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Kurzzusammenfassung

Eine irrationale Zahl « legt die Folge (na)$2 ; mod. 1 fest, welche in [0, 1)
gleichmaBig gleichverteilt ist, d.h. die Folge erfiillt

. {ne{kk+1,...,N—1}:namod 1€ I}

lim =

Nooco N
gleichméaBig in k € Z, wobei I = [a,b) C [0,1) ein beliebiges Intervall ist.
Diese Tatsache beruht auf Resultaten aus Hermann Weyl’s bedeutender Ar-
beit Uber die Gleichverteilung von Zahlen mod. Eins ([43]), die als Aus-
gangspunkt fiir die Entwicklung der Theorie der Gleichverteilung angesehen
werden kann. Eng verbunden mit der Theorie der Gleichverteilung sind die
der ergodischen Abbildungen und der dynamischen Systeme. Die sogenannte
Kodierungsfolge von I, a = (ax) _., € {0,1}%, ist definiert durch

b —

{ 1 falls na mod 1 € I,
a, =
0 sonst.

Neben anderen interessanten Eigenschaften findet sich in dieser Kodierungs-
folge auch die gleichméflige Gleichverteilung der zugrundeliegenden na—Folge
wieder. Damit nimmt sie eine besondere Stellung in der symbolischen Dy-
namik ein. Als fruchtbare Verallgemeinerung dieser Situation etablierte sich
die Theorie der Hartman Mengen und Hartman Folgen.

In der vorliegenden Dissertation werden kombinatorische, ergodentheo-
retische, geometrische und topologische Zusammenhange zwischen Hartman
Mengen beziehungsweise Hartman Folgen und zugrunde liegender kodierter
Menge untersucht. Die so gewonnenen Erkenntnisse finden Anwendung in
verwandten Problemen.

Kapitel 1 beginnt mit einer Einfithrung in die Theorie der topologischen
Gruppen und in die Ergodentheorie. AnschlieSend wird das Konzept der
Hartman Mengen und Hartman Folgen vorgestellt. Weiters wird die Kom-
plexitdtsfunktion besprochen. Es folgt eine Untersuchung von Hartmanfol-
gen mit maximaler Komplexitat. Ist die kodierte Menge eine Teilmenge von
[0,1), so ermoglicht die Theorie der Kettenbriiche eine genauere Struktur-
analyse der Kodierungsfolge. Dies wird am Ende von Kapitel 1 ausgefiihrt.



Kapitel 2 beschaftigt sich mit Bohr Mengen, welche bereits in Kapitel 1
als wichtige Objekte auftreten. Zunachst wird eine asymptotische Formel fur
das Wachstum der Komplexitatsfunktion der entsprechenden Hartmanfolge
bewiesen. Es stellt sich heraus, dass der von Bohrmengen erzeugte Filter ein
wertvolles Hilfsmittel fiir die Charakterisierung von Untergruppen lokalkom-
pakter abelscher Gruppen ist. Tatsidchlich kann gezeigt werden, dass es zu
jeder abzahlbaren Untergruppe H einer kompakten metrisierbaren topologi-
schen Gruppe G eine Folge (x,)%, von Elementen der zu G dualen Gruppe
G gibt, sodass

a€H = nh_{& xn{a) = 0.

Dies erweitert das Hauptresultat von [12], welches zu jeder abzahlbaren
Untergruppe H der Kreisgruppe die Existenz einer Folge (k,)%2; ganzer
Zahlen garantiert, welche lim, ., k,a = 0 genau dann wenn o € H erfullt.
Auch werden neue Moglichkeiten der Charakterisierung von Untergruppen
prasentiert, sowie Probleme von Dikranjan et al. behandelt. Der letzte
Abschnitt dieses Kapitels widmet sich der Frage welche Infomationen iiber
die kodierte Menge aus der induzierten Hartman Folge entnommen werden
konnen. Basierend auf [44] werden diesbeziigliche Aspekte diskutiert.

Schliellich werden in Kapitel 3 Hartman Folgen betrachtet, welche durch
ein Polytop P induziert werden. Es wird eine asymptotische Formel fir die
Komplexitat solcher Hartmanfolgen berechnet. Es zeigt sich ein direkter
Zusammenhang mit der Geometrie von P. Falls P konvex ist stellt sich her-
aus, dass die asymptotische Komplexitat (fast immer) mit dem Volumen des
Projektionenkorpers von P iibereinstimmt. Diese Tatsache klart, wie sich
die Geometrie der kodierten Menge auf das Wachstumsverhalten der Kom-
plexitat auswirkt.

Die zentralen Teile dieser Arbeit sind in {7] (Abschnitt 1.5), [8] (Abschnitt
2.2), [38] (Kapitel 3) und [40] (Abschnitte 1.4.2, 1.4.3 und 2.1) enthalten.

Am Beginn jeder Sektion finden sich Referenzangaben zu dem jeweiligen
Themenkreis.

Diese Dissertation wurde unterstiitzt durch den Osterreichischen Wissen-
schaftsfonds FWF im Rahmen der Projekte Nr. S8312 und Nr. S8302.




Abstract

An irrational number a induces the sequence (na)$2; mod. 1, which is
well distributed in [0, 1), i.e. the identity

lim {ne{k,k+1,...,N—1}:namod1l€l}|

N—o0 N b-a

holds uniformly in & € Z, where I = [a,b) C [0,1) is an arbitrary interval.
This fact is based on results of Hermann Weyl’s celebrated paper Uber die
Gleichverteilung von Zahlen mod. Eins ([43]) which can be seen as a starting
point of the theory of uniform distribution. Closely related to the theory of
uniform distribution are ergodic theory and topological dynamics. The so
called coding sequence of I, a = (ax)2_,, € {0,1}%, is given by

o = 1 if na mod 1€,
" 10 otherwise.

It is an interesting property of this coding sequence that it displays the well
distribution of the corresponding na-sequence. Hence it is a special object
of symbolic dynamics. A fruitful generalization of this situation has been
developed in the theory of Hartman sets and Hartman sequences.

In the present thesis, combinatorial, ergodic, geometric and topological
connections among Hartman sets, Hartman sequences and their correspond-
ing coded sets are investigated. Also related problems are studied.

Chapter 1 starts with an introduction to the theory of topological groups
and ergodic theory. The concept of Hartman sets and Hartman sequences
is developed, and the complexity function is introduced. Next, Hartman
sequences of maximal complexity are studied. If the coded set is a subset
of [0,1), the theory of continued fractions allows a detailed analysis of the
structure of the coding sequence. This is done at the end of Chapter 1.

Chapter 2 deals with Bohr sets which already have an important posi-
tion in Chapter 1. At first, an asymptotic formula for the growth rate of
the complexity function of Hartman sequences corresponding to Bohr sets is
shown. The filter generated by Bohr sets turns out to be a useful tool for the

3



characterization of subgroups of locally compact abelian groups. In fact, it
will be shown that for every countable subgroup H of a compact metrizable
abelian group G there exists a sequence (x,)S, of elements of G, the dual
group of G, such that

a€H = lim x.(a) =0.
n—oo

This extends the main result of [12] which guarantees for every countable
subgroup H of the circle group the existence of a sequence (k,)32; of in-
tegers such that k,a — 0 if and only if « € H. Moreover a different way
of characterization of subgroups will be presented and several problems of
Dikranjan et al. will be discussed. The last part of this chapter is dedicated
to the question which information of the coded set is contained in the induced
Hartman sequence. Based on [44], several aspects concerning this question
will be treated.

Finally, in Chapter 3, Hartman sequences induced by a polytope P are
treated. An asymptotic formula for the complexity of such sequences is com-
‘puted. This formula indicates a direct connection to the geometry of P. It
turns out that if P is convex, then the asymptotic complexity coincides (in
almost all cases) with the volume of the projection body of P. This fact
clarifies how the geometry of the coded set influences the growth rate of the
complexity function.

The central parts of this work are contained in (7] (Section 1.5), [8] (Sec-
tion 2.2), [38] (Chapter 3) and [40] (Sections 1.4.2, 1.4.3 and 2.1).

At the beginning of each section we shall indicate references to the actual
topic.

The research for this thesis was supported by the Austrian Science Foun-
dation through projects no. S8312 and no. S8302.
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Chapter 1

Entrée

1.1 General background

In this section we explain the notation and basic facts on which this text is
mainly based.

As usual, T = R/Z denotes the circle (torus) group. For z € R, ||z
denotes the distance to the nearest integer (i.e. the distance to 0 in T).

If X is a topological space and Y C X we write Y, Y° and dY for the
closure, interior and the boundary of Y. In the sequel, compact X always
satisfy Hausdorft’s separation axiom.

Let X be a topological space, B the Borel o-algebra on X and p a mea-
sure on X. Then we call X a measure space. As usual LP(u) denotes the
space of all (equivalence classes of) functions f for which |f|P is integrable.

If G is a group and H a subgroup of G, we write H < G. We are only
dealing with abelian groups, consequently we shall always use additive no-
tion. If A C G is a subset of G, we write (A) for the subgroup generated by A.

Instead of the phrase ”if and only if” we sometimes write abbreviating
b3 ifF’,



1.1.1 Topological groups and duality theory
18], [27], [29]

Let G be a locally compact abelian (LCA) group. We set
G = {x:G — T: x is a continuous homomorphism} .

Define as binary operation on G the pointwise addition (x;+x2)(z) = x1(z)+
x2(z), z € G, x1 and x» in @, in the torus group. Then G is also an abelian
group. Furthermore, it can be equipped with a topology. The appropriate
topology for our needs is the so called compact open topology. An open basis
at the identity in this topology consists of all sets U(K,e) C G which are
defined by

U(K,e) = {x €G:|x(z)|| <eforallze K} ,
where K C G is compact, and € > 0.

Definition 1.1.1 G equipped with the compact open topology s called the
dual group of G. Its elements x € G are called characters.

The dual group of an LCA group is itself an LCA group. Thus it is
natural to define the dual group of G, the bidual group of G, which is of
course also an LCA group. But much more holds true. The striking Duality

Theorem of Pontryagin and van Kampen shows that G and G are essentially
the same object.

Theorem 1.1.2 Let z € G be a fized element. Let
:GoT, () =x().

Then the mapping T defined by T7(x) = x’ is a topological isomorphism of G

onto @ .

Example 1.1.3 The most common example for a topological group in the
context of Duality theory is G = T equipped with the usual topology. Then
G = Z. This example will play a central role in the sequel. The Duality

Theorem implies G~ZT.
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The next assertion, partly a consequence of the Duality Theorem, tells us
more about the connection between the topologies on G and G.

Theorem 1.1.4 Let G be an LCA group. Then

G is discrete < G is compact.
G is compact < G is discrete.

Theorem 1.1.4 has an important consequence — it indicates how to con-
struct compactifications of LCA groups.

Definition 1.1.5 Let G be an LCA group. We call the pair (C,t) a com-
pactification of G if L : G — C is a (not necessarily injective) continuous
homomorphism and ((G) is dense in the compact group C.

Let (Cy,¢1) and (Cy, t2) be compactifications of G. We write (Cy,¢;) =
(Ca, t2) and call (C, 1) a factor of (Cy, ) if there exists a continuous homo-
morphism 7 such that the diagram

o)
G —4. ¢

commutes. If (C1,¢) <X (Ca,t2) and (Cy, 1) = (Ca, ) we write (C, 1) =
(Cy,t2). Then < is a partial order relation on the set C = C(G) of all equiv-
alence classes of compactifications of G w.r.t. .

Let G be an LCA group and G its dual group. Let
:G=T=[[Te  wl9) = x(9)ee
x€G

Then ¢g is a continuous homomorphism and

bG =15(G)  (in T%)

is, due to Tychonoff’s Theorem, a compact group. (bG, tg) is called the Bohr
compactification of G. It turns out that (bG,¢g) is a maximal element in C
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w.r.t. the partial ordering <. The duality theory implies that bG = G
Here G4 denotes the dual group of G endowed with the discrete topology.
Moreover, there is a 1-1 correspondence between subgroups of A < G and
factors of bG. The compactification (Cy,ta) < (bG, tp), where

ta: G — H Ty, talg) = (X(g))xeA)

XEA
and C4 = t4(G) in [, 4 Ty directly corresponds to A < G.

LCA groups also enjoy a very important and nice measure theoretic prop-
erty. A measure pu on G is called invariant if for every measurable B C G
and every g € G, u(g + B) = u(B).

Definition and Theorem 1.1.6 Let G be an LCA group. Then there exists
an invariant Borel measure pu on G, called the Haar measure. p is uniquely
determined up to a positive factor. In particular, if G is compact, there exists
a unique Haar measure p with u(G) = 1.

We finish this section by listing some further results in light of topological
groups and duality theory.

1. If G is compact, then the members of G form an orthonormal basis for
L?(u) where p is the Haar measure.

2. If H is a closed subgroup of G and H # G, there exists a nontrivial
X € G such that x(h) =0 for all h € H.

3. Let H C G. Then the annihilator A(@, H) of H in G is defined by
AG,H)={xeG:x(h)=0forallhe H}.

If H is a closed subgroup of an LCA group, then
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4. Let the weight w(z) of the topological space X be the minimal car-
dinality of an open base of X. If G is a locally compact group then
w(G) = w(G). An LCA group G is metrizable iff G has a countable
base and thus iff G has a countable base. In particular, if G is compact,
then G is discrete and thus G is metrizable iff G is countable.

5. Let G be an abelian topological Ty group (i.e. for all z,y € G with
z # y there exists an open set U C G containing only either z or
y). If G is metrizable, then the metric d compatible with its topology
can be chosen to be invariant (i.e. for arbitrary z,y,9 € G holds

d(z,y) = d(gz, gy) = d(zg,y9g)).

6. Let G be a topological group and H < G. If H and G/H have a
countable base, so does G.

1.1.2 Ergodic theory
(14], [42]

We shall give a brief overview about concepts and results from ergodic
theory that are connected to our topic.

Let X be a probability space with measure u. Let T be a measure pre-
serving transformation on X (i.e. for all measurable sets A C X holds

u(A) = p(T71(A))).

Definition 1.1.7 A measure preserving mapping T is called ergodic if all
measurable sets E with T™Y(E) = E satisfy u(E) =0 or 1.

Ergodic mappings have remarkable properties. We start with the so called
Ergodic Theorem.

Theorem 1.1.8 Let T' be a measure preserving mapping on the probability
space X and let f € L*(u). Then 1—1,— Zf:’zl f(T™(z)) converges to a function
f* € LY(m) for almost alla: € X. Furthermore f* = f*oT almost everywhere

and [, f(z)du = [, f*(z)dp.

Remark 1.1.9 It is a direct consequence of ergodicity that, if T is ergodic,
f* = f* oT almost everywhere implies that f* is constant. Thus f* =
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1/u(X) [, f(z)du almost everywhere and hence

almost everywhere.

We focus now on the special case where X = G is a compact abelian
group.

Theorem 1.1.10 1. The transformation T : x — z + a on T s ergodic
if and only if a 1s irrational.

2. Let G be a compact abelian group (with Haar measure i) and leta € G.
Then the transformation T : z — z + a on G is ergodic if and only if
(na)n>) is dense in G.

Remark 1.1.11 Theorem 1.1.10 in combination with Theorem 1.1.8 gives
a weak form of the well known Weyl criterion applied to na sequences. (Cf.
for instance (39] for an overview on this topic.)

To present another nice aspect of (ergodic) transformations 7 : z — z+a
acting on a compact abelian groups, in the sequel also called (ergodic) group
translations, we need further notation.

Let again T be a measure preserving mapping on the probability space
X with measure u. Then T induces a linear operator Ur : L*(u) — L*(p),
Ur(f) = f(T(x)). Ur is an isometry. We call a complex number \ an
eigenvalue of Ur if Ur(f) = Af. f is the corresponding eigenfunction. It is
easy to see that |A| = 1.

Definition 1.1.12 An ergodic measure preserving mapping T acting on a
probability space X is said to have discrete spectrum if there exists an or-
thonormal basis of L*(u) consisting of eigenfunctions of Ur.

For an introduction to the spectral theory of the operator Ur we refer to
[42). Ergodic group translations have discrete spectrum:

Theorem 1.1.13 Let T : x — x + a be an ergodic translation on a compact
abelian group G. Then T has discrete spectrum. Every eigenfunction is a
constant multiple of a character, and the eigenvalues of T are {x(a) : x € G}.
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Moreover, we have the following fact related to the factors of the Bohr
compactification introduced in Section 1.1.1.

Theorem 1.1.14 FEvery subgroup A < T is the group of eigenvalues of an
ergodic group translation T .

Next we introduce a few basic concepts of topological dynamics. These
are topological counterparts to the measure theoretic ergodic theory.

Instead of measure preserving mappings on a probability space we deal
with continuous mappings on a compact metric space. We focus now on
(topological) group translations, i.e. mappings T : £ — z + a acting contin-
uously on a compact metric group G. In the sequel C(X) denotes the set of
complex valued continuous functions f on X

Definition 1.1.15 A homeomorphism T : X — X s called minimal if
{T"z :n € Z} is dense in X for allz € X.

Theorem 1.1.16 A group translation T : x — x + a s minimal if and only
if {na:n € Z} is dense in G.

The last theorem indicates that ergodic group translations and topological
group translations are closely related. As in the measure theoretical context
there exists also a concept of topological discrete spectrum which is essentially
similar to the one introduced above. But topological group translations have
a further remarkable property.

Definition 1.1.17 A continuous transformation T : X — X on a compact
metric group ts called uniquely ergodic if there exists only one invariant Borel
probability measure on X.

Thus, compact metric abelian groups are uniquely ergodic — their unique
translation invariant probability measure is the normalized Haar measure.
For uniquely ergodic transformations we have the following theorem.

Theorem 1.1.18 Let T : X — X be a continuous transformation on a
compact metric space. Then the following statements are equivalent:

1. 1/N Zf::ol (T™z) converges uniformly to a constant for every f €

C(X).
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2. 1/NSSVL f(Tz) converges pointwise to a constant for every f €

n=0

C(X).

3. There exists a T-invariant probability measure u on X such that

N-1 '
NS fT7) [ fla)dn

for every x € X and every f € C(X).
4. T 1s umiquely ergodic.

Thus, for group translations on a compact metric group, the ergodic the-
orem holds not only almost everywhere but for all  uniformly. This fact
is directly connected to the theory of uniform distribution of monothetic
groups. We give a short introduction in Section 1.1.3.

At the end of the present section we turn to another topic of ergodic the-
ory related to our investigations, namely the concept of entropy. We start
with the measure theoretic entropy:

Let X be a probability space. As usual, a partition of X is a set of
disjoint sets whose union is X. We are interested in finite partitions. Let
A={A,,...,An} and B = {By,..., By} be two finite partitions. Then,

is again a partition, the join partition of A and B.

Let T : X — X be a measure preserving transformation on the probabil-
ity space X with measure p. If A = {A,,..., Ay} is a finite partition of X,
we write

N
H(A) = —Zﬂ(Ai)log(M(Ai)) and
R(T,A) = nli_’r{.l“—llH (VT*A).
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Definition 1.1.19 If T : X — X is a measure preserving transformation
on the probability space X, then the entropy of T, h(T), is defined by h(T) =
sup h(T, A) where the supremum is taken over all finite partitions of X.

As a matter of fact, h(T') € [0, 00]. For the special case of group transla-
tions, we know the following.

Theorem 1.1.20 Any ergodic translation of a compact abelian group has
entropy zero.

As before, there exists an analogue to the concept of entropy in topolog-
ical dynamics:

Let X be a compact space. We are now interested in finite open covers.
Let A = {A,...,An} and B = {By,..., By} be two finite open covers.
Then, as before, the join of these two open covers AV B is the open cover
given by all sets of the form A; N B;, for A; € A and B; € B.

If A is an open cover of the compact space X, then N (A) denotes the
number of sets in a finite subcover of A with smallest cardinality. Let T :
X — X be a continuous map. Then we set, similar to the above,

H(A) = log(N(A)) and
h(T,A) = lim lH(\/ T-1A>.

n—oo N i=0
Definition 1.1.21 If T : X — X is a continuous transformation acting
on the compact space X, then the topological entropy of T, h(T) = hyop(T)
is given by h(T) = sup h(T, A) where the supremum is taken over all open
covers of X.

It can be shown directly that group translations have topological entropy
zero. This follows also from the Variation Principle, which nicely connects
topological and measure theoretic entropy:

Theorem 1.1.22 Let T : X — X be a continuous map of a compact metric
space X. Then

hiop(T) = sup {h,(T) : p € M(X,T)},

where M(X,T) is the space of all probability measures on X which are pre-
served by T.
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1.1.3 Monothetic groups
18}, [27], [29]

As announced, we turn to a special class of topological groups.

Definition 1.1.23 A topological group G which contains a dense cyclic sub-
group s called monothetic.

It is easy to see that monothetic groups are always abelian. According to
Theorem 1.1.10, the concept of monothetic groups is directly related to the
theory of ergodic (topological) group translations. We are mostly interested
in compact monothetic groups. Using duality theory, it can be proven that
a compact group G is monothetic if and only if G < T.

Compact monothetic groups have important properties related to the
theory of uniform distribution.

Definition 1.1.24 Let X be a compact space and p a regular normed Borel
measure on X. Then we call a sequence (£,)5%, in X p-well distributed in
X if

holds for every continuous real valued function f defined on X uniformly in
h € Z.

By unique ergodicity of ergodic group translations the next result follows.

Theorem 1.1.25 If the sequence (ng)S, is dense in the compact group G
(i.e. if g generates G) then it is well distributed in G (w.r.t. the Haar
measure).

Finally let G = Z(a,,...,aq) mod 1. Then G = T¢iffthe oy, i = 1,...,d,
are linearly independent over Q. This is equivalent to the fact that the
transformation T : z — z + g, g = (e,...,0q), is ergodic. According to
Theorem 1.1.25, the sequence (ng)22, is even well distributed. (Again we
point out the relation to Weyl’s criterion, see [43]).

Remark 1.1.26 T has no order structure. But T can be interpreted as
unit interval [0,1) C R after identifying 0 = 1. Due to this fact, we call
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(connected) sets in T which are (translates of) intervals in [0, 1), so before
identifying, again intervals in T. The same can be done in T¢ = R%/Zq.
In fact, sets M C T¢ which are translates (in T?) of corresponding sets
M’ C [0,1)¢ before identifying opposite sides will play a central role in the
sequel. In particular we call a set M C T a box, a polytope, a convex set, etc.
if its corresponding set M’ C [0,1)¢, interpreted as subset of the Euclidean
space R® is a box, a polytope, a convex set, etc..

1.2 Hartman sets and sequences

(7], [22], [32], [33], [35], [40], [44]

The aim of this section is to introduce the concept of Hartman sets and
Hartman sequences in the case G = Z and present several preliminary results.

If G =27, then G = T, i.e. each character x is of the form
x(k) = ka ( mod 1),

where o € T. Clearly each compactification of Z has to be monothetic.
Following Section 1.1, the Bohr compactification of Z is the dual group of
T4 (T endowed with the discrete topology) or, equivalently, the closure of
{(ka)aeTrez} in TT. As indicated above, each subgroup A < T induces
a compactification (Ca,t4) by setting g : Z — T?4; 14(k) = (ka)aca. If
A= (aj,...,qq), and the a5, i = 1,...,d, are linearly independent over Q,
then we call (Cy, ¢t4) a d—dimensional compactification of Z. Let in particular
(Ca, ta) be the compactification determined by to(k) = k. We define 74, to
be the projection of bZ onto Cy,, i.6. (Za)aeT F Zag-

Let G be an LCA group and p its unique normalized Haar measure.

Definition 1.2.1 A set M C G with u(OM) = 0 s called continuity set.

We focus on continuity sets that are subsets of bZ.

Remark 1.2.2 The continuity sets are generalized Jordan measurable sets.
More precisely, on bZ we have the following situation:

19



Since the underlying topology is the product topology, the base sets of the
Bohr compactifications are of the form

ka; € I,, for all
B(Ialu'-'a-[ad)_{(ka)OGTEbZ' ze{l,,d} })

where [, are open intervals (open connected subsets) in T4, (the a;’s compo-
nent). These sets are clearly continuity sets and can be interpreted as finite
dimensional boxes (finite products of connected components). Let € > 0.
Since the Haar measure u, is regular, every continuity set M can be approx-
imated by a compact set K and an open set E such that u,(E \ K) < € and
KCOCOCM°CMCE,O open in bZ. Compactness guarantees that
there are finitely many base sets B, C M°, [l =1,..., Ly, which cover O and
B, CE,l=1,..., Ly, which cover M \ O. Set

L
B'=(JB  and B2=LjB,’.

=1 =1 .

inner

outer @pproximation of M

Then 31%132 is a finite union of boxes giving an
and p,(B%\ B!) <e.

Continuity sets can also be defined in compactifications (Cga,t4), A < T,
that are factors of bZ. Then M can be extended to bZ by setting M = T, in
all components T, of bZ with @ € T \ A. Conversely, for M C bZ, let A(M)
be the subgroup generated by

Ao(M)={a e T :m (M) G T}.

Then we call (Ca(m), ta(amry) the minimal compactification of M since it only
consists of those components where M is nontrivial.

Let (C,¢) be an arbitrary compactification. The set of all continuity sets
M C C forms a Boolean set algebra. A continuity set M induces a set
H = ./Y(M) C Z. Since the compact group C is a monothetic group it
can also be interpreted as ergodic group translation T :  + x + ¢(1). This
approach allows to define the so called coding sequence of M, i.e., a binary
biinfinite sequence a = a(M) = (ar(M),)2 _ € {0, 1}%, via

aodl if ke(1) € M,
=31 0 otherwise.

If 14 denotes the characteristic function of H, then obviously 15 = a.
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Definition 1.2.3 A coding sequence a of a continuity set M 1is called a Hart-
man sequence. The corresponding set H C Z is called a Hartman set. '

The set of all Hartman sets also forms a Boolean set algebra H. On H
we can define a (finitely additive) measure by setting

w(H) = up(M) if H = (5" (M).

That this measure is well defined follows from the fact that, for continuity
sets M} and M, in bZ, H = 15" (M;) = 15" (M,) implies pp(M) = pp(Ms).

This measure p on H has a remarkable property which is of central im-
portance to us.

Theorem 1.2.4 For H € H,

kk+1,....k+N—1
u(H):dens(H):J\}i_r'nool{nEHm{’ +N’ R H

holds uniformly in k € Z.

Sketch of Proof: As indicated in Remark 1.2.2 each continuity set can be
approximated arbitrarily well by finite unions of finite products of intervals.
Thus each approximation depends only on finitely many components of bZ
and Theorem 1.1.25 implies the assertion. For more details see [22]. n

In terms of Hartman sequences this means the following:

If, for a = (an(M))necz = 1y, Ax(N) denotes the number of occurrences of
1’s in the block axak+; ... akyn—1 of length N, there exists a bound cp (N) =
o(1), N — o0, such that

Ax(N)
N

—uc(N)| < cm(N)
for all £ € N.

Before we present some examples of Hartman sequences, let us point out a
further consequence of the Jordan measurability of continuity sets (cf. [44]).

Theorem 1.2.5 For every Hartman set H there exists a metrizable com-
pactification (C,¢) and a continuity set M C C such that H = .~}(M).
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Recall that C is metrizable iff the subgroup A < T corresponding to
C is countable. Having this in mind, the last theorem verifies the natural
conjecture that a Hartman set (as a countable object) has to be generated

by a continuity set that is nontrivial in at most countably many components
of bZ.

Example 1.2.6 Every finite set is a Hartman set.

Coding sequences of intervals or of boxes are Hartman sequences. In fact
they are basic Hartman sequences in the sense that finite unions of them
approximate other Hartman sequences arbitrarily well.

A different type of example is given by Hadamard sets (also called la-
cunary sequences). These are infinite sets of natural numbers {a; : i € N}
for which there exists a A > 1 such that 9—‘51 > X. Such sets are Hartman
sets corresponding to a continuity set of measure 0. The same holds for
sets {p(n) : n € N}, where p is a nonlinear polynomial. For both examples
exist constructions of compactifications with infinitely many nontrivial com-
ponents in which the corresponding continuity sets can be realized in. (Cf.
[22] for the polynomial and [35] for the lacunary case.)

Remark 1.2.7 A detailed study of the concept of Hartman sets and Hart-
man sequences over general LCA groups can be found in [32] and [33]. The
authors also introduce and investigate so called Hartman functions which can
be seen as a generalization of almost periodic functions.

1.3 Complexity
[3], 191, [23], [24], [25], [26]

Let a = ()X _,, in {0,1}N or {0, 1}Z be an arbitrary binary (bi-)infinite
sequence. To emphasize that we interpret such a sequence as an object of
symbolic dynamics, we also call a an infinite word. For N € N, a block

W= aq;iQi41 ... Aix N1 € {0, l}N

occurring in a at position ¢ € Z will be a called (finite) subword or factor of
the word a. Its length will be denoted by |w].
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Definition 1.3.1 The complezity (function), also called the n-th permuta-
tton number, Pa(n), is the number of distinct subwords of length n occurring
m a.

This concept was introduced in [23]. There is a direct connection to the so
called entropy. Interpret a as an element of the compact space X = {0,1}2.
Let, for 2 = (%) _o and ¥ = (¥k)52_ oo

c(z,y)=min{|k| e N: 2, #yx} and d(z,y) = T ey

Then d respects the (product) topology on X and (X, d) is a compact metric
space. Let furthermore o : X — X, o(z,) = zp41 be the classical shift
yielding the dynamical system (X, o). Let O(a) denote the orbit closure of
a under o in X (i.e. O(a) = {o*(a): k € Z} C {0,1}%). Then

hiop(a, o) = lim w,

n—oo

where hyop(a, o) denotes the topological entropy of the transformation o act-
ing on O(a). This indicates that the complexity can be interpreted as a
refinement of the topological entropy.

The complexity function can be defined for any finite alphabet A = {a,,
asz,...,a,}. In our case A = {0,1} we immediately get the trivial bounds
1 < P(n) < 2™ A first easy result (see for instance [25]) indicates how the
complexity of a sequence a is related to its structure.

Theorem 1.3.2 Let a be a binary (bi-)infinite word. Then the following
assertions are equivalent:

1. a s purely periodic (ultimately periodic if a is a one sided infinite word).
2. Pa(n) is bounded.

3. Pa(n) <n for ann € N.

4. Pa(n+1) = Pa(n) forann € N.

Theorem 1.3.2 indicates that complexity is related to periodicity. Non-
periodic sequences have at least complexity P(n) > n + 1.
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Definition 1.3.3 A binary (bi-)infinite and not ultimately periodic word a
with Pa(n)=n+1 s called Sturmian word.

Sturmian words are well studied objects with several remarkable proper-
ties. The most important ones for our purpose will be investigated in the
next section. First we present a different characterization as well as two
examples for Sturmian words.

1. Sturmian sequences are the non (ultimately) periodic balanced words
over a two letter alphabet. A word a is called balanced if the number
of occurrences of a letter in any two subwords of a of the same length
differs at most by one in absolute value.

2. Letl:y=azx+ A o) €R, be aline in R2. Starting at any point
(z0, Yo) € | we define its so—called cutting sequence by increasing = > zo
and concatenating

0 r€ZandyeR\Z
1 whenever (z,y) €l and t€R\ZandyeZ.
10 z,y €L

Such cutting sequences define Sturmian words if @ € R\ Z. A related
definition can be obtained using square billiard sequences.

3. A substitution is a mapping from an alphabet into the set of finite
words on this alphabet. Let ¢(0) = 01 and o(1) = 0 be the Fibonacci
substitution. Clearly this substitution can be extended to a mapping
on binary words. Starting with wy = 0 let w, = o(w,_;). Then the
word w = lim,,_o wy, in {0, 1}% endowed with the product topology is
a Sturmian word, called the Fibonacci word.

1.4 Complexity and Hartman sequences
(1], (21, (3], [9], [25], (35]

Per definition, Hartman sequences are binary biinfinite words. What can
be said about the complexity of Hartman sequences? In this chapter we treat
this question.
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If a is a Hartman sequence corresponding to the continuity set M C (C, ¢),
we will write Py ,(n) instead of Pa(n) to point out the connection to the cor-
responding coded continuity set.

Note that finite compactifications always induce periodic Hartman se-
quences. As we know the complexity of such Hartman sequences is always
bounded. Thus the more interesting case is the one of an infinite compacti-
fication.

1.4.1 A general criterion and some consequences
(1], 2], [35]

Following [35], we first present a general criterion: Let (C,:) be a com-
pactification of Z and a = ¢(1) the generating element of C. Let M C C be
a continuity set. Let a = a(M, ) be the Hartman sequence corresponding to
M. Let w = wow, ... wy_; be any binary word of length N. Obviously w is
a factor of a if there exists some ¢ € Z such that (i + [)a € M if and only if
w; = 1 (i.e. iff there exists an i € Z such that a;4; = w;, [ = 0,...,N — 1).
This is equivalent to

ia € M(w) = h (M' - la),
1=0

where M! = M if a; = 1 and M* = C'\ M otherwise.

Note that by density such an ¢ exists whenever M(w) contains an open
set. Since M(w) is even a continuity set the word w occurs in a with uniform
frequency pc(M(w)).

This criterion immediately allows to compute the complexity of Hartman
sequences stemming from an interval and an irrational o — such Hartman
sequences will be called one dimensional Hartman sequences.

Let I be any interval on the torus (open, closed, halfopen) with boundary
points a and b. (In fact, the subsequent idea also works for coding sequences
of a finite union of intervals.) Each w € {0,1}" defines the set

N

P, = ﬂ(li — i),

i=1
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where I* = [ if a; = 1 and I' = T\ I otherwise. If a # b + ka, for all k € Z,
a-geometric argument shows that, for N sufficiently large, each P, which
occurs is an interval of positive length. Moreover, the number of nonempty
P, equals 2N. Thus by the criterion presented at the beginning of this
section Pf(N) = 2N. (See [1] for a details.) If I is halfopen and if there
exists an k € Z such that b = a + ko, then the same argument shows that
Pi(n) = n+ k for n > k. This implies in particular the following assertion .

Theorem 1.4.1 The coding sequence of a halfopen interval I C T by an
irrational o is a Sturmian sequence if and only if |I]| € {a,1 — a}.

Remark 1.4.2 Let C be a compactification of Z. Remark 1.2.2 shows that
for every € > 0, every continuity set M can be approximated by two sets
M;, i = 1,2, which are finite unions of finite products of intervals I, C T,
such that My C M C M; and puc(M, \ M;) < e. Moreover, each interval
I, C T, can be written as a finite union of finite intersections of intervals of
lengths « inducing Sturmian words. Therefore for each Hartman set H and
for every € > 0, there exists a Hartman set H' induced by a finite union of
finite intersections of Sturmian sequences such that dens(H \ H') < ¢

Coding sequences yielding Sturmian words are (aperiodic) Hartman se-
quences of minimal complexity. It is natural to ask for upper bounds of the
complexity of Hartman sequences.

1.4.2 A universal upper bound for the complexity of
Hartman sequences

[40]

At first glance the definition of topological entropy and the general crite-
rion presented in Section 1.4.1 seem to be directly connected. Since hyo,(T) =
0 for an ergodic group translation T, one conjectures that the complexity of
a coding sequence is subexponential. The following easy example shows that
this does not hold in general.

Example 1.4.3 Let a = (a,)32, be the concatenation of the binary expan-
sions of all natural numbers (1.e. take the digits of Champernown’s number
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0.12345...). Let g = ¢(1) be the generating element of any infinite compact-
ification-(C,¢) of Z. Let A= {k € N:a, =1} and S = Ag C C. The coding
sequence of S is a and Pa(n) = 2™

Clearly, S is no continuity set (otherwise A had a uniform density). For
Hartman sequences, the above conjecture holds. Before presenting a direct
proof of the next theorem we sketch how h(T") = 0 can be applied to obtain a
proof of it based on the strong Variation Principle (see Theorem 1.1.22). We
will also discuss why ho,(T) = 0 does not help immediately. The insights
obtained in this way motivate our idea of the direct proof.

Theorem 1.4.4 For any compactification (C, ) of Z and any continuity set
M C C the complezity Pa(n) of the corresponding Hartman sequence a = 1y
with H = .~Y(M) satisfies

i 108 Pa(n)

n—oo n

= 0.

Sketch of proof using the Variation Principle: The Hartman sequence a in-
duces the topological space X = (O(a),) C {0,1}%. We must show that the
topological entropy of the shift w.r.t. this space is 0. The density of the
subwords of a implies a so—called block distribution (this concept is intro-
duced and studied in [35]) which can be uniquely extended to a measure v on
X. The measure theoretic entropy of the underlying group translation is 0.
Hence also the measure theoretic entropy of o is 0 w.r.t. v. Since Hartman se-
quences can be equipped with a uniform density the system (X, o) is uniquely
ergodic. Therefore, applying the Variation Principle, hp(o) = h(c) = 0. B

Before we present the direct proof of the last assertion, we discuss why
hiop(T) = 0 cannot immediately be applied to the general criterion of Section
1.4.1.

Let d be a T invariant metric on C (w.l.o.g. we can assume that C is
metrizable). According to the definition of the entropy we have to start with
an open cover O of the compact group C. For € > 0, one natural candidate
to obtain an estimation for the complexity would be, for instance,

A, ={M° (X \ M)°, oM + B.},
=:3M,
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where B, denotes the open ball with center 0 and radius € and + denotes
the complex sum. Following Section 1.1.2, h;o,(T') is given by

m log (N (Visy T~ Ac))

n—oo n

for all € > 0. For any open cover O of C, N(O) denotes the number of open
sets in a finite subcover of C with elements of O of minimal cardinality.

Let O be an arbitrary open cover of C. Let § > 0 be the Lebesgue number
of O (i.e. each subset of diameter less than § is contained in one element
of O. Such a § exists due to the Lebesgue covering lemma.) Let F be a
4/2 spanning set of C, i.e. for all ¢ € C there exists an z € F such that
d(c,z) < /2. Let N(§) = |F|. Assume that z € F. Since T is an isometry
(w.r.t. the metric d), T*(B(z,§/2)) is contained in an element A* € O for
all i € N. Thus, for all n € N, (2, T~*(A%) 2 B(z,6/2). This holds for all

T € F. Hence .
N (\/ T—fAE> < N(6)
i=0 :

holds for all n € N. Thus, the entropy h;.,(T") of a given partition actually
only depends on the cardinality of a spanning set. It does not respect the
contributions of the boundary of the partition sets to hyp(0).

For instance, using the open cover A, defined above for Example 1.4.3,
clearly N (V::o] T—%A.) = 1 for every £ > 0 and n € N. But as Example
1.4.3 shows, the boundary can even induce maximal complexity.

These observations show that all we must do is to understand how many
sets P,, given by the criterion introduced in Section 1.4.1, are contained in
an open set of diameter § > 0. (Note that this is independent of the concept
of entropy.) This is the idea the following proof is based on.

Direct proof: Let d be the metric for the topology on C. Let g = «(1) € C
denote the generating element of the compactification.

We write M’ for the complement C \ M and Mj for the set of all z € C
with d(z,y) < § for some y € M. Fix ¢ > 0. Using the regularity of the
Haar measure puc and the pc-continuity of M, we obtain puc(R) < € for
R = (Ms, \ M) U (M; \ M') whenever ; > 0 is sufficiently small. By a
standard argument we may assume that R is a continuity set. At least one
of the sets M and M’ has nonempty interior. By symmetry, we may take
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for granted that this is the case for M. Therefore there is some open ball B
with center z and positive diameter § < 8,/2 with B C M. For the sake of
simpler notation we assume z = 0.

Let W, denote the set of all binary words ag .. .a;_; of length [ with ax =1
whenever kg + B C M and a; = 0 whenever kg+ B C M’.

By compactness of C, there is some Ny € N such that

Ng-1

CC U (—ng + B),

n=0

showing that for every y € C there is some n € {0,1,..., Ny — 1} with
y+ng € B.

Thus any word w of length Ny + [ occurring in a lies in some of the sets
Wig+t3, 0 < ¢ < Ny — 1, consisting of all words

b0b1 . bi_lao . al_lbi . bNo—l

with Qpay...q—1 € I/V[ and bob1 . bNo—l € {0, l}n Since IWN0+I,11| = 2N°|W[|,
this shows Pa(N() + l) S N02N°|W1|.

Note that each translate y + B is totally contained either in M or in M’
whenever y ¢ R. Thus, by the uniform distribution of (ng), in C, the subset
T C Z of all k € Z such that y = kg € R has density uc(C\ R) > 1 —e¢.

It follows that |W;| < 22!, hence Pa(Ng +1) < No2MNo+2! for | sufficiently
large. This yields

log Pa(Np + 1) < log Ny + (N + 2¢l) log 2
and, for n = Ny + {,

log P. 9
lim sup w < lim sup log Ny + (Ng + 2¢l) log
n—00 n I—o0 NO +l

< 2¢elog2.

Since € > 0 can be chosen arbitrarily small, this proves the theorem. [ ]
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1.4.3 A Hartman sequence of arbitrarily subexponen-
" tial complexity ' '

[40]

We are going to show that the bound deduced in Theorem 1.4.4 is best
possible.

Let (C,t) be any infinite group compactification of Z and ¢ : N — N.
Suppose ¢(n) = e,n < n with lim,_, £, = 0. We have to show that there
exists a continuity set M C C such that the Hartman sequence a := 15 with
H = ,'(M) fulfills Pa(n) > 2%,

By Theorem 1.2.5 it suffices to prove the assertion for metrizable C. By
Section 1.1.1 there is an invariant metric d for the topology on C.

For c € C, we write ||c| = d(c,0). For each n € N choose a subset H®
of {0,...,n — 1} of cardinality A, > &,n and containing 0 such that the
diameter d,, of «(H™) is minimal. We claim that lim,_, d, = 0.

Otherwise, we can find a sequence n; < ny < ... and a 6 > 0 such that
dn, > 20 for all k. Further, there is some r € (0,4) such that the open ball
B with center 0 € C and radius r is a continuity set. By construction, the
lower density of the set of all n with «(n) € B is at most €,, for all k. By
uniform distribution of ¢(n), the lower density is a density and coincides with
the Haar measure, hence p(B) < limg_ €n, = 0. This contradicts the fact
that nonempty open sets have positive measure.

Let now H,(0), H,(1), ..., H,(2”"—1) be an enumeration of all subsets of
H™. Define recursively m,(0) = 0 and m,(i+1) to be the minimal integer >
M (6)+7 such that [|o(ma (i+1))|] < dn. We put Hy = 20 7 (ma(2)+ Ha ().
Obviously H, is a finite set of nonnegative integers bounded by, say h, € N.
Observe furthermore that, by construction, ||¢(h)|| < 2d, for all h € H,,.
Define, again recursively, lp = 1 and [,4; to be the minimal integer > [, + h,,
such that ||¢(ln41)]| < dn. For the union H = |J,_,(H, + l,,) this implies
limpeonen t(n) = 0. Thus, M = «(H) is a countable closed subset of C
with the only accumulation point 0, hence a continuity set of measure 0 and
H = ."'(M) is a Hartman set.

In the corresponding Hartman sequence, each H, induces at least 24»
different binary words of length n. Thus the complexity function P(n) is
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bounded from below by
' P(n) > 2%~ > 25nn = 29(0),

This construction generates a zero set M. Hence each word in a con-
taining the letter 1 has asymptotic density 0. It would be nice to obtain a
positive frequency for many words. Let therefore M = {0, m;, mo, ...} be an
enumeration of M. There are §,, > 0 with 4, — 0 such that balls B,,, n € N,
with center m,, and radius 6, are pairwise disjoint continuity sets. Replace
M by the union of all B,,, which is again a continuity set. This shows:

Theorem 1.4.5 Let (C,.) be any infinite group compactification of Z. As-
sume ¢(n) < n and ¢(n) = o(n) for n — co. Then there exists a continuity
set M C C such that its Hartman sequence a := 1,-1(py) fulfills Pa(n) > 2¢(n)
Furthermore, M can be chosen in such a way that for each n € N at least
29(") words of length n occur in a with strictly positive density.

1.5 One dimensional Hartman sequences

(7] [25], [35]

The aim of this section is to analyze the structure of Hartman sequences
H = (J'(M) where M is a connected subset of the torus.

Coding sequences generated by an a € Q are always periodic. The more
interesting case is @ € T* = T \ Q/Z. The structure of coding sequences of
intervals with an irrational o can be described in several ways. We mention
a few of them.

Let I = [a,b) C T be an interval (observe that the subsequent computa-
tion works both for closed and open intervals). Let @ € T. Then
kael <= ka-leclab)foranleZ
< ka€fa+!l,b+l)foranleZ
a+!l b+1
a o

= ke[ ) for an l € Z. (1.1)

Thus,
H = L;l(I) = U{kn;- -')K‘n}a

nez
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where k, = [2£2] and K, = |%2]. (Here, for z € R, we write [z] (|z]) for
the least integer greater or equal z (greatest integer less or equal z).)

If we have a Sturmian word induced by an interval [ = [b — «,b) and a
rotation angle a, equation (1.1) can be rewritten as

kaelﬁke%—[l 0) for an ! € Z,

i.e., the Hartman set H can be written as generalized arithmetic sequence
(|%]),cz Such sequences are called Beatty sequences. Thus, there is a
one-to—one correspondence between Sturmian and Beatty sequences.

For a more detailed study of the structure of Hartman sequences induced
by one dimensional compactifications, the theory of continued fractions turns
out to be a powerful tool. Let « € T*. Then

1 =[0;a1,a2, ]_nh—vngoq_n’

a2+...

a =
a; +

where aj,09,... € N, p, = appn_1 + pn_2, p-1 = 1, p_2 = 0 and ¢, =
AnGn-1 + Gn-2, -1 = 0, g_» = 1. The fractions p, /g, are called convergents
and the a; are called partial quotients. The next theorem presents two basic
facts of the theory of continued fractions.

Theorem 1.5.1 Let a = limn_,oo;L:. The sequence ({gna})n>1 is best ap-
prozimating in the sense that ||la|| > ||gn-1a||, for alll € {1,2,...,q, — 1},
(n € N). (As usual, {z} denotes the fractional part of z € R.) Moreover,
{g2na} ({q2n+10}) tends to O from above (below).

If « € T* we can use Theorem 1.5.1 to define an ordering on N which is
directly related to the partition of T induced by the multiples of «): Using
the Ostrowski expansion of N, we can write an n € N as

Z bi(n)g; =: (bi(n))?zm

bo(n) € {, , ,..,al—l}and,fori21,
where  b;(n) € {0,1,2,...,ai41 — 1,ai11},
and bi(n) = a;4 only if b;_1(n) =0.

(*)
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A sequence (b;);>o fulfilling the conditions (*) is called admissible w.r.t. a.
As a matter of fact, for each § € T there exists an admissible sequence
(Va(B))nso such that 8 = > > {Vo(B)g.a}. This sequence is essentially
unique (i.e. .up to infinitely periodic expansions).

Let (b;)i>0 and (b});>0 be two admissible sequences. We write (b;);>0 <
(b))i>0 if there exists an I € N such that

1. b, =b] for all i < I and
2. by < by if I is even and by > b if I is odd.

Using the properties mentioned above, it is not hard to see that {na} < {n'a}
(in terms of the order on [0, 1)) iff (b:;(n))2, < (b:i(n'))2, (abbreviating we
write n < n' if {na} < {n'a} ) and analogously, for 8 € T, {8} < {na} iff
(Va(B))nzo < .

Theorem 1.5.2 Let I = [a,b) C [0,1) be an interval interpreted as interval
on T. Let a = [0,a;1,az...] = lim, . ‘;’—: € T*. Pick for every z € {a,b,1 —
a,1—b} an admissible sequence (Uy(x))io such that x = 3 " {Ui(x)q:a}. Let

H, = {n € No : (Ui(a))izo <n < (U,(b )iZO}
Hy = {né€Ny:(U(l=0))izo<n < (Ui(l - a))ixo}-

Then H = Hl U (—Hg).

Proof: As mentioned above, we know for n € N that {na} € [z,y) iff

(Ui(x))izo < n < (Ui(y))izo-

00
n=1

Symmetry of the sequence (na,), w.r.t. 0 =1 finishes the proof. [ |

Theorem 1.5.2 can be directly generalized to arbitrary intervals in T. It
already gives a very detailed description of Hartman sets induced by inter-
vals. In fact, this description allows to characterize Hartman sequences which

are coding sequences of intervals by an irrational c.

First we will analyze Sturmian sequences corresponding to an « and I =
[0, @). Then the following is a well known consequence of Theorem 1.5.2 (cf.
[25]). It points out the connection between the structure of a Sturmian word
and the continued fraction expansion of the corresponding rotation angle a.
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Theorem 1.5.3 Let 6 > 0 be irrational. Let H= (|n6))>., be the Beatty
sequence corresponding to the Sturmian word induced by 1/6 coding the in-
terval I =[0,1/60). Let 6 = [1+tg;t1,t2,...] ER. Let w_o =1, w_y =0 and
Wy = W Wn_o. Then wy, — 1y in {0,1}N.

For n € N, we know that na € I = [0,a) iff n = Y bi(n)g: and,
according to Theorem 1.5.2,

(bi(n))2, = (100000000b2k+1b2k+2b2k+3-..) and
boks1 > 0and bypy; >0fori>1 or
(b:i(n))2, = (000000000bokbok+1b2k+2--.) and
bar > 0 and bggy; > 0 fori > 1.

Then the following numbers occur in the induced Beatty sequence

)
n

n+q k, such that
bi(n) + ki =X,
n + qul
n + Qo
n+q:+q

: [ ko such that
n+ g+ X1 ba(n) + ko = Xo.

n—+ k2q2
n+ kg2 + @

n+ kg2 + X1

/

Here X, = 2 if bo(n) Zg, Xz = ., if bi(n) 59, etc. Note that we started

with an arbitrary n. By density of the sequence (na),eny any segment of a
Beatty sequence has the structure described here.

Instead of technical calculations using continued fractions we will now
establish a geometrical approach to prove a theorem characterizing interval
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coding sequences. Let a € (0,1/2), ie. a = [0,a1,a2,a3,...] and a; > 1.
(By symmetry, the case @ € (1/2,1) can be treated (mutatis mutandis) anal-
ogously.)

Let a € T. Let I = [a,a + a). Let H = {n € N: na € I} be the induced
Hartman set. We call 7(n) = min{j € N: (n + j)a € I} the return number
of o and n. It is easy to see that r(n) € {|1/a],|1/a] + 1} (in fact, thisis a
consequence of Theorem 1.5.2). In terms of continued fractions, this means
r(n) € {a1,a; + 1}.

But a; = ¢, the denominator of the first convergent. Hence (na),>
rotates in I either by the angle ||g1¢|| (if (n + q1)a € I) or by ||g1a + ¢
(rotation in I means we focus on na € I for n € H). According to the
assumption a € (0,1/2) we know that ¢ € (1/2,1), and thus ||ga| <
llgoall = a. Let I = I, U I, where I, = [a,a + ||q1a||) and Iy = I\ I;. Let
na € I,. This is equivalent to (n + ¢1)a € I, i.e. 7(n) = a; + 1. Since

na —a + g+a—(na+qla+az = qq,

(=distance of na to a)  (=distance of (n + r(n))atoa+a)

the rotation by ¢, acts in I like a rotation modulo a. The rotation angle
is ||q1]|. Thus we can interpret the rotation as rotation of 8 = ||q1a|/a
modulo 1, i.e. on the torus. Let n; be the least positive element of H and
s = |nja — al. Translated to the torus it follows that {kB} codes the interval
Is = (s/a—f,s/a] mod 1. Let n € H. Write 1 whenever r(n) = ¢;+1 and 0
otherwise. Hence that we write 1 iff na € I}, n € H, or equivalently whenever
kB € Ig modulo 1, k € Z. Then we know already that this procedure yields
a Sturmian sequence. In other words, we have verified the following fact:

Lemma 1.5.4 Letr = (7(n))aez € {q,p = g+ 1} be the sequence of return
numbers of a. Then r is a Sturmian sequence over the two letter alphabet
{p,q}. r coincides with the Sturmian sequence generated by 5 = ||q1a||/c
coding the interval Ig on T.

Remark 1.5.5 An iteration of this procedure gives a geometric counterpart
to Theorem 1.5.3. In fact, the return number of ¢, in an interval o as de-
scribed above is a; or a; + 1 (the second partial denominator of ). Thus the
total return number (in terms of a in T) is aga; + 1 = ¢2 or g2 + ¢ the latter
one if gy« lies in an interval of length gocx (as for the interval I above), etc...
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Lemma 1.5.4 is related to questions treated by Vuillon et al. about so-
called return words (cf. [28],7[41]). ' N

Lemma 1.5.4 shows that one dimensional coding sequences are always
closely related to Sturmian sequences. More precisely, if the return numbers
r(n) are in {q,q + 1}, there exist possibly up to 29*! words of length ¢ + 1.
Which words appear depends on the structure of the coded set M. Consid-
ering the global structure, i.e. the return numbers, always yields a Sturmian
sequence. If a is a coding sequence of a complicated continuity set M it
might be very difficult to find the return numbers of the corresponding a.
(We present a method how this can be done in Section 2.3.1.) But if M is
only an interval it is easy. We present here an example how to characterize
Hartman sets H =W, = {k € Z: ka € M =T, =[-1/4,1/4]}. Such sets
are important for the investigation of so—called quasi convex sets (cf. [7]).
Partitions induced by intervals of length 1/2 were also studied by G. Rote,
cf. [34]. Let Q = {W C Z: (3a € T)W = W, }. Coding sequences of general
intervals can be characterized in a similar way.

Theorem 1.5.6 Let W C Z be a set such that:

1. The sequence w = 1y is a concatenation of 3 basic blocks B, B* and
B~. These basic blocks have one of the following structures:
Case 1: There exists a k € N such that

— + __ - __
B_11.k..100.k..0, B _11.k..100k..1.0, B _11k..1.100.k..0.

Case 2: There exists a k € N such that

B=11...100...0, B*=11...100...0, B~ =11...100...0.
S—— N——r S————— S————
k k k+1 k k—1 k+1

2. The biinfinite word o(w) € {0, 1}% determined by w and the substitution
o defined by o(B) =1 and o(B*) = ¢(B~) = 0 is Sturmian.

Let ay = [0,a2,a3,...] € T correspond to the Sturmian word of 2. Let a; =
min{|B|,|B*|} according to 1 and a = [0,a1,a2,...]. Then W € Q if W =
W,
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{

Proof: Let o = [0,a;,a0,...] € (0,1/2)NT*. Let I = [-1/4,-1/4 + a).
Let, as above, I = [ U L, I} = [-1/4,-1/4 + ||q&]|), I2 = I \ I." Let,
for n € Cu(I), 7(n) € {a1,a1 + 1} be the return number of n (recall that
(r(n) =a;+1iff n € I). Let z € I be such that z + ka = 1/4 for k < a,.
Two cases are possible: (Case 1) If a; is odd, then z € I, or (Case 2) if
a, is even, then z € I;. Both cases correspond to the cases described under
condition 1, i.e. k = (a; +1)/2 or k = a;/2. Thus, for W € {2 one of
these two possibilities holds. Moreover, by Lemma 1.5.4, such a 1y fulfills
condition 2. But these two conditions determine ¢, so the only possibility is
W =W,. [ |
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Chapter 2

Aspects and applications of
Bohr sets

In Chapter 1 (generalized) Bohr sets
B(lay, ... o) ={k €Z :ka; € I,, foralli € {1,...d}},

i.e. the base sets of the Bohr topology in Z, appeared at several positions
(the classical Bohr sets which will be used in Section 2.2, induce a base at
0). The aim of this chapter is to analyze the combinatorial structure of such
Bohr sets as well as to present further applications of them.

2.1 Complexity and Bohr sets
[40]

In this section we present a new method how to compute the asymptotic
growth rate of the complexity function when the coded continuity set is a
rectangle in a finite dimensional compactification, i.e. the Hartman sequence
is a Bohr set. The ideas introduced here will be extended in the last chapter
in order to establish a connection between the complexity of coding sequences
and convex geometry.

Let C = T° be a finite dimensional compactification with generating

element g = (@1,...,a;) modulo 1, i.e. ¢ : k — kg = k(ay,...,as), where
the family {1, a,..., s} is linearly independent over Z (such (kg)i are also
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called Kronecker sequences), and M a box in T®. To be more precise we use
- the following-notational convention (corresponding to the concept of intervals
described before).

T* = (R/Z)* = k(R?®) is the image of the additive group R® under the
mapping K = ks : (z1,...,Zs) — ({z1},...,{zs})- As before it is useful
to think about boxes in T® as images of boxes in R*® etc. To avoid too
cumbersome notation we therefore write, for instance, [];_,[—p;/2,p;/2),
p; € (0,1) also for the set M = ws(I[;-,[~p;/2,p;5/2)). 1t is natural to
call a set M = [[7_,[m;,m; + p;) C T° an s-dimensional box in T* with
side lengths p;, j = 1,...,s. We are now interested in Hartman sequences
a= 1y, H = (M), for this kind of M and call such a Bohr sequences
(corresponding to the Bohr sets).

Let us fix a box M of side lengths p;, 7 = 1,..., s, and assume that no p;
is in a;Z + Z. We are going to determine the asymptotic behaviour of A, (n)
for the Bohr sequence b = 1y, H = +"!(M). To do so, we will estimate
the number of words of length n ”starting” in a small cube Cy — we call this
number local complexity of Cy (see equation 2.1 for the precise definition).
We obtain bounds for the local complexity by estimating the number of par-
tition cells in Cp induced by OM — ja, 5 =0,1,..., N. For this estimate we
use the uniform distribution of the sequence (ng)>2 , and the geometry of M.
More precisely:

We will use the following notation: For a word w = ag...a,_; € {0,1}"
we introduce the set

Ay, ={z€eT’:(z+igeM e a=1)fori=0,...,n—1}

and write w = w(z) for z € A,. Note that, provided A, # 0, A, has inner
points. Because of the density of the set {ng : n € N}, the continuity of T
and the special form of M this implies

Py(n) = {w € {0,1}": A, # 0},

To compute the number of all nonempty A,,, we first consider a half open
cube Cp := ¢ + [—0/2,0/2)° C T* with center ¢, and side length o < p; for
all 7 =1,...,s. We are going to estimate the local complexity function

P(Cy,n) :=|W| for W =W(Cy) :={we {0,1}": A, NCo # 0}. (2.1)
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Note that for k cubes Cy,...,C in T® with disjoint closures we have

k
Z (Cj,n)

for sufficiently large n. This holds because, due to the well distribution of
the sequence (ng)3%.,, for any two cubes C) and C5) with disjoint boundary
there exists an n € N such that C), + ng C M and C; + ng C (T°\ M).

As above, A, N Cy # 0 implies uc(Ay N Cy) > 0. Hence P(Cy,n) is the
number of different words w = b;...b;yn_; of length n in b with ig € C.
Define

S s
pji O pj © pj o p; O
My = — -, = — = M, = -2 _= — I:= M\ M
0 1:[[ 2t M g[ 2 2t 1\ Mo,
and furthermore, for each j =1,...,s,
QY = {z=(z,...,3,) € My : xJ<—%+§or:r]_%—%,
(()J) — ng) \ U QSJ )

J'#5

Observe that the sets ng ) (in contrast to the ng )) are pairwise disjoint.
For w=ay...a,—; in W note that

(co+1ig € Mo = a; =1) and (co +ig & My = a; = 0).

This shows that for w = ag...a,_; and W' = ag...a;,_, in W the letters q;

and a; can differ only if ¢y + ig € I". Since I' = U;=1 Q(lj), we define, for
j=1,...,sand [ = 0,1,

I,(j) = {i€ {0,...,n—1}:co+ig€Ql(j)},

L o= |J1?.
Jj=1

Due to the special geometric situation (Cp and M are boxes, see also
Figure 2.1), for z = (z1,...,2;5) € Cp, w = w(z) = (a;(z))o<cicn € W,
j € {1,...,s}, the tuple (ai(z)), ,» depends only on z;, namely in the

0
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T2 [

V’/ M vV // M
7 7
2% 2%
770 7
Q¢ ;Z 0€T? 22/[‘
2% 4%
2% %7

Figure 2.1: ad proof of Theorem 2.1.1

following way. Let X; = [yo, Yo + o) be the interval for the j—th coordinate

of points in Cy. Then for each i € I((,j) there is one point y; (namely either
pj/2—ig or —p;/2—ig) such that y; splits the interval X; into two subintervals

X](O) and X;]) such that a;(z) =0 for z; € XJ(O) and a;(z) =1 for z; € X;l).
Since p; € oZ + Z, all y;, i € Iéj), are distinct. As a consequence, the
mapping z; — (ai(z))ielgj) takes at least IIéJ) + 1| different values, hence

Aj = |{(ai($)),~e,((’j> c z € Go}| > IIéj) +1].

Since the sets I((,j), j =1,...,s, are pairwise disjoint and all coordinates j
can be treated independently, we conclude

P(Co,n) = |W| > [T +1).
J=1

For € > 0 we know by uniform distribution of the sequence (ng), that

11D > w(QP)n — en
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for n sufﬁc1ently large Smce u(Q(J)) =2[T;- 1J;,&(p —o)o,j=1,...,s we

|W| > n® H( H ~—0)0—6)

i=1 j=1,j#1
for n sufficiently large. Thus we obtain

8

liggfw 228]’[( 1T (pj—0)0—6>

i=1  j=1,j#i
for all € > 0 and therefore
s P(Co,n) : -
i #2111 60
i=1j=1,j#1

As a consequence of uniform distribution we know that d(z,z’) > ¢ implies
w(z) # w(z') if the words are sufficiently long. Thus W (Cy) and W (Cy) are
disjoint whenever two cubes Cjy and C; are separated by a strictly positive
distance 4. Fix now k& € N and consider the disjoint cubes Ci, ..., Cys with
centers ¢; = (m;/k), m; € {0,...,k — 1} and side length 0 = 1/k — §,
0<d< . We get

Pb( P(Ci,n) s95(
llg_lg)lf >Zh’{gtr°1fT>k2 H H -——+<5

i=1 j=1,5#1
Since this holds for all § > 0 we can consider the limit § — 0 to get

s

llir_l’golf Pb > ks2sks H H -—-)=2° H(Py’ - %)S_l.

=1 j5=1,j#1 J=1

For k — oo this finally shows the lower bound

P S
liminf —/——— b(?) > 2° pj_l.
n—oo ns e

To obtain an upper bound for the complexity we consider instead of A; as
defined above the numbers

B] = |{(a‘i(m))i€1§j) T T € C()}l < |I§J) + 1|
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Note that the sets Ifj), j=1,...,s, are (in contrast to the sets Iéj)) not dis-
joint. This implies that a;(x) possibly depends on more than oné component
of x. Comparison with the argument for the lower bound shows that the rel-
evant mapping z; — (ai(x))iely), z € Cp, can only take one additional value,

namely the zero word a;(z) = 0 for all ¢ € Il(j). Thus arguments similar (in
fact even simpler) to those above show that |B;| < |I§’ )| + 2 and finally

n—oo

P S
lim sup % <2° H ot
=1

Since the same argument applies if M is not centered at 0 we have proved:

Theorem 2.1.1 Consider an ergodic translation T : x — x + g on T° with
g = (ai,...,a;s). Assume p; € (0,1)\ (Z+ Z) for allj =1,...,s. For
m; € (0,1),5=1,...,s, let M = [[;_,[m;,m;+p;) denote an s—dimensional
box of side lengths p;, and b the corresponding Bohr sequence. Then the
complexity function of b satisfies

: Pb(n) S : s—1
Jm D=2 ]

j=1
Remark 2.1.2 1. Complexity and volume versus surface: Let V(M)
denote the volume of a box M in T® and vy(M) = [[j_, ;. p; the (s — 1)-
dimensional measures (surfaces) of the facets of M. Then our result can be
written in two ways

2 [[ o =2v(m) =2 [T (™).
j=1 i=1

Consider first M’ := MyU M,, where My and M, are disjoint translates of M.
The same argument as in the proof of Theorem 2.1.1 shows that M’ induces
a Hartman sequence a’ of complexity

Parlt) _ s T (auu(0)).

i=1

lim
n—oo n

Comparison with the value 2°[];_, v;(M) for each component M;, ¢ = 0,1,
indicates that the complexity is related to the surface rather than to the
volume.
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On the other hand we can apply an automorphism A of T° (ie. A €
SL(s,Z)) to g = (a,...,as) and a box M yielding & parallelepiped” A(M).
A changes neither the corresponding Hartman sequence nor the volume of
M while the surface measures may change.

A more systematic investigation of the impact of the geometry of more
general sets M on the complexity of the corresponding Hartman sequences
will follow in Chapter 3.

2. Dropping linear independence: Those i € {1,2,...,d} for which
there exists a k € N such that p; = {ka;} are called k—dependent. Since the
a; are irrational each p; is k—dependent for at most one k € N. Let

0CN(C —ka) ifiis k—dependent,
Si = :
0 otherwise.

Use the notation introduced in 1. Then an investigation of the proof shows
that the formula of Theorem 2.1.1 has to be changed to

. Pa(n) d-1
lim ——= = 2v;(M) — X*7H(Sy)) -
Jim —=- ]:[1 (20:(M) (S:))
3. Complexity determines dimension: Theorem 2.1.1 shows that, know-
ing P, (n) and knowing that M is a box (of some unknown dimension s and
unknown side lengths p;) it is possible to derive s and, if the involved pa-

rameters are linearly independent, V (M).

4. Connection to Section 1.4: Setting d = 1, we see that Theorem
2.1.1 indeed extends the results obtained in Section 1.4. Moreover we point
out that the main idea to estimate the total complexity via the local com-
plexity (see equation (2.1) for the definition of the local complexity) can be
seen as a geometric refinement of what has been done in Section 1.4.2. There
we obtained the universal upper bound using an a priori partition of the
compact group by open sets of small diameter.
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2.2 Characterization of subgroups

[4], (5], [6], [é], [10], [11], [12], [13], [15], [16], [17], 18], [19], [20], [21], [29],
(30], [44]

In this section, we focus on the problem to characterize subgroups of a
compact group by sequences in the dual group. As we will see, Bohr sets
play a central role for this investigation. The presented results are contained
in [8].

2.2.1 Introduction

There are several approaches to this topic. First results in our direction are
due to Eggelston and Erdés (cf. [20] and [21]). In [30], the following is proved:
If (gn)2, is the sequence of denominators of convergents of an irrational
number « and if the partial quotients ag, a;, as, ... of a are bounded, then
lim,, .0 @8 = 0in T if and only if 8 = ka for a k € Z. 1t is easy to see
that for any given sequence (k,)32, of positive integers, the set A = {a :

n=1
limy,_,c kna = 0} is a subgroup of T. We say (k,)3%, characterizes A < T.
Let again a = [ap, @1,a2,...] = liMmy_0oPn/qn- In [12] it is shown that the

increasing sequence consisting of the elements of

{9, 2qi,...ai41,q: : 1 € N}

characterizes the cyclic subgroup generated by a. Moreover, the authors of
(12] developed several techniques to prove the existence of sequences (k)32 ,
of positive integers characterizing countable subgroups H of the circle group
" T=R/Z,ie., foraeT,

a€ H < lim k,a=0.

n—oo

These methods were extended in [13] to show that if H is generated freely
by finitely many elements, a characterization is possible in an even stronger
sense: One can choose a characterizing sequence such that Y oo | ||knc|| < 00
for a € H, while limsup,,_, ||knc|| > 1/4fora € T\ H. (Forz =14+ 7Z €
R/Z, r € R, the norm ||z| denotes the distance between r and the nearest
integer.)

In [44], arbitrary subgroups of T were characterized by filters on its dual
Z (cf. Section 2.3.1). This approach was used in [6] to extend the results
from [13].
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A different approach to the characterization of finitely generated dense
subgroups of compact abelian groups by sums has recently been introduced
in [10] and [11].

Dikranjan et. al. investigated related questions concerning the characteri-
zation of subgroups of more general topological abelian groups G (cf. [4], [5],
[15], [17]). In the present section we lift the techniques of [6] to this general
setting and answer questions stated in [5] and [17]. Results in the context of
descriptive set theory were, for instance, obtained by Elias in [19].

2.2.2 Further conventions and notation

If not stated otherwise, G is always an infinite compact abelian group. (For
finite G most assertions turn out to be trivial.) Elements of G will be de-
noted by o, G, . . ..

Following Chapter 1, we write H < G if H is a (not necessarily closed)
subgroup of G. If A C G is any subset, (A) denotes the subgroup generated
by A. For finite A = {a1,...,an} € G and M € N, we put (A)y :=
{Z?_—.l kiai . ki € Z, Ik,l < M}

Recall that a group compactification of (any topological group) G is a
pair (C,:) where C is a compact group and ¢« : G — C is a continuous
homomorphism with dense image. Relative topologies on G induced by group
compactifications are called precompact. The Bohr compactification (G, ¢3)
of G is the compactification of G which is maximal in the sense that for each
compactification (C, ¢) of G there is a continuous homomorphism ¢ : bG — C
with ¢ oy = tc. We take G4 to be G endowed with the discrete topology.
As remarked earlier, Duality theory can/Re applied to construct the Bohr

compactification of G by setting bG := (@)d and tg : a — x,. Accordingly,
the Bohr compactification of G is G4. It is natural to call the precompact

topology on G induced by bG the Bohr topology. As we know on the dual
group G the Bohr topology can be described by the Bohr sets

By, ..ane) == {x cG : lIx(a)|| < e forie {1,2,...,t}},

where ay,...,0 € G and € > 0. These sets generate the neighborhood
filter of 0 in G ndowed with the Bohr topology. Furthermore we put
Bion...c0.)(E) = Bay...0.;y NE for EC G. For o € G and B C G we
- write [laB|| := sup{||x(e)|| : x € B}.
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2.2.3 Characterizing filters

We modify the filter method from [44] (see also Section 2.3.1) for our pur-
poses. Theorem 2.2.1 essentially states that arbitrary subgroups of compact
abelian groups G can be characterized by filters on the (discrete) Pontryagin
dual G of G. (Such filters are intended to be the neighborhood filters of 0
w.I.t. precompact group topologies on é) This filter characterization will
again be discussed in Section 2.3.

Recall that a filter F on a given set S is a system of subsets F* C S such
that:

1. 0g F.
2. FeF,SO2GDOF=GeF.
3. FGeF=>FnNnGekF.

We will make use of filter limits in the following sense: Let S be any
set, let F be a filter on S, let y be a point in a topological space X and let
f: 8 — X be a function. Then we write

F—-limf(s)=y
iff for every neighborhood U of y, {s € S: f(s) e U} € F.

We remark that filter limits are more general than limits along sequences:

For a sequence (z,)32, in X, put

Flea)e, = {A C X : Im € N such that {z, : n > m} C A}.

Then, F;,)eo  —lim, f(s) exists iff lim,_. f(25) exists and in this case they
coincide.

Let H < G be a subgroup of the compact abelian group G. Our task is
to show that H can be characterized by a filter 5 on G in the sense that
we have Fy — lim, x(8) = 0 iff B € H. It is clear that for all @« € H and
all € > 0, the set B(,,) has to be an element of 5 to assure convergence
for elements of H. By the filter properties of Fj, the intersection of finitely
many such sets will again be an element of . Thus it would be natural to
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define Fy to be the filter generated by the sets B(q,,....a.c) Where ay, ..., o €
‘H,e > 0. This definition-yields the minimal filter with the required property
and corresponds to the precompact group topology on G induced by H.
Later, it will be important to us that we may neglect finite sets of characters.
Therefore we will also take all cofinite sets to be elements of Fy. This leads
to the following definition:

= Hal...ateH€>0,F§§,|F|<oo
Fu = FCG: o ! ~ .
H { =" such that B, aq(G\T)CF

Theorem 2.2.1 Let G be an infinite compact abelian group, let H be a sub-
group of G and let the filter Fy be defined as above. Then for all B € G

fu—li;nx(ﬁ)=0 <— fBcH.

In the course of the proof we will employ the following lemma which will also
be useful later on:

Lemma 2.2.2 Let G be a compact abelian group. Then G is dense in C/?;
w.r.t. pointwise convergence. Thus, for any countable subset H of G and
any x € Gqy there erists a sequence (xn)2, in G such that x,(a) — x(a)
(n — o0) for alla € H.

Proof: As explained in Chapter 1, the compact group é\d is, with the set
theoretic inclusion as dense embedding, the Bohr compactification of the
discrete group G. This proves the first part. Thus, for H = {o, as,...} CG
and every n € N there is a x, € G with ||xn(c:) — x(a)| < % for all
i€{1,2,...,n}. It follows that x, — x pointwise on H. [ |

Proof of Theorem 2.2.1: The definition of the filter Fy guarantees that
F —lim, ||x(B)l| = 0 for all B € H. For the converse we prove that,
given 0 & H, for all o;,...,a, € H and every € > 0 there exist in-
finitely many characters x € Bia,, o) With ||[x(8)|| > 1/4 which implies
that {x € G Ix(B)|| < 1/4} € F. First we see that there exists at least one
such character: Consider the Bohr compactification é’; of ( G. é\d separates
subgroups and points of G. Hence there exists some ¢ € G4 such that

#(a)=0for all a € (ay,...,q;) and c=¢(B) #£0,
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w.l.o.g. ||¢(B)]| > 1/3 (otherwise take an appropriate multiple 2¢, 3¢, ...).
By Lemma 2.2.2 ¢ can be approximated arbitrarily well on finitely many
points by a character. Thus we find some x € G such that ||x(a:)]| <€,1 <

i <t [Ix(B)Il > 1/4.
Next we prove that for € > 0 each B, . q.¢) contains infinitely many x

with ||x(8)]| > 1/4. Let U := {(x(c1), .., x(as), x(B)) : x € G} < T*!. We
distinguish two cases:

1. U is finite, say U = {uy,...,ux}. There is some ¢, say i = 1, with
uy :=(0,...,0,¢). Then the sets

T, = {xe@:(x(al),...,x(at),x(ﬂ))=u,~}, i=1,...k

and particularly T, are infinite, or

2. U is an infinite subgroup of T**!. But then each point of U is an accumu-
lation point.

In both cases we find infinitely many x with the required property. [

2.2.4 Characterizing countable subgroups

We turn to Problem 5.3 from [17]: For which compact abelian G can every
countable subgroup H be characterized by a sequence of characters?

For A C G we write lim,ca x(8) = 0 iff {x € A: x(8) > €} is finite for
all e > 0. (Le. instead of the characterizing sequence (x»)32, we consider
the characterizing set A = {x, : n € N}.)

Theorem 2.2.3 Let G be an infinite compact abelian group and let H < G
be a countable subgroup. Then the following statements are equivalent:

(1) G is metrizable.
(ii) There exists a countable set A C G, such that
B € H < limyx(B) =0.
XEA
Remark. The proof of Theorem 2.2.3 actually shows that (if G is metriz-
able) for every o < 1/3 the characterizing set A can be chosen in such a way

that 3 ¢ H implies limsup, 4 ||x(8)|| > o. Using a diagonalization argu-
ment it is not difficult to achieve limsup, ¢4 lIx(8)|| > 1/3 and it is easy to
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see that this is best possible.

The proof of (i) = (4¢) employs several lemmas which we formulate now
and verify at the end of this section. According to our assumptions, in these
lemmas G is an infinite compact abelian metrizable group.

Lemma 2.2.4 Let 7 € T and n € N. Assume that ||it|| < 0 < 1/3 for all
i€{1,2,...,n}. Then|7| <o/n.

Lemma 2.2.5 Assume that 11,...,74 € G freely generate a subgroup of G.
For arbitrary nonempty open sets I, ..., I, in T there ezists x € G such that
x(w) € L forallie {1,2,...,d}.

Lemma 2.2.6 Leta;,...,a; € G, e >0 ando <1/3.
1. For all finite TC G and all B € G

18Biay....cee)(G\D| <0 = B € (..., ).

2. Moreover there exists M € N such that for all finite T' C G and all
BeGCG

“ﬂB(al ~~~~~ at,f)(a\r)” S o = ﬂ € (ala' ")at)M'

3. IfV D {ay,...,aq)pm s an open subset of G then for all finite ' C G
there exists a finite set E C G\ T such that for B € G

”:BB(al ..... ag,e)(E)” S g = :8 eV.

Lemma 2.2.7 Let Ry C Ry, C ... be finite subsets of G. There exists a
sequence of open sets V, C G,n € N such that

1. V, D R,.

2. liminfyoo Voo = Uiz N Vo = U R

Proof of Theorem 2.2.3: R
(i) = (i1): We will first construct the set A C G and then prove that
B € H iff limyea x(8) = 0.
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Let H =: {a; : t € N} and pick e = ¢ € (0,1/3). Using Lemma 2.2.6,2
we can choose a sequence (M;)2, such that for every finite I' C G and all

seG

.....

Next put, for t € N, R, := (ay,...,o)pm, and define V; O R; according to
Lemma 2.2.7 such that liminf, .V, = H. R
Using Lemma 2.2.6,3 we choose a finite set £; C G such that

18Bay.c)(E)ll < €

implies § € V;. By employing Lemma 2.2.6,3 again, we find E; C G \ E4
such that ||BB(q, a0.)(E2)|| < € implies § € V5. Continuing in this fashion
we arrive at a sequence (E;), of disjoint subsets of G such that for each
teN

”ﬂB(al ..... m,s)(Et)” S £ — ﬁ S Vt

Finally we put A :=J;2, Bay,....aee) (Et)-

Assume that § € H. To prove limye || x(8)|| = 0 note that, for arbitrary
n € N, there exists T = T(n) € N such that if € {a; : t < T} for all
i€{1,2,...,n}. Thus whenever x € B,,, o) (E:) for some t > T we have
lix(B)|| € € for all 1 < i < n. By Lemma 2.2.4 this yields ||x(8)|| < ¢/n.
Since n was arbitrary we get lim,ca || x(8)|| = 0.

Conversely assume that limsup, ¢, [[X(8)|| < € for some 8 € G. Then
for all but finitely many t € N we have ||8B4,,...a0e)(Et)|| < €. Thus there
exists tg € N such that 3 € V; for all ¢ > ¢, which yields § € H by the choice
of the sequence (V;)%2,.

(i11) = (i): Let H < G be an arbitrary countable subgroup characterized
by the countable set A C G. Define A := (A) and

A’ :={g€G:x(g9) =0 forall x € A},

the annihilator of A. Clearly A° < H, thus |A°| < Ro. Since A = G/A° we
have w(G/A%) = w(A) = |A| = Ro, where w denotes the topological weight,
i.c. the least cardinal number of an open basis (see 1). Hence G/A° and
A® have at most countable weight and therefore also G, implying that G is
metrizable. |
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Let G be a compact abelian group. In [17] subgroups characterized by a
sequence (x,)$2, in G are denoted by

S(xn)ee, (G) = {a € G: lim x,(a) = 0}.

n—oo

Furthermore such subgroups are called basic g—closed subgroups. According
to Theorem 2.2.3 every countable subgroup of G is basic g—closed iff G is
metrizable.

A group H < G is called g—closed if it is representable as the intersection
of basic g—closed subgroups. The next theorem deals with g—closed subgroups
and solves Problem 5.1 from [17].

Theorem 2.2.8 FEvery countable subgroup H of a compact abelian group G
1s g—closed.

Proof: For arbitrary § € G \ H there is a x € Gy with x{(a) = 0 for all
o € H and ||x(8)|| > 3. Thus Lemma 2.2.2 immediately yields a sequence

of (x#)%, in G characterizing a subgroup
Hp = s gy (G) = {a €G: lim x*(a) = o} <G
Nin=1 n—od
with H < Hg and 8 & Hg. Thus H = (\sec\y Hp- [
Proofs of Lemmas 2.2.4 to 2.2.7 :

We assume the group G to be compact abelian and metrizable. Lemma
2.2.4 is elementary, so we skip the proof.

Proof of Lemma 2.2.5: Assume that

A=Gln,. ) = {x(@) : xeGra € (n,..., )

is not dense in T¢, i.e. A < T? There is a nontrivial character of T¢ vanishing
on A, i.e. a nonzero vector h = (hy,...,hg) € Z* such that ZLI hiz; =0
holds for all z = (), ...,z4) € A. Fix an arbitrary x € G and put z; = x (7).

Then J J
0= Z hix(v) = x (Z h'i')'i) :
i=1 i=1
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Since this holds for all x € G we have Zf=1 hiy; = 0, contradicting the inde-
- pendence of the free generators v;, 1 <7< d. [ |

Proof of Lemma 2.2.6: Let By := B(al,...,ag,e)(é \ D).

1. Let F = Fia,,...0n be the filter of Theorem 2.2.1 characterizing (a;,
...,ay) and let § > 0 be arbitrary. Under the assumption ||3By|| < 0 < 1/3
we have to show that

Fy:= {x e G\T: |x(B)l < 5} €F.

Choose m € N such that § > o/m and let By := Bq,,.., ag,e/m)(@ \T). By
definition of F we have B, € F. For all x € By, i € {1,2,...,m}, we have
ix € By. Thus ||ix(8)|| < o for all i € {1,2,...,m} and Lemma 2.2.4 yields
Ix(8)|| £ o/m < 4. Thus B, C Fs and hence Fs € F.

2. Assume that H := (oy,...,0) is infinite (otherwise the assertion
follows immediately). Since H is a finitely generated abelian group there
exists a decomposition H = T' & F where F is freely generated by v;,...,7

and T = (v1,...,v) = & _, (1) is the torsion subgroup of H. Hence (v;) =
Z/e;Z for some e; € N and

<al)"',at) = <71)"'a7d>®<1/1)"')1/1> gZd@@i:lz/eiZ'

Let § > 0 be such that ||x(v:)|| < ¢ for i € {1,2,...,d} and x(v;) = 0 for
j€{1,2,...,1l} implies ||x(ax)|| < € for k € {1,2,...,t}.

Pick now any € G with ||fBy|| < 0 < 1/3. By 1. above we have § € H,
thus 8 = Z;.Ll T + Z;=18jl/j for some r; € Z, s; € {0,1,...,¢; — 1},
i€{1,2,...,d},5 € {1,2,...,1}. Let e := H;=1 e;. By Lemma 2.2.5 there
exist infinitely many x € eG = {ex': X' € é} such that

1 2
sign(r;)x(v:) € [ , } +Z
35 Inil 35, Irl

holds for ¢ € {1,2,...,d}. Therefore we have

74| 2| }
’riX(’Y‘i) € [ ) +Z
350 Insl 355, Imsl
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for all 7 € {1,2,...,d}. Summing up and using that x(uj) 0 for j €
{1,2,...,1} this leads to '

d
1 2
=) rix(w) € [ } +Z.
i=1 3'3
Thus X € Bia,,..aue) and hence there is j € {1,. t} with ||x(a;)|| > €
and therefore § < 7_ Equivalently Y°i_, |7”z| < #. So there are only

3% 5=l
finitely many choices Jfor ﬁ and we may put an umversal bound M on the

coefficients in the linear combination 8 = >"_, kio.

3. Clearly, the set
I:={B€G: (BBl <o}=({reG:lIx(M <0}

Xx€Bo

is closed and by 2. we have I C (a),...,a4)pr C V. Thus I NV = (. By
compactness of G there exists a finite set £ C By such that

N{veG:Ix(MI<a}nve=0.
x€FE

This F is as required. |

Proof of Lemma 2.2.7: Let p be a metric on G compatible with its topo-
logy. Since the sets Ry C R, C ... C G are finite there is a sequence (d,)52,
of positive reals decreasing to 0 such that

2d, < min{p(e, ') : o, € Ry, a # '}
dp +dpy1 < min{p(a,a’) : a € R,, @' € Rpy1 \ Ra}-

Define

Vo:={B€G : Ja€ R, with p(8,a) < d,}.
By monotonicity of the sets R,, 8 € Us., R, implies 8 € Un_; Nov,. Vi
Conversely, assume 8 € Up_, MNoe., Va or, equivalently, that there ex1sts
an m with 8 € V, for all n > m. According to the definition of the sets
V. there exists a unique o, € R, such that p(a,,B) < d, for n > m.
Moreover the choice of the d, guarantees that a,, = any1 = ... and so

p(B, om) = p(B, o) < d, — 0. Hence 8 = am € Rm C e | Rn n
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2.2.5 Thick and thin characterlzmg sequences

Question 5.2 from [5] asks: Does every countable subgroup H of T adrmt a
characterizing sequence (k,)%2, with bounded quotients, i.e. r, = k":‘ <C
for all n € N and some C € R?

We answer this question affirmatively by proving a stronger result. Which
type of statement can be expected? Assume that o € H is irrational. Then,
by uniform distribution of the sequence (na)$2,, the set of all £ € N with
llka]] < € has density 2¢. Thus (with the exception of trivial cases) charac-
terizing sequences have zero density. Furthermore the length of their gaps
tends to infinity. In particular the thickest characterizing sequences we can
expect might have a density which converges to zero very slowly in some
sense. This is the content of the following result.

Theorem 2.2.9 Let H < T be a countable subgroup and let ()52, be
a sequence with 0 < g; < 1 that converges to 0. Let N be partitioned
into_nonempty intervals I; = {i;,4; + 1,...,4;41 — 1} with ip = 0 and
limj_oo(ij41 — 2;) = oo. Then there exists a sequence (k,)3, of nonneg-
ative integers characterizing H such that
751

Proof: Let, according to Theorem 2.2.3 (or to [12]), ¢; < ¢z < ... € N be any
sequence characterizing H. We are going to construct a sequence d; < dy <

. € N containing at least €;|I;| elements in each I; such that ||d,a] — 0
forall « € H. Then A ={ky <ky < ...} ={dp : n € N}U{c, : n € N}

clearly has the desired properties.
Let H =: {o, : t € N}, put IF(0) := I; and

L) = {k € I; : ||kosl| < 1/t for all i € {1,2,...,t}}

for t > 1. For each j € N let t; be the maximal t € {0,1,...,7} such that
|17 (t)| > €;|1;] and put

{di <dy<...}=U2, I (t)).

It suffices to show that {; — oo for j — oo or, equivalently, that for each
to € N there exists jp such that for all 7 > jp

>¢e;  forallj.

{d S Ij : ||da1|| < 1/t0 foralli = 1,.. .,to} > €j|1j|'
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Since €; — 0 for j — oo this is an immediate consequence of the well dis-
tribution (in monothetic groups, cf. Theorem 1.1.25) of the sequernce (ng)3%,
in the closed subgroup G < T'® generated by g = (ay,...,04,) € T?: The
open subset O C G of all (B,...,0,) with ||5i|| < 1/ty has positive Haar
measure x(O) and the set of all £ € Z with kg € O has uniform density
w(0) > 0. [

Theorem 2.2.9 indeed answers the question about quotients: Take, for
instance, 7; = j? and choose a sequence of strictly positive ;. Then the
quotients r, = k—',;ﬂ tend to 1. This example can be modified in many ways.

It has been proved in [5] that r, — oo implies that the corresponding
characterized group H is uncountable. Thus, for a given countable H, char-
acterizing sequences cannot be arbitrarily sparse in this sense. Nevertheless
we have:

Theorem 2.2.10 Let H be a countable subgroup of T and let m; < my < ...
be an increasing sequence of positive integers. Then there is a characterizing
sequence ky < ko < ... for H with m,, < k, for alln € N.

Proof: Let (c,)32, be any characterizing sequence of H. Put kz, := ¢;, and
kan+1 = cj, + ¢, where j, is large enough in the sense that kj, > ms, and
kon+1 > Man41. Clearly a € H implies k,a — 0. On the other hand, if 3 € T
and k,3 — 0 then also (kept+1 — k2n)8 = cnB — 0. (cn)32, characterizes H,
therefore 3 € H. [ ]

Theorem 2.2.10 implies that for any countable H < T there are sequences
(kn)2., characterizing H with limsup,,_,., % = oco: In Theorem 2.2.10 put
»~=n"and let k; < ks < ... be a characterizing sequence of H such that

m, < k, for all n € N. Then

z+1

2> sup = >sup ¢ = 00.
ki 7 nen V kl neN

Note that this is also contained in [5], Remark 3.5. In [12] this fact is
shown in a similar way for the special case that H is a cyclic group.

For more sophisticated methods to generate sparse characterizing se-
quences we refer to [6] and [13]: E.g. for a countable subgroup H < T
one can construct a characterizing sequence (k,)52, such that for all r > 0

kn

+1

sup > sup
neN n neN
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and a € H, > 27, |lkne||” < oc0.

The idea of the proof of Theorem 2.2.10 has further remarkable exten-
sions. We will analyze them more detailed in the next section.

2.2.6 Groups as sets of convergence

In this Section 2.2.6 we introduce a refined characterization of subgroups of
a compact metrizable group G by sequences: For a sequence (x,)%, in G
we consider the set H of all € H for which (xn(a))$2, converges (not
necessarily to 0 € T). H is easily seen to be a subgroup of G and the
pointwise limit is a (not necessarily continuous) homomorphism f: H — T.
The following Theorem 2.2.11 gives a complete description of the situation:
Given any subgroup H of a metrizable compact abelian group G and any
homomorphism f : H — T there is a sequence (x»)%2, in G such that x, — f
pointwise on H. If H is countable then one can even achieve that H is exactly
the set of convergence. If G is a compact (not necessarily metrizable) group
and H is an arbitrary (not necessarily countable) subgroup of G, this result is
still valid when the convergence of sequences is replaced by the more general
convergence of filters. By considering the trivial homomorphism f = 0 we see
that Theorem 2.2.11 nicely extends Theorem 2.2.3. Furthermore this result
allows to construct counterexamples to Question 5.4 from [5] (see below).

Theorem 2.2.11 Let G be a compact abelian group.

1. Let F be a filter on G. Then the set H of all a € G for which F —
lim, x(a) ezists is a subgroup of G. The mapping f : H — T, o —
F — lim, x(a) s a group homomorphism.

In particular if (xn)32., i a sequence in @, the set H of all a € G for
which lim,_,o xn(Q) exists is a subgroup and the mapping f : H — T,
a — lim, o xn(a) is a group homomorphism.

2. Let conversely H be a subgroup of G and let f : H — T be a homomor-
phism. Then there exists a filter F on G such that F —lim, x(a) = f(«a)
for alla € H and F — lim, x(B) does not exist whenever § & H.

3. If furthermore H < G 1is countable then there exists a sequence (xn)>2.,

in G such that
xn{a) = f(a) foralla € H.
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4. If G 1s metrizable and H 1is countable then there exists a sequence
(Xn)32, ©n G such that _

n=1
Xn(a) = fla) forala€e H
and (x5, (8))2., does not converge if 3 € H.

Proof: 1: Assume a,b € H and consider c =a — b. Let U € U(f(a) — f(b)).
We must show that there exists a set F' € F such that x(c¢) € U holds for
all x € F. According to U there exist U, € U(a) and U, € U(b) such that
U,—-U, CU. a,be H implies that there exist sets F, and F, € F such that
x(a) € U, for all x € F, and x(b) € U, for all x € F,. Let F := F, N F,
and x € F. Then x(c) = x(a - b) = x(a) — x(b) € U, — U, C U. Since
U was arbitrary we get F — lim,(c) = f(a) — f(b). Thusc € H and f is a
homomorphism.

2. For o3,...,a; € H and € > 0 put

Floa,...,04,6) i= {x € G : lIx(es) - f(as)l| < e for i = {1,2,...,1}

and

F=F(H,f):= {ch ey, €H 3e>0 }

such that F(ay,...,04,6) C F
We have to show that
(a) F is a filter.

(b) Foralla € H : F — lim, x(a) = f(a).
(c) Forall B¢ H : F — lim, x(B) does not exist.

ad (a): Since the set F(ay,...,a, 01, ..., 0, min(e1,€2)) € F is con-
tained in F(ay,...,0q,€1) N F(By,..., 0, €2) it suffices to show that each
F(ay,...,04,¢€) is not empty.

There exists an extension of f : H — T to x : G — T such that x € é\d.
By Lemma 2.2.2 there is a x' € G such that ||x'(c;) — x(a)l| < € for i =
1,...,t. Hence X' € F(ay,...,ay,€) #0.

ad (b): Let « € H and U € U(f(a)). There exists an € > 0 such that
l€ = f(@)|| < € implies £ € U. x € F(a,e) € F implies ||x(a) — f(a)]| < €
proving F — lim, x(a) = f(a).
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ad (c): Let 8 ¢ H and F € F be arbitrary. We will show that there exist
X1, X2 € F such that ||x1(8) — x2(8)|| > 1/4. F € F implies that there exist
ay,...,oq € H and € > 0 such that F(ay,...,a,€) C F. Note that there is
ax € Gg with X'(h) = 0 for all h € H and x/(8) > 1/3. By Lemma 2.2.2
there exists a x € G such that ||x(c;)|| < e/2fori=1,...,tand x(8) > 1/4.
Pick x1 € F(ay,...,a4,€/2) C F arbitrary and let xo = x + x1. Then x2 is

also in F" and [[x2(8) — xa(B)ll = Ix(B)Il > 1/4.

3. Let H = {ay,t € N}. The proof of 2. shows that for each n € N there
is a xn € G such that ||xn(a;) — f(a)|| < 1/nfori=1,...,n. The sequence
(xn)32, has the desired properties.

4. If G is metrizable and H is countable we know by Theorem 2.2.3 that
there exists a sequence (x»)32, in G such that

In(a2)ll = 0 iff a€H.

Let furthermore (x,)52, be as in 3. and define x4, := xa and x5,4, = Xn+Xn.
Then x,(a) — f(a) for all « € H.
Conversely, for 8 ¢ H the sequence (x;,(8)), cannot converge: If

Xn(B) — c for some ¢ € T, then Xn(8) = Xon41(8) — X5,(8) — 0. Hence
G € H, contradiction. [ ]

We want to apply Theorem 2.2.11 to Question 5.4 in [5] which, in our
notation, reads as follows. Let (c,)32, be a sequence in Z. Are the subsequent
conditions (i) and (ii) equivalent?

(i) There exists a precompact abelian group G 2 Z such that ¢, — h in
G and (h) NZ = {0}.

(i1) There exists an infinite subgroup A < T such that ¢,a — 0 holds for
all a € A.

Conditions (i) is obviously equivalent to (i’) below:

(') There exists a group compactification (¢, G) of Z such that ¢ is 1-1,
t(cn) — h in G and (h) N (Z) = {0}.

We remark first that (ii) implies (i’): Let A < T be the subgroup such
that ¢,a — 0 holds for all @« € A. Then let ¢ : Z — T#,n — (na)aca and
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put G = «(Z). Obviously (¢,G) is a compactification of Z and since A is
infinite, ¢ is 1-1. Moreover ¢(¢,) — 0 € G, thus (i’) holds for A = 0.

To see that the converse does not hold, pick o, 3 € T, such that o and
B are linearly independent over the rationals. Define a homomorphism f :
(a) = (B),na — nf. By Theorem 2.2.11 choose a sequence (¢,)%, in Z
such that c,a — f(a) = 8 and (¢, )%, does not converge for v € T \ («).

Then ¢ : Z — T, n + na gives rise to a group compactification of Z. Put
h := [ such that ¢(c,) = coa — B. Since o and 3 were chosen to be linearly
independent we have (h) N «(Z) = (6) N (o) = {0}. Thus (¢') is valid. On
the other hand (i) fails since ¢,y — 0 only for v = 0.

For a different type of counterexample fix a prime p and consider the
p—adic integers Z,. Choose an arbitrary sequence (k,)32, in {0,1,...,p — 1}
which contains infinitely many non zero elements and satisfies k; = 1. Using
this, put for each n € N, hgn = hony1 = Y., kip* and let ¢, = p"+h,. Then

lim ¢, = lim hy =Y kp' =t h€Z,\ Z.
i=1
Hence kh € Z, \ Z for all k € Z \ {0}, so () holds.
Next pick a € T such that

lim c,a = 0.
It follows that also lim,_.co(Cry1 — cn)a = 0. Since hg, = hapy) this yields
p"a — 0soa=a/p'+Zforsomel € Nand a € {0,1,...,p' —1}. But then,
foralln >1

llcanc|| =

n {
(pz" + Z kﬂ) (a/p") Z kip'(a/p')

The last term tends to 0 only if a = 0. Hence a = 0 and (42) fails.
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2.3 Reconstruction of Hartman sequences

In this section we take up the interesting reconstruction problem of finding
the minimal compactification in which a continuity set M which induces a
given Hartman set H can be realized in.

2.3.1 The abstract approach
44)

We start with the following question. Let (ay, as) generate T?, i.e. as-
sume they are linearly independent. Let H = By, a,c = {k € Z : ||kay| <
€,1=1,2} a Bohr set. Is it possible to find a continuity set M and a 3 € T
such that H = ¢5'(M)? More general one can ask (following Section 1.2):
How much information about its corresponding continuity set M and the
minimal compactification M is realized in is contained in a given Hartman
set H C Z? Section 2.1 showed that in the case of Bohr sets already the
complexity determines the dimension d of the minimal compactification. We
will sketch the main ideas how to obtain all the information from a given
Hartman set H one can ask for.

As indicated in Section 1.2 there is a direct connection between a com-
pactification (C,¢) and the subgroup of generating elements A < T. Each
compactification is determined by its Bohr sets i.e. sets generating a base
of the neighborhood of 0. We will focus on the question how to obtain
information from H about the neighborhood of 0 of the corresponding com-
pactification.

We will again use filters and filter limits as introduced in Section 2.2.

Roughly spoken two things have to be done: Extract information from H
and check how this determines (C,¢). The neighborhood system of 0, ¢/(0),
in C is a filter. Let

F=F(C)={FCZ:3U €u(0). (U) C F}.

Then F is a filter on Z. Note that F is the filter introduced in Section 2.2.3
without the cofiniteness property we needed there. By Theorem 2.2.1, if
(C,t) = (Ca,ta) then a € A < T iff F — limg(ka) = 0. Thus F determines
A and thus the corresponding compactification. Is it possible to obtain F
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also from H = .}(M)? Let, for k € Z, H, = HA(H + k) and, for ¢ € C,
M, = MA(M + ¢). -1t is natural to assume that an elemeiit kg, g = ta(1)
denotes the generating element of Cy, is close to 0 in C' if

pc(Myg) = dens(Hy)

is small, where p¢ is the Haar measure of C. This equality holds since M, is
also a continuity set for all ¢ € C. Motivated by this we define

F(H,e) = {k € Z : dens(Hy) < €},
€ > 0, and
Fu:={FCZ:(3e>0)FDF(Hkce)}.
Let furthermore
fu:C— R, fulc) =nc(M)
and Z(M) = {c € C : fu(c) = 0}. We call M aperiodic if Z(M) = {0}.
Then, by [44], the following holds:

Theorem 2.3.1 Let M C C be a continuity set and H = ;' (M). Then
1. Fu C F.
2. If Z(M) = {0} then Fy D F.
3. If Z(M) # {0} then Z(M) < C and Fy = F(C/Z(M)).

Summing up, this shows that the filter 7 induced by the given Hartman
set H determines the neighborhood filter of C and a fortiori also the conti-
nuity set M related to H (up to zero sets). In this sense, H contains all the
essential information we can expect. Moreover, Theorem 2.3.1 tells us how
to obtain this information.

Returning to the question stated at the beginning of this section Theorem
2.3.1 implies that H cannot be induced by any continuity set M C T (Bqg, a5
is clearly aperiodic).
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2.3.2 Comments on the function f,,

Let us first discuss the folloWing éxample. To simplify matters, we will, again,
define sets on T¢ by defining them on the unit cube [0,1)¢. Let M = I =
[a,b) C T be an interval and suppose b — a < 1/2. Then

2z 0<z<b-—a,
fu(r)=< 2(b—a) b—a<z<1-(b-a),
—2z —(b—a)<z<0.

More generally, it can be seen that for M = U;.V:I I;, I; disjoint intervals,
fu grows like 2kz sufficiently close to 0. Let, for M € T¢, Dpy(6) =
{z € T¢: fm(xz) < &6}. Then, in both cases discussed above, the function
mp : 6 — A (Dp(8)) is (sufficiently close to 0) a linear polynomial. What
about higher dimensions? If M C T¢ has the shape of a d-dimensional
sphere in [0,1)%, then obviously A%(Dys(8)) equals the volume of a sphere
with radius €', for suitable &’ > 0. So mys grows like a polynomial of degree
d. To show a similar result for general convex subsets of T¢ we first discuss
the related situation in R

In the sequel, for A C R? and v € R?, A+ v denotes the usual translation
of AbyvinRéand A+.v:i={z=a+ Ay €eR?:a€ Aand 0 < A < ||},
where ||v|| denotes the length of the vector v and vy = v/||v||. (Thus +. is
related to the complex sum). Let A% denote the d'-dimensional Lebesgue
measure. In particular, V = )¢ denotes the volume. Let M € R% Let
v € Sy_1. Then A"1(M|,) is the measure of the (convex) body obtained
by projection of M onto the hyperplane z -v = 0 in R%. (For a convex set
M C R% and a vector v € S;_;, we write M |, for the set resulting from the
projection of M onto the hyperplane z-v = 0.) Finally let, related to above,
fu i RE= R, fu(z) = V(IMA(M + z)).

Theorem 2.3.2 Let M be a convez set in RE. Then

1.
fr(ev) -1
ryes — A=Y M,) (e —0).
2.
V(ng(é)) — c(M) (6—0) and



1 1
W) = g |, e

where Dp(8) = {z € R?: fp(z) < 6}.
Proof: Let u € S4_, and € > 0. Set M(eu) = M N (M + eu). Note that

V(M +ceu) — V(M) = V(M +c.eu\ M) = eX (M) (2.2)
2(V(M +ceu) — V(M) > V(MA(M + eu)) (2.3)
2(V(M(eu) +ceu) — V(M(eu))) < VIMA(M + eu)). (2.4)

Equation (2.2) is a direct consequence of the convexity of M. M +.ecu 2
M + eu implies (2.3). Also (2.4) follows easily: z € M N (M + eu) iff
T € M and z —eu € M. M is convex, thus also z — ¢'u € M for all
¢’ € [0,e]. Therefore (V._o(M +ru) = M N (M + eu). Thus, z € M(eu)
implies z + 74 € M + eu for all 0 < r < €. Hence M(eu) +.eu C M + cu
and (M (eu) +ceu) \ M(eu) C (M +eu) \ M. A symmetric argument leads
to (M(eu) +. (—eu)) \ M(eu) € M \ (M + eu). Summing up, we have

26X Y (M (eu)|y) < fu(eun) < 2eX*1(M|,). (2.5)

Since clearly M(eu) — M (¢ — 0) in the Hausdorff metric we obtain asser-
tion 1. Conversely, (2.5) also implies fp(eu) = § iff

] 0

NI =S (M)

Thus, we have an upper and lower bound for the radius e(u). Integrating
(1/de(u))? over the sphere yields the volume of Dy;(d) and proves 2. [

Turning back to our observations on the torus, we use that a convex set
M C T¢ (thus M is a continuity set) can locally be interpreted as a convex
set M C [0,1)¢ C R? and apply the last assertion. Let H = .~'(M). Since
dens(HA(H + k)) = uc(MA(M + u(k))), k € Z, we have

H(6) = {k : dens(HA(H + k)) < 8} = {k: pc(MA(M + 1(k))) < 6}.

It is easy to see that Dys(6) is also a convex set. It induces the Hartman set
H(6). Theorem 2.3.2 shows that the growth rate of dens(H(4)), for § — 0,
already determines the dimension of the convex set M.
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2.3.3 Bohr sets and explicit reconstruction

In this part we will apply and analyzé some results of Section 2.2 for the
special case G = T in the context of the reconstruction problem.

Let M C T¢ be an aperiodic continuity set (thus puc(M) > 0). Let the
compactification (C = T¢,.) be determined by a generating vector ¢(1) =
a = (a1,...,aq) € T4 Let H = +7}(M) be the induced Hartman set.
Assume that M C W = [—¢,¢]? for some € € (0,1/4). Then

ke H < kae M

= kaeW
k 1—€ 1+¢
= ac U5 ]
5&1‘11‘.:1 -

=: G(‘I\:I,e,a)
foralli e {1,...,d}

We apply now assertions 1.-3. in Lemma 2.2.6 of Section 2.2. They say
(A) BeTNG(M,e,a) implies 8 € (ay,...,aq).

(B) There exists an R € N such that 8 € TN G(M,e,a) implies 8 €
(al, e ,ozd)R.

(C) For all § > 0 exists an S € N such that

implies
min{||6 —a| : a € (a1,...,aq)r} < 4.

The crucial points for an explicit reconstruction are clearly (B) and (C),
i.e., how to obtain the numbers R and S. We first present two approaches
implying (B) that have a more geometric flavor than the original proof of
Lemma 2.2.6. According to our assumptions, M C W = [—¢, €]
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Proposition 2.3.3 Let A € Z%% be a d x d integer matriz. Let H be a
Hartman set induced by the coding of the continuity set M C T¢. Then
B€TNG(M,e,a) iff B is a component of the vector A(a) and A(M) C W.

Proof: Let Ha = {ka : k € H} and ||Ha| = supken|lka|l. Note that
HA(a) = A(Ha). Thus

IHA(e)l| < € & [|[A(Ha)l| < e & [AM)]| < e

The last implication follows from density of the set Ha in M. [ ]

A second way to see (B) is to use that H has positive uniform density and
thus has bounded gaps.

Proposition 2.3.4 Let H = {h; : i € NJh; < hjy; for all 1}. Let g € N
such that hiyy — h; < g for alli € N. Lete < 1/4. Let

U(L)=ﬁ@[i;ls,i;€]

1=11i=1

be a set of I(L) disjoint intervals. Then (1/(4e) — 1)hy > g tmplies I(L) >
I(L+1).

Proof: Let L be large enough that (1/(4¢) — 1)hr > g. We show that each
interval occurring in U(L) is intersected by at most one interval of

h
L [i—e i+e}

viL+1=J

1
2 Lhrer hon

For this observe that

(1/(4e) = 1)hL > g
(1 —4de)hy > 2¢eg
(1 —2e)hy > 2e(hp + g)

(1 — 2€)hL > 2€(hL+1)
1—2¢ 2¢
hr+i hr

¢t 4l

The left side of the last inequality is the length of a gap between two intervals
in V(L + 1). The right side of the last inequality is the maximal length of
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one interval in U(L). ]

This, of course, also implies (B). In Section 2.2 the assertion (C) was shown
by compactness. (C) states that all "bad” intervals obtained by Proposition
2.3.4, not containing an element of the set {(a, ..., aq)r, vanish if S is suffi-
ciently large. It would be interesting to have explicit bounds for S, replacing
the original compactness argument — unfortunately this seems to be a very
difficult problem. Nevertheless explicit examples indicate that "bad” inter-
vals drop out after few steps. So far we did not use that M is a continuity
set. Nevertheless, we already have the following proposition.

Proposition 2.3.5 Let (C = T¢,.) be a compactification generated by 1(1) =

a = (a,...,aq). Let M C T? be a set with nonempty interior and H =
Y M),

1. If M € [—¢,€]?, then G(M,¢e,a) = 0.

2. If M C [—¢,¢l%, then
B ¢ 3 A€ Z%4 such that
G(M,e ) = {'B €T AM) C -]t and B = Ao) |-

Hence G(M, e, ) s finite. Moreover, for every & > 0 there exists an
S € N such that G(M,¢,a,S) C G(M,e,a) + (=46,8).

Using dens(H) = pu(M) the procedure described so far allows filter out
finitely many vectors A(a), where A € Z%*¢ with |DetA| = 1. Clearly, ¢(1)
is among the set of possible candidates.

So far we assumed that M C [—¢,€]?. Let now M be an arbitrary ape-
riodic continuity set in (T¢,¢). Thus M is of positive measure. Let H be
the Hartman set induced by a coding of M via ¢(1) = a € T¢ Then we
can combine the idea introduced in Section 2.3.1 with Proposition 2.3.5: Let
M;s = {z € T¢: fp(z) < 6}. Let € € (0,1/3). Proposition 2.3.5,1. allows to
determine 8, = sup{d : G(Mjs,e,) # 0}. Then Proposition 2.3.5,2. implies
that G(Ms,, €, a) consists of & and finitely many images of o under certain
linear mappings A as described above.

67




Chapter 3

Complexity induced by
polytopes

(31], [36], [37], [38]

The objective of this chapter is to extend the ideas presented in Section
2.1. Motivated by Remark 2.1.2,1., we want to clarify the interplay between
the geometry of the coded continuity set M C T¢ and the complexity of
the induced Hartman sequence. Therefore we deduce an asymptotic formula
for the complexity of Hartman sequences induced by polytopes. This will
provide a connection between the complexity function and the geometry of
the corresponding continuity set. As in Section 2.1, the main tool will be an
estimation of the local complexity induced by the polytopes.

3.1 Notation

We use the following abbreviations: We call a vector a = (ay,...,0q)
strongly irrational if Noo = T®. As before, for a set M C T¢ and an a € T¢,
we call the sequence a = a(M, @) = (a(M, a),)2 _,, € {0, 1}% defined by

n=—00

o = 1 if na € M,
"7 10 otherwise

a coding sequence. Let, for M C T?, a = a(M, o) be such a coding sequence.
Recall that the complexity Ps,(N) is the number of distinct words of length
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N € N occurring in a. Since the complexity function is either bounded or
strictly increasing

P(d,M,a) = lim Pur.a(NV) for d € N,

N—oo Nd '

is either 0, co or in R*. If there exists a dy € N such that P(dy, M, a) € R,
we call P(M, a) := P(do, M, @) the asymptotic complexity of M and a.

3.1.1 Polytopes in T¢

Sa-1 denotes the d-dimensional sphere, S} | the d-dimensional upper half-
sphere and B, the (d—dimensional) ball with radius € > 0 and center 0. For
u € Sy and A € R, the set

Hu,,\:={x€1Rd : z-u=/\}

defines a hyperplane in the Euclidean space R? ( - denotes the usual inner
product) and

H,:={zeR*:z-u>)A} and H,,:={zeR®: z-u<A}

the induced halfspaces. A (general bounded) polytope P is a bounded region
of the d—dimensional space enclosed by a finite number of hyperplanes. We
always assume that P has nonempty interior. In particular, a polytope P in
R¢ is convex if and only if it can be determined via

L
P = ﬂ Hu_,,w
r=1

ur € Sg—y and A, € R, r =1,..., L. (We use outer normal vectors to deter-
mine P.) Each polytope is a finite union of convex polytopes.

As usual, we call the (d — 1)-dimensional subsets of the boundary 9P of
P facets (thus, for each facet F holds F = 9P N H,,), the 1-dimensional
subsets edges and the O—dimensional subsets vertices. A parallelepiped D is
also given by d linearly independent vectors u,, ...,uqs € SJ_, and Ay, ..., Aq,
01,...,94 in R via

d d
— + -
D - m Hury/\r r] ﬂ Huv‘,/\r+6r'
r=1 r=1
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C(o,z) = (x — 0/2,7 + 0/2]? denotes a half open cube with center z € R
and side-length o. '

As already discussed in Remark 1.1.26, we will define sets on T¢ by defin-
ing them as subset of the d-dimensional unit cube [0, l)d C R¢ (so before
identifying its opposite facets). Thus, a polytope P in T¢ is (a translate by
an z € T¢ of) a polytope P C [0,1)%. In the sequel, we will restrict ourselves
to the case that P is a closed polytope. In particular, we will write F' C H,, y,
u € Sg_1, A € R, for a facet F of a polytope P C T¢ if the facet F of P, in-
terpreted as subset of [0,1)?, lies in the hyperplane H, » of R%. Analogously,
aset in C C T is called convex if it is (a translate of) a convex set in [0, 1)<.

Since the d—dimensional Haar measure on T¢ coincides with the d-dimen-
sional Lebesgue measure on [0, 1)¢, we will denote both by A%

3.1.2 Partition sets and local complexity

Let P C T be a polytope, C C T¢ an arbitrary set and o = (a1, ..., q) € T¢
strongly irrational. Let a = a(P,a) = (a(P,a)r)R _ € {0,1}% be the
resulting coding sequence. Denote by

W(C,N)=W(C,N,P,a)= {w = axaps1- - Gren—1 € {0,1}Y : ka € C}
the set of all words w of length N starting in C and induced by P and a.
Definition 3.1.1 We call

P(C,N)=P(C,N,P,a)=|W(C,N, P)|

the local complexity of C induced by P and c.

Following Section 1.4.1, for a word w = axars1 - - aren—-1, w € W(C, N) is
equivalent, to the fact that its induced partition set

N-1
P, := [} (CN(P* — ja)),
Jj=0

P! := P and P°:= T¢\ P, is nonempty. Thus to obtain the local complexity
of C it suffices to compute the number of partition sets in C induced by
N translates of P by a. Under certain assumptions it turns out that we
can concentrate on the d-dimensional partition sets. These assumptions are
stated in the next section.
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3.1.3 Independence of P C T¢ and a € T¢

In Section 2.1 we assumed some independence condition of the coded cube
and the generating element a to be able to count the partition sets yielding
the local complexity. As pointed out in Remark 2.1.2,2, the asymptotic for-
mula changes if one drops this independence condition. For the estimate of
the number of partition sets induced by a polytope we again need some inde-
pendence condition which we are going to formulate in the present section.

Let P be a polytope in the d-dimensional torus with facets F. C H,,_,,
r=1,...,L, and let o € T¢ strongly irrational. It is natural to call a point
r € T? a vertex (after N translations) if z can be written as an intersection
of d translates of d linearly independent facets F, (i.e., if there exist n, €
{0,1,...,N =1}, r = 1,...,d, such that {z} = ﬂf=1(Fr —n,a)). For our
estimates we need a condition which guarantees that there are not too many
over—determined vertices in T¢ induced by the orbit (P — na)nen, i-e., that
the set

there exists d + 1 distinct facets F, and
z € T%: there exist d + 1 integers n, such that

{z} = FE(F — )
is sufficiently small.
We even assume that the orbit of a slightly enlarged version on P does

not generate too many over-determined vertices. More precisely: Let ¢ > 0.
Set

F** = (F.+B.)NH,. , and
L
o= Fr\(U(Fs+BC))-

s=1

s#T

(B, denotes the ball with radius c centered at 0 and + denotes the complex
sum.) Fix ¢’ > 0 small enough such that F is totally contained in [0,1)¢

for all r € {1,...,L}. Let 0P” = |J, F*' (cf. Figure 3.1).
Then, define

3n1,n2,...,nde{0,...,N—1},
Ir e (L. LI\ {r}i=1,....d,
Ti#rj if 7’#])

{z} = FJ@"ﬂﬂ;:l(F;'j L))

C.(N):=SzeF:
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oP opP°

F. - Fo’ \

Figure 3.1: The enlarged boundary 0P

Thus, for r € {1,2,..., L}, C,(N) is the set of all over-determined points z
on a fixed facet F, induced by 0P° —na, n=0,1,..., N — 1. Furthermore
define ¢(N) := maxjeq,..Ly |[C5(N)|. ¢(N) is hence the maximal number of
over—determined vertices on a facet of 9P after the N-fold translation of
9P by «a.

Definition 3.1.2 P and a are called o' -asymptotically independent (abbre-
viated o' -a.1.) if

1. ¢(N) = o( N1 and

2. there exists no n € N such that (O0P° —na) NOP® contains a (d—1)-
dimensional set.

The first condition of the last definition guarantees that the number of
over—determined vertices is sufficiently small for our methods. The second
condition implies that each point z is lies on at most L translates of facets
Fo r=1,...,L by a.

Observe that in the case d = 1 conditions 1. and 2. of Definition 3.1.2
coincide.

Let P be a fixed polytope in T¢. Pick an arbitrary a € T¢. Then, as
we will see in Section 3.4, typically P and « are o'-a.i..

3.1.4 Definition of a measure preserving mapping

For the sake of simplicity, we compute instead of the local complexity of a
cube C' the local complexity of a parallelepiped. This parallelepiped is the
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image of C under a measure preserving mapping which we are going to define
now. -

Let C = C(o,z) be a cube of side length ¢ and center z. Let Cy be its
translate, rooted at 0, i.e., with the edges e = ce, where e, denotes the
r—th Euclidean unit vector. Let W = {w;, ws,...,wq} be a set of d linearly
independent vectors in Sy_;.

We define a measure preserving mapping Aw such that Ay (C) is a par-
allelepiped whose facets have normal vectors w,, r = 1,2,...,d. Aw(C) will
be used to estimate the local complexity of C'. For the definition of Aw, we
use mappings 7, k = 1,...,d, iteratively defined. For £ = 1,2,...,d, each
7 transforms the parallelepiped Cy_; = 71 0 Tk_2 0 -+ - 0 73 (C) into a par-
allelepiped C} such that Cj has facets whose set of normal vectors contains
wy, ..., Wg. Moreover, Cr_; and Cy have the same volume. (cf. Figure 3.2.)

For this reason we define the mappings 7x, £k = 1,...,d, as follows: To
keep notations simple, we assume, w.l.o.g., that the elements of W are or-
dered so that |e; - wy| = max {|e; - w;| : j € {1,...,d}}. Then set

CO lf Iel~w1|= 1,

G=nlO=) N m N
NHY N H ’

w w]yle?'wll

otherwise.

Suppose now that the parallelepiped Cj with facets F¥ C H,, o and Frk+d C
Hy, ok, 7=1,...,k, and F¥C H,, ¢ and F,"+d CH,px,r=k+1,...,d,and
edges ef, r = 1,...,d, is defined in this fashion. Assume moreover that the
elements of W are ordered so that

|ek+1 -wk+1| = max{lekH . ’lUjI tJE {k+ 1,...,d}}.
Then set

( Ck if |€k+1 -wkl = 1,

k + k -
Cir1 = Tk41(Ck) = Mr=1 Hio NNy wr,of

NHY NH- ;
W41,0 wip s lek eyl otherwise.

d + d -
L N nr=k+2 Her,O N nr=k+2 Her,P'r‘

Finally, set
Aw(C)=14014-10...0711(C).
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For the sake of notational simplicity we set Ay (C) = 0 iff the set W contains
d linearly dependent vectors.

W = {w;,ws}

71
P
v |
! 1
C \ !
! 1
w,
Figure 3.2: The mappings 7;
Each 7, ¢ € {1,...,d}, and therefore also Ay is measure preserving.

Note, furthermore, that all facets of Cy lie in the same hyperplanes as the
facets of Ck,1 except those two facets with normal vector e, which are re-
placed by facets with normal vector wi,;. Therefore the facets of Cy with
normal vectors wy, 1 € {1,...,k}, lie in the same hyperplanes as the facets
of Ay (C) with normal vectors w,, r € {1,...,k}. Moreover, if o, the side
length of C, is sufficiently small, then (a translate of) Ay (C) C [0, 1)%. Since
there are only finitely many choices W C {u, : 1 <r < L} suchao >0
always exists. We introduce the following notion.

Definition 3.1.3 For a polytope P C T? with facets F, C H,, »,, i.€., with
normal vectors u,, r = 1,..., L, and the measure preserving transformation
Aw, W C{u, : 1 <r < L}, defined above, we call

E(P) = max (diam(Aw([0,1)%)))

W‘:(“il Wig e uid}g
{uj,ug,..., uy}

the extension factor (abbreviated x.t.-factor) of P.

This definition guarantees that diam(Aw (C(o,z))) < &(P)o holds for

any cube C(o) and any choice of W = {u,,,...,ur,}.
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3.1.5 The separation number

In this section we show a technical lemma. It guarantees that the local com-
plexity can be used to estimate the asymptotic growth rate of the complexity
function.

Let P C T¢ be a polytope with facets F,, r = 1,...,L. Then, for
re{l,...,L} and 8 > 0,

L
G, =F.N U(Fs+B20)a

s=1

a€r;

is a subset of F, (Bs¢ denotes the ball with radius 26 centered in 0 and + is
the complex sum). Note that if § is small enough, then G, # 0.

Lemma 3.1.4 Let P C T¢ be a polytope with facets F., r = 1,...,L. Let
8 > 0 be sufficiently small such that G,, # 0 for d indices 1,...,74 and such
that the corresponding facets F., have linearly independent normal vectors.
Let o € T? be strongly irrational. Let C* and C? be sets in T¢ with disjoint
closure and with diam(C*) < 6, i = 1,2. Then there ezists a sufficiently large
number K € N such that there ezist finitely many n; < ny < ... <ng in N
and my, my, ..., mg in {0,1} such that

K

J((P™ —nie)nC')=C"  and
i=1

K

U((Pmi - n;a) NC?) = C?,

i=1

m _ P _ 1 r_ 1 . _ 0
where P™ = .\ p if m = and m{ = ; if m; = 1.

Proof: According to the assumption that the sets C*, i = 1,2, are sufficiently
small and with disjoint closure, we can find open sets Uy, U,,...Ux and
V1, Va,... Vi in T¢ and m;,my, ..., mk in {0, 1} such that

K
U((Pm‘ —-z)NCY)=C" and
i=1
K

U™ —y)nc? =c?,

=1

75




whenever z; € U; and y; € V;. The equidistribution of the sequence (na)S2,
implies then the assertion. '

Let the numbers n; < ny < ... < ng in N be as in the last lemma. Then
we say that ny, n,...,ng separate C; and Cs.

Let ©O(P) be the supreme of all § > 0 such that G, # 0 for d indices
T1,...,Tq and such that the corresponding facets F;, have linearly indepen-
dent normal vectors.

For two sets C! and C? in T¢ with disjoint closure, let N(C!,C?) € N be
the minimal number such that there exist n; < ny < ... < ng < N(Ct, C?)
separating C; and Cs.

Definition 3.1.5 We call ©(P) the separating diameter of P. For sets C!
and C? in T?¢ with disjoint closure and with diam(C*) < 6, i = 1,2, and
6 < ©(P), we call N(C',C?) € N the separation number of C' and C?.

Remark 3.1.6 The concept of the separation number presented here is re-
lated to the connectedness index introduced in [2].

3.1.6 The projection body

For a presentation of the theory of convex geometry we refer to [36).

Let K C R? be a bounded convex set. Then the function
hg : S4-1 — R, hx(u) =sup{z-u:z € K}

is called support function. hx determines K. Denote, for u € S;_;, by K|,
the projection of K onto the hyperplane H,o. Then each convex body K
determines the convex body I[IK whose support function is

bk (u) = A7 (K]y).

I1K, called projection body of K, is a very well understood object in convex
geometry. The following equation holds

1
AIIK) = Zi—'/ / |Det(uy, . ..,uq)| dp(v)...dp(v),
* IS Sa-1
where the p; are the so called generating measures of IIK. If K = Pis a

polytope, these generating measures are concentrated on the normal vectors
of the facets.
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3.2 Main result

Theorem 3.2.1 Let P be a polytope in T* with L facets F. and normal
vectors u,, r = 1,..., L. Let a € T¢ be strongly irrational. Let P and o be
o’'-a.i. Then

P(P,a):P(d Pa)—
P 1 L L d
. Pa —
g =g 2 Z('D"'t“’“---’“fﬂlﬂﬂ 1<F->)'

In particular, if P is a convez polytope in T¢, then

P(P,a) = A{I1P),
where IIP denotes the projection body of P.

Remark 3.2.2 In [37] results related to our Theorem 3.2.1 were obtained
in the context of stochastic geometry.

The main tool of the proof is the following estimate for the local com-
plexity P(C, N) induced by P and a.

Proposition 3.2.3 Let P be a polytope in T¢ with L facets F, and normal
vectors u,, T = 1,..., L. Let o € T? be strongly irrational. Let P and o be
o'-a. i. Let C = C(o,z) be an arbitrary cube with side length o > 0 and
center x, where o is chosen small enough to ensure that £(P)o < o'. Then

ot [ & L g
o (Z Y (lDet(u”"'"ura)|Hx\d‘1(Fr;5(P)a))>

r1=1 rq=1
. P(C,N)
< _
S N T
d-1( p+E(P)o
< o (T?l ,dE_ <|Det Uppye ooy Ury |||)\ F ))

To deduce Theorem 3.2.1 from Proposition 3.2.3 we proceed as in the
proof of Theorem 2.1.1.

Proof of Theorem 8.2.1: For k € N, k > 1/¢’, let 0 = 1/k and cover T¢
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by k¢ disjoint cubes C;(1/k) := (z; — 1/(2k),z; + 1/(2k)]%. Let € > 0. Let
O(P) be the separating diameter of P and choose k large enough such that
1/(k—1) < ©(P).

By Lemma 3.1.4, for two disjoint cubes C;7¢ = Cy(1/k —¢) and C;° =
Cj(1/k—¢), i # j, there exists a separation number N(Cj, C;). Observe that
N > N(C;, C;) implies that W(C;, P, N)NW(C};, P, N) = 0.

Thus, considering the local complexities of all cubes C; ¢, i = 1,..., k¢,
simultaneously, Proposition 3.2.3 implies as a lower bound for the asymptotic
complexity
Pp,a(N ) S

1/’“ o) <Z Z (|Det Uiy r Uiy HAd-l(p;;C(‘/"‘f))» .

11=1 ig=1

lim inf
N—oo

This holds for all € > 0. Therefore we have
Pp(N) >

Nd —
L d
Z (|Det Uiy, - oy Uiy)] H /\d-l(Fwi;c(l/k))))

k(1/k)¢
dl
4 11
L L d
Z Z (|Det um-'wuid)[H/\d_l(Fi;C(l/k))> ‘
=1 =1 P

Analogously Proposition 3.2.3 gives the upper bound

lim inf
N-—-oo

Mh

...
=
I

L L d
s P3R5 of (LT | B ) )

Jj=1

L L
. - ¢
= EZ Z <|Det(u,l,...,uid)|Hl\d I(FJ (1/k))> '

j=1

Both bounds work for all k € N with k& > 1/0’. But Ad-1(F/k)y _
A-Y(F,) and AY(E) — MY (ETM)Y tend to zero for k — oo for all i €
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{1,...,L}. Thus, for every § > 0 there exists a k € N such that

d
('Det(“"““"“w)l HA‘“(ET‘”’“)))

L
: j=1

1 L
FIIEDY
i1=1 iq=1

L L d
! - —c(1/k
—az...z <|Det(Ui1,...,uid)|HAd H(F, a/ ))) ‘ <6
1:1=1 id=1 ]=1

. Pp o(N . Pp o (N '
Hence we also have ‘hm SUPN oo P—N“f;—) — liminfy_o —%—)I < ¢ for every

6> 0. [ |

3.3 Proof of Proposition 3.2.3

3.3.1 Overview

To prove Proposition 3.2.3 we must, assuming ¢'-a.i., find an appropriate
lower and upper bound for the local complexity, P(C, N), of the cube C =
C(o,z) C T%induced by the fixed polytope P C T¢ with L facets F, C Hy, .,
r=1,...,L, in [0,1)¢ and a strongly irrational o € T¢. In Section 3.1.2 we
introduced the local complexity

N-1
T Pa—.

=0

P(C,N) =

for w = ax@ks1 - - - aren—1 € W(C,N), P! := P and P°:= T¢\ P. The local
complexity of a cube C coincides with the number of partition cells in C.
Denote by II(C, N) the set of all such partition cells in C, corresponding to

words of length N. Then P(C, N) = ‘ﬁ(C, N)‘ For w = aragyy ... Qken_1 €
W (C, N), each partition cell is given by

b4

P = ()(Cn(P* — ja) (3.1
= (€ +ja)n P%ss) — ja). (32)

(=]

(XY
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(3.1) points out that the partition cells are determined by the preimages of
P. (3.2) indicates that P(C, N) depends on the partition of C by 0P when
being translated by a. We will use both approaches in the sequel.

In order to estimate the cardinality of ﬁ(C’, N) we shall construct two
partitions IT}(C, N) and IT*(C, N) of C induced by certain sequences of hy-
perplanes and with the property

Im(C, N)| < }ﬁ(c, N)‘ < (e, V).

The advantage of partitions induced by hyperplanes is the fact that the
number of vertices, i.e. intersection points of d-hyperplanes with linearly in-
dependent normal vectors, and the number of d-dimensional partition cells
are essentially the same.

A general result in this direction follows in Section 3.3.2. In Section
3.3.3, we define sequences of hyperplanes yielding the partitions IT*(C, N),
i = 1,2. For these hyperplanes, we combine in Section 3.3.4 the ¢’'-a.i. and
Lemma 3.3.3 to show that the number of partition cells indeed coincides
asymptotically with the number of vertices. Using this, the mapping A,
and the equidistribution property of the sequence (na),>o in T, we are able
to compute an explicit formula in 3.3.5. Summing up, we finish the proof of
Proposition 3.2.3 in Section 3.3.6.

3.3.2 A basic lemma

Let R? be the d-dimensional Euclidean space. Let C C R? be a d'—di-
mensional, d’ < d, bounded convex set. Let (H;)2; denote a sequence of
hyperplanes in R¢.

The hyperplanes (H;)M, induce a partition in C. It is natural to assume
some relation between the d'-dimensional partition cells and the vertices, i.e.
those z € C with {z} = ﬂ?;l H;,, for suitable i; € {1,..., M}. To establish
- such a relation we introduce the concept of the weight.

For every point x € C we define a weight w(z, M,C) € N recursively on

M, the number of hyperplanes (H;)M,, and d’, 1 < d' < d, the dimension of
C, in the following way:
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1. w(z,0,C) = 0 for all d'-dimensional C, d' € {1,...,d}, and for all
zeC. :

2. Ifd =1, set

1 if {z} = H;NC° for some
w(z, M,C) = ie{l,2,...,M},

0 otherwise.

Here C° denotes the interior of C' w.r.t. the 1-dimensional topology.

3. Assume, w(z, M’,C") is defined for every d”"-dimensional C’, 1 < d" <
d and every 1 < M’ < M. Let C be d'-dimensional. Let Cy :=
C N Hypy. Then set

w(z, M —1,C) fze HynNnC°,C L Hy
+'lU(.’II,M - 1,CM) and CM 7é H-,; NnC
w(z,M,C) = forall 1 <i< M,

w(z, M —1,C) otherwise.

Again, C° denotes the interior of C w.r.t. the d’-dimensional topology.

Note that points 2 and 3 yield the following implication.
CCHyorCNHy=0 = w(iE,MC)=w(z,M-1,C). (3.3)

Moreover, w(z,M,C) = 0 for all z € dC and all d'-dimensional C, all
M e N.

Remark 3.3.1 Observe that w(z, M,C) > 0 if and only if z € C is an in-
tersection point of at least d’ hyperplanes not containing C and with linearly
independent normal vectors. More precisely, let {z} = ﬂ?,:l H;; for suitable
i; € {1,..., M}. The inductive definition of the weight guarantees that

= 1 if z is contained in exactly d’ distinct hyperplanes,
> 1 if z is contained in more than d' distinct hyperplanes.
(3.4)

w(z, M,C)

Moreover, the definition allows to show the following assertion
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Lemma 3.3.2 Let C be d'-dimensional. Let L > d' be the number of hyper-
planes intersecting C and containing x € C. Then

1 | fd =1,
Sdsh s ) = O(L,d) ifd > L.

i1=1 Zuip=1" igr=1

w(z, M,C) (3.5)

IA

Proof: Via induction on L and d'

d=1L=1andd =1, L —1— L: Clear.

d —1—d and L =d": Clear.

d —-1—d and L —1 — L: By induction hypothesis we can assume for a
d"-dimensional C’

w(z, M —1,C")
w(z, M — 1,C")

C(L',d") for any L' € N and any d" < d', and

<
< CcL/,d") ford"=d andany L' <L —1.

Assume now, to finish the inductive proof, d’ =d', L' =L — 1 and = € Hy,,
ie. L —1 — L. But then, according to the definition of the weight,

w(z,M,C") = w(z,M -1,C") +w(z,M - 1,C},)

L-1-d %1 idl_] L—l—(d,—l) 11 i(d—]/)—]
DD DD D £ 2D DEED LD DEe

11=1 i2=1 ig=1 11=1 i2=1 Yo -1y=1

d'-fold summation (d' — 1)-fold summation
= C(L,d).

The last equality holds since the last (d’ — 1)-fold summation in the previous
line is the missing last summand of the d’-fold summation. [ |

Let G(C,M) := {z € C : w(z, M,C) > 1} be the set of all such intersec-
tion points in C after M hyperplanes. G(C, M) is a discrete, finite set for all
M eN.

The intersections of C by H;, i = 1,..., M, induce a partition of C.
Let I1x(C, M) be the set of all d'—dimensional partition cells in C after M
intersections. In particular an element m € Ily(C, M) is called an inner
partition cell, if TN AC = . Let I14(C, M)° be the set of all d'-dimensional
inner partition cells.
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Lemma 3.3.3 Let d' € {1,...,d}. Let C be a d'-dimensional bounded con-
vex set. Let M € N. Then

Ma(C,M)°| < > w(z, M,C) < |y (C, M)|.
zeG(C,M)

Proof: We prove the statement by induction. Under the assumption Cy :=
HuynNnC #0,Cy#H,NCforalli=1,...,.M —1 and C € Hy, we first
verify the equations

Ha(C,M)] = |He(C, M = 1)| + [Tlgr(Cu, M = 1), (3.6)
e (C,M)°| < |Hg(C,M —1)°| + [Tg—1(Crr, M = 1)°]. (3.7)

To see this, note that each partition cell itself is a convex set in C. Let w €
Mg (C, M —1). Then 7°N Hyp # 0 (7° denotes the interior of 7 w.r.t. the d'-
dimensional topology) is equivalent to the fact that in the M-th intersection
7 is split into two partition cells m, = TN H;; and 7, = WHHL € Iy (C, M).
m N Hy is the (d' — 1)-dimensional set in Cys separating m; and mp. This
holds for any partition cell 7. Hence observe that the number of additional
cells induced by Hjs equals the number of (d — 1)-dimensional cells in Cj,
proving (3.6). The same argument applies to (3.7). But since each splitting
set in Iy 1 (Cpr, M —1)° does not necessarily generate a new inner partition
cell we only obtain an inequality.

We prove the assertion by a twofold induction on the dimension d’ and
the number of intersections M.
d=1,MeNandd —-1—d, M =0: Clear by definition of w(z, M, C).
d-1—-d M-1—>M:
Case 1: Cpy = HyNC #0,Cpyy # H;NC foralli =1,...,M — 1 and
C € Hpy. Using, (3.6), (3.7), and the induction hypothesis, we obtain

N (C, M)°| < |Tg(C, M = 1)°) + [Tg—1(Crr, M — 1)°]
< Z w(z,M —1,C)+ Z w(z, M —1,Cu)

z€G(C,M—1) 2€G(Cr,M—1)

s

= Z w(z, M, C) by definition
z€G(C, M)

< Ma(C,M = 1) + llg—1(Cr, M = 1)| = [Tla(C, M)].

Case 2: Cpy:= HyNC =0, 0r Cyy = H;NC for a number ¢ € {1,..., M —
1}, or C C Hpy. Then |y (C, M)| = |lIg(C, M — 1)| and |1y (C, M)°| =
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|IIy(C, M — 1)°|. Hence, by the induction hypothesis on M,

|Hd’(C) M)OI = |Hd’(C)M - 1)0|
< Z w(z,M - 1,C)

z€G(C,M-1)

< [He(C,M —1)| = e (C, M)|.

Under the assumptions in Case 2, the definition of the weight guarantees

Z w(z,M -1,C) = Z w(z, M, C).

2€G(C,M-1) 2€G(C,M)

3.3.3 Coverings of the boundary of P C T¢ and hyper-
planes intersecting C

Let P be an arbitrary polytope in [0, 1) with facets F. C H, »,, 7 =1,...,L,

and x.t.—constant £(P). Let ¢ > 0 such that {(P)o < ¢’. Let By = Bgpo

and let E be a parallelepiped in [0,1)¢ with center e. Let E' = E — e be the
translate of £ with center 0. Let, for r € {1,2,..., L},

d
¢-(0) = F\( U (Fj + Bo),
J=1j#r
) = F7N(F+Bo),
) = {/\ER:H,,,,,\DE’#(D},
Y(E) = {2€[0,1)*: z=y+ Iu,,y € ¢.(0), A € J(E)},
) = {z¢€ [0, 1)¢ : z=y+ M,y € ®(0), A€ J(E)},

7(E) = U7r(E)a F(E)=UF.,.(E)

Thus, for 7 = 1,...,L, ¢, and ®, are subsets of the enlarged facet F.
'Yr(E)

Translates of g: are two facets of the rectangular parallelepiped r(g) D
[0,1)¢, which covers (partly) the facet F,. The height of both, v,.(E) and
I'.(E), equals the length of the interval J.(E). The Figures 3.3 and 3.4

illustrate these definitions.
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L)

V6.(0)
Figure 3.3: Partial covering of F, by v,(FE)
We interpret v,(E) and T'.(E) again as subsets of T¢. Let, for r €
{1,2,...,L},

—— ' wE) ifi=1
NXE) = {neN.na+d€ T(E) ifi=2 [’

NY(E)

L .
U NiB).

Each n € NY(E) corresponds to some hyperplanes H, y = Hf;:,),\ C R4 for
which there exists an r € {1,..., L} such that
(H,aNE)+na)C F7. (3.8)

Remark 3.3.4 Note that :gﬁ;gg implies that (3.8) holds for % ore ;¢
{1,...,L}.
Let < be the lexicographical order on Nx{1,2,..., L}, i.e. (n,7r) < (n/,7)

fn<norn=n"andr <7’
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oP°

Figure 3.4: Covering of F,. by I',(E)

Let H'(E) denote the set of hyperplanes Ht(:,),\ C R? with n € NY(E).
We can order its elements according to < by setting Hf:,)/\ < Hi’::’)/\, if
(n,r) < (',r"). Let (H}(E))j»0, © = 1,2, be the resulting sequence con-
taining all elements of H'(E) ordered increasingly.

Further, we define H*(E, N), i = 1,2, to be the set containing all Hf];’ €
H'(E) with n < N. Finally let, for W C {u,us,...,ur}, H'(E, N, W),
i = 1,2, denote the set containing all Hl(:,),\ € H'(E) with n < N and with
u, € W.

The hyperplanes H; € H(E,N), i = 1,2, induce partitions of E. The

partition cells are given by

|Hi(E,N)|

+
(| HE
j=1
Let IT{(E, N), i = 1,2, denote the set of all such partition cells induced by
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the elements of H'(E, N).

. The-elements of H*(C, N), i = 1,2, are defined in such a way that the par-
titions IT*(E, N), 7 = 1,2, can be used for the estimate of the local complexity
P(C, N) as we announced in Section 3.3.1.

Lemma 3.3.5 Let C = C(o,z). Then
ITY(C, N)| < P(C,N) < |IT*(C, N)I.

Proof: According to the definition of the elements of H*(C, N), i = 1,2, the

partition E;ngg is induced by intersections of C with ¢rl0) forr=1,2...,L

®-(0)?

and ¢,(0) C F, C ®,.(0), for all r € {1,2,..., L}. Moreover, z + na € v.(o)
implies that C + na is partitioned by F, in (exactly) two connected partition
cells. These properties guarantee that we can use |[1}(C, N)| (JI1*(C, N)|) as

a lower (an upper) bound for the local complexity P(C, N) of C. |

Motivated by Lemma 3.3.5 we focus on the estimate of |II'(E, N)|, i =
1,2. Using Lemma 3.3.3 and o'-a.i. of P and «, we want to establish a con-
nection between |II'(E, N)|, ¢ = 1, 2, and the number of so—called intersecting
d-tuples, which are defined in the following way.

Let, for i = 1,2, H} H,... Hi, be the increasingly ordered elements of
HY(E,N). Let W C {uy,u,...,ur}. Define

i _ . SN L Nn<Jg2<... <14
|4 (E)N) - {(]l)"')]d) " 3z e E with {.’L‘} =ﬂz=1 H_;k }a
. N1 <Jj2<...<Ja .
VI(E,N,W) = (.. Ja) : 3z € Ewith {z} =N, HS,
and Hi, € H'(E, N, W)

' ) ) ‘ ﬂzzl Hj,s V4 H;, for all
Vi(E,N) = $ (iyovda) € VIE,N) & HY € HY(E, N)\
{ij 1 S k S d}

VY(E, N) can be interpreted as the set of all vertices in E induced by
elements of H'(E, N) (a vertex z € E is an intersection point of d ele-
ments of H*(E, N) with linearly independent normal vectors). Thus, we call
its elements intersecting d-tuples (i.d.~tuples). Accordingly, Vi(F, N) rep-
resents the set of all vertices that are elements of exactly d hyperplanes
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with linearly independent normal vectors in H*(E,N). It is natural to
call its elements uniquely intersecting d—tuples (u.i.d-tuples). Obviously
Vi(E, N) C Vi(E, N).

We conclude this section with an assertion which describes the distribu-
tion of the hyperplanes H'(E), i = 1,2, intersecting E. For this reason, let
H(E,w), i = 1,2, denote the set of all hyperplanes in H*(E), i = 1,2, with
normal vector w € S;_;.

Lemma 3.3.6 Let P be a polytope in [0,1)? with facets F, C H, ., T =
l,...,L. Fixr € {1,2,...,L}. Then the sequence (u; — Ar)j>1, nduced by
Hi=H, , € HY(E,u,), i = 1,2, ordered increasingly w.r.t. <, is uniformly
distributed in the interval J,(E) in the sense that for any subinterval I C
Jr(E),

el 1< [ IMENS(0)) i i=1,
Jim S _{ I, (0)  fi=2 59

Proof: This assertion follows from the fact that the sets v,(F) and I'.(E)
are, by construction, rectangular parallelepipeds as well as from the equidis-
tribution property of the sequence (na) ;. [ |

3.3.4 Consequences of Lemma 3.3.3 and o'—asymptotic
independence

Let P C [0,1)¢ be a closed polytope with L facets F; C Hy, 5, 7=1,..., L,

interpreted as a polytope in T¢. Let a € T¢ be strongly irrational such that

P and o are o'-asymptotically independent, with suitable ¢’ > 0. Let 0 > 0
so that £(P)o < ¢’. Let C = C(0, z) be a fixed cube.

Following Sections 3.3.1 and 3.3.2, let H*(C, N), i = 1,2, be as above,

with the elements (Hj)l.Z;(C’N)I, i=1,2.

We will show how ¢'-a.i. and Lemma 3.3.3 imply that the number of
partition sets in C induced by the elements of H*(C, N), i = 1,2, can be
estimated by the number of elements of V(C, N), i =1, 2.
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In the sequel we will omit the superscript ¢ whenever we do not need to
distinguish between the cases ¢ = 1 and ¢ = 2. Assume C is partitioned -
by the halfspaces induced by the elements of H(C, N). As before let, for
d' € {1,...,d}, lIy#(C, N) denote the set of all d’ dimensional partition sets
in TI(C, N). We write abbreviating w(z, N,C) for w(z, |H(C, N)|,C), the
weight of a point z in C as defined in the previous section and G(C, N) =
{z e C:w(z,N,C)>1}.

We show that, due to ¢’-a.i., V(C,N) \ W(C, N) is small. To do so,
we first count the over—determined vertices in T¢ after N-fold translation of
OP° by a if P and a are o’-a.i.

For this reason, let

Iry,re,...,ra €{1,...,L},
U(N) = zeT?: Ing,ng,...,ng€{0,...,N -1}
such that {z} = ﬂ?ﬂ F;‘j' - nja

be the set of all vertices z € T¢ after N-fold translation. Let, for z € T¢,
I(z,N) = {(n,r) €e{0,....N-1}x{1,...,.L}:z € F” —na}.
assign to each x the set of translates of facets which contain z.
Lemma 3.3.7 Let P and « be ¢'-a.i. Then
{z € U(N) : [I(z,N)| > d}| = o(N*).
Proof: Let x € U(N) with |I(z, N)| = e > d. Let
I{z,N) = {(m,71),(n2,72), ..., (e, Te)}
and assume ny <ng <...<n. Then
Iz +n,N)={(0,71),(ne —m1,72) ..., (Ne — N1, Te) }-
and z € OP% . For an arbitrary z € T¢, let

lev(z) = min{n € N:3r € {1,..., L} such that (n,r) € I(z,N)}.
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For each x € U(N) with |I(z, N)| > d, there is a 7o = z + lev(z)a € 0P
with |I(zg, N)] > d. By o'-a.i:, on each enlarged facet F? of OP? there
are at most o(N¢!) points zy with 2o € U(N) and |I(zg, N)| > d. Hence,
also on P there are at most o(N¢!) points 2, with z, € U(N) and
|I(zo, N)| > d. Therefore, for every n € N, there are o(N%"!) points z
with lev(z) = n, z € U(N) and |I(z, N)| > d. Summing up, there are at
No(N%1) points z € U(N) and |I(z, N)| > d. [ ]

Lemma 3.3.8 Let P and o be 6'-a.i. Then
[V(C,N)| = |Vo(C, N)| + o(N?).

Proof: Note that V(C, N)\ Vo(C, N) corresponds to those points z € C with
z € U(N) and |I(z, N)| > d. But by Lemma 3.3.7 there are at most o(N¢%)
such points in T¢ and hence also in C. Moreover, o’-a.i. implies that each z
is contained in at most L hyperplanes (cf. condition 2. of Definition 3.1.2).
Hence, each point z € U(N) with |I(z, N)| > d implies at most (1‘;) d-tuples
which are elements of V(C, N) \ V5(C, N). [ |

The following lemma connects |Vo(C, N)| and the weight function.

Lemma 3.3.9 Let P and o be a.i. Then

Vo(C, M) = > w(z,N,C)+o(N%.
z€G(C,N)

Proof: Tt follows from the inductive definition of the weight function that an
z € Cisan element of G(C, N) iff there exists a d tuple (j1,. .., ja) € V(C, N)
such that {z} = N, H;,, for H;, € H(C, N). Recall that by Remark 3.3.1,
equation (3.4), w(z, N, C) = 1 iff there exists a d tuple (ji, ..., j4) € Vo(C, N)
such that {z} = ML, Hj,, for H; € H(C,N). Let Go(C,N) = {z €
G(C,N) : w(z,N,C) = 1}. For all N € N, by ¢’-a.i. every z in C is
also an element of at most L different hyperplanes in H(C, N). By Lemma
3.3.2, equation (3.5), w(z, N,C) < C(L,d). Hence

Z w(z,N,C) =
zeG(C,N)
Z w(z, N,C) + Z w(z, N,C)
=€Go(CN) 21 FEGEMGCN e (1, C(L, d)}
= [Vo(C, N)| o(Nd) summands
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Let € > 0 with {(P)(0 +¢) < o'. If we replace C = C(0,2) by C* =
C(o + ¢€,z), we can define the sets H*(C¢, N), i = 1,2, the corresponding
induced partitions of C¢ and a corresponding weight function.

Remark 3.3.10 For S € II(C¢, N) let diam(S) denote its diameter and let
diam(II(C#, N)) = sup{diam(S) : S € II(C*, N)}. Due to equidistribution,
diam(II(C%, N)) — 0 as N — oo. Thus, for any € > 0, there exists an N
such that diam(II{C¢, N)) < ¢ for every N > Np.

Lemma 3.3.11 Lete > 0. Let N be large enough so that diam(I1(C*, N)) <
€ holds. Then

> wNC)<M(CN)< > wlz, N°,C).

z€G(C,N) z€G(Ce,N¢)

Proof: The asserted inequality is a direct consequence of Lemma 3.3.3 and
ITL;(C, N)| < |TI4(C¢, N)°|. [ |

As the next assertion shows, ¢’-a.i. implies that it suffices, for asymptot-
ical estimates, to count only the d-dimensional partition sets.

Lemma 3.3.12 Lete > 0. Let N be large enough so that diam(II(C*, N)) <
€ holds. Let P and « be a.i. Then

I(C, N)| = [Ia(C, N)| + o(N?).

Proof: We show that ¢’-a.i. implies |[I#(C,N)| = o(N¢9), for all d' €
0,1,2,... ... ,d—1}. Letd" =d — d'.

At first we claim that a set S in II#(C, N) is necessarily contained in
k > d" distinct halfspaces H, j =1,2,...,k and H;; € H(C, N).

Note that, for each such S € II#(C, N), there exists an S* C C and an
N; € N such that S € S!, S' € I, (C,N, — 1), dy € {d'+1,...,d} and
Hy NS = S. There are two possibilities:

Case 1: d) = d: Then Hy, cuts S* such that Hy N S' is d'-dimensional.
By easy linear algebra this is only possible if Hy, intersects a d'-dimensional
region of the boundary of S! which, clearly, is already contained in d” hy-
perplanes. This proves the claim if d, = d.
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Case 2: d; < d: As before, in this case there exists an S? C C and an
N2 € N such that Sl C 52) 52 € Hd2(0, N] - 1), dz € {dl + 1, .. ,d} and
Hy N S%? = S,. If d; = d, then the same argument as in Case 1 proves the
claim. If dy < d, repeat the argument of Case 2. After at most d” steps we
arrive at Case 1.

According to the claim all O-dimensional partition sets are intersection
points of at least d + 1 hyperplanes. By o'-a.i. and Lemma 3.3.7 there
are o(N?) such over-determined intersection points in C. Moreover, the
claim and condition 2. of the definition of ¢’-a.i. (Definition 3.1.2) imply

that there are no (d — 1)-dimensional partition sets. Thus, we can assume
de{l,...,d-2}.

We assign to each d'—dimensional set S the set J(S) = {j : S € H;} and
call lev(S) = min(J(S)) the level of S.

Let [ € N. We estimate the number of d'-dimensional sets S with lev(S) =
! which lie in more than d” hyperplanes H;,, = 1,...,k. Observe that each
such set S induces the d’-dimensional convex set

k
Cut(S) = H;NC
j=t1

which itself is a subset of H;. By Lemma 3.3.3, we know that, for N € N
sufficiently large, an upper bound for the number of d’ dimensional sets in
Cut(S) is given by

Z w(z, Cut(S)%, N).

z€G(Cut(S)¢,N)

(Here, Cut(S)® := ﬂ;?:l H;; N C*.) In other words, we can define a bijective
mapping

v:T e (z(T),t), z€G(Cut(S)F,N),te{1,2,...,C(L d")}

v assigns to each d'-dimensional T C Cut(S) a point z(T") € Cut(S). This
works for all sets Cut(S’) with S’ in II#(C, N) of level .
Let [ be a fixed level. Observe that:

92



(a): By the claim discussed above, all the assigned points z(T") are vertices
of C* which are contained in more than d intersecting hyperplanes. By
condition 1. of the definition of the o’-a.i., there are at most o(N¢~!) such
vertices in each H,.

(b): By condition 2. of the definition of the o’-a.i. each such assigned
vertex z can be an element of at most (LdT,I) sets Cut(5’).

Combining the statements (a) and (b) implies that there are at most

c(L, d”)(Ldjl)o(Nd‘l) sets S in II,(C, N) of level I. Hence, for any d' < d,

I1,(C, N) contains at most o( N¢) elements. |

The (in-)equalities proven in Lemmata 3.3.8 — 3.3.12 imply the next re-
sult.

Proposition 3.3.13 Let P and a be (0')-a.i.. Let 0 > 0 and € > 0 such
that §(P)(oc +¢€) < o'. Let C = C(o,z) and C° = C,(0 + ¢€) two cubes. Use
the notation introduced so far. Then

[V(C, N)| +o(N?) < [TI(C, N)| < [V(C*,N) + o(N%)|.

For Lemmata 3.3.11 and 3.3.11 we need the assumption that N € N is
sufficiently large. We remark that in Proposition 3.3.13 this condition is
hidden in the term +o(N¢9).

Combining the last proposition with Lemma 3.3.5 yields that if P and
o are o'-a.i. one can obtain an asymptotic lower (upper) bound for the
local complexity of a cube C' by computing the number of intersecting d-
tuples generated by the elements of H'(C, N) in C (H*(C¢, N) in C¢). This
computation will be the aim of the following section.

3.3.5 Asymptotic growth rate of the number of inter-
secting d—tuples induced by H'(D, N, W)

Let W = {wi,wa,...,wq} C {uy,us,...,ur}. Let Ay be defined as above.
Take any ¢ > 0 sufficiently small so that £(P)(( + o) < o'. Let C¢ =
C(oc+¢,z) and C~¢ = C(o - (, ).

Lemma 3.3.14 For every set W = {wy, wo, ..., wa} C {u1,ug,...,ur} and
every ( > 0 holds

[VHC,N,W)| +o(N%) > |VH{(Aw(C™),N,W)| and
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[V3(C,N,W)| < [V*(Aw(C*), N, W)|+0(Nd)

Proof: This follows dlrectly from Lemma 3.3.6 and from the fact that C and
Aw(C) are Jordan measurable sets of the same volume. u

The advantage of considering Ay (C) is that the elements of W = {wy,...

W = {’wl, 'LU2} \
(1] Wo
Aw
~—
C Aw(C)

Figure 3.5: The i.d-tuples in C and Aw (C)

.,wy} are exactly the normal vectors of the facets of Ay (C) (cf. Figure
3.5). Due to (0')-a.i. of P and a, the elements of H'(Ay (C), N,W) are
always distinct. Thus, by equidistribution of the sequence (na),>;, the num-
ber of intersecting d-tuples equals asymptotically the product of the volumes
of the sets v, (Aw (C)) and T'y,(Aw(C)), i.e. we have the following lemma.

Lemma 3.3.15

|V1(AW(C)> N»W)l =

[Twew N (1w (Aw(C))) + 0( ) =1
= N1, A% (¢, (0)) [Ju, (Aw (C))| + o(N9) =5
HwEW N (Tuw(Aw(C))) + O(Nd) i i=2.

= NI, A% (@, (0)) | Ju, (Aw (C)) | + o(N9)

We conclude this subsection with a verification of the following formula.
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Lemma 3.3.16
d
H w; (Aw (C =ad|Det(w1,...,wd)|.

Proof: Let, as in Section 3.1.4, C = Cy be the cube rooted at 0, i.e.,

Cﬂ Onﬂ

where, for 1 <1i < d, e; € S;4_1 denotes the i—-th Euclidean unit vector. The
edges of C are oe;.

Recall that, by definition, Ay = 74 074-1 0...0 7. Moreover, all facets
of Cx = ¢ o...0o7(C) lie in the same hyperplanes as the facets of Cy,; =
Tie+1(Ck). Only the normal vectors of the facets Fy C He, o and Fyya C He, o
change under 7¢,,. By the definition of 74,;, the new facets are subsets
of Hy,,,,0and H, Witk wepl” Furthermore, these hyperplanes contain the

facets of Aw(C). Thus,

| Tuesr (Aw (C))] = lek 41 - wil.
ef,, can be expressed as vector connecting 0 and the vertex
k d
ﬂ Hw,',O N Hek+1,o N n Hcl',[)a
i=1 i=k+2
i.e., as the vector
eﬁ—*—l = (fl(k)’ R | fk(k)’a’ 0) MR | 0))

which is a solution of the system of linear equations

([ Fi(0) \
wy = w% ...... w‘li fk(k) 0
o = )
We = Wh -+ wi 0 0
\ o
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or, equivalently, of

wl = wi ...... w{c fl(k)

(k)

———
= : : (3.10)

k+1

Applying Cramer’s rule on (3.10), the fi(k), 1 <! <k, can be expressed as

wi-wli™t —owh Witk
Det : :
whewh ! —owitt whtt - wk
filk) = 1 k
wl ----- wl
Det = Dk
Wi wk

Therefore we arrive at

Ika+1(AW(O))| = |e’l§+1 CWig1| =

S hlkyuk, + outl)

4 1 -1, I+1 j+1
0 ] (wlo..wl wl ...wl
_ _qyi=i-1,
= |o; 2 (-1) u;,4Det :
=1 1, 0=l 141 k]
\wk Wy Wy Wy
d
k+1 . (_1) g
Dy,

Observe that this equation holds for any cube C C [0, 1) and its image under

the linear mapping Ay .

3.3.6 Finalizing the Proof

Let, according to the assumptions of Proposition 3.2.3, P be a polytope in
T¢ with facets F; and normal vectors u;, i = 1..., L. Let o € T¢ be strongly
irrational. Let P and a be ¢'-a.i. Let C = C(o, z) be an arbitrary cube with
side length ¢ > 0 and center z. Let ¢ be small enough so that £(P)o < ¢’.

96




Let W = {wq,ws,...,wq} C {u1,us,...,ur} consist of d linearly inde-
pendent: vectors. Combining Lemmas 3.3.15 and 3.3.16 yields for i = 1,2

V'(Aw (C), N, W)| =

d -1 L
o4 N4|Det(w, . . ., ]:[ 1 ")) t=1) | o(NY)(3.11)

By Section 3.3.1 and Proposition 3.3.13, for every € > 0,

P(C,N) > |ITY(C,N)| 2 [V}(C, N)| + o(N?)
> > [VYC,N,W)|+o(N?)

W={wy,..wg}C
(ul,u2 ..... uL)

> Y VHAW(CT), N, W)+ o(NY)
W={w),...wg}C
{uy,un,..., up}
2 § : (0 = Q)NYDet(wy, ..., w |H,\d Ypw, (0 — )

W={w),...wg}C
{uy,u2,..., ug}

+0(Nd)
N -~ &

d
<|Det'(uk11 s aukd)| H ’\d_1(¢ukj (0’ - C))) > + O(Nd)

i=1

v

and analogously (for any ¢ and ¢ sufficiently small w.r.t. ¢’),

PC,N) < (U+€+C (i EL:

Since the last two inequalities hold for any £,( > 0 if N € N is sufficiently
large we are done.
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3.4 The asymptotic independence of P and «

How natural is our condition of asymptotic independence? Recall from Sec-
tion 3.1.3 that o’-a.i. states:

1. For all s € {1,2,...,L}, the number |C;(N)| of over—determined ver-
tices on the facet F?" which is induced by the N-fold translation of
OP% by a, is of size o( N¢~1).

2. There are no parallel facets with nonempty intersection.

We can show the following.

Proposition 3.4.1 Let P be a polytope in T* with facets F, and normal
vectors u., T = 1,...,L. Then P and o are o’'-asymptotic independent for
all o € T4\ M, where M is a meager zero set.

Proof: We first show that condition 1. holds for almost alla. Forj =1,...,d,
let linearly independent normal vectors u,,, l; € {1,..., L}, positive integers
n; € N\ {0} and m; € (N\ {0})? be given. Fix the set

d
A = As((uri,ni,mi)fﬂ) = {a € [0, l)d : m Hurj,(nja“mj)'urj € Hu,,O} .

=0

Note that A is either empty or contained in a hyperplane in R¢ intersecting
[0,1)¢. Hence it is a set of measure 0 (w.r.t. A?%) that does not have inner
points. By the same arguments also the sets

A(S) = U U U As((uruniami)‘il)

Ury e Urg ni,...,ndENmM m eNE
linearly independent enltd 1y M4 €

are meager zero sets in [0,1)? for all s € {1,...,L}. Let
d
A= U U {"‘ €T s [} Hur i, € H} |
Ury,a¥rg n1,...,ng€EN =0

Observe that A(s) D A'(s).
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If & in [0, 1)?\ A(s), then, forall s € {1,..., L}, and for facets F,, ..., Fy,,
r;-€ {1;..., L}\ {s}, with-linearly independent ., there exists at most one
d tuple (ny,...,nq) € N¢ such that

d
(ﬂ(Fg’ - nja)> € F°.

Hence, for every s € {1,..., L}, the set Fs‘" contains at most one intersection
point. ﬂ?=1 Fy; —nja, for every choice of facets F;; with linearly independent
U, J=1,...,d

Therefore, for almost all a, there are altogether at most (Lgl) intersection
points in Fs proving condition 1.

In a similar way we show that the set of those a, for which condition 2
fails, is small:

The set (O(P + (¢’)) — na) N (OP + ¢’) contains a (d — 1)-dimensional
set only if there are two facets F,. and F, of P, 1,< r,s < L, such that
(F? — na) N F? contains a (d — 1)-dimensional set. If F, C H,. , and
Fy € H,, , this is only possible if u, = fu, and if for the normal distance ¢
between these hyperplanes holds

|(na — k) -u,| =6

for a suitable vector k = (kl,..;,kd) €Z LetkeZ' neN,§>0and
u € Sy_,. Then

B(u,6,k,n)={a€R*: (na —k) -u=4}

defines a hyperplane. Thus

B(u,6) = | | B(u,8,k,n)

neN gezd

is a meager zero set. Since P is a polytope, only finitely many choices for
u € Sg_1 and 6 > 0 are possible (for every w;, ¢ € {1,...,L}, § = 0 is
possible). [
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3.5 Further remarks

The following natural question arises: Does a similar relation hold for more
general convex bodies and their coding sequences? It is known that the vol-
ume of the projection body is continuous w.r.t. the Hausdorff metric. It
seems that our approach allows to verify a similar continuity-type result in
dimension d = 2. A detailed investigation of this special case and the general
d-dimensional case would be interesting for future research.

Let us remark that one cannot hope for continuity of the asymptotic com-
plexity w.r.t. the Hausdorff metric. One always has to respect dependencies
of the coded set and the generating element. In the present chapter these de-
pendencies were controlled via the o’-asymptotic independence. If P and «
are not o’—a.i. the value of the asymptotic complexity changes. An example
for this situation has been discussed in Remark 2.1.2,2.
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