
D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

Estimating the T-dependence of
zero field splitting in the

NV
−-center using Neural Networks

Technical University Vienna

Center for Computational Materials Science

Diploma Thesis

Author:

Matthias Ebert, BSc.

1125488

Supervisor:

Univ.Prof. Dipl.-Ing. Dr.techn.

Peter Mohn

Contributors:

Dipl.-Ing. Dr.techn. Johannes

Gugler

Dipl.-Ing. Martin Pimon

March 20, 2020

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Abstract

In this thesis we probe the feasibility of using Artificial Neural Networks (ANNs),
trained on data computed using DFT methods (in VASP), to perform a molecular
dynamics (MD) simulation of a many-particle system as well as estimate other
system properties. The system chosen is a nitrogen-vacancy center (NV-center) in
a diamond lattice (63 carbon atoms, 1 nitrogen atom) and the system property in
question is the zero-field splitting (or D-tensor) at the NV-center. In the MD, ANNs
are then used to estimate the forces acting on each atom as well as the diagonal
D-tensor values at each step. Multiple such MDs are run at different temperature
levels, introduced by a thermostat, to calculate the T-dependence of the D-tensor
zz-component.
Performing 3 such simulations with varying number of MD-steps (100k, 300k, and
1000k), over temperatures ranging from 10 K to 550 K we were able to obtain
a smooth and consistent estimate of the D-tensor T-dependence. We therefore
demonstrate that such an approach has actual utility in computing properties of
many-particle systems and deserves further investigation.

1

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Kurzfassung

In dieser Arbeit untersuchen wir ob künstliche Neuronale Netzwerke (KNNs), die
mit Ergebnissen aus DFT Rechnungen (in VASP) trainiert wurden, zu Druchführung
von Molekulardynamik (MD) Simulationen von Vielteilchensystemen, sowie zu Schätzung
von Systemeigenschaften verwendet werden können. Das untersuchte System ist
eine Stickstoff-Fehlstelle (NV-center) in eineme Diamant Gitter (63 Kohlenstoff
Atome und 1 Stickstoff Atom) und die Systemeigenschaft von Interesse ist das Zero-
Field-Splitting (oder D-Tensor) an der Stickstoff-Fehlstelle. In den MD-Simulationen
werden sowohol die Kräfte auf alle Teilchen, als auch die zz-Komponente des D-
Tensors in jedem Schritt von KNNs geschätzt. Unter Verwendung eines Ther-
mostats, führen wir mehrere solche MD-Simulationen bei verschiedenen Temper-
aturen durch um die Temperaturabhängigkeit des D-Tensors zu bestimmen.
Die Ergebnisse aus 3 solchen Simulationen über einen Temperaturbereich von 10 K
bis 550 K, mit unterschiedlicher Anzahl an MD-Schritten (100k, 300k und 1000k),
zeigen ein konsistentes Temperatur-Verhalten des D-Tensors. Damit zeigen wir,
dass eine sinnvolle Schätzung von Systemeigenschaften auf diese Weise möglich ist
und der beschriebene Ansatz weitere Untersuchung verdient.

2

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Contents

1 Introduction 5

2 Theoretical Background 6
2.1 Density functional theory (DFT) . 6

2.1.1 Prerequisites . 6
2.1.2 The DFT procedure . 8
2.1.3 Exchange correlation energy 8

2.2 NV-Center . 10
2.2.1 Structure . 10
2.2.2 Production . 10
2.2.3 Optical properties and electronic structure 11
2.2.4 Applications . 12

2.3 Artificial Neural Networks . 13
2.3.1 Neurons . 13
2.3.2 Feed Forward NNs . 13
2.3.3 Training NNs . 14

3 Modeling & Simulation 17
3.1 Tools used . 17

3.1.1 The VASP-framwork . 17
3.1.2 Tensorflow . 17
3.1.3 Libraries Used . 17

3.2 Data preparation & training the NNs 19
3.2.1 The data-set . 19
3.2.2 Generating the training data 19
3.2.3 Network structure . 20
3.2.4 Training . 21
3.2.5 Further remarks on the selection and training of the NNs . . 22

3.3 Simulation . 23
3.3.1 Thermostat . 23
3.3.2 Molecular Dynamics using NNs 24
3.3.3 Computing the D-tensor using a NN 24
3.3.4 Simulation setup . 24

4 Results 27
4.1 D-tensor Temperature dependence 27

4.1.1 100k average . 28
4.1.2 300k average . 29
4.1.3 1000k average . 30
4.1.4 Variance and fit quality . 31

4.2 Comparison & interpretation . 33
4.2.1 Shortcomings of the current approach 33

4.3 Further Research . 35

3

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.3.1 Get a better dataset . 35
4.3.2 Increase the number of nearest neighbors 35
4.3.3 Network structure & training process 35
4.3.4 Introduce a feedback-loop into VASP 36
4.3.5 Reformat training data . 36
4.3.6 Combinations of approaches 36
4.3.7 Different approach: Atom-centered symmetry functions . . . 36

4.4 Conclusion . 37

Bibliography 38

List of Figures 40

List of Tables 42

4

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Chapter 1

Introduction

Performing reliable computer simulations in physics, chemistry as well as materials
science relies heavily on an accurate description of atomic interactions. The physics
to describe such interactions is known and a great number of electronic structure
methods using the Born-Oppenheimer approximation exist. These methods provide
results of good accuracy, however, they require significant computational resources.
Scaling with O(n3) in the number of particles (i.e., electrons) those methods impose
limits on the system size as well as the number of simulated time-steps during such
calculations. If it were possible to train an Artificial Neural Network (ANN) on
data provided by an electronic structure method to estimate e.g. forces or energies
from the atomic structure (i.e., all atomic positions and charges), one would obtain
a relation mapping structure to forces or energies. This in turn would speed up
the calculation of system dynamics significantly allowing for simulations of larger
systems and vastly more dynamics steps, permitting either longer simulated time
frames or finer granularity.

The purpose of this thesis is to test the feasibility of using such an approach to per-
form a molecular dynamics (MD) simulation of a medium sized system (64 atoms,
2 atom types) where the forces acting on each particle as well as other properties
of the system are computed (estimated) by ANNs at each MD-step. The system
chosen in this work is a NV−-center embedded in a diamond lattice and the system
property in question is the zz-component of the zero-field splitting or D-tensor at
the NV−-center. The zero-field splitting describes various interactions of energy
levels resulting from the presence of more than one unpaired electron. The latter
serves as a particularly good example, since it’s computation via standard DFT
has substantial variance requiring many such computations with different atomic
configurations to obtain a statistically significant estimate of it’s true value. Using
NNs to estimate the D-tensor value could lead to a significant speed-up allowing to
sample over a larger number of atomic configurations in a shorter amount of time.

5

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Chapter 2

Theoretical Background

2.1 Density functional theory (DFT)

Developed in the 1960s, density functional theory (DFT) is a procedure for calcu-
lating the ground-state of a quantum many-body system of interacting electrons,
which is based on the electron density as a function of position. Extensively em-
ployed in physics, chemistry and materials science, DFT is used to obtain electronic
structure information of atoms, molecules as well as solid bodies. With this it is
possible to calculate a multitude of properties, e.g., bond-lengths and bond-energies
ab-initio.
While the computational effort to solve the full many-body Schrodinger’s equation
scales exponentially with the number of particles, DFT offers a procedure for finding
the many-body ground-state (in principle without having to sacrifice any accuracy)
that scales with O(n3), allowing for the simulation of much larger systems.
With this, it is no understatement to say, that DFT has revolutionized computa-
tional materials science as well as computational chemistry over the last couple of
decades.

2.1.1 Prerequisites

The variational principle

Most generally, the variational principle can be used in the calculus of variations,
for finding functions that give extremal values of qunatities that depend upon those
functions (i.e., functionals).
Specifically, in the context of DFT, the Rayleigh-Ritz variational principle is used.
It states that any normalized wavefunction used to calculate the expectation value
of the energy is guaranteed to give an energy larger than the true ground-state
energy E:

E = min
Φ

〈Φ| Ĥ |Φ〉 ,
∫ ∞

−∞

|Φ(x)|2dx = 1 (2.1)

This is a very powerful principle, which basically allows us to simply evaluate the
energy of a set of normalized wavefunctions and find the best approximation to the
ground-state by choosing the one which gives the lowest energy. Furthermore, this
means that we can, at least in principle, approximate the ground-state to arbitrary
accuracy by simply trying a sufficient number of wavefunctions.
In practice, one would use parameterized trial wavefunctions, e.g., a Gaussian

ΦG(x) = βe−αx (2.2)

6

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

and choose the free parameters (α and β in this case) in order to minimize the
energy.

Hohenberg-Kohn theorem

The Hohenberg-Kohn theorem relates to all systems where particles (electrons)
move under an external potential. In those cases the theorem state [19]

1. The potential governing a system of electrons is a unique functional of that
system’s electron density (n(r)). Therefore, the ground-state density uniquely
determines the potential and thereby the systems properties, including also
the ground-state wavefunction.

2. For any positive integer N and potential V (r), there exists a density functional
F [n] sucht that

EV,N [n] = F [n] +

∫ ∞

−∞

V (r)n(r)d3r (2.3)

obtains its minimal value at the ground-state density of N electrons in the
potential V (r) and the minimal value of EV,N [n] is then the true ground-state
energy of the system. In other words, the functional delivers the ground-state
energy if and only if the input density is the true ground-state density.

Kohn-Sham equations

The essence of the Kohn-Sham formalism is to treat a system of interacting electrons
as a fictitious system of non-interacting electrons and to ’dump’ all the interaction
effects, beyond the Hartree-potential, into an additional exchange-correlation term
in the ground-state functional. The orbitals Φi of such a system are then given by

{−1

2
∇2 + VKS(r)}Φi(r) = ǫiΦi(r) (2.4)

and yield a density

n(r) =
N∑
i=1

|Φi(r)|2. (2.5)

Here, VKS(r) is the effective Kohn-Sham potential which has three contributions

VKS(r) = Vext(r) + VH(r) + VXC(r) (2.6)

which are the external, Hartree and exchange-correlation potential respectively.
Because of the Hohenberg-Kohn theorems we know that the independent particle
equations have their own ground-state energy functional, which Kohn and Sham
wrote as

E[n] = Ts[n] + Eext[n] + EH [n] + EXC [n] (2.7)

where Ts[n] is the Kohn-Sham kinetic energy

Ts[n] =

N∑
i=1

∫ ∞

−∞

Φ∗
i (r)(−

1

2
∇2)Φi(r)d

3r, (2.8)

Eext[n] is the energy corresponding to the external potential

Eext[n] =

∫ ∞

−∞

V (r)n(r)d3r, (2.9)

7

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

EH [n] denotes the Hartree (or Coulomb) energy

EH [n] =
1

2

∫ ∞

−∞

∫ ∞

−∞

n(r)n(r′)

|r− r′| d3rd3r′ (2.10)

and finally, EXC [n] is the exchange-correlation energy functional, which, by defini-
tion, is the difference between the exact energy and all other known terms.

With the above equations one can construct an iterative procedure, where an initial
electron density is chosen and used to calculate the Kohn-Sham potential via a
variational approach

VKS(r) = Vext(r) +

∫ ∞

−∞

n(r′)

|r− r′|d
3r′ +

δEXC [n]

δn(r)
. (2.11)

By solving equation 2.4 and using equation 2.5 one can obtain a new electron density
which can then be plugged in equation 2.11 to start the next iteration. This can be
repeated until there is no longer any noticeable change in the density and we can
be confident that we have found a minimum.

2.1.2 The DFT procedure

With the above, a basic DFT procedure boils down to the following:

1. Switch from describing a system via a many-body wavefunction to a descrip-
tion using the electron density. Here, the Hohenberg-Kohn theorems guaran-
tee that finding the ground-state density is equivalent to finding the ground-
state wavefunction.

2. Choose an approximation for the exchange-correlation energy functional (TODO:
remove oveful box) EXC [n], which captures most of the relevant features of
your system (i.e., only neglects effects that are sufficiently small).

3. Solve a Kohn-Sham procedure to obtain the ground-state density of your
system with the desired accuracy.

4. The ground-state density can then be used to calculate the ground-state en-
ergy of your system, which in turn, allows you to derive most other relevant
properties.

With this it becomes clear what DFT actually does. In simple words, DFT refor-
mulates many-particle problems in a way such that everything that is unknown or
expensive to compute (i.e., many particle interactions) is collected at one place, the
exchange-correlation functional EXC [n]. With this, approximations are confined to
a single term which is generally easier to handle than having to use approximations
at multiple steps in a procedure. Also, if required, doing empirical approximations
for specific systems of interest becomes much easier.

With this, one could say that the performance of DFT primarily depends on the
quality of approximations to the exchange-correlation energy functional.

2.1.3 Exchange correlation energy

Local density approximation (LDA)

Local density approximations (or LDAs) are a class of approximations for the
exchange-correlation energy functional EXC [n]. As ’local’ suggests, in LDA ap-
proaches EXC [n] depends solely on the value of the density at each point in space,
which (in a spin-unpolarized system) takes a form like

8

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

ELDA
XC [n] =

∫ ∞

−∞

n(r)ǫLDA
XC (n)d3r. (2.12)

Furthermore, the exchange-correlation energy density ǫXC(n) can be linearly de-
composed into an exchange and a correlation contribution

ǫLDA
XC (n) = ǫLDA

X (n) + ǫLDA
C (n). (2.13)

Typically, the exchange term takes on an analytic form derived from the homoge-
neous electron gas (HEG) model [3]

ǫLDA
X (n) = Ax ∗ n4/3(r), (2.14)

while there exist numerous different approximations for the correlation term.

Local spin density (LSD)

The extension to spin-polarized systems is rather straightforward, at least for the
exchange term. In a spin-polarized DFT calculation there are two separated densi-
ties for both polarizations and the spin-polarized exchange term can be expressed
using the spin-unpolarized one [3]

ǫLSD
X (n↑, n↓) =

1

2
(ǫunpolX (2n↑) + ǫ

unpol
X (2n↓)) (2.15)

This result holds in general and not just in the LDA context. However, in case of
LDA and the HEG the unpolarized exchange term would look as follows [3]

ǫLSDA
X (n↑, n↓) = 2

1

3Ax(n
4

3

↑ + n
4

3

↓). (2.16)

Representation becomes even more straightforward, when introducing the concept
of relative spin-polarization

ζ =
n↑ − n↓

n
and n↑ =

n

1
(1 + ζ), n↓ =

n

1
(1− ζ) (2.17)

With this we can write the exchange energy functional as follows

ELSDA
X [n↑, n↓] = Ax

∫ ∞

−∞

n
4

3 (r)
(1 + ζ(r))

4

3 + (1− ζ(r))
4

3

2
. (2.18)

Unfortunately, the correlation energy for spin-polarized systems cannot be expressed
so simply, using the correlation energy of the unpolarized system. However, several
forms were developed in the LDA context (i.e., in conjunction with different LDA
correlation energy terms).

Advanced approaches

Improving on the performance of LDA in one way or another, there are a great
number of more sophisticated approximations to the exchange-correlation energy
functional, which are usually derived from fitting the exchange-correlation energy to
results from quantum Monte-Carlo simulations. Those include generalized gradient
approximations (GGA) or hybrid functionals, such as PBE or HSE.

9

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.2 NV-Center

The nitrogen-vacancy (NV) center is one of the many point defects in diamond,
where nitrogen impurities, paired with a carbon vacancy, are present in the pure
diamond lattice. This structure offers a variety of desirable properties, the most
prominent of which include pholuminescence, detectable from individual NV centers
as well as room-temperature spin-manipulation using mechanical stress, microwave
radiation or electric/magnetic fields. These features make it suitable for room-
temperature quantum information processing or room-temperature masers. Also,
the production and manipulation of NV centers can be done via processes already
present in current industries, which would reduce the adaptation time for solutions
based on the NV center.

2.2.1 Structure

As mentioned, the NV center is a point defect in the diamond lattice, where a
substitutional nitrogen atom is paired with a carbon vacancy at one of the nearest
neighbor lattice points (see figure 2.1).

Figure 2.1: Schematic view of an NV0 and NV− in diamond. [6]

For the nitrogen, 3 of its 5 valence electrons are covalently bonded to its 3 remaining
carbon neighbors, while the remaining 2 (called the lone pair) are left non-bonded.
The vacancy, on the other hand, has 3 unpaired electrons, where 2 of them form a
quasi-covalent bond and 1 is left truly unpaired. Overall, there is a C3V symmetry
(axial trigonal) which basically means, that the 3 vacancy electrons are perpetually
exchanging their roles.

For the NV center two states were observed which differ in their charge. The NV 0

(figure 2.1a) has no charge and one electron is left unpaired, while for the NV −

(figure 2.1b) another electron is present at the vacancy site, which binds to the un-
paired electron. However, it is not yet fully understood where these extra electrons
come from.

Since the NV − center is the more common version, the superscript will be omitted
from here on unless explicit distinction is required.

2.2.2 Production

The production of NV centers is typically done via a rather straight-forward three-
step process [6].

10

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1. First, the desired quantity of nitrogen atoms are deposited in the diamond
lattice via ion-implantation techniques, such that the spatial distribution of
the substituents can be controlled fairly well.

2. After this step, the diamond target is irradiated to produce vacancies in the
lattice. For this process, a variety of particles are suitable, including ions, pro-
tons, neutrons, electrons, and gamma photons. However most of the vacancies
produced in this way will not be next to a nitrogen defect.

3. Since the vacancies are immobile at room temperature, the target is annealed
at high temperatures which causes the vacancies to move. Fortunately, single
substitutional nitrogen generates strain in the diamond lattice, which leads to
vacancies being trapped preferably next to the nitrogen defects.

The first step can often be omitted, since in the majority of natural and artificial
diamonds, nitrogen is already sufficiently abundant for most effects that are of
scientific interest.

2.2.3 Optical properties and electronic structure

The ground state 3A2 and first excited state 3E of the NV center in diamond are
triplets as shown in figure 2.2. Conveniently, both are situated within the diamond
band gap, so it is possible to optically excite electrons, where resonance occurs for
green light of 546nm wavelength. This transition is primarily spin-conserving and
decays rather quickly (∼ 10ns [5]), by emitting red light peaking at 689nm wave-
length.

Figure 2.2: Energy level diagram of the NV
− center in diamond. Dashed lines represent tran-

sition that are believed to be non-radiative, whereas solid lines denote radiative ones. The tran-
sitions corresponding to the green and red lines have wavelength peaks of 546nm and 689nm
respectively. [9]

Without an external magnetic field both the ground and excited state are split due
to the magnetic interaction between the two unpaired nitrogen electrons, i.e. the
energy is higher when spins are parallel (ms = ±1) than when they are anti-parallel
(ms = 0). When a magnetic field is applied to the NV center it will affect the
separation of the ms = +1 and ms = −1 state. In particular, if the component
of the magnetic field along the NV defect axis reaches approximately 1027G, the
ms = −1 and ms = 0 ground (and excited) states become equal in energy and will

11

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

start to interact.

Aside from the ground and excited triplet states there also exist two intermediate
singlet states (1A and 1E) that allow for intersystem crossing (ISC) to occur. While
optical excitations between 3E and 3A2 have to conserve the spin, it is possible for
an electron in the ms = ±1 state of 3E to decay non-radiatively into the singlet
state 1A. In fact, a nice property of the NV center in diamond is, that the ms = ±1
electrons have a much higher decay rate into the intermediate singlet state, than
ms = 0 electrons.
Between the two singlet states there is then the possiblity for either another non-
radiative decay or a radiative (in the infrared range) decay, followed by one more
non-radiative decay into the ground state triplet.

2.2.4 Applications

The properties of the NV center in diamond outlined above, allow for it to be used
in a variety of interesting applications. One of the most important being it’s use
for quantum computing.

NV center as a qubit

The NV center looks to be a promising candidate for a room temperature qubit in
quantum information processing, where the logical states of 1 and 0 are represented
by the spin-polarization in the ground state triplet (i.e., 1 corresponds to ms = ±1
and 0 to ms = 0). Since the separation of the latter is in the microwave range it is
easy enough to populate the ms = ±1 states, i.e. flipping the qubit to logical 1, by
irradiating the NV center with the corresponding frequencies.
On the other hand, a process for deterministically flipping the qubit to logical 0,
i.e. populating the ms = 0 state, is made possible due to the NV center’s property
that the non-radiative decay from 3E to 1A occurs preferably for electrons in the
ms = ±1 state. For this consider the following:

1. Excitation of electrons into the 3E state with an off-resonance frquency above
546nm. With this all spin states will be excited.

2. Now populating 3E, electrons with ms = 0 will simply decay radiatively back
into 3A2, thereby conserving spin. Electrons with ms = ±1, however, now
have a significant chance to decay into the intermediate state 1A where their
spin is flipped.

3. From 1A they can decay into the ms = 0 state of 3A2.

After a sufficient number of iterations it can be guaranteed that the NV center is
in the ms = 0 state, i.e., the qubit has been set to logical 0.

12

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.3 Artificial Neural Networks

Most generally[18], Artificial Neural Networks (ANNs), or often just Neural Net-
works (NNs), can be descirbed as computing systems which are vaguely inspired by
biological neural networks that constitute human brains.
More specifically, for the purpose of this thesis, we will consider them as a nonlinear
model for supervised learning, which uses a set of examples (i.e., the training data)
to ”learn” to perform a certain task. ANNs are made up by simple building blocks,
called neurons.

2.3.1 Neurons

Figure 2.3: Neuron with 3 inputs in both graphical and
decomposed functional form.

The smallest unit in an ANN is
the neuron. Like their biolog-
ical namesake, they also take
several inputs denoted as x =
(x1, x2, ..., xd) and produce a
single output a(x).
Additionally, all the inputs
are weighted by neuron-specific
weights w = (w1, w2, ..., wd)
and the sum of all weighted
inputs is offset by a single
scalar neuron-specific bias b. In
almost all cases the output-
function ai(x) of neuron i can
be split into a linear part (see
figure 2.3) of the form

z(i) = w(i) ∗ x+ b(i) (2.19)

and a non-linear part

ai(x) = σi(z
(i)) (2.20)

with a non-linear function σi(z) also known as the activation-function (i.e., which
determines the final output of the neuron).
The latter could be a step-function, sigmoid or hyperbolic tangent even though
rectified linear units, leaky rectified linear units as well as exponential linear units
are among the most common, nowadays. The choice of non-linearity mainly affects
computational and training properties of the resulting ANN. The reason for this is
that the training of ANNs involves gradient descent based methods which causes
the derivative of the non-linearity to have a significant influence on the training
behavior.

2.3.2 Feed Forward NNs

Neural Networks, as the name suggests, are created by layering neurons in a hierar-
chical fashion. The structure of this set of neurons, i.e., how the individual neurons
are connected to each other, is called the network architecture, of which there ex-
ists a great variety. In this work the most basic architecture, a feed forward neural
network (see figure 2.4), will be used. Here, the neurons are structured into layers
starting with the input layer, followed by one or more, so called, hidden layers and
terminated by an output layer. For the hidden layers, each individual neuron is

13

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Figure 2.4: An example of a fully connected feed forward neural network with 3 inputs, 2 outputs
and 2 hidden layers.

connected to one or more neurons in the previous layer and to one or more neurons
in the following layer, i.e. the output of one layer is treated as the input for the
next layer.
This type of NN works as follows:

• The input data is fed into the input layer in a one-to-one mapping (the number
of neurons in the input layer has to be equal to the dimensionality of the
input).

• The input is then propagated through the hidden layers making use of the
neuron-specific activation functions, where the dimensionality of w and x
correspond to the number of connections the neuron has to the previous layer.

• The output layer then uses a suitable activation function to generate the
desired output format (e.g., discrete/continuous, bound/unbound, etc.). This
is again done in a one-to-one manner, i.e. the number of neurons in the output
layer and the number of required output dimensions has to match.

This means one can interpret the NN as a function which maps inputs of dimension
n to outputs of dimension m

y = f(x) (2.21)

with y = (y1, y2, ..., ym) and x = (x1, x2, ..., xn). The weights and biases of the
individual neurons can be considered as free parameters of the function, i.e., can
be tweaked to approximate a desired functional behavior. In fact, there exists a
universal approximation theorem [7] which states, that even a single-layer NN, with
a finite number of neurons, can approximate any function with arbitrary accuracy.
However, this theorem is of limited practical relevance since it offers no bound on
the number of neurons necessary to achieve this. Therefore, in real applications, a
trade-off will always have to be made between accuracy of approximation and the
necessary computational effort.

2.3.3 Training NNs

As mentioned in the beginning, NNs learn from examples. Therefore, one needs a
(often quite large) set of samples consisting of pairs of inputs x and outputs y, i.e.
{(x1,y1), (x2,y2), ..., (xN ,yN)}.
The basic procedure for training NNs then is similar to most other, simpler, su-
pervised learning algorithms. To start with, one has to construct a loss function
(or cost function) combining the network output for the training input with the

14

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

actual outputs. This function, if minimized, should result in the desired behavior
of the NN. Then, a gradient descent based method is used to change the weights
and biases (for simplicity, from here on the biases will be considered to be part of
the weights) of all neurons in a way that minimizes the loss function. E.g., one of
the simplest (and also most common) loss functions is some form of mean squared
error

E(W) =
1

N

N∑
i=1

(yi − yi(W))2 (2.22)

where W is the set of all weights of all the neurons in the NN and N is the number
samples in the data used to train the NN. The typical training procedure looks as
follows

1. Choose a network architecture (e.g. feed forward NN) and a specific structure
(i.e. number of hidden layers, number of neurons per layer, etc. ...).

2. Initialize all the weights in the network either randomly or using an educated
guess.

3. Run all training samples through your network and compute your loss.

4. If the loss is smaller than some threshold then terminate, otherwise continue
with step 5.

5. Use gradient descent to correct the weights of your NN according to the de-
viation of the predicted outputs from the real outputs.

6. Repeat from step 2.

Optimizers

In machine learning an optimizer is the procedure by which the loss function is
minimized. They try to tweak the parameters in a model (i.e., weights and biases)
in such a way that the error the model makes on predictions, quantified by the
chosen loss function, is reduced.
The simplest optimizer would be a standard gradient descent approach, where the
optimizer always follows the direction of the steepest slope until there is no longer
any noticeable change in precision. However, in a high-dimensional parameter space,
where the function to approximate is a multi-dimensional surface with many local
minima, this naive approach will frequently lead to sub-optimal results.
Needless to say, because of this shortcoming, more sophisticated optimization schemes
such as Adagard, RMSprop and Adam have been introduced. These advanced op-
timizers typically use one or more of the following techniques

• Introduce a stochastic component to the updating of parameters in order to
escape a local minimum.

• Employ individual learning rates, i.e., factors defining the size of updates in
each step, for all model parameters.

• Allowing the learning rate to vary between optimization steps.

The ’Adam’ (Adaptive Moment Estimation) optimizer, which has been chosen for
training the NNs in this work, employs all of the above and uses the following pro-
cedure to update model parameters [15]

15

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

gt = ∇WE(Wt) (2.23)

mt = β1mt−1 + (1− β1)gt (2.24)

st = β2st−1 + (1− β2)gt
2 (2.25)

m̂t =
mt

1− βt
1

(2.26)

ŝt =
st

1− βt
2

(2.27)

Wt+1 = Wt − ηt
m̂t√
ŝt + ǫ

(2.28)

Here, gt represents the gradient for the results achieved by the previous parameter
values Wt (i.e., weights of the NN). mt and st are estimates of the first and second
moment, i.e., the mean and uncentered variance, of the gradient respectively. β1

and β2 are used to set the ’memory lifetime’ for the first and second moment, i.e.,
influence how far into the future the values of the moments should have an effect
as can be seen in equations 2.24 and 2.25. Since the latter were found to be biased
towards zero, equations 2.26 and 2.27 are used to correct for this bias. Finally,
the actual update of the parameters is done in equation 2.28 where the corrected
moments and an adaptive learning rate ηt are used to perform a gradient descent.
ǫ is just a small regularization constant used to avoid divergences.
If one pictures gradient descent procedures as a ball rolling down a slope, ’Adam’
could be viewed as a heavy ball with friction. Thus it preferably ’looks for’ flat
minima in the error surface.

Batches and epochs

Two other terms that frequently occur in the context of machine learning are batches
and epochs.
During the training phase, the entire training-set is randomly split into equally
sized subsets, called batches. Then, the optimizer computes the predictions of the
current model on all the samples in one batch and uses the errors of the entire batch
to perform a single update on the model parameters. Doing this for all batches,
i.e., going through the entire data-set once, is called an epoch. When starting the
next epoch the training-set is randomly split into batches again.
The number of epochs and the batch-size can be considered parameters of the
training procedure, that can be tweaked to improve performance, in the sense of
finding a sweet-spot between accuracy and computational effort.

16

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Chapter 3

Modeling & Simulation

3.1 Tools used

In order to perform the simulations described in this work, i.e., create the training
data and train the machine learning models, various tools has been used. Those are
described below.

3.1.1 The VASP-framwork

The Vienna Ab initio Simulation Package (VASP) is a program for modeling mate-
rials at the atomic scale. It can be used to calculate features such as the electronic
structure or molecular dynamics from first principles. [16, 13, 12, 11]
The principal method underlying VASP is to use either density functional theory
(DFT) for solving the Kohn-Sham equations or the Hartree-Fock approximation for
solving the Roothaan equations in order to approximate the solution of the many-
body Schrodinger equation.

Concerning this work, VASP was used to generate the raw data from which the
training data for the NNs were derived.

3.1.2 Tensorflow

Tensorflow [1] is a programming framework, implemented in Python and C++,
focused on dataflow programming and is used in Python-based programs. Originally
developed by Google Brain Team, it is an end-to-end open source platform that has
become quite popular in the data-science domain, primarily because it facilitates
easy development and deployment of machine learning powered applications. Due
to its popularity in the economic world as well as research communities alike, the
Tensorflow ecosystem sports a large community providing a well maintained code-
base as well as state-of-the-art (and nicely documented) functionality.

3.1.3 Libraries Used

Next to the Tensorflow Python library a couple of other libraries, that greatly reduce
the effort of manipulating data as well as building and training NNs, were used.

Keras

Keras [4] is an open-source neural-network library written in and for Python, de-
signed to run on top of, among other frameworks, Tensorflow. Its design focus
are both user-friendliness as well as facilitating easy experimentation with neural

17

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

networks, minimizing the effort for going from a theoretical concept to a running
program.
In essence, Keras provides an API (the Keras Functional API) with comprehensible
functions for constructing and training neural networks.

However, as it is a wrapper library, Keras does not allow modifying everything in
its backend which somewhat limits the customization of (especially more complex)
NNs. Also, the error-messages thrown are sometimes not too useful.
Nevertheless, since this work did not require any advanced network structures, ease-
of-use was deemed more important and Keras was chosen for implementing the NNs.

Pandas

Pandas [14] is an open-source Python library designed for data analysis and data
manipulation. It features data structures to efficiently hold large amounts of data
and offers high performance functions to operate on them.

Even though a steep learning curve due to Panda’s extensive functionality, diffi-
cult syntax as well as bad documentation have to be mentioned as some notable
handicaps when starting to use this library, the provided data structures and data
manipulation tools are still worth the effort. Specifically for the time saved when
operating on large data sets.

18

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.2 Data preparation & training the NNs

Since Machine Learning (ML) fundamentally relies on data for training models, two
of the most important steps in every procedure involving ML is finding suitable data
and restructuring them in a format that can actually be used as training input.

3.2.1 The data-set

The data-set used in this work was the VASP output (an OUTCAR file) from
a 100k step Monte-Carlo simulation of a 64 atom cell of the NV-center, i.e., 63
carbon atoms and one nitrogen. For this, VASP was provided with 100k random
(with some bounds) configurations for which the forces on each atom were, as well
as the corresponding value of the D-tensor at the NV-center were computed.
This provided a data set with 100k mappings of cell configurations to D-tensor
values which was used to gather the training data for the NNs.

3.2.2 Generating the training data

For the Molecular dynamics simulation in the next section, NNs of two kinds will be
necessary. First, to actually do the MD, NNs that map atomic positions to forces
on each atom are needed, which can then be used to compute the next position
of each atom. Second, we will need a NN that maps atomic positions, specifically
those around the NV-center, to a D-tensor value. Accordingly, two different types
of training sets are required in order to train those NNs.

For the data-sets concerned with mapping position to forces, the following param-
eterization has been chosen. For each atom, its respective 4 nearest neighbors are
determined in each of the 100k samples of the MC-simulation. Then, the relative
distance (in Angstrom) to those neighbors is calculated. Also, since there are two
chemical species present, i.e., nitrogen (N) and carbon (C), those have to be dis-
criminated as well. For simplicity, this is achieved by just representing each atom
type by its nuclear charge. With this, individual data points in a training set for
one atom are structured as follows (see figure 3.1).

Figure 3.1: The first few lines in the data set for a NN that computes the forces on a carbon atom.
Structure: Atomic number of the carbon atom at the center, followed by it’s absolute position as
well as the forces acting on it in all directions. After this, a list of it’s 4 nearest neighbors with
their atomic nuber followed by their relative position towards the atom at the center.

The atomic number of the atom at the center, followed by its absolute position
(order: x y z coordinates) and forces acting on it in all three directions (order:
Fx Fy Fz). After this the 4 nearest neighbors are listed, again with their atomic

19

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

number followed by their position (order: rx ry rz) relative to the atom at the center.

The data-set for training the NN mapping positions to d-tensor values, was struc-
tured quite similarly (see figure 3.2). This time the nitrogen atom is placed at the
center and it’s 16 nearest neighbors are used instead of only 4. Again, the atomic
number is used to discriminate different atom types and relative distances towards
the nitrogen atom are used to parameterize positions.

Figure 3.2: The first few lines in the data set for the NN that computes the diagonal D-tensor
values at the NV-center. Structure: Atomic number of the nitrogen atom at the center, followed
by it’s absolute position as well as the forces acting on it in all directions. After this, a list of it’s
16 nearest neighbors with their atomic nuber followed by their relative position towards the atom
at the center.

Since, the original data-set was computed in a (inherently random) MD-simulation,
it is not guaranteed that the N nearest neighbors (ordered by distance) around an
atom appear in the same order in each MD-run. Therefore, to maintain consistency
in the training data-sets, care has to be taken to ensure that neighboring atoms
appear in the exact same sequence for each data point (line in the data-set), even
if the, e.g. first atom, in the list of nearest neighbors is not always the one with
the closest distance. This can be ensured by labeling each of the 64 atoms with an
index and sorting the nearest neighbors by index rather than by absolute distance.

3.2.3 Network structure

For the NNs, computing the forces on individual atoms, a simple sequential structure
(similar to the one described in section 2.3) with 17 input neurons, one hidden
layer of 51 neurons and a rectified linear unit (with default parameters) as an
activation function as well as 3 output neurons has been chosen. The weights for
the connections between neurons are initialized using a normal distribution (i.e.,
kernel initializer=’normal’). The Keras implementation is shown in listing 3.1.

1 inputDim = 4* nearestN + 1

2 outputDim = 3

3

4 model = Sequential ()

5 model.add(Dense (3* inputDim , input_dim=inputDim , kernel_initializer=’

normal ’, activation=’relu’))

6 model.add(Dense(outputDim , kernel_initializer=’normal ’))

Listing 3.1: Python code for setting up the structure for the NNs used to map atom position to
forces. Here ’nearestN’ is 4 so the NN has 17 input parameters (atom type and 3 relative positions
for each nearest neighbor plus the atom type of the central atom), followed by a hidden layer with
51 neurons and the results are mapped to 3 output neurons (one per force in each direction).

The NN for mapping atomic positions to D-tensor values is structured in similar
fashion. Here, there are 65 input parameters (due to considering 16 nearest neigh-
bors instead of just 4), 650 neurons in the hidden layer and again 3 neurons in

20

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

the output layer. As before, the activation function for the hidden layer is a rec-
tified linear unit and the initial weights are set using a normal distribution. The
corresponding Keras implementation can be seen in listing 3.2

1 inputDim = 4* nearestN + 1

2 outputDim = 3

3

4 model = Sequential ()

5 model.add(Dense(inputDim *10, input_dim=inputDim , kernel_initializer=’

normal ’, activation=’relu’))

6 model.add(Dense(outputDim , kernel_initializer=’normal ’))

Listing 3.2: Python code for setting up the structure for the NN used to map atom position
to the diagonal D-tensor values at the NV-center. Here ’nearestN’ is 16 so the NN has 65 input
parameters (atom type and 3 relative positions for each nearest neighbor plus the atom type of
the central atom), followed by a hidden layer with 650 neurons and the results are mapped to 3
output neurons (one for Dxx, Dyy and Dzz respectively).

3.2.4 Training

The NNs defined in the previous section are then trained on their respective data-
sets. In total there are 65 NNs, 64 for computing the forces on each individual
atom and 1 for computing the diagonal D-tensor values at the NV-center. The
Keras implementation for the training process is shown in listings 3.3 and 3.4.

1 inputDim = 4* nearestN + 1

2 outputDim = 3

3 batchSize = 1000

4 numEpochs = 2000

5 opt = keras.optimizers.Adam(lr=0.001 , beta_1 =0.9, beta_2 =0.999 ,

epsilon=None , decay =0.0, amsgrad=False)

6

7 model = Sequential ()

8 model.add(Dense (3* inputDim , input_dim=inputDim , kernel_initializer=’

normal ’, activation=’relu’))

9 model.add(Dense(outputDim , kernel_initializer=’normal ’))

10 model.compile(loss=’mean_squared_error ’, optimizer=’Adam’)

11

12 model.fit(x_data [0: int(numSamples *8/10)], y_data [0: int(numSamples

*8/10)], epochs=numEpochs , batch_size=batchSize)

13 score = model.evaluate(x_data[int(numSamples *8/10):numSamples], y_data

[int(numSamples *8/10):numSamples], batch_size=batchSize)

Listing 3.3: Python code for training the NNs used to map atomic position to forces.

As a loss function a default ’mean squared error’ loss is used and the Optimizer is
of type ’Adam’ (see section 2.3.3 for details on loss functions and optimizers in the
context of training NNs).
For the NN, used to compute the D-tensor, the training process is given more time
(i.e. more epochs), since it is larger and therefore has to vary significantly more
weights in order to find an adequately performing configuration.

1 inputDim = 4* nearestN + 1

2 outputDim = 3

3 batchSize = 1000

4 numEpochs = 10000

5 opt = keras.optimizers.Adam(lr=0.001 , beta_1 =0.9, beta_2 =0.999 ,

epsilon=None , decay =0.0, amsgrad=False)

6

7 model = Sequential ()

8 model.add(Dense(inputDim *10, input_dim=inputDim , kernel_initializer=’

normal ’, activation=’relu’))

9 model.add(Dense(outputDim , kernel_initializer=’normal ’))

10 model.compile(loss=’mean_squared_error ’, optimizer=’Adam’)

11

21

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

12 model.fit(x_data [0: int(numSamples *8/10)], y_data [0: int(numSamples

*8/10)], epochs=numEpochs , batch_size=batchSize)

13 score = model.evaluate(x_data[int(numSamples *8/10):numSamples], y_data

[int(numSamples *8/10):numSamples], batch_size=batchSize)

Listing 3.4: Python code for setting up the structure for the NNs used to map atom position to
forces. Here ’nearestN’ is 4 so the NN has 17 input parameters (atom type and 3 relative positions
for each nearest neighbor plus the atom type of the central atom), followed by a hidden layer with
51 neurons and the results are mapped to 3 output neurons (one per force in each direction).

As can be seen in the code listings, a 20% cross-validation rate has been used to
evaluate the performance of the NNs. Basically, this means that (randomly selected)
80% of the training samples are used as the actual training data on the NNs, while
the remaining 20% of the samples are retained. The latter are then used to validate
the performance of the trained NN.
This approach is considered good practice to avoid overfitting, since the NN has to
perform well on data it has never ’seen’ before and is especially useful if the training
set is rather small, as with only 100k samples used here.

3.2.5 Further remarks on the selection and training of the
NNs

Concerning the chosen network structure and training process, outlined above, some
points deserve mentioning.

Even though a rather simple and straightforward structure for the NNs has been
selected in the end, considerably more complex and larger network layouts have been
tried as well. However, no significant improvements to the performance, measured
only by the chosen loss function, not during the actual simulation, could be achieved.
The simpler and smaller configuration was therefore chosen over the larger, more
elaborate ones, since the gains in accuracy were deemed too insignificant to outweigh
the vastly larger training effort and further, a reduction in model complexity also
decreases the possibility for overfitting.
Similarly, using other loss-functions (including custom functions) or different pa-
rameters for the latter, as well as varying the Adam optimizer parameters did not
lead to noticeable improvements in accuracy. Again, the default parameterization
was chosen.
However, using the Adam optimizer leads to significant speed-ups and accuracy
gains in the training phase, compared to the results achieved using other optimizers.

22

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.3 Simulation

In this work a Molecular Dynamics (MD) simulation is performed to compute the
diagonal D-tensor values of the NV-center in a diamond lattice. The MD is aug-
mented by a thermostat to introduce a temperature into the simulation which allows
for evaluating the D-tensor at different temperatures, thereby getting an estimate
for the D-tensor’s temperature dependence.

3.3.1 Thermostat

In this work a Langevin thermostat is used to introduce a temperature to the
simulation. Here, temperature is obtained by modifying Newton’s equations of
motion in the following way [17]

d

dt
r =

pi

mi
(3.1)

d

dt
p = Fi − γipi + fi (3.2)

σ2
i =

2MiγikBT

∆t
(3.3)

where Fi is the force acting on atom i due to the interaction potential and γi is a
friction coefficient. The fi are random forces representing temperature dependent
random ’kicks’ to the atoms. The random values are sampled from a Gaussian
distribution with variance σi which is dependent on the friction as well as the
chosen temperature.
The Python implementation of the Langevin thermostat used in this work can be
seen in listing 3.5

1 sigmaC = np.sqrt (2* gamma*massC*kB*T)

2 sigmaN = np.sqrt (2* gamma*massN*kB*T)

3

4 randP_C = np.random.normal(0, sigmaC , numSteps *(numAtoms - 1)*3)

5 randP_N = np.random.normal(0, sigmaN , numSteps *3)

6

7 # update positions of atoms using forces and temperature (via a

Langevin thermostat)

8 for j in range(numAtoms):

9

10 # Update for N-atom

11 if(j == (numAtoms - 1)):

12

13 P2[j][0] = P1[j][0] + forces[j][0]* del_t - gamma*P1[j][0] +

randP_N[i*3]

14 P2[j][1] = P1[j][1] + forces[j][1]* del_t - gamma*P1[j][1] +

randP_N[i*3 + 1]

15 P2[j][2] = P1[j][2] + forces[j][2]* del_t - gamma*P1[j][2] +

randP_N[i*3 + 2]

16

17 positions[j][0] += (P2[j][0]* del_t / massN)

18 positions[j][1] += (P2[j][1]* del_t / massN)

19 positions[j][2] += (P2[j][2]* del_t / massN)

20 # Update for C-atoms

21 else:

22

23 P2[j][0] = P1[j][0] + forces[j][0]* del_t - gamma*P1[j][0] +

randP_C[i*(numAtoms -1)*3 + 3*j]

24 P2[j][1] = P1[j][1] + forces[j][1]* del_t - gamma*P1[j][1] +

randP_C[i*(numAtoms -1)*3 + 3*j + 1]

25 P2[j][2] = P1[j][2] + forces[j][2]* del_t - gamma*P1[j][2] +

randP_C[i*(numAtoms -1)*3 + 3*j + 2]

26

23

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

27 positions[j][0] += P2[j][0]* del_t / massC

28 positions[j][1] += P2[j][1]* del_t / massC

29 positions[j][2] += P2[j][2]* del_t / massC

30

31 P1 = P2

Listing 3.5: Implementation of the Langevin thermostat in Python. Carbon and nitrogen atoms
are considered differently since their different mass influences their dynamics as well as the random
distribution for the thermostat.

3.3.2 Molecular Dynamics using NNs

The molecular dynamics in this work are performed using NNs. To achieve this, for
each atom in the considered cell a NN was trained to map the relative position of
the surrounding nearest neighbors to the resulting force acting on the central atom.
With this it is possible to set up an iterative procedure where one starts with the
64 atoms at an initial position, determines the nearest neighbors and computes the
forces acting on them using the 64 corresponding NNs. Using the calculated forces,
together with a random ’push’ from the thermostat, the positions of the atoms can
be updated. Then, the procedure is repeated with the new atomic positions.
The Python implementation for computing the forces on each atom using NNs can
be seen in listing 3.6, while the update of positions using those forces is shown in
listing 3.5 in the previous section.

1 # Loop over all MD steps

2 for i in range(numSteps):

3 for j in range(numAtoms):

4 forces[j] = atomModels[j]. predict(input[j:j+1]) [0]

5

6 # Perform position update using the forces

Listing 3.6: Python implementation for computing the forces on each atom using their respective
NN. The update of position can be seen in listing 3.5.

3.3.3 Computing the D-tensor using a NN

Similarly to computing the forces, the diagonal components of the D-tensor were
calculated after each MD step using the NN trained for estimating the D-tensor
from the atomic configuration of the NV-center and its 16 nearest neighbors. The
Python code for this is depicted in listing 3.7.

1 # Loop over all MD steps

2 for i in range(numSteps):

3 for j in range(numAtoms):

4 forces[j] = atomModels[j]. predict(input[j:j+1]) [0]

5

6 d_tensor[i] = model_d.predict(input_d)[0]

7

8 # Perform position update using the forces

Listing 3.7: Python implementation for computing the diagonal components around the NV-
center using a NN. The update of position can be seen in listing 3.5.

3.3.4 Simulation setup

The general structure of the simulations performed for this work can be seen in
listing 3.8.

1 temps = range (10 ,560 ,10)

2 # Loop over all considered temperatures

3 for m in range (len(temps)):

4 T = temps[m]

24

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5

6 # Preparations and initializations

7 #--------------#

8 ...

9 #--------------#

10

11 # Loop over all MD steps

12 for i in range(numSteps):

13

14 # Estimate D-tensor and forces using NNs

15 d_tensor[i] = model_d.predict(input_d)[0]

16

17 for j in range(numAtoms):

18 forces[j] = atomModels[j]. predict(input[j:j+1]) [0]

19

20 # update positions of atoms using forces and temperature (via a

Langevin thermostat)

21 for j in range(numAtoms):

22 ...

23 P1 = P2

24

25 # updating input for predictor models

26 updateInput(input , atomicNumbers , positions , idx_nn , numNearestN ,

numAtoms , latticeX , latticeY , latticeZ)

27 updateInput(input_d , atomicNumbers , positions , idx_nn_d ,

numNearestN_d , 1, latticeX , latticeY , latticeZ)

28

29 # Compute D-tensor averages and variance

30 ...

Listing 3.8: Python implementation of the MD-simulations. First the range of temperatures is
defined and then a full MD is done for each temperature. In each MD-step the D-tensor as well
as the forces on each atom are estimated from the current configuration using NNs. The forces
are used to update the position of all atoms and this new configuration is processed to generate
the next input for the NNs. Finally, after each MD-run, i.e., for each tempearture, the estimated
D-tensor values are averaged in order to obtain a D-tensor T-dependence.

First, the number of MD-steps, i.e. the number of different configurations the D-
tensor values will be averaged over, is fixed. Then, the temperature range that will
be considered is defined. In this work, the temperature is set to rise from 10K to
550K in steps of 10K. For each of these temperatures, a MD-simulation with the
desired number of steps is then run and in each step, the D-tensor at the NV-center
as well as the forces on all the atoms are estimated from the current configuration
using NNs. Using those forces, together with a temperature-dependent random
force provided by the thermostat, the positions of all the atoms are updated and
used to generate the input for the NNs for the next step. Finally, after each MD
run at a given temperature the collected D-tensor values are averaged and saved in
order to obtain their T-dependence.

The ’updateInput’ function from listing 3.8 is shown in listing 3.9. Here, the new
atomic configuration obtained after each MD-step is used to compute new input
(the structure of which is explained in section 3.2.2) for the NNs. As mentioned in
section 3.2.2, the sequence of nearest neighbors should remain the same in order to
provide consistent input to the NNs. For this reason the nearest neighbors are not
computed by their absolute distance to the central atom in each new configuration
but rather provided statically in ’list nn’. Also, one has to consider the periodicity
of the considered atomic structure and project atoms leaving the boundaries back
into the cell.

1 def updateInput(input , atomicNumbers , positions , list_nn , numNearestN ,

numAtoms , latticeX , latticeY , latticeZ):

2 for i in range(numAtoms):

3 if(numAtoms == 1):

4 # inputs for D-tensor model are nearest neighbors to N atom

25

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5 x = positions[len(atomicNumbers) -1][0]

6 y = positions[len(atomicNumbers) -1][1]

7 z = positions[len(atomicNumbers) -1][2]

8 else:

9 x = positions[i][0]

10 y = positions[i][1]

11 z = positions[i][2]

12 for j in range(numNearestN):

13 if(numAtoms == 1):

14 idx = int(list_nn [0][j])

15 else:

16 idx = int(list_nn[i][j])

17

18 if(idx < len(atomicNumbers)):

19 rx = x - positions[idx][0]

20 ry = y - positions[idx][1]

21 rz = z - positions[idx][2]

22 if (abs(rx) > latticeX /2):

23 rx = rx - latticeX*np.sign(rx)

24 if (abs(ry) > latticeY /2):

25 ry = ry - latticeY*np.sign(ry)

26 if (abs(rz) > latticeZ /2):

27 rz = rz - latticeZ*np.sign(rz)

28 input[i][1 + 4*j:1 + 4*j + 4] = np.array ([atomicNumbers[idx], rx

, ry , rz])

Listing 3.9: Python implementation for generating input to the NNs using an atomic
configuration. In order to maintain the nearest neighbor sequence for each atom, the atomic
indices of the nearest neighbors are provided by ’list nn’ instead of being computed each time (see
section 3.2.2). Also, an atom leaving the boundaries of the considered cell has to be projected
back into it.

Lastly, the averaging of the estimated D-tensor values is done using a standard
mean and the variance is computed as the expectation of the squared deviations
from the mean (see listing 3.10).

1 # Compute average and variance of D-tensor values

2 sum1 = 0.0

3 sum2 = 0.0

4 sum3 = 0.0

5 for i in range(numSteps):

6 sum1 += d_tensor[i][0]

7 sum2 += d_tensor[i][1]

8 sum3 += d_tensor[i][2]

9

10

11 sum1 /= numSteps

12 sum2 /= numSteps

13 sum3 /= numSteps

14

15 var1 = 0.0

16 var2 = 0.0

17 var3 = 0.0

18 for i in range(numSteps):

19 var1 += (sum1 - d_tensor[i][0]) *(sum1 - d_tensor[i][0])

20 var2 += (sum2 - d_tensor[i][1]) *(sum2 - d_tensor[i][1])

21 var3 += (sum3 - d_tensor[i][2]) *(sum3 - d_tensor[i][2])

22

23 var1 /= numSteps

24 var2 /= numSteps

25 var3 /= numSteps

Listing 3.10: Python code for averaging the estimated D-tensor values. Here, a standard mean
and variance are used.

26

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Chapter 4

Results

In this chapter the results of the simulations described before are displayed and a
short interpretation is given. Finally, this work is closed by outlining some options
for further research as well as providing some thoughts concerning the long-term
effects the use of machine learning in science might have on the field in general.

4.1 D-tensor Temperature dependence

For this work three MD simulations, facilitating the use of NNs for computing
(estimating) forces on atoms as well as D-tensor values, as described in section
3.3.4, were done. The individual simulations differed only in the number of MD-
steps performed, which were 100k, 300k and 1000k respectively. The simulated
temperature ranged from 10 K to 550 K in steps of 10 K in all MD runs. Below,
the results are displayed for estimating the zz-component of the D-tensor.

27

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.1.1 100k average

Figure 4.1: Averaged estimates of the zz-component of the D-tensor at the NV-center for tem-
peratures ranging from 10 K to 550 K. 100k MD-steps were performed at each temperature. The
trendline is a fitted 2nd order polynomial and the mean-squared error of this fit is 2.20 MHz2.

Figure 4.2: The same dataset as in figure 4.1. However, here the means of 5 consecutive data-
points are shown. The trendline is a fitted 2nd order polynomial and the mean-squared error of
this fit is 0.29 MHz2.

28

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.1.2 300k average

Figure 4.3: Averaged estimates of the zz-component of the D-tensor at the NV-center for tem-
peratures ranging from 10 K to 550 K. 300k MD-steps were performed at each temperature. The
trendline is a fitted 2nd order polynomial and the mean-squared error of this fit is 5.41 MHz2.

Figure 4.4: The same dataset as in figure 4.3. However, here the means of 5 consecutive data-
points are shown. The trendline is a fitted 2nd order polynomial and the mean-squared error of
this fit is 0.85 MHz2.

29

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.1.3 1000k average

Figure 4.5: Averaged estimates of the zz-component of the D-tensor at the NV-center for tem-
peratures ranging from 10 K to 550 K. 1000k MD-steps were performed at each temperature. The
trendline is a fitted 2nd order polynomial and the mean-squared error of this fit is 0.52 MHz2.

Figure 4.6: The same dataset as in figure 4.5. However, here the means of 5 consecutive data-
points are shown. The trendline is a fitted 2nd order polynomial and the mean-squared error of
this fit is 0.10 MHz2.

30

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.1.4 Variance and fit quality

In order to get a feeling on how precise the predictions of D-tensor values are, the
variance of the latter has also been computed and is displayed in figure 4.7 below.

Figure 4.7: Variance of the estimated D-tensor zz-component as a function of temperature for
simulations performed with 100k, 300k, and 1000k MD-steps respectively.

Also, table 4.1 lists the second order polynomials as well as the mean-squared-error
relative to the estimated values shown in figures 4.1, 4.3 and 4.5.

31

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

MD-steps coeff(x2) coeff(x1) coeff(x0) MSE
100k -1.73e-5 -0.0091 2068.5 2.119
300k -6.48e-6 -0.0116 2068.8 5.410
1000k -2.40e-5 -0.0049 2068.2 0.519

Table 4.1: Coefficients and mean-squared error of 2nd order polynomial fits to the D-tensor
zz-component estimates shown in figures 4.1, 4.3 and 4.5.

And table 4.2 shows the polynomial coefficients and MSEs for the 5-point mean of
the D-tensor estimates depicted in figures 4.2, 4.4 and 4.6.

MD-steps coeff(x2) coeff(x1) coeff(x0) MSE
100k -1.87e-5 -0.0082 2068.4 0.29
300k -5.90e-6 -0.0119 2068.8 0.85
1000k -2.61e-5 -0.0038 2068.1 0.095

Table 4.2: Coefficients and mean-squared error of 2nd order polynomial fits to the D-tensor
zz-component 5-point means shown in figures 4.2, 4.4 and 4.6.

32

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.2 Comparison & interpretation

Looking at the estimates of the D-tensor zz-component, one can see a consistent
downward trend in all three simulations, which is already quite remarkable given
that the data-set used was not well converged (i.e., forces and D-tensor values were
not computed very accurately) and computed at a single temperature of 10 K. Es-
pecially, the results for the run with 1000k MD-steps follow a polynomial fit quite
well, suggesting a possibility of finding a reasonably simple analytic form for the
T-dependence of the zz-component of the NV-center D-tensor.

Looking at the variance (figure 4.7) one can see that it monotonically increases with
temperature, basically independent of the number of MD-runs performed. This sug-
gests that the increase in variance might be governed primarily by the thermostat.

Nonetheless, increasing the number of MD-runs appears to lead to less chaotic re-
sults, i.e., the predicted values seem to approach some analytic form as can be seen
in table 4.1 and 4.2. Here, the mean squared error (MSE) for a 2nd order polynomial
fit is significantly smaller for the simulation with 1000k MD-steps per temperature
point compared to performing only 100k or 300k MD-steps.

Of course, one has to consider if this boost in accuracy is worth the linear increase
in computational effort. On the same note, using 5-point means of consecutive tem-
perature points allows an even smoother fit to a 2nd order polynomial as shown in
figures 4.2, 4.4 and 4.6. However, again this comes at the cost of a 5-fold increase
in computation time.

One point of concern is the noticeably bad performance of the simulation with 300k
MD-steps per temperature point, since it would be expected to produce results
somewhere in between the simulations with 100k and 1000k MD-steps. There is
no apparent explanation for this discrepancy and it requires further testing, e.g.,
increasing the number of MD-steps more slowly.

4.2.1 Shortcomings of the current approach

Even though the results above suffice as a proof of principle, the chosen approach
has a number of shortcomings that should be addressed.

Inflexible

The chosen approach in this work is rather inflexible and generalizes badly, since
the NNs are trained for each atom individually and for a specific neighborhood
configuration, i.e., types of surrounding atoms. This means that the trained NNs
cannot be reused in different cell configurations, only in expansions of the cell struc-
ture they are trained in. E.g., the NNs trained in this work could be used (with
minor adaptations) to perform a MD-simulation of a larger cell of carbon atoms
and NV-centers.
However, one would ideally like to train one network for each atom type that can
be used in any surrounding, i.e., one for carbon and one for nitrogen in the setup
used in this work. An approach that explores this uses atom-centered symmetry
functions to model the neighborhood of an atom (see section 4.3.7).

Computationally expensive

Another inconvenience of the approach used in this work is the computational ef-
fort it takes to reach useful results. Looking at the results in the previous section,

33

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

only the simulation with 1000k MD-steps at each temperature point gave decent
results, in the sense of providing a somewhat smooth T-dependence of the D-tensor
zz-component. However, a MD-simulation with that number of steps took almost 2
days per temperature point (running on a single GPU). Even though, the smooth-
ness of the estimated T-dependence could probably be increased by using a more
elaborate thermostat such that a 100k step MD gives similar results, this approach
is probably still too inefficient (though significantly better than DFT methods) to
use in production, especially for larger systems.

34

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.3 Further Research

The present work was meant as a feasibility study for data-driven computing to
support DFT-calculations. Therefore, the search for a suitable ML model, training
process and structure of the input data was far from exhaustive leading to simulation
results that are, in all likelihood, sub-optimal.
The following sections will give some ideas on how to improve on the procedure
described in this work as well as outline other possible approaches.

4.3.1 Get a better dataset

Since a ML-approach is always only as good as the underlying data it is trained
on, the first and most important improvement would be to generate a better data-
set, i.e. one featuring more accurate computed values for forces and D-tensor. This
might allow to either get more accurate predictions of NNs trained with this data-set
or require less samples to train the NNs to a given level of accuracy.

4.3.2 Increase the number of nearest neighbors

One low effort way to possibly increase the accuracy of the simulation results would
be to tinker with the number of nearest neighbors used in predicting forces and D-
tensor values. E.g., considering more than just the 4 nearest neighbors for predicting
forces should allow the ML model to also learn interactions, atoms that are further
apart might have with each other. Naturally, it could easily be tested whether those
long-distance interactions are negligible in a solid crystal (or at least not worth the
additional computational effort).

4.3.3 Network structure & training process

Even though some effort has been undertaken trying different structures and sizes
as well as varying optimizer parameters and optimizer types, there is still more
to be done. Most importantly, the performance of the above variations were only
evaluated with respect to achieved network accuracy according to the performance
on the data-set (split into a training and validation set; see section 3.2.4) not on
the performance of the resulting NNs in actual MD simulations. So it might be
worthwhile to test the above mentioned changes with regards to the predicted D-
tensor values as well.
Here, approaches could include

• Varying number of hidden layers and layer sizes: Here one could try
increasing network complexity for gains in accuracy or decreasing network
complexity for reducing computational effort. If the latter results in only a
slight drop in accuracy this loss might be acceptable in favor of allowing for
more simulation steps and better statistical smoothing.

• Varying the optimizer type and optimizer parameters: As mentioned,
there are many different types of optimizers for converging NNs and many of
them feature a multitude of parameters that can be tweaked individually. So,
as with network structure, there is most likely some room for improvement
down this avenue, such as speeding up the training process. This might prove
to be especially useful if a larger, more complex, network structure is chosen.

• Trying different ML approaches other than neural networks: Neural
Networks are by no means the only tools the field of machine learning has to
offer. So one could try to use other techniques like regression or K-means and

35

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

potentially benefit from reductions in computational load by using a simpler
yet sufficiently accurate approach.

4.3.4 Introduce a feedback-loop into VASP

Another way of improving performance would be to introduce a feedback-loop into
VASP. Here, the idea would be to train a model on an initial data-set and evaluate
its performance for various atomic configurations. After finding those configurations
on which the current model performs badly (i.e., has a large error), VASP is used to
compute new data-points that are similar to those configurations where the error was
largest. The new data-points could then be used to retrain the model in the hope,
that the resulting new model will give better predictions for those configurations.
This process is then iterated until the final model performs sufficiently well on the
entire input-space. An approach of this kind is tried in [10].

4.3.5 Reformat training data

Looking at the training data (figures 3.1 and 3.2) we can see that the values for
relative positions as well as for the forces do not differ too much between individual
samples. One could try rescaling those values in such a way that those differences
become more significant, i.e., increasing the ’distance’ between samples in the input-
space. Of course, it should be considered that the effect of atomic charge might
be of different magnitude compared to changes in position, so this could also be
reflected by the absolute size of the corresponding values in the samples.

4.3.6 Combinations of approaches

Of course, the approaches mentioned above do not have to be tried in isolation.
Indeed, they will, in all liklihood, yield the best results when combined. E.g., in-
creasing the number of nearest neighbors considered could benefit from the increased
versatility of more complex network structures.

4.3.7 Different approach: Atom-centered symmetry functions

One might also pursue an entirely different approach where the NNs are not trained
simply on relative distances and nuclear charges surrounding a central atom, but
rather on a more elaborate representation of the atomic neighborhood. One such
representation are atom-centered symmetry functions (ACSFs) pursued by e.g.
Behler et al. (see [2]).
The basic idea here is to map the neighborhood of an atom to various overlaps of
Gauss-kernels each centered on the distance of one of the neighboring atoms to the
central particle. The machine learning model, in Behlers case also NNs, are then
trained on the parameters of these Gauss-kernels.
This approach not only promises to be more general, allowing to train only a single
NN for each atom type but also represents the physical reality better, i.e., consid-
ering atoms and there charge-distributions not as something localised but rather as
a ’smeared out’ distribution.

36

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.4 Conclusion

The idea behind this work was to explore the feasibility of using neural networks
(NNs) to support calculations on quantum many-body systems. More specifically,
to compute the evolution of such a system via a molecular dynamics simulation,
where NNs are employed at each MD-step to map the atomic configuration onto
forces acting on each atom as well as estimating an additional property of interest
(in this case the zz-component of the D-tensor in the negatively charged nitrogen
vacancy center in diamond).

As detailed in chapter 3.2, the chosen approach consisted of training one NN for
each atom in the considered structure to compute the acting forces as well as one
additional NN estimating the D-tensor value at the NV-center. The training data
contained information on a fixed number of nearest neighbors, represented in a
rather straight forward fashion, i.e., one parameter for atomic charge and 3 param-
eters for relative distance for each considered atom in the neighborhood.

The results (presented in section 4.1) suggest that useful information about a phys-
ical quantity can be extracted via this approach that would be hard to retrieve via
other methods. In this case a temperature dependence, in a range of more than
500K, of the zz-component of the NV-center D-tensor could be obtained using a
data-set computed for a fixed temperature of 10 K. Also, the general trend of the
estimated T-dependence has a similar form as one that was obtained by fitting ex-
perimental data (see ([8], Fig. 6).

However, the approach chosen in this work proved to be too inflexible and com-
putationally expensive to use in any real application as described in section 4.2.1.
Therefore, Section 4.3 elaborates on a number of possible ways to expand on the
presented approach such as

• Generate a better data-set to train on

• Vary network complexity and input size

• Parameterize the atomic neighborhood differently, e.g., using ACSFs

possibly tackling some of the shortcomings of the method described in this work.

Finally, one should ponder the implications using machine learning techniques such
as NNs might have on the way science is done in general. For employing tools, that
are essentially black-boxes, to study events might diminish our ability to perceive
and contemplate the very nature of the processes we are trying to understand.

37

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Bibliography

[1] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Lev-
enberg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah,
Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar,
Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol
Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xi-
aoqiang Zheng. TensorFlow: Large-scale machine learning on heterogeneous
systems, 2015. Software available from tensorflow.org.

[2] Jörg Behler. Perspective: Machine learning potentials for atomistic simula-
tions. The Journal of Chemical Physics, 145:170901, 11 2016.

[3] K Burke. The abc of dft. 04 2007.

[4] François Chollet et al. Keras. https://keras.io, 2015.

[5] H. Hanzawa, Y. Nisida, and T. Kato. Measurement of decay time for the NV
centre in Ib diamond with a picosecond laser pulse. Diamond and Related

Materials, 6:1595–1598, October 1997.

[6] Ariful Haque and Sharaf Sumaiya. An overview on the formation and pro-
cessing of nitrogen-vacancy photonic centers in diamond by ion implantation.
Journal of Manufacturing and Materials Processing, 1(1), 2017.

[7] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks
are universal approximators. Neural Netw., 2(5):359–366, July 1989.

[8] Viktor Ivády, Tamás Simon, Jeronimo R. Maze, I. A. Abrikosov, and Adam
Gali. Pressure and temperature dependence of the zero-field splitting in the
ground state of nv centers in diamond: A first-principles study. Phys. Rev. B,
90:235205, Dec 2014.

[9] A Jarmola, Andris Berzins, J Smits, Krisjanis Smits, Juris Prikulis, Florian
Gahbauer, R Ferber, Donats Erts, Marcis Auzinsh, and Dmitry Budker. Lon-
gitudinal spin-relaxation in nitrogen-vacancy centers in electron irradiated di-
amond. Applied Physics Letters, 107, 11 2015.

[10] Ryosuke Jinnouchi, Jonathan Lahnsteiner, Ferenc Karsai, Georg Kresse, and
Menno Bokdam. Phase transitions of hybrid perovskites simulated by machine-
learning force fields trained on the fly with bayesian inference. Phys. Rev. Lett.,
122:225701, Jun 2019.

[11] G. Kresse and J. Furthmüller. Efficient iterative schemes for ab initio total-
energy calculations using a plane-wave basis set. Phys. Rev. B, 54:11169–11186,
Oct 1996.

38

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

[12] G. Kresse and J. Furthmüller. Efficiency of ab-initio total energy calculations
for metals and semiconductors using a plane-wave basis set. Computational

Materials Science, 6(1):15 – 50, 1996.

[13] G. Kresse and J. Hafner. Ab initio molecular-dynamics simulation of the
liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev.

B, 49:14251–14269, May 1994.

[14] Wes McKinney. Pandas. https://pandas.pydata.org/, 2008.

[15] Pankaj Mehta, Marin Bukov, Ching-Hao Wang, Alexandre Day, Clint Richard-
son, Charles Fisher, and David Schwab. A high-bias, low-variance introduction
to machine learning for physicists. Physics Reports, 810, 03 2018.

[16] LLC RocketTheme. About vasp. https://www.vasp.at/index.php/

about-vasp/59-about-vasp. Accessed: 2018-07-02.

[17] VASP. Langevin thermostat. https://www.vasp.at/wiki/index.php/

Langevin_thermostat. Accessed: 2020-11-02.

[18] Wikipedia. Artificial neural networks. https://en.wikipedia.org/wiki/

Artificial_neural_network#Components_of_an_artificial_neural_

network. Accessed: 2019-01-07.

[19] Wikipedia. Density functional theory. https://en.wikipedia.org/wiki/

Density_functional_theory#Hohenberg\OT1\textendashKohn_theorems.
Accessed: 2019-04-16.

39

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

List of Figures

2.1 Schematic view of an NV0 and NV− in diamond. [6] 10
2.2 Energy level diagram of the NV − center in diamond. Dashed lines

represent transition that are believed to be non-radiative, whereas
solid lines denote radiative ones. The transitions corresponding to
the green and red lines have wavelength peaks of 546nm and 689nm
respectively. [9] . 11

2.3 Neuron with 3 inputs in both graphical and decomposed functional
form. 13

2.4 An example of a fully connected feed forward neural network with 3
inputs, 2 outputs and 2 hidden layers. 14

3.1 The first few lines in the data set for a NN that computes the forces on
a carbon atom. Structure: Atomic number of the carbon atom at the
center, followed by it’s absolute position as well as the forces acting
on it in all directions. After this, a list of it’s 4 nearest neighbors
with their atomic nuber followed by their relative position towards
the atom at the center. 19

3.2 The first few lines in the data set for the NN that computes the di-
agonal D-tensor values at the NV-center. Structure: Atomic number
of the nitrogen atom at the center, followed by it’s absolute position
as well as the forces acting on it in all directions. After this, a list
of it’s 16 nearest neighbors with their atomic nuber followed by their
relative position towards the atom at the center. 20

4.1 Averaged estimates of the zz-component of the D-tensor at the NV-
center for temperatures ranging from 10 K to 550 K. 100k MD-steps
were performed at each temperature. The trendline is a fitted 2nd
order polynomial and the mean-squared error of this fit is 2.20 MHz2. 28

4.2 The same dataset as in figure 4.1. However, here the means of 5
consecutive datapoints are shown. The trendline is a fitted 2nd order
polynomial and the mean-squared error of this fit is 0.29 MHz2. . . . 28

4.3 Averaged estimates of the zz-component of the D-tensor at the NV-
center for temperatures ranging from 10 K to 550 K. 300k MD-steps
were performed at each temperature. The trendline is a fitted 2nd
order polynomial and the mean-squared error of this fit is 5.41 MHz2. 29

4.4 The same dataset as in figure 4.3. However, here the means of 5
consecutive datapoints are shown. The trendline is a fitted 2nd order
polynomial and the mean-squared error of this fit is 0.85 MHz2. . . . 29

4.5 Averaged estimates of the zz-component of the D-tensor at the NV-
center for temperatures ranging from 10 K to 550 K. 1000k MD-steps
were performed at each temperature. The trendline is a fitted 2nd
order polynomial and the mean-squared error of this fit is 0.52 MHz2. 30

40

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.6 The same dataset as in figure 4.5. However, here the means of 5
consecutive datapoints are shown. The trendline is a fitted 2nd order
polynomial and the mean-squared error of this fit is 0.10 MHz2. . . . 30

4.7 Variance of the estimated D-tensor zz-component as a function of
temperature for simulations performed with 100k, 300k, and 1000k
MD-steps respectively. 31

41

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

List of Tables

4.1 Coefficients and mean-squared error of 2nd order polynomial fits to
the D-tensor zz-component estimates shown in figures 4.1, 4.3 and 4.5. 32

4.2 Coefficients and mean-squared error of 2nd order polynomial fits to
the D-tensor zz-component 5-point means shown in figures 4.2, 4.4
and 4.6. 32

42

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Listings

3.1 Python code for setting up the structure for the NNs used to map
atom position to forces. Here ’nearestN’ is 4 so the NN has 17 in-
put parameters (atom type and 3 relative positions for each nearest
neighbor plus the atom type of the central atom), followed by a hid-
den layer with 51 neurons and the results are mapped to 3 output
neurons (one per force in each direction). 20

3.2 Python code for setting up the structure for the NN used to map
atom position to the diagonal D-tensor values at the NV-center. Here
’nearestN’ is 16 so the NN has 65 input parameters (atom type and
3 relative positions for each nearest neighbor plus the atom type of
the central atom), followed by a hidden layer with 650 neurons and
the results are mapped to 3 output neurons (one for Dxx, Dyy and
Dzz respectively). 21

3.3 Python code for training the NNs used to map atomic position to
forces. 21

3.4 Python code for setting up the structure for the NNs used to map
atom position to forces. Here ’nearestN’ is 4 so the NN has 17 in-
put parameters (atom type and 3 relative positions for each nearest
neighbor plus the atom type of the central atom), followed by a hid-
den layer with 51 neurons and the results are mapped to 3 output
neurons (one per force in each direction). 21

3.5 Implementation of the Langevin thermostat in Python. Carbon and
nitrogen atoms are considered differently since their different mass
influences their dynamics as well as the random distribution for the
thermostat. 23

3.6 Python implementation for computing the forces on each atom using
their respective NN. The update of position can be seen in listing 3.5. 24

3.7 Python implementation for computing the diagonal components around
the NV-center using a NN. The update of position can be seen in list-
ing 3.5. 24

3.8 Python implementation of the MD-simulations. First the range of
temperatures is defined and then a full MD is done for each temper-
ature. In each MD-step the D-tensor as well as the forces on each
atom are estimated from the current configuration using NNs. The
forces are used to update the position of all atoms and this new config-
uration is processed to generate the next input for the NNs. Finally,
after each MD-run, i.e., for each tempearture, the estimated D-tensor
values are averaged in order to obtain a D-tensor T-dependence. . . 24

43

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.9 Python implementation for generating input to the NNs using an
atomic configuration. In order to maintain the nearest neighbor se-
quence for each atom, the atomic indices of the nearest neighbors are
provided by ’list nn’ instead of being computed each time (see sec-
tion 3.2.2). Also, an atom leaving the boundaries of the considered
cell has to be projected back into it. 25

3.10 Python code for averaging the estimated D-tensor values. Here, a
standard mean and variance are used. 26

44

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

	Introduction
	Theoretical Background
	Density functional theory (DFT)
	Prerequisites
	The DFT procedure
	Exchange correlation energy

	NV-Center
	Structure
	Production
	Optical properties and electronic structure
	Applications

	Artificial Neural Networks
	Neurons
	Feed Forward NNs
	Training NNs

	Modeling & Simulation
	Tools used
	The VASP-framwork
	Tensorflow
	Libraries Used

	Data preparation & training the NNs
	The data-set
	Generating the training data
	Network structure
	Training
	Further remarks on the selection and training of the NNs

	Simulation
	Thermostat
	Molecular Dynamics using NNs
	Computing the D-tensor using a NN
	Simulation setup

	Results
	D-tensor Temperature dependence
	100k average
	300k average
	1000k average
	Variance and fit quality

	Comparison & interpretation
	Shortcomings of the current approach

	Further Research
	Get a better dataset
	Increase the number of nearest neighbors
	Network structure & training process
	Introduce a feedback-loop into VASP
	Reformat training data
	Combinations of approaches
	Different approach: Atom-centered symmetry functions

	Conclusion

	Bibliography
	List of Figures
	List of Tables

