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Introduction

This thesis deals with Sturm-Liouville Theory, the vast area of mathematical research
based on the examination of second-order linear ordinary differential equations of the
kind

—(py") +qy=Ary on (a,b) CR (0.1)

and named after J. Sturm! and J. Liouville?. Their work in the 1830s was the beginning
of a systematic approach to equations of the form (0.1) and the question of finding the
values of the (complex-valued) spectral parameter A for which there exists a non-trivial
solution satisfying certain boundary conditions (Sturm-Liouville problem).

Today Sturm-Liouville Theory plays an important part in applied mathematics and
especially in mathematical physics, where equations of the form (0.1) (called Sturm-
Liouville equations) occur very often, in particular after separation of the variables in
linear partial differential equations. We just cite the wave equation or the Schrédinger
equation as examples, additional ones can be found in [Wei87].

In 1837 Liouville introduced a transformation (today known as Liouville transforma-
tion) which enables reducing the general Sturm-Liouville equation (0.1) to the more
special and simpler one

—y"+qy=>Xy on(ab) CR. (0.2)

It is the main task of this thesis to systematically discuss Liouville s transformation in
a rather general way, i.e. we will not only consider the Liouville transformation which
transforms (0.1) into (0.2), but consider related transformations (which we also call
a Liouville transformation) transforming (0.1) into another equation of this kind (i.e.
p,q,r and (a,b) replaced by p,q,7 and (a, B)) Liouville “s original transformation is
then obtained as a special case.

In this thesis we examine invariance properties of the equation (0.1) under a Liouville
transformation and deal with the question to which extent a Liouville transformation
can be used to transform a given equation into a simpler one. We will see that a Liouville
transformation gives rise to a unitary mapping between Hilbert spaces and that certain
operators associated with Sturm-Liouville equations are unitarily equivalent via this
mapping. A main result of this thesis is an inverse theorem stating sufficient conditions
for the existence of a Liouville transformation such that two considered operators are
unitarily equivalent via it (considered as a mapping between the associated Hilbert
spaces).

It should be mentioned that - clearly - depending on the underlying situation one can
expect the functions p, q an r to satisfy different conditions. Many attempts have been

'Jacques Sturm (1803-1855)
?Joseph Liouville (1809-1882)
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Introduction

made to keep necessary conditions for mathematical treatment as general as possible
and going so far that the functions p, ¢ and r can be replaced by abstract Borel measures
(see, e.g., [ET] and the references therein). On the other hand, Liouvilles original
transformation requires considerable restrictions on the coefficients p,q and r for its
feasibility. In this thesis we consider the classical right-definite case of Sturm-Liouville
Theory (see Section 1.1 for a definition) and then tempt to keep additional restrictions
for working with the concept of a Liouville transformation as lean as possible.

The contents of this thesis are as follows: After giving some notations and commenting
some basic concepts in the next section, we give an introduction into Sturm-Liouville
Theory in Chapter 1. This includes Sturm-Liouville differential expressions and their
realizations in Hilbert spaces, endpoint classification and a description of selfadjoint
realizations via boundary conditions. We cite some results needed later on, in particu-
lar concerning spectral theory of selfadjoint realizations of Sturm-Liouville differential
expressions (Section 1.5). The following Chapter 2 is rather short. There we establish a
connection between the generalized Fourier transform of Section 1.5 and an increasing
chain of de Branges’ spaces, which is of course interesting on its own, but for us mainly
serves as a preparation for the proof of the inverse result in the following chapter. How-
ever, since the assertions there can be shown under the weak assumptions of Chapter
1 (other than the inverse result itself), this is an own chapter.

In Chapter 3 we introduce the concept of a Liouville transformation and describe its
basic properties. We see that certain operators introduced in Chapter 1 are unitarily
equivalent via a Liouville transformation and formulate and prove the above mentioned
inverse Theorem 3.2.1. Chapter 4 is then concerned with the task of transforming
Sturm-Liouville equations by a Liouville transformation.

Finally, we collect some important assertions concerning absolutely continuous func-
tions which we essentially use in Chapter 3 and give a brief review of de Branges’ theory
of Hilbert spaces of entire functions in the appendix.

Acknowledgements. At this point I want to thank my thesis adviser Harald Woracek
for his constant, helpful and kind support as well as Jonathan Eckhardt for some helpful
hints.
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Notations and Basic Concepts

The real and complex fields are denoted by R and C, respectively; RT (R™) denotes the
positive (negative) reals without zero, C* (C~) denotes the open upper (lower) complex
half plane. N denotes the natural numbers without zero, Ny the natural numbers with
zero included. An open interval I C R is denoted by (a,b), with —oco < a < b < o0;
[a,b] denotes the closed interval I C R U {—o0,+0oo} which includes the left endpoint
a and the right endpoint b, regardless of whether these are finite or infinite. There is a
corresponding notation for half open intervals.

For z € C its conjugate complex number is denoted by Z. For any complex-valued
function f we denote the pointwise conjugate function by f. Whenever we write /2
for some z € C we mean the principal branch of the complex root (i.e. if z = re!® with

r >0 and ¢ € (—m, 7], then /z = rie 2) thus for 2 € RT U {0} this coincides with
the common definition of the square root.

Let U C C be open. By H(U) we denote the class of complex-valued functions defined
and holomorphic on U.

By M((a,b); C) we denote the set of complex-valued Borel measurable functions defined
n (a,b).

For I = (a,b) and f € M((a,b);C) the Lebesgue integral of f - if it exists - is written

in one of the following equivalent forms

/fd)\ /f YdA(z /f dx—/f dx—/fdx

More general, if p is a Borel measure on I, we write

/1 fdu or /I f(2)du(z)

for the integral of f with respect to the measure p - again, this assumes that the integral
exists. For J = (¢,d) C (a,b) =1 and f € M((a,b);C) we write - as customary -

d d
/f(:n)d:n instead of /f|(cd)(x)dx

similarly for the other representations.

For p € [1,00) and a Borel measure on I = (a,b) by LP(I; ) we denote the Banach
space (of equivalence classes) of functions f € M((a,b); C) whose absolute value raised
to the p-th power has finite integral, i.e.

/\f\pdu < 0.
I



Notations and Basic Concepts

We write [|[| s (s,,) for the norm in LP(I; ). The inner product of the Hilbert space

L?(I; 1) is denoted by (-, )r2(ry)- Recall that

HfHLP(I;y,) = (/I ’f’pd/ﬁ> ’ and (fa g)L2(I;u) - lfgd,u

A weight function w on [ is a Borel measurable function w : I — R satisfying w(z) > 0
for almost all x € I. We additionally assume that w is integrable on all compact
subintervals [c,d] C I (i.e. w € L} (I), see below). If p is the Borel measure wA,
where w is given by

WA(B) = /B wd),

we write LP([;w) instead of LP([;wA) and if w = 1, i.e. p = A, we only write LP(I)
or® LP(a,b).

By Lj .(I; ) we denote the vector space of functions f € M((a,b);C) which satisfy

fls € LP(J;ply) for all compact sub-intervals J C I; again, if p = wX or p = X\ we
write L (I;w) and LY (I), respectively.

loc loc

L*°(a, b) denotes the Banach space (of equivalence classes) of functions f € M((a,b);C)
which are essentially bounded with respect to the Lebesgue measure, i.e. bounded up
to a set of Lebesgue measure zero.

Let (a,b) C R and k € Ng U {o0}. By C*(a,b) (C*((a,b);C)) we denote the class of
real-valued (complex-valued) functions which are k-times continuously differentiable on
(a,b). In particular C°(a,b) (C°((a,b);C)) denotes the class of continuous functions on
(a,b), C>=(a,b) (C*°((a,b);C)) denotes the class of smooth functions on (a,b). C&(a,b)
(CE((a,b); C)) denotes the collection of functions f € C*(a,b) (f € C*((a,b);C)) with
compact support in (a,b).

If a, b are finite, i.e. [a,b] C R is a compact interval, by C*[a,b] (C*([a,b]; C)) we mean
the class of functions k-times continuously differentiable on [a,b], where continuity
and differentiability at an endpoint have to be understood as one-sided continuity and
differentiability, respectively.

Let [a,b] C R be a compact interval. Then AC|a,b] (Lip|a,b]) denotes the vector space
of all complex-valued and absolutely continuous (Lipschitz continuous) functions on
[a, b]. However, in this thesis more often we encounter the vector space of locally abso-
lutely continuous functions ACj..(a,b) for some interval (a,b) C R, i.e. the collection
of functions f which satisfy fl. 4 € AC|c,d] for all compact subintervals [c,d] C (a,b).
If f € ACjoe(a,b) then, of course, f € C°(a,b);C). Furthermore, it has a unique
derivative almost everywhere, which we denote by f’. We have f’ € L}, (a,b) and, for
c € (a,b),

f(x)= fle)+ /m f@)ydt, =€ (a,b).

3We should mention that in general: If F is any space of functions defined on an open interval
I = (a,b), we write F(a,b) instead of F((a,b)) (which is F(I)).
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As for the LP spaces, in any normed vector space X the norm is denoted by ||y,
however, in a general Hilbert space H (which is not a L? space) the inner product is
denoted by (-, ) g.

Let T be a linear operator. By D(T') we denote the domain of T, by ker T its kernel
and by ranl" its range. If T is a densely defined operator acting on a Hilbert space,
by T* we denote its adjoint. For a closed operator T" acting on a Banach space X we
write o(T') to denote the spectrum of 7T'.

If S is a set of vectors in a vector space, we write span(S) in order to denote the linear
span of S. If S is finite, S = {v1,...,v,}, we also write span(vy, ..., vy,).

Let p be a measure on (R,B(&)), where £ denotes the Euclidean topology and B(&)
the associated Borel o-algebra on R. By (z) we denote the neighborhood filter of
x € R (equipped with £). Then we define the support of p as the set

suppp = {x € R: VU € d(x) N B(E) = n(U) > 0}.

One can show that supp u is always a closed subset of R. If i is a Borel measure, i.e.
u(K) < oo for all compact K C R, we have, since (R, ) is a locally compact Hausdorff
space satisfying the second axiom of countability, u(R \ supp ) = 0.

Let f € M((a,b);C). By U(z) we denote the neighborhood filter of = € (a,b) (equipped
with the induced topology from (R, E)). We define the support of f as the set

supp f = {z € (a,b) : YU € U(z)NB(E) = N{z € U : f(x) #0}) > 0}.

One can show that supp f is always closed in (a,b). Since (a,b) is a locally compact
Hausdorff space satisfying the second axiom of countability, we have f = 0 in (a,b) \
supp f almost everywhere. Clearly, if f = g a.e., then supp f = supp g and hence the
definition makes sense for f € L?((a,b);w). If f is continuous on (a,b), this definition
coincides with the classical one,

supp f = {z € (a,b) : f(x) # 0},

where the closure is taken in (a,b). In general, supp f is nothing else than (a,b) N
supp pf, where uy is the measure given by

pa) = [ 1fln A€ ().
AN(a,b)
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Chapter 1
Preliminaries

This chapter is an introduction into the basic notions and concepts of Sturm-Liouville
Theory and collects some results needed later on. We mainly cite [Zet05], [Tes09] and
[Wei03] as the sources of the results given in the first four sections; however, actually
these sections are based on |[Eck09b|, where most of the proofs omitted here can be
found too. Section 1.5 is based on [BE05].

1.1 Sturm-Liouville Differential Expressions and Equations

Let (a,b) C R be any open interval, finite or infinite, and (p, ¢, ) be a tuple of functions
defined on (a,b) and satisfying

(i) pgr:(ab) =R
(i) p~'q7 € L,.(ab) (1.1.1)

loc

(z3i) r(x) > 0 for almost all = € (a,b).
We then call (p,q,7) a tuple of Sturm-Liouville coefficients (SL coefficients).
We define the associated Sturm-Liouville differential expression (SL differential expres-

sion) 7 = 7(p,q,r) by

D(1) = {u € ACjpe(a,b) : pu’ € AC),c(a,b)},

Tu = %[— (pu') + qu], we D(7).

Note that D(7) is the maximal function space such that this differential expression is
well-defined on D(7). Furthermore, note that rru € L}, (a,b) for all u € D(1).

We will consider equations of the kind
(T—=MNu=71u—Iu=Ff, (1.1.2)

where f is a complex-valued function on (a,b) and A € C. By a solution of (1.1.2)
we mean a function u € D(7) fulfilling (1.1.2) a.e. on (a,b). Since r > 0 a.e., this is
equivalent to

—(pu') (z) + (q(x) — Mr(x)) u(z) = r(z)f(z) for almost all z € (a,b).



Chapter 1. Preliminaries

In particular, for f = 0 we obtain the equation
(T—=MNu=0 or 7u=Muy,
which is equivalent to
—(pu') + qu = Aru on (a,b). (1.1.3)

We call equation (1.1.3) the associated! Sturm-Liouville equation (SL equation) with
spectral parameter A € C.

Let us say some words on the conditions (1.1.1). The second condition guarantees that,
for each \ € C, the equation (1.1.3) together with some initial conditions has a unique
solution - see Theorem 1.1.1 and Corollary 1.1.2, respectively. In fact, this condition
is necessary for Theorem 1.1.1 or Corollary 1.1.2 to hold (see |Zet05|, Theorem 2.2.2).
The third condition is crucial since it allows applying Hilbert space theory in the Hilbert
space L?((a,b);r) to study Sturm-Liouville problems, i.e. the question of finding the
values of A for which there exists a non-trivial solution of (1.1.3) satisfying certain
boundary conditions. Now, due to the first condition, the linear operators appearing
there are self-adjoint (see below).

Hence, conditions (1.1.1) are usually considered as the standard minimal conditions on
(p,q,7), leading to standard Sturm-Liouville Theory of so called right-definite problems.
In this thesis we do not consider the “non-standard” case where r is allowed to change
sign, leading to so called left-definite problems (see [Zet05], Chapter 5 and Chapter 12,
for an introduction) and always assume a tuple of SL coefficients to satisfy (1.1.1). In
Chapter 3 and Chapter 4 we will tighten these conditions.

Obviously, 7 is a linear differential expression. Since its coefficients are real-valued, it
is a real differential expression, by which we mean that

u€D(t)=ueD(r) andthen 7u=Tu.

In general, the first derivative u’ of a function u € D(7) only satisfies v’ € L}, (a,b),
whereas pu’ satisfies pu’ € ACj,.(a,b) - we refer to pu’ as the first quasi-derivative of

u. Note that therefore equation (1.1.3) cannot be written as
—pu” — p'u + qu = Iru.

Nevertheless, we want to speak of (1.1.3) as a second-order linear ordinary differential
equation.

Concerning existence and uniqueness of solutions of (1.1.2) and (1.1.3) we have the
following results.

THEOREM 1.1.1 (|Zet05], Theorem 2.2.1 together with Theorem 2.5.2, [Tes09], Theo-
rem 9.1, [Wei03], Corollary 13.3). Let f : (a,b) — C such that rf € L, (a,b). Then

loc

for arbitrary A € C, ¢ € (a,b) and dy,ds € C the initial value problem
(1= MNu=f together with wu(c)=dy,(pu)(c) = ds

Lassociated with (p,q,r)



1.1. Sturm-Liouville Differential Expressions and Equations

has a unique solution u(-,\). For each x € (a,b) we have that A — u(x,\) and
A = (pu)(xz, \) are entire functions, i.e. u(z,-), (pu')(x, ) € H(C). Moreover, if [ is
real-valued and dyi,ds € R, then u(z,\) € R for all x € (a,b) and X\ € R.

Note that in Theorem 1.1.1 the assumption rf € L} (a,b) is necessary since we have
r(t = Nu € L, .(a,b) for all u € D(7).

COROLLARY 1.1.2.  For arbitrary A € C, ¢ € (a,b) and dy,dy € C there is a unique
solution u(-,\) of the initial value problem

—(pu') + qu = Aru  together with u(c) = dy, (pu')(c) = da.

For each x € (a,b) we have u(x,-), (pu')(x,-) € H(C). If di,ds € R, then u(z,\) € R
for all x € (a,b) and A € R.

COROLLARY 1.1.3.  For each A € C the solution space of (T — Nu = 0 is two-
dimensional.

Suppose that in addition to (1.1.1) we have p™*|(4.¢),¢l(a,¢): 7l(a,c) € L' (a,¢) for some
(and hence for all) ¢ € (a,b). Then we say that 7 is regular at a or that a is a regular
endpoint (for 7). Otherwise, we say that 7 is singular at a or that a is a singular
endpoint (for 7). Analogously we define regular/singular for the endpoint b and say
that 7 is regular if it is regular at a and regular at b. The SL differential expression 7
is said to be singular whenever it is not regular.

REMARK 1.1.4. Note that this classification of an endpoint as a reqular or singular
endpoint does not depend on whether it is a finite or infinite endpoint - unlike in much
of the literature (see [Zet05], Remark 2.3.1).

Solutions and their first quasi-derivatives can be continuously extended to a regular
endpoint.

PROPOSITION 1.1.5 (|Zet05]|, Theorem 2.3.1).  Let a be a regular endpoint and f :
(a,b) = C such that (rf)|e € L'(a,c) for some ¢ € (a,b). Then for any solution
u(-, ) of (1.1.2) the limits

u(a,\) ;== lim u(z,\) and (pu')(a,\) := lim (pu')(x,\) (1.1.4)

r—a™t z—a™t

both exist and are finite. Corresponding assertions hold for the endpoint b.

Sometimes it is quite useful to consider 7 only on a subinterval of (a,b). For «, 5 € [a, b],
a < B, by T|(a,8 we mean the SL differential expression which is associated with
(Pl(a,8)s @l (a,8)> Tl(a,8))- If @, B € (a,b), then, of course, 7|4 is regular at a, 7|(4g) is
regular at 3 and 7|, g) is regular.
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For w,v € D(7) we define the (modified) Wronskian W (u,v) : (a,b) — C by

= U(x) /U(x) = ulr 'U, xT) — ul T )vlx
W(u,v)(z) = (pu’)(x) (pv’)(x) = u(z)(pv’)(x) — (pu')(z)v(z).

The following properties are easy to prove.

PROPOSITION 1.1.6.

- Let u,v € D(1). Then W(u,v) € ACjo.(a,b) and

W(u,v) = r(vru — urv). (1.1.5)

- W(.,+) is linear in both arguments.

- W(.,-) is skew-symmetric, i.e. W(u,v) = —W(v,u) for u,v € D(1).

- W(@,v) = W(u,v) for all u,v € D(1).

- Let A € C. If both u and v are solutions of (T —N)u =0, then W (u,v) is constant

and one has

W(u,v) =0 < u and v are linearly dependent.

Let A € C and u,v be two linearly independent solutions of (7 — A)u = 0. We then
call {u,v} a fundamental system of the equation (7 — A\)u = 0. By Corollary 1.1.3 any
fundamental system of (7 — A\)u = 0 is a basis of the solution space of (7 — X\)u = 0.
From Theorem 1.1.1 and Proposition 1.1.6 we have the following corollary.

COROLLARY 1.1.7.  For arbitrary A € C and ¢ € (a,b) there exists a fundamental
system {u,v} of the equation (T — N)u = 0 satisfying W (u,v) = 1. If X\ € R, then this
fundamental system can be chosen to be real, i.e. u and v are real-valued.

Fundamental systems can be used to gain a representation of solutions of the inhomo-
geneous equation (7 — A)u = f. The following proposition is the key for computing
resolvents of selfadjoint realizations of 7.

PROPOSITION 1.1.8 ([Tes09|, Lemma 9.2, [Wei03|, Section 13.1). Let A € C and {u, v}
be a fundamental system of (T — XN)u = 0. Let ¢ € (a,b), d1,dy € C and f : (a,b) - C
such that rf € Llloc(a, b). Then there exist c1,co € C such that the solution y of

(T —=MNu=f together with wu(c)=dy,(pu')(c) = do

18 given by

y(@) = crul) + cpv(@) + / ' “(””)%)u;”gf))“(t) FOr(b)dt.

Finally, we want to show that the initial value problem at a regular endpoint can be
solved.



1.2. Operator Theory

THEOREM 1.1.9.  Assume that a is a reqular endpoint and let f : (a,b) — C such
that rf € L'(a,c) for all ¢ € (a,b). Then for arbitrary \,dy,ds € C the initial value
problem

(= XNu=f together with wu(a) = dy,(pu')(a) = ds,

where u(a) and (pu')(a) have to be understood as in (1.1.4), has a unique solution
u(+,A). For each x € [a,b) we have that X — u(z,\) and X\ — (pu’)(z,\) are entire
functions, i.e. u(z,-),(pu’)(z,-) € H(C). Again, if f is real-valued and di,ds € R,
then u(x,\) € R for all x € [a,b) and A € R. Corresponding assertions hold for the
endpoint b.

PrOOF. Let, according to Corollary 1.1.7, {v,w} be a fundamental system of (7 —
AMu = 0 with W(v,w) = 1 and which is real if A € R. By Proposition 1.1.5 the
limits v(a), (pv')(a), w(a) and (pv')(a) all exist and are finite, where the C2-vectors
(v(a), (pv')(a)) and (w(a), (pw’)(a)) are linearly independent since otherwise we had

0= v(a)(pw)(a) — (p')(@)w(a) = lim W(v,w)(z)= 1.
x—a™t
Thus, given any solution @ of (7 — A)u = f (which we assume to be real-valued if
A € R and f is real-valued), a solution u satisfying the initial conditions is given by
u = c1v + cow + 4 for certain c1,co € C. In order to see that u is unique, assume
that uy, ug are two solutions of (7 — A\)u = f satisfying the same initial conditions
at a. Then u; — ugy is a solution of the homogenous equation (7 — \)u = 0 satisfying
(u1 —u2)(a) = (pu) — pub)(a) = 0. By Proposition 1.1.6 we infer that u; — ug and any
other solution of (7 — A)u = 0 are linearly dependent and hence that u; —ug = 0. The
other assertions are clear (compare Theorem 1.1.1). 0

COROLLARY 1.1.10. Assume that a is a reqular endpoint. For arbitrary \,dy,ds € C
there is a unique solution u(-, \) of the initial value problem

_(Pu/)/ + qu = Aru  together with wu(a) = dy, (pul)(a) = da.

For each x € [a,b) we have u(z,-), (pu')(z,-) € H(C). If di,ds € R, then u(z,\) € R
for all x € [a,b) and X € R. Correspondmg assertions hold for the endpoint b.

REMARK 1.1.11. [t is easy to see that all assertions of Corollary 1.1.10 hold true if
the initial values di,ds € C are replaced by entire functions with argument A, i.e. one
considers the initial value problem —(pu') + qu = Aru together with u(a,\) = dy(\)
and (pu’)(a,\) = da(X\) for di,ds € H(C).

1.2 Operator Theory

We want to consider SL differential expressions as operators in appropriate Hilbert
spaces. To this end let (p,q,r) be a tuple of SL coefficients defined on (a,b) C R. The
Hilbert space L?((a,b);r) turns out to be appropriate.
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We define the associated? maximal operator
Tmaz = Trmaz (0,4 7) : D(Tmaz) € L*((a,b);7) = L*((a,b);7) by

D(Tiaz) = {u € D(1(p,q,7)) : u,Tu € L2((a, b);r)},
Tmaxu = T(P, q, T)U, u € D(Tmax)a

and the associated preminimal operator Ty = Ty(p,q,7) : D(To) € L*((a,b);r) —
L*((a,b);r) by

D(Ty) = {u € D(Tiaz(p,q,7)) : suppu is compact in (a,b)},
T()’LL = T(pv q, T’)U, u e D(TO)

Clearly, we have

u € D(Thaz) = 0 € D(Thaz) and then  Tpp.t = Thazt.

A corresponding assertion holds for Tj.

We want to use the following convenient notation: A function u € M((a,b);C) is said
to lie in L*((a,b);r) at a if for every ¢ € (a,b) the restriction of u to (a,¢), u(e), is
in L?((a, ¢);|(a,¢))- A function u € D(7(p, q,7)) is said to lie in D(Tjaz) at a if u and
7(p,q,7)u lie in L?((a,b);r) at a. There is a corresponding notation for the endpoint
b. Clearly, we have u € L?((a,b);r) if and only if u lies in L?((a,b);r) at a and at b
and u € D(T}q,) if and only if u lies in D(T)n4,) at a and at b.

LEMMmA 1.2.1.

- For any u,v € D(r(p,q,r)) and o, € (a,b), a < [, we have the Lagrange
wdentity

B
/ (vru — utv) rdr = W (u,0)(8) — W(u,v)(a). (1.2.1)

- If w and v lie in D(Typaz) at a, then the limit

W(u,7)(a) == lim W(u,7)(c)

a—a™t
exists and is finite. A corresponding assertion holds for the endpoint b.

- If u,v € D(Thhaz), then

(Tmaxu’ U)LQ((a,b);r) - (U, Tmaxv)LQ((a,b);r) = W(U, ’U)(b) - W(U, v)(a).

PROOF.

- This is due to (1.1.5).

%associated with (p,q,r) or with 7(p,q,)
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- If w and v lie in D(Tyqz) at a, then in (1.2.1) the limit for « — a™ exists and is
finite. Hence, the limit of the assertion exists and is finite.

- This can be concluded from the previous points.

Now we may define the associated minimal operator Tyuin = Tinin (P, q,7) @ D(Tiin) C
L*((a,b);r) — L*((a,b);7) by

D(Tinin) = {u € D(Thaz(p,q,7)) : W(u,v)(a) = W(u,v)(d) =0, v € D(Tmaz(p,q,7))}
and

Toint = T(p,q,7)u w € D(Tinin)-

We have the following theorem linking Ty, Tynin and Thgz-

THEOREM 1.2.2 ([Tes09], Lemma 9.4). The preminimal operator Ty is densely defined,
its adjoint 18 Tiae and its closure is given by Thn.

Note that it is by no means clear that Tj is densely defined (which implies that T,
and T4, are densely defined) since in general we do not have C§°((a,b); C) € D(Tp)
(compare Section 4.2).

Also note that, since T}y, is the closure of Ty, we have

S D(Tmzn) = U Ec D(Tmzn) and then Tint = Tinint.

We want to summarize:

COROLLARY 1.2.3.
- The preminimal operator Ty is densely defined and symmetric.
- The minimal operator T, is densely defined, closed and symmetric.
- The mazimal operator Tyq. is densely defined and closed.

- We have
TO C Thin C Tmax, Tonin = To, TE)k =Tnin= Tmaxa Trfmx = Tmin.

man

The following theorem yields the existence of selfadjoint extensions of Tj,;,.

THEOREM 1.2.4 ([Zet05], Section 10.4, [Wei03], Theorem 13.10). The minimal oper-

ator Tyin has equal deficiency indices® n:=n, =n_ with 0 < n < 2.

Clearly, any selfadjoint extension S of T},;, satisfies Tnin € S C Thnaz-

3(ny,n_) = (dimker(T7,;, + 1), dimker(T7;,, — 1)) = (dimker(Tpnae + 1), dim ker(Tpnaz — 1))
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Later on we will need the following assertions.

LEMMA 1.2.5 (|Zet05], Lemma 10.4.3).  Assume that a is a reqular endpoint. Then,
for any f € D(Thaz), the limits

fla) = lim f(@) and (pf)(a):= lim (pf)(2) (1.2.2)

r—at z—at

both exist and are finite. A corresponding assertion holds for the endpoint b.

REMARK 1.2.6.

- The assertion of Lemma 1.2.5 holds true if instead of f € D(Tyax) we only
assume that f lies in D(Tyae) at a.

- Lemma 1.2.5 implies that for f,g € D(Tpmaz) (for f and g which lie in D(Tpqz)
at a) the limit W(f, g)(a) is given by f(a)(pg')(a) — (pf")(a)g(a).

- If, in addition, a is a finite endpoint, we even havet f,pf’ € AC[a,c] for every
c € (a,b): Since f € D(Tnae) (f lies in D(Tinae) at a), we have 7f| ) €
L2((a,c);r|(a7c)). The measure T\ is finite on (a,c), thus we also have Tf|( ) €
L'((a,¢);7|(a,e)). However, this just means (—(pf') + af)|(.c) € L'(a,c). We
have q(a,c) € L' (a,c) and |f(z)] < C, z € (a,c), for some C € RT, implying
that (pf')'|(a,c) € L'(a,c) and hence pf' € ACla,c]. We also have p~'|(e) €
L'(a,c) and |(pf')(x)| < C, x € (a,c), for some C € R, implying that Fliae) =
P '0f (a,0) € L*(a, ) and hence f € ACla,].

Clearly, if a and b are both regular and finite, these arguments can be adapted to
yield f,pf" € AC|a,b].

Corresponding assertions hold for the endpoint b.

LEMMA 1.2.7 ([Zet05], Lemma 10.4.4).  Assume that a and b are both reqular end-
points, i.e. T is reqular. Then for any dy,da, e1, ey there exists a function g € D(Tiaz)
such that

g(a) =di, (pg)(a)=ds, g(b)=e1, (pg)(b) = e,

whereas this has to be understood as in (1.2.2). Furthermore, for f € D(T ) we have
€ D(Tonin) if and only if f(a) = (pf')(a) = f(b) = (pf')(b) = 0.

LEMMA 1.2.8.  Let f, € D(1) be lying in D(Tinaz) at a and f, € D(T) be lying in
D(Tinaz) at b. Then there exists f € D(Tax) equaling f, near a and fi, near b.

Proor. Let o, € (a,b), a < 3, such that

fa ‘ (a,a)? Tfa ‘ (a,c) € L2((a7 Oé); T“ (a,a))

“To be precise: With this we mean that f and pf’, respectively, restricted to (a, c] and extended to
la,c] by (1.2.2) is in AC|a,d].
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and

According to Lemma 1.2.8, there exists a function g € D(Tinaz(Pl(a,8)s @l (a,8)> Tl(a,8)))
satisfying®

g9(@) = fala), (pg')(@) = (pfo)(a), 9(B) = fu(B), (pg")(B) = (nfy)(B).
Clearly, g,7|(a,5)9 € LZ((a,ﬁ);r|(aﬂ)) and by Remark 1.2.6 we have g,pg’ € AC[a, f3].
Define f: (a,b) — C by

fa(x)a z < a,
flx)=<g(x), a<z<p,
fb(x)a B <.

Then it is easy to check that f,pf’ € ACo(a,b) and f,7f € L?((a,b);r) meaning that
f € D(Thaz)- O

1.3 Endpoint Classification

THEOREM 1.3.1 (WEYL’S ALTERNATIVE) (|Zet05], Theorem 7.2.2, [Wei03|, Theorem
13.18). For any SL differential expression T = 7(p,q,r) defined on (a,b) C R it holds
that either

(i) for every X € C all solutions of (r — N)u = 0 lie in L*((a,b);r) at a
or

(ii) for every A € C there exists at least one solution of (T — X\)u = 0 which does not
lie in L*((a,b);7) at a.

A corresponding assertion holds for the endpoint b.

If the case (1) is accurate in Theorem 1.3.1, we say that a is in the limit-circle case or
that a is limit-circle (for 7). Otherwise, i.e. if the case (ii) is accurate, we say that
a is in the limit-point case or that a is limit-point (for 7). There is a corresponding
notation for the endpoint b.

ProrosiTiON 1.3.2.  If a is a reqular endpoint for T, then a is limit-circle for 7. A
corresponding assertion holds for the endpoint b.

PrOOF. If a is a regular endpoint for 7, A € C and u a solution of (7 — A)u = 0,
then by Proposition 1.1.5 the limit u(x) as * — a™ exists and is finite. In particular,
for ¢ € (a,b) we have

lu(z)] < C, =z € (a,c),

Spg’ should rather be written as p|(a,5)g’.
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for some constant C € R* (depending on ¢) and hence

/ |u|2rd$ < CQHT‘(a,C)HLl(a,C) < o0.

O

PROPOSITION 1.3.3 (|Zet05], Lemma 10.4.1).  The endpoint a is limit-point for T if
and only if W(u,v)(a) = 0 for all u,v € D(Tinax(p,q,7)). Hence, the endpoint a is
limit-circle if and only if there exists u € D(Tax(p,q, 7)) such that W (u,v)(a) # 0 for
some v € D(Taz(p,q,7)). A corresponding assertion holds for the endpoint b.

Note that if W(u,v)(a) # 0, then W(Rew,v)(a) # 0 or W(Imu,v)(a) # 0. Clearly, we
have Reu,Imu € D(T}4,) and W (Rewu,Reu) = W(Reu,Reu) = 0 and
W(Imu,Imu) = W(Imwu,Imu) = 0. Hence, we can state Proposition 1.3.3 as follows:

COROLLARY 1.3.4.  The endpoint a is limit-circle for T if and only if there exists
u € D(Thaz(p,q,7)) such that W(u,uw)(a) = 0 and W(u,v)(a) # 0 for some v €
D(Thaz(p,q,7)). A corresponding assertion holds for the endpoint b.

1.4 Selfadjoint Realizations

We have already seen in Section 1.2 that there exist selfadjoint extensions of T, or,
equivalently, selfadjoint restrictions of T;,,,. These are precisely the n-dimensional,
symmetric extensions of T;,;, or the n-dimensional, symmetric restrictions of Ty,qz if
Tonin has equal deficiency indices (n,n) (compare Theorem 1.2.4 and see [Wei00], The-
orem 10.10). We want to call such a selfadjoint extension and restriction, respectively,
a selfadjoint realization (of 7 = 7(p,q,r)).

We need the following notation: We say that v € D(T},,4,) satisfies (1.4.1) if
W(v,v)(a) =0 and W (h,v)(a) #0 for some h € D(Tiaz)- (1.4.1)
Correspondingly, we say that v € D(T4,) satisfies (1.4.2) if
W(v,v)(b) =0 and W (h,v)(b) #0 for some h € D(Taz)- (1.4.2)
By Corollary 1.3.4 we see that the endpoint « is in the limit-circle case for 7 if and only

if there exists v € D(Tinae) satisfying (1.4.1) - similarly for the endpoint b.

PROPOSITION 1.4.1.
- For all f1, fa, f3, f4 € D(7) we have the Pliicker identity

W(f1, )W (f3, f1) + W (1, [5)W (fa, f2) + W1, f)W (f2, f3) =0 (1.4.3)
on (a,b).

10
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- Let v € D(Tinaz) be satisfying (1.4.1). For f lying in D(Ties) at a we have
W(f,v)(a) =0 <« W(f,0)(a)=0 (1.4.4)
and for f and g lying in D(Tynee) at a we have
W, 7)) =W(g0)@) =0 = W(fg)a)=0.  (145)
Corresponding assertions hold for the endpoint b.
PROOF.

- A calculation shows that the left side of (1.4.3) equals the determinant

fi fo f3 fa
Lipfi pfy pfy pfi
211 fo fz fal

pfi pfy pfy pfi

which is obviously vanishing.

- Let v € D(Tn4z) be satisfying (1.4.1). Then there exists h € D(Tynqz) such that
W (h,)(a) # 0. Choosing f1 = v, fo =0, f3s = h and f; = h in (1.4.3), one sees
that also W (h,v)(a) # 0. Now choosing f1 = f, fo = v, f3 =7, f4 = h in (1.4.3)
yields (1.4.4), choosing f1 = f, fa =g, f3 =70, f4 = h yields (1.4.5).

O

The next theorem gives a characterization of all selfadjoint realizations depending on
endpoint classification.

THEOREM 1.4.2 (|Zet05], Theorem 10.4.1, [Wei03], Theorem 13.19 together with The-
orem 13.20).

- Neither endpoint is limit-circle, i.e. both endpoints are limit-point: This is the
case if and only if n = 0. The minimal operator Tyyin = Tinae itself is self-adjoint
and hence the only selfadjoint realization of T.

- One endpoint is limit-circle and the other one limit-point: This is the case if and
only if n = 1.

Let a be limit-circle and b be limit-point. An operator S is a selfadjoint realization
of T if and only if there exists v € D(Tinas) satisfying (1.4.1) such that

D(S) = {f € D(Tmax) : W(fa @)(a) = 0},
Sf=rf feD(S).

Let a be limit-point and b be limit-circle. An operator S is a selfadjoint realization
of T if and only if there exists v € D(Tinas) satisfying (1.4.2) such that

D(S) = {f € D(Tmax) : W(f’ﬁ)(b) = 0},
Sf=r1f, feD(S).

11
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- Both endpoints are limit-circle: This is the case if and only if n = 2.

An operator S is a selfadjoint realization of T if and only if there exist v,w €
D(Tnaz) satisfying

(i) v and w are linearly independent modulo D(T,niy), i-e. no nontrivial linear
combination of v and w is i D(Tin)

and®
(”) Wg(vaﬁ) = Wf{(w,@) = Wé)(’l),w) =0
such that

D(S) = {f € D(Tna) : W(£.9) = Wi(f.0) =0}, (1.46)
Sf=r1f, feD().

In this thesis we mainly consider selfadjoint realizations with separated boundary con-
ditions. With these we mean all selfadjoint realizations of 7 if precisely one endpoint is
limit-circle or, if both endpoints are limit-circle, those selfadjoint realizations S whose
domain is given by

D(S) =A{f € D(Tnaz) : W(f,0)(a) = W(f,w)(b) = 0} (1.4.7)

for some v € D(Tinaq) satisfying (1.4.1) and some w € D(T},q,) satisfying (1.4.2). In
order to check that each operator S with domain (1.4.7) and acting as 7 is indeed
selfadjoint, one may simply show that (1.4.7) can be written in the form of (1.4.6)
(or see [Wei03], Theorem 13.21): According to Lemma 1.2.8, there exist vy equaling v
near a and the zero function near b and wy equaling the zero function near a and w
near b. Since v and w satisfy (1.4.1) and (1.4.2), respectively, it is easy to prove that
vg and wy are linearly independent modulo D(7},;,) and that these functions satisfy
WP (vg,09) = W2 (wo, Wo) = W2 (vo,wp) = 0. Clearly, we have

{f € D(Tinaa) : W(£.T)(a) = W (£.T)(b) = 0} =
{F € D(Tar) : W2, 70) = WS 70) = 0}

By Proposition 1.4.1 one sees that a selfadjoint realization S with separated boundary
conditions has the property

f€D(S)= feD(S) andthen Sf=S5f.

This does not hold true for all selfadjoint realisations”.

We want to describe boundary conditions of the form W (f,v)(a) = 0 and W (f,w)(b) =
0, respectively, where v,w € D(T),4,) satisfy (1.4.1) or (1.4.2), also in an alternative
way. This is the content of Proposition 1.4.3 and Corollary 1.4.5.

5We use W2(-,-) as an abbreviation for W (-,-)(b) — W (-,-)(a).
"Selfadjoint realizations of 7 (where both endpoints are limit-circle) whose domain (1.4.6) cannot be
written in the form of (1.4.7) are called selfadjoint realizations with coupled boundary conditions.

12
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ProrosiTiON 1.4.3.  Assume that the endpoint a is in the limit-circle case for T
and let A € R and {~,d8} be a real fundamental system of (1 — X\)u = 0 satisfying
W(~,6) = 1.
- Let v € D(Tinaz) be satisfying (1.4.1). Then there exists a unique o € [0,7) such
that we have®

W(f,0)(a) =0 W(f,cosav+sina d§)(a) =0, f&€D(Thna).  (1.4.8)

- Conwversely, given a linear combination cos « y+sina ¢ for some a € [0, 7), there
exists v € D(Tmaz) (which is surely not unique) satisfying (1.4.1) and such that
we have (1.4.8).

Corresponding assertions hold for the endpoint b.
PROOF.

- Let h € D(T)naz) such that W (h,v)(a) # 0. Then the Pliicker identity (1.4.3)

W(h,7) W(v,8) +W (h,y)W (5,0) + W (h,0)W (v,7) =0
1

yields
0# W(h,v)(a) = W(h,7)(a)W (,6)(a) = W(h,6)(a)W(T,7)(a),  (1.4.9)
implying that
(W(@,8)(a), W (©,7)(a)) = (W(v,0)(a), W(v,7)(a)) # (0,0).

The Pliicker identity also yields (replace h by v in the right equation of (1.4.9))

(@)W (©,0)(a) = W(v,6)(a)W(©,7)(a)
W (v, 7)(a)W (@,0)(a)

=
&

(=%
~—
—

S
~—

|

implying that W (v,v)(a)W (v,0)(a) € R.

W(v,7)(a) 2 0
D( W, a@ ) S F Lo )
where D = W (v,0)(a) if W(v,0)(a) # 0 and D = W(v,v)(a) else, and there
exist a unique a € [0,7) and a unique B € R\{0} such that

Wiv a sin av
o W@ ),
W(v,d)(a) —cos«
8Note that the assumption of a being limit-circle implies that v and ¢ (and hence also every linear
combination) lie in D(Tmae) at a.

Hence, we have

13
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and
(o)< s ).

Now, for f € D(Tjnae) (replace h by f in the right equation of (1.4.9))

W (f,5)(a) = W (f,7)(@)W (7,8)(a) — W(f,6)(@)W (7,7)(a)
= W (£, ) (@)W (0,8)(@) — W(f.5)(@)W (0, 7)(a)
B B .
= —W(£,7)(@)= cosa = W(f,8)(@)= sina

and hence (1.4.8).

It remains to show that « is unique in (1.4.8). Suppose that there is & € [0, 7)
such that, for f € D(Thaz),

W(f,cosay+sina d)(a) =0« W(f,cosa y+sina d)(a) = 0.

By Lemma 1.2.8 there exists fo € D(Thax) equaling cosa v + sina § near a.
Clearly,

W (fo,cosa v+sina §)(a) = W(cosa v+ sina d,cosa v +sina §)(a) =0
and thus (W (~,0) =1, W(y,v) = W(4,9) =0)

0=W(fo,cos@ v+sina d)(a) = W(cosa v+ sina d,cos& v+ sina J)(a)

= cos asin & — sin v cos a.

Ccos & CoS «v
sin & sin o

- Choose v € D(Tnae) equaling cosa v + sina ¢ near a, which is possible due to
Lemma 1.2.8. Then, clearly, we have (1.4.8) and W (v,v)(a) = 0. Furthermore,
for hy € D(Tnax) equaling v near a we have W (h;,v)(a) = sina and for hy €
D(Tinax) equaling § near a we have W (hg,v)(a) = — cos «, thus there certainly
exists h € D(Tnaz) with W (h,v)(a) # 0, and v indeed satisfies (1.4.1).

We conclude that

and hence & = «.

O

PROPOSITION 1.4.4. Assume that the endpoint a is reqular. Then for any X € R there
exists a real fundamental system {,d} of (T — XN)u = 0 satisfying W(vy,0) =1 and

W(f.9)(a) = f(a), W(f,0)(a) = (pf')(a)

for all f lying in D(Tines) at a. A corresponding assertion holds for the endpoint b.

14
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PROOF. Let 7 be the solution of (7—A)u = 0 together with u(a) = 0 and (pu/)(a) =1
and 0 be the solution of (7 — A\)u = 0 together with u(a) = —1 and (pu')(a) = 0, see
Corollary 1.1.10. Then {~, ¢} has the claimed properties. O

COROLLARY 1.4.5. Assume that the endpoint a is reqular.

- Let v € D(Thnaz) be satisfying (1.4.1). Then there exists a unique o € [0,7) such
that we have

W(f,0)(a) =0« f(a)cosa+ (pf')(a)sina =0, f&€D(Tnw)  (1.4.10)

- Conwversely, for a € [0,7) there exists v € D(Tinag) (which is surely not unique)
satisfying (1.4.1) and such that we have (1.4.10).

Corresponding assertions hold for the endpoint b.

In particular, choosing a = 0 in f(a)cosa + (pf’)(a)sina = 0 leads to the Dirichlet
boundary condition f(a) = 0; choosing a = /2 leads to (pf’)(a) = 0, which is called
the Neumann boundary condition.

1.5 Spectral Theory

Throughout this section let 7 = 7(p,q,r) be a SL differential expression defined on
(a,b) CR.

Boundary conditions as described in the previous section lead to an extension of the
initial value problem at a regular endpoint (see Corollary 1.1.10) to the case of an
endpoint in the limit-circle case.

TueorReEM 1.5.1 ([BE05], Theorem 5.1, [ESSZ97], Theorem 2). Assume that the end-
point a is in the limit-circle case for T, let, for some X € R, {~,d} be a real fundamental
system of (T — X\)u = 0 satisfying W (v,9) =1 and let n,§ € H(C). Then there ezists a
unique mapping 1 : (a,b) x C — C with the properties

- (-, ) is a solution of (T — N)u =0 for every A € C
- W, A),7) (@) = 1) and W (-, ), 6)(a) = EN) for all A € C
-z, ), () (z,-) € H(C) for all x € (a,b).

A corresponding assertion holds for the endpoint b.

REMARK 1.5.2. In the case of a reqular endpoint a and a choice {,d} as in Propo-
sition 1.4.4, Theorem 1.5.1 reduces to Corollary 1.1.10 together with Remark 1.1.11.

ProprosiTION 1.5.3 ([BE05|, Corollary 5.1).  If in the hypotheses of Theorem 1.5.1
the initial value functions n and & are replaced by real numbers, i.e. n(-) =n € R and

15



Chapter 1. Preliminaries

&() =€ €R, then

E(’)‘) = Q/)(,X) and (PE,)(H)\) = (p¢/)(-,X), AeC.

From now on always assume that the endpoint a is in the limit-circle case for 7 and that
S is a selfadjoint realization of 7 with separated boundary conditions. Fix some real
fundamental system {v,d} of (7 — A)u = 0 for some X\ € R satisfying W(v,d) = 1. By
Theorem 1.4.2 and Proposition 1.4.3 there is a unique « € [0, 7) such that the domain
of S is given by

D(S) ={f € D(Trmaz) : W(f,cosa v +sina §)(a) =0} (1.5.1)
if b is limit-point, or by
D(S) ={f € D(Traz) : W(f,cosa v +sina d§)(a) = W(f,w)(b) =0} (1.5.2)

if b is in the limit-circle case too, where w € D(Tnq.) satisfies (1.4.2).

Let, according to Theorem 1.5.1, 8 = 6(-,-) and ¢ = (-, -) be the solutions of (T—\)u =
0, A € C, satistying

W(O(-,A),v)(a) = cosa, W(@(-,A),0)(a) =sina,

Wi(p(-,A),7)(a) = —sina, W(p(, \),8)(a) = cosa. (1.5.3)

We refer to € and ¢ as the basic solutions. Obviously, (-, A) satisfies the boundary
condition of S at a, i.e. W(¢(-,\),cosa v+ sina §)(a) =0, for every X € C.

ProproSITION 1.5.4. The basic solutions 0 and ¢ have the following properties:
- 0(,\) and p(-, \) lie in D(Tynaz) at a for each X € C.

- For all x € (a,b) and A € C we have
O(z,A) =0(z,X) and Bz, \) =p(z,N). (1.5.4)

- For all A € R it holds that 0(-,\) and ¢(-,\) are real-valued.

- For all X € C\R it holds that 0(-, \), (p0")(-, \), ¢(-, A) and (p¢’)(-, ) do not have
any zeros.

- For each x € (a’ b) we have Q(IE, ')’ (pel)(x, -),QO(.’E, ')’ (pgo')(x, ) € H(C)
- For all A € C we have

W(e(")‘)’so(")‘)) =1 (155)

- For all A1, Ao € C we have

W(e(-, A1), ¢(+, A2))(a) = 0. (1.5.6)
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1.5. Spectral Theory

PROOF.
- This is clear since a is assumed to be in the limit-circle case.
- This immediately follows from Proposition 1.5.3.

- This follows from Corollary 1.1.2 on examination of the proof of Theorem 1.5.1
given in [ESSZ97].

-Let A € C\R. If p(-,A) or (p¢')(-,\) had any zero, let us say ¢ € (a,b),
then (-, A)|(4,c) would be an eigenfunction (with eigenvalue \) of the selfadjoint
realization of 7| . provided with the boundary condition of S at a and the
Dirichlet or the Neumann boundary condition at ¢. However, the spectrum of
any selfadjoint operator is real (see, e.g., [Wei00], Theorem 5.14).

It may be seen similarly that 6(-,\) and (pf')(-, \) do not have any zeros.

- This immediately follows from Theorem 1.5.1.

- This is (6.14) in [BE05], however, simply follows from the Pliicker identity (1.4.3),
Proposition 1.1.6 and the initial conditions (1.5.3).

- This is (6.15) in [BE05].

TuEOREM 1.5.5 ([BE05], Theorem 8.1 together with Remark 8.1). There is a unique
function m : C\ R — C with the properties

- m is holomorphic on C\ R, i.e. m € H(C\ R)
m(3) =m(\), AeC\R
- The solution ¥ = (-,-) of (T — A)u = 0 defined by
B(22) = 0 2) + m(\p(,A) for A€ C\R
satisfies
¥(-A) € L*((a,b);7), AeC\R,
and in addition, if b is in the limit-circle case for T too,
W(,A),T)(b) =0, AEC\R,
i.e. ¥(-,\) satisfies the boundary condition of S at b for every A € C\ R.

We refer to the function m as the Titchmarsh-Weyl m-function and to ¥ as the Weyl
solution (for 5).

REMARK 1.5.6. The Titchmarsh-Weyl m-function is uniquely determined by the last
property in Theorem 1.5.5 and hence so is the Weyl solution v (assuming that it is of
the form 0(-,\) + m(AN)¢(-,A), A € C\R): Assume that, for arbitrary A € C\ R, there
is another solution 0(-, \) + m(X)e(-, \) with this property. Since

W(O( A) +m(Ne(-,A), 005 A) +1m(A)e(-, M) = m(A) —m(N),

17



Chapter 1. Preliminaries

we see (compare Proposition 1.1.6) that m(\) # m(\) if and only if (-, \)+m(N)p(-, )
and 0(-,\) + m(N)p(-, \) are linearly independent. However, if b is in the limit-point
case, due to Corollary 1.1.83 and Theorem 1.53.1, the two solutions have to be linearly
dependent according to the definition of an endpoint in the limit-point case. If b is in the
limit-circle case, the two solutions are linearly dependent by (1.4.5) (and Proposition

1.1.6).

ProprosITION 1.5.7 ([BE05], Corollary 8.1). We have

b
0< / Y (z, A)|*r(z)de = % AeC\R.

Proposition 1.5.7 implies that m is a Nevanlinna function, with what we mean a function
m: C\ R — C satisfying”

(1) m is holomorphic
(41) m‘gr :Ct - Ct and m‘(c_ :C” > C™
(t5i) m(\) =m(A), AeC\R.

As a Nevanlinna function, m has an integral representation of the following form (com-
pare [BE05]|, Section 10, or [Eck09a|, Appendix A.1, where also several references to
literature concerning Nevanlinna functions can be found), where A, B € R with B > 0,

1 t

m(\) = A+ BX +/R <m - W) dp(t), XeC\R. (1.5.7)

Herein p is a uniquely determined Borel measure on R satisfying
/ L ap(t) < (1.5.8)
s p 00. 5.
We want to call p the spectral measure of the Titchmarsh-Weyl m-function or (due to

the next theorem) the spectral measure for S.

TueOREM 1.5.8 ([BE05], Theorem 11.1 together with Corollary 11.2, Lemma 17.1).
Let f € L*((a,b);7) be a function with compact support [a, ] C (a,b). Define a function
F by

B
Flt) = / F@)ole, Or(z)dz, teR. (15.9)

Then F € L*(R;p) with 1Fll 2y = IfllL2apyy and the mapping Uy : D —
L?>(R;p) : f +— F, where D = {f € L?((a,b);r) : f has compact support in (a,b)},
uniquely extends to a unitary mapping U : L*((a,b);r) — L*(R; p).

90ften one defines a Nevanlinna function as a holomorphic function m : Ct — C*. However, by
setting m(X) = m(A) for A € C™ one obtains a Nevanlinna function according to our notation.
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Let G € L*(R; p) be a function with compact support [o/,3'] C R. Define a function g
by

/B/
oa) = [ GO dplt), € (anb)
Then g € LQ((a,b);r) with HgHLQ((a,b);r) = HGHLQ(R;p) and the mapping Vo : D" —
L?((a,b);7) : G +— g, where D' = {G € L*(R;p) : G has compact support in R},
uniquely extends to a unitary mapping V : L*(R; p) — L?((a,b); 7).

The mapping V is the inverse of the mapping U (and vice versa) and the operator S
is unitarily equivalent to the operator of multiplication'® Miq in L*(R;p) via U, i.e.
U(L?*((a,b);7)) = D(Miq) and

S =V MaU.
In particular, we have

o(S) = suppp. (1.5.10)

We refer to the mapping U as the generalized Fourier transform and for f € L?((a,b);r)
to U f as the generalized Fourier transform of f. The mapping V is referred to as the
generalized inverse Fourier transform.

REMARK 1.5.9.

- Note that in the above construction the basic solutions 6 and ¢ and consequently
the Titchmarsh- Weyl m-function m, the Weyl solution 1, the spectral measure p
and the generalized Fourier transform U depend on the choice of the real funda-
mental system {v,0}.

- One would like to have, once a SL differential expression T with a limit-circle
endpoint a and some selfadjoint realization S with separated boundary conditions
are fired, a unique construction, i.e. to be able to uniquely determine these objects.
There seems to be no (canonical) way of generally adapting the construction in
order to achieve this, however, we can at least adapt it in such a manner that
p and U (which are the objects of ultimate interest) are determined up to a real
constant:

Given 7 and S, choose {7,0} as real fundamental system of (T — Ag)u = 0 sat-
isfying W (v,9) = 1, where A\g € R is a priori fized, e.g. always assume \g = 0,
and such that o = 0 in (1.5.1) or (1.5.2). This is always possible’’ and it is
straightforward to see that any other fundamental system {'7,3} of (T—Xo)u=20
has the same properties if and only if it is of the form

~ 1
v = ey, 5:gé+f’7, e,f €R, e#0.

1OMid denotes the operator of multiplication with the function id : ¢t — ¢, i.e. Mg : D(Mia) —
L*(R;p) : G (t+— tG(t)), where D(Miq) = {G € L*(R; p) : (t = tG(t)) € L*(R; p)}.

1 Given any real fundamental system {v, 6} of (T —\o)u = 0 with W (,d) = 1 and « € [0, 7) such that
the boundary condition of S at a is given by W (f,cosa v + sina 6)(a) = 0, the real fundamental
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Now, if the construction starting from {~,d} yields the basic solutions 6 and o,
the Titchmarsh- Weyl m-function m, the Weyl solution 1, the spectral measure p
and the generalized Fourier transform U, it is easy to check that the corresponding
objects obtained from the construction starting from {’Ny,g} are given by

1 1 1 ~

~ 1 B B
0=-0-fp, ¢=ecp, m()=—m()+_f, p=—p and U=el.

If we additionally assume the endpoint a to be regular, we are able to eliminate
the dependence on the choice of the real fundamental system {v,0} and thus to
uniquely determine 0, o, m, ¥, p and U:

By Corollary 1.4.5 there is a unique « € [0,m) such that the boundary condition
of S at a is given by

fla)cosa + (pf')(a)sina = 0.

Now we may uniquely determine the basic solutions 0 and @ by the initial condi-
tions (compare Corollary 1.1.10)

O(a, \) = cos (pd')(a, \) = sina,

1.5.11
o(a, ) = —sina, (p¢’)(a,\) = cos a, ( )

which in fact means nothing else than choosing {~y,d} as in Proposition 1.4.4.

The case of a regular endpoint a is the classical one for the above construction,
which is most often dealt with in the literature. There the construction of m, v,
p and U always starts from the basic solutions determined by (1.5.11) (possibly
with some minor alterations concerning signs). Also in this thesis, whenever
we encounter a SL differential expression which is reqular at a and speak of the
basic solutions or the Titchmarsh-Weyl m-function, the Weyl solution, etc. of
a selfadjoint realization with separated boundary conditions, we mean the basic
solutions determined by (1.5.11) or the objects constructed from these. However,
note that in most of the literature the endpoint a is even assumed to be finite
(compare Remark 1.1.]) - an assumption that we certainly do not need.

REMARK 1.5.10.  The only assumption on the SL differential expression T for the
feasibility of the above construction is that the endpoint a is in the limit-circle case.
Unsurprisingly, the construction works analogously if the endpoint b is assumed to be
in the limit-circle case for T instead. However, in this case one has to make the ansatz

w('v )‘) - 6(7 )‘) - m()‘)@('a )‘)

for the Weyl solution in order to obtain m being a Nevanlinna function (compare
[Tes09], Section 9.6, p. 211).
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1.5. Spectral Theory

Given a SL differential expression 7 with a limit-circle endpoint a and some selfadjoint
realization S with separated boundary conditions, the following assertions hold for the
basic solutions, the Titchmarsh-Weyl m-function, etc. as constructed above, indepen-
dently of the choice of real fundamental system {7,0} the construction has started
from.

The following two lemmas will be crucial for Chapter 2.

LEMMA 1.5.11. Let ¢ € (a,b) and f € L*((a,b);7) be a function vanishing outside of
(a,c] almost everywhere. Then the generalized Fourier transform U f of f is given by

Uf(t) = /C o(z,t)f(z)r(z)de, teR. (1.5.12)

ProoF.  First of all note that the integral is absolutely convergent for every ¢t € R
since f € L?((a,b);r) and (-, ) lies in D(Tjnaz) at a (even for all ¢ € C). Now consider
the sequence of functions f, = 1y, f, n € N, where (a,)nen is a sequence of reals
satisfying a,, € (a,b), n € N, and lim,en oy, = a. Then, of course, lim,ey f, = f in
L?((a,b);7) and hence lim,ey U f, = Uf in L?(R;p). However, since

U - | " oo ) f(@)r(x)dz, teR,

we see that, for every t € R, U f,(t) converges to [ o(x,t) f(x)r(z)dz as n — oo and

infer that U f is given by (1.5.12). O

LeEMMA 1.5.12 ([BE05], Lemma 9.3). Let ¢ € (a,b) and f € L*((a,b);r) be arbitrary.
Then

Z /C o(x, 2) f(z)r(z)dx, =ze€C,

is an entire function, i.e. in H(C). A corresponding assertion holds for the basic
solution 0.

For the proof of the inverse Theorem 3.2.1 in Section 3.2 we will need the following
lemma.

LeEMMA 1.5.13 (|[BE05], Lemma 18.1). The generalized Fourier transform of the Weyl
solution (-, \) is given, for all A\ € C\ R, by

Furthermore, we will need asymptotic formulas for the basic solution ¢.
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PROPOSITION 1.5.14 ([Ben89|, Corollary 6.2).  Let, for each A € C, u(-,\) be a
solution of

—(py") +qy=Ary on (a,b) CR,

where, as before, p, q and r satisfy (1.1.1), and, additionally, a is a finite and reqular
endpoint. Assume that u(a,-)/(pu’)(a,-) (restricted to C\R) is a Nevanlinna function.

Then, for any constants A, B € C and any x € (a,b) for which Au(z,\) + B(pu')(z, \)
does not vanish identically in X\, we have

Au(z, \) + B(pu’)(x, A) = u(a, \) exp {/aff»‘ vV =A/(pr) rdt + o (m)} ,

unless u(a, \) vanishes for all X, in which case the first factor is replaced by (pu’)(a, \).
The estimate holds as A — oo in any non-real sector, and the error in the exponent is
locally uniform in z € (a,b).

COROLLARY 1.5.15. For each &,% € (a,b) the basic solution ¢ satisfies

2 7, i 7
lim \/jln P2, it) :/ L da. (1.5.13)
t=ooo VU | p(,it) @V Ipl

PROOF. There is nothing to show when = Z. W.l.o.g. let & > & (after proving the
assertion for this case, the assertion for the case Z < & immediately follows by reversing
the roles of & and ).

In order to apply Proposition 1.5.14, we have to show that ¢(z,-)/(p¢’)(Z,-) (restricted
to C\ R) is a Nevanlinna function. To this end consider the function

A. _— gp(m,)\)
(-, A) Hi(pgo’)(i,)\)’ A e C\R,

on (a,z). Note that 1 is well-defined, i.e. the denominator in the fraction never equals
zero, due to Proposition 1.5.4. Since 1ﬂ satisfies the boundary condition of S at a and
(;mﬂ’)(ic,)\) = 1, it equals the Weyl solution of the selfadjoint realization (which will
be referred to as 5’) of 7|(q,3) With the same boundary condition as S at a and the
Neumann boundary condition at &, where we consider Z as the initial point (compare
Remark 1.5.10). Hence,

Dl A) = 0(z,2) = (N, ),

where m is the Titchmarsh-Weyl m-function for S and ¢ and § are the basic solutions
of S, satisfying the initial conditions

A~

compare Remark 1.5.9.

22
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~

Now, obviously, ¥ (&, A) = m(\) and hence

A QO(QAT, )
¢('Ta ) — N
7)) o
is indeed a Nevanlinna function.

Clearly, ¢(,-) and ¢(Z,-) do not vanish identically (by Proposition 1.5.4 they only
have real zeros) and thus by Proposition 1.5.14 one gets (with a = 2, x = Z, A = 1,
B=0and \=it, t > 0)

o(Z,it) = ¢(&,it) exp {/; =it/ (pr) rdz + o (\/E)} as t — 00.

This leads to
~ .t t T
SO(QT’I)‘:\/j/ de—i—o(\/%) as t — oo,
p(2,it) 2.J: Vlnl

which shows the assertion. O

In

We conclude this section with a proposition which will be essential in Section 3.2 too,
but is also interesting on its own.

PROPOSITION 1.5.16. For each x € (a,b) the entire functions

9(.%', ')7 (pH')(m, ')7 90(1'7 ) and (ng,)(.TJ, ) (1514)
belong to the Cartwright class'?.

ProoOF. We already know from Proposition 1.5.4 that these functions are entire and
prove the claim only for the function ¢(z,-) where z € (a,b) is arbitrary. The claim
for the other functions may be proved similarly.

Because of (1.5.5), i.e. W(0(-,\),¢(,\)) =1, A € C, we have

L 0 () (A (pf)(x, )
o, )2 oz, N) < ) ;. AEC\R, (1.5.15)

e(x, ) 0(z,A)
where all fractions are well-defined due to Proposition 1.5.4. In the proof of Corollary
1.5.15 we have seen that

_plz, )
A (pe') (2, \)’

'2 An entire function f belongs to the Cartwright class C (see [Lev96], Section 16.1) if it is of exponential
type and satisfies

A e C\R,

[
/RWCM < o0,

where In" is the positive part of the natural logarithm, i.e. In™(z) = max{Inz,0}. In particular,
the class C contains all entire functions of exponential order less than one.
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is a Nevanlinna function. Similarly, one can show that
O(x,\)

(p0')(x, )’

is a Nevanlinna function. Since the reciprocal of a Nevanlinna function multiplied by

—1is a Nevanlinna function too, we infer that the second and the third fraction on the
right-hand side of (1.5.15) are Nevanlinna functions up to sign.

A= Ae C\R,

Now, the function

O(x, \)
p(x,A)
equals the Weyl solution of the selfadjoint realization of 7| ) with the boundary
condition of S at a and the Dirichlet boundary condition at = (note that other than
in the proof of Corollary 1.5.15 we consider a as the initial point for the construction

of the basic solutions), and we infer that the first fraction on the right-hand side of
(1.5.15) is a Nevanlinna function up to sign too.

@(-,A):tr—>9(t,)\)+<— >g0(t,)\), t € (a,x), A€ C\R,

We claim that any Nevanlinna function m satisfies an estimate of the kind

14|\ 14+ /|A
lmy < oL RAE o (VMY e er,
]Im)\\ ,4/|Im)\|

for some constants C, M € RT. The first inequality follows from the representation
(1.5.7): Because of, for t € R and A € C\ R,

1+ XMt 1 It 1 By 1+ |2
A < A1 < I\
‘t—A‘—w— YA M—|1Ar”’( ) < T

we have

Im(\)] = ‘A+ B)\+/ (% - #) dp(t)‘

1+ Mt
< \A[+B\)\\+/ ‘—1+t2) dp(t)
1+ AP 1
<A1+ B+ (15 ) [ et
1L+ AP
[Tm |’

where C' = |A| + B + 2C with C = Jp 1/(1 +t*)dp(t) < oo due to (1.5.8).
The second one simply follows from the elementary inequality = < exp(2+/z) for z > 0:

oL+ AP <\/_Vl+u> ep<2\/51+\/|7>, AeC\R.

[Im Al — [Tm A| 1

Consequently, ¢(x,-) satisfies

ot
o(x, \)?

1+ 4/
< 2exp <2M§‘;_]IJ>’ A e C\R,
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and

1 1+ /N
lp(z, A)| > EGXP <—Mm> , AEC\R,

for some M € R, and a theorem by Matsaev (see [Lev96], Section 26.4, Theorem 4)
implies that ¢(x,-) belongs to the Cartwright class. O

REMARK 1.5.17. In the case of a reqular endpoint a (where the basic solutions 6 and
@ are given as the solutions of the classical initial value problem (T — XN)u = 0 together
with (1.5.11), compare Remark 1.5.9), there is an elementary proof even showing that
the entire functions in (1.5.14) are of exponential order at most 1/2 (see, e.g., [Zet05],
Theorem 2.5.3).
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Chapter 2
Associated de Branges Spaces

In this chapter we retain the notation of Section 1.5: 7 = 7(p, ¢,r) is a SL differential
expression defined on (a,b) C R where a is in the limit-circle case and S a selfadjoint
realization with separated boundary conditions. By 6 and ¢ we denote the basic solu-
tions, by p the spectral measure and by U : L?((a,b);r) — L?(R; p) the corresponding
generalized Fourier transform constructed as in Section 1.5.

2.1 Generalized Fourier Transform and its Connection to
de Branges Spaces

For ¢ € (a,b) by L%((a,c);r) we denote the linear subspace of L?((a,b);r) consisting
of all functions vanishing outside of (a, c] almost everywhere and by (-, )12 ((a,c);r) the
induced inner product (equaling (-, )2 ((a,);r))- Clearly, this is a closed subspace which
is isometrically isomorph to L*((a,c);7|(e)). For f € L?*((a,c);r) the generalized
Fourier transform U f of f is given by

Uf(t) = /0 o(z,t)f(z)r(z)de, teR,

considered as an element of L?(R; p), compare Lemma 1.5.11.

Now, due to Lemma 1.5.12, we may also consider - for each fixed ¢ € (a,b) - the linear
transformation U, : L?((a,b);7) — H(C) : f — U.f with U.f given by

U.f(2) = /cgp(x,z)f(:v)r(:v)d:c, z eC. (2.1.1)

Obviously, (A]cf is an (actually natural) entire continuation of U f, i.e. Ucth =Uf, for
f € L*((a,c);r). Therefore, we have

~

Ul 2 (aeim = ©@° U 2@y (2.1.2)

where g is restricting to R. Clearly, we have (A]cf = (A]gf for f € L?((a,c);7), ¢,¢ € (a,b)
and ¢ < ¢.

Note that (A]cf is not necessarily the only entire continuation of U f (considered as an
element of L%(R;p)) for f € L?((a,c);r). For example, if the spectrum of S is purely
discrete (as it is the case when both endpoints are limit-circle, see, e.g., Theorem 9.10
in |Tes09]) so that supp p consists of isolated points (compare (1.5.10)), according to
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the Weierstrass theorem, there exist entire functions vanishing precisely on supp p, and
therefore an entire continuation never can be unique in this case.

Using the transformation ﬁc, we now want to link the sub-Hilbert space
U(L?*((a,c);r)) € L*(R;p) to a de Branges space - see Appendix A.2 for a short
introduction into de Branges’ theory of Hilbert spaces of entire functions as far as we
will need it. The ideas presented here are taken from [Eck|, where the author himself
refers to [Rem02|, with the slight difference that we consider general right-definite SL
differential equations, i.e. we do not assume that p =r = 1.

For ¢ € (a,b) consider the entire function
Ec(A) = ¢(c,A) +i(pe)(c;A), AeC,

compare Proposition 1.5.4. Note that E. does not have any real zero g because
otherwise both ¢(c, \g) and (py’)(¢, A\g) would vanish (since these numbers are both
real, compare Proposition 1.5.4), implying that ¢ would equal zero. E. is actually a
de Branges function.

LEMMA 2.1.1. E. satisfies the inequality
|E.(\)| > |E.(X)], xeCT, (2.1.3)

and hence gives rise to a de Branges space B(c). The reproducing kernel K.(-,-) of
B(c) is given by

KC(Z,A):/Cgp(-,z)go(-,x)r(-)dx:/Ca(-,z)go(-,x)r(-)dx, 2AEC (214)

Proor. We claim that

E.(\EZ¥ (z) — E.Z)Ef ()
2i(z — \)

@("E)Qp(" )‘)T()dx
(2.1.5)
(" Z)QO(" )‘)T

()dz, X zeC.

€l

Taking z = A € C*, this shows

|Ec()\zl|I;n|fc()\)| _ /ac (p('v)‘)()@('a)\)r(')dx -0

and hence inequality (2.1.3). Because of (A.2.1) the reproducing kernel is then given
by (2.1.4).

Let us show now (2.1.5). Since ¢(c,%z) = ¢(c,z) and ¢(c,A) = ¢(c,\) by (1.5.4), one
immediately gets
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Using the Lagrange identity (1.2.1) and 7¢(-,¢) = C¢(+, (), ¢ € C, we obtain

# =) — =z f ¢ _
E () E? ;i()z _E;C)( JEZ(A) :/a Pl D)ol () + =

where the second summand vanishes because of (1.5.6). O

(QO("E)’ QO(" )‘))(a)’

The assertion of the next theorem is the main result of this chapter. Together with
(2.1.2) it shows the connection between the generalized Fourier transform and a family
of de Branges spaces.

THEOREM 2.1.2.  For every c € (a,b) the transformation (70 s unitary from
L?((a,c);r) onto B(c). In particular, we have

Blc) = {ﬁcf fe L2((a,c);r)}.

PRrROOF. For each A € R we consider the function fy € L?((a,c);r) given by

faa) = {g(m,)\), z € (a,c]?

Due to (2.1.1) and (2.1.4), we have, for z € C,

~

Otv() = [ ole D f@r@ids = [ ol 2ol s = Ko(R,2) = Ko 2)
and hence U, fy = K.(),-) € B(c) for A € R. Furthermore, we have for all A1, Ay € R

(Fres Fra) 2(ay) = / F (@) T (@)1 (2)dee = / (@, M )o@, Ao)r()de
—K )\11)\2) < ()\17')ch()‘27')>3(0)7

which shows that (A]c is an isometry on the linear span D of all functions f), A € R.
However, in order to show that D is dense in L?((a,c);r), consider the restriction
of S to (a,c), which we refer to as S., with a Dirichlet boundary condition at ¢
(i.e. Se is the selfadjoint realization of 7|, with the boundary condition of S at
a and a Dirichlet boundary condition at ¢). Its eigenfunctions are precisely (the scalar
multiples of) the functions ¢(-,A)|(4,e) = fal(a,e)s A € R, which satisfy o(c,\) = 0.
Since a and c¢ are both limit-circle for 7|, the span of the eigenfunctions of S, is
dense in L?((a,¢);7|(q,)) (there is an orthonormal basis of eigenfunctions of S, see,
e.g., Theorem 9.10 in [Tes09]), and by applying the isometric isomorphism between
L?((a, ¢);7|(a,)) and L*((a,¢);7) we see that D is indeed dense in L*((a, c);r).

Moreover, the linear span of all transforms U.fy = K.(\,-), A € R, is dense in B(c)
because if h € B(c) such that

0= <h’KC()‘7 '))B(c) = h()‘)a AER,
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h must vanish identically because of the identity theorem for holomorphic functions.
Thus, U, restricted to D uniquely extends to a unitary map V from L?((a,c);r) onto
B(e).

We have to show that ﬁC‘LQ((%C);T) equals V. Note that for each fixed z € C both

f = U.f(z) and f — V f(z) are continuous on L2((a, ¢);r). This is clear for the second
map since V' is continuous and B(c) is a reproducing kernel Hilbert space. For the first
one this follows from

0u16) = Oeta2) =| [ ol )5 @) = alelr(oia
< MG 2o llz@erriue 111 = F2llz2acin -
Hence, for all f € L?((a,c);r) and z € C we have

where f, is a sequence of functions in D converging to f. O

We have the following two corollaries.

COROLLARY 2.1.3.  For each ¢ € (a,b) the de Branges space B(c) is isometrically
embedded in L*(R;p), where the embedding is just restricting to R, i.e.

[ oPdote) = i, e Blo)
Moreover, the union of the spaces B(c), ¢ € (a,b), is dense in L*(R;p), i.e.
U Blo) = L*(R:p), (2.1.6)
c€(a,b)
where we suppress the embedding.
Proor.  For each ¢ € (a, b)Awe have the following commutative diagram, where
UlL2((a,e)r) 18 an isometry and Ue|r2((q,c);r) 18 unitary:

)

B(c) Q% L*(R; p)

U‘LQ((a,C);r)

This immediately shows the embedding. Since

U L2((G’C)ST) = L2((a’ b);r)

c€(a,b)
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and U : L*((a,b);r) — L?(R; p) is unitary, we have (2.1.6). O

COROLLARY 2.1.4.  If ci,¢0 € (a,b) with ¢1 < co, then B(c1) € B(c2) (including
inner product).
Moreover, for each ¢ € (a,b) we have

U B@) =B)= () B@). (2.1.7)

x€(a,c) z€(c,b)

B(e1) = Uey (B ((a,¢1)i7)) = Uey (L ((a,01); 7)) & Uy (L7 ((a, e2);7)) = Blea)

—1

el s ) ™9 el s aen) ™) pagcnr

-1 o~ -1
1|L2((a701>v>) 9: (U ‘L2<(aw1>;r>) h) L2((a,c2)ir)

B(ez)

<gvh>B(02)7 gthB(cl)v

which shows the first claim.

The second claim follows from

U L)) = (@i = () LA((aa)r),

z€(a,c) z€(e,b)
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Chapter 3
The Liouville Transformation

We consider the SL equation
—(p1y") + @y = A1y on (a1, b1) CR, (3.0.1)

where compared to the two previous chapters (see Section 1.1) the SL coefficients!
(p1,q1,71) comply with the stronger requirements

() p1,q1,71 : (a1,b1) > R
(i1)  p1,71 € ACioc(ar,b1), q1 € Ly, (a1,b1) (3.0.2)

loc

(Z’LZ) p1,71 > 0 on (al,bl).

For the treatment of the Liouville transformation (as we will introduce it below) these
conditions seem to be appropriate minimal conditions, which turn out to be crucial
repeatedly. Hence we make the following convention:

Till the end of this thesis the minimal conditions (1.1.1) are replaced by the conditions
(3.0.2), i.e. every tuple of SL coefficients (p1,q1,71) is assumed to satisfy (3.0.2).

Note that in this case the domain of an associated SL differential expression 71 =
7(p1,q1,71) is given by D(11) = {y € ACjpe(a1,b1) : v € ACjoc(ar,b1)} since one has
Yy € ACjoc(ar,by) if and only if p1y’ € ACc(aq,b1) according to Theorem A.1.1 and
that (p1y/)" equals p1y” +pjy/. In particular, note that the domain of any SL differential
expression depends on its coefficients only by means of its interval of definition.

One can do the transformation

y(z) = v(z)w(u(z)), (3.0.3)

where u,v : (a1,b1) — R are appropriate functions. As we will see, this leads to a SL
equation

—(pow') 4+ qow = Arow  on (ag,by) C R (3.0.4)

for the unknown function w such that y is a solution of equation (3.0.1) if and only if
w is a solution of equation (3.0.4). In this chapter we want to systematically discuss
the transformation (3.0.3).

'In this chapter we will relate equation (3.0.1) to another SL equation and hence the subscript.
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Chapter 3. The Liouville Transformation

3.1

The Liouville Transformation

DEFINITION 3.1.1. Let (a,b) C R and v and u be two functions defined on (a,b) and
satisfying

(1)  wv,u:(a,b) >R
(ii)  v,u € Cl(a,b) and v',u’ € ACy.(a,b) (3.1.1)
(it4) v #0 and v’ >0 in (a,b).

Given any complex-valued function f defined on I O u((a,b)), by the Liouville transform
of [ we mean the function g defined by

g9(x) = v(@)f(u(x)), =€ (a,b).

For any linear function space T of complex-valued functions defined on I O u((a,b)) we
refer to the linear map

L:T>f—yg

as the Liouville transformation (belonging to v and u).

REMARK 3.1.2.

Since v > 0 on (a,b), there exists a unique continuous extension of u (to which we
also may refer as u since we can identify w with this extension) to u : [—oo, c0] 2
[a,b] — [—00,00]. Then w is a strictly increasing bijection between (a,b) and
(u(a),u(b)) (or between |a,b] and [u(a),u(b)], respectively) and has an also strictly
increasing and continuously differentiable inverse function u=' : (u(a),u(b)) —
(a,b) with derivative (u')'(r) = —2r—. Because of Theorem A.1.1 it is

s T T@)
(u ) € Acloc(u(a)au(b))'

It is easy to see that L is a bijection between the complex-valued functions defined
on (u(a),u(b)) and those defined on (a,b). Theorem A.1.1 shows that its inverse
L~Y is a Liouville transformation (belonging to %o u™t and u') as well. The
same theorem shows that the composition of two Liowville transformations is a
Liouwville transformation too.

Since v is assumed to be real-valued, we have Lf = Lf.
If o : (a,b) — R, o € CYa,b), ?' € ACjpe(a,b), © # 0 in (a,b), then (since
(0v)" € ACipe(a,b) by Theorem A.1.1) MyL, where My is multiplication by 0, is

a Liouville transformation (belonging to vv and w). In particular, cL is a Liouville
transformation for ¢ € R\ {0}.

Now we have the following theorem linking (3.0.1) to (3.0.4).

THEOREM 3.1.3.  Let (p1,q1,71) be a tuple of SL coefficients defined on (a1,b1) C
R and subject to (3.0.2) and let 1 = 7(p1,q1,71) be the associated SL differential
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3.1. The Liouville Transformation

expression. Let v,u : (a1,b1) — R be two functions satisfying (3.1.1) and L be the
Liouwille transformation belonging to % ou"t and u™t, i.e. the inverse of the Liouville
transformation belonging to v and u (see Definition 3.1.1 and Remark 3.1.2).

Set ag = u(ay),ba = u(by) and define the functions ps,qa, 72 : (a2,b2) — R by

2
_ v _ v ry _
po = (VPpi)out, g = —qw = (pr0))| 0w Loy = ut,

Then:

- (p2,q2,72) 1s a tuple of SL coefficients defined on (az,bs) C R satisfying conditions
(3.0.2).

- Set 79 = 7(p2,q2,7r2). Then we have y € D(71) if and only if Ly € D(19) and

Lty =mLy, yeD(n).

- A function y is a solution of —(p1y") + qy = Ar1y on (a1,b1) if and only if the
function w = Ly is a solution of —(pew') + qaw = Araw on (ag,by).

- The map L is a unitary mapping of L*((a1,b1);r1) onto L*((ag,b2);2).
- We have y € D(Timaz(p1,q1,71)) if and only if Ly € D(Timaz(p2,q2,72)) and

LTmax(ply q1, 7“1)?/ = Tmaz (pz, q2, TQ)Lya NS D(Tmax (101, q1, 7“1)),

i.e. Tiaz(P1,q1,71) and Tyar(p2,q2,72) are unitarily equivalent operators. The
same assertions hold for the preminimal operators Ty(p1,q1,71) and To(p2,q2,72),
respectively.

PROOF.

- Under the assumptions for p1,q1,71,v and u, for py and ro this is an immediate
consequence of Theorem A.1.1, and for ¢o this immediately follows from the
substitution rule and the fact that w maps compact intervals in (ai,b;) onto
compact intervals in (ag, bs).

For the following let y always be a function defined on (a1,b1) and set w = Ly. By z
we always mean a variable in (a1, b1), whereas x denotes a variable in (ag,bs) and let
z and x be related by u(z) = z. The following relations hold:

I DR
we) = Lye) = Sl (@),
y(2) = L Mw(z) = o(2)uu(z),

u(z) =z and z=u"'(z).

- Let y € D(11) = {y € ACipc(a1,b1) : v € ACjpc(ar,b1)}. By Theorem A.1.1 we
have w € ACj,.(az,b2). Now calculate
y'(2) = v'(2)w(u(2)) + v(z)w' (u(2))u'(2),
y (u(2) = o' (u™ (@) w(z) + o(u" (2)w' (@)u' (v (2)).
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Rearranging (and again Theorem A.1.1) shows that w’ € ACj,.(az, b2), and hence
we have w € D(mp). If given w € D(m), then an analogous argument gives
VRS D(Tl).

Now calculate

/ "/

(P1y) (2) = (prv'(w o u) + pro(w’ o u)u')'(2)
= (1) (2w (u(2)) + (prv")(2)w' (w(2))d/ (2) + (pr) (2)v(2)w’ (u(z))
+ (pr) ()0 (2)w' (u(2)) + (pru') (2)v(2)w” (u(2))u' (2).

Hence,
ny(2) = ——(~(p19/)’ + a)(2)
r1(z)
- }) — (o)) (2)w" (u(2)) + (~2p10'd! — o(prad)) (2w (u(z))
+ (=(p10) + @) (2)w(u(=))|
and
_ 1 — ! — 1
Ty (@) = o o) [ = ro()?) 0w () - w' (@)

+ (—2p10'u’ — v(pru))) ou (z) - W' ()
(=) + ) ou @) - wia)),

where the expression on the left-hand side is just L7yy(xz). On the right-hand
side we have a general second-order linear differential expression

a(z)w” (x) + b(z)w' (x) + c(z)w(z),
which we have to rearrange as a SL differential expression.

Setting

~ b ~ b2 ~ Cp2
pa = el a%, =S 2= (3.1.3)

where [ gdx denotes an arbitrary antiderivative of 3, one gets

a(z)w” (z) + b(x)w'(z) + c(x)w(z) = == [ = (P2(2)w'(z)) + @2 (r)w(=)].
(3.1.4)

Note that the choice (3.1.3) is necessary for (3.1.4) to hold for any w € L(D(m)),
but (since [ 3dm is unique only up to an additive constant C' € R) is unique only
up to a multiplicative constant e € R - see Remark 3.1.5 after the proof of this
theorem.
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In our case we have

a=|— 22(u')2> oul
]
!,/ "/
p (2 () ) oul,
vry T1

c:<2—(pl—v,)/)oqf1

T vry

and hence obtain

2p1v'u’ + v Plu N _|lr = u(z)
[ate= [P e e = | 2 i
2 /,,! "/ 2 / "/
:/ v +v/(p1u) (2)dz :/l(z)dz—i—/ (plu/) (z)dz
vpLU v pLu

— In0*(2) + In(pre)(2) = In(opra) (u~ ()
as one particular antiderivative of 3. Note that in here In v? and In p;u’ are indeed
well-defined and elements of ACj,.(a1,b1) according to Theorem A.1.1.
It follows that

p2 = (UQPW/) ou"t = po,

~ v _
q2 = J(qw - (plv/)/) out= q2,
—~ 1127“1 —1
ro = / ou =T9
U

and

1
Lny = [ — (poaw') + qow] = T2 Ly.

This is an immediate consequence of the previous assertion.

Let y € L?((a1,b1);71). Then

by b2 1 2 2
2 -1 1 1
[ e = [yt e u s

z = ut(z

T ldz = (uY(x)dx
b1

~ [ )P
ai

2
= ||?/‘|L2((a1,b1);r1),
where we have used that (u~!)(x) = u,%z). Hence, w € L?((az,b2);r2) and

HwHLQ((ag,bg);rg) = HyHLQ((al,bl);n)‘

If given w € L?((ag,bz);72), then the argument may be reversed to give y €
L?((ay,b1);71) and hence L is unitary from L?((ay,b1);71) onto L?((az,b2);72).
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- The assertion for the maximal operators is a consequence of the previous points

as D(Tinae(p1,q1,71)) = {y € L*((a1,b1);71) : y € D(11), iy € L*((a1,b1);7m1)}
and Thaz(p1,q1,71)y = 11y for y € D(Tinax(p1,¢q1,71)) and the same relations
hold for the maximal operator and the SL differential expression associated with

{an QQ,T2}-

The assertions for the preminimal operators follow from this by the observation
that suppy is compact in (aq,b1) if and only if suppw is compact in (a9, b).

0

Theorem 3.1.3 motivates the following definition.

DEFINITION 3.1.4. We say that the SL equation

—(py) + @y =Ary on (a1,b1) CR
can be transformed into

—(p2w/)' + gow = Arow  on (az,b2) CR

by a Liouville transformation (or by the Liouville transformation y = v - (wouw)) if the
SL coefficients (p1,q1,71) and (p2,qa,1r2) are related as in (3.1.2) for some functions
v, (ar,b1) = R satisfying (3.1.1). In this case we write (p1,q1,71) ~x (P2,q2,72).
We define KC as the set of all tuples of SL coefficients satisfying conditions (3.0.2),

K ={(p,q,7): (p,q,7) is a tuple of SL coefficients defined on
some interval (a,b) C R and satisfying conditions (3.0.2)},

and consider ~x as a relation on K.

REMARK 3.1.5.

- In the proof of Theorem 3.1.3 we have seen that we have

Lt(p1,q1,71)y = 7(p2,q2,72) Ly

and hence
—(p1Y) + @y = Ary & —(paw') + gow = Arqw

(y € D(1), w = Ly) not only for the SL coefficients (p2,qa2,72) given by (3.1.2),
but precisely for those SL coefficients differing from these by a positive multi-
plicative constant. However, only the choice (3.1.2) leads to a unitary mapping
L: L?((ag,b1);7m1) — L%((az,b);72).

Note that if (p2,q2,72) = (Cpa, Cqa, Cra) for some C € R, then 7(pa, q2,72) =
7(p2, q2,72), but the associated SL equations

—(paw') + Gaw = Mraw,

3.1.5
—(Cpaw’) + Cgow = ACrow ( )
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and
—(pow") 4+ qew = Arpw (3.1.6)

differ by multiplication with C. However, (3.1.5) can be transformed into (3.1.6)
by the Liouwville transformation w = %w in terms of Definition 3.1.4 and there-
fore a SL equation can be transformed into (3.1.6) by a Liouville transformation
if and only if it can be transformed into (3.1.5) by a Liouwville transformation -
this is due to the fact that transformability is an equivalence relation, see the next
item of this remark.

Using Theorem A.1.1, it is easy to check that ~x is actually an equivalence rela-
tion on K.

For the following we retain the notation of Theorem 3.1.3.

PROPOSITION 3.1.6.  Let W1 be the Wronskian associated with 1 and W? be the
Wronskian associated with 1o, respectively. Let y,s € D(71). Then

W2(w,t)(x) = Wy, s)(u™"(z)), @€ (az,ba),

if w= Ly and t = Ls.
If y,s € D(Tinaz(p1,q1,71)) (and hence w,t € D(Tiax (P2, q2,72))) we also have

W2(w,t)(az) = Wy, s)(a1) and W2(w,t)(b2) = W'(y, 5)(b1)-

ProOF.  W2(w,t)(z) = Wl(y,s)(u '(x)) for z € (az,bs) is shown by a simple
calculation. For y,s € D(Ta:(p1,41,71)) we then have

and

W2(w,t)(az) = lim W2(w,t)(z) = lim Wl(y,s)(u ' (z))

+ +
1‘*}042 x~>a2

= lim W'(y,s)(z) = W'(y,s)(a1)

Z*}G,T

W2(w,t)(by) = lim W(w,t)(z) = lim W(y,s)(u ' (z))

z—by by
= lim W(y,s)(2) = W(y,s)(b1).
z—b

0

COROLLARY 3.1.7.  The endpoint ay is limit-point (limit-circle) for T if and only if
ag is limit-point (limit-circle) for 7. Corresponding assertions hold for the right
endpoint by.
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PROOF. We use the criterion of Proposition 1.3.3. From Proposition 3.1.6 and
Theorem 3.1.3 it follows that W'(y,s)(a;) = 0 for all y,s € D(Taz(p1,q1,71)) is
equivalent to W?2(w,t)(az) = 0 for all w,t € D(Tyaz(p2,q2,72)). Since each endpoint
is either limit-point or limit-circle, this shows the assertion. O

Corollary 3.1.7 states an important invariance property of the Liouville transformation:
Endpoints which are limit-point (limit-circle) are transformed into endpoints which
are limit-point (limit-circle). Considering the definition of an endpoint being limit-
point (limit-circle) this is not all that surprising since we know that the Liouville
transformation maps solutions of 7y = Ay to solutions of mw = Aw and that it is an
isometric isomorphism between L?((a1,b1);71) and L?((ag,bg);72).

However, there is obviously no invariance of endpoints concerning their nature of being
finite or infinite as, e.g., the Liouville transformation belonging to v = 1 and u(z) =
tan(—75 + 7—=%-m) (in the case that both a; and by are finite) shows. Furthermore,
there is no invariance of endpoints concerning their nature of being regular or singular

as we will see in the following example.

ExXAMPLE 3.1.8. Consider the Bessel equation
(=22y/(2)) = Az2y(z) om (0,1),

where ap = 0 and by = 1 are both regular endpoints since the functions AR 3

and 11tz — 22 are integrable on [0, 1].

Applying the Liouville transformation w(x) = xiy(a:), ie. u(z) = z,v(z) = z i, one
obtains the transformed equation
" 3 —2

—w"(x) — T w(z) = Aw(z) on (0,1),
where bo = 1 is still a regular endpoint, but as = 0 is now a singular endpoint since
q2 x> —%x*Q 18 not integrable near 0.
REMARK 3.1.9. Under additional assumptions one can guarantee that a reqular
endpoint is transformed into a regular endpoint: Assume that 0 < C; < v(z) < Cy <
00,z € (ay,c), and (pv') € L'(ay,c) for some ¢ € (ay,b) and C1,Cy € R. Then one
can show that, provided ay is a regular endpoint for 7, then as is a reqular endpoint
for 5. Corresponding assertions hold for the right endpoint.
Clearly, in Example 3.1.8 both of these assumptions are not satisfied.

We collect further properties of the Liouville transformation: The minimal operators
associated with 71 and 7o, respectively, are unitarily equivalent via L too. Selfadjoint
realizations of 71 (with separated boundary conditions) correspond to selfadjoint re-
alizations of 7o (with separated boundary conditions) such that - loosely speaking -
associated spectral measures coincide.
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THEOREM 3.1.10.  Let (p1,q1,71) be a tuple of SL coefficients defined on (a1,b;) C
R and subject to (3.0.2) and let 71 = 7(p1,q1,71) be the associated SL differential
expression. Let v,u : (a1,b1) — R be two functions satisfying (3.1.1) and L be the
Liouville transformation belonging to %OQF1 and u~!, i.e. the inverse of the Liouville
transformation belonging to v and w. Let ay = u(a1) and by = u(by), (p2,q2,72) be
the tuple of SL coefficients defined on (ag,bs) given by (3.1.2) and 1o = 7(p2,q2,72)
(compare Theorem 3.1.3).

Then:

- We have y € D(Tynin(p1,q1,71)) if and only if Ly € D(Tin(p2, q2,72)) and hence
Tonin(P1,q1,71) and Tiin(p2, q2,7m2) are unitarily equivalent via L too.

- Let Sy be a selfadjoint realization of T1. Then L(D(S1)) is the domain of some
selfadjoint realization So of To such that S1 and So are unitarily equivalent via L.
If S1 is a selfadjoint realization with separated boundary conditions, then S5 is a
selfadjoint realization with separated boundary conditions too.

- Assume that the endpoint ay is limit-circle for 71 (and hence so is as for 1), let
S1 be a selfadjoint realization of 7 with separated boundary conditions and let Sy
be the selfadjoint realization of 7o of the previous point. If we start with the real-
valued fundamental system {v,d} in the construction of the spectral measure for
S1 (compare Section 1.5 and Remark 1.5.9) and with {L~, L6} in the construction
of the spectral measure for So, then we obtain the same Titchmarsh- Weyl m-
function and hence also the same spectral measure p for S1 and Ss.

PRroOF.
- Recall the definition of the minimal operator in Section 1.2.

Let y € D(Tmin(p1,q1,71)), then Wl(y, f)(a1) = 0 and Wl(y, f)(by) = 0 for all

f € D(Tmax(pla q1, Tl))-

Set w = Ly, then w € D(Tinaz(p2,q2,72)) according to Theorem 3.1.3. Let now
be t € D(Tynaz(p2,q2,72)) arbitrary, then t = Ls for some s € D(Tnaz(p1,q1,71))
again according to Theorem 3.1.3. Now we have (see Proposition 3.1.6)

W2(w,t)(az) = Wl(y,s)(a1) =0 and W?(w,t)(ba) = W2(y,s)(by) =0

and hence w € D(Thin(p2,q2,72)). Given w = Ly € D(Tpin(p2,q2,72)), the
argument may be reversed to get y € D(Tnin(p1,q1,71))-

- We have 51 = Tmaa:(p17Q17r1)‘D(Sl) and LTmaa:(pMQIarl)Lil = Tmax(p27Q27r2)
and hence

LS1L™" = LTnas(p1, a1,71)| pg, L7
= LT (01,01, L sy ) = T (020020 72)] L s
and
Tmax(p27QQar2)‘L(D(Sl))* = (LS;L™ ) =LsiL™!

B (3.1.7)
=LS|L " = Tmax(p2vq27r2)|L(D(S1))
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in terms of linear relations, where we have used in (3.1.7) that L is a unitary
operator and S a densely defined, selfadjoint operator (see [Wei00|, Theorem
2.43). This shows the first assertion with So = Tynaz (P2, G2, 72)|L(D(51))-

Now assume S to be a selfadjoint realization of 7 with separated boundary con-
ditions so that D(S1) = {f € D(Trmaz(P1,q1,71)) : W(f,?)(a1) = 0} if a; is limit-
circle and by is limit-point (D(S1) = {f € D(Trnaz(p1,q1,7m1)) : WH(f,0)(b1) = 0}
if a7 is limit-point and by is limit-circle) or D(S1) = {f € D(Tiaz(P1,q1,71)) :
WL(f,0)(a1) = WL(f,u)(b1) = 0} if a; and by are both limit-circle, for some
v, u € D(Tinaz(p1,q1,71)) fulfilling

Wl(v,7)(a1) =0 and W?(hy,7)(a;) # 0, (3.1.8)

Wh(u,@)(by) =0 and Wl (hy,@)(by) #0 (3.1.9)
for some hy,hy € D(Tiax(p1,q1,71)) - recall Section 1.4. Note that according to

Corollary 3.1.7 the endpoint a1(by) is limit-point if and only if aa(b2) is limit-
point.

Now, by Theorem 3.1.3 and Proposition 3.1.6 we have

L’U, Lu, th, Lh2 S D(Tmax(p27 q2, T2))?

W2 (Lo, To)(az) = W2(Lo, L) (az) = W' (v,0)(a1) = 0,
o ) _ Lo (3.1.10)
w (th,Lv)(ag) =W (th,LU)(ag) =W (hl,v)(al) 75 0,
W?(Lu, Lu)(by) = W?(Lu, Lw)(b) = W (u,w)(b1) = 0,
b —— ) _ L (3.1.11)
w (LhQ,Lu)(bQ) =W (LhQ,LU)(bQ) =W (hQ,U)(bl) 75 0,

f € D(Tmax(pl,(ha'rl)) < Lf € D(Tmax(p%(DaTQ))

and

) f S ,D(Tmax(pMQDTI))’
) f € D(Tmaa:(p17Q17r1))-

This shows that D(S2) = L(D(51)) = {9 € D(Trmaz(p2,q2,72)) :

W2(g,Lv)(az) = 0} if ay is limit-circle and by is limit-point (D(S2) = L(D(S1)) =
{9 € D(Trmaz(p2,q2,72)) : W2(g,m)(b2) = 0} if ay is limit-point and b; is
limit-circle) or D(S2) = L(D(S1)) ={9 € D(Tinaz(p2,q2,72)) : W2(g,Lv)(az) =
W2(g, Lu)(bo) = 0} if a; and by are both limit-circle, where Lv, Lu €
D(Tnaz (P2, q2,2)) fulfill (3.1.10) and (3.1.11), respectively.

Suppose that ay is limit-circle for 71 and let S; be a selfadjoint realization of 7|
with separated boundary conditions. We use the characterization of D(S) as
described in Proposition 1.4.3:

f €D(S)) < cosay WH(f,v)(ar) +sina; W(f,0)(a1) =0
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and, in addition, W(f,u)(b1) = 0, if by is limit-circle too, for some oy € [0,7)
and some u € D(Tyaz(p1, q1,71)) fulfilling (3.1.9), where {~, J} is some fixed, real-
valued fundamental system of (11 — z)y = 0 (for some z € R) with W1(v,0) = 1.

Similarly to the proof of the previous point one concludes that functions g €
D(S2) are characterized by

cosar W2(g, Lv)(az) 4 sinay W?(g, Lé)(az) =0

and, in addition, W? (g,L_u) (be) = 0 if by is limit-circle. Note that indeed (The-
orem 3.1.3 and Proposition 3.1.6) {L~v, Ld} is a real-valued fundamental system
of (19 — 2)w = 0 with W2(Ly, L) = 1.

Now let 01(-,\) and ¢1(-, A) be the basic solutions for S; fulfilling equation
—(p19) + qy = Arry
together with

Wl((gl(-, )\),'y)(al) = COos (&, Wl((gl(-, )\),5)(0,1) = sina1
W (1(-,A),7)(a1) = —sinay, W(p1(-,\),0)(a1) = cosay.

Let m; : C\R — C be the Titchmarsh-Weyl m-function for Si, i.e. mi(A) is the
unique complex number such that the Weyl solution

P15 A) =010, A) + ma(N)gi (-, A)

satisfies ¥1 (-, \) € L?((ay,b1); 1) and, if by is limit-circle, W(11 (-, A), ) (b1) = 0
for all A € C\R.

From Theorem 3.1.3 it follows that L6#;(-, A\) and L¢;(-, A) are solutions of
—(pow) + qaw = Araw.
From Proposition 3.1.6 it follows that

W2(LO1(-,\), Ly)(az) = cos ay, W2(LO1(-, \), L) (az) = sin ay
W2(Lo1(-, N), Ly)(ag) = —sinar,  W2(Le1 (-, A), Ld)(az) = cos a,
and hence L6(-,\) and L¢1(-, \) are the basic solutions for So.
Finally, by the linearity of L and by Theorem 3.1.3 we have

L91(-, )\) + ml()\)Lgi)l(, )\) = L¢1(', )\) S LQ((CLQ, bQ);’I“Q),

and, if by is limit-circle, according to Proposition 3.1.6 it holds that
W2(Ltp1(-, A), Lu)(b2) = 0, A € C\R. This shows that Liy(-,A) is the Weyl
solution and m; is the Titchmarsh-Weyl m-function for Ss.

O
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REMARK 3.1.11.  The assertion concerning the minimal operators could have also
been proved by using

Tmin(pl,(]l,rl) = To(p1,q1,7“1)
= LTy (p2, q2,72)L
= L 'Ty(pa, g2, m2) L = L™ Tpin(p2, g2, 72) L

i terms of linear relations.

3.2 An Inverse Result

In this section we want to prove the converse of Theorem 3.1.10. We show that, if
two selfadjoint realizations with separated boundary conditions of some SL differential
expressions 71 and 7o have the same spectral measure, there is a Liouville transformation
transforming 71 into 9. Under several different hypotheses this result is known from
the literature. For the case of finite and regular left endpoints and » = 1 it can be found
in [Ben03] or for the left-definite case in [BBW09] or [Eck12]|. See also [Eck|, which is
the source the ideas presented here are mainly taken from (parts come from [Ben03|),
but as mentioned above this paper only deals with the case p = r = 1 and hence
the concept of a Liouville transformation reduces to a simple shift of the underlying
interval.

In this section let 7 = 7(p1,q1,71), T2 = T(p2, @2, 72) be two SL differential expressions
on intervals (ay, by) respectively (ag, ba) such that a; is limit-circle for 71 and ag is limit-
circle for 75 and let 57,59 be two associated self-adjoint realizations with separated
boundary conditions. We provide every associated quantity and object of Chapter 1
and Chapter 2 with a subscript or superscript to indicate its affiliation, e.g. by p; we
denote a spectral measure constructed as in Section 1.5 associated with Sy, whereas po
denotes the spectral measure associated with Ss.

THEOREM 3.2.1. Let (p1,q1,71) and (p2,q2,72) be two tuples of SL coefficients defined
on (a1,by) respectively (ag,bs) and both subject to (3.0.2). Let 71 = 7(p1,q1,71) and
To = T(p2,q2,72) be the associated SL differential expressions and assume that aq is
limit-circle for 7 and that as is limit-circle for 7o. Let S1 and Sy be two self-adjoint
realizations of 11 respectively o with separated boundary conditions and let py and po
be spectral measures constructed as in Section 1.5 associated with Sy respectively Ss.

Suppose that py = pa. Then there exists a Liouville transformation L such that Sy and
Sy are unitarily equivalent via L, i.e. Sy = LS1L™'. The Liouville transformation L is
the inverse of a Liouville transformation belonging to functions v and w, where v and
w actually satisfy (3.1.1). Furthermore, the SL coefficients (p1,q1,71) and (p2,q2,72)
are related as in (3.1.2) and hence we even have LTy = moLy for all y € D(7)
(compare Theorem 8.1.3). In particular, the SL equation associated with (p1,q1,71) can
be transformed into the one associated with (pa,qa2,r2) by a Liouville transformation.

We state the first part of the proof as a separate lemma.
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LEMMA 3.2.2. Let the hypotheses of Theorem 3.2.1 hold. Then there exists a function
u mapping (a1,by) bijectively onto (az,be) such that the de Branges spaces (compare
Chapter 2) associated with S1 and Sa, respectively, satisfy Bi(x1) = Ba(u(z1)), 1 €
(a1,b1). We have u € Ct(ay,b1), v’ € ACj,e(ar,br) and u' >0 on (ay,br).

Proor.  We claim that for each x; € (a1,b1) and each zo € (ag,b) the quotient
of the de Branges functions E;l and E%Q is of bounded type in C": According to
Proposition 1.5.16, for each x1 € (a1,b1) the functions o1 (z1,-) and (pg})(z1,-) belong
to the Cartwright class C and so does

By, = o1(z1,7) +i(per) (21, ).

The same holds for the de Branges function E2, zo € (ag,bz). By a theorem of Krein
(see [Lev96], Section 16.1, Theorem 1 or [BS01], Theorem A) the class C consists of
all entire functions f for which the function In™|f| has (positive) harmonic majorants
in both the upper and the lower complex half-planes C* and C~. These functions, in
turn, are precisely the entire functions which are of bounded type in CT and C~ (see,
e.g., [Wor04|, Section 3.1). Actually, this equivalence is often used for an alternative
definition of being of bounded type. However, we see that B} and EZ2, are of bounded
type in C* for each 21 € (a1,b1) and each z9 € (ag, be) and so is their quotient E} /EZ
because E§2 does not have any zeros in C™.

Now fix some arbitrary =1 € (a1,b;). By Corollary 2.1.3, for each x5 € (ag,bs), both
Bi(z1) and By(x3) are isometrically embedded in L2(R;p) (p := p1 = p2), and we
infer from Theorem A.2.1 that Bj(x1) is contained in Bs(x2) or Ba(xs) is contained in
By (z1). Note that E! /E? has indeed no real zeros or singularities since E} and EZ,
do not have real zeros.

Set (at the moment x; is still fixed)
u(x1) = inf{zg € (ag,b2) : B1(x1) C Ba(x2)}.

First, note that the set on the right-hand side is not empty because otherwise we had
By (x9) € By(x1) for all 5 € (ag,by). By Corollary 2.1.3 this would mean that By (z1) is
dense in L?(R; p), contradicting Corollary 2.1.4. Hence, we always have u(z1) € [ag, ba).
However, u(z1) = ag if and only if Bj(x1) C Ba(zg) for all zg € (ag,bs). This would
imply that for every function h € Bi(z1) and ¢ € C we had

1
= (1, K2, (G ) Bo )| < IRl Bawa) (B2, () K2 (C5)) By )

Ih(¢) ,
= 1Bl By @) K2, (€, )

for each x5 € (ag,b2). Since K2 (¢, () 227%, 0 by (2.1.4), we then had By (z;) = {0},
contradicting Theorem 2.1.2. So we have u(z1) € (ag, b2).

Now, from (2.1.7) we infer that

By(u(z1)) = | Ba(wa) C Bi(m1) C Bs(x2) = Ba(u(x1))

zo<u(z1) (z1)<zm2
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and hence even
Bl(xl) = Bg(u(xl)), (3.2.1)

including the inner product.

Now we may vary with z; and consider u as a function w : (a1,b1) — (ag,b2) : ©1 —
u(z1). Note that u is uniquely defined by (3.2.1). It remains to show that u has the
claimed properties. By Corollary 2.1.4 it is clear that w is strictly increasing. Therefore,
to show that w is continuous let z,z,, € (a1,b1), n € N, and x,, 1 2. By Corollary 2.1.4
we have

Bi(z) = | Bi(an) = | Ba(ulzn)) = B, (supu(xn)> = By (lirrl\ll u(mn)>

ne
neN neN neN

and hence u(z) = limyeyn u(xy,). Similarly, if x,, | z, we obtain
B () = nONBl(xn) = QNBQ(U(%)) = Bg<gr€1fNu(xn)> = 32(7%@%)),
meaning that u(x) = limpen u(x,).

To show that w is actually a bijection it is sufficient to show that u(z1) — a9 as 1 | a1
and that u(z1) — be as x1 T by. However, the first claim follows from (compare (2.1.4))

K2,,(¢.0) =K} (¢.¢0) 220, CeC,

the second one is again a simple consequence of (2.1.6) and (2.1.7). Indeed, assume
that u(x1) - bg as 21 1 b1. Then we had sup,, ¢4, 5,) u(z1) = ¢ < bz and

LR;p)= (J Bila)= J Balu(@)) = Balc) € L*(R;p).

z1€(a1,b1) z1€(a1,b1)

Now, because of Ki(xl)(z, z) = K%l(z,z), z € C, and using (2.1.4) we get

ai

u(x1) 1
/ 02+ 2) 2o Yo = / or( 2 Pr()de, 1 € (as,by).

Herein, due to the conditions (3.0.2), both integrands are continuous. If z € C\R, both
integrands, in particular the first one, do not vanish and hence the implicit function
theorem yields that u is continuously differentiable and that

o2 (u(1), 2)Pra(u(z)) - o' (1) = @1 (21, 2) Pra(zr), @1 € (a1,b1). (3.2.2)

Note that this holds for all z € C. However, for z € C\ R we have

2
W (2y) = —PLELRI@) (3.2.3)

 lpa(u(@), 2)Pra(u(a))
and Theorem A.1.1 shows that u' € AC},.(a1,b1). O
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For the proof of Theorem 3.2.1 we need another lemma.

LEMMA 3.2.3. Suppose H is a unitary map on a weighted L?-space L*((a,b);r) with
the property that
sup(supp Hy) = sup(suppy), y € L*((a,b);r). (3.2.4)

Then H is multiplication by a function h € L>(a,b) of absolute value 1 almost every-
where.

PrROOF. W.lLo.g. we may assume 7 = 1. Otherwise, consider the map THT ™! where
T:L*((a,b);r) = L*(a,b) 1y — r%y.

Obviously, T is unitary and preserves supports and hence THT ! : L?(a,b) — L?(a,b)
is unitary and has the assumed property. If then THT ! = Mj, is multiplication by h,
sois H=T"'M,T = M,

Let H : L?(a,b) — L?(a,b) be unitary and satisfy (3.2.4). Clearly, H ! has the same
property as H and thus H(L?(a,c)) = L?(a,c) for every ¢ € (a,b). Hence, if y = 0
in (a,c) a.e., then so is its image since it is orthogonal to L?(a,c), and H actually
preserves convex hulls of supports.

Let (c,d) C (a,b) be an arbitrary open subinterval of (a,b). For y € L?(a,b) we have
Y=Ly + Liay+ Lany ae.
and
VaoHy + VeaHy + LgpnHy=Hy=Hl, y+Hl qy+ Hlgyy ae.
Because of the previous observation we conclude that
Hlaqy = 1aHy, (3.2.5)

and hence we have

d d
/ |Hy|*dx = / lylPdz, a<c<d<byc L*a,b). (3.2.6)

Now let ((cn, d"))neN be an increasing sequence of subintervals of (a,b) such that every
(cn,dy) is finite and

U (enr dn) = (a,b).

neN

We then may define a function h € L*°(a, b) by defining it on every (c,,d,) as follows:
Let yn = (¢, 4,)- Since (¢,,dy) is finite, we have y,, € L?(a,b) and we can set h = Hy,
on (¢p,dy). Because of (3.2.6) we obtain from the Lebesgue differentiation Theorem
that h has absolute value 1 a.e. in (¢, d,), and (3.2.5) shows that h is indeed well-
defined on all of (a,b). We even have 1. qh = H1 g4 for every finite subinterval
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(c,d), however, this just means Mp1(. 4 = H1(cq), where M is multiplication by h.
By linearity it follows that Mpy = Hy for every integrable step function y. Since the
set of integrable step functions is dense in L?(a,b) and both M}, and H are continuous
on L?(a,b), we conclude that M) = H.

O

Proor or THEOREM 3.2.1. Let u be the function from Lemma 3.2.2. Define
v:(a1,b1) = R by

v(z) = u’(m)%, x € (a1,by). (3.2.7)

Note that v(x) > 0, z € (a1,b1). By (3.2.3) we have, for A € C\ R,

|801($’)\)|2 _ |Q01('T’)‘)| T a
~ Vlea(u@), VP lpa(u(), \)] € (a1, b1). (3.2.8)

v(x) =

Since the radicand is continuously differentiable with absolutely continuous derivative
(by Theorem A.1.1) and greater than zero for all z € (aq, by), we see that v € C(ay, by)
with v' € ACjyc(a1,b1) (by Theorem A.1.1).

So the functions v and u indeed satisfy (3.1.1) and hence give rise to a Liouville trans-
formation whose inverse we want to denote by L, i.e. L is the Liouville transformation
belonging to 1 ow™! and w~!. From (3.2.7) we obtain the relation

(3.2.9)

and hence using Theorem 3.1.3 we see that L is a unitary mapping of L2((a1,by);71)
onto L%((ag,b2);r2).

Now consider the generalized Fourier transforms U; and Us belonging to S; and So,
respectively. The assumption p; = po (in the following we write p = p; = po) implies
that U; and U, have the same target space, so we may consider the composition V =
U{lUl and obtain a unitary map V : L?((ay,b1);71) — L?*((ag,b2);72).
L*(R; p)
Uy U, !

L*((a1,b1);71) v L*((ag,b2);72)

We will show that V = +L. Since

S =U; ' MigUy, Sa = Uy *MigUs
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(remember, Mg is multiplication with id : ¢ — ¢ in L?(R; p)), we have

Sy = U, ' S1UT U = VS V= LS L7

The main step in proving V = =£L is to note that V maps L?((a1,21);71) onto
L?((ag,u(x1);72) for each @ € (a1,b;). However, this follows from (see the diagram
below and compare with the proof of Corollary 2.1.3)

Ur(L*((a1,21);7m1)) = o(Bi(x1)) = o(Ba(u(x1)) = Ua(L*((ag, u(x1));m2)).  (3.2.10)

By(x )/ T By(u())

\L2Rp L2

772
/ \ Uu
a27

1));72)

L2 al,xl

In particular, (3.2.10) implies that?
sup(supp V f) = u(sup(supp f)), [ € L*((a1,b1);71).

Consider the Liouville transformation L= : L?((ag,b2);r2) — L?((a1,b1);71) : f —
v-(fou). Since v # 0 in (a1,b1) and u : (a1,b1) — (ag,b2) is a diffeomorphism, we
have

supp L' f =u"(supp f), [ € L*((az,b2);72).

It immediately follows that the unitary map L=V : L?((a1,b1);7m1) — L*((a1,b1);71)
satisfies the assumption of Lemma 3.2.3, i.e.

sup(supp L'V f) = sup(supp f), f € L*((a1,b1);71),

and we infer that L=V = M), is multiplication by a function h € L>(ay, b;) of absolute
value 1 almost everywhere.

Now, by (1.5.9) and Proposition 1.5.4 it is clear that U; maps real-valued functions
f € L%*((a1,b1);r1) with compact support to real-valued functions in L?(R;p). Since
the set of real-valued functions in L2(R; p) is a closed subspace of L?(R;p) and Uy f =
lim,, o0 Up fy for every f € L%((a1,b1);71), where (f,)nen is a sequence of functions in
L?((ay,by);71) with compact support converging to f, we see that U; maps real-valued
functions to real-valued functions. The same holds for Uy and so it does for V' and even
for L=V since L~! obviously maps real-valued functions to real-valued functions. We
infer that h must be real-valued and hence h = +1 almost everywhere.

?If sup(supp f) = b1, this equation has to be understood in terms of Remark 3.1.2.
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From Lemma 1.5.13 it follows that Vi1(-,A) = 12(, A), A € C\ R, and hence that
L7 9(5 A) = h- 1 (- A).

In here the function on the left-hand side is absolutely continuous and so is the function
on the right-hand side. Because ¢(z,\) # 0, € (a1,b1), A € C\ R, h cannot have
any points of discontinuity, meaning h = 1 or h = —1 a.e., thus L'V = +1d and
V = 4L indeed.

We have to show that (p1,¢1,71) and (p2, g2, r2) are related as in (3.1.2). For 1 and 7o
this is (3.2.9). In order to show the claim for p; and ps, we use Corollary 1.5.15. By
(1.5.13) we have

tlim . In | Qf 2‘ / 1/7"1 z,z € (a1,b1),
—00 z,
. ail i (3.2.11)
Jim 4 /= In ‘ ‘ / ,/ dy, 9,9 € (az,bz).
From (3.2.2) and (3.2.7) it follows that we have
o1 (21, N2 = v(z1)?|@a(u(z1),\)[?, 21 € (a1,b1),\ € C, (3.2.12)
and hence
- - =) it
[p1 (@ 18)] _ v(&) |a(u(@), § )I’ 5.0 € (a1,b), £ > 0
lp1(2,it)] () [2(u(L), it)]
From (3.2.11) we infer that
/7“1 u(®) /7"2 -
/ / z,z € (ay,by).
Differentiating with respect to Z yields
r—l(fs) = ,/T—Z ou(x)-u'(z), 7€ (a1,br),
b1 b2
and using (3.2.9) we finally get after a simple calculation
p2 = (V¥pru’) ou™L. (3.2.13)

It remains to show that ¢; and go are related as in (3.1.2).

By (3.2.12) we have

o1(x1,N)? = (v(x1) o (u(z1),N)?,  x1 € (a1,b1),\ €R.

Since the zeros of every nontrivial solution of a SL equation with real spectral parameter
are isolated in the interior of the underlying interval, compare Theorem 2.6.1 in [Zet05],
we may take logarithmic derivatives and obtain

o1z, A) _ (v(@)ee(u(z1), )
pr(z1,A) v(@)p2(u(z), A)

for almost all z; € (a1,b1), A € R, (3.2.14)
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and hence
pe)a s A pre)v@)es(ul@),A) | prleg)u(e)es(ulz), ')
p1(z1,A) v(z1)p2(u(r1), ) v(z1)p2(u(r1), A)
_ paza)v (21) N pa(u(z)pp(u(z1), )
v(x1) v2 , U

where the second equality is due to (3.2.13).
Differentiating and using that

—(p1e1(5N)) + qrei (5 A) = Ariei (5, A)  ace. in (ag, br),
—(p22(, N)) 4 qap2(-, A) = Araa(-,A) - ace. in (ag, b),

we obtain
4 2 ) (x v (21)\ 2
i (SR Sy
u'(21) u'(ml)rz(u(ﬂﬁl)) pa(u(@1))v'(21) @y (u(w1), \)
@) AT T T ) pelu(en), )
_ pa(u(z)u (71) (90'2(”(901),)\)>2
v(z1)? pa(u(z1),A)
(3.2.15)

for almost all x1 € (aq,b1) and all A € R.
By (3.2.9) we have, for A € C,

oy = A

and using (3.2.13) it is easy to verify that

()Y (e () ). )

Pl ”(mn) o@)® pau(m) V)
palu(e )il (@1) (Ghlula) N)\? (ol ealu(e), N \?
- ( ) ( )\> —_pl(xl)( » ’ >

v(z1)?

xr1 € (al, bl),

for almost all x1 € (aq,by).

Hence, using (3.2.14), we obtain from (3.2.15)
\/ !/
o) () | W)

qi(z1) = o(0) v(xl)2q2(u(x1)) a.e. in (ay,b1),

which is equivalent to

y _ .
g2 = | (@ = (pv'))|eu" ae. in (ar,by),

so that the proof is complete. O
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Chapter 4

Transforming Sturm-Liouville Equations by a
Liouville Transformation

Origin of our considerations of the Liouville transformation at the beginning of Chapter
3 was the transformation

y(2) = v(z)w(u(2))
in
—(p1y") + @y = A1y on (a1, b1) CR, (4.0.1)
leading to the SL equation
—(pow) 4+ qow = Araw  on (az,by) C R, (4.0.2)
where the SL coefficients (p1,q1,71) and (p2, g2, 72) are related as in (3.1.2).

Solving equation (4.0.1) is then equivalent to solving equation (4.0.2), and hence one
may tempt to choose v and v in such a way that the transformed equation (4.0.2) is
easier to deal with than the original equation (4.0.1). For example, if we could choose
u and v such that (p2,qa,72) is a tuple of constant SL coefficients, (4.0.2) is always
explicit solvable and hence so is (4.0.1).

Furthermore, there are several special forms of the general SL equation (like, e.g., the
potential form, see the following section), and some assertions of Sturm-Liouville The-
ory may only (or at least easier) be shown for equations in one (or some) of these special
forms. Using an appropriate Liouville transformation (and having the knowledge of the
previous chapter about it), one can try to transfer such an assertion to the case of a
general SL equation.

In the following we describe transformability by the equivalence relation ~x on the
set of SL coefficients K as introduced in Definition 3.1.4. We present some special
forms of SL equations and deal with the question whether a general SL equation can
be transformed into them! and - if so - how this can be done. We tempt to identify
“canonical representative systems” (see Definition 4.1.5) and give necessary and suffi-
cient conditions for a SL equation in order to can be transformed into an equation with
constant coefficients. Finally, we show in Section 4.2 that for a restricted class of SL
coefficients the equivalence relation ~x corresponds to an equivalence relation on the
set of associated maximal operators.

'In this chapter, if we speak of transforming a SL equation, we always mean transforming by a
Liouville transformation.

93



Chapter 4. 'Transforming Sturm-Liouville Equations by a Liouville Transformation
4.1 Special Forms of Sturm-Liouville Equations

In this section we present some special forms of SL equations and deal with the ques-
tion whether a general SL equation can be transformed into them. To this end let?
(p1,q1,71) € K (defined on (a1,b1)) always be a tuple of general SL coefficients (i.e.
satisfying only conditions (3.0.2)) - however, sometimes additional requirements will be
necessary. By the notation (p,q,1) (as it appears in the next subsection) we mean a
tuple (p,q,r) € K where r = 1 - the meaning of similar notations should be clear then.

4.1.1 (p,q,1)-Form

In order to obtain (p1,q1,71) ~x (p,q,1) for some p and ¢, we have to solve

or equivalently

This can always be done, e.g., by choosing v = 1 on (aj,b1) and

(@) fcx r1(t)dt + d, c<x<by,
u x fr—
— [Cri(t)dt+d, a <z <c,

for some ¢ € (aj,b1) and d € R. Since r1 € ACjc(a1,b1) and 71 > 0 on (a1, by), we
indeed have u € Cl(ay,b1),u =11 € ACj,e(ar,b1) and v’ > 0 on (a1, by).

Hence, we then have (p1,q1,71) ~x (p1r1 ou™1, Z—i ou11).

However, if r; is not only out of ACj,.(a1,b1) but instead r; € C(ay,by) with 7] €
ACe(ar,b1), we also can choose u to be the identity on (a1,b1), u = id(g, p,), and

v = \/%. We then have (pl,ql,rl) ~K (p,q,l) with

P a1 [T/ -3\
p="= and q=—1+—\/—<p17“127“’1>-
1 1 2 1

Finally, it is easy to check that (1,1,1) ~¢ (z — 4dz,z — 1+ gx_%, 1), where both
tuples are defined on (0,1) (v(z) = V22, u(z) = 22), and so we see that there are tuples
(p1,q1,1) and (p2, g2, 1) both defined on the same interval with (p1,q1,1) ~x (p2,q2,1)
but (p1,q1) # (p2: ¢2)-

?For the following it is essential to recall Definition 3.1.4 and the second item of Remark 3.1.5.
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4.1. Special Forms of Sturm-Liouville Equations

4.1.2 (1,q,r)-Form

Similarly to above we see that (p1,q1,71) ~x (1,q,7r) for some ¢ and r if we choose
v=1on (a,b1) and

z 1
—(t)dt + d, c<z<by,
’U,(.%') _ fc pcl (1 ) = 1
— Jo pyDdt+d, a1 <z <c,
for some ¢ € (a1, b;) and d € R and that we then have (p1, q1,71) ~x (1,q1prou™!,r1pio
uh).

Like above, if p; is not only out of ACj..(a1,b1) but instead p; € C'(ay,b;) with
p1 € ACjee(a1,b1), we can choose u to be the identity on (a1,b1), u = id(g, p,), and

v =, /pil. We then have (p1,q1,71) ~k (1,q,7r) with

!

1
qzﬂ—l——(\/p_l)" and r:p.
1

P11 /P1

Again, one can easily find an example of tuples (1,¢1,71) and (1,g2,72) both defined
on the same (finite) interval with (1,q1,71) ~x (1, g2,72) but (q1,71) # (g2, 72).

4.1.3 Potential Form
A SL equation of the form

—y" +qy = My,

i.e. p=r =1, is usually called a potential equation or a SL equation in potential form
or Schrédinger form with potential ¢ - due to its application in physics.

In order to obtain (p1,q1,71) ~xk (1,¢,1) for some g, we have to solve

1= v*pyud,
- v2ry (4.1.1)
u

For u and v to solve (4.1.1) it is necessary that u' = \/pr and that v = :l:(plrl)fi.

However, in order to have v € C'(ay, by) with v’ € ACj,.(a1, by), this in general requires
p1,m1 € Ctay,by) with pl, 7 € ACjoe(ay,by). If this is the case, we may choose

IS

v=(p1m1)" (4.1.2)

and

I /%(t)dt+d, c<x< by,

u(xr) = 4.1.3
(=) —f;w;—i(t)dt—i—d, ap <z <c, ( )
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Chapter 4. 'Transforming Sturm-Liouville Equations by a Liouville Transformation

for some ¢ € (ay,b1) and d € R.

We then have (p1,q1,71) ~x (1,¢,1) with

/
q1 1 P1 4 1 / -1

=|—+-4= — . 4.1.4

(7'1 + 4 T;l), ( plTi) (plTl)) > ou ( )

Once again, we want to point out that this only works for a restricted class of tuples
of SL coefficients (p1,q1,71) € K, namely those satisfying pi,r1 € Cl(ay,by) with
ph, 7 € ACj,c(a1,by) (in fact, it is necessary and sufficient that (pi;71) € C'(ay,b1)
with (p17“1)/ € AC[OC(al, bl))

The Liouville transformation belonging to v and w from (4.1.2) and (4.1.3), respectively,
or rather its inverse is the one originally invented by Liouville and often referred to as
the Liouville transformation, and in this context a potential equation is also called
an equation in Liouville normal form. In the literature dealing with the Liouville
transformation one finds rather different assumptions on the endpoints a1,b; and the
SL coefficients (p1,q1,71). Some authors assume a; and by to be finite, ¢ € C°ay, b1],
p1,71 € C?[ag,bi] and py,71 > 0 on [ag,b1] (e.g. [Tesed], Problem 5.13; similarly
[She05]) or ay, by to be finite, g1,71 € C%ay,b1], p1 € Ctay, by] with (p1r1) € C?[ay, by]
and p1,r; > 0on [a,b1] (e.g. [Yos60]). Under these assumptions ag, by clearly are finite
too and, according to Remark 3.1.9, the Liouville transformation transforms regular
endpoints into regular endpoints. Furthermore, note that under these assumptions one
can choose ¢ = ay in (4.1.3), which is usually done then. In general, choosing ¢ = a; in
(4.1.3) works whenever /71 /p; is integrable near a; - similarly for b.

In [DKS76] the authors’ assumptions are ay, by being finite, ¢ € C%[ay,b1] and py,7r1 €
C?[ay,by] with p1,71 > 0 on (a1,b;) and the slight difference of assuming py,71 > 0
only on (aj,b1) (compared to pi,r1 > 0 on [a1,b1]) brings that the properties stated
in the paragraph above do not hold anymore. In [Eve82| the assumptions on the
endpoints a1, by and the SL coefficients (p1,q1,71) are the same as ours, i.e. arbitrary
a1,bp € RU{—o00,00} (of course a; < b1), (p1,q1,71) satisfying (3.0.2) and additionally
p1,71 € Cl(al,bl) with p/1,7“/1 € AC[OC(al,bl).

Finally, let (1,q1,1) ~x (1,¢2,1). Then it immediately follows from (4.1.1) that v? = 1
and v’ = 1, and we infer that u is a shift mapping (a1,b1) onto (az, b2).
4.1.4 String Form
An equation of the form
—y" = My, (4.1.5)

i,e. p=1and g =0, is usually called a string equation or a SL equation in string form,
and the weight function r is then called the density function of (4.1.5).

The question of whether a general SL equation can be transformed into an equation in
string form is a bit more subtle to deal with than in the previous cases. In order to
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4.1. Special Forms of Sturm-Liouville Equations

obtain (p1,q1,71) ~x (1,0,r) for some (1,0,7) € K, we have to find functions v and u
satisfying (3.1.1) and solving

1 =v?pi, : )
v 4.1.6
0= J(‘h” — (p1v")"),
’U2

and then we had (p1,q1,71) ~x (1,0, %7 o u~1) or, using the first equation of (4.1.6),
(p1,q1,71) ~x (1,0,v*p1ry ou™t). Since v has to satisfy v # 0 in (a1, b;), the second

equation of (4.1.6) is equivalent to 0 = q1v — (p1v')".

We want to note two things: Finding an appropriate v requires finding a real-valued,
zero free solution of the given SL equation with spectral parameter A = 0 - in gen-
eral, if ever, this is not explicitly feasible. Having found an appropriate v, finding an
appropriate u is no further difficulty - one can (and in fact has to) choose

u(2) = fcxvglpl(t)dt-f—d, c<z<b,
—[fE)dt+d, oy <z<ec,

z v?py

for some ¢ € (ay,b1) and d € R.

However, we are able to state a sufficient condition for having (p1,q1,71) ~x (1,0,7)
for some (1,0,r) € K.

THEOREM 4.1.1.  Assume that g1 > 0 a.e. on (a1,b1). Then we have (p1,q1,7m1) ~K
(1,0,7) for some (1,0,7) € K.

PROOF.  Since we always have (p1,q1,71) ~x (1,qip1 o u™ !, ripy o u™') (compare
Subsection 4.1.2), where ¢; > 0 a.e. if and only if gip; o u™! > 0 a.e., we may assume
that p; = 1. Now, as we have seen above, all we have to show is that there is a
real-valued, zero free solution of

—v" +quv=0 on (a,b). (4.1.7)

To this end let v be the solution of the initial value problem
" +quv=0, wv(c)=11(c)=0

for some ¢ € (a1,b1). This solution uniquely exists and is real-valued, compare Corol-
lary 1.1.2. Suppose that v(z) = 0 for some z € (a1, by). Clearly, then thereis zg € (¢, b1)
such that v(z9) = 0 and v(z) > 0 for z € [c, 20) or 29 € (a1, ¢) such that v(zp) = 0 and
v(z) > 0 for z € (zp,c] (of course, both could be true - for different z5). We suppose
2o > ¢, the other case can be treated in a similar way. Then we have

~—
=0 >0

V' (z) = (c) +/ V' (t)dt = / qu dt >0, z€ e 2],

+/ V(t)dt >0, z€|c, 20,
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Chapter 4. 'Transforming Sturm-Liouville Equations by a Liouville Transformation

contradicting® v(zg) = 0. O

As an example consider the tuple (1,¢, 1) defined on (a,b) where ¢ = ¢ for some ¢ < 0.
In this case the real-valued solutions of (4.1.7) are precisely the functions

v(z) =djcos(v/|c| z) + dasin(y/|c| z), di,dy € R. (4.1.8)

Now, if 1/|c|b — v/|c|la > 7 or equivalently ¢ < —ﬁ, we have

U spon (VD)) g
sin(\/|c| z)
and hence for all dy,ds € R there is some z € (a,b) such that

<(§;>’(COS( |c| 2) >>R2:d1€08(\/ﬂz)+d2sin(\/ﬂz):0,

sin(y/|c| 2)

meaning that there is not any real-valued, zero free solution of (4.1.7). Thus a potential
equation with constant potential ¢ = ¢ cannot be transformed into a string equation if
2
¥
SN C=nEE

Conversely, let 0 > ¢ > —ﬁ. Then, since

sinz siny = =(cos(x —y) — cos(z + y)),

cosz cosy = =(cos(x —y) +cos(z+vy)), xzy€R,

O DN

we have, for z € (a,b),
b b
cos( || a; )cos(\/\c\ z) —|—sin< || a; )sin( le| z) =
a+b
cos( \c\( 5 —z)) #0,

N——
<tta |.|<m

meaning that there is a real-valued, zero free solution of (4.1.7). Consequently, a

potential equation with constant potential ¢ =¢, 0 > ¢ > —bf—Z)Q, can be transformed

into a string equation. Because of Theorem 4.1.1 this also holds for ¢ > 0.

In particular, the example of a potential equation with constant potential shows two
interesting things which we want to state as a remark.

REMARK 4.1.2.

- The assumption of Theorem 4.1.1 that g1 > 0 a.e. on (a1,b1) is not necessary in
order to have (p1,q1,7m1) ~ic (1,0,7) for some (1,0,r) € K.

3In fact, one sees that v is convex on (a1,b1) with global minimum at z = c.
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4.1. Special Forms of Sturm-Liouville Equations

- There are SL equations which cannot be transformed into a string equation.

At this point let us conclude with an example of tuples (1,0,71) and (1,0,7r2) both
defined on the same interval with (1,0,71) ~x (1,0,72) but 71 # 2. Let (a1,b1) =

(ag,bs) = (1,2), r1 = 1 and ro(z) = 42~*. Then it is easy to check that (1,0,71) ~x

1
(1,0,72) (v(2) = %z - % and u(z) = — (32 — 3)71).

4.1.5 Impedance Form
A SL equation associated with coefficients of the form (p,0,p), i.e p = r, is called an
equation in impedance form.

We claim that (p1,q1,71) ~x (p,0,p) for some p if and only if (p1,q1,71) ~xc (1,0,7)
for some r, i.e. a SL equation can be transformed into impedance form if and only if
it can be transformed into string form (see Subsection 4.1.4). To this end it suffices
to show that each tuple (1,0,r1) € K satisfies (1,0,71) ~x (p,0,p) for some p and -
conversely - each tuple (p1,0,p1) € K satisfies (p1,0,p1) ~x (1,0,7) for some 7.

Let (1,0,71) € K. Choosing v =1 on (a1, b;) and

(@) [F/mt)dt+d,  c<ax<by,
u(z) =
—[Cyridt+d, a <z <c,

for some ¢ € (ay,b1) and d € R, one sees that (1,0,71) ~c (y/r1ou™1,0,/riout). If
(p1,0,p1) € K, choosing v =1 on (ay,by) and

u(e) = ffpil(t)dt—ird, c <z < b,
—[fL®)dt+d, a1 <z<e,

T p1

for some ¢ € (a1,b;) and d € R leads to (p1,0,p1) ~x (1,0,pF ou™1).

In order to see that there are tuples (p1,0,p1) and (p2, 0, p2) both defined on the same
interval with (p1,0,p1) ~ic (p2,0,p2) but p; # pa, consider, e.g., p1(2) = 2% and py = 1
on (1,2) (v(z) =1 and u = id(1,2))-

4.1.6 Canonical Representative Systems and Equations with Constant
Coefficients

For the following it is essential to notice that each shift u(z) = z 4+ d, d € R, gives rise
to a Liouville transformation belonging to v = 1 and u, transforming

—(p1y) + iy = Ay
via

y(2) = w(u(z))
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Chapter 4. 'Transforming Sturm-Liouville Equations by a Liouville Transformation

into

~((prou™")w') + (@ ou™w=A(r1ouw,

ie. (p1,q1,71) ~c (prout,grout,ryou?t).

DEFINITION 4.1.3. Let (p1,q1,71), (p2,q2,72) € K. We say that (p1,q1,71) and

(p2,q2,72) are equal up to some shift if (pa,qa,r2) = (prou=t,quou=t,ryou™t) for
some shift u.

REMARK 4.1.4.  Clearly, if (p1,q1,71) is defined on (a1,b1), (p2,qa,72) is defined on
(a2,b2), where ay = ag is finite and (p1,q1,7m1) and (p2,qa,r2) are equal up to some
shift, then (p1,q1,71) = (p2,q2,72). Note that in general this does not hold true if
ap = ag = —0OQ.

DEFINITION 4.1.5. Let A C B C K. We say that A is a canonical representative
system (c.r.s.) for the tuples of SL coefficients in B (in short, A is a c.r.s. for B) if

(1) each tg € B satisfies tg ~ic t4 for at least one t4 € A
and

(ii) if t4 ~ic ta for ta,ta € A, then tq and t4 are equal up to some shift.

EXAMPLE 4.1.6. Let A= {(1,¢,1) € K}, B={(p,q,v) € K : p,r € C* with p',r' €
ACj,.}. Then the considerations above (Subsection 4.1.3) show that A is a c.r.s. for B.
However, by using Remark 4.1.4, we see that none of the other described special forms
gives rise to a canonical representative system.

EXAMPLE 4.1.7. Let (p1,q1,71) be a tuple of constant SL coefficients on (a1,b1) C R.
Clearly, then p1,m1 € C(ay,by) with p',r" € ACj.c(a1,b1) and hence (p1,q1,71) ~i
(1,q,1) for some (1,q,1) € K. By (4.1.4) q is constant. Consequently, A= {(1,q,1) €
K:q=c for someceR} isac r. s for B={(p,q,r)eK:(pqr)isa tuple of
constant SL coefficients}.

From Example 4.1.7 we infer that a SL equation with coefficients (p1,q1,71) € K
defined on (a1, b1) can be transformed into a SL equation with constant coefficients (by
means of a Liouville transformation) if and only if it can be transformed into Liouville
normal form with constant potential. This is equivalent to (p1r1) € C*(aq,b1) with
(plrl), S ACloc(al, bl) and (see (414))

!
g 1 [pf,] 1 A
D4 a5 i — ()] =c
ry 4 7":13< Plr? (P 1)>

for some ¢ € R. In particular, every SL equation with coefficients (p1, q1,71) € K where
pir1 = ¢ for some ¢; € RT and q1/m1 = ¢ for some ¢y € R can be transformed into
an equation with constant coefficients.
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ExamprLe 4.1.8. Consider the Cauchy-FEuler equation
2y'(2) + 2/ (2) + My(2) =0 on (0,b1) (4.1.9)

or - equivalently - in SL form
/ / 1
—(2y'(2)) = )\;y(z) on (0,b1). (4.1.10)

We have g1 =0 andpyri =1 (p1:z2— 2,11 : 2 — %) and infer that (4.1.9) or (4.1.10),
respectively, can be transformed into a SL equation with constant coefficients. Indeed,
applying the Liouville transformation w(zx) = y(e®), i.e. u(z) = lnz,v = 1, yields the
transformed equation

—w"(x) = Mw(z) on (—oo,lnby).

4.2 Equivalence Relation on the Set of Maximal Operators

We may consider the set 7 of all maximal operators associated with SL coefficients
(p’ Q’ ’,") E IC)

T = {Tmax(pa q, T) : (p, q, T) € ’C},
and declare an equivalence relation ~7 on T by

Tonaz(P1,q1,71) ~T Tinaz (D2, g2,72) < 3 Liouville transformation L such that

Tmaaz (ph q1, 7'1) and Tmaaz (p27 q2, TQ)
are unitarily equivalent via L.

We want to make a connection between the relation ~x on the set of SL coefficients
and the relation ~7 on the set of associated maximal operators. For a restricted class
K, of SL coefficients this is possible:

Let K, be the subset of K which consists of all tuples of SL coefficients satisfying not
only conditions (3.0.2) but additionally p’,q € L2, (a,b),

K. ={(p,q,7) € K: (p,q,r) is defined on (a,b) C R and p,q € L?,.(a,b)}.

The additional assumptions on the SL coefficients guarantee that smooth functions
with compact support are in the domain of associated maximal operators (in fact, of
course, even in the domain of associated preminimal operators): Let (p,q,7) € K, be
defined on (a,b) and y € C3°((a,b); C) with suppy = [¢,d] C (a,b). Clearly, y and 3/
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are in ACj,.(a,b) and hence y € D(7(p,q,7)), and y € L*((a,b);r). Furthermore,

b b 1
/IT(p,q,r)yIQle“:/ ;[—(py')’+qy}
<3 max ( / Yl P + / P e + / d\qmwdx)
T z€led) ’I“(.’E) c c c

1 2 / 2 " 2
<3 max o max (Jy(@)” + @) + |y @))

d d
((d —c) max Ip(z)|? + / |p’|2dx - / \q!2dx> < 00.
z€[e, ¢ ¢

2 dl " / 2
rdv= [ —|-py" =Py + qy|” da
C

This property, i.e. C5°((a,b);C) € D(Tynae(p,q,r)), is crucial for the proof of Theorem
4.2.1.

Note that other than K the set K, is not closed under applying a Liouville transfor-
mation, meaning that if we start with (p1,q1,71) € K, and define (pa, g2, 72) by (3.1.2)
for v and wu satisfying (3.1.1), then in general (p2, ¢2,72) ¢ K,. To this end one had to

2
assume that ", v € L} (a,b).

THEOREM 4.2.1. Let (p1,q1,71), (p2,q2,72) € K. Then

(P1,q1,71) ~k (P2,62,72) € Trmaz(P1,61,71) ~T Timaz (D2, G2, 72).

Consequently, we have
Kifnx = Tefmrs

where T, C T is the set of mazimal operators associated with SL coefficients (p,q,r) €
K,

Tr = {Tmaz(p,q;7) = (p,q,7) € Kr }.

Proor. If (p1,q1,71) ~x (p2,q2,72), it follows from Theorem 3.1.3 that
Trmaz(P1,01,71) ~T Tmaz(D2,q2,72). This even holds if (p1,q1,71), (p2,q2,7m2) € K in-
stead of (p1,q1,71), (P2, q2,72) € K.

Conversely, assume that Tinae(P1,q1,71) ~7 Tmaz (P2, 92,72). Assume that (p1,q1,71)
is defined on (a1,b1) and (p2, g2, 72) is defined on (ag,bs) and let L be a Liouville trans-
formation (belonging to some 1 and ¢) such that L : L?((ay,b1);71) — L?((ag,b2);72)
is unitary, L : D(Timaz(p1,q1,71)) = D(Tmaxz (P2, g2, 72)) is bijective and

LTmax(pla q1, Tl)y = Tmax (102, q2, TQ)L?/, Yy e D(Tmax(pl, q1, Tl))-

We write n = 2 ou™! and £ = u™! (with u = ¢! and v = %ou). Since L :

D(Tiaz(p1,91,71)) = D(Thmaz(p2,q2,72)) is bijective, it is clear that w maps bijec-
tively (ai,b1) onto (ag,b2). Consequently, v is defined on (aj,b1). By definition of
a Liouville transformation (Definition 3.1.1) u and v satisfy u,v € C'(a1,b),u’,v" €
ACipe(ar,b1),u' >0 and v # 0 in (a1, by).
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We use that L : L?((a1,b1);71) — L?((az,b2);72) is unitary. On the one hand we have

b1

ey = | 1) Pra(e)ds =

1

b2 —1 2 —1 1
- / 7 @) Pra 07 @) gy e

on the other hand we have

1

vou!

b
Lf= (fouh, ‘|Lf‘|%2((a27b2);r2) :/ WV(U*%U@))FW(%)C&

az

and therefore

ba b2
[ e @) @) pemsde = [ s e @) Pra(e)ds

; ORI
for f € L%*((a1,b1);71).

In particular, for f = 1(,-1(¢)u-1(a)), a2 < ¢ < d < by, this yields

d 1 4
/c rl(u_l(:v))mdx = /C Wm(m)dm, az < c<d< by,

and hence we infer from the Lebesgue differentiation theorem that

Tl(u_l(x))u'(ufl(:n)) = UQ(UA(SE))TQ(:U) for almost all z € (ag, bo).

Since in here both sides continuously depend on z, we even have

e r

—/OU 1:—20U 1"’"2

u v

or equivalently
2
vty _
ry = ou !, (4.2.1)

u/

For the following let x (. 4), a1 < ¢ < d < by, be a function such that x4 € C§°(a1,b1),
0 < X(c,gp < 1on (a1,b1) and x(c,a)(2) = 1 for 2 € [c,d] (it is widely known that such
a function exists, see, e.g., [Alt06], Section 2.18).

For y € D(7(p1,q1,71)) such that x(. )y € D(Tinaz(p1,q1,71)) we then have

L7(p1, q1, 1) X (c,yy = T(P2, 92, 72) LX(c,a)Y

and also

(LT(plaqlvrl)X(c,d)y) ‘(u(c),u(d)) = (T(p27QZ77"2)LX(c,d)y) ‘(u(c),u(d))'
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However, this is equivalent to

L] oy atan™®1 417D ¥ .ty = 702 9272 o) ity Loy atap ¥l ey (422)
where by L|(y(c)u) we mean L restricted to (u(c),u(d)), i.e. the Liouville transfor-
mation belonging to % o ufl\(u(cm(d)) and uil\(u(cm(d)).

If y is the function which is constant to 1, i.e. y = 1 on (ag,b1), then x( gy €
C°(a,b) C C§°((a,b); C) € D(Tiaz(p1,q1,71)) and we obtain

q1
L u(e)uta 7y

r
= 7(p2, q27r2)‘(u(0)7u(d)) (5 o 1)

(c,d) (u(c),u(d))

and hence

o(w (@) r(u(z)) 7“2290) [_ <p2 (% OUI>1),(3€) +q2(x)v(“_11(x))] (4.2.3)
% [(m : vs—;, o u1> () + qz(w)m]

for almost all z € (u(c),u(d)). Since ¢,d (a; < ¢ < d < by) were arbitrary, (4.2.3) even
holds for almost all = € (ag, b2).

Similarly, for y = id(4, 3,) we obtain from (4.2.2)

(c,d)

1 -1
7(P2,42,72)| (u(e) (e (m '“ >

1 .
L‘(u(c)vu(d)) (H [ o pll + a1 ld(alvbl) ])

leading to

[(pgu_l Y oy % o u_1>/ () + qQ(x)mu_l(x)]

ra ()
for almost all = € (ag, b2).

After a lengthy calculation using (4.2.1) and (4.2.3) we obtain from this

1 -1 ' —1y/ :
. = a.e. b
(pz 2w ou > (prou™) in (a1,b1)

and hence

1

v2u/

out=prout4e

p2 -

for some ¢ € R.
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Finally, we do the same as for y = 1 and y = id(q, p,) for y with y(z) = 22 yielding
(again after a lengthy calculation) that ¢ =0, i.e.

po = (Vpru) out, (4.2.4)

Putting (4.2.1) and (4.2.4) into (4.2.3) then yields

v _
q2 = E(qw_ (plv')') ou 1,

and together with (4.2.1) and (4.2.4) this shows (p1,q1,71) ~k (P2, q2,72). O
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Appendix A

A.1 Absolutely Continuous Functions

The following theorem is essential throughout Chapter 3 and Chapter 4.

TurOREM A.1.1. Let f,g € AC[a,b] and A\ € C. Then \f, f,|f|, f+g, f-g € AC]a,b].
Furthermore, if g # 0 in [a,b], then f/g € AC]a,b].

Let f € ACla,b] be real-valued and h € Liplc,d] or f € AC[a,b] be real-valued and
monotone and h € AC|c,d] such that f(]a,b]) C [¢,d]. Then ho f € AC]a,b].

ProoF. Clearly, \f and f are absolutely continuous. The function |f| being abso-
lutely continuous can be easily seen by using the e-d-definition of absolute continuity
and the reverse triangle inequality. In the case of real-valued functions f, g and h, the
remaining assertions can be found, e.g., in [App09]| (Theorem 4.21 and Theorem 4.28)
or [Bog07| (Lemma 5.3.2, Corollary 5.3.3 and Exercise 5.8.59). However, for complex-
valued functions f,g and h the assertions follow from these since a complex-valued
function is absolutely continuous (Lipschitz continuous) if and only if its real part and
its imaginary part are absolutely continuous (Lipschitz continuous). 0

A.2 Hilbert Spaces of Entire Functions

We want to briefly discuss the concept of de Branges' spaces and state some main
results as far as we need them in Chapter 2 and Section 3.2. We refer to de Branges’
book [dB68]| for a detailed description.

We say a function f which is analytic in the upper complex half-plane is of bounded
type in CT if

f<z>=*qﬁ ect,

where p and ¢ are both bounded and analytic in the upper complex half-plane and ¢ is
not identically zero?. Clearly, if A € C and f, g are of bounded type, so are Af, f+g, f-g
and (if f/g is analytic in CT) f/g.

If f is a function of bounded type in C*™ and f does not vanish identically, the quantity
1 .
n|fly)l

lim sup [—00, 00]

Y—00

'Louis de Branges de Bourcia (*1932)
2There is a corresponding notation for other simply connected complex domains.
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is referred to as the mean type of f. It can be shown that this number in fact is finite
and the mean type of f =0 is then taken to be —oc.

A de Branges function is an entire function E which satisfies the inequality
|E(z)| > |E(z)|, zeC*.

Obviously, a de Branges function does not have any zeros in C*. Given such a function
E, the associated de Branges space B is the vector space of all entire functions h such
that

|h(t)[?

e [BE@PEY <

and such that both h/E and h*/E are of bounded type in C* and of non-positive
mean type, where h# is the entire function given by

Wt (z) = ), 2eC.

An inner product is defined on B by

L [ h(t)g(t)

<h,g>B:—/ dt, h,g € B,
™ Jr |E(1)?

and equipped with this inner product the de Branges space B can be proven to be a

Hilbert space (see [dB68], Theorem 21, but note that the scale factor 7! is missing

there).

For each ¢ € C point evaluation in ( is a continuous linear functional on B, hence B is
a reproducing kernel Hilbert space and point evaluation in ¢ can be written as

h(¢) = (h,K(C,-))B, h€B.
The reproducing kernel K is given by, compare [dB68| (Theorem 19),

E(2)E#(() — E(()E*
K(¢,z) = BRETQ) 2 BOF() (A.2.1)
2i(¢ — 2)
Note that though there is a multitude of de Branges functions giving rise to the same
de Branges space (including the inner product), e.g. AE for |A| = 1, the reproducing
kernel K is of course independent of the actual de Branges function.

In Section 3.2 we need the following subspace ordering theorem.

THEOREM A.2.1 (|dB68|, Theorem 35). Let Ey, Es be two de Branges functions and
By, By be the associated de Branges spaces. Suppose By, Bo are isometrically embedded
in L*(R, 1) for some Borel measure y on R. If E1/Es is of bounded type in C* and
has no real zeros or singularities, then By contains Bo or Bs contains By (including
the inner product).

Furthermore, we need the following converse statement.
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A.2. Hilbert Spaces of Entire Functions

LEMMA A.2.2. Let E1, Es be two de Branges functions and By, Bs be the associated
de Branges spaces. If By N By # {0} (which is surely the case if By contains By or Ba

contains By since any de Branges space contains nonzero elements, compare [dB68], p.
50), then Ey/Es is of bounded type in CT.

ProOOF. For each h € B; N By \ {0} the functions h/E> and h/E; are of bounded
type by definition and hence so is their quotient, which equals E;/Es (and is indeed
analytic in CT since Ey does not have any zeros there). O
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