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Abstract
We present the analysis of the polarization mode dispersion and the chromatic dispersion 
for the quantum cryptography on the phase coding method in a double Mach-Zehnder 
interferometry set-up, through some crucial examples of simulations. In this interferometric 
set-up  system,  communication  is  provided  through  fiber  optics.  Because  of 
unavoidableness of  dispersion  appearances in  fiber  optics  in  real  life,  they should  be 
handled with in optimum way.  Examples show that how polarization mode dispersion and 
chromatic  dispersion  arise  in  optic  systems,  in  which  cases  they  should  be  most 
correlated. 
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Kurzfassung

"Simulation  des  Einflusses  der  Polarisationsmodendispersion  und  der 
chromatischen Dispersion auf die photonischen Zustände bei der Phasenkodierung 
in der Quantenkryptographie"
 
Im  Zusammenhang  mit  der  quantenkryptographischen  Phasenkodierung  bei  einer 
Anordnung  zweier  Mach-Zehnder  Interferometer,  die  aus  monomoden  Glasfasern 
bestehen, wird eine Analyse sowohl der Orts- als auch der Impulsspektren hinsichtlich des 
Einflusses  der  Polarisationsmodendispersion  (PMD)  als  auch  der  chromatischen 
Dispersion (CD) durchgeführt. PMD und CD wird in dieser Arbeit erklärt und diskutiert und 
ein  mathematisches  Simulationsmodell  aufgestellt.  Wegen  solcher  unvermeidbarer 
Dispersionseinflüsse  ist  eine  derartige  Untersuchung  mit  Hilfe  eines  MATLAB  - 
Simulationsprogramms von großem Wert, was an einer Reihe von Beispielen demonstriert 
wird. 
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Introduction

Today's one of the most crucial phenomenon is perhaps information. And this phenomenon's one 
of the most important component is its delivery, its transfer. Since 1960s, optical fibers have been 
fulfilling this task by an increasing significance. They are still being utilized as the most efficient 
media in order to convey the information in the world. Of course, everything encounters some 
problems in the development duration to be overcome. Optical fibers have been also encountering 
such problems due to environmental, structural, infrastructural conditions, such as chromatic 
dispersion and polarization mode dispersion. Handling with these problems come into 
prominence, individually if the topic would become information security, which must be provided 
through transmission process in optical fibers. Here, quantum cryptography comes into the scene.

Quantum cryptography (or quantum key distribution) has become an information security task to 
reach the niveau of mature technology, already convenient for commercialization. It aims at the 
creation of a secret key between authorized partners –these partners are going to be Alice and 
Bob in this thesis, who have been symbolized for exchanging encrypted and/or decrypted data in 
cryptography field usually- connected by a quantum channel and a classical authenticated channel. 
The security of the key can in principle be guaranteed without putting any restriction on the 
eavesdropper's power. 

What we are going to investigate in general meaning is  after giving background regarding relevant 
topic to reveal some calculations on chromatic dispersion and polarization mode dispersion in 
interferometers that can be established with single-mode optical fiber components for quantum 
cryptography using phase coding, and then to simulate in order to make them more 
understandable. Here, on which point to be careful is to record stationary interferences in order to 
hold the path difference stable, which is a kind of obligation in terms of quantum cryptography. By 
reason that each arm should be a number of tenth kilometres, holding the path difference is too 
uneasy.

• Therefore our calculations and simulations are based on 2 unbalanced Mach-Zehnder 
interferometers, which are connected in series by a single optical fiber. In chapter 1, after 
some essential definitions, terms, phrases are introduced, we will study characteristics of 
single-mode optical fibers, which are used for quantum channels and to show dispersion. 
Another topic is double Mach-Zehnder interferometer concept as a motivation for 
experimental quantum cryptographic field in order to make this work more profitable. Giving 
information concerning notation used for the entire thesis would be also very helpful. So, 
readers could reference notation section anytime in case of need. 

• In chapter 2, we introduce the dispersion concept in general meaning, and then types of 
dispersions. After that, origin of chromatic dispersion, its properties, disadvantages, its 
effects in single-mode fibers. Is it compensatable or non-compensatable, if compensatable, 
how?... etc.

• Chapter 3 will illuminate polarization mode dispersion. To achieve that, we will need some 
introductory information such as what polarization is and then polarization types. Next, 
PMD will be given as well as its types in terms of 1st and 2nd order.

• In chapter 4, we compare the polarization mode dispersion and the chromatic dispersion. 
What are their advantages upon each other, which one is easier to overcome?... etc. 

• In chapter 5, we will study some calculations concerning both kind of dispersions together 
and some characteristic simulations will be demonstrated.
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• Chapter 6 will be the conclusion part of the thesis. We will summarize the important and 
difficult problems of impacts of polarization mode dispersion and chromatic dispersion in 
quantum cryptography, where the emphasis is more on the diversity of the issues than on 
formal details. Some futuristic views will be presented as well. The different parts of this 
thesis are written as much as possible in such a way that they can be read independently.

• In the Appendix: Source code (about 1500 lines) will be released which was developed for 
the simulation of CD and PMD in phase coding quantum cryptography to whom may want 
to implement examples based on the calculations in this thesis. To make the thesis not 
unnecessarily long, resembling parts of the source code have been skipped. They can be 
easily added to code by copying similar parts and then changing relevant names and 
words. In case of information need about code, please contact the author.
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Chapter 1

Motivation

A. Notation
B. Single-Mode Fibers
C. Mach-Zehnder Interferometer (Double) and Phase Coding

A. Notation

Here we present a notation packet to be helpful, so that readers could refer it whenever they need.

l:          Wavelength. We will see that many quantities depend on this parameter.

l0 :                               Mean wavelength.     

u:        Group velocity is very important that affects pulse propagation in fiber glass,  
                               which is also to be examined whether it is dependent on the wavelength.
                               
c0:     Speed of light in vacuum.

   n :            Refractive index. Note that n = n (l).

   N :                             Group index. Sometimes it is "called group velocity index" and N =N (l).

   D t :                       PMD delay in picosecond (ps, one trillionth of a second).
 
     T Bit :                      Bit length.

      l i :                         Fiber length.

   D0 :                     Coefficient of CD.

   DPMD :                   Coefficient of PMD.

i = c, d, g, m, n:     Indices for optical fibers. 

a i :                        Absorption factors.

 P i :                        Phase factors.

  i :                         Phase shifts.

T i :                        Transmission coefficients. 

   :                            Parameter for PMD.
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  :                           Parameter for CD.

 :                            Spectral width.

 (r, t):                    Electric field vector.

 :                           Differential group delay.

w :                            PMD vector.

 
B. Single-Mode Fibers

The first propose to utilize small core optical fibers for high-capacity communications belongs to 
Kao and Hockham [1]. In most transmission systems single-mode fibers are very common 
currently.

Light travels in optical fibers due to the refractive index parameter n along the section of the fibers. 
For several years, many studies have been made to lower transmission penalty. At the beginning, it 
was a couple of dB in a kilometer, but today the attenuation is as low as 2 dB/km at 800-nm 
wavelength, 0.35 dB/km at 1310 nm, and 0.2 dB/km at 1550 nm. Therefore, an affirmative hit 
corresponds to a potential well in the refractive index. The section of the well is called the fiber 
core. If the core is vast, there are many layer modes in the fiber, corresponding to many guided 
modes. Such fibers are called multimode fibers, They usually have cores 50 µm in diameter.

The modes couple slighty, acting on the qubit like a non-isolated environment. Hence, multimode 
fibers are not convenient as quantum channels. Despite the fact this situation, if, the core is 
sufficiently narrow according to diameter in the unit wavelength, then a single spatial mode is 
delivered. These media are called single-mode fibers. The diameter of the single-mode fibers' 
core is generally 8 µm for the common transmission wavelengths 1.3 µm or 1.5 µm. Single-mode 
fibers are pretty fit to convey single quanta. For example, the optical phase at the output of a fiber 
is in a stable balance with the phase at the input, didn't make the fiber extended. Hence, fiber 
interferometers are convenient enough that became prevalent for a lot of optical devices.

Thus, a single-mode fiber with flawless geometry would oversupply a fit quantum channel. 
Unfortunately in real life, it is impossible to provide perfect symmetric fibers, that have the two 
polarization modes are no longer degenerate, but rather each mode has its own propagation 
constant. A cause also for this situation is birefringence. A well-known sample of this is calcite 
crystal, where it is possible to see the different paths if the crystal is placed on an image and then 
rotated [2].

Birefringence is in optical fibers a default of fiber material, where the effective index of refraction 
varies with the polarization state of the input light. The main causes of this birefringence are non-
perfect concentricity and inhomogeneity of the optical fiber in manufacturing design, as well as 
external stresses applied on the fiber cabling, such as bends, or twist, see Figure 1. An analogous 
cause for that is chromatic dispersion, in which the group delay depends on the wavelength [3].
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   Figure 1: Main causes for birefringence are imperfect fiber design and external stress  through a cross-section view.   

There are numerous advantages of using single-mode fibers in lightwave communication systems. 
We can compile them as following:

• The modes of a multimode fiber travel at different group velocities so that a short-duration 
pulse of multimode light suffers a range of delays and therefore spreads in time. Besides 
that, in a single-mode fiber, there is only one mode with one group velocity, so that a short 
pulse of light arrives without delay distortion. Pulse spreading in single-mode fibers does 
result from other dispersive mechanisms, but these are significantly lower than modal 
dispersion.

• Moreover, the amount of power attenuation is smaller in a single-mode fiber than in a 
multimode fiber. This situation allows in a substantial manner higher data rates to be 
transmitted over single-mode fibers than over multimode fibers along with the smaller rate 
of pulse spreading.

• Another difficulty with multimode fibers stems from the random interference of the modes. 
Because of unmastered imperfections, strains and temperature variations, each mode 
suffers a random phase shift so that the sum of the complex amplitudes of the modes 
exhibits an intensity that is random in time and space. This phenomenon is known as modal 
noise or speckle. This effect is similar to the fading of radio signals resulting from multiple-
path transmission. By reason that there is a single path in a single-mode fiber, there is no 
modal noise.

• As a result of their small size and small numerical apertures, single-mode fibers are more 
useful with integrated-optics technology. But these features make single-mode fibers more 
costly  to manufacture [4].

B. Mach-Zehnder Interferometer and Phase Coding

In chapter 5, we will study some models and simulations which are based on the result data of a 2 
unbalanced Mach-Zehnder interformeters (MZ) set-up for quantum cryptography, implemented by 
M. Suda et al. [5,6].

Phase coding method in quantum cryptography is something, which makes the optic play a crucial 
role. Application and use of system are therefore applied with interferometers, which can be 
realized with single-mode optical fiber components. Consequently, phase modulators are placed in 
each arm of the 2 MZ. 
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These 2 MZ are connected one after another by a single-mode optical fiber (fiber g), see Figure 2. 
The first MZ indicates Alice (A) and the second indicates Bob (B). One pulse is input (input a) by 
Alice and decomposed into two. The two pulses is guided in series through the fiber g. The 
following short path is indicated by S and the following long path is indicated by L. If the path 
distances are different in both MZ, four pulses occur after passing through 2. MZ. But if the path 
distances aren't different, just 3 pulses occur.  So, there are four possible ways to follow: SS (short-
short), LL  (long-long), SL (short-long) and LS (long-short). SS and LL are not fit, when they don't 
show any interference. For the SL and LS possibilities, the middle higher pulse refers to 
interference and hence the behaviour of indistinguishableness. 

The determination of the phase shifts between A and B corresponds to encoding-decoding. We 
mention this topic shortly in the following subsection. Note that the path distances in each 
interferometer should be smaller than the path g. Because both positions of the photons could be 
affected by environmental perturbations. Here, as a result of these perturbations, chromatic 
dispersion (CD) and polarization mode dispersion (PMD) come into the scene, that we have to 
handle with them seriously. Because they intervene pulses like displacing or enlarging peaks. And 
such problems affect our quantum channel in negative manner [6].
             

             

                                                              

              Figure 2: Two MZ interferometers in series: 1 input a, 3 outputs h, o, p, 4 beam splitters (BS), 5 optical 

              optical fibers (i = c, d, g, m, n), fiber lengths l i , phase factors P i =exp{  . k.li .i }, i are phase shifters,

              transmission coefficients T i =exp{ −2.l i .a i } ( a i are absorption factors); position distributions (or time

              pulses) are drawn.
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Chapter 2

Chromatic Dispersion

A. Dispersion Concept and Its Types

I.    What is Dispersion?
II.   Types of Dispersion
III.  Modal Dispersion
IV.  Material Dispersion
V.   Waveguide Dispersion
VI.  Nonlinear Dispersion
VII. A Remark for Dispersion, CD and PMD

B. Chromatic Dispersion

I.   Parametric Elements of Chromatic Dispersion
II.  Chromatic Dispersion as a Combination of the Material and Waveguide     
     Dispersion
III. Pulse Propagation Undergoing Chromatic Dispersion
IV. Group Velocity
V.  Normal and Anomalous Chromatic Dispersion
VI. Summary and Outlook

A. Dispersion Concept and Its Types

I. What is Dispersion?

Dispersion is one of the two performance limiting factors of the optical fiber medium. Other is 
attenuation so that associated with losses of various kinds, it limits the magnitude of the optical 
power transmitted, whereas dispersion limits the rate at which data may be transmitted through the 
fiber, since it governs the temporal spreading of the optical pulses carrying the data. 

In fact, dispersion is the time domain spreading or broadening of the transmission signal light 
pulses as they travel through and because of the dispersive media, the fiber, by a frequency-
dependent (and therefore wavelength-dependent) susceptibility. Since the speed of light is variable 
according to frequency in dispersive media, every frequency component constitutes a short pulse 
of light, which sustains a different time delay. If the length of propagation is long through the 
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medium (e.g. light transmission through optical fibers), the pulse is dispersed in time and its width 
broadens, see Figure 3a and 3b.

                                             Figure 3a: Variation of the signal light pulses.

                                                  Figure 3b: Change of phases of an optical pulse.                     

II. Types of dispersion

A short pulse of light becomes dispersed with time as it travels through an optical fiber so that the 
pulse spans into a larger time interval. There are five principal sources of dispersion in optical 
fibers: 

•  Modal dispersion 

•  Material dispersion 

•  Waveguide dispersion 

•  Polarization-mode dispersion 

•  Nonlinear dispersion 

As we will see, chromatic dispersion is the combination of material and waveguide dispersion. By 
reason that our main topics are chromatic dispersion and polarization-mode dispersion, here we 
will take a look at them just briefly, skip most parts as other dispersion types and leave them next 
studies.

III. Modal Dispersion

Modal dispersion appears in multimode fibers because of the differences in the group velocities of 
the different modes. When a single impulse of light introduce in an M-mode fiber at z =0 and then
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departs into M pulses whose differential delay ascends as a function of z. For a fiber of length L, 
the time delays produced through the various velocities are q=L/ vq , q=1,...,M, where vq  is the 
group velocity of mode q. If v min  and v max  are the smallest and the largest group velocities, 
respectively, the obtained pulse spreads over a time interval L /vmin−L/ vmax . Because of the 
modes' unequal excitedness, general view of the obtained pulse has a slight envelope, see Figure 
4. An estimate of the overall pulse duration (assuming a triangular envelope and using the FWHM 

definition of the width) is =
1
2
L /vmin−L /vmax , which symbolizes the modal-dispersion 

response time of the fiber [4].

Figure 4: Modal dispersion causes pulse spreading.

IV. Material Dispersion

An optical pulse is delivered, in a dispersive medium (e.g. made of glass) of refractive index n 
through a group velocity v=co/N , where N=n−0 dn/d 0 . By reason that pulse is a 
wavepacket, including a bundle of constituents of various wavelengths, every travelling at a group 
velocity, its width spreads. The time duration of an optical impulse of spectral width  (nm), after 
passing a length L through dispersive medium, is =∣d /d 0L /v ∣=∣d /d 0 L N /c0∣ .  
This guides to a response time

                               =∣D∣L ,                        (1)

where the material dispersion coefficient D  is

                                 D=−
0

c0

d 2 n
d 0

2 .                       (2)

The response time rises linearly proportional to the length L. Generally, L is measured in km,   in 
ps, and   nm, so that D  has units of ps/km.nm. This type of dispersion is called material 
dispersion. 

For a silica-glass fiber at wavelengths smaller that 1300 nm the dispersion coefficient is negative, 
so that wavepackets of long wavelength travel faster than those of short wavelength, due to the 
wavelength dependence of the dispersion coefficient D . At a wavelength 0 = 870 nm, e.g. the 
dispersion coefficient D is about -80 ps/km.nm. At 0 = 1550 nm, on the other hand, D≈17
ps/km.nm. 0≈1312  nm the dispersion coefficient disappears, so that   in (1) disappears. A 
more exact estimation for   that incorporates the dispersion of the spectral width   about 
0=1312  gives a very little, but nonzero, width, see Figure 5, [4].
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Figure 5: Dispersion coefficient D  for a silica-glass fiber as a function of wavelength 0 . The result is similar to, but 
distinct from, that of fused silica.

V. Waveguide Dispersion

Even if material dispersion is ignorable,  the group velocities of the modes in a waveguide travels 
in accordance with the wavelength. This waveguide dispersion is stems from the dependence of 
the field distribution in the fiber on the ratio of the core radius to the wavelength ( a /0 ). Therefore, 
in the core and cladding, the relative parts of optical power possess 0 dependence. The group 
velocity of the mode is changed, for the reason that the phase velocities in the core and cladding 
vary. In case of non-existence of modal dispersion, and at wavelengths for which material 
dispersion is small (about 0 =1300 nm in silica glass), waveguide dispersion is particularly 
important in single-mode fibers, because it then dominates [4].

VI. Nonlinear Dispersion

As the intensity of light in the core of the fiber is sufficiently high, another dispersion effect arises 
because the refractive index then starts to depend on intensity and the material demonstrates 
nonlinear behavior. Because of proportionality of the phase to the refractive index, the high-
intensity components of an optical pulse suffer phase shifts different from the low-intensity 
components, resulting in instantaneous frequencies shifted by different amounts. This nonlinear 
effect is known as self-phase modulation (SPM), causes to pulse spreading. Under certain 
conditions, SPM can compensate the group velocity dispersion associated with material 
dispersion, and the pulse can travel without altering its temporal structure. Such a guided wave is 
known as a soliton [4]. 

VII. A Remark For Dispersion, CD and PMD. 
                                                                               

All forms of dispersion degrade a light wave signal, reducing the data carrying capacity through 
pulse-broadening. The dominating dispersion art in the single-mode optical fiber is the chromatic 
dispersion. It results from the sum of material dispersion and waveguide dispersion, see Figure 6. 
To the realization of a high bit transmission with 2.5 GBit/s, 10 GBit/s or 40 GBit/s over large 
distance lengths, it is required to reduce the impulse distribution as a result of chromatic dispersion 
in the single-mode optical fibers. That becomes by use of an optical fiber possible, whose 
parameter of chromatic dispersion is small as we will see in chapter 5. 
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                Figure 6: CD's structure in terms of its components, e.g. material dispersion and waveguide dispersion.

A succession for use of an extreme narrow band transmitter is possible only by achieving large 
bandwidth products in single-mode transmission systems. In order to achieve large bandwidth 
products, a distributed feedback laser with a dominating single-mode is utilized, whose half-power 
bandwidth lies in the order of 4-10 nm and rare modes strongly are suppressed, comes for 
example. Such lasers are used especially in wavelength-division multiplexing (DWDM) systems. In 
DWDM systems, the case comes along, that the wave lengths of the single transmitter have a 
slight distance –about ~0,8nm- and may influence itself mutually [7]. The general conditions are 
selected now so that the chromatic dispersion strongly is suppressed, the effects of the polarization 
mode dispersion become apparent and considerably can restrict the range of optical transmission 
distances in high bit rates. In all other use cases, the PMD is clearly smaller than the impulse 
distribution as a result of chromatic dispersion and consequently negligible. 

B. Chromatic Dispersion

Chromatic dispersion is the combination of material dispersion and waveguide dispersion. We may 
simply review CD as a function of wavelength. It may be determined through comprising the 
wavelength dependence of the refractive indices, n1  and n2  and hence Numerical Aperture 
( sin≈n0 a , a radius,   angle), when finding out d / d  from the characteristic equation. 
Although generally smaller than material dispersion, waveguide dispersion shifts the wavelength at 
which the total chromatic dispersion is minimum.

I. Parametric Elements of Chromatic Dispersion

The angular dispersion d /d 0=d  /dndn/ d 0 is a product of the material dispersion 
factor d n /d 0  and a factor d /dn , which depends on the geometry and refractive index.

The first and second derivatives d n /d 0  and d 2 n/d 0
2  govern the effect of material dispersion 

on pulse propagation. A pulse of light of free-space wavelength 0 travels with the group velocity 
(u= c0/N  and N is group index, N=n−0 d n/d 0 ). The pulse gets broadened at a rate ∣D∣  
seconds per unit distance, because of the dependence of the group velocity itself on the 
wavelength. Here   is the spectral width of the light and D=−0/ c0d

2 n/ d 0
2  is CD coefficient 

in ps/km-nm (picoseconds of temporal speed per kilometer of optical fiber length per nanometer of 
spectral width) [4].
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II. Chromatic Dispersion as a Combination of the Material and Waveguide 
Dispersion

The phenomena of the material dispersion and the waveguide dispersion arise, because the 
characteristic of optical signals that exhibit finite spectral width, and several spectral constituents 
will be guided at different speeds through the length of the fiber. The refractive index of the fiber 
core shows different characteristics for different wavelengths and this situation causes that velocity 
difference. As we saw before, this is the material dispersion, and it is the weighted part of 
chromatic dispersion in single-mode fibers. Another factor of chromatic dispersion is: The cross-
sectional distribution of light within the fiber changes for different wavelengths as well. In the fiber 
core, the smaller wavelengths are more layered bounded during a bigger part of the optical force at 
longer wavelengths propagates in the cladding. Since the index of the core is greater than the 
index of the cladding, this case causes a change in propagation velocity for spatial distribution. And 
this is the waveguide dispersion, see Figure 7.

                                            Figure 7: Different wavelengths show different refractive indices.

It is dramatically worth mentioning that chromatic dispersion in a component is significantly 
different than chromatic dispersion in long length optical fiber. Chromatic dispersion can remain 
constant over the bandwidth of a communications channel for long lengths of fiber. If it tends to 
vary, then it varies over the bandwidth of the channel in optical components. As a
result, chromatic dispersion is not that sufficient predictor of component performance in a
communications system.

Since chromatic dispersion lowers the capacity of single-mode fibers, more developed fiber 
designs aim at reducing this effect by using graded-index cores through refractive index profiles 
selected such that the wavelength at which waveguide dispersion is shifted to the wavelength at 
which the fiber is to be used. Dispersion-shifted fibers have been produced by using a linearly 
tapered core refractive index and a reduced core radius. This technique can be used to shift the 
zero-chromatic-dispersion wavelength from 1300 nm to 1550 nm, where the fiber has its most 
limited situation. However, because of use of dopants, process of index grading itself causes 
losses. In order to make the chromatic dispersion disappear at two wavelengths and reduce for 
wavelengths between, other grading profiles have been developed. These fibers, called dispersion-
flattened, have been implemented by using a quadruple-clad layered grading [4].

Chromatic dispersion can cause bit errors in digital communications or distortion and a
higher noise floor in analog communications. If it would not be determined absolutely and taken 
into a compensation,it can cause a significant problem in high-bit-rate communications, see Figure 
8a, 8b, 8c.

10



                                       Figure 8a: Broadening of return to zero (RZ) format pulses due to CD.

                                                Figure 8b: Distinguishable pulses due to CD.

                                        
                                               Figure 8c: Indistinguishable pulses due to CD.

III. Pulse Propagation Undergoing Chromatic Dispersion

A dispersion medium consists of refractive index (frequency dependent), absorption coefficient and 
phase velocity. Consequently, monochromatic waves of different frequencies travel in the medium 
at different velocities and experience different attenuations. Since a pulse of light includes a sum of 
many monochromatic waves, each of which is modified differently, the pulse is delayed and 
broadened; its shape is also altered.
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IV. Group Velocity

Let a pulsed plane wave travel in the z direction through a lossless dispersive medium with 
refractive index n(  ).  Assume that the initial complex wavefunction at z=0 is U (0,t) =
 = A(t)exp( j0 t ), where 0  is the central angular frequency and  A(t) is the complex envelope of 
the wave. If the dispersion is weak, i.e., if n varies slowly within the spectral bandwidth of the wave, 
then the complex wavefunction at a distance z is approximately U = (z,t) = A(t)exp[ j0t−z /c ],
where c=c0/ n0 is the speed of light in the medium at the central frequency, and u is the 
velocity at which the envelope travels, see Figure 9.

                    Figure 9:  An optical pulse travelling in a dispersive medium that is weak enough so that its group 
                    velocity is  frequency independent. The envelope with group velocity u, while the underlying                     

                       wave travels with phase velocity c.

One can get u as group velocity by

                                                
1
v
= '= d 

d 
,                                              (3)

where =n /c0  is the frequency-dependent propagation constant and the derivative, which 
is often denoted  ' , is evaluated at the central frequency 0 . The group velocity is a 
characteristic of the dispersive medium, and generally varies with the central frequency. The 
corresponding time delay d=z /v  is group delay.

Since the phase factor exp[ j0t−z /c ] is a function of t−z /c , the speed of light c, given by 
=n /c0 , is often called the phase velocity. In an ideal (nondispersive) medium, 
=/c  whereupon v=c  and the group and phase velocities are identical.

Since the index of refraction of most materials is typically measured and tabulated as a function of 
optical wavelength rather than frequency, it is convenient to express the group velocity u  in terms 
of n . Using the relations =n 0/c0=2n 0/0  and =n /c0 , along with the chain 
rule d / d=d /d d /d  ,  provides

                                  v=
c0

N
,                      N=n−0

dn
d 0

,                               (4)

where N is the group index.

By reason that the group velocity v=1/d / d  is itself often frequency dependent, different 
frequency components of the pulse suffer different delays d=z /v.  Consequently, the pulse 
spreads in time. To estimate the spread with associated dispersive group velocity it suffices to note 
that, upon travelling a distance z, two identical pulses of central frequencies  and   undergo 
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a differential group delay

                                        =
d d

d 
= d

d 
 z
v
=D z ,                                       (5)

where the quantity

                                           D=
d

d 
 1
v
=2 ' ' ,                                       (6)

is dispersion coefficient and  ' '≡d 2/d 2 . This effect is actually associated with the higher-
order terms in the Taylor series expansion of   that were neglected in the derivation of the 
group velocity carried out above.

If the pulse has an initial spectral width   (Hz), in accordance with (5)  a good estimate of its 
temporal spread is then provided by

                           
                             =∣D∣ z.                        (7)   

The dispersion coefficient D is a measure of the pulse-time broadening per unit distance per unit 
spectral width (s/m-Hz). See Figure 10 for this temporal broadening process. If the refractive index 
is specified in terms of the wavelength, n 0 ,  then (4)  and (6)  give dispersion coefficient

                                                D=
0

3

c0
2

d 2 n
d 0

2 .                                      (8)   

Figure 10: An optical pulse travelling in a dispersive medium is broadened at a rate proportional to the product of the 
dispersion coefficient D , the spectral width  , and the distance traveled  z. 

It is also common to define a CD coefficient D  in terms of the wavelength instead of the 
frequency. Using Dd =Dd   yields D=D d /d 0=D−c0/0

2 , which leads to directly to

                               D=
0

3

c0
2

d 2 n
d 0

2                                (9) 

In analogy with (6), for a source of spectral width   the temporal broadening of a pulse of light is 

                              =∣D∣ z.                              (10) 

In fiber optics applications, D  is usually specified in units of ps/km.nm: the pulse broadening is 
measured in picoseconds, the length of the medium in kilometers, and the source spectral width in 
nanometers [4].
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V. Normal and Anomalous Chromatic Dispersion

Although D  does not affect the pulse-broadening rate, it does affect the phase of the complex 
envelope of the optical pulse. As such, the sign can play an important role in pulse propagation 
through media consisting of cascades of materials with different dispersion properties. If 
D0 D0 ,  the medium exhibits normal CD. In this case, the travel time for higher-frequency 

components is greater than the travel time for lower-frequency components so that shorter-
wavelength components of the pulse arrive later than longer-wavelength components, see Figure 
11. If D0 D0 , the medium exhibits anomalous CD, in which case the shorter-wavelength 
components travel faster and arrive earlier. Most glasses exhibit normal CD in the visible region of 
the spectrum; at longer wavelengths, however, the dispersion often becomes anomalous, which is 
the case we study in this work [4].

Figure 11: Propagation of an optical pulse through media with normal and anomalous CD. In a medium with normal CD, 
the shorter-wavelength components of the pulse (B) arrive later that those with longer wavelength (R). A medium with 
anomalous CD exhibits the opposite behaviour. The pulses are chirped since the instantaneous frequency is time 
varying.

VI. Summary and Outlook

In a multimode fiber, modal dispersion dominates and the width of the pulse received at the 
terminus of the fiber. It is governed by the disparity in the group delays of the individual modes. 

In a single-mode fiber, there is no modal dispersion and the transmission of optical pulses is limited 
by combined material and waveguide dispersion (called chromatic dispersion) The width of the 
output pulse is governed by group velocity dispersion. 

Pulse propagation in long single-mode fibers for which chromatic dispersion is negligible is 
dominated by polarization mode dispersion (PMD). Small anisotropic changes in the fiber, caused, 
for example, by environmental conditions, alter the polarization modes so that the input pulse 
travels in two polarization modes with different group indexes. This differential group delay 
(DGD) results in a small pulse spread. 

In addition to polarization effects, which we will see in the next chapter, chromatic dispersion can 
also cause problems for quantum cryptography. For example, methods applying phase coding 
based on photons arriving at well-defined times, namely, on photons well placed in space. 

However, in optical fibers, different group velocities behave as a noisy effect on the positioning of 
the photon as well as on the phase obtaining in an interferometer. Therefore the broadening of 
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photons featuring non-zero bandwidth, that is, the coupling between frequency and position, must 
be manipulated or even controlled. Hence, working with photons of small bandwidth, or, as long as 
the bandwidth is not too large, operating close to the wavelength l0  at which chromatic dispersion 
is zero, that is, for standard fibers around 1312 - 1310 nm. Fortunately, fiber losses are relatively 
small at this wavelength and amount to ~0.35 dB/km [8]. 

Material dispersion is usually much stronger than waveguide dispersion. However, at wavelengths 
where material dispersion is small, waveguide dispersion becomes important. Fibers with special 
index profiles may then be used to alter the chromatic dispersion characteristics, creating 
dispersion-flattened, dispersion-shifted, and dispersion-compensating fibers such that the 
chromatic dispersion goes to zero around 1550 nm, where the attenuation is minimal [7]. 

In opposition to birefringence, the chromatic dispersion does not need active and continuous 
compensation. Because the chromatic dispersion properties of optical fibers do not change with 
time. Therefore the chromatic dispersion results that phase is especially suited to transmission for 
long paths in optical fibers. Thus, the nonlinear impact decohering the qubit ‘‘energy’’ are totally 
insignificant, and chromatic dispersion effects existing on the position can be avoided or 
compensated in many cases.

Under certain conditions an intense pulse, called an optical soliton, can render a fiber nonlinear 
and travel through it without broadening. This results from a balance between material dispersion 
and self-phase modulation (the dependence of the refractive index on the light intensity).
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Chapter 3

Polarization Mode Dispersion
A. Polarization of Light
B. What is Polarization?
C. Polarization Ellipse
D. Linearly Polarized Light
E. Circularly Polarized Light
F.  Polarization and Polarization-Maintaining Fibers
G. PMD and DGD
H. PMD Coefficient In Terms of Ordering
I.   From PMD Cable to PMD Distance
J.  PMD Link Design Value
K. PMD of Optical Devices
L. The Measurement of PMD
M. Time-Domain Representation and Other Representations
N. Summary and Outlook

A. Polarization of Light

The polarization of light at a fixed position is determined by the time course of the electric-field 

vector  (r, t). In a simple medium, this vector lies in a plane tangential to the wavefront at that 

position. For monochromatic light, any two orthogonal components of the complex-amplitude 
vector E(r) in that plane vary sinusoidally with time, with amplitudes and phases that are generally 
different, so that the endpoint of the vector E(r) traces an ellipse. Since the wavefront generally 
has different directions at different positions, the plane, the orientation, and the shape of the ellipse 
also vary with position, see Figure 12a.

For a plane wave, however, the wavefronts are parallel transverse planes and the polarization 
ellipses are the same everywhere, see Figure 12b, although the field vectors are not necessarily 
parallel at any given time. The plane wave is therefore described by a single ellipse and becomes 
elliptically polarized. The orientation and ellipticity of the polarization ellipse determine the state of 
polarization of the plane wave, whereas the size of the ellipse is found by the optical intensity. 
When the ellipse distorted into a straight line or a circle, then this polarization known as linearly or 
circularly, respectively.

In paraxial optics, light propagates along directions that lie within a narrow cone centered about the 
optical axis (the z axis). Waves are approximately in transverse planes, and have negligible axial 
components. From the perspective of polarization, paraxial waves may be approximated by plane 
waves and described by a single polarization ellipse (or circle or line).
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Figure 12: Time course of electric field vector of monochromatic light at several positions: (a) arbitrary wave; (b) plane 
wave or paraxial wave travelling in the z direction.

These are the examples in which the interaction of light with matter is witnessed:
• The polarization of the incident wave play an important role for the amount of the light at 

during reflection at the boundary between two materials.
• The sum of the light that is absorbed by given materials is dependent on polarization.
• The radiant light from matter is usually susceptible for polarization.
• Anisotropic materials' refractive index is polarization dependent. Waves with different 

polarizations travels at different velocities and suffers different phase shifts. In fact, the 
ellipticity of the polarization is altered when the wave goes forward. For example, linearly 
polarized light can turn into circularly polarized light. This is also useful for the design of 
optical devices.

• The polarization plane of linearly polarized light is rotated by passage through certain 
media, including those that are optically active, liquid crystals, and certain substances in the 
presence of an external magnetic field [4].

B. What is Polarization?

Suppose that a monochromatic plane wave of frequency   and angular frequency =2  
travelling in the z with velocity c. The electric field lies in the x-y plane and is generally described 
by 

                                    (r, t) = Re {A exp [ jt− z
c
] },        {                  (11) 

where the complex envelope

                                A= Ax x + A y y ,                             (12)  

is a vector with complex components Ax  and A y . In order to determine  the polarization of this 

wave, we trace the endpoint of the vector  (z, t) at each position  z as a function of time [4].

17



C. Polarization Ellipse

Describing Ax  and A y  in terms of their magnitudes and phases, Ax = a x exp  jx and A y

= a y exp j y , and substituting into (12)  and (11)  we get 

                                                               (z, t) = x x +  y y ,                     (13) 

where

                                   x = a x cos [t− z
c
x ]                       (14a) 

                                    y = a y cos [t− z
c
 y ]                       (14b) 

are the x and y components of the electric-field vector  (z, t). They are also oscillating periodic 

functions of t-z/c at frequency   and the parametric equations of the ellipse

                         
x

2

a x
2
y

2

a y
2−2cos

xy

a x a y
=sin2 ,                 (15) 

where =y− x  is the phase difference. 

If we fix z, the tip of the electric-field vector rotates periodically in the x-y plane and draws an 
ellipse. If we fix t, the locus of the tip of the electric-field vector lines a helical trajectory and wraps 
around the surface of an elliptical cylinder, see Figure 13. The electric field moves periodically for 
each distance with the equation =c/ .

Figure 13: (a) Rotation of the endpoint of the electric-field vector in the x-y coordinates at a fixed position z. (b) A view 
from trajectory of the endpoint as time paremeter t is fixed. 

The state of polarization of the wave is determined by the orientation and shape of the polarization 
ellipse, which is characterized by the two angles, see Figure 14. The angle   determines the 
direction of the major axis, whereas the angle  determines the ellipticity, namely the ratio of the 
minor to major axes of the ellipse b/c. These angles depend on the ratio of the magnitudes 
r=a y /a x , and on the phase difference =y− x  in accordance with the following relations:

tan 2= 2r
1−r2 cos , r=

a y

ax
;sin 2= 2r

1r2 sin ,=y−x . These equations may be derived 
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by finding the angle   that achieves a transformation of the coordinate system of x  and  y  in 

(13) such that the rotated ellipse has no cross term. The size of the ellipse is determined by the 
intensity of the wave, which is proportional to ∣Ax∣

2∣A y∣
2=ax

2a y
2

[4].

Figure 14: Polarization ellipse.

D. Linearly Polarized Light

In polarization ellipse, if one of the constituents doesn't exist (e.g. a x=0 ), the light is linearly 
polarized in the direction of the other constituent (the y direction). The wave is also linearly 

polarized if the phase discrepancy =0 or  due to (14),  y = ±a y /a x x . Accordingly, the 

elliptical cylinder in Figure 15b transforms into a plane, see Figure 15. Hence, the wave gets the 
shape of planar polarization [4].

Figure 15: Plane (linearly) polarized light. (a) Route of time at  a fixed position z. (b) A snapshot (fixed time t).

E. Circularly Polarized Light

In the case =±/2 and a x=a y=a0 , according to (14),one can find x = a0 cos [t−z /cx ]  

and  y = ∓a0sin [t−z /cx ] , from which x
2

+  y
2

= a0
2  (circle equation). In Figure (12b),  

the elliptical cylinder transforms into circular cylinder and becomes circularly polarized. If 
=/2 , the electric field at a fixed position z rotates in a clockwise direction when observed 
from the direction toward which the wave is approaching. In this case light becomes right
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circularly polarized; if =/ 2 , then rotation gets counterclockwise direction and then light 
becomes left circularly polarized, see Figure 16 [4].

Figure 16: (a) Time course at a fixed position z.  (b) A view from a fixed time t.

F. Polarization and Polarization-Maintaining Fibers

In a fiber with circular cross-section, every mode has two detached polarization states with equal 
proceeding constant. Consequently, the principle linear polarization mode in a single-mode which 
leads slenderly, may be polarized in the x or y; therefore the two orthogonal polarizations have the 
same propagation constant and the same group speed.  

Essentially, there should be no exchange of the power between the two polarization constituents. 
If the power of the light source is delivered exclusively into a polarization, the power is to be kept in 
that polarization state. Despite the theory, in practice, weakly casual impediments and the 
distension, which are to be overcome, in the fiber cause in random power transfer between the two 
polarizations. These kind of intercourse becomes possible because the two polarizations have the 
same propagation constant and their phases are therefore matched. In fact, at the fiber input, 
linearly polarized light is usually distorted into elliptically polarized light at the fiber output. Despite 
the fact that the total optical power remains fixed, the ellipticity of the received light varies randomly 
with time as a result of fluctuations in the fiber extensions and temperature, and of the source 
wavelength. In case the object should just deliver light power, provided that the total power is 
collected, the mixture of the power division demonstrates no difficulty between the two polarization 
states. 

Indeed, in several fields that fiber optics is utilized, e.g., in a quantum cryptography channel based 
on interferometric techniques, and coherent light sources, the fiber must deliver the complex 
amplitude (magnitude and phase) of a specific polarization. Polarization-maintaining fibers are 
necessary for such applications. The circular symmetry of the traditional fiber must be ignored, in 
order to build a polarization-maintaining fiber, e.g. through using fibers with elliptical cross section 
or stress-induced anisotropy of the refractive index. This destroys the polarization degeneracy, 
thereby making the propagation constants of the two polarizations independent. The introduction of 
such phase mismatch serves to reduce the coupling efficiency [4]. 

G. PMD and DGD

As indicated earlier, the fundamental spatial mode (linearly polarization mode) of an optical fiber 
has two polarization modes, say linearly polarized in the x and y directions. If the fiber has perfect 
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circular symmetry about its axis, and its material is perfectly isotropic, then the two polarization 
modes are degenerate, i.e., they travel with the same velocity. However, fibers exposed to real 
environmental conditions exhibit a small birefringence that varies randomly along their length. This 
is caused by slight variations in the refractive indexes and fiber cross-section ellipticity. Although 
the effects of such inhomogeneities and anisotropies on the polarization modes, and on the 
dispersion of optical pulses, are generally difficult to assess, it is generally useful to consider these 
effects in terms of simple models. 

In addition to chromatic effects, the polarization mode dispersion (PMD) in the fiber optic 
components plays also an increasingly critical role as linear electromagnetic phenomena and 
statistical treatment in the optical transmission technology, especially if it would be taken into 
account for phase coding in quantum cryptography through interferometric systems. PMD's testing 
is becoming essential in the fiber characteristic process, but still one of the most difficult to test, 
due its sensitivity to a number of environmental constraints, as we will see in the following parts of 
this chapter.

The polarization mode dispersion leads in digital optical systems as chromatic dispersion to 
impulse distortion and therewith to an increase of the bit error rate. That restricts the range, 
especially of transmission distances with high bit rate, considerably. As a cause for these disturbing 
effects, variations of the propagation speed are in a single-mode optical fiber used for quantum 
cryptography in our case. For example, the variations of the group velocity u as a result of 
refractive index fluctuations N (l) along the optical fiber; then u = c0 / N (l). 

The refractive index arises however also diagonally to the propagation direction, i.e. the refractive 
index is inhomogeneous over the cross-section. As a consequence therefrom the fundamental 
mode is subject to swing vertically to the propagation direction. It now oscillates in two orthogonal 
direction with two different propagation velocities (birefringence) and therewith a time delay 
difference; the fundamental mode is split into two modes in two axes (fast and slow axes). The 
mean time delay difference is called PMD delay, see Figure 17.

                                         Figure 17 The decomposition of two axes for two polarization modes.
  

Because of geometric asymmetries and photo elastic effective, as a rule, even further delays 
accrue, which show explicit impacts on long intervals and in high data rates: In practice, an intrinsic 
birefringence is caused by the manufacturer evoked by geometry mistake or internal tensions and 
an extrinsic birefringence by the placing, for example through external tension, bend, torsion or 
extension of the fiber. In part, these mechanisms vary along the optical fiber and are moreover 
locally different. Correspondingly, the propagation speeds of both modes change permanently. The 
one mode can hurry ahead and can make up the other mode later. They start to spread and 
overlap each other. To summarize, a light pulse transmitted through a polarization maintaining fiber 
could be defined as the decomposition of the pulse into 2 orthogonal pulses, travelling at different, 
but constant speed.
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Therefore it is resulted in contrast to chromatic dispersion that the impulse distribution is here not 
steady and proportional to the length, but rather it is statistical and depends fewer strongly on the 
length. Its stochastic behaviour resembles random walk in mathematical point of view [9]. It is in 
principle conceivable also that if the PMD delay could be compensated totally at the end of the 
distance, so there would be no measurable PMD delay. Moreover, the optical fibers show a strong 
tie-in between the polarization modes for the telecommunication. Mode coupling places emerge at 
splice, tensions, in the fiber or for example phase overlaps. So it comes between the modes to a 
further reduction of the time delay difference. 

Consider first a fiber modeled as a homogeneous anisotropic medium with principal axes in the x 
and  y directions and principal refractive indexes nx  and n y . The third principal axis lies, of 
course, along the fiber axis (the z direction). The fiber material is assumed to be dispersive so that 
nx  and n y  are frequency dependent, but the principal axes are taken to be frequency 
independent within the spectral band of interest. If the input pulse is linearly polarized in the x 
direction, over a length of fiber L, it will undergo a group delay x=N x L/c0 ; if it is linearly 
polarized in the y direction, the group delay will be y=N y L /c0 . Here, N x  and N y are the group 
indices associated with nx  and n y . A pulse in a polarization state that includes both linear 
polarizations will undergo a differential group delay (DGD) =∣y−x∣  given by 

                                                                =NL /c0 ,                                         (16)

where N=∣N y−N x∣ , therefore designated as the time delay difference between both part 
modes, that depends on the wave length. Upon propagation, therefore, the pulse will split into two 
orthogonally polarized components whose centers will separate in time as the pulses travel, see 
Figure 18.  And then, it seems as arrival time difference at the output of the media, see Figure 19. 

Figure 18: Differential group delay (DGD) associated with polarization mode dispersion (PMD). 

                                                                  Figure 19: Differential group delay.
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DGD has a statistical character (Maxwell Distribution) because of the totally irregular connection 
between fiber position and refractive index, see Figure 20. The PMD delay also appears on an 
averaged value of the DGD through certain wavelength range.

The DGD corresponds to polarization mode dispersion (PMD) that increases linearly with the fiber 
length at the rate N /c0 , which is usually expressed in units of ps/km. 

This quotation could be very useful for understanding DGD in terms of Maxwellian distribution: 
"From [the] data. DGD varies slowly over time but rapidly over wavelength…data showed good 
agreement with a Maxwellian distribution. The frequency averaged mean DGD [emphasis added] 
varied about 10% or less during periods that showed significant temperature swings."[9]

  

                                        

                                         Figure 20: A Maxwellian distribution of the differential group delay. 

The PMD coefficient defined as the fiber parameter DPMD  has the measure unit of ps / km , i.e. 
the PMD doesn't rise linearly, but only by the root of the distance length: 

                                                                                   D t = DPMD/L (17)

In digital transmission, the maximally allowable PMD delay may amount to tenth of the bit length
T Bit :

                                                               max≤T Bit /10 (18)

If one sets T Bit =1/B,  whereby B called the bit rate, one receives out of equation (17) and (18) a 
relation between the realizable distance length, the bit rate and PMD coefficient:

 

                                                             L≤1 1
100.B2. DPMD

2                                (19)
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Hence, the relation between bit rate, bit length, PMD delay and PMD coefficient  according to 
equation (17) evidently results that the  bridgeable length diminishes reciprocally proportionally to 
the square of the bit rate. A quadrupling of the data rate caused therefore a reduction of the 
realizable distance length through PMD effects to 1/16. Thus, it can come to considerable 
restrictions for the transition from 2,5 Gbit/s to 10 Gbit/s by reason of the PMD.

 

H. PMD Coefficient In Terms of Ordering

By reason that between distance length and PMD coefficient, a strong dependence exists, this 
parameter is used recently for the specification of the optical fibers. At older optical fibers, PMD 
coefficient is however usually not well known and it can include comparatively large values. 
Moreover it is subject to very strong variations. 

One must carry out a PMD measurement for older fibers if the data rate should be transmitted by 
10 GBit/s or more highly. It is not sufficient to measure single fibers within the cable randomly. 
Because the PMD coefficients can vary strongly between the fibers of a cable. In modern fibers, 
one minimizes PMD delay through suitable manufacture procedures. Through turning of the 
preform or of the fiber during the drawing process, ovality of the preform are balanced. So it is 
averaged over the geometric deviations therewith reached an improvement of the values reached. 

In the meantime modern fibers are specified with respect to the PMD coefficient. While 
standardization bends recommend a maximum value for the PMD coefficient of 0.5 ps / km , the 
manufacturers specify their fibers already partially with 0.2 ps / km  or even 0.8 ps / km  as a 
PMD link design value. 

In the previously discussed PMD coefficient, it concerns exactly taken the 1. order PMD coefficient. 
It is also possible that more complicated pulse distortions appear when the PMD spectrum 
fluctuates over the bandwidth of the signal. For the same PMD, the higher the data rate the wider 
the signal spectrum. For this reason, each spectral portion can be studied conventionally, but then 
the interference between these portions must be taken into account. A measure of pulse-
degeneration complexity can be determined by the level of PMD difference over a signal 
bandwidth. When the PMD changes little, then only “first-order” PMD affects the pulse. If the PMD 
changes a lot, then “higher-order” PMD affects become pronounced. The higher-order PMD effects 
engender sophisticated pulse disruptions. 

One higher-order effect that points out much is second-order PMD. Second-order PMD is a vector 
engendered by a first-order transformation of the PMD vector with frequency, see Figure 21. 
Generally, the PMD vector τ is different for different frequencies. Let  w1  and w2  be two 
vectors particularly, where the difference of  w2 − w1  is small. The vector discrepancy is the 
second-order PMD vector, denoted with w . As other vectors, w  has a length and a pointing 
direction. Usually, the pointing direction shouldn't be parallel or perpendicular to either first-order 
PMD vector, and the length is zero only when τ pirouettes about itself or when there is only one 
birefringent element. The length of the second-order PMD vector in relation to the DGD resolves 
the significance of the second-order vector.

The second-order PMD vector can be determined onto two components called the depolarization 
component and the polarization-dependent chromatic dispersion component, see Figure 21b. The 
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depolarization component lies perpendicular to w1  and indicates the rate which the pointing 
direction of the PMD vector changes. The polarization-dependent chromatic dispersion component 
lies parallel to w1  and indicates the difference of DGD with frequency. The length of the 
polarization-dependent chromatic dispersion component is in fact the frequency derivative of the 
DGD spectrum at w1 .

Figure 21: Definition of the second-order PMD vector  .  a) PMD vectors w1  and w2 .  The vectors have 

differential distances and pointing directions. b) Second-order PMD is the vector difference =w2−w1 /  

as w2 − w1  → 0. The second-order PMD vector is found on the w1  axis into perpendicular and parallel 
constituents. The perpendicular constituent is called depolarization and the parallel component is called polarization-
dependent chromatic dispersion.

The term “depolarization” has an inferred meaning in the time domain, so why does the second-
order PMD, best described in the frequency domain, have a depolarization component? The 
change in pointing rotation of the PMD vector with frequency spreads a fixed input polarization into 
many states at the output. Every frequency has one output state. When the signal is inverse 
Fourier changed to the time domain, the spread output polarizations are folded into the time-
domain signal so that each time interval contains many polarizations. A time average over these 
states reduces the degree-of-polarization as compared to the input; that is, the input state is 
depolarized by the PMD.

The second-order PMD is the frequency derivative of the PMD vector such as w=w p pw , 
where the first vector component corresponds to the polarization-dependent chromatic dispersion 
component, and the second one corresponds to depolarization component, which are orthogonal 
to each other [10].

On the other hand, the 2nd order PMD coefficient is also utilized as a measure for the wavelength 
dependence of the differential group delay; that is a measure how strongly the PMD fluctuates, 
which is dependent upon the wavelength. 

The 2nd order PMD coefficient has that immediately unit of measure such as the chromatic 
dispersion and makes itself calculate 1st order in strong coupling optical fiber out of PMD 
coefficient. Out of 0.5 ps / km  a 2nd order PMD coefficient of 0,15/ps(nm.km) arises. Because 
the 1st order PMD is proportionally to the root of the distance length, also the 2nd order PMD can 
play a role in very large distance lengths under circumstances.
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 I. From PMD Cable to PMD Distance

PMD coefficient of the distance can be influenced yet through further factors by the cable PMD 
except through environment influences and installation deficiencies: As above mentioned, PMD 
firstly causes disturbing effects in very large distances. This distance consists in general of many 
fractions, because the pull-in lengths are limited usually from two to six kilometers.

If one wonders, how large PMD of the entire distance is, as the single sections have different PMD 
coefficients, investigations showed that PMD delay of the distance D t (in strong mode coupling) 
does not correspond  to the sum of PMD delays of the cable sections i , but rather results from 
the sum of the squares: 

                                                 =∑i
i

2
                           (20)

  
From the  equations (18) and (19) a connection follows between PMD coefficient of the entire 
distance DPMD total

 and PMD coefficient DPMD i
 of the distance sections with the lengths Li : 

                                    DPMD i
=
∑i

[Li .DPMD i
2]

L
                       (21)       

One can calculate PMD coefficient of the total distance therefore in well known PMD coefficient 
and the distance of the sections. Corresponding to equation (19) out of this quadratic dependence 
follows however also that a single cable section significantly can influence the PMD coefficient of 
the entire distance. 

An example: Let the entire distance be composed of the length of ten equal intervals. Nine 
intervals with DPMD1...9

=0,008 ps / km , one interval with DPMD10
= 4 ps / km . Hence, it implies 

with the equation (17): DPMD total =1,27 ps / km . This shows that a mixture of old and modern 
fibers requires a PMD measuring unconditionally.

J. PMD Link Design Value

In principle,  the equation (21) is not necessary only for PMD delay, but also for all values of the 
statistical distribution of the differential group delay. That is, a statistical distribution of PMD 
distance can be calculated, out of the statistical distributions of the PMD cable. Through the 
squaring down, very small and/or very large values disappear. The narrower the statistical 
distribution, the more cable pieces of the entire distance form.

The demand corresponding to equation (20) results from the acceptance that the triple value of 
PMD delay enables just another transmission with an achievement loss at the receiver with 1dB. 
This triple value results out of the statistical distribution of the differential group delay and steps 
with a probability of 4,5 up. For comparison, that corresponds 21 minutes per year. If many cable 
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pieces of the entire distance form, the probability is slighter for the occurrence of outliers. 
Therefore, in comparable probability, if a certain value is exceeded, the maximal value is to be 
considered smaller. It lies now more closely to the average. 

That leads to the definition of PMD link design value DPMDQ
. One can understand the PMD 

coefficient, that is kept by 99.99 percent of all distances. Accordingly, a fictional transmission 
distance of at least 20 homogeneous fibers underlie. The distance planning can take place 
consequently by means of a more favorable (smaller) value. The cable manufacturers specify as a 
typical PMD link design value as DPMDQ

~0,008ps / km .

 

K. PMD of Optical Devices

PMD delays of all distance elements should be balanced for a dependable planning. In fact, optical 
fibers and optical devices are to be considered compatible with each other. Correspondingly, in 
contrast to long optical fiber distance with strong mode coupling in short mode coupling distance is 
negligible and PMD delay rises proportionally to the length of the distance. The corresponding 
PMD coefficient has the measure unit ps/km. PMD of optical devices is indicated in ps [11]. 

L. The Measurement of PMD

In PMD measurement, the polarization conditions of the light and respectively its variations during 
passing through of the optical fibers are to be determined. The polarization condition of the light 
cannot be registered by the naked eye. Because the eye does not recognize the light amplitude, 
but rather the light intensity, then the sum square of the complex amplitude. Just as, usual optical 
test receivers function. Likewise, these register only intensities. Contrived methods are therefore 
required in order to make the polarization condition visibly and to register therefore its variations. 
There are a couple of measuring methods for PMD like interferometric methods [12, 13, 14, 15]. 
But to make it brief, we won't go into the detail here.

M. Time-Domain Representation and Other Representations

So far, we mentioned PMD in terms of the frequency domain which is an inartificial result of the 
frequency-centric definition of the PMD vector. However, the parallel representation is the PMD 
impulse response in the time domain. Despite the fact that it is more complicated to compute the 
impulse response, more different and more plenty points of views are obtained from the real time 
relations and interactions between these two domains. 

Between the extremes of sine-wave response and impulse response lies the signal response of a 
communications channel, especially the deformation imparted on a signal due to PMD. The signal 
response is fundamentally the convolution of the input waveform with the impulse response. What 
makes the calculation tricky is that co-polarized signal-image components that result from the 
convolution interfere coherently; the temporal location of the impulses matter to within a fraction of 
a wave. When in one case two co-polarized signal images are in phase and add constructively, a 
dephasing by π leads to destructive interference between the signal images. When the impulse 
weights differ with changes in mode mixing, the temporal locations of the impulse response change 
only when the composition of the PMD concatenation changes. This implies that for a specific 
concatenation, the impulse response may extend well into the duration of a signal pulse; how the 
signal is distorted depends on which co-polarized signal images make constructive interference 
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and which make destructive interference. In some cases the signal will look undistorted while in 
others it will look quite distorted. How the PMD impacts the signal depends on the expression of 
this coherent interference.

As a result, there are three main components to refer in polarization mode dispersion for practical 
systems and design: propagation length, optical frequency, and time. In each case a statistical 
process must be defined to characterize the evolution on a microscopic level. The ergodic structure 
of PMD makes “length” replaced by “optical frequency” in the density functions and “long length” is 
replaced by “wide bandwidth.” Due to statistical calculations of the PMD, it is possible to connect 
the length and the frequency regimes. There is, however, no definite process for the time evolution. 
For example, submarine cable changes at a slow rate while aerial fiber changes in the millisecond 
range. Moreover, there is likely no spatial homogeneity to the temporal changes – for instance, a 
train may cross a cable at a particular location – so one cannot expect a neat answer [10, 16].

N. Summary and Outlook

All fiber-based implementations of quantum cryptography have to face problem of PMD.  As the bit 
rate in optical fiber transmission approaches 40 Gbit/s per wavelength division multiplexed channel 
and beyond, impairments of second order polarization mode dispersion has been becoming 
increasingly important [17, 18]. It is therefore necessary to compensate for both the first- and 
second-order PMD in such systems [19]. This is clearly true for polarization-based systems, but it 
is equally a concern for phase-based systems, since interference visibility depends on the 
polarization states.

There are no simple theoretical predictors of installed cable PMD, but PMD is more critical with 
older fibers that were manufactured with less geometrical control than today. PMD measurements 
are required at old fibers from data rates of 10 Gbit/s in every case. For fibers with minimized 
coefficient, the necessity of the measurement depends on the data rate, the distance length, the 
specified coefficient and the security factor introduced above. Especially for older optical fibers, the 
compensation is beneficial similar to the PMD delay compensation. Unfortunately the 
compensation technique is quite costly. Because the signal is subject to statistical variations. First 
PMD compensators are however already available. 

PMD remains the dominant bit rate-limiting effect in long single-mode fibers, when chromatic 
dispersion is reduced by state-of-the-art techniques like compensated fibers or chirped gratings. 
PMD has to be measured in order to characterize the fiber dedicated to this transmission speed.
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Chapter 4

Comparison of Both Dispersions

Both CD and PMD reason temporal spreading of the optical bits as they propagate along the fiber, 
see Figure 22 [20]. As briefly, 

• chromatic dispersion is caused by different wavelengths of light traveling at different 
speeds, and is a combination of material and waveguide dispersion, 

• CD can cause adjacent bits to smear into each other in a signal, because the signal 
actually contains a small range of wavelengths, 

• Advanced fiber types can be used to compensate for chromatic dispersion, 

• Polarization mode dispersion is caused by the lightwave’s different principal states traveling 
at different speeds, 

• PMD is caused by imperfections in fiber symmetry and fluctuating fiber stresses, which 
make it a random effect.

To summarize:

CD is deterministic, PMD is stochastic; CD is linear, PMD is nonlinear; CD is not affected by 
environmental conditions, PMD is affected by environmental conditions; CD can be compensated, 
PMD cannot be compensated thoroughly; CD depends on L, PMD does not depend on  L (but 
depends on L ); CD depends on bandwidth (  ), PMD does not depend on bandwidth.

Figure 22: One of the differences between CD and PMD is the wavelength dependence.

  
29 



Chapter 5

Calculations and Simulations on Polarization 
Mode Dispersion and Chromatic Dispersion

A. Determination of CD and PMD Parameters from Spectra    
     Equations 
B. Demonstration of CD and PMD Impacts into Position and      
     Wavelength Spectra
C. Results and Discussion

A. Determination of CD and PMD Parameters from Spectra    
     Equations
 

There have been multitudinous calculations of academic researches regarding polarization mode 
dispersion and chromatic dispersion since they appeared. Complex differential equations, 
stochastic partial differential equations, statistical calculus, vectoral calculus in terms of Jones and 
Stokes vectors are only a couple of them. Instead of detailled calculations, some useful notes will 
be utilized from Professor Suda's manuscripts and [5], which will lead us to simulations. These 
simulations were made through  MATLAB GUI* programming techniques. Readers could also refer 
to "Appendix: Source code of simulation of chromatic and polarization mode dispersion in phase 
coding quantum cryptography" for detailed information.

There are two arms c, d in the first Mach-Zehnder interferometer and two outputs g, h. Suppose for 
the beginning a MZ in vacuum. The beam paths c and d are characterized by the path lengths l c

and l d  increasing phase factors exp{ − . k.l c } and exp{ − . k.l d } respectively. Besides that, phase 
shifts c and d  produce phase factors Pc =exp{  . k.c } and Pd =exp{  .k.d }. And then, when 
needed, absorption factors ac and ad involve transmission coefficients T c =exp{ −2.lc . ac } and
T d =exp{ −2.ld . ad }, see Figure 2.

Some of the most main factors affecting pulse propagation in dispersive media are CD coefficient
D0

with parameter  ; and the PMD coefficient DPMD with parameter  . One can also examine 
those's dependence on the wavelength with the group velocity u:

                                                             u = 
c0

N
,    N = n - 

dn
d  .                                   (22)

* My personal suggestion for who wants to use MATLAB GUI is to use low level GUI programming techniques instead of using GUIDE. 
  Although GUIDE seems easier than low level programming from outside, low level programming is very flexible and provides more 
  facilities in order to manipulate user face, see Figure 23.
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As in realistic schemes, if we take CD into account in the length l (= l g ) of a single-mode fiber, then 
the phase factor exp{ − . k.l } has to be substituted by exp{ −N 0 k− k2 l }, where N 0=N 0
is the group index for the mean wavelength 0 and =−D0

0
2c0/ 4 . Caused by CD, the 

exponential function is extended by an expression which is proportional to k 2 . Thereby the 
dispersion coefficient is defined through

                                                     D0
=−

0

c0

∂2n
∂2 .                                  (23)

     

Figure 23: A view from GUI application for determination of output spectra in quantum cryptography.

Ansatz: 

                                       total=1162
co

0


2

2[ CD
2PMD

2] ,                 (24)      

where the total  is total distribution of time pulses, the PMD delayPMD=DPMD l  is independent 
from (  ), and the CD delay CD=D0

l  depends on (  ). According to [5] we can write 
the total  into the form

                            total=116k 4 B total
2 =1164 k 0

4 Btotal
2 ,                    (25)

and we therefore get through the necessary substitutions
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                                   total=1162
c0

0


2

2[22 D0

2 l ] .                      (26)

Due to [5] one can equate:

                                2 k0
2 Btotal

2 =2
c0

0


2

 2[22 D0

2 l ] .                     (27)

Consequently, we obtain 

Btotal
2 =2

c0

0


2 0
2 D0

2 l 2

k 0
4 2

c0

0


2 DPMD
2 l

k0
4 2

                                               = BCD
2 BPMD

2 .                                      (28)

As from now, Btotal  can be examined separately according to CD and PMD, and reduced 
respectively:

BCD
2 =2 0

2242

0
4 c0

2 l 2
c0

0


2


0

2


2

                                                             = 2 l 22162

164 = . l 2 .                          (29)

BPMD
2 =2

c0

0


2 DPMD
2 l

 2164 0
4

c0
20

2

162

DPMD
2

 2 l=
c00

4


2


DPMD

2

 
2

l

                                                        = 1
 2 c00

DPMD

4


2

l=2 l
 2                        (30)

If we could bring the two individual CD and PMD parameters together:

                                Btotal
2 =BCD

2 BPMD
2 = l 2

2 l
 2

,                      (31)

and finally unique parameters are gained:

                               =−
c00

2 D0

4
,           =

c00 DPMD

4
.                      (32)

This is the most useful form that we can benefit from the equations above. Because the position 
and the wavelength spectra just take value through these last two parameters.
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B. Demonstration of CD and PMD Impacts into Position and 
Wavelength Spectra

Here we wil study varying parameters within 2 main examples including several examples into 
each other, in order to determine which parameters in optimum niveau for keeping interference 
according to peaks. The first one is for l = 50 km and the second one is for l = 100 km. The arms 
of the two interferometers for both examples have equal lengths of 1 m each and in arm d and m 
equal values of phase shifts d=m=1 cm entail phase factors Pd =exp{  . k.d } and
Pm =exp{  .k.m }, respectively. These phase shifts are enough to produce separated wave 

packets in space (or time pulses) behind the two interferometers.

A Couple of Remarks: 

(1)   In the following examples, the four main parameters variations will be demonstrated:
        ,0, DPMD , D0

. Other parameters (e.g.  , ) which depend on these 4 parameters will of
       course take their values accordingly. But independent values (e.g. d ,m ) other than these 4 
       parameters will stay constant.

(2)   The PMD coefficient DPMD will vary in interval [0,1]. This means, it is graded between 0 and
       1. "0" is the fiber without PMD (perfect, however not possible today). "1" is the worst state of
        the fiber for any data transfer. 

(3)   The values that we used for parameters in  the examples below are realistic according to the  
        table in the following [4]:
  

0[nm ] D0

ps
km.nm  [nm]

870 -80 1.4456

1312 0 0

1550 17 -0.9750
  

(4)  Below, the blue output distribution lines will indicate for output o, reds will indicate p, greens will 
      indicate h, and the pinks will indicate sum of all outputs.
     
  
(5)  Here it would be very helpful to index shortly in advance again, in order to comprehend the
      following examples comfortably. Therefore, instead of looking for our individual desired    
      example, whatever we look for, we can choose from the index below and reach it punctually 
      due to this index. Another alternative for usefulness of the simulations is that reader could 
      foremost skip simulations and take a look at the section of Results and Discussion, and then 
      get back on the simulations with a precognition. So, simulations could be understood 
      more consciously which one indicates what.

Our sub-samples are within the first example (l = 50 km):

1.1.1. =2.10−4 ,0=870nm , DPMD=0 ps
km

, D0
=−80 ps

km.nm  (p. 34-38),
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1.1.2. =2.10−4 ,0=1312nm ,DPMD=0,2 ps
 km

, D0
=0 ps

km.nm  (p. 39-41),

1.1.3. =2.10−4 ,0=1550 nm , DPMD=0,9 ps
km

, D0
=17 ps

km.nm  (p. 42-44),

1.2. =10−3 ,0=870 nm , DPMD=0,5 ps
km

, D0
=−80 ps

km.nm  (p. 45-57),

1.3. =10−5 ,0=1312 nm , DPMD=0,6 ps
km

, D0
=0 ps

km.nm  (p. 47-50),

Sub-samples for within the second example (l = 100 km):

2.1. =2.10−4 ,0=1312 nm , DPMD=0 ps
km

, D0
=0 ps

km.nm  (p. 50-53)

2.2. =10−5 ,0=1550nm , DPMD=0,7 ps
km

, D0
=17 ps

km.nm  (p. 53-55)

Example 1:    l = 50 km

1.1.1. =2.10−4 ,0=870 nm , DPMD=0 ps
km

, D0
=−80 ps

km.nm

Spectra for output o:
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                                                                      Spectra for output p:
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Spectra for output h:

                                                                    Sum of all output spectra:
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Comparison of output o & p:
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Comparison of all outputs (o & p & h & sum):
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1.1.2. =2.10−4 ,0=1312nm ,DPMD=0,2 ps
 km

, D0
=0 ps

km.nm

Spectra for output o:

Spectra for output p:
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Spectra for output h:                                    Sum of all outputs:

                                                                          Comparison of outputs o & p:
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                                                                       Comparison of all spectra  (sum       
                                                                       spectra is also included):
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1.1.3. =2.10−4 ,0=1550 nm , DPMD=0,9 ps
km

, D0
=17 ps

km.nm

Spectra for output o:

     Spectra for output p:
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   Spectra for output h:                                 Sum of output spectra:

                                                                         
                                                                       Comparison of outputs o and p:
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                                                             Comparison of all outputs 

                                                      (sum is also included):
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1.2. =10−3 ,0=870 nm , DPMD=0,5 ps
km

, D0
=−80 ps

km.nm

Spectra for output o:

    Spectra for output p:
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Spectra for output h:                                    Spectra for sum of all outputs 
                                                                        (o & p & h):

                                                                           Comparison of all spectra 
                                                                           (o & p & h & sum):
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1.3. =10−5 ,0=1312 nm , DPMD=0,6 ps
km

, D0
=0 ps

km.nm

Spectra for output o:
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   Spectra for output p:

Spectra for output h:                                   Spectra for sum of all outputs:
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                                                                         Comparison of outputs o & p:
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Comparison of all outputs (o & p & h & sum):

Example 2:    l = 100 km

2.1. =2.10−4 ,0=1312 nm , DPMD=0 ps
km

, D0
=0 ps

km.nm

Spectra for output o:
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      Spectra for output p:

Spectra for output h:                                      Spectra for sum of all outputs:
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                                                                          Comparison of o & p:

                                                                           
                                                                           Comparison of all spectra 
                                                                           (h & o & p & sum):
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2.2. =10−5 ,0=1550 nm , DPMD=0,7 ps
km

, D0
=17 ps

km.nm

Spectra for output o:
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Spectra for output p:

Spectra for output h:                                     Comparison of outputs o & p:
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                                                                          Comparison of all outputs 
                                                                          (o & p & h & sum):

                                                        55                                                          



C. Results and Discussion

The effects of CD and PMD are illustrated by dint of some examples on the position, wavelength 
and intensity spectra. We tried to snapshot changes in terms of position, wavelength or intensity as 
much as possible.

In example 1.1.1( =2.10−4 ,0=870nm , DPMD=0 ps
km

, D0
=−80 ps

km.nm , p. 34-38),  wavelength 

positions of output modes o and p without PMD and with negative CD show an unrealistic scheme, 
since it is very difficult to keep DPMD=0  for such a long path (50 km) as we learn in earlier topics. 
Although example 1.1.1 is not the ideal scheme, it is a hypothetical model, because comprising 
PMD is absolutely necessary as well as the CD. But this try provides us with a chance to 
experience what if the PMD factor would not exist, and a negative CD factor would exist in a 
quantum cryptography communication system (thanks our MATLAB GUI program, so that we can 
input any arbitrary value for each parameter according to wish, and then let us see the result by 
pleasure). Here at outputs o and p even h, wavelength distributions are very close (almost same), 
while position distribution of output o is higher than position distribution of output p. These can be 
seen also in their comparative demonstrations. Position distribution of output h is always zero and 
intensity of it always oscillates between 0 and 1, since it has no connection to 2. MZ. That is why 
we will skip position distribution and intensity of output h in next examples. As we look at total 
output distributions, total wavelength distribution is naturally greater than its additive components. 
Additionally, total intensity is always 1, because of photon conservation. It is going to be skipped in 
the next examples as well. These total schemes can be achieved through  -distribution functions 
due to [5].

Example 1.1.2. ( =2.10−4 ,0=1312 nm ,DPMD=0,2 ps
 km

, D0
=0 ps

km.nm , p. 39-41) represents a 

possible, realistic well set-up communication system, because PMD coefficient is very low and CD 
coefficient is compensated totally. This example represents a greater wavelength 0 =1312 nm 
than the wavelength in former example, and can be inferred from each output (o, p, h) and total 
output. There is also an increment for position distributions, so that the spectra are shifted to 
greater  x-values by about +105 m. Modulations therefore mostly depend on PMD and CD 
coefficients.

In example 1.1.3. ( =2.10−4 ,0=1550 nm , DPMD=0,9 ps
km

, D0
=17 ps

km.nm , p. 42-44), we see a 

very bad condition to use a communication channel. In both of position distribution and wavelength 
distribution, we encounter bigger scales with bigger dispersion coefficients than in  former 2 
examples. However, it is clear to experience a failure and information losses in phase coding.

Example 1.2. ( =10−3 ,0=870 nm , DPMD=0,5 ps
km

, D0
=−80 ps

km.nm , p. 45-47). In this example 

we increased  , and again decreased 0  to 870 nm. Through a relatively high PMD value and 
negative CD value, in all 3 outputs Gauss curves occur for wavelength distribution as well as 
position distribution. And it is interesting to see that these Gauss curves full of intense oscillations. 
This means, in this scheme ij  has a crucial effect on oscillations.

Another example with the same   value is 1.3.( =10−3 ,0=1312nm , DPMD=0,6 ps
km

,

D0
=0 ps

km.nm , p. 47-50). This is also a realistic scheme in nature without CD and with a high 

PMD by  DPMD=0,6 ps /km . As earlier examples above the quantities   and   comes into the
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scene through Btotal Btotal
2=BCD

2BPMD
2 . Despite the fact that D0

 is zero, the shifting 
amounts are affected poorly due to high DPMD  value. We therefore see that in position spectra, 
the wave packets are close together, the interfering part of the spectrum probably causes some 
modifications of the spectrum which are not desired cases.

Example 2.1.( =2.10−4 ,0=1312 nm , DPMD=0 ps
km

, D0
=0 ps

km.nm , p. 50-53)  exemplifies a 

perfect scheme for phase coding method in quantum cryptography, even if it looks like a utopistic 
scheme for today. In this example, we come across neither a PMD coefficient nor a CD coefficient. 
Therefore it is possible to see flawless interferences for the position spectra of output o. By reason 
that we chose d=m , the short-long and the long-short paths are indistinguishable. Hence, 
shifts can be easily shifted to create separated wave packets in space or time pulses behind both 
1.MZ and 2. MZ, though fiber connection length ( l g =100 km) is pretty high. These were general 
information for a perfect phase coding quantum cryptography scheme. Let's take a look at position 
distribution of output o: 

There are 2 side peaks appear since the photons travel in short arms in both interferometers or 
take the long arms respectively, that is, the arms with the phase shifters d  and m . Thereby, 
these two side peaks are departed from each other by value of dm=2 cm. Output o shows a 
higher peak in the middle about 4 times higher than the two side peaks. This is because of 
d=m  again, as mentioned above. In this case, a constructive interference occur, since the 
short-long and the long-short conditions are fulfilled. On the other hand, in output p's position 
distribution figure, a destructive interference appears due to the phase factor of the Hadamard 
transformation of the beam splitter and hence no peak in the middle occurs [5, 6]. Since the pulses' 
peaks are total separated, phase coding quantum cryptography is realized perfectly. However, this 
is just a hypothetical case and not possible in real. To make this example more clear, instructive 
and helpful, let's take a look with and without PMD version of this example below:

The figure on the left:  , DPMD , are changed to                        The figure on the right:  , DPMD , are chosen to 
3e-005 and 1 respectively, then the peaks don't get                       3e-004 and 0 respectively. It implies that the peaks get 
separated.                                                                                       separated.
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2.2.( =10−5 ,0=1550nm , DPMD=0,7 ps
km

, D0
=17 ps

km.nm , p. 53-55). This sub-sample  includes 

some of the worst conditions along all examples due highness of the PMD and CD coefficients. For 
wavelength spectra of output o and output p, there exist Gauss curves full of intense oscillations, 
However, output h exhibits an empty Gauss curve. The position spectra of outputs o and p are 
similar to position spectra in example 1.3, so that, because of the phase shift, the interference term 
causes strong change between spectra.
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Chapter 6

Summary and Conclusion

In this thesis, the simulations of the effects of the CD and PMD in a double Mach-Zehnder 
interferometer application, applied for phase coding method in quantum cryptography have been 
aimed to investigate. Two unbalanced Mach–Zehnder interferometers (one for Alice and one for 
Bob) are established one after another by a single optical fiber can be used to exchange a 
quantum key by the method of phase coding. As observing counts as a function of time, Bob 
achieves three peaks. The left one corresponds to the cases where the photons chose the short 
paths both in Alice’s and in Bob’s interferometers, while the right one corresponds to photons 
taking the long paths in both interferometers. Consequntly, the central peak corresponds to 
photons choosing the short path in Alice’s interferometer and the long one in Bob’s, or vice versa. If 
these two situations are indistinguishable, they cause interference. A quantum key can be arranged 
through choosing the related phase shifts at Alice’s and Bob’s parts [6]. 

Therefore, understanding of double Mach-Zehnder interferometer set-up scheme and phase 
coding quantum cryptography based on double Mach-Zehnder interferometer is very important, 
which are introduced shortly. CD and PMD occurs in dispersive media, i.e. single-mode optical 
fibers in our case, which are necessary for connection between interferometers. Their inner and 
outer structure and effects in quantum channel cause CD and PMD, which limit information transfer 
in quantum channel for phase coding, are given.

General meaning of dispersion and 5 kinds of dispersions have been introduced. Chromatic 
dispersion consists of two of them, waveguide and material dispersion.  Polarization mode 
dispersion is also one of them. PMD and CD have been presented in detail, others have been 
presented by brief calculations and figures. To learn PMD, learning the term of polarization (of light) 
would be very useful, which has also been presented as a motivation for PMD. DGD, 1st and 2nd 
order PMD have been demonstrated.

To investigate interactions, differences, common components between PMD and CD would have 
been very useful to compare their impacts in quantum cryptography which have been done in this 
work.

Before exhibiting simulations, some calculations as a background  have been studied with 
elementary parameters  ,0 , DPMD , D0

, , , which are also elementary for simulations in our 
GUI application. Most of calculations originate from Gaussian wave packet description.  After 
calculations, several examples of simulations of CD and PMD in phase coding quantum 
cryptography have been released. Simulations rely on 4 possible cases: Spectra with PMD and 
with CD, spectra with PMD and without CD, spectra without PMD and with CD, spectra without 
PMD and without CD. Spectra have belonged to wavelength and position distribution mostly, and 
rarely to intensities.  It has been demonstrated that without or with least values of PMD and CD 
coefficients, it is possible to make interferences and apply phase coding for quantum cryptography. 
In opposite, with high values of PMD and CD coefficients, no interference or very low amount of 
interference occurs.

In the Appendix part, source code of GUI application for these simulations have been released, to 
benefit from this work thoroughly.
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Appendix: Main Parts of MATLAB GUI Source 
Code

........................................
 
% Main figure within all components.
 
fh=figure('Position',[5 35 1273 700],...
    'numbertitle','off',...
    'MenuBar','none',...
    'Color',[0.6 0.6 0.5],...
    'name','Measuring with Interferometer');
 
axis off;
 

........................................ 
 
% Body of the first slider (Lambda Null) along with its components.
sh1=uicontrol(fh,'Style','slider',...
    'Max',1550,'Min',870,'Value',1312,...
    'SliderStep',[0.05 0.2],...
    'Position',[15 585 15 70],...
    'BackgroundColor','white',...
    'Callback',@slider1_callback);
 
eth1=uicontrol(fh,'Style','edit',...
    'String',num2str(get(sh1,'Value')),...
    'Fontsize',7,...
    'Position',[5 660 50 15],...
    'Callback',@edittext1_callback);
 
parameter1=text('units','inch',...
    'position',[-1.63 6.32], ...
    'fontsize',10,...
    'interpreter','latex',...
    'color',[0.6 0 0],...
    'string',['$$\lambda_{0}[nm]$$']);
 
number_errors1=0;
 

..........................................

 
% Callback for the first slider     
function slider1_callback(hObject,eventdata)
    set(eth1,'String',...
        num2str(get(hObject,'Value')));
end
 

.......................................... 
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%Callback for the first text edition
function edittext1_callback(hObject,eventdata)
val1=str2double(get(hObject,'String'));
%If the value entered into the text box
%is between the min and max values of the slider,
%set the new value of the slider.
if isnumeric(val1)&&length(val1)==1&&...
        val1>=get(sh1,'Min')&&...
        val1<=get(sh1,'Max')
    set(sh1,'Value',val1);
else
    %If any incorrect input has occurred,
    %then increase 1 the error timer.
    number_errors1=number_errors1+1;
    set(hObject,'String',...
        ['Total number of incorrect inputs=',...
        num2str(number_errors1)]);
end
end
 

...........................................

% GUI Axes
 
 
 
ah1 = axes('Parent',fh,'units','pixels',...
           'Position',[40 50 375 350]);
       
 
set(get(ah1,'Title'),'String','Wavelength Distribution','fontsize',16)
 
 
ah2 = axes('Parent',fh,'units','pixels',...
           'Position',[460 50 375 350]);
       
set(get(ah2,'Title'),'String','Position Distribution','fontsize',16) 
 
ah3 = axes('Parent',fh,'units','pixels',...
           'Position',[880 50 375 350]);
       
set(get(ah3,'Title'),'String','Intensity','fontsize',16)
 

% First push button for output o
bh1 = uicontrol(fh,'Position',[665 610 75 40],...
                'String','Output o',...
                'BackgroundColor','b',...
                'Callback',@button1_plot);
 

..................................................
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% Get user input from number parameter entries.
% Calculations and substitutions of abovementioned parameters
% based on formulations.
 
% lambda null
lmb_0=str2double(get(eth1,'String'))*1E-9;
 
% mean Wavenumber k0 with [1/m]
k0=2*pi/lmb_0;
  
% Amplitude Sigma
sgm=str2double(get(eth2,'String'));
s2=sgm^2;
 
% k-coordinate - Variable  = k
k=k0*(1-3.5*sgm):k0*sgm/5000:k0*(1+3.5*sgm);
lambda_nm=1E9*2*pi./k;
 
% CD Coefficient
cd=str2double(get(eth4,'String'));
 
% c0 light velocity, c0=300000 km/s= 300000 nm/ps
c0=300000;
 
% kpp(=kappa) is the parameter for the CD, shaped according to CD
% coefficient cd
kpp=-(c0*lmb_0^2*cd)/4*pi;
 
%PMD Coefficient
pmd=str2double(get(eth3,'String'));
 
% eps(=epsilon) is the parameter for the pmd, shaped according to pmd
% coefficient
eps=(c0*lmb_0*pmd)/4*pi;
 
% Phase shift delta c
del_c=str2double(get(eth5,'String'));
 
% Phase shift delta d
del_d=str2double(get(eth6,'String'));
 
% Phase shift delta g
del_g=str2double(get(eth7,'String')); 
 
% Phase shift delta m
del_m=str2double(get(eth8,'String'));
 
% Phase shift delta n
del_n=str2double(get(eth9,'String'));
 
% Phase shifts delta parameters
   lc=str2double(get(eth10,'String')); % length of arm c
   ld=str2double(get(eth11,'String')); % length of arm d
   lg=str2double(get(eth12,'String')); % length of arm g
   lm=str2double(get(eth13,'String')); % length of arm m
   ln=str2double(get(eth14,'String')); % length of arm n
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   tc=str2double(get(eth15,'String')); % Transmission Coefficient c
   td=str2double(get(eth16,'String')); % Transmission Coefficient d
   tg=str2double(get(eth17,'String')); % Transmission Coefficient g
   tm=str2double(get(eth18,'String')); % Transmission Coefficient m
   tn=str2double(get(eth19,'String')); % Transmission Coefficient n
 
 
 
% Amplitude Sigma
sigma=get(sh2,'Value');
s2=sigma^2;
 
% k-coordinate - Variable  = k
k=k0*(1-3.5*sigma):k0*sigma/5000:k0*(1+3.5*sigma);
sh1=1E9*2*pi./k;
 
% Group index N_0
 
N_0=1.500
 
 
% Test : PMD=0
    eps2=0;
 
 
% kappacm corresponds to \delta_{cm} in the manual
    % calculations kappacm=kpp*(lg+lc+lm);
    pmdcm=sqrt((kpp*(lg+lc+lm))^2+(eps2)*(lg+lc+lm)/s2);
    pmdcn=sqrt((kpp*(lg+lc+ln))^2+(eps2)*(lg+lc+ln)/s2);
    pmddm=sqrt((kpp*(lg+ld+lm))^2+(eps2)*(lg+ld+lm)/s2);
    pmddn=sqrt((kpp*(lg+ld+ln))^2+(eps2)*(lg+ld+ln)/s2);
 
 
% Description as above    
    % kappacn=kpp*(lg+lc+ln);
    gammacn=1+16*k0^4*s2^2*pmdcn^2;
    X0cn=del_g+del_c+del_n+N_0*(lg+lc+ln)+2*k0*pmdcn;
    
 
      
 
% X0cm for Calculation of domain X
    %X0cm=del_g+del_c+del_m+a*(lg+lc+lm)+2*k0*pmdcm;
    X0cm=del_g+del_c+del_m+N_0*(lg+lc+lm)+2*k0*pmdcm;
    
 
% kappadm=kpp*(lg+ld+lm);
gammadm=1+16*k0^4*s2^2*pmddm^2;
X0dm=del_g+del_d+del_m+N_0*(lg+ld+lm)+2*k0*pmddm;
    
% kappadn=kpp*(lg+ld+ln);
gammadn=1+16*k0^4*s2^2*pmddn^2;
X0dn=del_g+del_d+del_n+N_0*(lg+ld+ln)+2*k0*pmddn;
 
 
% gammacm corresponds to \gamma_{cm} in the manual calculations
gammacm=1+16*k0^4*s2^2*pmdcm^2;
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% Determination of domain X
% The distance of X0 fell away is sqrt(gamma*log(sqrt(1000)))/(k0*sigma) in
% that of the exponent on 1/1000.
X=min([X0cm X0cn X0dm X0dn])...
-sqrt(min([gammacm gammacn gammadm gammadn])*log(sqrt(1000)))...
/(k0*sigma):((max([X0cm X0cn X0dm X0dn])...
+sqrt(max([gammacm gammacn gammadm gammadn])*log(sqrt(1000)))...
/(k0*sigma))-(min([X0cm X0cn X0dm X0dn])...
-sqrt(min([gammacm gammacn gammadm gammadn])*log(sqrt(1000)))...
/(k0*sigma)))/length(k):max([X0cm X0cn X0dm X0dn])...
+sqrt(max([gammacm gammacn gammadm gammadn])*log(sqrt(1000)))...
/(k0*sigma)*(1-1/length(k));   
 
% Calculations:
    %
    % IMPULSE-Function alphao2=|\alpha_{o}(k)|^{2} and alphap2=|\alpha_{p}(k)|
^{2}
    % for 2 MZ with 1 input and with dispersion:
    %
    % Input Interferometer A
    %
    % Profactor
    c_alpha=(2*pi*k0^2*s2)^(-1/4);
    % Impulse distribution in the Input a in the first Mach Zehnder
    alphaInputA=c_alpha*exp(-(k/k0-1).^2/(4*s2));
    %alphaInputA2=c_alpha^2*exp(-(k/k0-1).^2/(2*s2));
    
    % Input Interferometer B
    %
    % Impulse distribution in Input g in the second MZ 
    % of PMD extended dispersion (dependent on each fiber's square root 
length!):
    % Therefore instead pmd*lg written now as (eps2 in [m^3]), 
    % with eps1, to the parameter for the polarisation  mode dispersion,  
    % total dispersion: pmdlx=sqrt((pmd*lx)^22 + (eps1**2)*lx/s2) ... Band T/122
    %
    %*****************************
    %
    % Input parameter for the PMD in [m^3/2]:
    %
    % epssquared has dimension [m^3]
    %
    epsquadrat=13.69*10^(-27);
    % Test : exaggerated big PMD:
    %eps2=epsquared*10^(35);
    %eps2=epsquared;
    %
    %
    %*****************************
    %
    %
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    % PMD effects in the interferometer arms
    pmdlg=sqrt((kpp*lg)^2+(eps2)*lg/s2);
    pmdld=sqrt((kpp*ld)^2+(eps2)*ld/s2);
    pmdlc=sqrt((kpp*lc)^2+(eps2)*lc/s2);
    pmdlm=sqrt((kpp*lm)^2+(eps2)*lm/s2);
    pmdln=sqrt((kpp*ln)^2+(eps2)*ln/s2);
    %
    alphaInputB=(1/2)*sqrt(tg)*exp(-i*k.*(del_g+N_0*lg)...
    -i*k.^2*pmdlg).*alphaInputA.*(sqrt(td)*exp(-i*k.*(del_d+N_0*ld)...
    -i*k.^2*pmdld)-sqrt(tc)*exp(-i*k.*(del_c+N_0*lc)-i*k.^2*del_c));
    %alphaInputB=(1/2)*sqrt(tg)*exp(-i*k.*(del_g+N_0*lg)
    %-i*k.^2*kpp*lg).*alphaInputA.*(sqrt(td)*exp(-i*k.*(del_d+N_0*ld)
    %-i*k.^2*kpp*ld)-sqrt(tc)*exp(-i*k.*(del_c+N_0*lc)-i*k.^2*kpp*lc));
    %
    % Impulse distribution at output h from the 1st MZ 
    alphah=(1/2)*alphaInputA.*(sqrt(td)*exp(-i*k.*(del_d+N_0*ld)...
    -i*k.^2*pmdld)+sqrt(tc)*exp(-i*k.*(del_c+N_0*lc)-i*k.^2*pmdlc));
    alphah2=conj(alphah).*alphah;
    
    
    % Output Interferometer B
    %
    % Impulse distribution at output o from the 2nd MZ
    alphao=(1/2)*alphaInputB.*(sqrt(tm)*exp(-i*k*(del_m+N_0*lm)...
    -i*k.^2*pmdlm)-sqrt(tn)*exp(-i*k*(del_n+N_0*ln)-i*k.^2*pmdln));
    % Squared value of impulse function at output o
    alphao2=conj(alphao).*alphao;
    % Impulse distribution at output p from the 2nd MZ
    alphap=(1/2)*alphaInputB.*(sqrt(tm)*exp(-i*k*(del_m+N_0*lm)...
    -i*k.^2*pmdlm)+sqrt(tn)*exp(-i*k*(del_n+N_0*ln)-i*k.^2*pmdln));
    % Squared value of impulse function at output p
    alphap2=conj(alphap).*alphap;
    
    % Position function psio2=|\psi_{o}(X)|^{2} und psip2=|\psi_{p}(X)|^{2}
    % for 2 MZ with 1 input und with dispersion:
    %
    % Output interferometer B
    %
    % Profactor
    c_psi=sqrt(tg)*c_alpha/(4*sqrt(2*pi));
    
    % Factors for compact script
    %
    %
    
    
    
    % kappad=kpp*(ld);
    gammad=1+16*k0^4*s2^2*pmdld^2;
    X0d=del_d+N_0*ld+2*k0*pmdld;
    
    % kappac=kpp*(lc);
    gammac=1+16*k0^4*s2^2*pmdlc^2;
    X0c=del_c+N_0*lc+2*k0*pmdlc;
    
    % xcm corresponds to x'_{cm} in the manual calculations
    xcm=X-(del_g+del_c+del_m+N_0*(lg+lc+lm));
    
    % argumentcm corresponds to z_{cm}-arg_{cm} in the manual calculations
    argumentcm=(k0*xcm+4*k0^4*s2^2*pmdcm*xcm.^2-k0^2*pmdcm)/gammacm-  
    atan(pmdcm*4*k0^2*s2)/2;
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    % Fourier-Transformed cm-component of the Impulse function
    Jcm=sqrt(tc*tm*4*pi*k0^2*s2/sqrt(gammacm)).*exp(-k0^2*s2/gammacm*(xcm-
2*pmdcm*k0).^2).*(cos(argumentcm)+i*sin(argumentcm));
    
    % Description as above
    xcn=X-(del_g+del_c+del_n+N_0*(lg+lc+ln));
    argumentcn=(k0*xcn+4*k0^4*s2^2*pmdcn*xcn.^2-k0^2*pmdcn)/gammacn-
atan(pmdcn*4*k0^2*s2)/2; 
    Jcn=sqrt(tc*tn*4*pi*k0^2*s2/sqrt(gammacn)).*exp(-k0^2*s2/gammacn*(xcn-
2*pmdcn*k0).^2).*(cos(argumentcn)+i*sin(argumentcn));
    
    xdm=X-(del_g+del_d+del_m+N_0*(lg+ld+lm));
    argumentdm=(k0*xdm+4*k0^4*s2^2*pmddm*xdm.^2-k0^2*pmddm)/gammadm-
atan(pmddm*4*k0^2*s2)/2; 
    Jdm=sqrt(td*tm*4*pi*k0^2*s2/sqrt(gammadm)).*exp(-k0^2*s2/gammadm*(xdm-
2*pmddm*k0).^2).*(cos(argumentdm)+i*sin(argumentdm));
    
    xdn=X-(del_g+del_d+del_n+N_0*(lg+ld+ln));
    argumentdn=(k0*xdn+4*k0^4*s2^2*pmddn*xdn.^2-k0^2*pmddn)/gammadn-
atan(pmddn*4*k0^2*s2)/2; 
    Jdn=sqrt(td*tn*4*pi*k0^2*s2/sqrt(gammadn)).*exp(-k0^2*s2/gammadn*(xdn-
2*pmddn*k0).^2).*(cos(argumentdn)+i*sin(argumentdn));
    
    xd=X-(del_d+N_0*ld);
    argumentd=(k0*xd+4*k0^4*s2^2*pmdld*xd.^2-k0^2*pmdld)/gammad-
atan(pmdld*4*k0^2*s2)/2; 
    Jd=sqrt(td*4*pi*k0^2*s2/sqrt(gammad)).*exp(-k0^2*s2/gammad*(xd-
2*pmdld*k0).^2).*(cos(argumentd)+i*sin(argumentd));
    
    xc=X-(del_c+N_0*lc);
    argumentc=(k0*xc+4*k0^4*s2^2*pmdlc*xc.^2-k0^2*pmdlc)/gammac-
atan(pmdlc*4*k0^2*s2)/2; 
    Jc=sqrt(tc*4*pi*k0^2*s2/sqrt(gammac)).*exp(-k0^2*s2/gammac*(xc-
2*pmdlc*k0).^2).*(cos(argumentc)+i*sin(argumentc));
    
    % Squared value of the Input-Position function
    % psia2=sqrt(2*k0^2*s2/pi).*exp(-2*k0^2*s2*X.^2);
    
    % Squared value of the position function at the output h
    psih2=c_alpha^2/(8*pi)*(conj(Jd).*Jd + conj(Jc).*Jc + 2*(real(Jd).*real(Jc)
+imag(Jd).*imag(Jc)));
    
    % Squared value of the position function at the output o
    psio2=c_psi^2*(conj(Jcm).*Jcm + conj(Jcn).*Jcn + conj(Jdm).*Jdm + 
conj(Jdn).*Jdn + ...
        2*(-(real(Jcm).*real(Jcn)+imag(Jcm).*imag(Jcn)) -... 
% interference term
        (real(Jcm).*real(Jdm)+imag(Jcm).*imag(Jdm)) +... 
% interference term
        (real(Jcm).*real(Jdn)+imag(Jcm).*imag(Jdn)) +... 
% interference term
        (real(Jcn).*real(Jdm)+imag(Jcn).*imag(Jdm)) -... 
% interference term
        (real(Jcn).*real(Jdn)+imag(Jcn).*imag(Jdn)) -... 
% interference term
        (real(Jdm).*real(Jdn)+imag(Jdm).*imag(Jdn)))); 
% interference term
    
    % Squared value of the position function at the output p
    psip2=c_psi^2*(conj(Jcm).*Jcm + conj(Jcn).*Jcn + conj(Jdm).*Jdm + 
conj(Jdn).*Jdn + ...
        2*((real(Jcm).*real(Jcn)+imag(Jcm).*imag(Jcn)) -... 
% interference term
        (real(Jcm).*real(Jdm)+imag(Jcm).*imag(Jdm)) -... 
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% interference term
        (real(Jcm).*real(Jdn)+imag(Jcm).*imag(Jdn)) -... 
% interference term
        (real(Jcn).*real(Jdm)+imag(Jcn).*imag(Jdm)) -... 
% interference term
        (real(Jcn).*real(Jdn)+imag(Jcn).*imag(Jdn)) +... 
% interference term
        (real(Jdm).*real(Jdn)+imag(Jdm).*imag(Jdn)))); 
% interference term
 
    % Calculation of the intensities I_{o} and I_{p} of the impulse functionen
    %
    delAdc=0:pi/k0*10^-2:10*2*pi/k0;%del_d-del_c+N_0*(ld-lc);%
    
    %delBdc=b*(ld-lc);%-1E-12:1E-16:0;%
    delBpmddc=sqrt((kpp*(ld-lc))^2+(eps2)*abs(ld-lc)/s2);%-1E-12:1E-16:0;%
    delAmn=del_m-del_n+N_0*(lm-ln);
    
    %delBmn=b*(lm-ln);
    delBpmdmn=sqrt((kpp*(lm-ln))^2+(eps2)*abs(lm-ln)/s2);
    
    % Interference term for the arms c und d
    IFTdc=sqrt(tc*td)./(2*(1+4*k0^4*s2^2*delBpmddc.^2).^(1/4)...
        ).*exp((-k0^2*s2/2*(delAdc+2*k0*delBpmddc).^2)./(1+...
        4*k0^4*s2^2*delBpmddc.^2)).*cos(atan(2*k0^2*s2*delBpmddc...
        )/2-(k0^4*s2^2*delBpmddc.*delAdc.^2-k0^2*delBpmddc-...
        k0*delAdc)./(1+4*k0^4*s2^2*delBpmddc.^2));
    
    % Intensity of the impulse function in output g
    Ig=tg*(td+tc)/4-IFTdc;
    
    % Intensity of the impulse function in output h
    Ih=(td+tc)/4+IFTdc;
   
    
    % Interference term for the arms m und n
    IFTmn=sqrt(tm*tn)./(2*(1+4*k0^4*s2^2*delBpmdmn.^2).^(1/4)).*exp((...
        -k0^2*s2/2*(delAmn+2*k0*delBpmdmn).^2)./(1+...
        4*k0^4*s2^2*delBpmdmn.^2)).*cos(atan(2*k0^2*s2*delBpmdmn)...
        /2-(k0^4*s2^2*delBpmdmn.*delAmn.^2-k0^2*delBpmdmn-k0*delAmn)./...
       (1+4*k0^4*s2^2*delBpmdmn.^2));
   
   % Interference terms  only for cd + mn as above
       IFTdcmn1=sqrt(td*tc*tm*tn)./(2*(1+4*k0^4*s2^2*(delBpmddc+...
        delBpmdmn).^2).^(1/4)).*exp((-k0^2*s2/2*((delAdc+delAmn)
+2*k0*(delBpmddc+...
        delBpmdmn)).^2)./(1+4*k0^4*s2^2*(delBpmddc+delBpmdmn).^2)).*cos(...
        atan(2*k0^2*s2*(delBpmddc+delBpmdmn))/2-(k0^4*s2^2*(delBpmddc+...
        delBpmdmn).*(delAdc+delAmn).^2-k0^2*(delBpmddc+delBpmdmn)...
        -k0*(delAdc+delAmn))./(1+4*k0^4*s2^2*(delBpmddc+delBpmdmn).^2));
 
% Interference terms  only for cd - mn as above
IFTdcmn2=sqrt(td*tc*tm*tn)./(2*(1+4*k0^4*s2^2*(delBpmddc-delBpmdmn).^2).^(...
1/4)).*exp((-k0^2*s2/2*((delAdc-delAmn)+2*k0*(delBpmddc-delBpmdmn)).^...
2)./(1+4*k0^4*s2^2*(delBpmddc-delBpmdmn).^2)).*cos(atan(...
2*k0^2*s2*(delBpmddc-delBpmdmn))/2-(k0^4*s2^2*(delBpmddc-...
delBpmdmn).*(delAdc-delAmn).^2-k0^2*(delBpmddc-delBpmdmn)-...
k0*(delAdc-delAmn))./(1+4*k0^4*s2^2*(delBpmddc-delBpmdmn).^2));
 
% Intensity of the impulse function in output o
Io=tg/4*((td+tc)*(tm+tn)/4-(td+tc)*IFTmn-(tm+tn)*IFTdc+(IFTdcmn1+IFTdcmn2));
% Intensity of the impulse function in output p
Ip=tg/4*((td+tc)*(tm+tn)/4+(td+tc)*IFTmn-(tm+tn)*IFTdc-(IFTdcmn1+IFTdcmn2));
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% Plots for output o
function button1_plot(hObject,eventdata)
 
    
    
% Plot Wavelength distribution of output o
plot(ah1,lambda_nm,alphao2,'--b','LineWidth',2);
      
% Plot Position distribution of output o
plot(ah2,X,psio2,'--b','LineWidth',2);
   
% Plot Intensity output o
plot(ah3,delAdc,Io,'--b','LineWidth',2);   
 
set(get(ah1,'Title'),'String','Wavelength Distribution','fontsize',16)
set(get(ah2,'Title'),'String','Position Distribution','fontsize',16) 
set(get(ah3,'Title'),'String','Intensity','fontsize',16)
 
 
 
end
 
 
end
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