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Abstract

In our daily life we encounter situations where already drawn conclusions can turn out to be
invalid because new information becomes available which we did not know before. Human
reasoning is not only capable of dealing with such nonmonotonic situations, but also is this kind
of reasoning permanently performed by humans. Hence, it is no surprise that lots of research
in artificial intelligence (AI) and knowledge representation (KR) is conducted in order to study
so-called nonmonotonic reasoning formalisms.

Examples of such formalisms are belief revision, answer-set programming, and (proposi-
tional) abduction. A big obstacle that limits the practical applicability of computational non-
monotonic reasoning is the high complexity of these tasks. A promising approach to dealing
with high computational complexity is to study what kind of properties those problem instances
have that can be solved efficiently. Such tractable fragments are not restricted to syntactical limi-
tations, such as Horn formulas instead of general propositional formulas. We are more interested
in structural fragments since they often tell us something about the (hidden) structure of certain
problem instances.

The framework within which the search for such structural fragments can be conducted
is called parameterized complexity theory. Thereby a multivariate complexity analysis of the
problem is performed, where the input size is just one dimension. The other dimensions that are
studied are called parameters.

To overcome the high complexity of nonmonotonic reasoning problems, we seek parameters
or combinations of parameters such that the computational hardness of the problem can be con-
fined in them. This means that if we consider fragments of problem instances with sufficiently
small parameter values, we obtain new tractable fragments.

In this thesis we will study the three above mentioned nonmonotonic reasoning formalisms.
We initiate the research of parameterized complexity of belief revision as well as propositional
abduction. Furthermore, we significantly advance the state-of-the-art of parameterized complex-
ity of answer-set programming.
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Abstract

In unserem Alltag erleben wir Situationen, in denen sich bereits getätigte Schlussfolgerungen
als ungültig erweisen, weil neue Informationen verfügbar werden, die wir vorher nicht kan-
nten. Menschliches Denken ist nicht nur in der Lage mit solchen nichtmonotonen Situationen
umzugehen, sondern tatsächlich wird diese Art des logischen Denkens permanent von Menschen
durchgeführt. Daher ist es nicht verwunderlich, dass sich viel Forschung in den Bereichen der
künstlichen Intelligenz (KI) und der Wissensrepräsentation mit Formalismen zu sogenanntem
nichtmonotonen Schließen auseinandersetzt.

Beispiele für solche Formalismen sind Wissensrevision (Belief Revision), Antwortmengen-
programmierung (Answer-Set Programming) und (aussagenlogische) Abduktion (propositional
Abduction). Eine große Hürde, welche die praktische Anwendbarkeit von maschinellem nicht-
monotonen Schließen begrenzt, ist die hohe Komplexität dieser Aufgaben. Ein vielversprechen-
der Ansatz im Umgang mit Problemen hoher Komplexität ist zu untersuchen, welche Eigen-
schaften jene Probleminstanzen haben, die eine effiziente Berechnung ihrer Lösung erlauben.
Solche Fragmente sind nicht auf syntaktische Kriterien beschränkt, wie sie zum Beispiel entste-
hen wenn nur Horn-Formeln anstatt uneingeschränkte Formeln der Aussagenlogik betrachtet
werden. Stattdessen sind wir an strukturellen Fragmenten interessiert, da man aus diesen oft
etwas über den strukturellen Aufbau bestimmter Probleminstanzen lernen kann.

Die Methodik, mit welcher die Suche nach solchen strukturellen Fragmenten durchgeführt
werden kann, wird als parametrisierte Komplexitätstheorie bezeichnet. Diese ermöglicht eine
multivariate Analyse der Komplexität des Problems. Dabei stellt die Menge der als Eingabe
zur Verfügung gestellten Daten nur eine der Dimensionen dar. Die anderen Dimensionen die
untersucht werden, nennt man Parameter.

Um die hohe Komplexität der Probleme aus dem Bereich des nichtmonotonen Schließens zu
überwinden, suchen wir Parameter oder Kombinationen von Parametern, so dass die komplette
Härte des Problems in diesen beschränkt werden kann. Das bedeutet dann, dass Fragmente von
Probleminstanzen mit hinreichend niedrigen Parameterwerten tatsächlich effizient gelöst werden
können.

In dieser Arbeit untersuchen wir die drei oben genannten Formalismen für maschinelles
nichtmonotones Schließen. Wir initiieren die Erforschung der parametrisierten Komplexität der
Wissensrevision sowie der aussagenlogischen Abduktion. Darüber hinaus tragen wir erheblich
zur Erweiterung des Wissensstandes bezüglich der parametrisierten Komplexität der Antwort-
mengenprogrammierung bei.
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CHAPTER 1
Introduction

1.1 Motivation

Darth Vader: Obi-Wan never told you what happened to your father.
Luke Skywalker: He told me enough! He told me you killed him!
Darth Vader: No. I am your father.
– Star Wars Episode V: The Empire Strikes Back

Although the dialog above is a fictive situation, it demonstrates well that nonmonotonic reason-
ing is something that can be observed in the real world. Before talking to Darth Vader, Luke
believed that his father is dead. During the conversation he acquires new information that allows
him to actually come to the opposite conclusion: his father is still alive. Formalisms to express
reasoning in which already drawn conclusions can become invalid later are called nonmono-
tonic. Human reasoning is not only capable of dealing with such nonmonotonic situations, but
also is this kind of reasoning permanently performed by humans. Hence, it is no surprise that a
lot of research in artificial intelligence (AI) and knowledge representation (KR) has been done
investigating nonmonotonic reasoning formalisms.

An example of such a formalism is belief revision [90]. Thereby a knowledge base is given
as a set of propositional formulas and additionally some new information is provided as a propo-
sitional formula. This new information may contradict (part of) the knowledge base, and the task
is to revise the knowledge in order to incorporate the new information and keep the changes to
the existing knowledge base minimal. The above situation can be expressed in this formalism as
follows. The original knowledge base of Luke contains

father_is_dead ∧ vader_lives ∧ (vader_lives ∧ vader_is_father→ ¬father_is_dead).

The new information that has to be added is the fact vader_is_father. This leads to a contradic-
tion since Luke can now derive

father_is_dead ∧ ¬father_is_dead.
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One possible solution is to remove the belief father_is_dead from the knowledge base. Gen-
erally knowledge is continually evolving. Hence, there is a constant need to be able to revise
knowledge bases as new information is received. Belief revision has been applied in a variety of
domains, e.g. in software engineering and marketing research [114].

Another example of a nonmonotonic reasoning formalism is answer-set programming (also
called A-prolog) [15]. It is a form of descriptive logic programming where the problem to be
solved is encoded by facts, rules, and constraints. The programs are evaluated under the sta-
ble model semantics and the outcome, the so-called answer-sets, correspond to the solutions of
the problem. Answer-set programming allows default negation, that means if we cannot derive
some specific fact then we assume that it is false. This is a source of nonmonotonicity since
adding more facts to the program at a later point might invalidate previous answers. The follow-
ing answer-set program models a situation where the spaceship “Millennium Falcon” would be
captured by the imperium if its hyperdrive is faulty.

jump_to_lightspeed← ¬hyperdrive_faulty.

captured_by_imperium← ¬jump_to_lightspeed.

The sole answer set is {jump_to_lightspeed}. But if the fact

hyperdrive_faulty.

is added then the previous solution can no longer be derived. Instead, the new answer set is
{hyperdrive_faulty, captured_by_imperium}. Answer-set programming is a very prominent
form of declarative problem solving and was applied for example in the development of a system
for controlling some of the functions of the NASA space shuttle [85].

A third example is (propositional) abductive reasoning where propositional formulas de-
scribe the knowledge that an agent has about (some fragment of) the world, see for example [31].
The agent is then confronted with some new information, called the manifestation and has to
choose among a set of so called hypotheses those that best explain the manifestation and are
consistent with her knowledge. When she receives further manifestations she might be forced to
drop old hypotheses in favor of others. Consider for example a knowledge base about spaceship
battles that contains

surrounded_by_enemies→ its_a_trap.

Assume one hears now the information its_a_trap, called the manifestation. In order to search
for the cause of this, one has to select a plausible hypothesis. A solution would be to select
surrounded_by_enemies. In contrast to deductive reasoning, abductive reasoning is a method
for reverse inference. This means one is interested in explaining observed behavior by finding
appropriate causes. It is widely believed that humans use abduction in their reasoning when
searching for diagnostic explanations. Abductive reasoning has applications in areas such as
system diagnosis [78] and medical diagnosis [95].

Nonmonotonic reasoning is natural and unavoidable in the real world, and the formalisms
presented above as well as many more frameworks bring the necessary tools to model this kind
of reasoning in a computational setting. But there is a big obstacle that limits the practical
applicability of computational nonmonotonic reasoning. It is the high complexity of most of
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these tasks. Many of the corresponding computational problems are in general hard for classes
on the second level of the polynomial hierarchy [30, 31, 32]. That means they are presumably
even harder than NP-complete problems. But even if these formalisms are restricted to cer-
tain fragments of propositional logic, like Horn formulas, many of the computational problems
are still intractable. For example deciding whether a Horn abduction instance has a solution is
NP-complete [103], and belief revision for Horn knowledge bases using Satoh’s revision opera-
tor [102] is coNP-complete [30].

However, this is not the end of the story. In practice there are many very successful solvers
for answer-set programs. This is consistent with the situation of SAT solvers. Nowadays the lat-
ter are able to find solutions to propositional satisfiability instances with hundreds of thousands
of variables and millions of clauses within a few minutes [54] despite the fact that the problem
is NP-complete. So it seems as if there exists a gap between what theory tells us and what one is
able to do in practice. A promising approach to close this gap is to study what properties those
instances have that that can be solved efficiently. From that, one might be able to identify certain
fragments of the problem that are tractable. Those fragments are not restricted to syntactical
limitations, like Horn formulas mentioned above. Instead we will call them structural fragments
since they often tell us something about the (hidden) structure of certain problem instances.

The framework within which the search for such structural fragments can be conducted is
called parameterized complexity theory [24]. It is based on the observation that many compu-
tationally hard problems become tractable if some parameter that represents a structural aspect
of the problem instance is small. Classical complexity theory studies the hardness of a problem
only with respect to the input size and ignores all other properties. In contrast, parameterized
complexity theory performs a multivariate analysis of the problem where the input size is just
one dimension. The other studied dimensions are the so-called parameters. Informally speaking,
a parameter can be anything quantifiable.

Let us for example take a look at the problem of deciding the satisfiability of a proposi-
tional formula. Possible parameters are the number of variables, the number of clauses, the
maximum number of occurrences of a single variable, the size of the largest clause, and many
more. Of course some parameters might also turn out to be not useful for identifying tractable
fragments. For example, the satisfiability problem is still NP-complete even when restricted to
clauses of size at most 3. On the other hand Yamamoto [116] proposed an algorithm which
needsO(1.234m · p(n)) time, where m is the number of clauses and p(n) is a polynomial in the
input size. This leads to the tractable fragment of instances with few clauses but possibly many
variables.

While the values for the parameters mentioned above can be very easily computed from the
problem instances, it is also possible to consider parameters that are more difficult to compute.
One might invest time into computing such parameters in order to later save time in the actual
computation of the problem. For example, one might transform a given formula into a graph
by adding each clause and each variable as a node. If a variable occurs in a clause, we add an
edge between the corresponding nodes. Now one can consider various properties of this graph
as a parameter of our original problem. One possibility is the treewidth of this graph. This is,
roughly speaking, a measure of the “tree-likeness” of a graph.

Therefore, to overcome the high complexity of the nonmonotonic reasoning problems men-
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tioned above, we want to seek parameters or combinations of parameters that confine the compu-
tational hardness of the problem. That means, we will be able to solve these problems efficiently
as long as the values of the corresponding parameters are sufficiently small. Formally, we are
interested in parameters for which the problems become fixed-parameter tractable. A problem
is called fixed-parameter tractable if there exists an algorithm with running time of at most

f(k) · p(n),

where n is the input size, p is some polynomial, k is the parameter value, and f is an arbitrary
computable function. Since function f only depends on parameter k, the expression f(k) is
constant for any fixed value of k. This means that if we only consider problem instances of
parameter values that are bounded by a constant c, we obtain a polynomial time algorithm for
arbitrary large input sizes where the degree of this polynomial time algorithm does not depend
on c. For details see Chapter 2.

The ultimate goal is to find more and more parameters for which the computationally hard
problems become fixed-parameter tractable. The more such tractable fragments are known, the
more instances can be solved exactly and efficiently. Note that the parameterized complexity
approach gives us exact algorithms. Exact solutions in the area of reasoning are important since
in such settings it is not even clear what an approximate solution could be. Another approach
for dealing with computational hard problems are heuristics. But there it is either not guaranteed
that they will find the optimal solution or it is not guaranteed that they will find it efficiently.

1.2 Problem Statement

In this thesis we will study three different formalisms for nonmonotonic reasoning. We initiate
the research of parameterized complexity of belief revision as well as propositional abduction.
Furthermore, we significantly advance the state-of-the-art regarding the parameterized complex-
ity of answer-set programming.

The first goal is to identify new tractable fragments for the above-mentioned reasoning prob-
lems. To this end we will search for parameters such that these problems become fixed-parameter
tractable. This parameterized complexity approach does not exclude the study of structural frag-
ments as well. Indeed, for problems such as abduction that remain intractable even when re-
stricted to syntactical fragments of propositional logic such as Horn formulas, it makes sense to
search for tractable structural fragments inside these syntactical fragments.

The second goal is to develop faster exact algorithms for these problems. For example, for
the parameter treewidth there exists a meta-theorem due to Courcelle [17] that states for a whole
class of problems that they become fixed-parameter tractable when parameterized by treewidth.
But often the running time of the algorithm derived from this theorem can be improved drasti-
cally when searching for problem specific solutions.

Similar to classical complexity theory, parameterized complexity theory provides a frame-
work to prove that a problem is not fixed-parameter tractable under some complexity theoretic
assumptions. These tools come in form of a variety of complexity classes as well as suitable
reductions. The most important parameterized intractability classes are arranged in the so-called
W-hierarchy. Therefore, the third goal is to prove parameterized intractability for the remaining
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parameters of our problems. This will help us to understand the source of hardness of the studied
problems. If a problem is still hard when parameterized by a certain parameter then this means
that this parameter alone does not confine its hardness.

A technique of parameterized complexity theory, called kernelization [24], studies efficient
and effective preprocessing of problems. Indeed, such a preprocessing exists if and only if
the problem is fixed-parameter tractable. But it turned out that there are problems that can
be preprocessed in polynomial time to an instance size that is only polynomial in the parameter
value. One says that these problems admit a polynomial kernel. In contrast, for other problems it
seems that they can only be preprocessed to an instance size that is exponential in the parameter
value. Therefore kernelization helps to differentiate between fixed-parameter tractable problems
even further. Hence, the fourth goal is to study whether our problems admit a polynomial kernel
and can therefore be efficiently preprocessed.

Very recently tools have been developed to show that certain problems do not admit a poly-
nomial kernel under standard complexity theoretic assumptions. As mentioned above, these
problems can only be efficiently preprocessed to obtain instance sizes that are exponential in the
parameter value. The fifth goal is to prove for the remaining parameterizations of our problems
that they cannot be efficiently preprocessed.

1.3 Main Results

The main contributions of this thesis are grouped according to the three studied problems: belief
revision, answer-set programming, and abduction.

1.3.1 Belief Revision

We initiate the study of parameterized complexity of belief revision. More precisely, we study
the decision problem which asks whether something holds in the revised knowledge base, as
well as the enumeration problem where one has to enumerate all possible models of the re-
vised knowledge base. There is no single answer to the question of how to measure minimality
of changing a knowledge base. Therefore, many different revision operators have been pro-
posed in the literature. We consider here the ones according to Dalal [20], Satoh [102], and
Winslett [115]. We study these problems when parameterized by the treewidth of an associated
graph encoding. The main contributions are as follows:

• A novel algorithm based on dynamic programming for deciding the reasoning problem
of Dalal’s operator in fixed-parameter linear time when parameterized by the treewidth
of the formulas. Fixed-parameter linear means fixed-parameter tractable with only linear
dependency on the input size.

• An extension of the algorithm for the decision problem, such that also the set of all mod-
els of the revised knowledge base is computed. In particular, our algorithm works with
linear delay if the formulas have bounded treewidth. Linear delay means that the time for
outputting the first model as well as the time between outputting two consecutive models
is only linear in the input size.
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• We show that the reasoning problems for Satoh’s and Winslett’s operators are definable in
monadic second-order logic (MSO) and that the reasoning problem for Dalal’s operator
can be defined in an extension of MSO following Arnborg, Lagergren, and Seese [4]. We
can then conclude from Courcelle’s Theorem [17] that Satoh’s and Winslett’s operators
are fixed-parameter tractable with respect to the parameter treewidth. In case of Dalal’s
operator we obtain an alternative proof of its fixed-parameter tractability, which follows
of course also from our dedicated algorithm via dynamic programming.

1.3.2 Answer-Set Programming

For answer-set programming there exists already some basic parameterized complexity analy-
sis, see for example [57, 71]. We extend this research by considering programs with weight
constraints (PWCs) and programs with cardinality constraints (PCCs) [82]. PWCs are an exten-
sion of answer-set programs where it is possible to assign weights to the occurring literals. This
formalism then allows to express constraints that restrict which literals are allowed to be set to
true respecting certain weight bounds. PCCs are a special case of PWCs where every literal has
weight 1.

We investigate mainly the consistency problem, asking if a given program has a solution.
Moreover, we show how these results can be extended to the problems of credulous and skepti-
cal reasoning. Credulous reasoning asks whether a fact holds in some answer-set while skeptical
reasoning asks whether a fact holds in every answer-set. We study these problems when param-
eterized by treewidth together with the largest occurring constraint bounds in the program.

• It is shown in [92] that the consistency problem of PWCs remains NP-complete even if
the treewidth of the considered programs is bounded by a constant. Actually this holds
even for the constant 1 which means the program is acyclic. Hence, further restrictions on
the PWCs are needed to ensure tractability.

One possibility is to consider the largest integer occurring in (lower or upper) bounds of
the constraints in the PWC. We call this parameter constraint-width. If the constraint-
width is taken as an additional parameter together with treewidth, then the consistency
problem of PWCs becomes fixed-parameter linear. This means the running time is linear
in the input size and only exponential in the treewidth and the constraint-width.

• For PCCs (i.e., PWCs where all weights are equal to 1) we design a new dynamic pro-
gramming algorithm with a running time that can be called non-uniform polynomial time
tractable. Let w denote the treewidth of a PCC Π and let n denote the size of Π. Then
our algorithm works in time f(w) · n2w for some function f that only depends on the
treewidth, but not on the size n of the program. The term “non-uniform” refers to the
factor n2w in the time bound, where the size n of the program is raised to the power of
an expression that depends on the treewidth w and is therefore not independent of the
parameter.

We shall also discuss further extensions of this dynamic programming algorithm for PCCs.
For example, it can be used to solve in non-uniform polynomial time the consistency
problem of PWCs if the weights are given in unary representation.
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• Of course, an algorithm for the PCC consistency problem that is fixed-parameter tractable,
i.e., that operates in time f(w) · nO(1) would be preferable. There the parameter w would
not occur in the exponent of the program size n. Unfortunately, it is shown in [92] that
no such algorithm exists under common complexity theoretical assumptions. Technically,
it is proven that the consistency problem of PCCs parameterized by treewidth is hard for
the parameterized complexity class W[1] and therefore the problem is fixed-parameter
intractable. In other words, a non-uniform polynomial-time running time of our dynamic
programming algorithm is the best that one can expect.

• For answer-set programs without weight or cardinality constraints we present an imple-
mentation of an algorithm based on dynamic programming over tree decompositions. We
evaluate this algorithm against a previously implemented one and show how algorithm
selection can be used to decide for a given problem instance which of the two algorithms
can be expected to perform better.

1.3.3 Abduction

We initiate the study of parameterized complexity of propositional abduction. More precisely,
we study the decision problem that asks whether a given abduction instance has a solution. We
also introduce two new versions of the abduction problem. One asks if a given instance has
a solution that has a certain size. The other one asks if a given instance has a solution that is
smaller than or equal to a certain size.

We study these three problems in the general framework of propositional logic as well as
in restricted fragments thereof. Those fragments are Horn formulas, definite Horn formulas, as
well as Krom formulas. The main contributions are as follows:

• We perform a classical complexity analysis of the new abduction problems asking for
solutions of certain size. By proving that these problems are intractable as well, we justify
a parameterized complexity analysis.

• We analyze the parameterized complexity by considering these problems with a number of
different parameterizations: number of manifestations, number of hypotheses, desired size
bound on the solution, treewidth, vertex cover number, and number of variables. We also
study the parameterized complexity when parameterizing our problems by a combination
of the above-mentioned parameters.

• We present several new fixed-parameter tractability results and even a polynomial kernel
result. For example the abduction problem restricted to Krom formulas admits a polyno-
mial kernel when parameterized by the number of hypothesis plus the number of manifes-
tations.

• For the remaining fixed-parameter tractable problems we prove that no polynomial kernel
exists unless the Polynomial Hierarchy collapses to the third level.

• For parameterizations where we do not show fixed-parameter tractability, we present pa-
rameterized intractability results by proving completeness in the W-hierarchy. For some
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parameters we show that not even this is possible. In these cases we prove that the param-
eters do not help at all by showing NP-hardness even if the parameter values are bounded
by some constant.

1.4 Structure of the Work

Chapter 2 introduces the basic notions and notations which we use throughout the thesis. This
includes elementary results upon which the contributions of this thesis are based.

In Chapter 3 we discuss the state-of-the-art regarding the parameterized complexity of prob-
lems in the areas of AI and KR. We will also recall some state-of-the-art with respect to the
three nonmonotonic reasoning formalisms which are studied in this work, namely belief revi-
sion, answer-set programming, and abduction.

The main part of the thesis starts with Chapter 4 which presents the study of the belief
revision problem. We first introduce the problem formally and present some problem specific
notation. Then we show that the covered problems can be expressed in monadic second-order
logic or in one of its extensions. Hence, fixed-parameter tractability of these problems follows
by Courcelle’s Theorem. Finally, we present a dynamic programming algorithm with improved
running time compared to the MSO based approach above.

Chapter 5 contains the study of answer-set programming. We first introduce the problem
formally and present our problem specific notations. Then we present an NP-completeness re-
sult that shows that the parameter treewidth is not enough for programs with weight constraints.
Next, fixed-parameter tractability for such programs is shown when considering the additional
parameter constraint-width. This is done by encoding the problem in monadic second-order
logic. We then present a dynamic programming approach for programs with cardinality con-
straints that runs in non-uniform polynomial time. Next, we present extensions of this dynamic
programming algorithm to cover variations of this problem. In order to show that a non-uniform
polynomial running time is optimal for our problem and its extensions we present a hardness
result that shows that one cannot hope to significantly improve this time bound. Finally, we
discuss an implementation of an answer-set programming solver that is based on dynamic pro-
gramming over tree decompositions. We also discuss the evaluation of two similar algorithms
and show how one can decide which one to use for a given problem instance.

Chapter 6 contains the study of the abduction problem. We first introduce the problem
formally and present our problem specific notations. Then we perform a classical complexity
analysis. By showing intractability of the studied problems we motivate a parameterized com-
plexity analysis which is the main part of this chapter. There we focus first on the parameterized
complexity of abduction restricted to Horn and definite Horn formulas. Finally, we show param-
eterized complexity results for abduction on Krom formulas.

Conclusions are given in Chapter 7. This contains a summary, the discussion of the results,
and a comparison with related work. Finally, we discuss open issues and give an outlook towards
future work.
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CHAPTER 2
Preliminaries

2.1 Parameterized Complexity Theory

This section gives a very brief introduction to parameterized complexity theory. The framework
of parameterized complexity theory was developed by Downey and Fellows throughout a series
of papers in the early 1990s and a seminal monograph [24]. Since its foundation the field has
grown rapidly. This resulted in two additional books that give an overview and an introduction
to the area. One by Niedermeier [79], which focuses more on the algorithmic aspect of fixed-
parameter algorithms, and one by Flum and Grohe [42], which studies parameterized complexity
from the perspective of logic.

Classical complexity theory studies the computational costs of problems as a function of the
input size. Many problems turned out to be NP-hard. This means the best known deterministic
algorithms for these problems need time that is exponential in the input size. Indeed, under usual
complexity theoretic assumption (the exponential time hypothesis), there exists no polynomial
time algorithm for these problems. In order to deal with this seemingly inevitable combinatorial
explosion, methods such as heuristics or approximation algorithms are used.

Another relatively new approach which is able to find exact/optimal solutions for NP-hard
problems is coming from the area of parameterized complexity theory. The idea is to to confine
the combinatorial explosion to one aspect of the problem, the parameter. More precisely, an
instance of a parameterized problem is a pair (x, k), where x is the main part and k (usually a
non-negative integer) is the parameter.

Definition 1. A parameterized problem is fixed-parameter tractable with respect to parameter k
if there exists an algorithm solving any problem instance (x, k) of size n in time f(k) ·nc where
f is some computable function and c is a constant independent of k. If c = 1 then we speak of
fixed-parameter linear time.

FPT denotes the class of all fixed-parameter tractable decision problems.

Analogously to classical complexity theory, Downey and Fellows [24] developed a frame-
work providing reducibility and completeness notions.
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Definition 2. Let f and g be arbitrary computable functions, and let c be a constant. An fpt-
reduction from a parameterized decision problem Π to a parameterized decision problem Ψ is a
transformation that maps an instance (x, k) of Π of size n to an instance (y, l) of Ψ such that

1. the transformation is fixed-parameter tractable, i.e., it can be computed in time f(k) · nc,

2. l ≤ g(k), and

3. (x, k) is a yes-instance of Π if and only if (y, l) is a yes-instance of Ψ.

Note that because of the condition l ≤ g(k), the parameter value of the new problem only
depends on the parameter value of the original problem.

A parameterized complexity class C is a class of parameterized problems. A parameterized
problem Π is C-hard if every problem in C is fpt-reducible to Π. Problem Π is called C-complete
if it is additionally contained in C.

This notion leads to a variety of complexity classes. The only ones that are used in this thesis
are FPT, the W-hierarchy, XP, and para-NP. Thereby XP is the class of parameterized problems
solvable in timeO(ng(k)) for some computable function g. A parameterized problem Π is para-
NP-hard if there is some fixed k for which Π restricted to instances (x, k) is NP-hard [40].

A problem parameterized by k is in W[P] if there exists a non-deterministic algorithm run-
ning in time f(k) · nO(1) using at most f ′(k) · log n many non deterministic steps, where f and
f ′ are computable functions.

To show membership in the W-hierarchy we will use first-order model checking problems.
This approach was first proposed by Downey, Fellows, and Regan [25], and extended by Flum
and Grohe [41]. MC[Σt,u] denotes the model-checking problem over Σt,u formulas. The class
Σt,u contains all first-order formulas of the form

∃x1∀x2∃x3 . . . Qxtϕ(x1, . . . , xt),

where ϕ is quantifier free and Q is an ∃ if t is odd and a ∀ if t is even, and the quantifier blocks
– with the exception of the first ∃ block – are of length at most u. Given a finite structure A and
a formula ϕ ∈ Σt,u, MC[Σt,u] asks whether A is a model of ϕ. When parameterized by |ϕ|,
MC[Σt,u] is W[t]-complete for t ≥ 1, u ≥ 1 [25]. For the case t = 1 we will write Σ1 instead
of Σ1,u since the length of the first quantifier block is not restricted.

The following relations between parameterized complexity classes are known, see for exam-
ple [24] and [42].

FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ W[P] ⊆ XP

W[P] ⊆ para-NP

Furthermore, it is known that the following inclusion is strict:

FPT ⊂ XP

Of particular interest is the class W[1], which can be considered as parameterized counterpart
to NP. For example, the CLIQUE problem (given a graph G and an integer k, decide whether G
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contains a complete subgraph of k vertices), parameterized by k, is a well-known W[1]-complete
problem. It is believed that FPT 6= W[1]. There is strong theoretical evidence that supports this
assumption, for example, FPT = W[1] would imply that the Exponential Time Hypothesis fails,
see Flum and Grohe [42]. Hence, showing that a parameterized problem is W[1]-hard is a proof
that this problem does not admit an algorithm with a fixed-parameter tractable running time
unless Exponential Time Hypothesis fails.

Next we will take a look at efficient preprocessing. A common method in parameterized
complexity theory is to provide polynomial-time executable data-reduction rules [24]. An algo-
rithm applying such rules is called a kernelization algorithm.

Definition 3. Let f and g be arbitrary computable functions. A kernelization algorithm is a
transformation of a problem instance (x, k) of Π into an instance (y, l) of Π such that

1. (x, k) is a yes-instance if and only if (y, l) is a yes-instance,

2. l ≤ f(k), and

3. y has size ≤ g(k).

It is easily shown that a parameterized problem Π is FPT if and only if it admits a kerneliza-
tion algorithm. Although in general the kernelization bound g(k) may be exponential in k, it has
been shown that many FPT problems admit polynomial kernels, that is, polynomial time kernel-
ization algorithms where the kernelization bound is a polynomial function of k, g(k) = kO(1).

Recently, the subfield of kernelization has received increased interest with the development
of methods for proving lower bounds [10, 14]. These methods allow to show that for some
problems there cannot exist polynomial kernels unless the Polynomial Hierarchy (PH) collapses.

Many of these results are using the following notion.

Definition 4. A parameterized problem Π ⊆ Σ∗×N is compositional if there exists an algorithm
that computes, given a sequence (x1, k), . . . , (xt, k) ∈ Σ∗×N, a new instance (x′, k′) ⊆ Σ∗×N
such that the following properties hold:

1. The algorithm only requires time polynomial in
∑t

i=1 |xi|+ k,

2. (x′, k′) is a yes-instance if and only if there is some 1 ≤ i ≤ t such that (xi, k) is a
yes-instance, and

3. k′ ≤ kO(1).

Given a parameterized problem Π ⊆ Σ∗ × N, we call the problem

{x#1k | (x, k) ∈ Π}

the unparameterized version of Π, where # is a new symbol not included in Σ and 1 is an
arbitrary symbol. Bodlaender, Downey, Fellows, and Hermelin [10] showed that if a problem is
hard and it is compositional, then it does not admit a polynomial kernel.
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Theorem 5 ([10]). Let Π be a parameterized problem such that the unparameterized version of
Π is NP-complete. If Π is compositional, then it does not admit a polynomial kernel unless the
Polynomial Hierarchy collapses to the third level (PH = ΣP

3 ).

A polynomial parameter and time (PPT) reduction is a polynomial time reduction increasing
the parameter only polynomially. Such a reduction preserves polynomial kernels:

Theorem 6 ([14]). Let Π and Ψ be parameterized problems, where the unparameterized version
of Π is NP-complete and the unparameterized version of Ψ is in NP. Then a PPT reduction from
Π to Ψ implies that if Ψ has a polynomial kernel, Π has a polynomial kernel.

Theorem 6 can be used to show that a parameterized problem Ψ does not admit a polynomial
kernel. Assume we know that a parameterized problem Π does not admit a polynomial kernel.
By showing that there exists a PPT reduction from Π to Ψ we can exclude a polynomial kernel
for Ψ as well since a polynomial kernel for Ψ would imply a polynomial kernel for Π. But this
would contradict our assumption.

Using PPT reductions for proving kernel lower bounds is often more convenient than show-
ing that the problem is compositional.

2.2 Graphs and Treewidth

In this work we deal only with undirected, simple graphs, that means graphs without self-loops
and with not more than one edge between two vertices. We denote a graph by a pair (V,E),
where V denotes the set of vertices and E is the set of edges. An edge is a subset of V of
cardinality 2.

The treewidth of a graph measures, intuitively speaking, its “tree-likeness”. A formal defi-
nition is given below. Nowadays treewidth is often used as a parameter in the study of parame-
terized complexity. It was originally studied in graph theory. Robertson and Seymour [97, 98]
introduced the notions of treewidth and tree-decomposition as part of their graph minors re-
search.

Definition 7. A tree decomposition of a graph G = (V,E) is a pair (T, χ), where T is a tree
and χ maps each node t of T (we use t ∈ T as a shorthand) to a bag χ(t) ⊆ V , such that

1. for each v ∈ V , there is a t ∈ T , such that v ∈ χ(t),

2. for each {v, w} ∈ E, there is a t ∈ T , such that {v, w} ⊆ χ(t), and

3. for each t1, t2, t3 ∈ T , such that t2 lies on the path from t1 to t3, we have χ(t1)∩χ(t3) ⊆
χ(t2).

Note that we refer to the elements in the tree of a tree decomposition as nodes while we
called the elements of a graph vertices. This is done to make the distinction between the original
graph and its tree decomposition more clear.

A tree decomposition (T, χ) is normalized (or nice) [60] if T is a rooted tree and the follow-
ing conditions hold:
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1. each t ∈ T has at most 2 child nodes,

2. for each t ∈ T with two child nodes r and s, χ(t) = χ(r) = χ(s), and

3. for each t ∈ T with one child node s, χ(t) and χ(s) differ in exactly one element.

The width of a tree decomposition (T, χ) is the number

max{|χ(t)| | t ∈ T} − 1.

It is known that every tree decomposition can be normalized in linear time without increasing
the width [60]. The treewidth of a graph G, denoted as tw(G), is the minimum of the widths of
all tree decompositions of G.

As mentioned above, intuitively one might say that tw(G) measures the “tree-likeness” of
graph G. For example, the treewidth of trees is 1 and the treewidth of complete graphs with n
vertices is n− 1.

For arbitrary but fixed w ≥ 1, it is possible in linear time to decide if a graph has treewidth
≤ w and, if so, to compute a tree decomposition of width w [7]. In other words, the problem of
deciding if a graph has certain treewidth is fixed-parameter linear. Recently, Bodlaender, Jansen,
and Kratsch [11] showed that this decision problem admits a polynomial kernel when parame-
terized either by vertex cover number or by feedback vertex set. They also studied kernelization
lower bounds. See Kloks [60] for an introduction into the area of computing or approximating
treewidth. For an overview on treewidth see for example the surveys by Bodlaender [8, 9].

2.3 Propositional Logic

This section briefly recalls some basic notions and definitions from propositional logic. We as-
sume a countable infinite set of (propositional) variables. Variables are sometimes called atoms.
In this work we will use both terms synonymously. Let PROP denote the class of (propositional)
formulas. These formulas are defined recursively as follows:

1. If x is a variable, then x ∈ PROP.

2. If ϕ ∈ PROP, then its negation ¬ϕ ∈ PROP.

3. If ϕ,ψ ∈ PROP, then their conjunction (ϕ∧ψ) ∈ PROP and disjunction (ϕ∨ψ) ∈ PROP.

As usual, we omit unnecessary parentheses and write for example (ϕ ∨ ψ ∨ χ) instead of
((ϕ ∨ ψ) ∨ χ). We denote by var (ϕ) the set of propositional variables occurring in a formula
ϕ. A literal is either a variable x or its negation ¬x. A clause is a disjunction of literals
(l1 ∨ l2 ∨ · · · ∨ lm). A formula in conjunctive normal form (CNF) is a conjunction of clauses
c1 ∧ c2 ∧ · · · ∧ cn. It is sometimes convenient to represent clauses and formulas in CNF as
sets. Thereby the clause (l1 ∨ l2 ∨ · · · ∨ lm) is represented by {l1, . . . , lm} and the formula
c1 ∧ c2 ∧ · · · ∧ cn is represented by {c1, . . . , cn}.

An interpretation (or assignment) I is a subset of variables. The intended meaning is that
I contains exactly those variables that are set to true. The remaining ones are set to false.
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In the obvious way one defines what it means for an interpretation to satisfy a formula (or a
subformula). If interpretation I satisfies formula ϕ, I is called a model of ϕ. The set of all
models of ϕ is denoted by Mod(ϕ). Let ϕ and ψ be formulas. We say ϕ entails ψ, denoted by
ϕ |= ψ, if each model of ϕ is also a model of ψ.

In the context of dynamic programming we will talk about models with respect to a given
universe. Thereby a universe U is a set of variables. The models of a clause c with respect to U
are given by

ModU (c) := {I ⊆ U | I ∩ c 6= ∅} ∪ {I ⊆ U | ∃x ∈ U \ I,¬x ∈ c}.

The models of a set C of clauses with respect to a universe U are given by

ModU (C) :=
⋂
c∈C

ModU (c).

For the universe U of all variables in var (C), it holds that ModU (C) = Mod(C).
The class of formulas in CNF is denoted by CNF. The subclass of CNF of formulas having

clause size at most 2 is denoted by KROM. Horn formulas are formulas in CNF with at most one
positive literal per clause. Definite Horn formulas have exactly one positive literal per clause.
We denote the corresponding classes of formulas by HORN respectively DEFHORN.

Let Res(ϕ) be the operator extending ϕ ∈ CNF by iteratively applying resolution and drop-
ping tautological clauses until a fixed-point is reached. Applying resolution adds the clause
c1 ∪ c2 to ϕ if there exists a variable x such that c1 ∪ {x} ∈ ϕ and c2 ∪ {¬x} ∈ ϕ. Resolution
on Krom formulas will always yield a Krom formula. In that case Res(ϕ) can be computed in
polynomial time. Let c be a non-tautological clause and let var ({c}) ⊆ var (ϕ) then c ∈ Res(ϕ)
if and only if ϕ |= c. For details, see for example [65].

In order to study reasoning problems parameterized by treewidth, we represent CNF formu-
las by incidence graphs or primal graphs. For CNF formula ϕ ∈ CNF, the incidence graph is
given by GI = (VI , EI) where VI contains a vertex for each variable and each clause in ϕ, and
EI is the set of all edges {x, c} such that variable x occurs in clause c. The primal graph of ϕ is
given by GP = (VP , EP ) where VP contains a vertex for each variable and EP is the set of all
edges {x, y} such that variables x and y occur together in a clause.

A Boolean circuit is a directed acyclic graph where exactly one of the nodes has out-degree 0.
This node is called the output gate. Nodes with in-degree 0 are called input gates. All nodes
except the input gates are of one of the following types: AND-gate, OR-gate, or NEGATION-
gate. An assignment to a circuit is a function that sets each input gate to true or false. An
assignment is a satisfying assignment, if the computed value of the output gate is true. The
weight of an assignment is the number of input gates set to true.

2.4 Monadic Second Order Logic and Courcelle’s Theorem

Monadic second-order logic (MSO) extends first-order logic by the use of set variables (denoted
by upper case letters), which range over sets of domain elements.

An important tool for establishing fixed-parameter tractability of a decision problem on
graphs when parameterized by treewidth is Courcelle’s Theorem [17]. Courcelle’s Theorem
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states that any property of finite structures, that is definable in monadic second-order logic
(MSO), can be decided in linear time over graphs with bounded treewidth. In other words, de-
cision problems that are expressible in MSO are fixed-parameter linear over finite graphs when
parameterized by the treewidth of the graph. An alternative proof of this result can be found in
the book of Downey and Fellow [24].

Arnborg, Lagergren, Seese [4] showed an extension of Courcelle’s Theorem. They defined
a logic called extended monadic second order logic. This logic provides the opportunity to
not only express decision problems, but also to express optimization (extremum) problems and
counting problems as well. They showed that problems expressible in extended MSO are fixed-
parameter linear over finite graphs when parameterized by the treewidth of the graph.

Szeider [109] proposed another extension of Courcelle’s Theorem. Thereby, the vertices of a
graph are labeled by a set of integers. Each vertex v of the selected solution has to be adjacent to
α other vertices in the solution where α occurs in the label of v. Additionally to these constraints
on the vertices, the solution has to satisfy a property that is expressed in MSO. Problems that can
be expressed in this framework are fixed-parameter tractable when parameterized by treewidth.

2.5 Some Parameterized Problems

We briefly discuss some decision problems together with their complexity with respect to typ-
ical parameters. These problems will be used throughout the thesis in various (parameterized)
reductions in order to prove hardness results.

VERTEX COVER

Instance: A graph G and an integer k.
Problem: Does G have a vertex cover of size k?

A vertex cover of a graphG = (V,E) is a set of vertices V ′ ⊆ V , such that each edge e ∈ E
is incident to at least one vertex contained in V ′.

VERTEX COVER parameterized by k is FPT.
The vertex cover number τ(G) of a graph G is the size of the smallest vertex cover of G.

A well known property is that for every graph G, τ(G) ≥ tw(G). Therefore parameterized
hardness results with respect to parameter vertex cover number carry over to parameterizing by
treewidth.

INDEPENDENT SET

Instance: A graph G and an integer k.
Problem: Does G have an independent set of size k?

An independent set of a graph G = (V,E) is a set of vertices V ′ ⊆ V , such that for every
edge e ∈ E at least one of its incident vertices is not contained in V ′.

INDEPENDENT SET parameterized by k is W[1]-complete.
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WEIGHTED MONOTONE CIRCUIT SAT≤/=
Instance: A monotone circuit C and an integer k.
Problem: Is there a satisfying assignment for C having weight of at most /

exactly k?

A monotone circuit is a Boolean circuit that does not contain negations. WEIGHTED MONO-
TONE CIRCUIT SAT≤/= parameterized by k is W[P]-complete, even when all AND-gates and
all OR-gates are binary.

MULTICOLORED INDEPENDENT SET

Instance: A graph G = (V,E), an integer k, and a k-coloring c : V →
{c1, . . . , ck}.

Problem: Does G have an independent set V ′ of size k, such that for all
{x, y} ⊆ V ′: c(x) 6= c(y)?

Recall that problems the INDEPENDENT SET and CLIQUE are closely related. An indepen-
dent set of size k of a graph G is a clique of size k of the complement of G. The comple-
ment of G a graph consists of exactly those edges that are missing from G. It is easy to see
that this relationship yields an fpt-reduction in both direction and that this reduction also pre-
serves the k-coloring. In [35] it was shown that MULTICOLORED CLIQUE parameterized by k is
W[1]-complete. By the observation above it follows that MULTICOLORED INDEPENDENT SET

parameterized by k is W[1]-complete as well.

RED-BLUE DOMINATING SET

Instance: A bipartite graph G = (Vred ∪ Vblue, E) and an integer k.
Problem: Is there a set S ⊆ Vred with |S| ≤ k such that each vertex in Vblue

is adjacent to a vertex in S?

Fernau [37] showed that this problem is W[2]-complete when parameterized by k.
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CHAPTER 3
State of the Art

3.1 Belief Revision

The area of belief revision addresses the problem of consistently incorporating new information
into an existing knowledge base. Problems arising from this area have been studied since the
early 1980s. An extensive introduction into the area is for example the handbook article by
Peppas [90].

Alchourrón, Gärdenfors, and Makinson proposed the famous AGM postulates [2]. The
framework for belief revision which they proposed is described on a very high level. They just
assume a logic language that is closed under Boolean connectives together with a consequence
operator. The postulates themselves try to express the notion of “rational belief revision”. The
intuition is to change the existing knowledge base as little as possible.

It was observed by Katsuno and Mendelzon [59] that the AGM postulates in some cases
would lead to non-intuitive solutions. These cases are related to situations where some agent
performs some change in its environment and then needs to update his beliefs accordingly. The
subarea that emerged from their findings is called belief update. Following the spirit of the
AGM postulates, Katsuno and Mendelzon proposed their own set of postulates which capture
these update scenarios [59].

Since the above-mentioned postulates define belief revision and belief update in a very gen-
eral way, there is still plenty of room for defining actual realizations of revision and update. In
the literature many different so-called revision operators and update operators, have thus been
proposed. These operators take as arguments the knowledge base and the new information and
compute a new knowledge base. Four of the most fundamental approaches are due to Dalal [20],
Satoh [102], Winslett [115], and Forbus [43].

Eiter and Gottlob [30] studied the complexity of various update and revision operators. For
the problem of deciding whether a given formula holds in the revised knowledge base, their
results include ΠP

2 -completeness for Satoh’s, Winslett’s, and Forbus’ operator as well as ΘP
2 -

completeness for Dalal’s operator. They also considered special cases where the theory is not an
arbitrary propositional formula, but is restricted to certain fragments, like Horn formulas. For

31



Horn formulas the operators due to Satoh and Winslett are coNP-complete while the operators
due to Forbus and Dalal remain ΠP

2 -complete and ΘP
2 -complete respectively.

Liberatore and Schaerf [68] analyzed the complexity of the following model checking prob-
lem. Given an interpretation, decide if it is a model of the revised knowledge base. Dar-
wiche [21] did some work on belief revision with bounded treewidth formulas. He relies on
compilation techniques to transforms such formulas in linear time into an efficient representa-
tion for belief revision.

3.2 Answer-Set Programming

Answer-set programming (ASP) (also known as A-Prolog) has evolved as a paradigm that allows
for very elegant solutions to many combinatorial problems. An introduction to ASP can for
example be found in the recent survey paper by Brewka, Eiter, and Truszczyński [15].

An answer-set program consists of facts, rules, and constraints. The basic idea is to encode
a computational problem as an answer-set program such that the models of the program cor-
respond to the solutions of the considered problem. The semantics according to which these
models are computed is called the stable model semantics and was introduced by Gelfond and
Lifschitz [45].

The answer-set programming approach for declarative problem solving was proposed by
Niemelä [80] and Marek and Truszczyński [73]. The term “answer-set programming” was later
introduced by Lifschitz [69].

The basic form of answer-set programs are called normal programs. It was shown by Marek
and Truszczyński [72] that it is NP-complete to decide whether a normal program has a solu-
tion. Disjunctive logic programs allow to express disjunctions in the head of rules. For these
programs Eiter and Gottlob [32] showed that it is ΣP

2 -complete to decide whether a solution
exists. Truszczyński [111] proved a trichotomy result that classifies disjunctive programs into
classes that are either in P, NP-complete, or ΣP

2 -complete.

Niemelä, Simons and Soininen [82] extended logic programs with cardinality or, more gen-
erally, weight constraints. This allows an even larger class of problems to be accessible by
answer-set programming. For instance, in the product configuration domain, we need to ex-
press cardinality, cost, and resource constraints, which are very difficult to capture using logic
programs without weights.

Some applications of ASP include the construction of phylogenies in bioinformatics [34],
product configuration [104], decision support systems like the one for the space shuttle [85],
data integration [66], and semantic web [33].

There exist many system implementations of the ASP paradigm, for example CLASP [44],
DLV [67], SMODELS [81], and CMODELS [46].

The already existing work on the parameterized complexity of answer-set programming is
reviewed in Section 3.4.
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3.3 Abduction

Abduction as a formalism of reasoning was studied by Peirce [89]. The term abduction was
introduced by him as well. Abductive reasoning was introduced into the area of artificial intelli-
gence by Morgan [77] and Pople [95].

Since then abduction has been applied in many areas inside and outside of AI. Examples
include system diagnosis [78], medical diagnosis [95], and text interpretation [55].

Early work on the computational complexity of propositional abduction was done by Sel-
man and Levesque [103]. Among others they showed that abduction is still NP-complete when
restricted to Horn formulas. A systematic complexity analysis was done by Eiter and Gott-
lob [31]. Their results include that abduction for general propositional formulas is ΣP

2 -complete
and that abduction restricted to definite Horn formulas can be solved in polynomial time. The
classical complexity of abduction has been extensively studied in other papers as well, for exam-
ple [18, 19, 86, 94]. The abduction problem for Krom formulas was shown to be NP-complete
by Nordh and Zanuttini [86]. Creignou and Zanuttini [19] showed that the same problem can be
computed in polynomial time if there exists only a single manifestation.

3.4 Parameterized Complexity of Reasoning

The study of the parameterized complexity of nonmonotonic reasoning was initiated by Gottlob,
Scarcello, and Sideri [48] at a time when the field of parameterized complexity theory itself was
very young. They showed fixed-parameter tractability of a variety of problems and parameter-
izations. Among these are constraint satisfaction parameterized by treewidth and domain size,
and propositional logic programming under the stable model semantics parameterized by the
feedback width of the dependency graph. They also showed that circumscription parameterized
by the model size is fixed-parameter intractable.

Despite this early work, in the following years there was not much research conducted on
the parameterized complexity of nonmonotonic reasoning. Most of the work on parameterized
complexity focused on problems from graph theory. This has changed recently and nowadays the
study of parameterized complexity of problems from other areas is gaining increased attention.

The parameterized complexity of the propositional satisfiability (SAT) problem and con-
straint satisfaction problems (CSPs) are two notable exceptions. Both of them are well studied.

Papadimitriou and Yannakakis [88] showed that CSP is W[1]-complete when parameterized
by the number of variables or the sum of the arities of the constraints. Note that they actually
studied Boolean conjunctive queries but this problem is closely related to CSP [61]. As men-
tioned above, CSP is fixed-parameter tractable when parameterized by treewidth of the primal
graph plus the domain size [48]. But it is W[1]-hard if one takes the treewidth of the incidence
graph instead [101]. Grohe [52] showed that for the problem of deciding whether a CSP instance
admits a solution, the class of instances of bounded treewidth is exactly the class of structural
restricted instances that lead to tractability. Greco and Scarcello [50, 51] extended this result
to enumeration and optimization problems. Grohe and Marx [53] studied CSP for instances of
bounded fractional hypertree width.
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SAT as well as its counting variant is not only fixed-parameter tractable when parameterized
by treewidth of the primal graph but also for treewidth of the incidence graph [105, 39, 100].
Alekhnovich and Razborov [3] studied SAT parameterized by branchwidth. Fischer, Makowsky,
and Ravve [39] showed that SAT is fixed-parameter tractable when parameterized by directed
clique-width. The parameter clique-width can be approximated by an fpt algorithm [56]. A lot
of research investigated so-called backdoor sets, see for example [106, 84]. The size of such sets
of variables measures the distance to “easy” instances. For example a deletion Horn backdoor set
contains those variables when removed from the clauses the remaining formula is Horn. Another
form of backdoor sets are so-called strong backdoor sets. A strong backdoor set for formula
class C is a set of variables, such that for all possible truth assignments to those variables the
remaining formula is contained in C. Nishimura, Ragde and Szeider [83] showed that detecting
strong backdoor sets for Horn or Krom is fixed-parameter tractable. Parameterizing SAT by
these backdoor sets leads to fixed-parameter tractability as well. The notion of backdoor sets
has been generalized to quantified Boolean formulas by Samer and Szeider [99].

For answer-set programming the solution size has been considered as a parameter. Lonc
and Truszczyński [71] showed that finding stable models of size at most k is W[2]-complete.
Truszczyński [110] showed that finding stable models containing all except for at most k facts
is fixed-parameter tractable. As mentioned above, Gottlob, Scarcello, and Sideri [48] consid-
ered the feedback width of the dependency graph as a parameter and proved fixed-parameter
tractability. Gottlob, Pichler, and Wei [47] showed with the help of an MSO encoding that
the parameter treewidth leads to fixed-parameter tractability as well. This also holds for the
brave and cautious reasoning problems associated with ASP. A dynamic programming algo-
rithm for evaluating answer-set programs of bounded treewidth was proposed by Jakl, Pichler,
and Woltran [57]. Fichte and Szeider [38] studied backdoor sets for answer-set programming.

Besides the mentioned MSO encoding for ASP, [47] shows how to express several other
problems from the area of AI in monadic second-order logic. From Courcelle’s Theorem it
follows that they all are fixed-parameter tractable when parameterized by treewidth. For example
encodings for closed world reasoning as well as propositional abduction are contained.

At the core of many nonmonotonic reasoning formalisms lies the task of computing minimal
models. Recently, Lackner and Pfandler [63] did a parameterized complexity analysis of this
problem using a variety of parameters and discovered several tractable fragments. This analysis
has been extended to the more general circumscription formalism in [64].

Ordyniak and Szeider [87] studied Bayesian structure learning parameterized by treewidth.
The parameterized complexity of planning has been studied by Downey, Fellows, and Stege [26]
and Bäckström, Chen, Jonsson, Ordyniak, and Szeider [5].

Furthermore, there exists some work on the parameterized complexity of abstract argumen-
tation. Dunne [27] as well as Dvorák, Pichler, and Woltran [29] considered the parameter
treewidth. Dvorák, Ordyniak, and Szeider [28] studied argumentation problems parameterized
by distance measures to tractable fragments.

Szeider [108] showed for a number of parameterized problems in AI, including answer-set
programming parameterized by the feedback width, that they do not admit a polynomial kernel.

Further references can be found in the recent survey of Gottlob and Szeider [49] on param-
eterized complexity of problems in AI and database theory.
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CHAPTER 4
Belief Revision

This chapter is based on joint work with Reinhard Pichler and Stefan Woltran, and appeared in
the proceedings of the Tenth International Conference on Logic Programming and Nonmono-
tonic Reasoning (LPNMR 2009) [93].

In this chapter we initiate a parameterized complexity analysis of belief revision problems.
Recall from Chapter 1 that the area of belief revision studies how to revise a given knowledge
base when new information is obtained that is contradicting some old knowledge.

Here we restrict ourselves to propositional knowledge bases, i.e., knowledge bases that are
given by propositional formulas. Problems arising from the revision of propositional knowledge
bases have been intensively studied for two decades. In the literature many different realizations
of revision, called revision operators, have thus been proposed. These operators take as an
argument the knowledge base and the new information and compute a new knowledge base.
Three of the most fundamental approaches are due to Dalal [20], Satoh [102], and Winslett [115].

We will consider these operators in combination with two computational problems. The
reasoning problem asks whether a given formula will be logically entailed by the revised knowl-
edge base. For the enumeration problem one has to compute all models of the revised knowledge
base. The parameter which we study thereby is treewidth.

We show fixed-parameter tractability for the reasoning problem with Satoh’s operator and
Winslett’s operator by giving an MSO definition of this problem. This means, we will consider
finite graphs that represent the formulas of the old knowledge base and the formula expressing
the new information, and define for them a property in MSO that is true if and only if the answer
to the reasoning problem is yes. In order to prove an analogous result for Dalal’s operator,
we have to make use of an extension of Courcelle’s Theorem due to Arnborg, Lagergren, and
Seese [4].

The proof of Courcelle’s Theorem and its extension in [4] is “constructive”: It works by
transforming the MSO evaluation problem into a tree language recognition problem, which is
then solved via a finite tree automaton (FTA). However, the “algorithms” resulting from such
an MSO-to-FTA transformation are usually not practical due to excessively large constants.
Consequently, Niedermeier states that MSO “is a very elegant and powerful tool for quickly
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deciding about FPT, but it is far from any efficient implementation” [79]. We therefore present
a novel algorithm for the reasoning problem with Dalal’s operator. This algorithm is based on
dynamic programming and builds upon an algorithm of [100] for the #SAT problem (i.e., the
problem of counting all models of a given propositional formula). Moreover, we extend our
reasoning algorithm to an algorithm for the enumeration problem of Dalal’s operator. As far
as the complexity is concerned, for bounded treewidth our algorithms work in linear time for
the reasoning problem and with linear delay for the enumeration problem. Linear delay means
that the time needed for computing the first model and for computing any further model of the
revised knowledge base is linear in the input size.

4.1 Belief Revision Background

Formally, the problem of belief revision is usually specified as follows: Given a knowledge base
(i.e., a formula) α and a formula β, find a revised knowledge base α ◦ β, such that β is true
in all models of α ◦ β and the change compared to the models of α is minimal. The following
problems are of great interest:

• Reasoning. Given formulas α, β, and γ, decide if α ◦ β |= γ holds.

• Enumeration. Given formulas α and β, compute the models of α ◦ β.

Several realizations for ◦ have been proposed in the literature. The desired properties for
these have been formulated by Alchourrón, Gärdenfors, and Makinson in the famous AGM-
Postulates [2], or in terms of propositional logic and finite knowledge bases, by Katsuno and
Mendelzon [59]. Three of the most fundamental approaches are due to Dalal [20], Satoh [102],
and Winslett [115]. Complexity results for the reasoning problem with respect to different op-
erators ◦ are provided in [30] including ΘP

2 -completeness for the operator due to Dalal and
ΠP

2 -completeness for Satoh’s and Winslett’s operator.

4.1.1 Revision Operators

The approaches of revision we deal with in this work rely on so-called model-based change
operators. Such operators usually utilize a model distance M∆M ′ which yields the set of atoms
differently assigned in interpretations M and M ′, i.e. in our notation, M∆M ′ = (M \M ′) ∪
(M ′ \ M). Assuming that α is consistent (we tacitly make this assumption throughout this
work), the operators due to Satoh [102] (“◦S”), Dalal [20] (“◦D”), and Winslett [115] (“◦W ”)
can be defined as follows:

Mod(α ◦D β) = {J ∈ Mod(β) | ∃I ∈ Mod(α) such that |I∆J | = |∆|min(α, β)},
Mod(α ◦S β) = {J ∈ Mod(β) | ∃I ∈ Mod(α) such that I∆J ∈ ∆min(α, β)},
Mod(α ◦W β) =

⋃
I∈Mod(α)

{J ∈ Mod(β) | I∆J ∈ ∆min
I (β)},
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where

|∆|min(α, β) = min({|I∆J | | I ∈ Mod(α), J ∈ Mod(β)}),
∆min(α, β) = min⊆({I∆J | I ∈ Mod(α), J ∈ Mod(β)}),

∆min
I (β) = min⊆({I∆J | J ∈ Mod(β)}),

with min⊆ selecting elements which are minimal with respect to set inclusion. The intuition
behind these operators is the following. Dalal uses the criteria of cardinality to select those
models of β with a minimal change compared to those of α. This means that those models of
β are selected that differ in the least variables from any model of α. Satoh’s operator is very
similar to the one due to Dalal. Again only those models of β are selected that are closest
to any model of α. But here closeness is defined via minimality with respect to set inclusion
instead of cardinality. Winslett’s operator is an update operator instead of a revision operator.
The difference is that every model is changed individually. For every single model of α the
closest model(s) of β are selected. The outcome of these individual selections is then combined.
Winslett defines closeness similar to Satoh via minimality with respect to set inclusion.

Subsequently, we refer to a revision scenario as either a pair of formulas (α, β) (in case of
the enumeration problem) or a triple (α, β, γ) (in case of the reasoning problem).

As shown in [30], given formulas α, β, γ, deciding α ◦ β |= γ with ◦ ∈ {◦S , ◦W } is ΠP
2 -

complete while deciding α ◦D β |= γ is ΘP
2 -complete. For these results, hardness holds even in

case γ is a single atom.

4.1.2 Tree Decompositions for Revision Scenarios

To build tree decompositions for revision scenarios (α, β, γ), we use incidence graphs1 over
Γ = α ∪ β ∪ γ. Recall from Section 2.3 that for formulas α,β, and γ, such a graph G is given
by vertices Γ ∪ var (Γ) and has as edges all unordered pairs {a, c} with an atom a ∈ var (Γ)
appearing in a clause c ∈ Γ. In case of normalized tree decompositions, we distinguish between
six types of nodes: atom introduction (AI), clause introduction (CI), atom removal (AR), clause
removal (CR), branch (B), and leaf (L) nodes. The first four types will be often augmented with
the element e (either an atom or clauses) which is removed or added compared to the bag of the
child node.

Example 8. The revision scenario A ◦ B, which is used as a running example throughout this
chapter, is given by the following formulas:

A = (x ∨ y)︸ ︷︷ ︸
c1

∧ (¬y)︸︷︷︸
c2

∧ (¬z)︸︷︷︸
c3

,

B = (¬x ∨ y)︸ ︷︷ ︸
c4

∧ (¬y ∨ z)︸ ︷︷ ︸
c5

.

These have models Mod(A) = {{x}} and Mod(B) = {{}, {z}, {y, z}, {x, y, z}}. Therefore,
|∆|min(A,B) = 1 and ∆min(A,B) = ∆min

{x} (B) = {{x}, {y, z}}. Hence, the results are

1See [100] for justifications why incidence graphs are favorable over other types of graphs.
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Figure 4.1: The incidence graph GEx of the revision scenario A ◦B from Example 8.
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Figure 4.2: A normalized tree decomposition TEx of GEx from Example 8.

Mod(A ◦D B) = {{}} and Mod(A ◦S B) = Mod(A ◦W B) = {{}, {x, y, z}}. Figure 4.1
shows the incidence graph GEx of this scenario. A normalized tree decomposition TEx of GEx
having width 2 is shown in Figure 4.2. Actually, GEx cannot have a tree decomposition of width
< 2, since only trees have treewidth = 1 andGEx contains a cycle. Hence, the tree decomposition
in Figure 4.2 is optimal and we have tw(GEx) = 2. Examples for different node types are t1 as
(L) node, t2 as (c2-CI) node, t4 as (x-AR) node, t5 as (y-AI) node, t6 as (c4-CR) node, and t15

as (B) node. a

4.2 Applying Courcelle’s Theorem

In order to show the fixed-parameter tractability of the aforementioned belief revision problems
using Courcelle’s Theorem, we first have to define how to model the instances as finite structures.
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Let formulas α, β, and γ be given by a structure A with signature

σ = {atom(·), clauseα(·), clauseβ(·), clauseγ(·), pos(·, ·), neg(·, ·)}.

Structure A has domain A = Γ ∪ var (Γ), where Γ = α ∪ β ∪ γ. Moreover, for each relation
symbol in σ, a relation over A is contained in A with the following intended meaning: atom
designates the set of atoms, clauseα, clauseβ and clauseγ denote the set of clauses of α, β, and γ
respectively. Furthermore, pos(a, c) denotes that atom a occurs positively in clause c. Negative
literals are described by neg(a, c).

The treewidth of a structure A is defined as the treewidth of the graph that we get by taking
the set of domain elements (in our case, A = Γ ∪ var (Γ)) as vertices and by considering two
vertices (i.e., domain elements) as adjacent if these domain elements jointly occur in some tuple
of the structure, i.e., the edges of this graph are of the form (a, c) where either pos(a, c) or
neg(a, c) is contained in the structure. Hence, the treewidth of A is precisely the treewidth
defined via the incidence graph of Γ as described in the previous section.

The fact that set I is a model of a formula ϕ can then be stated by the following MSO
property (see also [47]):

modϕ(I) ≡ ∀x[x ∈ I → atom(x)] ∧
∀c[clauseϕ(c)→ ∃a((pos(a, c) ∧ a ∈ I) ∨ (neg(a, c) ∧ a 6∈ I))].

Towards an MSO-encoding for α ◦ β we define two more helper formulas. The first one charac-
terizes valid triples I∆J = K and the second one characterizes proper subsets X ⊂ Y .

diff(I, J,K) ≡ ∀a[a ∈ K ↔ ((a ∈ I ∧ a 6∈ J) ∨ (a 6∈ I ∧ a ∈ J))],

sub(X,Y ) ≡ ∀a(a ∈ X → a ∈ Y ) ∧ ∃b(b ∈ Y ∧ b 6∈ X).

We put things together to characterize the models of α ◦S β:

revSα,β(J) ≡ ∃K[modDα,β(J,K) ∧ ∀J ′∀K ′(sub(K ′,K)→ ¬modDα,β(J ′,K ′))], with

modDα,β(J,K) ≡ modβ(J) ∧ ∃I[modα(I) ∧ diff(I, J,K)].

It is now easy to see that the MSO formula ∀J(revSα,β(J) → Modγ(J)) characterizes the rea-
soning problem α ◦S β |= γ for Satoh’s revision operator. Using the same helper formulas we
can express Winslett’s operator ◦W as well:

revWα,β(J) ≡ modβ(J) ∧ ∃I∃K
[
modα(I) ∧ diff(I, J,K) ∧

¬∃J ′∃K ′
(
modβ(J ′) ∧ diff(I, J ′,K ′) ∧ sub(K ′,K)

)]
.

We thus obtain via Courcelle’s Theorem the following result.

Theorem 9. The reasoning problems α ◦S β |= γ and α ◦W β |= γ are fixed-parameter linear
with respect to the treewidth. This means they are solvable in time

O(f(w) · ‖α ∪ β ∪ γ‖),

where f is a function depending only on the treewidth w of the revision scenario (α, β, γ) and
‖α ∪ β ∪ γ‖ denotes the size of an appropriate encoding of α ∪ β ∪ γ.
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For Dalal’s operator, we need additional machinery. Let modDα,β(J,K) be the MSO-
formula given above. Following the notation of [4], |∆|min(α, β) can be described by a linear
extended monadic second-order extremum problem minψ |K|, where ψ ≡ ∃J modDα,β(J,K).
But in order to express the reasoning problem α ◦D β |= γ in a straight forward way we would
need to take minψ |K| as a subformula and make sure that all models of α ◦D β with minimal
cardinality are a model of γ as well. However, this is not possible in linear extended monadic
second-order logic. In order to still be able to use the extension of Courcelle’s Theorem of [4],
we decide this problem in two steps. Therefore, we require the following lemma.

Lemma 10. The reasoning problem α ◦D β |= γ holds if and only if |∆|min(α, β ∧ γ) <
|∆|min(α, β ∧ ¬γ).

Proof. Since Mod(β) = Mod(β ∧ γ) ∪Mod(β ∧ ¬γ), we can express |∆|min(α, β) as

|∆|min(α, β) = min(|∆|min(α, β ∧ γ), |∆|min(α, β ∧ ¬γ)).

Now assume α ◦D β 6|= γ. That means, there exists a J ∈ Mod(α ◦D β) such that J 6∈
Mod(γ). From this and the definition of α ◦D β it follows that J ∈ Mod(β ∧ ¬γ). Therefore,
there exists I ∈ Mod(α) such that |I∆J | = |∆|min(α, β) = |∆|min(α, β ∧ ¬γ). Hence,
|∆|min(α, β ∧ ¬γ) ≤ |∆|min(α, β ∧ γ).

For the other direction assume that |∆|min(α, β ∧ ¬γ) ≤ |∆|min(α, β ∧ γ). Therefore,
|∆|min(α, β) = |∆|min(α, β ∧ ¬γ). In other words, there exists J ∈ Mod(α ◦D β) with
J ∈ Mod(¬γ) and hence α ◦D β 6|= γ.

With the help of this lemma and the extension of Courcelle’s Theorem by [4], we thus get
fixed-parameter tractability.

Theorem 11. Assuming unit cost for arithmetic operations, the reasoning problem α ◦D β |= γ
is fixed-parameter linear with respect to the treewidth, i.e., it is solvable in time

O(f(w) · ‖α ∪ β ∪ γ‖),

where f is a function depending only on the treewidth w of the revision scenario (α, β, γ) and
‖α ∪ β ∪ γ‖ denotes the size of an appropriate encoding of α ∪ β ∪ γ.

Proof. We use the characterization of α ◦D β |= γ given by Lemma 10. Both expressions
|∆|min(α, β∧γ) and |∆|min(α, β∧¬γ) can be characterized by linear extended MSO extremum
problems minψ1 |K|, respectively minψ2 |K|. Thereby,

ψ1 ≡ ∃J [modγ(J) ∧ modDα,β(J,K)],

ψ2 ≡ ∃J [¬modγ(J) ∧ modDα,β(J,K)].

By Theorem 5.6 of [4], those can be evaluated in linear time if we assume unit cost for arithmetic
operations and if the treewidth of α ∪ β ∪ γ is bounded by a fixed constant. The answer to the
reasoning problem α ◦D β |= γ can now be retrieved by comparing the two outcomes according
to Lemma 10.
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4.3 Dynamic Programming Approach for Dalal’s Operator

In this section, we show how the theoretical results from Section 4.2 can be put to practice by
dynamic programming. We discuss here only the realization for the Dalal-revision operator ◦D
in detail.

We start with an algorithm to decide α ◦D β |= γ. The very idea of such an algorithm is
to associate certain objects (so-called bag assignments) to each node t of a tree decomposition
for this problem, such that certain information about the subproblem represented by the subtree
rooted at t remains available. Consequently, results for the entire problem can be read off the
root of the tree decomposition.

We then make use of our algorithm also for the enumeration problem. Hereby, we traverse
the tree decomposition a second time, but starting from the root, where we already have identi-
fied certain objects which will allow us to compute the models of the revised knowledge base.
However, to guarantee that the enumeration does not provide duplicate models, some additional
adjustments in the data structure will be necessary.

4.3.1 Reasoning Problem

For the problem α ◦D β |= γ, we restrict ourselves here to scenarios where γ is a single atom
occurring in var (α ∪ β) in order to keep the presentation simple. In what follows, we fix
T = (T, χ) to be a normalized tree decomposition of the incidence graph for α ∪ β. We
refer to the root node of T as troot, and we require that the bags of troot and of all leaf nodes of T
do not contain any clauses. Such a tree decomposition is easily obtained from a normalized one
by suitably adding (CI)- and (CR)-nodes. Additionally, we require that γ appears in χ(troot).
Finally, we assume α ∩ β = ∅ holds, thus for any clause c ∈ α ∪ β, its origin o(c) is either α or
β. We fix the universe of all atoms occurring in the involved formulas U = var (α ∪ β).

For a node t ∈ T , we denote by Tt the subtree of T rooted at t. For a set S of elements (either
atoms or clauses), t|S is a shorthand for χ(t) ∩ S; moreover, t↓S is defined as

⋃
m∈Tt m|S , and

t⇓S abbreviates t↓S \ t|S .

Definition 12. A tuple ϑ = (t,Mα,Mβ, C), where t ∈ T , Mα,Mβ ⊆ t|U , and C ⊆ t|α∪β is
called a bag assignment (for node t).

Bag assignments for a node t implicitly talk about interpretations over t↓U . The following
definition makes this more precise.

Definition 13. For a bag assignment ϑ = (t,Mα,Mβ, C) and ϕ ∈ {α, β}, define

Eϕ(ϑ) =
{
K ⊆ t↓U | K \ (t⇓U ) = Mϕ;

(C ∩ ϕ) ∪ (t⇓ϕ) = {c ∈ t↓ϕ| K ∈ Mod t↓U (c)}
}
.

In other words, we associate with a bag assignment (t,Mα,Mβ, C) all interpretations K
that extend Mα in such a way, that all clauses from α appearing in C and in bags below node t
are satisfied. The same is done for β. Bag assignments for which such extended interpretations
exist for both α and β are of particular interest for us.

41



Definition 14. A bag assignments ϑ is called bag model if and only if Eα(ϑ) 6= ∅ 6= Eβ(ϑ).

We next rephrase the main features of the definition of ◦D in terms of bag models and then
show that bag models for the root node capture ◦D as expected.

Definition 15. For any bag model ϑ = (t,Mα,Mβ, C), define

δ(ϑ) = min
{
|Iα∆Iβ| | Iα ∈ Eα(ϑ), Iβ ∈ Eβ(ϑ)

}
; and

E(ϑ) =
{
Iβ ∈ Eβ(ϑ) | ∃Iα ∈ Eα(ϑ), |Iα∆Iβ| = δ(ϑ)

}
.

Theorem 16. Let Θ be the set of all bag models ϑ for troot, such that no bag model ϑ′ for troot
with δ(ϑ′) < δ(ϑ) exists. Then, Mod(α ◦D β) =

⋃
ϑ∈Θ E(ϑ).

Proof. (⊆): Let J ∈ Mod(α ◦D β). Hence, J ∈ Mod(β) and there exists an I ∈ Mod(α),
such that |I∆J | = |∆|min(α, β) = k. Consider ϑ = (troot,Mα,Mβ, ∅) where Mα = troot|I
and Mβ = troot|J . Since we assumed that no clauses are stored in χ(troot) and troot ↓U= U ,
J ∈ Mod(β) yields that J ∈ Mod t↓U (c) holds for each c ∈ troot ↓β= troot ⇓β . The same
argumentation applies to I and α. Hence, I ∈ Eα(ϑ), J ∈ Eβ(ϑ), and thus ϑ is a bag-model.
To show ϑ ∈ Θ, it remains to show that no other ϑ′ ∈ Θ exists with δ(ϑ′) < δ(ϑ) ≤ k. Towards
a contradiction, suppose such a ϑ′ = (troot,M

′
α,M

′
β, C

′) exists. By definition, then there exists
an I ′α ∈ Eα(ϑ′) and an I ′β ∈ Eβ(ϑ′) with |I ′α∆I ′β| = δ(ϑ′). Let ϕ ∈ {α, β}. By definition of
Eϕ(·), we obtain I ′ϕ ∈ Mod troot↓U ((C ′ ∩ ϕ) ∪ (troot ⇓ϕ)). Again C ′ = ∅ by our assumption for
troot, and thus troot⇓ϕ= ϕ. We also know U = troot↓U . I ′ϕ ∈ Mod(ϕ) follows. Hence, we have
found models I ′α, I

′
β for α, and respectively β, such that |I ′α∆I ′β| < k. A contradiction to our

assumption that |∆|min(α, β) = k. The other direction holds by essentially the same arguments.

(⊇): Let J ∈ E(ϑ) for some ϑ ∈ Θ. Then, J ∈ Eβ(ϑ) and there exists an I ∈ Eα(ϑ), such that
|I∆J | = δ(ϑ). Similar as above, we can conclude from J ∈ Eβ(ϑ) that J ∈ Mod(β) and from
I ∈ Eα(ϑ) that I ∈ Mod(α). To show J ∈ Mod(α ◦D β), suppose, towards a contradiction,
this claim does not hold, i.e. there exist I ′ ∈ Mod(α), J ′ ∈ Mod(β), such that |I ′∆J ′| < δ(ϑ).
One can show that then ϑ′ = (troot,M,N, ∅), where M = troot|I′ , N = troot|J ′ , is a bag model
that satisfies δ(ϑ′) ≤ |I ′∆J ′| < δ(ϑ). But this is in contradiction to our assumption ϑ ∈ Θ.

We now put our concept of bag models to work also below the root node. Our goal is to
characterize bag models ϑ without an explicit computation of Eϕ(ϑ). To this end, first note that
bag models for leaf nodes t are easily built from all pairs of interpretations over the atoms in
the bag χ(t); also recall that we assumed that no clause is in χ(t). Thus, formally, the set of
all bag models for a leaf node t is given by {(t,M,N, ∅) | M,N ⊆ t|U}. For each such bag
model ϑ = (t,M,N, ∅), δ(ϑ) = |M∆N | is clear. Next, we define a relation ≺T between bag
assignments, such that all bag models of a node are accordingly linked to bag models of the
child(ren) node(s). We thus can propagate, starting from the leaves, bag models upwards the
tree decomposition. Afterwards, we will show how δ(ϑ) can be treated accordingly.

Definition 17. For bag assignments ϑ = (t,Mα,Mβ, C) and ϑ′ = (t′,M ′α,M
′
β, C

′), we have
ϑ′ ≺T ϑ if and only if t has a single child t′, and the following properties are satisfied, depending
on the node type of t:
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1. (c-CR): Mα = M ′α, Mβ = M ′β , C = C ′ \ {c}, c ∈ C ′;

2. (c-CI): Mα = M ′α, Mβ = M ′β , and C = C ′ ∪ {c} if Mo(c) ∈ Mod t|U (c); and C = C ′

otherwise;

3. (a-AR): Mα = M ′α \ {a}, Mβ = M ′β \ {a}, C = C ′;

4. (a-AI): one of the following cases applies

• Mα = M ′α ∪ {a}, N = M ′β ∪ {a}, C = C ′ ∪ {c ∈ t|α∪β | a ∈ c};

• Mα = M ′α ∪ {a}, Mβ = M ′β , C = C ′ ∪ {c ∈ t|α : a ∈ c} ∪ {d ∈ t|β : ¬a ∈ d};

• Mα = M ′α, Mβ = M ′β ∪ {a}, C = C ′ ∪ {c ∈ t|α : ¬a ∈ c} ∪ {d ∈ t|β : a ∈ d};

• Mα = M ′α, Mβ = M ′β , C = C ′ ∪ {c ∈ t|α∪β | ¬a ∈ c}.

For branch nodes, we extend (with slight abuse of notation) ≺T to a ternary relation.

Definition 18. Let ϑ = (t,Mα,Mβ, C), ϑ′ = (t′,M ′α,M
′
β, C

′) and ϑ′′ = (t′′,M ′′α,M
′′
β , C

′′) be
three bag assignments. We relate (ϑ′, ϑ′′) ≺T ϑ if t has two children t′ and t′′, Mα = M ′α =
M ′′α , Mβ = M ′β = M ′′β , and C = C ′ ∪ C ′′.

Lemma 19. Let ϑ, ϑ′, ϑ′′ be bag assignments, such that ϑ′ ≺T ϑ (respectively (ϑ′, ϑ′′) ≺T ϑ).
Then, ϑ is a bag model if and only if ϑ′ is a bag model (respectively both ϑ′ and ϑ′′ are bag
models).

Proof. For the proof, one has to distinguish between the node types. Here, we only show the
case where ϑ is a bag assignment for a (c-CI) node t with child t′. In this case, ϑ′ ≺T ϑ holds
exactly for assignments of the form ϑ = (t,Mα,Mβ, C) and ϑ′ = (t′,Mα,Mβ, C

′), where
C = C ′∪{c} if c appears in ϕ ∈ {α, β} andMϕ is a partial model of c (i.e., Mϕ ∈ Mod t|U (c));
and C = C ′ otherwise. Consider the case c ∈ α (the other case is symmetric). We show
Eα(ϑ) = Eα(ϑ′) and Eβ(ϑ) = Eβ(ϑ′). The assertion then follows. We will only sketch a proof
for Eα(ϑ) = Eα(ϑ′).

We have V = t↓U= t′↓U , W = t ⇓U= t′ ⇓U . It is sufficient to show (C ∩ α) ∪ t ⇓α=
{d ∈ t↓α| K ∈ ModV (d)} if and only if (C ′ ∩ α) ∪ t′ ⇓α= {d ∈ t′↓α| K ∈ ModV (d)} for
each K ⊆ V such that K \W = Mα. Fix such a K and note that t⇓α= t′ ⇓α. One can show
(C ∩α) = {d ∈ t|α | K ∈ ModV (d)} if and only if (C ′ ∩α) = {d ∈ t′|α | K ∈ ModV (d)} by
observing that K ∈ ModV (c) if and only if Mα ∈ Mod t|U (c).

Next, we define recursively a number assigned to bag models ϑ and show that this number
in fact matches the minimal distance δ(ϑ) defined above.
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Definition 20. Let ϑ = (t,Mα,Mβ, C) be a bag model. We define

ρ(ϑ) =



|Mα∆Mβ| if t is a leaf node
ρ(ϑ′) with ϑ′ ≺T ϑ if t is type (CI) or (CR)
min

{
ρ(ϑ′) | ϑ′ ≺T ϑ

}
if t is type (AR)

min
{
ρ(ϑ′) | ϑ′ ≺T ϑ

}
if t is type (a-AI) and a 6∈Mα∆Mβ

min
{
ρ(ϑ′) | ϑ′ ≺T ϑ

}
+ 1 if t is type (a-AI) and a ∈Mα∆Mβ

min
{
ϑ′×ϑ′′ | (ϑ′, ϑ′′) ≺T ϑ

}
if t is type (B)

where ϑ′ × ϑ′′ stands for ρ(ϑ′) + ρ(ϑ′′)− |Mα∆Mβ|.

Lemma 21. For any bag model ϑ, δ(ϑ) = ρ(ϑ).

Example 22. In Figure 4.3, we list all bag models ϑ of the tree decomposition from Example 8
together with values ρ(ϑ). For instance, leaf node t8 has bag models for all pairs of interpreta-
tions over {z}. If we go upwards the tree, we observe that bag models for t9 may additionally
contain clause from c3 satisfied by the respective assignments. In the next node t10 only those
bag models survive where c3 was contained, since t10 is a (c3-CR) node. Note that for the
root, the bag model ϑ = (t17, ∅, ∅, ∅) is the one with minimal ρ(ϑ). It can be checked that
E(ϑ) = {{}} as expected (recall that Mod(α ◦D β) = {{}}). a

Theorem 23. Assuming unit cost for arithmetic operations, α ◦D β |= γ can be decided in
time O(f(w) · ‖α ∪ β‖), where f is a function depending only on the treewidth w of (α, β) and
‖α ∪ β‖ denotes the size of an appropriate encoding of α ∪ β.

Proof. Lemma 19 suggests the following algorithm: first, we establish the bag models ϑ for leaf
nodes together with their value for δ(ϑ) = ρ(ϑ); then we compute all remaining bag models
via ≺T in a bottom-up manner, and keep track of δ(·) using the definition of ρ, which is indeed
feasible thanks to Lemma 21. As soon as we have the bag models for the root node together with
their δ-values we know that bag models in Θ as defined in Theorem 16 characterize the models
of α ◦D β. Due to our assumption that γ is just a single atom occurring in χ(troot), it remains to
check whether for each (troot,Mα,Mβ, C) ∈ Θ, γ ∈Mβ holds.

The effort needed for processing a leaf node as well as the transition from child to parent
nodes only depends on the treewidth but not on ‖α∪ β‖. The size of T is linear bounded by the
size of α ∪ β, thus the desired time bound for our algorithm follows.

4.3.2 Enumeration Problem

Our reasoning algorithm from Section 4.3.1 gathers the following information along the bottom-
up traversal of T .

1. all bag models ϑ = (t,Mα,Mβ, C) for all nodes t in T ,

2. the minimal distance δ(ϑ) between the models Iα ∈ Eα(ϑ) and Iβ ∈ Eβ(ϑ), and
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3. the relation ≺T indicating which bag model(s) ϑ′ at the child node t′ (respectively at the
two child nodes t′ and t′′) give rise to which bag model ϑ at a node t in T .

In principle, this is all the information needed to enumerate the models in α ◦D β by starting
with the bag models ϑ in Θ from Theorem 16 (i.e., the bag models ϑ at the root node troot,
such that no other bag model ϑ′ at troot with smaller value of δ(·) exists) and determining E(ϑ)
for every ϑ ∈ Θ by traversing T in top-down direction following the ≺T relation in reversed
direction. However, such an enumeration algorithm faces two problems:

1. In Definition 20 (with ρ(ϑ) = δ(ϑ), by Lemma 21) we computed the minimum value
attainable by ρ(ϑ) over all possible bag models ϑ′ (respectively pairs (ϑ′, ϑ′′)) with ϑ′ ≺T
ϑ (respectively (ϑ′, ϑ′′) ≺T ϑ). Hence, when we now follow the ≺T relation in the
reversed direction, we have to make sure that, from any ϑ, we only continue with bag
models ϑ′ (respectively with pairs (ϑ′, ϑ′′)) that actually lead to the minimal value of
ρ(ϑ).

2. For distinct bag models ϑ, ϑ′ for any node t, E(ϑ) ∩ E(ϑ′) = ∅ is not guaranteed. More
precisely, suppose that two bag models ϑ = (t,Mα,Mβ, C) and ϑ′ = (t,M ′α,M

′
β, C

′)
fulfill the condition Mβ = M ′β . Then it may well happen that some model Iβ is contained
both in Eβ(ϑ) and Eβ(ϑ′), such that Iβ has minimal distance δ(ϑ) from some Iα ∈ Eα(ϑ)
and also minimal distance δ(ϑ′) from some I ′α ∈ Eα(ϑ′). However, for our enumeration
algorithm we want to avoid the computation of duplicates since this would, in general,
destroy the linear time upper bound on the delay.

The first problem is dealt with below by restricting the relation ≺T to a subset �T of
≺T . For the second problem, we shall extend the relation �T on bag models to a relation
on sets of bag models. We start with the definition�T on bag models. Let us introduce some
additional notation first: We identify the components of a bag assignment ϑ = (t,Mα,Mβ, C)
as ϑnode = t; ϑα = Mα; ϑβ = Mβ; and ϑclause = C. If Θ is a set of bag assignments such that
ϑβ is identical for all ϑ ∈ Θ, then we write Θβ to denote ϑβ for any ϑ ∈ Θ. Finally, we write
E(Θ) as a short-hand for

⋃
ϑ∈Θ E(ϑ).

Definition 24. Let ϑ, ϑ′, and optionally, ϑ′′ be bag models, such that ϑ′node (and, optionally, also
ϑ′′node) is a child of t = ϑnode. We define ϑ′ �T ϑ (respectively (ϑ′, ϑ′′) �T ϑ) if and only if
ϑ′ ≺T ϑ (respectively (ϑ′, ϑ′′) ≺T ϑ) and one of the following conditions is fulfilled:

(i) t is of type (CI) or (CR);

(ii) t is of type (AR) and δ(ϑ) = δ(ϑ′);

(iii) t is of type (a-AI), a ∈ ϑα if and only if a ∈ ϑβ , and δ(ϑ) = δ(ϑ′);

(iv) t is of type (a-AI), a 6∈ ϑα if and only if a ∈ ϑβ , and δ(ϑ) = δ(ϑ′) + 1; or

(v) t is of type (B) and δ(ϑ) = δ(ϑ′) + δ(ϑ′′)− |ϑα∆ϑβ|.
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We now extend�T from a relation on bag models to a relation on sets Θ of bag models ϑ
(with identical component ϑβ). By slight abuse of notation, we reuse the same symbol�T .

Definition 25. Let Θ 6= ∅ be a set of bag models for t ∈ T , such that for all ϑ, ϑ′ ∈ Θ, ϑβ = ϑ′β .

(i) Suppose that t is either of type (CI), (CR) or of type (a-AI) with a 6∈ Θβ . Then we define
Θ′ �T Θ for Θ′ = {ϑ′ | ϑ′β = Θβ and ϑ′ �T ϑ for some ϑ ∈ Θ}.

(ii) Suppose that t is of type (a-AI) with a ∈ Θβ . Then we define Θ′ �T Θ for Θ′ = {ϑ′ |
ϑ′β = Θβ \ {a} and ϑ′ �T ϑ for some ϑ ∈ Θ}.

(iii) Suppose that t is of type (a-AR). Then we define Θ′1 �T Θ and Θ′2 �T Θ for Θ′1 = {ϑ′ |
ϑ′β = Θβ and ϑ′ �T ϑ for some ϑ ∈ Θ} and Θ′2 = {ϑ′ | ϑ′β = Θβ ∪ {a} and ϑ′ �T
ϑ for some ϑ ∈ Θ}.

(iv) Suppose that t is of type (B). Then we define Θ′ �T Θ for Θ′ = {ϑ′ | ∃ϑ′′ with
(ϑ′, ϑ′′)�T ϑ for some ϑ ∈ Θ}.
Moreover, for every Θ̂ ⊆ Θ′ with Θ′ �T Θ, we define (Θ̂,Θ′′) �T Θ, where Θ′′ =
{ϑ′′ | ∃ϑ ∈ Θ and ∃ϑ′ ∈ Θ̂ with (ϑ′, ϑ′′)�T ϑ}.

The following lemma states that every model in E(Θ) at node t can be computed via E(Θ′)
(and optionally E(Θ′′)) at the child node(s) of t and, conversely, that every element in E(Θ′)
(and optionally E(Θ′′)) can indeed be extended to a model of E(Θ).

Lemma 26. Let t ∈ T and let Θ be a non-empty set of bag models for t, such that for all
ϑ, ϑ′ ∈ Θ, ϑβ = ϑ′β . Then the following properties hold:

(i) Suppose t is of type (CI), (CR), (AR), or of type (a-AI), such that a 6∈ Θβ . Then I ∈ E(Θ)
if and only if I ∈ E(Θ′), such that Θ′ �T Θ.

(ii) Suppose t is of type (a-AI), such that a 6∈ Θβ . Then I ∈ E(Θ) if and only if (I \ {a}) ∈
E(Θ′), such that Θ′ �T Θ.

(iii) Suppose t is of type (B). Then I ∈ E(Θ) if and only if I = I ′ ∪ I ′′ for some I ′ ∈ E(Θ̂)
and I ′′ ∈ E(Θ′′), where Θ̂ ⊆ Θ′, Θ′ �T Θ, and (Θ̂,Θ′′)�T Θ.

For our enumeration algorithm, we start at the root node of T and first partition the relevant
bag models ϑ according to ϑβ . Formally, let Θ be the set of all bag models ϑ for troot, such that
no bag model ϑ′ for troot with δ(ϑ′) < δ(ϑ) exists. Then we partition Θ into Θ1, . . . ,Θt, such
that for each ϑ, ϑ′ ∈ Θi, ϑβ = ϑ′β , and for each ϑ ∈ Θi, ϑ′ ∈ Θj with i 6= j, ϑβ 6= ϑ′β . Clearly,
the sets E(Θi) are pairwise disjoint. Hence, no duplicates will be computed when we compute
E(Θ1), . . . , E(Θt) separately.

Given a set Θ of bag models, we compute E(Θ) by implementing an appropriate iterator for
every node t in T . The iterator provides functions open, get_current, and get_next. In addition,
other functions like close (to deallocate state information) are needed which we do not discuss
here.
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The open function. The open function serves to initialize the state information at each node of
a given subtree of T . For instance, it is convenient (in particular, for branch nodes) to store in
a Boolean flag first whether get_next() has not yet been called since the initialization with the
call of function open. Moreover, for an (AR) node, there can exist two sets Θ1 and Θ2 with
Θi �T Θ. We have to store in the state of the (AR) node, which one of these two sets is
currently being processed at the child node.

The open function takes as input a set Θ of bag models ϑ with identical ϑβ and recursively
calls open(Θ′) with Θ′ �T Θ. If the current node is of type (CI), (CR), or (AI), then Θ′ is
unique. Likewise, Θ′ is unique for the first child of a branch node. In case of an (AR) node,
Θ′ corresponds to Θ1 from Definition 25, case (iii), provided that it is non-empty. Otherwise,
Θ′ = Θ2 is chosen. The children of a branch node are treated asymmetrically by the�T -relation
and, hence, also by the open function. In the first place, we only compute Θ′ with Θ′ �T Θ for
the first child of every branch node. As we shall explain below, the function get_next() computes
the set of assignments E(Θ), returning one such assignment per call. For branch nodes, we thus
compute for the first child the set E(Θ′) with Θ′ �T Θ. For each assignment I ′ thus returned,
get_next() also yields Γ′ = {ϑ̂ | I ′ ∈ E(ϑ̂)} ⊆ Θ′. Then the subtree rooted at the second child
node is processed with Θ′′, such that (Γ′,Θ′′)�T Θ. Hence, for every assignment I ′, we have
to compute Θ′′ (which is uniquely determined by Γ′ and Θ) and call open(Θ′′), before we can
retrieve the assignments I ′′ in E(Θ′′) with get_next().

The get_next and get_current function. Suppose that a node t in T has been initialized by a call
of open(Θ) with ϑnode = t for every ϑ ∈ Θ. Then we can call get_next() for this node in order
to retrieve the first respectively the next assignment I in E(Θ). In addition to the assignment I ,
the get_next function also provides a set Γ ⊆ Θ as output, such that Γ = {ϑ̂ | I ∈ E(ϑ̂)}. As we
have already seen, this set Γ of bag assignments is needed when we encounter a branch node on
our way back to the root, in order to determine the set Θ′′ for the second child. The get_current
function is called (for the first child of a branch node) to retrieve once again the result from the
previous call to get_next. If no next assignment exists, then get_next returns the value “Done”.

In order to compute the first respectively next assignment I , we traverse T downwards by
recursive calls of get_next() until the leaves are reached. In the leaves, we start with the assign-
ment I = Θβ and also set Γ = Θ. This assignment I and the set Γ are now updated on the way
back to the root. The only modifications to I are in fact done when we are at an (a-AI) node or at
a (B) node. For (AI) nodes, we add a in case a is added to the respective Θβ . For (B) nodes, we
set I = I ′∪I ′′, where I ′ (respectively I ′′) is the assignment returned by the call of get_next() for
the first (respectively second) child node. In Figure 4.4 we give the pseudo-code of the get_next
function in case of a branch node. For the remaining node types, the implementation of get_next
is even simpler.

Theorem 27. Given formulas α and β, the models in Mod(α◦D β) can be computed with delay
O(f(w) · |α ∪ β|), where f is a function depending only on the treewidth w of (α, β).

Proof. By our definition of�T on sets and by Lemma 26, we can be sure that (1) every assign-
ment in Mod(α◦Dβ) is eventually computed by our iterator-based implementation via recursive
calls of get_next and (2) no assignment is computed twice. Indeed, our set-based definition of

47



the�T -relation groups together bag models ϑwith identical ϑβ and, for any bag models ϑ′ with
ϑβ 6= ϑ′β , we trivially have E(ϑ) ∩ E(ϑ′) = ∅.

As far as the complexity is concerned, note that the recursive calls of the open function come
down to a top-down traversal of T . (In fact, by the asymmetric treatment of the children of a
branch node, open is only called for the nodes along the left-most path in T .) Similarly, each
call of get_next and get_current leads to a single traversal of the subtree below the current node
t. The work actually carried out inside each call is independent of the size of T . Hence, in total,
we end up with a time bound that is linear in the size of T and, hence, in the size of α and β.
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(t17, ∅, ∅, ∅): 1
(t17, ∅, y, ∅): 2

(t16, ∅, ∅, c2): 1
(t16, y, ∅, ∅): 2

(t16, ∅, y, c2): 2
(t16, y, y, ∅): 1

(t15, ∅, ∅, ∅): 1
(t15, y, ∅, ∅): 2
(t15, ∅, y, ∅): 2
(t15, y, y, ∅): 1

(t7, y, ∅, ∅): 2
(t7, y, y, ∅): 0
(t7, ∅, ∅, ∅): 1
(t7, ∅, y, ∅): 1

(t6, ∅, ∅, ∅): 0
(t6, ∅, y, ∅): 2

(t6, y, ∅, c1): 2
(t6, y, y, c1): 0
(t6, ∅, ∅, c1): 1
(t6, ∅, y, c1): 1

(t5, ∅, ∅, c4): 0
(t5, ∅, y, c4): 2

(t5, y, ∅, c1c4): 2
(t5, y, y, c1c4): 0

(t5, ∅, ∅, ∅): 1
(t5, ∅, ∅, c1c4): 1

(t5, ∅, ∅, c1): 0
(t5, ∅, y, c1c4): 1

(t5, y, ∅, c1): 1

(t4, ∅, ∅, c4): 0
(t4, ∅, ∅, ∅): 1

(t4, ∅, ∅, c1c4): 1
(t4, ∅, ∅, c1): 0

(t3, ∅, ∅, c4): 0
(t3, ∅, x, ∅): 1

(t3, x, ∅, c1c4): 1
(t3, x, x, c1): 0

(t2, ∅, ∅, ∅): 0
(t2, ∅, x, ∅): 1

(t2, x, ∅, c1): 1
(t2, x, x, c1): 0

(t1, ∅, ∅, ∅): 0
(t1, ∅, x, ∅): 1
(t1, x, ∅, ∅): 1
(t1, x, x, ∅): 0

(t14, ∅, ∅, ∅): 0
(t14, y, ∅, ∅): 1
(t14, ∅, y, ∅): 2
(t14, y, y, ∅): 1

(t13, ∅, ∅, c5): 0
(t13, ∅, y, ∅): 1

(t13, y, ∅, c5): 1
(t13, y, y, ∅): 0

(t13, ∅, y, c5): 2
(t13, y, y, c5): 1

(t12, ∅, ∅, ∅): 0
(t12, ∅, ∅, c5): 1

(t11, ∅, ∅, ∅): 0
(t11, ∅, z, c5): 1

(t10, ∅, ∅, ∅): 0
(t10, ∅, z, ∅): 1

(t9, ∅, ∅, c3): 0
(t9, ∅, z, c3): 1
(t9, z, ∅, ∅): 1
(t9, z, z, ∅): 0

(t8, ∅, ∅, ∅): 0
(t8, ∅, z, ∅): 1
(t8, z, ∅, ∅): 1
(t8, z, z, ∅): 0

Figure 4.3: All bag models for the tree decomposition from Example 8.
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Function get_next for a branch node t with child nodes t′, t′′

Let Θ be the input parameter of the previous call of function open
if first then

first = False;
(I ′,Γ′) = t′.get_next();
Let Θ′′ such that (Γ′,Θ′′)�T Θ;
t′′.open(Θ′′)
(I ′′,Γ′′) = t′′.get_next()

else
(I ′,Γ′) = t′.get_current()
(I ′′,Γ′′) = t′′.get_next()
if (I ′′,Γ′′) = undefined (i.e., the call of t′′.get_next() returned “Done”) then

(I ′,Γ′) = t′.get_next();
if (I ′,Γ′) = undefined (i.e., the call of t′.get_next() returned “Done”) then

return “Done”
endif
Let Θ′′ such that (Γ′,Θ′′)�T Θ;
t′′.open(Θ′′)
(I ′′,Γ′′) = t′′.get_next()

endif
endif
return (I ′ ∪ I ′′, {ϑ ∈ Θ | ∃γ′ ∈ Γ′ and ∃γ′′ ∈ Γ′′, such that (γ′, γ′′)�T ϑ})

Figure 4.4: Function get_next() for a branch node.
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CHAPTER 5
Answer-Set Programming

This chapter is mainly based on joint work with Reinhard Pichler, Stefan Szeider, and Stefan
Woltran, and appeared in the proceedings of the Twelfth International Conference on Principles
of Knowledge Representation and Reasoning (KR 2010) [91] as well as in the journal Theory
and Practice of Logic Programming (TPLP) [92].

The implementation and evaluation presented in Section 5.7 is based on joint work with
Michael Morak, Nysret Musliu, Reinhard Pichler, and Stefan Woltran. It appeared partly in the
proceedings of the Twelfth European Conference on Logics in Artificial Intelligence (JELIA
2010) [76], in the proceedings of the Twenty-Third International Conference on Tools with
Artificial Intelligence (ICTAI 2011) [74], as well as in the proceedings of the Sixth International
Conference on Learning and Intelligent Optimization (LION 6) [75].

The first part of this chapter is devoted to applying the notion of treewidth to answer-set
programs with cardinality or weight constraints and to identify tractable fragments. It will turn
out that the straightforward application of treewidth to this class of programs does not suffice to
obtain tractability. However, by imposing further restrictions, tractability can be achieved.

In the main part of this chapter, we restrict ourselves to normal logic programs with cardi-
nality constraints (PCCs) or weight constraints (PWCs). Clearly, all common algorithmic tasks
related to PCCs and PWCs – like checking the consistency of a program – are intractable, since
intractability even holds without such constraints.

5.1 Answer-Set Programming Background

5.1.1 Disjunctive Logic Programs

A (propositional) disjunctive logic program (program, for short) is a pair Π = (A,R), where A
is a set of propositional atoms andR is a set of rules of the form:

a1 ∨ · · · ∨ al ← al+1, . . . , am,¬am+1, . . . ,¬an (5.1)
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where n ≥ 1, n ≥ m ≥ l and ai ∈ A for all 1 ≤ i ≤ n. Thereby “¬” symbolizes default
negation. We omit strong negation as considered in [6] but our results easily extend to programs
with strong negation. A rule r ∈ R of the form (5.1) consists of a head H(r) = {a1, . . . , al}
and a body B(r) = B+(r) ∪ B−(r), given by B+(r) = {al+1, . . . , am} and B−(r) =
{am+1, . . . , an}. A set M ⊆ A is a called a model of r, if B+(r) ⊆ M ∧ B−(r) ∩M = ∅
implies that H(r) ∩M 6= ∅. We denote the set of models of r by Mod(r) and the models of a
program Π = (A,R) are given by Mod(Π) =

⋂
r∈RMod(r).

The reduct ΠI of a program Π w.r.t. an interpretation I ⊆ A is given by (A, {rI : r ∈
R, B−(r) ∩ I = ∅)}), where rI is r without the negative body, i.e., H(rI) = H(r), B+(rI) =
B+(r), and B−(rI) = ∅. Following [45], M ⊆ A is an answer set of a program Π = (A,R) if
M ∈ Mod(Π) and for no N ⊂M , N ∈ Mod(ΠM ).

We consider here the class of head-cycle free programs (HCFPs) as introduced in [6]. We
first recall the concept of (positive) dependency graphs. A dependency graph of a program
Π = (A,R) is given by G = (V,E), where V = A and E = {(p, q) | r ∈ R, p ∈ B+(r), q ∈
H(r)}. A program Π = (A,R) is called head-cycle free if its dependency graph does not
contain a directed cycle going through two different atoms which jointly occur in the head of a
rule inR.

Example 28. The following disjunctive program solves the 3-colorability problem for the graph
that is represented by the following facts: vertex(a), vertex(b) and edge(a, b).

red(a) ∨ green(a) ∨ blue(a) ← >.
red(b) ∨ green(b) ∨ blue(b) ← >.

⊥ ← red(a), red(b).

⊥ ← green(a), green(b).

⊥ ← blue(a),blue(b).

a
To build tree decompositions for programs, we use incidence graphs. For program Π =

(A,R), such a graph is given by G = (V,E), where V = A ∪ R and E is the set of all pairs
(a, r) with an atom a ∈ A appearing in a rule r ∈ R.

5.1.2 Weight Constraint Programs

A program with weight constraints (PWC) is a triple Π = (A, C,R), where A is a set of atoms,
C is a set of weight constraints (or constraints for short), andR is a set of rules. Each constraint
c ∈ C is a triple (S, l, u) where S is a set of weight literals over A representing a clause and
l ≤ u are nonnegative integers, the lower and upper bound. A weight literal over A is a pair
(a, j) or (¬a, j) for a ∈ A and 1 ≤ j ≤ u+ 1, the weight of the literal. Unless stated otherwise,
we assume that the bounds and weights are given in binary representation. For a constraint
c = (S, l, u) ∈ C, we write Cl(c) := S, l(c) := l, and u(c) := u. Moreover, we use a ∈ Cl(c)
and ¬a ∈ Cl(c) as an abbreviation for (a, j) ∈ Cl(c) and (¬a, j) ∈ Cl(c), respectively, for an
arbitrary j. A rule r ∈ R is a pair (h, b), where h ∈ C is the head and b ⊆ C is the body. We
write H(r) := h and B(r) := b.
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We denote the size of a reasonable encoding of program Π by ‖Π‖ and call it the size of Π.
Unless otherwise stated, weights are assumed to be encoded in binary notation. For instance, the
following would do.

‖Π‖ = |A|+
∑

(S,l,u)∈C

(1 + log l + log u+
∑

(lit ,j)∈S

(1 + log j)) +
∑

(h,b)∈R

(1 + |b|).

Given a constraint c ∈ C and an interpretation I ⊆ A over atoms A, we denote the weight of c
in I by

W (c, I) =
∑

(a,j)∈Cl(c)
a∈I

j +
∑

(¬a,j)∈Cl(c)
a6∈I

j.

I is a model of c, denoted by I |= c, if l(c) ≤ W (c, I) ≤ u(c). For a set C ⊆ C, I |= C if
I |= c for all c ∈ C. Moreover, C is a model of a rule r ∈ R, denoted by C |= r, if H(r) ∈ C
or B(r) 6⊆ C. I is a model of program Π (denoted by I |= Π) if {c ∈ C | I |= c} |= r for all
r ∈ R. If the lower bound of a constraint c ∈ C is missing, we assume l(c) = 0. If the upper
bound is missing, I |= c if l(c) ≤ W (c, I). A program with cardinality constraints (PCC) can
be seen as a special case of a PWC, where each literal has weight 1.

Example 29. Consider the following system configuration problem, where one has to choose
among the given parts: p1 : 4000$, p2 : 2000$, and p3 : 1000$ such that the total cost is
≤ 5000$. Thereby one of {p1, p2} has to be selected and p3 requires p2.

This scenario can be represented by the PWC

ΠEx = ({p1, p2, p3}, {c1, c2, c3, c4}, {r1, r2, r3})

with weight constraints

c1 = ({(p1, 4), (p2, 2), (p3, 1)}, 0, 5)

c2 = ({(p1, 1), (p2, 1)}, 1, 2)

c3 = ({(p2, 1)}, 1, 1)

c4 = ({(p3, 1)}, 1, 1)

and rules

r1 = (c1, ∅)
r2 = (c2, ∅)
r3 = (c3, {c4}).

a

Stable model semantics for programs with weight constraints. Let Π = (A, C,R) be a
PWC and let I ⊆ A be an interpretation. Following Niemelä et al. [82], the reduct cI of a
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c1

c2

c3

c4

p1

p2

p3

r1

r2

r3

GEx:

Figure 5.1: Incidence graph GEx of Example 30.

constraint c ∈ C with respect to I is obtained by removing all negative literals and the upper
bound from c, and replacing the lower bound by

l′ = max(0, l(c)−
∑

(¬a,j)∈Cl(c)
a6∈I

j).

The reduct ΠI of program Π with respect to I can be obtained by first removing each rule r ∈ R
which contains a constraint c ∈ B(r) with W (c, I) > u(c). Afterwards, each remaining rule r
is replaced by the set of rules1 (h, b), where h ∈ I ∩ Cl(H(r)) and b = {cI | c ∈ B(r)}, i.e.,
the head of the new rules is an atom instead of a constraint. Interpretation I is called a stable
model (or answer set) of Π if I is a model of Π and there exists no J ⊂ I such that J is a model
of ΠI . The set of all answer sets of Π is denoted byAS(Π). The consistency problem for PWCs
is to decide whether AS(Π) 6= ∅.

Treewidth and constraint-width of PWCs. To build tree decompositions for programs, we
use incidence graphs. Recall the definition of incidence graphs for propositional formulas from
Section 2.3. For a PWC Π = (A, C,R), such a graph has vertex set A ∪ C ∪ R. There is an
edge between a ∈ A and c ∈ C if a ∈ Cl(c) or ¬a ∈ Cl(c), and there is an edge between c ∈ C
and r ∈ R if c ∈ {H(r)} ∪B(r). The treewidth of Π, denoted by tw(Π), is the treewidth of its
incidence graph. The constraint-width of Π, denoted by cw(Π), is the largest (lower or upper)
bound occurring in the constraints of C (or 0 if there are no bounds).

Example 30. Recall the PWC ΠEx from Example 29. The incidence graph GEx of ΠEx as well
as a normalized tree decomposition TEx for ΠEx of width 2 are depicted in Figures 5.1 and 5.2.

a

1With some abuse of notation, we sometimes write for an atom h, (h, b) as a shorthand for the rule
(({(h, 1)}, 1, 1), b).
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p2, c1, c3TEx:

p2, c1, c3

c1, c3

p3, c1, c3

p3, c3

p3, c3, c4

c3, c4

c3, c4, r3

p2, c1, c3

p2, c1

p2, c1, c2

c1, c2

c1, c2

p1, c1, c2

c1, c2

c1, c2

c1, c2, r1

c1, c2

c1, c2, r2

Figure 5.2: Tree decomposition TEx of Example 30.

5.2 NP-Completeness

In [92] it was shown that the parameter treewidth alone is not enough to lead to fixed-parameter
tractability for the consistency problem of programs with weight constraints. Indeed, this pa-
rameterization only leads to para-NP-hardness.

Theorem 31 ([92]). The consistency problem for PWCs is NP-complete already for programs
having treewidth 1.

The NP-hardness is shown by reduction from the NP-complete problem PARTITION. An
instance of PARTITION is a collection of positive integers X = {x1, . . . , xn} encoded in binary
and the question is whether there exists a set I ⊆ {1, . . . , n} such that

∑
i∈I

xi =
∑
i/∈I

xi.

The problem PARTITION is only “weakly NP-hard”. This means, its NP-hardness depends
on the binary encoding of the given integers. For unary encoding this no longer holds. Accord-
ingly, the reduction provides only weak NP-hardness for the consistency problem of PWCs of
bounded treewidth. In fact, we will prove in Section 5.5 that if we assume the weights to be
given in unary the consistency problem is feasible in (non-uniform) polynomial time for PWCs
of bounded treewidth. The non-uniformity refers to the fact that the degree of the polynomial
will depend on the treewidth.
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5.3 Linear-Time Tractability

Since the parameter treewidth alone is not sufficient to achieve fixed-parameter tractability we
consider as an additional parameter the value of the largest (lower or upper) bound occurring in
the constraints of the program. We call this parameter constraint-width.

Indeed, it turns out that the combination of the two parameters leads to fixed-parameter
tractability. We showed the following result in [92].

Theorem 32 ([92]). The consistency problem for PWCs can be solved in linear time for in-
stances whose treewidth and constraint-width are bounded by constants.

We proved this result by considering the incidence graph with additional labels for edges
that indicate the polarity of literals and labels to distinguish between the head and the body of
rules. Additional labels encode the weight of the literals. Since the constraint-width is bounded,
the number of such labels is bounded as well. Furthermore, we used vertex labels to encode the
bounds of constraints as well as three distinguished labels to differentiate between vertices that
represent atoms, clauses, and rules. This graph can be constructed in linear time.

The consistency problem of PWCs is then encoded as a monadic second-order property over
such graphs. Theorem 32 now follows directly by Courcelle’s Theorem.

5.4 Dynamic Programming Approach

Recently, Jakl, Pichler, and Woltran [57] presented an algorithm for answer-set programming
that is based on dynamic programming. It works for programs without cardinality or weight
constraints, but possibly with disjunction in the head of the rules. One way to obtain a dynamic
programming algorithm for PCCs is to try to extend the algorithm of Jakl et al. [57] by methods
to handle the cardinality constraints. In principle, this should be feasible. However, computa-
tionally, this approach has a serious drawback, namely, the aforementioned algorithm is tractable
for bounded treewidth, but it is double exponential with respect to the treewidth (basically this
is due to the handling of disjunctions).

Here our goal is to present an algorithm that is only single exponential with respect to the
treewidth. In order to achieve this goal, we have to manipulate a slightly more complicated data
structure along the bottom-up traversal of the tree decomposition. In particular, we have to deal
with orderings on the atoms in a model.

To this end, we need an alternative characterization of stable models. By slightly rephrasing
the result by Liu [70], we can characterize answer sets of PCCs as follows:

Proposition 33. Given a PCC Π = (A, C,R), M ⊆ A is an answer set (stable model) of Π if
and only if the following conditions are jointly satisfied:

• M is a model of Π, i.e., M |= Π,

• there exists a strict linear order < over M such that for each atom a ∈ M , there exists a
rule r ∈ R with

(R1) a ∈ Cl(H(r)),
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(R2) M |= B(r),

(R3) for each c ∈ B(r),

l(c) ≤ |{b ∈ Cl(c)|b < a} ∪ {¬b ∈ Cl(c)|b ∈ A \M}| .

Since the handling of linear orders is crucial for utilizing the above characterization, we will
fix some notation first. We denote by [x1, x2, . . . , xn] a (strict) linear order x1 < x2 < . . . < xn
on a set X = {x1, . . . , xn}. Moreover, [[X]] denotes the set of all possible linear orders over X .
Two linear orders [x1, . . . , xn] and [y1, . . . , ym] are called inconsistent if there are xi, xj , yk, yl
such that xi < xj , yk < yl, xi = yl and xj = yk. Otherwise, we call them consistent.

Given two consistent linear orders [x1, . . . , xn] ∈ [[X]] and [y1, . . . , ym] ∈ [[Y ]], we denote
by [x1, . . . , xn] + [y1, . . . , ym] = S the set of their possible combinations. S contains those
linear orders [z1, . . . , zp] ∈ [[X ∪ Y ]] such that for every pair xi < xj (respectively yi < yj),
there exists zk < zl with zk = xi and zl = xj (respectively zk = yi and zl = yj). Note
that in general there exists more than one possible combination. Furthermore, we denote by
[x1, . . . , xi−1, xi, xi+1, . . . , xn]− [xi] the linear order [x1, . . . , xi−1, xi+1, . . . , xn].

Throughout the whole section, let T = (T, χ) be a normalized tree decomposition of a
PCC Π = (A, C,R). We present a dynamic programming algorithm, traversing T in bottom-
up direction in order to compute whether Π admits an answer set. Ultimately, we will state
properties about subtrees of T and inductively add more and more nodes until we get a statement
about the whole tree. To this end, the following notions, which are similar to the ones used in
Section 4.3.1, become handy. Given a node t ∈ T , we denote by Tt the subtree of T rooted at
t. For a set S ⊆ A ∪ C ∪ R, t|S is a shorthand for χ(t) ∩ S. Moreover, t↓S :=

⋃
m∈Tt m|S and

t⇓S := t↓S \t|S .
Since the scope of a solution will always be limited to a subtree of the whole tree decompo-

sition, the notion of a model has to be refined with respect to a universe U = t↓A. To this end,
the cardinality of a constraint c ∈ C with respect to an interpretation I ⊆ U is given by

Γ(c, I, U) = |{b ∈ Cl(c) | b ∈ I}|+ |{¬b ∈ Cl(c) | b ∈ U \ I}| .

Then I is a model of c under universe U (denoted by I |=U c) if l(c) ≤ Γ(c, I, U) ≤ u(c). Note
that |=U and |= coincide for U = A. Similarly, for a subset of constraints C′ ⊆ C, set C ⊆ C′ is
a model of rule r ∈ R under restriction C′, denoted by C |=C′ r if H(r) ∈ C or B(r)∩ C′ 6⊆ C.

In order to facilitate the discussion below, we define the following sum for constraint c ∈ C,
interpretation I ⊆ U over a set of atoms U ⊆ A and linear order L< containing at least I ∪ {c}:

Γ<(c, I, U, L<) = |{b ∈ Cl(c) | b ∈ I ∧ b < c}|+
|{¬b ∈ Cl(c) | b ∈ U \ I}| .

The following definition helps us to find partial answer sets, limited to the scope of a subtree
of T .

Definition 34. A partial solution (for node t ∈ T ) is a tuple ϑ̂ = (t, M̂ , Ĉ, R̂, L̂<, γ̂, γ̂<, ∆̂)
with interpretation M̂ ⊆ t↓A, satisfied constraints Ĉ ⊆ t↓C , satisfied rules R̂ ⊆ t↓R, linear
order L̂< ∈ [[M̂ ∪ Ĉ ∪ t↓R]], cardinality functions γ̂ : t↓C→ N and γ̂< : Ĉ → N, and derivation
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witness ∆̂ = (δ̂R, δ̂M , δ̂h, δ̂b, σ̂) with derivation rules δ̂R ⊆ t ↓R, derived atoms δ̂M ⊆ M̂ ,
derivation head constraints δ̂h ⊆ Ĉ, derivation body constraints δ̂b ⊆ Ĉ, and check function
σ̂ : δ̂h → {0, 1} such that the following conditions are jointly satisfied:

1. Ĉ ∩ t⇓C= {c ∈ t⇓C | M̂ |=t↓A c}

2. R̂ = {r ∈ t↓R| Ĉ |=t↓C r} and t⇓R⊆ R̂

3. γ̂(c) = Γ(c, M̂ , t↓A) for all c ∈ t↓C

4. γ̂<(c) = Γ<(c, M̂ , t↓A, L̂<) for all c ∈ Ĉ

5. δ̂M = {a ∈ M̂ | c ∈ δ̂h, a ∈ Cl(c), a > c} and M̂ ∩ t⇓A⊆ δ̂M

6. δ̂b =
⋃
r∈δ̂R B(r) and δ̂b ⊆ Ĉ

7. c ∈ B(r)⇒ r > c for all c ∈ δ̂b and r ∈ δ̂R

8. l(c) ≤ γ̂<(c) for all c ∈ δ̂b ∩ t⇓C

9. σ̂(c) = 1⇔ ∃r ∈ δ̂R with H(r) = c and c > r

10. σ̂(c) = 1 for all c ∈ δ̂h ∩ t⇓C

The idea of this data structure is that, for some atom, clause, or rule that is no longer “visible”
in the current bag but was included in the subtree, the containment in one of the sets of ϑ̂ is
strictly what one would expect from an answer set. While for elements that are still visible,
this containment does not have to fulfill that many conditions and can be seen as some sort of
“guess”.

For example, Ĉ ∩ t⇓C , the set of constraints in Ĉ that are no longer visible, indeed contains
exactly the constraints that are satisfied under interpretation M̂ , this means {c ∈ t⇓C | M̂ |=t↓A
c}. On the other hand Ĉ ∩ t|C represents the guess of those constraints we still want to become
true when we further traverse the tree towards the root node.

M̂, Ĉ, R̂, and γ̂ are used to ensure that the answer set is a model of our program. L̂< is a
strict linear order whose existence is demanded in the definition of answer sets. γ̂< will be used
to check condition (R3) of stable models, i.e., it will contain the cardinality on the left side of
the equation in (R3).

The derivation of atoms a ∈ M̂ is represented by ∆̂. The definition of answer sets requires
for each a ∈ M̂ the existence of some rule r ∈ R satisfying (R1)-(R3). The set of those rules
will be represented by δ̂R. Sets δ̂h and δ̂b contain, respectively, the head and body constraints of
rules in δ̂R. The set δ̂M contains those atoms for which we have already found a head constraint
to derive it. σ̂ is a utility function, which ensures that each (guessed) constraint in δ̂h is indeed
the head of some rule in δ̂R. Thereby σ̂(c) = 1 marks that such a rule was found.

Note that without any loss of generality we may assume that the root node of a normalized
tree decomposition has an empty bag. Indeed, this can always be achieved by introducing at most
tw(Π) + 1 additional nodes above the root of a given tree decomposition. Then the following
proposition shows the correspondence between answer sets and partial solutions for the root
node of a given normalized tree decomposition.
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Proposition 35. Let troot be the root node of T and let χ(troot) = ∅. Then AS(Π) 6= ∅ if and
only if there exists a partial solution ϑ̂ = (troot, M̂ , Ĉ, R̂, L̂<, γ̂, γ̂<, ∆̂) for troot.

Proof. (⇒) Given an answer set M ∈ AS(Π), we construct a partial solution ϑ̂ for troot with
derivation witness ∆̂ = (δ̂R, δ̂M , δ̂h, δ̂b, σ̂) as follows. Let M̂ := M , let Ĉ := {c ∈ C : M |= c}
and let R̂ := R. Let L< := [a1, . . . , a|M |] ∈ [[M ]] be the linear order from Proposition 33
and f : M → R be the function that assigns each atom a ∈ M the rule r ∈ R that satisfies
conditions (R1)–(R3) of Proposition 33 for a. Furthermore, let δ̂R := {f(a) : a ∈M}. In order
to create L̂<, we modify L< as follows. For every r ∈ δ̂R let ar be the smallest atom in L<
such that f(ar) = r. Atom ar is then replaced in L< by the sequence c1, . . . , cj , r, cj+1, ar,
where {c1, . . . , cj} = B(r) and cj+1 = H(r). Note that by construction {c1, . . . , cj+1} ⊆ Ĉ.
The remaining clauses from Ĉ as well as the rules R \ R are arbitrarily appended at the end of
L̂<. For every constraint c ∈ C we set γ̂(c) := Γ(c,M,A). For every constraint c ∈ Ĉ we set
γ̂<(c) := Γ<(c,M,A, L̂<). Let δ̂M := M , δ̂h := {H(r) : r ∈ δ̂R}, and δ̂b :=

⋃
r∈δ̂R B(r).

Finally, let σ̂(c) := 1 for all c ∈ δ̂h.
We now show that ϑ̂ is indeed a partial solution by checking conditions 1–10 of Defini-

tion 34. Conditions 1–4, 6–7, and 9–10 are satisfied by construction. In order to see that condi-
tion 5 is satisfied, let ca := H(f(a)) for each a ∈ M . Then ca ∈ δ̂h, a ∈ Cl(ca), and ca < a.
Therefore, δ̂M = {a ∈ M̂ | c ∈ δ̂h, a ∈ Cl(c), a > c}, which satisfies condition 5. Condition 8
is satisfied because of (R3) of Proposition 33. Hence, ϑ̂ is a partial solution for troot.

(⇐) For the other direction, the requirement that χ(troot) = ∅ ensures that the guessing
part of a given partial solution ϑ̂ is nonexistent. Therefore, Ĉ = {c ∈ C : M̂ |= c} and
R̂ = {r ∈ R | Ĉ |= r} = R. This ensures that M̂ |= Π and is therefore a model of Π.

Let the linear order L< be the restriction of L̂< to the set M̂ . Let a ∈ M̂ be an arbitrary
atom. By condition 5 of Proposition 33 there exists a constraint c ∈ δ̂h with a ∈ Cl(c) and
a > c. Therefore, by condition 9 and 10 there exists a rule r ∈ δ̂R with H(r) = c and c > r.
We now show that rule r is the one fulfilling (R1)–(R3) of Proposition 33 for atom a. (R1) is
satisfied by construction. By condition 6, B(r) ⊆ Ĉ. Therefore, M̂ |= B(r), satisfying (R2).
Finally, (R3) is satisfied through condition 8. This shows that M̂ is indeed an answer set of
Π.

An algorithm that computes all partial solutions at each node of the tree decomposition is
highly inefficient, since the size and the number of such solutions can grow exponentially in the
input size. Therefore we introduce bag assignments, which is a data structure similar to partial
solutions, but instead of ranging over the whole subtree, their scope is restricted to a single bag
of the tree decomposition.

Definition 36. A bag assignment (for node t ∈ T ) is a tuple ϑ = (t,M,C,R,L<, γ, γ<,∆)
with partial model M ⊆ t|A, satisfied constraints C ⊆ t|C , satisfied rules R ⊆ t|R, linear order
L< ∈ [[M ∪ C ∪ t|R]], cardinality functions γ : t|C → N and γ< : C → N, and derivation
witness ∆ = (δR, δM , δh, δb, σ) with derivation rules δR ⊆ t|R, derived atoms δM ⊆ M ,
derivation head constraints δh ⊆ C, derivation body constraints δb ⊆ C, and check function
σ : δh → {0, 1}.
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But we are not interested in arbitrary bag assignments. Instead we consider only those that
can be seen as the projection of a partial solution for node t to the bag of node t. Formally, these
so-called bag models are defined as follows.

Definition 37. A bag assignment ϑ for node t with ϑ = (t,M,C,R,L<, γ, γ<,∆) and ∆ =
(δR, δM , δh, δb, σ) is called a bag model (for node t) if there exists a partial solution ϑ̂ =
(t, M̂ , Ĉ, R̂, L̂<, γ̂, γ̂<, ∆̂) with ∆̂ = (δ̂R, δ̂M , δ̂h, δ̂b, σ̂) such that

• M̂ ∩ χ(t) = M ,

• Ĉ ∩ χ(t) = C,

• R̂ ∩ χ(t) = R,

• L̂< and L< are consistent,

• γ̂(c) = γ(c) for all c ∈ t|C ,

• γ̂<(c) = γ<(c) for all c ∈ t|C ,

• δ̂R ∩ χ(t) = δR,

• δ̂M ∩ χ(t) = δM ,

• δ̂h ∩ χ(t) = δh,

• δ̂b ∩ χ(t) = δb,

• σ̂(c) = σ(c) for all c ∈ δh.

Indeed, it turns out that it is sufficient to maintain only bag models during tree traversal.

Proposition 38. Let troot be the root node of T , and let χ(troot) = ∅. Then AS(Π) 6= ∅ if and
only if ϑ = (troot, ∅, ∅, ∅, [ ], ∅, ∅,∆) with ∆ = (∅, ∅, ∅, ∅, ∅) is a bag model for troot.

Proof. Since χ(troot) = ∅, every partial solution for troot is an extension of ϑ according to the
conditions of Definition 37. Therefore, this statement follows from Proposition 35.

By the same argument as for the root node, we may assume that χ(t) = ∅ for leaf nodes t.
Now a dynamic programming algorithm can be achieved by creating the only possible bag model
ϑ = (t, ∅, ∅, ∅, [ ], ∅, ∅,∆) with ∆ = (∅, ∅, ∅, ∅, ∅) for each leaf t, and then propagating these
bag models along the paths to the root node. Thereby the bag models are altered according to
algorithmic rules, which depend only on the bag of the current node.

In order to sketch the cornerstones of the dynamic programming algorithm more clearly,
we distinguish between eight types of nodes in the tree decomposition: leaf (L), branch (B),
atom introduction (AI), atom removal (AR), rule introduction (RI), rule removal (RR), constraint
introduction (CI), and constraint removal (CR) node. The last six types will be often augmented
with the element e (either an atom, a rule, or a constraint), which is removed or added compared
to the bag of the child node.
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Next we define a relation≺T between bag assignments, which will be used to propagate bag
models in a bottom-up direction along the tree decomposition T . Afterwards we demonstrate
the intuition of these algorithmic rules with the help of a small example.

Definition 39. Let ϑ = (t,M,C,R,L<, γ, γ<,∆) and ϑ′ = (t′,M ′, C ′, R′, L′<, γ
′, γ′<,∆

′)
with ∆ = (δR, δM , δh, δb, σ) and ∆′ = (δ′R, δ

′
M , δ

′
h, δ
′
b, σ
′) be bag assignments for nodes t, t′ ∈

T . We relate ϑ′ ≺T ϑ if t has a single child t′ and the following properties are satisfied,
depending on the node type of t:

(r-RR): r ∈ R′ and

ϑ = (t,M ′, C ′, R′ \ {r}, L′< − [r], γ′, γ′<,∆), with

∆ = (δ′R \ {r}, δ′M , δ′h, δ′b, σ′).

(r-RI):
ϑ ∈ {(t,M ′, C ′, R∗, L∗<, γ′, γ′<,∆) | L∗< ∈ (L′< + [r])}, with

R∗ =

{
R′ ∪ {r} if C ′ |=t|C r,

R′ otherwise,

and one of the following two groups of properties has to be satisfied:

• “r is used”: H(r) ∈ t|C ⇒ (H(r) ∈ δ′h ∧ H(r) > r), for all b ∈ B(r) ∩ t|C :
b ∈ C ′ ∧ b < r, and

∆ = (δ′R ∪ {r}, δ′M , δ′h, δ′b ∪ (B(r) ∩ t|C), σ∗), with

σ∗(c) =

{
1 if c = H(r),

σ′(c) otherwise.

• “r is not used”: ∆ = ∆′.

(a-AR): a ∈M ′ ⇒ a ∈ δ′M and

ϑ = (t,M ′ \ {a}, C ′, R′, L′< − [a], γ′, γ′<,∆), with

∆ = (δ′R, δ
′
M \ {a}, δ′h, δ′b, σ′).

(a-AI): One of the following two groups of properties has to be satisfied:

• “set a to false”:
ϑ = (t,M ′, C ′, R′, L′<, γ

∗, γ∗<,∆
′), with

γ∗(c) = γ′(c) + Γ(c,M ′, t|A)− Γ(c,M ′, t′|A), and
γ∗<(c) = γ′<(c) + Γ<(c,M ′, t|A, L′<)− Γ<(c,M ′, t′|A, L′<).
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• “set a to true”:

ϑ ∈ {(t,M∗ = M ′ ∪ {a}, C ′, R′, L∗<, γ∗, γ∗<,∆) |
L∗< ∈ (L′< + [a])}, with

∆ = (δ′R, δ
′
M ∪ δ∗M , δ′h, δ′b, σ′), where

δ∗M =

{
{a} if ∃c ∈ δ′h, a ∈ Cl(c), a > c,

∅ otherwise,

γ∗(c) = γ′(c) + Γ(c,M∗, t|A)− Γ(c,M ′, t′|A), and
γ∗<(c) = γ′<(c) + Γ<(c,M∗, t|A, L∗<)− Γ<(c,M ′, t′|A, L′<).

(c-CR): c ∈ C ′ ⇔ l(c) ≤ γ′(c) ≤ u(c), c ∈ δ′h ⇒ σ′(c) = 1, c ∈ δ′b ⇒ γ′<(c) ≥ l(c), and

ϑ = (t,M ′, C ′ \ {c}, R′, L′< − [c], γ′, γ′<,∆), with

∆ = (δ′R, δ
′
M , δ

′
h \ {c}, δ′b \ {c}, σ′).

(c-CI): One of the following two groups of properties has to be satisfied:

• “set c to false”: c 6∈ B(r) ∧ c 6= H(r) for all r ∈ δ′R, and

ϑ = (t,M ′, C ′, R′ ∪R∗, L′<, γ′ ∪ γ∗, γ′<,∆′), with

R∗ = {r ∈ t|R | C ′ |=t|C r}, and γ∗ = {(c,Γ(c,M ′, t|A)}.
• “set c to true”: (c ∈ B(r)⇒ r > c) ∧ (c = H(r)⇒ r < c) for all r ∈ δ′R, and

ϑ ∈ {(t,M ′, C∗ = C ′ ∪ {c}, R′ ∪R∗, L∗<, γ∗, γ∗<,∆) |
L∗< ∈ (L′< + [c])}, with

∆ = (δ′R, δ
′
M ∪ δ∗M , δ′h ∪ δ∗h, δ′b ∪ δ∗b , σ∗), where

R∗ = {r ∈ t|R | C∗ |=t|C r}, γ
∗ = γ′ ∪ {(c,Γ(c,M ′, t|A)},

γ∗< = γ′< ∪ {(c,Γ<(c,M ′, t|A, L∗<)},

δ∗b =

{
{c} if ∃r ∈ δ′R : c ∈ B(r),

∅ otherwise,

δ∗h ∈

{
{{c}} if ∃r ∈ δ′R : c = H(r),

{∅, {c}} otherwise,

δ∗M = {a ∈M ′ | a ∈ Cl(c), c ∈ δ∗h, a > c}, and
σ∗(c) = 1⇔ c ∈ δ∗h ∧ ∃r ∈ δR : H(r) = c.

For branch nodes, we extend (by slight abuse of notation) ≺T to a ternary relation.
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Figure 5.3: Incidence graph of Example 41.

Definition 40. Let ϑ = (t,M,C,R,L<, γ, γ<,∆), ϑ′ = (t′,M ′, C ′, R′, L′<, γ
′, γ′<,∆

′), and
ϑ′′ = (t′′,M ′′, C ′′, R′′, L′′<, γ

′′, γ′′<,∆
′′) be three bag assignments for nodes t, t′, t′′ ∈ T with

∆ = (δR, δM , δh, δb, σ), ∆′ = (δ′R, δ
′
M , δ

′
h, δ
′
b, σ
′), and ∆′′ = (δ′′R, δ

′′
M , δ

′′
h, δ
′′
b , σ

′′). We relate
(ϑ′, ϑ′′) ≺T ϑ if t has two children t′ and t′′, and the following conditions are satisfied.

• M = M ′ = M ′′,

• C = C ′ = C ′′,

• R = R′ ∪R′′,

• L< = L′< = L′′<,

• γ(c) = γ′(c) + γ′′(c)− Γ(c,M, t|A) for all c ∈ t|C ,

• γ<(c) = γ′<(c) + γ′′<(c)− Γ<(c,M, t|A, L<) for all c ∈ C,

• δR = δ′R = δ′′R,

• δM = δ′M ∪ δ′′M ,

• δh = δ′h = δ′′h,

• δb = δ′b ∪ δ′′b , and

• σ(c) = max{σ′(c), σ′′(c)} for all c ∈ δh.

What follows is a small example which demonstrates how this ≺T relation is used to solve
the consistency problem for PCCs. Thereby we start with the only possible bag model ϑ =
(t, ∅, ∅, ∅, [ ], ∅, ∅,∆) and ∆ = (∅, ∅, ∅, ∅, ∅) for each leaf node. Now we traverse through the
tree decomposition and calculate for each node all the bag assignments according to the relation
≺T . Finally, we check whether for the root node any such bag assignment could be generated.

Example 41. We are given a PCC Π = ({p1, p2}, {c1, c2}, {r1}) with c1 = ({(p1, 1)}, 1, 1),
c2 = ({(¬p2, 1)}, 1, 1), and r1 = (c1, {c2}).

Its incidence graph is depicted in Figure 5.3. A normalized tree decomposition of width 1
is shown in Figure 5.4. What follows is a list of all the bag assignments that can be computed
according to the relation ≺T , starting from the trivial bag assignments of empty leaf nodes.
Node t1: (L)

ϑ1 = (t1, ∅, ∅, ∅, [ ], ∅, ∅, (∅, ∅, ∅, ∅, ∅))
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Figure 5.4: Normalized tree decomposition of Example 41.

Node t2: (p1-AI)

ϑ2,1 = (t2, ∅, ∅, ∅, [ ], ∅, ∅, (∅, ∅, ∅, ∅, ∅))
ϑ2,2 = (t2, {p1}, ∅, ∅, [p1], ∅, ∅, (∅, ∅, ∅, ∅, ∅))

Node t3: (c1-CI)

ϑ3,1 = (t3, ∅, ∅, ∅, [ ], {(c1, 0)}, ∅, (∅, ∅, ∅, ∅, ∅))
ϑ3,2 = (t3, ∅, {c1}, ∅, [c1], {(c1, 0)}, {(c1, 0)}, (∅, ∅, ∅, ∅, ∅))
ϑ3,3 = (t3, ∅, {c1}, ∅, [c1], {(c1, 0)}, {(c1, 0)}, (∅, ∅, {c1}, ∅, {(c1, 0)}))
ϑ3,4 = (t3, {p1}, ∅, ∅, [p1], {(c1, 1)}, ∅, (∅, ∅, ∅, ∅, ∅))
ϑ3,5 = (t3, {p1}, {c1}, ∅, [c1, p1], {(c1, 1)}, {(c1, 0)}, (∅, ∅, ∅, ∅, ∅))
ϑ3,6 = (t3, {p1}, {c1}, ∅, [c1, p1], {(c1, 1)}, {(c1, 0)}, (∅, {p1}, {c1}, ∅, {(c1, 0)}))
ϑ3,7 = (t3, {p1}, {c1}, ∅, [p1, c1], {(c1, 1)}, {(c1, 1)}, (∅, ∅, ∅, ∅, ∅))
ϑ3,8 = (t3, {p1}, {c1}, ∅, [p1, c1], {(c1, 1)}, {(c1, 1)}, (∅, ∅, {c1}, ∅, {(c1, 0)}))

Node t4: (p1-AR)

ϑ4,1 = (t4, ∅, ∅, ∅, [ ], {(c1, 0)}, ∅, (∅, ∅, ∅, ∅, ∅))
ϑ4,2 = (t4, ∅, {c1}, ∅, [c1], {(c1, 0)}, {(c1, 0)}, (∅, ∅, ∅, ∅, ∅))
ϑ4,3 = (t4, ∅, {c1}, ∅, [c1], {(c1, 0)}, {(c1, 0)}, (∅, ∅, {c1}, ∅, {(c1, 0)}))
ϑ4,4 = (t4, ∅, {c1}, ∅, [c1], {(c1, 1)}, {(c1, 0)}, (∅, ∅, {c1}, ∅, {(c1, 0)}))
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Node t5: (r1-RI)

ϑ5,1 = (t5, ∅, ∅, ∅, [r1], {(c1, 0)}, ∅, (∅, ∅, ∅, ∅, ∅))
ϑ5,2 = (t5, ∅, {c1}, {r1}, [r1, c1], {(c1, 0)}, {(c1, 0)}, (∅, ∅, ∅, ∅, ∅))
ϑ5,3 = (t5, ∅, {c1}, {r1}, [c1, r1], {(c1, 0)}, {(c1, 0)}, (∅, ∅, ∅, ∅, ∅))
ϑ5,4 = (t5, ∅, {c1}, {r1}, [r1, c1], {(c1, 0)}, {(c1, 0)}, ({r1}, ∅, {c1}, ∅, {(c1, 1)}))
ϑ5,5 = (t5, ∅, {c1}, {r1}, [r1, c1], {(c1, 0)}, {(c1, 0)}, (∅, ∅, {c1}, ∅, {(c1, 0)}))
ϑ5,6 = (t5, ∅, {c1}, {r1}, [c1, r1], {(c1, 0)}, {(c1, 0)}, (∅, ∅, {c1}, ∅, {(c1, 0)}))
ϑ5,7 = (t5, ∅, {c1}, {r1}, [r1, c1], {(c1, 1)}, {(c1, 0)}, ({r1}, ∅, {c1}, ∅, {(c1, 1)}))
ϑ5,8 = (t5, ∅, {c1}, {r1}, [r1, c1], {(c1, 1)}, {(c1, 0)}, (∅, ∅, {c1}, ∅, {(c1, 0)}))
ϑ5,9 = (t5, ∅, {c1}, {r1}, [c1, r1], {(c1, 1)}, {(c1, 0)}, (∅, ∅, {c1}, ∅, {(c1, 0)}))

Node t6: (c1-CR)

ϑ6,1 = (t6, ∅, ∅, ∅, [r1], ∅, ∅, (∅, ∅, ∅, ∅, ∅))
ϑ6,2 = (t6, ∅, ∅, {r1}, [r1], ∅, ∅, ({r1}, ∅, ∅, ∅, ∅))

Node t7: (L)

ϑ7 = (t7, ∅, ∅, ∅, [ ], ∅, ∅, (∅, ∅, ∅, ∅, ∅))

Node t8: (p2-AI)

ϑ8,1 = (t8, ∅, ∅, ∅, [ ], ∅, ∅, (∅, ∅, ∅, ∅, ∅))
ϑ8,2 = (t8, {p2}, ∅, ∅, [p2], ∅, ∅, (∅, ∅, ∅, ∅, ∅))

Node t9: (c2-CI)

ϑ9,1 = (t9, ∅, ∅, ∅, [ ], {(c2, 1)}, ∅, (∅, ∅, ∅, ∅, ∅))
ϑ9,2 = (t9, ∅, {c2}, ∅, [c2], {(c2, 1)}, {(c2, 1)}, (∅, ∅, ∅, ∅, ∅))
ϑ9,3 = (t9, ∅, {c2}, ∅, [c2], {(c2, 1)}, {(c2, 1)}, (∅, ∅, {c2}, ∅, {(c2, 0)}))
ϑ9,4 = (t9, {p2}, ∅, ∅, [p2], {(c2, 0)}, ∅, (∅, ∅, ∅, ∅, ∅))
ϑ9,5 = (t9, {p2}, {c2}, ∅, [c2, p2], {(c2, 0)}, {(c2, 0)}, (∅, ∅, ∅, ∅, ∅))
ϑ9,6 = (t9, {p2}, {c2}, ∅, [c2, p2], {(c2, 0)}, {(c2, 0)}, (∅, ∅, {c2}, ∅, {(c2, 0)}))
ϑ9,7 = (t9, {p2}, {c2}, ∅, [p2, c2], {(c2, 0)}, {(c2, 0)}, (∅, ∅, ∅, ∅, ∅))
ϑ9,8 = (t9, {p2}, {c2}, ∅, [p2, c2], {(c2, 0)}, {(c2, 0)}, (∅, ∅, {c2}, ∅, {(c2, 0)}))

Node t10: (p2-AR)

ϑ10,1 = (t10, ∅, ∅, ∅, [ ], {(c2, 1)}, ∅, (∅, ∅, ∅, ∅, ∅))
ϑ10,2 = (t10, ∅, {c2}, ∅, [c2], {(c2, 1)}, {(c2, 1)}, (∅, ∅, ∅, ∅, ∅))
ϑ10,3 = (t10, ∅, {c2}, ∅, [c2], {(c2, 1)}, {(c2, 1)}, (∅, ∅, {c2}, ∅, {(c2, 0)}))
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Node t11: (r1-RI)

ϑ11,1 = (t11, ∅, ∅, {r1}, [r1], {(c2, 1)}, ∅, (∅, ∅, ∅, ∅, ∅))
ϑ11,2 = (t11, ∅, {c2}, ∅, [r1, c2], {(c2, 1)}, {(c2, 1)}, (∅, ∅, ∅, ∅, ∅))
ϑ11,3 = (t11, ∅, {c2}, ∅, [c2, r1], {(c2, 1)}, {(c2, 1)}, ({r1}, ∅, ∅, {c2}, ∅))
ϑ11,4 = (t11, ∅, {c2}, ∅, [c2, r1], {(c2, 1)}, {(c2, 1)}, (∅, ∅, ∅, ∅, ∅))
ϑ11,5 = (t11, ∅, {c2}, ∅, [r1, c2], {(c2, 1)}, {(c2, 1)}, (∅, ∅, {c2}, ∅, {(c2, 0)}))
ϑ11,6 = (t11, ∅, {c2}, ∅, [c2, r1], {(c2, 1)}, {(c2, 1)}, ({r1}, ∅, {c2}, {c2}, {(c2, 0)}))
ϑ11,7 = (t11, ∅, {c2}, ∅, [c2, r1], {(c2, 1)}, {(c2, 1)}, (∅, ∅, {c2}, ∅, {(c2, 0)}))

Node t12: (c2-CR)

ϑ12,1 = (t12, ∅, ∅, ∅, [r1], ∅, ∅, (∅, ∅, ∅, ∅, ∅))
ϑ12,2 = (t12, ∅, ∅, ∅, [r1], ∅, ∅, ({r1}, ∅, ∅, ∅, ∅))

Node t13: (B)

ϑ13,1 = (t13, ∅, ∅, ∅, [r1], ∅, ∅, (∅, ∅, ∅, ∅, ∅))
ϑ13,2 = (t13, ∅, ∅, {r1}, [r1], ∅, ∅, ({r1}, ∅, ∅, ∅, ∅))

Node t14: (r1-RR)

ϑ14 = (t14, ∅, ∅, ∅, [ ], ∅, ∅, (∅, ∅, ∅, ∅, ∅))

Since ϑ14 could be derived, the example is a yes-instance of the consistency problem. In-
deed, it has exactly one answer set {p1}. a

Let us look exemplarily at (CR) nodes in more detail. Consider nodes t that remove a
constraint c, i.e., χ(t) = χ(t′) \ {c}, where t′ is the child of t (see, for instance, the node
with bag {p3, c3} in the left branch of TEx in Figure 5.2, which is the c4-removal node). Let
ϑ′ = (t′,M ′, C ′, R′, L′<, γ

′, γ′<,∆
′) with ∆′ = (δ′R, δ

′
M , δ

′
h, δ
′
b, σ
′) be a bag model for t′. We

then create a bag model for t as follows: First we have to check whether the conditions c ∈
C ′ ⇔ l(c) ≤ γ′(c) ≤ u(c), c ∈ δ′h ⇒ σ′(c) = 1, and c ∈ δ′b ⇒ γ′<(c) ≥ l(c) are satisfied. Note
that those checks correspond to the conditions 1, 10, and 8 of Definition 34. They ensure that
all guesses with respect to c are correct. In the case of an affirmative answer, we remove c from
all sets of ϑ′ in order to create the new bag model ϑ = (t,M ′, C ′ \ {c}, R′, L′< − [c], γ′, γ′<,∆)
with ∆ = (δ′R, δ

′
M , δ

′
h \ {c}, δ′b \ {c}, σ′).

The following two theorems state that the above-defined rules indeed help in finding bag
models.

Theorem 42 (Soundness). Given a bag model ϑ′ (respectively bag models ϑ′ and ϑ′′). Then
each bag assignment ϑ with ϑ′ ≺T ϑ (respectively (ϑ′, ϑ′′) ≺T ϑ) is a bag model.

Proof. Let ϑ′ be a bag model for t′ ∈ T and let ϑ be a bag assignment for node t ∈ T with
ϑ′ ≺T ϑ. Then t′ is the single child of t, with t being of type (RR), (RI), (AR), (AI), (CR), or
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(CI). Assume t is a (r-RR) node. According to Definition 39, we have r ∈ R′ with ϑ and ϑ′

differing only in R = R′ \ {r}, L< = L′< − [r], and δR = δ′R \ {r}. Since ϑ′ is a bag model,
there exists a partial solution ϑ̂ of t′, satisfying all the conditions of Definition 37.

Claim: ϑ̂ is also a partial solution of t.
To verify this claim, we have to check the conditions of Definition 34. Since t′ ⇓C= t ⇓C ,
t′↓C= t↓C , t′ ⇓A= t⇓A, t′↓A= t↓A, and t′↓R= t↓R, the only nontrivial is condition 2, where
we have to check t ⇓R⊆ R̂. Since r ∈ R′ and R′ = R̂ ∩ t′|R, we have r ∈ R̂. Hence, from
t′⇓R⊆ R̂ follows that t⇓R= t′⇓R ∪{r} ⊆ R̂.

Furthermore, the projection of ϑ̂ to the bag χ(t) is exactly ϑ, since ϑ′ and ϑ differ only by
the fact that r is removed from every set in ϑ. Therefore, ϑ is a bag model. Analogously, the
theorem can be checked for the other five node types above.

Now let ϑ′ and ϑ′′ be bag models for t′, t′′ ∈ T and let ϑ be a bag assignment for node t ∈ T
with (ϑ′, ϑ′′) ≺T ϑ. Then t has two children t′ and t′′ and all the properties of Definition 40 are
satisfied. Since ϑ′ and ϑ′′ are bag models, there exist partial solutions ϑ̂′ of t′ and ϑ̂′′ of t′′. Using
these two partial solutions we construct ϑ̂ = (t, M̂ ′∪M̂ ′′, Ĉ ′∪ Ĉ ′′, R̂′∪ R̂′′, L̂<, γ̂, γ̂<, ∆̂) with
∆̂ = (δ̂′R ∪ δ̂′′R, δ̂′M ∪ δ̂′′M , δ̂′h ∪ δ̂′′h, δ̂′b ∪ δ̂′′b , σ̂). Thereby L̂< ∈ (L̂′< + L̂′′<),

γ̂(c) =


γ̂′(c) c ∈ t′⇓C ,
γ̂′′(c) c ∈ t′′⇓C ,
γ̂′(c) + γ̂′′(c)− Γ(c, t|M̂ , t|A) otherwise,

γ̂<(c) =


γ̂′<(c) c ∈ t′⇓C ,
γ̂′′<(c) c ∈ t′′⇓C ,
γ̂′<(c) + γ̂′′<(c)− Γ<(c, t|M̂ , t|A, L̂<) otherwise,

σ̂(c) =


σ̂′(c) c ∈ δ̂′h \ δ̂′′h,
σ̂′′(c) c ∈ δ̂′′h \ δ̂′h,
max{σ̂′(c), σ̂′′(c)} otherwise.

One can now check the conditions of Definition 34 in order to verify that ϑ̂ is a partial solution
for t. Furthermore, our construction ensures that the projection of ϑ̂ to the bag χ(t) is exactly ϑ,
which is therefore a bag model.

Theorem 43 (Completeness). Given a bag model ϑ for node t ∈ T . Then either t is a leaf
node, or there exists a bag model ϑ′ (respectively two bag models ϑ′ and ϑ′′) with ϑ′ ≺T ϑ
(respectively (ϑ′, ϑ′′) ≺T ϑ).

Proof. Again, we have to distinguish between the node type of t. For instance, let t ∈ T be
an (r-RR) node with child t′. Let ϑ be a bag model for t. We have to show that there exists a
bag model ϑ′ for t′ with ϑ′ ≺T ϑ. Since ϑ is a bag model, there exists a partial solution ϑ̂ of t,
satisfying all the conditions of Definition 37. From r ∈ t⇓R follows that r ∈ R̂.

Now consider the projection of ϑ̂ onto the bag of t′. Then the result is a bag model ϑ′ of t′

satisfying the conditions of Definition 37 and having r ∈ R′. But then it is easy to check that
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ϑ′ ≺T ϑ, which closes the proof for (RR) nodes. Analogously the theorem can be checked for
the other six node types.

Theorem 42 and Theorem 43 show that starting from the trivial bag models for empty leafs,
the dynamic programming algorithm creates all bag models for the root node. According to
Proposition 38, those bag models are all we need to know. Thus, this dynamic programming
algorithm solves the consistency problem.

Theorem 44. The consistency problem for PCCs Π can be solved in time

O(26ww!k4w · ‖Π‖),

with w = tw(Π) and k = cw(Π).

Proof. We first show that the number of different bag models at each node t ∈ T is bounded.
The number of possible sets M,C,R is bounded by 2w, there are at most w! different orderings
L<, the number of cardinality functions γ, γ< is bounded by k2w, the number of possible sets
δR, δh as well as δM , δb is bounded by 2w each, and finally the number of check functions σ is
bounded by 2w. This leads to at most 24ww!k2w many different bag models at node t. At each
node the effort to compute a single bag model is constant

with the exception of branch nodes, where one has to compare possible pairs of bag models
of each child node. Thereby only pairs are combined which have identical M,C,R,L<, δR, δh.
This means that for each bag model of the first child node there are at most 22wk2w (the number
of possible functions/sets γ, γ<, δM , δb, σ) bag models at the second child to consider. The
time per node is therefore bounded by 26ww!k4w and since the number of nodes in our tree
decomposition is bounded by O(‖Π‖), the total time of O(26ww!k4w · ‖Π‖) follows.

5.5 Extensions

In this section, we discuss some extensions of our dynamic programming approach and that of
Theorem 44.

5.5.1 PWCs with Unary Weights

Our dynamic programming algorithm for the consistency problem of PCCs can be easily ex-
tended to PWCs with unary representation of both weights and constraint bounds (PWCs with
unary weights, for short).

Theorem 45. Given an arbitrary PWC Π. The consistency problem for PWCs with unary
weights can be solved in time O(26ww!k4w · ‖Π‖) with w = max(3, tw(Π)) and k = cw(Π).

Proof. It suffices to show that every PWC Π with unary weights can be efficiently transformed
into a PCC Π′ such that Π is only linearly bigger than Π, the constraint-width remains the same,
and the treewidth is max(3, tw(Π)). The transformation from Π to Π′ processes each literal `
with weight j > 1 in each constraint c of Π as follows: reduce the weight of ` to 1 and add
j − 1 fresh atoms `2, . . . , `j (each of weight 1) to c. Moreover, we add, for α ∈ {2, . . . , j}, new
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constraints cα := ({(`, 1), (¬`α, 1)}, 1, 1) and new rules rα := (cα, ∅) to ensure that the fresh
variables `2, . . . , `j have the same truth value as ` in every model of Π.

It is easy to check that Π′ is only linearly bigger than Π (since j is given in unary representa-
tion) and that the constraint-width and treewidth are not increased (respectively changed from
treewidth ≤ 2 to treewidth 3).

5.5.2 Reasoning with PCCs and PWCs with Unary Weights

In nonmonotonic reasoning, two kinds of reasoning are usually considered, namely skeptical
and credulous reasoning. Recall that an atom a is skeptically implied by a program Π if a is
true (i.e., contained) in every stable model of Π. Likewise, an atom a is credulously implied
by Π if a is true in some stable model of Π. Our algorithm for the consistency problem can be
easily extended to an algorithm for skeptical or credulous reasoning with PCCs and PWCs with
unary weights. The above upper bounds on the complexity thus carry over from the consistency
problem to the reasoning problems. We only work out the PCC case below.

Theorem 46. Both the skeptical and the credulous reasoning problem for PCCs Π can be solved
in time O(26ww!k4w · ‖Π‖) with w = tw(Π) and k = cw(Π).

Proof. Suppose that we are given a PCC Π and an atom a. The dynamic programming algorithm
for the consistency problem has to be extended in such a way that we additionally maintain two
flags cr(ϑ) and sk(ϑ) for every bag assignment ϑ. These flags may take one of the values
{⊥,>} with the intended meaning that cr(ϑ) = > (respectively sk(ϑ) = >) if and only if
there exists a partial solution ϑ̂ = (t, M̂ , . . . ) (respectively if and only if for all partial solutions
ϑ̂ = (t, M̂ , . . . )), the atom a is true in M̂ . Otherwise this flag is set to ⊥. Then a is credulously
(respectively skeptically) implied by Π if and only if there exists a bag model (respectively if
and only if for all bag models) ϑ of the root node troot of T , we have cr(ϑ) = > (respectively
sk(ϑ) = >). Clearly, maintaining the two flags fits within the desired complexity bound.

5.5.3 Bounded Treewidth and Bounded Constraint-Width

Recall that we have proved the fixed-parameter linearity of the consistency problem of PWCs
when treewidth and constraint-width are taken as parameter (see Theorem 32). This fixed-
parameter linearity result (as well as the analogous result for the skeptical and credulous rea-
soning problem which can be easily seen to be expressible in MSO logic) could also be obtained
as a corollary of Theorem 45.

Indeed, consider a PWC Π whose treewidth w and constraint-width k are bounded by some
fixed constant. By previous considerations, we may thus assume that all weights occurring in
Π are bounded by a constant. Therefore, we can transform all weights and bounds into unary
representation such that the size of the resulting PWC with unary weights differs from ‖Π‖
only by a constant factor (namely 2k). The upper bound on the complexity in Theorem 45
immediately yields the desired fixed-parameter linearity result since f(w) · O(k2w) is bounded
by a constant that is independent of the size of Π.
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5.6 W[1]-Hardness

In this section we present the result that it is impossible under usual complexity theoretic as-
sumptions, that one can improve the non-uniform polynomial-time result of Theorem 44 to a
fixed-parameter tractability result without bounding the constraint-width as in Theorem 32.

We showed the proof of Theorem 47 in [92].

Theorem 47 ([92]). The consistency problem for PCCs parameterized by treewidth is W[1]-
hard.

This result can be obtained by an fpt-reduction from the MINIMUM MAXIMUM OUTDE-
GREE problem. To state this problem we need to introduce some concepts. A (positive integral)
edge weighting of a graph G = (V,E) is a mapping w that assigns to each edge of G a positive
integer. An orientation of G is a mapping Λ : E → V × V with Λ({u, v}) ∈ {(u, v), (v, u)}.
The weighted outdegree of vertex v ∈ V with respect to an edge weighting w and an orientation
Λ is defined as

d+
G,w,Λ(v) =

∑
{v,u}∈E with Λ({v,u})=(v,u)

w({v, u}).

An instance of MINIMUM MAXIMUM OUTDEGREE consists of a graphG, an edge weighting w
ofG, and a positive integer r; the question is whether there exists an orientation Λ ofG such that
d+
G,w,Λ(v) ≤ r for each v ∈ V . The MINIMUM MAXIMUM OUTDEGREE problem with edge

weights (and therefore also r) given in unary is W[1]-hard when parameterized by the treewidth
of G [107].

5.7 Implementation and Evaluation

As we have seen in Chapter 4 as well as Section 5.4, tree decomposition based dynamic algo-
rithms start at the leaf nodes and traverse the tree to the root. Thereby, at each node a set of
partial solutions is generated by taking those solutions into account that have been computed for
the child nodes. These partial solutions are then combined in the case of branch nodes or they
are altered according to the information that is visible in the bag of the current node.

The most difficult part in constructing such an algorithm is to identify an appropriate data
structure to represent the partial solutions at each node: on the one hand, this data structure must
contain sufficient information so as to compute the representation of the partial solutions at each
node from the corresponding representation at the child node(s). On the other hand, the size
of the data structure must only depend on the size of the bag (and not on the size of the entire
answer-set program). The rules according to which partial solutions have to be altered at each
node are most of the time not difficult to derive once the appropriate data structure has been
found.

In this section we study the problem of answer-set programming with disjunctive logic pro-
grams. Recall from Section 5.1 that this is the standard version of ASP without weight or
cardinality constraints. We will now compare two two completely different realizations of the
data structure for tree decomposition based dynamic algorithms for ASP. We call the resulting
algorithms Dyn-ASP1 and Dyn-ASP2.
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5.7.1 Dyn-ASP1

The first algorithm was proposed by Jakl, Pichler, and Woltran [57]. It was designed for propo-
sitional disjunctive programs Π which are not necessarily head-cycle free. Its data structure,
called tree interpretation, follows very closely the characterization of answer sets presented in
Section 5.1.

A tree interpretation for tree decomposition T is a tuple (t,M, C), where t is a node of T ,
M ⊆ χ(t) is called assignment, and C ⊆ 2χ(t) is called certificate. The idea is thatM represents
a partial solution limited to what is visible in the bag χ(t). That means it contains parts of a
final answer set as well as all those rules which are already satisfied. The certificate C takes care
of the minimality criteria for answer sets. It is a list of those partial solutions which are smaller
than M together with the rules which are satisfied by them. This means when reaching the root
node of T , assignment M can only represent a real answer set if the associated certificate is
empty or contains only entries which do not satisfy all rules.

It turns out that due to the properties of tree decompositions it is indeed enough to store
only the information of the partial solution which is still visible in the current bag of the tree
decomposition. Hence, for each node the number of different assignments M is bounded by a
function that is single exponential in the treewidth. Together with the possible exponential size
of the certificate this leads to an algorithm with a worst case running time linear in the input size
and double exponential in the treewidth.

5.7.2 Dyn-ASP2

We proposed the second dynamic algorithm based on tree decompositions in [74]. In contrast
to Dyn-ASP1 it is limited to head-cycle free programs. Its data structure is motivated by the
following new characterization of answer sets for head-cycle free programs (HCFPs).

Theorem 48 ([74]). Let Π = (A,R) be an HCFP. Then, M ⊆ A is an answer set of Π if and
only if the following holds:

• M ∈ Mod(Π), and

• there exists a set ρ ⊆ R such that

1. M ⊆
⋃
r∈ρH(r);

2. the derivation graph induced by M and ρ is acyclic; and

3. for all r ∈ ρ: B+(r) ⊆M , B−(r) ∩M = ∅, and |H(r) ∩M | = 1.

Here the derivation graph induced byM and ρ is given by V = M ∪ρ andE is the transitive
closure of the edge set

E′ = {(b, r) : r ∈ ρ, b ∈ B+(r) ∩M} ∪ {(r, a) : r ∈ ρ, a ∈ H(r) ∩M}.

Hence, the data structure used in Dyn-ASP2 is a tuple (G,S), where G is a derivation graph
(extended by a special node due to technical reasons) and S is the set of satisfied rules used to
test the first condition in Theorem 48. Again it is enough to limit G and S to the elements of the
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current bag χ(t). Therefore the number of possible tuples (G,S) in each node is at most single
exponential in the treewidth. This leads to an algorithm with a worst case running time linear in
the input size and single exponential in the treewidth.

5.7.3 System Implementation

In order to evaluate tree decomposition based ASP solving, we implemented the algorithms
mentioned above. This was done using the SHARP framework2, a C++ interface that enables
rapid development of algorithms which are based on tree or hypertree decompositions by pro-
viding (hyper-)tree decomposition routines and algorithm interfaces. It thus allows the designer
to focus on the problem-specific part of the algorithm.

SHARP itself uses the htdecomp library3, which implements several heuristics for (hy-
per)tree decompositions, see also Dermaku et al. [22]. The resulting ASP solver was presented
in [76]. First experiments on programs of low treewidth resulted in competitive performance
compared to the state-of-the-art ASP solver DLV [67]. We could outperform this solver in the
task of counting the number of answer sets.

5.7.4 Evaluation of Tree Decompositions

Recall from above that the algorithm Dyn-ASP1 has a theoretical worst case running time that
is double exponential in the treewidth. In contrast the worst case running time of Dyn-ASP2
is single exponential in the treewidth. Despite this theoretically better performance of Dyn-
ASP2, experiments showed that Dyn-ASP2 is not always faster than Dyn-ASP1 [75]. Another
observation was that the running time depends as well on the chosen heuristic for computing the
tree decomposition. It turned out that not always the tree decomposition with the smallest width
leads to the fastest running time. Indeed, the used heuristics resulted in tree decompositions that
differed in various features or parameters.

In [75] we therefore identified a number of features of tree decompositions which influence
the running time of dynamic algorithms. We did this by using machine learning techniques in
order to determine which features correlate strongly with the running time of the algorithms.
The features with the highest information gain were:

• Percentage of branch nodes in the normalized decomposition.

• Percentage of branch nodes before normalizing the decomposition.

• Percentage of leaf nodes before normalizing the decomposition.

• Average distance between two branch nodes.

• Relative size increase during the normalization.

• Average bag size of branch nodes.

2http://www.dbai.tuwien.ac.at/proj/sharp/
3http://www.dbai.tuwien.ac.at/proj/hypertree/downloads.html
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• Relative size of the tree decomposition (number of tree nodes) compared to the size of the
original graph (vertices plus edges).

Furthermore, we applied machine learning techniques to automatically select the best dy-
namic algorithm based on the features of a given input tree decomposition. Using different clas-
sification techniques, like k-nearest neighbor or random forest classifiers, we could correctly
predict in up to 89.2% of the test instances whether Dyn-ASP1 or Dyn-ASP2 works faster on a
given input.

Our second approach for selecting the faster algorithm was to use regression techniques, like
k-NN (see [1]) or M5P (pruned regression tree, see [96, 113]). Thereby the main idea is to use
machine learning algorithms to first predict the runtime of each dynamic algorithm in a particular
instance, and then select the algorithm that has better predicted runtime. In our experiments the
k-NN approach could select the faster algorithm in 88% of the test instances.

73





CHAPTER 6
Abduction

This chapter is based on joint work with Michael Fellows, Andreas Pfandler, and Frances Rosa-
mond. It will appear in the proceedings of the Twenty-Sixth AAAI Conference [36].

In this chapter we study logic-based abduction, where knowledge is represented by a (set of)
propositional formula(s). In the propositional abduction problem we are given a propositional
theory T , a set of hypotheses H and a set of manifestations M . The task is to find a solution
S ⊆ H such that S ∪T is consistent and logically entails M . Thus, we require that the situation
represented in S is possible in the system described by T and that S explains the observations.

Abduction has recently been shown to be fixed-parameter tractable when parameterized by
treewidth [47], but all other possible parameters remained unexplored. In this chapter we con-
sider various fragments of propositional logic, namely Horn, definite Horn and Krom together
with (combinations of) natural parameters.

Very related to the quest of searching for fixed-parameter tractable algorithms is the search
for efficient preprocessing techniques. More precisely the goal is to obtain in polynomial time an
equivalent instance (called kernel) whose size is bounded by a function of the parameter. While
it is trivial to construct a kernel of exponential size for an arbitrary FPT problem, obtaining
in polynomial time a kernel of size polynomial in the parameter remains a central algorithmic
challenge that may or may not be achievable.

An overview of the results of this chapter can be found in Tables 6.1, 6.2, and 6.3.

6.1 Abduction Background

We start with a formal definition of the propositional abduction problem. First, we describe an
abduction instance.

Definition 49. Let C ⊆ PROP be a class of propositional formulas. A (propositional) abduction
instance for C-theories consists of a tuple 〈V,H,M, T 〉, where V is the set of variables, H ⊆ V
is the set of hypotheses, M ⊆ V is the set of manifestations, and T ∈ C is the theory, a formula
over V . It is required that M ∩H = ∅.
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ABD[PROP] ABD[HORN] ABD[HORN]≤/=
M para-NP-h∗ para-NP-h∗ para-NP-h (Thm 52)
H, |M | = 1 para-NP-h (Prop 51) npk (Thm 61) npk (Thm 58)
k – – W[P]-c (Cor 56)
k, |M | = 1 – – W[P]-c (Thm 55)
tw npk (Thm 61) npk (Thm 61) npk (Cor 62/63)
(τ,H) npk (Thm 61) npk (Thm 61) npk (Cor 62/63)
V npk (Thm 61) npk (Thm 61) npk (Cor 62/63)
∗ cf. [103]

Table 6.1: Parameterized complexity results for PROP and HORN.

ABD[DEFHORN] ABD[DEFHORN]≤/=
M P ∗ para-NP-h (Thm 52)
H, |M | = 1 P ∗ npk (Thm 58)
k – W[P]-c (Cor 56)
k, |M | = 1 – W[P]-c (Thm 55)
tw P ∗ npk (Cor 59)
(τ,H) P ∗ npk (Cor 59)
V P ∗ FPT (Prop 60)
∗ cf. [31]

Table 6.2: Parameterized complexity results for DEFHORN.

ABD[KROM] ABD[KROM]≤ ABD[KROM]=

M W[1]-c (Thm 73) W[1]-c (Thm 72) para-NP-h (Thm 54)
(H,M) pk (Thm 76) pk (Thm 76) pk (Thm 76)
k – W[2]-c (Thm 68) W[2]-c (Thm 68)
(k,M) – W[1]-c (Thm 69) W[1]-c (Thm 70)
k, |M | = 1 – P ∗ W[1]-c (Thm 70)
τ npk (Thm 74) npk (Thm 74) npk (Thm 74)
V pk (Thm 76) pk (Thm 76) pk (Thm 76)
∗ cf. [19]

Table 6.3: Parameterized complexity results for KROM.

Next we formalize the notion of a solution to an abduction instance.

Definition 50. Let P = 〈V,H,M, T 〉 be an abduction instance. S ⊆ H is a solution (or
explanation) to P if T ∪S is consistent and T ∪S |= M . Sol(P) denotes the set of all solutions
to P .
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Note that |= is the classical entailment relation from propositional logic. Let C ⊆ PROP be
a class of propositional formulas. The solvability problem for propositional abduction ABD[C]
for C-theories is the following problem:

ABD[C]
Instance: An abduction instance P .
Problem: Decide Sol(P) 6= ∅.

We introduce a version of the abduction problem where the size of the solutions is limited.

ABD[C]≤/=
Instance: An abduction instance P and an integer k.
Problem: Is there a set S ∈ Sol(P) such that S has cardinality less than /

equal to k.

In the sequel, we will consider parameterizations by the vertex cover number and the treewidth
of abduction instances. Since those structural parameters are defined for graphs, we represent
abduction instances by their primal graphs. Recall that for an instance P = 〈V,H,M, T 〉, such
a graph has vertex set V and there is an edge between two vertices v and w if they occur together
in a clause c ∈ T , i.e., either v or ¬v as well as either w or ¬w occurs in c.

We introduce now some further notation that we use in this section. For m ∈ N, we use [m]
to denote the set {1, . . . ,m}. O∗(·) is defined in the same way as O(·) but ignores polynomial
factors.

6.2 Classical Complexity

Early work on the computational complexity of propositional abduction was done by Selman and
Levesque [103]. Among others they showed that ABD[HORN] is NP-complete. A systematic
complexity analysis was done by Eiter and Gottlob [31]. Their results include that ABD[PROP]
is ΣP

2 -complete and that ABD[DEFHORN] is in P. Note that the hardness results for PROP and
HORN hold even for |M | = 1 since in those classes one can add a new clause to the theory
where all existing manifestations imply a single new manifestation.

The problem ABD[KROM] was shown to be NP-complete by Nordh and Zanuttini [86] while
Creignou and Zanuttini [19] showed that it is in P when restricted to |M | = 1. In the latter result,
they use the fact that ABD[KROM] restricted to a single manifestation has a solution if and only
if it has a solution of size ≤ 1. Therefore, ABD[KROM]≤ with |M | = 1 is in P by the same
argument.

The following proposition is a consequence from a remark in [31], which states that deciding
S ∈ Sol(P) for an instance P is DP-complete. This also shows that for PROP parameters H
and M are not sufficient.

Proposition 51. ABD[PROP] and ABD[PROP]≤/= are DP-complete for |H| = 0. Those prob-
lems remain DP-hard even if |M | = 1.
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In order to motivate a parameterized complexity analysis, the remainder of this section is
dedicated to showing that the problems ABD[HORN]≤/=, ABD[DEFHORN]≤/=, as well as
ABD[KROM]≤/= are intractable in the classical setting. According to Definition 50, our re-
ductions must ensure both consistency and entailment.

Theorem 52. ABD[HORN]≤/= and ABD[DEFHORN]≤/= are NP-complete, even if |M | = 1.

Proof. Membership is trivial. We show hardness by reduction from VERTEX COVER. Recall
that this problem is defined as follows. Given a graph G = (N,E) and integer k. Does G have
a vertex cover of size ≤ k respectively of size = k? We construct an instance (〈V,H,M, T 〉, k)
of ABD[DEFHORN]≤/= as follows. We introduce a new variable for each vertex in N , for each
edge inE and for the manifestationm. By slight abuse of notation this means V := N∪E∪{m},
where m is a new variable, H := N , M := {m}, and

T :=
(
m ∨

∨
e∈E
¬e
)
∧

∧
e∈E

e={x,y}

(
(x→ e) ∧ (y → e)

)
. (6.1)

Note that T ∪S is satisfiable for every S ⊆ H . The first clause of T ensures that m is entailed if
and only if each e ∈ E is entailed. This in turn is the case if and only if S contains an endpoint
of each edge and therefore is a vertex cover of (N,E).

A slight variation of the above proof allows to show that the problem asking for solutions
less or equal to a certain size is also hard for KROM.

Corollary 53. ABD[KROM]≤ is NP-complete.

Proof. This can be shown similarly to the proof of Theorem 52. Thereby the first clause of
Equation 6.1 is removed, all edges are used as manifestations M := E, and we set V :=
N ∪ E.

If we ask instead for solutions having exactly certain size then abduction for KROM formulas
is hard even if there is only a single manifestation.

Theorem 54. ABD[KROM]= is NP-complete even if |M |=1.

Proof sketch. Membership is trivial. We show hardness by reduction from INDEPENDENT SET.
Let an instance of INDEPENDENT SET be given by a graph G = (N,E) and integer k. We
construct an instance 〈V,H,M, T 〉 of ABD[KROM]= as follows. Let V := N ∪ {m}, where m
is a new symbol, H := N , M := {m}, and

T := m ∧
∧

{x,y}∈E

(¬x ∨ ¬y).

Note that m is trivially entailed. The construction ensures that T is satisfiable by a solution
S ⊆ H if and only if S is an independent set of (N,E) of size k.
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6.3 Parameterized Complexity

In this section we study the parameterized complexity of abduction. The first part is mainly ded-
icated to the HORN and DEFHORN fragments, whereas the second part deals with the KROM

fragment. Unless otherwise specified, V , H , M , and T refer to the components of an abduc-
tion instance (see Definition 50). Additionally, k denotes the bound on the solution size. When
parameterizing by the cardinality of some set, we omit the vertical bars, for example “parame-
terized by M” means parameterized by |M |. Two parameters together are denoted by a tuple,
e.g. (k,M) instead of k + |M |.

6.3.1 Horn and Definite Horn Theories

We start by showing that the HORN fragments are intractable when parameterized by the solution
size k.

Theorem 55. ABD[HORN]≤/= and ABD[DEFHORN]≤/= parameterized by (k,M) are W[P]-
complete even if |M |=1.

Proof. For the W[P]-membership, note that the problem can be solved by nondeterministically
guessing k times a (not necessarily distinct in case of ≤) hypothesis, each of which can be
described by log n bits, and then deterministically checking consistency and entailment. The
checking part can be done in polynomial time for HORN as well as DEFHORN theories.

We show hardness by reduction from WEIGHTED MONOTONE CIRCUIT SAT, where an
instance is given by a monotone circuit C and an integer k. Recall that this problem is W[P]-
complete, when parameterized by k, even when every AND-gate and every OR-gate is binary.
We construct an instance (〈V,H,M, T 〉, k) for the abduction problem. First, we introduce a
new variable for each gate of C and call the resulting set V . By slight abuse of notation, in the
following we will identify the variables in V with the gates they represent. Let H be the set of
input gates and let M := {m}, where m represents the output gate.

Theory T is constructed as follows. For each AND-gate a with input i1 and i2, we add
(i1 ∧ i2 → a) to T . For each OR-gate o with input i1 and i2, we add (i1 → o) ∧ (i2 → o) to T .
By construction, for each set S ⊆ H , T ∪S is consistent. Furthermore, T ∪S |= M if and only
if activating only the input gates in S satisfies C.

Note that removing a parameter can not lower the parameterized complexity of a problem.
Therefore the problems remain W[P]-hard when parameterized by k alone. Since the member-
ship result above only uses parameter k, we immediately get the following corollary.

Corollary 56. ABD[HORN]≤/= as well as ABD[DEFHORN]≤/= parameterized by k are W[P]-
complete.

On the other hand, the parameterization by the number of hypotheses is trivially FPT.

Proposition 57. ABD[HORN] and ABD[HORN]≤/= parameterized by H are FPT, solvable in
time O∗(2|H|).
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Proof. Let 〈V,H,M, T 〉 be an abduction instance with theory T ∈ HORN. There exist 2|H|

many subsets of H . Given S ⊆ H , checking if S ∈ Sol(P) can be done in polynomial time for
HORN-theories [31]. Therefore, the time bound follows.

Recall from Section 2.1 that every fixed-parameter tractable problem admits a kerneliza-
tion algorithm. But the resulting kernel might be exponential in the parameter values. Despite
ABD[HORN] and ABD[HORN]≤/= being trivially FPT, it turns out that they do not admit a
polynomial kernel, even when adding the solution size as a parameter. This follows from the
more general result below.

Theorem 58. ABD[DEFHORN]≤ and ABD[DEFHORN]= parameterized by H do not admit a
polynomial kernel unless the Polynomial Hierarchy collapses, even if |M | = 1.

Proof. We show the result for ABD[DEFHORN]≤ by a PPT reduction from SMALL UNIVERSE

HITTING SET, where an instance is given by a family of setsF = {F1, . . . , Fl} over an universe
U =

⋃l
i=1 Fi with |U | = d and an integer k. The question is to find a set U ′ ⊆ U of cardinality

≤ k such that each set in the family has a non-empty intersection with U ′. This problem,
parameterized by k and d does not admit a polynomial kernel unless the Polynomial Hierarchy
collapses [23].

We construct an ABD[DEFHORN]≤ instance (〈V,H,M, T 〉, k) as follows. Let X be a set
of new variables {x1, . . . , xl} representing elements of F . Let H := U , M := {m}, where m
is a new variable, V := H ∪X ∪M , and

T := (x1 ∧ · · · ∧ xl → m) ∧
∧
i∈[l]

∧
e∈Fi

(e→ xi).

Manifestation m is entailed if and only if all variables in X are entailed. Variable xi ∈ X is
entailed if and only if at least one of the elements in the set Fi is selected. Therefore, a solution
S ⊆ H corresponds to a hitting set of the same size.

We can reduce ABD[DEFHORN]≤ to ABD[DEFHORN]= because of the monotonicity of
DEFHORN formulas. To be more precise, if there is a solution S ⊆ H of an ABD[DEFHORN]≤
instance, then also all S′ ⊃ S are solutions as well.

A similar reduction can be used to show that even the aggregate parameterization with both
τ and H does not yield a polynomial kernel. Since tw(G) ≤ τ(G) for every graph G, we
immediately obtain the same result for parameter tw .

Corollary 59. ABD[DEFHORN]≤ and ABD[DEFHORN]= parameterized by (τ,H) do not ad-
mit a polynomial kernel unless the Polynomial Hierarchy collapses.

Proof. This can be shown by using the same reduction as in the proof of Theorem 58, but
without the restriction to a single manifestation. That means, the conjunct (x1 ∧ · · · ∧ xl → m)
is removed from T and M := X . Observe that U = H is a vertex cover of the abduction
instance.

For parameter V , even ABD[PROP] is trivially FPT.
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Proposition 60. ABD[PROP] parameterized by V is FPT, solvable in time O∗(22|V |).

Proof. There are at most 2|H| ≤ 2|V | possible solution candidates. For each of them we need to
test consistency and entailment, which can be done in time O(2|H|(n+ 2|V |n)).

Again we show that this parameterization is not sufficient for a polynomial kernel.

Theorem 61. ABD[HORN] parameterized by V does not admit a polynomial kernel unless the
Polynomial Hierarchy collapses.

Proof. We show that the problem parameterized by (V,H) is compositional. Parameter H does
not change the problem since H ⊆ V , but allows us to assume in the composition that all
instances have the same number of hypotheses. Let P1, . . . ,Pt be a given sequence of instances
of ABD[HORN] where Pi = 〈Vi, Hi,Mi, Ti〉, 1 ≤ i ≤ t, with |Vi| = d and |Hi| = e. We
assume without loss of generality that Vi = Vj and Hi = Hj for all 1 ≤ i < j ≤ t since
otherwise we could rename the variables. We distinguish two cases.

Case 1: t > 22d. Let n := maxti=1‖Pi‖. Whether Pi has a solution can be decided in
time O(22dn) by the FPT algorithm from Proposition 60. We can check whether at least one
of P1, . . . ,Pt has a solution in time O(t22dn) ≤ O(t2n) which is polynomial in

∑t
i=1‖Pi‖. If

some Pi has a solution, we output Pi; otherwise we output P1, which has no solution. Hence,
we have a composition algorithm in Case 1.

Case 2: t ≤ 22d. We construct a new instance P := 〈V,H,M, T 〉 of ABD[HORN] as
follows. Let s := dlog2 te. Let V := V1 ∪ X ∪ X ′ ∪ Y ∪ {m}, where X := {x1, . . . , xs},
X ′ := {x′1, . . . , x′s}, Y := {y1, . . . , ys}, and m. Thereby X ∪X ′ ∪ Y ∪ {m} are 3s + 1 new
variables. Let H := H1 ∪X ∪X ′ and let M := Y ∪ {m}. For each theory Ti we create a new
theory

T ′i := Ti ∪ {{¬m′ | m′ ∈Mi} ∪ {m}}.

Let C1, . . . , C2s be a sequence of all 2s possible clauses {l1, . . . , ls} where lj is either ¬xj or
¬x′j , 1 ≤ j ≤ s. For each theory T ′i we create a new theory T ′′i := {C ∪ Ci | C ∈ Ti}. Finally,
let

T :=

t⋃
i=1

T ′′i ∪
s⋃
j=1

{
{¬xj , yj}, {¬x′j , yj}, {¬xj ,¬x′j}

}
.

The idea is the following. Since the yj’s are manifestations, the clauses {¬xj , yj}, {¬x′j , yj},
and {¬xj ,¬x′j}, 1 ≤ j ≤ s, ensure the equivalence ¬xj ≡ x′j which is not directly expressible
in HORN. Because of this equivalence, a solution S of P has to contain exactly one of xj or
x′j for each 1 ≤ j ≤ s. Therefore, there is exactly one subclause (in the construction they
were merged with other clauses) Cl, 1 ≤ l ≤ 2s, which is not satisfied by S. Hence, all
theories Ti with i 6= l are trivially satisfied and cannot entail the manifestation m. Thus, P has
a solution if and only if Pl has one. Since |V | and |H| is polynomial in d respectively e, we
have also a composition algorithm in Case 2, and thus ABD[HORN] parameterized by V and H
is compositional.

It follows now from Theorem 5 that this problem does not admit a polynomial kernel unless
the Polynomial Hierarchy collapses.
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Since ABD[HORN] has a solution if and only if there is a solution for ABD[HORN]≤ of size
≤ |H|, we immediately get the following corollary.

Corollary 62. ABD[HORN]≤ parameterized by V does not admit a polynomial kernel unless
the Polynomial Hierarchy collapses.

To show the same result for ABD[HORN]=, slightly more effort is needed.

Corollary 63. ABD[HORN]= parameterized by V does not admit a polynomial kernel unless
the Polynomial Hierarchy collapses.

Proof. We present a PPT reduction from ABD[HORN] parameterized by V . Let an instance
of ABD[HORN] be given by P = 〈V,H,M, T 〉 with H = {h1, . . . , he}. We construct a new
instance P ′ := (〈V ∪ H ′ ∪M ′, H ∪ H ′,M ∪M ′, T ′〉, k) for ABD[HORN]= as follows. Let
H ′ := {h′1, . . . , h′e} and M ′ := {m1, . . . ,me} be new variables. Let k := e and let

T ′ := T ∪
e⋃
i=1

{{¬hi,¬h′i}, {¬hi,mi}, {¬h′i,mi}}.

Then P has a solution if and only if P ′ has a solution of size k. The reason for this is that the
clauses {¬hi,¬h′i}, {¬hi,mi}, {¬h′i,mi} enforce that a solution S contains exactly one of the
two hypotheses hi, h′i for each 1 ≤ i ≤ e. Selecting h′i in P ′ is equivalent to not selecting hi in
P , since the variables h′i occur nowhere in T .

6.3.2 Krom Theories

Next we study the KROM fragment. Thereby the following preprocessing function will be very
useful. Recall the definition of the resolution operator Res(·) from Section 2.3.

Definition 64. Given an abduction instance for KROM theories 〈V,H,M, T 〉. We define the
function TrimRes(T,H,M) := {C ∈ Res(T ) | C ⊆ X}, with X = H ∪M ∪ {¬x | x ∈
(H ∪M)}.

In other words, the function TrimRes(T,H,M) first computes the closure under resolution
Res(T ) and then keeps only those clauses which solely consist of hypotheses and manifesta-
tions.

We will show that while the complexity is lower than in the HORN fragment when param-
eterized by k, the problem remains intractable. In order to simplify the proof of this result we
first show some lemmas which we need later on.

Lemma 65. Let T be a satisfiable KROM theory and let S be a set of propositional variables.
Then T ∧ S is unsatisfiable if and only if there exist x, y ∈ S such that T |= ¬x ∨ ¬y.

Lemma 66. Let 〈V,H,M, T 〉 be an abduction instance for KROM theories and let S ⊆ H .
Then T ∧ S is satisfiable if and only if TrimRes(T,H,M) ∧ S is satisfiable.
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Proof. Applying resolution does not change the set of models of theory T , i.e., Mod(T ) =
Mod(Res(T )). Removing clauses can only increase the set of models. Hence, Mod(T ) ⊆
Mod(TrimRes(T )). Therefore, T ∧ S being satisfiable implies that TrimRes(T ) ∧ S is sat-
isfiable. For the other direction assume that T ∧ S is unsatisfiable. By Lemma 65 we know
that there exist h1, h2 ∈ S with T |= ¬h1 ∨ ¬h2. Hence, {¬h1,¬h2} ∈ Res(T ) and further
{¬h1,¬h2} ∈ TrimRes(T ). But then, by Lemma 65, TrimRes(T ) ∧ S is unsatisfiable.

Lemma 67. Let 〈V,H,M, T 〉 be an abduction instance for KROM theories, S ⊆ H , m ∈ M ,
and T ∧ S be satisfiable. Then T ∧ S |= m implies that either {m} ∈ TrimRes(T,H,M) or
there exists some h ∈ S with {¬h,m} ∈ TrimRes(T,H,M).

Proof. From T ∧ S |= m follows that {m} ∈ Res(T ∧ S). In case {m} ∈ Res(T ) we
are done since then {m} ∈ TrimRes(T ). For the other case, i.e. {m} 6∈ Res(T ), note
that Res(T ∧ S) = Res(Res(T ) ∧ S). Assuming that Res(T ) has already been computed,
calculating Res(Res(T ) ∧ S) results only in resolution steps involving a singleton and a bi-
nary clause. Hence there must exist a chain of resolution steps of the form 〈{l1}, {¬l1, l2} ⇒
{l2}〉, 〈{l2}, {¬l2, l3} ⇒ {l3}〉, . . . , 〈{ln−1}, {¬ln−1, ln} ⇒ {ln}〉 with l1 ∈ S, ln = m, and
all {li, lj} ∈ Res(T ). But then the clause {¬l1,m} can be obtained by resolution as well, i.e.,
{¬l1,m} ∈ Res(T ) and in consequence {¬l1,m} ∈ TrimRes(T ).

These results now allow us to finally show that finding small solutions for KROM abduction
is still hard when parameterized by the solution size.

Theorem 68. ABD[KROM]≤ and ABD[KROM]= parameterized by k are W[2]-complete.

Proof. We show membership by reducing an abduction instance (〈V,H,M, T 〉, k) to an in-
stance (A, ϕ) of MC[Σ2,1]. First we check whether the empty set is already a solution. In that
case we return a tautology. In the other case we first ensure that T is satisfiable and compute
TrimRes(T,H,M) as defined in Definition 64. We construct structure

A := 〈A, hyp,mani, fact, cl, pos, neg〉

as follows. Domain A contains an element for each hypothesis in H , each manifestation in
M and two distinct elements denoted by positive and negative. Let the sets hyp (respectively
mani) represent the hypotheses (respectively manifestations). We use the following notation.
Let l be a literal, then pol(l) denotes the element positive (respectively negative) if l is a
positive (respectively negative) literal. Relation fact contains the pairs {(pol(l), l) | {l} ∈
TrimRes(T,H,M)}. Relation cl contains the tuples {(pol(l1), l1, pol(l2), l2) | {l1, l2} ∈
TrimRes(T,H,M), l1 6= l2}. Finally, we have that pos := {positive} and that neg :=
{negative}. We define
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ψ := pos(p) ∧ neg(n) ∧
∧
i∈[k]

hyp(hi) ∧∧
i∈[k]

¬fact(n, hi) ∧
∧

i,j∈[k]

¬cl(n, hi, n, hj),

χ[x] := fact(p, x) ∨
∨
j∈[k]

cl(n, hj , p, x),

ϕ := ∃h1 · · · ∃hk ∃p ∃n ∀m ψ ∧ (mani(m)→ χ[m]).

Since T is satisfiable, we know by Lemma 65 that T ∧ S is unsatisfiable if and only if there
exist (not necessarily distinct) x, y ∈ S such that T ∧ x ∧ y is unsatisfiable. Remember that
we used TrimRes(T,H,M) to construct ϕ at the beginning of the reduction. It follows from
Lemma 66 that T∧S is satisfiable if and only if for all h1, h2 ∈ S, {¬h1} /∈ TrimRes(T,H,M)
and {¬h1,¬h2} /∈ TrimRes(T,H,M). This is encoded in ϕ by requiring ¬fact(n, hi) and
¬cl(n, hi, n, hj) for all i, j ∈ [k]. Having ensured consistency it remains to check entailment.
From Lemma 67 we know that in this setting it is sufficient to check whether each manifestation
m is either contained as a fact in TrimRes(T,H,M) or there is a single hypothesis h ∈ S
such that {¬h,m} ∈ TrimRes(T,H,M). In ϕ this is ensured by subformula χ. Therefore,
ABD[KROM]≤ is in W[2].

The same reduction can be used to show membership for ABD[KROM]= if we additionally
add the conjuncts

∧
1≤i<j≤k(hi 6= hj) to the formula ϕ.

We show hardness by reduction from RED-BLUE DOMINATING SET. Let an instance of
RED-BLUE DOMINATING SET be given by a bipartite graph G = (Nred ∪ Nblue, E) and an
integer k. Recall that this problem is W[2]-complete when parameterized by k. We construct an
instance (〈V,H,M, T 〉, k) of ABD[KROM]≤ as follows. Let V := Nred ∪ Nblue, H := Nred,
M := Nblue, and

T :=
∧

n∈Nred,b∈N [n]

(n→ b),

where N [n] contains n and all its adjacent vertices. A set S ⊆ H of size ≤ k is a solution
for ABD[KROM]≤ if and only if it is a solution for the dominating set problem. Due to the
monotonicity of dominating sets, i.e., each superset of a dominating set is a dominating set as
well, there is a solution of size k if and only if there is a solution of size ≤ k (assuming that
|Nred| is big enough). Thus, hardness also holds for ABD[KROM]=.

The next two theorems show that in KROM, addingM as a parameter reduces the complexity
by one level in the W-hierarchy.

Theorem 69. ABD[KROM]≤ parameterized by (k,M) is W[1]-complete.

Proof. We show W[1]-membership by reducing an instance (〈V,H,M, T 〉, k) to an MC[Σ1]
instance (A, ϕ). The reduction is similar to the one used in the proof of Theorem 68. Let
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A := 〈A, hyp,mani, fact, cl, pos, neg〉, ψ, and χ be defined as before, let |M | = d, and

ϕ := ∃h1 · · · ∃hk ∃p ∃n ∃m1 · · · ∃md ψ ∧∧
1≤i<j≤d

(mi 6= mj) ∧
∧
i∈[d]

(mani(mi) ∧ χ[mi]).

The correctness can be shown similarly as in Theorem 68.
Next, we show hardness by reduction from MULTICOLORED INDEPENDENT SET, where an

instance is given by a graph G = (N,E), a size bound k and a k-coloring of the vertices c :
N → {c1, . . . , ck}. The task is to find a subset N ′ ⊆ N , |N ′| = k, such that for all x, y ⊆ N ′:
{x, y} /∈ E and c(x) 6= c(y). This problem is W[1]-complete when parameterized by k [35].
We construct an abduction instance (〈V,H,M, T 〉, k) as follows. Let V := N ∪ {c1, . . . , ck},
H := N , M := {c1, . . . , ck}, and

T :=
∧

x,y∈E
(¬x ∨ ¬y) ∧

∧
n∈N

(n→ c(n)).

The k different manifestations (colors) imply that a solution contains at least k hypotheses. The
independent set property is ensured by the consistency check.

For ABD[KROM]= this holds even if there exists only a single manifestation.

Theorem 70. ABD[KROM]= is W[1]-complete, when parameterized by (k,M), even when
|M | = 1.

Proof. Membership can be shown analogously to the proof of Theorem 69 by adding∧
1≤i<j≤k

(hi 6= hj)

to formula ϕ.
Hardness is shown by reduction from INDEPENDENT SET. We reduce a graph G = (N,E)

and integer k to an abduction instance (〈V,H,M, T 〉, k). Let V := N ∪ {m}, H := N ,
M := {m}, and

T := m ∧
∧

{x,y}∈E

(¬x ∨ ¬y).

By construction, entailment is always fulfilled.

Recall that by Theorem 54, ABD[KROM]= parameterized by M is para-NP-hard. We show
now that interestingly ABD[KROM]≤ parameterized by M is W[1]-complete. Towards this goal
we first prove the following lemma.

Lemma 71. If an instance of ABD[KROM] has a solution, then it has a solution S such that
|S| ≤ |M |.
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Proof. It is known (see [19]) that an ABD[KROM] instance with |M | = 1 has a solution if and
only if there is a solution of size ≤ 1. Thus, a single manifestation is either entailed by the
theory itself or by putting a single hypothesis into the solution. Now consider an ABD[KROM]
instance 〈V,H,M, T 〉 with |M | > 1. Assume towards a contradiction that there is a solution,
but no solution of size≤ |M |. Then, we can construct |M | instances Pi = 〈V,H,Mi, T 〉, where
Mi is the set containing only the i-th manifestation. At least one of these instances must have a
solution of size > 1. This however contradicts the previously mentioned fact for ABD[KROM]
instances with |M | = 1.

This now allows us to show that ABD[KROM]≤ is significantly easier than ABD[KROM]=

when parameterized by M .

Theorem 72. ABD[KROM]≤ is W[1]-complete, when parameterized by M .

Proof. Hardness follows immediately from Theorem 69.
For the membership consider the reduction to MC[Σ1] from the proof of Theorem 69. By

Lemma 71 we know that ABD[KROM] has a solution if and only if there is a solution of size
≤ |M |. Therefore, it is sufficient to consider only solutions of size b := min(k, |M |). Thus, we
can replace in formula ϕ from the proof of Theorem 69 any occurrence of k by b. The length of
this formula can be bounded in terms of M .

The following theorem generalizes the classical results of KROM-abduction. It is NP-
complete in general and in P when |M | = 1. In fact, the P-membership for every fixed number
of manifestations follows from the W[1]-completeness.

Theorem 73. ABD[KROM] is W[1]-complete, when parameterized by M .

Proof. Membership follows from Theorem 72.
We show hardness by reduction from INDEPENDENT SET. Let (G, k) with graph G =

(N,E) and vertices N = {v1, . . . , vl} be an instance of INDEPENDENT SET. The construction
is inspired by [64]. We construct an instance (〈V,H,M, T 〉, k) for the abduction problem. Let
H := {hji | i ∈ [l], j ∈ [k]}, M := {mi | i ∈ [k]}, and V := N ∪H ∪M . Next we create

T := TIS ∧
∧
i∈[4]

Ti,

where
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TIS :=
∧

{x,y}∈E

(¬x ∨ ¬y),

T1 :=
∧
i∈[l]

∧
j∈[k]

(hji → mj),

T2 :=
∧
i∈[l]

∧
j,j′∈[k],
j 6=j′

(hji → ¬h
j′

i ),

T3 :=
∧

i,i′∈[l],
i 6=i′

∧
j∈[k]

(hji → ¬h
j
i′),

T4 :=
∧
i∈[l]

∧
j∈[k]

(
hji → vi

)
.

The intended meaning of the subformulas is the following. Formula TIS encodes the in-
dependent set property. What is needed in addition, is a mechanism that ensures that k many
vertices are picked. To this end, we introduce k hypotheses h1

i . . . h
k
i for each vertex vi. Se-

lecting hypothesis hji corresponds to selecting vertex i as the j-th pick in the independent set.
Subformula T1 ensures that the k manifestations are only entailed if for each j ∈ [k] (the j-th
pick) at least one hypothesis of hj1, . . . , h

j
l is selected. Subformula T2 ensures that for each ver-

tex at most one hypothesis is picked. In contrast, subformula T3 ensures that we select at most
one hypothesis as the same pick. Finally, subformula T4 forces the variable corresponding to a
vertex to true if one of the corresponding hypotheses was chosen.

To sum up, any solution will contain exactly k hypotheses each of which forces one of the
vertex variables to true. Since the corresponding vertices form an independent set, a solution of
the abduction instance corresponds to an independent set of size k.

The fixed-parameter tractability of KROM-abduction parameterized by vertex cover number
follows from the FPT result for parameter treewidth [47] and the fact that tw(G) ≤ τ(G) for
every graph G. We show that this parameterization does not lead to a polynomial kernel.

Theorem 74. ABD[KROM] and ABD[KROM]≤/= parameterized by τ do not admit a polyno-
mial kernel unless the Polynomial Hierarchy collapses.

Proof. We show this by PPT-reduction from SAT of ϕ ∈ CNF parameterized by the number
of variables var (ϕ). This problem does not admit a polynomial kernel unless the Polynomial
Hierarchy collapses [16]. Given ϕ we create an abduction instance 〈V,H,M, T 〉 as follows. Let
V := X ∪X ′ ∪M , where X := var (ϕ), X ′ := {x′ | x ∈ X}, and M contains a manifestation
for each clause in ϕ. Let H := X ∪X ′, and

T :=
∧
x∈X

(
(x ∨ x′) ∧ (¬x ∨ ¬x′)

)
∧

∧
c∈ϕ

(∧
x∈c

(x→ c) ∧
∧
¬x∈c

(x′ → c)

)
.
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For instances of ABD[KROM]≤/=, we additionally set k := |X|. Observe that the primal graph
of T can be covered by the set X ∪X ′. Thus, τ can be bounded by 2 · |var (ϕ)|.

Next we will show that ABD[KROM] and and ABD[KROM]≤/= have a polynomial kernel
when parameterized by (H,M). Thereby TrimRes from Definition 64 is used as a kernelization
function.

Lemma 75. Let 〈V,H,M, T 〉 be an abduction instance for KROM theories, let S ⊆ H , let
m ∈ M , and let T ∧ S be satisfiable. Then T ∧ S ∧ ¬m is unsatisfiable if and only if
TrimRes(T,H,M) ∧ S ∧ ¬m is unsatisfiable.

Proof. Similar to the argument in the proof of Lemma 66, Mod(T ∧S) ⊆ Mod(TrimRes(T )∧
S). Therefore, TrimRes(T )∧S∧¬m being unsatisfiable implies that T∧S∧¬m is unsatisfiable.
For the other direction assume that T ∧ S ∧ ¬m is unsatisfiable. By Lemma 67 this means that
either {m} ∈ TrimRes(T ) or there exists some h ∈ S with {¬h,m} ∈ TrimRes(T ). In either
case TrimRes(T ) ∧ S ∧ ¬m is unsatisfiable.

Theorem 76. ABD[KROM] and ABD[KROM]≤/= have a polynomial kernel when parameter-
ized by (H,M).

Proof. Given an instance 〈V,H,M, T 〉 with T ∈ KROM. We can test T for unsatisfiability
in polynomial time and output a trivial no-instance in case the answer is yes. Otherwise we
compute in polynomial time TrimRes(T,H,M) which has size O((|H| + |M |)2). Indeed
〈H ∪M,H,M,TrimRes(T,H,M)〉 gives a kernel for our instance. Given a set S ⊆ H , by
Lemma 66 testing the satisfiability of T ∧ S is equivalent to testing TrimRes(T,H,M) ∧ S.
Testing whether T ∧S |= M is equivalent to testing if T ∧S |= m for allm ∈M . By Lemma 75
each of those tests can be done on TrimRes(T,H,M).

It follows immediately that ABD[KROM] and ABD[KROM]≤/= have a polynomial kernel
when parameterized by V . Note that these problems are already FPT when parameterized by H
alone.
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CHAPTER 7
Conclusion

7.1 Summary

Many computational tasks in the area of nonmonotonic reasoning are intractable. To overcome
this obstacle, traditionally research was focused on studying restricted syntactical fragments
such as Horn or Krom formulas. Often, such a restriction indeed leads to a lower computational
complexity of these problems. But this does not necessarily yield tractability. For example
propositional abduction is still NP-complete when restricted to Horn formulas.

Another way of dealing with NP-hard problems comes from the area of parameterized com-
plexity theory. Thereby one studies the complexity not only in terms of the input size but also
with respect to one or more (structural) parameters. The quest is to find an appropriate set of
parameters such that the problem becomes fixed-parameter tractable. This usually means that
the problem can be efficiently solved as long as the parameter values remain sufficiently small.

While the field of parameterized complexity theory is growing rapidly, most of the work
so far has been focused on problems from the area of graph theory. Although parameterized
complexity in the areas of AI and reasoning is not new, it is still less important there as compared
to graph theory. This means of course that there are a lot of problems in nonmonotonic reasoning
which have not yet been studied from a parameterized point of view. Additionally, for problems
that have been considered already, there is still a lot of improvement possible.

In this thesis we presented research in both these directions. We started a parameterized
analysis of belief revision problems and problems from propositional abduction. Furthermore,
we gained new results for problems in the area of answer set programming.

7.1.1 Belief Revision

In Chapter 4, we have identified new tractable classes of revision problems with respect to three
of the most fundamental approaches [20, 102, 115]. Moreover, we provided novel dynamic
programming algorithms for Dalal’s revision operator [20] (i.e. for the problem of deciding
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α ◦D β |= γ, and enumerating the models of α ◦D β) which run in linear time (resp. with linear
delay) if the treewidth of the revision scenario is bounded.

To the best of our knowledge, neither Courcelle’s Theorem [17] (or one of its extensions
such as [4]) nor dynamic programming approaches (along the lines of tree decompositions)
have been applied to belief revision problems, so far. Although, for other AI and reasoning
formalisms such approaches already proved to be successful (see, e.g., [47, 57]).

7.1.2 Answer Set Programming

In Chapter 5, we have shown how the notion of bounded treewidth can be used to identify
tractable fragments of answer-set programming with weight constraints. However, by proving
hardness results, we have also shown that a straightforward application of treewidth is not suffi-
cient to achieve the desired tractability.

The upper bounds on the time complexity of our dynamic programming algorithms were
obtained by very coarse estimates (see Theorems 44, 45, 46). In particular, we assumed straight-
forward methods for storing and manipulating bag assignments. Using sophisticated methods
and data structures in implementing the functionality of the different node types of our algorithm
should eventually result in a further improvement of the (theoretical) upper bounds on the time
complexity provided in this paper.

7.1.3 Abduction

We have drawn a detailed picture of the parameterized complexity of abduction as depicted in
Tables 6.1 and 6.3. We gained a number of results for abduction in general as well as for re-
strictions to Horn, definite Horn, and Krom theories. We did not only study the usual decision
problem that asks whether an instance admits a solution. Instead we also introduced new deci-
sion problems that explicitly ask for small solution. The obtained results include fixed-parameter
tractability, completeness results for the classes W[1], W[2], W[P], para-NP-hardness results, as
well as polynomial kernels and results that such kernels are impossible. Although there are many
cases where ABD[HORN] is FPT, in non of the considered cases it admits a polynomial kernel.
For ABD[KROM] we were able to show the existence of a polynomial kernel when parameterized
by the number of hypotheses plus the number manifestations.

7.2 Discussion

In this work, we have presented several fixed-parameter tractable algorithms for problems pa-
rameterized by treewidth without addressing the problem of actually computing a tree decompo-
sition of appropriate width. As has been mentioned earlier, Bodlaender [7] showed that deciding
whether a graph has treewidth ≤ w, and if this is the case then computing a tree decomposition
of width w is fixed-parameter linear for parameter w. Unfortunately, this linear time algorithm
is only of theoretical interest and the practical usefulness is limited [62]. However, considerable
progress has been recently made in developing heuristic-based tree decomposition algorithms,
which can handle graphs with moderate size of several hundreds of vertices [62, 12, 112, 13, 58].
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Note that for our algorithms it is not necessary to have tree decompositions of optimal width.
Of course the runtime of these algorithms, which depends exponentially on the width of the tree
decomposition, will be worse. But we expect that in practice this is compensated by a faster
computation of the tree decomposition.

7.3 Comparison with Related Work

Recently, a meta-theorem for MSO problems on graphs with cardinality and weight constraints
was shown [109]. This meta-theorem allows one to handle cardinality constraints with respect
to sets that occur as free variables in the corresponding MSO formula. For ASP programs
Π with cardinality constraints (PCC) or weight constraints (PWC) with weights in unary and
bounded treewidth (see Chapter 5), it is possible to derive from this meta-theorem a polynomial
time algorithm for checking whether Π has a model. However, in order to check whether Π
has a stable model, one needs to handle cardinality constraints with respect to sets that occur
as quantified variables in the MSO formula, which is not possible with the above-mentioned
meta-theorem.

We have already mentioned the dynamic programming algorithm for ASP by Jakl, Pichler,
and Woltran [57]. This algorithm works for programs without cardinality or weight constraints,
but possibly with disjunction in the head of the rules. The data structure manipulated at each
node for this ASP algorithm is conceptually much simpler than the one used here: Potential
models of the given program are represented by the so-called tree-models. A tree-model consists
of a subset of the atoms in a bag (the ones that are true in the models thus represented) and a
subset of rules in a bag (the ones that are validated by the models thus represented).

However, to handle the minimality condition on stable models, it is not sufficient to propa-
gate potential models along the bottom-up traversal of the tree decomposition. In addition, it is
required, for each potential model M , to keep track of all those models of the reduct with re-
spect to M that would prevent M from being minimal. Those models are represented by a set of
tree-models accompanying each tree-model. Hence, despite the simplicity of the data structure,
the time complexity of the algorithm by Jakl, Pichler, and Woltran [57] is double exponential in
the treewidth, since it has to handle sets of subsets of the bag at each node. Therefore, rather
than extending that algorithm by mechanisms to handle weight or cardinality constraints, we
have presented here an algorithm based on a completely different data structure – in particular,
keeping track of orderings of the atoms. We have thus managed to obtain an algorithm whose
time complexity is only single exponential in the treewidth.

7.4 Future Work and Open Issues

A direction of future research is to apply our methods to approaches for iterated belief revision.
This however calls for the additional requirement that the outcome of a single revision step has
to be of bounded treewidth as well. An interesting research question of its own is how to ensure
such a property.

Furthermore, It is an open problem whether the revision operator due to Forbus [43] is fixed-
parameter tractable with respect to treewidth. Since the operator requires to compare cardinali-
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ties of different sets, it seems to be not possible to express this problem in one of the extensions
of MSO for which fixed-parameter tractability would follow.

Another direction of future work is to extend the parameterized complexity analysis and
the development of efficient algorithms to further problems where weights or cardinalities play
a role. Note that weights are a common feature in the area of knowledge representation and
reasoning, for instance, to express costs or probabilities.

Recall the solvability problem for propositional abduction restricted to definite Horn theories
ABD[DEFHORN] (Chapter 6). This problem is FPT (Proposition 60). However, we could not
yet settle the question whether this problem admits a polynomial kernel.

In general, future work includes the analysis of the parameterized complexity of further
problems in the area of nonmonotonic reasoning. For the reasoning formalisms we studied so
far it is of interest to search for further parameters yielding fixed-parameter tractability or to
study other syntactical restrictions as well.
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