1 for numerical values.

Eigenstretches 1e result in an expansion or contraction of
pavement slabs made of concrete. These deformations are con-
strained by friction in the interface between the slab and the
adjacent base layer. The resulting stresses are on the order of
magnitude of a few kilopascal. This is three orders of magni-
tude smaller than the stresses resulting from eigencurvatures

and eigendistortions (see below). Therefore, friction-induced
stresses are disregarded. As regards possible contact between
neighbouring slabs, cooling-induced contraction is clearly
unconstrained, because the width of the joints between neigh-
bouring slabs increases. Heating-induced thermal expansion is
also unconstrained, even though the width of the joints
decreases, as long as the expansion is, in absolute terms, over-
compensated by shrinkage of concrete. The latter results from
the chemical reaction between cement and water (= ‘autoge-
neous shrinkage’) as well as from drying (= ‘drying shrinkage’).
A typical value of final shrinkage of concrete amounts to
3× 10−4 (Bažant et al. 2015). Usual coefficients of thermal
expansion of concrete amount to some 1.2× 10−5/◦C
(Wang et al. 2019b). Thus, the average heating of a concrete
slab, measured relative to the reference temperature (herein
17◦C), would need to amount to 25◦C, such that the heat-
ing-induced thermal expansion would be large enough to
close the shrinkage-induced joints between neighbouring
slabs (25◦C× 1.2× 10−5/◦C = 3× 10−4). This is not the
case, at least not in the present study. Thus, nxx = nyy = 0 in
Equations (20) and (21).

Eigencurvatures ke result in curling of the slab. These defor-
mations are constrained by the interaction of the slab with the
pavement layers below. The computation of bending moments
per length, mxx and myy in Equations (20) and (21), requires
iterative structural simulations, because the slab might partly
lose contact with the adjacent base layer. Such simulations
can either be carried out in a semi-analytical fashion, see (Höl-
ler et al. 2019), or by means of the finite element method. The
stresses resulting from the constrained eigencurvatures are
also referred to as ‘curling stresses’. They will be computed
in Subsections 3.2 and 3.3.

Eigendistortions 1edist are virtually prevented at the scale of
the generators of the plate, because they remain straight
according to the Kirchhoff-Love hypothesis. Thus, eigendistor-
tions are nullified by stress-related strains of identical size and
opposite sign, −1edist , see (Wang et al. 2019a) for details. Mul-
tiplying these stress-related strains with E/(1− n) yields stres-
ses resulting from prevented eigendistortions of the generators
of the plate, see the last terms in Equations (20) and (21). These
stresses are also referred to as ‘thermal eigenstresses’. They will
be computed in Subsection 3.4.

Although thermal eigenstresses are accounted for in
NCHRP (2004) and MEPDG (2008), their consideration is
still relatively unknown in practice. This provides the motiv-
ation to quantify, at least exemplarily, the significance of the
thermal eigenstresses and the curling stresses for total thermal
stresses. Curling stresses will be quantified first.

3.2. Computation of curling stresses based on
nonlinear FE-simulations

The structural model refers to a thin rectangular plate with
length lx, width ly, and thickness h, see Table 1 for numerical
values. The indices x and y refer to the coordinate system illus-
trated in Figure 9. The simulated plate has free edges and is
supported by a Winkler foundation (Winkler 1867).

Thermal stresses resulting from the constrained eigencur-
vature are quantified by means of nonlinear finite element

Table 3. Expressions for eigenstretches and eigencurvatures of the plate and for
the eigendistortion of the generators of the plate, obtained from inserting the
solution of the heat equation according to Equation (8) into Equation (16), the
resulting expressions into Equation (15), and the obtained results into
Equations (17), (18), and (19).

Solution of the heat conduction problem according to Equation (8),
using the surface temperature histories of Figure 5 as boundary conditions

1e(t) = aT
Tbot (t)+Ttop (t)

2 − Tref
( )

−∑Ni
i=1 aT

DTboti +DTtopi
2

( )∑1
n=1

8
(2n−1)2p2 exp (− (2n− 1)2p2 a〈t−ti〉

h2 )

ke(t) = aT

h
[Tbot(t)− Ttop(t)]

−∑Ni
i=1

aT
h (DT

bot
i − DTtopi )

∑1
n=1

24
(2np)2

exp (− (2np)2 a〈t−ti〉
h2 )

1edist(z, t) follows from insertion of aTDT(z, t) according to Equations (15), (16),
and (8)

as well as 1e(t) and ke(t), see the expressions above, into Equation (19).

Figure 7. Decomposition of thermal eigenstrains into (i) a spatially constant part,
1e , equal to the eigenstretch of the plate, (ii) a spatially linear part, ke · z, related
to the eigencurvature of the plate, and (iii) the spatially nonlinear rest, represent-
ing the eigendistortion 1edist of the generators of the plate.
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(FE) analyses, see Table 1 for input values. The plate is sub-
jected to uniform eigencurvature and its dead load. The eigen-
curvatures computed according to Table 3 range from
−4.8× 10−4/m to +2.6× 10−4/m. The dead load is a uni-
form vertical force per area. It amounts to
p = r g h = 5.89 kN/m2, where ρ denotes the mass density
of concrete (Table 1) and g = 9.81m/s2 is the gravitational
acceleration. The FE software RFEM version 5.27.01 (Dlubal
Software GmbH 2020) is used. The midplane of the plate is dis-
cretised by means of 110× 54 = 5940 quadratic finite
elements of type ‘Kirchhoff bending theory’. Their side length
amounts to 5 cm. The resulting FE mesh has 6105 nodes.

The problem at hand is a nonlinear contact problem. Pro-
vided that the plate is pressed downwards into the Winkler
foundation, compressive normal stresses are activated in the
interface between the plate and the Winkler foundation. The
absolute values of these stresses are equal to the deflections
times the modulus of subgrade reaction. Provided that the
plate lifts off from the Winkler foundation, no stresses are
transmitted between the plate and the Winkler foundation.
The region inside which the plate lifts off from the Winkler
foundation is a priori unknown. The used software provides
a built-in solver for the iterative solution of the described con-
tact problem (Dlubal Software GmbH 2020).

Positive eigencurvatures refer to scenarios in which the top
of the plate is cooler than its bottom. The plate exhibits con-
cave curling. Its central region is pressed downwards into
the Winkler foundation, while the corner regions lift-off
from it, see Figure 10(a). This results in tensile curling stresses
at the top of the plate, in the corner regions.

Negative eigencurvatures refer to scenarios in which the top
of the plate is warmer than its bottom. The plate exhibits con-
vex curling. Its central region lifts off from the Winkler foun-
dation, while the corner and edge regions are pressed
downwards into it, see Figure 10(b). This results in tensile cur-
ling stresses at the bottom of the plate, in the central region.

Figure 8. Exemplary results of thermo-elastic analysis: Decomposition of (a) the thermal eigenstrains into (b) eigenstrains referring to eigenstretches 1e of the plate, (c)
eigenstrains referring to eigencurvatures ke of the plate (these eigenstrains are equal to the product of eigencurvatures ke and the z-coordinate), and (d) eigenstrains
referring to eigendistortions 1edist of the generators of the plate; the results have shown refer to 2 Oct.

Figure 9. Structural model of a pavement slab: a rectangular plate with free
edges rests on a Winkler foundation.
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The modulus of subgrade reaction is denoted as ks. A sen-
sitivity analysis is performed, accounting for typical values of
ks (Murthy 2011; Martin et al. 2016):

. ks = 50MPa/m is representative for clays and sand,

. ks = 100MPa/m for well-compacted sand and gravel,

. ks = 200MPa/m for an agglomeration of crushed stone,
and

. ks = 300MPa/m for well-compacted crushed stone.

As for every nonlinear FE simulation, one specific value of the
modulus of subgrade reaction and one specific value of the
eigencurvature are prescribed. Once the nonlinear contact
problem is solved, the software provides numerical values of
the bending and twisting moments per length (mxx, myy, and
mxy) at every node of the FE mesh. These output values enable
the quantification of the largest principal tensile stress, see
Table 4 and the markers in Figure 11, as discussed next.

The largest principal tensile stress is not necessarily aligned
with the x or the y-axis. Therefore, it must be determined
based on extreme values of the principal bending moments

per length:

m1,2 =
mxx +myy

2
+

																						
mxx −myy

2

( )2
+m2

xy

√
. (22)

Positive eigencurvatures (concave curling) result in tensile
stresses at the top of the plate, where z = −h/2. The largest

Figure 10. Exemplary results from nonlinear FE analyses: deformed configurations of plates subjected to (a) positive eigencurvature ke = +2.6× 10−4/m, resulting in
concave curling, and (b) negative eigencurvature ke = −4.8× 10−4/m, resulting in convex curling; the modulus of subgrade reaction amounts to 100MPa/m; these
two values of the eigencurvature correspond to temperature gradients amounting to −0.0225 ◦C/mm and +0.0416 ◦C/mm, i.e. to temperature differences between
the top and the bottom of the plate amounting to −5.6◦C and +10.4◦C, respectively.

Table 4. Results from nonlinear FE analyses: largest principal tensile curling stress
as a function of the eigencurvature ke and the modulus of subgrade reaction ks .

ks = 50 ks = 100 ks = 200 ks = 300
MPa/m MPa/m MPa/m MPa/m

ke = −5× 10−4/m 1.453MPa 1.627MPa 1.748MPa 1.800MPa
ke = −4× 10−4/m 1.248MPa 1.404MPa 1.520MPa 1.574MPa
ke = −3× 10−4/m 0.997MPa 1.171MPa 1.200MPa 1.233MPa
ke = −2× 10−4/m 0.706MPa 0.801MPa 0.849MPa 0.866MPa
ke = −1× 10−4/m 0.354MPa 0.422MPa 0.467MPa 0.481MPa
ke = +1× 10−4/m 0.086MPa 0.140MPa 0.210MPa 0.247MPa
ke = +2× 10−4/m 0.163MPa 0.253MPa 0.341MPa 0.387MPa
ke = +3× 10−4/m 0.226MPa 0.333MPa 0.433MPa 0.487MPa
ke = +4× 10−4/m 0.278MPa 0.392MPa 0.501MPa 0.561MPa
ke = +5× 10−4/m 0.320MPa 0.438MPa 0.551MPa 0.614MPa

INTERNATIONAL JOURNAL OF PAVEMENT ENGINEERING 9



principal tensile stress is obtained as

maxs1 = minm1,2

h3/12
× − h

2

( )
= − 6minm1,2

h2
. (23)

Negative eigencurvatures (convex curling) result in tensile
stresses at the bottom of the plate, where z = +h/2. The lar-
gest principal tensile stress is obtained as

maxs1 = maxm1,2

h3/12
× + h

2

( )
= + 6maxm1,2

h2
. (24)

Notably, the position at which the largest principal tensile nor-
mal stress occurs, and the direction in which it is acting,
change with changing values of the eigencurvature and the
modulus of subgrade reaction.

Splines are used to interpolate between the computed values
of the largest principal tensile stresses, see the lines in Figure
11. This allows for quantifying maximum tensile curling stres-
ses for arbitrary values of ke in the interval [−5× 10−4/m;
+5× 10−4/m] and the four investigated values of the modulus
of subgrade reaction.

3.3. Curling stresses of the monitored concrete slab

Maximum values of the tensile curling stresses, during the
entire monitoring period, at the top and the bottom of the
slab are quantified based on Figure 11 and extreme values of
the eigencurvature. The latter are computed according to the
series solution given in Table 3. The largest positive
eigencurvature of the entire monitoring period,
maxke = +2.6× 10−4/m, is obtained at 6:27 on 2 Oct. Corre-
sponding tensile stress maxima refer to the top of the slab and
range from 0.20MPa, obtained with ks = 50MPa/m, to
0.45MPa, obtained with ks = 300MPa/m, see Table 5. The
largest negative eigencurvature of the entire monitoring
period, minke = −4.8× 10−4/m, is obtained at 15:12 on 2
Oct. Corresponding tensile stress maxima refer to the bottom
of the slab and range from 1.42MPa, obtained with

ks = 50MPa/m, to 1.77MPa, obtained with ks = 300MPa/m,
see Table 5. These results confirm, in a quantitative fashion,
that thermal curling stresses increase with an increasing modulus
of subgrade reaction (Ceylan et al. 2016).

The spatial distributions of curling stresses through the
thickness of the slab are exemplarily discussed at six specific
time instants of 2 Oct., see Figure 13. Thereby, ks is set equal
to 100MPa/m. The curling stresses are linearly distributed
through the thickness of the slab. At 12:00, 15:00, and
18:00, the temperature at the top was significantly larger
than at the bottom (Figure 6). This resulted in tensile stresses
at the bottom of the slab, see the orange, red, and green
graphs in Figure 12. In the early morning and during the
nighttime, the temperature at the top was smaller than at
the bottom Figure 6. This resulted in tensile stresses at the
top of the slab, see the blue, magenta, and black graphs in
Figure 12.

The temporal evolution of curling stresses at the top and the
bottom of the slab are exemplarily discussed for 2 Oct., see
Figure 13. In the morning and in the later evening, tensile cur-
ling stresses of less than 0.5MPa are activated at the top of the
slab, in its corner regions. The largest tensile stress is reached
shortly after 06:00, see the red markers referring to the dark-
grey graphs in Figure 13. During the afternoon, tensile curling
stresses of up to more than 1.5MPa are activated at the bottom
of the slab, in its central region. The largest tensile stress is
reached shortly after 15:00, see the red markers referring to
the light-grey graphs in Figure 13.

Table 5. Numerical results of maximum tensile curling stresses at the top and the
bottom of the slab prescribing the largest and smallest eigencurvature of the
entire monitoring period and different moduli of subgrade reaction.

ks maxsT (ke) [MPa] maxsT (ke) [MPa]
[MPa/m] top of slab bottom of slab

50 0.20 1.42
100 0.31 1.60
200 0.40 1.72
300 0.45 1.77

Figure 11. Results from nonlinear FE analyses: largest principal tensile curling
stress as a function of the eigencurvature ke and the modulus of subgrade reac-
tion; the markers label numerical results (see Table 4 for numerical values), the
lines are splines reproducing the simulation results and interpolating between
them.

Figure 12. Exemplary results of thermo-elastic analysis: curling stress distri-
butions through the thickness of the slab, evaluated at six time instants of 2
Oct., computed with ks = 100MPa/m.
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3.4. Thermal eigenstresses of the monitored concrete
slab

Thermal eigenstresses are independent of the modulus of sub-
grade reaction. They are functions of the vertical z-coordinate,
and constant with respect to the in-plane x- and y-coordinates.
In other words, thermal eigenstresses are constant in a specific
depth, for any arbitrary location |x| ≤ lx/2 and |y| ≤ ly/2,
rather than being restricted either to the centre or corner
regions.

Maximum values of the tensile eigenstresses, during the
entire monitoring period, amount to 0.64MPa at the top of
the slab, to 0.43MPa at its midplane, and to 0.33MPa at its
bottom. Comparing these values with those listed in Table 5
underlines that the largest tensile eigenstresses reach a similar
magnitude as the largest tensile curling stresses.

The spatial distributions of thermal eigenstresses through
the thickness of the slab are exemplarily discussed at six
specific time instants of 2 Oct., see Figure 14. Heating of the
slab in the morning and during the early afternoon resulted

in compressive eigenstresses in the top and bottom regions,
while tensile stresses were activated around its midplane, see
the orange and red graphs in Figure 14. Cooling of the slab
during the later afternoon and during the nighttime resulted
in tensile stresses in its top and bottom regions, while com-
pressive stresses were activated around its midplane, see the
black, blue, and green graphs in Figure 14.

The temporal evolution of thermal eigenstresses at the top,
the midplane, and the bottom of the slab are exemplarily dis-
cussed for 2 Oct., see Figure 15. At the top and the bottom of
the slab, the largest tensile eigenstresses are reached in the
early evening, see the red circles referring to the dark-grey
and the light-grey graphs in Figure 15. At the midplane of
the slab, the largest tensile eigenstress is reached shortly after
12:00, see the red marker referring to the medium-grey
graph in Figure 15.

4. Significance of eigenstresses and curling
stresses for total tensile thermal stresses

4.1. Total thermal stresses on 2 Oct.

The total thermal stresses are equal to the sum of the curling
stresses of Subsection 3.3 and the eigenstresses of Subsection
3.4. The spatial distributions of the total thermal stresses
through the thickness of the slab are exemplarily discussed
at six specific time instants of 2 Oct., see Figure 16. Thereby,
ks is set equal to 100MPa/m. The stress profiles are nonlinear.
This confirms that thermal eigenstresses contribute consider-
ably to the total thermal stresses, see also (Choubane and Tia
1992). The bottom of the slab experiences, in the afternoon,
the overall largest total tensile stresses. At the midplane, the
locally largest tensile total stresses occur around noon. At
the top of the slab, the locally largest tensile total stresses
occur during nighttime.

The temporal evolution of the total thermal stresses at the
top and the bottom of the slab are exemplarily discussed for
2 Oct., see Figure 17. Notably, the largest tensile total stresses
are smaller than the sum of the largest tensile curling stress and
the largest tensile eigenstress. This will be explained in more
detail in the following two paragraphs.

Figure 13. Exemplary results of thermo-elastic analysis: evolution of curling stresses at the top and the bottom of the slab on 2 Oct., computed with different moduli of
subgrade reaction: the red markers label the maximum tensile curling stresses at the top and the bottom of the slab, in the corner regions and the central region,
respectively.

Figure 14. Exemplary results of thermo-elastic analysis: thermal eigenstress dis-
tributions through the thickness of the slab, evaluated at six time instants of 2
Oct.
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At the top of the slab, both the curling stresses and the ther-
mal eigenstresses are tensile during nighttime, see Figures 13
and 15. Thus, the two stress contributions amplify each
other, see Figures 13, 15, and 17. Still, the largest total tensile

stress is smaller than the sum of the largest tensile curling
stress and the largest tensile eigenstress, because the latter
two maxima occur at different instants of time. The largest ten-
sile curling stress occurred around 06:00 Figure 13, the largest
tensile eigenstress around 18:00 Figure 15, and the largest total
tensile stress around 01:00 Figure 17.

At the bottom of the slab, the largest tensile curling stress
occurred around 15:00, see Figure 13. At that time, however,
the thermal eigenstresses are compressive, see Figure 15.
Thus, the two contributions counteract each other. Vice
versa, the maximum tensile thermal eigenstress occurred
around 19:00, see Figure 15. At that time, the tensile curling
stresses are already significantly smaller compared to their pre-
ceding maximum value, see Figure 13. This explains why the
maximum total tensile stress occurred in between, namely,
shortly before 17:00, see Figure 17. At that time the curling
stress is still quite large, see Figure 13, and the thermal eigens-
tress is close to its zero-crossing, see Figure 15.

4.2. Statistical analysis of daily maxima of tensile
thermal stresses

Herein, the significance of eigenstresses for total thermal stres-
ses is quantified for the top and the bottom of the slab. To this
end, daily maxima of tensile curling stresses are computed, as

Figure 16. Exemplary results of thermo-elastic analysis: evolution of total thermal
stress distributions through the thickness of the slab, evaluated at six-time
instants of 2 Oct., computed with ks = 100MPa/m.

Figure 15. Exemplary results of thermo-elastic analysis: thermal eigenstresses at the top, the midplane, and the bottom of the slab on 2 Oct.: the red markers label the
maximum tensile eigenstresses.

Figure 17. Exemplary results of thermo-elastic analysis: total thermal stresses at the top, the midplane, and the bottom of the slab on 2 Oct., computed with different
moduli of subgrade reaction: the red markers label the maximum tensile curling stresses at the three different locations.
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illustrated for 2 Oct. in Figure 13. This is done for every day of
the monitoring period, except for the first day, because reliable
temperature fields could only be computed for the second half
of that day. The daily curling stress maxima are quantified for
all four values of the modulus of subgrade reaction, see col-
umns 2, 3, 4, and 5 of Tables 6 and 7. Similarly, daily maxima
of total thermal stresses are determined, as illustrated for 2
Oct. in Figure 17. These daily total stress maxima are also
quantified for all four values of the modulus of subgrade reac-
tion, see columns 6, 7, 8, and 9 of Tables 6 and 7. The daily
stress maxima increase with increasing modulus of subgrade
reaction.

Disregarding thermal eigenstresses leads to a significant
underestimation of the largest tensile total thermal stress at
the top of the slab. The level of underestimation increases
with decreasing modulus of subgrade reaction. Averaged
over 22 days, see Table 6, it amounts to 33% for the stiffest
Winkler foundation analysed: ks = 300MPa/m. This value
increases to 59%, when decreasing the stiffness of the Winkler
foundation to the lowest value analysed: ks = 50MPa/m, see
Table 8. Vice versa, disregarding thermal eigenstresses leads
to a significant overestimation of the largest tensile total ther-
mal stress at the bottom of the slab. The level of overestimation
increases with decreasing modulus of subgrade reaction.

Table 6. Daily tensile stress maxima at the top of the slab: curling stresses and total thermal stresses, evaluated for four different values of the modulus of subgrade
reaction.

daily tensile curling stress maximum [MPa] daily tensile total stress maximum [MPa]

ks [MPa/m] 50 100 200 300 50 100 200 300

24 Sept. 0.16 0.25 0.34 0.38 0.25 0.34 0.43 0.48
25 Sept. 0.12 0.19 0.27 0.31 0.27 0.33 0.41 0.45
26 Sept. 0.09 0.15 0.22 0.26 0.26 0.31 0.37 0.41
27 Sept. 0.12 0.20 0.28 0.32 0.35 0.35 0.43 0.48
28 Sept. 0.14 0.23 0.31 0.36 0.48 0.51 0.57 0.61
29 Sept. 0.18 0.27 0.36 0.41 0.38 0.47 0.55 0.60
30 Sept. 0.15 0.23 0.31 0.36 0.33 0.39 0.47 0.51
1 Oct. 0.19 0.28 0.37 0.42 0.47 0.55 0.63 0.68
2 Oct. 0.20 0.31 0.40 0.45 0.43 0.53 0.62 0.67
3 Oct. 0.13 0.20 0.29 0.33 0.33 0.38 0.45 0.49
4 Oct. 0.16 0.25 0.34 0.38 0.37 0.44 0.53 0.57
5 Oct. 0.13 0.20 0.28 0.32 0.41 0.46 0.53 0.57
6 Oct. 0.16 0.24 0.33 0.37 0.32 0.42 0.50 0.55
7 Oct. 0.05 0.09 0.14 0.17 0.14 0.17 0.22 0.25
8 Oct. 0.07 0.12 0.19 0.22 0.14 0.19 0.25 0.29
9 Oct. 0.07 0.12 0.18 0.21 0.29 0.29 0.29 0.30
10 Oct. 0.13 0.21 0.29 0.34 0.31 0.37 0.44 0.48
11 Oct. 0.17 0.26 0.35 0.40 0.36 0.44 0.53 0.57
12 Oct. 0.20 0.30 0.40 0.45 0.53 0.59 0.67 0.72
13 Oct. 0.20 0.30 0.40 0.45 0.37 0.47 0.57 0.62
14 Oct. 0.06 0.10 0.15 0.18 0.12 0.15 0.20 0.22
15 Oct. 0.06 0.10 0.15 0.18 0.08 0.11 0.17 0.20
mean values 0.13 0.21 0.29 0.33 0.32 0.38 0.45 0.49

Table 7. Daily tensile stress maxima at the bottom of the slab: curling stresses and total thermal stresses, evaluated for four different values of the modulus of subgrade
reaction; empty cells refer to days, during which thermo-elastic analysis delivered only compressive stresses at the bottom of the slab.

daily tensile curling stress maximum [MPa] daily tensile total stress maximum[MPa]

ks [MPa/m] 50 100 200 300 50 100 200 300

24 Sept. 0.14 0.18 0.21 0.22 0.09 0.12 0.14 0.15
25 Sept.
26 Sept. 0.61 0.70 0.74 0.76 0.44 0.53 0.57 0.59
27 Sept. 0.88 0.99 1.05 1.08 0.71 0.81 0.86 0.88
28 Sept. 1.24 1.39 1.50 1.56 0.98 1.12 1.22 1.27
29 Sept. 0.95 1.06 1.13 1.16 0.76 0.86 0.91 0.93
30 Sept. 0.86 0.97 1.03 1.06 0.64 0.74 0.79 0.81
1 Oct. 1.31 1.48 1.60 1.66 1.03 1.17 1.27 1.31
2 Oct. 1.42 1.60 1.72 1.77 1.14 1.29 1.40 1.46
3 Oct. 1.25 1.41 1.52 1.58 1.03 1.17 1.26 1.30
4 Oct. 1.04 1.17 1.25 1.29 0.81 0.92 0.98 1.01
5 Oct. 1.17 1.31 1.42 1.47 0.91 1.05 1.15 1.19
6 Oct. 0.95 1.07 1.14 1.17 0.73 0.84 0.90 0.92
7 Oct.
8 Oct.
9 Oct. 0.55 0.63 0.68 0.69 0.44 0.52 0.57 0.58
10 Oct. 0.09 0.11 0.13 0.14 0.07 0.05 0.07 0.07
11 Oct.
12 Oct. 0.87 0.98 1.04 1.06 0.61 0.71 0.76 0.77
13 Oct.
14 Oct.
15 Oct. 0.21 0.26 0.30 0.31 0.14 0.19 0.23 0.24
mean values 0.85 0.96 1.03 1.06 0.66 0.75 0.82 0.84
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Averaged over 16 days during which tensile stresses occurred
at the bottom of the slab, see Table 7, it amounts to 26% for
ks = 300MPa/m and increases to 29%, for ks = 50MPa/m,
see Table 8.

5. Conclusions

From the presented analysis, the following conclusions are
drawn:

. Prescribing surface temperature steps obtained from tem-
poral interpolation and spatial extrapolation of tempera-
tures measured inside a concrete pavement, as boundary
conditions for the simulation of transient heat conduction
through the slab, allows for the quasi-continuous compu-
tation of the temporal evolution of the temperature field,
based on a fast-converging series solution.

. Such series solutions were also derived for quantifying the
eigencurvatures of the plate (= first moment of the eigen-
strain distribution) and the eigendistortions of the generators
of the plate (= nonlinear part of the eigenstrain distribution).

. Curling stresses of single slabs with free edges, resulting
from the eigencurvatures, can be computed as a function
of the modulus of subgrade reaction, based on nonlinear
finite element analyses accounting for possible partial lift-
off of the plate from its Winkler foundation.

. Self-equilibrated thermal eigenstresses are directly pro-
portional to the eigendistortions, because the generators
of the plate remain virtually straight (= Kirchhoff-Love
hypothesis of the linear theory for slender plates).

The presented mode of analysis provides quasi-continuous
and quantitative insights into the following trends:

. Extreme values of daily thermal stresses typically occur in
the early morning and in the early afternoon.

. In the early morning, the top of the slab is usually cooler than
its bottom. Concave curling goes along with tensile stresses at
the top and compressive stresses at the bottom. The self-equi-
librated eigenstresses are tensile at the bottom and the top,
and compressive around the midplane of the slab.

. In the early afternoon, the top of the slab is usually warmer
than its bottom. Convex curling goes along with compres-
sive stresses at the top and tensile stresses at the bottom.
The self-equilibrated eigenstresses are compressive at the
bottom and the top, and tensile around the midplane of
the slab.

. Both in the early morning and in the early afternoon, the
two contributions to the total thermal stresses amplify

each other at the top of the slab and diminish each other
at the bottom.

As regards daily maximum values of tensile thermal stres-
ses, representing an important input for the design of concrete
pavements, the following conclusions are drawn:

. Within the analysed 22days in autumn, the average dailymaxi-
mumvalues of the total tensile thermal stresses (= curling stres-
ses + eigenstresses) range from 0.32 to 0.49MPa at the top of
the slab, and from 0.66 to 0.84MPa at the bottom, for moduli
of subgrade reaction ranging from 50 to 300MPa/m.

. Focusing on curling stresses only, the daily maximum
values of tensile stresses range from 0.13 to 0.33MPa at
the top of the slab, and from 0.85 to 1.06MPa at the bottom,
again for moduli of subgrade reaction ranging from 50 to
300MPa/m.

. These results underline that disregarding thermal eigens-
tresses results in (i) an underestimation of the daily maxi-
mum values of tensile stresses at the top of the slab
between 33 and 59 % (= quantification of stresses on the
unsafe side) and (ii) an overestimation at the bottom of
the slab between 26 and 29 % (= quantification of stresses
on the uneconomic side). The level of misestimation
increases with decreasing modulus of subgrade reaction.

. The daily maximum value of the total tensile thermal stres-
ses is smaller than the sum of the daily maximum values of
the tensile curling stresses and the tensile eigenstresses,
because the latter two maxima occur at different instants
of time.

Finally, it is noted that these findings may vary with slab-
thickness, climate, and season.

Note

1. Notably, the value of the modulus of elasticity of concrete is sensi-
tive to the type of rock from which the aggregates are made, see e.g.
(Ausweger et al. 2019).
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Table 8. Average daily tensile stress maxima at the top and the bottom of the slab: curling stresses, total stresses, and level of over/underestimation; time period: 24
Sept. to 15 Oct.

average daily tensile stress maxima average daily tensile stress maxima

at the top of the slab at the bottom of the slab

ks [MPa/m] 50 100 200 300 50 100 200 300

total thermal stresses [MPa] 0.32 0.38 0.45 0.49 0.66 0.75 0.82 0.84
curling stresses [MPa] 0.13 0.21 0.29 0.33 0.85 0.96 1.03 1.06
misestimations [–] −59% −45% −36% −33% +29% +28% +26% +26%
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Appendices

Appendix 1. Decomposition of thermal
eigenstrains

Rules for the decomposition of thermal eigenstrains follow from the
Kirchhoff-Love hypothesis, stating that generators of the plate remain
straight also in the deformed configuration, see also Figure A1:

u = um − ∂wm

∂x
z , (A1)

v = vm − ∂wm

∂y
z , (A2)

where u and v denote the displacement components in x and y-direction
along the generators of the plate, um and vm for the corresponding displa-
cement of the midplane (hence the subscript ‘m’), and wm for the deflec-
tion. The ‘total’ normal strain components 1xx and 1yy of the linearised
strain tensor are defined as 1xx = ∂u/∂x and 1yy = ∂v/∂y. Inserting u
and v according to Equations (A1) and (A2) yields

1xx = 1m,x + km,x z , (A3)

1yy = 1m,y + km,y z , (A4)

where 1m,x = ∂um/∂x and 1m,y = ∂vm/∂y denote the stretches of the mid-
plane and km,x = −∂2wm/∂x2 and km,y = −∂2wm/∂y2 the curvatures of
the midplane.

The normal stress components sxx and syy of Cauchy’s stress tensor
read, in linear thermoelasticity, as sxx = E[1xx − 1exx + n (1yy − 1eyy)]/

(1− n2) and syy = E[1yy − 1eyy + n (1xx − 1exx)]/(1− n2). Inserting
Equations (15), (A3) and (A4) yields

sxx = E
1− n2

[
1m,x + km,x z − aTDT + n (1m,y + km,y z

− aTDT)
]
, (A5)

syy = E
1− n2

[
1m,y + km,y z − aTDT + n (1m,x + km,x z

− aTDT)
]
. (A6)

Insertion of Equations (A5) and (A6) into the definition of the normal

forces per length, nxx =
�+h

2

−h
2
sxx dz and nyy =

�+h
2

−h
2
syy dz, yields both the

constitutive laws

nxx = Eh
1− n2

1m,x − 1e + n
(
1m,y − 1e

)[ ]
, (A7)

nyy = Eh
1− n2

1m,y − 1e + n
(
1m,x − 1e

)[ ]
, (A8)

and the definition of the eigenstretch of the midplane of the plate, see
Equation (17). By analogy, insertion of Equations (A5) and (A6) into

the definition of the bending moments per length, mxx =
�+h

2

−h
2
sxx z dz

and myy =
�+h

2

−h
2
syy z dz, yields both the constitutive laws

mxx = Eh3

12(1− n2)
km,x − ke + n

(
km,y − ke

)[ ]
, (A9)

myy = Eh3

12(1− n2)
km,y − ke + n

(
km,x − ke

)[ ]
, (A10)

and the definition of the eigencurvature of the midplane of the plate, see
Equation (18). Solving Equations (A7) and (A8) for 1m,x and 1m,y, as well
as Equations (A9) and (A10) for km,x and km,x, and inserting the resulting
expressions into Equations (A5) and (A6), yields the following expression
for the normal stresses, see Equations (A11) and (A12).

sxx = nxx
h

+ mxx

h3/12
z − E

1− n

(
aTDT − 1e − kez

)
, (A11)

syy =
nyy
h

+ myy

h3/12
z − E

1− n

(
aTDT − 1e − kez

)
. (A12)

The term in the brackets of Equations (A11) and (A12) expresses the
sought rule for decomposition of the thermal eigenstrains. Subtracting
from the total eigenstrains, aTDT the constant part related to the eigen-
stretch of the plate, 1e, see Equation (17), and the linear part related to
its eigencurvature, ke z, see Equation (18), yields the spatially nonlinear
eigendistortions of the generators of the plate, see Equation (19).

The presented derivation underlines that the developments of Thom-
linson (1940) are in agreement with the linear theory of thin plates. From
the viewpoint of structural mechanics, however, it is more intuitive to
decompose thermal eigenstrains into a constant, a linear, and a nonlinear
part, rather than performing this decomposition for the temperature.

Figure A1. Kinematic description of the deformed configuration of a thin plate based in the Kirchhoff-Love hypothesis; after Figure 8.13 in Mang and Hofstetter (2013).
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Appendix 2. Temperature measurements from structural monitoring

Figure A2. Temperatures measured 5 cm, 9 cm, 14 cm and 19 cm underneath the top surface.
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