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Preface

Optimal Transport was first introduced by Gaspard Monge in 1781. In the 1940s
Leonid Kantorovich relaxed the original problem and introduced a dual representation
[Kan42, Kan48]. Since then many great mathematicians have contributed to this field
and made it a classic topic in probability and optimization theory.

In this thesis I aim to “explicitly” solve the Optimal Transportation problem on the
n-dimensional sphere.

In Chapter 1, I will give a quick survey of convex functions. The theory of convex
functions, and in particular the dual correspondence via conjugate functions, will prove
useful when we establish the Kantorovich duality in Chapter 2. Besides basic knowledge
in analysis and linear algebra no further knowledge is presupposed. Most of the results
and proofs in this chapter are taken from [Roc70].

In Chapter 2, I will motivate the definition of the original Monge problem (MP) and its
relaxation, the Monge-Kantorovich problem (MKP). I will prove the Kantorovich duality
and introduce c-concave functions and the c-transform of such functions. In the final
part of Chapter 2, I will solve the Optimal Transport problem on the real line for convex
cost functions. Basic knowledge in measure theory is recommended. The content of this
chapter is mostly along the lines of Villani’s work in [Vil03] and [Vil09].

In Chapter 3, I will study Optimal Transport on the n-dimensional sphere. I will first
use our results from Chapter 2 on the real line to solve the MKP on the circle for
convex cost functions. Then, I will prove the main theorem of Optimal Transport on the
n-sphere. I will introduce differential calculus and a version of Rademacher’s Theorem
on the n-sphere. In the final part of this chapter I will use these tools together with
the Kantorovich duality to solve the Optimal Transport problem “explicitly” on the
n-sphere. My strategy will be similar to McCann’s strategy in [McC01], where he treats
the Optimal Transport problem on Riemannian manifolds. In this chapter the reader will
require basic knowledge in geometry, but no knowledge about Riemannian manifolds.
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Chapter 1

Convex Geometry

In this chapter we recall some results from convex geometry on convex sets and functions.
Most of the following results are taken from [Roc70] and [Sch93], which we recommend
for a more thorough study of this fascinating topic.

1.1 Convex Sets and Functions

Definition 1.1.1 (Convex set). A non-empty subset C ⊆ Rn is called convex if for all
x, y ∈ C

λx+ (1−λ)y ∈ C, ∀λ ∈ (0,1). (1.1)

Example 1.1.2. Some basic examples for convex sets are

(a) Affine sets: A set E ⊆ Rn is called affine if for all x, y ∈ E and λ ∈ R we have

(1−λ)x+λy ∈ E.

(b) Balls: Let α > 0 and x ∈ Rn. We define the open ball
centered in x of radius α by

Bα(x) := {y ∈ Rn|‖x−y‖< α},

where ‖.‖ : Rn → [0,+∞) denotes the Euclidean norm.
Also, we denote the closure of Bα(x) by Bα(x).

x

α

Bα(x)
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1.1. Convex Sets and Functions

(c) Hyperplanes and half-spaces: Let u ∈ Rn\{0} and α ∈ R. The set Hu,α defined
by

Hu,α := {y ∈ Rn| 〈y,u〉= α},

is affine and is called a hyperplane, where

〈., .〉 : Rn×Rn→ R

denotes the Euclidean scalar product.
The set H+

u,α defined by

H+
u,α := {y ∈ Rn| 〈y,u〉< α},

u

Hu,α

H+
u,α

is called an open half-space. The closure of H+
u,α is denoted by H+

u,α. We have

H
+
u,α =Hu,α∪H+

u,α.

Also, we define H−u,α by

H−u,α := {y ∈ Rn| 〈y,u〉> α},

and denote its closure by H−u,α.

Convexity of a set is preserved under various operations.

Proposition 1.1.3.

(i) Let (Ci)i∈I be a family of convex sets. Then

⋂
i∈I

Ci,

is convex if it is non-empty.
C3

C1

C2

(ii) Let C1, C2 be convex sets, then

C1 +C2 := {x+y|x ∈ C1,y ∈ C2}

2



1.1. Convex Sets and Functions

is convex.

(iii) Let A : Rm→ Rn be a linear transformation and C ⊆ Rm, D ⊆ Rn be convex sets,
then AC ⊆ Rn and A−1D ⊆ Rm are convex sets.

Proof.

ad (i): Let x, y ∈C, then necessarily x ∈Ci and y ∈Ci for all i ∈ I. Thus, for λ ∈ (0,1),
we have

λx+ (1−λ)y ∈ Ci, ∀i ∈ I.

Hence λx+ (1−λ)y ∈ C and therefore C is convex.

ad (ii): Let x, y ∈ C1 +C2, then there are x1, y1 ∈ C1 and x2, y2 ∈ C2, such that

x= x1 +x2 and y = y1 +y2.

For λ ∈ (0,1), we get

λx1 + (1−λ)x2 ∈ C1, λy1 + (1−λ)y2 ∈ C2

and therefore

λx+ (1−λ)y ∈ C1 +C2,

thus C1 +C2 is convex.

ad (iii): Let x, y ∈AC. There are u, v ∈C, such that x=Au and y =Av. For λ∈ (0,1),
we have

λu+ (1−λ)v ∈ C.

Thus, since A is linear, we get

λx+ (1−λ)y = λAu+ (1−λ)Av = A(λu+ (1−λ)v) ∈ AC.

Therefore AC is convex.

3



1.1. Convex Sets and Functions

Now, let x, y ∈ A−1D, then Ax, Ay ∈D. For λ ∈ (0,1), we have

A(λx+ (1−λ)y) = λAx+ (1−λ)Ay ∈D.

Thus

λx+ (1−λ)y ∈ A−1D

and therefore A−1D is convex. �

Remark 1.1.4. Let λ > 0 and µ > 0. For B ⊆ Rn, we have

(λ+µ)B ⊆ λB+µB.

If A⊆ Rn is convex, we have

λ
λ+µA+ µ

λ+µA⊆ A,

thus we have

λA+µA= (λ+µ)A. (1.2)

Equation (1.2) characterizes convex sets: A is convex if and only if A , ∅ and (1.2) holds
for all λ > 0 and µ > 0.

Theorem 1.1.5. Let C ⊆ Rn be convex and closed. Then the intersection of all closed
half-spaces containing C is equal to C, i.e.

C =
⋂
{H| C is contained in the closed half-space H}.

Proof. Obviously we have

C ⊆
⋂
{H| C is contained in the closed half-space H}.

If C =Rn there is nothing to show. Let y <C, then {y} is compact and C is closed. Thus,
by the Hahn-Banach separation Theorem, there is u ∈ Rn\{0} and α ∈ R such that

4



1.1. Convex Sets and Functions

〈y,u〉< α≤ inf
x∈C
〈x,u〉 .

This yields

y <H
−
u,α ⊇ C.

So for all y < C we find a closed half-space that separates {y}
and C, thus

y

u

H−u,α

C

C ⊇
⋂
{H| C is contained in the closed half-space H}.

�

Definition 1.1.6 (Convex function). Let f : Rn→ R∪{±∞}.

(i) For α ∈ R∪ {±∞} the set {x ∈ Rn|f(x) = α} is denoted by {f = α}. Similar
definitions apply for {f ≤ α}, {f < α}, etc.

(ii) We define the effective domain of f by dom(f) := {f <+∞}. f is called proper
if {f =−∞}= ∅ and dom(f) , ∅.

(iii) f is called convex if f is proper and the epigraph of f ,
defined by

epi(f) := {(x,y) ∈ Rn+1|x ∈ Rn,y ∈ R,y ≥ f(x)},

is a convex set.
f is called concave if −f is convex.

epi(f)
f(x)

x

(iv) Let g : A⊆ Rn→ R∪{±∞}. We call g proper if the extension to Rn by

g̃(x) :=

 g(x), if x ∈ A
+∞, otherwise.

is proper.
Also, we call g convex (concave) if g̃ is convex (concave).
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1.1. Convex Sets and Functions

Example 1.1.7 (Affine functions). We call h : Rn→ R affine if for all x, y ∈ Rn and
λ ∈ R we have

h(λx+ (1−λ)y) = λh(x) + (1−λ)h(y).

Let h : Rn→ R be affine. The function g : Rn→ R defined by

g(z) := h(z)−h(0)

is linear. Thus there is u ∈ Rn such that g(z) = 〈z,u〉.
Setting α = h(0) we have

h(x) = 〈x,u〉−α.

y

x

(u,−1)
α

epi(h)
h(x)

This yields

epi(h) =H
+
(u,−1),α,

hence h is convex.

We note that if f is convex, all sublevel sets {f ≤ α}, {f < α} as well as dom(f) are
convex sets. This follows easily from the convexity of epi(f), because all these sets can
be constructed as intersections of epi(f) with a half-space or projections on Rn (and by
Proposition 1.1.3 these operations preserve convexity).

In the following proposition we will give an equivalent condition for convexity of a
function.

Proposition 1.1.8. Let f : Rn→ R∪{+∞} be a proper function. f is convex if and
only if

f(λx+ (1−λ)y)≤ λf(x) + (1−λ)f(y), ∀λ ∈ (0,1), (1.3)

for every x and y in dom(f).

Proof. Let f be convex and let x1, x2 ∈ dom(f). Then (x1,f(x1)), (x2,f(x2)) ∈ epi(f)
and thus, since epi(f) is convex, for λ ∈ (0,1) we get

λ(x1,f(x1)) + (1−λ)(x2,f(y2)) = (λx1 + (1−λ)x2,λf(x1) + (1−λ)f(x2)) ∈ epi(f).

6



1.1. Convex Sets and Functions

f

f(λx+ (1−λ)y)
f(x)

f(y)
λf(x) + (1−λ)f(y)

x

Figure 1.1: Sketch of condition (1.3) in Proposition 1.1.8.

This is equivalent to

f(λx1 + (1−λ)x2)≤ λf(x1) + (1−λ)f(x2).

Now, assume that f satisfies (1.3) on dom(f) and let (x1,y1), (x2,y2) ∈ epi(f). Then
y1 ≥ f(x1) and y2 ≥ f(x2). Therefore

f(λx1 + (1−λ)x2)≤ λf(x1) + (1−λ)f(x2)≤ λy1 + (1−λ)y2.

So epi(f) is convex and so is f . �

Remark 1.1.9.

1. For a convex function f we can use induction on condition (1.3) to get

f

 k∑
i=1

λixi

≤ k∑
i=1

λif(xi), (1.4)

for all λi ≥ 0 (i = 1, . . . ,n) with ∑k
i=1λi = 1. This is also known as Jensen’s

inequality.

2. A convex function f is called strictly convex if and only if equality in (1.3) implies
x= y.

7



1.1. Convex Sets and Functions

As for convex sets, the convexity of a function is preserved under various operations.

Proposition 1.1.10.

(i) Let f : Rn→ R be a convex function and g : R→ R a non-decreasing and convex
function. Then g ◦f is convex if dom(g ◦f) , ∅ (we set g(+∞) = +∞).

(ii) Let f1 and f2 be convex functions on Rn, then f1 + f2 is convex if dom(f1)∩
dom(f2) , ∅.

(iii) Let C ⊆ Rn+1 be a convex set. Then the function f : Rn→ R defined by

f(x) := inf{α ∈ R|(x,α) ∈ C},

is convex.

(iv) Let f1, f2, . . . , fn be convex functions, then

(f1�f2� . . .�fn)(x) := inf{f1(x1) +f2(x2) + . . .+fn(xn)|x1 +x2 + . . .+xn = x}

is a convex function, called the infimal convolution of f1, f2, . . . , fn. Also, for
n= 2, we can write

f1�f2(x) = inf
y∈Rn
{f1(y) +f2(x−y)} .

(v) Let (fi)i∈I be a family of convex functions on Rn. Define f : Rn→ R by

f(x) := sup
i∈I

fi(x).

If dom(f) , ∅, i.e. there exists x0 ∈ Rn such that

sup
i∈I

fi(x0)<+∞,

then f is convex.

(vi) Let A :Rm→Rn and B :Rn→Rm be linear transformations and f :Rn→R∪{+∞}
be a convex function. Then fA : Rm→ R defined by

fA(x) := f(Ax)

8



1.1. Convex Sets and Functions

and Bf : Rm→ R defined by

Bf(y) := inf{f(x)|Bx= y}

are convex functions.

Proof.

ad (i): First, we notice that g ◦f is proper, since dom(g ◦f) , ∅.
Let x, y ∈ dom(f) and λ ∈ (0,1). We have

f(λx+ (1−λ)y)≤ λf(x) + (1−λ)f(y).

Since g is non-decreasing and convex, we get

(g ◦f)(λx+ (1−λ)y)≤ g(λf(x) + (1−λ)f(y))

≤ λ(g ◦f)(x) + (1−λ)(g ◦f)(y).

Thus g ◦f is convex.

ad (ii): f1 +f2 is a proper function, since

dom(f1 +f2) = dom(f1)∩dom(f2) , ∅.

Let x, y ∈ dom(f1 +f2) and λ ∈ (0,1), then

fi(λx+ (1−λ)y)≤ λfi(x) + (1−λ)fi(y)

for i= 1,2. Taking the sum of these inequalities we get

(f1 +f2)(λx+ (1−λ)y)≤ λ(f1 +f2)(x) + (1−λ)(f1 +f2)(y)

and therefore f1 +f2 is convex.

ad (iii): dom(f) is the projection of C onto Rn. Thus, since C is convex and therefore
C , ∅, dom(f) , ∅ and f is proper.
Let x1, x2 ∈ dom(f), then, for ε1 ≥ 0, ε2 ≥ 0 small enough, we have

(x1,f(x1) + ε1) ∈ C and (x2,f(x2) + ε2) ∈ C.

9



1.1. Convex Sets and Functions

Let λ ∈ (0,1). We get

λ(x1,f(x1) + ε1) + (1−λ)(x2,f(x2) + ε2) ∈ C

and therefore

f(λx1 + (1−λ)x2)≤ λ(f(x1) + ε1) + (1−λ)(f(x2) + ε2).

Since εi can be chosen arbitrarily small, we get

f(λx1 + (1−λ)x2)≤ λf(x1) + (1−λ)f(x2)

and therefore f is convex.

ad (iv): Let Fi := epi(fi) and F := F1 +F2 + . . .+Fn, then F is convex. Further,
(x,y) ∈ F if and only if there exist (xi)ni=1 in Rn and (yi)ni=1 in R, such that

n∑
i=1

xi = x,
n∑
i=1

yi = y and fi(xi)≤ yi for all i= 1, . . . ,n. Thus

f(x) = inf{y|(x,y) ∈ F}

and therefore, by (iii), f is convex.

ad (v): Since supi∈I fi(x0)<+∞ we have x0 ∈ dom(f) and therefore f is proper.
Let x, y ∈ dom(f) and λ ∈ (0,1). Since

epi(f)⊆
⋂
i∈I

epi(fi),

we have x, y ∈ dom(fi) for all i ∈ I. Thus

fi(λx+ (1−λ)y)≤ λfi(x) + (1−λ)fi(y), ∀i ∈ I.

Therefore

f(λx+ (1−λ)y) = sup
i∈I

fi(λx+ (1−λ)y)

≤ sup
i∈I

λfi(x) + (1−λ)fi(y)≤ λf(x) + (1−λ)f(y),

hence f is convex.

10



1.2. Differential Theory of Convex Functions

ad (vi): We have dom(fA) = A(dom(f)) , ∅, thus fA is proper.
Let x, y ∈ dom(fA) and λ ∈ (0,1). Then

fA(λx+ (1−λ)y) = f(λAx+ (1−λ)Ay)≤ λfA(x) + (1−λ)fA(y)

and therefore fA is convex.
Bf is proper, since dom(Bf) =B−1dom(f) , ∅.
Let y1, y2 ∈ dom(Bf). Then, for ε1 ≥ 0 and ε2 ≥ 0 small enough, there are x1,
x2 ∈ Rn such that Bx1 = y1, Bx2 = y2, Bf(y1) + ε1 = f(x1) and Bf(y2) + ε2 = f(x2).
If λ ∈ (0,1), then

f(λx1 + (1−λ)x2)≤ λf(x1) + (1−λ)f(x2)

= λ(Bf(y1) + ε1) + (1−λ)(Bf(y2) + ε2)

and since B(λx1 + (1−λ)x2) = λy1 + (1−λ)y2 we get

Bf(λy1 + (1−λ)y2)≤ f(λx1 + (1−λ)x2)

≤ λ(Bf(y1) + ε1) + (1−λ)(Bf(y2) + ε2).

Now, since εi can be chosen arbitrarily small, this implies

Bf(λy1 + (1−λ)y2)≤ λBf(y1) + (1−λ)Bf(y2)

and therefore Bf is convex. �

1.2 Differential Theory of Convex Functions

In this section we will show that a convex function is locally Lipschitz-continuous.
Furthermore, we will show that the directional derivatives exist and are sub-linear. We
will then conclude that convex functions are subdifferentiable. We recall definitions when
needed.

Definition 1.2.1 (Lipschitz-continuity). Let f : A⊆ Rn→ Rm be a function.

(i) We call f Lipschitz-continuous if there exists a constant B > 0 such that

‖f(x)−f(y)‖ ≤B ‖x−y‖ ∀x,y ∈ A. (1.5)

11



1.2. Differential Theory of Convex Functions

We denote the space of Lipschitz-continuous functions on A by Lip(A,Rm). The
smallest constant B is given by

Lip(f) := sup
x,y∈A:x,y

‖f(x)−f(y)‖
‖x−y‖

. (1.6)

(ii) We call f locally Lipschitz-continuous if f is Lipschitz-continuous on all compact
C ⊆ A.

If f is Lipschitz-continuous on A⊆ Rn, then it obviously is uniformly continuous as well,
because for arbitrary ε > 0 we can set δ := ε

Lip(f) and get

‖f(x)−f(y)‖ ≤ Lip(f)‖x−y‖< ε,

for all x, y ∈ A such that ‖x−y‖ ≤ δ.

Theorem 1.2.2. A convex function f : Rn → R ∪ {+∞} is continuous and locally
Lipschitz-continuous on int(dom(f)).

Proof. The following proof is taken from Theorem 1.5.1 in [Sch93]. We set O :=
int(dom(f)) and assume O , ∅, because otherwise there is nothing to prove. First
we will show the continuity of f on O. Let x0 ∈O. Since O is non-empty and open, we
can choose affinely independent (xi)n+1

i=1 in O, such that the simplex S generated by these
points satisfies

x0 ∈ int(S)⊆ S ⊆O.

Furthermore, there is ρ > 0 such that the open ball Bρ(x0) ⊆ S. For x ∈ S there is a

representation x=
n+1∑
i=1

λixi with λi ≥ 0 and
n+1∑
i=1

λi = 1. Using Jensen’s inequality (1.4),
we deduce that

f(x)≤
n+1∑
i=1

λif(xi)≤ c := max
1≤i≤n+1

f(xi), ∀x ∈ S.

Now let y = x0 +αu with α ∈ (0,1) and ‖u‖= ρ. Since y = (1−α)x0 +α(x0 +u), we get

f(y)≤ (1−α)f(x0) +αf(x0 +u),

12



1.2. Differential Theory of Convex Functions

hence

f(y)−f(x0)≤ α(f(x0 +u)−f(x0))≤ α(c−f(x0))

since x0 +u ∈Bρ(x0)⊆ S.
On the other hand,

x0 = 1
1 +α

y+ α

1 +α
(x0−u)

and hence

f(x0)≤ 1
1 +α

f(y) + α

1 +α
f(x0−u),

which yields

f(x0)−f(y)≤ α(f(x0−u)−f(x0))≤ α(c−f(x0)).

Thus, since αρ= ‖y−x0‖, we get

|f(y)−f(x0)| ≤ α(c−f(x0)) = c−f(x0)
ρ

‖y−x0‖ ,

for y ∈Bρ(x0). Therefore f is continuous in x0 and hence, since x0 was arbitrarily chosen,
f is continuous on O.
To prove local Lipschitz-continuity let C ⊆ O be compact. We need to show that f is
Lipschitz-continuous on C. By compactness, there exists ρ > 0 such that

Cρ := C+Bρ(0)⊆O.

On the compact set Cρ, the continuous function |f | attains a maximum a. Let x, y ∈ C,
then

z := y+ ρ

‖y−x‖
(y−x) ∈ Cρ

and

y = (1−λ)x+λz with λ= ‖y−x‖
ρ+‖y−x‖ ,

13



1.2. Differential Theory of Convex Functions

hence f(y)≤ (1−λ)f(x) +λf(y) yields

f(y)−f(x)≤ λ(f(z)−f(x))≤ 2a
ρ ‖y−x‖ .

Interchanging x and y we get |f(y)− f(x)| ≤ B ‖y−x‖ with B = 2a
ρ independent of x

and y. Therefore f is Lipschitz-continuous on C. �

By Rademacher’s Theorem (see Theorem 3.3.1), a Lipschitz-continuous function is
differentiable Ln-a.e. with Borel measurable gradient. Thus a convex function is differ-
entiable Ln-a.e. on the interior of its effective domain.

We will now show that the directional derivatives of a convex function exist everywhere.

Definition 1.2.3 (Directional derivatives). Let f : Rn→ R.

(i) If

lim
λ→0+

f(x+λy)−f(x)
λ

(1.7)

exists it is called the one-sided directional derivative of f in x ∈ Rn with
respect to direction y ∈ Rn\{0} and denoted by f ′(x;y).

(ii) In the one dimensional case (n= 1), we distinguish be-
tween the right derivative f ′+ defined by

f ′+(x) := lim
λ→0+

f(x+λ)−f(x)
λ

= f ′(x;1)

and the left derivative f ′−(x) defined by

f ′−(x) := lim
λ→0+

f(x)−f(x−λ)
λ

=−f ′(x;−1).

f

x

y

x

f ′+
y

Remark 1.2.4. Let f : R→ R and x ∈ R. If f ′+(x) = f ′−(x), then f is differentiable at x
with derivative f ′(x) = f ′+(x) = f ′−(x).

To prove the existence of the directional derivatives of a convex function we will first
prove the 1-dimensional case.

Theorem 1.2.5 (Differentiability of convex functions in R). Let f : R→ R∪{+∞} be a
convex function. Then f ′+ and f ′− exist on int(domf) and are non-decreasing functions.
The inequality f ′− ≤ f ′+ is valid, and with the exception of at most countably many points,
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1.2. Differential Theory of Convex Functions

f ′− = f ′+ holds (implying differentiability of f). Furthermore, f ′+ is continuous from the
right and f ′− is continuous from the left and therefore, if f is differentiable on an open
set, it is actually continuously differentiable.

Proof. The following proof is taken from [Sch93](Theorem 1.5.2). We will assume all
arguments of f to be taken from int(domf). Let 0< λ < µ. Then

f(x+λ) = f
(
µ−λ
µ x+ λ

µ(x+µ)
)
≤ µ−λ

µ f(x) + λ
µf(x+µ),

hence

f(x+λ)−f(x)
λ

≤ f(x+µ)−f(x)
µ

.

Analogously,

f(x−λ) = f
(
µ−λ
µ x+ λ

µ(x−µ)
)
≤ µ−λ

µ f(x) + λ
µf(x−µ),

hence

f(x)−f(x−µ)
µ

≤ f(x)−f(x−λ)
λ

.

For arbitrary λ, µ > 0,

f(x) = f
(

λ
λ+µ(x−µ) + µ

λ+µ(x+λ)
)
≤ λ

λ+µf(x−µ) + µ
λ+µf(x+λ),

hence

f(x)−f(x−µ)
µ

≤ f(x+λ)−f(x)
λ

.

From the monotonicity and boundedness properties we just established, we can deduce
the existence of f ′+ and f ′− as well as the inequality f ′− ≤ f ′+. So, for x < y,

f ′−(x)≤ f ′+(x)≤ f(y)−f(x)
y−x

≤ f ′−(y)≤ f ′+(y). (?)

Hence f ′− and f ′+ are non-decreasing and thus have at most countably many discontinuities.
At each continuity point x of f ′− the above inequality implies f ′−(x) = f ′+(x) and hence
the existence of the derivative f ′(x).
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1.2. Differential Theory of Convex Functions

Let x < y. Using (?) we get

f(y)−f(x)
y−x

= lim
z→x+

f(y)−f(z)
y− z

≥ lim
z→x+

f ′+(z),

hence f ′+(x)≥ limz→x+ f ′+(z). Since f ′+ is non-decreasing, this implies that f ′+ is contin-
uous from the right. Analogously one obtains that f ′− is continuous from the left. �

We will now prove that the directional derivatives of a convex function exist and are
sub-linear functions of the direction.

Definition 1.2.6 (Sub-linear functions). Let f : Rn→ R∪{+∞} be a function.

(i) f is called positively homogeneous if

f(λx) = λf(x), ∀λ > 0,x ∈ Rn. (1.8)

(ii) f is called sub-additive if

f(x+y)≤ f(x) +f(y), ∀x,y ∈ Rn. (1.9)

(iii) f is called sub-linear if it is positively homogeneous and sub-additive.

Remark 1.2.7. A proper sub-linear function f is convex, because

f((1−λ)x+λy)≤ f(1−λx) +f(λy) = (1−λ)f(x) +λf(y).

Theorem 1.2.8 (The directional derivative of a convex function is sub-linear). Let
f : Rn → R∪{+∞} be a convex function and x ∈ int(dom(f)). Then the directional
derivatives at x exist and f ′(x; .) : Rn\{0}→ R is sub-linear.

Proof. Let x ∈ int(dom(f)) and fix a direction y ∈ Rn\{0}. Then g : R→ R defined by
g(λ) := f(x+λy) is convex and by Theorem 1.2.5 the right derivative of g in 0 exists.
This yields

g′+(0) = lim
λ→0+

g(λ)−g(0)
λ

= lim
λ→0+

f(x+λy)−f(x)
λ

= f ′(x;y).
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1.2. Differential Theory of Convex Functions

So the directional derivatives of f in x exist.
Next we will prove the sub-linearity of f ′(x; .). Let y ∈ Rn\{0} and λ, τ > 0. We get

f ′(x;λy) = lim
τ→0+

f(x+ τλy)−f(x)
τ

= lim
τ→0+

λ
f(x+ τλy)−f(x)

τλ
= λf ′(x;y),

hence f ′(x; .) is positively homogeneous. For y, z ∈ Rn\{0} convexity of f implies

f(x+ τ(y+ z))≤ f
(

1
2(x+ 2τy) + 1

2(x+ 2τz)
)
≤ 1

2f(x+ 2τy) + 1
2f(x+ 2τz),

therefore

f ′(x;y+ z) = lim
τ→0+

f(x+ τ(y+ z))−f(x)
τ

≤ lim
τ→0+

f(x+ 2τy)−f(x)
2τ + f(x+ 2τz)−f(x)

2τ ≤ f ′(x;y) +f ′(x;z).

Hence f ′(x; .) is sub-additive and thus f ′(x; .) is sub-linear. �

We will show that the existence and sub-linearity of the directional derivatives imply,
that a convex function is subdifferentiable on the interior of its domain.

Definition 1.2.9 (Subdifferentiability and subgradient). Let f : Rn→ R∪{+∞} be a
proper function and fix x∈ dom(f). f is called subdifferentiable in x with subgradient
p ∈ Rn if

f(y)≥ f(x) + 〈p,y−x〉+o(‖y−x‖) as y→ x. (1.10)

We call

∂xf := {p ∈ Rn|p is subgradient of f in x.} (1.11)

the subdifferential of f in x.

Remark 1.2.10.

1. Analogously one defines superdifferentiability and supergradients. The superdiffer-
ential of f in x will be denoted by ∂xf .

2. If f is differentiable at x then obviously ∇f(x) ∈ ∂xf .

17



1.2. Differential Theory of Convex Functions

3. If a function f has a supergradient as well as a subgradient in x, then f is
differentiable at x and ∂xf = ∂xf = {∇f(x)}.

Let f : Rn→ R be convex and subdifferentiable at x with subgradient p. Consider the
affine function h :Rn→R defined by h(z) = f(x)+〈p,z−x〉, then f(x) = h(x). So locally
around x we have h≤ f . This even holds globally, because suppose there is y0 ∈ Rn such
that f(y0)< h(y0). Let λ ∈ (0,1), then

f(λy0 + (1−λ)x)≤ λf(y0) + (1−λ)f(x)

< λh(y0) + (1−λ)h(x) = h(λy0 + (1−λ)x).

Therefore

f(x+ ε(y0−x))< h(x+ ε(y0−x))

for all ε > 0 in contradiction to h≤ f locally around x. Thus h≤ f holds globally on Rn

and therefore a convex function f : Rn→ R is subdifferentiable at x with subgradient p if
and only if

f(z)≥ f(x) + 〈p,z−x〉 ,∀z ∈ Rn. (1.12)

Also, note that

epi(h) =H
+
(p,−1),〈x,p〉−f(x).

and h≤ f if and only if

epi(h)⊇ epi(f).

Thus H(p,−1),〈x,p〉−f(x) is a supporting hyperplane of epi(f).

Theorem 1.2.11 (Subdifferentiability of convex functions). Let f : Rn→ R be a convex
function and x ∈ int(dom(f)). p ∈ Rn is subgradient of f in x if and only if

f ′(x;y)≥ 〈p,y〉 ∀y ∈ Rn. (1.13)
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1.2. Differential Theory of Convex Functions

Thus

∂xf = {p ∈ Rn|∀y ∈ Rn : 〈p,y〉 ≤ f ′(x;y)} (1.14)

and ∂xf is a compact convex set.

Proof. Let x ∈ int(dom(f)) and y ∈ Rn\{0} arbitrary. We recall from the proof of
Theorem 1.2.5 that the quotient f(x+λy)−f(x)

λ is a decreasing function as λ→ 0+, thus

f(x+λy)−f(x)
λ

≥ f ′(x;y)≥ 〈p,y〉 , ∀λ > 0.

Analogously we get

f(x−λy)−f(x)
λ

≥ 〈p,−y〉 , ∀λ > 0.

Combining these inequalities we get

f(x+λy)−f(x)≥ 〈p,λy〉 , ∀λ ∈ R.

Thus, by putting z := x+λy, we get

f(z)≥ f(x) + 〈p,z−x〉 , ∀z ∈ Rn.

Therefore p satisfies condition (1.13) if and only if p is subgradient of f in x.
Let x ∈ int(dom(f)). We will show that ∂xf is non-empty. (x,f(x)) is a boundary point
of epi(f). Since {(x,f(x))} is compact and

int(epi(f)) = {(x,µ)|f(x)< µ}

is non-empty and open, we can use the Hahn-Banach separation Theorem and get
u ∈ Rn+1 and α > 0 such that

H+
u,α ⊇ int(epi(f))

and (x,f(x)) ∈Hu,α, i.e. 〈u,(x,f(x))〉= α. Let u= (p,−v) for p ∈ Rn and v ∈ R. Since
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1.2. Differential Theory of Convex Functions

(x,µ) ∈ int(epi(f)) for all µ > f(x), we have

〈p,x〉−vf(x) = α > 〈u,(x,µ)〉= 〈p,x〉−vµ,

hence v > 0. Put q := p
v , β := α

v and define the affine function h : Rn→ R by

h(z) := 〈q,z〉−β.

Then h(x) = 1
v (〈p,x〉−α) = f(x) and h≤ f , because

epi(h) =H
+
(q,−1),β =H

+
(p,v),α ⊇ epi(f).

Therefore q ∈ ∂xf .
Equality (1.14) is obvious from condition (1.13). Thus, we can write

∂xf =
⋂
y∈Rn
{p ∈ Rn| 〈p,y〉 ≤ f ′(x;y)}=

⋂
y∈Rn

H
+
y,f ′(x;y),

hence ∂xf is convex and closed as an intersection of convex and closed sets (closed
half-spaces) by Proposition 1.1.3.
To show that ∂xf is compact we need to show that ∂xf is bounded. We notice that

sup
p∈∂xf

〈p,y〉 ≤ f ′(x;y)<+∞ ∀y ∈ Rn,

hence ∂xf has to be bounded and therefore ∂xf is compact. �

Remark 1.2.12.

1. Let f : R→ R be a convex function. The subdifferential of f in x ∈ int(dom(f)) is
given by the closed interval ∂xf = [f ′−(x),f ′+(x)].

2. For a convex set C ⊆ Rn we call the sub-linear function defined by

h(y|C) := sup{〈x,y〉 |x ∈ C}

the support function of C.
It is a basic result from convex analysis (see Corollary 13.2.1 in [Roc70]) that every
sub-linear function f is the support function of a closed convex set C, namely
C = {y| 〈x,y〉 ≤ f(x)}. So the previous Theorem actually states that the directional
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Figure 1.2: Examples of lower semi-continuous functions.

derivative is the support function of the subdifferential of f , i.e.

f ′(x;y) = h(y|∂xf).

This result can also be found in [Roc70] (Theorem 23.4).

3. If the subdifferential of f in x is single-valued, i.e. ∂x(f) = {p}, we have

f ′(x;y) = h(y|∂xf) = 〈p,y〉 .

So the directional derivative is a linear function and therefore f is differentiable at
x with ∇f(x) = p.

1.3 Conjugates of Convex Functions

By Theorem 1.1.5 a closed convex set is the intersection of all closed half-spaces containing
it. We will show that a lower semi-continuous (see the definition below) convex function
is the point-wise supremum of all affine functions less or equal to it.

Definition 1.3.1. (Lower semi-continuous (lsc) functions)
A function f : A⊆ Rn→ R∪{±∞} is called lower semi-continuous (lsc) in x ∈ A, if
and only if

f(x)≤ liminf
y→x f(y) := lim

n→∞ inf{f(y)|y ∈B1/n(x)\{x}}.
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1.3. Conjugates of Convex Functions

Remark 1.3.2.

1. A function f : Rn→ R is lsc on Rn if and only if the epigraph of f is closed. This
can be seen easily: f is lsc in x if and only if for any sequence (µi)i∈N in R and
(xi)i∈Rn with µi→ µ, xi→ x and µi ≥ f(xi) we have µ≥ f(x). But this is just the
closure of epi(f) = {(x,µ)Rn+1|f(x)≤ µ}.
In view of this relation a lsc function is sometimes called closed.

2. Given a proper function f , one defines the lower semi-continuous hull of f by

clf = sup{g|g is lsc and g ≤ f}.

Then

epi(clf) =
⋃
{epi(g)|g is lsc and g ≤ f}

is closed and clf(x)≤ liminf
y→x f(y).

3. Let f be a convex function. Then clf is convex and since a convex function is
continuous in int(dom(f)) we have clf = f there. Furthermore, because f = +∞
outside dom(f) we actually have {clf , f} ⊆ ∂dom(f), where ∂dom(f) denotes
the boundary of dom(f).

Theorem 1.3.3. Let f : Rn→ R∪{+∞} be lsc and convex. Then f is the point-wise
supremum of all affine functions h such that h≤ f , i.e.

f(x) = sup{h(x)|h is affine and h≤ f}.

Idea of the proof. This can be deduced from the following: f is lsc and convex if and
only if epi(f) is closed and convex. A closed convex set is the intersection of all closed
half-spaces containing it (Theorem 1.1.5). Now, one can show that the intersection of
half-spaces of the form H

+
(u,−1),α with u ∈ Rn, α ∈ R and epi(f)⊆H+

(u,−1),α are sufficient
to generate epi(f). This leads to the above result, because epi(h) = H(u,−1),α. For a
rigorous proof of this fact we refer to [Roc70] Theorem 12.1. �

22



1.3. Conjugates of Convex Functions

Definition 1.3.4 (Conjugate function). Let f : Rn→ R∪{+∞} be a proper function.
The function f∗ : Rn→ R∪{+∞} defined by

f∗(y) := sup
x∈Rn

〈x,y〉−f(x) (1.15)

is called the conjugate of f .

Remark 1.3.5.

1. The conjugate function is also sometimes called the Legendre-Fenchel trans-
form.

2. The conjugate of a proper function which is bounded from below by an affine
function is a lower semi-continuous convex function. This can easily be seen: Let
f be a proper function and h affine such that h ≤ f . Since f is proper we have
{f = +∞} , Rn and therefore {f∗ =−∞}= ∅. Since h is affine, there are u ∈ Rn

and α ∈ R, such that h(x) = 〈x,u〉−α. We get

〈x,u〉−f(x)≤ α <+∞ ∀x ∈ Rn

hence f∗(u)≤ α and thus {f∗ = +∞} , Rn. So f∗ is a proper function. To show
lower semi-continuity and convexity we rewrite the epigraph of f∗ as

epi(f∗) =
⋂
x∈Rn
{(y,µ) ∈ Rn+1|µ≥ 〈x,y〉−f(x)}=

⋂
x∈Rn

H
+
(x,−1),f(x).

Therefore epi(f∗) is a closed convex set as an intersection of closed half-spaces and
non-empty since f∗ is proper. Thus f∗ is lower semi-continuous and convex.

3. Definition (1.15) implies

〈x,y〉 ≤ f(x) +f∗(y) for all x,y ∈ Rn. (1.16)

This inequality is known as Fenchel’s inequality. Its equality cases will be very
important to us.
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1.3. Conjugates of Convex Functions

Example 1.3.6.

(a) Let f : R→ R be defined by

f(x) = exp(x).

f is convex and its conjugate f∗ : R→ R is given by

f∗(y) =


y ln(y)−y if y > 0,

0 if y = 0,
+∞ else.

−1 0 1
1

ex
p(
x
)

x

y

1
0

1

x
ln(
x)
−
x

x

y

(b) Fix p ∈ (1,+∞) and define f : Rn→ R by

f(x) = ‖x‖
p

p
.

f is convex and its conjugate f∗ : Rn→ R is given by

f∗(y) = ‖y‖
q

q
,

where q ∈ (1,+∞) such that 1
p + 1

q = 1.

For p= q = 1
2 we have f = ‖x‖2

2 = f∗. One can show that this is the only solution
for a convex function f such that f = f∗.

We will now give a characterization of the subdifferential and state a duality correspon-
dence of lower semi-continuous convex functions. The following results are mostly taken
from [Vil03].

Proposition 1.3.7 (Characterization of the subdifferential). Let f : Rn→ R∪{+∞} be
a lower semi-continuous convex function. Then

y ∈ ∂xf ⇔ 〈x,y〉= f(x) +f∗(y). (1.17)
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Proof. By Fenchel’s inequality (1.16) we have

〈x,y〉= f(x) +f∗(y)⇔ 〈x,y〉 ≥ f(x) +f∗(y)

⇔ 〈x,y〉 ≥ f(x) + 〈y,z〉−f(z) ∀z ∈ Rn

⇔ f(z)≥ f(x) + 〈y,z−x〉 ∀z ∈ Rn

⇔ y ∈ ∂xf. �

Theorem 1.3.8 (Duality correspondence of convex functions). Let f : Rn→ R∪{+∞}
be a proper function. Then f is a lower semi-continuous convex function if and only if
f∗∗ = f .

Proof. From Remark 1.3.5(2) it is clear that f∗∗ = f implies that f is lower semi-
continuous and convex. So all we need to show is that a lower semi-continuous convex
function satisfies f∗∗ = f . Using Fenchel’s inequality (1.16) we get

f(x)≥ sup
y∈Rn
〈x,y〉−f∗(y) = f∗∗(x),

hence f ≥ f∗∗(x).
On the other hand, for x ∈ int(dom(f)), by Theorem 1.2.11, we have ∂xf , ∅, thus we
can choose y ∈ ∂xf . Using Proposition 1.3.7 we have f(x) +f∗(y) = 〈x,y〉 and therefore

f(x)≤ sup
y∈Rn
〈x,y〉−f∗(y) = f∗∗(x),

which implies f = f∗∗ on int(dom(f)). So, if dom(f) = Rn, then f = f∗∗.
To finish the proof we will use the same strategy as in the proof of Proposition 2.5 in
[Vil03]. We will regularize f by infimal convolution (see Proposition 1.1.10(iv)): Let
gε(x) := ‖x‖2

2ε and

fε(x) := f�gε(x) = inf
y∈Rn

f(x+y) +gε(y).

We will show that lim
ε→0+

fε = f . First, notice that for y = 0 we get fε(x) ≤ f(x) and
therefore lim

ε→0+
fε ≤ f . To show the other inequality, we fix an arbitrary affine function

h(x) = 〈x,u〉−α with h≤ f . We get

fε(x+y) +g(y)≥ 〈x+y,u〉−α+ ‖y‖
2

2ε .
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The right-hand side of this inequality is a quadratic function in y and therefore attains
an unique minimum at y =−εu. Thus

fε(x)≥ 〈x− εu,u〉−α+ ‖εu‖
2

2ε

= 〈x,u〉−α− ε‖u‖
2

2 = h(x)− ε‖u‖
2

2 .

Thus lim
ε→0+

fε ≥ h for all affine h with h≤ f . Since f is lower semi-continuous and convex,
we can use Theorem 1.3.3 to get

f = sup
h≤f

h affine

h≤ lim
ε→0+

fε,

hence lim
ε→0+

fε = f .
Since dom(fε) = Rn, we have f∗∗ε = fε. Furthermore, fε ≤ f implies f∗ε ≥ f∗ which in
turn implies f∗∗ε ≤ f∗∗. We conclude

f∗∗(x)≥ lim
ε→0+

f∗∗ε (x) = lim
ε→0+

fε(x) = f(x),

thus f = f∗∗. �

Remark 1.3.9.

1. Let f be a lower semi-continuous convex function. Using Theorem 1.3.8 and
Proposition 1.3.7 we have

y ∈ ∂xf ⇔ 〈x,y〉= f(x) +f∗(y) = f∗∗(x) +f∗(y)⇔ x ∈ ∂yf∗.

2. Let f be lower semi-continuous and strictly convex. For x1 , x2 ∈ int(dom(f)) one
can show that

∂x1f ∩∂x2f = ∅.

Therefore y ∈ ∂xf implies that ∂yf∗ = {x}, hence f∗ is differentiable at y with
∇f∗(y) = x. If f is also differentiable at x, then one has ∂xf = {∇f(x)} and thus

∇f∗(∇f(x)) = x.
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Since y ∈ ∂xf ⇔ x ∈ ∂yf∗ (see Proposition 1.3.7), we also have

∇f(∇f∗(y)) = y.

A convex function is differentiable Ln-a.e. in the interior of its effective domain
with Borel measurable gradient (see Theorem 1.2.2 and Theorem 3.3.1). So we
have ∇f∗ ◦∇f(x) = x Ln-a.e. on int(dom(f)). Hence we may use ∇f∗ as inverse
to ∇f .
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Chapter 2

Introduction to Optimal Transport

In this chapter we will first motivate and define the Monge Problem (MP) and a
relaxation of it, the Monge-Kantorovich Problem (MKP). We will then prove a
dual representation of the MKP, called the Kantorovich Duality. In the proof we will
introduce c-transform and c-concavity, which can be seen as generalization of conjugates
and convexity.

In the final part of this chapter, we will solve the MKP explicitly on the real line.

2.1 Motivation and Definitions

Before we give a formal definition of the Optimal Transport Problem let us consider the
following economic example, which was given by Cédric Villani in [Vil09]:

“Consider a large number of bakeries, producing loaves, that should be
transported each morning to cafés where consumers will eat them. The
amount of bread that can be produced at each bakery, and the amount that
will be consumed at each café are known in advance, and can be modeled as
probability measures (there is a “density of production” and a “density of
consumption”) on a certain space, which in our case would be Paris (equipped
with the natural metric such that the distance between two points is the
length of the shortest path joining them). The problem is to find in practice
where each unit of bread should go, in such a way as to minimize the total
transport cost.”
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y

dν

Y

dµ

X

T

x

Figure 2.1: In the Optimal Transport Problem we are looking for transport plans T :
X → Y that transport mass from X distributed by µ to Y according to ν,
i.e. T#µ= ν.

To put this in mathematical terms, the “space of bakeries” will be called X and the
“space of cafés” Y . The “density of production” is then a probability measure µ on X
and the “density of consumption” is a probability measure ν on Y .

In order to move loaves of bread from a bakery x ∈X
to a café y ∈ Y some kind of effort has to be made.
This will be measured by a measurable cost function
c : X × Y → [0,+∞]. So the cost of moving x to
y equals c(x,y). For example, c(x,y) could be the
length of the shortest path between x and y.

X Y

x

y

c(x,y)

The problem can now be described as finding measurable maps T :X → Y which assign
to each bakery x a café y = T (x) such that the “density of production” µ matches the
“density of consumption” ν. This condition is characterized by the following

T#µ= ν, (2.1)

by which we mean that for every measurable set B ⊆ Y we have µ[T−1(B)] = ν[B],
where T−1(B) = {x ∈ X|T (x) ∈ B} is the preimage of B under T . T#µ is called the
push-forward of µ by T . Maps T which satisfy (2.1) will be called transport plans.

To get a better understanding of condition (2.1) we may consider µ and ν to be discrete.
Then µ(x) is the quantity of bread produced at bakery x and ν(y) is the quantity of
bread consumed at café y. Further, a map T : X → Y is a valid transport plan if and
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only if

ν(y) =
∑

x:y=T (x)
µ(x),

i.e. the quantity of bread moved to a café y by T has to match the quantity of bread
which is consumed there.

Given a transport plan T we will assign a total cost Ic(T ) to it by letting

Ic(T ) :=
∫
X

c(x,T (x))dµ(x). (2.2)

We can now formulate the Optimal Transport Problem.

Definition 2.1.1 (Monge Problem, MP). Let µ and ν be probability measures on
probability spaces X respectively Y and let c :X×Y → [0,+∞] be a measurable cost
function. The Monge Problem (MP) is to find a transport plan T ∗ :X→ Y such that

Ic(T ∗) = inf
T∈T (µ,ν)

Ic(T ),

where

T (µ,ν) := {T :X → Y | T is a transport plan between µ and ν.}.

The MP may not have a solution, i.e. the set of transport plans T (µ,ν) may be empty
or there may not exist a minimizer T ∗.

Example 2.1.2 (Solvability of MP).

(a) Let X = {x} be a space with only a single point and Y = {y1,y2} a space with two
points. Let µ be the trivial probability measure on X and ν the probability measure
that splits its mass evenly on the two points of Y , i.e. ν[{y1}] = ν[{y2}] = 1

2 .
Clearly, there are only two maps to consider: T1(x) = y1 or T2(x) = y2. But neither
of those maps are transport plans, since the push-forward of µ by neither T1 nor
T2 is equal to ν. In fact T (µ,ν) = ∅.

(b) Let

X = [0,1]×{0} and Y = [0,1]×{±1}.
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T1

T2

y1

y2

x

Figure 2.2: Sketch of Example 2.1.2(a). A situation where no transport plans exist.

Let µ be uniformly distributed on [0,1]×{0}, i.e.

µ(A×{0}) = L1(A)

where L1 is the Lebesgue measure on R. Let ν be uniformly distributed on Y , i.e.

ν ((B1×{−1})× (B2×{+1})) = 1
2L

1(B1) + 1
2L

1(B2).

One can think of X as one line and Y as two parallel lines, one to the left and one
to the right of X. The cost function shall be

c((x,0),(y,z)) = ‖(x,0)− (y,z)‖2 = (x−y)2 + 1

for all x, y ∈ [0,1] and z ∈ {±1}. Then one can define a sequence of transport plans
(Ti)i∈N in the following way: First define T1 by

T1 ((x,0)) =

 (2x,−1), x ∈ [0, 1
2),

(2x−1,+1), x ∈ [1
2 ,1].

So T1 basically cuts the line X in half and assigning the lower half to the left side
of Y and the upper half to the right side. It is easy to verify that T1 is a valid
transport plan from µ to ν. The total cost Ic(T1) is given by

Ic(T1) =

1
2∫

0
1 +x2dx+

1∫
1
2

1 + (1−x)2dx= 2

1
2∫

0
1 +x2dx= 13

12

Next we define T2 by cutting X into four equal parts and assign two to the left of
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Y and two to the right, i.e.

T2 ((x,0)) =



(−1,2x), x ∈ [0, 1
4),

(+1,2x− 1
2), x ∈ [1

4 ,
1
2),

(−1,2x− 1
2), x ∈ [1

2 ,
3
4),

(+1,2x−1), x ∈ [3
4 ,1].

This again yields a valid transport plan and the total cost is given by

Ic(T2) = 4

1
4∫

0
1 +x2dx= 49

48 .

Proceeding in this manner, Ti will be the transport plan that cuts X into 2i equal
parts and distributes them to the left and right of Y . The total cost Ic(Ti) is given
by

Ic(Ti) = 2i
2−i∫
0

1 +x2dx= 1 + 1
3 ·4i .

One can show that

inf
T∈T (µ,ν)

Ic(T ) = lim
i→∞

Ic(Ti) = 1,

thus the optimal transport cost of the MP is approximated by the sequence (Ti)i∈N.
But the sequence does not converge to a map T ∗. In fact, there is no transport
plan T ∗ ∈ T (µ,ν) such that Ic(T ∗) = 1, therefore the MP has no solution.
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T1

T3

T2

Figure 2.3: Sketches of the transport plans T1, T2 and T3 as defined in Example 2.1.2(b).
This sequence approximates the optimal transport cost, but does not converge
to a map.
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Example 2.1.3 (Nonlinear constraint on T ). Let X = Y = Rn and µ, ν be probability
measures on Rn which are absolutely continuous with respect to the Lebesgue measure
Ln, i.e.

dµ(x) = f(x)dx and dν(y) = g(y)dy.

Now condition (2.1) for a transport plan T can be formulated as
∫

T−1(B)

f(x)dx=
∫
B

g(y)dy,

whenever B ⊆ Rn is measurable. If we assume T to be a C1-diffeomorphism from Rn

onto itself we can use the change of variable formula to get
∫

T−1(B)

f(x)dx=
∫

T−1(B)

g(T (x))|detdT (x)|dx.

So if µ and ν are absolutely continuous to Ln with densities f respectively g, then a
differentiable function T : Rn→ Rn is a transport plan if and only if

f(x) = g(T (x))|detdT (x)|,µ-a.e.

This condition is obviously nonlinear.

The MP was relaxed by Kantorovich in the forties1 [Kan42, Kan48]. Instead of looking
for transport plans, Kantorovich considered probability measures γ on the product space
X×Y with marginals µ and ν, i.e. for all measurable A⊆X and measurable B ⊆ Y :

γ(A×Y ) = µ(A) and γ(X×B) = ν(B). (2.3)

A measure γ satisfying (2.3) will be called a transference plan.

For a transference plan γ one can interpret the quantity γ(A×B) as the amount of mass
that is moved from A⊆X to B ⊆ Y . Therefore the condition γ(A×Y ) = µ(A) means
that all the mass µ(A) in A is moved somewhere to Y and the condition γ(X×B) = ν(B)
means that the amount of mass that is moved to B is ν(B).

1Leonid Kantorovich was awarded a Nobel prize in economics in 1975 for related work.
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Every transport plan T induces an unique transference plan γT := (id×T )#µ. Thus
transference plans can be seen as relaxations of transport plans.

The total cost of a transference plan γ is defined by

Ic(γ) :=
∫

X×Y

c(x,y)dγ(x,y).

We can easily verify that Ic(T ) = Ic(γT ). The set of transference plans is denoted by

Π(µ,ν) := {γ ∈ P(X×Y )| γ is a transference plan between µ and ν.}.

Note that Π(µ,ν) , ∅ since µ× ν ∈ Π(µ,ν). Therefore the optimal transport cost Ic
defined by

Ic := inf
γ∈Π(µ,ν)

Ic(γ)

always exists (but may be +∞).

We can now reformulate the Optimal Transport Problem.

Definition 2.1.4 (Monge-Kantorovich Problem, MKP). Let µ and ν be probability
measures on probability spaces X respectively Y and let c : X × Y → [0,+∞] be a
measurable cost function. The Monge-Kantorovich Problem (MKP) is to find a
transference plan γ∗ ∈ Π(µ,ν) such that

Ic(γ∗) = Ic.

The MKP always admits solutions under quite general assumptions on the spaces X, Y
and the cost function c.

Theorem 2.1.5 (Solvability of the Monge-Kantorovich Problem). Let X, Y be Polish
probability spaces (i.e. complete, metric and separable) and µ, ν Borel probability measures
on X respectively Y . Let c :X×Y → [0,+∞] be a lsc cost function. Then there exists
an optimal transference plan γ∗ ∈ Π(µ,ν).

Remark 2.1.6. Analogously to Definition 1.3.1, a function f :X→ R∪{±∞} on a Polish
space X is lsc if f is lsc in x, i.e.

f(x)≤ liminf
y→x f(y) := lim

n→∞ inf{f(y)|y ∈B1/n(x)\{x}},
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for all x ∈X.

Before we prove Theorem 2.1.5 we need to recall some results from measure theory on
Polish spaces.

Definition 2.1.7 (Borel measure, regular measures, tightness, weak convergence). Let
X be a Polish probability space.

(i) A measure µ is called a Borel measure if it is defined on the Borel σ-algebra on
X, i.e. the smallest σ-algebra on X that contains all open subsets of X. The set of
Borel probability measures on X is denoted by P(X).

(ii) A probability measure µ on X is called regular if for all measurable A⊆X and
ε > 0 there is a closed set F and an open set G such that F ⊆A⊆G and µ(G\F )≤ ε.
Equivalently, A is regular if and only if

µ(A) = sup{µ(F )|F ⊆ A, F closed}

and

µ(A) = inf{µ(G)|G⊆ A, G open}.

(iii) A subset B ⊆ P(X) of probability measures on X is called tight if for all ε > 0
there exists a compact set Kε such that

sup
µ∈B

µ(X\Kε)≤ ε.

Further, we call a measure µ ∈ P(X) tight if {µ} is tight.

(iv) A sequence (µn)n∈N of probability measures on P(X) is said to converge weakly
to a probability measure µ ∈ P(X), µn w→ µ, if and only if

lim
n→∞

∫
X

fdµn =
∫
X

fdµ

for all bounded continuous functions f : X → R. (Equivalently one can choose
bounded Lipschitz-continuous or lsc and bounded from below functions.)
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Remark 2.1.8.

1. Any Borel probability measure on a Polish probability space is regular.

2. Any probability measure on a Polish probability space is tight. Furthermore, for
a tight sequence of probability measures, there exists a measure µ ∈ P(X) and a
subsequence (µn)n∈N, such that µn w→ µ, this is Prokhorov’s Theorem.

Remark 2.1.9.

1. Any non-negative lsc function f :X→ [0,+∞] on a metric space can be written as
the supremum of a non-decreasing sequence of bounded, uniformly continuous and
non-negative functions. One can choose

fn(x) := inf
y∈X

[min(f(y),n) +nd(x,y)] ,

then 0≤ fn ≤ n and one easily shows that

fn(x)−fn(y)≤ nd(x,y),

thus fn is bounded and uniformly continuous.
Furthermore, for m≤ n, we have

fm(x)≤min(f(y),m) +md(x,y)≤min(f(y),n) +nd(x,y) ∀y ∈X,

thus fm(x)≤ fn(x) and therefore (fn)n∈N is a non-decreasing sequence.
Finally, we have fn(x)≤min(f(x),n), hence fn(x)≤ f(x). On the other hand, for
all n ∈ N there exists yn such that

fn(x) + 1
n ≥min(f(yn),n) +nd(x,yn).

If f(x) = +∞, then obviously lim
n→∞fn(x) = +∞. Otherwise f(x) < +∞ and we

necessarily have yn→ x. Thus

lim
n→∞fn(x)≥ liminf

n→∞ [min(f(yn),n) +nd(x,yn)]≥ f(x),

where in the last inequality we used the fact that f is lsc. We conclude that

lim
n→∞fn(x) = f(x).
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2. Any lsc function f :X → [0,+∞] on a Polish space X is Borel measurable. This
follows easily from the previous remark and monotone convergence.

Proof of Theorem 2.1.5. First we notice that µ×ν is a transference plan and therefore
Π(µ,ν) , ∅. Since µ and ν are probability measures on a Polish space, they are tight.
So for any ε > 0 there are compact sets Kε ⊆X and Lε ⊆ Y such that µ(X\Kε)< ε and
ν(Y \Lε)< ε. Thus we get

γ ((X×Y )\(Kε×Lε))≤ γ ((X\Kε)×Y ) +γ (X× (Y \Lε))

= µ(X\Kε) +ν(Y \Lε)≤ 2ε,

for all γ ∈ Π(µ,ν). Since Kε×Lε is compact in X×Y , we have that Π(µ,ν) is tight.
Now let (γi)i∈N be a minimizing sequence, i.e.

Ic = lim
n→∞Ic(γi).

Since Π(µ,ν) is tight, there exists a subsequence (γk)k∈N which converges weakly to a
probability measure γ∗ ∈ P(X×Y ). γ∗ is a transference plan, because for any Borel set
A⊆X we have

γ∗(A×Y ) = lim
k→∞

γk(A×Y ) = µ(A)

and analogously for any Borel B ⊆ Y we have γ∗(X×B) = ν(B). Hence γ∗ ∈ Π(µ,ν).
Since c :X×Y → [0,+∞] is lsc, we may assume c to be the supremum of a non-decreasing
sequence (c`)`∈N of continuous non-negative functions (see Remark 2.1.9). Thus, by weak
and monotone convergence, we get

Ic(γ∗) =
∫
cdγ∗ = lim

l→∞

∫
c`dγ

∗ = lim
l→∞

lim
k→∞

∫
c`dγk ≤ liminf

k→∞

∫
cdγk = lim

k→∞
Ic(γk),

hence γ∗ is an optimal transference plan. �

Remark 2.1.10. We know that the MKP always has a solution (see Theorem 2.1.5). It is
an open question whether the existence of optimal transference plans in the MKP can be
linked to the existence of optimal transport plans for the MP.
It is easy to see that if an optimal transference plan γ∗ is concentrated on the graph of a
map T ∗, this map is an optimal transport plan. In the next section we will study the
Kantorovich duality, which will prove to be an important tool in answering this question.
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Figure 2.4: Sketch of the optimal transference plan γ∗ of Example 2.1.12.

Remark 2.1.11. Let (X,d) be a Polish probability space. For p ∈ [0,+∞) we define a cost
function cp(x,y) = d(x,y)p and

Wp(µ,ν) :=
(

inf
γ∈Π(µ,ν)

Icp(γ)
)1
p
.

So Wp(µ,ν)p is the optimal transport cost between µ and ν in the MKP. One can show,
that Wp is a metric on the space of probability measures on X and that it metricizes the
weak convergence, i.e. µn w→ ν if and only if limn→∞Wp(µn,ν) = 0.
Wp is called the Wasserstein distance and W1 is also known as the Kantorovich-
Rubinstein distance. The Wasserstein distance has very nice properties. For instance,
the Kantorovich duality (see Theorem 2.2.1) implies that

Wp(µ,ν) =
 sup

(ϕ,ψ)∈Φcp
J(ϕ,ψ)


1
p

thusWp may be approximated from below by some pair (ϕ,ψ)∈Φcp . We refer to Chapter
6 in [Vil09] for a thorough study.

Example 2.1.12 (Solvability MKP). Let us recall the Example 2.1.2(b). Let

X = [0,1]×{0} and Y = [0,1]×{±1}.

Let µ be uniformly distributed on X and ν be uniformly distributed on Y . Further, let
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the cost function be c((x,0),(y,z)) = (x−y)2 + 1. A transference plan is given by

γ ((A×{0})× [(B1×{−1})∪ (B2×{1})]) := 1
2L

1(A∩B1) + 1
2L

1(A∩B2),

for all measurable A, B1, B2 ⊆ [0,1]. γ is indeed a transference plan because

γ ((A×{0})×Y ) = L1(A) = µ(A×{0})

and

γ (X× ((B1×{−1})∪ (B2×{1}))) = 1
2L

1(B1) + 1
2L

1(B2)

= ν ((B1×{−1})∪ (B2×{1})) .

The cost of γ is given by

Ic(γ) = 1
2

1∫
0
c((x,0),(x,−1))dx+ 1

2

1∫
0
c((x,0),(x,1))dx= 1.

In 2.1.2(b) we constructed a sequence of transport plans that converged in cost to 1. We
also claimed that there was no transport plan T ∈ T (µ,ν) such that Ic(T ) = 1, i.e. the
MP had no solution. We have now constructed a transference plan γ with Ic(γ) = 1. The
question that still remains is whether γ is optimal or not, i.e. Ic(γ) = Ic. At the end of
the next section we will be able to answer this.
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2.2 The Kantorovich Duality

The MKP has a dual representation which was introduced by Kantorovich in 1942.

Theorem 2.2.1 (Kantorovich Duality, dual MKP). Let X, Y be Polish probability spaces
and µ, ν probability measures on X respectively Y . Let c :X×Y → [0,+∞] be a lsc cost
function.
For γ ∈ Π(µ,ν) we define

Ic(γ) :=
∫

X×Y

c(x,y)dγ(x,y)

and for (ϕ,ψ) ∈ L1(X,µ)×L1(Y,ν) we define

J(ϕ,ψ) :=
∫
X

ϕdµ+
∫
Y

ψdν.

Also, define

Φc := {(ϕ,ψ) ∈ L1(X,µ)×L1(Y,ν)|ϕ(x) +ψ(y)≤ c(x,y)}.

Then

inf
γ∈Π(µ,ν)

Ic(γ) = sup
(ϕ,ψ)∈Φc

J(ϕ,ψ). (2.4)

The problem of finding a maximizing pair (ϕ,ψ) ∈ Φc is the dual MKP.

Remark 2.2.2. The Kantorovich duality actually holds under much weaker assumptions
on the cost function c. In [BS11] Beiglböck and Schachermayer showed that the duality
holds if c is Borel measurable, µ× ν-a.e. finite and if there exists at least one finite
transference plan.

The Kantorovich duality has a nice informal interpretation. We will use our bakery
example from the beginning: X is the space of bakeries with the “density of production”
µ and Y is the space of cafés with the “density of consumption” ν. Furthermore, the cost
of delivering bread from a bakery x ∈X to a café y ∈ Y is given by c(x,y). Our task is
to find an optimal transference plan γ ∈ Π(µ,ν).
Suppose a company shows up with the following offer: They will pick up the bread
from each bakery and deliver it to the cafés. They will charge the cost ϕ(x) for each
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bakery x ∈X and the cost ψ(y) for each café y ∈ Y . Furthermore, they claim that they
will never charge more than the cost we would have to pay when delivering the bread
ourselves from a bakery x to a café y, i.e.

ϕ(x) +ψ(y)≤ c(x,y).

If we accept this offer we will have to pay the total cost J(ϕ,ψ), which is given by

J(ϕ,ψ) =
∫
X

ϕdµ+
∫
Y

ψdν.

Now a quick calculation shows that

J(ϕ,ψ) =
∫

X×Y

ϕ(x) +ψ(y)dγ(x,y)≤
∫

X×Y

cdγ = Ic(γ).

So whatever transference plan γ ∈Π(µ,ν) we choose, the cost Ic(γ) is greater or equal to
J(ϕ,ψ).
The Kantorovich duality tells us that, if the company also maximizes their profit, we will
in fact pay as much as if we would have handled the task ourselves optimally.

To prove the Kantorovich duality we will need some preliminary results.

Assume c to be a continuous cost function. In the dual MKP one is looking for pairs
(ϕ,ψ) of measurable functions ϕ : X → R∪{−∞}, ψ : Y → R∪{−∞} (not equal −∞
everywhere) with ϕ(x) +ψ(y)≤ c(x,y), such that J(ϕ,ψ) is maximal. Now, given a pair
(ϕ,ψ), we can take a closer look at condition (2.4) and notice that for all x∈X we have

ϕ(x)≤ c(x,y)−ψ(y). (?)

Thus, if we want to increase (ϕ,ψ), it makes sense to try and improve ϕ by defining
ψc :X → R∪{−∞} by

ψc(x) := inf
y∈Y

c(x,y)−ψ(y).

Since ψ .−∞, there is a y0 ∈ Y such that ψ(y0)>−∞ and therefore

ψc(x)≤ c(x,y0)−ψ(y0)<∞, ∀x ∈X.
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By (?) ψc(x)≥ ϕ(x), thus ψc .−∞ and by definition

c(x,y)≥ ψc(x) +ψ(y)≥ ϕ(x) +ψ(y).

Proceeding in the same way with ψ, we define ψcc : Y → R∪{−∞} by

ψcc(y) := inf
x∈X

c(x,y)−ψc(x),

and again we get ψcc .−∞, ψcc ≥ ψ and

c(x,y)≥ ψc(x) +ψcc(y)≥ ψc(x) +ψ(y).

We still need to show, that ψc as well as ψcc are measurable. Since c is continuous,
one can show that −ψc is lsc and therefore Borel measurable. This can be seen in the
following way: −ψc is lsc if and only if epi(−ψc) is closed. For y ∈ Y we define gy :X→R
by gy(x) = ψ(y)− c(x,y). Then gy is continuous, since c is continuous and epi(gy) is
closed. We can write

epi(−ψc) =
⋂
y∈Y

epi(gy),

thus epi(−ψc) is closed and therefore −ψc is lsc. One argues analogously to prove that
−ψcc is also lsc and therefore Borel measurable.
So, starting with (ϕ,ψ) we have constructed to a “better” pair (ψc,ψcc), which satisfies
ψc ≥ ϕ and ψcc ≥ ψ. We may apply the same procedure again and thus expect an even
better pair (ψccc,ψcc). But it turns out that ψccc = ψc. This can easily be seen: First, by
definition ψccc(x) := infy∈Y c(x,y)−ψcc(y) and therefore ψccc(x)≥ ψc(x). On the other
hand, because of ψ(y)≤ ψcc(y), we get

ψccc(x)≤ c(x,y)−ψcc(y)≤ c(x,y)−ψ(y)

and therefore

ψccc(x)≤ inf
y∈Y

c(x,y)−ψ(y) = ψc(x).

Therefore, if we are looking for maximizing pairs in the dual problem, we can restrict
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ourselves to pairs (ϕ,ψ) which satisfy

ϕ= ψc and ψ = ϕc, (2.5)

we will call such pairs tight. Given a tight pair (ϕ,ψ), one can always reconstruct one
function from the other, so we only need to look at one of the two functions.

Definition 2.2.3 (c-transform, c-concavity and c-subdifferential). Let X, Y be Polish
spaces, c : X × Y → [0,+∞) a continuous cost function and ϕ : X → R∪ {−∞}, ψ :
Y → R∪{−∞} functions, not identically −∞. The functions ϕc : Y → R∪{−∞} and
ψc :X → R∪{−∞} defined by

ϕc(y) := inf
x∈X

c(x,y)−ϕ(x),

ψc(x) := inf
y∈Y

c(x,y)−ψ(y),

are called the c-transforms of ϕ and ψ respectively.
A function ϕ is called c-concave if ϕcc = ϕ.
For a function ϕ we define

∂cϕ := {(x,y) ∈X×Y |ϕ(x) +ϕc(y) = c(x,y)}, (2.6)

the c-superdifferential of ϕ. Further, the c-superdifferential of ϕ in x ∈X is

∂cϕ(x) := {y ∈ Y |(x,y) ∈ ∂cϕ} (2.7)

or equivalently y ∈ ∂cϕ(x) if and only if

ϕ(z)≤ ϕ(x) + c(z,y)− c(x,y) ∀z ∈X.

Remark 2.2.4. Let c be a continuous cost function and ψ : Y → R∪{−∞}.

1. If there is an x0 ∈X and an α ∈ R such that ψ(y)≤ c(x0,y)−α for all y ∈ Y , then
ψc(x0) > −∞ and therefore ψc . −∞. Thus −ψc is lsc (see the remarks before
Definition 2.2.3).

2. If ψ is c-concave, then ψ(x)+ψc(y)≤ c(x,y) and therefore−ψc as well as−ψcc =−ψ
are lsc and hence Borel measurable.
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Furthermore we have

y ∈ ∂cϕ(x)⇔ x ∈ ∂cϕc(y)⇔ ϕ(x) +ϕc(y) = c(x,y).

This is completely analogous to Theorem 1.2.11 in the convex case.

3. Let ψ be c-concave and define τx : Y → R by

τx(y) = c(x,y)−ψc(y),

then ψ ≤ τx for all x ∈ X. One can think of τx as a tool shaped by c(x, .) and
ψ ≤ τx implies that the graph of ψ can be caressed from above by such tools. In
fact, a function ψ is c-concave if and only if its graph can be caressed from above
by the cost function c in such a way (see figure 2.5).

4. The c-transform is a generalization of classic conjugates (Legendre-Fenchel Trans-
form) for concave functions (see Definition 1.15). In fact, for X = Y = Rn and the
cost function c(x,y) = 1

2 ‖x−y‖
2, we have

ϕc(y) = inf
x∈Rn

c(x,y)−ϕ(x) = inf
x∈Rn

1
2 ‖y‖

2−〈x,y〉− (ϕ(x)− 1
2 ‖x‖

2),

hence

1
2 ‖y‖

2−ϕc(y) = sup
x∈R
〈x,y〉− (1

2 ‖x‖
2−ϕ(x)).

Thus, for h(x) := 1
2 ‖x‖

2−ϕ(x) we have that h∗(y) = 1
2 ‖y‖

2−ϕc(y). So for the
quadratic cost function c(x,y) = 1

2 ‖x−y‖
2, a function ϕ is c-concave if and only if

1
2 ‖x‖

2−ϕ(x) is convex in the usual sense.

We will need one more concept before we can prove the Kantorovich duality

Definition 2.2.5 (c-cyclical monotonicity). Let X and Y be Polish spaces and c :
X×Y → [0,+∞) a cost function. We call a set Γ⊆X×Y c-cyclically monotone if
for all finite collections of pairs (x1,y1), (x2,y2), . . . , (xn,yn) ∈ Γ we have

n∑
i=1

c(xi,yi)≤
n∑
i=1

c(xi,yi+1), (2.8)
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f

τ0

f
cc
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Figure 2.5: The graph of a c-concave function can be caressed from above by a tool
shaped like the cost function c.

where yn+1 := y1. Further, we will call a transference plan γ c-cyclically monotone if its
support sptγ, defined by

sptγ := {(x,y) ∈X×Y |γ(Bε(x,y))> 0,∀ε > 0}, (2.9)

is c-cyclically monotone.

c-cyclical monotonicity of a transference plan is closely linked to optimality.

Theorem 2.2.6 (Finite optimal transference plans are c-cyclically monotone). Let X
and Y be Polish probability spaces and µ, ν probability measures on X respectively Y .
Further, let c : X×Y → [0,+∞) be a continuous cost function. Then a finite optimal
transference plan γ ∈ Π(µ,ν) is c-cyclically monotone.

Proof. The following proof is taken from the proof of Theorem 2.3 in [GM96]. First
we recall the following results from probability theory. Given a collection of measures
µj ∈ P(X) (j = 1,2, . . . ,n), there exists a probability space (Ω,B(Ω),η) such that each
µj can be represented as the push-forward of η through a Borel map πj : Ω→X. For
instance, let η := µ1×µ2× . . .×µn be the product measure on the Borel subsets of
Ω :=Xn, and take πj(x1,x2, . . . ,xn) = xj the projection onto the j-th component of Ω.
Also, recall that if U ⊆ X is a Borel set of mass µ(U) > 0, one can define µ �U , the
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normalized restriction of µ to U , i.e. the probability measure defined by

µ �U (V ) := 1
µ(U)µ(V ∩U).

Now, suppose that γ ∈ Π(µ,ν) is optimal. We will prove indirectly that sptγ is a c-
cyclically monotone set. If sptγ is not a c-cyclically monotone set, then there is an n ∈N
such that the function

f(x1,x2, . . . ,xn;y1,y2, . . . ,yn) :=
n∑
i=1

c(xi,yi+1)− c(xi,yi)

is negative for some points (x1,y1),(x2,y2), . . . ,(xn,yn)∈ sptγ. Thus, since c is continuous,
f is continuous and hence there are compact neighborhoods Uj ⊆X of xj and Vj ⊆ Y
of yj such that f(u1, . . . ,un;v1, . . . ,vn)< 0 whenever uj ∈ Uj and vj ∈ Vj . Further, since
(xj ,yj)∈ sptγ, we have γ(Uj×Vj)> 0 and therefore we can define γj to be the normalized
restriction of γ to Uj×Vj , i.e. γj = γ �Uj×Vj . Also, define

λ := min
j=1,...,n

γ(Uj×Vj).

Then λ > 0 and

γj(A) = 1
γ(Uj×Vj)

γ (A∩ (Uj×Vj))≤
1
λ
γ(A),

which implies

λ

n

n∑
j=1

γj(A)≤ γ(A).

Therefore

γ− λ
n

n∑
j=1

γj

is a positive measure.
There is a probability space (Ω,B(Ω),η) and Borel maps ω 7→ (αj(ω),βj(ω)) that take
their values on Uj×Vj such that γj = (αj×βj)#η. Thus we can define

γ′ := γ+ λ

n

n∑
j=1

(αj×βj+1)#η− (αj×βj)#η.
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Then γ′ is a positive measure. Furthermore, for measurable A⊆X we have

γ′(A×Y ) = γ(A×Y ) + λ

n

n∑
j=1

(αj×βj+1)#η(A×Y )− (αj×βj)#η(A×Y )

= µ(A) + λ

n

n∑
j=1

η(α−1
j (A))−η(α−1

j (A)) = µ(A)

and analogously we get γ′(X×B) = ν(B), hence γ′ ∈Π(µ,ν). Using the fact that f is
negative on (

n∏
j=1

Uj)× (
n∏
j=1

Vj) and that αj takes values only in Uj and βj only in Vj , we

can conclude that

Ic(γ′)− Ic(γ) = λ

n

∫
Ω

n∑
j=1

c(αj ,βj+1)− c(αj ,βj)dη < 0.

Therefore Ic(γ′) < Ic(γ), which is a contradiction to the optimality of γ. Thus sptγ is
c-cyclically monotone. �

Remark 2.2.7. Actually a lot more is true. One can show that for a Borel measurable
cost function c : X × Y → [0,+∞] every finite optimal transference plan γ ∈ Π(µ,ν)
is concentrated on a c-cyclically monotone set. Also, if a finite transference plan is
concentrated on a c-cyclically monotone set it is optimal if {c= +∞}= F ∪N , where
F ⊆X×Y is closed and N is a µ×ν-null set. These results can be found in [BGMS09]
Theorem 1.

Theorem 2.2.8 (Characterization of c-cyclically monotone sets). Let X and Y be Polish
spaces and c : X × Y → [0,+∞) be a continuous cost function. A set Γ ⊆ X × Y is
c-cyclically monotone if and only if there exists a c-concave function ϕ such that Γ⊆ ∂cϕ.

Proof. Let ϕ be c-concave. We will first show that ∂cϕ is c-cyclically monotone. Let
n ∈ N and (x1,y1), . . . , (xn,yn) ∈ ∂cϕ. Then, by definition of ∂cϕ, we have for all z ∈X

ϕ(z)≤ ϕ(xj) + c(z,yj)− c(xj ,yj),

for j = 1, . . . ,n. Choosing z = xj−1 we can write

ϕ(xj−1)−ϕ(xj)≤ c(xj−1,yj)− c(xj ,yj),

48



2.2. The Kantorovich Duality

hence we get

n∑
j=1

c(xj ,yj+1)− c(xj ,yj)≥
n∑
j=1

ϕ(xj−1)−ϕ(xj) = 0.

Therefore ∂cϕ is c-cyclically monotone and thus also all subsets of ∂cϕ are c-cyclically
monotone.
To prove necessity assume Γ⊆X×Y to be c-cyclically monotone. We need to construct
a c-concave function ϕ such that Γ⊆ ∂cϕ. Fix (x0,y0) ∈ Γ and define ϕn :X×Γn→ R
by

ϕn(x;x1,y1, . . . ,xn,yn) := [c(x,yn)− c(xn,yn)] +
n−1∑
i=0

[c(xi+1,yi)− c(xi,yi)].

Next, define ϕ :X → R∪{−∞} by

ϕ(x) := inf{ϕn(x;x1,y1, . . .xn,yn)|n ∈ N,(x1,y1), . . . ,(xn,yn) ∈ Γ}.

Using the definition of ϕ for n= 1 and (x1,y1) = (x0,y0) we see that ϕ(x0)≤ 0. On the
other hand for x= x0 we have, using c-cyclical monotonicity of Γ,

ϕn(x0;x1,y1, . . . ,xn,yn) =
n∑
i=0

c(xi+1,yi)− c(xi,yi)≥ 0,

thus ϕ(x0) = 0.
Relabeling yn = y we get

ϕn(x;x1,y1, . . .xn,y) = c(x,y)− c(xn,y) +
n−1∑
i=0

[c(xi+1,yi)− c(xi,yi)],

hence defining ψn : Y ×Γn−1×Γ1→ R by

ψn(y;x1,y1, . . .xn−1,yn−1,xn) := c(xn,y)−
n−1∑
i=0

[c(xi+1,yi)− c(xi,yi)],

where Γ1 = {x|∃y ∈ Y : (x,y) ∈ Γ}, we obtain

ϕn(x;x1,y1, . . .xn,y) = c(x,y)−ψn(y;x1,y1, . . .xn−1,yn−1,xn).
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Therefore, for ψ : Y → R∪{±∞} defined by

ψ(y) := sup{ψn(y;x1,y1, . . .xn−1,yn−1,xn)|n ∈ N,(x1,y1), . . . ,(xn,y) ∈ Γ},

for y ∈ Γ2 = {y|∃x ∈X : (x,y) ∈ Γ} and ψ(y) :=−∞ otherwise, we get

ϕ(x) = inf
y∈Y
{c(x,y)−ψ(y)}= ψc(x).

Also, since ϕ(x0) = 0, we have that ψ(y)<+∞ for all y ∈ Y . Thus

ϕcc(x) = ψccc(x) = ψc(x) = ϕ(x)

and therefore ϕ is c-concave.
Now let (x,y) ∈ Γ. We can write

ϕn(z;x1,y1, . . . ,xn−1,yn−1,x,y) = ϕn−1(x;x1,y1, . . . ,xn−1,yn−1) + c(z,y)− c(x,y),

thus

ϕ(z)≤ ϕ(x) + c(z,y)− c(x,y)

for all z ∈X. Therefore y ∈ ∂cϕ(x), which implies Γ⊆ ∂cϕ. �

We can now proof the Kantorovich duality.

Proof of 2.2.1. First we notice that for any pair (ϕ,ψ) ∈ Φc and γ ∈ Π(µ,ν) we have

J(ϕ,ψ) =
∫
X

ϕdµ+
∫
Y

ψdν =
∫

X×Y

ϕ(x) +ψ(y)dγ(x,y)≤
∫

X×Y

cdγ = Ic(γ),

hence J(ϕ,ψ)≤ Ic. Therefore we only need to show the inequality

sup
(ϕ,ψ)∈Φc

J(ϕ,ψ)≥ Ic.

We will assume c to be bounded and continuous. Then, because of Theorem 2.1.5, there
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is always a solution γ∗ ∈ Π(µ,ν) to the MKP and because

Ic = Ic(γ∗) =
∫

X×Y

cdγ∗ ≤ sup{c(x,y)|(x,y) ∈X×Y }<+∞,

γ∗ is finite. Thus, because of Theorem 2.2.6, γ∗ has c-cyclically monotone support
Γ := sptγ∗. So, using Theorem 2.2.8, we get a c-concave, and therefore measurable,
function ϕ such that Γ⊆ ∂cϕ. For (x,y)∈ ∂cϕ we have by definition ϕ(x)+ϕc(y) = c(x,y)
and therefore we can conclude that

J(ϕ,ϕc) =
∫

X×Y

ϕ(x) +ϕc(y)dγ(x,y) =
∫

X×Y

cdγ = Ic(γ) = Ic.

Thus we have proved the Kantorovich duality for a bounded and continuous cost function.
Now if c is lsc, then c can be written as the supremum of a non-decreasing sequence
(ck)k∈N of bounded and continuous functions (see Remark 2.1.9). We will show that
Ick → Ic. Since ck ≤ c, we have

Ick(γ)≤ Ic(γ) for all γ ∈ Π(µ,ν),

hence Ick ≤ Ic. Now, for each k ∈ N let γk ∈ Π(µ,ν) be optimal for ck, i.e. Ick(γk) = Ick .
Since Π(µ,ν) is tight, there is a subsequence (γ`)`∈N that converges weakly to a γ ∈Π(µ,ν).
We conclude

Ic ≤ Ic(γ) = lim
k→∞

∫
X×Y

ckdγ = lim
k→∞

lim
`→∞

∫
X×Y

ckdγ` ≤ lim
k→∞

lim
`→∞

∫
X×Y

c`dγ` = lim
`→∞

Ic`(γ`).

Hence Ick → Ic as k→∞. Next, for every k we may assume (ϕk,ψk) ∈ Φck to satisfy

J(ϕk,ψk)≥ Ick − 1
k .

Since ck ≤ c we have (ϕk,ψk) ∈ Φc and thus

lim
k→∞

J(ϕk,ψk)≥ lim
k→∞

Ick −
1
k = Ic.

Therefore we have proved the Kantorovich duality for lsc cost functions. �

Corollary 2.2.9 (Maximizers for the dual MKP). Let X, Y be Polish probability spaces
and µ, ν probability measures on X respectively Y . Let c : X × Y → [0,+∞] be a
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continuous cost function. If either

(i) there exists a finite optimal transference plan γ ∈ Π(µ,ν), or

(ii) c is bounded from above

then there exists ϕ :X → R∪{−∞} c-concave such that (ϕ,ϕc) ∈ Φc maximizes the dual
MKP.

Proof. In case (i), by Theorem 2.2.6, sptγ is c-cyclically monotone. Thus, by Theorem
2.2.8 there is ϕ :X → R∪{−∞} c-concave such that sptγ ⊆ ∂cϕ. Thus Ic(γ) = J(ϕ,ϕc)
and therefore (ϕ,ϕc) is a maximizing pair of the dual MKP.
In case (ii), for γ ∈ Π(µ,ν) we have

Ic(γ)≤ sup
(x,y)∈X×Y

c(x,y)<+∞,

thus an optimal transference plan (which exists by Theorem 2.1.5) is finite and we can
apply (i) to complete this proof. �

Corollary 2.2.10 (c-cyclically monotone transference plans are optimal). Let X, Y be
Polish spaces and µ, ν probability measures on X respectively Y . Let c :X×Y → [0,+∞]
be a continuous cost function. If a transference plan γ ∈Π(µ,ν) has c-cyclically monotone
support, then it is optimal.

Proof. Since γ has c-cyclically monotone support, by Theorem 2.2.8, there is a c-concave
function ϕ (which is measurable since c is continuous and therefore ϕ is upper semi-
continuous) such that sptγ ⊆ ∂cϕ, thus ϕ(x)+ϕc(y) = c(x,y) γ-almost everywhere. Hence
we get

Ic ≥ J(ϕ,ϕc) = Ic(γ),

Therefore γ is optimal. �

Example 2.2.11 (Continuation of Example 2.1.12). We recall the previous example.
Let

X = [0,1]×{0} and Y = [0,1]×{±1}.
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2.3. Optimal Transport on the Real Line

Let µ be uniformly distributed on X and ν be uniformly distributed on Y . Furthermore,
let the cost function be c((x,0),(y,z)) = (x− y)2 + 1. We have previously constructed
a transference plan γ ∈ Π(µ,ν) such that Ic(γ) = 1. We will now use the Kantorovich
duality to prove that γ is optimal. Let ϕ : X → R and ψ : Y → R defined by ϕ(x) = 1

2
and ψ(y) = 1

2 . Then ϕ(x) +ψ(y) = 1≤ c(x,y) and

J(ϕ,ψ) =
∫
X

ϕdµ+
∫
Y

ψdν = 1
2µ(X) + 1

2ν(Y ) = 1 = Ic(γ).

Thus γ is optimal and (ϕ,ψ) is a maximizing pair in the dual Problem. We have also
just proved the claim we made in 2.1.2 that the optimal cost of the Monge Problem is
equal to Ic = 1.

2.3 Optimal Transport on the Real Line

In this section we consider the MKP on the real line. The results we obtain will help us,
when we treat the MKP on the circle. On the real line the Optimal Transport Problem
can be solved explicitly for cost functions of the form c(x,y) = λ(|x− y|), where λ is
strictly convex, non-negative and increasing.

Definition 2.3.1 (Cumulative distribution function and generalized inverse). Let µ be
a probability measure on R. Fµ : R→ [0,1], defined by

Fµ(x) := µ((−∞,x]), (2.10)

is called the cumulative distribution function of µ.
The function F−1

µ : [0,1]→ R∪{±∞} defined by

F−1
µ (y) := inf{x ∈ R|y < Fµ(x)} (2.11)

is called the generalized inverse of Fµ.

Remark 2.3.2.

1. Fµ as well as F−1
µ are right-continuous and non-decreasing.

2. One can reconstruct µ from Fµ in the following way: For a≤ b we have µ((a,b]) =
Fµ(b)−Fµ(a) and the sets (a,b] generate all Borel sets on R.
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F−1
µFµ

Figure 2.6: The cumulative distribution function Fµ and its generalized inverse F−1
µ of a

measure µ.

3. If µ is absolutely continuous with respect to the Lebesgue measure L1 on R, then
µ does not assign mass to points and Fµ is continuous. Further, Fµ(F−1

µ (t)) = t.

4. F−1
µ (a) = −∞ if and only if a = 0 respectively F−1

µ (b) = +∞ only if b = 1, thus
F−1
µ is real valued on the open interval (0,1).

5. Sometimes the generalized inverse is defined by F−1
` (y) := inf{x ∈ R|y ≤ Fµ(x)};

then F−1
` is left-continuous instead of right-continuous.

Definition 2.3.3 (Monotone sets). We call a set Γ⊆ R2 monotone if and only if for
each (x1,y1), (x2,y2) ∈ Γ

(x1−x2)(y1−y2)≥ 0,

or equivalently, if x1 < x2 implies y1 ≤ y2 and y1 < y2 implies x1 ≤ x2.

Remark 2.3.4. Monotone sets can be considered as the complete graphs of monotone
functions. For instance if f : R→ R is increasing, then its graph is a monotone set if we
add the segments [f(x−),f(x+)] for all x ∈ R where f is discontinuous (see figure 2.7).
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Γf

Figure 2.7: A monotone set Γ is the complete graph of a non-decreasing function f .

Lemma 2.3.5 (Monotonicity vs. c-cyclical monotonicity). Let c(x,y) = λ(|x−y|) be a
cost function.

(i) If λ is convex, increasing and non-negative, then every monotone set Γ ⊆ R2 is
c-cyclically monotone.

(ii) If λ is also strictly convex, then every c-cyclically monotone set Γ⊆R2 is monotone
as well.

Proof.

1. Assume λ to be strictly convex. First we show that

c(x1,y1) + c(x2,y2)< c(x1,y2) + c(x2,y1) (?)

if and only if

(x1−x2)(y1−y2)> 0.

If we assume x1 < x2 we will need to show that (?) is true exactly for y1 < y2. To
prove this, we will look at all the possible alignments of the points x1, x2, y1 and
y2. Let

a := |x2−y1|, b := |x1−y1|, c := |x2−y2|, d := |x1−y2|.
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So, to prove (?), we need to show

λ(b) +λ(c)< λ(a) +λ(d).

Case (i): If x1 < x2 ≤ y1 < y2, we get

a < b < d and a < c < d.

We see that

b= d− b
d−a

a+ b−a
d−a

d,

c= d− c
d−a

a+ c−a
d−a

d,
c

x1 x2 y2y1

a
d

b

with

d− b
d−a

+ b−a
d−a

= 1 and 0< d− b
d−a

< 1

as well as

d− c
d−a

+ c−a
d−a

= 1 and 0< d− c
d−a

< 1.

Now, since λ is strictly convex, we get

λ(b)< d− b
d−a

λ(a) + b−a
d−a

λ(d),

λ(c)< d− c
d−a

λ(a) + c−a
d−a

λ(d).

By taking the sum of these inequalities, and since a+d= b+ c, we get

λ(b) +λ(c)< λ(a) +λ(d).

Case (ii): If x1 ≤ y1 < x2 ≤ y2, we get

a+ b+ c= d.

We see that d > b and d > c. Since λ is strictly increasing
we get λ(d)> λ(b) and λ(d)> λ(c). So, if either a≥ b or
a≥ c, we also get λ(a)≥ λ(b) or λ(a)≥ λ(c). c

x1 y2

a
d

y1 x2

b
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Therefore

λ(a) +λ(d)> λ(b) +λ(c).

Otherwise, we have a < b,c < d and can use the same procedure as in case (i)
to get

λ(b)< d− b
d−a

λ(a) + b−a
d−a

λ(d),

λ(c)< d− c
d−a

λ(a) + c−a
d−a

λ(d).

We obtain

λ(b) +λ(c)< 2d− b− c
d−a

λ(a) + b+ c−2a
d−a

λ(d).

Using the equation a+ b+ c= d we can rewrite this to

λ(b) +λ(c)<
(

1 + 2a
d−a

)
λ(a) +

(
1− 2a

d−a

)
λ(d)

= λ(a) +λ(d) + 2a
d−a

(λ(a)−λ(d))< λ(a) +λ(d),

where in the last inequality we used the fact that λ(a)< λ(d).

Case (iii): If x1 ≤ y1 < y2 ≤ x2, we get

b < d and c < a.

Thus λ(b) + λ(c) < λ(a) + λ(d), because λ is a strictly
increasing function.

a

x1 y1

b c

y2 x2

d

Case (iv): All other cases can be reduced to one of the cases (i) - (iii) by setting
(x′1,y′1) := (y1,x1) and (x′2,y′2) := (y2,x2).

2. If Γ is c-cyclically monotone, then for (x1,y1), (x2,y2) ∈ Γ we have

c(x1,y1) + c(x2,y2)≤ c(x1,y2) + c(x2,y1).
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Using step 1. we can deduce that this either implies x1 = x2 or y1 = y2 and therefore

(x1−x2)(y1−y2) = 0,

or

(x1−x2)(y1−y2)> 0.

So c-cyclically monotone sets are monotone.

3. Now assume λ to be convex, increasing and non-negative and Γ to be monotone.
We can argue as in 1. to see that

(x1−x2)(y1−y2)> 0

implies

c(x1,y1) + c(x2,y2)≤ c(x1,y2) + c(x2,y1).

We need to show that
n∑
i=1

c(xi,yi)≤
n∑
i=1

c(xi,yi+1). (??)

for arbitrary (x1,y1), (x2,y2), . . ., (xn,yn) ∈ Γ.
We will prove this by induction on n. For n= 1 we have nothing to show. Let n > 1
and assume that (??) holds for n−1. Let (x1,y1), . . . , (xn,yn) ∈ Γ be arbitrary
and choose k ∈ {1, . . . ,n} to be the index of the largest yi, i.e.

yk = max
i=1,...,n

{yi}.

We will show

c(xk−1,yk) + c(xk,yk+1)≥ c(xk−1,yk+1) + c(xk,yk). (???)

By definition of k we have yk ≥ yk−1 and by using the monotonicity of Γ we obtain
xk ≥ xk−1. We also have yk ≥ yk+1 thus

(xk−xk−1)(yk−yk+1)≥ 0
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which implies (???).
Now put

(xi,yi) :=

 (xi,yi) if i < k,

(xi+1,yi+1) if i≥ k.

Then

n∑
i=1

c(xi,yi+1)≥ c(xk,yk) +
n−1∑
i=1

c(xi,yi+1).

Using our induction hypothesis for n−1 yields

c(xk,yk) +
n−1∑
i=1

c(xi,yi+1)≥ c(xk,yk) +
n−1∑
i=1

c(xi,yi) =
n∑
i=1

c(xi,yi).

Hence (??) holds for n, which completes our induction. Thus Γ is c-cyclically
monotone. �

Example 2.3.6. Let c(x,y) = λ(|x− y|) be a convex cost function (i.e. λ is convex,
non-negative and increasing), µ the Lebesgue measure on [0,1] and ν the Lebesgue
measure on [1,2]. Consider the transport plans

T1 :

 [0,1] → [1,2],
x 7→ x+ 1,

and

T2 :

 [0,1] → [1,2],
x 7→ 2−x.

The support of γT1 is the graph of the function T1.
Therefore the support of γT1 is a monotone set and
since λ is convex, it is also c-cyclically monotone and
hence γT1 is optimal.

T1

T2

Let c(x,y) = |x−y|, i.e. c is convex but not strictly convex. Then the cost of T1 resp. T2
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2.3. Optimal Transport on the Real Line

is given by

Ic(γT1) =
1∫

0
c(t,T1(t))dt= 1,

Ic(γT2) =
1∫

0
c(t,T2(t))dt=

1∫
0
|2t−2|dt= 1.

Thus T1 as well as T2 are optimal transport plans. Since γT2 is optimal, it has a c-cyclically
monotone support. Thus the graph of the function T2 is a c-cyclically monotone set,
but it obviously is not monotone. This shows that the distinction between convex and
strictly convex cost functions in Lemma 2.3.5 is necessary.
We could also use the Kantorovich Duality to show that the optimal cost is equal to 1:
Choose ϕ(x) =−x and ψ(y) = y. Then

ϕ(x) +ψ(y) = y−x= |x−y|= c(x,y), ∀x ∈ [0,1],y ∈ [1,2]

and

J(ϕ,ψ) =
1∫

0
ϕ(x)dx+

2∫
1
ψ(y)dy = 1.

This also shows that T1 and T2 are optimal.
If we choose c(x,y) = |x− y|2, then c is a strictly convex cost function and γT1 is still
optimal. Since γT2 has non-monotone support, it cannot be optimal. If it were optimal,
its support would necessarily be c-cyclically monotone and therefore, since c is strictly
convex, also monotone – a contradiction. And indeed the costs are

Ic(γT1) =
1∫

0
|x− (x+ 1)|2dx= 1,

Ic(γT2) =
1∫

0
|2x−2|2dx= 1 + 1

3 .

Thus T2 is not optimal.

Theorem 2.3.7 (MKP on the real line for strictly convex cost function).
Let µ, ν be two probability measures on R and c(x,y) = λ(|x−y|) a convex cost function
(i.e. λ is convex, non-negative and increasing). We define a probability measure γ∗ on
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2.3. Optimal Transport on the Real Line

R2 by

γ∗ :=
(
F−1
µ ×F−1

ν

)
#L1, (2.12)

where L1 is the Lebesgue measure on R. Then γ∗ ∈Π(µ,ν), i.e. γ∗ is a transference plan
and if Ic(γ∗)<+∞ then it is optimal. In this case, the optimal transport cost is given by

Ic = Ic(γ∗) =
∫
R×R

c(x,y)dγ∗(x,y) =
1∫

0
λ(|F−1

µ (t)−F−1
ν (t)|)dt.

Furthermore, if µ is absolutely continuous with respect to L1, then

T := F−1
ν ◦Fµ (2.13)

is an optimal transport plan, i.e. Ic(γT ) = Ic(γ∗).

Proof. The following proof was given by Villani in [Vil03](Theorem 2.18).

1. First we check that γ∗ is a transference plan from µ to ν. For the set R(x,y) =
(−∞,x]× (−∞,y] we have

γ∗(R(x,y)) = L1{t ∈ [0,1]|F−1
µ (t)≤ x and F−1

ν (t)≤ y}

= min(Fµ(x),Fν(y)),

since {t ∈ [0,1]|F−1
µ (t)≤ x} is either [0,Fµ(x)] or [0,Fµ(x)) and analogously for ν.

Therefore

γ∗((−∞,x]×R) = Fµ(x) and γ∗(R× (−∞,y]) = Fν(y),

which implies γ∗(A×R) = µ(A) and γ∗(R×B) = ν(B) for measurable A and B,
so γ∗ is a transference plan.

2. We will show, for (x,y) ∈ spt(γ∗), that

Fµ(x−)≤ Fν(y) and Fν(y−)≤ Fµ(x).

Assume that Fµ(x−) > Fν(y). Now, since Fν is right-continuous and Fµ as well
as Fν are non-decreasing, for x′ in a small neighborhood of x and y′ in a small
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2.3. Optimal Transport on the Real Line

neighborhood of y, we get that Fµ(x′)>Fν(y′) and therefore γ∗(R(x′,y′)) = Fν(y′).
So for a sufficiently small rectangle (x′,x′′]×(y′,y′′] with x′ <x<x′′ and y′ < y < y′′

we have

γ∗((x′,x′′]× (y′,y′′]) = γ∗(R(x′′,y′′))−γ∗(R(x′,y′′))−γ∗(R(x′′,y′)) +γ∗(R(x′,y′))

= Fν(y′′)−Fν(y′′)−Fν(y′) +Fν(y′) = 0.

Thus (x,y) < spt(γ∗).

3. We will now show that γ∗ has c-cyclical monotone support and, since Ic(γ∗) is
finite, is therefore optimal (see Corollary 2.2.10). Let (x1,y1), (x2,y2) ∈ spt(γ∗)
and assume that x1 < x2. Since the cost function is convex it is sufficient to show
that y1 ≤ y2 (see Lemma 2.3.5). We can use the previous step to deduce

Fν(y−1 )≤ Fµ(x1)≤ Fµ(x−2 )≤ Fν(y2).

If Fν(y−1 )< Fν(y2), then y1 ≤ y2 and we are done.
Otherwise, necessarily Fν(y1) = Fµ(x−1 ) = Fµ(x2) = Fν(y−2 ). We will assume y1 > y2

and show, that (x1,y1) can not belong to spt(γ∗). Since Fµ(x1) = Fµ(x−2 ) we see
that Fµ is constant on [x1,x2) and because of Fν(y−1 ) = Fν(y2) we see that Fν is
constant on [y2,y1). So if we consider the rectangle (x1− ε,x1 + ε]× (y1− ε,y1 + ε],
then for ε small enough we get

Fµ(x1− ε)≤ Fµ(x1 + ε) = Fµ(x1) = Fν(y−1 ) = Fν(y1− ε)≤ Fν(y1 + ε).

Thus we have

γ∗((x1− ε,x1 + ε]× (y1− ε,y1 + ε])

= γ∗(R(x1 + ε,y1 + ε))−γ∗(R(x1− ε,y1 + ε))

−γ∗(R(x1 + ε,y1− ε)) +γ∗(R(x1− ε,y1− ε))

= Fµ(x1 + ε)−Fµ(x1− ε)−Fµ(x1 + ε) +Fµ(x1− ε) = 0,

and therefore (x1,y1) < spt(γ∗), which is a contradiction.

4. If µ is absolutely continuous, then Fµ is continuous and Fµ(F−1
µ (t)) = t. Therefore,

letting T = F−1
ν ◦Fµ, we will show that ρ := (id×T )#µ coincides with γ∗. Let
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2.3. Optimal Transport on the Real Line

u(x,y) be a measurable function on R2, then
∫
u(x,y)dρ(x,y) =

∫
u(x,T (x))dµ(x)

=
∫
u(x,F−1

ν ◦Fµ(x))dµ(x)

=
∫
u(F−1

µ (t),F−1
ν ◦Fµ ◦F−1

µ (t))dt

=
∫
u(F−1

µ (t),F−1
ν (t))dt=

∫
u(x,y)dγ∗(x,y),

where we used the substitution F−1
µ (t) = x. �
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Chapter 3

Optimal Transport on the n-Sphere

In this chapter we will study the MKP on the n-sphere Sn. We will restrict ourselves to
cost functions c of the form c(x,y) = λ(d(x,y)), where d : Sn×Sn→ [0,π] is the chord
length metric on Sn, i.e.

d(x,y) := arccos(〈x,y〉), ∀x,y ∈ Sn (3.1)

and λ : [0,π]→ [0,+∞) is a strictly convex, non-negative and increasing function. We
will call such cost functions strictly convex. To prove our main Theorem we will also
require λ to satisfy some more conditions (see Proposition 3.4.2).

Let c be a strictly convex cost function and µ, ν probability measures on Sn. Then c is
obviously bounded and continuous. By Theorem 2.1.5 there is an optimal transference
plan γ∗ ∈ Π(µ,ν) and by Corollary 2.2.9 there is also a c-concave function ϕ : Sn→ R
that maximizes the dual MKP, thus

Ic(γ∗) = J(ϕ,ϕc).

In the sequel we will show that if µ is absolutely continuous with respect to σn, where
σn denotes the volume measure on Sn, then there is a σn-a.e. uniquely determined
optimal transport plan T : Sn→ Sn that solves the MKP.

But first we will consider the 1-dimensional case of the circle.
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3.1. Optimal Transport on the Circle

3.1 Optimal Transport on the Circle

In this section we will study the MKP on the circle for strictly convex cost functions.
We will use the results of Theorem 2.3.7. To do so, we will basically ’cut’ the circle at
some point and unwind it onto the real line.

First we consider the map ι : R→ S1 defined by

ι(t) := [cos(2πt),sin(2πt)]>.

For any η ∈ R the restriction ιη := ι �(η,η+1] is a bijective
mapping.
Given a probability measure µ on S1, we can use ι to define a
measure µ̃ on R by

1t0

ι(0) = ι(1)

ι(t)

µ̃(A) := µ(ι(A))

whenever A is a Borel set contained in an interval (η,η+ 1] or [η,η+ 1). Thus µ̃ is
a periodic Borel measure on R, with measure equal to 1 over any period (η,η+ 1] or
[η,η+ 1). Furthermore, ιη#µ̃= µ.
We define a function Fµ : R→ R by

Fµ(t) := µ̃((0, t]) for t ∈ (0,1],

and we extend this definition to R by Fµ(t+ z) = Fµ(t) + z, for all z ∈ Z. Thus, for
(a,b]⊆ (η,η+ 1], we have Fµ(b)−Fµ(a) = µ̃((a,b]).
We define F ηµ : [η,η+ 1]→ [0,1] by

F ηµ (t) := Fµ(t)−Fµ(η),

then F ηµ is the cumulative distribution function of the probability measure µ̃ �(η,η+1] (see
Definition 2.3.1). We also define

(
F ηµ
)−1

: [0,1]→ [η,η+ 1] by

(
F ηµ
)−1

(y) := inf{x ∈ R|y < F ηµ (x)},

where we set
(
F ηµ
)−1

(1) := η+ 1.
(
F ηµ
)−1

maps into [η,η+ 1], because F ηµ (x) = 0 for
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µ
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Figure 3.1: Example for a distribution function Fµ of a periodic measure µ̃. F ηµ can be
seen as a snapshot of Fµ.

x ≤ η and thus we have
(
F ηµ
)−1

(0) ≥ η. Also, since F ηµ (x) = 1 for x ≥ η+ 1 we have(
F ηµ
)−1

(1−)≤ η+ 1. If we recall Definition 2.3.1 then we notice that
(
F ηµ
)−1

(y) is the
generalized inverse of F ηµ on [η,η+ 1].
If µ and ν are probability measures on S1, we can consider the measures µ̃ on (0,1] and ν̃
on (η,η+1] and their distribution functions F 0

µ respectively F ην . Using Theorem 2.3.7 we
see that, independent of the strictly convex cost function we use, an optimal transference
plan is given by

γ̃η =
((
F 0
µ

)−1
× (F ην )−1

)
#L1,

because ∣∣∣∣(F 0
µ

)−1
(t)− (F ην )−1 (t)

∣∣∣∣≤ η+ 2

and therefore Ic(γ̃η)<+∞, i.e. γ̃η is finite. This plan induces a transference plan on S1
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3.1. Optimal Transport on the Circle

by defining γη := (ι0× ιη)#γ̃η, because

γη(A×S1) = γ̃η(ι−1
0 (A)× (η,η+ 1]) = ι0#µ̃(A) = µ(A),

γη(S1×B) = γ̃η((0,1]× ι−1
η (B)) = ιη#ν̃(B) = ν(B),

for measurable A and B. Also, if c(x,y) is a cost function on S1, we get
∫

S1×S1

cdγη =
∫

(0,1]×(η,η+1]

c(ι(s), ι(t))dγ̃η(s, t)

=
∫

(0,1]×(η,η+1]

c
(
ι
((
F 0
µ

)−1
(t)
)
, ι
(
(F ην )−1 (t)

))
dµ(t).

So if we define c̃(s, t) := c(ι(s), ι(t)) we get

Ic(γη) =
∫

S1×S1

cdγη =
∫

(0,1]×(η,η+1]

c̃dγ̃η = Ic̃(γ̃η).

Theorem 3.1.1 (Optimal Transport on S1 for strictly convex cost function). Let µ, ν
be probability measures on S1 and c(x,y) = λ(d(x,y)) a convex cost function (i.e. λ is a
convex, non-negative and increasing function). Then there exists θ ∈ [−1

2 ,
1
2 ] such that

the transference plan γθ is optimal. The optimal transport cost is given by

Ic = Ic̃(γ̃θ) =
1∫

0
c̃
((
F 0
µ

)−1
(t),

(
F θν
)−1

(t)
)
dt. (3.2)

If µ is absolutely continuous with respect to σ1, then T : S1→ S1 defined by

T := ιθ ◦
(
F θν
)−1
◦F 0

µ ◦ ι−1
0 (3.3)

is an optimal transport plan.
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3.1. Optimal Transport on the Circle

Proof. Let κ be an optimal transference plan (which exists by Theorem 2.1.5), thus
Ic = Ic(κ).

1. Since every transference plan γ̃η on R leads to a transference plan γη on S1 and
because Ic(γη) = Ic̃(γ̃η), we get

Ic(κ) = inf
γ∈Π(µ,ν)

Ic(γ)≤ inf
−1

2≤α≤
1
2

Ic̃(γ̃η).

2. Next we show that κ in turn induces a transference plan on R. For θ ∈ [−1
2 ,

1
2 ] we

define κ̃θ on Rθ := (0,1]× (θ,θ+ 1] by setting

κ̃θ(A) = κ((ι× ι)(A))

for every Borel set A⊆Rθ. This is a transference plan between µ̃ on (0,1] and ν̃
on (θ,θ+ 1], because

κ̃θ(A× (θ,θ+ 1]) = κ(ι(A)×S1) = µ(ι(A)) = µ̃(A),

κ̃θ((0,1]×B) = κ(S1× ι(B)) = ν(ι(B)) = ν̃(B).

We also see that (ι0× ιθ)#κ̃θ = κ.

3. We show that c̃(s, t) is a convex cost function for s, t ∈ Γ := {(s, t) ∈ R2||s− t| ≤ 1
2}.

For s, t ∈ R there exist n ∈ N such that |s− t| ∈ (n,n+ 1] and either |s− t|−n≤ 1
2

or n+ 1−|s− t|< 1
2 . Further, we get

d(ι(s), ι(t)) = arccos
 cos(2πs)

sin(2πs)

 ·
 cos(2πt)

sin(2πt)


= arccos(cos(2πs)cos(2πt) + sin(2πs)sin(2πt))

= 2πmin{|s− t|mod1,1− (|s− t|mod1)}.

So, for s, t ∈ Γ the cost function c̃ is convex, because

c̃(s, t) = λ(d(ι(s), ι(t))) = λ(2π|s− t|).
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3.1. Optimal Transport on the Circle

4. Next we show that there exists θ ∈ [−1
2 ,

1
2 ] such that spt(κ̃θ)⊆ Γ. To prove this,

assume no such θ exists. Then there exist pairs

(s1, t1),(s2, t2) ∈
⋃

θ∈[−1
2 ,

1
2 ]

spt(κ̃θ)⊆ (0,1]× (−1
2 ,

3
2 ]

with s1 < s2, t1 ≤ t2, |s1− t1| ≤ 1
2 and t2 < s2− 1

2 . So
either (s2, t2) ∈ spt(κ̃θ) or (s1, t1 + 1) ∈ spt(κ̃θ), but
in either case, since |s2− t2|> 1

2 and |s1− t1−1|> 1
2 ,

we get (s2, t2) < Γ and (s1, t1 + 1) < Γ.
We show that this contradicts the c-cyclical mono-
tonicity of the support of κ and therefore its optimal-
ity. We know that

3
2

(s2, t2 + 1)

(s1, t1 + 1)

(s1, t1)

Γ

0 1

−1
2

1
2

1

(s2, t2)

c̃(s1, t1) = λ(2π|s1− t1|) and c̃(s2, t2) = λ(2π|s2− t2−1|).

Because of

−1
2 ≤ s1− s2 + 1

2 ≤ s1− t2 ≤ s1− t1 ≤1
2

−1
2 ≤ s2− t2−1 ≤ s2− t1−1 ≤ s2− s1− 1

2 ≤1
2

we also get

c̃(s1, t2) = λ(2π|s1− t2|) and c̃(s2, t1) = λ(2π|s2− t1−1|).

We know that s2−1< s1 and t1 ≤ t2, therefore

c̃(s1, t2) + c̃(s2, t1)< c̃(s1, t1) + c̃(s2, t2).

Now, since (s, t) ∈ spt(κ̃θ) implies (ι(s), ι(t)) ∈ spt(κ) this inequality implies, that
for (ι(s1), ι(t1)) and (ι(s2), ι(t2)) κ is not c-cyclically monotone. But since an
optimal transference plan is always c-cyclically monotone, our initial assumption
has to be wrong and there exists θ ∈ [−1

2 ,
1
2 ] such that spt(κ̃θ)⊆ Γ.
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3.1. Optimal Transport on the Circle

5. In 2. we saw that κ̃θ is a transference plan between µ̃ on (0,1] and ν̃ on (θ,θ+ 1].
Now, for any convex cost function c we know by Theorem 2.3.7 that an optimal
transference plan is given by γ̃θ =

(
F−1
µ ×

(
F θν
)−1)

#L and therefore

Ic(γ̃θ)≤ Ic(κ̃θ).

So if we extend λ : [0,π]→ [0,∞) by defining

λ(x) = λ(π) + λ′−(π)
2 (x−π)2

for x > π (we recall that λ′− is the left derivative, see Definition 1.2.3), then
λ : [0,+∞)→ [0,+∞) is still convex, non-negative and increasing. Thus we can
define the convex cost function

c(s, t) = λ(2π|s− t|)

and we have c= c̃ on Γ. Hence we get

Ic(γ̃θ) = inf
γ∈Π(µ̃,ν̃)

Ic(γ)≤ Ic(κ̃θ) = Ic̃(κ̃θ) = Ic(κ)<+∞.

On the other hand, because of c≥ c̃, we have

Ic(γ̃θ)≥ Ic̃(γ̃θ) = Ic(γθ)≥ Ic(κ),

where the last inequality follows because κ is optimal. Thus we can conclude

Ic(γθ) = Ic(κ)

and therefore γθ is optimal.

6. Finally, if µ is absolutely continuous with respect to σ1, then µ̃ is absolutely
continuous with respect to L1 and by Theorem 2.3.7 the map T̃ : [0,1]→ [θ,θ+ 1]
defined by

T̃ =
(
F θν
)−1
◦F 0

µ

is an optimal transport plan between µ̃ on (0,1] and ν̃ on (θ,θ+ 1]. Thus T , as
defined in (3.3), is an optimal transport between µ and ν. �
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Example 3.1.2. Consider the quadratic cost function c(x,y) = 1
2d(x,y)2 and let µ be the

uniform probability measure on the upper half of the circle and ν the uniform probability
measure on the lower half of the circle. Then the cumulative distribution functions are
given by

F 0
µ(x) =

 2x if x ∈ [0, 1
2),

1 else,

and

F 0
ν (x) =

 0 if x ∈ [0, 1
2),

2x−1 else,
0 1

2
1

0

1

Fµ Fν

For η ∈ [−1
2 ,0) the inverse of F ην is given by

(F ην )−1 (x) =


1
2x+η if x ∈ [0,−2η),

1
2(x+ 1) +η if x ∈ [−2η,1],

and for η ∈ [0, 1
2 ] the inverse is given by

(F ην )−1 (x) =


1
2(x+ 1) if x ∈ [0,1),

1 +η if x= 1.
1
2

1
0

1
2

1
η = − 1

4

η = − 1
8

η = 0

η = 1
8

η = 1
4(F ην )−1

Thus for η ∈ [−1
2 ,0) the transport map Tη := (F ην )−1 ◦Fµ

is given by

Tη(x) =


x+η if x ∈ [0,−η),

x+η+ 1
2 if x ∈ [−η, 1

2),
η+ 1 if x ∈ [1

2 ,1],

and for η ∈ [0, 1
2 ] the transport map is

Tη(x) =

 x+ 1
2 if x ∈ [0, 1

2),
η+ 1 if x ∈ [1

2 ,1].

1
2

1
0

1
2

1
η = − 1

4

η = − 1
8

η = 0

η = 1
8

η = 1
4Tη
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dµ

dν

dν̃
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1

0

0
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40

dµ̃

T̃
−1
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Figure 3.2: Sketch of the solution of Example 3.1.2.

We get

Ic(γTη) =

 π2(6η2 + 3η+ 1
2) if η ∈ [−1

2 ,0),
1
2π

2 if η ∈ [0, 1
2 ].

This expression becomes minimal for η =−1
4 and therefore

T
−1

4
is an optimal transport plan. One can think of T

−1
4

in the following way: First we cut the circle at the bottom
(ι(−1

4) = (0,−1)⊥). Then we move in a counter-clockwise
direction from there and transport µ to ν monotonously.

−1
2 −

1
4

0 1
2

2

4

Ic(γTη)
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3.2 Calculus on the n-Sphere

Definition 3.2.1 (Differentiability in Rn). A function f : Rn→ Rm is called differen-
tiable at x ∈ Rn if there is a linear function Lx : Rn→ Rm such that

lim
y→x
‖f(y)−f(x)−Lx(y−x)‖

‖y−x‖
= 0, (3.4)

or, equivalently, if

f(x+h) = f(x) +Lx(h) + o(‖h‖). (3.5)

Lx will be denoted by Df(x), the derivative of f in x. Furthermore, since Df(x) is
linear, there is a matrix df(x) ∈ Rm×n such that

Df(x)(h) = df(x)h. (3.6)

We call this uniquely determined matrix the Jacobian of f in x.
If f : Rn→ R then df(x) ∈ R1×n is a vector called the gradient of f in x, we denote it
by ∇f(x).

Next we will give a similar definition for functions defined on Sn. To do so we need to
introduce the concept of tangent-space.

Definition 3.2.2 (Tangent space). The space of tangent vectors of Sn at a point x ∈ Sn

is

TxS
n := {v ∈ Rn+1| 〈v,x〉= 0}. (3.7)

Further, we denote the set of unit tangent
vectors by

UxS
n := {v ∈ TxS

n|‖v‖= 1}. (3.8)

Sn

TxS
n

x

UyS
n

In the Euclidean case we defined differentiability by the approximation property (3.5). We
can use a similar approximation on Sn to define differentiability for real-valued spherical
functions.
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Definition 3.2.3 (Differentiability in Sn). The function ψ : Sn→ R is called differen-
tiable at x ∈ Sn if there exists a unique vector p ∈ TxS

n such that

ψ(cos(α)x+ sin(α)v) = ψ(x) +α 〈p,v〉+ o(α) (3.9)

for all α > 0 and v ∈UxS
n. In this case we will denote p by ∇ψ(x), the gradient of ψ

in x.

We should note here that for x ∈ Sn and v ∈ UxS
n the path σx,v : R→ Sn defined by

σx,v(t) := cos(t)x+ sin(t)v

is geodesic1, i.e. d(x,σx,v(t)) = t for t ∈ [0,π].
This is similar to (3.5) where x+h can be
interpreted as a geodesic path, i.e. a straight
line from x to x+h.This similarity is no coin-
cidence since both Rn and Sn are Riemannian
manifolds and on Riemannian manifolds dif-
ferentiability of a function can be expressed
by a condition similar to (3.5) resp. (3.9).

Sn

α

x
σ
x,v (t)

v

We will now give some equivalent conditions for differentiability of functions on Sn.

Proposition 3.2.4. Let ψ : Sn → R be a function and ψ∗ : Rn+1\{0} → Sn the 0-
homogenous extension of ψ from Sn to Rn+1\{0} given by

ψ∗(z) = ψ( z
‖z‖).

Then ψ∗ is differentiable at x if and only if ψ is differentiable at x. Further, in this case
∇ψ∗(x) =∇ψ(x).

Proof.

1. If ψ∗ is differentiable at x ∈ Sn we fix an arbitrary unit vector v ∈ UxS
n and define

a function g(α) := cos(α)x+sin(α)v. Using the first order Taylor-approximation of

1A path is geodesic if and only if it is locally the shortest connection between curve points.
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3.2. Calculus on the n-Sphere

ψ∗ ◦g in 0 we get

ψ(cos(α)x+ sin(α)y) = ψ∗ ◦g(α) = ψ(x) +αd(ψ∗ ◦g)(0) + o(α)

= ψ(x) +α 〈∇ψ∗(x),v〉+ o(α).

For ∇ψ∗(x) to be the gradient it has to satisfy (3.9). Thus we have to check
∇ψ∗(x) ∈ TxS

n. Since ψ∗ is constant along rays from the origin, the gradient
∇ψ∗(x) is orthogonal to x and therefore indeed ∇ψ(x) =∇ψ∗(x).

2. Let ψ be differentiable at x. We want to show that

ψ∗(z)−ψ(x)−〈∇ψ(x), z−x〉= o(‖z−x‖), (3.10)

for z→ x. To prove this, we set z′ = z
‖z‖ , α = d(x,z′), v = z−〈z,x〉x

‖z−〈z,x〉x‖ and get

ψ∗(z)−ψ(x) = ψ(z′)−ψ(x) = ψ(cos(α)x+ sin(α)v)−ψ(x) = α 〈p,v〉+ o(α),

〈∇ψ(x), z−x〉= ‖z‖sinα 〈∇ψ(x),v〉 ,

‖z−x‖=
√
‖z‖2 + 1−2‖z‖cos(α).

Combining these equations we get

lim
z→x

ψ∗(z)−ψ(x)−〈∇ψ(x), z−x〉
‖z−x‖

= lim
‖z‖→1,α→0

(α−‖z‖sinα)〈∇ψ(x),v〉+ o(α)√
‖z‖2 + 1−2‖z‖cos(α)

= 0,

proving the differentiability of ψ∗ at x. �

Next we will relax the condition (3.9) to extend the concept of differentiability.

Definition 3.2.5 (Superdifferentiability and supergradient). Let ϕ : Sn→R be a function
and fix a point x ∈ Sn. ϕ is called superdifferentiable at x with supergradient
p ∈ TxS

n if for all v ∈ UxS
n and α > 0

ϕ(cos(α)x+ sin(α)v)≤ ϕ(x) +α 〈p,v〉+ o(α) as α→ 0. (3.11)
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3.2. Calculus on the n-Sphere

Further, we denote the superdifferential of ϕ at x by

∂xϕ := {p ∈ TxS
n|p is supergradient of ϕ at x}. (3.12)

Remark 3.2.6. By reversing the inequalities, we define subdifferentiability of a function
ϕ in x ∈ Sn with subgradient p ∈ TxS

n. Also, we define the subdifferential ∂xϕ as
the set of all subgradients of ϕ in x.

Now, if a function is super- as well as subdifferentiable at x, it is differentiable.

Lemma 3.2.7. Let ψ : Sn→ R be a function and x ∈ Sn arbitrary. If ψ is superdifferen-
tiable and subdifferentiable at x, then ψ is differentiable at x and ∂xψ = ∂xψ = {∇ψ(x)}.

Proof. Since ψ is superdifferentiable there is at least one p ∈ ∂xψ and because it is
subdifferentiable there also is at least one q ∈ ∂xψ. By combining the inequalities

ψ(cos(α)x+ sin(α)v)≤ ψ(x) +α 〈p,v〉+ o(α),

ψ(cos(α)x+ sin(α)v)≥ ψ(x) +α 〈q,v〉+ o(α),

we get

0≤ α 〈p− q,v〉+ o(α).

Dividing by α and letting α→ 0, we get 0≤ 〈p− q,v〉 and since v ∈ UxS
n is arbitrary,

we necessarily get p= q. Since p was arbitrarily chosen from ∂xψ we get ∂xψ = {q} and
analogously ∂xψ = {p}, so in fact ∂xψ = ∂xψ = {p}. Thus

ψ(cos(α)x+ sin(α)v) = ψ(x) +α 〈p,v〉+ o(α),

hence ψ is differentiable at x with gradient ∇ψ(x) = p. �
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3.3 Rademacher’s Theorem

In this section we will introduce a version of Rademacher’s Theorem on the sphere Sn.
First, we recall the classic version.

Theorem 3.3.1 (Rademacher’s Theorem). Let f : Rn → Rm be a locally Lipschitz-
continuous function. Then f is differentiable Ln-a.e. and df : Rn→ Rm×n is a Borel
map.

Idea of the poof. A rigorous proof can be found in [EG92], we will only state the general
idea. We can reduce the problem to Lipschitz-continuous functions f : Rn→ R. Let
v ∈ Sn−1 be an arbitrary direction and define

Dvf(x) := lim
k→∞

sup
0<|t|< 1

k
t∈Q

f(x+ tv)−f(x)
t

and

Dvf(x) := lim
k→∞

inf
0<|t|< 1

k
t∈Q

f(x+ tv)−f(x)
t

.

Then Dvf and Dvf are Borel maps and obviously Dvf ≤Dvf . We define

Av := {x ∈ Rn|Dvf(x)<Dvf(x)}.

Now the function ϕ : R→ R defined by ϕ(t) := f(x+ tv) is Lipschitz-continuous, therefore
absolutely continuous, thus differentiable L1-a.e. Hence Av ∩L has Hausdorff measure
zero for all lines L parallel to v. Using Fubini’s Theorem we conclude that Ln(Av) = 0,
thus the directional derivative

Dvf(x) = lim
t→0

f(x+ tv)−f(x)
t

exists for Ln-a.e. x and Dvf is a Borel map. Thus we can define

gradf(x) :=
(
∂f

∂x1
(x), . . . , ∂f

∂xn
(x)
)
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3.3. Rademacher’s Theorem

for Ln-a.e. x. gradf is also a Borel map.
Next, one shows that Dvf(x) = v ·gradf(x) for Ln a.e. x. Then, for v ∈ Sn−1, we define

Fv := {x ∈ Rn|Dvf and gradf exist and Dvf(x) = v ·gradf(x)}.

Thus for a countable dense subset (vk)k∈N ⊆ Sn−1 we define

F :=
⋂
k∈N

Fvk ,

and therefore Ln(Rn\F ) = 0. Finally one shows that gradf satisfies condition (3.4) on F
and therefore f is differentiable on F with gradient ∇f(x) = gradf(x). Since f is not
differentiable outside of Fv we also have that ∇f is a Borel map. �

Definition 1.2.1 also applies to functions f : Sn → Rm, since Sn ⊆ Rn+1. However, it
is more natural to link Lipschitz-continuity on the sphere to the chord length metric
d(x,y) = arccos(〈x,y〉).

Lemma 3.3.2. The function ψ : Sn+1→ Rm is Lipschitz-continuous if and only if there
is a constant B > 0 such that

‖ψ(x)−ψ(y)‖ ≤Bd(x,y) ∀x,y ∈ Sn. (3.13)

The smallest such constant is given by

Lips(f) := max
x,y∈Sn,x,y

‖ψ(x)−ψ(y)‖
d(x,y) ≤ Lip(f). (3.14)

Proof. We first notice that

d(x,y) = arccos
(

1− ‖x−y‖
2

2

)
.

Thus, since g(z) := arccos(1− z2

2 ) is an increasing convex
function on [0,2] with g(0) = 0 and g(2) = π

2 we have
g(z)≤ π

2 z. 0 1 2
0

π
2

π

g(z
)π

2
z z

On the other hand, we have

arccos(1− z2

2 )′ = 2√
4− z2 , for z ∈ [0,2),
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3.3. Rademacher’s Theorem

hence g′ ≥ 1 and increasing, thus g(z)≥ z. We can conclude that

‖x−y‖ ≤ d(x,y)≤ π
2 ‖x−y‖

and therefore condition (3.13) is equivalent to (1.5). Also

‖ψ(x)−ψ(y)‖
d(x,y) ≤ ‖ψ(x)−ψ(y)‖

‖x−y‖
≤ π

2
‖ψ(x)−ψ(y)‖

d(x,y)

and therefore Lips(f)≤ Lip(f)≤ π
2 Lips(f). �

Note that since Sn is compact, a locally Lipschitz-continuous map ψ : Sn→ Rm is always
Lipschitz-continuous.

To prove a version of Rademacher’s theorem on Sn we will use

Definition 3.3.3 (Hyperspherical coordinates). For the n-sphere Sn we define the
hypersperical coordinates ηN : U ⊆ Rn→ Sn centred in N := (0, . . . ,0,1) by

ηN1 (y) = sin(y1)

ηN2 (y) = cos(y1)sin(y2)
...

ηNn (y) = cos(y1)cos(y2) . . .cos(yn−1)sin(yn)

ηNn+1(y) = cos(y1)cos(y2) . . .cos(yn−1)cos(yn)

where U := [−π2 ,
π
2 ]n−1× [−π,π).

Furthermore, we define coordinates centered in x ∈ Sn by setting ηx(y) = Gx · ηN (y)
where Gx ∈ SO(n+ 1) with Gx ·N = x, thus ηx(0) = x (Note that Gx is not unique!).
The inverse map ζN = (ηN )−1 is given by

ζN1 (x) = arctan
 x1√

x2
n+1 + . . .+x2

2


ζN2 (x) = arctan

 x2√
x2
n+1 + . . .+x2

3


...
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3.3. Rademacher’s Theorem

ζNn−1(x) = arctan
 xn−1√

x2
n+1 +x2

n


ζNn (x) = 2arctan

 xn√
x2
n+1 +x2

n+xn+1


and we note that ζx(z) = ζN (G>x z). Also, ηx as a function from the interior of its domain
to Rn+1, is C∞ in the Euclidean sense. Furthermore, since

ζx( z
‖z‖) = ζx(z),

we can regard ζx as a function from Rn+1\{0} to Rn and as such it is C∞ in the Euclidean
sense as well.

Using these coordinates we can express a function ψ : Sn→ R locally around x ∈ Sn as a
function in Rn by ψ ◦ηx. We will now show that ψ ◦ηx is differentiable at 0 if and only if
ψ is differentiable at x.

Proposition 3.3.4. Let ψ : Sn → R be a function and y ∈ Sn arbitrary. Then ψ is
differentiable at x ∈ Sn if and only if ψ ◦ ηy is differentiable at ζy(x). Further, the
gradient of ψ at x is determined by

∇ψ(x) =∇(ψ ◦ηy)(ζy(x)) ·d(ζy)(x), (3.15)

where d(ζy) is the Jacobian of ζy when ζy is regarded as function from Rn\{0} to Rn.

Proof. If ψ is differentiable at x then, by definition, the extension ψ∗ to Rn+1\{0} is
differentiable at x. Since ηy is differentiable as a function from Rn to Rn+1 we get that
ψ∗ ◦ηy = ψ ◦ηy is differentiable at ζy(x).
Next, we assume that ψ◦ηy is differentiable at ζy(x). We consider the function g(z) = z

‖z‖ .
Since the inverse coordinates satisfy ζy ◦g= ζy and are differentiable at x in the Euclidean
sense, we can conclude that

ψ∗ = ψ ◦g = (ψ ◦ηy)◦ (ζx ◦g) (?)

is differentiable at x and thus, by Proposition 3.2.4 ψ is differentiable at x as well. Finally,
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3.4. Optimal Transport on the n-Sphere

by using the chain rule on (?), we get

∇ψ∗(x) =∇(ψ ◦ηy)(ζy(x)) ·d(ζy)(x),

thus we are done, since ∇ψ(x) =∇ψ∗(x) for x ∈ Sn. �

Theorem 3.3.5 (Rademacher’s Theorem for Sn). Let ψ : Sn→R be Lipschitz-continuous,
then ψ is differentiable σn-a.e. and ∇ψ is a Borel map.

Proof. Let x ∈ Sn, ε > 0 and choose coordinates ηx. We will show that ψ is differentiable
σn-a.e. in a neighborhood Bε(x) = {y ∈ Sn|d(x,y) < ε}. There exists δ > 0 such that
ηx(Bδ(0))⊇Bε(x). Since ψ : Sn→R is Lipschitz-continuous, ψ◦ηx is Lipschitz-continuous
from Rn to R. Now Rademacher’s Theorem guarantees that there is a Lebesgue-null set
Z ⊆ Bδ(0) such that ψ ◦ ηx is differentiable on Bδ(0)\Z and that ∇(ψ ◦ ηx) is a Borel
map. Thus by Proposition 3.3.4, ψ is differentiable on Fx :=Bε(x)\ηx(Z) and therefore
σn-a.e. since

σn(ηx(Z)) =
∫

ηx(Z)

dσn =
∫
Z

√
det((dηx(y))>dηx(y))dLn(y) = 0.

Further, using (3.15), we see that the gradient ∇ψ is a Borel map on Fx. Thus, since Sn is
compact, there are x1, x2, . . . , xk such that ⋃ki=1Bε(xi) = Sn and hence ψ is differentiable
on F := ⋃k

i=1Fxi and σn(Sn\F ) = 0. Therefore ψ is differentiable σn-a.e. and ∇ψ is a
Borel map. �

3.4 Optimal Transport on the n-Sphere

In this section we will prove that there is a σn-a.e. unique solution to the MP on the
n-sphere, if the cost function is c(x,y) = λ(d(x,y)) and µ is absolutely continuous with
respect to σn.

McCann showed in [McC01] that the MKP can be solved on Riemannian manifolds for
strictly convex cost function. Our main Theorem 3.4.9 can be seen as a corollary to
Theorem 13 in [McC01]. To prove Theorem 3.4.9, we will follow mostly the same strategy
as McCann, but we will restrict ourselves to the n-sphere.
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3.4. Optimal Transport on the n-Sphere

First we show that a c-concave function is Lipschitz-continuous. To do so, we need some
properties of the chord length metric d(x,y) = arccos(〈x,y〉).

Lemma 3.4.1. Let y ∈ Sn be arbitrary and d(x,y) = arccos(〈x,y〉). Define κy : Sn→ [0,π]
by κy(x) := d(x,y). Then κy has the following properties:

(i) κy is Lipschitz-continuous with Lipschitz-constant Lips(κy)≤ 1.

(ii) κy is differentiable for x ,±y with gradient

∇κy(x) = 1
sinα(cos(α)x−y) (3.16)

where α = κy(x) = d(x,y).

Sn

α

x
y

∇κy(x)

(iii) κy is superdifferentiable at x=−y with superdifferential

∂−yκy = UyS
n. (3.17)

Proof.

ad (i): Since d is a metric we get

d(x,y)≤ d(x,z) +d(y,z),

d(z,y)≤ d(z,x) +d(y,x)

and therefore

κy(x)−κy(z)≤ d(x,z),

κy(z)−κy(x)≤ d(x,z).

So we obtain Lips(κy)≤ 1.

ad (ii): For x ,±y, κy(x) = arccos(〈x,y〉) is obviously differentiable at x. We extend κy
to Rn+1\{0} by κ∗y(x) := κy( x

‖x‖). Using the chain rule we can compute the differential
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of κ∗y at x

∇κ∗y(x) = −1√
1−
〈
x
‖x‖ ,y

〉2

(
y
‖x‖ −

〈x,y〉
‖x‖3

x
)
.

For x ∈ Sn and α = d(x,y) we get

∇κy(x) =∇κ∗y(x) = 1
sinα(cos(α)x−y).

ad (iii): Let x=−y and choose z ,±y. We have

π = d(−y,y) = d(−y,z) +d(z,y).

By (ii) κz is differentiable at −y, thus for β > 0 and w ∈ U−ySn we have

d(z,cos(β)(−y) + sin(β)w)

= κz(cos(β)(−y) + sin(β)w)

= κz(−y) +β 〈∇κz(−y),w〉+ o(β).

Using the triangle inequality we conclude

κy(cos(β)(−y) + sin(β)w)

≤ d(y,z) +d(z,cos(β)(−y) + sin(β)w)

= d(y,z) +d(−y,z)︸                    ︷︷                    ︸
d(−y,y)

+β 〈∇κz(−y),w〉+ o(β).

Therefore ∇κz(−y) is a supergradient of κy in −y.
Since ∇κz(−y) ∈ U−ySn and because

Sn

d
(−
y
,
z

)

d(y,z)

−y

y

z

∇κz(−y)

UySn

∇κz(−y) = cos(d(−y,z))(−y)− z
sin(d(−y,z)) = cos(d(y,z))y− z

sin(d(y,z)) ,

we get that ∇κz(−y) points in the direction of y−z when projecting y−z onto UyS
n.

Hence ∂−yκy = UyS
n. �

For our main Theorem 3.4.9 we require the strictly convex cost function c to satisfy some
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further properties.

Proposition 3.4.2. Let λ : [0,π]→ [0,+∞) and d(x,y) = arccos(〈x,y〉). We will call a
cost function c(x,y) = λ(d(x,y)) strictly convex? if λ satisfies the following properties:

(i) λ is strictly convex on [0,π].

(ii) λ is differentiable on (0,π).

(iii) λ satisfies

lim
t→0+

λ(t)
t

= 0,

and

λ′−(π) = lim
t→0+

λ(π)−λ(π− t)
t

<+∞.

Given a strictly convex? cost function c and arbitrary y ∈ Sn, the function τ : Sn→ [0,+∞)
defined by τ(x) = c(x,y) is Lipschitz-continuous and differentiable for x , −y. The
gradient of τ in x ,±y is given by

∇(λ◦ τ)(x) = λ′(α)
sinα (cos(α)x−y), (3.18)

where α = d(x,y) and ∇(λ◦ τ)(y) = 0. Furthermore, for x=−y, τ is superdifferentiable
with superdifferential

∂−y(λ◦ τ) = λ′−(π)UyS
n.

Proof. Since λ is differentiable on (0,π) and d(x,y) is bounded by 0 < d(x,y) < π for
x ,±y, we see by Lemma 3.4.1 that τ is differentiable for x ,±x. By using the chain
rule we get (3.18).
For x= y we get τ(y) = 0 and for w ∈ UyS

n and β > 0 we have

τ(cos(β)y+ sin(β)w) = λ(arccos(〈cos(β)y+ sin(β)w,y〉)) = λ(β),

thus

lim
β→0+

τ(cos(β)y+ sin(β)w)− τ(y)
β

= lim
β→0+

λ(β)
β

= 0.

84



3.4. Optimal Transport on the n-Sphere

Therefore τ is differentiable at x= y with gradient ∇τ(y) = 0.
Finally, for x=−y, we have τ(−y) = λ(d(−y,y)) = λ(π). Since λ is convex and differen-
tiable in (0,1), we have

lim
ε→0+

f ′(π− ε) = f ′−(π)<∞,

thus for ε > 0 we have

λ(π− ε)≤ λ(π)− ελ′−(π) + o(ε).

Now, let v ∈ UyS
n. Then by Lemma 3.4.1 −v is a superdifferential of x 7→ d(x,y) at −y.

Hence, for w ∈ U−ySn and β > 0 we set ε= β 〈v,w〉+ o(β) and, since λ is increasing, we
conclude

λ(τ(−cos(β)y+ sin(β)w))≤ λ(τ(−y)−β 〈v,w〉+ o(β))≤ λ(π)−βλ′−(π)〈v,w〉+ o(β).

Therefore −λ′−(π)v is a supergradient of τ at −y. �

Example 3.4.3. The quadratic cost function c(x,y) = 1
2d(x,y)2 is strictly convex? since

the function λ(z) = z2

2 satisfies all required properties of Proposition 3.4.2.

Proposition 3.4.4 (c-concave functions are Lipschitz-continuous).
Let c(x,y) = λ(d(x,y)) be a cost function, with λ : [0,π)→ [0,+∞) strictly convex and
increasing. Let ψ : Sn → R∪{−∞} be a c-concave function (i.e. ψcc = ψ and {ψ =
−∞} , Sn). Then ψ and its c-transform ψc are both Lipschitz-continuous and the
Lipschitz-constant of ψ is bounded by B := supy∈Sn Lips(τy)<+∞, where τy(x) = c(x,y).

Proof. Since the distance function d(x,y) is bounded from above by π, the cost function
is bounded by 0≤ c(x,y)≤ λ(π). Further, because ψ is c-concave, it follows that ψ(x) =
infy∈Sn c(x,y)−ψc(y). Thus ψc is bounded from above, because otherwise ψ ≡−∞, and
therefore ψ is bounded from below. Thus, since ψ <+∞ and Sn is compact, we see that
ψ is bounded.
Fix z ∈ Sn, then ∀ε > 0 there exists y such that

ψ(z) + ε≥ c(z,y)−ψc(y).
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Furthermore, by definition, we have

ψ(x)≤ c(x,y)−ψc(y).

Combining these inequalities we get

ψ(x)−ψ(z)≤ c(x,y)− c(z,y) + ε.

The map τy : x 7→ c(x,y) is Lipschitz-continuous because λ is convex and therefore
Lipschitz-continuous and the map x 7→ d(x,y) is Lipschitz-continuous by Lemma 3.4.1.
Thus we get

ψ(x)−ψ(z)≤ c(x,y)− c(z,y) + ε≤ Lips(τy)d(x,z) + ε.

Thus ψ is Lipschitz-continuous and the Lipschitz-constant of ψ satisfies

Lips(ψ)≤ sup
y∈Sn

Lips(τy) =B,

which is finite because Lips(τy)<+∞ and Sn is compact. �

We recall the following result.

Proposition 3.4.5 (The dual MKP has maximizers.). Let c(x,y) = λ(d(x,y)) be a cost
function, with λ : [0,π]→ [0,∞) strictly convex and increasing. Let µ and ν be probability
measures on Sn, then there exists a c-concave function ψ which satisfies

J(ψ,ψc) = sup
(u,v)∈Φc

J(u,v),

where

J(u,v) =
∫
Sn

udµ+
∫
Sn

vdν

and

Φc = {(u,v) ∈ L1(Sn,µ)×L1(Sn,ν)|u(x) +v(y)≤ c(x,y)}.

Proof. This is clear from Corollary 2.2.9, since c is continuous and bounded. �
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Remark 3.4.6. Proposition 3.4.5 could also be proved directly. First, we may restrict
ourselves to tight pairs (u,v) ∈ Φc to maximize J(u,v), thus we may assume u to be
c-concave and v = uc. Then let un be a sequence of c-concave functions such that
limn→∞J(un,ucn) is maximal. Since c-concave functions prove to be Lipschitz-continuous,
one can apply the Arzelà-Ascoli Theorem to extract a converging subsequence with
Lipschitz-continuous limits (u∗,v∗) ∈ Φc. Using dominated convergence

lim
n→∞J(un,ucn) = J(u∗,v∗).

Finally, one puts ψ := (v∗)c. So ψ is c-concave and the pair (ψ,ψc) maximizes the
functional J . A rigorous proof using this method can be found in [McC01] (Proposition
3).

By Proposition 3.4.5 there is always a solution ψ to the dual MKP. This solution is c-
concave and therefore, by Proposition 3.4.4, Lipschitz-continuous. Rademacher’s Theorem
3.3.5 shows that the maximizing function is differentiable σn-a.e. with a gradient ∇ψ
that is a Borel map. We will use this gradient to define a transport plan.

Proposition 3.4.7. Let c(x,y) = λ(d(x,y)) be a strictly convex? cost function (as defined
in Proposition 3.4.2) with λ : [0,π]→ [0,+∞). Also, let ψ : Sn→ R be c-concave and
x ∈ Sn arbitrary. Let ψ be differentiable at x and define

α := (λ∗)′(‖∇ψ(x)‖),

where λ∗ is the conjugate function of λ (which is
differentiable since λ is strictly convex). Then y ∈ Sn

satisfies ψ(x) +ψc(y) = c(x,y), if and only if

y = cos(α)x− sin(α) ∇ψ(x)
‖∇ψ(x)‖ . (3.19)

Note that if ∇ψ(x) = 0 then α= 0. In this case (3.19)
should be read as y = x.

Sn

α

x
y

− ∇ψ(x)‖∇ψ(x)‖

Proof. Let ψ be differentiable at x∈ Sn and let y ∈ Sn be such that ψ(x)+ψc(y) = c(x,y).
By definition of the c-transform we get

0 = c(x,y)−ψ(x)−ψc(y)≤ c(z,y)−ψ(z)−ψc(y).
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Now let t > 0 and v ∈UxS
n such that z = cos(t)x+sin(t)v. Since ψ is differentiable at x,

we obtain

ψ(z) = ψ(cos(t)x+ sin(t)v) = ψ(x) + t〈∇ψ(x),v〉+ o(t).

Using these results we get

c(z,y)≥ c(x,y)−ψ(x) +ψ(z) = c(x,y) + t〈∇ψ(x),v〉+ o(t),

and therefore∇ψ(x) is a subgradient at x of the function τ : x 7→ c(x,y). Using Proposition
3.4.2 we see that τ is always superdifferentiable and therefore τ is actually differentiable.
For x , y the gradient of τ at x is

∇τ(x) = λ′(β)
sinβ (cos(β)x−y), (?)

where β = d(x,y). For x= y we have ∇τ(x) = 0. Since ∇τ(x) =∇ψ(x) we get

‖∇ψ(x)‖= ‖∇τ(x)‖= λ′(β) = λ′(d(x,y)),

or ‖∇ψ(x)‖= 0 if x= y. Now, since (λ∗)′(λ′(β)) = β for β ∈ (0,π) and because 0 ∈ ∂0λ

implies (λ∗)′(0) = 0, we have

α = (λ∗)′(‖∇ψ(x)‖) = d(x,y) = β.

Thus, by using this equation in (?) and the fact that λ′((λ∗)′(t)) = t, we conclude

∇ψ(x) = ‖∇ψ(x)‖
sinα (cosαx)−y)

which proves equation (3.19).
We just showed that if there exists y ∈ Sn with ψ(x) +ψc(y) = c(x,y), then it is uniquely
defined by (3.19). We still need to prove that such a y always exists. Since ψ is c-concave
we know that

ψ(x) = ψcc(x) = inf
y∈Sn

c(x,y)−ψc(y).

Now the function y 7→ c(x,y)−ψc(y) is continuous (since y 7→ c(x,y) and ψc are Lipschitz-
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continuous) and Sn is compact, thus there exists y0 ∈ Sn such that

ψ(x) = c(x,y0)−ψc(x).

Thus this proof is completed. �

Theorem 3.4.8. Let c(x,y) = λ(d(x,y)) be a strictly convex? cost function as defined
in Proposition 3.4.2. Let µ be a probability measure on Sn absolutely continuous with
respect to σn and let ψ : Sn→ R be c-concave. We define T : Sn→ Sn by

T (x) :=

 cos(α)x− sin(α) ∇ψ(x)
‖∇ψ(x)‖ if ψ is differentiable at x and ∇ψ(x) , 0

x else,
(3.20)

where α= (λ∗)′(‖∇ψ(x)‖). Then T is a Borel map and ν := T#µ is a probability measure.
Further, T is the solution to the MKP for µ and ν, i.e.

Ic(γT ) = inf
γ∈Π(µ,ν)

Ic(γ),

where γT = (id×T )#µ. Moreover, if S is another optimal transport map for µ and ν
then µ[S , T ] = 0, i.e. T equals S µ-a.e.

Proof. Because of Proposition 3.4.4 ψ is Lipschitz-continuous and therefore, according
to Theorem 3.3.5, ψ is µ-a.e. differentiable and the gradient ∇ψ is a Borel map. So T (x)
is defined µ-a.e. and a Borel map.
Because of Theorem 3.4.8, we have ψ(x) +ψc(T (x)) = c(x,T (x)) σn-a.e. Since µ is
absolutely continuous with respect to σn we get

J(ψ,ψc) =
∫
Sn

ψdµ+
∫
Sn

ψcdν =
∫
Sn

ψ(x) +ψc(T (x))dµ(x)

=
∫

Sn×Sn
c(x,T (x))dµ(x) =

∫
Sn×Sn

cdγT = Ic(γT ).

Hence γT is optimal in the MKP.
If S : Sn→ Sn is another optimal transport plan for µ and ν, i.e. S#µ= ν, then necessarily
Ic(γS) = J(ψ,ψc). Therefore ψ(x)+ψc(S(x)) = c(x,S(x)) µ-a.e. and because of Theorem
3.4.7 it follows that S = T µ-a.e. �

We can now prove the main result:
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Theorem 3.4.9 (Optimal Transport on the n-sphere for a strictly convex? cost function).
Let c(x,y) = λ(d(x,y)) be a strictly convex? cost function, µ and ν probability measures
on Sn with µ absolutely continuous with respect to σn. Then there exists a c-concave
function ψ : Sn→ R such that the map T : Sn→ Sn, defined in Theorem 3.4.8, solves the
Optimal Transport Problem, i.e. T#µ= ν and

Ic(γT ) = inf
γ∈Π(µ,ν)

∫
c(x,y)dγ(x,y). (3.21)

Furthermore, T is µ-a.e. uniquely determined.

Proof.

1. Because of Proposition 3.4.5 there exists a c-concave ψ, such that

J(ψ,ψc) = sup
(u,v)∈Φc

J(u,v).

Thus using Theorem 3.4.8 we can µ-a.e. define

T (x) = cos(α)x− sin(α) ∇ψ(x)
‖∇ψ(x)‖ ,

where α = (λ∗)′(‖∇ψ(x)‖).

2. Next we need to show that T#µ= ν, or equivalently
∫
Sn

f ◦Tdµ=
∫
Sn

fdν,

for all f ∈ C(Sn). We fix an arbitrary f ∈ C(Sn) and define

τε(y) := ψc(y) + εf(y),

ψε(x) := τ cε (x) = inf
y∈Sn

c(x,y)−ψc(y)− εf(y).

ψε is c-concave, because ψccε = τ cccε = τ cε = ψε.
We fix x0 ∈ Sn such that ψ = ψ0 is differentiable. Due to Proposition 3.4.7

c(x0,T (x0)) = ψ0(x) +ψc0(T (x0)) = ψ0(x0) + τ0(T (x0)),

ψ0(x0) = c(x0,T (x0))− τ0(T (x0)).
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For small values of ε there exists yε ∈ Sn such that

ψε(x0) = c(x0,yε)−ψc(yε)− εf(yε). (?)

Proposition 3.4.7 also states that T (x0) is an unique solution and therefore

lim
ε→0+

yε = T (x0)

or equivalently

yε = T (x0) + o(1) as ε→ 0+.

Since f is continuous we get

εf(yε) = εf(T (x0) + o(1)) = εf(T (x0)) + o(ε)

where

o(ε)
ε ≤ 2 sup

x∈Sn
|f(x)| ≤+∞.

Using this and (?) along with

ψ0(x0)≤ c(x0,yε)−ψc(yε),

we get a lower bound for ψε:

ψ0(x0)− εf(T (x0)) + o(ε)≤ c(x0,yε)−ψc(yε)− εf(yε)≤ ψε(x0).

Further, by definition of ψε

ψε(x0)≤ c(x0,y)−ψc(y)− εf(y)≤ ψ0(x0)− εf(T (x0))

and by setting y = T (x0), we get an upper bound:

ψε(x0)≤ ψ0(x0)− εf(T (x0)).
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Therefore

ψε(x0) = ψ0(x0)− εf(T (x0)) + o(ε).

Proposition 3.4.5 also states that J(ψε,ψcε) is maximal for ε= 0 and therefore we
get

0 = lim
ε→0

J(ψε,ψcε)−J(ψ0,ψc0)
ε

= lim
ε→0

∫
Sn

ψε(x)−ψ0(x)
ε

dµ(x) +
∫
Sn

ψcε(y)−ψc0(y)
ε

dν(y)

=
∫
Sn

−f(T (x))dµ(x) +
∫
Sn

f(y)dν(y) + lim
ε→0

∫
Sn

o(ε)
ε
dµ.

Since o(ε)
ε is bounded we can use the Theorem of dominated convergence to see that

the last integral vanishes. Therefore, since f ∈ C(Sn) was arbitrary, we just proved
∫
Sn

f ◦Tdµ=
∫
Sn

fdν,

i.e. T#µ= ν.

3. In order to complete the proof we need to show the uniqueness of T µ-a.e. So,
assume that S is another optimal transport plan, i.e. S#µ= ν and Ic(γS) = Ic(γT ).
Then by Theorem 3.4.8 S = T µ-a.e. and we are done. �

Remark 3.4.10. In the classical setting of optimal transport in Rn with quadratic cost
function c(x,y) = ‖x−y‖2 the gradient ∇ψ of a c-concave maximizer ψ : Rn→ R of the
dual MKP induces an optimal transport plan. In this case, ∇ψ is more generally known
as Brenier map. The transport plan T in Theorem 3.4.9 may be seen as a spherical
Brenier map.

Corollary 3.4.11 (Inverse Transport). Let c(x,y) = λ(d(x,y)) be a strictly convex?

cost function. Let µ and ν be probability measures on Sn with µ and ν absolutely
continuous with respect to σn. According to Theorem 3.4.9, there exists a c-concave ψ
which determines a transport map T . Also, since ν is absolutely continuous with respect
to σn, ψc defines an optimal transport map T † for the inverse problem, i.e. T †#ν = µ
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and

Ic(γT †) = sup
γ∈Π(ν,µ)

∫
c(x,y)dγ(x,y).

Then T † is inverse to T µ-a.e., i.e. T ◦T † = T † ◦T = idSn µ-a.e.

Proof. Theorem 3.4.9 guarantees the existence of T and T †, so we only need to show
that T † is inverse to T µ-a.e. Let

Uψ := {x ∈ Sn|ψ is differentiable at x},

Uψc := {y ∈ Sn|ψc is differentiable at y}.

Since ψ as well as ψc are c-concave they are also Lipschitz-continuous. Thus, since µ
and ν are absolutely continuous with respect to σn, Rademacher’s Theorem 3.3.5 implies
that µ(Uψ) = ν(Uψc) = 1. We define V := Uψ ∩T−1(Uψc) to see

0≤ µ(Sn\V )≤ µ
(
Sn\Uψ

)
+µ

(
Sn\T−1(Uψc)

)
= 0,

where we used that µ(Sn\T−1(Uψc)) = ν(Sn\Uψc) since ν = T#µ. Hence the set of points
x ∈ Sn such that ψ is differentiable at x and ψc is differentiable at T (x) is of full measure,
i.e. µ(V ) = 1. Using Proposition 3.4.7 and the definition of T we see that for x ∈ V ,

0 = c(x,T (x))−ψ(x)−ψc(T (x))

= c(T (x),x)−ψc(T (x))−ψcc(x),

where T (x) is uniquely determined by this equation. Using the symmetry of c, i.e.
c(x,y) = c(y,x), we also get that x is uniquely determined by T (x), and therefore, by
the definition of T †, T †(T (x)) = x for x ∈ V . Replacing T by T † and vice versa, we also
get T (T †(y)) = y µ-a.e. �

Corollary 3.4.12 (Polar factorization of spherical maps). Let c(x,y) = λ(d(x,y)) be a
strictly convex? cost function. Let S : Sn→ Sn be a Borel map and µ a probability measure
on Sn absolutely continuous with respect to σn. Define ν := S#µ, then, by Theorem
3.4.9, there exists a transport plan T : Sn→ Sn defined by (3.20) for some c-concave
map ψ : Sn→ R. If ν is also absolutely continuous with respect to σn, then there exists
a measure preserving map U : Sn→ Sn, i.e. U#µ= µ, such that S = T ◦U µ-a.e. The
maps T and U are µ-a.e. uniquely determined.
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Proof. Using Theorem 3.4.9 we get a c-concave ψ and a transport map T : Sn→ Sn. By
Corollary 3.4.11 we get the inverse transport map T † and define U := T † ◦S. Also there
is V ⊆ Sn with ν(V ) = 1 such that for all y ∈ V we have T (T †(y)) = y. Then

S(x) = (T ◦T †)◦S(x) = (T ◦U)(x)

holds for all x ∈ S−1(V ), i.e. µ-a.e. For f ∈ C(Sn) we get
∫
f ◦Udµ=

∫
f ◦T ∗ ◦S dµ=

∫
f ◦T ∗dν =

∫
fdµ

and therefore U#µ= µ.
Thus we only need to show that T and U are µ-a.e. uniquely determined. Let T ′ be
another optimal transport map such that T ′#µ= ν and let U ′ be a measure preserving
map such that S = T ′ ◦U ′ holds on W1 ⊆ Sn with µ(W1) = 1. By Theorem 3.4.9 there is
W2 ⊆ Sn with µ(W2) = 1 such that T ′(x) = T (x) for x ∈W2. Finally let W3 ⊆ Sn be the
set of all x such that T † ◦T (x) = x, then µ(W3) = 1 by Corollary 3.4.11. Put

B :=W1∩ (U ′)−1(W2)∩ (U ′)−1(W3).

Then for x ∈B, we have

S(x) x∈W1= T ′(U ′(x)) U
′(x)∈W2= T (U ′(x)). (?)

Thus

U(x) def= T †(S(x)) (?)= T †(T (U ′(x))) U
′(x)∈W3= U ′(x)

and since

µ(Sn\B)≤ µ(Sn\W1)︸          ︷︷          ︸
=0

+µ(Sn\(U ′)−1(W2))︸                      ︷︷                      ︸
µ(Sn\W2)=0

+µ(Sn\(U ′)−1(W3))︸                      ︷︷                      ︸
µ(Sn\W3)=0

= 0

we have U = U ′ µ-a.e. �

Remark 3.4.13. We should mention here the polar factorization Theorem for Euclidean
maps due to Brenier [Bre91] and its extension to the setting of Riemannian manifolds
due to McCann [McC01].
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List of symbols

Z integers {. . . ,−2,−1,0,1,2 . . .}
N natural numbers {0,1,2 . . .}
Q rational numbers
R real numbers
A closure of a set A
dom effective domain
int(A) interior of a set A
∂A boundary of a set, ∂A= A\int(A)
f∗ conjugate function of f
C continuous functions
∂cf c-superdifferential of f
f c c-transform of f
Cn n-times continuously differentiable functions
epi epigraph
L1(X,µ) µ-integrable functions on X
Lip Lipschitz-continuous functions
cl lower semi-continuous hull
δ∗(.|C) support function of the convex set C
B σ-algebra of Borel sets
P Borel probability measures
T#µ push-forward measure of µ by T
spt support of a measure
Wp Wasserstein distance of order p
Rn n-dimensional Euclidean space
∇f gradient vector of a real-valued function f on Rn

df Jacobian-matrix of a function f : Rn→ Rm

Ln Lebesgue measure on Rn
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List of symbols

‖.‖ Euclidean vector norm in Rn

〈., .〉 Euclidean vector product in Rn

∂xf superdifferential of a real-valued function f in x
∂xf subdifferential of a real-valued function f in x
Sn n-dimensional sphere {x ∈ Rn+1|‖x‖= 1}
σn canonical volume measure on Sn

d(., .) chord length metric on Sn, d(x,y) = arccos(〈x,y〉)
TxS

n tangent vectors of Sn in x {y ∈ Rn+1| 〈x,y〉= 0}
UxS

n normalized tangent vectors {y ∈ TxS
n|‖y‖= 1}
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c-concave, 44
c-cyclically monotone set, 45
c-superdifferential, 44
c-transform, 44

Arzelà-Ascoli Theorem, 87

Brenier map, 92

chord length metric, 64
conjugate function, 23
cost function

strictly convex, 64
strictly convex?, 84

cumulative distribution function, 53, 65

derivative, 73
directional, 14
left, 14
right, 14

domain
effective, 5

dual MKP, 41

effective domain, 5
epigraph, 5
Euclidean norm, 1
Euclidean scalar product, 2

Fenchel’s inequality, 23
function

c-concave, 44
affine, 6
closed, see lsc
concave, 5
conjugate, 23
convex, 5
strictly, 7

differentiable, 73
sphere, 74

Lipschitz-continuous, 11
locally, 12
sphere, 78

lower semi-continuous, see lsc
lsc, 21
polish space, 35

positively homogeneous, 16
proper, 5
strictly convex cost, 64
strictly convex? cost, 84
sub-additive, 16
sub-linear, 16
subdifferentiable, 17
sphere, 76

superdifferentiable, 17
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sphere, 75
tight pair, 44

generalized inverse, 53, 66
geodesic path, 74
gradient, 73

sphere, 74

Hahn-Banach separation Theorem, 4, 19
half-space, 2
hyperplane, 2

supporting, 18
hypersperical coordinates, 79

infimal convolution, 8

Jacobian, 73
Jensen’s inequality, 7

Kantorovich Duality, 41
Kantorovich-Rubinstein distance, 39

Legendre-Fenchel transform, see conju-
gate function

Lipschitz-continuous, 11
locally, 12
sphere, 78

lower semi-continuous, see lsc
lower semi-continuous hull, 22
lsc, 21

polish space, 35

measure
Borel, 36
push-forward, 29
regular, 36
support, 46
tight, 36

MKP, 35

Monge Problem, see MP
Monge-Kantorovich Problem, see MKP
MP, 30

Prokhorov’s Theorem, 37
push-forward measure, 29

Rademacher’s Theorem, 77
sphere, 81

set
c-cyclically monotone, 45
affine, 1
ball, 1
convex, 1
monotone, 54

space
affine, 1
tangents of Sn, 73

subdifferential, 17
sphere, 76

subgradient, 17
sphere, 76

superdifferential, 17
sphere, 76

supergradient, 17
sphere, 75

support function, 20

tight
measure, 36
set, 36

transference plan, 34
c-cyclically monotone, 46

transport plan, 29

volume measure, 64
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Wasserstein distance, 39
weak convergence, 36, 39

101


	Preface
	Acknowledgments
	1 Convex Geometry
	1.1 Convex Sets and Functions
	1.2 Differential Theory of Convex Functions
	1.3 Conjugates of Convex Functions

	2 Introduction to Optimal Transport
	2.1 Motivation and Definitions
	2.2 The Kantorovich Duality
	2.3 Optimal Transport on the Real Line

	3 Optimal Transport on the n-Sphere
	3.1 Optimal Transport on the Circle
	3.2 Calculus on the n-Sphere
	3.3 Rademacher's Theorem
	3.4 Optimal Transport on the n-Sphere

	List of symbols
	Bibliography
	Index

