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The life of a mathematician is dominated by an insatiable curiosity, a
desire bordering on passion to solve the problems he is studying.

— Jean Dieudonne

In most sciences one generation tears down what another has built
and what one has established another undoes. In mathematics alone

each generations adds a new story to the old structure.

— Hermann Hankel

Mathematics is not a careful march down a well-cleared highway, but
a journey into a strange wilderness, where the explorers often get lost.

Rigour should be a signal to the historian that the maps have been
made, and the real explorers have gone elsewhere.

— William S. Anglin





A B S T R A C T

A lack of vigilance is nowadays one of the most frequent reasons for
severe accidents, and this is even enhanced by our modern way of
life. Hazardous situations can often be prevented when warning from
a high level of fatigue. Therefore a Gaussian Hidden Markov Model
(GHMM) was developed and implemented which takes electroocu-
lography recordings (EOG) and additional car-based features of the
SENSATION study in account to estimate the actual level of vigilance.
It is shown that this is possible in the offline experiment for three
coarse states - awake, neutral, sleepy. The results encourage to pursue
that subject (with extended feature set) for the purpose of developing
an online-monitoring system.

Z U S A M M E N FA S S U N G

Verminderte Aufmerksamkeit ist heutzutage einer der häufigsten
Gründe für schwere Unfälle, und wird durch unseren modernen
Lebenswandel begünstigt. Gefährliche Situationen können aber oft-
mals mit rechtzeitigen Warnungen entschärft werden. Deshalb wurde
ein Gauss’sches Hidden Markov Model (GHMM) auf Basis von elek-
trookulographischen (EOG) und fahrzeugtechnischen Features en-
twickelt, welche im Zuge des SENSATION-Projekts aufgezeichnet
wurden. Es wird gezeigt, dass es im Offline-Experiment möglich
ist, eine grobe Aufteilung der Daten in sinnvolle Vigilanzniveaus
(wach, neutral, müde) vorzunehmen. Die vorliegenden Resultate er-
mutigen weitere Forschungsarbeit auf diesem Gebiet, mit dem Ziel
(mit erweiterter Feature-Menge) Online-Monitoring-Anwendungen zu
konstruieren.
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This is ten percent luck, twenty percent skill,
Fifteen percent concentrated power of will,

Five percent pleasure, fifty percent pain,
And a hundred percent reason to remember the name!

— Fort Minor
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Part I

I N T R O D U C T I O N





1
M O T I VAT I O N

1.1 hypovigilance and its dangers

”Addressing Human Fatigue“ is currently the number one problem on
the most wanted list of the American National Transportation Safety
Board. The Oxford Dictionaries define the word fatigue as

”extreme tiredness resulting from mental or physical
exertion or illness.“

Another word, which is often used to describe the opposite is vigilance,
which is given by the Oxford Dictionaries as

”the action or state of keeping careful watch for possible
danger or difficulties“.

So the term hypovigilance refers to a state of diminished attention and
reactivity bordering on fatigue, and it names a factor which is responsi-
ble for thousands of dead and a lot more injured people, not speaking
about the economic loss it causes. It is not straightforward to put a
number on the economic costs created by people’s fatigue since one
can think of many cases in which economic loss is thinkable e.g. goods
destroyed, rehabilitation costs, loss of profits and revenues, health care
for disabled people, etc. It would be necessary to determine a set of
variables for a meaningful and comparable statistic but unfortunately
such efforts have not been fruitful ever since.

So it has been up to several independent studies and estimations
to give figures about the costs of hypovigilance. One of the most
detailed sources to be found on that topic is the book ”The twenty-
four-hour society: understanding human limits in a world that never
stops“ by Moore [1]. In chapter 5 ”The Costs of Human Breakdown“
the author sums up economical losses to the society in four disjunct
parts (extrapolated from U.S.-based statistics), see table 1.1. A detailed
version with extensive explanations can be read in [1].

The figures in the book originate (in the most recent case) from
the year 1993. So for good comparison it is necessary to adjust it to
the cumulative inflation since then, which is for the U.S. economy
58.95%. That leaves us today with a worldwide annually economic
loss of 600+ billion dollars. This is a sum which is not negligible any
more and therefore draws additional attention to that topic, apart
from all the human and environmental tragedies arising from errors
due to hypovigilance. Prominent examples which shook the world
emotionally as well as economically are the oil spill of Exxon Valdez the

3



4 motivation

World Total Cost in billion $

Accident costs 80

Productivity costs 267

Health care costs 30

Societal costs cannot be determined

Total costs 377+

Table 1.1: Annual cost chart for fatigue-based effects on society and economy

catastrophe of Chernobyl and the severe incident at Three Mile Island
[1].

1.2 a problem of our times

Apart from such big catastrophes, the domain which draws the most
attention to that problem is traffic – be it on the road, on rails at the sea
or in the air. Technical improvement together with better constructed
roads have managed to make transport as save as it has never been
before [2, 3, 4, 5]. But as weired as it sounds, these technical solutions
which help us in achieving those reduction in accidents and fatalities
also lead to another problem. The isolation of the vehicle pilot from
its environment, e.g. through noise and shock absorption, and the
take-over of routine work by the machine, e.g. cruise control, autopilot,
cause the attention of the driver or pilot to decrease.

One of the most telling incidents which has happened in the nearer
past was the Go! flight 1002 on February 13, 2008, operated by Mesa
airlines. Due to fatigue and the monotonous task during autopilot
flight path, both pilots dozed off leading to the fact that the airplane
passed by its original destination. When the crew awoke they managed
to return and land normally at their destination with no casualties [6].

Insofar it is possible to refer to hypovigilance and fatigue related
accidents as a special problem of our times, even though those of
course existed in every period of human history – but maybe not to
that extent.

Many professions nowadays do not include physical activity – which
is known to raise the vigilance and maintains it at a high level. On the
contrary, there exist many jobs with an usually monotonous occupa-
tion but where it is nonetheless indispensable to be alert all the time,
e.g. pilots, truck drivers, assembly-line workers, safety inspectors, life-
guards, etc. And in all that fields of work fatigue is a risk factor not to
underestimate!



1.3 structure of the master thesis 5

Because this risk has become more and more prominent over the
last decades, there exist in the meantime a large pool of studies which
examine the effects of hypovigilance in different fields of activity.

Horne and Reyner found out that up to 20% of all road accidents are
caused by hypovigilance [7] and the National Transportation Safety
Board discovered, that 30% of all truck crashes fatal to the driver are
caused by fatigue [8]. The clear connection between pilot schedules
and accidents is shown in [9] and a cautious estimate of 8% of fa-
tigue related aviation accidents is stated in [10]. But the true figure is
believed to be much higher.

Gaba et al. investigated the effect of extensive work schedules of
clinicians on patient safety and also briefly discussed the financial
aspects of a reduction of the working hours [11]. Sleepiness in nurse
shifts is responsible for an augmentation of potential errors during
the shift of 3.4% [12].

Similar studies can be found for many other professions too. In the
end all those studies show the urge for the development of functional
tools for vigilance surveillance, which warn drowsy people before
they make a possible hazardous error.

1.3 structure of the master thesis

part 1 In chapter 2 a short explanation is given, where the project
arose from, which goals we like to achieve with it and under which
framework the results are utilized. In chapter 3 we discuss the phys-
iological backgrounds of sleep and sleepiness, which processes are
run in human bodies when getting fatigued and we will discuss some
feasible countermeasures in order to prevent dangerous situations due
to hypovigilance. Chapter 4 will provide a detailed introduction into
Electrooculography (EOG), drawing a bow from anatomical and phys-
iological properties of the eye, over bioelectromagnetism to the actual
technical realization of the EOG device with the most prominent prob-
lems and solutions. In addition we focus on the role of EOG-devices
in vigilance surveillance applications. Chapter 5 gives an overview of
several existing methods of vigilance detection, which are based on a
variety of different (bio)signals. This should provide information to
roughly compare our EOG-based model with other approaches, with
the advantages and disadvantages becoming tangible.

part 2 Then the data processing, all mathematical tools and the
implementation used to achieve the results are going to be explained
in detail. Chapter 6 deals with the mathematical concept of Hidden
Markov Models (HMMs), giving an introduction into discrete HMMs
before extending the approach to continuous HMMs and other types
of basis-distributions than Gaussian. There we will also discuss possi-
bilities for model verification. In chapter 7 we will explain where the
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data we use comes from, how it has been provided and how we pro-
cessed it in order to obtain our input features for the model. Chapter
8 provides information about technical details in the implementation,
challenges which have been met and solutions we have come up with.

part 3 Here, in chapter 9 we eventually jump right into the setting
of the parameters and the final results. We are showing detailed plots
of many different characteristics of the output, like state sequences,
information criteria, pseudo-residuals and comparative distribution
plots. We will also take the time to discuss our findings in chapter 10.
In the concluding chapter 11, we will sum up our achievements and
drawbacks in the process of the model building and serve a general
outlook into future extensions and possible ameliorations concerning
the topic of EOG-based vigilance detection. Ultimately we will dare to
take an outlook into the future of EOG-based medical devices.

appendix In the appendix the commented source code of the imple-
mentation in R can be found, alongside with the detailed bibliography.



2
A I M O F T H E P R O J E C T

This diploma thesis is done in the framework of the project ”Classifi-
cation of vigilance states based on the EOG and EEG“ – a cooperation
between the department of Biomedical Systems of the Austrian In-
stitute of Technology (AIT), The Siesta Group, the Medical University of
Vienna and the Institut für Schlaf-Wach-Forschung (ISWF). The whole
venture is funded by the Austrian Research Promotion Agency (FFG).

The aim of this project is to develop a reliable model for a classifi-
cation of vigilance states, based on two biosignals, the EOG and the
EEG. To achieve that, the goal is to first develop two independent
models – one based on EOG (Electrooculography), the other one on
EEG (Electroencephalography) – and to compare the results respectively
explain possible differences.

My work focuses on building a model on EOG-data solely, us-
ing a three channel EOG recorded in the course of the SENSATION
project (see chapter 7). Therefore we decided on a (continuous) Hidden
Markov Model, with the vigilance states being the hidden information
and the EOG-signal the linked observations.

why hidden markov models? Hidden Markov models have al-
ready gained widespread use in different fields of pattern recognition,
which seems to be a good basis four our research topic. Larue et al.
showed in [13] that first order Hidden Markov Models are sufficient
to obtain a fairly good result on vigilance surveillance. However, they
related their findings to the Sensation Seeking Scale and discovered that
people with higher risk and sensation disposition show a larger drop
when becoming drowsy as overall calmer subjects.

At this place one has to mention that the range from alertness
to sleepiness cannot be easily separated in a number of distinctive
patterns like sleep itself, but remains mostly a continuous spectrum.
So one has to bear in mind that every classification in a number of
”wakefulness states“ is purely arbitrary, but which does not affect
the classification itself, i.e. the question: ”How drowsy is someone? “
can be answered nevertheless. Since we will evaluate our model with
the labeled data provided by the measurements of the Karolinska
Drowsiness Scale (see section 7.2.1), we will either use also 10 different
states, or a subset of them.

The advantages of using Hidden Markov Models are:

• Uses an iteratively adapting optimization algorithm

• No need to work with predefined states

7



8 aim of the project

• Easy interpretability of the yielded model and parameters

The disadvantages we could encounter in the future are:

• The states might not be clearly separable

• There is a probability to get stuck in a local optimum

• Large amounts of training data needed

Another research group in the project is studying the connec-
tion between brain wave patterns (EEG) and drowsiness whereas
a third group is taking charge of designing a feasible, robust and non-
disturbing sensor device for EOG measurement in everyday situations,
which could be integrated in automatic monitoring devices. Therefore
it has to be applicable by the users themselves, affecting them as little
as possible in their everyday lives, be it work, travel or at sport.

In the long term, which is not part of my diploma thesis any more,
the developed model should take its place in such online, i.e. real time
operating, applications. The interest in simple to handle vigilance
surveillance, classification and warning systems is big especially in the
field of workplace safety, road safety and medicine. Thinkable areas
of application are e.g.

• Alarm devices for drowsiness detection at operator’s stands, for
drivers and flight control personnel

• Test devices for quick vigilance checks, e.g. at traffic controls,
shift starts or in medical practices

• Wearable monitoring devices which record over a long time
period (24h+) in the natural environment of the user for

– detecting, classifying and treating diseases like chronic fa-
tigue syndrome, narcolepsy, attention deficit disorder or
sleep deprivation

– controlling effects and side effects of medications

– measuring the impact of different workplace ergonomics
on the productivity

We will discuss our results, the advantages and disadvantages, as
well as their relevance for possible future applications in detail in
part iii. In the following we will give an overview of the EOG and its
basics and characteristics before closing the introductory part with
other methods of vigilance classification.



3
P H Y S I O L O G Y O F H Y P O V I G I L A N C E

When talking about Hypovigilance, which is defined as a reduced
state of vigilance, there are many terms which are used synonymously
to a large extend:

sleepiness The state of being sleepy

fatigue Extreme tiredness resulting from mental or physical exertion

tiredness The state of wishing for sleep or rest

drowsiness A feeling of being sleepy and lethargic

All the definitions above are taken from Oxford Dictionaries and,
as can be seen easily, are largely self-referencing. So throughout this
master thesis all those terms will be used in the same sense, which
is to describe a physical state which in which a person is driven to
sleep and therefore no longer capable of reacting adequately to certain
stimuli. Even when distinguishing between different word definitions,
the effects on the human body are the same [14].

3.1 why humans get sleepy

That humans must sleep in order to survive goes without saying, and
the importance of sufficient restorative sleep for the well-being has
been shown in many studies [15].

The urge to sleep is mostly dependent on the individual circadian
cycle, which does depend primarily on the light-dark circle on earth.
Generally this rhythm makes us sleepy twice every 24h-period – once
in the nighttime and once approximately 12 hours later, in the after-
noon [14]. This is due to an increase of the melatonin level in the blood,
which leads to a lack of concentration, sleepiness and eventually the
onset of sleep itself [16].

3.2 reasons for workplace fatigue

When talking about workplace fatigue we mean sleepiness during
working hours, but unfortunately the problem extends to commuting,
which is mostly done by car. But why are so many people tired when
working respectively on their way to and from work?

One of the most affected professionals are such who do shift work.
This is because of varying timetables or night time shifts contradicting
with the natural circadian cycle, forcing the body to be fully alert at a
time where it wishes to sleep instead [17].

9



10 physiology of hypovigilance

Another weighty factor is sleep deprivation. We can distinguish
between total sleep deprivation, which is a complete abstinence of sleep
e.g. in a 24h shift and partial sleep deprivation, which is the reduction
of the total sleep time, e.g too short rests between several shifts. This
can be due to excessive working hours, which still exist in e.g. medical
professions with more than 70 hours a week, which can go up in
individual cases to 100 hours [18]. Another possibility to be sleep
deprived despite balanced working hours is suffering from a sleep
disorder as e.g. insomnia, narcolepsy or the restless legs syndrome.
People with medical conditions impairing the vigilance in daytime,
are strongly advised to consult a physician and to undergo treatment,
because some sleep disorders bear also severe health risks.

A third factor is the monotony of the work. Challenging tasks
are usually met with high vigilance (unless severely sleep deprived)
whereas dull and repetitive tasks promote inattention and sleepiness
[19]. This should be considered when it comes to the design of work-
place environments.

3.3 effective countermeasures

One of the most obvious countermeasures to fatigue is of course sleep
[17]. A measure which is more and more applied is the construction
of well-balanced timetables with shifts of maximal 12 hours length
[20]. This helps to reduce the total as well as partial sleep deprivation.
In addition there exist also a lot of studies which prove the usefulness
of recreational breaks during the shift, which should preferably be
used for short naps [21, 22, 23].

Another countermeasure which is applied nearly automatically
when possible is physical activity. Nearly everyone has already ex-
perienced the beneficial effect of a short walk to get focused again.
Like summed up by van den Hurk in [17], the effect of exercise or any
kind of movement achieve in rendering the test subjects alert again,
but only for a very short amount of time. A more durable impact
could be achieved when executing a durably physical work task, e.g.
lumberjacks, brick layers, etc.. Also very interesting is the connection
between regular physical activity and fatigue at work, although it is
not very strong [24].

The intake of stimulating substances with food and drinks is also
a popular method to battle sleepiness at work or while driving. The
effectiveness of stimulants, especially of the group of xanthines like
caffeine and theobromine are well explored [25, 26].



4
E L E C T R O O C U L O G R A P H Y

The electrooculography (EOG) is a biomedical signal source which is
based on the principle of bioelectromagnetism (BEM). Therefore we want
to start out with a short overview of history and how such signals are
created and measured. Then we will go into detail explaining the setup
and physiological phenomena detected in the EOG before speaking
about its applications in scientific research nowadays – especially in
vigilance detection and classification.

4.1 history

At the turn of the 19th century Galvani and Volta experimented with
the effect of electrical current on living organisms [27, 28], which lead
to great leaps in the understanding of electromagnetic stimulation.
One big step forward was the year 1865, when Maxwell published
his work on the now famous Maxwell Equations, describing the in-
extricably connection between electricity and magnetism in a set of
differential equations [29]. That lead to the understanding how to
obtain and interpret electromagnetic signals coming from electrical
currents in inner-body organs. But due to the extremely low ampli-
tudes of body-generated biosignals it took again some time until those
bioelectromagnetic fields could be recorded sensibly.

One of the pioneers in recording electric body signals was future
Nobel Prize winnner Einthoven, who used the string galvanometer
(originally invented by Ader) to derive the electrical field generated
by heart cell excitation. The electrocardiography (ECG) was born [30].

Since then many diagnostic and therapeutic methods based on BEM
have been developed. Among them are electroencephalography (EEG) to
measure the electric potentials in the brain, electromyography (EMG)
to measure the electric excitation of muscles and magnetic resonance
imaging (MRI) to obtain 3D pictures of body tissues. On the other
hand also many therapeutic devices use the knowledge of electric and
magnetic influences on the body, as cardiac pacemakers, defibrillators and
deep brain stimulation devices to aid people with Parkinson’s disease.

4.2 bioelectromagnetism

Malmivuo et al. give a general definition of Bioelectromagnetism as
follows:

11
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” Bioelectromagnetism is a discipline that examines the
electric, electromagnetic, and magnetic phenomena which
arise in biological tissues. “ [31]

This quote already reveals that the study of BEM is a vast interdisci-
plinary field between physics and electrical engineering up to (cell)
biology and medicine. But everything starts out at the smallest living
unit in the human body – the cell. Every body cell uses its membrane
as a controllable barrier to keep a certain equilibrium of ions inside
and outside itself. These ions could be charged positively, e.g. Sodium
(Na+) or negatively, e.g. Potassium (K−). The difference in electrical
charges inside and outside the cell causes an electrical voltage and a
corresponding bioelectromagnetic field [31].

But since the large part of biomedical sensors recording bioelectro-
magnetic body signals are applied on the skin not penetrating into the
tissue of interest, i.e. they are non-invasive sensors, they are therefore
not able to sense the tiny voltages of single cell potentials, but only of
larger united cell structures.

In general the detection quality of the such a body signal depends
on:

• The electrical and magnetic field intensity generated by the
source

• The conductivity of the tissues between the source and the sensor

• The distance between the source and the sensor

• The amplitude of the signal

• The amount of artifacts caused either by other electric fields in
the body or by the sensing equipment

In the following we will go into detail about how to manage such
problems, especially for the EOG.

4.3 physiology of the eye

The electrooculogram is the measurement of the movement of the eyes.
The eyes are the visual sensing organ of humans and are located in
the viscerocranium – the facial part of the skull. The anatomy of the eye
is depicted in the schematic figure 4.1. We are only taking interest in
the fact, that the cornea at the front side of the eye is charged relatively
positive, whereas the retina on the back side of the eye is charged
relatively negative. This originates from the higher metabolism rate
due to the hyper-polarizations and depolarizations of the nervous
cells in the retina [31, 32].

So the generated electric potential field can be described as a fixed
dipole resulting in an easy and robust mathematical model. So when
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Figure 4.1: Anatomy of the human eye, horizontal section. (Picture taken
from Wikimedia Commons; ”File:Schematic diagram of the human eye en.svg“)

the eyeball moves, the dipole field moves along with it, causing differ-
ent potentials around the eye.

4.4 technical realization

To obtain a usable EOG signal, one needs a setup with electrodes,
cables, an amplifier and some signal processing on the computer. We
will briefly talk about all that steps and the major obstacles in EOG
recording.

4.4.1 Electrodes

To record the EOG signal, which is transmitted through the body
tissues, a good skin contact with low impedance is necessary. The
leading technique is to use Ag/AgCl hydrogel electrodes, which
are also standard equipment in EEG recordings [33]. The advantage
is the low impedance thanks to the hydrogel. Meanwhile also self
adhesive Ag/AgCl electrodes are available, making the process of
electrode preparation as easy as possible. According to [34] at least
two channels have to be recorded to be able to cancel out noise from
other biopotentials like EMG and EEG.

When talking about electrode positioning, there seem to be various
methods described in the literature – mainly fitted to the respective
purpose [35, 36, 37]. In general one could distinguish between two
major classes of electrode positioning (see figure 4.2).
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Figure 4.2: Channel electrode positions marked by white dots. Ground elec-
trode marked by black dots. Left picture: positioning according to Rechtschaf-
fen & Kales. Right picture: positioning for awake tasks – seperate horizontal
and vertical channels. Portrait picture taken from C. Braun, M. Gründl,
C. Marberger, and C. Scherber, “Beautycheck - Ursachen und Folgen von
Attraktivität. Projektabschlussbericht,” 2001.

The first positioning was introduced by Rechtschaffen and Kales for
sleep research:

”The recommended procedure is to record on one chan-
nel the potentials from an electrode approximately 1 cm
above and slightly lateral to the canthus of one eye and a
reference electrode on either homolateral ear lobe or mas-
toid. On the second eye movement channel are recorded
the potentials from an electrode 1 cm below and slightly
lateral to the outer canthus of the eye referred to the con-
tralateral ear or mastoid, i.e. both eyes are referred to the
same ear or mastoid electrode. “ [34]

When this method is used nowadays, one usually uses also one
ground electrode on the forehead for noise cancellation purposes. The
electrode placement is depicted in the left picture in figure 4.2.

The second way of electrode positioning is normally used for the
recording of eye movements in an awake state of the subject. Therefore
it is necessary to be able to distinguish between vertical and horizontal
eye movements. This is achieved by placing two electrodes in a vertical
line around one (or both) eyes, usually below the eye and above
the eyebrow. This could be also done for both eyes seperately. The
horizontal signal is recorded from two electrodes either placed outside
the lateral canthi of the eyes, or only around one eye with the second
electrode being placed on the side of the nose. Since eye movements
are coupled, the most common – because most convenient – method
is the position depicted in the right picture in figure 4.2. The ground
electrode is again placed at the forehead.



4.4 technical realization 15

4.4.2 Amplification and Processing

The electrodes are connected via shielded cables to an appropriate
amplifier for biosignals. The input signal frequencies range from
DC - 100Hz, the signal amplitudes typically range from 10-1000µV
(although information in literature varies [39, 32, 40, 33, 31]). Since the
EOG signal is derived from the dipole of the eye, the signum and the
amplitude of the signal are proportional to the displacement of the eye
ball from the neutral position. For the horizontal channel that means:
in the neutral position the system is calibrated to give a (nearly) zero
amplitude. The more the eye ball is turned to the right the higher is
the signal amplitude, the more it is turned to the left, the smaller (see
figure 4.3). The same principle is analogously applicable to the vertical
channel.

Figure 4.3: Schematic EOG signal generation, taken from J. Malmivuo and
R. Plonsey, Bioelectromagnetism : principles and applications of bioelectric and
biomagnetic fields. New York : Oxford University Press, 1995.

After signal amplification, it is necessary to process the signal in
order to obtain the desired frequency range and to remove artifacts.
Up to date biosignal amplifier already use hardware-implemented
filters to pick the right frequency band of interest, get rid of DC-drifts
and 50 Hz power line noise. A block diagram of such an amplifier
built by Usakli et al. [36] is shown in figure 4.4. As frequency band
of interest, the literature defines frequencies from DC, i.e. 0 Hz, up
to 100 Hz, but most of the published articles have declared the range
from DC to 30 Hz as feasible window [41].
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Figure 4.4: Block diagram for EOG data processing, taken from A. B. Usakli,
S. Gurkan, F. Aloise, G. Vecchiato, and F. Babiloni, ”On the use of electroocu-
logram for efficient human computer interfaces,“ Computational Intelligence
and Neuroscience, vol. 2010, 2010.

4.4.3 Artifacts

As all biosignals, also the EOG signal is disturbed by a number of
different sources, causing artifacts in the signal, some of them so
severe, that one has to take care of them before using the signal for
further computation. In regular research conditions one emphasizes
artifact avoidance, e.g. instructions of the test subjects to not blink,
move, etc. But this is not possible in many application conditions,
like the one we want to investigate later on. Since we use data from
a driving simulator study, it is perfectly normal and necessary for
the test persons to blink and move their head while driving. In the
following we mention the most common artifact sources, and how to
possibly suppress their influence.

power line interference Electricity is distributed in electrical
networks through power lines which we can find everywhere
around us. Those power lines create electromagnetic fields which
couple into literally everything, e.g. electrodes, cables and even
the human body. In addition, all electrical equipment which is
plugged in receives the same frequency directly over the power
cable. This frequency is either 50 Hz (standard in Europe) or 60

Hz. Since it takes great efforts to cancel out all effects of power
line interference, it is more useful to rely on 50/60 Hz notch
filters to eliminate the signal distortion. Most of the amplifiers
come already equipped with such analog notch filters.

base-line drift Since the signal frequencies of interest range ap-
proximately form DC to 30 Hz [41] it is advisable to use a direct
coupled amplifier (DC amp) in order not to distort or lose the low
frequency components. On the other hand this brings also the
disadvantage of a so called baseline drift, i.e. the signal voltage
changes slowly over time. This can be due to manifold rea-
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sons like temperature changes, changes of electrode impedance
and/or skin resistance. Unfortunately it is not possible to filter
those drifts, so it is left over for software algorithms for baseline
drift correction [40, 42]. This has to be done in order to allow
threshold based classifiers to perform properly. Another method
is introduced by Yagi [43], which uses re-calibration in regular
time intervals. This is not applicable to a vigilance surveillance
tool, e.g. while driving.

electrode crosstalk The relative proximities of the different elec-
trodes and the two eyes to each other are likely to produce elec-
trode crosstalk, i.e. excitation of nearby electrode through electric
potentials. The electrode crosstalk can be responsible for up to
54% of the recorded potentials, depending on electrode position,
eye rotation angle and the individual [44]. Therefore electrode
crosstalk cannot be ignored and has to be encountered with at-
tenuation algorithms. Shinomiya et al. have done basic research
on what has been undertaken to solve that problem, and made
in-depth studies coming up with a simple yet effective solution
[44].

emg signals The human body as a connected system produces
a lot of different electric biosignals like ECG and EMG. The
bigger the muscles involved in the movement, the larger is also
the produced bioelectrical field. That means that the potential
recorded at the EOG electrodes is influenced by EMG artifacts,
depending on their strength and proximity. This means that
small facial muscles around the eyes do distort the signal as
well as movements of the farther but larger neck muscles. Since
it is not applicable in our case to prevent the probands from
moving, we have to deal with the artifacts. Fortunately is the
main frequency band of EMG signals 20-200 Hz with a peak in
frequency power around 60-80 Hz [45, 46]. Since we are only
interested in frequencies below 30 Hz for the EOG, we do get
rid of the major part of the EMG artifacts by high pass filtering
the signal (see figure 4.4).

blinks Blinking is a natural reflex behavior of all humans to keep
the cornea moist and protect the eye from potential hazards.
Adult blinking rate varies between 4.5 to 26 blinks per minute
in healthy subjects, depending on the activity, with an average
of 17 blinks per minute [47]. When using the EOG as a long
term surveillance signal, it is impossible to advise the subjects
to not blink, so it is necessary to detect and filter out distortions
due to blinking. In offline studies manual blink detection and
removal is done, but this is not suitable for online applications.
To automatize this procedure many different approaches have
been found and implemented. When blinking the eyeballs shoot
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upwards, leading to a sharp edged dislocation of the EOG signal.
Merino et al. employ simple time thresholding of the whole
blink duration for detection [39] whereas Venkataramanan et al.
use the derivation of the signal, i.e. steepness of the ascend, to
differentiate between blinks and intentional upward movements
of the eyes [32]. A quite different approach is described by Reddy
et al., using empirical mode decomposition [48].

Since it is not possible to perfectly clean the EOG signal from all
artifacts, it is advisable to have some artifact rejection mechanisms
implemented, which automatically exclude disturbed sections of the
signal from the classification process. This is especially important for
applications which base decisions on short time periods, e.g. human-
computer interfaces.

4.5 applications

The first widespread use of EOG signals, which also made them
famous, was in sleep research, where they recorded the rapid eye
movement (REM) phases while dreaming. Since then the EOG signal
has grown more and more popular due to its easy recording and
robustness and is used for example in following application fields:

• In sleep labors it is still used for REM-sleep detection and other
measures [49].

• Oculomotor abnormalities like nystagmus, strabismus and su-
pranuclear oculomotor dysfunction can be diagnosed [50, 51].

• The already noted linearity of the EOG signal to the angle of
rotation of the eyeball makes the EOG, next to camera based
systems, suitable for vision tracking systems [52, 53].

• It is frequently recorded alongside with EEG signals, helping to
identify blink and eye movement artifacts in the EEG signal [54].

• It has also grown more and more popular as standalone source
for human machine interfaces (HMI), where the EOG signal is used
to control a machine, e.g. a screen keyboard or a wheelchair to
aid handicapped people [36].

• It is possible to used several parameters derived from the EOG
signal for vigilance classification (see next section 4.6) and even
for activity recognition [42].

4.6 vigilance detection

We talk about different systems which are used for vigilance detection
in chapter 5. Now we want to concentrate on EOG-based methods to
detect phases of drowsiness.
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EOG signals recorded from awake subjects normally consist of a
horizontal and a vertical channel to be able to differentiate the two
axis of movement, as well as blinks. A whole variety of so called
features, i.e. heuristic measurable properties, can be derived from the
two channels, e.g. frequencies, velocities, amplitudes. Some of them
have been proven to be suitable for automatic drowsiness detection
algorithms, which we want to discuss in the following.

4.6.1 Blinks

The by far most used EOG feature in vigilance classification is the
blink. This may astonish, since we talked about blinks as mere artifacts
in section 4.4.3. But different to applications which use the EOG to
track the vision angle or communication with a computer system,
blinking – as a natural reflex – reveals also the state of vigilance of a
person. Since it is not feasible to manually detect blinks, algorithms
have been developed which do that task successfully [55]. Once one
has located the blinks, it is easy to derive the:

blink rate As mentioned before, the blink rate in a healthy adult
human being ranges between 4.5 to 26 blinks per minute – de-
pending on the task. Mainly visual tasks which afford high
concentration as reading or watching a movie highly decrease
the blink rate. When the attention fades, i.e. the person gets tired,
the blink rate increases [56].

blink duration The blink duration, i.e. the time the eyelid closes
and opens again, is also a meaningful parameter for vigilance
classification [56, 55]. Slower eyelid movements are an indicator
for fatigue. Apart from not being able to see and therefore react
to visual stimuli while the eyelid covers the pupil, long eyelid
closure times can lead to microsleep [57] – sometimes with fatal
consequences.

blink amplitude Measuring the amplitude of the recorded blink
in the EOG signal can also give information on the alertness of
the subject. Under alert conditions, blinks are short and forceful.
Drowsiness is then detected when blinks have smaller ampli-
tudes, corresponding to partial eye closure [55, 58]. Nevertheless
one has to be aware that long blinks frequently have very high
amplitudes. So a classification algorithm should label long blinks
or small blink amplitudes as a sign of drowsiness.

Please pay attention to the fact that the shape and frequency of
blinks are highly individual. A system exploiting the above mentioned
features has to be calibrated on the person before use!
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4.6.2 Slow eye movements

Slow eye movements (SEM) have already been described in [34] during
transition between wakefulness and sleep. It has been shown that
in phases of diminished vigilance before sleep onset there is a high
correlation between typical EEG patterns and SEMs [59], i.e. sleepy
subjects have a much higher portion of SEMs than alert subjects.

A frequently used method to extract the low frequency waves of
SEMs from the EOG is wavelet transformation, like described from
Ma et al. in [60]. Their results are promising so that the detection of
SEMs could advance to the second standard in EOG-based vigilance
detection (next to blink related algorithms).

4.6.3 Amplitude, Velocity, Frequency

Hanke et al. tried a different method for vigilance detection, using
EOG amplitude, end velocity – the first derivation of the signal – and
the frequency – measured in two bands – to deduce fatigue in test
persons [61]. They carried out the Mackworth clock test on 10 subjects,
showing distinct changes of the selected features over time. Due to
the unsure correlation parameters reaction time or mistakes, it is not
easy to qualify the results. But there seems to be a certain correlation
of the ratio between high and low frequency part of the EOG signal.
This could possibly be due to SEMs.
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O T H E R A P P R O A C H E S F O R V I G I L A N C E
D E T E C T I O N

In the last chapter we learned about the EOG and how we can use its
characteristics in vigilance surveillance. But it does not come surpris-
ing, that also other parameters have been used for this task. There exist
literally hundreds of studies which have investigated the connection
between different physiological measures – invasive and non-invasive
– and attention. In the following we want to give a quick overview
over the most promising vigilance detection systems besides the EOG.

5.1 eeg

The EEG is – as it refers directly to the brain wave patterns – probably
the most accurate biosignal attainable when it comes to a classification
of vigilance states.

Minkwitz et al. [62] investigated the difference in the EEG-signal
between drowsiness and a relaxed state and evaluated it with the
reaction time in test settings. One of the main fields of interest in
vigilance detection – drowsy driving – has of course also been center
of interest, e.g. in [63, 64]. In [63] They used continuous wavelet
transform of the signal and a support vector machine classifier to
distinguish between three different states of vigilance. Validating the
data by video analysis of the drivers in the simulator, they achieved a
classification accuracy of 96%.

Another way was gone by Coufal [64], who used fuzzy system
models. Those have the advantage of a small parameter set, and also
yield accuracies of nearly 80%.

However, one should not forget that the recording of EEG-signals
is cumbersome and the devices are considered very inconvenient by
the test subjects. So despite all of the qualified work at that field, it
does not seem likely for EEG-based systems to find their way in our
everyday lives in the near future.

5.2 emg

The EMG is one of the oldest bioelectrical signals derived in medical
science. But it seems difficult to obtain reliable results in vigilance
detection with EMG alone. Nonetheless the EMG is widely used as
a signal source to filter out artifacts from EEG signals [65, 66], and
it has also been shown that implementing the EMG pattern into the

21
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vigilance classification algorithm, the detection accuracy was increased
in comparison to EEG alone [67, 68].

5.3 cameras

Since the uprise of pattern recognition in image processing, cameras
have been used to fulfill different automatized tasks, e.g. face recogni-
tion, eye tracking, activity recognition, etc. [69, 70, 71].

Camera-based systems allow to detect a whole range of visual pa-
rameters which can be also used for vigilance detection.Those are
for example facial expression, head position, eyelid movement and
gaze movement [72]. Most attention in research lies on the eyes, de-
termining features which can be well extracted like eyelid closure
time and PERCLOS, the percentage of eyelid closure over the pupil
[73, 74]. Actual detection systems yield an accuracy of 90% [74]. For
further technical details on this field of vigilance surveillance I strongly
recommend the literature of Ji et al. [72].

The advantages of camera based systems are quite obvious: they
can track multiple parameters at once which helps to yield better
classification results. In addition the systems are contact-free, sparing
the users from possible impairments due to the sensors. The disadvan-
tages are the need for a camera mounting allowing to keep track with
the subject all the time, dependency on sufficient lighting (which is
solved e.g. in cars with active near infrared diodes) and the merely in-
ability to construct a body-mounted device for camera-based vigilance
classification.

At the state of the art it seems, that vision based vigilance detection
systems is going to be the predominant method in all fixed working
environments, e.g. air traffic control towers, operators stands and all
sort of drivers cabins.

5.4 pupillography

The instrument of pupillography, relies on the visual detection of the
pupil with an infrared-based camera system. The testing scenario usu-
ally consists of recording infrared images from the eyes for 10 minutes,
preferably in a dark, quiet environment [75]. Pupil behavior between
alert and sleepy persons differs in this task. Pupils in alert people stay
dilated and oscillate with high frequency and low amplitude, whereas
these factors are reversed for fatigued people, which results in a very
clear distinction between alert and drowsy subjects [75, 76].

So far, pupillography is implemented as a medical test (e.g. for
narcolepsy patients) and takes full attention over the whole 10 min-
utes interval, preferably in a dark surrounding and eyes wide open.
Although Deng et al. [77] have overcome the problem of partial eyelid
closure with refined estimating algorithms, the whole package still is
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not fitted for an online vigilance detection system which can be used
to monitor people in their working environment.

5.5 skin conductance

Skin conductance is a very old and simple biosignal, measuring the
conductivity of the human skin, influenced mostly by sweating which
is controlled by the central nervous system. It was and is studied
mainly in psychology to measure body responses in different situa-
tions. There has been some research to align skin conductance and
alertness, i.e. reaction time on tests, but with ambiguous results [78].

Boucsein et al. [79] showed, that when combined with other biopa-
rameters – they chose the heart rate variability – a quite acceptable
vigilance detection can be achieved. The huge advantage of such a
system is the easy recording of the signals, which can be done with
two contact electrodes, e.g. implemented into the yoke of aircrafts.

5.6 non-body-related sensors

Nowadays many automotive companies invest in the research of
attention classification systems integrated in their products with the
aim of advising the driver to take a rest before his drowsiness signs
become too alarming.

In [80] Mercedes Benz compared their already developed system
based on driving lane data (position of the car relative to the lane,
recorded by cameras) to odometric data, i.e. inertial sensors, steer-
ing wheel parameters. It has been shown that especially the camera
based systems provide a good approximation on the subjectively rated
Karolinska Sleepiness Scale.

A similar approach has been used by the Ford company in their
fatigued driver detection system Driver Alert. They also rely on camera
based pattern recognition algorithms to analyze the trajectory the car
is taking in its lane [81]. A conspicuous behavior will lead to warnings
indicating a rest.

The advantages of such systems are that it feels more comfortable
for the user to not be directly cabled into the vigilance measure system.
On the other hand, those systems often lack accuracy and can be used
only in the machine they are built in.

5.7 integrated systems

Like stated in the above points, some biosignals have been proven
to be good estimators of the overall alertness level of humans. But
in order to create more robust and exact models for vigilance classi-
fication, a multiparametrical approach seems to be most promising,
i.e. the system takes different biosignals as input as e.g. EEG, EOG,
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camera systems as well as data from optional environment sensors
[82]. Nevertheless will a profound research on individual input signals,
such as the EOG, increase the accuracy rate of integrated systems too.



Part II

M E T H O D S
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H I D D E N M A R K O V M O D E L S

The following chapter is dealing with the theoretical background of
Hidden Markov Models (HMMs) and is based on the work of Rabiner
[83] (notably section 6.1 and 6.2) who uses Hidden Markov Models
for speech recognition applications. This article is fairly popular for
an introduction into the functionality of Hidden Markov Models and
the associated expectation-maximization algorithm (EM-algorithm) and
is therefore the foundation of many research results concerning the
application of these mathematical tools.

Since the first description of Hidden Markov Models in the 1960s,
this method has spread over many different research areas and is
nowadays present in fields like speech recognition [83], activity recog-
nition [84, 85, 86] and gene sequence alignments [87, 88].

Generally speaking, Hidden Markov Models are stochastic (non-
deterministic) models for processes which possess different distinctive
states which are not known, and must therefore be guessed. How to
proceed to make an educated guess, we will see in the following:

6.1 discrete hidden markov models

Discrete HMMs are the most straightforward form of the model and
are therefore qualified as a presentation of the basic principles. They
are nevertheless indispensable for applications with a narrow set of
observable outputs, e.g. genome sequence alignment.

6.1.1 From Markov Chains to Hidden Markov Models

Prior to the theory of HMMs it is necessary to clarify the essential
components of Hidden Markov Models.

A (discrete-time) Markov Chain (MC) is a set of (discrete) random
variables X = {Xt|t ∈ N} which fulfills the so called Markov property
(MP):

P(Xt+1|Xt, . . . ,X1) = P(Xt+1|Xt) (6.1)

for all t ∈ N i.e. all future events depend only on the present one.
To be more precisely, the above stated is called a first order Markov
Chain, because the probabilities of future states depend only on one
state – the present one.

27
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This can be generalized to a Markov Chain of order q ([89] ), which
has to fulfill the Markov property

P(Xt+1|Xt, . . . ,X1) = P(Xt+1|Xt, . . . ,Xt−q). (6.2)

Such Markov chains of higher order are used in genomics and bioin-
formatics as well as in cryptology [90, 91]. Though giving a better
connection to the previous time steps, Hidden Markov models which
are based on higher order MCs are often complex to handle while the
information gain is modest.

Therefore only first order Markov Models are used in the following
theoretical discussion of Hidden Markov Models and for the vigilance
classification application.

Now back to regarding the Markov Chain X. At every discrete time
step t, Xt yields a certain value Si ∈ {S1, S2, . . . , Sn} out of a finite
n-set of different states. A fixed sequence of states produced by a
Markov Chain X will be denoted as S = {St|t ∈N}. Please take notice
of the different font types of “S” which are used as well as the sub-
and superscript indices to differentiate between a fixed state sequence
S, its elements St indicating the position in the time domain and the
actual state symbol Si indicating the according element of the discrete
state domain.

Example: A Markov Chain X = X1,X2,X3,X4,X5 with the length
of five may yield a sequence S = S1,S2,S3,S4,S5 = S2, S2, S1, S2, S1
consisting of the two different states S1 and S2.

Considering the minimal example above it is easy to see, that there
has to be a certain possibility for the states to change over time. The
so called state transition probability

aij = P(X
t+1 = Sj|X

t = Si), i, j ∈ {1, . . . ,n} (6.3)

is the probability to go from state Si to Sj in one time step. Obviously
all aij have to obey the standard stochastic constraints:

aij > 0 ∀i, j (6.4)
n∑
j=1

aij = 1 ∀i. (6.5)

To get a compact notation, the state transition probabilities could be
written in a single n×n-matrix

A =


a11 . . . a1n

...
. . .

...

an1 . . . ann

 (6.6)

If the state transition probabilities do not depend on the time t then
the Markov Chain is called homogeneous. If not denoted otherwise, all
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discussed Hidden Markov Models throughout the next chapters will
be based on homogeneous Markov Chains.

To depict a vivid example, which should clarify how the state
transitions interact with a Markov chain, let the states Si correspond
to three different weather situations :

S1 = sunny

S2 = cloudy

S3 = rainy

Assuming that a meteorological station records the actual weather
every day (at a fixed time, e.g. noon), then the emerging data could
be interpreted as a three-state time discrete Markov Chain, which
could be graphed as in figure 6.1. Hence the state transition matrix A

S1

a22

a11

S2 S3

a33

a12 a13

a21 a31

a23

a32

Figure 6.1: Three-state Markov Chain with transition probabilities

specifies the probabilities of a daily change in the weather. Filled with
randomly chosen numbers A could look like:

A =

 0.4 0.3 0.3

0.1 0.2 0.7

0.4 0.2 0.4


The state transition a11 denotes that, given a sunny day, the probability
of an additional sunny day is 0.4. The probability of 3 sunny days in a
row plus a rainy day plus a cloudy one would be: (a11)3 · a13 · a32 =
(0.4)3 · 0.3 · 0.2 = 0.00384 . So in general the probability of a certain
state sequence S, generated by a Markov Chain X, can be calculated
by

P(S) =
T∏
t=1

aij (6.7)

In the following the theory of Markov Chains is extended step by
step to obtain the basics of Hidden Markov Models. These could
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be seen as Markov Chains where at every time step t the stochastic
variable Xt generates a certain state St which, on the other hand,
produces an output Ot itself. This output is the only thing which
is observable while the states themselves remain hidden! Hence one
receives two linked sequences: one state sequence S = S1,S2,S3, . . .
and an observation sequence O = O1,O2,O3, . . . like shown in figure
6.2.

O1

S1

O2 O3 O4

S2 S3 S4

Figure 6.2: The two linked sequences of a HMM

Note that these sequences are finite in any application, so they could
also be seen as vectors – and they will be treated as vectors in the
modeling process later on.

Every element Ot of the observation sequence O refers (analogously
to the state sequences) to a specific observation Ok ∈ {Ol|l = 1, . . . ,m}

where m ∈ N. In a HMM with discrete observations, the number
of distinct observations Ok normally is bounded by m < ∞. For
further information on that topic see [92]. The different observations
O1, . . . ,Om are called the discrete alphabet (of observations) and m the
discrete alphabet size. On purpose of better understanding, figure 6.2
is shown again with random values filled in. So figure 6.3 shows the
distinct states and observations of such two random sequences.

O3

S2

O1 O4 O2

S3 S2 S1

Figure 6.3: HMM with exemplary states and observations filled in

Every observation Ok occurs with a certain probability bi(Ok) de-
pending only on the current state Si

bi(Ok) = P(Ok|Si) (6.8)
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Analogous to the state transition probabilities it comes also handy to
write the occurrent bi(Ok) in form of a n×m-matrix

B =


b1(O1) . . . b1(Om)

...
. . .

...

bn(O1) . . . bn(Om)

 (6.9)

Like for the aij there hold also the standard stochastic constraints:

bi(Ok) > 0 ∀i,k (6.10)
n∑
k=1

bi(Ok) = 1 ∀i. (6.11)

Note: like the aij also the bi(Ok) are regarded stationary, i.e. the
observation probabilities do not change with time t but depend only
on the actual state Si!

Now that we have defined that a HMM consists of a hidden state
sequence and a visible observation sequence it is obvious that we
do not know at which state to start the model. That is the reason
why the initial distribution vector I is introduced, which indicates the
probabilities of starting in a certain state.

I =


i1
...

in

 (6.12)

Of course the initial distribution vector satisfies also the standard
stochastic constraints

ik > 0 ∀k (6.13)
n∑
k=1

ik = 1. (6.14)

To get an idea of how HMMs work and why they have such a vast
field of application we are going to take a look at the three models
from [83], page 259, which are perfectly suited for that case: they are
simple enough to be understood right away, but are nonetheless able
to explain the main working principles and aims of Hidden Markov
Models:

Two people, locally separated, are part of the same process. Person
1 performs a series of coin tossing experiments and Person 2 is told
only the results (i.e. observations) – namely heads or tails – of each
round. For example

O = O1,O2, . . . ,OT = HHTTTTHTHH . . . T

Note that in this case we identified O1 = H and O2 = T . Given this
specific scenario above, the question arises how to explain respectively
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model the observation sequence. Merely the first problem to encounter
is to decide on the number of different states in the HMM. One has to
keep in mind that the model complexity as well as the computing time
increases dramatically with every new state added. So an additional
state in a HMM has to bring considerable advantages in the model
preciseness to be of any practical use!

In the following three different models (with one, two and three
states) are discussed and additionally depicted in table 6.1.

one. A one state model would yield a single state transition prob-
ability A = a11 = 1, because in every time step there will take place
only the transition from the single state to itself. Additionally there
are two different observations possible (alphabet size = 2), namely
heads (H) = O1 and tails (T) = O2. Taken a “fair coin” the probability
for each observation to occur is b1(O1) = b1(O2) = 0.5 . On the other
hand it could also be thinkable, that the coin is “unfair”, i.e. biased, so
that the probability distribution for heads/tails is for example 0.4/0.6.
Rabiner calls this one-state model “degenerated” because there is no
real need for a concept of states and transition probabilities (there is
nothing hidden, in this HMM). All results could also be obtained with
traditional stochastic calculation.

two. A two state model consists of the states S1 and S2, a 2× 2
state transition matrix A and a 2× 2 observation probability matrix B.
Note, that the two states, which symbolize two different coins, could
have two quite different biases – in fact, this is the only sensible reason
for adding a new state. The state transition probabilities are another
stochastic process which could be imagined for example as another,
unrelated, coin tossing experiment.

three . Here the two-state model from above is again expanded by a
new state. This yields the states S1, S2, S3 and the possible observations
O1,O2 along with the 3× 3-matrix A and the 3× 2-matrix B. Of course
also this model is more reasonable with three quite differently biased
coins.

Given this three different Hidden Markov Models for the coin
tossing experiment one is naturally interested in the question, which
one of these matches best the underlying unknown conditions. Gut
feeling may tend to a model with more states because such models
have plenty of undefined parameters, also called degrees of freedom,
which can be tweaked and adjusted. In the one-state model there
is only one parameter to determine: the observation probability (or
bias) for heads b1(H) (because the observation probability of tails can
be easily obtained through b1(T) = 1 − b1(H)), because they have
to fulfill the stochastic constraints 6.11, i.e. they must add up to 1.
In the three-state model on the other hand there are already nine
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States Graph of HMM Exemplary Sequences

i

S1

a11

b1(H)

b1(T)
O = HHTTTTHTHH . . .

S = 1 1 1 1 1 1 1 1 1 1 . . .

ii

a11

S1 S2

a22

a12

a21

b2(H)

b2(T)

b1(H)

b1(T)
O = HHTTTTHTHH . . .

S = 2 2 2 1 1 2 1 1 1 2 . . .

iii

S1

a22

a11

S2 S3

a33

a12 a13

a21 a31

a23

a32

b1(H)

b1(T)

b3(H)

b3(T)

b2(H)

b2(T)

O = HHTTTTHTHH . . .

S = 1 3 2 2 2 1 1 3 1 3 . . .

Table 6.1: Different Hidden Markov Models for the coin tossing experiment
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unknown parameters to calculate – six transition probabilities and
three observation probabilities. (The missing parameters result again
from the stochastic constraints 6.5 and 6.11.)

Although there lies a truth in the way of thinking that complex
models yield better results, this can quickly turn out to be a curse.
Not only does the computational effort increase quadratically with
every state added, but assuming that the real experiment is a one-
coin-flip, a three (or more) state model will be objectively not accurate.
A model which is more complicated than the real system is called
underspecified. It will yield indefinitely many best solutions because
there exist parameters which are not needed, and therefore their value
does not matter.

So in the end, the aspired Hidden Markov Model is the one which
will give the best explanation for the observed data using the least
variables to determine!

6.1.2 The Three Basic Problems for HMMs

All elements needed to form a proper Hidden Markov Model were
introduced throughout the last section. These are:

Si . . . states of the model, i ∈ [1,n]

n . . . number of distinct states

A . . . n×n−matrix of state transition probabilities

I . . . n× 1−vector of the initial state distribution

Ok . . . observations of the model, k ∈ [1,m]

m . . . number of distinct observations

B . . . n×m−matrix of observation probabilities

The parameters needed to determine a Hidden Markov Model are
therefore A, B and I and will be referred to as the parameter set
Λ = (A, B, I). Given such a set of parameters, the resulting model
could work as a generator of possible observation sequences (of lenght
T ) in a very simple way:

1. Decide on an initial state S1 = Si according to the initial state
distribution I

2. set time t = 1

3. Choose an observation O1 = Ok according to the observation
probabilities for the state Si, i.e. according to bi(Ok)

4. Determine the next state S2 = Sj according to the state transition
probabilities aij

5. increase time step t++

6. return to point 3 if t < T ; else terminate sequence



6.1 discrete hidden markov models 35

This shows, that it is very simple to generate training sequences for
well known models. Unfortunately that is not the case in everyday
applications. In the by far most common case one gets one (or more)
observation sequences but no hints whatsoever concerning the number
of states or the parameters involved in the true underlying model. That
leads to the Three Basic Problems for HMMs:

problem 1 How to compute the probability P(O|Λ) of a given ob-
servation sequence O = O1,O2, . . . ,OT under a fixed parameter
set Λ = (A, B, I)?

problem 2 How to chose the “best” state sequence S = S1,S2, . . . ,ST

for the given observation sequence O and the parameter set Λ,
i.e. which state sequence does the best job in explaining the
model regarding probability and simplicity?

problem 3 How to maximize the probability P(O|Λ) by adjusting
the parameter set Λ?

The three problems mentioned are tightly woven into each other,
which will be clear by the moment that each of the problems has to be
solved repeatedly to gain an optimal solution. The next sections will
provide the formal solutions.

problem 1 The aim is to compute the probability P(O|Λ), given
an observation sequence O and fixed parameters Λ. A very straight-
forward way of doing this, would be to sum up the probabilities
P(O|Sz;Λ) of O under every possible state sequence Sz, z = 1 . . . nT

with respect to the parameter set Λ.

Please behold for the following short section that the index notation
slightly differs from what was introduced before. That is done for rea-
sons of better understanding of the underlying principles. Afterwards
the original notation will be used due to its shorter form.

A single state sequence S = S1,S2, . . . ,ST occurs with the probability

P(S|Λ) = iS1 · aS1S2 · aS2S3 · · ·aST−1ST (6.15)

where iS1 denotes the initial probability of the state S1 and aSiSj is
the probability of a transition from state Si to state Sj. The probability
of a given observation sequence O under S and Λ is calculated by

P(O|S;Λ) =
T∏
t=1

P(Ot|St;Λ) (6.16)

Formula 6.16 can also be written as

P(O|S;Λ) = bS1(O
1) · bS2(O2) · · ·bST (OT ) (6.17)
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Please note, that these two results only hold under the condition of
stochastically independent observations!

The probability of a given observation sequence O under a certain
state sequence S (and a fixed parameter set Λ) is simply the joint
probability of the appearance of O and S, i.e. the product of the single
probabilities:

P(O, S|Λ) = P(O|S;Λ) · P(S|Λ) (6.18)

To yield the probability of O over all possible state sequences Sz it is
necessary to sum up the term 6.18 over all state sequences. This gives
the formula

P(O|Λ) =

nT∑
z=1

P(O|Sz;Λ) · P(Sz|;Λ) =

=
∑

S1,S2,...,ST
iS1bS1(O

1) · aS1S2bS2(O2) · · ·aST−1STbST (OT )

(6.19)

Those products can be interpreted in a very straightforward way: start-
ing at time t = 1 the system is in state S1 with the initial probability
iS1 and generates the observation O1 with probability bS1(O1). With
the transition form t = 1 to t = 2 the state S1 changes to S2 (or stays
the same) according to the transition probability aS1S2 . The system in
state S2 generates again an observation O2 with probability bS2(O2),
and so on . . . This process ends at the time t = T , i.e. the length of the
observation sequence O, when no more output is generated.

As comfortable this approach to the solution of problem 1 is, a closer
look at the computational costs shows a disadvantage too important
to neglect. A quick glance confirms a total of nT sums, each consisting
of 2 · T products. Even a relatively small amount of states, e.g. n = 4,
and a very short observation sequence, e.g. T = 100 would need
2 · 100 · 4100 ≈ 3.5 · 1062 computations, which is totally unacceptable
for any practical application (since one usually operates with far
greater numbers of states and observations).

The actual holder of the title of the fastest supercomputer on earth
– the K computer, 20

th February 2012 – can do over 10 petaFLOPS,
i.e. 10 · 1015 floating point operations per second [93]. For a solution
of the task above even this computer would need 1.1 · 1039 years, or
roughly 1029 times the estimated age of the universe!

A by far not so obvious solution, gives us the so called forward-
procedure which is the first part of the well known Forward-Backward-
Algorithm (see [83]) – an algorithm developed for an efficient calcula-
tion of this problem.

forward-procedure: The forward variable αti is defined as

αti := P(O
1 . . . Ot,St = Si|Λ) (6.20)
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i.e. αti is the probability of the system (with parameters Λ) being in
state Si at time t, having generated the partial observation sequence
O1 . . . Ot. To obtain αti for all times t = 1, . . . , T an inductive approach
is used:

initialization :

α1j = ij bj(O
1) ∀j = 1, . . . ,n (6.21)

induction :

αtj =

(
n∑
i=1

αt−1i aij

)
· bj(Ot) ∀j = 1, . . . ,n

t = 2, . . . , T (6.22)

termination:

P(O|Λ) =

n∑
j=1

αTj (6.23)

The initialization step declares the forward probabilities as the
joint probability of observing O1 while being in state S1 = Sj. Like
previously mentioned, αtj denotes the probability that the system is in
state St = Sj while the output observed was O1,O2, . . . ,Ot.

The induction step calculates the forward probability as the joint
probability of additionally observing Ot+1 while now being in state
St+1 = Sj, coming from all possible states St = S1, S2, . . . , Sn (see
figure 6.4). Mathematically this is done by multiplying αti with the
matching state transition probability aij. To obtain the overall proba-
bility one needs to sum up over all i. At last, to get the new forward
probability αt+1j it is necessary to multiply again with the probability
of observing Ot+1 in the actual state.

Finally the termination step yields the desired value of P(O|Λ) by
summation of the n forward variables αTj , j = 1, . . . ,n at time step T ,
because αTj = P(O1 . . . OT ,ST = Sj|Λ) = P(O,ST = Sj|Λ).

Remember, the horrid computational costs of the earlier approach
showed the need for a more efficient calculation. But is the forward-
procedure a decent solution to that problem?

To calculate the results for problem 1, i.e. P(O|Λ), the forward-
procedure roughly needs T steps with n ·n computations each, which
results in n2 · T operations. Given the afore-mentioned example (n =

4, T = 100), there will be an overall need of 42 · 100 = 16 · 100 =

1.6 · 103 computation steps. This shows a reduction of computational
effort by 59 orders of magnitude!

The second part of the forward-backward-algorithm is the backward-
procedure which will not be used until the solution to problem 3.
But because forward- and backward- procedure belong to the same
algorithm and are structured very similarly, it is alright to introduce it
at this place.
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S1

S2

Sj
a3j

S3

Sn

a2j

a1j

anj

t t+ 1

Figure 6.4: Computation of the forward variable αt+1j

backward-procedure: The backward variable βti is defined as

βti := P(O
t+1 . . . OT |St = Si,Λ) (6.24)

i.e. βti is the probability of the system (with parameters Λ) being in
state Si at time t, that will generate the partial observation sequence
Ot+1 . . . OT , which is the complementary partial state sequence to
O1,O2, . . . ,Ot used for the computation of αti . Analogously to the
Forward-Procedure βti is obtained by a iterative approach:

initialization :

βTj = 1 ∀j = 1, . . . ,n (6.25)

induction :

βtj =

n∑
i=1

aijbi(O
t+1)βt+1i ∀j = 1, . . . ,n

t = T − 1, . . . , 1 (6.26)

termination:

P(O|Λ) =

n∑
j=1

β1j ijbj(O
1) (6.27)

The initialization step sets the starting values (which are the βTj )
arbitrarily to 1. The induction step can be seen as the opposite of the
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induction step of the Forward-Algorithm, i.e. instead of going from
many states at time t to a specific one at time t+ 1, the algorithm
calculates going from a single state at t to multiple states at t+ 1. But
please note that the time path runs the reverse way (see figure 6.5)! The
termination step shows that the backward-variable also determines
the same quantity as the forward variable, i.e. P(O|Λ).

S1

S2

Sj
aj3

S3

Sn

aj2

aj1

ajn

t t+ 1

Figure 6.5: Computation of the backward variable βtj

Completely analogous to the Forward-Algorithm, the acquired order
of computations is also n2 · T .

Problem 2

Remember, at the definition of problem 2 there was the wish to deter-
mine the ”best“ state sequence - but how to define ”best“? There are
many ways of doing this, but unfortunately not all of them are useful
for further computation.

One of the easiest methods would be to search for those states,
which maximize the given observation sequence. In other words, that
would afford to maximize the observation probability for each time
step t individually. The probability to be in state Si at time t with
given observation sequence O and model parameters Λ can be defined
as a new variable

γti = P(S
t = Si|O,Λ). (6.28)

Luckily it is possible to use the already known forward- and backward-
variables αti and βti to rewrite the definition of γti , because they stand
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for the system being in state Si given the whole observation sequence
(O1 . . . Ot used by αti and Ot+1 . . . OT used by βti):

γti =
αtiβ

t
i

n∑
i=1

αtiβ
t
i

(6.29)

The normalization factor
n∑
i=1

αtiβ
t
i makes sure that γti is a probability

measure:
n∑
i=1

γti = 1. (6.30)

Then the individually most likely state Si at time t is given by

St = arg max
i

(γti). (6.31)

But looking a bit deeper into this method, one can encounter severe
problems very quickly! Imagine that the just found optimal state
sequence includes invalid state transitions (e.g. S1 to S1 but the state
transition probability from S1 to itself is zero)!

To cope with that problem, different solutions can be presented,
but one of the most efficient ways is the widely used Viterbi Algorithm.
The key aim of the Viterbi Algorithm is to find the full-length state
sequence with the highest overall probability.

To be more concrete, the Viterbi Algorithm yields the state sequence
S = S1,S2, . . . ,ST which has the highest overall probability of the
state transitions as well as of explaining the observation sequence
O = O1,O2, . . . ,OT .

viterbi algorithm: For this algorithm a new variable δtj is de-
fined:

δtj = max
{S1,S2,...,St−1}

P(S1,S2, . . . ,St−1,St = Sj,O1,O2, . . . ,Ot|Λ)

(6.32)

where {S1,S2, . . . ,St−1} has to be understood as the set of all possible
state sequences up to the time t− 1. If the iteration of the forward
variable α is considered, it is easy to establish an iteration for δ by:

δt+1j = max
i

δti · aij · bj(Ot+1) ∀i = 1, . . . ,n (6.33)

Finally it is necessary to also introduce a variable ψ which keeps track
of the state Si which actually maximizes the term 6.33. The whole
procedure is given by

initialization :

δ1j = ijbj(O
1) (6.34)

ψ1j = 0 (6.35)
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induction :

δt+1j = max
i

δti · aij · bj(Ot+1) ∀i,j=1,...,n
t=1,...,T−1 (6.36)

ψt+1j = arg max
i

δti · aij ∀i,j=1,...,n
t=1,...,T−1 (6.37)

termination:

P(S, O|Λ) = max
i

δTi (6.38)

ST = arg max
i

δTi (6.39)

backtracking:

St = ψt+1
St+1

t = T − 1, . . . , 1 (6.40)

The computational effort for the Viterbi Algorithm is thereby com-
parable to those of forward- and backward-procedure.

Problem 3

The third problem deals with the fitting of the model parameters
Λ = (A,B, I) in order to maximize the overall probability of the
observation sequence, regarding the given model. Unfortunately there
exists no possibility to do this analytically, like for the other two
problems before. Even worse, there is no way known to solve this
problem by any means in a global context.

The most popular solution for this is to use well established iterative
methods to find at least a local maximum of the probability function
P(O|Λ). This can be done, for example, with standard and advanced
gradient descent techniques [94] or with the Expectation-Maximization-
Algorithm, referred to also in short as EM-Algorithm. Here we will use
the Baum-Welch-algorithm which is a special case of the EM-algorithm,
using posterior probabilities and a maximum likelihood estimator
[95].

The em-algorithm is a two-step iterative algorithm which con-
sists of

expectation step : It uses the forward-backward procedure which
was discussed previously to estimate the expected state transi-
tions under different conditions.

Therefore a new variable ξt(i,j) is introduced, describing the
probability of being in state Si at time t and in state Sj at time
t+ 1, regarding the model Λ and the observation sequence O:

ξt(i,j) = P(S
t = Si,St+1 = Sj|O,Λ). (6.41)
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It is possible to take advantage of the previous defined variables
αti and βti and write ξt(i,j) in the form

ξt(i,j) =
αti · aijbj(Ot+1) ·β

t+1
j

P(O|Λ)
= (6.42)

=
αti · aijbj(Ot+1) ·β

t+1
j

n∑
i=1

n∑
j=1

(
αti · aijbj(Ot+1) ·β

t+1
j

) (6.43)

which can be understood easier by consideration of figure 6.6.
The fracture consists of P(St = Si,St+1 = Sj, O|Λ) divided
by the overall probability P(O|Λ). This ensures that ξt(i,j) is a
probability measure.

There exists a direct connection between ξt(i,j) and γti , which is

γti =

n∑
j=1

ξt(i,j). (6.44)

This fact can be easily understood when looking at the significa-
tion of the two variables:

T−1∑
t=1

ξt(i,j) = expected number of transitions from state Si to Sj

(6.45)
T−1∑
t=1

γti = expected number of all transitions from state Si

(6.46)

Note that due to the construction of the variable ξt(i,j), which
contains the term βt+1, it is necessary to limit the sum over all
time points to T − 1!

S1

S2

Sj S3

Sn

t+ 1 t+ 2

S1

S2

SiS3

Sn

t− 1 t

aijbj(Ot+1)αti βt+1j

Figure 6.6: Computation of ξt(i,j)
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maximization step: Based on this descriptive understanding of
these two variables, it is straight forward to derive formulas for
the re-estimation of the model parameters of the HMM, which
are Λ = (A, B, I):

âi,j =

T−1∑
t=1

ξt(i,j)

T−1∑
t=1

γti

(6.47)

=
expected number of transitions from state Si to Sj

expected number of all transitions from state Si

b̂i(Ok) =

T∑
t=1
Ot=Ok

γti

T∑
t=1

γti

(6.48)

=
expected number of observations Ok in Si

expected number of visits of state Si

îi = γ
1
i (6.49)

= expected number of visits of state Si at time t = 1

These formulas are the likelihood estimators for the parameters.
Please note that the stochastic constraints

n∑
i=1

îi = 1 (6.50)

n∑
j=1

âi,j = 1 ∀i = 1, . . . ,n (6.51)

m∑
i=k

b̂i(Ok) = 1 ∀i = 1, . . . ,n (6.52)

(6.53)

are all satisfied for all iterations per definition of the update step.

If we denote the actual model parameter set as Λ and the re-
estimated parameter set as Λ̂ it can be shown that there holds

P(O|Λ̂) > P(O|Λ). (6.54)

According to the work of Baum et. al the initial model is either at a
(local) optimum, i.e P(O|Λ̂) = P(O|Λ) or the improved model after one
Expectation-Maximization-step has an improved posterior probability
P(O|Λ̂) > P(O|Λ) [96].
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Going on iteration the Expectation and Maximization steps will lead
to a (local) optimum of the parameter set in terms of posterior prob-
ability. The result we obtain is therefore called Maximum-Likelihood-
Estimate of the HMM.

6.1.3 Scaling

The above described algorithm is neat and easy to understand but
bears a major problem when implemented on any computer. When
taking a look at how we introduced the forward variable αt (see 6.21

and 6.22) it becomes clear that it consists of the sum of terms of the
form

t−1∏
r=1

aSrSr+1

t∏
r=1

br(O
r) (6.55)

where the probabilities ai,j and bj are smaller than one, in the most
cases indeed remarkably smaller than one! This leads to numerical
instabilities due to round-off errors at the limitation of the machine
accuracy, even for relatively small numbers of time points t!

The same problem we encounter at the computation of the backward
variable βt and subsequently at all further calculations in the EM-
algorithm.

Therefore it is necessary for computer implementation to counteract
this problem with a scaling procedure. Luckily forward and backward
variable are set up in similar orders of magnitude. This allows us to
use an easy way of scaling, which is to scale by multiplication with
a factor only depending on t, i.e. it is chosen constant for all αi as
well as for all βi at every time step. This helps to achieve the goal
of keeping the algorithm in the dynamic range of our computation
system with the positive side effect of having this factor cancelled out
when doing the update step in the EM-algorithm, yielding the exact
same results as without scaling.

Since the scaling procedure is adapted with every time step t it
is necessary to include it in the forward and backward algorithm.
Exemplarily we want to take a look at the scaled forward algo-
rithm:

initialization :

α1j = ij bj(O
1) ∀j = 1, . . . ,n (6.56)

z1 = 1 (6.57)

α̃1j = α
1
j (6.58)
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induction :

αtj =

(
n∑
i=1

α̃t−1i aij

)
· bj(Ot) ∀j=1,...,n

t=2,...,T (6.59)

zt =
1

n∑
j=1

αtj

(6.60)

α̃tj =

(
t∏
τ=1

zτ

)
αtj (6.61)

termination:

P(O|Λ) =

n∑
j=1

α̃Tj (6.62)

To prove that the scaling factors zt eventually cancel out, we will
take a look at the re-estimation formula for ai,j:

ˆ̃ai,j =

T−1∑
t=1

α̃tiai,jbj(O
t+1)β̃t+1j

T∑
t=1

T−1∑
t=1

α̃tiai,jbj(O
t+1)β̃t+1j

=

=

T−1∑
t=1

(
t∏
τ=1

zτ

)
αtiai,jbj(O

t+1)

(
T∏

τ=t+1

zτ

)
βt+1j

T∑
t=1

T−1∑
t=1

(
t∏
τ=1

zτ

)
αtiai,jbj(O

t+1)

(
T∏

τ=t+1

zτ

)
βt+1j

=

=

T−1∑
t=1

(
T∏
τ=1

zτ

)
αtiai,jbj(O

t+1)βt+1j

T∑
t=1

T−1∑
t=1

(
T∏
τ=1

zτ

)
αtiai,jbj(O

t+1)βt+1j

=

=

(
T∏
τ=1

zτ

)
T−1∑
t=1

αtiai,jbj(O
t+1)βt+1j(

T∏
τ=1

zτ

)
T∑
t=1

T−1∑
t=1

αtiai,jbj(O
t+1)βt+1j

=

T−1∑
t=1

αtiai,jbj(O
t+1)βt+1j

T∑
t=1

T−1∑
t=1

αtiai,jbj(O
t+1)βt+1j

=

T−1∑
t=1

ξt(i,j)

T−1∑
t=1

γti

= âi,j (6.63)

As this shows, the re-estimated values of the parameter sets (bi and ii
behave identically) are not affected by the scaling procedure. However,
this does not hold for the computation of the posterior probability of
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the model P(O|Λ) =
n∑
j=1

α̃Tj , because the sum of the already scaled

forward variables does not meet the stochastic constraints! But we can
exploit the fact that there must hold

1 =

(
T∏
t=1

zt

)
·
n∑
j=1

αTj =

(
T∏
t=1

zt

)
· P(O|Λ) (6.64)

(6.65)

This leads to

P(O|Λ) =
1(
T∏
t=1

zt

) (6.66)

According to the fact, that the posterior probability will be lower than
the machine accuracy, we are going to compute the logarithm of the
probability as a measurement for model quality:

logP(O|Λ) = −

T∑
t=1

log zt (6.67)

The Viterbi algorithm (for computing the most likely state sequence)
has to deal with the same problem due to scaling. Therefore one
evades those difficulties again by using the logarithm. This gives the
scaled viterbi algorithm:

Instead of the previous variable δtj we define analogously

φtj = max
{S1,S2,...,St−1}

logP(S1,S2, . . . ,St−1,St = Sj,O1,O2, . . . ,Ot|Λ)

(6.68)

Then the algorithm changes to

initialization:

φ1j = log ij + logbj(O1) (6.69)

ψ1j = 0 (6.70)

induction:

φt+1j = max
i

φti + logaij + logbj(Ot+1) ∀i,j=1,...,n
t=1,...,T−1

(6.71)

ψt+1j = arg max
i

φti · aij ∀i,j=1,...,n
t=1,...,T−1

(6.72)

termination:

logP(S, O|Λ) = max
i

φTi (6.73)

ST = arg max
i

φTi (6.74)
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backtracking:

St = ψt+1
St+1

t = T − 1, . . . , 1 (6.75)

This improved algorithm helps to avoid numerical problems with no
extra computational costs. The logarithmic posterior probabilities are
nonetheless comparable to each other due to the fact that the logarithm
is a monotonous augmenting function. So now the EM-algorithm will
yield the parameter set which accounts for the highest logarithmic
posterior probability, which is the parameter set which accounts for
the highest non-logarithmic probability.

6.1.4 Model topology

It should be mentioned with a few words that so far we have always
depicted fully connected ergodic models. In general holds that a model
is called ergodic if every state can be reached from every other state
in a limited amount of time steps. The specification ”fully connected“
reduces this amount to one, i.e. it is possible to reach every state in
one time step, regardless where one starts.

Note that the smaller a transition probability gets, the more those
two states get disconnected. This means that a diagonal transition
matrix will reflect a model with completely independent states, while
an upper triangular matrix will reflect a so called left-right model,
where it is only possible to migrate in one direction, but not back.
As this shows, the model topology reflects in the structure of the
transition matrix A and vice versa.

Such models find their field of application in speech and handwrit-
ing recognition as well as in genomics and proteomics [87, 97, 98]. For
further information on this topic please read into [83], for hierarchical
HMMs have a look at [99].

In the following application of HMMs to vigilance detection we
will limit ourselves to such fully connected ergodic models and try
to adapt to the reality by adapting the parameters, i.e. the transition
probabilities.

6.2 continuous hidden markov models

Above we have described discrete Hidden Markov Models. Those are
discrete in their states as well as in their observations. These mod-
els are well suited for applications where the model is based on a
finite set of observations, like for example the matching of genetic
sequences, where one observation can only be one of the four nu-
cleobases (Adenine, Cytosine, Guanine and Thymine). Proteins for
example, consist of amino acids which are encoded by triplets of nu-
cleobases. So a model for protein decoding sites in human DNA has
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to use observations out of the observation alphabet m = 4 to adapt
to the n = 22 different states which stand for the 22 different amino
acids. (Please note that this model description is heavily simplified
for demonstration purposes - for further information on that topic see
[100].

But when looking further, one sees that many real world systems
cannot be sufficiently described in a discrete way because the obser-
vations that one gets are e.g. measurements on a continuous scale.
Unfortunately discretization is not always a good idea since every
discretization scheme bears the danger of concealing underlying de-
pendencies. The same problem appears also when using EOG-data
for vigilance classification. The measurements of the EOG-channels
are continuous and higher dimensional, which hinders a meaningful
discretization scheme. For that reason Hidden Markov Models can be
generalized to match the need of such conditions.

There exist two major generalization steps to eliminate the strong
limitations of discreteness. These are:

a. discrete states and continuous observations

b. continuous states and continuous observations

a. The first approach – discrete states and continuous observations –
adapts the model to observations on a continuous scale without touch-
ing the underlying (discrete) structure of states. That means that
instead of using discrete probability densities we move on to a fi-
nite mixture of probability density functions – in the simplest case
Gaussian densities. In that case the correct denomination of such a
continuous HMM would be Gaussian Hidden Markov Model (GHMM).
A mixture probability for an observation Ot has the form

bi(O
t) =

V∑
v=1

civ Niv(O
t) =

V∑
v=1

civ N(Ot;µiv,Σiv) (6.76)

where N(Ot;µ,Σ) stands for the Gaussian probability density N(µ,Σ)
with mean µ and covariance Σ at the point of observation Ot. We use
Niv(O

t) as a shortened version for simpler notation. The observations
per se can be scalars or vectors, i.e. the probability densities dealt with
are univariate or multivariate. Since this does not change anything in
the process, we are using the more general case of vector observations
(still notated as Ot) and multivariate distributions throughout this
chapter. V is the number of mixed distributions and the civ are their
respective mixture coefficients which have to fulfill

V∑
v=1

civ = 1 ∀i (6.77)

civ > 0 ∀i, v . (6.78)
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This ensures that the bi(.) are adequate probability density functions.
In the discrete case we used the EM-algorithm to compute the

maximum likelihood estimators for the initial distribution ii state
transitions aij and the observation distribution bi. Now this observa-
tion distribution is of the form 6.76 which depends on the mixture
coefficients, means and covariances. Working with the continuous
probability densities, these three variables can be estimated through:

ĉiv =

T∑
t=1

γtiv

T∑
t=1

V∑
v=1

γtiv

(6.79)

=
expected number of times in Si regarding Niv

expected number of times in Si

µ̂iv =

T∑
t=1

γtiv ·Ot

T∑
t=1

γtiv

(6.80)

=
weighted sample mean regarding Si and Niv

expected number of times in Si

Σ̂iv =

T∑
t=1

γtiv · (Ot − µiv)(Ot − µiv)ᵀ

T∑
t=1

γtiv

(6.81)

=
weighted sample covariance regarding Si and Niv

expected number of times in Si

Here the symbol ᵀ indicates the transpose operation. The term γtiv is
a multivariate generalization of the in 6.29 and is defined as

γtiv =

 αtiβ
t
i

n∑
i=1

αtiβ
t
i

 ·
 civ N(Ot;µiv,Σiv)

V∑
v=1

civ N(Ot;µiv,Σiv)

 (6.82)

It can be easily seen that this term transforms to γti in the case of a
trivial mixture (V = 1) or a discrete density.

Note: The above described mechanisms of continuous observation
mixture models can be easily modified to all other log-concave or ellip-
tically symmetric densities [101], as shown for student-t distributions
in the following section.
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b. The second approach – continuous states and continuous observa-
tions – is better known under the name Kalman filter and is the border
case of a HMM with n states where n→∞. The mathematics behind
this algorithm correspond also very closely to that of digital filtering
methods what explains also its name and origin. A good introduction
and more details on Kalman filters are given by [102, 103].

6.3 expansion to student’s-t distributions

Gaussian Mixture Models (GMM), i.e. a mixture model based on normal
distributions, is the most used variant for continuous Hidden Markov
Models since the central limit theorem states that a large number of
independent random variables drawn from the same underlying dis-
tribution is approximately normally distributed. So it is only logical
to use GMMs to model the unknown distributions, but outliers can
severely distort the convergence of the HMM.

To come by such situations, which are likely to happen when work-
ing with real world data, many attempts have been undertaken to
avoid the pitfalls [104, 105]. Most of them try to improve the train-
ing or classification pattern in order to succeed in making the HMM
less vulnerable, what are mostly heuristic approaches tailored to very
special applications, e.g. speech recognition.

A much more universal method for an outlier resistant Hidden
Markov Model is described in [106]. Instead of normal distributions,
one makes use of the heavy-tailed nature of Student’s-t distributions.
This means that the boundary areas of the distributions are attributed
much more weight so that extreme outliers still have higher probabili-
ties than in the Gaussian case. This helps in several situations:

• The mixture distributions are not as much dragged towards the
outliers.

• Outlier probabilities do not fall below machine accuracy, causing
numerical troubles.

• Less mixture probabilities are necessary to describe the data.

• Extenuated requirements for the training data.

The probability density function (pdf) of the multivariate Student’s-t
distribution is characterized by

T(Ot;µ,Σ,ν) =
Γ(ν+p2 )|Σ|−

1
2 (πν)−

p
2

Γ(ν2 )(1+
1
ν(O

t − µ)ᵀΣ−1(Ot − µ))
(6.83)

with
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T . . . Student’s-t probability density

Ot . . . vector of observations at time point t

µ . . . vector of means

Σ . . . covariance matrix

ν . . . degrees of freedom

p . . . dimensionality of the observations

Γ . . . Gamma function

| . | . . . determinant

(Ot − µ)ᵀΣ−1(Ot − µ) . . . Mahalanobis distance
ᵀ . . . matrix transpose.

In [106] it is explained how the Student’s-t distribution and the
normal distribution interact with each other and why it is possible to
use the Student’s-t distributions for the HMM. One important result
is, that the degrees of freedom ν is the parameter which influences
the shape of the distribution, i.e. it defines how much weight there
is on the tails of the distribution. For ν→∞ the Student’s-t distribu-
tion converges to a Gaussian distribution, leaving proportionally less
weight on the tails.

Since the EM-algorithm for Student’s-t HMMs is also defining the
optimal ν, this measure – for a converged model – gives also inference
of how big is the influence of the outliers, and if a Gaussian Mixture
Model would have problems with that dataset.

6.3.1 The Student’s-t Hidden Markov Model (SHMM)

We can use a SHMM only when we consider the hidden observation
distributions being mixtures of Student’s-t distributions. For the sake
of simplicity we assume – as above for the GHMM – that the number
of mixtures is the same for every state. The parameters for the SHMM
are now defined analogously to the Gaussian Hidden Markov Model:

Si . . . states of the model

n . . . number of distinct states

A . . . n×n−matrix of state transition probabilities

I . . . n× 1−vector of the initial state distribution

O . . . observation sequence (multidimensional)

V . . . number of mixtures

The probability density of a single observation Ot coming from the
i-th model state Si is given by

bi(O
t) =

V∑
v=1

civ · T(Ot;µiv,Σiv,νiv) (6.84)
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with the mixture weights civ which again fulfill the restraints 6.77 and
6.78.

We will directly step into the EM-part of the Baum-Welch algorithm,
implied that the forward, backward and Viterbi algorithms have been
already computed, switching the normal distributions to the Student’s-
t distributions. Using the forward and backward variables αti and βti
we then yield the update variables

ξt(i,j) =
αti · aijbj(Ot+1) ·β

t+1
j

n∑
i=1

n∑
j=1

(
αti · aijbj(Ot+1) ·β

t+1
j

) (6.85)

γtiv =

 αtiβ
t
i

n∑
i=1

αtiβ
t
i

 ·
 civ T(O

t;µiv,Σiv)
V∑
v=1

civ T(Ot;µiv,Σiv)

 (6.86)

the em-algorithm For the Expectation-Maximization algorithm
we are going to compute the updates for every iteration of the al-
gorithm, denoted by the symbol ˆ , like in the case of the GHMM.
The EM-updates of the initial probabilities and the state transition
probabilities, i.e. îi and âi,j are calculated the exact same way as in
6.49 and 6.47.

The updated model parameters are

ĉiv =

T∑
t=1

γtiv

T∑
t=1

V∑
v=1

γtiv

(6.87)

µ̂iv =

T∑
t=1

γtiv · ûiv ·Ot

T∑
t=1

γtiv · ûiv
(6.88)

Σ̂iv =

T∑
t=1

γtiv · ûiv · (Ot − µiv)(Ot − µiv)ᵀ

T∑
t=1

γtiv

(6.89)

(6.90)

where ûtiv are the updated precision scalars (see [106]) which are
obtained through

ûtiv =
νiv + p

νiv + (Ot − µiv)ᵀΣ
−1
iv (Ot − µi)

(6.91)
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We yield the update of the degrees of freedom ν̂iv for the Student’s-t
mixtures by solving the following implicit equation for ν̂iv:

1−ψ

(
ν̂iv
2

)
+ logψ

(
ν̂iv
2

)
+ψ

(
ν̂iv + p

2

)
+ logψ

(
ν̂iv + p

2

)

+

T∑
t=1

γtiv · (log ûiv − ûiv)

T∑
t=1

γtiv

= 0 (6.92)

where ψ(.) is the digamma function. This gives us all needed EM-
updates, so that the modified Baum-Welch algorithm also works on
this problem.

Regarding the computational efficiency of the operations, [106]
shows that the complexity of the SHMM lies only marginally higher
than the one for GHMMs. That is soothing since this would allow also
a future application in online systems for vigilance surveillance.

6.4 model order selection and validation

When developing a Hidden Markov Model for a certain application,
one of the most crucial choices is the one of the number of different
states n, which is also called the order of the model. The order does
not only heavily influence the efficiency of the model, but should at
best also aid to the interpretation of a matching model theory.

In some cases the number of states is determined by existing knowl-
edge of the process, e.g. in the case of genetic sequence matching one
is aware that there could only be four different states, which represent
the four nucleobases A, G, C, T or A, G, C, U, depending if DNA or
RNA is examined.

But most of the time, the exact number of states is not known – not
for nothing are we working with Hidden Markov Models. To make an
educated guess is not as simple as it may seem. Like we discussed
above, every new state raises the number of parameters to estimate
quadratically. On the other hand yield too simple models a bad fit to
the data. And last but not least could be a wrong number of states a
hurdle in finding an appropriate theory to explain the observations.

6.4.1 Likelihood-based criteria

The most obvious criterion to qualify a HMM is the (log-)likelihood,
given by the EM-algorithm. This value measures the fit of the model
on the data, and is therefore prone to overfitting, i.e. the more states we
add, the better will be the fit and the according model (log-)likelihood.
So this measure will be maximized when every different observation
is accorded its own state.
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It is clear, that this is not at all what we want a model order valida-
tion criterion to do. Several criteria have been developed which are
based on the log-likelihood of the model, but which do also penalize
the number of parameters to determine.

aic The Akaike information criterion (AIC), developed by Hirotugo
Akaike [107], is a very simple yet effective measure, which combines
the log-likelihood and the number of parameters to determined in a
simple formula:

AIC = 2(p− lnL) (6.93)

where p is the number of independent parameters and L is the likeli-
hood of the model.

The AIC is the widespread order selection criterion. But due to the
fact that it is based on the large-sample properties of maximum likeli-
hood estimators, the application of AIC on small-sample observations
results in overfitting [108].

aicc Therefore a corrected version of the AIC criterion was devel-
oped (AICc), which was designed to yield more accurate results in
the case of small sample sizes [108]. For small observation sizes, the
AICc gives more weight to the model complexity, whereas it converges
asymptotically to the AIC criterion for increasing sample size.

AICc = AIC+
2p(p+ 1)

l− p− 1
(6.94)

Here p stands again for the number of undefined parameters in the
model, and l is the length of the observation sequence. For our models
with rather short observation sequences, we will put most confidence
in the AICc value.

bic Another measure is the Bayesian information criterion (BIC),
which penalizes the number of parameters additionally with the loga-
rithm of the observation sequence length:

BIC = 2

(
p

ln l
2

− lnL
)

(6.95)

where again p is the number of parameters, l is the length of the
observation sequence and L is the model likelihood [89].

For all three criteria discussed above, the optimal number of states,
i.e. the model order, is the one where the criterion reaches the min-
imum. Of course the model order will also be dependent on the
underlying theory of the sequence generation, i.e. that not always the
order with the minimal validation criterion explains the data best. But
in all cases, a large difference of model orders between theory and
criterion should be questioned and investigated.
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6.4.2 Ordinary pseudo-residuals

When we decided on a number of states which seems to be suited
according to some criterion from above, there is always the question
left how well the fit is qualitatively and if we could possibly identify
outliers in the data which hinder the fitting process. Derived from the
residual-based model checking in the theory of regression models it is
possible to define so called pseudo-residuals for our HMM [89]. These
are able to perform the same role as traditional residuals.

To motivate the following definitions we want to keep in mind the
following fact:

Be X a stochastic variable with continuous distribution function F(.)
then Y = F(X) is uniformly distributed on the interval (0, 1), i.e.

Y ∼ U(0, 1). (6.96)

The proof is easily constructed from the properties of the inverse
cumulative distribution function, which is also called the quantile
function.

According to [89] we can then define the uniform pseudo-residuals of
an observation Ot coming from a continuous stochastic variable Xt as

ut = P(Xt 6 Ot) = FXt(O
t). (6.97)

If we chose the right type of model (regarding parameters, distribu-
tions, number of states) ut should be uniformly distributed.

One big advantage of using the concept of pseudo-residuals is the
comparability of results. Even when we are confronted with different
probability functions at every time point t, where it is impossible to
directly compare the observations, the pseudo-residuals are always
uniformly distributed and thus well comparable.

When considering extreme observations, the related uniform pseudo-
residuals would lie near zero and one and it is – especially in histogram
plots with medium bin size – very difficult to distinguish outliers from
reasonable observations at the margins of the distribution. To circum-
navigate this problem it is advisable to transform the pseudo-residuals
to a standard-normal shape.

This can be achieved by making use of the cumulative distribution
function Φ of the standard normal distribution. Be X a stochastic
variable with continuous distribution function F(.) then Z = Φ−1F(X)

is distributed standard normal, i.e.

Z ∼ N(0, 1). (6.98)

Analogously to above, we define the normal pseudo-residuals as

zt = Φ−1(ut) = Φ−1FXt(O
t). (6.99)

Now, the validity of the model is checked, by comparing the resulting
normal pseudo-residuals to a standard normal distribution. In this
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case it is easier to identify outliers at the margins of the probability
density function because the values of the residuals increase with
increasing deviation form the distribution median.

When it comes down to calculating the pseudo-residuals Zucchini
and MacDonald [89] distinguish between two methods:

ordinary pseudo-residuals In the offline case, where we can
access the whole time series, the pseudo-residuals are calculated
sample by sample in respect to all other observations. Written
formally this gives us

zt = Φ−1
(
P(Xt 6 Ot|O−t)

)
(6.100)

where O−t is the full observation sequence missing only the
element Ot:

O−t = O1, . . . ,Ot−1,Ot+1, . . . ,OT . (6.101)

For a correct model, the pseudo-residuals zt should be dis-
tributed standard normal for all t ∈ 1, . . . , T .

forecast pseudo-residuals In an online environment, i.e. when
used in a real time application, one has to settle on the already
received observations to construct the pseudo-residuals. That
leaves us with the formula

zt = Φ−1
(
P(Xt 6 Ot|Ot−1)

)
(6.102)

where

Ot−1 = O1, . . . ,Ot−1. (6.103)

Since this thesis deals only with the offline use of Hidden Markov
Models, we will restrict ourselves to the ordinary pseudo-residuals
in the chapters to come. In order to check the model validity, we
will use plots of the uniform and standard pseudo-residuals together
with their respective target values, as well as quantile-quantile plots
(Q-Q plots) and the autocorrelation function (ACF) of the normal
pseudo-residuals (see chapter 8).

Please note that the concepts of pseudo-residuals rely on continuous
distribution functions and have to be changed in order to be suitable
for discrete distributions. See [89] for details.

6.4.3 Order estimation

We have now spoken about how one can validate a choice of model
order by comparing certain criteria to models with different order.
With the vigilance detection models we have developed, we will get by
with a trial-and-error method. This of course not completely random,
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but based on the fact, that models should be as simple as possible –
especially for relatively short observation sequences.

For the sake of completeness we nevertheless want to point out,
that there exist more sophisticated approaches to estimate the model
order, before or even instead of using the above discussed criteria, e.g.
[109, 110].





7
D ATA A C Q U I S I T I O N A N D P R O C E S S I N G

The data used in the following for model building and verification orig-
inate from the SENSATION project (”Advanced Sensor Development
for Attention, Stress, Vigilance & Sleep/Wakefulness Monitoring“), a
project funded by IST (Information Society Technologies) – the frame-
work program for research and development of the European Union.
The project description quotes their aims as follows:

”This aim is targeted through a number of intermediate
objectives and achievements with the scope of hypovigi-
lance detection, prediction and management, as well as,
diagnosis, treatment and remote monitoring of sleep disor-
ders that will provide a safeguard for promoting peoples’
health and safety, as well as environmental protection, in
a variety of application fields such as medical, industrial
and transportation.“

In the following a brief description is given, which experiments have
been done, which measurements have been undertaken and how we
processed the EOG signal and derived the relevant features from it.
For a more detailed description of the work done by any partner in
the SENSATION project, please visit the website www.sensation-eu.org.

7.1 experiment

The data we use was recorded in the course of the SENSATION sub-
project SP1, work package WP 1.7, pilot 2.5 under the objective ”The
Design and Placement of milled rumble strips on Swedish rural roads“.
The project served as a data basis for two different aspects – the effect
of different rumble strips on fatigued drivers and the collection of
physiological data of the aforementioned in a fatigue driving situation.
The pilot was carried out using a third generation moving base driving
simulator to obtain results in a realistic driving environment without
any safety concern.

The according experiments have taken place in the Swedish Na-
tional Road and Transport Research Institute VTI (Statens väg- och
transportforskningsinstitut) in collaboration with the leading Swedish
medical university Karolinska institutet.

The study features 38 subjects which fulfilled the inclusion criteria,
19 females and 19 males respectively. Since it was necessary for the
experiment that all subjects are sufficiently sleepy, all persons were
shift workers, coming directly for the testing after a full night shift

59
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without sleep. No professional drivers have been included in the
driving simulator study. The main task was then to drive between 45

and 90 minutes without any communication or distraction.

7.2 recording

Figure 7.1: EOG electrode
position in driving simula-
tor experiments, black dot
marks ground electrode, por-
trait taken from C. Braun,
M. Gründl, C. Marberger, and
C. Scherber, “Beautycheck -
Ursachen und Folgen von At-
traktivität. Projektabschluss-
bericht,” 2001

Upon arrival at VTI all subjects
had to undergo a pretest session
to get basic information on their
overall vigilance, including:

• biocalibration

• reaction time test

• pupillometry

• Karolinska Sleepiness Scale

• Epworth Sleepiness Scale

In the driving phase, there has
been recorded:

• EEG, EOG and EMG

• Karolinska Sleepiness Scale

• driving behavior

• eye gaze and blinks (with
Smarteye detection system)

• camera DVD recording

The electrode position used for the EOG recording was a three
channel setting with one horizontal and two vertical channels, as
depicted in figure 7.1. It has been worked with silver cup electrodes
together with a portable digital recorder of the type Vitaport 2 from
TEMEC Instruments BV. The sampling rate was chosen 512 Hz with
an amplification factor of 1000 and cutoff frequencies of DC and 70.1
Hz.

To compensate for baseline drifts, who are an effect of the DC-
recording of the EOG signal, the signal was nulled manually about
every five minutes. This can be seen especially in the horizontal chan-
nel – see figure 7.2. In the following 6.3 seconds (on average) after
every nulling, there was no recording taking place, so for further
calculations this has to be kept in mind!
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Figure 7.2: fragment of the raw-EOG-signal of dataset fp01 which shows the
baseline drift of the signal and the nulling process which sets the signal back
to zero

7.2.1 The KDS

In contrast to the self-rated Karolinska Sleepiness Scale (KSS) [111,
112], there exists another externally rated measurement derived from
the driving data, the Karolinska Drowsiness Score (KDS). Therefor the
signal is divided in (non overlapping) 20 second windows, which
are divided again in 10 2-second epochs. Each of these epochs has
been scored visually to decide if it shows signs of sleepiness – slow
eye blinks, small amplitude blinks, blink frequency, alpha and theta
activity. Every window is now labeled a number between 0 and 10,
indicating the percentage of drowsy epochs in one window.

But Jammes et al. have discovered on the exact same dataset that
the visual scoring done by the Karolinska Institutet did not work as
accurate as their specially developed detection algorithm [55]. This was
mostly due to the differentiation between normal and long blinks. The
algorithm classified them by a fixed threshold, whereas the physicians
did that by intuition.

Alarmed by that fact and the circumstance that the original KDS
scale did not at all agree (even with the overall trend) of our EOG-
features, we decided to calculate the KDS anew, using an automatic
blink detection algorithm. Our choice fell upon the MATLAB® toolbox
eogui [113].

The toolbox is straightforward to use. First one hast to define the
test setting to define the viewing angle. Due to a lack of knowledge we
decided on values which are similar to driving simulator settings. The
toolbox also needs signal characteristics like one model saccade, one
model blink and the background noise, which are all calculated after
marking according positions in the signal by hand. As blink defining
parameters we settled for

minimal amplitude 2

threshold softening 0.3

maximal delay 180 ms
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These values give us a number of detected long blinks which are
comparable to those of [55], as can be seen in table 7.1. So we calculated
again the KDS values for the obtained number of long blinks, which
yield better visual correlation to the EOG-data. The KDS, as a not-
subjective indicator of sleepiness, will be our number one reference
for the Hidden Markov Model we develop.

Jammes et al. eogui difference

fp_01 1828 1807 21

fp_02 2313 2296 17

fp_03 1615 1631 16

Table 7.1: comparison between the results of Jammes et al. and our detection
method based on eogui for the first three test subjects

7.2.2 Rumble strip hits

Another measurement from the driving simulator experiment – which
was also part of a study for different rumble strip designs – was a
marker, when a driver hit the rumble strip at the curbside. In that
case we can strongly assume that the driver was inattentive if not
falling asleep, but at least with reduced vigilance. We will display that
marker too in our plots of the final results.

7.3 feature selection

We are provided with MATLAB files containing the EEG and EOG
data from the driving episodes of all subjects. All subjects (Swedish:
försöksperson) have been assigned a serial number, which leads to the
file denomination ”fpXX“, where XX stands for a number of 01 to 44.

For the signal processing part we used MATLAB® because the
original data was in their proprietary file format.

7.3.1 Amplitude, Velocity, Frequency

The first three features we calculate are the amplitude, velocity and
frequency of the eye movements. Like stated above, sleepiness has
some effects on the amplitude and velocity of the eye movements.
Hanke et al. also showed the correlation between the actual vigilance
state of a subject and those features [61]. It is stated that the amplitude
and velocity of the EOG recordings is negatively correlated (sinking
when less vigilant) while the frequency spectrum shows the exact
inverse behavior.

As stated above, the horizontal EOG channel is unfortunately not
well suited for such long term observation (figure 7.2), which leaves
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all EOG-based features being derived by the vertical channels. Since in
healthy subjects the eyes move in accordance of one another, the two
vertical channels should give approximately the same values (thus
often only one vertical channel is recorded). We decided to use the
signal of the vertical channel of the left eye for all future calculations.

amplitude The amplitude is simply the recorded current fluctua-
tion.

velocity The signal velocity is computed by simple numerical dif-
ferentiation.

frequency In order to obtain the signal frequency, the Fast Fourier
Transformation (FFT) was applied to overlapping signal win-
dows in the time domain.

Unfortunately these three features are highly correlated. This is
shown in the correlation coefficients between the different features in
table 7.2. Such dependent input vectors would limit the discriminabil-
ity of the different model states in the Hidden Markov Model. For that
reason we are going to implement some external measures collected
from sensors in the simulated car, which we call ”driving data“.

fp01 amplitude frequency velocity

amplitude 1 0.8932 0.6078

frequency 0.8932 1 0.5358

velocity 0.6078 0.5358 1

Table 7.2: Correlation matrix of the three feature vectors of dataset fp01.

7.3.2 Driving data

In the driving simulator study there have also been recorded car-based
signals from sensors in the drivers cabin and outside. Two often used
signals in automotive on-board hypovigilance detection systems are
the steering wheel angle and the actual position of the car between the
lane markings [80, 81]. Those signals have been recorded with 25 Hz.

car position To hold the car in the same relative position to the
lane markings needs a certain amount of vigilance (negative
examples: fatigue, drunk driving). So the measure we are looking
for is the variance of the car position in a certain (moving) time
window. We used a window length of 100 and applied additional
moving window smoothing to the resulting time series (window
length = 100).

steering wheel angle The most revealing part here is the veloc-
ity of turning on the steering wheel since abrupt movements
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correspond to potentially hazardous situations, causes mostly
by inattentiveness. As input parameter we take therefore the
smoothed (window length = 30) numerical differentiated signal
of the steering wheel angle.

For being able to compare our HMM with the KDS-values we
calculated, we have been forced to resample the recorded data to
20 second windows, which makes the model rather rough. Out of
cosmetic reasons, we also rescale the features that we pass on to the
Hidden Markov Model to fit the interval [0, 1] before saving.
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I M P L E M E N TAT I O N

We now have so far gathered all theoretical tools we have to know in
order to be able to create a program which uses afore mentioned algo-
rithms to fit a Hidden Markov Model to our data. But as everywhere,
there are some hurdles to jump when advancing from the theoretical
to the practical side. Here we want to point out the main points and
pitfalls when implementing the algorithms.

For reasons of traceability and clarity the entire source code is
enclosed in appendix A.

8.1 the programming language: r

R is an open source statistical computing language created by Ihaka
and Gentleman on the base of the statistical programming language
S. The program source code as well as all available toolboxes underly
the GNU General Public License and are therefore freely available and
customizable. The built-in function’s source code is mostly written in
Fortran and C, making it fast and memory-saving. One of the upsides
of R is also the graphics engine, capable of creating high-quality fully
customizable plots.

Despite MATLAB® being the number one software in the field of
mathematical computing and machine-learning (quasi-standard), we
decided on building our program in R due to the advantages of open
source software like the free availability.

8.2 input format

Many different factors could play a role in favor for a certain data
exchange format. In our case it was necessary to transfer the processed
data from MATLAB® to R where we run the HMM code. The choice
fell upon the simple .txt format, because it is platform independent,
lightweight and easily writable/readable by both programs.

After data processing as described in chapter 7, we saved the ob-
tained features in files with the name input_HMM_fpXX.txt, where XX

again stands for the subject serial number. Every feature – all of them
have been brought to the length of the KDS-vector – is saved as one
column in the input file, resulting in a structure described in table 8.1.
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Amplitude Velocity Frequency Position Steering wheel KDS Hits

O1

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

OT

Table 8.1: Schematic arrangement of the input format for the program. Rows
correspond to observations (same length as KDS) and columns 1-5 corre-
spond to the feature vectors. The last two columns are the reference data.

8.3 r-package : rhmm

One of the advantages of R is the possibility to easily add new func-
tions by installing R-packages. At this place I want to express my
gratitude to all the people who share their work generously with the
whole world. This is a huge help for many of us!

We decided that the package RHmm, written by Taramasco and
Bauer, would fit our needs best because it is able to work with mul-
tivariate Gaussian Mixture Models and is coded mainly in c, which
gives it an edge regarding calculating speed [114]. For our purposes
we only need the two central functions of the package: HMMFit and
viterbi.

hmmfit This function takes the input data and runs the Baum-Welch
algorithm on it for optimizing the model parameters. The type
of distribution, the number of mixtures and the number of states
must be set as input. It returns the fitted parameters (means
and covariances, transition probability matrix, initial probability)
along with the log-likelihood and the information criteria AIC
and BIC. Model initialization is done – unless otherwise specified
– by a (randomly initialized) k-means algorithm on the input
data.

viterbi This function takes the output of HMMFit and uses the fitted
model parameters to calculate the most probable state sequence
using the Viterbi algorithm. It returns the state sequence along-
side with two other probability measures.

All in all this package proved to be much faster than the self im-
plemented code in R. The fact, that this package is only able to use
mixture models with Gaussian distributions is not disadvantageous in
our case, since our data does not necessarily support the presumption
of non-Gaussian distributions.

Detailed information about the package, its functions and examples
can be found in the documentation of the package (see [114])
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8.4 model initialization

After deciding on the type of the model (discrete/continuous, dis-
tribution, mixtures) and the number of states involved one has to
focus on how to initialize the algorithm. It lies in the nature of the
EM-algorithm, that there exists the probability to get stuck in a local
maximum of the likelihood function.

Zucchini and MacDonald indicate in [89] two different methods of
initialization:

a. A costly way of eliminating local maximums in favor of the
(presumably) global one is to randomly initialize at many differ-
ent points and compare the model results. The best one is kept
as the global maximum. A more elaborate way to do this is to
use a clustering algorithm with random seeds to find neuralgic
starting points. So the number of different initial points can be
reduced to a sensible figure. We are following that procedure
with the RHmm package by recomputing the whole model in-
cluding the random k-means initialization 50 times and keeping
the best model.

b. The more efficient way is to set the off-diagonal transition prob-
abilities to very small values (e.g. 0.01) and arrange the state
means equally spaced about nearly the range of the observation
data.

In our proper code, we used the optimal results coming from the
RHmm package as initialization values to finally compare the fit of
the Gaussian model to the Student-t model.

8.5 missing values

As in all practical recording situations, not all the data is usable. This
may be due to electrode detachment, large artifacts, instrument failure
or data corruption. Since such situations can not be avoided at all cost,
it is necessary to implement precaution measures which deal with
missing or corrupted data.

In our case, we got already checked data from the VTI, so that we
had not directly to deal with that matter. Nevertheless it is strongly
advisable to cover that cases – and it is absolutely essential when
programming for online applications!

One easy way to deal with singular defects is to interpolate the
signal in order to restore values for the NaN-entries. For larger defect
ranges, since it would not be possible to get interpretable results, the
program should be halted and an error message should be displayed.
After checking the equipment the program could be resumed.
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8.6 numerical stability

When inventing an algorithm, one of the first tests it must pass is the
one of theoretical stability (e.g. Lyapunov). Of course the algorithms
for HMMs outlined in chapter 6 fulfill this standard. But when it
comes to implement an algorithm on a computer a new problem
can rise very easily – numerical instability. Stoer defined numerical
stability with following words:

”An algorithm is numerically stable on some input set
if the effect of round-off errors in the computations is
comparable to the effect of round-off errors in the input
data and the output data, independent of the particular
input element.“ [115]

Dealing with algorithms which are working with products of probabil-
ities, it is clear that one has to counteract a steady decrease of values
down to a range of machine accuracy, where roundoff errors set all
future results equal to zero. To avoid that, we already spoke about the
concept of scaling and log-likelihood in the theoretical chapter 6. The
scaling addendum keeps the probability at the range of the initializa-
tion, whereas the logarithm of the likelihood enables to evaluate the
likelihood of a computed model.

Another pitfall is, that the mathematically easy concept of an inverse
matrix entails a few problems when done numerically. This is all the
more grave, when the matrix is ill-conditioned, i.e. nearly singular.
We cushioned that issue by using the pseudoinverse matrix, which is
already a built-in function in R, relying on singular value decomposition
(SVD).

We also encountered difficulties with the adapted EM-algorithm for
Student-t distributions described in [106]. There we had the problem
that the estimations of the covariance matrices have sometimes been
singular matrices, i.e. non-invertible. Therefore we decided to use a
method of covariance regularization which is also known under the
name of covariance shrinkage. The method is depicted in [116].

For a more detailed view on numerical problems and a more formal
definition of numerical stability, see [117, 115].

8.7 overfitting

In all machine-learning tasks one has to be wary of overfitting, i.e.
adapting too much to the training data (and also their measurement
errors) so that the classification of new samples gets worse. This
happens frequently when only small sample sizes are available – like
it is in our case, since we had to downsample our data in order to
match the reference data. In the case of HMMs the most influential
parameter on the model fit is the number of states (see section 6.4).
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Keeping the number of states low also keeps the number of parameters
low which antagonizes the overfitting. In addition we use only one
distribution per state, which also lowers the parameters (see section
9.1). For that simple model the number of observations is sufficient to
fit the distributions.

Of course there are also other reasons how and why the model
could overfit, e.g. unfortunate initialization could lead to one state
overfitting some extreme data points. Whenever the norm of one of the
covariance matrices is very small compared to the others one should
investigate that process.

8.8 reference data

As already stated in chapter 7, we are using the KDS and rumble strip
hits as reference data to evaluate the model. For measures as the KDS,
which are based on eye blink behavior, it is advised to use intervals of
at least 60 seconds length in order to obtain an interpretable and not
erratic signal. It was shown by Sandberg that the 1 minute window
gave significantly better results as shorter ones (10 - 30 s), whereas the
difference to longer ones (120 - 900 s) seemed small [118].

We did follow this rule of thumb by computing the mean of the
KDS score in a moving window approach (window length = 60 s) over
the last five 20-second bins. This function is then displayed over the
model states, all confined to the unit interval.

When it comes to the rumble strip hits, which are binary data – True
or False – we cannot use that sensibly for constructing a function. But
we will use that knowledge to mark the time points in the model where
the drivers hit the rumble strip. As this is clearly a sign of (preceded)
hypovigilance, the model should also indicate a high fatigue level.
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R E S U LT S

This chapter presents and discusses interim and final results we
yielded in the process of this work. Detailed explanations are pro-
vided to explain why we set our assumptions the way they are. The
field of applied biomedical engineering is not at all easy to master, and
practically never universal solutions can be found. So the intention is
to clearly delimit what our model is made for, and what it is capable
to achieve.

Like shown in section 7.2.1, we have been able to reproduce sensible
KDS values for the three datasets fp01, fp02 and fp03. Due to this re-
liable reference data, those datasets are used to calculate the following
results.

9.1 model choice

Even with the concepts perfectly understood and the program run-
ning, one has nonetheless to start with physiological characteristics,
mathematical reasoning and not at least a good measure of intuition
to come up with an effective and sensible model.

9.1.1 Distribution

The first question to answer is the one of the distributions used in
the Hidden Markov Model. Since we are dealing with continuous
measurement data it is only logical to make use of continuous HMMs
with continuous densities. In the following we want to go through
all input features, study their histogram and discuss why we finally
decided on a Gaussian HMM.

eog data When taking a look at the histograms of the EOG-based
features in figure 9.1 one remarks the heavier tail on the right side
of the distribution. But we must not be mislead by the heavy tail
on the right side of the data distribution, since those histograms
have been created using all recorded data, independent from
their assigned state. That means that the histogram is a mixture
density from whatever how many states we assign the model.

driving data The lowest two histograms in figure 9.1 look more
like they would have been derived from beta-distributed data.
This comes because the normal values of both the variance of
the car in the lane and the steering wheel velocity are rather
low and steady. Only when getting so tired that it needs a quick
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reaction to stay at the street, the values of those two measures
rise abruptly. That means – since such different samples will
not belong to the same state – that we can again model those
distributions as a mixture of normal distributions

But what we cannot deduce so easily from the histograms, is the
answer to the question if we would benefit from a Student-t Hidden
Markov Model. To find out, we ran the Gaussian HMM on all three
datasets (using a three-state model) and took the respectively opti-
mized model parameters to feed the SHMM (one example is located
in the source code section A.2).

As can be seen in table 9.1, the Student-t HMM has a slightly
decreased logarithmic likelihood for all three test subjects. This does
not give us a 100% certainty that the SHMM might not perform
superior for a specific parameter set, but all in all the GHMM seems
to be the better solution for our problem.

fp01 fp02 fp03

GHMM 758.55 993.93 672.67

SHMM 679.54 895.66 615.43

Table 9.1: Comparison between the logarithmic likelihood produced by a
three-state GHMM and SHMM.

In the context of online application of EOG-based devices on the
other hand, SHMMs could prove to be a valuable extension of GHMM,
because they are much more resistant to outliers and bad initialization
[106].

9.1.2 Mixtures

Now that we settled for GHMMS, the second question is how many
Gaussian mixture densities should represent each state. Our decision
to use only one normal distribution per stage – making the mixture
model a simple Gaussian HMM – is based on following considerations:

a. From a physiological viewpoint, the transition between different
vigilance levels should transfer (roughly) linearly into the data,
leaving simple distributions as the easiest way to model that
behavior. We do not expect one state to have two different maxi-
mums, e.g. the EOG frequency being very high or very low for a
certain state, but not average. The same reasoning applies to the
driving data. Also the lane variance rises with rising tiredness
and abrupt steering wheel motions indicate fighting a high level
of fatigue.

b. When taking the maths into account, one sees in figure 9.1
that it should be possible to model the densities outlined by
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Figure 9.1: Histograms of the five input features over all data
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the histograms with a simple GHMM. This train of thought
is supported by the figures 9.4, 9.9, 9.8, 9.9, 9.12, 9.13, which
show the fit of the model to the estimated densities for each
feature. On has to bear in mind, that although the fit is far from
perfect, that it will never be when dealing with real-world data
(especially with so small sample sizes). In addition, a raise in
mixtures per state will also increase the number of independent
parameters to estimate, which is unfavorable!

9.1.3 States

Now we have fixed the model distributions and restricted them to
only one per state. The next question we have to face is, how many
states we should use to get the best model for our purposes? In section
6.4 we have already explained the method of information criteria and
pseudo-residuals in order to pick the optimal number of states. The
results for all three test subjects can be seen in figure 9.2 and the table
9.2.

●

●

● ●

−
14

20
−

13
40

number of states

2 3 4 5

AIC

●

●

● ●

● ●

●

●

−
12

00
−

60
0

number of states

2 3 4 5

AICc

● ●

●

●

●
●

●

●

−
11

50
−

10
00

number of states

2 3 4 5

BIC

●
●

●

●

Information Criteria

(a) fp01

●

●

●

●

−
19

00
−

17
50

number of states

2 3 4 5

AIC

●

●

●

●

●

●

●

●

−
17

00
−

14
00

number of states

2 3 4 5

AICc

●

●

●

●

●

●

●

●

−
16

00
−

14
50

number of states

2 3 4 5

BIC

●

●

●

●

Information Criteria

(b) fp02

●

●

●
●

−
12

50
−

11
50

number of states

2 3 4 5

AIC

●

●

●
●

● ●

●

●

−
10

00
50

0

number of states

2 3 4 5

AICc

● ●

●

●

●

●

●

●

−
10

00
−

85
0

number of states

2 3 4 5

BIC

●

●

●

●

Information Criteria

(c) fp03

Figure 9.2: Information criteria AIC, AICc and BIC for all three datasets
used. The whiskers indicate the variability of the measure for models with
different starting values. It can be clearly seen that the AIC favors models
with a higher number of states while AICc and BIC do not. Best compromise
alongside with the physiological interpretation is a three-state HMM.

One can see that the AIC values keep dropping with rising number
of features while AICc and BIC have their minimum either for the
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2-state or 3-state model. Thinking about the robustness of the AICc
measure for small observation sets, we will base our decision mostly
on that criterion. While for fp01 and fp03 the AICc value increases
slightly when going from two to three states, for fp02 it has its mini-
mum at three states. The three-state model also allows us to introduce
a transition state between ”rather tired“ and ”rather alert“, which
helps in terms of usability and interpretability.

fp01 # parameters -LLH AIC AICc BIC

2 states 43 694.09 −1302.18 −1269.28 −1170.22

3 states 68 785.73 −1369.22 −1264.95 −1160.53

4 states 95 785.73 −1381.45 −1091.93 −1089.91

5 states 124 815.13 −1382.26 −470.49 −1001.71

fp02 # parameters -LLH AIC AICc BIC

2 states 43 901.22 −1716.43 −1691.54 −1575.47

3 states 68 975.54 −1815.08 −1741.19 −1592.17

4 states 95 1031.63 −1873.26 −1690.86 −1561.83

5 states 124 1072.09 −1896.18 −1459.56 −1489.7

fp03 # parameters -LLH AIC AICc BIC

2 states 43 613.15 −1140.31 −1099.17 −1015.06

3 states 68 659.85 −1183.71 −1043.65 −985.64

4 states 95 701.07 −1212.14 −756.14 −935.44

5 states 124 733.34 −1218.68 1599.5 −857.51

Table 9.2: Information criteria, negative log-likelihood and number of inde-
pendent model parameters for the Gaussian Hidden Markov Model for all
three subjects

The interaction between the states, which is described by the state
transition probability matrix A has no real constraints, leaving it open
to reach every state at every time point, i.e. ergodic model. This is not
contrasting reality, since it is for example possible to go from nearly
asleep to highly alert in parts of a second due to a sudden event. Of
course, we expect most of the changes to be much smoother.

Before presenting the final results, we have to point out, that it
is not at all easy to assign a level of fatigue to every model state.
Especially in our case, where we take advantage of letting a k-means
algorithm find the best initial values, state labels are not always the
same, e.g. ”state1“, ”state2“, etc. depend on a (random) k-means seed.
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It appears that the safest way to order the states by vigilance is to use
the driving data. The higher the lane variance and the steering wheel
angle velocity, the higher is the hypovigilance. States are then ordered
by the vector norm of that two features and plotted in relative distance
to one another.

9.2 model results

Like mentioned in the chapters before, we are using the feature sets of
three test subjects fp01, fp02, fp03, from the driving simulator study
to test if we are able to model sensible vigilance states with a Gaussian
Hidden Markov Model. Summing up the previous sections and pre-
results we launched our try-outs with following meta-parameters:

• Gaussian distributions

• No mixtures (one distribution per state)

• 2 to 5 States

• Ergodic

• Randomized k-means initialization (best out of 50)

The structure of the results pages is:

test subject

a. Fitted state sequence with reference data

b. Distribution comparison – part 1

c. Distribution comparison – part 2

d. Pseudo-residuals and Q-Q plot

Those results will be topic of discussion in the subsequent chapter 10.
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9.2.1 Subject fp01
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Figure 9.3: (fp01) Fitted models for 2 (top) to 5 (bottom) states. All data
(states and smoothed KDS values) was fitted to the unit interval. Black
dots are the states (with relative distances to each other), continuous line
illustrates the KDS-value and the top-down triangles indicate time points
when a rumble strip was hit.
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Figure 9.4: (fp01) Comparison of model and data distributions for all five
input features for the 2-state model (left) and the 3-state model (right). The
thick gray line indicates the estimated overall density of the observations.
The thick black line is the fitted overall density of the model and is the sum
of the individual state densities depicted by the dotted black lines.
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Figure 9.5: (fp01) Comparison of model and data distributions for all five
input features for the 4-state model (left) and the 5-state model (right). The
thick gray line indicates the estimated overall density of the observations.
The thick black line is the fitted overall density of the model and is the sum
of the individual state densities depicted by the dotted black lines.
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Figure 9.6: (fp01) Pseudo-residuals for models with 2 - 5 states for visual
inspection. First line: uniform pseudo-residuals Second line: normal pseudo-
residuals Third line: quantile-quantile plot of the normal pseudo-residuals
Forth line: autoregressive function of the residuals.
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Figure 9.7: (fp02) Fitted models for 2 (top) to 5 (bottom) states. All data
(states and smoothed KDS values) was fitted to the unit interval. Black
dots are the states (with relative distances to each other), continuous line
illustrates the KDS-value and the top-down triangles indicate time points
when a rumble strip was hit.
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Figure 9.8: (fp02) Comparison of model and data distributions for all five
input features for the 2-state model (left) and the 3-state model (right). The
thick gray line indicates the estimated overall density of the observations.
The thick black line is the fitted overall density of the model and is the sum
of the individual state densities depicted by the dotted black lines.
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Figure 9.9: (fp02) Comparison of model and data distributions for all five
input features for the 4-state model (left) and the 5-state model (right). The
thick gray line indicates the estimated overall density of the observations.
The thick black line is the fitted overall density of the model and is the sum
of the individual state densities depicted by the dotted black lines.
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Figure 9.10: (fp02) Pseudo-residuals for models with 2 - 5 states for visual
inspection. First line: uniform pseudo-residuals Second line: normal pseudo-
residuals Third line: quantile-quantile plot of the normal pseudo-residuals
Forth line: autoregressive function of the residuals.
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Figure 9.11: (fp03) Fitted models for 2 (top) to 5 (bottom) states. All data
(states and smoothed KDS values) was fitted to the unit interval. Black
dots are the states (with relative distances to each other), continuous line
illustrates the KDS-value and the top-down triangles indicate time points
when a rumble strip was hit.
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Figure 9.12: (fp03) Comparison of model and data distributions for all five
input features for the 2-state model (left) and the 3-state model (right). The
thick gray line indicates the estimated overall density of the observations.
The thick black line is the fitted overall density of the model and is the sum
of the individual state densities depicted by the dotted black lines.
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Figure 9.13: (fp03) Comparison of model and data distributions for all five
input features for the 4-state model (left) and the 5-state model (right). The
thick gray line indicates the estimated overall density of the observations.
The thick black line is the fitted overall density of the model and is the sum
of the individual state densities depicted by the dotted black lines.
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10
D I S C U S S I O N

number of states The fist part of the state-discussion was al-
ready held in the section 9.1.3. There we concluded, that regarding
the information criteria as well as the physiological interpretation, a
three-state GHMM seems to be best suited. Now, is this confirmed in
any way by the model results we have got in the last chapter?

The answer is ”yes“. When examining the plots with the relative
positions of the state sequences to each other (figures 9.3, 9.7 and 9.11)
one discovers that in many cases the means of the four respectively
five states in the higher order models nearly coincide with one another.
This is impressively shown in the case of the first test subject fp01 in
figure 9.3.

For the last part, we can now also check the model pseudo-residuals
which can be found as figures 9.6, 9.10 and 9.14. Especially the Q-Q
plots are very revealing concerning the fit of the model. There we
note that the normal pseudo-residuals of the three-state model fits
the standard normal distribution better (fp01) or equally good (fp02,
fp03) as the higher-order models.

All this together is proves the three-state model the robustest concept
for our input data – and this with a not expected clarity.

runtime The work in this diploma thesis is only done with recorded
offline data, but the ulterior motive is of course to advance the tech-
nique to make it applicable in online environments. Thus it has to be
ensured that the underlying algorithms are capable of a fast, real-time
model fitting. Since the algorithms for online applications are designed
a little bit differently (for details see [119]), our experiences with the
offline algorithms cannot be counted on 100%, but they give a first
impression of what is possible.

The Gaussian HMM fitting algorithm of the R-package RHmm is
definitely fast enough, requiring approximately 50 miliseconds to fit a
three-state model on 159 observations. One important fact is also, that
the code of the RHmm package is written to great parts in C, making
it a lot faster than the self-written version entirely in R. This one takes
approximately 2 minutes to fit a three-state Student-t Hidden Markov
Model, which is not acceptable in any online setting.

fatigue detection quality The main interest lies definitely on
the question if our model is able to sufficiently detect the vigilance
state of the subjects. Before trying to answer that, we have to recall
that the whole problem is ill-posed, i.e. we have no precise indicator
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of which level of fatigue the test subject is experiencing at the moment.
That is also the reason why the SENSATION project tried to collect
as many data as possible in order to detect similarities between them
and use that as reliable base sleepiness indicator.

From what the team of VTI and Karolinska Institutet recommend,
the KDS scoring (based on the appearance of long blinks) is one the
best and most used EOG-based vigilance identifier. In this diploma
thesis we focused on the performance of other EOG features, e.g.
amplitude, velocity and frequency in order to build our model.

First interim results of models using only the three EOG-based
features showed, that the assumption that low values in amplitude
and velocity correspond with fatigue does not always seem to hold.
See therefor figure 10.1, which shows that the state distributions itself
are still reasonable, but the ordering of the states cannot be done
sensibly. What gives the car-based features the edge for this match,
is that there is no physiology involved in their recording, but only
the standardized sensors in the car. This makes them reliable and is
also one of the reasons why so many car companies are investing
a big part of their research and development budget in car-based
fatigue warning systems – they can be kept generalized and so be
mass-produced.

When the state ordering is done with the driving features alone, the
state sequences are matching the Karolinska Drowsiness Score (KDS)
much better. This gives hope, that by including the KDS as a HMM
input feature (and discarding the car-based ones), we can achieve to
build models depending merely on EOG-data.

generality The topic of generality in biomedical models has
always to be approached very carefully. The main reason for that is the
often not negligible difference in physiological parameters between
people, even though we all follow the same basic principles. So when
speaking of a generally applicable biomedical model, this is meant
with an individual training phase for every subject (sometimes even
for every new session).

Accepting the fact that the distributions of the HMM have to be
determined individually at least for every test subject, there is still
hope for the meta-parameters of the model. As the results for three
different subjects lead to the same conclusions in the face of number of
states, kind of distribution, ergodicity and mixtures we will definitely
follow this path. Still one has to keep in mind, that a higher number
of observations can open the opportunity to introduce more states,
thus refining the steps between them.
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Figure 10.1: (fp03) This graphs show the fit of the model, when only EOG-
based features are used for the state ordering process. It can be seen that
the characteristic of the so found model states do not necessarily reflect the
trend of the KDS values. Including the EOG-based KDS feature in the model
seems therefore interesting for the future, since it is more similar to the
subject-invariant car-based features.
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C O N C L U S I O N A N D O U T L O O K

11.1 the future of our project

Now the time of truth has come: time to summarize our achievements
and drawbacks. We started out with the goal of developing an EOG-
based model which should be able to give sensible state estimations,
where the states indicate the vigilance level of the test subject. For
evaluation purposes we used primarily the – also EOG-based – KDS
rate and secondarily the accordance with the rumble strip hits.

In general we can say that we succeeded in finding a suited model
with the meta-parameters shown in chapter 9. We get a good and
reasonable state estimation for the joint input data (EOG and driving
features). Using only the driving features for state ordering, we can
observe that the state sequences do finally yield a good representation
of the reference data, which are the Karolinska Drowsiness Score
(physiological measure) and the rumble strip hits (recorded event
data).

These results suggest, that by joining an automatically computed
KDS score to the three other EOG-based features, it could be possible
to adequately model vigilance states using only EOG-data. When find-
ing a different (independent) reference signal, it would be interesting
to rerun the tests with the KDS value made one of the input features
for the GHMM. This would pave the way for future applications
which rely solely on EOG-data and would be therefore fully mobile
and independent.

In order to achieve that, it is also necessary to adapt the Hidden
Markov Model algorithms (especially the EM-algorithm) to online
specifications, i.e. real-time iterative computation [119]. Not until then
we can be sure of the possibility to feasibly detect vigilance states
within a realistic setting.

The last step – and by far the most challenging – would be to
extend the model to be able to predict future states, relying on the
initialization and training data as well as the overall trends. This would
give us the possibility to design warnings more precisely in the hope
of preventing further drift towards fatigue.

11.2 the future of eog-based devices

The EOG has made its way in the scientific world where its standalone
value is shown by many eye-controlled human-machine interfaces
(HMI). These are already very capable of determining the single fea-
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96 conclusion and outlook

tures derived from the signal, e.g. blinks, saccades, velocity, frequency,
angle, etc., and using them to control computers [120, 121]. With ris-
ing accuracy and velocity of the developed devices and programs
they become also interesting solutions for handicapped people and
therapeutic use.

But the reason why EOG-based devices are not similarly widespread
in the non-scientific world is their still mediocre usability and user-
friendliness. The best results in terms of signal quality for example are
achieved with wet gel electrodes attached to the skin. The procedure
of preparing the electrodes for several minutes in advance to every
use makes it not favorable for frequent use.

Metal plate dry electrodes, as intended to use in prototypes by our
partners, have a significantly reduced signal quality but have the big
advantage of (fairly) quick and easy attachment. Still, for purposes of
permanent wear, a lot of work has to be put into refining the wearable
EOG-devices. They should be lightweight and non-disturbing, because
only then a broad acceptance can be reached in the group of people
who would profit from such systems, as pilots, drivers and shift
workers.

Actual designs of EOG-devices (which have to be positioned some-
where around the eyes) resemble often glasses [53]. One way of raising
the acceptance of the wearers would be to join forces with the re-
search in augmented reality, which would turn such eyeglasses into
multifunctional devices providing additional benefit to its users.

Apart from the usability issues to overcome, there is another catch
in the precision and reliability of the models. Since the underlying
motives of the whole research field of vigilance detection and classifi-
cation are to prevent hazards, such models, in order to get very few
false negative responses, have to be biased towards the more tired side.
This naturally increases the false positives, i.e. the false alarms of the
system, which annoys users and dramatically decreases the acceptance
of such a ”helping hand“, as it is intended to be. The exact thing can
be nowadays experienced by listening to the opinion of people, who
have bought cars with a (first generation) safety assistance module –
they complain about the system proposing to take a rest, even though
they do not feel tired. But maybe they are?

This project is a small step into the future, a step into a time when
technologies as the present one will be fully developed and serve
their purpose of helping the mankind preventing severe accidents and
make the earth a saver place. And even when we know that this will
not be achieved in a couple of years, we should always believe that
one day, it will.

Be not afraid of growing slowly, be only afraid of standing still.

— Chinese proverb
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P R O G R A M S O U R C E C O D E I N R

a.1 gaussian hmm; using package rhmm

For the case of Gaussian Hidden Markov Models there exist very
elaborate packages for R. The optimized code of the RHmm package
made it very convenient to work with it, due to its user friendliness
and velocity. The following script is built around that package and
automatizes the testing of models with different number of states
(here 2-5). In addition it calculates various information criteria and the
pseudo-residuals (see section 6.4). Finally it displays the results along-
side with the reference data, the pseudo-residuals and the comparison
of original data and fitted model distributions.

################################################################################

################################################################################

# Hidden Markov evaluation of EOG features for vigilance detection #

# author: Christoph Schneider

# university: TU Wien

# date: May, 2012

################################################################################

################################################################################

# header

rm(list = ls()) # clear workspace

library("RHmm") # load Hiddden Markov package ’RHmm’

library("splus2R") # load function ’vecnorm’

file <- "input_HMM_fp01" # load features for HMM

data <- as.matrix(read.table(file, header=TRUE, sep=’\t’))

labels <- c("EOG amplitude","EOG velociy","EOG frequency",

"Lane variance","Steering angle")

ABA <- NULL # initialize array for information criteria

sequence <- NULL # initialize state sequences for HMMs

RG <- NULL # initialize residuals (for all number of states)

teststat <- c(2,3,4,5) # quantity of states of interest

restarts <- 50 # number of restarts of RHmm/k-means algorithm

features <- data[,1:5] # input features for the HMM

KDS <- data[,6]/max(data[,6]) # Karolinska Drowsiness Score (normalized)

Hits <- data[,7]*2 - 1 + 0.1 # rumble strip hits (on top of plot)

numfeats <- dim(features)[2] # number of input features

end <- length(KDS) # number of observations

KDS_smoothed <- KDS * 0 # smoothing KDS over 1-min windows (5*20 sec)

for (i in 5:end){KDS_smoothed[i] = sum(KDS[(i-4):i])/5}

KDS_smoothed <- KDS_smoothed / max(KDS_smoothed) # normalize

99
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################################################################################

# loop for evaluation of different state quantities

for(h in teststat){

AIC_global <- NULL # initialize information criteria

BIC_global <- NULL

AICc_global <- NULL

LLH_global <- NULL

low <- 0 # auxiliary variable: initialize minimum LLH

##############################################################################

# loop for iterating through different starting conditions

for (o in 1:restarts){

numstates <- h # number of states for HMM

############################################################################

# Fitting of the Hidden Markov model

Res <- HMMFit(features,dis=’NORMAL’,nStates=numstates)

vit <- viterbi(Res,features)

# save result when best

if (is.na(Res$LLH) == FALSE){ # discard NA results

if (Res$LLH > low){

Res_min <- Res

vit_min <- vit

low <- Res$LLH

}

}

# number of independent paramerters in the HMM

nP = (numstates^2 - 1) + numstates * ((numfeats^2+3*numfeats)/2)

# calculation of information criteria

AIC_global <- rbind(AIC_global,Res$AIC)

AICc_global <- rbind(AICc_global,Res$AIC + 2*nP*(nP+1)/(end - nP -1))

BIC_global <- rbind(BIC_global,Res$BIC)

LLH_global <- rbind(LLH_global,Res$LLH)

}

Res <- Res_min # shorten name for future use

vit <- vit_min

print(Res) # display best result

print(vit)

# save statistics of information criteria

ABA <- cbind(ABA,c(mean(AIC_global,na.rm=TRUE),

mean(AICc_global,na.rm=TRUE),

mean(BIC_global,na.rm=TRUE),

mean(LLH_global,na.rm=TRUE),

max(AIC_global,na.rm=TRUE) - mean(AIC_global,na.rm=TRUE),

mean(AIC_global,na.rm=TRUE) - min(AIC_global,na.rm=TRUE)))

##############################################################################

# saving the best result

# reorder HMM-states in the most sensible way

norm = array(0,c(1,numstates))

for (i in 1:numstates){
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x <- unlist(Res$HMM$distribution$mean[i])

# EOG features normally decay with rising fatigue, the driving features rise

# => building a measure to order the states

norm[i] <- vecnorm(x[4:5],2)

}

nnorm <- (norm-min(norm))/(max(norm)-min(norm)) # span over [0,1]

sequence[[h]] <- nnorm[vit$states]

##############################################################################

# calculate ordinary pseudo-residuals

residuals <- NULL

x <- density(features[,1])$x # span of plot of distributions

y <- list()

length(y) <- numfeats # list for values of every feature and state

for (i in 1:numstates){

measurements <- NULL

measurements <- features[vit$states == i,] # get according measurements ...

mean <- Res$HMM$distribution$mean[[i]] # ... means and ...

covs <- Res$HMM$distribution$cov[[i]] # ... covariances

r <- NULL

for (j in 1:numfeats){

for (c in 1:length(measurements[,j])){

# density estimation without measurement[c,j]

est_dens <- density(measurements[-c,j])

e <- est_dens$x # points on x-axis of estimated distribution

# find nearest point to measurement[c,j] on e

pos <- which.min(abs(e - measurements[c,j]))

# stepwidth between two points on e

stepwidth <- (range(e)[2] - range(e)[1])/which.max(e)

# calculate and write pseudo-residual to r

new_res <- sum(est_dens$y[1:pos])*stepwidth

r <- rbind(r,new_res)

}

m <- mean[j]

s <- sqrt(covs[j,j])

y[[j]] <- rbind(y[[j]],dnorm(x,m,s)/numstates)

}

residuals <- append(residuals,r)

}

RG[[h]] <- residuals

##############################################################################

# plot data and model distributions

# set up new plot environment/ 2 pages

if (h==2){par(mfcol=c(numfeats,length(teststat)/2),oma=c(0,0,2,0))}

if (h==4){par(mfcol=c(numfeats,length(teststat)/2),oma=c(0,0,2,0))}
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for (i in 1:numfeats){ # plot densities of model (black) and data (gray)

model_dist <- apply(y[[i]],2,sum)

mf <- mean(features[,i])

sf <- sd(features[,i])

feat_dist <- density(features[,i])

plot(NULL,NULL,xlim=c(mf-2*sf,mf+2*sf),ylim=c(0,max(model_dist,feat_dist$y)),

xlab="",ylab="Density")

title(labels[i])

lines(x,model_dist,lwd=2,lty=1)

lines(feat_dist,col="darkgray",lwd=2)

for (j in 1:numstates){ # plot single state densities (dashed lines)

lines(x,y[[i]][j,],lty=2)

}

}

# writes titles to the 2 pages

if (h==2){

title("Comparison of data and model distributions for 2 and 3 states",

outer=TRUE)

}

if (h==4){

title("Comparison of data and model distributions for 4 and 5 states",

outer=TRUE)

}

}

################################################################################

# plot best models for each number of states h

par(mfrow=c(length(teststat),1),oma=c(0,0,2,0)) # number of plots on page

for (j in teststat){ # plotting best results

plot(Hits,pch=25,main=paste(j,"states"), # rumble strip hits (triangles)

xlim=c(0,end+20),ylim = c(0,max(Hits)),

xlab="observations",ylab="normalized value")

lines(KDS_smoothed,pch=4) # KDS (continuous line)

points(sequence[[j]],pch=19) # state sequence (solid dots)

abline(v=end+1) # border to legend

legend(c(end+3,end+20),y=c(0,max(Hits))+0.2,

bty="n",legend=c("States","KDS","Hits"),

pch=c(19,NA,25),lty = c(0,1,0), lwd = c(0,1,0))

}

title(main="State sequences and references",outer=TRUE)

##############################################################################

# plot ordinary pseudo-residuals

par(mfcol=c(4,4),oma=c(0,0,2,0)) # four plots on one page

for (j in teststat){

# 1st plot: histogram of uniform pseudo-residuals

hist(RG[[j]],freq=FALSE,col="gray",ylim=c(0,2),xlab="Residual value"

,ylab="Density",main="Uniform pseudo-residuals")

abline(h=1,lty=2)

# 2nd plot: histogram of normal pseudo-residuals

hist(qnorm(RG[[j]]),freq=FALSE,col="gray",xlim=c(-4,4),ylim=c(0,0.6),

main="Normal pseudo-residuals",xlab="Residual value")

z=seq(-4,4,length=500)

lines(z,dnorm(z),lty=2)

# 3rd plot: quantile-quantile plot of normal pseudo-residuals
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qqnorm(qnorm(RG[[j]]), main="Q-Q plot (normal)",

xlim=c(-4,4),ylim=c(-4,4))

abline(a=0, b=1, lty=2)

# 4th plot: autocorrelation function of the normal pseudo-residuals

acf(qnorm(RG[[j]]),lwd=3,lag.max=10,ci.col="black",

main="ACF (normal)")

}

title("Statistics of pseudo-residuals for 2,3,4 and 5 states",outer=TRUE)

################################################################################

# save and display the information criteria

par(mfrow=c(3,1),oma=c(0,0,2,0)) # three plots on the page

colnames(ABA) <- paste(teststat,"states")

rownames(ABA) <- c("AIC","Aicc","BIC","LLH","top whisker","bottom whisker")

write.table(round(ABA,2),file=paste("ABA_",file,".txt",sep = ""),sep="\t")

tit = c("AIC","AICc","BIC") # titles for plots

for (i in 1:3){

zu <- ABA[i,]+ABA[5,] # upper boundary

zm <- ABA[i,] # mean value

zl <- ABA[i,]-ABA[6,] # lower boundary

yrange <- c(min(zl),max(zu))

# plot values with customized x-axis = number of states used

plot(zm,type="b",ylim=yrange,xaxt="n"

,xlab="number of states",ylab="")

axis(1, at=1:length(teststat), labels=as.character(teststat))

title(tit[i])

for (j in 1:length(teststat)){ # add minima and maxima

arrows(j,zm[j],j,zu[j],length=0.05,angle=90)

arrows(j,zm[j],j,zl[j],length=0.05,angle=90)

points(j,zm[j],col="white",pch=20) # erase lines through circles

}

}

title(main="Information Criteria",outer=TRUE)
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a.2 student-t hmm

To that point of time there exists no available R-package which is
capable of dealing with Student-t mixture distributions. The following
code is my humble implementation of the concepts of continuous
Student-t HMMs, based on the work of Rabiner [83] and Chatzis et
al. [106]. The notation borrowed from that two sources and should be
able to be understood when familiar with them.

Although fully operational (and hopefully bug-free) the code is
written solely in R and is not runtime-optimized. Due to that it needs
approximately 103-times longer than the RHmm package.

The starting values in the Run.R are the optimized results of the
Gaussian HMM for subject fp01. They should lie close to the optimal
values for the Student-t distributions.

run.r
################################################################################

################################################################################

# Student-t Hidden Markov Models #

# author: Christoph Schneider

# university: TU Wien

# date: May, 2012

################################################################################

################################################################################

rm(list = ls()) # clear workspace

# load libraries

library("corpcor") # for pseudoinverse

# including external functions

source("Forward.r")

source("Viterbi.r")

source("Backward.r")

source("EM.r")

source("Mixprob.r")

source("TDistribution.r")

################################################################################

# Initialization:

file <- "input_HMM_fp01" # load features for HMM

data <- as.matrix(read.table(file, header=TRUE, sep=’\t’))

labels <- c("EOG amplitude","EOG velociy","EOG frequency",

"Lane variance","Steering angle")

observation <- data[,1:5]

print(list(’observation sequence: ’,observation))

# initializing the transition probability matrix (TPM)

x= c(8.126161e-01, 2.324226e-11, 0.18738395,

2.917443e-18, 9.398943e-01, 0.06010571,

9.606052e-02, 4.410835e-02, 0.85983113)

dim(x) = c(3,3)

Transprob <- t(x)
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print(list(’Transition Probability Matrix: ’,Transprob))

# initializing the observation probabilities (OP)

B1 <- c(1)

B2 <- c(1)

B3 <- c(1)

Weights <- matrix(rbind(B1,B2,B3),3) # mixture weights

x1 <- c(0.5193372,0.4754052,0.5723557,0.5133089,0.3451783)

x2 <- c(0.23680909,0.28388960,0.34649317,0.21863538,0.08212454)

x3 <- c(0.4617714,0.4497982,0.5144821,0.2606850,0.1378977)

Means <- list(x1,x2,x3)

dim(Means) <- c(1,3)

Means <- t(Means) # means

y1 <- c( 0.0275085318, 0.022048924, 0.007546027, 0.003517284, -0.0009371224,

0.0220489240, 0.022699353, 0.010512684, 0.003226340, -0.0033244139,

0.0075460268, 0.010512684, 0.014698090, -0.004336467, 0.0036101192,

0.0035172844, 0.003226340, -0.004336467, 0.028190172, 0.0141630163,

-0.0009371224, -0.003324414, 0.003610119, 0.014163016, 0.0544553587)

y2 <- c( 0.0119700491, 0.0146749639, 0.0070177553, -0.0013867273, -0.0006730231,

0.0146749639, 0.0212469950, 0.0078343473, -0.0045388849, -0.0009609869,

0.0070177553, 0.0078343473, 0.0111916891, 0.0001440021, 0.0003975450,

-0.0013867273, -0.0045388849, 0.0001440021, 0.0104023052, 0.0007251109,

-0.0006730231, -0.0009609869, 0.0003975450, 0.0007251109, 0.0009209680)

y3 <- c( 0.0167159252, 1.423341e-02, 9.763214e-04, 2.868413e-03, -9.903016e-04,

0.0142334142, 1.819647e-02, 5.651296e-05, 2.100225e-03, -1.071399e-03,

0.0009763214, 5.651296e-05, 1.030234e-02, 9.241889e-04, 3.797069e-04,

0.0028684135, 2.100225e-03, 9.241889e-04, 1.180866e-02, -1.959229e-05,

-0.0009903016, -1.071399e-03, 3.797069e-04, -1.959229e-05, 3.295581e-03)

dim(y1) <- c(5,5)

dim(y2) <- c(5,5)

dim(y3) <- c(5,5)

Covs <- list(y1,y2,y3)

dim(Covs) <- c(1,3)

Covs <- t(Covs) # covariances

B1 <- c(2)

B2 <- c(2)

B3 <- c(2)

Dofs <- matrix(rbind(B1,B2,B3),3) # degrees of freedom

Paramdt <- list(A=Weights,B=Means,C=Covs,D=Dofs) # build parameter set

print(list(’Distribution Probability Weights: ’,Weights))

print(list(’Student Distribution Means: ’,Means))

print(list(’Student Distribution Covariance Matrices: ’,Covs))

print(list(’Student Distribution Degrees of Freedom: ’,Dofs))

# initializing the starting probability (SP)

Inprob <- c(0.3,0.3,0.4)

print(list(’Initial Observation Probability: ’,Inprob))

# initialize auxiliary variables

Sequence <- vector("list", 0) # initialize list of Viterbi-sequences

LogProb <- vector("list", 0) # initialize list of probabilities
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Difference <- 1.0e+10 # set initial Difference to a implausible high value

threshold <- 1.0e-10 # threshold for overall Difference of TPM, OPM and SP ...

# ... in two subsequent estimation-maximization-steps

count <- 0 # count variable

################################################################################

# Iteration:

t1 = Sys.time() # set starting time

print("iteration")

while (threshold <= Difference) { # loop breaks if difference of parameters ...

# in subsequent steps smaller than threshold

count <- count+1

print(count)

Mix <- Mixprob(observation,Paramdt)

# Forward-algorithm:

z <- Forward(Inprob,Paramdt,Transprob,observation)

Alpha <- z$B

LogProb <- append(LogProb,list(z$A))

# Viterbi-alorithm:

Sequence <- append(Sequence,list(Viterbi(Inprob,Paramdt,

Transprob,observation)))

# Backward-algorithm:

Beta <- Backward(Inprob,Paramdt,Transprob,observation,z$C)

# EM-algorithm:

New_Param <- EM(Alpha,Beta,observation,Transprob,Paramdt,

dim(observation)[2],Mix)

Inprob <- New_Param$A

Transprob <- New_Param$B

Paramdt <- New_Param$C

# set absolute difference between the last two steps

if (count>1) {Difference <- (abs(LogProb[[count]]-LogProb[[count-1]]))}

}

t2 = Sys.time() # set ending time

################################################################################

# Display results:

print(list(’count of iterations:’,count))

print(list(’optimal initial probability: ’,Inprob))

print(list(’optimal state transition probability: ’,Transprob))

print(list(’optimal parameters: ’,Paramdt))

print(list(’optimal state sequence: ’,Sequence[length(Sequence)]))

print(list(’best possible log probability:’,round(LogProb[[length(LogProb)]],2)))

print(round(t2-t1,2))
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tdistribution.r

# density evaluation of student-t distribution

TDistribution <- function(x,my,sigma,dof,p){

gamma((dof+p)/2)*(det(sigma))^(-1/2)*(pi*dof)^(-p/2)*
gamma(dof/2)^(-1)*(1+((x-my) %*% pseudoinverse(sigma) %*%

(x-my))/dof)^(-(dof+p)/2)

}

mixprob .r

# calculate mixture probabilities of observations

Mixprob <- function (x,Paramdt){

e <- dim(Paramdt$A)[1] # auxiliary variables

f <- dim(Paramdt$A)[2]

g <- dim(x)

probmat <- array(0,c(e,f,g[1])) # initialize probability array

for (k in 1:g[1]){

for (j in 1:e){

for (i in 1:f){

probmat[j,i,k] <- Paramdt$A[j,i]*
TDistribution(x[k,],Paramdt$B[[j,i]],Paramdt$C[[j,i]],Paramdt$D[j,i],g[2])

}

}

}

return(list(A=probmat,B=apply(probmat,c(3,1), sum)))

}

forward.r

# Forward-algorithm

Forward <- function (Inprob,Paramdt,Transprob,observation){

d <- dim(observation)

##############################################################################

# Initialization

Nextprob <- Mixprob(observation,Paramdt)$B # probabilites of observations

Alpha <- mat.or.vec(d[1],length(Inprob))

Alpha[1,] <- Inprob * Nextprob[1,] # initialization of alpha

fact <- mat.or.vec(d[1],1) # scaling factor

fact[1] <- 1

##############################################################################
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# Induction

for (i in 1:(d[1]-1)){

Alpha[i+1,] <- (Alpha[i,] %*% Transprob)*Nextprob[i+1,]

fact[i+1] <- 1/sum(Alpha[i+1,])

Alpha[i+1,] <- Alpha[i+1,]*fact[i+1] # scale alpha

}

##############################################################################

# Termination & return values

LogProb <- -sum(log(fact)) # logarithmic probability

return(list(A=LogProb,B=Alpha,C=fact))

}

backward.r

# Backward-algorithm

Backward <- function (Inprob,Paramdt,Transprob,observation,fact){

##############################################################################

# Initialization

Nextprob <- Mixprob(observation,Paramdt)$B

Beta <- mat.or.vec(dim(observation)[1],dim(Transprob)[1])

Beta[dim(observation)[1],] <- fact[dim(observation)[1]]

##############################################################################

# Iteration

for (i in (dim(observation)[1]-1):1){

Beta[i,] <- Transprob %*% (Nextprob[i+1,]*Beta[i+1,])

Beta[i,] <- Beta[i,] * fact[i]

}

##############################################################################

# Return values

return(Beta)

}

em .r

# Expectation-Maximization-algorithm

EM <- function(alpha,beta,observation,Transprob,Paramdt,p,Mix){

# Variable shortening

Weights <- Paramdt$A

Means <- Paramdt$B

Covs <- Paramdt$C

Dofs <- Paramdt$D

l <- dim(observation)[1]
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d <- dim(Weights)

##############################################################################

# Initialization

u_t <- array(0,c(d[1],d[2],l))

xi_t <- array(0,c(d[1],d[2],l))

r_t <- array(0,c(d[1],d[2],l))

gamma_ht <- array(0,c(d[1],d[1],l-1))

##############################################################################

# Estimation step

gamma_t <- ((alpha*beta)/rowSums(alpha*beta))

for (i in 1:dim(Mix$A)[1]){

r_t[i,,] <- t(Mix$A[i,,]) * (gamma_t / Mix$B)[,i]

}

for (i in 1:l){

Mahalanobisdistance <- Weights*0 # initialize Mahalanobian distance matrix

for (j in 1:prod(d)){

m <- ((j-1) %% d[1]) + 1 # indices for all matrix elements

n <- ((j-1) %/% d[1]) + 1 # indices for all matrix elements

Mahalanobisdistance[m,n] <- sqrt( (observation[i,] - Means[[m,n]])

%*% pseudoinverse(Covs[[m,n]])

%*% (observation[i,]-Means[[m,n]]) )

}

u_t[,,i] <- (Dofs + p)/(Dofs + Mahalanobisdistance)

dev <- Mix$A[,,i]

if (is.array(Mix$A[,,i]) == T){

dev <- rowSums(Mix$A[,,i])

}

xi_t[,,i] <- Mix$A[,,i] / dev

if (i < l){

z <- alpha[i,]*t(t(Transprob) * (Mix$B[i+1,]*beta[i+1,]))

gamma_ht[,,i] <- z / sum(z)

}

}

##############################################################################

# Maximization step

Inprob_new <- gamma_t[1,]

# new transition probability matrix

A_new <- apply(gamma_ht,c(1,2),sum)/colSums(gamma_t[2:l-1,])

# new weights for mixture distributions

Weights_new <- apply(r_t,c(1,2),sum)/colSums(gamma_t)

# new means

Means_new <- as.list(Weights*0)

dim(Means_new) <- dim(Weights)
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div <- apply(u_t * r_t,c(1,2),sum)

up <- r_t * u_t

for (k in 1:l){

for(i in 1:d[1]){

for (j in 1:d[2]){

vec <- observation[k,] * up[i,j,k]

Means_new[[i,j]] <- Means_new[[i,j]] + vec/div[i,j]

}

}

}

# new covariance matrices

Covs_new <- as.list(Weights*0)

dim(Covs_new) <- dim(Weights)

div <- apply(r_t,c(1,2),sum)

for (k in 1:l){

for(i in 1:d[1]){

for (j in 1:d[2]){

vec <- observation[k,] - Means_new[[i,j]]

mat <- (vec %*% t(vec)) * up[i,j,k]

Covs_new[[i,j]] <- Covs_new[[i,j]] + mat/div[i,j]

}

}

}

# covariance regularization (shrinkage regularization)

func <- function(S,l,p){

top <- (1-2/p)*sum(diag(S%*%S)) + (sum(diag(S)))^2

bottom <- (l+1+2/p)*(sum(diag(S%*%S)) + (sum(diag(S)))^2/p)

return(top/bottom)

}

for (i in 1:(d[1]*d[2])){

x <- (i-1) %% d[1] + 1 # indices for all matrix elements

y <- i %/% (d[1]+1)+ 1 # indices for all matrix elements

f <- (sum(diag(Covs_new[[x,y]]))/l)*diag(p)

rho <- min(1, func(S = Covs_new[[x,y]], l = l, p = p))

Covs_new[[x,y]] <- (1-rho)*Covs_new[[x,y]] + rho*f

}

# new degrees of freedom for Student-t distributions

Dofs_new <- Dofs*0

fn <- function(n,nk,r,u,p){

out <- abs(1 - digamma(n/2) + log(n/2) + digamma((nk+1)/2)

- log((nk+1)/2) + (1/sum(r))*sum(r*(log(u)-u)))

return(out)

}

for (i in 1:(d[1]*d[2])){
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x <- (i-1) %% d[1] + 1 # indices for all matrix elements

y <- i %/% (d[1]+1)+ 1 # indices for all matrix elements

Dofs_new[x,y] <- optimize(fn, c(1, 100), tol = 0.0001, nk = Dofs[x,y],

r = r_t[x,y,], u = u_t[x,y,], p = p )$minimum

}

Dofs_new <- ceiling(Dofs_new) # careful estimation (higher values)

##############################################################################

# Return Values

Param_new <- list(A=Weights_new,B=Means_new,C=Covs_new,D=Dofs_new)

return(list(A=Inprob_new,B=A_new,C=Param_new))

}

viterbi.r
# Viterbi-algorithm

Viterbi <- function(Inprob,Paramdt,Transprob,observation){

##############################################################################

# Initialization

Nextprob <- Mixprob(observation,Paramdt)$B # probabilites of observations

delta <- t(as.matrix(log(Inprob) + log(Nextprob[1,])))

psi <- Inprob*0

logTransprob <- log(Transprob)

##############################################################################

# Iteration

for (i in 2:dim(observation)[1]){

delta <- rbind (delta, apply(delta[i-1,] + logTransprob, 2, max)

+ log(Nextprob[i,]))

psi <- rbind(psi,apply(delta[i-1,] + logTransprob, 2, which.max))

}

##############################################################################

# Termination

logpstar <- max(delta[dim(delta)[1],])

qstarT <- which.max(delta[dim(delta)[1],])

##############################################################################

# Path backtracking

qstar <- rep(0,dim(psi)[1])

qstar[length(qstar)] <- qstarT

for (i in (length(qstar)-1):1){qstar[i] <- psi[i+1,qstar[i+1]]}

##############################################################################

# Return values

return (qstar)

}
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