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Kurzzusammenfassung

Eine irrationale Zahl a legt die Folge (na)~=l mod. 1 fest, welche in [0,1)
gleichmäßig gleichverteilt ist, d.h. die Folge erfüllt

lim I{n E {k, k + l, ... , N - I} : na mod 1 EI} I = b _ a
N~oo N

gleichmäßig in k E Z, wobei I = [a, b) ç [0,1) ein beliebiges Intervall ist.
Diese Tatsache beruht auf Resultaten aus Hermann Weyl's bedeutender Ar-
beit Über die Gleichverteilung von Zahlen mod. Eins ([43]), die als Aus-
gangspunkt für die Entwicklung der Theorie der Gleichverteilung angesehen
werden kann. Eng verbunden mit der Theorie der Gleichverteilung sind die
der ergodischen Abbildungen und der dynamischen Systeme. Die sogenannte
Kodierungsfolge von I, a = (ak)~_oo E {D, 1}z, ist definiert durch

falls na mod 1 E I,
sonst.

•

Neben anderen interessanten Eigenschaften findet sich in dieser Kodierungs-
folge auch die gleichmäßige Gleichverteilung der zugrundeliegenden na-Folge
wieder. Damit nimmt sie eine besondere Stellung in der symbolischen Dy-
namik ein. Als fruchtbare Verallgemeinerung dieser Situation etablierte sich
die Theorie der Hartman Mengen und Hartman Folgen.

In der vorliegenden Dissertation werden kombinatorische, ergodentheo-
retische, geometrische und topologische Zusammenhänge zwischen Hartman
Mengen beziehungsweise Hartman Folgen und zugrunde liegender kodierter
Menge untersucht. Die so gewonnenen Erkenntnisse finden Anwendung in
verwandten Problemen.

Kapitel I beginnt mit einer Einführung in die Theorie der topologischen
Gruppen und in die Ergodentheorie. Anschließend wird das Konzept der
Hartman Mengen und Hartman Folgen vorgestellt. Weiters wird die Kom-
plexitätsfunktion besprochen. Es folgt eine Untersuchung von Hartmanfol-
gen mit maximaler Komplexität. Ist die kodierte Menge eine Teilmenge von
[0,1), so ermöglicht die Theorie der Kettenbrüche eine genauere Struktur-
analyse der Kodierungsfolge. Dies wird am Ende von Kapitel I ausgeführt.

1



Kapitel 2 beschäftigt sich mit Bohr Mengen, welche bereits in Kapitell
als wichtige Objekte auftreten~ Zunächst wird eine asymptotische Formd für
das Wachstum der Komplexitätsfunktion der entsprechenden Hartmanfolge
bewiesen. Es stellt sich heraus, dass der von Bohrmengen erzeugte Filter ein
wertvolles Hilfsmittel für die Charakterisierung von Untergruppen lokalkom-
pakter abelscher Gruppen ist. Tatsächlich kann gezeigt werden, dass es zu
jeder abzählbaren Untergruppe H einer kompakten metrisierbaren topologi-
~hen Gruppe G eine Folge (Xn)~=l von Elementen der zu G dualen Gruppe
G gibt, sodass

aEH lim Xn(a) = O.
n-+oo

•

Dies erweitert das Hauptresultat von [12], welches zu jeder abzähl baren
Untergruppe H der Kreisgruppe die Existenz einer Folge (kn)~=l ganzer
Zahlen garantiert, welche limn-+oo kna = 0 genau dann wenn a EHerfüllt.
Auch werden neue Möglichkeiten der Charakterisierung von Untergruppen
präsentiert, sowie Probleme von Dikranjan et al. behandelt. Der letzte
Abschnitt dieses Kapitels widmet sich der Frage welche Infomationen über
die kodierte Menge aus der induzierten Hartman Folge entnommen werden
können. Basierend auf [44] werden diesbezügliche Aspekte diskutiert.

Schließlich werden in Kapitel 3 Hartman Folgen betrachtet, welche durch
ein Poly top P induziert werden. Es wird eine asymptotische Formel für die
Komplexität solcher Hartmanfolgen berechnet. Es zeigt sich ein direkter
Zusammenhang mit der Geometrie von P. Falls P konvex ist stellt sich her-
aus, dass die asymptotische Komplexität (fast immer) mit dem Volumen des
Projektionenkörpers von P übereinstimmt. Diese Tatsache klärt, wie sich
die Geometrie der kodierten Menge auf das Wachstumsverhalten der Kom-
plexität auswirkt .

Die zentralen Teile dieser Arbeit sind in [7] (Abschnitt 1.5), [8] (Abschnitt
2.2), [38] (Kapitel 3) und [40] (Abschnitte 1.4.2, 1.4.3 und 2.1) enthalten.

Am Beginn jeder Sektion finden sich Referenzangaben zu dem jeweiligen
Themenkreis.

Diese Dissertation wurde unterstützt durch den Osterreichischen Wissen-
schaftsfonds FWF im Rahmen der Projekte Nr. S8312 und Nr. S8302.
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Abstract

An irrational number a induces the sequence (na)~=l mod. 1, which is
well distributed in [0,1), i.e. the identity

lim I{n E {k, k + 1, ... , N - I} : na mod 1 E I}I = b _ a
N~oo N

holds uniformly in k E Z, where I = [a, b) ç [0, 1) is an arbitrary i?terval.
This fact is based on results of Hermann Weyl's celebrated paper Uber die
Gleichverteilung von Zahlen mod. Eins ([43]) which can be seen as a starting
point of the theory of uniform distribution. Closely related to the theory of
uniform distribution are ergodic theory and topological dynamics. The so
called coding sequence of I, a = (ak)~_oo E {O,1}z, is given by

if na mod 1 EI,
otherwise.

•

It is an interesting property of this coding sequence that it displays the well
distribution of the corresponding na-sequence. Hence it is a special object
of symbolic dynamics. A fruitful generalization of this situation has been
developed in the theory of Hartman sets and Hartman sequences.

In the present thesis, combinatorial, ergodic, geometric and topological
connections among Hartman sets, Hartman sequences and their correspond-
ing coded sets are investigated. Also related problems are studied.

Chapter 1 starts with an introduction to the theory of topological groups
and ergodic theory. The concept of Hartman sets and Hartman sequences
is developed, and the complexity function is introduced. Next, Hartman
sequences of maximal complexity are studied. If the coded set is a subset
of [0, 1), the theory of continued fractions allows a detailed analysis of the
structure of the coding sequence. This is done at the end of Chapter 1.

Chapter 2 deals with Bohr sets which already have an important posi-
tion in Chapter 1. At first, an asymptotic formula for the growth rate of
the complexity function of Hartman sequences corresponding to Bohr sets is
shown. The filter generated by Bohr sets turns out to be a useful tool for the
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characterization of subgroups of locally compact abelian groups. In fact, it
will be shown that for every countable subgroup H of a compact metrizable
abelian group G there exists a sequence (Xn)~=l of elements of ê, the dual
group of G, such that

aEH lim Xn(a) = O.
n-+oo

•

•

This extends the main result of [12] which guarantees for every countable
subgroup H of the circle group the existence of a sequence (kn)~=l of in-
tegers such that kna ---7 0 if and only if a E H. Moreover a different way
of characterization of subgroups will be presented and several problems of
Dikranjan et al. will be discussed. The last part of this chapter is dedicated
to the question which information of the coded set is contained in the induced
Hartman sequence. Based on [44], several aspects concerning this question
will be treated.

Finally, in Chapter 3, Hartman sequences induced by a polytope Pare
treated. An asymptotic formula for the complexity of such sequences is com-
puted. This formula indicates a direct connection to the geometry of P. It
turns out that if P is convex, then the asymptotic complexity coincides (in
almost all cases) with the volume of the projection body of P. This fact
clarifies how the geometry of the coded set influences the growth rate of the
complexity function.

The central parts of this work are contained in [7] (Section 1.5), [8] (Sec-
tion 2.2), [38] (Chapter 3) and [40] (Sections 1.4.2, 1.4.3 and 2.1).

At the beginning of each section we shall indicate references to the actual
topic .

The research for this thesis was supported by the Austrian Science Foun-
dation through projects no. S8312 and no. S8302.
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Chapter 1

Entrée

1.1 General background
In this section we explain the notation and basic facts on which this text is
mainly based.

As usual, 'II' = IR/Z denotes the circle (torus) group. For x E IR, llxll
denotes the distance to the nearest integer (i.e. the distance to 0 in 'II').

If X is a topological space and Y ç X we write Y, yo and 8Y for the
closure, interior and the boundary of Y. In the sequel, compact X always
satisfy Hausdorff's separation axiom.

Let X be a topological space, B the Borel a-algebra on X and J-t a mea-
sure on X. Then we call X a measure space. As usual £P (J-t) denotes the
space of all (equivalence classes of) functions I for which IIIP is integrable.

If C is a group and H a subgroup of C, we write H ::; C. We are only
dealing with abelian groups, consequently we shall always use additive no-
tion. If A ç C is a subset of C, we write (A) for the subgroup generated by A.

Instead of the phrase" if and only if' we sometimes write abbreviating
"iff' .
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1.1.1 Topological groups and duality theory
[18], [27], [29]

Let G be a locally compact abelian (LCA) group. We set

ê = {X : G ~ 1[' : X is a continuous homomorphism} .

Define as binary operation on ê the pointwise addition (Xl +X2)(X) = Xl (x)+
X2(X), x E G, Xl and X2 in ê, in the torus group. Then ê is also an abelian
group. Furthermore, it can be equipped with a topology. The appropriate
topology for our needs is the so called compact open topology. An open basis
at the identity in this topology consists of all sets U(K, c) ç ê which are
defined by

U(K, c) = {X E ê : Ilx(x)11 ::; c for all x E K} ,

where K ç G is compact, and c > o.
Definition 1.1.1 ê equipped with~the compact open topology is called the
dual group of G. Its elements X EGare called characters.

The dual group of an LCA group is itself an LCA group. Thus it is
natural to define the dual group of ê, the bidual group of G, which is of
course also an LCA group. But much more holds true. The ~triking Duality

~
Theorem of Pontryagin and van Kampen shows that Gand G are essentially
the same object.

Theorem 1.1.2 Let x E G be a fixed element. Let

x' : ê ~ 1['; x'(X) = X(x).

Then }he mapping T defined by T(X) = x' is a topological isomorphism of G
~

onto G.

Example 1.1.3 The most common example for a topological group in the
<;9ntext of Duality theory is G = 'JI' equipped with the usual topology. Then
G = Z. This exa.1?ple will playa central role in the sequel. The Duality

~ ~
Theorem implies G ~ Z "'"'1['.
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The next assertion, partly a consequence of the Duality The2rem, tells us
more about the connection between the topologies on Gand G.

Theorem 1.1.4 Let G be an LCA group. Then
~

G is discrete {::> G is compact.
~

G is compact {::> G is discrete.

Theorem 1.1.4 has an important consequence - it indicates how to con-
struct compactifications of LCA groups.

Definition 1.1.5 Let G be an LCA group. We call the pair (C, l.) a com-
pactification of G if l. : G - C is a (not necessarily injective) continuous
homomorphism and l.( G) is dense in the compact group C.

Let (Cl, l.l) and (C2, l.2) be compactifications of G. We write (Cl, l.d :::5
(C2, l.2) and call (Cl, l.d a factor of (C2, l.2) if there exists a continuous homo-
morphism 7f such that the diagram

G l.l C
I 1

commutes. If (Cl, l.d :::5 (C2, l.2) and (Cl' l.l) t (C2, l.2) we write (Cl, l.d ~
(C2, l.2). Then :::5 is a partial order relation on the set C = C(G) of all equiv-
alence classes of compactifications of G W.r.t. ~.

~
Let G be an LCA group and G its dual group. Let

l.B : G - 1I'ê = IT 1I'x'
xEê

Then l.B is a continuous homomorphism and

bG = l.B(G)

is, due to Tychonoff's Theorem, a compact group. (bG, l.B) is called the Bohr
compactification of G. It turns out that (bG, l.B) is a maximal element in C

11



----~
W.r.t. the partial ordering j. The duality theory implies that bG ~ Gd.
Here êd denotes the dual group of -G endowed with the discrete top.£logy.
Moreover, there is a 1-1 correspondence between subgroups of A ~ Gand
factors of bG. The compactification (CA, [,A) j (bG, [,B), where

and CA = [,A (G) in TIXEA 11\ directly corresponds to A ~ ê.

LeA groups also enjoy a very important and nice measure theoretic prop-
erty. A measure J.lon G is called invariant if for every measurable B ç G
and every g E G, J.l(g+ B) = J.l(B).

Definition and Theorem 1.1.6 Let G be an LeA group. Then there exists
an invariant Borel measure J.l on G, called the Haar measure. J.l is uniquely
determined up to a positive factor. In particular, if G is compact, there exists
a unique Haar measure J.l with J.l(G) = l.

We finish this section by listing some further results in light of topological
groups and duality theory.

~
1. If G is compact, then the members of G form an orthonormal basis for

U(J.l) where J.lis the Haar measure.

2. If H is a closed subgroup of Gand H =I G, there exists a nontrivial
X E ê such that X(h) = 0 for all h E H.

3. Let H ç G. Then the annihilator A(ê, H) of H in ê is defined by

A(ê, H) = {X E ê : X(h) = 0 for all h EH} .

If H is a closed subgroup of an LeA group, then--- ~(a) GI H ~ A(G, H).

(b) fi ~ êIA(ê, H).

(c) H = A(G, A(ê, H)).

~ denotes here topological isomorphism.

12



4. Let the weight w(x) of the topological space X be the minimal car-
dinality of an open baseof X. If G is a locally compact group then
w(G) = w(ê). An LeA group G is metrizable iff G has a countable
base and thus iff ê has a countable base. In particular, if G is compact,
then ê is discrete and thus G is metrizable iff ê is countable.

5. Let G be an abelian topological To group (i.e. for all x, y E G with
x =1= y there exists an open set U ç G containing only either x or
y). If G is metrizable, then the metric d compatible with its topology
can be chosen to be invariant (i.e. for arbitrary x, y, g E G holds
d(x, y) = d(gx, gy) = d(xg, yg)).

6. Let G be a topological group and H < G. If Hand G/ H have a
countable base, so does G.

1.1.2 Ergodic theory

[14], [42]

We shall give a brief overview about concepts and results from ergodic
theory that are connected to our topic.

Let X be a probability space with measure p,. Let T be a measure pre-
serving transformation on X (i.e. for all measurable sets A ç X holds
p,(A) = p,(T-1(A))).

Definition 1.1.7 A measure preserving mapping T is called ergodic if all
measurable sets E with T-l(E) = E satisfy p,(E) = 0 or 1.

Ergodic mappings have remarkable properties. We start with the so called
Ergodic Theorem.

Theorem 1.1.8 Let T be a measure preserving mapping on the probability
space X and let f E U(p,). Then * L::=1 f(Tn(x)) converges to a function
j* E U(m) for almost all x E X. Furthermore j* = j*oT almost everywhere
and Ix f(x)dp, = Ix j*(x)dp,.

Remark 1.1.9 It is a direct consequence of ergodicity that, if T is ergodic,
j* = j* 0 T almost everywhere implies that j* is constant. Thus j* =

13



l/p,(X) Ix f(x)dp, almost everywhere and hence

almost everywhere.

We focus now on the special case where X = G is a compact abelian
group.

Theorem 1.1.10 1. The transformation T : x t---4 x + a on 'Ir is ergodic
if and only if a is irrational.

2. Let G be a compact abelian group (with Haar measure p,) and let a E G.
Then the transformation T : x t---4 x + a on G is ergodic if and only if
(na)n~l is dense in G.

Remark 1.1.11 Theorem 1.1.10 in combination with Theorem 1.1.8 gives
a weak form of the well known Weyl criterion applied to no: sequences. (Cf.
for instance [39] for an overview on this topic.)

To present another nice aspect of (ergodic) transformations T :x t---4 x +a
acting on a compact abelian groups, in the sequel also called (ergodic) group
translations, we need further notation.

Let again T be a measure preserving mapping on the probability space
X with measure p,. Then T induces a linear operator UT : £2(p,) ~ L2(p,),
UT(f) = f(T(x)). UT is an isometry. We call a complex number À an
eigenvalue of UT if UT(f) = Àf. f is the corresponding eigenfunction. It is
easy to see that IÀI = 1.

Definition 1.1.12 An ergodic measure preserving mapping T acting on a
probability space X is said to have discrete spectrum if there exists an or-
thonormal basis of £2 (p,) consisting of eigenfunctions of UT.

For an introduction to the spectral theory of the operator UT we refer to
[42]. Ergodic group translations have discrete spectrum:

Theorem 1.1.13 Let T : x t---4 x + a be an ergodic translation on a compact
abelian group G. Then T has discrete spectrum. Every eigenfunction is a
constant multiple of a character, and the eigenvalues ofT are {x(a) : X E ê}.
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Moreover, we have the following fact related to the factors of the Bohr
compactification introduced in Section 1.1.1.

Theorem 1.1.14 Every subgroup A ::; 'Ir is the group of eigenvalues of an
ergodic group translation T.

Next we introduce a few basic concepts of topological dynamics. These
are topological counterparts to the measure theoretic ergodic theory.

Instead of measure preserving mappings on a probability space we deal
with continuous mappings on a compact metric space. We focus now on
(topological) group translations, i.e. mappings T : x 1-+ x + a acting contin-
uously on a compact metric group G. In the sequel C(X) denotes the set of
complex valued continuous functions f on X

Definition 1.1.15 A homeomorphism T : X -t X 2S called minimal if
{Tnx : nEZ} is dense in X for all xE X.

Theorem 1.1.16 A group translation T : x 1-+ x + a is minimal if and only
if {na: nEZ} is dense in G.

The last theorem indicates that ergodic group translations and topological
group translations are closely related. As in the measure theoretical context
there exists also a concept of topological discrete spectrum which is essentially
similar to the one introduced above. But topological group translations have
a further remarkable property.

Definition 1.1.17 A continuous transformation T : X -t X on a compact
metric group is called uniquely ergodic if there exists only one invariant Borel
probability measure on X.

Thus, compact metric abelian groups are uniquely ergodic - their unique
translation invariant probability measure is the normalized Haar measure.
For uniquely ergodic transformations we have the following theorem.

Theorem 1.1.18 Let T : X -t X be a continuous transformation on a
compact metric space. Then the following statements are equivalent:

1. 1/N L~::Olf (Tnx) converges uniformly to a constant for every f E
C(X).

15



.2. liN 'L,~:OIf(Tnx) converges pointwise to a constant for every f E
C(X).

3. There exists aT-invariant probability measure J.L on X such that

N-I .

liN L f(rnx) ~ 1f(x)dJ-L
n=O x

for every x E X and every f E C(X).

4. T is uniquely ergodic.

Thus, for group translations on a compact metric group, the ergodic the-
orem holds not only almost everywhere but for all x uniformly. This fact
is directly connected to the theory of uniform distribution of monothetic
groups. We give a short introduction in Section 1.1.3.

At the end of the present section we turn to another topic of ergodic the-
ory related to our investigations, namely the concept of entropy. We start
with the measure theoretic entropy:

Let X be a probability space. As usual, a partition of X is a set of
disjoint sets whose union is X. We are interested in finite partitions. Let
A = {Al,"" AN} and B = {BI,"" BM} be two finite partitions. Then,

A V B = {Ai n Cj : 1 :::;1 :::;N,l :::;j :::;M}

is again a partition, the join partition of A and B.

Let T : X ~ X be a measure preserving transformation on the probabil-
ity space X with measure J-L.If A = {Al, ... , AN} is a finite partition of X,
we write

H(A)

h(T, A) -

16
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Definition 1.1.19 If T : X ---t X is a measure preserving transformation
on the probability space X, then the entropy ofT, h(T), is definedby h(T) =
sup h(T, A) where the supremum is taken over all finite partitions of X.

As a matter of fact, h(T) E [O,ooJ. For the special case of group transla-
tions, we know the following.

Theorem 1.1.20 Any ergodic translation of a compact abelian group has
entropy zero.

As before, there exists an analogue to the concept of entropy in topolog-
ical dynamics:

Let X be a compact space. We are now interested in finite open covers.
Let A = {Al, ... ,AN} and B = {Bl, ... ,BM} be two finite open covers.
Then, as before, the join of these two open covers A V B is the open cover
given by all sets of the form Ai n Bj, for Ai E A and Bj E B.

If A is an open cover of the compact space X, then N(A) denotes the
number of sets in a finite subcover of A with smallest cardinality. Let T :
X ---t X be a continuous map. Then we set, similar to the above,

H(A) - log(N(A)) and

h(T, A) = lim ~H (\,/ T-1A) .
n-+oo n

i=O

Definition 1.1.21 If T : X ---t X is a continuous transformation acting
on the compact space X, then the topological entropy of T, h(T) = htop(T)
is given by h(T) = sup h(T, A) where the supremum is taken over all open
covers of X.

It can be shown directly that group translations have topological entropy
zero. This follows also from the Variation Principle, which nicely connects
topological and measure theoretic entropy:

Theorem 1.1.22 Let T : X ---t X be a continuous map of a compact metric
space X. Then

htop(T) = sup {hJl(T) : J-L E M(X, Tn,

where M(X, T) is the space of all probability measures on X which are pre-
served by T.

17



1.1.3 Monothetic groups

[18], [27], [29]

As announced, we turn to a special class of topological groups.

Definition 1.1.23 A topological group G which contains a dense cyclic sub-
group is called monothetic.

It is easy to see that monothetic groups are always abelian. According to
Theorem 1.1.10, the concept of monothetic groups is directly related to the
theory of ergodic (topological) group translations. We are mostly interested
in compact monothetic groups. Using duality th!ory, it can be proven that
a compact grotip G is monothetic if and only if G ::; 11'.

Compact monothetic groups have important properties related to the
theory of uniform distribution.

Definition 1.1.24 Let X be a compact space and Il a regular normed Borel
measure on X. Then we call a sequence (Xn)~=l in X Il-well distributed in
X if

N+h

lim ~ f(xn) = r f(x)dll
N-oo ~ lx

n=h+l

holds for every continuous real valued function f defined on X uniformly in
hE7L

By unique ergodicity of ergodic group translations the next result follows.

Theorem 1.1.25 If the sequence (ng)~=l is dense in the compact group G
(i.e. if g generates G) then it is well distributed in G (w. r. t. the Haar
measure).

Finally let G = Z(al, ... ,ad) mod 1. Then G = 1I'd iff the ai, i = 1, ... , d,
are linearly independent over Q. This is equivalent to the fact that the
transformation T : x ~ x + g, 9 = (al"", ad), is ergodic. According to
Theorem 1.1.25, the sequence (ng)~=l is even well distributed. (Again we
point out the relation to Weyl's criterion, see [43]).

Remark 1.1.26 ]' has no order structure. But 11' can be interpreted as
unit interval [0,1) ç IR. after identifying a = 1. Due to this fact, we call
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(connected) sets in '[' which are (translates of) intervals in [0, 1), so before
identifying, again intervals In '['. The same can be done in '['d = [?d /7jf
In fact, sets M ç '['d which are translates (in '['d) of corresponding sets
M' ç [0, l)d before identifying opposite sides will playa central role in the
sequel. In particular we call a set M ç '['a box, a polytope, a convex set, etc.
if its corresponding set M' ç [0, l)d, interpreted as subset of the Euclidean
space [?d is a box, a polytope, a convex set, etc ..

1.2 Hartman sets and sequences

m,~~,~~,~~,~~,~~,~~

The aim of this section is to introduce the concept of Hartman sets and
Hartman sequences in the case G = Z and present several preliminary results.

If G = Z, then ê = '[', i.e. each character X is of the form

X(k) = ka ( mod 1),

where a E '['. Clearly each compactification of Z has to be monothetic.
Following Section 1.1, the Bohr compactification of Z is the dual group of
'II'd ('[' endowed with the discrete topology) or, equivalently, the closure of
{(ka )oE1r,kE:d in '['11". As indicated above, each subgroup A ::; '[' induces
a compactification (CA, LA) by setting I.,A : Z - '['A; LA(k) = (ka)oEA. If
A = (al' ... ' ad), and the ai, i = 1, ... , d, are linearly independent over Q,
then we call (CA, I.,A) ad-dimensional compactification of Z. Let in particular
(Co, 1.,0) be the compactification determined by I.,o(k) = ka. We define 1foo to
be the projection of bZ onto Coo, i.e. (XO)OE1I" 1--7 xoo.

Let G be an LCA group and J-Lits unique normalized Haar measure.

Definition 1.2.1 A set M ç G with J-L(äM) = a is called continuity set.

We focus on continuity sets that are subsets of bZ.

Remark 1.2.2 The continuity sets are generalized Jordan measurable sets.
More precisely, on bZ we have the following situation:
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Since the underlying topology is the product topology, the base sets of the
Bohr compactifications are of the form

(J J) { (k ) b'71 kO:i E la. for all }
B al"'" ad = 0: aET E ILJ: . { 1 'd} ,z E , ... ,

where lai are open intervals (open connected subsets) in Tai (the o:ï's compo-
nent). These sets are clearly continuity sets and can be interpreted as finite
dimensional boxes (finite products of connected components). Let c > a.
Since the Haar measure J..Lb is regular, every continuity set M can be approx-
imated by a compact set K and an open set E such that J..Lb(E \ K) ::;c and
K ç 0 ç 0 ç MO ç M ç E, 0 open in bZ. Compactness guarantees that
there are finitely many base sets BI ç MO, l = 1, ... , LI, which cover 0 and
Bf ç E, l = 1, ... , L2, which cover M \ O. Set

and

Then Bl~IB2 is a finite union of boxes giving an ~~~~~approximation of M
and J..Lb(B2 \ BI) ::; c.

Continuity sets can also be defined in compactifications (CA, loA), A ::; T,
that are factors of bZ. Then M can be extended to bZ by setting M = Ta in
all components Ta of bZ with 0: E T \ A. Conversely, for M ç bZ, let A(M)
be the subgroup generated by

Ao(M) = {o: ET: 7ra(M) ç T} .

Then we call (CA(M), loA(M)) the minimal compactification of M since it only
consists of those components where M is nontrivial.

Let (C, lo) be an arbitrary compactification. The set of all continuity sets
M ç C forms a Boolean set algebra. A continuity set M induces a set
H = lo-l(M) ç Z. Since the compact group C is a monothetic group it
can also be interpreted as ergodic group translation T : x ~ x + lo(I). This
approach allows to define the so called coding sequence of M, i.e., a binary
biinfinite sequence a = a(M) = (ak(M)k)b_oo E {a, 1}Z, via

{
I if klo(l) E M,

ak = a otherwise.

If IH denotes the characteristic function of H, then obviously IH = a.
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Definition 1.2.3 A coding sequence a of a continuity set M is called a Hart-
man sequence. The corresponding set H ç Z is called a Hartman set.

The set of all Hartman sets also forms a Boolean set algebra 71.. On 71.
we can define a (finitely additive) measure by setting

J-L(H) = J-Lb(M) if H = '-E/ (M).

That this measure is well defined follows from the fact that, for continuity
sets Ml and M2 in bZ, H = '-BI (MI) = '-BI (M2) implies J-Lb(Md = J-Lb(M2).

This measure J-Lon 71. has a remarkable property which is of central im-
portance to us.

Theorem 1.2.4 For H EH,

J-L(H) = dens(H) = lim I{n E H n {k, k + 1, ... , k + N - I} }I
N-.oo N

holds uniformly in k E Z.

Sketch of Proof' As indicated in Remark 1.2.2 each continuity set can be
approximated arbitrarily well by finite unions of finite products of intervals.
Thus each approximation depends only on finitely many components of bZ
and Theorem 1.1.25 implies the assertion. For more details see [22]. •

In terms of Hartman sequences this means the following:
If, for a = (an (M) )nEZ = 1H, Ak (N) denotes the number of occurrences of
l's in the block akak+l ... ak+N-I of length N, there exists a bound cM(N) =
0(1), N ~ 00, such that

for all kEN.

Before we present some examples of Hartman sequences, let us point out a
further consequence of the Jordan measurability of continuity sets (cf. [44]).

Theorem 1.2.5 For every Hartman set H there exists a metrizable com-
pactification (C, '-) and a continuity set M ç C such that H = ,--1 (Al).
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Recall that C is metrizable iff the subgroup A ::; 1[' corresponding to
C is countable. Having this in mind, the last theorem verifies the natural
conjecture that a Hartman set (as a countable object) has to be generated
by a continuity set that is nontrivial in at most countably many components
of bZ.

Example 1.2.6 Every finite set is a Hartman set.
Coding sequences of intervals or of boxes are Hartman sequences. In fact

they are basic Hartman sequences in the sense that finite unions of them
approximate other Hartman sequences arbitrarily well.

A different type of example is given by Hadamard sets (also called la-
cunary sequences). These are infinite sets of natural numbers {ai: i E N}
for which there exists a À > 1 such that ~ > À. Such sets are Hartman

ai

sets corresponding to a continuity set of measure O. The same holds for
sets {p(n) : n E N'}, where p is a nonlinear polynomial. For both examples
exist constructions of compactifications with infinitely many nontrivial com-
ponents in which the corresponding continuity sets can be realized in. (Cf.
[22] for the polynomial and [35] for the lacunary case.)

Remark 1.2.7 A detailed study of the concept of Hartman sets and Hart-
man sequences over general LCA groups can be found in [32] and [33]. The
authors also introduce and investigate so called Hartman functions which can
be seen as a generalization of almost periodic functions.

1.3 Complexity

[3], [9], [23], [24], [25], [26]

Let a = (ak)~_oo in {a, lY~or {a, l}Z be an arbitrary binary (bi-)infinite
sequence. To emphasize that we interpret such a sequence as an object of
symbolic dynamics, we also call a an infinite word. For N EN', a block

occurring in a at position i E Z will be a called (finite) subword or factor of
the word a. Its length will be denoted by Iwl.
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Definition 1.3.1 The complexity (function), also called the n-th permuta-
tion number, Pa(n), is the number of distinct subwards of length n occurring
ma.

This concept was introduced in [23]. There is a direct connection to the so
called entropy. Interpret a as an element of the compact space X = {O,1}z.
Let, for x = (Xk)~_oo and y = (Yk)~-oo'

c(x, y) = min {Ikl EN: Xk =I- yd
1

and d(x y) = ---, 1+c(x,y)

Then d respects the (product) topology on X and (X, d) is a compact metric
space. Let furthermore a : X ~ X, a(xn) = Xn+1 be the classical shift
yielding the dynamical system (X, a). Let O(a) denote the orbit closure of
a under a in X (i.e. O(a) = {ak(a) : k E Z} ç {O, 1}Z). Then

h ( ) - l' 10g(Pa(n))
top a, a - 1m ----,

n-+oo n

where htop(a, a) denotes the topological entropy of the transformation a act-
ing on O(a). This indicates that the complexity can be interpreted as a
refinement of the topological entropy.

The complexity function can be defined for any finite alphabet A = {al,
a2, ... , an}' In our case A = {O,1} we immediately get the trivial bounds
1 ::; P(n) ::; 2n. A first easy result (see for instance [25]) indicates how the
complexity of a sequence a is related to its structure.

Theorem 1.3.2 Let a be a binary (bi- )infinite word. Then the following
assertions are equivalent:

1. a is purely periodic (ultimately periodic if a is a one sided infinite word).

2. Pa (n) is bounded.

3. Pa(n) ::;n for an n E N.

4. Pa(n + 1) = Pa(n) for an n E N.

Theorem 1.3.2 indicates that complexity is related to periodicity. Non-
periodic sequences have at least complexity P( n) ~ n + 1.
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Definition 1.3.3 A binary (bi-Jinfinite and not ultimately periodic word a
with Pa( n) = n + 1 is called Sturmian word.

Sturmian words are well studied objects with several remarkable proper-
ties. The most important ones for our purpose will be investigated in the
next section. First we present a different characterization as well as two
examples for Sturmian words.

1. Sturmian sequences are the non (ultimately) periodic balanced words
over a two letter alphabet. A word a is called balanced if the number
of occurrences of a letter in any two subwards of a of the same length
differs at most by one in absolute value.

2. Let l : y = ax + .x, a,.x E JR., be a line in JR.2. Starting at any point
(xo, Yo) E l we define its so-called cutting sequence by increasing x 2:: Xo
and concatenating

a
1
10

whenever (x,y) Eland
x E Z and Y E IR\ Z
x E IR\ Z and y E Z

x,y E Z

•

Such cutting sequences define Sturmian words if a E JR. \ Z. A related
definition can be obtained using square billiard sequences.

3. A substitution is a mapping from an alphabet into the set of finite
words on this alphabet. Let a(O) = 01 and a(l) = a be the Fibonacci
substitution. Clearly this substitution can be extended to a mapping
on binary words. Starting with Wo = a let Wn = a(wn-d. Then the
word W = limn-+oo Wn in {a, l}Z endowed with the product topology is
a Sturmian word, called the Fibonacci word .

1.4 Complexity and Hartman sequences
[1], [2], [3], [9], [25], [35]

Per definition, Hartman sequences are binary biinfinite words. What can
be said about the complexity of Hartman sequences? In this chapter we treat
this question.
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If a is a Hartman sequence corresponding to the continuity set M ç (e, ,,),
we will write PM,~(1'),)iriste-aaof Fa:(n) to point outthe -corinectiOn to the cor-
responding coded continuity set.

Note that finite compactifications always induce periodic Hartman se-
quences. As we know the complexity of such Hartman sequences is always
bounded. Thus the more interesting case is the one of an infinite compacti-
fication.

1.4.1 A general criterion and some consequences

[1], [2], [35]

Following [35], we first present a general criterion: Let (e,") be a com-
pactification of Z and 0'= ,,(1) the generating element of e. Let M ç e be
a continuity set. Let a = a(M, ,,) be the Hartman sequence corresponding to
M. Let W = WOWI ... WN-l be any binary word of length N. Obviously W is
a factor of a if there exists some i E Z such that (i + L)a E M if and only if
WI = 1 (i.e. iff there exists an i E Z such that aHI = WI, L = 0, ... , N - 1).
This is equivalent to

N-l

ia E M(w) = n (Ml - La),
1=0

where Ml = M if al = 1 and Ml = e \ M otherwise.
Note that by density such an i exists whenever M(w) contains an open

set. Since M(w) is even a continuity set the word W occurs in a with uniform
frequency }le( M (w )) .

This criterion immediately allows to compute the complexity of Hartman
sequences stemming from an interval and an irrational a - such Hartman
sequences will be called one dimensional Hartman sequences.

Let I be any interval on the torus (open, closed, halfopen) with boundary
points a and b. (In fact, the subsequent idea also works for coding sequences
of a finite union of intervals.) Each w E {a, I}N defines the set

N

Pw = nUi - ia),
i=l
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where Ii = I if ai = 1 and Ii = 1I' \ I otherwise. If a =1= b + ka, for all k E Z,
ageometric argument shows that, for N sufficiently large, eäch Pw which
occurs is an interval of positive length. Moreover, the number of nonempty
Pw equals 2N. Thus by the criterion presented at the beginning of this
section P[(N) = 2N. (See [1] for a details.) If I is halfopen and if there
exists an k E Z such that b = a + ka, then the same argument shows that
P[(n) = n + k for n ~ k. This implies in particular the following assertion.

Theorem 1.4.1 The coding sequence of a halfopen interval I ç 1I' by an
irrational a is a Sturmian sequence if and only if IllE {a, 1- a}.

Remark 1.4.2 Let C be a compactification of Z. Remark 1.2.2 shows that
for every é > 0, every continuity set M can be approximated by two sets
Mi, i = 1,2, which are finite unions of finite products of intervals Iaj ç 1I'aj
such that Ml ç M ç M2 and P,c(M2 \ Ml) ~ é. Moreover, each interval
Ia ç 1I'a can be written as a finite union of finite intersections of intervals of
lengths a inducing Sturmian words. Therefore for each Hartman set Hand
for every é > 0, there exists a Hartman set H' induced by a finite union of
finite intersections of Sturmian sequences such that dens(H \ H') ~ é.

Coding sequences yielding Sturmian words are (aperiodic) Hartman se-
quences of minimal complexity. It is natural to ask for upper bounds of the
complexity of Hartman sequences.

1.4.2 A universal upper bound for the complexity of
Hartman sequences

[40]

At first glance the definition of topological entropy and the general crite-
rion presented in Section 1.4.1 seem to be directly connected. Since htop(T) =
o for an ergodic group translation T, one conjectures that the complexity of
a coding sequence is subexponential. The following easy example shows that
this does not hold in general.

Example 1.4.3 Let a = (an)~=l be the concatenation of the binary expan-
sions of all natural numbers (i.e. take the digits of Champernown's number
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0.12345 ... ). Let g = 1.(1) be the generating element of any infinite compact-
ification(e, t) of Z. Let A = {k EN: ak = I} and S = Ag ç e. The coding
sequence of S is a and Pa(n) = 2n.

Clearly, S is no continuity set (otherwise A had a uniform density). For
Hartman sequences, the above conjecture holds. Before presenting a direct
proof of the next theorem we sketch how h(T) = 0 can be applied to obtain a
proof of it based on the strong Variation Principle (see Theorem 1.1.22). We
will also discuss why htop(T) = 0 does not help immediately. The insights
obtained in this way motivate our idea of the direct proof.

Theorem 1.4.4 For any compactification (e, I.) of Z and any continuity set
M ç e the complexity Pa(n) of the corresponding Hartman sequence a = 1H
with H = I.-I(M) satisfies

lim log Pa(n) = O.
n--+oo n

Sketch of proof using the Variation Principle: The Hartman sequence a in-
duces the topological space X = (O(a)u) ç {O, 1}z. We must show that the
topological entropy of the shift W.r.t. this space is O. The density of the
subwords of a implies a so-called block distribution (this concept is intro-
duced and studied in [35]) which can be uniquely extended to a measure /J on
X. The measure theoretic entropy of the underlying group translation is O.
Hence also the measure theoretic entropy of a is 0 W.r.t. /J. Since Hartman se-
quences can be equipped with a uniform density the system (X, a) is uniquely
ergodic. Therefore, applying the Variation Principle, htop(a) = h(a) = O.•

Before we present the direct proof of the last assertion, we discuss why
htop(T) = 0 cannot immediately be applied to the general criterion of Section
1.4.1.

Let d be a T invariant metric on e (w.1.o.g. we can assume that e is
metrizable). According to the definition of the entropy we have to start with
an open cover 0 of the compact group C. For é > 0, one natural candidate
to obtain an estimation for the complexity would be, for instance,
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where Be denotes the open ball with center 0 and radius é and + denotes
the complex sum. Following Section 1.1.2, htop(T) is given -by

l
, log (N (V~:OIT-i Ae) )
Im--------

n-+oo n

for all é > O. For any open cover 0 of C, N(O) denotes the number of open
sets in a finite subcover of C with elements of 0 of minimal cardinality.

Let 0 be an arbitrary open cover of C. Let 6 > 0 be the Lebesgue number
of 0 (Le. each subset of diameter less than 6 is contained in one element
of O. Such a 6 exists due to the Lebesgue covering lemma.) Let F be a
6/2 spanning set of C, i.e. for all cEe there exists an x E F such that
d(c, x) ::; 6/2. Let N(6) = IFI. Assume that x E F. Since T is an isometry
(w.r.t. the metric d), Ti(B(x,6/2)) is contained in an element Ai E 0 for
all i E N. Thus, for all n E N, nZ:ol T-i(Ai) ;2 B(x,6/2). This holds for all
xE F. Hence

N C1.riA,) 50 N(6)

holds for all n E N. Thus, the entropy htop(T) of a given partition actually
only depends on the cardinality of a spanning set. It does not respect the
contributions of the boundary of the partition sets to htop( (Y).

For instance, using the open cover Ae defined above for Example 1.4,3,
clearly N (VZ:0

1 T-i Ae) = 1 for every é > 0 and n E N. But as Example
1.4.3 shows, the boundary can even induce maximal complexity.

These observations show that all we must do is to understand how many
sets Pw, given by the criterion introduced in Section 1.4.1, are contained in
an open set of diameter 6 > O. (Note that this is independent of the concept
of entropy.) This is the idea the following proof is based on.

Direct proof: Let d be the metric for the topology on C. Let 9 = £'(1) E C
denote the generating element of the compactification.

We write M' for the complement C \ M and M6 for the set of all x E C
with d(x, y) < 6 for some y E M. Fix é > O. Using the regularity of the
Haar measure Itc and the ltc-continuity of M, we obtain Ite( R) < é for
R = (Mo! \ M) U (M~! \ M') whenever 61 > 0 is sufficiently small. By a
standard argument we may assume that R is a continuity set. At least one
of the sets M and M' has nonempty interior. By symmetry, we may take
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for granted that this is the case for M. Therefore there is some open ball B
with <::enterx and positive diameter 8 < 81/2 with B ç M. For the sake of
simpler notation we assume x = a.

Let Wl denote the set of all binary words ao ... al-lof length i with ak = 1
whenever kg + B ç M and ak = a whenever kg + B ç M'.

By compactness of C, there is some No E N such that

No-l

Cç U (-ng+B),
n=O

showing that for every y E C there is some n E {a, 1, ... , No - I} with
y+ng E B.

Thus any word w of length No + l occurring in a lies in some of the sets
W No+l,i, a ::; i ::;No - 1, consisting of all words

with aOal'" al-l E Wl and bobi ... bNo-l E {a, l}n. Since IWNo+l,il = 2N°IWzI,
this shows Pa(No + l) ::; No2N°IWzI.

Note that each translate y + B is totally contained either in M or in M'
whenever y tf. R. Thus, by the uniform distribution of (ng)n in C, the subset
T ç Z of all k E Z such that y = kg et R has density J-lc(C \ R) > 1 - é.

It follows that IWzI ::; 22d, hence Pa (No + l) ::; No2No+2d for l sufficiently
large. This yields

log Pa(No + l) ::; log No + (No + 2éL)log 2

and, for n = No + i,

1. log Pa(n) l' log No + (No + 2éL)log 2 2 1 21msup ----::; 1msup l::; é og .
n-+CXl n l-+CXl No +

Since é > a can be chosen arbitrarily small, this proves the theorem. •
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1.4.3 A Hartman sequence of arbitrarily subexponen-
tial complexity

[40]

We are going to show that the bound deduced in Theorem 1.4.4 is best
possible.

Let (C,t) be any infinite group compactification of Z and cP : N ---+ N.
Suppose 1>(n) = Enn ~ n with limn-+oo En = O. We have to show that there
exists a continuity set M ç C such that the Hartman sequence a := IH with
H = t-1(M) fulfills Pa(n) ~ 2<1>(n).

By Theorem 1.2.5 it suffices to prove the assertion for metrizable C. By
Section 1.1.1 there is an invariant metric d for the topology on C .

For c E C, we write Ilcll = d(c,O). For each n E N choose a subset H(n)

of {O, ... , n - I} of cardinality An ~ Enn and containing 0 such that the
diameter dn of t(H(n)) is minimal. We claim that limn-+oodn = O.

Otherwise, we can find a sequence ni < n2 < ... and a 6 > 0 such that
dnk ~ 26 for all k. Further, there is some r E (0,6) such that the open ball
B with center 0 E C and radius r is a continuity set. By construction, the
lower density of the set of all n with t(n) E B is at most Enk for all k. By
uniform distribution of t(n), the lower density is a density and coincides with
the Haar measure, hence J.1-( B) ~ limk-+ooEnk = O. This contradicts the fact
that nonempty open sets have positive measure.

Let now Hn(O), Hn(1), ... , Hn(2A
n -1) be an enumeration of all subsets of

H(n). Define recursively mn(O) = 0 and mn(i+ 1) to be the minimal integer>
mn(i)+n such that IIt(mn(i+l))1I < dn. We put Hn = U~~~-I(mn(i)+Hn(i)).
Obviously Hn is a finite set of nonnegative integers bounded by, say hn E N.
Observe furthermore that, by construction, IIt(h) II < 2dn for all h E Hn.
Define, again recursively, la = 1 and ln+l to be the minimal integer> ln + hn
such that Ilt(ln+l)11 < dn. For the union H = U~=o(Hn + ln) this implies
limn-+OO,nEHt(n) = O. Thus, M = t(H) is a countable closed subset of C
with the only accumulation point 0, hence a continuity set of measure 0 and
H = 1,-1 (M) is a Hartman set.

In the corresponding Hartman sequence, each Hn induces at least 2A
n

different binary words of length n. Thus the complexity function P( n) is
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(1.1)

bounded from below by

P(n) ~ 2An ~ 2enn = 2<t>(n).

This construction generates a zero set M. Hence each word in a con-
taining the letter 1 has asymptotic density a. It would be nice to obtain a
positive frequency for many words. Let therefore M = {a, ml, m2, ... } be an
enumeration of M. There are on > a with On ---+ a such that balls Bn, n E N,
with center mn and radius On are pairwise disjoint continuity sets. Replace
M by the union of all Bn, which is again a continuity set. This shows:

Theorem 1.4.5 Let (C, L) be any infinite group compactification of Z. As-
sume cjJ(n) ::;:nand cjJ(n)= o(n) for n ---+ 00. Then there exists a continuity
set M ç C such that its Hartman sequence a := It-I(M) fulfills Pa(n) ~ 2<P(n).
Furthermore, M can be chosen in such a way that for each n E N at least
2<P(n) words of length n occur in a with strictly positive density.

1.5 One dimensional Hartman sequences
[7], [25], [35]

The aim of this section is to analyze the structure of Hartman sequences
H = ,,~l(M) where M is a connected subset of the torus.

Coding sequences generated by an a E Ql are always periodic. The more
interesting case is a E 'Ir* = 'Ir \ QljZ. The structure of coding sequences of
intervals with an irrational a can be described in several ways. We mention
a few of them.

Let I = [a, b) ç 'Ir be an interval (observe that the subsequent computa-
tion works both for closed and open intervals). Let a E 'Ir. Then

ka EI{::=> ka - l E [a,b) for an lEZ
{::=> ka E [a + l, b + l) for an lEZ

[
a+l b+l)

{::=> k E ~' --;- for an lEZ.

Thus,
H = ,,~1(I) = U{kn, ... , Kn},

nEZ
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where kn = r a~n 1 and Kn = l b~nJ. (Here, for x E IR, we write rx 1 (lx J) for
the least integer greater or equal x (greatest integer less or equal x).)

If we have a Sturmian word induced by an interval I = [b - a, b) and a
rotation angle a, equation (1.1) can be rewritten as

b+l
ka E I {::::::}k E -- - [1,0) for an lEZ,

a

i.e., the Hartman set H can be written as generalized arithmetic sequence
(l b~l J) lEZ' Such sequences are called Beatty sequences. Thus, there is a
one-to-one correspondence between Sturmian and Beatty sequences.

For a more detailed study of the structure of Hartman sequences induced
by one dimensional compactifications, the theory of continued fractions turns
out to be a powerful tool. Let a E 1['*. Then

a = 1-1-- = [0; aI, a2,"'] = lim Pn,
n-+oo qnal+---

a2 + ...
where al, a2,'" E N, Pn = anPn-1 + Pn-2, P-I = l, P-2 = 0 and qn =
anqn-l + qn-2, q-l = 0, q-2 = 1. The fractions Pn/ qn are called convergents
and the ai are called partial quotients. The next theorem presents two basic
facts of the theory of continued fractions.

Theorem 1.5.1 Let a = limn-+oofu. The sequence ({qna})n>l is best ap-~ -
proximating in the sense that lIlali> IIqn-Iall, for altl E {I, 2, ... , qn - I},
(n EN). (As usual, {x} denotes the fractional part of x E IR.) Moreover,
{q2na} ({q2n+Ia}) tends to 0 from above (below).

If a E 1['* we can use Theorem 1.5.1 to define an ordering on N which is
directly related to the partition of 1[' induced by the multiples of a): Using
the Ostrowski expansion of N, we can write an n E N as

00

n = Lbi (n)qi =: (bi(n))~O'
i=O

where
bo(n) E {O, l, 2, , al - I} and, for i ~ l,
bi(n) E {O, 1,2, , aHI - l, aHd,
and bi(n) = aHI only if bi-l (n) = O.
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A sequence (bi)i~O fulfilling the conditions (*) is called admissible W.r. t. a.
As a matter of fact, for each ßE T there- exists an admissible sequence
(Vn(ß))n~O such that ß = E~=o{Vn(ß)qna}. This sequence is essentially
unique (Le.up to infinitely periodic expansions).

Let (bdi~O and (bDi~O be two admissible sequences. We write (bi)i>O -<
(bDi~O if there exists an I E N such that

1. bi = b~ for all i < I and

2. bI < b~ if I is even and bl > b~ if I is odd.

Using the properties mentioned above, it is not hard to see that {na} < {n' a}
(in terms of the order on [0,1)) iff (bi(n))ßo -< (bi(n'))ßo (abbreviating we
write n -< n' if {na} < {n' a} ) and analogously, for ß ET, {ß} < {na} iff
(Vn(ß))n~O -< n.

Theorem 1.5.2 Let I = [a, b) ç [0,1) be an interval interpreted as interval
on T. Let a = [0, al, a2 ... J = limn----+oo E!!. E T*. Pick for every x E {a, b, 1 -qn
a, 1-b} an admissible sequence (Ui(X))i~O such that x = E:{Ui(x)qia}. Let

HI {n E No : (Ui(a)k~o -< n -< (Ui(b))i~O}
H2 {n E No : (Ui(l- b)k~o -< n -< (Ui(1- a))i~O}'

Then H = HI U (-H2).

Proof: As mentioned above, we know for n E N that {na} E [x, y) iff

Symmetry of the sequence (nan)~=l w.r.t. 0 = 1 finishes the proof. •

Theorem 1.5.2 can be directly generalized to arbitrary intervals in T. It
already gives a very detailed description of Hartman sets induced by inter-
vals. In fact, this description allows to characterize Hartman sequences which
are coding sequences of intervals by an irrational a.

First we will analyze Sturmian sequences corresponding to an a and I =
[0, a). Then the following is a well known consequence of Theorem 1.5.2 (cf.
[25]). It points out the connection between the structure of a Sturmian word
and the continued fraction expansion of the corresponding rotation angle a.
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Theorem 1.5.3 Let 0 > 0 be irrational. Let H= (LnOJ)~=1be the Beatty
sequence corresponding to tlre Sturmian word induced by 1/0 coding the in-
terval I= [0, I/O). Let 0 = [1 + to; tl, t2, ... J E IR. Let W-2 = l, W-I = 0 and
Wn = W~~IWn-2' Then Wn ~ IH in {O, 1}N.

For n E N, we know that na E I = [0, a) iff n = Le; bi(n)qi and,
according to Theorem 1.5.2,

(bi(n))~l - (100000000b2k+lb2k+2b2k+3"') and
b2k+1 > 0 and b2k+i ~ 0 for i > 1 or

(bi (n ) )~ I (000000000b2kb2k+ I b2k+2 ... ) and
b2k > 0 and b2k+i ~ 0 for i ~1.

Then the following numbers occur in the induced Beatty sequence

n
n + ql kl such that

bl(n) + kl = Xl

n + q2
n + q2 + ql

k2 such that
b2(n) + k2 = X2.

Here Xl = a:~l if bo(n) ;~, X2 = a:~l if bl(n) ;~, etc. Note that we started
with an arbitrary n. By density of the sequence (na)nEN any segment of a
Beatty sequence has the structure described here.

Instead of technical calculations using continued fractions we will now
establish a geometrical approach to prove a theorem characterizing interval
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coding sequences. Let 0:: E (0,1/2), i.e. 0:: = [0, aI, a2, a3, ... J and al > 1.
(By symmetry, the case 0:: E (1/2,1) can-be treated (mutatis mutandis) anal-
ogously.)

Let a E 1I'. Let I = [a, a + 0::). Let H = {n EN: no:: E I} be the induced
Hartman set. We call r(n) = min{j EN: (n + j)o:: E I} the return number
of 0:: and n. It is easy to see that r(n) E {l1/o::J, ll/o::J + I} (in fact, this is a
consequence of Theorem 1.5.2). In terms of continued fractions, this means
r(n) E {al, al + I}.

But al = ql, the denominator of the first convergent. Hence (no::)n2:)
rotates in I either by the angle Ilqlo::ll (if (n + qdo:: E 1) or by Ilq)o:: + 0::11

(rotation in I means we focus on no:: E I for n E H). According to the
assumption 0:: E (0,1/2) we know that qlO:: E (1/2,1), and thus IIqlo::ll <
IIqoo::ll = 0::. Let I = Il U 12, where Il = [a, a + IIqlo::ll) and 12= I \ Il. Let
no:: E Il. This is equivalent to (n + ql)O:: tJ. I, i.e. r(n) = al + 1. Since

no:: - a +-----(=distance of no:: to a)
a + 0:: - (no::+ qlO:: + 0::) = qlO::,
~ J~

(=distance of (n + r(n))o:: to a + 0:: )

the rotation by qlO:: acts in I like a rotation modulo 0::. The rotation angle
is IIqlo::ll. Thus we can interpret the rotation as rotation of ß = Ilq)o::ll/o::
modulo 1, i.e. on the torus. Let nI be the least positive element of Hand
s = InlO:: - al. Translated to the torus it follows that {kß} codes the interval
Iß = (s/o::-ß, s/o::] mod 1. Let nE H. Write 1 whenever r(n) = ql + 1 and 0
otherwise. Hence that we write 1 iff no:: E Il, n EH, or equivalently whenever
kß E Iß modulo 1, k E Z. Then we know already that this procedure yields
a Sturmian sequence. In other words, we have verified the following fact:

Lemma 1.5.4 Let r = (r(n))nEZ E {q,p = q+ I}Z be the sequence ofreturn
numbers of 0::. Then r is a Sturmian sequence over the two letter alphabet
{p, q}. r coincides with the Sturmian sequence generated by ß = IIql 0:: II/0::

coding the interval I ß on 1I'.

Remark 1.5.5 An iteration of this procedure gives a geometric counterpart
to Theorem 1.5.3. In fact, the return number of qlO:: in an interval 0:: as de-
scribed above is a2 or a2 + 1 (the second partial denominator of 0::). Thus the
total return number (in terms of 0:: in 1I') is a2al + 1 = q2 or q2 + ql the latter
one if qlO:: lies in an interval oflength q20:: (as for the interval h above), etc ...
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Lemma 1.5.4 is related to questions treated by Vuillon et al. about so-
called return words (cf. [28],-[41]).

Lemma 1.5.4 shows that one dimensional coding sequences are always
closely related to Sturmian sequences. More precisely, if the return numbers
r(n) are in {q, q + I}, there exist possibly up to 2q+1 words of length q + 1.
Which words appear depends on the structure of the coded set M. Consid-
ering the global structure, i.e. the return numbers, always yields a Sturmian
sequence. If a is a coding sequence of a complicated continuity set M it
might be very difficult to find the return numbers of the corresponding 0:.

(We present a method how this can be done in Section 2.3.1.) But if M is
only an interval it is easy. We present here an example how to characterize
Hartman sets H = Wo = {k E Z : ko: E M = 1l'+ = [-1/4, 1/4]}. Such sets
are important for the investigation of so-called quasi convex sets (cf. [7]).
Partitions induced by intervals of length 1/2 were also studied by G. Rate,
cf. [34]. Let n = {W ç Z : (30: E ll')W = Wo}. Coding sequences of general
intervals can be characterized in a similar way.

Theorem 1.5.6 Let W ç IE be a set such that:

1. The sequence w = 1w is a concatenation of 3 basic blocks B, B+ and
B-. These basic blocks have one of the following structures:
Case 1: There exists a kEN such that

B = 11 ... 1 00 ... 0, B+ = 11 ... 1 00 ... 0, B- = 11 ... 1 00 ... a .
'-v--''-v--' '-v--''-v--' '-v--''-v--'

k k k k-l k-l k

Case 2: There exists a kEN such that

B = 11 ... 1 00 ... 0, B+ = 11 ... 100 ... 0, B- = 11 ... 1 00 ... a .
'-v--''-v--' '-v--''-v--' '-v--''-v--'

k k k+ 1 k k-l k+ 1

2. The biinfinite word a( w) E {a, l}Z determined by wand the substitution
a defined by a(B) = 1 and a(B+) = a(B-) = a is Sturmian.

Let 0:1 = [0, a2, a3, ... ] E 1l' correspond ta the Sturmian ward of 2. Let al =
min{IBI, IB+I} according to 1 and 0: = [0, aI, a2, ... ]. Then WEn iff W =
Wo.
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Proof: Let a = [0, aI, a2, ... J E (0,1/2) n 'Jr•. Let I = [-1/4, -1/4 + a).
Let, as above, I = h U 12, II =[-1/4, -1/4 + Ilqlall), 12 = I \ II' Let,
for n E Co: (I), r( n) E {al, al + I} be the return number of n (recall that
(r(n) = al + 1 iff nEId. Let x E I be such that x + ka = 1/4 for k < al'
Two cases are possible: (Case 1) If al is odd, then x E 12, or (Case 2) if
al is even, then x E II' Both cases correspond to the cases described under
condition 1, i.e. k = (al + 1)/2 or k = ad2. Thus, for WEn one of
these two possibilities holds. Moreover, by Lemma 1.5.4, such a lw fulfills
condition 2. But these two conditions determine a, so the only possibility is
W=~. •
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Chapter 2

Aspects and applications of
Bohr sets

In Chapter 1 (generalized) Bohr sets

i.e. the base sets of the Bohr topology in Z, appeared at several positions
(the classical Bohr sets which will be used in Section 2.2, induce a base at
0). The aim of this chapter is to analyze the combinatorial structure of such
Bohr sets as well as to present further applications of them.

2.1 Complexity and Bohr sets
[40]

In this section we present a new method how to compute the asymptotic
growth rate of the complexity function when the coded continuity set is a
rectangle in a finite dimensional compactification, i.e. the Hartman sequence
is a Bohr set. The ideas introduced here will be extended in the last chapter
in order to establish a connection between the complexity of coding sequences
and convex geometry.

Let C = 'lI's be a finite dimensional compactification with generating
element g = (al, ,as) modulo 1, i.e.": k ~ kg = k(al, ... ,as), where
the family {I, al, ,as} is linearly independent over Z (such (kg h are also

38



called Kronecker sequences), and M a box in TS. To be more precise we use
- the following- notational convention (corresponding to the concept of intervals
described before).

TS = (]R/Z)S = K(]RS) is the image of the additive group ]Rs under the
mapping K = Ks : (Xl"," XS) ~ ({xd, ... , {xs}). As before it is useful
to think about boxes in TS as images of boxes in ]Rs etc. To avoid too
cumbersome notation we therefore write, for instance, Il;=I[-pj/2, pj/2),
Pj E (0,1) also for the set M = Ks(Il;=I[-pj/2, pj/2)). It is natural to
call a set M = Il;=l [mj, mj + Pj) ç TS an s-dimensional box in TS with
side lengths Pj, j = 1, ... , s. We are now interested in Hartman sequences
a = lH, H = ,,-I(M), for this kind of M and call such a Bohr sequences
(corresponding to the Bohr sets).

Let us fix a box M of side lengths Pj, j = 1, ... , s, and assume that no Pj
is in ajZ+Z. We are going to determine the asymptotic behaviour of Pb(n)
for the Bohr sequence b = lH, H = ,,-I(M). To do so, we will estimate
the number of words of length n "starting" in a small cube Co - we call this
number local complexity of Co (see equation 2.1 for the precise definition).
We obtain bounds for the local complexity by estimating the number of par-
tition cells in Co induced by aM - ja, j = 0,1, ... , N. For this estimate we
use the uniform distribution of the sequence (ng)~=o and the geometry of M.
More precisely:

We will use the following notation: For a word w = ao ... an-l E {D, 1}n
we introduce the set

Aw := {X E TS
: (X + ig EM<=> ai = 1) for i = 0, ... , n - I}

and write w = w(x) for X E Aw. Note that, provided Aw =I 0, Aw has inner
points. Because of the density of the set {ng : n E N}, the continuity of T
and the special form of M this implies

To compute the number of all nonempty Aw, we first consider a half open
cube Co := Co + [-(J /2, (J /2)5 ç TS with center Co and side length (J < Pj for
all j = 1, ... , s. We are going to estimate the local complexity function

P(Co, n) := IWI for W = W(Co) := {w E {D, l}n : Aw n Co =l0}. (2.1)
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Note that for k cubes Cl, ... , Ck in 'IT's with disjoint closures we have

k

Pa(n) ~ L P(Cj, n)
j=l

for sufficiently large n. This holds because, due to the well distribution of
the sequence (ng)~=l' for any two cubes Cl and C2) with disjoint boundary
there exists an n E N such that Cl + ng ç M and C2 + ng ç ('IT's\ M).

As above, Aw n Co =1= 0 implies J1.c(Aw n Co) > a. Hence P(Co, n) is the
number of different words w = bi ... bi+n-l of length n in b with ig ECo.
Define

and furthermore, for each j = 1, ... , s,

p' (J p (J
{X = (Xl,"" Xs) E Ml : Xj < _-2. + - or Xj > -2. - -},2 2 - 2 2
Q~j) \ U Q~j').

j'#j

Observe that the sets Q~) (in contrast to the Q~j») are pairwise disjoint.
For w = ao ... an-l in W note that

(Co + ig E Mo => ai = 1) and (Co + ig rt Ml => ai = 0).

This shows that for w = ao ... an-l and w' = a~ ... a~_l in W the letters ai
and a~ can differ only if Co + ig E r. Since r = U;=l Q~j), we define, for
j = 1, ... , sand l = 0, 1,

I?)'- {iE{a, ... ,n-l}:Co+igEQ~j)},
s

Il U Il(j).

j=l

Due to the special geometric situation (Co and M are boxes, see also
Figure 2.1), for X = (Xl"", Xs) ECo, w = w(x) = (ai(X))O~i<n E W,
j E {I, ... ,s}, the tuple (ai(x))iEI6j) depends only on Xj, namely in the
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M

~Co

Figure 2.1: ad proof of Theorem 2.1.1

following way. Let Xj = [Yo, Yo + fI) be the interval for the j-th coordinate
of points in Co. Then for each i E I6j) there is one point Yi (namely either
pj/2-ig or -pj/2-ig) such that Yi splits the interval Xj into two subintervals
X;o) and xj1) such that ai(x) = 0 for Xj E xjO) and ai(x) = 1 for Xj EX?).
Since Pj t!. O'./Z + Z, all Yi, i E I6j), are distinct. As a consequence, the
mapping Xj 1---+ (ai(x))iEI~j) takes at least II6j) + 11 different values, hence

Aj = 1{(ai(x))iEI(j) : xE Co}1 2 II6j) + 11-
a

Since the sets I6j), j = 1, ... , s, are pairwise disjoint and all coordinates j
can be treated independently, we conclude

s

P(Co, n) = IWI 2 II(II6j)1 + 1).
j=l

For é > 0 we know by uniform distribution of the sequence (ng)n that

II6j
) I 2 1-£( Q~))n - én
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for n sufficiently large. Since J.L(Q~)) = 2 rr;=I,Ni(Pj - a)a, j = 1, ... , s, we
get -

s s

IWI~nsIT(2 IT ((pj-a)a-c)
i=1 j=I,Ni

for n sufficiently large. Thus we obtain

. . P(Co,n) sITS ( ITS ( ) )hm mf --- ~ 2 Pj - a a - c
n-+oo nS

i=1 j=l,Ni

for all c > 0 and therefore

liminf P(Co,n) ~ 2SIT
s

ITs (Pj - a)a.
n-+oo nS

i=1 j=I,Ni

As a consequence of uniform distribution we know that d(x, x') > b implies
w(x) =1= W(X') if the words are sufficiently long. Thus W(Co) and W(Cb) are
disjoint whenever two cubes Co and Cb are separated by a strictly positive
distance b. Fix now kEN and consider the disjoint cubes Cl, ... , Cks with
centers Ci = (mïfk), mi E {O,... , k - I} and side length a = 1/ k - b,
o < b < t. We get

, . Pb(n) I:kS
. . P(Ci, n) 1 ITs ITs 1hmmf-- ~ hmmf---~ kS2S( __ b)S (Pj - - +b).

n-+oo nS n-+oo nS k k
i=1 i=l j=l,Ni

Since this holds for all b > 0 we can consider the limit b -+ 0 to get

Pi ( ) s S S

I' . f b n kS2s 1 IT IT ( 1) S IT( 1 )S-1
1~~ -n-s- ~ ks Pj - k = 2 Pj - k .

i=l j=l,Ni j=1

For k -+ 00 this finally shows the lower bound

1. . f Pb(n) > 2s ITs s-lImm --- - PJ"
n-+oo nS

j=l

To obtain an upper bound for the complexity we consider instead of Aj as
defined above the numbers

42



Note that the sets I~j), j = 1, ... ,5, are (in contrast to the sets 16j
)) not dis-

joint. This implies that ai(x) possibly depends oh more than" one component
of x. Comparison with the argument for the lower bound shows that the rel-
evant mapping Xj ~ (ai(x)). /(;), x E Co, can only take one additional value,

tE 1

namely the zero word ai (x) = 0 for all i E l~j). Thus arguments similar (in
fact even simpler) to those above show that IBj I :::; II~j) I + 2 and finally

Since the same argument applies if M is not centered at 0 we have proved:

Theorem 2.1.1 Consider an ergodic translation T : x ~ x + 9 on 1I's with
9 = (al,"" as)' Assume Pj E (0,1) \ (ajZ + Z) for all j = 1, ... ,5. For
mj E [0,1), j = 1, ... , s, let M = n;=l[mj, mj+pj) denote an s-dimensional
box of side lengths Pj, and b the corresponding Bohr sequence. Then the
complexity function of b satisfies

lim _R_b_(n_) = 2S ITs ps-I.
n-+oe nS Jj=l

Remark 2.1.2 1. Complexity and volume versus surface: Let V(M)
denote the volume of a box M in 1I's and vi(M) = n;=I,NiPj the (s - 1)-
dimensional measures (surfaces) of the facets of M. Then our result can be
written in two ways

s s

2s IT prl = 2SV(M)S-1 = 2s IT vi(M).
j=l i=l

Consider first M' := MoUMI' where Mo and Ml are disjoint translates of M.
The same argument as in the proof of Theorem 2.1.1 shows that M' induces
a Hartman sequence a' of complexity

lim Pa,(n) = 2s ITs (2vi(M)).
n-+oe nS

i=l

Comparison with the value 2S n:=l vi(M) for each component Mi, i = 0,1,
indicates that the complexity is related to the surface rather than to the
volume.
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On the other hand we can apply an automorphism A of 'IrS (i.e. A E
SL(s,Z)) to 9 = (al"" ,as) and a box M yielding a parällelepipedA(M).
A changes neither the corresponding Hartman sequence nor the volume of
M while the surface measures may change.

A more systematic investigation of the impact of the geometry of more
general sets M on the complexity of the corresponding Hartman sequences
will follow in Chapter 3.

2. Dropping linear independence: Those i E {I, 2, ... , d} for which
there exists a kEN such that Pi = {kai} are called k-,--dependent. Since the
ai are irrational each Pi is k-dependent for at most one kEN. Let

S. _ { DC n (C - ka)
t - 0

if i is k-dependent,
otherwise.

Use the notation introduced in 1. Then an investigation of the proof shows
that the formula of Theorem 2.1.1 has to be changed to

3. Complexity determines dimension: Theorem 2.1.1 shows that, know-
ing Pb (n) and knowing that M is a box (of some unknown dimension sand
unknown side lengths Pj) it is possible to derive s and, if the involved pa-
rameters are linearly independent, V(M).

4. Connection to Section 1.4: Setting d = 1, we see that Theorem
2.1.1 indeed extends the results obtained in Section 1.4. Moreover we point
out that the main idea to estimate the total complexity via the local com-
plexity (see equation (2.1) for the definition of the local complexity) can be
seen as a geometric refinement of what has been done in Section 1.4.2. There
we obtained the universal upper bound using an a priori partition of the
compact group by open sets of small diameter.
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2.2 Characterization of subgroups

[4], [5], [6], [8], [10], [11], [12], [13], [15], [16], [17], [18], [19], [20], [21], [29],
[30], [44]

In this section, we focus on the problem to characterize subgroups of a
compact group by sequences in the dual group. As we will see, Bohr sets
playa central role for this investigation. The presented results are contained
in [8].

2.2.1 Introduction

There are several approaches to this topic. First results in our direction are
due to Eggelston and Erdös (cf. [20] and [21]). In [30], the following is proved:
If (qn)~=a is the sequence of denominators of convergents of an irrational
number a and if the partial quotients aa, al, a2, ... of a are bounded, then
limn-+oo qnß = 0 in 1r if and only if ß = ka for a k E Z. It is easy to see
that for any given sequence (kn)~=l of positive integers, the set A = {a :
limn-+oo kna = O} is a subgroup of 1r. We say (kn)~=l characterizes A :::;1r.
Let again a = [aa, aI, a2""] = limn-+ooPnlqn' In [12] it is shown that the
increasing sequence consisting of the elements of

{Qi, 2qi,'" aHI, qi : i E N}

characterizes the cyclic subgroup generated by a. Moreover, the authors of
[12] developed several techniques to prove the existence of sequences (kn)~=l
of positive integers characterizing countable subgroups H of the circle group

, 1r = IRIZ, i.e., for a E 1r,

a E H ~ lim kna = O.n-+oo

These methods were extended in [13] to show that if H is generated freely
by finitely many elements, a characterization is possible in an even stronger
sense: One can choose a characterizing sequence such that L~=l Ilknall < 00

for a E H, while lim sUPn-+ooIIknall 2:' 1/4 for a E 1r \ H. (For x = r + Z E
IRIZ, r E IR, the norm IIxll denotes the distance between r and the nearest
integer. )

In [44], arbitrary subgroups of 1r were characterized by filters on its dual
Z (cf. Section 2.3.1). This approach was used in [6] to extend the results
from [13].
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A different approach to the characterization of finitely generated dense
subgroups of compact abelian groups by sums has recently been introduced
in [10] and [11].

Dikranjan et. al. investigated related questions concerning the characteri-
zation of subgroups of more general topological abelian groups G (cf. [4], [5],
[15], [17]). In the present section we lift the techniques of [6] to this general
setting and answer questions stated in [5] and [17]. Results in the context of
descriptive set theory were, for instance, obtained by Elias in [19].

2.2.2 Further conventions and notation

If not stated otherwise, G is always an infinite compact abelian group. (For
finite G most assertions turn out to be trivial.) Elements of G will be de-
noted by Ci, ß, ....

Following Chapter 1, we write H ::; G if H is a (not necessarily closed)
subgroup of G. If A ç G is any subset, (A) denotes the subgroup generated
by A. For finite A = {Cil,"" Cin} ç Gand MEN, we put (A)M :=

{L:::I kiCii : ki E Z, Ikil ::; M}.
Recall that a group compactification of (any topological group) G is a

pair (C, L) where C is a compact group and L : G ---+ C is a continuous
homomorphism with dense image. Relative topologies on G induced by group
compactifications are called precompact. The Bohr compactification (bG, LH)
of G is the compactification of G which is maximal in the sense that for each
compactification (C, L) of G there is a continuous homomorphism q; : bG ---+ C
with q; 0 LbG = Le. We take Gd to be G endowed with the discrete topology.
As remarked earlier, Duality theory can be applied to construct the Bohr--compactification of G by setti~g bG~ (ê)d and LB : Ci ~ Xa:- Accordingly,
the Bohr compactification of G is Gd. It is natural to call the precompact
topolog..x on G induced by bG the Bohr topology. As we know on the dual
group G the Bohr topology can be described by the Bohr sets

B(Q:], ... ,Q:t,e) := {X E ê : Ilx(Cii)11::; E: for i E {I, 2, ... , t} } ,

where Cil"", ~ E Gand E: > O. These sets generate the neighborhood
filter of a in G endowed with the Bohr topology. Furthermore we put
B(Q:], ... ,Q:t,e)(E) := B(Q:l, ... ,Q:t,e) nE for E ç ê. For Ci E Gand B ç ê wc
write IlCiBIl := sup{llx(Ci)1I : XE B}.
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2.2.3 Characterizing filters
We modify the filter method from [44] (see also Section 2.3.1) for our pur-
poses. Theorem 2.2.1 essentially states that arbitrary subgroups of compact
abelian groups G can be characterized by filters on the (discrete) Pontryagin
dual ê of G. (Such filters are intended to be the neighborhood filters of 0
W.r. t. precompact group topologies on ê.) This filter characterization will
again be discussed in Section 2.3.

Recall that a filter F on a given set S is a system of subsets F ç S such
that:

1. 0 tt F.

2. F E F, S ;2 G ;2 F =* G E F.

3. F, G E F =* F n G E F.

We will make use of filter limits in the following sense: Let S be any
set, let F be a filter on S, let y be a point in a topological space X and let
f : S ~ X be a function. Then we write

F - lim f (8) = Y
s

iff for every neighborhood U of y, {8 ES: f(8) E U} E F.

We remark that filter limits are more general than limits along sequences:
For a sequence (xn)~=l in X, put

F(Xn)~=l = {A ç X : ~m EN such that {xn : n 2: m} ÇA} .

Then, F(Xn)~=l -lims f(8) exists iff limn-too f(xn) exists and in this case they
coincide.

Let H ::; G be a subgroup of the compact abelian group G. Our task is
to show that H can be characterized by a filter FH on ê in the sense that
we have FH - limx X(ß) = 0 iff ß E H. It is clear that for all 0: E Hand
all é > 0, the set B(O;,e) has to be an element of F H to assure convergence
for elements of H. By the filter properties of FH, the intersection of finitely
many such sets will again be an element of FH. Thus it would be natural to
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define FH to be the filter generated by the sets B(Q:\, ...,Q:t,~) where al,"" at E
H, E > O. This definition 'yields the minimal filter with the required prùpérty
and corresponds to the precompact group topology on ê induced by H.
Later, it will be important to us that we may neglect finite sets of characters.
Therefore we will also take all cofinite sets to be elements of FH. This leads
to the following definition:

FH:={FCê: :Jal, ... ,atEH'E>~rÇê'lfI<OO}.
- such that B(Q:\ ,...,Q:t,~) (G \ r) Ç F

Theorem 2.2.1 Let G be an infinite compact abelian group, let H be a sub-
group of G and let the filter F H be defined as above. Then for all ß E G

F H - lim X(ß) = a Ç:::::::> ß E H.
x

In the course of the proof we will employ the following lemma which will also
be usefullater on:

Lemma 2.2.2 Let G be a compact abelian group. Then ê is dense in êf:t
w. r. t. pointwise convergence. Thus, for any countable subset H of Gand
any X E êf:t there exists a sequence (Xn)~=l in ê such that Xn(a) ---+ x(a)
(n ---+ 00) for all oE H.

---Proof: As explained in Chapter 1, the compact group Gd is, with the set
theoretic inclusion as dense embedding, the Bohr compactification of the
discrete group ê. This proves the first part. Thus, for H = {al, a2,"'} ç G
and every n E N there is a Xn E ê with IIXn(ai) - x(ai) II < ~ for all
i E {I, 2, ... ,n}. It follows that Xn ---+ X pointwise on H. •

Proof of Theorem 2.2.1: The definition of the filter Fu guarantees that
F - limx Ilx(ß)11 = a for all ß E H. For the converse we prove that,
given ß tJ. H, for all al,"" at E H and every E > a there exist in-
finitely many characters X E B(Q:\, ...,Q:t,~) with IIx(ß)II ~ 1/4 which implies
that {X E ê : Ilx(ß)11 < 1/4} tJ. F. First we see that there exists at least one
such character: Consider the Bohr compactification êf:t of ê. êf:t separates
subgroups and points of G. Hence there exists some 4J E êf:t such that

4J(a) = a for all a E (al,"" at) and c = 4J(ß) =I 0,
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w.l.o.g. IlcP(ß)112: 1/3 (otherwise take an appropriate multiple 2cP, 3cP, ... ).
By Lemma 2.2.2 cP can be approximated arbitrarily well onfinitely many
points by a character. Thus we find some X E ê such that Ilx(ai)11 :::;c, 1 :::;
i :::;t, Ilx(ß)11 > 1/4.

Next we prove that for c > 0 each B(Q:l ,oo.,Q:t,é) contains infinitely many X
with Ilx(ß) II 2: 1/4. Let U := ((x(al), ... , x(at), X(ß)) : X E ê} :::;']['t+l. We
distinguish two cases:
1. U is finite, say U = {Ul"'" ud. There is some i, say i = 1, with
Ul := (0, ... ,0, c). Then the sets

Yi := { xE ê : (x(ad, ... , x(at), X(ß)) = Ui}' i = 1, ... , k,

and particularly Y 1 are infinite, or
2. U is an infinite subgroup of ']['t+l. But then each point of U is an accumu-
lation point.
In both cases we find infinitely many X with the required property. •

2.2.4 Characterizing countable subgroups

We turn to Problem 5.3 from [17]: For which compact abelian G can every
countable subgroup H be characterized by a sequence of characters?

For A ç ê we write limXEAX(ß) = 0 iff {X E A : X(ß) 2: c} is finite for
all c > O. (I.e. instead of the characterizing sequence (Xn)~=l we consider
the characterizing set A = {Xn : n EN}.)

Theorem 2.2.3 Let G be an infinite compact abelian group and let H :::;G
be a countable subgroup. Then the following statements are equivalent:

(i) G is metrizable.
.......

(ii) There exists a countable set A ç G, such that

ß E H Ç::::::;> !im X(ß) = O.
XEA

Remark. The proof of Theorem 2.2.3 actually shows that (if G is metriz-
able) for every a < 1/3 the characterizing set A can be chosen in such a way
that ß rt H implies lim SUPXEAIlx(ß) II 2: a. Using a diagonalization argu-
ment it is not difficult to achieve lim SUPXEAIIx(ß) II 2: 1/3 and it is easy to

49



see that this is best possible.

The proof of (i) ==} (ii) employs severallemmas which we formulate now
and verify at the end of this section. According to our assumptions, in these
lemmas G is an infinite compact abelian metrizable group.

Lemma 2.2.4 Let r E 1r and n E N. Assume that Ilirll :::;a < 1/3 for all
i E {I, 2, ... ,n}. Then Ilrll :::;aIn.

Lemma 2.2.5 Assume that 11"", Id E G freely generate a sub!:!!oup of G.
For arbitrary nonempty open sets Il, ... , Id in 'II' there exists X E G such that
Xhi) E Ii for all i E {1,2, ... ,d}.

Lemma 2.2.6 Let al,"" at E G, é > 0 and a < 1/3.
~

1. For all finite r ç G and all ß E G

IIßB(Ql, ... ,Qt,e)(ê \ r)1I :::;a ==} ß E (al,"" at).

~
2. Moreover there exists MEN such that for all finite r ç G and all

ßEG

3. If V ;2 (al"", at) M is an open subset of G then for all finite r ç ê
there exists a finite set E ç ê \ r such that for ß E G

Lemma 2.2.7 Let RI ç R2 ç ... be finite subsets of G. There exists a
sequence of open sets Vn ç G, n E N such that

Proof of Theorem 2.2.3:
(i) ==} (ii): We will first construct the set A ç ê and then prove that

ß E H iff limxEA X(ß) = O.
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Let H =: {at: tEN} and pick c = (7 E (0,1/3). Using Lemma 2.2.6,2
we can choose a sequence (Mt)~i stich that for eve-ry fhlite" r ç ê and all
ßEG

Next put, for tEN, Rt := (al,"" at)Mt and define vt 2 Rt according to
Lemma 2.2.7 such that liminft--->oovt = H. ~

Using Lemma 2.2.6,3 we choose a finite set El ç G such that

implies ß E VI' By employing Lemma 2.2.6,3 again, we find E2 ç ê \ El
such that IIßB(Q:l,Q:2,£)(E2)II :::; c implies ß E V2. Continuing in this fashion
we arrive at a sequence (Et)~l of disjoint subsets of ê such that for each
tEN

IIßB(Q:l, ...,Q:t,£)(Et)1I :::; E: ~ ß E vt.
Finally we put A := U~l B(Q:l, ...,Q:t,£)(Et).

Assume that ß E H. To prove limxEA Ilx(ß)11 = 0 note that, for arbitrary
n E N, there exists T = T(n) E N such that iß E {at : t :::;T} for all
i E {I, 2, ... , n}. Thus whenever XE B(Q:l, ...,Q:t,£)(Et) for some t 2' T we have
Ilix(ß)11 :::; c for all 1 :::; i :::; n. By Lemma 2.2.4 this yields IIx(ß)11 :::; ein.
Since n was arbitrary we get limXEAIlx(ß)1I = O.

Conversely assume that lim SUPXEAIlx(ß) II < c for some ß E G. Then
for all but finitely many tEN we have IIßB(Q:l, ...,Q:t,£)(Et)1I :::; c. Thus there
exists to E N such that ß E vt for all t 2' to which yields ß E H by the choice
of the sequence (vt)~l'

(ii) ~ (i): Let H :::;G be an arbitrary countable subgroup characterized
by the countable set A ç ê. Define A := (A) and

AO := {g E G : X(g) = 0 for all X E A},

the annihilator of A. Clearly AO :::; H, thus IAol :::; No. Since A '" GIAo we
have w(GIAO) = w(A) = lAI = No, where w denotes the topological weight,
i.e. the least cardinal number of an open basis (see 1). Hence GIA ° and
AD have at most countable weight and therefore also G, implying that G is
metrizable. •
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Let G be a compact abelian group. In [17] subgroups characterized by a
sequence (Xn)~=l in ê are denoted by

s(;%:n)oo_ (G) := {a E G: lim Xn(a) = a}.
n-1 n-+oo

Furthermore such subgroups are called basic g-closed subgroups. According
to Theorem 2.2.3 every countable subgroup of G is basic g-closed iff G is
metrizable.

A group H ~ G is called g-closed if it is representable as the intersection
of basic g-closed subgroups. The next theorem deals with g-closed subgroups
and solves Problem 5.1 from [17].

Theorem 2.2.8 Every countable subgroup H of a compact abelian group G
is g -closed.

Proof: For arbitrary ß E G \ H there is a X E G:t with x(a) = a for all
a E Hand Ilx(ß)11 ~ ~. Thus Lemma 2.2.2 immediately yields a sequence
of (X~)~=l in ê characterizing a subgroup

Hß := s( ß)oo (G) = {a E G: lim x~(a) = a} ~ G
Xn n=1 n-+oo

•
Proofs of Lemmas 2.2.4 to 2.2.7 :

We assume the group G to be compact abelian and metrizable. Lemma
2.2.4 is elementary, so we skip the proof.

Proof of Lemma 2.2.5: Assume that

is not dense in 1['d, i.e. A :S 1['d. There is a nontrivial character of 1['d vanishing
- . _ d d_on A, I.e. a nonzero vector h - (hl,"" hd) E Z such that Li=l hiXi - a

holds for all X = (Xl,"" Xd) E A. Fix an arbitrary XE ê and put Xi = Xhi).
Then
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Since this holds for all X E ê we have L:f=l hili = 0, contradicting the inde-
pendence of the freegenerators Ii, 1::; i ::; d. •

Proof of Lemma 2.2.6: Let Ba := B(C<i, ... ,O:t,e)(ê \ r).
1. Let:F = :F(O:I,...,O:t)be the filter of Theorem 2.2.1 characterizing (al,

... , at) and let 8 > a be arbitrary. Under the assumption IIßBoll ::; (J < 1/3
we have to show that

Fo := {x E ê \ r : IIx(ß)1I ::; 8} E :F.

Choose mEN such that 8 ~ (J/m and let BI := B(O:I,...,O:t,e/m)(ê \ r). By
definition of :F we have BI E:F. For all X E BI, i E {I, 2, ... , ml, we have
iX E Ba. Thus Ilix(ß)11 ::; (J for all i E {I, 2, ... , m} and Lemma 2.2.4 yields
Ilx(ß) II ::; (J /m < 8. Thus BI ç Fo and hence Fo E :F.

2. Assume that H := (al' ... ' at) is infinite (otherwise the assertion
follows immediately). Since H is a finitely generated abelian group there
exists a decomposition H = T EBF where F is freely generated by 11, ... , Id
and T = (VI, ... , V/) = EB~=1(Vi) is the torsion subgroup of H. Hence (Vi) ~
'Il/ ei'll for some ei E Nand

(al"", at) = hl",., Id) EB(VI, ... , VI) rv 'Ild EBEB~=I'll/ei'll.

Let 8 > a be such that Ilxhi)1I ::; 8 for i E {I, 2, , d} and X(Vj) = a for
j E {I, 2, ... , i} implies IIx(ak)1I ::; é for k E {I, 2, , t}.

Pick now any ß E G with IIßBol1 ::; (J < 1/3. By 1. above we have ß E H,
thus ß = L:f=l rili + L:~=l SjVj for some ri E 'Il, Sj E {a, 1, ... , ej - I},
i E {I, 2, ... , dl, j E {I, 2, ... , I}. Let e := n~=l ej. By Lemma 2.2.5 there
exist infinitely many X E eê := {ex' : X' E ê} such that

holds for i E {I, 2, ... , dl. Therefore we have
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for all i E {I, 2, ... , dl. Summing up and using that X(Vj) - 0 for j E
{I, 2, ... , l} this leads to

d [1 2]X(ß) = ~ rix(ri) E 3' 3 + Z.

Thus X ri B(O:J, ... ,O:t,e) and hence there is j E {l, ... ,t} with Ilx(aj)11 > é

and therefore fJ < El II' Equivalently L:~=lIril < 320' So there are only
3 ]=1 T]

finitely many choices for ß and we may put an universal bound M on the
coefficients in the linear combination ß = L:;=l kiai'

3. Clearly, the set

1:= {ß E G: IIßBoll ~ a} = n {,E G: IIx(r) II ~ a}
x.EBo

is closed and by 2. we have I ç (al,"" at)M ç V. Thus In VC = 0. By
compactness of G there exists a finite set E ç Bo such that

n {,E G: Ilx(r)1I ~ a} n VC = 0.
x.EE

This E is as required. •
Proof of Lemma 2.2.7: Let p be a metric on G compatible with its topo-

logy. Since the sets RI ç R2 ç ... ç G are finite there is a sequence (dn)~=l
of positive reals decreasing to 0 such that

Define

2dn < min{p(a, a')
dn + dn+l < min{p(a, a')

a, a' E Rn, a =J. a'}
a E Rn, a' E Rn+l \ Rn}.

Vn:= {ß E G : ::la E Rn with p(ß,a) < dn}.

By monatanicity of the sets Rn, ß E U:'=l Rn implies ß E U:'=l n:'=m Vn.

Conversely, assume ß E U:'=l n:'=m Vn or, equivalently, that there exists
an m with ß E Vn for all n ~ m. According to the definition of the sets
Vn there exists a unique an E Rn such that p(an, ß) < dn for n ~ m.
Moreover the choice of the dn guarantees that am = am+ I = and so
p(ß, am) = p(ß, an) ~ dn ~ O. Hence ß = am E Hm ç U:'=l Rn. •
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2.2.5 Thick and thin characterizing sequences
Question 5.2 from [5] asks: Does every countable subgroup H of 1[' admit a
characterizing sequence (kn);::>=l with bounded quotients, i.e. rn = kk:1

::; C
for all n E N and some C E ~?

We answer this question affirmatively by proving a stronger result. Which
type of statement can be expected? Assume that a E H is irrational. Then,
by uniform distribution of the sequence (na );::>=1' the set of all kEN with
Ilkall < E has density 2E. Thus (with the exception of trivial cases) charac-
terizing sequences have zero density. Furthermore the length of their gaps
tends to infinity. In particular the thickest characterizing sequences we can
expect might have a density which converges to zero very slowly in some
sense. This is the content of the following result.

Theorem 2.2.9 Let H ::; 1[' be a countable subgroup and let (Ej)~l be
a sequence with a ::; Ej ::; 1 that converges to O. Let N be partitioned
into nonempty intervals Ij = {ij, ij + 1, ... , ij+l - I} with io = a and
limj->oo(ij+l - ij) = 00. Then there exists a sequence (kn);::>=l of nonneg-
ative integers characterizing H such that

I{n : kn E Ij} I
IIjl ~ Ej for all j.

Proof: Let, according to Theorem 2.2.3 (or to [12]), Cl < C2 < ... E N be any
sequence characterizing H. We are going to construct a sequence dl < d2 <
. . . E N containing at least Ej IIj I elements in each Ij such that IIdn a II ---t a
for all a E H. Then A = {kl < k2 < ... } = {dn : n E N} U {en : n E N}
clearly has the desired properties.

Let H =: {at: tEN}, put If(O) := Ij and

If(t) := {k E Ij : Ilkaill < 1ft for all i E {I, 2, , t}}

for t ~ 1. For each JEN let tj be the maximal t E {a, 1, , j} such that
IIf(t)1 ~ EjlIjl and put

{dl< d2 < ... } = U;:o If(tj).

It suffices to show that tj ---t 00 for j ---t 00 or, equivalently, that for each
to E N there exists ja such that for all j ~ ja

I {d E Ij : Ildaill < I/ta for all i = 1, ... , ta} I ~ EjlIjl.
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Since ej -7 0 for j -7 00 this is an immediate consequence of the well dis-
tribution (in monothetic groups, cf. Theorem 1.1.25) of the sequen-ce (ng)~=l
in the closed subgroup G ::; 'JI'togenerated by g = (0:'1"", O:'to) E 'JI'to: The
open subset 0 ç G of all (ßl,"', ßto) with IIßil1 < l/to has positive Haar
measure /-l( 0) and the set of all k E Z with kg E 0 has uniform density
/-l(0) > O. •

Theorem 2.2.9 indeed answers the question about quotients: Take, for
instance, ij = l and choose a sequence of strictly positive ej' Then the
quotients rn = kk:1 tend to 1. This example can be modified in many ways.

It has been proved in [5] that rn -7 00 implies that the corresponding
characterized group H is uncountable. Thus, for a given countable H, char-
acterizing sequences cannot be arbitrarily sparse in this sense. Nevertheless
we have:

Theorem 2.2.10 Let H be a countable subgroup of'JI' and let ml < m2 < ...
be an increasing sequence of positive integers. Then there is a characterizing
sequence kl < k2 < ... for H with mn < kn for all nE N.

Proof: Let (en)~=l be any characterizing sequence of H. Put k2n := Cjn and
k2n+l := Cjn + en where jn is large enough in the sense that k2n > m2n and
k2n+l > m2n+l' Clearly 0:' E H implies knO:' -7 O. On the other hand, if ß E 'JI'
and knß -7 0 then also (k2n+l - k2n)ß = enß -7 O. (en)~=l characterizes H,
therefore ß EH. •

Theorem 2.2.10 implies that for any countable H ::; 'JI' there are sequences
(kn)~=l characterizing H with limsuPn-+oo kk:1 = 00: In Theorem 2.2.10 put
mn = nn and let kl < k2 < ... be a characterizing sequence of H such that
mn ::; kn for aU n EN. Then

Note that this is also contained in [5], Remark 3.5. In [12] this fact is
shown in a similar way for the special case that H is a cyclic group.

For more sophisticated methods to generate sparse characterizing se-
quences we refer to [6] and [13]: E.g. for a countable subgroup H ::; 'JI'
one can construct a characterizing sequence (kn)~=l such that for all r > 0
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The idea of the proof of Theorem 2.2.10 has further remarkable exten-
sions. We will analyze them more detailed in the next section.

2.2.6 Groups as sets of convergence

In this Section 2.2.6 we introduce a refined characterization of subgroups of
a compact metrizable group G by sequences: For a sequence (Xn)~=1 in ê
we consider the set H of all a E H for which (Xn(a))~=1 converges (not
necessarily to a E 11'). H is easily seen to be a subgroup of G and the
pointwise limit is a (not necessarily continuous) homomorphism f : H ---7 11'.
The following Theorem 2.2.11 gives a complete description of the situation:
Given any subgroup H of a metrizable compact abelian group G and any
homomorphism f : H ---7 11' there is a sequence (Xn)~=l in C such that Xn ---7 f
pointwise on H. If H is countable then one can even achieve that H is exactly
the set of convergence. If G is a compact (not necessarily metrizable) group
and H is an arbitrary (not necessarily countable) subgroup of G, this result is
still valid when the convergence of sequences is replaced by the more general
convergence of filters. By considering the trivial homomorphism f = a we see
that Theorem 2.2.11 nicely extends Theorem 2.2.3. Furthermore this result
allows to construct counterexamples to Question 5.4 from [5] (see below).

Theorem 2.2.11 Let G be a compact abelian group.
~

1. Let:F be a filter on G. Then the set H of all a E G for which :F -
lim~ x(a) exists is a subgroup of G. The mapping f : H ---7 11', a 1---+

:F - limx X( a) is a group homomorphism.

In particular if (Xn)~=l is a sequence in C, the set H of all a E G for
which limn--+oo Xn (a) exists is a subgroup and the mapping f : H ---7 11',
a 1---+ limn--+oo Xn(a) is a group homomorphism.

2. Let conversely H be a subgroup of G and let f : H ---7 11' be a homomor-
phism. Then there exists afilter:F on C such that:F -limx x(a) = f(a)
for all a E Hand :F - Hmx X(ß) does not exist whenever ß tJ. H.

3. If f~rthermore H ::;G is countable then there exists a sequence (Xn)~=1
in G such that

Xn(a) ---7 f(a) for all a E H.
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4. If G is metrizable and H is countable then there exists a sequence
(X~)~=l in ê such that

x~(a) -+ f(a) for all a E H

and (X~ (ß) )~=l does not converge if ß ~ H.

Proof: 1: Assume a, bE H and consider c = a-b. Let U E U(f(a) - f(b)).
We must show that there exists a set F E F such that X(c) E U holds for
all X E F. According to U there exist Ua E U (a) and Ub E U (b) such that
Ua - Ub ç U. a, b E H implies that there exist sets Fa and Fb E F such that
x(a) E Ua for all X E Fa and X(b) E Ub for all X E Fb. Let F := Fa n Fb
and X E F. Then X(c) = x(a - b) = x(a) - X(b) E Ua - Ub ç U. Since
U was arbitrary we get F - limx(c) = f(a) - f(b). Thus c E Hand f is a
homomorphism.

2. For al, ... , at E Hand é > 0 put

and

:J al"", at E H, :J é > 0 }
such that F(al"'" at, é) ç F .

We have to show that

(a) F is a filter.

(b) For all a EH: F - limx x(a) = f(a).

(c) For all ß ~ H : F - limx X(ß) does not exist.

ad (a): Since the set F(al, ... ,at,ßI, ... ,ßt,min(él,c2)) E F is con-
tained in F(al"", at, cd n F(ßI"", ßt, C2) it suffices to show that each
F(al, ... , at, c) is not empty.

There exists an extension of f : H -+ 'JI' to X : G -+ 'JI' such that X E êf:t.
By Lemma 2.2.2 there is a X' E ê such that IIx'(ai) - x(ai)11 ~ é for i =
l, ... ,t. HenceX/EF(al, ... ,at,c)=j:.0.

ad (b): Let a E Hand U E U(f(a)). There exists an é > 0 such that
IIÇ- - f(a) II < c implies ç- E U. X E F(a, c) E F implies Ilx(a) - f(a) II < c
proving F - limx x(a) = f(a).
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ad (c): Let ß tt Hand F E :F be arbitrary. We will show that there exist
X I, X2 E F such thatll X I (ß) - X2 (ß) II 2: 1/4. F E :F implies that there exist
aI, ... , at E Hand é > a such that F(al" .. , at, é) ç F. Note that there is
a X' E êi:t with X'(h) = a for all h E Hand X'(ß) 2: 1/3. By Lemma 2.2.2
there exists a XE ê such that Ilx(ai)1I < é/2 for i = 1,... , t and X(ß) > 1/4.
Pick Xl E F(al"'" at, é/2) ç F arbitrary and let X2 = X + Xl' Then X2 is
also in Fand Ilx2(ß) - xI(ß)1I = Ilx(ß)11 > 1/4.

3. Let H = {at, tEN}. The proof of 2. shows that for each n E N there
is a Xn E ê such that IIXn(ai) - f(ai)11 < l/n for i= 1, ... , n. The sequence
(Xn)~=l has the desired properties.

4. If G is metrizable and H is countable we know by Theorem 2.2.3 that
there exists a sequence (~)~=l in ê such that

IIXn(a)1I -+ a iff a E H.

Let furthermore (Xn)~=l be as in 3. and define X~n := Xn and X~n+l := Xn+Xn.
Then x~(a) -+ f(a) for all a E H.

Conversely, for ß ri: H the sequence (X~ (ß) )~=l cannot converge: If
X~ (ß) -+ c for some c E 1[", then Xn (ß) = X~n+ I (ß) - X~n (ß) -+ O. Hence
ß EH, contradiction. •

We want to apply Theorem 2.2.11 to Question 5.4 in [5] which, in our
notation, reads as follows. Let (en)~=l be a sequence in Z. Are the subsequent
conditions (i) and (ii) equivalent?

(i) There exists a precompact abelian group G ;2 Z such that Cn -+ h in
Gand (h) n Z = {a}.

(ii) There exists an infinite subgroup A ::; 1[" such that ena -+ a holds for
all a E A.

Conditions (i) is obviously equivalent to (i') below:

(i') There exists a group compactification (L, G) of Z such that L is 1-1,
L(en) -+ h in G and (h) n L(Z) = {a}.

We remark first that (ii) implies (i'): Let A ::; 1[" be the subgroup such
that ena -+ a holds for all a E A. Then let L : Z -+ 1["A,n t---? (na)OEA and
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put C = /'(Z). Obviously (/" C) is a compactification of Z and since A is
infinite, /, is 1-1. Moreover /'(crJ--+ a E C, thus (i') holds for h:.-.- a.

To see that the converse does not hold, pick 0:, ß E T, such that 0: and
ß are linearly independent over the rationals. Define a homomorphism f :
(0:) --+ (ß), no: 1---+ nß. By Theorem 2.2.11 choose a sequence (en)~=l in Z
such that eno: --+ f(o:) = ß and (en')~=l does not converge for, E T \ (0:).

Then /, : Z --+ T, n 1---+ no: gives rise to a group compactification of Z. Put
h := ß such that /,(en) = eno: --+ ß. Since 0: and ß were chosen to be linearly
independent we have (h) n /'(Z) = (ß) n (0:) = {a}. Thus (i') is valid. On
the other hand (ii) fails since en, --+ a only for, = a.

For a different type of counterexample fix a prime p and consider the
p-adic integers Zp. Choose an arbitrary sequence (kn)~=l in {a, 1, ... , p - I}
which contains infinitely many non zero elements and satisfies k1 = 1. Using
this, put for each n E N, h2n = h2n+l = L~=l kipi and let en = pn + hn. Then

00

lim en = lim hn = '" kipi =: hE Zp \ Z.
n~oo n~oo ~

i=l

Hence kh E Zp \ Z for all k E Z \ {a}, so (i) holds.
Next pick 0: E T such that

lim eno: = a.
n->oo

It follows that also limn->OO(en+l- en)o: = a. Since h2n = h2n+l this yields
pno: --+ a so 0: = a/pl +Z for some lE N and a E {a, 1, ... ,pl_l}. But then,
for all n ~ l

The last term tends to a only if a = a. Hence 0: = a and (ii) fails.
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2.3 Reconstruction of Hartman sequences
In this section we take up the interesting reconstruction problem of finding
the minimal compactification in which a continuity set M which induces a
given Hartman set H can be realized in.

2.3.1 The abstract approach

[44]

We start with the following question. Let (al, (2) generate y2, i.e. as-
sume they are linearly independent. Let H = B0:1,0:2,e = {k E Z : Ilkaill ::;
E, i = 1, 2} a Bohr set. Is it possible to find a continuity set M and aß E Y
such that H = l,-/(M)? More general one can ask (following Section 1.2):
How much information about its corresponding continuity set M and the
minimal compactification M is realized in is contained in a given Hartman
set H ç Z? Section 2.1 showed that in the case of Bohr sets already the
complexity determines the dimension d of the minimal compactification. We
will sketch the main ideas how to obtain all the information from a given
Hartman set H one can ask for.

As indicated in Section 1.2 there is a direct connection between a com-
pactification (C,l,) and the subgroup of generating elements A ::; Y. Each
compactification is determined by its Bohr sets i.e. sets generating a base
of the neighborhood of a. We will focus on the question how to obtain
information from H about the neighborhood of a of the corresponding com-
pactification.

We will again use filters and filter limits as introduced in Section 2.2.
Roughly spoken two things have to be done: Extract information from H

and check how this determines (C,l,). The neighborhood system of 0, U(a),
in C is a filter. Let

F = F(C) = {F ç Z: (3U E U(a))I,-I(U) ç F}.

Then F is a filter on Z. Note that F is the filter introduced in Section 2.2.3
without the cofiniteness property we needed there. By Theorem 2.2.1, if
(C,l,) = (CA,I,A) then a E A ::; Y iff F - limk(ka) = a. Thus F determines
A and thus the corresponding compactification. Is it possible to obtain F
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also from H = i-l(M)? Let, for kEil, Hk = H 6(H + k) and, for C E C,
Me = M 6(M + c). - It is natural to assume that an element kg, 9 = iA(l)
denotes the generating element of CA, is close to 0 in C if

is small, where Pc is the Haar measure of C. This equality holds since Me is
also a continuity set for all cE C. Motivated by this we define

F(H, é) = {k Ell: dens(Hk) ~ é},

é > 0, and
FH := {F ç Il: (:3é > O)F 2 F(H,é)}.

Let furthermore
fM: C-R,

and Z(M) = {c E C : fM(c) = O}.
Then, by [44], the following holds:

fM(c) = pc(Me)

We call M aperiodic if Z (M) = {O}.

Theorem 2.3.1 Let M ç C be a continuity set and H = (::tl (M). Then

1. FHÇF.

2. If Z(M) = {O} then FH 2 F.

3. If Z(M) =I {O} then Z(M) ~ C and FH = F(CjZ(M)).

Summing up, this shows that the filter FH induced by the given Hartman
set H determines the neighborhood filter of C and a fortiori also the conti-
nuity set M related to H (up to zero sets). In this sense, H contains all the
essential information we can expect. Moreover, Theorem 2.3.1 tells us how
to obtain this information.

Returning to the question stated at the beginning of this section Theorem
2.3.1 implies that H cannot be induced by any continuity set M ç 1I' (BQ:! ,Q:2,E

is clearly aperiodic).
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2.3.2 Comments on the function iM
Let us first discuss the following example. To simplify matters, we will, again,
define sets on 1['d by defining them on the unit cube [O,l)d. Let M = I =
[a, b) ç 1[' be an interval and suppose b - a :S; 1/2. Then

{

2x 0 < x < b - a,
IM(x) = 2(b - a) b - a :S; x < 1- (b - a),

-2x -(b - a) :S; x < O.

More generally, it can be seen that for M = Uf=IIj, Ij disjoint intervals,
1M grows like 2kx sufficiently close to O. Let, for M E 1['d, DM(b) =
{x E 1['d : IM(x) :S; b}. Then, in both cases discussed above, the function
mM : 15I---t ,V(DM(b)) is (sufficiently close to 0) a linear polynomial. What
about higher dimensions? If M ç ]'d has the shape of ad-dimensional
sphere in [O,l)d, then obviously >..d(DM(b)) equals the volume of a sphere
with radius E', for suitable E' > O. So mM grows like a polynomial of degree
d. To show a similar result for general convex subsets of 1['d we first discuss
the related situation in IRd.

In the sequel, for A ç IRd and v E IRd, A +v denotes the usual translation
of A by v in IRd and A +c v := {x = a + >..voE IRd : a E A and 0 :S; >.. :S; Ilvl!},
where Ilvll denotes the length of the vector v and Vo = v/llvll. (Thus +c is
related to the complex sum). Let >..d'denote the d'-dimensional Lebesgue
measure. In particular, V = >..d denotes the volume. Let M E IRd. Let
v E 3d-I, Then >..d-I(Mlv) is the measure of the (convex) body obtained
by projection of M onto the hyperplane x . v = 0 in IRd. (For a convex set
M ç IRd and a vector v E 3d-l, we write Mlv for the set resulting from the
projection of M onto the hyperplane x. v = O.) Finally let, related to above,
IM : IRd --+ IR, IM(x) = V(M6(M + x)).

Theorem 2.3.2 Let M be a convex set in IRd. Then
1.

2.

(E --+ 0).

--+ c(M)
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1 r 1
c(M) = d2d J

Sd
_

1
(,~d-l(Mlv))ddv,

where DM(<5) = {x E ~d : fM(x) :S <5}.

Proof: Let u E Sd-l and c > O. Set M(cu) = Mn (M + cu). Note that

V(M +c cu) - V(M) = V(M +c cU \ M) = cÀd-l(Mlu) (2.2)
2(V(M +c cu) - V(M)) ~ V(M 6(M + cu)) (2.3)
2(V(M(cu) +c cu) - V(M(cu))) :S V(M 6(M + cu)). (2.4)

Equation (2.2) is a direct consequence of the convexity of M. M +c cU ;2
M + cU implies (2.3). Also (2.4) follows easily: x E M n (M + cu) iff
x E M and x - cU E M. M is convex, thus also x - c'u E M for all
c' E [0, c]. Therefore n~=o(M + ru) = Mn (M + cu). Thus, x E M(cu)
implies x + ru E M + cU for all a < r < c. Hence M(cu) +c cU ç M + cU
and (M(cu) +c cu) \ M(cu) ç (M + cu) \ M. A symmetric argument leads
to (M(cu) +c (-cu)) \ M(cu) ç M \ (M + cu). Summing up, we have

(2.5)

Since clearly M(cu) ---7 M (c ---7 0) in the Hausdorff metric we obtain asser-
tion 1. Conversely, (2.5) also implies fM(cu) = fJ iff

fJ fJ---- < c < ------2Àd-l(Mlu) - - 2Àd-l(M(cu)lu)'

Thus, we have an upper and lower bound for the radius c(u). Integrating
(l/dc(u))d over the sphere yields the volume of DM(fJ) and proves 2. •

Turning back to our observations on the torus, we use that a convex set
M ç ']['d (thus M is a continuity set) can locally be interpreted as a convex
set M ç [0, l)d ç ~d and apply the last assertion. Let H = ,,-1 (M). Since
dens(H 6(H + k)) = J-tc(M 6(M + ,,(k))), kEil, we have

H(fJ) = {k : dens(H 6(H + k)) :S fJ} = {k : J-tc(M 6(M + ,,(k))) :S fJ}.

It is easy to see that DM(fJ) is also a convex set. It induces the Hartman set
H(fJ). Theorem 2.3.2 shows that the growth rate of dens(H(fJ)), for fJ ---7 0,
already determines the dimension of the convex set M.
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"V

=: G(M,e,a,S)

2.3.3 Bohr sets and explicit reconstruction
In this part we will apply and analyze some results of Section 2.2 for the
special case G = 'IT'd in the context of the reconstruction problem.

Let M ç 'IT'd be an aperiodic continuity set (thus J-lc(M) > 0). Let the
com pactification (C = 'IT'd,,,) be determined by a generating vector ,,(1) =
a = (al,"" ad) E 'IT'd. Let H = ,,-I(M) be the induced Hartman set.
Assume that M ç W = [-e, e]d for some e E (0,1/4). Then

k E H {:::::::}ka E M
==} ka E W

n Uk[i - e i + e]
{:::::::}ai E . -k-' -k- ,

kEH i=l
"V

=: G(M,c,a)
for all i E {I, ... , d}

We apply now assertions 1.-3. in Lemma 2.2.6 of Section 2.2. They say

(A) ß E 'IT' n G(M, e, ex) implies ß E (al,"" ad)'

(B) There exists an REN such that ß E 'IT' n G(M, e, a) implies ß E
(al"", ad)R.

(C) For all 0 > 0 exists an SEN such that

ßE1fn nÛ [i~ê,i:ê]
kEH i=l
k~S,

implies

The crucial points for an explicit reconstruction are clearly (B) and (C),
i.e., how to obtain the numbers Rand S. We first present two approaches
implying (B) that have a more geometric flavor than the original proof of
Lemma 2.2.6. According to our assumptions, M ç W = [-c, c]d.
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Proposition 2.3.3 Let A E Zdxd be a d x d integer matrix. Let H be a
Hartman setinduced by the coding of the continuity set M ç 'II'd. Then
ß E 'II' nG(M, é, a) iff ß is a component of the vector A(a) and A(M) ç W.

Proof: Let Ha = {ka: k E H} and IIHal1 = sUPkEHlikall. Note that
H A(a) = A(Ha). Thus

IIHA(a)11 :::;é {:} IIA(Ha)1I :::;é {:} IIA(M)II :::;é.

The last implication follows from density of the set Ha in M. •

•

A second way to see (B) is to use that H has positive uniform density and
thus has bounded gaps.

Proposition 2.3.4 Let H = {hi: i E N,hi< hHI for all il. Let gEN
such that hHI - hi :::;9 for all i E N. Let é < 1/4. Let

be a set of I(L) disjoint intervals. Then (1/(4é) - l)hL > 9 implies I(L) 2
I(L + 1).

Proof: Let L be large enough that (1/(4é) - l)hL > g. We show that each
interval occurring in U (L) is intersected by at most one interval of

hL+l [' . ]Z-é Z+é
V(L + 1) = U -h -, -h - .

i=l L+1 L+1

For this observe that

(II (4é) - 1)hL> 9

=> (1 - 4é)hL > 2ég
{:} (1 - 2é)hL > 2é(hL + g)
=> (1 - 2é)hL > 2é(hL+1)

1 - 2é 2é{:}-->-,
hL+1 hL

The left side of the last inequality is the length of a gap between two intervals
in V (L + 1). The right side of the last inequality is the maximal length of
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one interval in U (L ). •

•

This, of course, also implies (B). In Section 2.2 the assertion (C) was shown
by compactness. (C) states that all "bad" intervals obtained by Proposition
2.3.4, not containing an element of the set (al,' .. ,ad) R, vanish if S is suffi-
ciently large. It would be interesting to have explicit bounds for S, replacing
the original compactness argument - unfortunately this seems to be a very
difficult problem. Nevertheless explicit examples indicate that" bad" inter-
vals drop out after few steps. So far we did not use that M is a continuity
set. Nevertheless, we already have the following proposition.

Proposition 2.3.5 Let (C = '['d, 1-)be a compactification generated by 1-(1)=
a = (al,"" ad) . Let M ç '['d be a set with nonempty interior and H =
,,-I(M).

1. If M % [-E, E]d, then G(M, E, a) = 0.

2. If M ç [-E, E]d, then

{
:3 A E Zdxd such that }

G(M, E, a) = ß E '['d: A(M) ç [-E, E]d and ß = A(a) .

Hence G(M, E, a) is finite. Moreover, for every 6 > 0 there exists an
SEN such that G(M, E, a, S) ç G(M, E, a) + (-6,6).

Using dens(H) = J1(M) the procedure described so far allows filter out
finitely many vectors A(a), where A E Zdxd with IDetAI = 1. Clearly, ,,(1)
is among the set of possible candidates.

So far we assumed that M ç [-E, E]d. Let now M be an arbitrary ape-
riodic continuity set in ('['d,I-). Thus M is of positive measure. Let H be
the Hartman set induced by a coding of M via 1-(1) = a E '['d. Then we
can combine the idea introduced in Section 2.3.1 with Proposition 2.3.5: Let
Mo := {x E '['d : fM(x) ~ 6}. Let E E (0,1/3). Proposition 2.3.5,1. allows to
determine 61 = sup{ 6 : G(Mo, E, a) =1= 0}. Then Proposition 2.3.5,2. implies
that G(Mo!, E, a) consists of a and finitely many images of a under certain
linear mappings A as described above.
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Chapter 3

Complexity induced by
polytopes

[31], [36], [37], [38]

The objective of this chapter is to extend the ideas presented in Section
2.1. Motivated by Remark 2.1.2,1., we want to clarify the interplay between
the geometry of the coded continuity set M ç 1['d and the complexity of
the induced Hartman sequence. Therefore we deduce an asymptotic formula
for the complexity of Hartman sequences induced by polytopes. This will
provide a connection between the complexity function and the geometry of
the corresponding continuity set. As in Section 2.1, the main tool will be an
estimation of the local complexity induced by the polytopes.

• 3.1 Notation
We use the following abbreviations: We call a vector a = (al"", ad)
strongly irrational if Na = 1['d. As before, for a set M ç 1['d and an a E 1['d,

we call the sequence a = a(M, a) = (a(M, a)n)~=_oo E {a, 1}Z defined by

if na EM,
otherwise

a coding sequence. Let, for M ç 1['d, a = a(M, a) be such a coding sequence.
Recall that the complexity Ps,Q(N) is the number of distinct words of length
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N E N occurring in a. Since the complexity function is either bounded or
strictly increasing

( ). PM,o(N)
P d, M, a = hm Nd 'N-+oo

for dEN,

•

is either 0, 00 or in IR+. If there exists a do E N such that P(do, M, a) E IR+,
we call P(M, a) := P(do, M, a) the asymptotic complexity of M and a.

3.1.1 Polytopes in 1I'd
Sd-l denotes the d-dimensional sphere, Stl the d-dimensional upper half-
sphere and Bé the (d-dimensional) ball with radius é > a and center a. For
U E Sd-l and>' E IR, the set

Hu,>. := {x E IRd
: x. U = >.}

defines a hyperplane in the Euclidean space IRd ( . denotes the usual inner
product) and

and H;:,>.:= {x E IRd
: x. U :::; >.}

•

the induced halfspaces. A (general bounded) polytope P is a bounded region
of the d-dimensional space enclosed by a finite number of hyperplanes. We
always assume that P has nonempty interior. In particular, a polytope P in
IRd is convex if and only if it can be determined via

L

P = n H:;",>'r'
r=l

Ur E Sd-l and Àr E IR, r = 1, ... , L. (We use outer normal vectors to deter-
mine P.) Each polytope is a finite union of convex polytopes.

As usual, we call the (d - I)-dimensional subsets of the boundary oP of
P facets (thus, for each facet F holds F = oP n Hu,>.), the I-dimensional
subsets edges and the a-dimensional subsets vertices. A parallelepiped D is
also given by d linearly independent vectors Ul,"', UdE Stl and Àl"'" Àd,
(h, ... , Öd in IR via

d d

D = nH+ nnH-Ur,>'r Ur,>'r+Or'
r=1 r=1
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•

•

C(cr, x) = (x - cr/2, x + cr/2]d denotes a half open cube with center x E R
and side-length cr.

As already discussed in Remark 1.1.26, we will define sets on 1['d by defin-
ing them as subset of the d-dimensional unit cube [0, l)d ç !Rd (so before
identifying its opposite facets). Thus, a polytope P in 1['d is (a translate by
an x E 1['d of) a polytope P ç [0, l)d. In the sequel, we will restrict ourselves
to the case that P is a closed polytope. In particular, we will write F ç Hu,>.,
u E Sd-l, À ER, for a facet F of a polytope P ç 1['d if the facet F of P, in-
terpreted as subset of [0, l)d, lies in the hyperplane Hu,>. of !Rd. Analogously,
a set in C ç 1['d is called convex if it is (a translate of) a convex set in [0, l)d.

Since the d-dimensional Haar measure on 1['d coincides with the d-dimen-
sional Lebesgue measure on [0, l)d, we will denote both by Àd .

3.1.2 Partition sets and local complexity
Let P ç 1['d be a polytope, C ç 1['d an arbitrary set and a = (al,"" ad) E 1['d

strongly irrational. Let a = a(P, a) = (a(P, a)k)~_(X) E {O, l}Z be the
resulting coding sequence. Denote by

W(C, N) = W(C, N, P, a) = {w = akak+l'" ak+N-I E {O,l}N : ka E C}
the set of all words w of length N starting in C and induced by P and a.

Definition 3.1.1 We call

P(C, N) = P(C, N, P, a) = IW(C, N, P)I

the local complexity of C induced by P and a.

Following Section 1.4.1, for a word w = akak+ 1... ak+N -1, W E W (C, N) is
equivalent to the fact that its induced partition set

N-I

Pw:= n (C n (pak+i - ja)),
j=O

pi := P and pO := 1['d\ P, is nonempty. Thus to obtain the local complexity
of C it suffices to compute the number of partition sets in C induced by
N translates of P by a. Under certain assumptions it turns out that we
can concentrate on the d-dimensional partition sets. These assumptions are
stated in the next section.
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3.1.3 Independence of P C ']fd and Œ E ']fd

In Section 2.1 we assumed some independence condition of the coded cube
and the generating element a: to be able to count the partition sets yielding
the local complexity. As pointed out in Remark 2.1.2,2, the asymptotic for-
mula changes if one drops this independence condition. For the estimate of
the number of partition sets induced by a polytope we again need some inde-
pendence condition which we are going to formulate in the present section.

Let P be a polytope in the d-dimensional torus with facets Fr ç Hur,>..r'
r = 1, ... , L, and let a: E 'lI'd strongly irrational. It is natural to call a point
x E 'lI'd a vertex (after N translations) if x can be written as an intersection
of d translates of d linearly independent facets Fr (i.e., if there exist nr E
{a, 1, ... , N - I}, r = 1, ... , d, such that {x} = n~=I(Fr- nra:)). For our
estimates we need a condition which guarantees that there are not too many
over-determined vertices in 'lI'd induced by the orbit (P - na:)nEN, i.e., that
the set

{

there exists d + 1 distinct facets Fr and }
x E 'lI'd: there exist d + 1 integers nr such that

{x} = n~~~(Fr - nra:)
is sufficiently small.

We even assume that the orbit of a slightly enlarged version on P does
not generate too many over-determined vertices. More precisely: Let c> O.
Set

F+e - (Fr + Be) n Hur,>"r andr
L

F-e - Fr \ (U(Fs + Be)).r
.=1.t-r

(Be denotes the ball with radius c centered at a and + denotes the complex
sum.) Fix (J' > a small enough such that F;' is totally contained in [0, l)d
for all r E {I, ... , L}. Let ßpu' = U~I F;' (cf. Figure 3.1).

Then, define

C,(N) := {x E F;' :

:3 nI, n2, , nd E {a, ... , N - I},
:3 rj E {I, , L} \ {r}, j = 1, ... , d,
Ti =1= rj if i =1= j,
{x} = Fr' n n;=I(F~'- nra:)
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Fu'
r

8pu'

Figure 3.1: The enlarged boundary 8pu'

Thus, for r E {I, 2, ... , L}, Cr( N) is the set of all over-determined points x
on a fixed facet Fr induced by 8pu' - na, n = 0, 1, ... , N - 1. Furthermore
define c(N) := maxjE{l, ...L} ICj(N)I. c(N) is hence the maximal number of
over-determined vertices on a facet of 8pu' after the N-fold translation of

I8pu bya.

Definition 3.1. 2 P and a are called a' -asymptotically independent (abbre-
viated a' -a. i.) if

1. c(N) = o(Nd-1) and

2. there exists no n E N such that (8pU' - na) n 8pU' contains a (d - 1)-
dimensional set.

The first condition of the last definition guarantees that the number of
over-determined vertices is sufficiently small for our methods. The second
condition implies that each point x is lies on at most L translates of facets
F:', r = 1, ... , L, by a.

Observe that in the case d = 1 conditions 1. and 2. of Definition 3.1.2
coincide.

Let P be a fixed polytope in 1l'd. Pick an arbitrary a E 1l'd. Then, as
we will see in Section 3.4, typically P and a are a'-a.i..

3.1.4 Definition of a measure preserving mapping

For the sake of simplicity, we compute instead of the local complexity of a
cube C the local complexity of a parallelepiped. This parallelepiped is the
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image of C under a measure preserving mapping which we are going to define
now.

Let C = C((J, x) be a cube of side length (J and center x. Let Co be its
translate, rooted at 0, i.e., with the edges e~ = (JeT where eT denotes the
r-th Euclidean unit vector. Let W = {WI, W2, ... , Wd} be a set of d linearly
independent vectors in 3d-I,

We define a measure preserving mapping Aw such that Aw(C) is a par-
allelepiped whose facets have normal vectors WT, r = 1,2, ... , d. Aw(C) will
be used to estimate the local complexity of C. For the definition of Aw, we
use mappings Tk, k = 1, ... , d, iteratively defined. For k = 1,2, ... , d, each
Tk transforms the parallelepiped Ck-l = Tk-l 0 Tk-2 o ... 0 Tl(C) into a par-
allelepiped Ck such that Ck has facets whose set of normal vectors contains
W], ... ,Wk' Moreover, Ck-l and Ck have the same volume. (cf. Figure 3.2.)

For this reason we define the mappings Tk, k = 1, ... , d, as follows: To
keep notations simple, we assume, w.l.o.g., that the elements of Ware or-
dered so that Ie] . wli = max {leI' Wjl jE {l, ... ,d}}. Then set

Co

otherwise.

•

Suppose now that the parallelepiped Ck with facets Fj: ç Hwr,o and Fj:+d ç
HWr,P~' r = 1, , k, and Fj: ç He;,o and FT"+.dç Her,P~' r = k + 1, ... , d, and
edges e~, r = 1, , d, is defined in this fashion. Assume moreover that the
elements of Ware ordered so that

Then set

otherwise.

Finally, set
Aw(C) = Td 0 Td-l 0 ... 0 Tl(C),
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For the sake of notational simplicity we set Aw(C) = 0 iff the set W contains
d linearly dependent vectors.

•

Figure 3.2: The mappings Ti

Each Ti, i E {I, ... ,dl, and therefore also Aw is measure preserving.
Note, furthermore, that all facets of Ck lie in the same hyperplanes as the
facets of CHI except those two facets with normal vector ek which are re-
placed by facets with normal vector WHI. Therefore the facets of Ck with
normal vectors Wr, i E {I, ... , k}, lie in the same hyperplanes as the facets
of Aw (C) with normal vectors Wn r E {I, ... , k}. Moreover, if a, the side
length of C, is sufficiently small, then (a translate of) Aw(C) ç [O,I)d. Since
there are only finitely many choices W ç {ur : 1 :::;r :::;L} such a a > 0
always exists. We introduce the following notion .

Definition 3.1.3 For a polytope P ç '!I'd with facets Fr ç HUr,Àr' i.e., with
normal vectors Ur, r = 1, ... , L, and the measure preserving transformation
Aw, W ç {Ur: 1 :::;r:::; L}, defined above, we call

ç(P) = max (diam(Aw([O, 1)d)))
W={Uil .Ui2 •...• Uid}Ç

{ul.u2 •...•uL}

the extension factor (abbreviated X.t. -factor) of P.

This definition guarantees that diam(Aw(C(a, x))) < ç(P)a holds for
any cube C(a) and any choice of W = {UTi" .. , urd}.
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3.1.5 The separation number

In this section we show a technicallemma. It guarantees that the local com-
plexity can be used to estimate the asymptotic growth rate of the complexity
function.

Let P ç '[d be a polytope with facets Fr, r = 1, ... , L. Then, for
r E {I, ... , L} and () > a,

L

Gr := Fr n U (Fs + B20),

is a subset of Fr (B20 denotes the ball with radius 2() centered in a and + is
the complex sum). Note that if () is small enough, then Gr =J 0.

Lemma 3.1.4 Let P ç '[d be a polytope with facets Fr, r = 1,... ,L. Let
()> a be sufficiently small such that Gr; =J 0 for d indices rI, ... ,rd and such
that the corresponding facets Fr; have linearly independent normal vectors.
Let a E '[d be strongly irrational. Let Cl and C2 be sets in '[d with disjoint
closure and with diam( Ci) < (),i= 1, 2. Then there exists a sufficiently large
number KEN such that there exist finitely many nI ::; n2 ::; ... ::;nK in N
and ml, m2,"', mK in {a, I} such that

K

U((pm; - nia) nel) = el and
i=l

K

U((pm: - nia) n C2) = C2,
i=l

h Pm Pf 1 d' If 0were = 1r\P '/. m = 0 an mi = 0 '/. mi = l'

Proof: According to the assumption that the sets Ci, i = 1,2, are sufficiently
small and with disjoint closure, we can find open sets UI, U2, ... UK and
VI, V2, ... VK in '[d and ml, m2, ... , mK in {a, I} such that

K

U((pm; - Xi) nCI) = Cl and
i=I

K

U((pm: - Yi) n C2) = C2,

i=I
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whenever Xi E Ui and Yi E Vi. The equidistribution of the sequence (na)~=l
implies then the assertion. •

Let the numbers ni ::; n2 ::; ... ::; nK in N be as in the last lemma. Then
we say that ni, n2, ... , nK separate Cl and C2.

Let 8(P) be the supreme of all () > a such that Cri =I- 0 for d indices
ri, ... , rd and such that the corresponding facets Fri have linearly indepen-
dent normal vectors.

For two sets Cl and C2 in 1fd with disjoint closure, let N(Cl, C2) E N be
the minimal number such that there exist ni ::;n2 ::; ... ::; nK ::; N(Cl, C2)

separating Cl and C2.

Definition 3.1.5 We call 8(P) the separating diameter of P. For sets Cl
and C2 in 1fd with disjoint closure and with diam( Ci) < (), i = 1, 2, and
()< 8(P), we call N(Cl, C2) E N the separation number of Cl and C2.

Remark 3.1.6 The concept of the separation number presented here is re-
lated to the connectedness index introduced in [2].

3.1.6 The projection body

For a presentation of the theory of convex geometry we refer to [36].

Let K ç ~d be a bounded convex set. Then the function

hK(u) = sup{x. u : X E K}

is called support function. hK determines K. Denote, for u E Sd-I, by Klv
the projection of K onto the hyperplane Hv.,o. Then each convex body K
determines the convex body TIK whose support function is

hnK(u) = ,\d-l(Klv)'

TIK, called projection body of K, is a very well understood object in convex
geometry. The following equation holds

,\d(TIK) = ~!1 ...1 IDet(Ul"'" ud)1 dp(v) ... dp(v),
Sd-l Sd-I

where the Pi are the so called generating measures of TIK. If K = P is a
polytope, these generating measures are concentrated on the normal vectors
of the facets.
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3.2 Main result
Theorem 3.2.1 Let P be a polytope in '[d with L facets Fr and normal
vectors Ur, r = l, ... , L. Let Cl E '[d be strongly irrational. Let P and Cl be
a/ -a. i. Then

In particular, if P is a convex polytope in '[d, then

where fIP denotes the projection body of P.

Remark 3.2.2 In [37] results related to our Theorem 3.2.1 were obtained
in the context of stochastic geometry.

The main tool of the proof is the following estimate for the local com-
plexity P( C, N) induced by P and Cl.

Proposition 3.2.3 Let P be a polytope in '[d with L facets Fr and normal
vectors UT) r = l, ... , L. Let Cl E '[d be strongly irrational. Let P and Cl be
a/-a. i. Let C = C(a,x) be an arbitrary cube with side length a > 0 and
center x, where a is chosen small enough to ensure that ç(P)a < a'. Then

~:(~.t, (IDet(U'"", ,,",)1nÀd-l(F,~{(PI')) )

< lim P(C, N)
N-+oo Nd

< ~: (~. t, (IDet(U,,,.. ,u,,)1nÀd-l(F,~{(P)')) ) .

To deduce Theorem 3.2.1 from Proposition 3.2.3 we proceed as in the
proof of Theorem 2.1.1.

Proof of Theorem 3.2.1: For kEN, k > lia', let a = 11k and cover '[d
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by kd disjoint cubes Ci(1/k) := (Xi - 1/(2k), Xi + 1/(2k)]d. Let é > o. Let
8(P-) be the separating diameter of P and choose k large enough such that
l/(k - 1) < 8(P).

By Lemma 3.1.4, for two disjoint cubes Ci-
e = Ci(1/k - é) and Cj-

e =
Cj (1/ k - é), i =I- j, there exists a separation number N (Ci, Cj). Observe that
N ~ N(Ci, Cj) implies that W(Ci, P, N) n W(Cj, P, N) = 0.

Thus, considering the local complexities of all cubes Cie, i = l, ... , kd,

simultaneously, Proposition 3.2.3 implies as a lower bound for the asymptotic
complexity

I. . f Pp,a(N) >
ImIn Nd -N-+oo

kd(l/k - é)d (~ ~ (I ( )1rrd d-l( -C(l/k-e»)))d! ~ ... ~ Det Uil' ... , Uid .;\ Fij .

tl=l td=l J=l

This holds for all é > O. Therefore we have

Analogously Proposition 3.2.3 gives the upper bound

Both bounds work for all kEN with k > lia'. But ;\d-l(Ftc(l/k») -
;\d-l(Fi) and ;\d-l(Fi) - ;\d-l(Fi-c(l/k») tend to zero for k -+ 00 for all i E
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{1, ... , L}. Thus, for every fJ > 0 there exists a kEN such that

Hence we also have IHmSUPN-+oo Pp~~N) - lim infN-+oo Pp~~N) I ~. fJ for every
fJ > O. •

3.3 Proof of Proposition 3.2.3

3.3.1 Overview

To prove Proposition 3.2.3 we must, assuming a'-a.i., find an appropriate
lower and upper bound for the local complexity, P(C, N), of the cube C =
C(a, x) ç 1['d induced by the fixed polytope P ç 1['d with L facets Fr ç Hur,>'r,
r = 1, ... , L, in [0, l)d and a strongly irrational a E 1['d. In Section 3.1.2 we
introduced the local complexity

{

N-I }
P(C, N) = Pw = DC n (pai+k - ja), ,

for w = akak+l ... ak+N-I E W(C, N), pI := P and pO := 1['d \ P. The local
complexity of a cube C coincides with the number of partition cells in C.
Denote by fî(C, N) the set of all such partition cells in C, corresponding to

words oflength N. Then P(C, N) = Ifî(C, N)I. For w = akak+l'" ak+N-I E

W (C, N), each partition cell is given by

N-I

Pw = n (C n (pak+i - ja))
j=O

N-In (((C + ja) n pak+i) - ja).
j=O
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(3.1) points out that the partition cells are determined by the preimages of
P. (3.2) indicates that p(e, N) depends on the partition of e by âP when
being translated by Q. We will use both approaches in the sequel.

In order to estimate the cardinality of IT(e, N) we shall construct two
partitions nI (e, N) and n2(e, N) of e induced by certain sequences of hy-
perplanes and with the property

The advantage of partitions induced by hyperplanes is the fact that the
number of vertices, i.e. intersection points of d-hyperplanes with linearly in-
dependent normal vectors, and the number of d-dimensional partition cells
are essentially the same.

A general result in this direction follows in Section 3.3.2. In Section
3.3.3, we define sequences of hyperplanes yielding the partitions ni(e, N),
i = 1,2. For these hyperplanes, we combine in Section 3.3.4 the a'-a.i. and
Lemma 3.3.3 to show that the number of partition cells indeed coincides
asymptotically with the number of vertices. Using this, the mapping Aw,
and the equidistribution property of the sequence (nQ)n2:0 in T, we are able
to compute an explicit formula in 3.3.5. Summing up, we finish the proof of
Proposition 3.2.3 in Section 3.3.6.

3.3.2 A basic lemma
Let ]Rd be the d-dimensional Euclidean space. Let e ç ]Rd be a d'-di-
mensional, d' ~ d, bounded convex set. Let (Hi)~l denote a sequence of
hyperplanes in ]Rd.

The hyperplanes (Hi)t!l induce a partition in e. It is natural to assume
some relation between the d'-dimensional partition cells and the vertices, i.e.
those x E e with {x} = n;~lHij' for suitable ij E {I, ... , M}. To establish
such a relation we introduce the concept of the weight.

For every point x E e we define a weight w(x, M, C) E N recursively on
M, the number of hyperplanes (Hi)t!l' and d', 1 ~ d' ~ d, the dimension of
e, in the following way:
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1. w(x, 0, C)
xE C.

2. If d' = 1, set

o for all d'-dimensional C, d' E {l, ... ,d}, and for all

w(x, M,e) = { 10

if {x} = Hi n Co for some
i E {1,2, ... ,M},

otherwise.

Here Co denotes the interior of C W.r.t. the I-dimensional topology.

3. Assume, w(x, M', C') is defined for every d"-dimensional C', 1 ::; d" <
d' and every 1 ::; M' < M. Let C be d'-dimensional. Let CM :=

C n HM' Then set

w(x,M,C) =

w( x, M - 1, C) if x E HM n Co, C ~ HM
+w(x,M -l,CM) and CM =J Hi nC

for all 1 ::; i < M,

w(x,M -l,C) otherwise.

Again, Co denotes the interior of C W.r.t. the d'-dimensional topology.

Note that points 2 and 3 yield the following implication.

C ç HM or CnHM = 0 ~ w(x,M,C) = w(x,M -l,C). (3.3)

Moreover, w(x, M, C) = 0 for all x E 8C and all d'-dimensional C, all
MEN.

Remark 3.3.1 Observe that w(x, M, C) > 0 if and only if x E C is an in-
tersection point of at least d' hyperplanes not containing C and with linearly
independent normal vectors. More precisely, let {x} = n;~lHi; for suitable
ij E {I, ... , M}. The inductive definition of the weight guarantees that

( M C) = 1 if x is contained in exactly d' distinct hyperplanes,
w x" > 1 if x is contained in more than d' distinct hyperplanes.

(3.4)
Moreover, the definition allows to show the following assertion
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Lemma 3.3.2 Let C be d'-dimensional. Let L ~ d' be the number of hyper-
planes intersecting C and containing x E C. Then

- 1 if d' = 1,
w(x, M, C) < ",~-d' "'~l,,.",id'_1 1=: C(L d') ~fd' > 1. (3.5)

- L....ll=l L....12=1 L....1d,=1 ,

Proof: Via induction on L and d':
d' = 1, L = 1 and d' = 1, L - 1 --+ L: Clear.
d' - 1 --+ d' and L = d': Clear.
d' - 1 --+ d' and L - 1 --+ L: By induction hypothesis we can assume for a
d" -dimensional C'

w(x, M - 1, C') < C(L', d") for any L' E N and any d" < d', and
w(x, M - 1, C') < C(L', d") for d" = d' and any L' ::;L - 1.

Assume now, to finish the inductive proof, d" = d', L' = L - 1 and x E HM,
i.e. L - 1 --+ L. But then, according to the definition of the weight,

w(x,M,C/)

<

w(x, M - 1, C') + w(x, M - 1, C~)
L-l-d' il id'_1 L-l-(d'-l) il i(d_I')_1

L L"'L 1+ L Loo, L 1

~
d'-fold summation

~
(d' - 1)-fold summation

- C(L, d').

The last equality holds since the last (d' - 1)-fold summation in the previous
line is the missing last summand of the d'-fold summation, •

Let G(C, M) := {x E C : w(x, M, C) ~ I} be the set of all such intersec-
tion points in Cafter M hyperplanes. G( C, M) is a discrete, finite set for all
MEN.

The intersections of C by Hi, i = 1,.,., M, induce a partition of C.
Let I1d,(C, M) be the set of all d'-dimensional partition cells in Cafter M
intersections. In particular an element 7r E I1d,(C, M) is called an inner
partition cell, if 1f n ac = 0. Let I1d,(C,Mt be the set of all d'-dimensional
inner partition cells.
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Lemma 3.3.3 Let d' E {I, ... ,d}. Let C be a d' -dimensional bounded con-
vex set. Let MEN; Then

1 Ild,(C, M)ol:::; L w(x, M, C) :::;IIld,(C, M)I.
XEG(C,M)

Proof: We prove the statement by induction. Under the assumption CM :=
HM n C =1= 0, CM =1= Hi n C for all i = 1, ... , M - 1 and C g HM we first
verify the equations

IIld,(C, M)I
IIld,(C, Mtl <

IIld,(C, M - 1)1+ IIld'-I(CM, M - 1)1,
IIld,(C, M - 1)°1 + IIld'-I(CM, M - ln.

(3.6)
(3.7)

To see this, note that each partition cell itself is a convex set in C. Let 7r E
Ild,(C, M -1). Then 7r°nHM =1= 0 (7r0 denotes the interior of 7r w.r.t. the d'-
dimensional topology) is equivalent to the fact that in the M -th intersection
7r is split into two partition cells 7rl = 7r n HM and 7r2 = 7r n Ht E Ild, (C, M).
7r n HM is the (d' - I)-dimensional set in CM separating 7rl and 7r2. This
holds for any partition cell 7r. Hence observe that the number of additional
cells induced by HM equals the number of (d - I)-dimensional cells in CM
proving (3.6). The same argument applies to (3.7). But since each splitting
set in Ild'-I(CM, M -1)° does not necessarily generate a new inner partition
cell we only obtain an inequality.

We prove the assertion by a twofold induction on the dimension d' and
the number of intersections M.
d' = 1, MEN and d' - 1 --t d', M = a : Clear by definition of w(x, M, C).
d' - 1 --t d', M - 1 --t M :
Case 1: CM := HM n C =1= 0, CM =1= Hi n C for all i = 1, ... , M - 1 and
cg HM. Using, (3.6), (3.7), and the induction hypothesis, we obtain

IIld,(C, M)ol :::;IIld,(C, M - 1)°1 + IIld'-I(CM, M - In
< L w(x, M - 1, C) + L w(x, M - 1, CM)

XEG(C,M-l) xEG(CM,M-l)~

L w(x, M, C) by definition
xEG(C,M)

< IIld,(C, M - 1)1+ IIld'-I(CM, M - 1)1 = IIld,(C, M)I.

Case 2: CM := HM n C = 0, or CM = Hi nC for a number i E {I, ... , M-
I}, or C ç HM' Then IIld,(C, M)I = IIld,(C, M - 1)1 and IIld,(C, Mtl
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<Pr(a)

<pr(o-)
Jr(E)
ir(E)• rr(E) -

i(E)

•

IIld,(C, M - 1)°1. Hence, by the induction hypothesis on M,

IIId,(C, M)ol = IIId,(C, M - 1)°1

< L w(x,M -1,C)
XEG(C,M-l)

< IIId,(C, M - 1)1 = IIld,(C, M)I.

Under the assumptions in Case 2, the definition of the weight guarantees

L w(x,M -1,C) = L w(x,M,C).
xEG(C,M-l) XEG(C,M)

•
3.3.3 Coverings of the boundary of P C ']fd and hyper-

planes intersecting C
Let P be an arbitrary polytope in [0, l)d with facets Fr ç Hur,Àr, r = 1, ... , L,
and X.t.-constant ç(P). Let a > 0 such that ç(P)a < a'. Let Bo = Bf,(p)u

and let E be a parallelepiped in [0, l)d with center e. Let E' = E - e be the
translate of E with center O. Let, for r E {I, 2, ... , L},

d

Fr \ ( U (Fj + Bo),
j=l,Ji'r

F;' n (Fr + Bo),
{À E JR : HUr,À n E' =I 0} ,
{z E [0, l)d Z = y + Àur, y E <Pr(a), À E Jr(E)} ,
{z E [0, l)d Z = y + Àur, y E <pr(a), À E Jr(E)} ,
L L

Uir(E), r(E) = U fr(E).
r=l r=l

Thus, for r = 1, ... , L, <Prand <Pr are subsets of the enlarged facet Ft.
Translates of t are two facets of the rectangular parallelepiped ~:~i~in
[O,I)d, which covers (partly) the facet Fr. The height of both, ir(E) and
rr(E), equals the length of the interval Jr(E). The Figures 3.3 and 3.4
illustrate these definitions.
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ßpU'

Figure 3.3: Partial covering of Fr by ir(E)

We interpret ir(E) and rr(E) again as subsets of yd. Let, for r E
{1,2, ... ,L},

N;(E) {n EN: na+ dE
ir(E) if i = 1 },- rr(E) if i = 2

L

Ni(E) UN;(E).
r=l

Each n E Ni(E) corresponds to some hyperplanes Hu,).. = H~:~).. ç ]Rd for
which there exists an r E {l, ... , L} such that

(Hu,).. nE) + na) ç F;'. (3.8)

Remark 3.3.4 Note that nEN1(E) implies that (3.8) holds for exactlyone r E
nEN2(E) some

{l, ... ,L}.

Let -< be the lexicographical order on N x {l, 2, ... , L}, i.e. (n, r) -< (ni, ri)
iff n ::;ni or n = n' and r ::;r'.
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âpU'

FU'
r

•

Figure 3.4: Covering of Fr by fr(E)

Let Hi(E) denote the set of hyperplanes H~~\ ç ]Rd with n E Ni(E).

We can order its elements according to -< by setting H~~\ -< H~:::Nif
(n, r) -< (n', r'). Let (H;(E))j~o, i = 1,2, be the resulting sequence con-
taining all elements of Hi(E) ordered increasingly.

Further, we define Hi(E, N), i = 1,2, to be the set containing all H~~lE
Hi(E) with n < N. Finally let, for W ç {Ul, U2, ... , ud, Hi(E, N, W),
i = 1,2, denote the set containing all H~~\.E Hi(E) with n < N and with
Ur E W.

The hyperplanes Hj E Hi(E, N), i = 1,2, induce partitions of E. The
partition cells are given by

IHi(E,N)1n Hf.
j=l

Let lli(E, N), i = 1,2, denote the set of all such partition cells induced by
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the elements of 1{i(E, N) .
.Theelements of 1{i.(C, N), i = 1,2, aredefined in such a way that the par-

titions Ili(E, N), i = 1,2, can be used for the estimate of the local complexity
P(C, N) as we announced in Section 3.3.1.

Lemma 3.3.5 Let C = C(Œ, x). Then

Proof: According to the definition of the elements of 1{i( C, N), i = 1,2, the
.. n1(c N). . d db' . f C . h I/Jr(U) & 1 2 LpartItIOn n2(C:N) ISm uce y mtersectIOns 0 WIt <1>r(U) , lor r = , ... ,

and cPr(Œ) ç Fr ç <I>r(Œ),for all r E {I, 2, ... , L}. Moreover, x + no: E ir(Œ)
implies that C +no: is partitioned by Fr in (exactly) two connected partition
cells. These properties guarantee that we can use IIlI(C, N)I (IIl2(C, N)I) as
a lower (an upper) bound for the local complexity P(C, N) of C. •

Motivated by Lemma 3.3.5 we focus on the estimate of IIli(E, N)I, i =
1,2. Using Lemma 3.3.3 and Œ'-a.i. of P and 0:, we want to establish a con-
nection between IIli(E, N)I, i = 1,2, and the number of so-called intersecting
d-tuples, which are defined in the following way.

Let, for i = 1,2, HL H~, Hit be the increasingly ordered elements of
1{i(E, N). Let W ç {UI, U2, , ud. Define

VJ(E, N)

Vi(E, N) can be interpreted as the set of all vertices in E induced by
elements of 1{i(E, N) (a vertex x E E is an intersection point of d ele-
ments of 1{i(E, N) with linearly independent normal vectors). Thus, we call
its elements intersecting d-tuples (i.d.-tuples). Accordingly, Vd(E, N) rep-
resents the set of all vertices that are elements of exactly d hyperplanes
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with linearly independent normal vectors in rti(E, N). It is natural to
callits elements uniquely intersecting d-tuples (u.i.d-tuples). Obviously
Vd(E, N) ç Vi(E, N).

We conclude this section with an assertion which describes the distribu-
tion of the hyperplanes rti(E), i = 1,2, intersecting E. For this reason, let
rti(E, w), i = 1,2, denote the set of all hyperplanes in rti(E), i = 1,2, with
normal vector w E 3d-I,

Lemma 3.3.6 Let P be a polytope in [O,I)d with facets Fr ç Hur,>'r) r =
1, ... , L. Fix r E {I, 2, ... , L}. Then the sequence (/lj - Àr)j~l) induced by
Hi = H Vj ,/Lj E rti (E, Ur), i = 1, 2, ordered increasingly w.r. t. -<) is uniformly
distributed in the interval Jw(E) in the sense that for any subinterval I ç
Jr(E),

if i = 1,
if i = 2. (3.9)

Proof: This assertion follows from the fact that the sets Ir (E) and rr (E)
are, by construction, rectangular parallelepipeds as well as from the equidis-
tribution property of the sequence (na)~=l' •

3.3.4 Consequences of Lemma 3.3.3 and o-'-asymptotic
independence

Let P ç [0, l)d be a closed polytope with L facets Fi ç Hur,>'r' r = 1, ... , L,
interpreted as a polytope in 1rd. Let a E 1rd be strongly irrational such that
P and a are a'-asymptotically independent, with suitable a' > O. Let a > a
so that ç(P)a ::;a'. Let C = C(a, x) be a fixed cube.

Following Sections 3.3.1 and 3.3.2, let rti(C, N), i = 1,2, be as above,
. h h I (H )IHi(C,N)1 .WIt tee ements j j=l , Z = 1,2.

We will show how a'-a.i. and Lemma 3.3.3 imply that the number of
partition sets in C induced by the elements of rti(C, N), i = 1,2, can be
estimated by the number of elements of Vi(C, N), i= 1,2.
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In the sequel we will omit the superscript i whenever we do not need to
distinguish -between the cases i = I and i = 2. Assume C is partitioned -
by the halfspaces induced by the elements of 1t(C, N). As before let, for
d' E {I, ... , dl, Ild,(C, N) denote the set of all d' dimensional partition sets
in Il(C, N). We write abbreviating w(x, N, C) for w(x, 11t(C, N)I, C), the
weight of a point x in C as defined in the previous section and G( C, N) =
{x E C: w(x,N,C) ~ I}.

We show that, due to a'-a.i., V(C, N) \ Vo(C, N) is small. To do so,
we first count the over-determined vertices in '['d after N-fold translation of
Bpa' by a if P and a are a'-a.i.

For this reason, let

U(N) := {XE 1l'"

be the set of all vertices x E '['d after N-fold translation. Let, for x E '['d,

I(x, N) := {(n, r) E {a, ... , N - I} x {I, ... ,L} : x E F;' - na} .

assign to each x the set of translates of facets which contain x.

Lemma 3.3.7 Let P and a be a' -a. i. Then

I{x E U(N) : II(x, N)I > d}1 = o(Nd
).

Proof: Let x E U(N) with II(x, N)I = e > d. Let

I(x, N) = {(nI, rd, (n2, r2),"', (ne, re)}

and assume nI ~ n2 ~ ... ~ ne. Then

and x E Bpa'. For an arbitrary x E '['d, let

lev(x) = min {n EN: ::Ir E {I, ... , L} such that (n, r) E I(x, N)}.
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For each x E U(N) with II(x, N)I > d, there is a Xo = x + lev(x)o: E ßpa'
with II(xo, N)I > d. By a'-a.i~, on each enlarged facet Ft' of-ßpa' there
are at most o(Nd-I) points Xo with Xo E U(N) and II(xo, N)I > d. Hence,
also on ßpa' there are at most o(Nd-I) points Xo with Xo E U(N) and
II(xo, N)I > d. Therefore, for every n E N, there are o(Nd-I) points x
with lev(x) = n, x E U(N) and II(x, N)I > d. Summing up, there are at
No(Nd-I) points x E U(N) and II(x, N)I > d. •

Lemma 3.3.8 Let P and 0: be a' -a. i. Then

IV(C, N)I = IVo(C, N)I + o(Nd).

Proof: Note that V(C, N) \ Vo(C, N) corresponds to those points x E C with
x E U(N) and II(x, N)I > d. But by Lemma 3.3.7 there are at most o(Nd)
such points in 1['d and hence also in C. Moreover, a'-a.i. implies that each x
is contained in at most L hyperplanes (cf. condition 2. of Definition 3.1.2).
Hence, each point x E U(N) with II(x, N)I > d implies at most (~) d-tuples
which are elements of V(C, N) \ \iQ(C, N). •

The following lemma connects IVo(C, N)I and the weight function.

Lemma 3.3.9 Let P and 0: be a.i. Then

IVo(C, N)I = L w(x, N, C) + o(Nd).
xEG(C,N)

Proof: It follows from the inductive definition of the weight function that an
x E C is an element of G( C, N) iff there exists a d tuple (JI, ... , jd) E V (C, N)
such that {x} = nf=I Hj;, for Hj; E 1t(C, N). Recall that by Remark 3.3.1,
equation (3.4), w(x, N, C) = 1 iffthere exists a d tuple (JI, ... ,jd) E Vo(C, N)
such that {x} = nf=lHjp for Hj; E 1t(C,N). Let Go(C,N) = {x E
G(C, N) : w(x, N, C) = I}. For all N E N, by a'-a.i. every x in C is
also an element of at most L different hyperplanes in 1t(C, N). By Lemma
3.3.2, equation (3.5), w(x, N, C) ~ C(L, d). Hence

L w(x,N,C) =
xEG(C,N)

L w(x, N, C) + L w(x, N, C)-------- --------~EGO(C,N) = 1 "' xEG(C,N)\Go(C,N) E {I, ... , C(L, d)}
....,. It... .J

= IVo(C, N)I o(Nd) s~mmands
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•
Let é > 0 with ç(P)((J + é) < (J'. If we replace C = C((J, x) by Cê =

C ((J + é, x), we can define the sets 7-£i (Cê, N), i = 1, 2, the corresponding
induced partitions of Cê and a corresponding weight function.

Remark 3.3.10 For S E Il(Cê, N) let diam(S) denote its diameter and let
diam(Il(Cê,N)) = sup{diam(S): SE Il(Cê,N)}. Due to equidistribution,
diam(Il(Cê, N)) ---7 0 as N ---7 00. Thus, for any é > 0, there exists an No
such that diam(Il(Cê, N)) < é for every N ~ No.

Lemma 3.3.11 Let é > O. Let N be large enough so that diam(Il(Cê, N)) <
E holds. Then

I:: w(x, N, C) ~ IIld(C, N)I ~ I:: w(x, Nê, Cê).
xEG(C,N) XEG(C<,N')

Proof: The asserted inequality is a direct consequence of Lemma 3.3.3 and
IIld(C, N)I ~ IIld(Cê, N)OI. •

As the next assertion shows, (J'-a.i. implies that it suffices, for asymptot-
ical estimates, to count only the d-dimensional partition sets.

Lemma 3.3.12 Let é > O. Let N be large enough so that diam(Il(Cê, N)) <
E holds. Let P and a be a. i. Then

IIl(C, N)I = IIld(C, N)I + o(Nd).

Proof: We show that (J'-a.i. implies IIld,(C, N)I = o(Nd), for all d' E
{0, 1, 2, . . . . .. , d - I}. Let d" = d - d'.

At first we claim that a set S in Ild' (C, N) is necessarily contained in
k > d" distinct halfspaces Hi~' j = 1,2, ... , k and Hij E 7-£(C, N).

Note that, for each such S E Ildl(C, N), there exists an SI ç C and an
NI EN such that S ç SI, SI E Ild1(C,N1-1), dl E {d' + 1, ... ,d} and
HNI n SI = S. There are two possibilities:

Case 1: dl = d: Then HNI cuts SI such that HNI nSI is d'-dimensional.
By easy linear algebra this is only possible if HNI intersects a d'-dimensional
region of the boundary of SI which, clearly, is already contained in d" hy-
perplanes. This proves the claim if dl = d.
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Case 2: dl < d: As before, in this case there exists an S2 ç C and an
N2 E N such that SI ç S2, S2 E I1d2(C, NI - 1), d2 E {dl + 1, ... , d} and
HN2 n S2 = SI. If d2 = d, then the same argument as in Case 1 proves the
claim. If d2 < d, repeat the argument of Case 2. After at most d" steps we
arrive at Case 1.

According to the claim all O-dimensional partition sets are intersection
points of at least d + 1 hyperplanes. By (7/-a.i. and Lemma 3.3.7 there
arc o(Nd) such over-determined intersection points in C. Moreover, the
claim and condition 2. of the definition of (7/-a.i. (Definition 3.1.2) imply
that there are no (d - 1)-dimensional partition sets. Thus, we can assume
d' E {I, ... , d - 2}.

We assign to each d'-dimensional set S the set J (S) = {j : S E Hj} and
call1ev(S) = min(J(S)) the level of S.

Let l E N. We estimate the number of d'-dimensional sets S with lev(S) =
l which lie in more than d" hyperplanes Hil' j = 1, ... ,k. Observe that each
such set S induces the d'-dimensional convex set

k

Cut(S) = nHij n C
j=1

which itself is a subset of Hl, By Lemma 3.3.3, we know that, for N E N
sufficiently large, an upper bound for the number of d' dimensional sets in
Cut(S) is given by

L w(x, Cut(SY, N).
XEG(Cut(S)~ ,N)

(Here, Cut(S)~ := n;=l Hij n C~.) In other words, we can define a bijective
mappmg

v : T ~ (x(T), t), xE G(Cut(SY, N), tE {I, 2, ... , C(L, d")}.

v assigns to each d'-dimensional T ç Cut(S) a point x(T) E Cut(S). This
works for all sets Cut(S') with S' in I1d,(C, N) of levell.

Let l be a fixed level. Observe that:
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(a): By the claim discussed above, all the assigned points x(T) are vertices
of ce which are contained- in more than d intersecting hyperplanes. By
condition 1. of the definition of the a'-a.i., there are at most o(Nd-I) such
vertices in each HI.

(b): By condition 2. of the definition of the a' -a.i. each such assigned
vertex x can be an element of at most (Ld~I) sets Cut(S').

Combining the statements (a) and (b) implies that there are at most
c(L, d") (Ld~I)O(Nd-I) sets S in I1~(C, N) of level l. Hence, for any d' < d,
I1~(C, N) contains at most o(Nd) elements. •

The (in- )equalities proven in Lemmata 3.3.8 - 3.3.12 imply the next re-
sult.

Proposition 3.3.13 Let P and a be (a')-a.i .. Let a > 0 and é > 0 such
that ç(P)(a + é) < a'. Let C = C(a, x) and ce = Cx(a + é) two cubes. Use
the notation introduced so far. Then

IV(C, N)I + o(Nd) ::; 1I1(C, N)I ::; IV(Ce, N) + o(Nd)l.

For Lemmata 3.3.11 and 3.3.11 we need the assumption that N E N is
sufficiently large. We remark that in Proposition 3.3.13 this condition is
hidden in the term +o(Nd).

Combining the last proposition with Lemma 3.3.5 yields that if P and
a are a'-a.i. one can obtain an asymptotic lower (upper) bound for the
local complexity of a cube C by computing the number of intersecting d-
tuples generated by the elements of 'H.I(C, N) in C ('H.2(ce, N) in ce). This
computation will be the aim of the following section.

3.3.5 Asymptotic growth rate of the number of inter-
secting d-tuples induced by 1{i(D, N, W)

Let W = {WI, W2, ... , Wd} ç {UI, U2, ... , ud. Let Aw be defined as above.
Take any ( > 0 sufficiently small so that ç(P)(( + a) < a'. Let C( =
C(a + (, x) and C-( = C(a - (, x).

Lemma 3.3.14 For every set W = {WI, W2, ... , wd ç {UI, U2, ... , ud and
every ( > 0 holds

IVI(C, N, W)I + o(Nd) ~ IVI(Aw(C-(), N, W)I and
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Proof: This follows directly from Lemma 3.3.6 and from the fact that C and
Aw(C) are Jordan measurable sets of the same volume. •

The advantage of considering Aw(C) is that the elements of W = {WI, ...

Aw(C)C

Figure 3.5: The i.d-tuples in C and Aw (C)

... , Wd} are exactly the normal vectors of the facets of Aw(C) (cf. Figure
3.5). Due to (a')-a.i. of P and a, the elements of 1l(Aw(C), N, W) are
always distinct. Thus, by equidistribution of the sequence (na )n~l' the num-
ber of intersecting d-tuples equals asymptotically the product of the volumes
of the sets Iw(Aw(C)) and rw(Aw(C)), i.e. we have the following lemma.

Lemma 3.3.15

IVi(Aw(C), N, W)I =

nWEW N)..d bw(Aw(C))) + o(Nd)
= Nd n;=1 )..d-I (</>Wj(a)) IJwj(Aw(C))1 + o(Nd)

nWEW N)..d (rw(Aw(C))) + o(Nd)
= Ndn~=I)..d-l (4)Wj(a)) IJwj(Aw(C))1 +o(Nd)

if i = 1,

if i = 2.

We conclude this subsection with a verification of the following formula.
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Lemma 3.3.16

d

IlIJwj(Aw(C))1 = adIDet(Wl"'" wd)l.
j=l

Proof: Let, as in Section 3.1.4, C = Co be the cube rooted at 0, i.e.,

d d

C = n H: 0 n n H; u'JI l'
j=l j=l

where, for 1 ~ i ~ d, ei E Sd-l denotes the i-th Euclidean unit vector. The
edges of Care aei'

Recall that, by definition, Aw = Td 0 Td-l 0 ... 0 Tl, Moreover, all facets
of Ck = Tk 0 ... 0 Tl (C) lie in the same hyperplanes as the facets of CH 1 =
Tk+l(Ck). Only the normal vectors ofthe facets Fk ç Hek,o and Fk+d ç HCk,u
change under Tk+l' By the definition of Tk+l, the new facets are subsets
of HWk+l 0 and HWk lé 'Wk I' Furthermore, these hyperplanes contain the, +1, k+1 +1
facets of Aw(C). Thus,

IJWk+1(Aw(C))1 = leZ+I. wHlj.

e~+l can be expressed as vector connecting 0 and the vertex

k dn Hw;,o n Hek+1'u n n Hc;,o,
i=l i=k+2

i.e., as the vector

eZ+1= (JI (k), ... , !k(k), a, 0, ... ,0),

which is a solution of the system of linear equations

fI (k)

o
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or, equivalently, of

(

WI = wi wt )
Wk = Wk : wZ

(3.10)

Applying Cramer's rule on (3.10), the fl(k), 1 :S I :S k, can be expressed as

(

WI .. 'Wl-I _awl+1 WI+I ... wk )1 1 1 1 1

Det : : :
WI Wl-I ~wl+I WI+I wkk • .. k -v k k' .. k

(
~i......w.t )

Det: : =: Dk
1 kWk ..•.• 'Wk

Therefore we arrive at

Observe that this equation holds for any cube C ç [0, l)d and its image under
the linear mapping Aw. •

3.3.6 Finalizing the Proof
Let, according to the assumptions of Proposition 3.2.3, P be a polytope in
1I'd with facets Fi and normal vectors Ui, i = 1 ... , L. Let Cl: E 1I'd be strongly
irrational. Let P and Cl: be a'-a.i. Let C = C(a, x) be an arbitrary cube with
side length a > a and center x. Let a be small enough so that ç(P)a < a'.
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Let W = {WI, W2, ... , Wd} ç {UI, U2, ... ,ud consist of d linearly inde-
pendent- vectors. Combining Lemmas 3.3.15 and 3.3.16 yields for î = 1,2

By Section 3.3.1 and Proposition 3.3.13, for every E > 0,

P(C, N) ~ Irrl(C, N)I ~ IVI(C, N)I + o(Nd)
> L IVI(C, N, W)I + o(Nd)

W={W! ""Wd}Ç
{U!,U2""'UL}

>
W={W!,,,,Wd}Ç

{U!,U2""'UL}

d

> L (a - ()dNdIDet(wI"'" wd)1II,\d-I (cf;wr(a - ())
W={W! ''''Wd}Ç r=1

{U!,U2"",UL}

+o(Nd
)

Nd(a _ ()d (L L
> dl L'" L

k!=1 kd=1

(IDet(Uk ..... ,uk,)1 D,,d-'(4)u,,('' - Œ) ) + o(Nd)

and analogously (for any ( and E sufficiently small W.r.t. a'),

P(C, N) :<; N
d
(" :!e + ()d (t ...t

k!=1 kd=l

(IDet(U", ... ,uk,)1 D"d-'( .pu" (" + ( + e))) ) + o(Nd).

Since the last two inequalities hold for any E, ( > 0 if N E N is sufficiently
large we are done.
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3.4 The asymptotic independence of P and ex

How natural is our condition of asymptotic independence? Recall from Sec-
tion 3.1.3 that a'-a.i. states:

1. For all s E {I, 2, ... , L}, the number IGs(N)1 of over-determined ver-
tices on the facet Ft which is induced by the N-fold translation of
aper' by a, is of size o(Nd-1).

2. There are no parallel facets with nonempty intersection.

We can show the following.

Proposition 3.4.1 Let P be a polytope in ']I'd with facets Fr and normal
vectors Ur, r = 1, ... , L. Then P and a are a'-asymptotic independent for
all a E ']I'd \ M, where M is a meager zero set.

Proof: We first show that condition 1. holds for almost all a. For j = 1, ... , d,
let linearly independent normal vectors urj' lj E {I, ... , L}, positive integers
nj E N \ {O} and mj E (N \ {a})d be given. Fix the set

A = As((Uri, ni, mi)f=l) := {a E [o,l)d : n HUrj,(njo:-mj)oUrj E Hus,o} .
J=O

Note that A is either empty or contained in a hyperplane in ]Rd intersecting
[O,I)d. Hence it is a set of measure 0 (w.r.t. ,\d) that does not have inner
points. By the same arguments also the sets

A(s) := u u u
are meager zero sets in [0, l)d for all s E {I, ... , L}. Let

A'(s) ~ "",~:L, n"'~'EN {oe E 'l"
linearly independent

Observe that A(s) 2 A'(S).
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If a in [0, l)d\A(s), then, for all s E {l, ... , L}, and for facets FT!"" , FTd,
Tj"E {l,- ... , L}\ {s}, with-linearly independent UTi' there exists at mostone
d tuple (nI,"" nd) E Nd such that

Hence, for every s E {l, ... , L}, the set Fr:' contains at most one intersection
point n;=l FTi - nja, for every choice of facets FT; with linearly independent
uTi,j=l, ... ,d.

Therefore, for almost all a, there are altogether at most (L/) intersection
points in Fs proving condition 1.

In a similar way we show that the set of those a, for which condition 2
fails, is small:

The set (ß(P + (a')) - na) n (ßP + a') contains a (d - I)-dimensional
set only if there are two facets FT and Fs of P, 1,::; T, S ::; L, such that
(Ft - na) n Fr:' contains a (d - I)-dimensional set. If FT ç Hur,>'r and
Ps ç Hu.,>.. this is only possible if UT = :l::us and if for the normal distance 6
between these hyperplanes holds

for a suitable vector k = (kl"'" kd) E 'Iff Let k E 7ld, n E N, 6 ~ 0 and
U E Sd-l' Then

B Cu,6, k, n) = {a E Rd (na - k) . U = 6}

defines a hyperplane. Thus

B(u,6) = U U B(u, 6, k, n)
nEN kEZd

is a meager zero set. Since P is a polytope, only finitely many choices for
u E Sd-l and 6 ~ 0 are possible (for every Ui, i E {l, ... , L}, 6 = 0 is
possible). •
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3.5 Further remarks
The following natural question arises: Does a similar relation hold for more
general convex bodies and their coding sequences? It is known that the vol-
ume of the projection body is continuous W.r.t. the Hausdorff metric. It
seems that our approach allows to verify a similar continuity-type result in
dimension d = 2. A detailed investigation of this special case and the general
d-dimensional case would be interesting for future research.

Let us remark that one cannot hope for continuity of the asymptotic com-
plexity W.r.t. the Hausdorff metric. One always has to respect dependencies
of the coded set and the generating element. In the present chapter these de-
pendencies were controlled via the a'-asymptotic independence. If P and et
are not a'-a.i. the value of the asymptotic complexity changes. An example
for this situation has been discussed in Remark 2.1.2,2.
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