
Technische Universität Wien

DIPLOMARBEIT

Semantic Information in

Document Retrieval Systems

Ausgeführt am

Institut für Informationssysteme

Arbeitsgruppe für Datenbanken und Arti�cial

Intelligence
der Technischen Universität Wien

Unter der Anleitung von

Univ.Prof. Dipl.-Ing. Dr.techn. Georg Gottlob und

Mag.rer.nat. Dr.rer.nat. Robert Baumgartner

als betreuender Assistent

durch

Martin Domig

Hippgasse 25/20

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

2

A-1160 Wien

Wien, 12. Dez. 2005
Martin Domig

Abstract

The constant and fast growth of the internet and the world wide web
results in a problem known as information over�ow. For a user who searches
for information regarding a speci�c topic, it is very hard to �nd the few
web sites that cover his scope of interest. To be able to navigate through the
large amount of data, users need the help of automated content categorization
mechanisms, also known as internet search engines. The task of those search
engines is to process user queries and search through all sites on the web,
fetching only those sites carrying content that is related to the users topic of
interest.

However, understanding the semantic content of any document written
in a human natural language is very di�cult for a machine. Very often,
search engines are limited to string or word matching only, possibly also
exploiting the very little additional meta information that is given by the
linked structure of the web itself. Truly understanding the meaning or sense
of a text is beyond the scope of common search engines.

To overcome this problem, machines need additional information that
helps in understanding and categorizing web sites. This thesis presents the
implementation of a document retrieval system called Monkville, that intro-
duces the concept of context information to documents. Context is de�ned as
semantically relevant text, which is not part of a document itself, but closely
related to the documents semantic content.

Context was extracted from web sites using Lixto, a very powerful, semi-
automated information extraction utility. Text and context information was
then processed in the document retrieval system, enabling it to perform
queries based on context as well as text of the documents. This functionality
provides new ways to perform full text queries in search engines, resulting in
a document retrieval system capable of processing semantic searches.

Experiments conducted on several thousand texts that were extracted
from various online newspapers showed that this approach of context process-
ing gives good results. Context information is available on many web sites,
unfortunately it is, most of the time, given only implicitly, embedded in the
web site. If such information can be made explicitly known to document
retrieval systems, it is possible to conduct new and very powerful semantical
searches on the internet.

CONTENTS 1

Contents

1 Introduction 3

1.1 Search Engines . 4
1.1.1 Search Engine Requirements 6

1.2 Motivation . 6
1.3 Use Cases . 8

1.3.1 The Project Environment 8

2 Document Retrieval 10

2.1 De�nition of Terms . 10
2.2 Indexing Algorithms . 11

2.2.1 Su�x Tree . 12
2.2.2 Signature File . 12
2.2.3 Inverted Index . 13
2.2.4 Comparison . 14

2.3 Precision and Recall . 15
2.4 Processing Large Amounts of Data 17

3 The Inverted Index 19

3.1 Index Creation . 20
3.1.1 Splitting Text into Words 21
3.1.2 Translation . 21
3.1.3 Sorting . 22
3.1.4 Query Evaluation and Result Ranking 23

3.2 Variants . 24
3.2.1 Record Level vs. Word Level Index 24
3.2.2 Archival of Originals 25
3.2.3 Distributed Indexing 25
3.2.4 Hot Updates . 25

3.3 Problems and Di�culties . 26
3.4 Existing Implementations . 28

3.4.1 Google . 28
3.4.2 MySQL . 30
3.4.3 Other Variations . 31

4 Result Ranking 33

4.1 The Vector Space Model . 34
4.1.1 Latent Semantic Indexing 35

4.2 TFxIDF . 35
4.3 Boolean Spread Activation . 37

CONTENTS 2

4.4 Vector Spread Activation . 38
4.5 Most-cited . 38

4.5.1 PageRank . 39

5 Palaver: Full Text Search 42

5.1 Project Overview . 42
5.2 System Architecture . 43

5.2.1 Architecture Overview 44
5.3 Implementation Details . 45

5.3.1 Storages . 46
5.3.2 Description of Modules 48

5.4 Runtime Considerations . 52

6 Monkville: Introducing Semantics 53

6.1 Sources of Semantic Information 53
6.2 Explicit Semantic Information 54

6.2.1 Lixto: Semi-Automated Extraction 55
6.3 Implicit Semantic Information 56

6.3.1 Document Fingerprinting 57
6.4 Exploiting Context . 59

6.4.1 Context Search . 59
6.4.2 Discovery of Related Documents 61

6.5 Modi�cations to the implementation 63
6.6 Further Work . 65

6.6.1 Topic Grouping . 66
6.6.2 Semantic Result Ranking 66

7 Experimental Results 67

7.1 Processing Time and Data Size 67
7.2 Performance Comparison . 68

8 Related Work 70

8.1 Improving the Inverted Index 70
8.1.1 Additional Features . 71

8.2 Web Content Mining . 71
8.3 Semantics in Databases . 72
8.4 Machine Learning from Natural Language Text 73

8.4.1 Extraction of Semantic Information 73
8.4.2 Text Classi�cation . 74
8.4.3 Abstract Generation 74

8.5 The Semantic Web . 75

CONTENTS 3

9 Summary 77

A Database Manual 79

B Figures, Tables and References 82

1 INTRODUCTION 4

1 Introduction

The internet has become the fastest growing virtual database, but no one
knows exactly how large it really is. Unfortunately, the size is not the only
unknown dimension of the �world wide web�. Our knowledge about the con-
tent, the quality of the content and the location of any speci�c information
is even less. In fact, the world's largest virtual database turns out to be the
one that is the most di�cult to use e�ciently.

This is due to the original nature of the web itself. Initially, the construc-
tion of what should later become �the internet� began during the cold war
in the 60ies, as a communication framework that could maintain operability
even after the failure of any node. This led to a decentralized network struc-
ture, without a controlling or monitoring entity. At this time, nobody could
have foreseen the explosive growth that happened in the subsequent years.
The decentralized design allows the network to expand into any direction,
whenever needed - and it has been expanding ever since.

The same applies to the websites on the internet, and their content.
Everybody can publish any information at little or no cost, without any-
one validating the information, and without any need to register the website
in some form of central registry. The result is a peculiar situation: the decen-
tralized nature of the internet, while being the most important reason for its
success, is at the same time the biggest problem when it comes to using the
network as a source of information. There is an enormous amount of data
in the network, but the exact amount and content is unknown. Without
a global index, it is extremely di�cult to �nd any speci�c information, and
even if the information can be found, there is no guarantee whatsoever about
its quality.

The only way to make the internet usable as a source of information is by
creating a global registry of as many websites as possible. Due to the amount
of data, this can only be done by an automated process. This registry can
then be used by humans to quickly retrieve a list of websites for all possible
topics of interest. Search results returned by such registries should be short
because they are going to be processed manually, thus they should contain
the most relevant websites only. This is what internet search engines are
trying do: be of help in navigating through the world wide web.

However, there are some fundamental problems involved with the auto-
mated processing of websites. First of all, no registry can ever claim to cover
all websites, because a complete list of sites does not exist. Next, it is very
di�cult to process the contents of a website to begin with. They are only
weakly structured and content often is not organized at all, which makes
it very unsuitable for automated processing. Website content is intended

1 INTRODUCTION 5

to be viewed by humans, not by computers. Not even humans are able to
understand all websites, because they could be written in any language and
script.

1.1 Search Engines

The information explosion in the internet leads to an issue commonly known
as �resource discovery problem�: due to the large amount of data, it is very
hard to �nd one speci�c piece of information. This calls for methods to
relieve the user from this problem. [50]

The perfect internet search engine would understand all human languages
and have humanistic background knowledge, it would contain all web sites
and it would always be up to date. Unfortunately, this is impossible. The
e�orts that are required to create a search engine that is just reasonably
usable is enormous, and there exist only a hand full of such engines that could
come close to a somewhat complete internet index. Computer systems are not
suited to process unstructured data such as text in a natural language. [25]
�Understanding� web sites is, even for humans, a very complex task.

The duty of an internet search engine is to support a human user in
the process of �nding web sites that are relevant to his topic of interest.
The goal is not to replace browsing in the internet with a keyword search,
but to supplement it and facilitate the navigation on the world wide web.
Search engines do that by adding as much websites as possible to a document
retrieval system, create an index of keywords and then present a user interface
for human users, which can be used to perform search queries. Document
retrieval systems try to determine, with all means possible, the semantic
information contained within a document, and what the key topics are, and
estimate the semantic relevance of the document to the users search terms.

To estimate the relevance of a document, a search engine needs to �un-
derstand� the content of a website, at least to a certain degree. Based on
the content of all documents, the search engine creates a list of keywords -
the index. More advanced systems try to somehow interpret the semantic
meaning of the text, and try to group similar documents together in a query
result to improve the usability for the human user. Based on semantic infor-
mation, it is possible to create such content grouping. However, the degree
to which a computer system is able to understand the semantic meaning of
any text written in a natural language is very limited. [25]

There are two basic ways for thematic grouping of documents: mapping
documents onto existing ontologies [33] and fuzzy content clustering. The
�rst method can achieve a good performance in recognizing the best (existing)
topic for a given document, while the second approach is not limited to the

1 INTRODUCTION 6

already existing categorization � but has the problem of automated topic
classi�cation. Both approaches have in common that the computer has to
somehow �understand� the content of the text, at least to a degree exceeding
the plain creation of a key word index.

The prevalent techniques to interpret the semantic content of natural
language text are based on purely statistical and mathematical methods.
They calculate key values by statistically evaluating word distributions in
single documents (local evaluation), and compare it to the average of word
distributions over the global text collection (global evaluation). Based on the
di�erences between those two values, they try to �nd a good compromise for
a document categorization.

Local evaluations only respect the currently processed document, with-
out knowledge about the characteristics of an entire text collection. Global
values are calculated over the total text collection, and need to be updated
as the text collection changes. In document retrieval systems, both play an
important role. Local evaluations are generally more precise and accurate
when being compared to a given search term, but they often are ine�cient.
Global values lack the �ne granularity of local evaluation, but show a good
overall performance. A good example for a global evaluation system is the
PageRank [6] algorithm, with all the side e�ects described below. PageRank
will be explained in detail in chapter 4.5.1.

The proper application of purely statistical evaluation methods to large,
heterogeneous and uncontrolled text collections � such as web sites � has not
been a subject of research for a very long time. Such text collections have
been available for a few years only, and �rst experiments with that kind of
data, while con�rming a certain degree of e�ciency for standard techniques
on full text databases, have revealed many surprises and problems. [25]

Purely statistical ranking algorithms are limited in the quality of the
results, and usually are vulnerable to search engine spammers. It is possible
to create arti�cial documents, speci�cally crafted to achieve a high ranking
in statistical evaluation algorithms. For PageRank, the most common and
obvious attack is link farming1. For TFxIDF 2, a very prominent ranking
algorithm (see chapter 4), a document that contains exactly (and only) the
users search terms will achieve the best result. Because the quality of web
sites is often very limited and cannot be assured, this can happen on a regular
basis, especially with search engines that contain a very large text collection.

The structure of web documents also o�ers to exploit some additional

1A large collection of small web sites that contain links to each other and to the favored
web site, see also http://en.wikipedia.org/wiki/Link_farm

2TFxIDF : Term Frequency times Inverse Document Frequency, a very popular ranking
algorithm in document retrieval systems. See also chapter 4.2

1 INTRODUCTION 7

meta-information, like hyper links. However, such intuitive approaches are
often insu�cient. [50] Once the ranking algorithm in use is known, there are
ways to exploit the weak spots of the statistical evaluation � which is one of
the reasons why search engine operators tend to keep their ranking functions
a closely guarded secret.

1.1.1 Search Engine Requirements

An internet web search engine has requirements that are di�erent to classical
database systems. First of all, it operates mostly on unstructured, heteroge-
neous textual data. It will, over time, become very large and thus has to be
scalable to support the ever growing text collection. Most importantly, the
requirements of a document retrieval system that is to be used as a internet
search engine is fundamentally di�erent to the requirements of a standard
(relational) database system: the content does not necessarily need to be
consistent at all times, and changes to the index usually are not time criti-
cal. Furthermore, the results for search queries are not clearly de�ned, but
rather fuzzy: �relevance� is a subjective property that is evaluated di�erently
by di�erent users.

The critical factors for a web search engine are di�erent: it has to provide
a high availability, and only little response times. [23] Therefore, a search
engine has to be able to add documents to the index at run-time without
a�ecting the search performance, a feature referred to as �hot updates� (ref. to
chapter 3.2.4). However, updates can happen in batches in order to improve
the overall performance.

It is not mission critical to add new sites to the database immediately,
neither is it necessary to remove them instantly. Compared to a relational
database, these requirements seem to be very comforting � but in fact, they
are vital to various implementation details that can improve the overall sys-
tem performance and reduce computing costs. Processing of natural language
texts on a large scale is di�cult enough, adding the unnecessary burden of
absolute data integrity at all times is not necessary.

1.2 Motivation

Purely mathematical ranking and grouping algorithms are inherently limited
in the quality of their results. They can only consider statistical distributions,
and maybe apply some plausibility checks based on secondary knowledge
databases (such as dictionaries), but computers are unable to understand
the semantic meaning of a written text. Thus, purely statistical ranking and
grouping algorithms will always produce results that, while of acceptable

1 INTRODUCTION 8

quality, are poorer than what a human could do. Unfortunately, there is
currently no viable alternative to mathematical methods.

However, it is possible to increase the quality of the results by increasing
the amount and granularity of input data, and by adding additional seman-
tic information to the text. This requires additional knowledge about the
processed documents, which often is not available or not obviously present
for a computer � but it can be made know explicitly by annotating it before
documents are processed further.

The idea is: if a computer is unable to understand on its own what a text is
about, it needs to be told in the form of a small semantically relevant context
- for example, a summary. Computers won't understand that either, but the
additional contextual data could increase the precision of statistical ranking
and grouping algorithms, by providing � for each document � additional
semantic information, as shown in Figure 1. This contextual data is not
part of the text itself, but will be processed together with it. If the context
information is well chosen, of good quality and semantically coherent to the
document itself, it should be possible to improve the quality of ranking results
and content clustering.

In the light of the ever growing internet and the growing amount of textual
data on web sites, such capabilities will be of constantly increasing impor-
tance in the future.

Currently, one of the main problems for this idea is the availability of
semantic information in the internet, or better � the lack thereof. With the
Semantic Web initiative3 this could change in the future. But currently,
the amount of sites that annotate content with semantic information did not
reach the critical mass yet that is necessary to make it interesting for internet
search engines. Until this happens, the extraction of semantic information
will be a semi-automated process. With the right tools [49], the amount
of manual work is minimal, but the time being, it is next to impossible to
exclude it entirely.

Existing algorithms like TFxIDF (see 4.2) or Most-cited (or the better
known variation PageRank, see 4.5) use meta-data that is present in the
structure of web sites � such as hyper links or text markup. The semantic
approach presented here is di�erent: it is based on data that needs to be
extracted by semi-automated content �ltering utilities, which, while having
the disadvantage of not being fully automated, leads to an unexpected ad-
vantage: the content of the textual database itself as well as the additional
semantic context information can be controlled, and is of high quality.

3Semantic Web: http://www.w3.org/2001/sw

1 INTRODUCTION 9

Figure 1: Extracted BBC article. The portions to the right marked with red
rectangles are extracted as contextual information, the remaining article in
its entirety as document content

1.3 Use Cases

Some of the algorithms and concepts presented in the subsequent chapters
will be explained by �ctionally applying them to small use cases. The goal
is to demonstrate how di�erent algorithms and ideas can be applied in a
practical implementation, and to point out some problems, di�culties and
fundamental errors that may exist.

Most use cases will be related to the actual project environment itself,
which is described below. Sometimes, �ctional set ups without any practical
relevance will be used to hilight weaknesses, that might not be obvious when
applied to a generic problem.

1.3.1 The Project Environment

The assumption is a textual database that stores news articles about all
kind of events that happened in the past. The application will be able to
perform full text searches on those articles, and will � to a certain degree � be
able to derive semantic and causal relations between them. Based on these

1 INTRODUCTION 10

relations, the user can derive his own conclusions, and can use the system
for investigations and in-depth topic related researches of historical facts (or
better, the news coverage thereof).

To do this, the user wants to search for semantical concepts rather than
speci�c keywords. For example, a query regarding the �nancial situation of
the united states could be formulated like �national �nances USA�, instead
of �health budget de�cit Louisiana�. A query for people's responses to high
taxes might be formulated like �unfair taxes�, instead of �tax rebel goes to
jail�.

Textual data is being acquired from a list of well regarded news sites,
�ltered with Lixto4 and then stored in aMySQL database for later processing
and performance evaluation. The content extraction and �ltering for this
project was done by Lixto, a tool for semi-automated data extraction from
semi-structured data sources like web sites. [2, 3]

News articles were retrieved from the web sites of the following online
media: �The New York Times� (www.nyt.com), �The British Broadcasting
Corporation� (www.bbc.co.uk), �MSNBC online� (www.msnbc.msn.com) and
�The Guardian� (www.guardian.co.uk). These sites were chosen because
they provide additional editorial information to most of the published arti-
cles, like headlines of related stories, links to websites with related content
and other additional information.

This test environment is in some points di�erent from a situation of a
web search engine that has to operate on un�ltered web sites. The di�erence
is the quality of the content: textual data is of a high consistency, can be
assumed to have a reasonable minimum length and does, due to the �ltering,
not contain all the �noise elements� that is present in HTML pages (like site
navigation links, forms or advertisement). While there are projects towards
the automated processing of web site components (see also Related Work,
section 8.2 on page 71), this technology is not yet generally available. Thus,
the results of this project are not directly applicable to the domain of internet
search engines.

4Lixto: http://www.lixto.com

2 DOCUMENT RETRIEVAL 11

2 Document Retrieval

�Document retrieval systems are for the user who wants to learn about some-
thing by reading about it� [25], as opposed to expert systems that answer
questions by building a logical knowledge database, and interact with the
user in a dialogue to solve a particular problem. Instead of a knowledge
database, a document retrieval system consists of a database of documents,
a classi�cation algorithm to build an index from the documents, and an on-
line user interface to access the database. [8]

Internet web search engines are classical examples of document retrieval
systems, on a very large scale. There are many smaller information retrieval
applications, like indexing software for corporate o�ce documents and cor-
respondence, none of them reaching the dimensions of a web search engine.

There are two main classes of indexing schemata for DR systems: form
based (or word based), and content based indexing. Form based DR addresses
the exact syntactic properties of a text, comparable to substring matching
in string searches. The text is generally unstructured and not necessarily in
a natural language, the system could for example be used to process a large
set of chemical representations in molecular biology. The content based ap-
proach exploits semantic connections between documents and parts thereof,
and semantic connections between queries and documents. The document
classi�cation scheme (or indexing algorithm) used determines the basic na-
ture of a document retrieval system.

All DR systems have a basic principle in common: they process text
content and user queries in a natural language, and �have to �nd relation-
ships between the information needs of users and the information held within
documents, both considered in a very general sense, and neither directly avail-
able to the computing system.� [25] As elaborated above, natural language
processing (NLP) is not a trivial task for any computer system, but it is
crucial for good results in document retrieval.

2.1 De�nition of Terms

The terms document retrieval and text retrieval will be used as synonyms
here. Both are focused on the same problems and face the same technical
requirements. In the past, document retrieval (DR) used to be concerned
with pointing the reader to o�ine text resources, typically a book or a journal
in a library. With today's amount of storage space available, text retrieval
(TR) became more practical: index the full document, and present it online
to the user to read. [25]

Also, the terms document and text will be used as synonyms to describe

2 DOCUMENT RETRIEVAL 12

uninterpreted prose in a natural language, without any speci�c formatting
(like HTML markups), and in arbitrary length � anything between paragraph
and book size. The medium in which the documents are contained is only
secondary, it could be a raw text �le, a web site or a proprietary binary text
source.

The term information retrieval will be used as a collective term for doc-
ument retrieval and text retrieval, with the goal to interpret or evaluate
semantic content of documents. However, information retrieval is not to be
confused with knowledge retrieval or information extraction, also referred to
as �question answering�. Those are focused on extracting facts from natural
language text.

When the di�erence between any of these terms is of relevance, it will be
explicitly mentioned.

2.2 Indexing Algorithms

The indexing algorithm determines the basic nature of the document retrieval
system (content or form based), and has a very large impact on the function-
ality. Content based algorithms often choose to ignore certain �noise� like
stop words5 or interpunctation symbols in a text, which makes them unsuit-
able for certain classes of documents like program source code. By ignoring
this �noise�, it becomes impossible to use certain terms or substrings in search
queries, or to perform exact syntactic searches (like string matching). Form
based approaches, while providing this functionality, have other shortcom-
ings when it comes to evaluating the semantic relevance of a document to
any given search query.

The indexing algorithms need to provide some basic functionalities for the
document retrieval system: updating, querying and result ranking. Updating
usually means insertion of new documents. Due to the archival nature of
most full text systems deletions are of less importance but still necessary
(for example when existing documents need to be updated, which happens
regularly in internet search engines). Querying is the process of retrieving
all records that satisfy a user query, and result ranking is the sorting of the
resulting records based on their relevance to the search query. [31]

There are some indexing algorithms that do not operate on purely textual
data, but are able to process more structured data sources like XML data-
bases, or specialized NLP systems that use a proprietary encoding schema

5Stop words are words that appear very often in a text and therefore have little or no
signi�cance. Many text database systems do not process stop words to save storage space
and processing time.

2 DOCUMENT RETRIEVAL 13

for text. Those algorithms often allow a high degree of additional function-
ality and �exibility, but are usually not designed with search performance as
the primary goal. As such they are not of interest here, the focus will be on
performant methods that sacri�ce a degree of �exibility to gain speed.

The list of indexing algorithms presented here is not complete, but covers
the most commonly used indexing approaches in document retrieval systems.
Each of these algorithms has speci�c advantages and shortcomings.

2.2.1 Su�x Tree

A su�x tree or su�x array is a data structure that allows to perform exact
string searches very quickly. It is �exible enough to be used for a variety of
string search problems, for example it allows to operate on regular expres-
sions, string pre�xes and phrases, and is speci�cally suitable for substring
searches. Being a form based indexing algorithm, su�x trees provide more
functionality in terms of search details than signature �les or inverted in-
dexes. [15]

A su�x tree is constructed by sorting all su�xes6 in the text in lexigraph-
ical order, and then store them into an array. On this array, it is possible to
perform a binary search, with logarithmic costs. [30]

Su�x trees are not only useful to perform string searches in natural lan-
guage text, or in document retrieval, they are very prominent in general
substring matching. The range of usages is very wide and includes applica-
tions in molecular biology and data compression. [15]

However, the disadvantage of su�x trees is the very expensive construc-
tion of the data structure and the index size. Index construction is either
very slow or consumes a lot of memory. The size of the resulting index usu-
ally exceeds the size of the text itself, and with the data in the index being
of high entropy, it is very di�cult to compress the index after it has been
created. Changes in the indexed text or updates to the index �le itself are
very costly.

The features of a su�x tree index come at a cost: no data structure that
o�ers this kind of functionality and supports fast queries even in the worst
case is reasonably small. [15] Although there has been some progress with
this index form, it is e�ectively not suitable for document retrieval systems
on a large scale. Especially the index size itself presents a big problem for
large amounts of text in a database. It is possible to reduce the index size
by applying some compression algorithms in the process of index creation as
shown by Mäkinen [30] and Grossi et al. [15], but those reductions of index

6Formally: S is su�x of U ⇔ U = uS

2 DOCUMENT RETRIEVAL 14

size come at the cost of a sub-optimal search performance. Also, they are
not suitable to achieve the same data compression rate than other indexes.

2.2.2 Signature File

In a signature �le index, each document is represented by a signature of a
�xed size. Words that appear in a document are hashed multiple times to
determine which bits in the signature should be set. It is possible (and in
fact, happens regularly) that two distinct words in a document set the same
bit in the hash, which introduces a degree of ambiguousness into the system.
As the database grows, this will happen more often, especially when the hash
size is chosen too small. Also, adding stop words to the index increases this
problem.

User queries are hashed in a similar way, and then evaluated by comparing
the signature of the query to all document signatures. All documents whose
signature have a 1-bit corresponding to every 1-bit in the query signature are
potential answers. Each such document must then be fetched and checked
directly against the query to determine whether it is a false match7 or a true
match. [51]

Compared to su�x trees, costs for index creation and updates are rela-
tively small, similar to inverted index �les. Also, the functionality provided
by a signature �le index matches the one as o�ered in a record level inverted
index. However, Zobel et al. demonstrate at great length in [51] why a sig-
nature �le index is inferior to the inverted index, mentioning the following
main reasons as sources for performance losses.

A basic problem with signature �le indexes is the �xed size of the hash
values. It has been suggested to remedy this problem by clustering the data-
base index into several parts, grouped by document length. When processing
large amounts of text, the length of the document signature has to increase
to keep the number of false positives to a manageable level, which increases
query costs � because each signature has to be fetched, irregardless of the
actual query � leading to a linear raise of query processing costs with growing
index sizes.

Records of varying length, unfortunately very common in document re-
trieval systems, present a big challenge for signature �le indexes. [22] If the
hash is too small, the number of false positives grows beyond reasonable lev-
els, if it is too big, the index grows too fast. There are other parameters

7False matches happen regularly due to overlapping 1-bits in document signatures. A
false match is a database entry which the signature indicates may be an answer, but in
fact is not.

2 DOCUMENT RETRIEVAL 15

that need to be well chosen before starting to create the index. Unfortu-
nately, those parameters depend on the properties of the actual text data
being indexed, which might be unknown in advance.

2.2.3 Inverted Index

The inverted index, also referred to as postings �le or simply inverted �le
[18, 52] is a list of distinct terms (the vocabulary, or dictionary) and, for
each single term, an inverted list of pointers to documents containing the
term. Depending on the implementation, the inverted list might also contain
a list of positions of terms, allowing for phrase queries8 in the inverted index.
With the smallest processed entity being a single word, this index form does
not support substring searches and implements a content based document
retrieval system.

Search queries are evaluated by fetching the inverted lists for all query
terms, and then merge or intersect the resulting lists of documents depending
on the query type.

With the usage of index compression, inverted record level index sizes
have been reported to be as little as 6% � 10% of the original text size. [51]
Additionally to the index itself, it is necessary to store the vocabulary, which
usually is small enough to be kept in memory9.

Almost all document retrieval systems are using an inverted index [40]
� one of the most prominent being the internet search engine Google [6].
The index architecture is intuitive, open for extensions and �exible in func-
tionality, it has been shown to work in many existing applications, and there
currently are di�erent research groups working on further improvements of
the inverted index (ref. to chapter 8).

Inverted list indexes have been shown to be "distinctly superior to signa-
ture �les" [51] and are better suited for index updates than su�x trees. Index
sizes are small, and index creation and update costs can be greatly improved
by applying data compression and other improvements as shown in section
8. Query times are guaranteed to be optimal, without the excessive amount
of false positives as given in a signature �le index. Being a content based
algorithm, inverted indexes are also suitable for adding semantic processing
properties to the document retrieval system.

8A phrase query is a search query over multiple distinct words, where the relative word
positions are relevant. A phrase query like "bird seed" returns di�erent results than a
conjunctive query for "bird" and "seed".

9The amount of distinct words in a text collection grows constantly, even after process-
ing extreme large amounts of documents [47] � but the growth of the dictionary is pro-
portional to the square root of the total text size. [38]

2 DOCUMENT RETRIEVAL 16

2.2.4 Comparison

Due to the very big costs of index modi�cations in su�x trees, they are not
suitable at all for document retrieval systems that contain a changing set of
textual data. Each major update would basically require the index to be
rebuilt completely, which de�nitely is not a desirable quality. Furthermore,
index size and creation costs are inferior to both, inverted indexes and signa-
ture �les. The additional functionality of the su�x tree index � form based
substring matching in query evaluation � is not necessary for document re-
trieval systems. In a summary, it can be said that the su�x tree is a very
powerful and feature-rich index, but while most of these features are not
needed, they have a heavy impact on index creation costs and storage size.
Su�x trees are not suited for large scale document retrieval systems.

This leaves the inverted �le and signature �le indexes as possibilities.
The evaluation by Zobel et al. [51] suggests the �nal conclusion that inverted
indexes are superior. The main reason for this conclusion is the characteristic
behavior of signature �les to produce false positives, which have a high impact
on the overall performance. To exclude false positives from answer sets,
every possible answer has to be examined against the query, which is very
expensive, especially with large answer sets. Unfortunately, with a growing
text collection, the answer sets usually grow proportionally, as well as the
probability of false positives in signature �le indexes.

This leaves the inverted index as the only viable indexing algorithm for
growing text collections: it is reasonably small (and can be compressed fur-
ther), without the bad characteristics of a signature �le index � and it scales
to growing text collections. This is why it is the most popular indexing
algorithm for full text indexes.

2.3 Precision and Recall

The quality of search results returned by a document retrieval system usually
is gauged by two characteristic values: precision and recall. Sometimes,
additional quality measurements are introduced in the literature. [14]

Such performance measures are arguable, because they require extensive
a-priori knowledge above the evaluated text collection, and because �quality�
of search results is a subjective impression, and as such a property that is
very hard to measure with mathematical and statistical methods. In order
to make the evaluations of precision and recall in document retrieval sys-
tems comparable, there are standard text collections and tests that can be

2 DOCUMENT RETRIEVAL 17

performed with full text systems, like TREC10 or CLEF11. To estimate pre-
cision and recall, the database system needs to contain the respective text
collections only. On the indexed test data, a list of de�ned queries are per-
formed. The results returned from these queries are then compared to a
prede�ned result set, and based on the di�erences precision and recall values
can be computed.

This works because the contents of the test data are known, but has the
disadvantage that such text collections usually contain high quality textual
data only � a situation that cannot be assumed to be present in internet
search engines. Ranking functions that perform well on test data sets do not
necessarily perform equally on �live web� data, and vice versa. Therefore,
such test results need to be reviewed very carefully and evaluated depending
on the actual situation. Such test results never tell the whole story.

The exact de�nition of precision and recall in the literature is varying.
Sha� et al. de�ne precision as �the fraction of a search output that is relevant
for a particular query�, and recall as the �ability of a retrieval system to
obtain all or most of the relevant documents in the collection.� [41] They can
be calculated as fractions based on the amount of true positive (TP), true
negative (TN) and false negative (FN) records in a query result: [14]

p =
TP

TP + FP
r =

TP

TP + FN
(1)

A true positive answer is one valid record for a query that has been
returned by the text database. A false positive is a record that has been
returned for a query, but is not a valid response. A false negative is a valid
response to a query that is not included in the query result. There also are
true negatives, documents that are not a valid response to the query and
have not been returned.

This de�nition di�ers slightly to the one used by Kobayashi et al. [23]
who use a di�erent calculation:

p =
relevant documents

retrieved documents
r =

relevant, retrieved documents

relevant documents
(2)

There are also probabilistic de�nitions for precision and recall. Precision
can be seen as the probability that a document is valid, given that it is
returned in a query response, whereas recall is the probability that a relevant
record is being returned: [14]

10TREC: Text REtrieval Conference, http://trec.nist.gov
11CLEF: Cross Language Evaluation Forum, http://www.clef-campaign.org

2 DOCUMENT RETRIEVAL 18

p = P (relevant | returned) r = P (returned | relevant) (3)

There is a con�ict between precision and recall, and the need to probably
remove large parts of a query result to avoid information over�ow for the
user. [25] Also, Kobayashi et al. identi�ed a con�ict between precision, recall
and the system performance in terms of speed: good precision and recall
values are di�cult to achieve in real time. [23] The goal of result ranking is to
list only the most relevant documents, and exclude irrelevant responses. This
of course in�uences the system performance as measured by precision and
recall: if too many responses are determined as being �irrelevant�, precision
and recall values will decrease. The critical point is how to specify a good
threshold that can meed optimal results, [43] and to �nd a good trade o�
between precision, recall and a satis�ed user.

Figure 2: Trade o� precision - recall - performance

2.4 Processing Large Amounts of Data

One obvious result of processing large amounts of data is the amount of time
that required to do it. This goes for all data sets, but processing cost re-
quirements depend on the application. For example, the streaming of media
�les has no relevant processing costs attached to locating and retrieving the
actual �le, it just needs to be fetched via the �le system. The subsequent
processing itself has linear costs, which is acceptable for this type of appli-
cation. While there are possibly very large amounts of streamed data, the
streaming itself is not time critical.

For text databases, the opposite is true. The total collection of accumu-
lated text data needs to be processed as a whole at least once, during index
creation. Subsequent queries in the database usually are time critical, thus
need to be performed in sub-linear time, especially for large data bases.

With growing index sizes, processing of the complete data base on one
single host computer will become impossible at one point, at which the index
needs to be splitted and processed in smaller parts, on a number of nodes in a

2 DOCUMENT RETRIEVAL 19

distributed database computing system. Planning ahead for this event while
creating a large scale document retrieval system is imperative to provide
scalability.

Other considerations for processing of large data amounts on multiple
computer systems is the occasional occurrence of transient hardware or soft-
ware failures. For example, manufacturers of hard disk drives or memory
components specify a failure probability for reading or writing operations on
the medium. Usually, this probability is small enough to be neglected in
conventional applications, but when operating a large amount of computers,
and when performing read and write operations on a large scale on every
single one of them, these failures will occur often enough to present a real
problem for the application. Thus, transient hardware failures have to be
expected and possibly corrected on the application level.

This leads to another requirement for applications operating on large
amounts of data: fault tolerance, error detection and recovery � which is
notoriously hard to implement.

Usually it is not uncommon in distributed systems to move the data to the
best available CPU for a computational task. Especially in grid computing
systems this is a widely used method. However, when doing something as
data intensive as creating a full text index, there will be no nodes in the
system that have to process signi�cantly less data than others, so this is
obviously not a viable solution. Therefore, each node in the distributed
database cluster needs to be equipped with su�cient hardware to process
that amount of data. In order to allow the document retrieval system to scale
up with the ever increasing amount of indexed text, either the data amount
per node has to be reduced to scale with the available hardware (resulting
in more nodes on the same database system12), or the hardware has to scale
up with the data amount (which can only be achieved by upgrading the
hardware of all nodes in the database). Usually, the latter choice is the more
expensive one, and the former the one that is harder to implement, because
the e�ective total number of nodes might be growing as the database size
increases during the operational use.

12Googles full text index for example runs on a very large number of standard PC
hardware. It is more cost e�ective to operate a large number of cheap computers than
using a few high end servers.

3 THE INVERTED INDEX 20

3 The Inverted Index

An inverted index is composed from two main components: a word list (the
dictionary), and an inverted �le. Each distinct word in the text collection
is represented by one record in the dictionary, which also contains a pointer
into the inverted �le. Every record in the inverted �le contains a series of
references to all the documents in which this word occurred. These references
are used to perform the full text search. As a content based approach, the
inverted index is motivated by semantics-based search schemes that represent
documents as term vectors.

Figure 3: Structure of the inverted index

The name �inverted index� stems from the inverted order of the index
�le: when a document is a �forward list�, with each document containing a
vector of words, the �inverted list� is a single word that points to a vector of
documents.

By splitting the index into two parts it becomes possible to maintain the
dictionary in memory. Usually it is small enough to be kept in memory, even
for large text collections.

This data structure is a very common full text indexing principle, which
is being used in almost all working full text database systems. [38] In the
literature, it is often referred to as �inverted list� or �inverted �le�. Here, the
term �inverted index� will be used to describe the indexing structure in its
entity, and the terms �inverted �le� or �inverted list� are used to refer to the
list of references into the documents (as described in �gure 3).

The basic idea of this index is so intuitive that it has in fact been re-
invented many times, and is described in di�erent program documentations,
without explicitly calling it by the name of �inverted index�. For example,
parts of the MySQL documentation refer to MySQLs full text index as some-
thing that �is much like other indexes: a sorted list of keys with point to
records in the data �le.� [16] While the inverted index implementation used
by MySQL di�ers only slightly from the classical inverted index de�nition
(it is not using a separated integer dictionary), the terms �inverted index�,

3 THE INVERTED INDEX 21

�inverted list� or �inverted �le� are completely absent from the MySQL doc-
umentation13.

Its popularity has made the inverted index a subject of research for many
experts, [52, 40, 44, 7] who are continuing the development in order to opti-
mize it for di�erent requirements, add new features and illustrate the di�erent
basic variations of the algorithm. Some of the proposals are mentioned below.

While the inverted index has a few shortcomings and di�culties, it is
the index form that is best suited for an internet search engine: It performs
well on records with variable length, scales up in size and can scale further
by using distribution techniques. It also o�ers many possibility to calculate
parameters and statistical values for later result ranking on a per-word basis,
if needed. None of the other indexing algorithms presented above can o�er
the same functionality while maintaining reasonable index size, acceptable
indexing costs and sub-linear query costs.

The intuitive and simplistic design makes the basic principles relatively
easy to understand, as opposed to other indexing algorithms. This is a
big help for implementation and deployment of the algorithm, in �nding
possible optimizations and performance bottlenecks, as well as in adding
new features. However, the actual implementation of an inverted index can
become very complex, dependent on the optimizations and extra features. A
simplistic indexing algorithm does not necessarily result in a simple database
implementation.

Chapter 3.1 explains the indexing process, the components of the index
structure and the data contained therein. Chapter 3.1.4 illustrates the search
process and possibilities for result ranking, chapter 3.2 lists some of the
main variations that exist for the inverted index. Common problems and
pitfalls are discussed in chapter 3.3, and the concluding chapter 3.4 lists a
few inverted index implementations in software that is widely used.

3.1 Index Creation

The indexing process can be divided into the following steps:

1. Splitting text into words

2. Translation of words to word IDs

3. Assigning an unique ID to each document

4. Sorting

13As determined by a full text site search on the MySQL homepage

3 THE INVERTED INDEX 22

5. Query evaluation

6. Result ranking

3.1.1 Splitting Text into Words

The �rst step in text indexing always is the parsing of the input data. If the
raw data is not in plain text format but contains formatting markups (such as
HTML or PDF), this meta-data needs to be removed from the text source14.
This could already present the �rst problem, as the exact input format might
be unknown, or the decoded text could contain a lot of additional �noise� (ref.
chapter 3.3).

After that, the text needs to be split into a list of separated words. Iden-
tifying words and word boundaries might look trivial at a �rst glance, but it
is in fact a challenging and fundamental problem: Word boundaries are not
always obvious (especially in non-latin language encodings, for example in
japanese or chinese text) and the de�nition of one �word� greatly a�ects the
later functionality and performance of the whole system. If the de�nition is
too strict, many legal words (or better: substrings that might be interesting
for searches) will be ignored and not be available for search queries, resulting
in a loss of functionality. If the de�nition is too wide, too many words will
be added to the dictionary and the overall index size will increase, resulting
in a loss of performance.

In this step, the size of the database can already be reduced by ignoring
the most common words (�stop words�), or by transposing words into word
stems � techniques used by many implementations to keep the index size to
a minimum.

3.1.2 Translation

Operations on textual data can be optimized a lot by transposing the words
into something more comfortable for computer systems: integer numbers.

In classical inverted index implementations, each distinct word is mapped
to its own unique integer identi�er � the �word ID�. This assignment has to
be global and deterministic, meaning that the mapping between words and
word IDs has to be the same for all occurrences, and that it must never
change.

As shown in Figure 4, the dictionary is created during the translation
process (the translation is the only step that writes to the dictionary). The

14The system might want to exploit formatting information for advanced result ranking.
Google for example weights headlines and otherwise highlighted text di�erently.

3 THE INVERTED INDEX 23

Figure 4: Translation of a document into a vector of word IDs. Only during
this process there are additions to the dictionary

dictionary is a list of the global vocabulary and contains the mappings from
words to word IDs. Each time when a new word appears that was never seen
before, it needs to be added to the dictionary. This will of course happen very
often in the beginning of the indexing process, but it also has to be expected
occasionally even after very large amounts of text have been indexed. [47]
Thus, the dictionary needs to be stored using a data structure that allows
easy additions at random positions. As we will see later, the data structure
also needs to provide little reading costs for faster translation and searching.
For performance reasons, it is wise to hold the total dictionary in memory.
As it will contain many entries, the storage costs for one single entry in the
dictionary need to be minimal.

For later performance optimizations, the document itself should also be
assigned an integer identi�er � the �document ID�. The result of the trans-
lation step is the �translated document� (sometimes referred to as �forward
index� in the literature): a vector of word IDs, ready for further processing,
without the need to perform any more string operations.

3.1.3 Sorting

Sorting is the most expensive phase during the creation of an inverted index.
In this step, the inverted �le is created. For each word in the translated doc-
uments, a reference to the document is added in the inverted list, e�ectively
resorting the translation into the inverted �le. This process often requires up-

3 THE INVERTED INDEX 24

dates to many entries in the inverted list: the more distinct words are present
in the document, the more index entries need to be created or changed. This
happens especially when very long texts are added to the index.

Figure 5: Sorting of translated documents into the inverted index

As the inverted index grows proportionally to the amount of text, it is
impossible to hold it in memory. Therefore, each alteration or creation of a
list entry requires one disk access. For optimization, the most frequently used
entries in the inverted list should be cached in memory, to avoid a bottleneck
of too many disk operations. If stop words are added to the index, the most
frequently used inverted list entries will be stop words. Also, being the most
frequent words in the text collection, inverted list entries for stop words will
become very long, and thus eventually impossible to hold in memory.

Another problem is the increasing growth of the inverted lists during
indexing. Assuming that the lists are stored within blocks in data �les, the
constant growth can lead to data �le fragmentation: when a record grows
beyond the size of its assigned data block in the �le, it either needs to be
split, or it needs to be relocated into a larger block. The �rst option will
lead to data �le fragmentation, resulting in many seek operations when the
inverted list needs to be loaded. Usually this is a major cause of performance
bottlenecks during indexing. The second option will lead to many unused
blocks in the data �le, and thus to a waste of disk space.

3.1.4 Query Evaluation and Result Ranking

Queries are evaluated by �rst translating the query terms into the respective
word IDs, using the dictionary. If a search term is not in the dictionary,
an empty response set is returned � the missing term is not added to the
dictionary.

3 THE INVERTED INDEX 25

For each word ID, the inverted lists are fetched from the index, and
merged or intersected as needed: the user might perform a boolean query
and specify a list of terms that have to be present, and an other list of terms
that must not be in all results (for example a query like �cats dogs -horses�,
returning all documents that contain �cats� and �dogs�, but do not contain
�horses�). If the inverted index is a record level index (see chapter 3.2), it is
also possible to perform phrase queries15.

Despite the fact that text-based retrieval is the primary method for iden-
tifying the relevant records for a search query, it is required to sort the re-
sulting documents according to their relevance. Especially the (many) query
results in very large full text databases would be useless without a relevance
sorting function, because otherwise the user would have to scan hundreds of
documents manually.

Such relevance functions try to estimate a documents relevance by apply-
ing di�erent statistical methods, based on numbers that need to be stored
in the index. Depending on the required granularity of the ranking and the
type of ranking values, it can be di�cult to store them and keep them up
to date. As the text collection is being changed, they might need to be up-
dated. [31] Ranking functions and their required input values are evaluated
in more detail in chapter 4.

3.2 Variants

Besides the basic structure described above, there are some possible enhance-
ments to the inverted index. Usually, they come at the cost of increased stor-
age space requirements. Dependent on the course of implementation and the
actually needed features, additional functionality can be provided by adding
more data to the inverted �le.

The most basic distinction can be made based on the type and amount
of data present in the inverted list itself.

3.2.1 Record Level vs. Word Level Index

The system as described above provides the functionality of a record level
index, that is, a index that is able to return all records for any given word,
but does not tell anything about the exact position of the word in a document.
This is the most common query type for document retrieval systems, but a
record level index does not support phrase queries. Record level inverted

15Search queries with multiple di�erent words, where the relative word positions in the
query have to match the relative positions in the document

3 THE INVERTED INDEX 26

indexes provide functionality that is comparable to signature �les [52], but
o�er the additional possibility of storing ranking information in the index.

An index that also stores the word positions is called a word level index.
The additional information results in a considerable growth of index size,
thus it is not as popular as record level indexes. With compression, a record
level index can shrink to as little as 10% of the size of the source text, whereas
a word level index with compression uses 25%. Also, the amount of memory
required for sorting can grow to a non-trivial amount. [52]

Figure 6: Record vs. Word Level Index

3.2.2 Archival of Originals

In modern systems, disk storage space is relatively cheap and therefore it
is often feasible to store the original documents along with the index, for
online text retrieval. The advantage is having the documents readily available
upon request, instead of pointing the user to an o�ine source. Text in a
natural language can be compressed very well, and storage requirements for
the compressed source text and the record level index thereof have been
reported to be 40% of the original text size. [51, 52]

Especially for an internet search engine, this is an interesting feature �
given that a web site can go o�ine any moment or might be unavailable to
the user who performs a query. Also, this o�ers the functionality to present
short text excerpts along with the query results, short summaries of the text
passages that contain the query terms.

3.2.3 Distributed Indexing

In order to scale with the constant growth of a text database, it is necessary
to provide the functionality of a distributed index. With a constantly growing
text collection (as present in a web search engine), it sooner or later will be
impossible to process all data on one single node. Also, in order to maintain
operability in case of a node failure, a redundant system is required.

3 THE INVERTED INDEX 27

To distribute an index to multiple nodes, it needs to be partitioned. There
are two basic strategies to partition an inverted index: partition of the docu-
ment collection (creating multiple local inverted indexes) or partition based
on the index terms (resulting in global inverted indexes).

Performance studies indicated that local inverted indexes are very e�ec-
tive and can provide good query throughput [31], while global inverted in-
dexes have the disadvantage of lacking fault tolerance: if the node serving the
queries for a certain word ID is not available, it is impossible to perform the
query and an empty result has to be returned. If a node serving one of many
local indexes is unavailable, the query will possibly not contain all matching
records, but it can be performed, which increases the total availability of the
system.

The Google index uses both techniques. The global full text index is
partitioned by document collections, and each partition is further divided
by query terms, each group of terms being served by multiple nodes. This
ensures availability if a few nodes are down, and provides very good query
throughput on a global scale.

3.2.4 Hot Updates

The term �hot updating� refers to the ability to modify the index at query
time. [31] This feature requires very good concurrency control mechanisms,
because the index �le must not be modi�ed while it is being read to answer
a query. One approach is to lock certain parts of the index for updating,
while other parts can still be used for query answering. This is an obvious
solution for distributed indexes, but can be tricky to perform on one single
node. The second possibility is to lock the complete index on one node for
reading, then perform the update and unlock the index on that node again.
Especially during peak loads, such updates on a �hot� index can introduce
bottlenecks and high query response times, which is of course not desirable.
A possible solution is to schedule updates in batches o� peak load times.

3.3 Problems and Di�culties

The very �rst and most fundamental problem when creating a full text search
engine for web sites starts with the exact de�nition of text.

Especially with HTML documents from web portals, the problem is that
the raw text contains too much data. A lot of �non-content� is being added
to full text search engines, because it is impossible to identify unnecessary
web site components, like advertisement or navigation links. While there has

3 THE INVERTED INDEX 28

been progress with identifying such components [49], this technique is not
yet generally available.

The second problem is textual content on web sites that is invisible to the
user, like meta information in HTML headers or embedded image descriptors.
This information was originally intended to help machines to digest essen-
tial information automatically, but is nowadays often abused to spam web
search engines. Therefore, it is questionable if content, that is invisible to a
human reader, should be added to the full text index of a web search engine.
However, identifying invisible text is not a trivial task. For example, the ef-
fort to recognize white text on a white background image as invisible would
include the usage of a HTML renderer and pattern recognition techniques �
not something one wants to do in a performance critical operation.

On the other side, one might encounter textual information where it is
unexpected, like in �le names, HTML hyper links or in proprietary binary
data �les. Identifying and parsing textual information from binary sources
requires extensive knowledge about proprietary �le formats, which often is
not publicly available.

When a document changes and needs to be updated in the index, it is
in most cases necessary to �rst remove the document from the index, and
then add the updated version. Removing one complete document from the
inverted list either requires a backup copy of the original document transla-
tion, or a very expensive16 traversal of the complete inverted list. All enttries
in the inverted list that contain pointers to the removed document need to be
deleted. Locating those entries is easier if the original document translation
can be used to �nd all words in the document.

An inverted index has some inherent limitations of functionality, as a
direct result from the way it is constructed: with the smallest possible data
unit inside the database being one single word, it is impossible to search for
word substrings, or to include non-words (like a string of interpunctation
symbols) in a query.

Closely related to the problem of de�ning �text� is the exact de�nition
of a �word�. This de�nition has a huge impact on the whole system: with
the single word being the smallest unit in an inverted index, �nding a good
de�nition for �word� becomes a key issue. The functionality of the overall
search engine, the size of the index �le, the size of the dictionary � and
thus the performance of the whole system � depend on this de�nition. [47] If
the de�nition is too strict, many words that could be interesting for queries
will not match it and will therefore not be added to the dictionary, which
makes it impossible to search for them. If the de�nition is too loose, many

16Index traversal is expensive because it usually is very large

3 THE INVERTED INDEX 29

unnecessary words will be added to the dictionary, which might become too
large to be held in memory. In addition to that, the index �le itself will grow
very fast.

Independent from the actual de�nition, the amount of distinct words in
the index grows proportionally to the square root of the total amount of text
in the database. [31] One billion english documents can contain roughly 310
million distinct words, [47] so �nding data structures and algorithms that
can handle that amount of data on the available hardware is, especially in
the long run, very di�cult.

In documents that have been acquired from web sites, especially in HTML
�les, it has to be expected that a considerable part of strings do not form a
valid word. For example, it would be pointless to add a complete URL into
the vocabulary. On the other hand, some uncommon words that do not ap-
pear in any english dictionary might be interesting for the user. Nobody will
search for 2005/TECH/28/cns_itrnt_ap.html, but query terms like Xerox,
Kleenex or HAL9000 are not so far-fetched.

Many implementations are using stop word lists to reduce the index size.
However, such lists are dependent on the language in which the text is writ-
ten, and reduce the functionality of the resulting index. Many english phrases
contain stop words like �I�, �am� and �the�. So, a �ctional query for �I am
the king of pop� would e�ectively result in a query for �king pop�, which is
not quite the same. Even worse, some systems reject words that are less
than four characters in length (like MySQL), rendering the query into �king�
� and probably completely useless.

A more advanced but also more complicated approach is to use word
stemming before adding words to the dictionary. [47] This requires word
stemming algorithms that are, just like stop word lists, dependent on the ac-
tual language, and might produce incorrect results. Finding good stemming
algorithms is not trivial, especially if they should take care for all the di�er-
ent grammatical anomalies, like irregular verb declinations. When operating
in an international environment (like the internet), both word stemming and
stop word lists would require some heuristic algorithm to determine the lan-
guage of a document before they can be applied. If a internet search engine
wants to apply correct word stemming and stop word lists, the e�orts to do
so must not be under-estimated.

The next problem is the index size: the less data there is in the index,
the better is the system performance. As mentioned above, there are several
approaches to reduce the text size before adding it to the full text index. The
number of words could be reduced even further by checking the words against
a dictionary and use heuristics to determine if a new word is valid or not.
But irregardless of the steps taken to keep the index size at a manageable

3 THE INVERTED INDEX 30

level, it will be constantly growing. As already explained in chapter 3.1.3,
the constant growth of the inverted lists result in data fragmentation or disk
space wastage. However, this problem can be overcome during runtime, by
running defragmentation routines at periodic intervals.

3.4 Existing Implementations

Most document retrieval systems use the inverted index, or a variant thereof.
While there do exist systems based on other indexes17, they do not ful�ll the
speci�c requirements for an operational internet search engine.

The inverted index is the algorithm of choice for document retrieval sys-
tems and has been shown to be superior to all other index forms, when
evaluated in the aspect of search engine requirements. [51, 31]

The following sections contain a short description of two well known sys-
tems that implement full text search functionality based on an inverted index:
Google, as a representation for document retrieval systems, and MySQL, a
relational database with full text search capabilities.

3.4.1 Google

Google currently is the largest internet search engine available, serving more
than 200 million search queries a day. In June 2005, it contained an estimate
of 8 billion web pages18. The name Google was chosen because it is a common
spelling of the number �googol�, or 10100.

The Google index exploits the structures found on web pages and in
HTML to a large degree, evaluating hyper links in web pages, the text of
those hyper links and other HTML markup on web sites. The text of links
for example (the anchor text), is threated as content of the document being
referred to, and as content of the document in the link appears. The e�ect
is that web sites that contain no textual information at all (front pages with
only a logo for example) can be found by searching for text that was placed
in links to that page.

Additionally, the system evaluates HTML markup of text, and weights
document contents di�erently. Terms in big or bold fonts for example are

17Most systems that are not based on the inverted index are using a signature �le
index. [51] For example, Atlas as presented in [39]

18According to a presentation of Monika Henzinger (Research Director at Google Inc.)
at the Technical University Vienna, in June 2005. However, in September 2005 Google
stopped to publish the number of indexed documents, because �metrics for index size

measurement vary greatly and are no longer easily comparable�. (http://www.google.
com/help/indexsize.html)

3 THE INVERTED INDEX 31

evaluated as being more important than others, that are written in smaller
fonts.

The main component of the Google system however is the PageRank
algorithm, [6] introduced by S. Brin and L. Page, and illustrated in more
detail in chapter 4.5.1. The algorithm tries to �nd an �objective measure of
citation importance of a web site that corresponds well with peoples subjective
idea of importance�. [6] According to Googles own spokesmen, PageRank has
been a main reason for the success of the search engine, as it is producing
satisfactory ranking results.

Figure 7: Simpli�ed data �owchart in the Google full text index. This graph
is reduced to the components essential to data �ow

As shown in �gure 7, the main components of the Google indexing system
are the crawler, indexer, sorter and searcher. There are some additional
subsystems to manage the process of web crawling and document indexing,
but they are not essential to the basic data processing itself, and therefore
not shown in the �gure. A more detailed diagram of the Google indexing
process can be found in [6].

The crawler retrieves web sites and documents from the internet and
stores them in compressed raw form into the repository. From there, they
are fetched by the indexer, which parses the documents (most of them are
HTML), converts the document content into a vector of hits (containing
word identi�er, position and weight for each word) and stores these hits in
a number of barrels, in the form of a forward index (as opposed to inverted
index). In this process, the indexer also creates the lexicon (a synonym for
the dictionary), and identi�es hyper links contained in web pages. Links are
stored to a own repository for later PageRank calculation.

3 THE INVERTED INDEX 32

The creation of the inverted index itself is done by the sorter : it takes
the translated documents from the barrels, and resorts them by word IDs.
The actual searching is done by the searcher, which is being run on a web
server to present a user interface to the end user. It uses the lexicon, the
inverted index and the calculated PageRank to answer search queries and do
the result ranking.

3.4.2 MySQL

MySQL is a relational database and optimized for fast transactions of SQL
statements. As such, it usually operations on highly structured data tables.
It is not a full text indexing system, but o�ers this functionality for tables
that contain textual data. As a result, the full text search capabilities of
MySQL perform worse than specialized full text indexes. Especially for large
amounts of textual data, MySQL is not capable of maintaining an acceptable
performance during indexing and searching, and is therefore not suitable to
serve as the core index for larger text search engines.

This is mainly related to the relational nature of the database, which
requires it to store each document in a separate record � even when using
the full text index. However, the index implementation itself is closely re-
lated to the inverted index, and worth looking at. Technically speaking, it is
not a classical inverted index, because it lacks the dictionary and the trans-
lation of words into word IDs. But besides that, all other aspects of the
implementation are identical.

MySQL treats anything that is alphabetic or numeric as part of a word,
(almost) everything else is used as a separator. The word parser is quite
naive: one �word� is a string of alphabetical or numerical characters, option-
ally separated by no more than one sequential apostrophe. Words that do
not exceed a minimum length (default is four characters) are being ignored,
as well as words in the stop word list. Furthermore, words that are present in
at least 50% of the documents are automatically classi�ed as stop words. [16]

Words in the text collection are weighted according to their estimated sig-
ni�cance in the collection. This way, common words that appear many times,
and in many documents, have a lower weight, because the estimated semantic
value in the text collection is little. Rare words receive a high weight. The
weights of the words in the text and query are then combined to compute
a relevance factor for one record. The records returned are automatically
sorted with the highest relevance �rst. [1]

The full-text index itself consists of a sorted list of keys that point to
records in the database, as shown in table 1.

The basic concept of this index structure is very similar to the inverted

3 THE INVERTED INDEX 33

Word The word itself (string)
Count Number of occurrences of this word
Weight Evaluation of the word importance
Rowid Pointer to the records in the table

Table 1: MySQL full text key structure, as used in MySQL 4.1

index. The di�erence is only that the string representation of word itself
is being used instead of an integer word ID. This can be explained by the
di�erent requirements on MySQL: being a light weight relational database,
it cannot a�ord to load excessive amounts of table indexes into memory.
The way of relevance calculation is basically the same as presented in the
TFxIDF algorithm (chapter 4.2). The whole indexing process itself is based
on distinct words, represents a content based indexing approach and a word
level inverted index structure.

3.4.3 Other Variations

There are many scienti�cally developed and explored variations of the in-
verted index, most of them deal with di�erent kind of optimizations. Some
were implemented for performance analysis only [51], others as a demonstra-
tion of a concept [8, 31] or as a business application [6].

Most variations deal with performance optimization by applying di�er-
ent techniques for index and data compression. The idea is that the extra
computational overhead that is necessary to compress and decompress data
is remedied by the time gained when reading and writing the compressed
data to the hard disk. Disk operations are the bottleneck for inverted in-
dex creation, and everything that reduces the data amount that needs to
be read and written on disk increases the overall performance, even when
it comes at a computational overhead. This compression can already start
with the representation of natural text [12], but more often is done at index
level. [40, 6]

The focus is also on scalable database implementations, which usually
means building a distributed database system [31] or data distribution in
general.

A di�erent but interesting aspect of the development of the inverted index
is the �historical� time line. It can roughly be divided into pre-Google and
post-Google. Google was �rst published in 1996 as a research project at
the Stanford University. At this time, it was not very popular, but that
changed in 1998 when Google, Inc. was founded. The development of full
text search engines until then focused on the basic techniques, how to create

3 THE INVERTED INDEX 34

the index and how to store data. The research was done on a broad band of
topics, including ranking algorithms [50], index algorithms, and fundamental
problems when dealing with natural language text [25] and the creation of
�robot-based� search engines, as opposed to manually built internet indexes.

After the overwhelming success of the Google search engine, which is
based on an inverted index, the focus changed a bit. Around the same time,
Zobel et al. published a very sophisticated paper, comparing the inverted
�le index to signature �les [51], with the conclusion that inverted indexes
are, in almost all aspects, technically superior to signature �les. After this
time, publications on signature �le indexes seem to be sparse, and the focus
switched to di�erent semantic evaluation schemes of natural language text [4]
� which has been a very popular topic until today.

4 RESULT RANKING 35

4 Result Ranking

Ranking is the process of sorting documents in a query result according to
their relevance, which is being calculated by a �relevance function�. This
function is not used to determine if a document is a match for a search query
or not, that is done by the query evaluation in the indexing algorithm.

Creating a full text index is only the �rst step towards an usable search
engine. [45] When document retrieval systems perform a query, they �rst do
a boolean evaluation of the search terms and the contents of the full text
index. This evaluation yields all candidate documents (that is, documents
that match the search criteria), which, especially for large database systems,
can be a very large set of responses. Processing these response manually is
not feasible because it is too large. The result list needs to be re-ordered in
such a way that only the most relevant documents are shown at the beginning
of the result list. Studies showed that most users do not look at more than
the �rst two pages of search results on internet search engines. [45]

In document retrieval systems, most ranking functions try to determine
the semantic relevance of all returned documents to the query. For large
response sets, this can be a very costly operation, but it is possible to increase
the ranking speed by using approximation. [11]

As mentioned in section 1.2 and elaborated in [25], the semantic content
or meaning of documents in any natural language is not explicitly available
to a computer system, thus the semantic relevance needs to be determined
by using statistical functions. Most document retrieval systems use a com-
bination of multiple relevance functions, but details about the used ranking
algorithms and the exact combination of their results usually is a well kept
secret. This information is considered to be valuable and can be exploited
by search engine spammers. Detailed descriptions of ranking algorithms are
notoriously hard to �nd.

To perform a relevance evaluation of a document compared to a search
query, there are two possible basic methodologies. We will refer to dynamic
relevance functions when the result of the function for a single document
depends on the documents content as it is being compared to the particular
query (like in the TFxIDF algorithm), and static relevance functions if the
ranking result is global and does not depend on the query itself (like PageR-
ank). Usually, dynamic ranking functions require a word level index (see
3.2.1).

Static relevance functions can have a big advantage of computational costs
over dynamic functions, because they need to be calculated only once, at
indexing time. They do, however, not have the �ne granularity of dynamic
relevance functions, and should not be used as the only ranking criterion.

4 RESULT RANKING 36

Also, their calculation can be expensive due to the large amount of documents
in the collection.

The overall quality of a document retrieval system depends basically on
two factors: the completeness of the text collection, and the quality of the
query results. As elaborated in chapter 1.1, an internet search engine can
never be truly complete. Due to the unknown size of the internet and the
fast rate of change on the web19 it is impossible to get a complete copy of
the web. Even if it would be possible, it would become obsolete very quickly.
The only possibility is to constantly add and update as many web sites as
possible in the collection, and hope that the data base is large enough to
provide satisfactory results to the users.

This leaves only the quality of the query results as a real opportunity
for improvements. As shown above, the answer sets for any query need to
be evaluated and resorted before they can be presented to the user. This
evaluation can only be done on records that were already identi�ed as valid
matches by the indexing structure, it is impossible to add additional docu-
ments based on this evaluation. However, it is possible to determine matches
as unsuitable and therefore exclude valid (but irrelevant) results from the
answer.

4.1 The Vector Space Model

Statistical ranking functions need input data on which they can base their
calculations. Such values can be stored in the full text index directly, but this
increases the overall index size, and those values might be hard to calculate
and to maintained up to date.

Basic ranking techniques do not require much more than the number of
documents that contain each word to determine the relevance, but to improve
the performance, more information is needed. For example, if the frequency
of each term in the global text collection and in each document is known,
the terms semantic value can be estimated: rare words are more important
than common words. However, these parameters might a�ect index updating
costs. If a new document is added, the relative frequency of word occurrence
may change, requiring an update of the total index. [52]

The vector space model is a useful tool to e�ectively assign such values to
documents and terms. In the general vector space model, a text is represented
as a vector of attributes. Usually, some form of the term-weighting vector
space model is used in search engines: the attributes in the vector are the

19Some studies assume that an estimate of 40% of the web changes at least once per
month. [23]

4 RESULT RANKING 37

words in the text, the position in the text de�nes the position of the attribute
in the vector. [23]

Each word is assigned a weight that de�nes the semantic signi�cance of
that word, which is relatively simple to calculate if the global word frequency
is known. [45]

Note that this evaluation is based on the number of global occurrences of
the search term in the total text collection. Obviously, this number changes
with each update to the index, thus it would be futile to store it in the index
structure: it would require a change of the complete index for each update.

Wi =
Oi

Gi

(4)

Where

Wi = semantic weight of the i-th term in a vector
Oi = number of occurrences of this term in a vector
Gi = number of global occurrences of this term in the collection

Uncommon terms, like names, will receive a higher score than common
terms because they appear much less frequently in the text collection, and
they are not overruled by common terms that appear frequently in one doc-
ument. [45]

However, herein lies a major weakness: Documents that contain many
rare terms, maybe as hidden text on a web page so that they are invisible
to the user, will always achieve a high semantic evaluation and thus a high
ranking � a fact that is being exploited by web search engine spammers.
Unfortunately, they are mostly successful, because many search engines are
using a variation of the term-weighting vector space model. [23]

4.1.1 Latent Semantic Indexing

Latent semantic indexing (LSI) is �one of the more widely used vector space
model-based algorithms� [23] and one of the few that consider synonymy and
polysemy. [23] The observation is that often terms are used as synonyms for
the same idea, like �aircraft�, �aeroplane� or �plane� all represent a �ying
machine with �xed wings. At the same time, the term �plane� is polysemic
because it refers to multiple, unrelated things: a �ying machine, a �at surface
or a planing tool used by carpenters.

LSI ranks texts by semantic content, but it does more than the usual
boolean matching. It discovers synonyms and polysemic terms by using
statistical evaluations over terms that often appear together in the same
text. [45]

4 RESULT RANKING 38

4.2 TFxIDF

Text Frequency times Inverse Document Frequency is a relevance function
used in basically all existing inverted index systems, sometimes with varying
implementation details. Like the other ranking algorithms presented here,
TFxIDF is a dynamic relevance function that tries to determine the docu-
ment relevance to a query by calculating a distance value between retrieved
documents queries using the vector space model.

Search queries are mapped onto a pseudo-document [45] that contains
only the query terms, as formulated by the user. Boolean queries that use
logical operators for advanced searches (like �king AND pop NOT Jackson�)
are split into multiple pseudo-documents, and the respective results are later
merged or intersected as needed. All retrieved documents are then compared
to the pseudo-document, typically by calculating a value that is proportional
to the cosine of the angle between the document and query vectors in the
multi-dimensional vector space [50], or by computing the dot product [23]
(which e�ectively makes no di�erence). To compensate for the varying query
and document lengths, vector-length normalization can be applied [50, 23] �
but Yuwono et al. showed empirically that this normalization is expensive
and, in fact, decreases precision and recall. [50]

The vector distance Si,q between a document Pi and a query vector q,
with vector-length normalization, can be calculated according to the fol-
lowing equation. Table 2 contains explanations to the terms used in the
equation: [50]

Si,q =

∑
termj∈q

(
0.5 + 0.5 TFi,j

TFmaxi

)
IDFj√∑

termj∈Pi

(
0.5 + 0.5 TFi,j

TFmaxi

)2

(IDFj)
2

(5)

As mentioned, vector-length normalization can (and in fact, should) be
omitted. This reduces the costs of the ranking calculation and at the same
time increases the quality of the ranking results, as measured by precision
and recall. By ignoring the vector lengths, the angle between document and
query vectors becomes mathematically incorrect, but in the aspect of the
gained performance, this is only a small price to pay. After all, the vector
space model and distance calculations therein can only be seen as an estimate
of semantic relevance, which is a subjective value anyway.

Without vector-length normalization, TFxIDF can be calculated accord-
ing to the following equation. [50] Again, refer to table 2 for a legend of
terms:

4 RESULT RANKING 39

M = the number of words in the query
Qj = the j-th query word in a query with M words
N = the number of documents in the database
Pi = the i-th document (or its ID number) in the database
TFi,j = the term frequency of Qj in Pi

TFi,max = the maximum term frequency of a word in Pi

IDFj = log
(
N/

∑N
i=1 Ci,j

)
Ci,j = weight of Qj in Pi:

{
Wj ⇔ Qj ∈ Pi see eq. (4)
0 otherwise

Table 2: Legend of terms used in ranking equations

Si,q =
∑

termj∈q

(
0.5 + 0.5

TFi,j

TFi,max

)
IDFj (6)

While being very prominent and providing very good results in environ-
ments operating on data sets of good quality (data bases with controlled
content, like journal articles, papers and publications), TFxIDF can yield
poor results on uncontrolled text collections, like web pages on the internet.

The smaller the di�erence between a query term and a document is, the
higher is the result of the relevance computation returned by TFxIDF. The
algorithm does not take into account the general quality of a document.
The highest possible ranking will be achieved by documents that contain the
exact query term, and only the query term � which can happen regularly
when operating on very large sets of web documents. But this is of course
not a desirable result. For example, evaluating the query �I am the king of
pop� with a document that contains only �MJJ: I am the king of pop� will
result in a very high relevance value, while the document itself only provides
little semantic content and is likely to be irrelevant for the user.

4.3 Boolean Spread Activation

Boolean text retrieval algorithms are solely based on the presence or absence
of query terms in documents, without applying di�erent weights or frequen-
cies to the terms. Ranking is done on the amount of query terms that are
contained within a document, without looking at the exact term positions or
other semantic context.

More formally, the relevance Ri,q of a document Pi and the query vector
q is calculated according to the following equation: [50]

4 RESULT RANKING 40

Ri,q =
M∑

j=1

Hi,j (7)

Hi,j is 1 if the query word Qj is contained in document Pi, 0 otherwise.
This algorithm does not require a word-level index and therefore is a viable
option for very light-weight text indexes. However, the relevance estimation
is quite naive and favors long documents.

Yuwono et al. extend this evaluation in the Boolean Spread Activation
algorithm by �propagating the occurrence of a query word in a document
to its neighboring documents�. [50] Documents are neighbors if they contain
hyper links to each other: document A is a neighbor of document B if B
contains a link to A. The assumption is, that if documents link to each
other, there is a semantic relationship � which is questionable, as we will see
later.

4.4 Vector Spread Activation

Vector spread activation is a combination of TFxIDF and Boolean Spread
Activation. First, the score of a document is calculated based on the vector
space-model as used by TFxIDF, then this score is propagated to all docu-
ments it contains links to. Formally, the relevance assignment is calculated
by the following equation. [50]

Ri,q = Si,q + α ·
N∑

j=1,j 6=i

Lii,j · Sj,q (8)

Si,q = the TFxIDF score of Pi respective to query q
α = a constant link weight (0 < α < 1)
Lii,j = the occurrence of an incoming hyper link from Pi to Pj,

where Lii,j = 1 if such a link exists, 0 otherwise

The idea of propagating site weights has been further developed by Brin
and Page [6] in the PageRank algorithm as used by Google (chapter 4.5.1),
but without using the semantic site content in the relevance calculation.
Yuwono et al. concluded that the combination of link analysis in web pages
and the evaluation of page content as done in the vector spread activation
calculation achieved the best results in their experiments, and that it was
more accurate than other ranking functions that exclusively exploited the
link structure of the web. This is worth noting, because Googles tremendous
success is always, to a large degree, being attributed to PageRank.

4 RESULT RANKING 41

4.5 Most-cited

When confronted with the task of evaluating the content of web sites, one
natural approach seems to be to exploit the hyper link structure of the web.
This technique is called link analysis and has been proposed numerous times
in the literature. [50, 6, 23, 28, 41] The presented boolean and vector spread
algorithms combine link analysis with content evaluation, however there are
algorithms that do not use content evaluation for result ranking.

The assumption is, that if the author of a web page sets to a di�erent
web site, there exists a semantic relationship. Also, with link analysis it is
possible to exploit non-textual meta information that is present in websites,
but cannot be evaluated by basic indexing algorithms.

The most-cited algorithm as presented by Yuwono et al. is a naive in-
terpretation of the linked structure of web sites. The relevance score for one
single page is the sum of the number of query words contained in other pages
that link to it, or are being linked to: [50]

Ri,q =
N∑

k=1,k 6=i

Lii,k ·
M∑

j=1

Hk,j

 (9)

Where

Hi,j =

{
1⇔ Qj ∈ Pi

0 otherwise
Lii,j = the occurrence of an incoming hyper link from Pi to Pj,

where Lii,j = 1 if such a link exists, 0 otherwise
For the remaining terms refer to table 2.

4.5.1 PageRank

PageRank is a static ranking function implemented in the Google search
engine. Like most-cited, it exploits the meta information given by the linked
nature of the web, but unlike it, PageRank does not count all links equally.
It determines the �global importance� � or better, the �prominence� � of a
website by evaluating the links between them. However, the problem still
stands that hyper links do not necessarily imply a semantic relation between
sites [50] (see below).

PageRank can be explained as a Markov-chain, that simulates the behav-
ior of a user browsing web pages. [28] It extends the idea of link-counting as
presented in most-cited by �not counting links from all pages equally, and by
normalizing by the number of links on a page.� [6] The ranking value deter-
mines the likelihood for all sites that the user will end up visiting this site,

4 RESULT RANKING 42

thus giving a higher rating to popular web sites that have many other sites
placing hyper links to it.

PageRank is an iterative, recursive algorithm. With increasing amounts
of web sites, the calculation can be very expensive. [28] Assuming that there
are web pages P1, ..., Pn with links pointing to web page A, the PageRank
rating of A is calculated by the following recursive equation: [6]

Pr(A) = (1− δ) + δ ·
n∑

j=1

Pr(Pj)

C(Pj)
(10)

Where

δ = damping factor, 0 < δ < 1
Pr(Px) = PageRank rating of web page Px

C(Px) = number of links from web page Px

There are concerns that the lack of content evaluation in the major rank-
ing technique combined with Googles leading position on the market20 could
lead to a viscious circle: popular sites get a higher PageRank value in Google,
and with Google as the current market leader this will lead to even higher
awareness of the web page, resulting in even more people placing links to
it, further pushing the PageRank rating. Ironically, Googles success could
become a problem for PageRank, which is a major reason for the success to
begin with.

�Occasionally, when a particular website is the subject of public
attention, other sites begin linking to it. This may elevate its im-
portance as gauged by our ranking software. [...] Higher ranking
in Google results may lead to more awareness, which may lead to
more links and so on.�

�Anomalies occur from time to time. They show the weak spots
in the result ranking and show how the used algorithms need to
be improved in the future.�

Quoting the FAQ on www.google.com

As an interesting side note, Yuwono and Lee [50] explored some ranking
algorithms in 1996, including the most-cited algorithm as described above.
PageRank can be seen as a variation of most-cited, which was evaluated as
an inferior ranking algorithm by Yuwono et al.:

20According to searchenginewatch.com, Google served 46.2% of all search queries in
2005, the rest was divided on over 10 other search engines. [23] includes a (slightly out-
dated) evaluation of search engines that shows the same trend.

4 RESULT RANKING 43

�The relatively superior retrieval e�ectiveness of TFxIDF and
Vector Spread Activation search algorithms shows that the con-
centration or distribution of words in a WWW page and across
WWW pages is a good indicator of the page's contents or por-
tions thereof. Algorithms which rely on meta-information such
as hyper links information, while intuitive, did not perform as
well. This indicates that the interconnectivity between WWW
pages does not always indicate semantic relationships between
the contents of the linked pages.�

Budi Yuwono and Dik L. Lee,
�Search and Ranking Algorithms for Locating Resources

on the World Wide Web�, 1996

The discrepancy between this conclusion and the reality as shown by
Google could be explained by the size of the text collections. The word
level evaluation of the semantic importance of one single word based on its
frequency of occurrences works only well for large text collections [16], the
same could hold true on a document level evaluation of hyper links. The
2393 WWW pages evaluated by Yuwono could have been too little to draw
�nal conclusions. Also, the PageRank algorithm works a bit di�erently to
most-cited: it does not weight all hyperlinks equally.

5 PALAVER: FULL TEXT SEARCH 44

5 Palaver: Full Text Search

The implementation of this project was done in two stages: Palaver, and
Monkville. The task during the �rst stage was to �nd a suitable way to
implement text retrieval capabilities based on a basic database system, which
was nicknamed Palaver 21.

Palaver is a basic document retrieval system using an inverted word level
index and a customized storage engine for binary data, like the index. It has
no sophisticated ranking functionality and does not implement index com-
pression. Its sole purpose is to show how an inverted index can be used,
how an implementation should be planned, and to point out bottlenecks and
problems that appear only during the practical implementation � but might
not be obvious at a �rst thought. However, it implements the full function-
ality of a document retrieval system, but it would require some additional
work before it can be used in a productive environment.

In the second stage of the project, Monkville, this implementation has
been enhanced with semantic full text search functionality. This extension
will be discussed in chapter 6, the focus here will remain on the basic index
implementation.

This chapter �rst gives a brief overview over the project history, then it
describes system architecture and design principles, as well as data structures,
data formats and algorithms used to solve di�erent problems.

5.1 Project Overview

This project started as a replacement for an already existing, proprietary full
text search database that has been in use at a medium sized22 internet search
engine. The existing solution showed a series of undesirable characteristics,
such as bad indexing and search performance, non transparent and poor
result ranking, and system unavailability during indexing and modi�cations
to the index. This proprietary database had to be replaced.

The new implementation had to ful�ll a series of requirements, in addi-
tion to the general search engine demands as listed in chapter 1.1.1. Due to
the limited amount of available high-end hardware, the engine had to operate

21Palaver stems from the latin verb parabola. A palaver is a usually (very) lengthy
discussion or conference without a particular topic, common in large parts of Africa. Its
purpose is to become acquainted with somebody or to cultivate social contacts at meetings.
Palavers are celebrated before the actual reason for a meeting is being discussed. The
more important the attending personalities or the topic of the meeting is, the lengthier
the palaver.

22At this time, the search engine indexed a rough estimate of 2.5 million web sites

5 PALAVER: FULL TEXT SEARCH 45

on one server system only, providing search functionality even during index
updates (thus, featuring hot updating, ref. chapter 3.2.4). Additionally, the
solution had to be scalable. In order to accommodate the constantly growing
amount of textual data in the index on a long-term time scale, the implemen-
tation needed to be done in a way that allowed easy addition of distributed
indexing and searching. To accommodate future needs of additional features,
it also needed to be designed and implemented in a �exible, transparent and
maintainable way. This should allow easy additions of features in the future
� a property that proved to be of very great importance during the second
project stage.

The �rst implementation was a mere proof-of-concept, a collection of test
programs that could not run in parallel. This was useful to determine if
the inverted index could be implemented in a way that showed su�cient
performance � as it turned out, it did. The basic duties of a document
retrieval system (translating, sorting and searching) were done by separate
programs each, that were run in sequence and operated on a series of binary
data �les. One of the main tasks for the Palaver implementation was to
implement the same functionality in one monolithic program, that could
run all tasks in parallel. It had to be implemented in such a way that the
resulting source code was �exible and easily understandable, to facilitate
further improvements.

5.2 System Architecture

The �rst architecture drafts were oriented on the Google implementation as
shown in �gure 7, and based on the same terminology and components as
presented by S. Brin and L. Page [6]. However, this particular architecture
appeared not to be optimal for the speci�c requirements. For example, many
tasks in Google are done by separate programs that operate on a set of data
�les and create new ones, which seemed to be contrary to the idea of hot
updates, as it is di�cult to synchronize independent processes.

Furthermore, Google contains some components that were not desired
for various reasons. The PageRank calculation for example was not included
because of the following reason: due to the highly diverse linked nature of
the web [23], PageRank requires a very large set of web pages to achieve
reasonable results, more than the two million pages that were present in the
full text index at the time. The indexed sites contained many links to web
sites which were not in the database. The assumption was that the costs of
implementing and calculating PageRank would not be justi�ed by the quality
of the result, due to the rather small size of the text collection.

The evaluation of the actual PageRank performance on a incomplete col-

5 PALAVER: FULL TEXT SEARCH 46

lection of web sites would be an interesting topic, but is not within the scope
of this project.

5.2.1 Architecture Overview

Figure 8: Structogramm of Palaver

To gain the highest possible degree of �exibility, the basic design principle
was to use small modules that are specialized on one particular task only,
and that do not need to exchange control information between each others
� except for the processed textual data. No global control variables were
allowed.

The application was split into a series of components, which can be
grouped into two types: task objects and storage objects. Tasks read the
input data from a storage object, process the data and then store the result
in a di�erent storage object, for the next task to process.

5 PALAVER: FULL TEXT SEARCH 47

The processed textual data is represented as Document or Translation
objects. The full text index is represented as a collection of Hit, HitList,
HitMap and other data objects. Unique words are not represented in an
object oriented fashion.

A task object could be seen as the implementation of a routine. For
example, translating a natural language document into a vector of word
IDs is one task, called �Interpreter�. Storages could be regarded as little
databases of their own, which allow concurrent data access for multiple tasks.
Concurrency has only to be observed inside storage objects which reduces the
program complexity and thus facilitates development. Also, storages are very
generic, leading to source code that is being reused in multiple objects.

This software development approach is known as �divide and conquer�: by
breaking down the very complex task of a monolithic and multi-threaded full
text database engine into small, independent and compact software modules,
the complexity that needs to be observed while programming is reduced a lot.
However, �nding a global architecture that allowed this kind of breakdown
was not trivial. This process took several months until it was present in the
current form, as shown in �gure 8 (page 44). During the early days of the
applications life time, the global design was changed and refactored numerous
times.

Breaking down the application into small modules facilitated the process
of development and debugging, it also led to very �exible software. With the
modules being speci�cally adjusted, very specialized to perform one single
task only and thus very compact, it was easy to extend them with new
features, to reimplement them if needed and to replicate them on other,
remote machines. For example, implementing a distributed database system
could be done by modifying the storage objects only: instead of storing data
locally, it could be transferred to a remote node on the network. Task objects
or other storages would not require any changes.

The simplistic data exchange between the modules makes it very easy
to extend the database system to a network of multiple machines, thereby
creating a distributed document retrieval system that can scale up with the
amount of data.

5.3 Implementation Details

For performance reasons, the implementation itself was done in C++, using
a lot of templated classes to facilitate code reusing23. Where possible, tex-

23A detailed documentation of the object oriented design and the actual source code
can be found on http://www.monkville.org

5 PALAVER: FULL TEXT SEARCH 48

tual data is stored using a unicode representation, which makes the system
compatible to a wide variety of human languages and scripts. The usage of
platform speci�c operating system calls has been avoided in order to create
platform independent code. Wherever necessary, a software library was used
as a wrapper for platform speci�c operations. For example, the handling of
networking and threads is done by PTypes24, to ensure platform spanning
binary compatibility of unicode text, ICU 25 was used. Binary data is always
stored in big endian format, data �les created on a little endian machine can
be used on a big endian CPU without further modi�cations.

To maintain high �exibility with all languages and scripts, the identi�ca-
tion of single words in natural language text is done by ICU. As mentioned
in chapter 3.3, the de�nition of a �word� also depends on the language and
the script, therefore it would be futile to hardcode that de�nition into the
implementation. ICU provides this functionality and is also �exible enough
to accommodate di�erent word boundaries for non-latin character sets.

5.3.1 Storages

All data and storage objects implement the possibility to store and load the
object contents to and from a binary data repository. Such a repository can
be a memory bu�er or a binary data �le.

Furthermore, data objects (document, translation and a series of smaller
structures for the inverted index) implement the bufSize() method, which
calculates the amount of bytes used to store all data in the object (or, to
serialize the object contents). This is used for memory and data �le size
management, and a series of run-time performance optimizations.

Full text index data is stored in a series of binary �les. The basic im-
plementation is the one of a �le system (�gure 9): binary data is split into
multiple data blocks (table 5, p. 47). The assignment, size and relative posi-
tion of those blocks is stored in a inode �le, which contains a series of linked
lists of inode records as shown in table 4 (p. 47). The managed content itself,
that is, the list of objects, is stored in a inventory �le. It contains all object
identi�ers, the �rst data inode for each object and other global management
information like inodes that point to unused data blocks (see table 3, p. 47).

The logical implementation of storages can be of two basic natures: a
FIFO queue, or a random access storage. FIFO queues (called �FifoStore�
in the implementation) are used whenever objects need to be stored, that
cannot be unambiguously identi�ed in the application. For example, when a
raw text �le is being read and cached for later processing, it is �rst loaded

24http://www.melikyan.com/ptypes � C++ Portable Types, by Hovik Melikyan
25http://icu.sourceforge.net � International Components for Unicode, by IBM

5 PALAVER: FULL TEXT SEARCH 49

Figure 9: Structure of binary data �le storages. For information about more
detailed binary layout of the components, refer to table 3 (inventory record),
table 4 (inodes) and table 5 (data blocks)

�eld length description

free inodes 32bit number of unused inodes
<free inode o�set> 32bit �le o�sets to free inodes
number objects 32bit number of stored objects
<object ID 32bit unique object identi�cation number
inode o�set 32bit pointer to the �rst inode
object size> 32bit total size of the object in bytes

Table 3: Structure of the binary inventory �le. Entries enclosed in <brack-
ets> represent repeated data records.

�eld length description

inodes 32bit number of inodes in this block
<block o�set 32bit o�set of the data block in the data �le
block size> 32bit total size of the data block
next inode 32bit o�set of the next inode block

Table 4: Structure of one single binary inode record. Entries enclosed in
<brackets> represent repeated data records.

�eld length description

object ID 32bit object identi�er
block length 32bit available bytes in this data block
data length 32bit used size of the data block
data arbitrary used data
unused arbitrary optional unused padding to �ll the block

Table 5: Structure of one single binary data record. The object ID is used
for error detection.

5 PALAVER: FULL TEXT SEARCH 50

into a cache. At this point, the document ID for this �le is still unknown,
therefore it cannot be unambiguously identi�ed yet.

Random access storages (called �OrganizedStore�) allow to read and write
any object that has an identi�er. Therefore, their implementation is more
complex than the one of FIFOs. These stores are also the ones that require
the �le system implementation as shown in �gure 9.

To increase performance and reduce the amount of disk operations, the
implementation makes use of memory caches, using the �least recently used�
(LRU) caching strategy. This way, objects that are used regularly do not
have to be fetched from disk every time.

The data storage implementation is not yet ideal and leaves much oppor-
tunity for optimizations. For example, no data compression is used, and the
implementation shows a tendency towards �le fragmentation when operat-
ing on very large amounts of data, where only a small part can be held in
the memory cache. Some of the improvements listed in chapter 8 could also
be applied to the Palaver implementation, but are beyond the scope of the
current project state.

5.3.2 Description of Modules

To add a document to the index, the �rst step is to acquire it from whatever
source that is available. This is done by the mercator task: it reads textual
input from any form of available medium like web pages or plain text �les
on disk. One could also think of the possibility to acquire textual data
from proprietary binary formats such as Adobe PDF �les, or Microsoft Word
documents.

Mercator

The mercator transforms the document from its raw encoding into plain
unicode text and creates a document object from the text source. Table 6
contains a list of the important values stored in this object. However, the
document identi�er (ID) cannot be set at this point because it is known only
after the document was added to the archive. But as the ID is not needed
at this point, this is not a problem.

The mercator stores all acquired documents in a local cache, the mercator
storage. This cache is, like all other caches in this implementation, a FIFO
queue � meaning that it is impossible to fetch one speci�c document from
the cache. As they do not have a document ID at this point, it would be
impossible to identify one speci�c object anyway.

5 PALAVER: FULL TEXT SEARCH 51

�eld type description

URI unicode unique resource identi�er (or URL)
ID int 32bit numerical document identi�er
body unicode documents text content

Table 6: Relevant variables stored in a document object (the binary repre-
sentation in the data �le contains additional values)

Interpreter

The interpreter reads documents from the mercator storage, creates the doc-
ument translation (see table 8) and stores them in the interpreter storage.

During the translation process, it identi�es all words in the document
and transposes them into word IDs. Distinct words are identi�ed by using
the word iterator from the ICU library, word IDs are generated by reading
and storing words into the dictionary. Before they are processed further,
words are converted to uppercase strings, again using an ICU function in
order to support uppercase conversion for all encodings. For each word,
the interpreter �rst calculates the word ID, thereby adding new words to
the dictionary. Then it appends that word ID to the vector of word IDs in
the translation object as shown in table 8. The layout and content of the
dictionary can be seen in table 7.

5 PALAVER: FULL TEXT SEARCH 52

The document translations are stored in the interpreter storage (again a
FIFO queue, like the mercator storage).

�eld type description

wordstring unicode concatenated unique words in the dictionary
words int 32bit number of unique words
<wordID int 32bit unique word ID
o�set int 32bit o�set of the words �rst character in wordstring
length> int 16bit length of the word

Table 7: Structure of the dictionary, entries enclosed in <brackets> represent
repeated data records. Instead of storing separate unicode string objects for
each distinct word, only one string object is used to save memory. For each
unique word, only the o�set of their �rst character in that wordstring is
stored.

�eld type description

URI unicode unique resource identi�er (or URL)
ID int 32bit numerical document identi�er
body unicode documents text content
words int 32bit number of words in the document
<word ID> int 32bit vector of numerical word identi�ers

Table 8: Contents of a translation object � The document (table 6) is being
extended by a vector of word IDs.

Word IDs are 32 bit values, created by hashing the unicode string of the
word using a hash function. Unfortunately, �nding a good hash function that
guarantees an unambiguous mapping of two distinct words to two distinct
word IDs is a challenge. Palaver uses a subset of the common MD5 hashing
function to generate word identi�ers. MD5 maps arbitrary data to a 128 bit
��ngerprint�, but only 32 bits are used for the word ID.

By using this hashing function, it is possible that two distinct words are
being mapped to the same word ID. Therefore, to guarantee unique word
IDs, the word mapping has to be checked against the dictionary, using the
algorithm �Adding words to the dictionary�.

This results in the implication that, whenever a word in its textual form
needs to be translated into the word ID, this cannot be done without reading
the dictionary. It has the further implication that words must never be
removed from the dictionary, as this would jeopardize this algorithm.

Consider the following example: the strings of words A and B both map
to the same word ID X. When word A is being added to the dictionary, it

5 PALAVER: FULL TEXT SEARCH 53

Algorithm 1 Adding words to the dictionary
1: procedure addWord(word)
2: wordID ←hash32(word)
3: if wordID /∈ dictionary then
4: addToDictionary(word, wordID)
5: return wordID
6: end if

7: w ← readFromDictionary(wordID)
8: while w 6= word do
9: wordID ← wordID + 1
10: if wordID /∈ dictionary then
11: addToDictionary(word, wordID)
12: return wordID
13: end if

14: w ← readFromDictionary(wordID)
15: end while

16: return wordID
17: end procedure

will be inserted using ID X. When word B is added at a later time, it will
be inserted using ID X + 1. Now, if word A is removed from the dictionary,
and word B re-appears in a new document at a later point, it will be added
using ID X, leading to the same word being stored twice in the dictionary,
and to ambiguous word IDs.

Lector

The lector is responsible for the most expensive task: the indexing, or sorting
document translation into the inverted index. It reads the objects stored in
the interpreter storage, and inserts the translation into the inverted index,
as described in chapter 3.1.3. The indexed documents are then stored in the
archive.

Actually, the implementation �rst stores the document in the archive,
before indexing it. By doing so, the system assigns a unique document ID
to the translation object which is needed in the inverted index. This ID is
calculated as a hash function over the documents unique resource identi�er
(URI), very similar to algorithm 1. The archive is of the �OrganizedStore�
storage type (refer to the logical storage classes on page 48), which allows to

5 PALAVER: FULL TEXT SEARCH 54

read and write arbitrary objects. Documents are relatively seldom fetched
from the archive, therefore they should be stored in a compressed form.

Librarian

The librarian is the task responsible for handling user search queries. All
query terms are translated to the respective word IDs using the dictionary.
Then, all documents that contain these terms are fetched from the inverted
index. The user may add boolean operators to query terms, thereby searching
documents that contain some speci�c terms, but do not contain others � like
�king AND pop NOT Jackson�. If such operators are being used, the resulting
document lists need to be merged or intersected accordingly.

Once the query result is calculated, it is being ranked (ref. chapter 4),
and returned to the user in descending order of relevance. The responses in-
clude the document URIs, and references to the archive. The actual ranking
algorithm used in Palaver is very basic, it does not determine any actual mea-
surement of relevance. Ranking is done globally, based on a naive estimation
of document quality.

5.4 Runtime Considerations

The implementation itself is, despite its modular software design, one mono-
lithic process that spawns a number of threads. During index creation, two
threads work in parallel: one for the interpreter, identifying words and cre-
ating the dictionary. The other one is running the sorter, which requires a
lot of computation and disk operations.

Test results have shown that this parallelization increases the throughput
during index creation, an observation also made by Melnik et al. [31] This
gain could probably be further increased by having multiple sorter threads
running in parallel, and using a pipelining system: while one thread is re-
sorting the index, the other one performs disk operations.

By using a cache for the index, the amount of necessary disk operations
can be reduced. The cache should be large to reduce the amount of disk
operations to a minimum. Tests have shown that the usage of a limited
amount of memory for the index does not signi�cantly increase the time
needed to index documents. Compared to an implementation with unlimited
memory usage, indexing time increased only by an estimate [34] of 12%.

6 MONKVILLE: INTRODUCING SEMANTICS 55

6 Monkville: Introducing Semantics

So far, the project covered basic full text search functionality, which is some-
times also referred to as boolean search. [23] Boolean search only retrieves
documents which meet an exact matching criterium, thus documents that
contain all required search terms, and do not include terms that have been
excluded from the result. This functionality was implemented in Palaver.

However, the scope of boolean full text search is limited. To get useful
results for any query, the user needs to predict � to a degree � the content
of the documents he is interested in. Common boolean text search does not
support any abstraction of content. For example, to search for web sites
related to �outdoor activities�, a user would likely have to use query terms
that contain more speci�c keywords, like ��shing�, �hiking�, �camping� etc.
But by using these search terms, the query result will of course be restricted
to sites containing those speci�c keywords. The search engine will never
return sites related to �sailing�, �para gliding� or �diving� if those keywords
were not given, despite the fact that they are outdoor activities too. This
additional level of meta-search requires some form of inference over the text
collection.

Monkville aims to add this additional level of content abstraction, allow-
ing semantic meta-searches in a full text index. This is achieved by inference
over additional content in the full text index, like context information for
web sites as shown in �gure 1. Also, it aims to increase the quality of the
search results in terms of semantic relevance, and to create a �smart� full
text search engine that helps users to navigate through textual content.

With the concept of semantics added, it is possible to perform topic based
�meta-searches� over the full text index: fetch all documents that are related
to a given topic of interest, and on that subset of documents, perform a
boolean keyword search. For example, instead of searching for �Google�,
�Yahoo!� or �MSN search� to retrieve all sites about web search engines, the
user can enter the query term �search engine� to get a comparable result.
On that subset of documents, he then can further restrict the results to
documents containing additional speci�c terms, like �architecture� or �size�.

A second and very interesting possibility is to �nd web sites that are
semantically related to each other. For example, if the user �nds a document
that focuses on his topic of interest, he can search for similar sites based on
the semantic content, instead of repeating his queries all over again, using
slightly di�erent keywords.

6 MONKVILLE: INTRODUCING SEMANTICS 56

6.1 Sources of Semantic Information

In order to increase the awareness of semantic relationships between docu-
ments, the semantic content of a text needs to be assessed and �understood�
� at least to a certain degree. Facts and topics that are given in the text
need to be identi�ed and extracted to be able to infer semantical relations.
As this type of information usually is given only implicitly in the unstruc-
tured natural language text, it is unknown to the computing system [25] and
needs to be extracted by using heuristic algorithms, like LSI (see p. 35) or
�document �ngerprinting� as presented in chapter 6.3.1.

But semantic information can also be given explicitly. If the text is struc-
tured, and if that structure is known to the computing system (or can be
learned automatically [49]), it is possible to extract explicit context informa-
tion from the natural language text, and use it directly � without running
through heuristics. For example, news articles on web sites often contain
informational elements that are not part of the textual content itself, but
are meant as an aide for human readers who want to know more about the
story. Such context information is shown in �gure 1 on page 7, and usually
contains links to related stories and web sites � precious information for a
computing system.

Explicit semantic information can also be given in other ways. For exam-
ple, HTML documents often contain content descriptions in meta-tags. Facts
and relations between them could also be given in RDF 26 annotation [37] as
de�ned by the semantic web.

Explicit semantic information can be hard to come by, because it is not
necessarily given with all documents. Implicit semantic data is always given
with the text itself, but it is hard to extract.

6.2 Explicit Semantic Information

Explicit semantic information has a number of drawbacks: either it is not
generally available, or its quality cannot be guaranteed. HTML meta-tags
for example, which were intended to contain a descriptive summary of a web
sites, were originally introduced to help in the process of navigating through
the web. Automatically created index sites contained lists of web sites, with
the short summary directly from the HTML meta-tags. As the web became
more popular, those meta-tags were being abused to arti�cially increase a
web sites popularity in search engines. Also, it never was very clear what
those meta-tags were supposed to be used for � or better, who would be

26RDF: Resource Description Framework, easily parseable data �les containing speci�-
cations of meta data models, see also [5] and http://www.w3.org/RDF

6 MONKVILLE: INTRODUCING SEMANTICS 57

using them, automated index systems or human readers. They often contain
excerpts in natural language that are useful for human readers, but hard to
comprehend for a computing system. Others only list some keywords, which
is mostly useless for a human reader.

The semantic web annotates explicit logical information in a form that
is speci�cally tailored to be read by computers. Facts (or objects) and the
relations between them are represented in the RDF notation, which can come
in di�erent formats but is well de�ned, and as such easy to parse for a
computing system. However, the semantic web is not yet widely applied on
common web sites, and thus the concept is not interesting for search engines �
the vast majority of web sites comes without RDF annotations. The semantic
web could su�er from a similar fate as HTML meta-information. As soon as
it is being used as a ranking criterium in web search engines, it will become
subject to spamming.

6.2.1 Lixto: Semi-Automated Extraction

A common and widely used format for semantic information on the web is
not yet available. However, it is possible to exploit the structure of web sites
that contain rich information with textual data. For example, many news
sites provide additional, redactionally edited content on the web where they
publish their news stories and reports online. Such additional content can be
links to related stories, links to web sites that cover speci�c topics mentioned
in the report itself, and other similar information. For a computing system,
this information is not explicitly known, while it is obvious to a human reader.
With Lixto, it is possible to make this implicit information explicit, and to
ease its further processing.

While the presence of context information is obvious to a human reader,
it is hard to identify for computer systems without the help of an operator.
With Lixto, it is possible to de�ne the structure of a web site using a visual
user interface, and then generate a wrapper program to extract the required
context information from the news sites. Lixto creates a wrapper program,
which can be used for all web sites with the same or with a similar structure.
Using this technique, it is necessary to de�ne the site structure (the wrapper
program) only once, and then reuse the program in an automated process.
Changes to the web site layout usually do not a�ect the extraction result of
Lixto, as the wrapper program is very robust and allows for a certain degree
of structure variations.

The output of the extraction process is an XML �le (see �gure 10), which
can easily be processed further as needed.

During the course of the project, Lixto extracted over 7000 articles from

6 MONKVILLE: INTRODUCING SEMANTICS 58

Figure 10: Lixto identi�es text and context components from web sites, and
makes the data available in a XML format

four major news sites within 4 months, without requiring corrections to the
extraction programs � despite the fact that two of the four sites gradually
changed the site layout during the time.

With this wrapper technique, it is also possible to use only the required
parts of news articles. Irrelevant components on the web sites, like menu
structures, navigation links and advertisement are not processed into the full
text index, which greatly increases the quality of the entire text collection.

Articles are basically divided into two components: the article text, and
context information. The text contains all components of the entire article,
like headline, subtitle and the subsequent article body. Context information
is everything on the web site that somehow relates to the article itself, but
is not an integral part of it. For example, a BBC report about the british
pension system contained numerous links to related stories about the british
public sector, life expectancy and state pension facts. It also contained links
to The Financial Times and the british Pension Commission. While this
information is not actually part of the article itself, it gives very valuable
hints about the semantic content of the article, and the covered topics. For
a computing system, this is a great help to infer the actual semantic content
of the article.

The disadvantage of using this approach for context extraction is the lack
of full automatization (the wrapper program has to be created manually).
However, the amount of work required to do so is minimal, and the result
is of a very high quality. There is a second advantage: this method is very
resistant to spamming. As all textual source of information are clearly visible

6 MONKVILLE: INTRODUCING SEMANTICS 59

for human readers (unlike HTML meta-tags), it is very unlikely to be abused
for search engine spamming.

6.3 Implicit Semantic Information

While implicit semantic information cannot be subject to spamming, it has
the big disadvantage of not being explicitly known. It needs to be assessed
or extracted from natural language text, which is notoriously hard [25] and
requires sophisticated heuristic algorithms. There are some techniques based
on the vector space model (ref. to chapter 4.1) like TFxIDF or latent se-
mantic indexing (LSI). Those techniques are able to identify � to a limited
degree � the most important keywords in a text, without �understanding�
their meaning or context. Thus, while they are able to identify the keywords
of a document, they are not suited to group documents into topics. However,
they are able to evaluate a form or �semantic relevance� between two given
documents, thus to perform fuzzy topic grouping as described in chapter
6.6.1.

6.3.1 Document Fingerprinting

There is a technique that can be used in vector space models to help or
improve the identi�cation of signi�cant parts in a text: Extracting n-grams
[4, 32] or word sequences from documents. The idea is based on the assump-
tion that, if a sequence of words appears numerous times in a text, it bears
some semantic signi�cance. A repeated sequence of words (which is one n-
gram) has a di�erent, more detailed semantic weight in the text, which makes
them predestined to be used as a form of implicit semantic information, or
meta-information of the document. In fact, it has been shown that by using
this technique it is possible to achieve good document topicing results, that
is, mapping documents to existing topic categories [33, 32].

The exact way to extract those n-grams di�ers depending on the needs,
but the basic algorithm is always the same. Extraction of word sequences
is done in n passes, where sequences of length n are extracted in the n-
th pass, as shown in algorithm 2. Mladenic et al. show in [33] that word
sequences longer than 5 words do not appear often enough or contain much
semantic relevance, thus the length of word sequences used in the monkville
implementation is limited to 5.

These n-grams also can serve a second purpose: allowing phrase queries
including stop words, without processing stop words in the full text index.
For example, if a phrase like �I am the king of pop� appears more than once
in a document, the complete phrase could be added as one �word�, without

6 MONKVILLE: INTRODUCING SEMANTICS 60

Algorithm 2 Generating the document signature
1: procedure createSignature(V) . V is a vector of words
2: nGrams← ∅ . nGrams is a set of all word sequences
3: pass← 2

4: while pass ≤ 5 do . add all word sequences from 2 to 5 words
5: i← pass
6: while i ≤ |V | do
7: seq ← {Vi−pass, ..., Vi} . seq is the current word sequence
8: if seq /∈ nGrams then
9: Cseq ← 1 . C counts the sequence occurrences
10: nGrams← nGrams ∪ seq
11: else

12: Cseq ← Cseq + 1
13: end if

14: i← i + 1
15: end while

16: pass← pass + 1
17: end while

18: for all seq ∈ nGrams do . remove unique sequences
19: if Cseq < 2 then
20: nGrams← nGrams\seq
21: end if

22: end for

23: return nGrams . sequences that appeared more than once
24: end procedure

6 MONKVILLE: INTRODUCING SEMANTICS 61

indexing the distinct stop words themselves. Like regular words, the phrase
itself gets its own �word� ID and is being added to the dictionary as one word
string, consisting of a series of distinct words, separated by blanks. This way,
a lot of stop word sequences can be used in full text search, without increasing
the index size by adding each single distinct stop word on its own.

Systems that use n-grams for semantic evaluations only can also choose
to remove stop words before calculating them [32], thus focusing on semantic
evaluation only. Short phrases containing stop words are likely to be very
common, like �I am� � and thus are semantically relatively irrelevant.

An other possibility is to take the best of both worlds: n-grams could
be generated in two passes. First, including stop words, to add stop word
phrases to the index for phrase queries. In the second pass, stop words could
be ignored to increase the quality of the semantic evaluation. Monkville cur-
rently uses stop words in the index, as well as stop word phrases in document
signatures. As it is not using stop word lists and indexes all words irregard-
less of their relevance and frequency, this option is a further possibility for
performance improvements.

6.4 Exploiting Context

Based on the architecture used in palaver and the ideas presented above,
the next step of the project was to add the concept of semantics to the full
text index implementation. As shown in �gure 11, the basic architecture was
preserved, but extended by one very important component: the semantic
index.

The monkville implementation uses three di�erent types of content for
each document, and two di�erent full text indexes to store this content.

Each document is represented by three components: the usual document
text, the document context as extracted by Lixto, and the document signature
as generated using algorithm 2. These components are stored in two di�erent
full text index structures: the search index, containing the full text collection
but excluding context information. Both indexes use the same dictionary to
keep the amount of information redundancy to a minimum. The search index
is used to perform the usual boolean full text queries, as in palaver and any
other full text database.

Context information is stored in the semantic index, together with the
documents signature, as shown in �gure 12. This index is exclusively used
for topic related meta-searches, not for the usual full text queries. As the
signature contains semantically relevant entries (the longer the phrase, the
higher the relevancy), it is being used in both indexes: In the semantic index
as contextual information for documents, and in the search index to allow

6 MONKVILLE: INTRODUCING SEMANTICS 62

Figure 11: Structogramm of the semantic index implementation. Based on
Palavers architecture, Monkville uses an additional full text index for seman-
tic data. Context information is extracted from web sites, using the ideas
and tools presented in 6.2.1.
Documents processed by Lixto are stored in XML and then converted into
two text �les: one for content, one for context data. Those text �les are
being read by the mercator which is not shown in this �gure, but described
in 5.3.2 (p. 48)

6 MONKVILLE: INTRODUCING SEMANTICS 63

Figure 12: Mapping of content forms to the two indexes

phrase queries on documents � even when using a record level index 27 (see
3.2.1, p. 24).

6.4.1 Context Search

By separating the search index from the semantic index, it becomes possible
to perform speci�c context searches. A context search returns di�erent re-
sults than a usual boolean query on the full text index, because the search is
not performed within the document contents itself, but in the semantically
related context of the documents. This is an important distinction: if doc-
ument contexts would be added to the full text index, search results would
become incorrect. Context is not a part of the document itself, it merely
is a list of keywords that are semantically related to the document. Thus,
context information must not be added to the search index.

Context search can also be seen as semantic search, meaning a meta-query
for semantic content, not keywords. For example, it is possible to search for
documents related to �fund raising� in the context of �tax cuts� � a level
of functionality that cannot be o�ered by usual document retrieval systems.
The context search depends on the quality of the extracted document context,
as it is impossible to determine such information from a text in natural
language only.

The combination of semantic searches with the functionality of standard
full text search provides a very high degree of �exibility. There are many
possible search combinations: the usual boolean full text search, the same
boolean full text search on the semantic index only, and any possible com-
bination thereof. For example, it is possible to retrieve all documents in the
context of �weather phenomenon� while excluding all documents that contain
the keywords �hurricane� and include all documents containing the phrase

27The implementation uses word level indexes, but does not use the additional informa-
tion for querying and result ranking yet. Possible performance and/or quality improve-
ments are discussed in chapter 6.6

6 MONKVILLE: INTRODUCING SEMANTICS 64

�global warming� in the signature. The result of this query could further be
reduced to documents in the context of �oil price� � there is no limit to the
possibilities.

6.4.2 Discovery of Related Documents

The document context is not essentially a part of the document content itself,
but very useful to perform a series of statistical content evaluations. With a
given document d, it is possible to �nd semantically related records by using
the queries as shown in �gure 13.

Figure 13: Discovery of related documents based on document signature and
context

To discover related documents, three queries are performed on the se-
mantic and full text index: A, B and C.

Query A is an evaluation of the document signature. The n most frequent
signature entries are being fetched from the semantic index, resulting in a
list of documents that contain similar signatures. Formally:

A =
n⋃

i=1

Qsem (Sd,i) (11)

d = the document being evaluated
Sd,i = i-th word in the signature S of document d
Qsem(w) = search result for term w in the semantic index
n = upper bound for evaluated signature entries

Query B is a similar evaluation of the context. It returns all documents
within a similar context group and is the strongest indicator for semantic

6 MONKVILLE: INTRODUCING SEMANTICS 65

relationship. Unfortunately, not all documents necessarily have context in-
formation, thus it cannot be used alone. Formally, B is:

B =
c⋃

i=1

Qsem (Cd,i) (12)

Cd,i = i-th word in the context C of document d
c = the number of words in the context of d
Remaining terms as above.

Query C could be seen as the common semantic denominator. It includes
all records that contain query terms from the evaluated documents context.
C usually is the largest set in the evaluation process and is intersected with
the union of A and B, therefore it should be evaluated last. Like Query B,
it depends on the document context. Formal description of C:

C =
c⋃

i=1

Qtex (Cd,i) (13)

Qtex(w) = search result for term w in the full text index
Remaining terms as above.

The �nal combination of these evaluations gives a set of responses that
contains all records with a semantical relationship to the evaluated document
d. The �strength� of the semantical relationship can be related to the number
of occurrences of the same document within the di�erent sets.

Some documents might have no associated context information, there-
fore it is necessary to make a distinction based on the presence of context.
The best way to combine the sub-queries remains to be determined, but the
following combination of results showed good results:

Rd =

{
(A ∪B) ∩ C ⇔ Cd 6= ∅

A ⇔ Cd = ∅ (14)

Where Rd is the set of documents with a semantical relationship to d. The
�signi�cance� of the relationship can be estimated by evaluating the number
of occurrences of the documents in the multisets returned by the di�erent
sub-queries:

Sr,d =


(

σA(r)
|A| + σB(r)

|B|

)
· σC(r)

|C| ⇔ Cd 6= ∅
σA(r)
|A| ⇔ Cd = ∅

(15)

Sr,d = signi�cance of relationship between documents d and r
σM(x) = number of occurrences of element x in multiset M

6 MONKVILLE: INTRODUCING SEMANTICS 66

�eld type description

URI unicode unique resource identi�er (or URL)
ID int 32bit numerical document identi�er
body unicode documents text content
context unicode document context as extracted by Lixto

Table 9: Modi�ed document object. The only addition (in bold) is the
context �eld. The signature is calculated during translation, and not included
in the raw document object

Obviously, this approach delivers best results only if it is being used
with documents that have semantic context assigned to them. Also, note
that neither the calculation in equation 14 nor the one in equation 15 are
commutative. Thus, if any given document A is determined to be related to
a document B, the same evaluation of document B might not indicate any
relationship to A.

These evaluations currently are experimental and have not yet been com-
pared in detail to other possible combinations. Such a comparison would
require some form of standard, like TREC or CLEF which are used to esti-
mate precision and recall values for document retrieval systems (ref. chapter
2.3, p. 15). But similar to those evaluations, the concept of �semantical
relationship� is subjective and depends on the actual needs of the user. It
may be di�cult to �nd good methods to objectively measure the quality of
these results.

6.5 Modi�cations to the implementation

Due to the modular design of Palaver, the addition of the semantic index and
the extra data �elds to documents could be done with a minimal amount of
changes of the source code.

Table 9 describes the new data structure for the document object, as it
is being used in monkville. The only necessary addition was a new data �eld
for the documents context, with some obvious modi�cations to the object
implementation itself: loading and saving routines needed to be adapted. The
mercator (see �gure 8, p. 44) was extended to include context information
loading when acquiring new documents. Other than that, no signi�cant
changes needed to be done for the process of text acquirement.

During the translation, the document body and context are transformed
into vectors of word IDs. Also, the document signature is calculated from
the document body, using algorithm 2. Context information is not included
in signature calculation. Table 10 shows all modi�cations to the translated

6 MONKVILLE: INTRODUCING SEMANTICS 67

�eld type description

URI unicode unique resource identi�er (or URL)
ID int 32bit numerical document identi�er
body unicode documents text content
words int 32bit number of words in the document
<word ID> int 32bit vector of numerical word identi�ers
context int 32bit number of words in the context

<word ID> int 32bit numerical context word identi�ers

signature int 32bit number of words in the signature

<word ID> int 32bit vector of signature word identi�ers

Table 10: Modi�ed Translation object. The additions (in bold): translated
context and signature

document object.
For the semantic index itself, the existing full text index implementation

could be reused without modi�cations. This resulted in a word level semantic
index, which presents an extra overhead that is not necessary � a record level
index is su�cient for semantic search. The additional data in the word level
index (word positions inside the context) results in extra processing costs,
which have of course an e�ect on the test results. Nevertheless, the overall
system performance is satisfying.

The only major modi�cation of the Palaver implementation was related
to query evaluation as discussed in chapter 6.4.2. Queries are being evalu-
ated using the search index and the semantic index at the same time. The
command interface for semantic searches needed to be implemented and ex-
tended, as explained in the database manual (see appendix A, page 79).

6.6 Further Work

The implementation of monkville leaves a lot of possibilities for improve-
ments. While the system can demonstrate that the general functionality is
working and the concept shows good results, some further work is necessary
to include additional features, and to remove some bottlenecks and unneces-
sary overhead.

One basic improvement would be the usage of stop word lists to reduce
the amount of processed data, and thus increase performance. Unlike usual
document retrieval systems, the usage of stop word lists in monkville would
not have a serious impact on the functionality of the search engine. While it
would become impossible to search for distinct stop words (such as a query
for �the�), such searches would be useless anyway, because the amount of

6 MONKVILLE: INTRODUCING SEMANTICS 68

documents matching such a query is beyond any reason. However, it would
still be perfectly viable to search for phrases that contain stop words (for
example, a phrase like �to be or not to be�) � based on the document sig-
natures. Only documents that contain the queried phrase more than once
would be returned, which is a desirable behavior: especially short stop word
phrases (like �I am� or �this is�) appear very often in the text collection.
Reducing the size of the query result to include signi�cant documents only
helps improving the global performance and the quality of search results.

As stop word phrases have a relatively small semantical relevance, the
document signature could be generated in two passes. In the �rst pass,
phrases including stop words could be added to the signature, thereby adding
all repeated phrases to the full text index. For the second pass, all stop words
could be removed from the translation vectors, and the signature could be
recalculated to be used for the semantic index. A similar approach was
proposed by Mladenic et al. in [32].

Other improvements could be made by reducing the amount of unnec-
essary data granularity. With the support of phrase queries being provided
by the document signatures, the necessity of a word level index for full text
search could be discussed. But in any case, using a word level index for se-
mantic searches is not necessary. A word level index was used in monkville to
reduce the amount of source code changes. By reducing the indexes to record
level, the index size on disk could be reduced by over 50% [40], at the same
time reducing the indexing costs [52] � without reducing the functionality of
the database.

Another obvious improvement of the implementation would be the usage
of data compression for the indexes, as well as for the archived documents.
Using data compression for an inverted index has been proposed numerous
times [51, 40, 44, 12, 34]. The computational overhead for the compression
can be more than compensated by the reduced amount of data that needs to
be transferred to and from a disk storage.

6.6.1 Topic Grouping

With the methods described above, it is possible to �nd semantical relation-
ships between texts. One document can be related to many other documents,
and to many di�erent topics. Those relations could be used to map docu-
ments on �topic groups�. Unlike traditional content clustering where docu-
ments are mapped on existing topic categories [33] or where the intention is
to �nd good topic de�nitions for existing text collections [27, 10], the goal
here is not to identify good topics for documents, but to �nd fuzzy �topic
clouds� that have a semantical relation to any document.

6 MONKVILLE: INTRODUCING SEMANTICS 69

Documents with similar content are grouped together in similar topic
clouds, whereby one document can be assigned to numerous topics, and one
topic can be related to numerous documents. The result would be a multi-
dimensional �topic space�, where one document is related to a number of
points in this space. Areas with many points in close proximity could be
grouped heuristically into �topic clouds�, without the need to actually �nd
good descriptions for each speci�c topic.

With this fuzzy de�nition of �topic�, it would be possible to �nd a high-
dimensional linked structure for a text collection, where links are based on
semantic similarities, rather than on existing hyper links on the web. Navi-
gating in this high-dimensional semantic space would mean to travel on the
net using meta-paths that show the way to semantic content, rather than to
speci�c web sites. The links between web sites would be based on semantic
relevance, leading to a semantical web structure.

6.6.2 Semantic Result Ranking

With the discovery of these relationships between documents, it is possible
to create a new ranking algorithm which is based on semantic relations.

Documents that belong to the same topic group (see above) can be
grouped together. To do this for a search result, one �rst should �nd m
topic groups that accumulate the most amount of �signi�cance� into them,
then assign exactly one of those groups to each document in the result set.
To avoid reappearing results, one document may only be assigned to one sin-
gle topic group, ideally the one with the strongest semantic relation. After
forming these groups, take the n most signi�cant documents for each topic
group, and exclude the remaining documents from the result list.

By using such a content-based ranking algorithm, it should be possible to
create a search engine that provides the possibility to navigate through the
textual content, based on semantic concepts rather than speci�c keywords
or links. Also, such a ranking algorithm would not prefer popular web sites
to unknown ones, because it is not based on link analysis (see chapter 4.5).
Instead, unrelated web sites (especially those not being hyper-linked to each
other) can suddenly become related, because they cover a similar topic base.

7 EXPERIMENTAL RESULTS 70

7 Experimental Results

The implementation was tested on a set of 7300 documents, extracted during
4 months from various news sites as described above. The plain text of those
articles summed up to 32.8 megabytes of uncompressed, unformatted textual
data, 7% of which consisted of context information only. 87% of the extracted
documents had context information associated with them. On average, the
context data amounted to 7.3% of the total data size.

Text �les were collected on a server, in a SQL database. From there, they
were extracted as plain text �les, then processed by the full text database
implementation. Context information was stored in separated �les, if it was
available.

Zobel et al. suggest in [51] that an arti�cial text collection, created by a
software utility, can be used to conduct performance tests on text retrieval
systems. An arti�cial text collection has the advantage that it can be created
with unlimited size and vocabulary, with similar statistical properties to real
text collections. Of course, such a synthetic text collection is by no means a
substitute for a real database, but it can be used to benchmark the perfor-
mance of a text retrieval system in terms of speed and index size. Of course,
it cannot be used to examine the e�ectiveness of ranking algorithms or to
estimate precision and recall, nor can it be used for semantic analysis [51].

Unfortunately, tests regarding precision and recall (chapter 2.3) have not
been conducted, since none of the benchmark text collections were available.
Furthermore, these text collections would lack context information, and thus
would not be suitable for a meaningful performance evaluation.

7.1 Processing Time and Data Size

All performance tests were conducted on a personal computer system with
one gigabyte of memory and an AMD Athlon XP 1600+ CPU, running from
a IDE hard disk drive. This system speci�cation is far from optimal for this
type of application, which requires especially fast hard drive access due to the
big volume of data read from and written to disk. However, as all test runs
of the database implementation and the subsequent MySQL test runs were
conducted on the same machine, the hardware limitations are not relevant
for a direct, relative comparison of the evaluated database systems [34]. Ap-
propriate hardware could boost the overall performance, resulting in better
test results and system speed.

The indexing and signature generation process for 7300 documents, with
a total raw text size of 32.8 megabytes with context information, took 10
minutes and 37 seconds � while large parts of the inverted index were stored

7 EXPERIMENTAL RESULTS 71

in a memory cache. Alone the subsequent writing of the index data to disk
required another 4 minutes and 45 seconds, the resulting data �les amounted
to 298 Megabytes on disk (of which an estimate of 42% was unused disk space
due to data fragmentation).

The test runs showed that the implementation of the data �le storage
needs some further improvements. Data is stored in sequences of data blocks
with a �xed minimal size. Once written to disk, the sequence of data blocks
remains as it is. One data object that is stored to disk will always be stored
in the same data blocks in the data �le, with new blocks being added as the
object grows in size (as it happens to inverted lists during indexing). As the
indexing process continues, several list entries are repeatedly written to disk,
then re-read from disk to add more data. With each cycle, one data block
is added in the data �le, resulting in a lot of seeking operations whenever
the object needs to be written to or read from disk. This presented the most
severe performance bottleneck of the implementation.

The text collection contained 201704 distinct words, resulting in a dic-
tionary �le of 4.4 megabytes. Due to the two-byte representation of unicode
data in memory28 and some additional data management variables, the dic-
tionary required 10 megabytes of memory after being loaded. This suggests
that with modern hardware, keeping a dictionary in memory is not likely to
present a resource problem.

By storing the same signature data (see chapter 6.3.1) in two inverted
indexes, this data becomes redundant which of course increases the overall
index size. This could be compensated by using data compression and a
record level semantic index.

7.2 Performance Comparison

The database implementation was compared against the performance of
MySQL. For this test, a di�erent, much bigger text collection has been used.
The same text collection was repeatedly indexed in both database systems29.
While indexing performance of MySQL was far better than the indexing
speed of the inverted index, the query performance of MySQL, as compared
to the inverted index, dropped below an acceptable level very quickly.

For this test run, a collection of 3373 text �les was used, resulting in
a total collection size of 95 megabytes and a total of 210989 distinct words.

28On disk, textual data is represented in UTF-8 encoding, which uses a variable amount
of bytes for one single character

29For an inverted index, adding the exact same text numerous times, is the worst case
testing scenario: after the �rst run, every single word and document needs to be fetched
from and written back disk.

7 EXPERIMENTAL RESULTS 72

The text �les were taken from the user documentation of a Linux installation,
but did not contain any context or text markup information. Also, signature
calculation was disable during this test. The collection was processed in three
passes, with query speed evaluations at the end of each pass.

Details about test results are shown in tables 11 and 12. The overall
result indicates that, while MySQL shows better full text indexing perfor-
mance, the query evaluation speed in the inverted index is � by far � superior,
especially for large collections. The test queries were chosen to result in a lot
of matching documents. Due to the Linux-oriented nature of the collection,
the search terms were �linux�, �root� and �computer�.

MySQL Monastery

Reading Indexing
1st pass 3:15 2:11 9:26
2nd pass 3:27 2:36 17:38
3rd pass 3:44 5:05 27:12

Table 11: Indexing times needed by MySQL and Monastery during the re-
peated indexing of the same text collection for three times. The time needed
to read the data from disk and to add the data to the inverted index is
listed separately for the Monastery. Times shown for MySQL are total times
needed to process the text collection.

query 1st pass 2nd pass 3rd pass

Monastery linux < 1 sec. 3 sec. 5 sec.
computer < 1 sec. 1 sec. 1 sec.
root < 1 sec. 1 sec. 2 sec.

MySQL linux < 1 sec. 53 sec 92 sec.
computer < 1 sec. 3 sec. 10 sec.
root < 1 sec. 14 sec 51 sec.

Table 12: Times needed to evaluate the search queries after each index-
ing pass. The test queries were chosen to return a large result set. 6051
documents contained the term �linux�, 1720 contained �computer� and 5787
contained �root�. The number of occurrences doubled in the second run, and
tripled in the third run.

8 RELATED WORK 73

8 Related Work

The problem of information over�ow and document retrieval is as old as
the computing industry. Motivated by the need for automated indexing sys-
tems suitable for large amounts of textual data, there have been a lot of
projects related to document retrieval, full text index performance improve-
ments, semantic data representation and processing � all for a wide variety
of applications.

This section will give a broad overview over some topics of interest that
are relevant for an automated text processing system in the context of the
web and full text search.

8.1 Improving the Inverted Index

The inverted index has been a subject of research for many scientists during
the last years, and a lot of work has been done with the goal to increase
index performance and reduce processing costs. Independent from each other,
many of these projects suggest similar fundamental principles to improve the
performance. Numerous publications by Zobel et al. [52, 40, 18, 48] and
others [6, 31, 7, 12] suggest to use data compression to speed up indexing
and retrieval, at the same time as reducing storage requirements.

One of the strong points of the inverted index is the possibility to com-
press its contents. Data compression has the disadvantage that all fetched
records must be decompressed as they are retrieved, but this decoding can
be very fast. Moreover, large parts of the decompression can be avoided by
compressing single records only, so the main factor for performance limita-
tions during data retrieval is the disk speed, and not the time needed for data
decompression [51]. The smaller the amount of data that needs to be read
and written to disk, the better is the overall performance. The time needed
to read compressed data from disk and then decompress it in memory been
shown to be less than the required time to fetch the same, uncompressed
data from disk, without decompression [34, 40].

Various methods of data compression have been examined with inverted
indexes, ranging from word-level compression [12] over various run-length
encodings of binary data [52] to more expensive arithmetic coding algorithms,
which require more computation time but achieve better compression rates [6,
31]. Dvorský et al. describe a run-length word level compression algorithm.
A similar approach, but applied to complete records in the inverted index, is
shown by Zobel et al. in [52].

Some index compression techniques also have disadvantages, and can-
not be combined with other methods to improve performance. For example,

8 RELATED WORK 74

Google uses the bzip2 algorithm for data compression [6] � a method which
makes it impossible to exploit a possible query performance gain by com-
pressing small pieces of data only � as shown by Scholer et al. [40]. The
reason for this is that bzip2 operates on very large data blocks, where it
achieves the best compression rates. However, a lot of index compression
approaches have the signi�cant disadvantage of considerably increasing the
costs for index updates.

The inverted index can also be divided into smaller segments, allowing
to create it even with very limited resources � a method referred to as single
pass indexing as shown by Heinz et al in [18]. The idea is to keep as much
data as possible in memory, until it is depleted and everything needs to be
�ushed to disk, thereby creating a new index segment. After that segment
has been written, a new one is started.

8.1.1 Additional Features

Other projects aimed at increasing the �exibility of the inverted index in
order to implement additional new features. With the smallest entity in the
database being one single word, there are some limitations to the types of
queries that are possible with the inverted index. For example, it is impos-
sible to search for substrings within words, like �motor� in �motorway�. An
additional problem are di�erent grammatical forms of the same word, like
�car� and �cars�: as the string representations are not equal, those words are
not automatically recognized as being equivalent.

To a degree, this can be solved by using stemming algorithms that �nd the
basic form for each word, in all its di�erent grammatical variations [47, 51] �
which introduces the problem of discovering the language of a text: stemming
algorithms are heavily defendant on the language, and some might require
external databases for irregular verbs. The basic, �reduced� form of the
word is then added to the index, at the same time reducing the size of the
vocabulary. On the other hand, by �reducing� each word to its basic form,
some queries might yield incorrect search results, especially when words are
used inside phrase queries. The phrase �I am the king of pop� is not equal to
�I be the king of pop�.

An other possibility is the implementation of synonym lists for the vo-
cabulary, a thesaurus, listing equivalent words. To a degree, such lists can
be calculated automatically as shown in LSI (ref. chapter 4.1.1 and [23]).

8 RELATED WORK 75

8.2 Web Content Mining

Although the Web contains a huge amount of data, the representation of in-
formation on each web site is di�erent. The fully automated identi�cation of
semantically similar data (such as content, navigation links and links to re-
lated web sites) is a very important problem with many related publications.
Monkville is using a semi-automated tool to extract this kind of informa-
tion, but there are projects dedicated to the fully automated discovery of
semantical types of information on web sites.

Several principal approaches exist for web content mining. First of all,
there are fully automated approaches (some are mentioned below), that are
suitable for information extraction in a speci�c problem domain. Some
of them perform inductive information extraction, by generating grammars
based on training samples. The extraction method used with Monkville is
semi-automated, meaning that the information extraction program is created
during an user-interactive process (in this case, using the Lixto Visual Wrap-
per). It is also possible to use high-level programming libraries for content
extraction from HTML documents. However, such approaches tend to be
highly dependant on the web site layout and are therefore not suitable for
information extraction based on a wide variety of web sites.

Yin et al. [49] de�ne a web site as a collection of basic elements, with each
element having a di�erent semantic role. Their goal is to �design a system
that can classify the elements that make up a web page� [49], allowing to
extract only certain elements when needed, and to facilitate web information
extraction.

A similar approach was shown by Liu et al. in [26] who present a
very e�ective technique to determine the type of website components (called
records). Their classi�cation is based on two di�erent observations about
data records on web sites and a string matching algorithm, and is also able
to discover noncontiguous data records.

Other methods, as the one shown by Embley et al. [13] are more fo-
cused on the hierarchical structure of HTML documents. Records, or record
boundaries can be de�ned via subtrees of nested HTML tags, by locating a
subtree containing a records of interest, then identify separator tags within
that subtree to determine record boundaries. Embley et al. use several di�er-
ent heuristic algorithms for this identi�cation and then combine the results
of the heuristics into one consensus candidate.

8 RELATED WORK 76

8.3 Semantics in Databases

The idea of semantical information in a database is not new. Some pub-
lications focus on an explicit representation of semantical information in a
database [21], using an object oriented approach to represent facts and rela-
tions between them. To a degree, this is very similar to the RDF proposed
in the semantic web, only that it is applied on data storages instead of web
sites. Using such databases, it is possible to infer over the represented facts,
e�ectively creating a generic expert system.

Semantics can also be exploited to create speci�c applications, like group-
ing legal documents based on properties related to speci�c jurisdiction and
di�erent laws in di�erent countries [29], or building retrieval systems for very
specialized domains [9] such as patent law or medical information systems.

The representation of semantics in databases is not necessarily bound to
purely textual data, but can be achieved by using alternative data storing
methods, for example encoding facets in a tree-structured fashion like XML.
Neven et al. [36] explored the possibilities to store and operate on attribute
grammars for query and tree-walking automata, focused on an XML-based
applications. Their investigation of �rst-order logic expressiveness as well as
the complexity of query evaluation and optimization problems showed that,
�although attribute grammars as well as query automata are quite expressive
they are quite complicated formalisms and do not seem to be the basis for
an easy-to-use pattern language� [36] that can be implemented in a retrieval
system.

8.4 Machine Learning from Natural Language Text

A big problem for automated systems is to make implicit semantic informa-
tion explicitly known to the computing system [25]. A �rst step to do this
is to remove irrelevant components of the text in a web site, before process-
ing its contents. This can be done by an analysis of web pages that detects
the functions of site elements, like navigation links, advertisement, links to
related sites and the content itself, as proposed by Yin et al. in [49].

But even with noise elements removed, analyzing natural language text
is complicated and requires sophisticated, heuristic algorithms.

8.4.1 Extraction of Semantic Information

Usually, semantic content is extracted on a document level, thereby evalu-
ating single documents only. But there are also other approaches that take
the context of web pages into account: as users browse di�erent web sites

8 RELATED WORK 77

and follow links, they follow a �coherent semantic path� [42] that can be used
to determine context information for web pages, as described by Sreenath
et al. [42]. The basic assumption is that an author of a web page cannot
completely de�ne its semantics, or semantics emerging through the context
in which the web site is being used. Semantics are content-sensitive, and user
browsing paths over a collection of web sites provide the necessary context to
derive semantics, which can be used to improve the retrieval e�ectiveness of
semantics from web pages.

Most systems that determine semantic information from natural language
text are based on statistical evaluations of element repetitions and distribu-
tions, either looking at global average values of word distributions to aquire
the semantic context of single words, or by processing textual data in multiple
passes in order to remove noise elements. Latent Semantic Indexing (LSI, see
chapter 4.1.1) is an algorithm to derive semantic information from the global
text collection. By heuristically evaluating word distributions and proximity
it is able to detect word synonymity and polysemy [23, 45]. �Semantic noise�
can be �ltered by processing documents in multiple passes, and keeping only
words and word sequences that appear more than once. This can be done by
�nding n-grams in any text, as shown by Mladenic et al. [32, 33].

8.4.2 Text Classi�cation

Text Classi�cation, often also referred to as Document Clustering, is the
challenge to �discover meaningful groups of documents where those within
each group are more closely related to one another than documents assigned
to di�erent groups.� [24] The resulting document classi�cation can be used
to facilitate the organization of large document collections into semantically
related categories.

While there are supervised text classi�ers, the goal generally is to create a
fully automated, unsupervised classi�cation system. Usually, this is achieved
by �rst training a classi�cation algorithm like the bayesian classi�er [33, 19],
using a relatively small set of documents and a prede�ned classi�cation of
topics. The problem is to �nd suitable parameters, based on which the
classi�er can determine the most signi�cant components of a text. Based on
those parameters, the bayesian classi�cation determines the relationship of
any document to the given topics.

One parameter that has been used with success in combination with
bayesian classi�cation are repeated n-grams in a text [32, 33], which are
also used in the Monastery (ref. chapter 6.3.1 and algorithm 2 on page 58).
Mladenic et al. showed that by using n-grams for bayesian classi�cation, it
is possible to �nd suitable topic groups with high accuracy for new web sites

8 RELATED WORK 78

� provided that there is a prede�ned topic ontology and a su�cient set of
documents to train the classi�er.

A related, but slightly di�erent problem is the automatic de�nition of top-
ics based on the documents alone, without using a prede�ned set of possible
topics or categories. This adds a new component to the problem of doc-
ument clustering: determining relevant components of a text, and forming
meaningful topic descriptions based on those [8, 11].

8.4.3 Abstract Generation

Automated summarization has received a lot of attention in recent years. [17]
Summary Generation is a problem within a similar scope as text classi�ca-
tion, but with a di�erent goal. The desired behavior of a good summarization
algorithm is to considerably reduce the size of a document, while preserving
its content. [20]

Similar to text classi�cation, the algorithms used often require some form
of training based on prede�ned documents and summaries thereof. The prob-
lem is to �nd a good mapping of a high dimensional feature space (given
with the documents themselves) onto a much smaller feature space, the sum-
mary [10]. To achieve this, noise elements in a text need to be �ltered out
e�ciently through a combination of statistical methods and �ltering algo-
rithms (like n-grams). The key features (content) of the documents need to
be preserved by their summaries [20], even though they usually are much
shorter.

Han et al. [17] propose a summary generation based on �important
words�, that is, key terms in a document that were evaluated as being impor-
tant by some form of semantical analysis. The extraction system generates
summary sentences according to the word meanings, using a variety of eval-
uations to determine the importance of a word.

A similar proposal was made by Liu et al. [27] who focus on non-content
features of key resources and introduce a pre-selection method, to locate key
resources on a page using a probabilistic decision tree, using independent
features including document length, url type and the amount of distinct
words.

8.5 The Semantic Web

The Semantic Web is the vision of a global information network, which is
linked in such a way that it is easily processable for machines. The goal is to
create a global database of explicit semantic data [4], that usually is given
only implicitly within natural language text, encoded in HTML pages. Facts

8 RELATED WORK 79

and relations are represented in triples of URIs, which are used to uniquely
identify entities. The syntax is called �Resource Description Framework�
(RDF) and can be given in various well de�ned forms. Facts and relations
between them are described in an ontology description language, called RDF
Schema [37].

RDF is a data description language that allows to de�ne classes and
relations. There are some prede�ned basic ontology languages based on RDF,
which are already established by the semantic web task force. They are
mostly tailored for speci�c object domains, like DAML+OIL30 or OWL31.
They de�ne the vocabulary to describe objects, facts, properties and relations
between them � for example facets like �Snoopy is a dog, and belongs to
Charly Brown�. Relations like cardinality (�exactly one� � �Snoopy is exactly
this dog, and no other one�), equally and symmetry can be expressed with
the help of OWL and other ontology description languages.

The intent of the semantic web is to enhance the usability and usefulness
of the current world wide web and its interconnected resources, by providing
some common ontologies and class descriptions that can be used by a wide
number of independent web sites, in di�erent contexts. Based on the used
fact representation ontologies, it is possible to perform automated reasoning
over facts, even if they are represented in di�erent ontology languages and
contexts.

Documents �marked up� with semantic information contain machine-readable
information about the human-readable content of the document, such as ti-
tle, author, abstract � or it could be purely metadata, representing a set of
facts like resources and services. Common ontologies (metadata vocabular-
ies) describe how to mark up documents so that the marked up information
can be processed by computers [46].

A popular application of the Semantic Web is Friend of a Friend (or
FoaF), which describes relationships among people and other agents in terms
of RDF.

30DAML: the DARPA agent markup language, OIL: ontology inference layer.
DAML+OIL combines the features of both

31OWL: acronym for Web Ontology Language, a markup language for publishing and
sharing data using ontologies on the semantic web

9 SUMMARY 80

9 Summary

The ever growing internet and the amount of textual data that is available on
the web present a problem which is often referred to as information over�ow :
due to the large number of web sites, it is hard to locate sites that cover a
speci�c topic. To solve this problem, automated full text search engines need
to be implemented that help to navigate in the internet.

This can be achieved by implementig document retrieval systems � data-
bases specialized on the processing of large amounts of text, with the possi-
bility to perform high performant searches on all stored documents, and with
the ability to evaluate the relevance of the documents to the search query.
The core component of any document retrieval system is the text indexing
method used, which also de�nes the functionality of the system to a very
large degree. Several indexing methods were explained in chapter 2, with the
subsequent focus on the inverted index due to its superior properties.

An implementation of a document retrieval system on very large text
collections requires a lot of thought, as the problem of full text search is not
trivial to solve. The large amount of data that needs to be processed presents
problems of its own, as explained in section 2.4. The indexing method is the
most important characteristic property of any retrieval system, it de�nes the
overall speed, ressource requirements and system features. The concept of
the inverted index, as explained in chapter 3, shows good performance and
the highest degree of �exibility � which is the reason why it is usually chosen
for text retrieval implementations. It also supports a lot of semantical text
evaluations that are necessary for result ranking, as explained in chapter 4.

The practical implementation of a document retrieval system, as pre-
sented with Palaver in chapter 5, revealed a series of problems to which the
literature does not present any solutions. Those problems are for example
related to the actual representation of textual data itself, which might be
given in multiple di�erent languages, scripts and encodings. Also, more fun-
damental problems like �nding a good de�nition for one word, that also works
with multiple languages and scripts, need to be solved. Technial issues, like
�nding a good mapping function to calculate an unique identi�er for each
distinct word, usually are not even mentioned in relevant publications.

Text processing systems are inherently limited in the degree to which they
are able to grasp the semantic concepts of text in a natural language [25].
Some existing approaches to determine semantic properties of documents do
exist, but this fundamental limitation prevails.

Monkville demonstrates a new approach to increase the quality of seman-
tic processing in a document retrieval system. By adding external context
information to the full text database, the quality of semantic evaluations can

9 SUMMARY 81

be increased. Chapter 6 illustrates the basic concept used to improve search
functionality as well as semantical analysis of the documents, resulting in a
wide variety of new possibilities for full text search on web sites.

The result is a content-based navigation system that can be used to
navigate through the world wide web, based not on hyperlinks or keyword
searches, but on semantic content. Sites that do not refer to each other by
placing hyperlinks suddently can become linked semantically, because they
have similar content.

The shown approach does not require fact extraction or any inference on
logic relations, as for example in applications of the semantic web. It rather
uses existing utilities to extract semantically related context information from
semi-structured sources, like from news on web sites. Further work remains
to explore the degree and quality of the semantical relationships that can be
detected by including such context information, as well as ways to e�ectively
navigate in a semantically linked world wide web.

The presented implementation still leaves room for improvements. Fur-
ther work will have to focus on increasing the performance of data storages
and disk throughput. An additional focus will have to remain on additional
sources of high quality semantical information. With the semantic web, new
sources of context information could become available, but ways to exploit
the vast amount of semantic data that already is available need to be explored
too. Where original semantic content is not present, it could be created by
semi or fully automated text processing or information extraction systems.

The questions that remain to answer are not only the ways how to store
semantic information in an inverted index, but the origin and quality of
the semantics themselves. Sites that contain semantical relevant context
information do not use a representation that is supposed to be interpreted
by computing systems, but by human readers. Finding suitable techniques
to discover such information and to �lter out irrelevant web site components
will be a very important topic for the future, not only in the scope of this
project.

Once it is generally available, semantic context information can have a
great impact on the quality of internet search engines.

A DATABASE MANUAL 82

A Database Manual

Startup, Shutdown and Help

1. Start the program (f.i. palaver.exe on Windows)

2. Connect with a terminal program to local port 1200. If possible, disable
telnet control sequences and use a raw connection. You can use any
number of concurrent client connections.

3. Once connected, the database should reply with �Hello, I am ready�

to the client, the main program should write a message to the console
reading �Client accepted: <hostname>�

4. At any point, enter �?� or any command followed by �?� to get a list
of available commands, parameters or short usage information

5. Enter shutdown to terminate the program

Adding Documents

1. To add one speci�c �le with one speci�c URI only, enter:
add myDocumentURI path/to/file.txt

2. To recursively add the contents of a directory, enter:
add myURIprefix path/to/directory/ (note the trailing /)
The string �myURIpre�x� will be pre�xed to the full path names to the
document �les. The combination of the URI pre�x and the path name
will be the document URI.

3. To process context information, put all context keywords for one doc-
ument into a raw text �le, with the same �lename as the original text
�le, but with .context appended to it. For example, context keywords
for /data/text.txt would go into /data/text.txt.context

Querying

All queries are case insensitive.

1. search <term> [additional terms]

Performs a full-text search in document contents (bodies) for all terms
passed as arguments. Unless speci�ed otherwise (see below), terms are
logically OR-ed and the result is the sum of all documents that contain
one or more of the search terms.

A DATABASE MANUAL 83

2. searchtopic <term> [additional terms]

Same as search, but performs a full-text search in document contexts
and signatures only, not in document bodies.

3. query <term> [additional terms]

[CTX[+|-] <contextterm> [additional contextterms]]

Search in document bodies and/or context and signatures. query terms
before CTX are used for document content search, the terms after are
used for context search. The optional + or - character after CTX follows
the boolean syntax described below and can be used to include or
exclude documents with a speci�c context.

Boolean Query Syntax

Search terms can be prepended by one optional + or - each. If neither + nor
- are given, the system will perform a logical OR operation on the query
result, thus merging all resulting documents for sub-queries.

List of examples of parameters for the query commands:

peach apple results contain �peach� OR �apple�
peach +apple results contain �peach� AND �apple�
peach -apple results contain �peach� BUT NOT �apple�

Phrase queries

Word sequences that are part of the document signature (that is, sequences
that appear at least two times in a document) can be used in phrase queries.
To search for a phrase, enclose all words that are part of that phrase in
quotes ("). For example,

query "I am the king of pop" CTX+ music

Returns all documents that contain the phrase �I am the king of pop�
AND have �music� in their context. To use boolean operators with phrases,
insert the + nor - character after the quote. Thus:

query Jackson "+I am the king of pop"

to search for documents that contain �Jackson' ' AND the phrase �I am
the king of pop�.

A DATABASE MANUAL 84

List of Commands

• load <database>

Load the full text database from disk

• save <database>

Save the full text database to disk

• stat

Display database status and statistical values

• shutdown

Terminate the database and disconnect all clients

• add

Alias for mercator add

• mercator add <URI> <file/dir>

Add one or multiple documents to the database. If the last character of
the �lename is a directory separator (/), it is assumed to be a directory,
and adding will happen recursively within that directory.

• search

Alias for librarian search

• librarian search <word> [[+|-]additional words] ...

Perform a full text search for search words within document bodies
only, optionally with boolean operators

• searchtopic

Alias for librarian searchtopic

• librarian searchtopic <word> [[+|-]additional words] ...

Perform a full text search for search words within document contexts
only, optionally with boolean operators.

• query

Alias for librarian query

• query <term> [[+|-]additional terms] ... [CTX[+|-]

<contextterm> [[+|-]additional contextterms] ...]

Search in document bodies and/or context and signatures. query terms
before CTX are used for document content search, the terms after are
used for context search. The optional + or - character after CTX follows
the boolean syntax.

A DATABASE MANUAL 85

• related

Alias for librarian related

• librarian related <documentURI>

Find documents that are semantically related to the document refer-
enced by documentURI

B FIGURES, TABLES AND REFERENCES 86

B Figures, Tables and References

List of Figures

1 Extracted BBC article . 7
2 Trade o� precision - recall - performance 16
3 Structure of the inverted index 19
4 Inverted Index: Translation 22
5 Inverted Index: Sorting . 23
6 Record vs. Word Level Index 24
7 Simpli�ed Google architecture 29
8 Palaver structogramm . 44
9 Data storage structure . 46
10 Content extraction with lixto 56
11 Structogramm Monkville . 60
12 Mapping of content to indexes 61
13 Discovery of related documents 62

List of Tables

1 MySQL full text key structure 31
2 Legend of terms used in ranking equations 37
3 Inventory �le structure . 47
4 Inode �le structure . 47
5 Data �le structure . 47
6 Document object contents . 48
7 Dictionary structure . 50
8 Translation object contents . 50
9 Modi�ed Document Object . 64
10 Modi�ed Translation Object 64
11 Indexing time comparison . 69
12 Query time comparison . 69

References

[1] Mysql 5.0 reference manual, section 12.7: Full-text search functions.
http://dev.mysql.com/doc/refman/5.0/en/fulltext-search.html.

[2] R. Baumgartner, S. Flesca, and G. Gottlob. Visual web information ex-
traction with lixto. In VLDB '01: Proceedings of the 27th International

REFERENCES 87

Conference on Very Large Data Bases, pages 119�128, San Francisco,
CA, USA, 2001. Morgan Kaufmann Publishers Inc.

[3] R. Baumgartner, G. Gottlob, M. Herzog, and W. Slany. Interactively
adding web service interfaces to existing web applications. In SAINT,
pages 74�80. IEEE Computer Society, 2004.

[4] B. Berendt, D. Mladenic, M. van Someren, M. Spiliopoulou, and
G. Stumme. A roadmap for web mining: From web to semantic web. In
EWMF, pages 1�22. Springer, 2003.

[5] T. Berners-Lee. Primer: Getting into rdf & semantic web using n3.
http://www.w3.org/2000/10/swap/Primer, 2005.

[6] S. Brin and L. Page. The anatomy of a large-scale hypertextual web
search engine. Technical report, Stanford University, Computer Science
Departement, 1998.

[7] E. W. Brown, J. P. Callan, and W. B. Croft. Fast incremental index-
ing for full-text information retrieval. In J. B. Bocca, M. Jarke, and
C. Zaniolo, editors, VLDB, pages 192�202. Morgan Kaufmann, 1994.

[8] H. Chen and V. Dhar. A knowledge-based approach to the design of
document-based retrieval systems. In Proceedings of the conference on
O�ce information systems, pages 281�290. ACM Press, 1990.

[9] L. Chen, N. Tokuda, and H. Adachi. A patent document retrieval system
addressing both semantic and syntactic properties. In Proceedings of the
ACL-2003 Workshop on Patent Corpus Processing. ACL, 2003.

[10] W. Chen, X. Chang, H. Wang, J. Zhu, and Y. Tianshun. Automatic
word clustering for text categorization using global information. In
Myaeng et al. [35], pages 1�11.

[11] J. J. Chua and P. E. Tischer. Hierarchical ordering for approximate sim-
ilarity ranking. In N. Zhong, Z. W. Ras, S. Tsumoto, and E. Suzuki, ed-
itors, ISMIS, volume 2871 of Lecture Notes in Computer Science, pages
496�500. Springer, 2003.

[12] J. Dvorský, J. Pokorný, and V. Snásel. Word-based compression meth-
ods and indexing for text retrieval systems. In J. Eder, I. Rozman, and
T. Welzer, editors, ADBIS, volume 1691 of Lecture Notes in Computer
Science, pages 75�84. Springer, 1999.

REFERENCES 88

[13] D. W. Embley, Y. Jiang, and Y.-K. Ng. Record-boundary discovery
in web documents. In SIGMOD '99: Proceedings of the 1999 ACM
SIGMOD international conference on Management of data, pages 467�
478, New York, NY, USA, 1999. ACM Press.

[14] C. Goutte and É. Gaussier. A probabilistic interpretation of precision,
recall and -score, with implication for evaluation. In D. E. Losada and
J. M. Fernández-Luna, editors, ECIR, volume 3408 of Lecture Notes in
Computer Science, pages 345�359. Springer, 2005.

[15] R. Grossi and J. S. Vitter. Compressed su�x arrays and su�x trees with
applications to text indexing and string matching (extended abstract).
In STOC, pages 397�406, 2000.

[16] P. Gulutzan. The full-text stu� that we didn't put in the manual.
http://dev.mysql.com/tech-resources/articles/full-text-revealed.html.

[17] D. Han, T. Noguchi, T. Yago, and M. Harada. Summary generation
centered on important words. In Myaeng et al. [35], pages 48�60.

[18] S. Heinz and J. Zobel. E�cient single-pass index construction for text
databases. JASIST, 54(8):713�729, 2003.

[19] C.-M. Hung and L.-F. Chien. Text classi�cation using web corpora and
em algorithms. In Myaeng et al. [35], pages 12�23.

[20] W. Jung, Y. Ko, and J. Seo. Automatic text summarization using two-
step sentence extraction. In Myaeng et al. [35], pages 71�81.

[21] N. Katayama, A. Takasu, and J. Adachi. A database with an explicit se-
mantic representation. In Proceedings of the 7th international conference
on Industrial and engineering applications of arti�cial intelligence and
expert systems, pages 323�332. Gordon and Breach Science Publishers,
Inc.

[22] A. J. Kent, R. Sacks-Davis, and K. Ramamohanarao. A signature �le
scheme based on multiple organizations for indexing very large text data-
bases. JASIS, 41(7):508�534, 1990.

[23] M. Kobayashi and K. Takeda. Information retrieval on the web. ACM
Computing Surveys, 32(2):144�173, 2000.

[24] C. Kruengkrai, V. Sornlertlamvanich, and H. Isahara. Document clus-
tering using linear partitioning hyperplanes and reallocation. In Myaeng
et al. [35], pages 36�47.

REFERENCES 89

[25] D. D. Lewis. Natural language processing for information retrieval.
ACM, 39(1):92�101, January 1996.

[26] B. Liu, R. Grossman, and Y. Zhai. Mining data records in web pages.
In KDD '03: Proceedings of the ninth ACM SIGKDD international con-
ference on Knowledge discovery and data mining, pages 601�606, New
York, NY, USA, 2003. ACM Press.

[27] Y. Liu, M. Zhang, and S. Ma. E�ective topic distillation with key
resource pre-selection. In Myaeng et al. [35], pages 129�140.

[28] Y. Lu, X. Liu, H. Li, B. Zhang, W. Xi, Z. Chen, S. Yan, and W.-Y.
Ma. E�cient pagerank with same out-link groups. In Myaeng et al.
[35], pages 141�152.

[29] R. Álvarez, M. Ayuso, and M. Bécue. Statistical study of judical prac-
tices. In Law and the Semantic Web, pages 25�35, 2004.

[30] V. Mäkinen. Compact su�x array � a space-e�cient full-text index.
Fundam. Inform., 56(1-2):191�210, 2003.

[31] S. Melnik, S. Raghavan, B. Yang, and H. Garcia-Molina. Building a
distributed full-text index for the web. In WWW, pages 396�406, 2001.

[32] D. Mladenic and M. Grobelnik. Word sequences as features in text-
learning.

[33] D. Mladenic and M. Grobelnik. Mapping documents onto web page
ontology. In EWMF 2003, LNAI 3209, pages 77�96. Springer-Verlag
Berlin Heidelberg, 2004.

[34] A. Mo�at and J. Zobel. What does it mean to measure performance? In
X. Zhou, S. Y. W. Su, M. P. Papazoglou, M. E. Orlowska, and K. G. Jef-
fery, editors, WISE, volume 3306 of Lecture Notes in Computer Science,
pages 1�12. Springer, 2004.

[35] S.-H. Myaeng, M. Zhou, K.-F. Wong, and H. Zhang, editors. Infor-
mation Retrieval Technology, Asia Information Retrieval Symposium,
AIRS 2004, Beijing, China, October 18-20, 2004, Revised Selected Pa-
pers, volume 3411 of Lecture Notes in Computer Science. Springer, 2005.

[36] F. Neven and T. Schwentick. Automata-and logic-based pattern lan-
guages for tree-structured data. In L. E. Bertossi, G. O. H. Katona, K.-
D. Schewe, and B. Thalheim, editors, Semantics in Databases, volume

REFERENCES 90

2582 of Lecture Notes in Computer Science, pages 160�178. Springer,
2001.

[37] S. B. Palmer. The semantic web: An introduction.
http://infomesh.net/2001/swintro/, 2001.

[38] B. A. Ribeiro-Neto, J. P. Kitajima, G. Navarro, C. R. G. Sant'Ana,
and N. Ziviani. Parallel generation of inverted �les for distributed text
collections. In SCCC, pages 149�157. IEEE Computer Society, 1998.

[39] R. Sacks-Davis, A. J. Kent, K. Ramamohanarao, J. A. Thom, and J. Zo-
bel. Atlas: A nested relational database system for text applications.
IEEE Trans. Knowl. Data Eng., 7(3):454�470, 1995.

[40] F. Scholer, H. E. Williams, J. Yiannis, and J. Zobel. Compression of
inverted indexes for fast query evaluation. In SIGIR, pages 222�229.
ACM, 2002.

[41] S. M. Sha� and R. A. Rather. Precision and recall of �ve search engines
for retrieval of scholarly information in the �eld of biotechnology. We-
bology, available at http://www.webology.ir/2005/v2n2/a12.html, 2(2),
2005.

[42] D. V. Sreenath, W. I. Grosky, and F. Fotouhi. Using coherent semantic
subpaths to derive emergent semantics. In M. G. Negoita, R. J. Howlett,
and L. C. Jain, editors, KES, volume 3215 of Lecture Notes in Computer
Science, pages 173�179. Springer, 2004.

[43] R. K. Stasiu, C. A. Heuser, and R. da Silva. Estimating recall and
precision for vague queries in databases. In O. Pastor and J. F. e Cunha,
editors, CAiSE, volume 3520 of Lecture Notes in Computer Science,
pages 187�200. Springer, 2005.

[44] A. Tomasic, H. Garcia-Molina, and K. A. Shoens. Incremental updates
of inverted lists for text document retrieval. In R. T. Snodgrass and
M. Winslett, editors, SIGMOD Conference, pages 289�300. ACM Press,
1994.

[45] B. Trevor, E. Weippl, andW.Winiwarter. A modern approach to search-
ing the world wide web: Ranking pages by inference over content. In
INAP, pages 316�330, 2001.

[46] Wikipedia. The semantic web. en.wikipedia.org/wiki/Semantic_web,
2005.

REFERENCES 91

[47] H. E. Williams and J. Zobel. Searchable words on the web. International
Journal of Digital Libraries, to appear.

[48] H. E. Williams, J. Zobel, and D. Bahle. Fast phrase querying with
combined indexes. ACM Trans. Inf. Syst., 22(4):573�594, 2004.

[49] X. Yin and W. S. Lee. Towards understanding the functions of web
element. In Myaeng et al. [35], pages 313�324.

[50] B. Yuwono and D. L. Lee. Search and ranking algorithms for locating
resources on the world wide web. In S. Y. W. Su, editor, ICDE, pages
164�171. IEEE Computer Society, 1996.

[51] J. Zobel, A. Mo�at, and K. Ramamohanarao. Inverted �les versus signa-
ture �les for text indexing. ACM Trans. Database Syst., 23(4):453�490,
1998.

[52] J. Zobel, A. Mo�at, and R. Sacks-Davis. An e�cient indexing technique
for full text databases. In L.-Y. Yuan, editor, VLDB, pages 352�362.
Morgan Kaufmann, 1992.

