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Abstract

Weninger et al. [25] developed a novel methodology for ré&idand 3D com-
puter analysis and visualization of gene expression pettdihe data is generated
by staining a specimen followed by an iterating process tfraythin slices and
capturing them with an episcopic microscope. The resulhisigh resolution
3D dataset. One channel contains anatomical informatidnaasecond channel
contains the gene expression patterns.

In this thesis we examine methods for enhancing, registyaind visualiz-
ing this novel kind of data. We address the uneven illumaratf slices that are
introduced by the methodology. We developed an algorithfit Boquadric sur-
face through the background pixels to estimate the illutnssituation over the
whole slice. This estimate is used to correct the slices efdataset.

Further, an extension of this methodology was researchedydRng the al-
ready cut sections for staining them a second time allowsrtedical domain
scientists to augment their technique with additional infation. The result of
the second data generation phase is a stack of unaligned.slite manual pro-
cessing of the sections introduces non-linear deformsatidvle explored several
registration algorithms to align the two image stacks. Wentba two step regis-
tration approach to yield the best results. In the first sisgease fine registration
Is used to approximately align the datasets. The resultdfitst step is inspected
and if necessary corrected by the user. In the second stegplnie-registration is
used that compensates for the non-linear deformationsedihslices.

For the visual inspection of the registration results angrésent an overview
of the datasets we implemented two visualization appraackecheckerboard
view is used to compare 2D slices, and a three dimensionabagpip based on
direct volume rendering incorporates surface enhancebyegrtadient magnitude
opacity modulation to emphasize the alignment of tissuataties.



Kurzfassung

Weninger et al. [25] entwickelten eine neuartige Methodesaimelle 20y 3D
Computeranalysen und Computervisualisierungen von Geasgionsmustern durch-
zufuihren. Die Daten werden durch Einfarben, mit folgen8ehneiden und Auf-
nehmen mittels eines episkopischen Mikroskops erzeugs. Resultat ist ein
hochaufgeltdster 3D Datensatz. Ein Kanal enthalt anatdnei Information und
ein zweiter Kanal enthalt die Genexpressionsmuster.

In dieser Diplomarbeit untersuchen wir Ansatze um dieseerfgt von Daten
Zu verbessern, zu registrieren und zu visualisieren. Wadsen uns mit der un-
ausgewogenen Beleuchtungssituation welche diese neumditemit sich bringt.
Wir entwickelten einen Algorithmus um eine quadrischech&durch die Hinter-
grundpixel zu legen um die Beleuchtungssituation in degendmmenen Schnitt-
bildern zu schatzen. Diese Schatzung wird zum Korrigietes Datensatzes ver-
wendet.

Weiters wurde eine Erweiterung dieser Methode erforscabedwerden ge-
schnittene Sektionen ein erneutes Mal gefarbt, um weltdogmationen in den
Datensatz einzubringen. Das resultiert in einem zweitele¥atz von unausge-
richteten Schnittbildern. Da diese Erweiterung manuelMgrden dadurch nicht
lineare Deformationen eingefiihrt. Wir untersuchten eleiesdene Registrierungs-
algorithmen um die zwei Bildstapel zueinander auszurithfér fanden heraus,
dass ein Registrierungsansatz in zwei Schritten die bdésultate liefert. Im
ersten Schritt wird eineféine Registrierung benutzt um die Datensatze ungefahr
auszurichten. Das Resultat dieser Registrierung wird vanuBer untersucht
und gegebenenfalls korrigiert. Im zweiten Schritt wirdeein-spline Registrie-
rung durchgefuhrt um die nicht linearen Deformationenen &chnittbildern zu
kompensieren.

Um die Registrierungsresultate visuell zu untersucheruamdinerUberblick
uber beide Datensatze zu bekommen prasentieren winAsigalisierungsmetho-
den. "Checkerboard” Visualisierung wird benutzt um 2D Sttbidder miteinan-
der zu vergleichen. Eine dreidimensionale Methode basieaef "direct volume
rendering”, bei der wir die Gewebsgrenzen mittels "gratlimagnitude opacity
modulation” betonen wird benutzt um die gesamten Datemsdiiteinander zu
vergleichen.
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Chapter 1

Introduction

1.1 Overview

In this thesis we examine the preprocessing and visuaizati High Resolution
Episcopic Microscopy (HREM) data. Medical domain scidastisse the HREM
technique to explore the impact of genes on the cell growtdiféérent tissue.
This is done by staining the specimen and then generatinggttaeby slicing and
capturing the specimen. The slices are captured using tfeyeint filter sets. The
result is a 3D dataset with two channels offelient bands of the light spectrum.
One channel shows the anatomy, while the other shows theedtaegions. in
Section 1.2 the data acquisition process is discussed ia deiail. We provide a
brief overview of the devices that are involved in data astjioin and show typical
examples of HREM data.

The process of acquiring an HREM dataset involves mechislicang and
indirect illumination of the specimen. These imperfectiofthe acquisition pro-
cess introduce specific artifacts thaffer significantly from other 3D imaging
modalities. In Section 1.3 we give an overview of the artdabat are specific to
HREM data.

The generated HREM datasets show the general morphologyg sipecimen
and the stained regions. The medical domain scientistsriexpetally extended
the data acquisition process by staining the already atéskh second time using
standard histological staining techniques. These slicesnanually stained and
photographed using a standard light microscope. The bl staining gener-
ates an additional dataset, showingatient features of the same specimen. The
acquired dataset consists of unaligned slices that neeel tedistered for further
processing. The histological dataset also lacks regisiréd the HREM dataset.
The goal of our work was to enhance the data of the HREM magdaditwell as
the registration of the experimental extension of the mbdah Chapter 2 we fo-
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cus on the related work about registration and give a geogealiew of existing
techniques.

in Chapter 3 we discuss the enhancement and registratitwe dfitasets. One
of the most hindering artifact is the uneven illuminatiortioé slices. We devel-
oped a technique to correct the illumination. In Sectionv@2give details about
the illumination correction algorithm. Section 3.3 deal$hwthe issues involved
in registration. We explored fierent registration techniques to align histological
slices with HREM slices. We found that an image based registr approach fits
our needs best. Due to the manual processing of the histalibgstained slices,
the resulting images include additional artifacts. The twast prominent arti-
facts are a dierent field of view for HREM images, and non-linear deforroas
of the slices. The non-linear deformation happens becdugsslite curls up after
cutting and needs to be manually embedded in a liquid. THerdnces in the
field of view occur because each slice is handled separatiéiyw alignment.
This leads to a linear transformation (because of tiiedint field of view) and
a non-linear transformation (because of the curling andhémlling of the slice).
To compensate these two transformation we investigatecast@p registration
process.

For the visual inspection the results of the preprocesdigeswe developed
2D and 3D visualization methods. An image based comparisethod was im-
plemented for the inspection of the registration resulf.[18Ve implemented
a checkerboard method which is widely used for the inspeatioregistration
results. Our second approach uses three dimensional dimeane rendering
(DVR). We adopted DVR by incorporating a focus and conteghiéque using
a movable focus region. The context region shows the moogjyadf the origi-
nal HREM volume, while the focus region shows the registratesult. Further
we improved the visibility of the tissue borders where rggison errors are most
easily detectable. We used a gradient magnitude opacitjufatton approach
to enhance surface boundaries. In Chapter 4 the two visti@iizmethods, are
described including mathematical background and resages.

1.2 Data Acquisition

The data acquisition process is divided into two intertwliparts. The first part is
to acquire High Resolution Episcopic Microscopy imagesolthvill be described
in Section 1.2.1. The second part is to acquire correspgrahiotographs using
histological colorings described in Section 1.2.2.
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1.2.1 Acquisition of the HREM data

The first step of the HREM acquisition process is to stain hecsnen using
different labeling or staining techniques that lead to fluomse®f the stained
regions. After the staining, the specimen is prepared ferséctioning. This is
done by embedding the stained specimen in standard resin@4 developed by
Polyscience [19]). After hardening, the block is mountetb@rotary microtome
(micro-Tec CUT 4060 E [17]). A block prepared for mountingi®wn in Figure
1.1. The microtome was modified so that the stopping poirt@block holder is
kept constant after each rotation step with an accuracy aitadmeum. For cap-
turing one slice an episcopic microscope is used. Episqopooscopes capture
the reflected light in contrast to light microscopes wheaagmitted light is cap-
tured. The optical axis of a modified episcopic microscopsda DM LM [10])
was aligned with the stopping point. The microscope is guggdpwith fluores-
cence filter sets and a digital camera (Leica DC 480 [10]). Sé¢tap is depicted
in Figure 1.2.

Each surface of the block is photographed after sectiorfigorescence fil-
ter sets are used to separate the light originating in theestaissue form the
light reflected from the unstained tissue. The result is aBR@age where each
light source is stored in one channel. The image seriestieguditom this acqui-
sition process consists of precisely aligned images of peeisnen. The section
thickness can be set from 0.5 to At The channels of the RGB image are de-
composed resulting in two gray scale images. One image stih@wsorphology,
and the other one shows the signal of the stained tissue. &mghe of an image
pair is shown in Figure 1.3. A closeup of each image is showfigare 1.4. A
more detailed description of the HREM acquisition process loe found in the
work of Weninger et al. [25]. The acquisition of 1000 secidakes about four
hours. The process is fully automatic after the relativélgrsinitial setup, con-
sisting of mounting the block for sectioning, setting thédfief view and focusing
for capturing.

1.2.2 Acquisition of the Histological data

To acquire histologically colored images correspondingh® HREM sections
an operator of the HREM setup has to stop the sectioning psat@anually, and
save the actual section after cutting. This is only posdtnislices that are thick
enough (i.e., thicker than 2m). After the slice is saved it is put into a water
quench. Slices which are curled after the sectioning, expla@mselves in water.
The expanded slice is taken out using a glass slide. Theiskotored using com-
mon histological colorings. An image of this colored slisghen acquired using
a standard optical light microscope. Since this procesarisqs an experimental
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Figure 1.1: A prepared and hardened block ready for thevidtig sectioning on
the microtome.
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Figure 1.2: The setup for the High Resolution Episcopic scopy (HREM)
data acquisition. (image taken from [25]): On the right giuerotary microtome
can be seen. The episcopic microscope is mounted on the roétalthe middle,
and the digital camera can be seen on the left side.
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(a) morphology image

54 ym

(b) signal image

Figure 1.3: (a) shows the morphology image and (b) showsigiialsimage of a
slice of a chicken heart. The actual signal of the stainediéigs visible in image
(b) as dark regions.
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(a) close-up of the morphology image

(b) close-up of the signal image

Figure 1.4: (a) shows a magnified region of the morphologygenaom Figure
1.3 and (b) shows the same region of the signal image of thesfmonding slice.
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setup it is performed manual. The manual intervention mékegacquisition of a
histological dataset that corresponds to the HREM datasgttime consuming.
Therefore the experimental setup typically allows the &itjan of a few slices.
Nevertheless since the histological colorings are wellldsthed in medical re-
search they are very useful to verify the quality of the nesinstg techniques
employed in the HREM acquisition process. Another benetfihat, due to the
possibility of staining the specimen a second, it is possiblincorporate new
information into the HREM dataset.

1.3 Artifacts of HREM Data

The HREM data acquisition technique is still in an experitaéstage. Therefore
artifacts need be considered using this data. Some astitagjinate from the
mechanical side of the data acquisition, others originede fthe setup of the
data acquisition. The fferent classes of artifacts are described in the following
Sections.

1.3.1 Uneven lllumination

Due to the data acquisition setup, the images are not illatathevenly. Figure
1.5 shows an image taken at a position of the block, where tabspecimen
is present. The illumination situation considerably vandthin one slice and
also varies between datasets. It is possible that the higlsituation changes be-
tween consecutive slices for several reasons (e.g., thaiolg personal opens the
door and turns on the light while the data acquisition is iogpess). The uneven
lighting causes dierent pixels to have fferent intensity values for the same sig-
nal. The illumination artifact hinders the use of simplersegtation techniques
(e.g., threshold segmentation). Direct volume visualwraof the HREM data is
also more challenging since common transfer functions aian@ used to select
features with constant intensity.

1.3.2 Shadow Artifacts

Stained regions from below the surface of the block shirauin causing artifacts
that appear as shadows on the image. An example of such fat&igishown in
Figure 1.6. The embedding medium is semi-transparent asréftire does not
fully occlude structures below the topmost section. Stnegt below the current
section appear blurred and with less intensity. The depthetection which is
shining through, and therefore adding wrong informatiotheimage, depends on
the type of embedding medium, the actual slicing thicknesithe illumination
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Figure 1.5: A slice taken at a position of the block where nimacspecimen is
present. It clearly shows the uneven illumination.



CHAPTER 1. INTRODUCTION 10

Figure 1.6: Example of a shadow artifact (circled in red)a&bw artifacts orig-
inate from structures that shine through the surface. Th@tdohe block is pho-
tographed also capturing light that shines through the-$emsparent embedding
medium.
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situation. In the signal channel the shadow artifacts areereevere since more
light from the underlying fluorescent stained structuresesh through. Figure
1.7 shows a schematical view of shadow artifacts. The lomegie of Figure 1.7
shows a cross section of the block with the embedded specifterupper image
of Figure 1.7 shows the corresponding image that is captinoad the top. The
red part of the block shows the region that will be slicedrafteage acquisition.
It is desirable that parts of the specimen embedded in thiemecontribute to the
captured image. Stained parts of the specimen embedded yelilow region of
the block also contribute to the acquired image. Since thasgs also contribute
to subsequent images they are considered to be artifacts.

1.3.3 Sectioning Artifacts

Figure 1.8 shows the mechanical artifacts caused by theéhestm the blade,
which is used to cut the block. The artifacts appear as ligay gtripes on the
image. The width of these stripes is about eight pixels inahginal data set,
but can vary due to the dents in the blade. This artifact getsevwith a more
used blade (i.e., towards the end of the block). Most of thbexfded object is
not as reflective as the embedding material causing thaetgito vanish in the
presence of the object. Therefore this class of artifactegdected in our work.
Nevertheless when a new dataset is created it should beeghéckv grave the
impact of these artifacts on the structures of interest e dser also needs to be
aware that slicing artifacts exist and can cause problemfsifther processing.

1.4 Artifacts in the Histological Data

The acquisition of the histological data is completely man herefore the ac-
quisition process introduces artifacts not found in the NRifataset. Since each
section is captured separately, the intensity can varydstwonsecutive sections.
Because of the manual nature of this acquisition techniqué&eninations on the
sections are common. Even if it is not a problem to captursthetures of inter-
est within the sections, the acquired images are not aligmedch other (i.e., the
field of view is diferent for each section). The most severe problem is that part
of the slice can flap over destroying the whole slice . Allfadis of histological
data are shown in Figure 1.9.
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slice

Figure 1.7: The square is representing the block with theesltéd specimen
(green). The block is divided into three sections. The retice represents the
section which is photographed and then cut away. The yelémtian represents
the area which is shining through onto the current slicefrdausting the shadow
artifacts. The blue section represents the rest of the block
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Figure 1.8: The light stripes (indicated with the arrows) tre sectioning artifacts
caused by dents on the blade.
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(d) a corner of the slice flapped over in the acqui-
sition process

Figure 1.9: The dferent types of artifacts in histological images. Images(e)
(b) shows the intensity variation and the varying field ofwleetween consecutive
slices. Image (c) shows a magnified contamination resultorg the acquisition
process, and image (d) is a slice where a corner flapped ovkr preparing the

slice.



Chapter 2
Background and Related Work

Registration is the process of aligning two or more data®ets, 2D images, 3D
grids, point clouds, etc.), that represent the same sceparts of the same scene.
The datasets might be measured frofiegtent viewpoints, at dierent times or
with different modalities. Therefore registration is the proce$isding a specific
transformation which maps the points of one dataset to sparding points of
the other dataset. Three major areas where this task isdnéiguneeded, are:

e Computer Vision and Pattern Recognition: Object recognition, shape re-
construction, motion tracking, stereo-mapping, etc. agetident on spe-
cific forms (mostly specialized techniques) of registnatio

e Medical Image Analysis: Diagnostics, surgery planning, analysis of mi-
croscopic images, comparative studies, etc. need thdnage of datasets
taken from diterent modalities or at fferent times.

e Remote SensingSatellite data processing requires the registration ofyman
satellite images. Oceanography, geology, oil- and miregaloration, pol-
lution, disaster and urban studies require the registraifceither satellite
data or aerial photos.

In all three areas of research specific techniques have m@&togped to achieve
this goal. The remainder of this chapter focuses mainly enrdgistration of
medical data.

2.1 Classification of Registration Algorithms

In medical image analysis, registration is used to align-tevdhree dimensional
datasets. The techniques developed to achieve this tadiecealassified in sev-
eral ways. Although there are many classifications in liteeg the classifications

15



CHAPTER 2. BACKGROUND AND RELATED WORK 16

Figure 2.1:SIP Lab Innsbruclrame as an example for a head mounted frame for
extrinsic registration. Image taked from [3]

presented here are the most commonly used ones and areceasjlyehensible.
For more complete overviews refer to the image registraitenature Specifi-
cally Brown [2], Mainz et Viergever [15] and Zitova et Flus$26] present exten-
sive descriptions of registration algorithms. One way &ssify registration is by
which data of the dataset is used to achieve the registration

2.1.1 Extrinsic Registration

Extrinsic Registration depends on artificial markers idtrced in the image space.
These markers are attached to the patient, and are easigtalgle in all image
modalities. The most common way to attach the markers id tbhéepatient wear
a stereo tactic frame screwed to the outer skull. Another iwdg use invasive
markers such as screw mounted markers. In Figure 2.1 youeeathseSIP Lab
Innsbruck frames an example for a head mounted frame for extrinsic refmtra
The actual registration is only performed on the markersni & transformation
that maps the markers in one image to the markers in the otfaayd. Since only
the position of the markers is used for the registratiors, tb¢chnique is typically
very fast and can be automated. Often it can be modeled @kplicthout the use
of sophisticated optimization algorithms. The main dragkoaf this technique
is that markers are not suitable for all applications (esgans of inner organs).
Another drawback of this method is that deformations thatioéor example due
ti patient movement, cannot be modeled.

2.1.2 Intrinsic Registration

Intrinsic Registration makes only use of the image contéith® generated im-
ages. The Intrinsic registration techniques in this Seatan be further classified
by the amount of image data that is used for the registratioogss.
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e Landmark Based Registration Techniquesuse a number of manually se-
lected salient points of both images. These selected paiatssually accu-
rately locatable points of the morphology which are maryusdiected by
an expert. Since the selected landmarks are relativel\sgparcontrast to
the whole image content, this class of registration alpog is typically
very fast. In theory this technique can be used to find comkaxsfor-
mations. Landmark based registration methods can evenlmoddinear
deformations, but their accuracy is highly dependent omtireber of se-
lected landmark points. The more landmarks are used the coonglex
transformations can be modeled reliably. The main drawlod@c¢hkis tech-
nique is that an expert is needed to select the landmarkstsHmade in the
selection process can deteriorate the whole registratidhet point where
the result is useless. Figure 2.2 shows the process of lakdegistration.
First the salient points are chosen manually (first row)nthecorrespon-
dence between the points of both images is made (second Ttwg)infor-
mation is then used to register the images. The result is showhe third
row.

e Segmentation Based Registration Techniquestilize segmented struc-
tures (mostly surfaces, but also curves and volumes) ofntlagé content.
Another variant of this technique uses predefined shapékdaegistration
process. Since only part of the image content is used, tlugitdms of this
class are fast, like the landmark based algorithms. Depgrati the task at
hand, any transformation between the selected areas casetdeThe main
drawbacks of this technique is similar to the drawbacks efldndmark
based techniques. Therefore there is the need of an expsggtoent the
structures, which is more time consuming than the selectfdandmarks
and should be assisted with appropriate segmentation. téaighermore
the accuracy of the segmentation is very important to thétgud the reg-
istration process. Another drawback is that the registnatinly models the
transformation between the segmented areas, and thetkéregistration
of the rest of the image area can be faulty.

¢ Pixel Based Techniquesise the content of the whole image for the regis-
tration task (this technique is also called voxel based ré&gistrations,
but in this thesis it is referred to as pixel based for both 20 @D regis-
trations). To compare the alignment of the images a sinylaneasure is
used. In theory this technique is the most powerful and atewince all
available information is used in the registration procétss.possible to use
any transformation with this approach. The main drawbadkestremen-
dous computational cost with this technique. However,escamputational
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,"?:'l.

Figure 2.2: The process of landmark based registratiorhdritst two rows the
salient points are selected and matched using invariactiges's. The final row
shows the result of the registration. (Figure taken fronowztet Flusser [26])
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power gets cheaper and more easily available, pixel bagestnagion tech-
niques are very promising in the future. Section 2.2 is fowen this class
of registration techniques.

2.1.3 Non Image Based Registration Techniques

Non Image Based Registration Techniques don't use any oiitthge content.
This is only possible if the coordinate systems of thedent acquisition tech-
nigues can be calibrated on each other. This calibratiom idahen used for the
registration. Although this is not always possible, it issmyfast and easy means
of registration. An example of such a scenario is the traghkina hand held scan-
ner (e.g. ultrasound) and a fixed scanning device. It is ptest use the tracking
data to map both coordinate systems to each other.

2.1.4 Other Classifications

Another classification is based on the image acquisitiongss:

e Multi-Modal Analysis uses images of ffierent modalities. This is done
to incorporate the information acquired formffdrent scanners (e.g, CT
and MRI, SPECT and MRI, CT and Xray, etc.). This is often used f
diagnostics and surgery planning.

e Multi-Temporal Analysis uses images form the same modality acquired at
different times. The result of this registration is mostly usedifagnostics
(e.g, progression of a disease) and treatment planning.

The last classification presented here is based on the $tiigés examined:

¢ Intra-Patient Registration uses images of the same patient captured at dif-
ferent times or with dferent modalities. This is by far the most common
class of registration in clinical usage.

¢ Inter-Patient Registration registers images taken formfidirent patients
with the same modality. This is used in comparative studasekample in
Alzheimer studies where scans of healthy and sick patieats@npared).

o Patient to Atlas Registrationis the type of registration where the image of
a single patient is registered to an image information degalronstructed
from images acquired of many subjects (i.e., an atlas).
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Figure 2.3: The Registration Framework
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2.2 The Registration Framework

In the classical registration framework, shown in Figur® 2or pixel based reg-
istration two images are used. The fixed or reference imadlenot be altered,
while the moving or floating image, is transformed to mat@hftked image. Dur-
ing transformation of the moving image we often need to emalypositions be-
tween the pixel locations since both images are discretatarpolator is needed.
The similarity measure tells us how good two images are texgid. The evalu-
ated similarity measure using the actual transformatioarpaters is called fitness
value and is an indication of the quality of the current fit.eTdptimization algo-
rithm tries to find parameters of the transformation for \khibe fithess value
reaches an optimum. If this optimum is a global optimum, #gistration pro-
cess was successful. It is possible for the optimizatioarélyn to get stuck in a
local optimum which would result in a faulty registrationhdrefore it is impor-
tant to assure that the optimizer finds the global optimung foHowing Sections
explain the parts of the registration framework in more illeta

2.2.1 Transformations

Often the class of transformation between the fixed imagelaadioving image
is known. Therefore the transformation is often the first pérthe framework
which is chosen. Figure 2.4 shows the result difedtent transformations.The fist
row shows the fixed and moving image. The second row showsftianation
results for (c) rigid-, (d) fiine- and (e) b-spline-transformations.
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(c) rigid registration (d) afine registration (e) b-spline registration

Figure 2.4: Comparison of theftigrent transformations. First row: original fixed
image (a), original moving image (b). Second row: result oifgal registration
(c), dtine registration (d), b-spline registration (e). Imageetakkom the elastix
manual [8]
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Rigid Transformation

A rigid transformation consists of a translation and a iotgttherefore it has four
parameters in 2D and six parameters in 3D. Because of the desmneters it is
the fastest transformation commonly used for registrafidre formal expression
of the rigid transformatiof,;,q of a locationi’ = (Ix1,,1,)7 in 3D is represented
by a translation vectdi= (ty t,,t,)" and by a rotation matriR:

Tiga() = R-T+ T (2.1)

where the rotation matriR is a 3x3 Matrix constructed from the Euler an-
glesé,, 6y, 6, when rotated first around the x- then y- and z-axis and isoan
abbreviation of co®) wherei € {X, y, z}:

COS,COS  Sin,Sin, — COS,C0oS Sin, COS Sin, Sin, + Cos; Sin,
R= sin, COS, COS, — COs, Sin, (2.2)
—CO0s,Sin, C0s Sin, + Cos;sin, Sin,  €OS, Cos — Sin, sin, sin,

Using homogeneous coordinates the rigid registration esexpressed as:

tx |
Trigid(sz R b ) I|y (2.3)

Affine Transformation

A more powerful but still linear transformation is théfiae transformation. It is
able to handle translation, rotation, scaling, shearind) rairroring. It consists
of six parameters in 2D and twelve parameters in 3D. Sinecettansformation
is more general than the rigid transformation it can be emiths a multiplica-
tion of the rigid transformation with a shear matrix and aeeaatrix, using the
scaling factorss = (s, s,, S,)" and the shear vectar = (g«, g,.9,)". The dfine
transformationTa¢fine) IS given in homogeneous coordinates as:

Tattine = Trigia - G- S (2.4)

WhereG is represents the shearing matrix:

1 9x "9z Yz 0
_|l9% 1 00

=% o 1 (2.5)
0 0 0 1
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andS is the scaling matrix :

(2.6)

coocoY
oo¥ o
_ O O o

oY O o

Spline Transformation

To model non-linear deformations it is common to use spliaegformations de-
scribed by a grid of control points. The number of parametieqgends on the
size of the grid. Each control point can be translated in tiweations in 2D and
three directions in 3D. Therefore the number of parametara §pline transform
is nd whered is the dimensionality and the number of control points. Typically
nis very large and therefore the computational cost for spliansformations is
tremendous. Two examples of splines that are often used-apéirtes or thin-
plate-splines. Since this transformation has lots of ietelent parameters (i.e.,
the location of the control points) it has big problems wlgle translations, ro-
tations and scalings. If translations, rotations and sgalneed to be handled in
addition of non-linear deformations, the registratiorktesusually split in two
parts. The big translations, rotations and scalings ardladmwith an #ine regis-
tration followed by a spline registration handling the dorear transformations.

2.2.2 Interpolators

Since the images for the registration are discrete (thatidiawe intensities on
discrete raster positions) a function to reconstruct dataéen the raster posi-
tions (see Figure 2.5) is needed. Commonly an interpolatosed to compute
the values between raster positions. Since the intergatat®eded for each data
value evaluation it has a huge impact on the computatiorstl @othe registra-
tion algorithm. Furthermore, the quality of the interp@athas an impact on the
similarity measure. Figure 2.6 shows the value of the shitylaneasure (mutual
information in this case) of two images when a simple traifmtas done. Typ-
ically the value of the similarity measure decreases monocadly as the moves
farther away from the original position. In presence of apenfiect interpolator
the similarity measure has a jagged appearance. The spiteduced by the
interpolator make the task of finding a global optimum harder
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Figure 2.5: The rasters of the fixed image (black) and the ngpinage (blue).
Interpolators are needed since positions within the rdwstee to be evaluated.

0.9

0.85

mutual information

0.8

0 1 2 3 4
translation in pixels

Figure 2.6: The value of the mutual information similaritgasure of two images
when a simple translation is performed. The horizontal ak@ns the distance of
the translation in pixels. The mutual information valuewdalecrease monoton-

ically as the image moves farther from the original positidfith the presence of
an imperfect interpolator the similarity measure has #iged appearance.
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Figure 2.7: The curve in red is called the Runge function. Bl curve is a

interpolation using a 5th-order-polynomial and the grearve uses a 9th-order-
polynomial on 10 equally spaced points. For higher intexpioty polynomials

Runge's phenomenon (i.e. the oscillating of the intergaldunction near the
border) gets worse. The error between the original and tieegalated function

at the border therefore gets higher.
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Figure 2.8: Three dierent types of interpolators (from left to right): nearest
neighbor interpolator, linear interpolator, b-splineeiqolator. While the near-
est neighbor interpolator has very poor quality (i.e, itesywgrainy), the bilinear
interpolator has a better quality (i.e., it is more blurrgldnoses the fine details).
The b-spline interpolator has good quality (i.e., the fingadlen white is still
visible and not blurred).

Nearest Neighbor Interpolator

The nearest neighbor interpolator takes the nearest fass$éion as the interpo-
lated value. An example of the nearest neighbor interpolatshown in the left
image of Figure 2.8. This operation is very fast since noithggpoint operations
are needed for the computation. On the other hand this wleeqy has very low
quality.

Linear Interpolator

Linear interpolation (bi-linear in 2D and tri-linear in 3@ssumes that the values
between the raster positions vary linearly. An example @wshin the middle
image of Figure 2.8. Linear interpolation is relativelytfakhough it uses floating
point operations. It can easily be implemented in hardwaritther speed up
processing. Bi- and tri-linear interpolation is commoniyadable on nowadays
graphics adapters.

Polynomial Interpolator

Polynomial interpolation is a generalized version of thedir interpolation, where
the linear function is replaced by a polynomial of higher réeg Even as the
computational complexity rises using higher order polyras) the interpolated
result is not exact. Especially at borders Runge’s phenomencurs. Because of
Runge’s phenomenon the interpolated function tends tdlascnear the border
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of the interpolating points negativelyfacting the result at the borders. Figure 2.7
shows higher order interpolators for a given function. Tinee in red is called the
Runge function. The blue curve is a interpolation using adstter-polynomial
and the green curve uses a 9th-order-polynomial on 10 gogjdiced points. For
higher interpolating polynomials Runge's phenomenon {he oscillating of the
interpolated function near the border) gets worse. The &etween the original
and the interpolated function at the border therefore ggtsen.

Spline Interpolation

To overcome the drawbacks of the polynomial interpolatgpiine interpolation
can be used. An example can be found in the right image in €igi®. Spline in-
terpolation uses low-degree polynomials in each intetgoianterval. The poly-
nomials are chosen to fit smoothly together. Since lowerakegolynomials fit
together piecewise the computational cost of this interfah is lower than the
cost of the polynomial interpolation while avoiding Rurgphenomenon.

2.2.3 Similarity Measures

To register two images we need means to quantify the goodhdss fit between
the images. Considering pixel based registration methHudsimilarity measure
has to be extracted directly from the pixel intensities. &llgupixel based regis-
tration makes use of the pixel intensities. However oth@ragches combine the
similarity measure from pixel intensities with a penaltymeto handle rigid struc-
tures within the image content. For more information abaarigity terms refer
to Maintz et al. [16], Rueckert et al. [21], Guimond et al. E5]d Hellieret al.
[6]. To choose an adequate similarity measure the imagingaiitg needs to be
considered. Corresponding structures are measuredfatetit intensities when
the images originate from fierent modalities. In the following four common
similarity measures are explained.

Intensity difference based similarity measures

The sum of squared intensityftirences $ S D between both images is one of
the easiest measures available. The SSD can be expressed as :

SSD= 3 (A(S) - B'(SVY @7)

> -OT
SAEQAB

whereA is the fixed imageBT is the transformed moving image ahiis the
number of pixels from the overlapping regi€¥} . The normalization makes the
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similarity measure invariant to the number of pixels witlthe overlap of both
images. Viola et Wells [24] state that this similarity measis the best choice
when registering two images from the same modality wherg Giaussian noise
makes the dference. However, even if the images originate from the saauatn
ity, they may contain an intensity bias, which lets the SSD 7@ overcome this
problem, the sum of absoluteffiirences$ AD could be used as an alternative,
which is expressed as:

SAD:% Z |A(s) - BT(sY)| (2.8)

o coT
SAEQAB

AlthoughS ADis better thars S Din presence of bia§ ADcannot overcome
the problem with the bias completely. Therefore more stainiglarity measures
have been derived.

Cross Correlation based similarity measures

Cross correlationGC) is formally expressed as:

oo Zaen, WSV -A) - E(S)-B) 1 29
Tsicar, (A(S) - A2 - (BT(s3) - B)?
whereA andB are the mean values of the pixel intensities within the ayerl
of A andB'" This similarity measure is a good choice for mono-modal iesag
but it also works good for multi-modal images where the isit@s are linear
dependent. It is also able to overcome the problem of a biasmdano-modal
images.

Joint entropy based similarity measures

Shannon [22] invented the concept of entropy as a measurdavmation. The
entropy is formally expressed as:

H =) p(s)logp(s) (2.10)

wherep(s) is the probability of the symbd. This is also a measure of ran-
domness where the entropy reaches its maximum if all syntimle the same
probability, and it reaches a minimum when all but one symbalve the proba-
bility of zero. This property was the reason that joint epyrovas introduced in
registration. Studholm et al. [23] and Collingnon et al. pdpposed to minimize
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the joined entropy calculated from a histogram. The joiritagy of two images
Is given by:

HABT) = - > > phs(a b)log pig(a. b) (212)

acQ] be]

whereb € Q] represent the discrete intensity values if that are trarsfd over
each of the intensitiess € Qf andpj(a, b) represents the probability thatindb
occur in the overlap region.

Mutual Information based similarity measures

As an extension of the joint entropy concept, the mutualrmfation approach
adds the individual information carried by the overfay,. Expressing this infor-
mation in terms of marginal entropiéfA) andH(BT) the mutual information is
formally expressed as:

(A, B") = H(A) + H(B") — H(A, B") (2.12)
where the marginal entropies are calculated as:

H(A) = - > pa(a)log pA(a) (2.13)
aeQ]

H(BT) = - ) pi(b) log pi(b) (2.14)
beQ]

and p, and p; represent the marginal intensity distributions of the iggg
A and B within the overlapping regio®,,. An important property is, that the
marginal entropies and the joint entropy vary during theéstegtion process. This
variation is caused by the overlapping region which chamgesuse of the esti-
mated transformation. This means that the marginal ergsoand the joint en-
tropy has to be calculated for each new set of transformgtzmameters (i.e. in
each iteration of the optimization process). Mutual infatimn represents the in-
formation that one image contains about the other, and d@hesaa maximum if
both images are aligned correctly. Mutual information is thost promising ap-
proach when considering multi-modal registration whereswiori assumption
about the intensities can be made.

2.2.4 Optimization

All pixel based registration techniques use similarity sweasS to quantify the
goodness of the registration. Since no analytical soluibomhe registration task
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exists, numerical optimization algorithms have to be ueduht the optimal trans-
formationt(x) of the moving imagéy, so that the moving image matches the fixed
imagelr at every positiorx. As discussed in the subsection 2.2.1, each transfor-
mation is defined by a parameter vector These parameters are the degrees of
freedom of the optimization process. An optimization aiton explores this pa-
rameter space in an iterative fashion using trial and epexyinning with an initial
parameter estimation. While exploring the parameter spaeditness value is
used as a function of the parameter set which is optimizeé. clinrent estimate

of the transformation parameters is used to compute thalaglue of the sim-
ilarity measure. After that, the parameters are refined tgimmae the fithess
value. Usually the stopping criterion is defined as a minintotarance value
for the changes of the similarity measure between consecitérations. This
optimization is expressed mathematically as:

[ =argminS(u, Iy, 1) (2.15)
y7i

Since there may be many local minimas, evaluation of thenpei@r vector
[ strongly depends on the optimization algorithm and theahgarameters. A
way to suppress local minimas which should be avoided is dicea@gularization
term R to the optimization to penalize unwanted transformatiofisis is espe-
cially useful with non-linear transformations where somnséodmations might be
undesired or just physically impossible (e.g., deformaiof rigid structures like
bones). The final expression including the regularizatsmtis:

= argminS(u, Iy, Ig) + wR(u) (2.16)
7]

Wherew is a weighting factor for the regularization tefRy describing how
strong the influence of the regularization term should beaniples of regular-
ization terms are curvature dependent penalty terms, wlpir@serving penalty
terms and elastic energy penalty terms. The iterative dasini which the param-
eter space is explored is described as:

HMi+1 :/.lk+akdk,k: 0,123, .. (217)

Whereuy are the parameters at iteratikyrdy is the search direction at iteration
k anday is a gain factor controlling the search direction at itenak.

Optimization algorithms are classified according to the@pehdency on the
derivative information of the similarity measure and hayandd, are computed.
It is beneficial if the derivative information of the similgr measure can be eas-
ily computed. The biggest challenge considering the ogitmn algorithm is,
not to stop at a local optimum caused by interpolation art$far by good local
matches between the pixel intensities. The choice of thenggtion algorithm
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for a specific registration task depends on the remainintg dithe registration
framework. Research on the behavior of optimization atbors for specific reg-
istration tasks has been done by Maes et al. [14] Klein etAl. For a detailed
overview on diferent optimization algorithms please refer to the liter@ataress
et al. [20] give a good overview over existing techniques.

2.2.5 Extensions

So far the components of a classical pixel based registré&tonework and com-
mon examples were described. Many improvements for thetragjon frame-
work have been proposed.

One extension is the multi-resolution approach also caledse-to-fine strat-
egy. The multi-resolution approach uses an image pyranaitishconstructed of
the fixed and the moving image prior to the registration. Tdggstration process
is then started at the lowest resolution using an automatedaoual initial es-
timation. The transformation parameters gained as a résult the pyramid at
leveli are then used as the initial parameters for the resolutitaveki — 1. This
is continued until the original resolution (i.e., level @)registered. The multi-
resolution approach has two big advantages. Firstly, coation time is reduced
because large scale translation, rotation and scalingaaréléd at lower resolu-
tions. Computing the similarity measure at lower resohsis also much cheaper
due to the lower number of pixels. The second advantage sntlo®thness of the
similarity measure function at lower resolution levelsthwgmooth functions it
is easier to find a global optimum for the optimization alfum to be close to
the global optimum (i.e., a good initialization for the negsolution level). In
summary the multi-resolution approach leads to lower cdatmnal costs and
more stability, since the optimization algorithm is moteely to find the global
optimum and less likely to get stuck in a local optimum.

Another improvement is to use samples of the image conténit ifnproves
the computational cost of the similarity measure dradtic&llein et al. [9] state
that it is important to use a new set of samples in each itergstochastic sam-
pling), otherwise (deterministic sampling) a bias is idwoed which results in
approximation errors.

A third improvement is to construct the costly non-lineagis¢ration out of
piecewise rigid registered sub-images of the original ienagherefore it is nec-
essary to split up the original image. This approach is ddtierarchical subdi-
vision. After the subdivision, the image pieces are regestendividually using
a rigid or dfine transformation. A dense deformation field is then recanttd
from these rigidly registered pieces. Examples for thisrmmpment, can be found
in Maintz et al. [16], Likar et Pernus [12] and AndronachelefH
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Enhancement and Registration of
HREM Data

3.1 Motivation

The HREM artifacts described in Section 1.3 vary in theireseness. Since seg-
mentation of structures is often used on the HREM data, th&t hindering arti-
fact for automated segmentation algorithms (e.g., thidskegmentation) is the
uneven illumination. Therefore we chose to correct the thevan illumination.
Our approach to correct the uneven illumination is desdrineSection 3.2. To
incorporate the information gained by the histologicairstey, we have to regis-
ter the manual generated histological dataset to the peoprieed HREM dataset.
This is described in Section 3.3 and Section 3.4.

3.2 lllumination Correction

Since the medical researchers often need to segment sasigtithin the HREM
images based on gray values, the uneven illumination is blgmmoa One way
to solve this problem is to take a blankfield-image (a slicthaut an embedded
specimen - usually at the end of a block). This blankfield isdu® correct the
uneven illumination. Although this approach yields verydaesults, it is not
always possible to take a blankfield for each dataset.

We also experimented with some standard image processihgitgies like
the TopHatFilter. Unfortunately the results were not piegs

Therefore we developed a more sophisticated method thamceptually sim-
ilar to the blanckfield approach but also works in cases whinekfields are not
available.

32
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original HREM image [(u,v) boolean mask M(u,v)
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(I A M) interpreted as point cloud
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quadr.ic as 2[_) gray va_lue glot _ I(u,v) + [max(C)- C(u,v)]
(= estimated illumination situation C(u,v) ) (= illumination corrected HREM image )
A A

>
“u

>
“u

Figure 3.1: Overview of the illumination correction prosed-irst background
pixels are defined using a mask. This points are interpretedfaree dimensional
point cloud. A quadric surface is fitted through this poirtud. Interpreting this
quadric as a gray value image is an estimation for the illatnam situation of the
original HREM image. The illumination estimation is usecctwrect the HREM

dataset.
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An overview of our novel approach can be seen in Figure 3.ist Bimask
is used to select pixels belonging to the background. Fi§utellustrates the
approach for three selected pixels. However, in realityrgel@ubsection of the
image is selected. These pixels are then interpreted asna goud in three
dimensional space (with the intensity as z-value). The s&eq is to fit a quadric
surface through the point cloud. Interpreting this quads@ gray value image is
an estimation for the illumination situation of the origit#REM image. Using
this newly computed illumination situation it is possibte dorrect the original
HREM image resulting in an illumination corrected versidnh® original image.

In Figure 3.2 (a) an HREM slice is shown. The correspondimgealdimen-
sional plot is shown in Figure 3.2 (b). Since the backgroumélp have a light
gray value they get a higher z-value. The background pixelsapproximately
lying on a quadric surface. The result of the fitted quadritase creates an esti-
mation of a blankfield-image. In Figure 3.3 the original HRE®ttion (a) and the
corresponding blankfield-image (b) is shown. The illumioatorrected HREM
slice is shown in 3.3 (c) and the computed artificial blankfi@hage in (d). Also
visible in Figure 3.3 (e) is the fierence between the computed and the original
blankfields. The dference is mostly in the range of the slicing artifacts angean
between zero to fifteen.

As fitting algorithm we used the least squares techniquehuit weights or
iterations). The least squares technique tries to minithieesquared distance of
the data points and the fitted surface. This results in a higvegrdetermined sys-
tem which leads to an approximation when solved. The mattieahaerivation
for the least squares fitting follows:

We construct the overdetermined equation system

Dafim) =2 (3.1)
j=0

where &, yi, z) represents the data points (i.e., the pixels selecteddoytsk)
fori = 1...M, a; are the unknown cdgcients andf; are polynomials of the model
function with the ordex N — 1 for j = 0...N which should be fitted through the
data points. This leads to a set of linear equations :

Aq=b (3.2)

where

q=| : (3.3)
an
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Z
b=] : (3.4)
Zy
and
fo(X,y1) ... (X1, y1)
A= : : (3.5)
fo(Xmsym) oo Tn(Xmsym)

This set of equations is in general not solvable, therefadask for a min-
imum of the squared distances between the data points anddtel function

f(q) := arg max|b — Aqj® (3.6)
q
it holds that:

Vi =2ATAq-2ATb (3.7)

Therefore the approximation dfis:

q=(A"TA)'ATb (3.8)

Itis possible to improve this approximation in an iteragfiwvecess using weights
for each data point and refine the weights in an iterativeidastSince we chose
to handle the data points manually, i.e., the researchesgonsible to spare out
data points which don’t belong to the background we do notiribe iterative
process to refine the approximation.

We tested the robustness of the least squares fitting digpgoncerning the
number and location of pixels that are used for the fittingpss. This was done
using a blanckfield-image. We used growing masks that isangly spare out
pixels, and measured the root mean square error. We useddifierent types
of growing masks: a random mask sparing out an increasingpauof random
pixels and two square masks one starting to grow from theecgmtels and the
other starting to from the border pixels. The growing squaasks are shown in
Figure 3.4.

The random mask showed that the algorithm is quite invanarthe number
of pixels, therefore the error started to rise when only &mrent of random pixels
were used. Examining the behavior of the two square masksowewded that
the location of the pixels is important for the algorithm. efmost important
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pixels are at the border. A plot of the mean square error usiagquare mask
growing from the inside is shown in Figure 3.5 (a) and the pfdhe error from
the mask growing from the border is shown in Figure 3.5 (b).ewhsing this
technigque on images ( with embedded specimen), a mask iedgplavoid the
object’s pixels. This mask is drawn by the user. A good maskespout all the
pixels from the specimens while preserving the backgrouxelq especially the
border pixels that show background are important for a gatddiprocess. We
found that it is usually dfticient to use a rectangle that masks out the specimen.
With this approach the uneven illumination is correctedagylas all original
values lie within the value range of the original image (ie tase of HREM
slices the range is 0 - 255). Therefore the illuminationneation gets worse if
the original lightning situation lies outside the value garof the HREM image
(i.e., the approximated quadric surface results in valyieg loutside the original
HREM value range).

3.3 Registration Setup

To be able to compare the HREM staining techniques with vetiildished histo-
logical coloring techniques the datasets need to be regdst&\Ve got two repre-
sentative datasets from the medical researchers. Fighigh8ws an HREM mor-
phology and a corresponding histologically colored imafée datasets. The
resolution of a single slice is 2560 x 1920 pixels, and botiaskts consist of 30
slices. The morphological HREM image was used as fixed image & shows
more features of the captured specimen than the signal HR&Ade. We chose
a two dimensional registration approach, since the higto#é section images are
not aligned to each other and sections might be missing (isecthey were de-
stroyed in the acquisition process). An overview of thiéhstep registration
approach can be seen in Figure 3.7. The first step is to marfuadl an initial
transformation (e.g., a coarse registration only usindesaad translation). This
initial transformation is used as the starting point for&ffee registration, which
handles the linear transformations of th&etient fields of view. The result of the
affine registration is used as the starting point for the b-splagistration, which
handles the non-linear deformations caused by the curhddather processing
of the cut section.

To explore the possibility of registering the histologiaad HREM images we
used elastix [8] which is a command-line tool based on the (fkKight Segmen-
tation and Registration Toolkit) by Kitware [7]. Elastix plfements the parts of the
classical registration framework (described in Secti@) i the most commonly
used ways, and therefore gives the possibility to tacklegastmtion problem
trying out many diferent setups in a convenient way. Figure 3.8 shows the com-
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(a) HREM slice

(b) HREM slice plotted in three dimensions plot

Figure 3.2: The plot in image (b) shows the data from imagel@tjed as a three
dimensional plot in red. The fitted surface is shown in green
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(a) original HREM slice (b) original blankfield from this dataset

(c) illumination corrected HREM slice (d) computed blankfield

(e) difference between the computed and original blankfield

Figure 3.3: Image (a) shows an HREM image and image (b) shdviasndfield

that was acquired from the same block. Image (c) shows timaiiiiation corrected
HREM slice using the computed blankfield image shown in(dje @iterence
between the computed and the original blankfield is showmamge (e)
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mask: square

mask: inverted square

pixels used pixels that
for fitting . are masked out

Figure 3.4: The square masks used for the examination ofothestness of the
fitting algorithm.
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Figure 3.5: Mean squared error plots, where pixels forffed@nt regions are
favored for the computation of the illumination situation.
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(a) HREM morphology image (b) corresponding histologically colored image

(c) HREM morphology image (d) corresponding histologically colored image

Figure 3.6: The two datasets. (a) and (b) show correspomaiages of the dataset
"specimen one”, while (c) and (d) show corresponding imagiethe dataset
"specimen two”.

ponents used by elastix. Elastix incorporates the cldssgastration framework
with the multi-resolution and sampling extensions desatiim Section 2.2.5.
These histologically colored images do not have the santedieliew as the
corresponding HREM images. Usually the histological insagfgow the region of
interest sightly magnified. Therefore we use #ina transformation (described
in Section 2.2.1). For the similarity measure we tried ot tlormalized cross
correlation and the advanced mutual information measumgdeimented in the
elastix tool (they are variations of the similarity measudescribed in Section
2.2.3). As interpolator we used a b-spline interpolatori¢ivhs an instance of a
spline interpolator described in Section 2.2.2). For thignoigation we tried out
the adaptive stochastic gradient descent optimizer amgLthgi-newton optimizer.
Both optimization algorithms compute the search direcatipasing the derivative
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original moving image

after affine registration

2) affine registration 1) initial transformation

after b-spline transformation

3) b-spline registration

Figure 3.7: Overview of the registration process.



CHAPTER 3. ENHANCEMENT AND REGISTRATION OF HREM DATAA2

image

(fixed image)

transform\parameters

(moving image)

(interpolator

pixels

Figure 3.8: The components of the elastix registration.tobhe components
colored in red are extensions of the standard registrateamdwork described
in Section 2.2.5 and implemented in elastix.

information of the similarity measuréS/su. It is assumed that the derivative
informationéS/du can be computed exactly. For the adaptive stochastic gradie
descent optimizer the iterative search is described as:

My = My — aOk(uk), k=0,1,2,3, ... (3.9)
where the gain factaa is defined as a decaying functionlof

a =a/(k+ A)° (3.10)

a, aandA are user specified parameters which have these propeatieq,
A>1,0<a<l.
The iterative search of the quasi-newton algorithm is deedras:

Brs1 = ik — [H@)] o), k= 0,1,2,3, ... (3.12)

whereH(uy) is the Hessian matrix of the similarity measure evaluatgda
The evaluation of the inverse Hessian matrix is computatlpexpensive, espe-
cially for problems with high dimensionality (i.e., usingmlinear transforma-
tions). Therefore the inverse Hessian matrix is approxéhdty L, ~ [H(u)]™
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whereL, is:

T T
Loy = (I - %) Lk(l - %) ; % (3.12)
wherel is the identity matrixs = px+1—px andy = ges1—0k. Lo is practically

initialized with Ly = |

For the extensions we used a gaussian pyramidffierént resolution depths
and a random sampler.

Since the histological images are non-linearly deformegltduhe slicing and
the preparation for the image acquisition, we used a b-sphkgistration using
the result of the fine registration as input. TheftBrences between the b-spline
registration setup and théfime registration setup are the transformations (where
we used the b-spline registration) and the sampler wheresee the full image
sampler (which means that all of the image content is used).

3.4 Registration Results and Problems

In this Section the problems, solutions and results of the registration steps
are described, starting with thefiae registration and followed by the b-spline
registration.

3.4.1 Affine Registration

Initial Transformation Parameters The starting point for thefine registra-
tion are the initial transformation parameters for the mpter. In many cases it
is suficient to use the identity transform as a starting point. Herein other
cases (e.g., in dataset "specimen two”, where the aspéctiffers after the his-
tological images are rotated and mirrored to roughly mateharientation of the
specimen in the HREM images), the identity transform is nffigent if a big
part of the moving image lies initially outside the fixed ineaggion, a lot of in-
formation cannot be used by the optimizer. This leads tostedions, that move
the image out of the fixed image region after a few iterations.

For the registration it is beneficial to manually perform aitial transforma-
tion A rough alignment of the images by scaling and transtgtihe moving image
is suficient. Using a coarse manual registration as initial tramsfparameters
leads to far better results than using the identity tramsfoklthough this clearly
leads to a semi-automatic approach, the manual intervetdales not more than
a few minutes using an appropriate tool where the scale amslation can be
easily adjusted. The researcher capturing the histolboiege usually tries to
capture the section in a way that the image is aligned to theégb@f the section.
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Therefore the rotational filerence between the histological and the HREM image
is usually less compared to the scale and the translatitereince. For the coarse
manual registration the rotationalfiirence can usually be neglected. Another
benefit of a coarse manual registration as starting poirtiasit saves a lot of
computation time since the optimizer has to handle smab@stormations.

Similarity Measures To estimate the similarity we experimented with the nor-
malized cross correlation and the advanced mutual infoomabeasures. In our
experiments both measures led to similar results. Sinceiahirtformation is
known to be more robust and the cross correlation metric s1eétier images
from the same modality or that the intensities from both ntiida only vary lin-
early, we concentrated on the mutual information measure.

in our experiments the mutual information metric was not@sust as the
cross correlation measure i, and needed a carefully adjssteof parameters to
work appropriately. The most important parameter usingrioéual information
measure is the number of bins for the joint histogram. Usbaognbany bins leads
to a less stable detection of similarity between the image#)g too few bins
leads to detection of false similarities. The number of esds to be adjusted
carefully for each dataset. In our experiments 64 bins timé to work best for
dataset of specimen one and 128 bis for dataset of specinteMNBvertheless the
mutual information measure is more powerful for this tasksiother histological
colorings might be used in the future. We expect mutual mfztion to work more
robust with new colorings since it is based on informatiogotty and only relies
on the occurrence of similar structures in the image pairs.

Since the histological images are RGB color images, andetistration only
works on gray scale images we selected a single channel obtbeimage. In our
case the red channel led to the worst results since the ecobme has a very high
red and white portion. Therefore the red channel has lowastbetween visible
structures and background. Even if the mutual informatieasnre worked on the
red channel, the results when using one of the other chameeésfar better (i.e.,
either the quality of the registration was better or the cotagon time was lower).
The histograms of the the channels of a histologically stsection can be seen
in Figure 3.9, where (a) shows the histogram of the red cHafimeshows the
histogram of the green channel and (c) shows the histogrdihedfiue channel of
the original histologically stained section shown in Fgar9 (a). The histograms
of the red and green channels show that the contrast of thesmels is far better
that the contrast of the red channel. Although it appearsth®acontrast of the
green channel is even better than the contrast of the blusehae could not find
an improvement when using the green channel instead of tleedblannel. This
can be seen in Figure 3.10 where image (a) shows a checket Wiesr of the
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affine registration result of the red channel, while image (bysha checkerboard
view of the dfine registration result using the same parameters but usdsuéa
channel.

Optimizer The parameters of the optimizer have to be chosen very digrefu
since a bad parameter setting leads to useless results. 2Weragnted with two
different optimizers, namely a gradient descent and a quasbnewyitimizer.
Both led to similar results as long as the parameters areeahegspropriately. The
most important parameters are the initial transformatiom step size, the number
of iterations, and the number of resolution-levels. Usingrenresolution-levels
leads to a reduced computation time while improving the charno find a global
optimum. A multi-resolution approach works especially Wet registration of
high resolution images. The number of iterations withinsshetion-level restricts
the maximum computation time for the optimizer to find a Sokut In our tests
the optimizer almost never converged because of the neadlideformations in
the images. Therefore in our application a high number ohiiens leads to
high computation time without additional benefits. The nemdf iterations can
be decreased once it is verified that the last iteration doesnprove the result
significantly. The step size defines the magnitude of thestoamation at each
iteration. The higher the step size, the harder it is to fintbaa optimum. With
too small step sizes the optimizer needs much more itesateiind the optimum,
which increases the computation time. In our experimentfoued that five
resolution levels worked well, and the especially impartasolution levels were
the first three (i.e., the smallest three). Furthermore weseta step size of 16
which worked well in our experiments.

Results of the Afine Registration The computation time for thefline regis-
tration is about three minutes per slice. The quality of th@istration strongly
depends on the nonlinear deformation of the slice. With favem-linear defor-
mations (which is the case when the slice thickness is sma#ien the dataset of
"specimen two”, since it is expected that the tension in thtesection is less if the
slice thickness is thin and therefore generating less m@at deformations) the
affine transformation leads to useful results. If the qualitthefdfine registration
is not suficient (i.e., severe non-linear deformations) a b-spligésteation has to
be done on the resulting images of tHiree registration. Figure 3.12 (a) shows an
HREM slice, (b) shows a sample histological slice beforel, @) shows the slice
after the &ine registration of the dataset of "specimen one”. Figurd 3Hows
the same information of the dataset of "specimen two”.
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(a) histogram of the red channel

(b) histogram of the green channel

(c) histogram of the blue channel

Figure 3.9: The histograms of theflidirent color channels of Figure 1.9 (a). The
red channel has the poorest contrast.
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(b) registration result using the blue channel of the oagstologically colored image

Figure 3.10: An Example of the filerent d@ine registration results using the red
channel of the original histologically colored image in geéa) and the blue chan-
nel in image (b) was used. All parameters were left unchanged
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3.4.2 B-spline Registration

Most of the parameters used for thiirge registration can also be used for the
b-spline registration. For the b-spline registration ad@n sampler provides not
enough information for the optimizer therefore the wholega content is used
for the registration. Theffine registration was successful if the histologically col-
ored images and HREM imagedtér only in non-linear deformations. A visual
inspection is performed prior to the b-spline registratmassure dficient align-
ment. The similarity measure is left unchanged, since a wgr&imilarity mea-
sure also works for the b-spline registration step. The paly of the framework
where additional considerations have to be made is theibesphansformation.
The grid spacing of the transformation defines the numbertdmpeters the op-
timizer has to evaluate. With too few parameters small aefdions cannot be
handled. Too many parameters resulting over fitting andeas® the computa-
tion time tremendously. Figure 3.11, taken from the elastanual [8], shows
the impact of the grid spacing on the result of the regisimatiwhile image (a)
and (b) show the fixed and moving images, image (c) shows st i&f too wide
grid spacing. Image (d) shows the result of a well chosengpating. Image (e)
shows the result of too fine grid spacing. The step size anduh®er of itera-
tions also has to be adjusted for the b-spline registratiem since we are dealing
with new transformation parameters.

Results of the B-spline Registration We used b-spline registration to align all
slices of the two datasets. Figure 3.12 (d) shows the reétiiedb-spline regis-
tration and in Figure 3.13 a combined view of the HREM slicd #me b-spline
registration result of the dataset of "specimen one” is shokigure 3.14 shows
the same information of the dataset of "specimen two”. Feglid5 (a) shows the
whole volume of the dataset of "specimen one” before thesteggion and Figure
3.15 (b) after the registration. All results were generairdn Intel Core2-Duo
E6750 CPU with 2 GB RAM, using a single core. Because of thgelawumber
of parameters used for the b-spline registration the coatijout time is approxi-
mately two hours per image.
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(c) grid spacing too wide (d) grid spacing chosen well (e) grid spacing too fine

Figure 3.11: The impact of the grid spacing of the b-spliaa@sformation on the
registration result. While image (a) and (b) show the fixed amoving images,
the image (c) shows the result if the grid spacing is too windege (d) shows
the result if the spacing is chosen well, and image (e) shbessdsult if the grid
spacing is too fine. Images taken from the elastix manual[8]
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(a) HREM (b) histological slice before registration

(c) histological slice after theflane registration (d) histological slice after b-spline registration

Figure 3.12: Registration of a sample slice of the dataséspécimen one”:
image (a) shows the HREM slice, image (b) shows the histoédglice before the
registration, and image (c) shows the histological sliterahe dfine registration,
and image (d) shows the histological slice after the b-gpiagistration.
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Figure 3.13: HREM slice combined with the final registratresult from Figure
3.12.
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(a) HREM (b) histological slice before registration

(c) histological slice after theflane registration (d) histological slice after b-spline registration

Figure 3.14: Registration of a sample slice of the dataséspécimen two”:
image (a) shows the HREM slice, image (b) shows the histo#bglice before the
registration, and image (c) shows the histological sliterdahe dfine registration,
and image (d) shows the histological slice after the b-spl@gistration.
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'\“. k

-

(a) before Registration

(b) after Registration

Figure 3.15: Volume rendering of dataset of "specimen ohmage (a) shows the
volume before the registration and image (b) shows the velafter the b-spline
registration. The moving dataset is shown in red.



Chapter 4

Visualization of the Registered
Volumes

The main purpose of the visualization is to facilitate theual inspection of the
registration result and to provide a three dimensional\oeer of the registered
volumes. The registration result found during optimizatreeds to be visually
inspected to guarantee that the procedure found the glptiahem. We describe
a two dimensional checkerboard visualization for the camspa of registered
slices in Section 4.1. Further we use a three dimensionaalimtion based on
direct volume rendering. A focus region is used to show theléxs of difer-
ent structures. These borders can be used to visually centiparfixed and the
moving dataset. The three dimensional approach is presen&ection 4.2.

4.1 2D Visualization - Checkerboard View

The checkerboard view is a simple two dimensional visuabngechnique where
two corresponding images are displayed on the same canikesoih a checker-
board where white and black areas are alternating the chmakel visualization

alternately shows the two images. The resulting image gesva simple method
for comparisons, especially at the borders. An example bkakerboard view is
shown in Figure 4.1 where two slices are compared beforstragion. In Figure

4.2 the same slices are shown after the registration.

The benefit of this visualization is that the user is able gpétt the corre-
spondence of the two images simultaneously. Especiallgdgheection between
the two images (i.e., the border of the visualization betwee adjacent checker
areas) can be examined. The border regions present thenation about the
quality of the registration. A close-up of the checkerboagiv is shown in Fig-
ure 4.3. Since the checkerboard structure can be moved logeémiages, it is

54
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Figure 4.1: An example of a checkerboard view showing tweeslibefore the
registration.
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Figure 4.2: An example of a checkerboard view showing tweesliafter the reg-
istration.
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Figure 4.3: A close-up of the checkerboard view.

possible to follow structures of interest throughout the tmages. Furthermore
we implemented an interaction technique to adjust the dizeeocheckerboard
areas. This technique provides a powerful tool for simpépéction of the regis-
tration quality of the structures of interest.

4.2 3D Visualization - Direct Volume Visualization

The two dimensional checkerboard technique is useful fepacting a single
slice, but it lacks the information about the registratianthe third dimension
and does not provide a conceptional overview. Thereforempéamented a three
dimensional visualization technique. We make use of divetdme rendering
(DVR), incorporating a focus region that is adjustable @esand position. This
makes it possible to follow élierent structures of interest throughout the volume
to make sure that the registration quality of those strestug sifficient. Section
4.2.1 explains the mathematical background of the dirdctme rendering, while
subsection 4.2.2 presents the adaption of DVR for our agtyaementation.
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4.2.1 Direct Volume Rendering

There are two major approaches to render three dimensiohahes. The first
approach, called indirect volume rendering, extracts arsigface in a prepro-
cessing step. A prominent example of indirect volume renddgechniques is the
Marching Cubes algorithm [13]. The polygonalized resuthisn rendered using
standard graphics hardware. The second approach rendevsltime directly
(therefore called direct volume visualization). The adages of DVR are, that
there is no preprocessing step for extraction of an iscasarfand that dierent
iso-surfaces can be shown by altering visualization patarse

The direct volume rendering approach (proposed by Levoj) [iskes a model
of light going through semi-transparent material witffelient absorption céi-
cients. It works by shooting rays from the eye-point throtiggn volume. Each
sample along the ray is assigned a color and opacity. Thescofdhe samples
are accumulated weighted by the opacity. The assignmerglofscand opacity
is usually done by a transfer function. A transfer functisaimapping from data
values to color and opacity values. This transfer functsomsually defined by the
user in an interactive way.

The rays are either cast from back to front, or from front takbaln the
case of front to back accumulation the opacity of the ray a¢ede computed
separately. If the accumulated opacity is fully opaque #yeis terminated. The
resulting color of the pixel on the viewing plane is the acalated color. Figure
4.4 shows a schematical view of the image plane, the volumesamples and the
ray through the volume.

The mathematical expression of the back to front accunaurias:

K

K
Ca(ui,v) = ) el 13, 213,20 | | (2= (%55, 2) (4.1)

k=0 m=k+1

whereC,(u;, vj) is the resulting color of the pixeli(, v;) on the viewing plane,
c.(%, yj. z) is the color andx(X, yj, z) is the opacity of the voxel at location
(%, ¥j» Z). Ca(Xi,yj, 20) = Cpiya anda(X, yj, o) = 1 are the color and opacity of
the background.

The values, in a volume are given at discrete positions {he.voxels). Since
the evaluation involves sampling position between the Mptke values need to
be interpolated. To apply shading using a light source we teestimate a nor-
mal vector for each sample. Since this information is uguadit available in
the dataset, the gradient of the voxel is commonly used tooappate the nor-
mal vector. This gradient usually has to be estimated usimgemical derivation



CHAPTER 4. VISUALIZATION OF THE REGISTERED VOLUMES 59

samples exit point

entry point

volume

viewing plane -
viewing ray

.
.
.
.
.

-

. .

.

o .
. .
X §
.
.
.
.
.
.
.
.
.

pixel \

voxel locations

eye-point

Figure 4.4: lllustration of ray casting for DVR. A ray is sifodm the eye-point
through a pixel on the viewing plane and through the voluntee iy intersects
the volume and is sampled inside. The resulting color isutated by accumulat-
ing the opacity weighted colors of the samples.
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approximation algorithms like the centrafi@irence:

f(x+hy.2)-f(x-hy.2)

f(x5.2) = %:fwh) (4.2)
f(xy,z+h)—f(X,y,z—h)
2h

Where the approximated derivatif€x, y, 7) is defined by the central fier-
ence in each coordinate directidmis the distance between the point under con-
sideration and the samples taken on either side of this poimur caseh is the
distance between two consecutive samples on the ray).

To enhance the visibility of surfaces (i.e., tissue bouieddin DVR, gradient
magnitude opacity modulation is used. The opacity of theptans modulated
by the gradient magnitude of the sample. Since the gradsehigh at surface
boundaries and low in homogeneous regions the modulatiprowes the visibil-
ity of surfaces within the volume and suppresses homogenesmgions. Figure
4.5 shows an HREM slice and its corresponding gradient nbadgi The influ-
ence of the gradient magnitude on the opacity, can be adjbstéhe user with a
transfer function.

Furthermore, if the result should exhibit shadows, a segagdfrom each
sample to the light source needs to be evaluated.

4.2.2 Implementation of the 3D Visualization

We implemented direct volume visualization using OpenGd ghshading lan-
guage to achieve interactive frame rates. Both volumesl(timeination corrected
HREM volume and the histologically colored and registereldime) were loaded
as 3D textures onto the graphics hardware. 3D texturestédeitri-linear interpo-
lation of the samples implemented in hardware resultingeiny igh performance
compared to software implementations. The main drawbattkeographics hard-
ware is the limited amount of random access memory. Thexef@ volumes are
down-sampled to fit into the memory of the graphics adaptbe ray-casting is
implemented in a shader program in a front to back mannerpacating early
ray termination. To improve the visualization of tissue hdaries, which are im-
portant for the inspection of the registration results, wedigradient magnitude
opacity modulation. The gradient was approximated by therakdifference.
A transfer function was used to modulate the opacity depgndn the gradient
magnitude of the sample. This leads to the following equéttio the opacity of
the sample:

() = arr (Sarrg(llg(IN) (4.3)
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(a) HREM slice

(b) Gradient magnitude image of the HREM slice

Figure 4.5: In image (a) a HREM slice is shown. In image (b)dbeesponding
gradient magnitude image is shown, where white denotesigtes$t and black
the lowest gradient magnitude.
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Wherea(s) is the final opacity at the sampk ay;, is the common opacity
transfer function andy;s , is the gradient magnitude transfer function computed
with the gradient magnitudg(s)||.

The result of the gradient magnitude opacity modulatiorhsas in Figure
4.7 where in image (a) a DVR without gradient magnitude dyaniodulation is
shown, and in images (b) to (d) samples with low gradient ntade are sup-
pressed according to the transfer function.

Shading was not used, to allow visual inspection of the tegfisn result with-
out varying light intensities. To present both the fixed datand the registration
result simultaneously we used a focus and context approabh.focus region
shows the result of the registration (i.e., the moving insag&d the HREM vol-
ume is used to provide context. The size and position of tbedaegion is ad-
justable. Since this focus region is movable the user is tabiellow the bound-
aries of both volumes to inspect how good these boundariégshmaVe have
chosen to use the actual sample color of the registratiartresbe displayed.
However, as input of the opacity transfer function only theeyp channel is used.
For the gradient estimation of the registration result wedusie maximum gradi-
ent of all three channels since we left out the impact of coletrics (especially
color differences needed for the gradient approximation), depewditige difer-
ent color spaces, on the gradient magnitude result fordudtudies. To present
the registration result within the focus region we switctht®registration result as
soon as the ray enters the focus region and we switch back tdREM volume
as we enter the context region. The focus region of the ragjish result appears
to be embedded within the HREM volume. A schematical view loarseen in
Figure 4.6.

Examples of the focus and context DVR are shown in Figure BEx&mples
of the focus and context DVR showing badly aligned regioesséwown in Figure
4.9. We achieved interactive rendering frame rates on ah Gure2-Duo E6750
CPU with 2GB RAM and an Nvidia 8800 GTS 512 graphics adapter.stated
the two volumes were down-sampled to fit into graphics memory
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focus volume exit point  context volume \exit point ,
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Figure 4.6: lllustration of our focus and context approadte black cuboid
represents the context volume, and the red cuboid repeeseatfocus region.
The viewing ray is divided into three sections. We switchvibkimes as the ray
enters the focus region (indicated by the red part of the migway), and use the
context volume otherwise. The focus volume therefore aggpabe embedded
within the context volume.
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(a) without gradient magnitude opacity (b) samples with small gradient magnitudes
modulation are suppressed

(c) high gradient magnitude opacity modu- (d) very high gradient magnitude opacity
lation modulation

Figure 4.7: The impact of gradient magnitude opacity matitua Image (a)
shows DVR without gradient magnitude opacity modulatiomages (b) to (d)
show DVR with regions of low gradient magnitude increasyrgippressed.
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Figure 4.8: Exemplary results of our DVR approach. The foslame (in red)

shows the registration result. The registration result €asily be inspected at
surface boundaries regions.
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Figure 4.9: Exemplary result of our DVR approach showing dyaligned re-
gion.



Chapter 5

Summary

5.1 Introduction

High Resolution Episcopic Microscopy (HREM) is a techniquedical domain
scientists use to explore the impact of genes dieint cell growth. For this task
the scientists stain a specimen using fluorescent markezst tNe specimen is
embedded in a resin to fix the specimen for slicing. The embgdgecimen is
then cut using an modified microtome. To make this technigllg &utomatic
the microtome was modified by aligning the stopping pointefc¢utting with the
optical axis of the episcopic microscope.

This results in images which are already aligned to eachr.offl@orescent
filter sets are used to separate the the light reflected frensplecimen and the
light, which is emitted form the fluorescent stained regidrtserefore the HREM
acquisition process results in two datasets, one datasesshe general morpho-
logical context, while the other dataset shows gene exjoregsitterns as a result
of the staining. Both datasets have a resolution of 2560 ¥, 1®8ile the number
of slice images depends on the cutting thickness, which eachbsen between
one and terum. Due to the mechanical slicing of the specimen there aregman
artifacts. The most hindering artifact for further progeggs the uneven illumi-
nation. Therefore we developed a simple technique to cotfiedllumination.

The scientists experimentally extended the HREM modaltystaining the
already cut sections of the specimen another time usinglatdnhistological
staining techniques. This second staining is fully manddie operator of the
microtome has to save the cut section, put it in a water quémcimcurl it, and
capture it using a standard optical light microscope. Thisrgsion results in an
image series of unaligned images. The new image seriesasatsaligned to
the original HREM dataset. The only information about thagms of the newly
generated series is the correspondence to the HREM slice. tdthe manual
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nature of this technique there are many artifacts in the ywgeherated images.
The most prominent artifacts are dfdrent field of view as the HREM images and
non-linear deformations. To register the datasets we exgldferent registration
techniques.

For the visual inspection of the registration results welenpgented a two di-
mensional checkerboard view. This two dimensional vizadilon is widely used
to inspect registration results. We also implemented a 3Dalization based on
direct volume rendering. We adopted the standard DVR byrparating a focus
and context and a boundary enhancement technique.

5.2 Background and Related Work

Registration is the process of aligning two or more data®ets, 2D images, 3D
grids, point clouds, etc.), that represent the same scemarts of the same scene.
There are three major fields in which registration is neededchputer vision and
pattern recognition, remote sensing and medical image/sisalThere are many
ways to classify registration algorithms, while the moseamagful classification
is on the data which is used for the registration.

For instance markers can be used for the registration talsis. i3 calledex-
trinsic registration. Since only few data points are used for the registratids, th
approach is usually very fast. Although this approach ig/\wmple and fast
there are many applications where external markers canenasdd. Furthermore
deformations (e.g., of soft tissue) can not be captured.

Another method, calledon image based registrationdoes not take any in-
formation of the captured data into account. Instead iesadin information about
the coordinate systems of the acquisition modalities. dfloee if the transforma-
tion between the coordinate systems of the acquisition fit@sais known (e.g.,
by tracking the scanners), the datasets can be registeeeduBe the only task is
the actual transformation of the datasets this technige&tiemely fast. On the
other hand it can not model deformations, and not all actmsdevices can be
tracked easily.

The most general registration approach is ititeinsic registration , where
the image content is used. The intrinsic registration i€am points selected by
a user (e.g., so called landmarks), segmented or predetmetlses or the whole
image content. The approach where the whole image is usatlesl pixel based
technique. This is the most flexible approach.

The input of a pixel based registration are two datasets, (er@qges). The
fixed dataset represents the original to which the movings#dthas to be trans-
formed. The moving image has to be evaluated for each tranatmn. There-
fore locations between the data points are accessed. Armpatdor is used to



CHAPTER 5. SUMMARY 69

resample the discreet data. A transformation that aligadwlo datasets has to
be found by the optimizer. The class of transformations éin@tapplied depends
on the registration task. In general the simplest classaokformations (i.e., with
the fewest parameters)that transforms the moving dataettbe fixed dataset
should be chosen. The optimizer samples the parameter spdoe given class
of transformations.

A similarity metric measures the quality of the current fitaelfitness value
which is maximized by the optimization algorithm to find thartsformation that
best aligns the fixed and moving image.

5.3 Preprocessing of HREM Data

The preprocessing of the HREM data described in this thesgsit in two parts.
The first part deals with the uneven illumination correctiohile the second part
describes the registration of the images of the secondstgimocess.

5.3.1 Illlumination Correction

For the illumination correction we developed a novel teghei specifically tai-

lored to HREM data. First the user has mask out regions ofrttege that do

not contain background pixels. Pixels that are considesdaetbackground are
interpreted as a point cloud in three dimensional spacegubim intensity as z-
value. A quadric surface is fitted through this point cloutlisTquadric surface is
interpreted as an image where the z value is used as intefBifjimage is an es-
timation of the illumination situation without a specimeusing the illumination

estimation we are able to correct the original images.

We evaluated the quality of the estimated illuminationaiton depending on
the number and location of selected pixels. For this tasksee an original image
without a specimen embedded and measured the root meardauesr between
the original image and the estimated illumination situatioMe used dierent
masks to analyze the robustness. One mask was used to fies ted center
pixels and growing towards the outside. The other mask eléliste border pixels
first and grew towards the inside. The results led us to thelosion that the
border pixels of the original image are more important thendenter pixels. We
measured the quality of our estimated illumination coicgcapproach using an
original image without a specimen embedded. The error hdhe range of the
remaining artifacts.
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5.3.2 Registration

For the registration we proposed an approach in three sfgpsised the HREM
image showing the morphological context as a fixed image. hislogically
colored images are were used as the moving images. For tiseragign we used
only a single channel of the RGB images RGB images. We idedytifie red chan-
nel as the channel with the lowest contrast, and therefassecthe blue channel
with much higher contrast. The first step is a coarse mangadtration using
translation and scale. This first step can often be neglegtexh the scale and
translation between the fixed and the moving images is srita.however im-
portant for large image regions outside the fixed image asthg. The second
step is an fiine registration. Theffine registration is done because the field of
view is not the same for the fixed and moving image. It uses atuformation
as a similarity measure. Mutual information is used becéuwkees not rely on the
absolute intensity values of the involved images. The mugbrtant parameter
for the optimization algorithm is the step size. Too smapsize results in a high
computation time, a too large step size yields undesiradtsesSince the fiine
registration cannot handle the non-linear deformationadatitional b-spline reg-
istration step is used. In the b-spline registration stépalameters from the
affine registration except the transformation parameters langtep size can be
kept. The transformation parameters define the grid of tbpline transforma-
tion. A good choice for the size of the grid is important, srectoo wide grid
cannot handle small deformations, ans a too fine grid is vengible to noise.
While the dfine registration takes in the order of minutes per slice, tiplime
registration takes in the order of hours. The registratiepswere performed on
an Intel Core2-Duo E6750 CPU (using a single core) with 2GBVRA

5.4 Visualization of the Registered Volumes

The main task of the visualization is to facilitate the vismapection of the reg-
istration results. We implemented the widely used techacplled checkerboard
technique for 2D comparisons. Like on a checkerboard atelypareas from the
two images are shown. This results in an visualization witterguality of the reg-
istration can be inspected at the border of adjacent aréase e checkerboard
is movable the user is able to trackidrent structures throughout the images.
Since this visualization lacks the information of the thaichension, we pro-

posed another visualization based on direct volume remgleDVR was proposed
as an alternative to older approaches where surfaces wieetexi before visu-
alization using algorithms like marching cubes. The DVRrapph uses a model
of light going through transparent materials witlffeient absorption cdécients.
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For the visualization of dierent surfaces within the volume a transfer function is
used. This transfer function is a user defined mapping betweedata values of
the volume and opacity and color values. To render an imagear& cast from the
eye-point through the volume. Each ray is sampled insideaheme. The trans-
fer function maps the sample values to color and opacityegalurhe resulting
color and opacity are then accumulated either in a froriack or back-to-front
manner.

We implemented our DVR approach using OpenGL and the gl sgddn-
guage to achieve interactive frame rates. To improve thiiliig of surfaces
within the volume we used gradient magnitude opacity mdearia This tech-
nique uses the gradient, which is high at tissue borders@mdhl homogeneous
regions, to modulate the opacity. It suppresses homogsraeas in the volume
and enhances tissue boundaries. We approximated the mfrégiesing central
differences. For the registered volume (which has RGB chanmedsyised the
maximum gradient of all three channels. Furthermore werpm@ted a focus
region in our DVR approach, which shows the registrationlte Since the focus
region can be changed in size and position, the user is afiddw tissue borders
to inspect the registration result while gaining an ovesms both datasets at the
same time. To render the focus region we simply switch to ¢géstered volume
as soon as the ray enters the focus region, and we switch balck HREM vol-
ume as soon as we leave the focus region. This results in ageinvhere the
focus region appears to be embedded in the context volume.
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Conclusion

The High Resolution Episcopic Microscopy (HREM) develofsdmedical do-
main scientists is able to acquire high resolution volunfesrall specimen. This
technique is a mechanical and destructive approach whesgpttimen is cut and
photographed. This process yields slice images of the s@ecwith the thick-
ness of about one to teim. Different genes of the specimen can be deactivated or
activated. Staining of the specimen results in gene exiorepsitterns. Exploring
these gene expression patterns gives information abodiftieeent genes.

Different artifacts occur because of the mechanical natureechdhuisition
technique. In this work we investigated approaches thatongthe quality of
HREM images. The most hindering artifact of the HREM imagethe uneven
illumination. This uneven illumination poses a big problermen trying to seg-
ment structures of interest (either with standard segnientgechniques or using
a transfer function for direct volume visualization). Thidifact was eliminated
by computing an image that estimates the uneven illuminafidis image is used
to correct the whole image stack.

For experimental extension of the HREM modality slices wesed for further
medical staining, resulting in a second image series. W the possibil-
ity of registering the HREM images with the second imageeseriBecause of
the misalignment within the newly generated image stack mpleyed a two
dimensional registration approach. The histologicalllored images exhibit a
combination of linear (i.e., dierent fields of view) and non-linear (i.e., deforma-
tions caused by the manual intervention of the already més) transformations.
For the linear part of the transformations dfiree regisrtation step was used. For
the non-linear part of the transformations a b-spline tegfion step was used.
With these two steps in the registration phase the two votucaa be registered
generating visually matching images. The quality of thastegtion highly de-
pends on the parameter settings of the registration framiew&'hile the dfine
registration takes several minutes per slice, the b-spégestration takes in the
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order of hours due to the huge number of parameters involvethis thesis we
examined dierent registration algorithms and found a parameter séwtbeks
for the two representative datasets.

Further, visualization tools are presented to examine eégéstration results.
We used a two dimensional checkerboard visualization ambrcand a three di-
mensional visualization approach based on direct volumeéaeng. To improve
the visibility of the tissue borders the DVR was adapted Fas task by incor-
porating gradient magnitude opacity modulation. To exantire quality of the
registration we used a movable focus region which facdgahe task of following
different tissue boundaries.
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