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Abstract

We consider the class of logic programs under the restriction of bounded predicate arities.
Previous results showed that the complexity answer set semantics for such class of logic
programs is lower than unrestricted programs. In particular, evaluation under answer set
semantics is possible within polynomial space. However, current ASP solvers and grounders
do not seem to respect this complexity bound, and may produce exponential size ground
programs, even for programs with bounded predicate arities. We present three methods for
evaluation of logic programs with bounded predicate arities which stays within polynomial
space. We developed an evaluation framework built on top of current ASP solvers based
on the methods, and also provided a prototype implementation of the framework. An
experiment was conducted to measure the feasibility and performance of the methods, and
to compare it with current ASP solvers, DLV and claspD. The test results showed that the
proposed methods and framework are able to evaluate many test instances more efficiently
than DLV and claspD. Evaluations by the prototype system stay within polynomial space,
and hence, avoid the bottleneck associated with exponential size grounding.
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1
Introduction

Answer Set Programming (ASP) has been, in the last decade, evolving as one of the powerful
and appealing methods for problem solving and declarative knowledge representation. It
allows for a purely declarative form of problem representation and solution, and has
many desirable properties, such as: termination guarantee and a clear, easily-understood
semantics. Moreover, it is powerful and expressive enough to represent problems of
complexity ΣP

2 and beyond.
Following the development and study of answer set semantics, research works leading

towards building systems capable of performing evaluation under the semantics has also
been pursued. These systems are usually called ASP solvers. Early ASP solvers were mostly
prototypes lacking the efficiency to solve real-world problems. With the advancements in
techniques, heuristics and algorithms used in these solvers, their performances have since
been significantly improved. Nowadays, systems such as: clasp,1 DLV2 and SMODELS3

are among the best performing and most popularly used ASP solver systems, capable of
solving many real-life hard problems.

In this thesis, we consider the class of logic programs where the arities of the predicates
in the program are bounded by a fixed constant. It has been shown that the class of
logic programs with bounded predicate arities has a complexity class which is lower than
that of the full language of logic programs with unrestricted predicate arities, but is still
higher than the one of respective ground programs or propositional logic programs [Eiter
et al., 2007]. One of the implications of such result concerns the implementations of ASP
solvers, in that it should be possible to perform evaluation of a logic program with bounded
predicate arities within polynomial space.

However, current ASP solvers do not seem to respect this complexity bound. Evaluation
of logic programs using current ASP solvers involve a grounding step, which in general,
may produce an exponential size ground program that is logically equivalent to the input
program, even when the predicate arities of the program is bounded. This problem
manifests as what is known to be the “grounding bottleneck”.

To overcome this problem, we propose three evaluation methods to perform evaluation of
logic programs with bounded predicate arities which stays within polynomial space. Each
of the methods can be seen as a preprocessing step, reducing the task of evaluating a logic
program into a series of smaller tasks, each of which can be performed using one of the

1http://potassco.sourceforge.net/
2http://www.dbai.tuwien.ac.at/proj/dlv/
3http://www.tcs.hut.fi/Software/smodels/
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2 Introduction

available ASP solvers without causing it to produce exponential space grounding. We also
present a framework architecture defined on top of an ASP solver and a Prolog system,
which implements the methods and provides a clearer view on the details of each method.

As a concrete actualization of the proposed methods and framework, we have developed
a prototype system which utilizes DLV as the underlying ASP solver and XSB as the
Prolog engine to perform variable substitutions-related tasks. We then performed some
experiments on the prototype system and compared its performance to current ASP solvers,
with the intention to show the feasibility and performance of the proposed methods.

To give a general overview of the work being done in this thesis, this chapter will
provide a summary to several foundational concepts of logic programming and answer set
programming in particular, as well as a brief discussion on the topic of computational
complexity in relation with logic programming. We will discuss the class of logic programs
with bounded predicates, its complexity properties and the issues related to evaluation of
logic programs with bounded predicate arities using current ASP solvers. Finally, we will
provide a brief summary to the main contributions presented in this thesis.

1.1 Logic Programming

In the field of computer science, one of the main aspect discussed is about algorithms
and computer programming. As one of the main areas of computer science, computer
programming contains many different paradigms and and methods to achieve its results.
Unfortunately, when one talks about computer programming, it has become almost synony-
mous with only one of these different paradigms of computer programming, which is called
imperative/procedural programming. In imperative/procedural programming, one writes a
program to tell a computer how a computation is performed; what operation should be
carried out, what values should be stored, what values to read and so on following a certain
recipe which is usually called an algorithm. Many imperative/procedural programming
languages have been developed and have been used successfully in many areas and this
contributes to the popularity of this programming paradigms. Programming languages
such as: Fortran, Pascal, and C are well-known examples of programming languages which
use the imperative programming paradigm. Further developments in the field of computer
programming languages have enriched this programming paradigm with other ones, of
which Object Oriented Programming (OOP) paradigm has been the most popular. This
has resulted in new computer languages such as: C++, Objective-C, Java and C#.

However, there are also other paradigms and approaches used in computer programming:
notably, the logic programming paradigm and functional programming paradigm. Even
though they are being studied and developed more recently, in comparison with the impera-
tive programming languages, both of these approaches have been gaining many progress in
the recent years. These might be attributed to the development of other areas of informa-
tion technology that turn out to have relationships with these two approaches. Functional
programming has become quite relevant in areas such as scripting in web development, as
well as development of highly parallel/concurrent computations. Meanwhile, interest in
logic programming has sparked recently due to the development in the areas of Artificial
Intelligence, Knowledge Representation and in applications such as Semantic Web.

Informally, logic programming is a paradigm in computer programming where problems
are encoded in the forms of rules and facts in a language based on a logical syntax with a
certain semantics attached, where the solution of the problems will be computed as logical
consequences of the representation of the problems with respect to the semantics. A fact is
represented syntactically as a predicate relation with zero or more constant arguments,
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denoting the individuals/objects in the relation. A rule is usually written as

H ← B1, . . . , Bn

which intuitively means “conclude H whenever B1, and . . . , Bn are true”. To solve a certain
problem, a declarative logical representation of the problem, or encoding is then written,
and fed to a system capable of performing evaluation using a certain logical semantics. The
solutions to the problem are then derived as consequences of the problem representation.

Example 1.1. Consider the following simple problem: given a directed graph and a certain
starting node in the graph, find all nodes in the graph reachable from the node using a
(non-zero) even number of steps. For example, given the graph in Figure 1.1 and node a
as the starting node, the solution should be {c, d, f}.

Figure 1.1: Input graph for Example 1.1

Using logic programming, we can find the solution of this problem by writing the
necessary logical rules and facts to represent the problem. First, we will need the facts
to represent the input graph and the chosen starting node. These can done by denoting
the edges as a predicate relation edge with two arguments,4 start and end node of the
edge, while the starting node can be represented by just one predicate start node with an
argument denoting the selected starting node. For instance, the graph in the above figure
would be represented as the following facts:

edge(a, b). edge(b, c). edge(b, d).
edge(c, e). edge(d, e).
edge(e, f). start node(a).

We then need the rules to represent the property of being “two steps away” and “reachable
in an even steps away” from the starting node. The following rules will perform that:

two steps(X,Y )← edge(X,Z), edge(Z, Y )
reachable(X)← start node(S), two steps(S,X)
reachable(X)← two steps(Y,X), reachable(Y )

With the right semantic attached to the above program, the logical consequences of
the representation encoded by the program will represent the solution of the problem:
{reachable(c), reachable(d), reachable(f)}. In fact, because the rules represent a general
description of the problem, they will produce the correct solutions for all possible input
graph and starting node.

4Usually written as edge/2 to signify that it has 2 arguments
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One of the earliest paper in the field of logic programming is by McCarthy [McCarthy,
1959], which pointed out the need for common-sense reasoning in computer programming.
Studies in the field have resulted different kinds of syntactic and semantic flavors of logic
programs, as well as several implementation of logic programming engines/solvers. Prolog,
with a semantics usually referred to as SLDNF resolution, is arguably one of the most
well-known logic programming language.

1.2 Non-monotonic Reasoning

In describing a certain problem, it might be necessary to be able to express about the
falseness of a certain fact, instead of its truthness. Consider the following example.

Example 1.2. The following program is a possible logic program representing how an
agent makes a decision about crossing a road.

cross road← safe

safe← ¬cars passing

where the symbol ¬cars passing represent the fact there are no cars passing the road at
the moment. The symbol “¬” denotes the concept of “classical negation”, and is related to
the notion of negation in classical logic. The rules intuitively means that the agent should
cross the road only when it is known to be safe to do so. It is safe to do so, if it is known
that there are no cars passing. In the absence of the information about whether there are
cars crossing or not, the agent should not deduce cross road, since it naturally, such an
agent might not want to risk taking the wrong decision.

However, such notion of negation might not be appropriate for representing another type
of “common-sense” reasoning. In some cases, we might want to be able to express negation
as a condition where the information about the truth (or provability) of a certain fact is
not available. This is usually the case when we want to express normative statements,
i.e., statements of the form “A’s usually true, unless B is known to be true”. In logic
programming, the absence of information about a certain facts is expressed using default
negation/negation-as-failure(NAF), and is usually written using the symbol “not ”. In
contrast to classical negation, negation-as-failure does not require the availability of the
explicit information of whether a certain fact is false. The absence of any information
about the truth of a (or ¬a) is enough to deduce the not a (or not ¬a) is true. Let us
consider the following well-known example.

Example 1.3. The following program represents a simple reasoning about the flying
ability of birds.

flies(X)← bird(X),not abnormal(X)
bird(X)← penguin(X)

abnormal(X)← penguin(X)
bird(tux).

The first rule represents the normative statement about birds’ flying ability. A bird normally
flies, unless if it is an exceptional type of bird which is “abnormal” with respect to the
flying ability. The second rule specifies that a penguin is one kind of bird, while the third
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rule specifies that penguins are abnormal type of birds (w.r.t flying ability). Given the
fact bird(tux), the first rule will imply the normative statement flies(tux), since there
is no reason to believe that tux is abnormal. In this case, not abnormal(tux) is assumed
to be true, since there is no indication otherwise. However, if later we are given that
penguin(tux) is true, then the program derives abnormal(tux) and hence, the previous
assumption about not abnormal(tux) no longer holds. At this point, we cannot deduce
flies(tux) anymore.

One of the properties satisfied by classical logic is the property of monotonicity: if
a formula φ is derivable from a theory T , then the formula is still derivable if we add
more theories to T , i.e., T |= φ implies T ′ |= φ for any theory T ′ ⊇ T . Consider now
the program in Example 1.3. Initially, the program concludes flies(tux). By adding the
fact penguin(tux), flies(tux) no longer holds. This examples illustrates that the property
of monotonicity no longer holds in a program with negation-as-failure. Reasoning in a
logic system which does not satisfy the monotonicity property is called a non-monotonic
reasoning. Note that when a logic program such as the one presented in Example 1.3 does
not contain negation-as-failure, then monotonicity will still hold.

The early studies on non-monotonic reasoning include formalisms such as: Reiter’s
closed world assumption (CWA) [Reiter, 1980], Clark’s program completion [Clark, 1978],
McCarthy’s circumscription [McCarthy, 1977] as well as Reiter’s default reasoning [Reiter,
1980]. Today, answer set semantics is becoming one of the most-widely used and studied
semantics for non-monotonic reasoning.

1.3 Stable Model Semantics and Answer Set Programming

The field of Answer Set Programming started with the introduction of what is known as
the stable model semantics in a seminal paper by Gelfond and Liftschitz [Gelfond and
Lifschitz, 1988]. It opened up a new paradigm of on logic programming, which improved
upon the semantics of traditional Prolog-based programming. It has since been refined with
additional features such as classical negation [Gelfond and Lifschitz, 1990, Przymusinski,
1991] and disjunction in the head [Minker, 1982, Gelfond and Lifschitz, 1991, Przymusinski,
1991] into what is now known as Answer Set Programming. The complexity properties
of classes of logic programs under answer set semantics have also been studied and are
well-understood. See e.g.,[Dantsin et al., 2001, Eiter and Gottlob, 1993, Eiter et al., 1997,
Ben-Eliyahu and Dechter, 1994, Eiter et al., 1998] for discussions on the complexity results.

One of the many improvements which Answer Set Programming presents over Prolog-
based programming is a clear semantics guaranteeing termination of the program. Despite
being considered “declarative”, Prolog programs are not purely declarative, in the sense
that, the semantics provided by Prolog still depends on the procedural aspects of the
program, such as: the ordering of the body literals in a rule, or the ordering of the clauses
in the program. The presence of Prolog cut operator (“!”) is also an evidence of Prolog’s
procedural properties.

This procedural nature can lead to problems such as non-termination of the evaluation
of some programs, depending on how the particular Prolog engine is implemented. For
example, Prolog solvers usually evaluate the body literals of a rule in the order from left to
right. Each body literal is a goal to be executed according to the clauses defining the goal.
If a recursive call appears first in the body of a rule, then termination is not guaranteed,
and some logical conclusions of the program might not be derivable. Consider again the
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program in Example 1.1. If we modify the last two rules, such that the ordering becomes:

reachable(X)← reachable(Y ), two steps(Y,X)
reachable(X)← start node(Y ), two steps(Y,X)

then traditional Prolog solvers will not be able to derive all the reachable/1 extensions,
since the first call to the goal reachable(X) will not terminate. Of course, one might
argue that this problem can be avoided if we order the body literals in such a way that,
indefinite recursion will not occur. However, there are some cases where the declarative
logical representation of the problem has to contain such recursion. For example, one might
want to represent the transitivity property of the subset relations among sets, i.e., A ⊆ B
and B ⊆ C imply A ⊆ C. The natural logical representation of this property is

subset(A,C)← subset(A,B), subset(B,C)

In such cases, there is no way to reorder the literals in the body of the rule such that
indefinite recursion is avoided. Answer set semantics provides a pure declarative semantics
which does not depend on the ordering of the body literals or the ordering of the rules.
All the previously shown programs will be evaluated correctly in definite time by an ASP
solver.

Another improvement which Answer Set Programming offers is a clear semantics for
unstratified negation.5 Prolog does not provide any clear semantics for any unstratified
negation occurring in the program.

Example 1.4. One might want to express the fact that each person is either a female or
a male. We exploit the ability of default negation in expressing the following normative
statements: “If it can be safely assumed that a person is not a male, then the person must
be a female”, and the corresponding converse statement. The following rules then express
these statements:

female(X)← person(X),not male(X)
male(X)← person(X),not female(X)

For any facts of the form person(a), the answer set semantics computes one answer set
containing female(a) and one answer set containing male(a).

Another important feature of Answer Set Programming is the ability to use disjunctive
expressions in the head of the rules. Each head atoms represents one possible consequence
or outcome of a certain condition. This allows for a very declarative and intuitive encoding
of certain problems. For example, the program in Example 1.4 above can be more succinctly
written using only one rule as follows:

female(X) ∨male(X)← person(X)

The use of disjunctions in the head does not merely constitute a syntactic addition to
the language of logic programs, but also increases the expressive power (and hence, also
complexity) of ASP. It is known [Ben-Eliyahu and Dechter, 1994, Dix et al., 1996] that, for a
subset of disjunctive logic programs called the head-cycle-free(HCF) programs, disjunctions
in the head can be rewritten as a set of non-disjunctive rules containing unstratified
negations. However, for the non-HCF programs, this no longer applies. See Section 2.2.4
for more discussion on HCF and non-HCF programs.

5See Section 2.2.3 for an introduction to program stratifications.
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A common problem-solving approach used in ASP is the so-called “guess-and-check”
approach. It divides the process of problem-solving into two main parts: i) guess a possible
solution to the problem and 2) eliminate any candidate solution which does not satisfy the
requirements from the problem description. Guessing a possible solution usually involves
the use of disjunctions or unstratified negations. These candidates solutions are then
checked using a set of rules called integrity constraints(or sometimes, hard constraints),
which is a set of rules of the following form:

false← B(r),not false

This rule will eliminate any answer sets which satisfies B(r). Rules of this form are usually
written in a shorter form:

← B(r)

We illustrate the use of the “guess-and-check” paradigm, by showing the following more
realistic example.

Example 1.5. One of the well-know NP-complete problems is the Graph 3-Colorability
problem [Garey and Johnson, 1979]: given an (undirected) graph G = 〈V,E〉, decide
whether it is possible to color each node in the graph with one of three colors, such
that no two adjacent nodes are assigned the same color. Formally, is there any function
f : V 7→ {0, 1, 2} such whenever (v, w) ∈ E, then f(v) 6= f(w)?

We assume that the graph has been encoded by facts of the form edge(v, w) for every
edge between nodes v and w in G. We assume also that a node n being colored by color c
is represented by facts of the form color(n, c). The following program solves the problem:

node(X)← edge(X,Y )
node(X)← edge(Y,X)

color(X, 0) ∨ color(X, 1) ∨ color(X, 2)← node(X)
← color(X1, C), color(X2, C), edge(X1, X2)

The first two rules only derive the predicate for the nodes of the graph from the edge
relations in the facts. The third rule performs the “guessing” part, generating any possible
combination of coloring for the graph. The last rule then performs the “checking” part,
eliminating any candidate solution which does not satisfy the requirement of the problem.
Given the graph in Figure 1.2 as input, there will be six answer sets for the program. One
of them is6

A = {color(a, 0), color(b, 1), color(c, 1), color(d, 2), . . .}

which corresponds to a valid coloring scheme.

1.4 Programs with Bounded Predicate Arities

This thesis works is inspired by the work done in [Eiter et al., 2007], which presented
the theoretical foundations in the complexity results of programs with bounded predicate
arities. It pointed out the problems with current ASP solvers with regards to the space
complexity of their computation, and laid out a sketch of a solution to the problem using

6We show only atoms from the color predicate
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Figure 1.2: Input graph for Example 1.5

the meta-interpreter approach. We briefly summarize the results of the paper, and discuss
some findings on the meta-interpreter approach.

Complexity results in [Eiter et al., 2007] show that logic programs with bounded predicate
arities have significantly lower complexities than unrestricted programs. Compared to the
class of propositional programs, they are one level higher in the polynomial hierarchy. In
particular, it is also concluded that polynomial reductions to propositional ASP (with
disjunction) from HCF programs with bounded predicate arities are possible. This has
at least one important implications towards the implementation of ASP solvers: that
reasoning tasks such as answer set existence, brave and cautious reasoning are possible in
polynomial space.

One of the steps of logic program evaluation under the answer set semantics is called
grounding. It transforms logic programs with variables into equivalent variable-free pro-
grams, by instantiating each occurrence of a variable with a constant. Grounding is
necessary since the answer set semantics is defined on programs without variables. ASP
solvers such as clasp and SMODELS have traditionally used an external grounder systems,
e.g., Lparse and GrinGo. DLV on the other hand, is an integrated system capable of
performing grounding and evaluation by itself.

Observations on current ASP systems show that the grounding step performed by these
systems can be the source of the “bottleneck” in the computation. In particular, grounding
using current ASP systems may results in an exponentially many ground rules, even for
programs with bounded predicate arities. First, we note that, if the program is stratified,
current ASP solvers can evaluate the program without performing full grounding. However,
if the program contains unstratified negation and/or disjunctions, then current grounders
cannot evaluate the rules which depend on the unstratified negations and disjunctions
without generating the the full ground instantiations of the rules, which in general may be
exponential in size with respect to the input size. The previously stated result has shown
that this is not necessary, and it should be possible to avoid producing exponential size
ground program at once.

This thesis builds on these premises, first by considering the meta-interpreter approach
given in [Eiter et al., 2007]. Modifications on the meta-interpreter schema allowing negation
in the body of the rules has been considered. Furthermore, several attempts at improving
the efficiency of the approach have also been pursued. Finally, a prototype implementation
of the approach was also built to show its feasibility. The system works as a sort of translator,
transforming a program with bounded predicate arities into the meta-interpreted form
which, in theory, should not cause exponential size grounding when evaluated using current
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ASP solvers. Hence, it should provide a better performance than directly evaluating the
program using those solvers.

However, some experimental results indicated that the approach might not be so practical,
and carries with it a heavy overhead. We thus pursued another direction, the results of
which are presented in this thesis. We provide the summaries to the main results and
contributions of the thesis in the following sections.

1.4.1 Proposed Evaluation Methods

This thesis proposes three evaluation methods under the answer set semantics for logic
programs with bounded predicate arities. The first two methods, which we call Method 1
and Method 2, deal with normal/HCF programs. We start with the observation that a
normal/HCF programs has the property that the answer sets of the program are computable
by considering only polynomially bounded subsets of the ground program. Both methods
first generate the so-called local answer sets: answer sets computed from the subsets of
the ground program which satisfies certain conditions. Since these subsets are ground and
polynomially bounded in size, current ASP solvers can evaluate them without the need
perform any grounding, thus avoiding exponential space computation. The local answer
sets are then “checked” to ensure that they satisfy all the rules in the program. This
checking step is formulated into an evaluation of a program which also does not cause
exponential space grounding to be performed by the solvers.

We illustrate the main idea of the methods using the following example.

Example 1.6. Consider the following program, P :

a ∨ b
p(X)← a, d(X)

q ← d(X1), p(X1), . . . , d(Xk), p(Xk)
ok ← p(X)
← not ok

d(0). d(1).

Lparse, GrinGo and DLV’s grounder produce virtually the same ground program for P , with
2k + 6 ground rules (excluding the facts), given below:

a ∨ b
p(0)← a, d(0)
p(1)← a, d(1)
q ← d(0), p(0), . . . , d(0), p(0)
...
q ← d(1), p(1), . . . , d(1), p(1)
ok ← p(0)
ok ← p(1)
← not ok

d(0). d(1).

This program has only one answer set, A = {a, d(0), d(1), p(0), p(1), q, ok}. Intuitively we
feel that this answer set should be derivable using only a small part of this exponentially
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many ground rules. Unfortunately, current ASP solvers must perform the full instantiations
producing the 2k + 6 ground rules given above, before computing any answer set.

On the other hand, our methods for evaluation of normal/HCF programs recognize that
an answer set of program P can be derived by only considering a subset of the ground
rules which contains only one ground instance for each head atom. The methods then
select such subset and compute the answer set(s). Indeed, the answer set A given above is
immediately found by considering the following subset of the ground rules:

a ∨ b
p(0)← a, d(0)
p(1)← a, d(1)
q ← d(0), p(0), . . . , d(0), p(0)
ok ← p(0)
← not ok

d(0). d(1).

thus avoiding the bottleneck associated with the grounding step.

For non-HCF programs, we recognize that the approach given above may not work. In
general, it may not be possible to determine polynomially bounded subsets of the ground
rules which may contribute answer sets in a non-HCF program. We hence propose another
method for dealing with this type of programs. The approach for non-HCF programs
primarily consists of two steps: 1) model generation, in which each model of the program
which may potentially be an answer set is computed, and 2) minimality checking, where the
models produced by the previous step are checked for minimality. For complete discussions
on all the three methods, we refer the reader to Chapter 4.

1.4.2 Framework Architecture

To provide a complete view on how one might implement the three methods proposed, we
also present a framework architecture to perform evaluation on programs with bounded
predicate arities. It provides a decomposition of the evaluation process using the methods
proposed into smaller subtasks which can be understood more clearly. A framework
component is then defined for each subtask, and a detailed algorithmic description for each
of them is then given. Finally, an overall evaluation strategy combining the framework
components is presented.

The framework architecture uses an external ASP solver to perform some of its subtasks,
including evaluating ground program subsets and model checking, but it ensures that no
program gets submitted into the external ASP solver that will cause the solver to perform
exponential space grounding. In a sense, the architecture “shields” the ASP solver from
having to evaluate programs that will cause the unwanted grounding bottleneck. At the
same time, by using the currently available ASP solvers, we can take advantage of many
optimization techniques that have been implemented in the solvers.

The framework architecture also makes use of a Prolog engine, mainly to help during
the process of generating subsets of the ground program. The framework component
responsible for this task performs some rewritings to the original (non-ground) rules to
obtain a Prolog program used to compute subsets of the ground rules. It then queries
the Prolog engine to obtain a list of rules to be instantiated along with a set of variable
substitutions for each rule. The information obtained from this query is used to construct
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the corresponding ground rules. Prolog was chosen for this task since Prolog is considered
to be sufficiently efficient for this purpose. This choice also helps to simplify the task of
generating the subsets of the ground rules, relieving us from having to write a special
purpose engine to perform the task. However, in principle, it should be possible to use any
procedure for this purpose, as long as it can perform the task as specified in the framework.

Finally, an overall evaluation strategy is presented for the framework architecture. The
evaluation strategy employs dependency analysis and strongly-connected components
decomposition to split the program into smaller program components. This allows the
three methods to be applied independently at each program components, thereby increasing
the overall efficiency of the evaluation. In line with the goal of keeping the computation to
stay within polynomial space, the evaluations of the program components are arranged
in such a way that exponential space requirement is avoided. This consists of arranging
the flow of the answer sets between program components in a streaming fashion, so that
at most only one answer set per program component is stored at any given time. The
evaluation along the program components is then performed in a backtracking way to
allow all possible answer sets to be considered. We refer to Chapter 5 for the complete
description of the framework architecture.

1.4.3 Implementation and Experiments

The final contribution presented in this thesis is the development of a prototype system
implementing the three evaluation methods and the framework architecture described
above. It uses DLV as the external ASP solver and XSB as the selected Prolog engine. The
system is then used to conduct an experiment measuring the performance of the system
and comparing it against DLV and claspD. We selected six problems for the experiment,
and we generated several instances for each problem with increasing input size and problem
parameters. The goal of the experiment is to compare both time and space consumptions
of the three systems.

The results obtained from the experiment confirm our expectations. Evaluation of
programs with bounded predicate arities using the implemented system clearly stays within
polynomial space, avoiding the problems associated with exponential space grounding.
Efficiency of the evaluation with respect to time consumption seems to show improvement
as well, for some problem instances. In summary, the pattern observed from the results
of the experiment is that, program instances which are “easy”, in the sense that it has
many (easily found) answer sets, are evaluated faster using the proposed methods. For
such problem instances, relatively few guesses need to be made by the three proposed
methods before an answer set is found, hence the smaller time consumption. ASP solvers
such as DLV and claspD do not enjoy the same benefit since they need to wait until all the
(exponentially many) ground rules are instantiated and stored.

However, not all test cases show such good results. Some problem instances, notably
the inconsistent ones, have shown that the proposed evaluation methods might have a
higher time consumption. Intuitively, this is due to the fact that those methods do not
have any sophisticated way to detect inconsistencies in a program early in the evaluation,
and have to resort to generating many guesses before concluding that the input program is
inconsistent. For a more detailed description on the implemented system, as well as the
results and analysis of the experiment, we refer to Chapter 6.



12 Introduction

1.5 Thesis Organization

This thesis is organized in the following structure:

1. Chapter 2 reviews some preliminaries and previous results related to Answer Set
Programming and the complexity of the semantics of Answer Set Programming.

2. Chapter 3 introduces the notion of programs with bounded predicate arities, summa-
rizes the complexity results of programs with bounded predicate arities as presented in
[Eiter et al., 2007], as well as discussing the Meta-Interpreter approach in overcoming
the problem of exponential space grounding.

3. Chapter 4 comprises the main contributions of the thesis work. It presents three
evaluation methods under the answer set semantics which stay within polynomial
space for logic programs with bounded predicate arities.

4. Chapter 5 describes a framework architecture designed to perform evaluation based on
the three proposed methods and provides a general evaluation strategy and algorithms
which implement those methods.

5. In Chapter 6, we provide a description of the system called BPA, which we have
developed to perform the evaluation methods using the the framework architecture
described in Chapter 5. This chapter also details the experiment we conducted to
measure the performance of the proposed methods and its implementation.

6. Finally, Chapter 7 provides a summary and closing remarks for the thesis work, as
well as a brief discussion on possible future works based on this thesis.



2
Preliminaries

In this chapter, we provide a review of the definitions and results in logic programming and
answer set semantics. We begin with a discussion on the general topic of declarative logic
programming, and continue with a branch of declarative logic programming relevant to this
work: answer set programming. Several important concepts in answer set programming will
be summarized. This chapter will conclude with a discussion on the topic of computational
complexity and a review of complexity results in logic programming.

2.1 Logic Programs

Declarative logic programming is a paradigm in computer programming, whereby one solves
an instance of a problem by specifying the conditions of the problems and the solutions one
wants using a certain logical syntax and obtains the solutions as sets of answers derived
from the semantics of the logical syntax. Using this paradigm, the programmer is usually
only concerned with how to declare the problem and the solutions, but not with how the
answers are computed using the semantics. A declarative logic program can be written in
a more compact and concise way to solve a certain problem than it would otherwise be
required when one uses an imperative programming language.

Several approaches to declarative logic programming have been studied and implemented,
with varying degree in how declarative these approaches are. For example, Prolog is a
programming language developed as one of the declarative programming languages, however
it is not purely declarative since the order of the rules in the program and the order of
atoms in the body of a rule affects the results. Moreover, the semantics provided by Prolog
does not guarantee termination for all syntactically correct Prolog programs.

Another approach for declarative logic programing which has gained popularity in the
recent years is the approach using the stable model semantics and answer set semantics
[Gelfond and Lifschitz, 1988, 1990]. Stable model semantics builds up from Prolog by
allowing unstratified negations and defining a formal semantics which guarantees termina-
tion. Answer set semantics extended stable model semantics by allowing classical negation
as well as disjunction in the head. For the rest of this chapter, we will focus on logic
programming using these semantics. The next section reviews the syntax and semantics of
logic programming under the answer set semantics.

13



14 Preliminaries

2.2 Logic Programs under the Answer Set Semantics

The answer set semantics is one of the most popular and generally accepted semantics
in logic programming. It has its roots on the so called stable model semantics defined
in [Gelfond and Lifschitz, 1988], which was further extended to allow classical negation
[Gelfond and Lifschitz, 1990, Przymusinski, 1991]. The use of disjunction in the head has
been considered since the early work in [Minker, 1982], and [Gelfond and Lifschitz, 1991,
Przymusinski, 1991] extended the semantics to allow disjunction in the rule head.

2.2.1 Syntax

Let σP , σC and σV be disjoint sets of predicate symbols, constant symbols and variables,
respectively, from a first order vocabulary Φ, where σV is infinite while σP and σC are
finite. In accordance with the convention used in most answer set solvers, we assume
that each predicate symbol and constant symbol is either a string constant which begins
with a lowercase letter or is double quoted, while the variable symbols are string contants
which begin with an uppercase letter. A constant symbol may also include numeric values
(non-negative integers). A term is either a constant or a variable. Given a predicate symbol
p ∈ σP , an atom is defined as p(t1, . . . , tk), where each ti, 1 ≤ i ≤ k is a term, while k is
called the arity of p. Atoms with arity 0 are called propositional atoms.

A classical literal (or simply literal) l is an atom a or a classically negated atom ¬a. The
complementary literal for a literal l is ¬l, and ¬¬l is defined to be simply l. A negation as
failure (NAF ) literal is a literal l or a default negated literal not l. Negation as failure is
an extension to the concept of classical negation, whereby a default negated literal not l is
true if all attempts to prove it fail. Thus, not l evaluates to true if l is provably false, or
when no proof for the truthness of l can be found.

A rule r is an expression of the form:

a1 ∨ . . . ∨ ak ← b1 . . . , bm,not cm+1, . . . ,not cn (2.1)

with k ≥ 0,m ≥ 0, n ≥ 0 and a1, . . . ak, b1, . . . , bm, cm+1, . . . cn are classical literals.
We say that the set {a1, . . . , ak} is the head of the rule r, denoted by H(r). Similarly,
the set {b1, . . . , bm,not cm+1, . . . ,not cn} is called the body of r and is denoted by B(r).
We distinguish between the positive body literals and the negative body literals of r,
denoted as B+(r) and B−(r), respectively, where B+(r) = {b1, . . . , bm} and B−(r) =
{not cm+1, . . . ,not cn} and B(r) = B+(r) ∪ B−(r). To denote the set of all literals
appearing in r, we use the notation Lit(r).

A rule r without head literals (i.e., k = 0) is called an integrity constraint or hard
constraint. A rule with exactly one head literal (i.e., k = 1) is called a normal rule. A rule
with k > 1 is called a (proper) disjunctive rule. If the body is empty (i.e., k = m = 0),
then the rule is called a fact, and for simplicity, we omit the symbol “← ”. Traditionally,
we also write a fact with literal a as a. (with a dot). A rule is called positive if n = m. A
positive normal rule is called a Horn rule.

An extended disjunctive logic program (EDLP) or simply, a program P is a finite set of
rules of the form (2.1). The set of (proper) rules (rules which are not facts) is called the
intensional database (IDB) of P and is denoted by IDB(P), while the set of all facts in
P is called the extensional database (EDB) of P and is denoted by EDB(P). We denote
by Lit(P), the set of all literals appearing in a program P (i.e Lit(P) =

⋃
r∈P Lit(r)).

Throughout this thesis, we assume that a logic program satisfies safety condition defined
in Definition 2.1.
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Definition 2.1. A rule r is called safe iff it holds that any variable X appearing in
H(r) ∪B−(r) also appears in at least one literal in B+(r). A logic program P is safe iff
all the rules of P is safe. Specifically, any fact of a program must be ground.

A program P is called normal, positive or Horn, respectively, if every rule r ∈ P is
normal, positive or Horn. Additional classes are summarized in the Table 2.1

Name restriction
definite Horn k = 1, n = m
Horn k ≤ 1, n = m
normal k ≤ 1
definite k ≥ 1, n = m
positive n = m
disjunctive no restriction

Table 2.1: Program classes

2.2.2 Answer Set Semantics

The semantics of an EDLP is defined in terms of a variable-free programs. Thus, we defined
first the ground instantiation of a program that eliminates all variables in the program.

The Herbrand universe of the program P, denoted by HUP is the set of all constant
symbols c ∈ σC appearing in P. If no constant symbol appears in P, then HUP = {a},
where a is an arbitrary constant symbol taken from Φ. A term, literal, rule or program is
called ground iff they do not contain any variables. The Herbrand base HBP of a program
P is the set of all ground (classical) literals that can be constructed from the predicate
symbols appearing in P and the constant symbols in HUP . A ground instance of a rule r,
denoted by Ground(r) is obtained by replacing each variable that occurs in r by a constant
symbol in HUP . We denote by Ground(P), the set of all ground instances of the rules in
P.

We define the semantics of EDLP by first considering the positive ground programs. A
set of literals L ⊆ HBP is called consistent iff every atom a ∈ HBP satisfies {a,¬a} 6⊆ L.
An interpretation I with respect to a program P is a consistent subset of HBP . We
say that a set of literals S satisfies a rule r iff H(r) ∩ S 6= ∅ whenever B+(r) ⊆ S and
B−(r) ∩ S = ∅ hold. In such case, we write S |= r. A set of literal S satisfies a program P
iff it satisfies all the rules in P , and similarly, we also write S |= P . A model of a program
P is an interpretation I ⊆ HBP such that I satisfies P . An answer set of a positive ground
program P is the minimal model of P w.r.t set inclusion.

To extend the definition of the answer set semantics to programs with default negation,
we define the notion of Gelfond-Lifschitz reduct1 or simply GL-reduct, as follows:

Definition 2.2. The GL-reduct of a program P w.r.t an interpretation I, denoted by PI ,
is the ground positive program obtained from Ground(P) by:

(i) deleting every rule r ∈ Ground(P) such that B−(r) ∩ I 6= ∅ and

(ii) deleting the negative body literals from the remaining rules.

An answer set of a program P is an interpretation I ⊆ HBP such that I is an answer set
of PI . The set of all answer sets of P is denoted by ANS(P). The program P is said to be

1In the literature, it is also called the Gelfond-Lifschitz transform
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consistent if it has at least one answer set (i.e., ANS(P) 6= ∅), and inconsistent otherwise.
A ground classical literal a is said to be bravely true w.r.t a program P under the answer
set semantics iff there exist an answer set A ∈ ANS(P) such that a ∈ A, otherwise a is
said to be bravely false w.r.t P. A ground classical literal a is said to be cautiously true
w.r.t a program P iff for every answer set A ∈ ANS(P), it holds that a ∈ A. Note that if
P is inconsistent, every literal l ∈ HBP is cautiously true, for trivial reason.

Consider the special case where the program P is definite Horn. In this case, it is known
that P has exactly one answer set, and that it is characterized using the fixpoint of the
so-called immediate consequence operator of P, usually denote by TP .

Definition 2.3. Let I be an interpretation of a definite Horn program P . The immediate
consequence operator TP is defined as TP(I) = {H(r) | B(r) ⊆ I, r ∈ P}. Furthermore, let
the sequence Ii, i ≥ 0 be defined as follows: I0 = ∅ and Ii = TP(Ii−1). Then Ii is monotone
and has a least fixpoint, denoted by Least(P).

It is well known that for a definite Horn program P, Least(P) is the only answer set
of P. Consider now that P is normal. By definition, any answer set A ∈ ANS(P) is the
answer set of PA. Since PA is definite, it must be the case that A = Least(PA).

Under the answer set semantics, the following reasoning tasks are defined:

(i) Answer set existence Given a program P, decide whether P has at least one
answer set (i.e., whether the program is consistent).

(ii) Brave reasoning Given a program P and an atom a (called the brave query atom),
decide whether a is bravely true w.r.t P.

(iii) Cautious reasoning Given a program P and an atom a (called the cautious query
atom), decide whether is cautiously true w.r.t P.

(iv) Generate all answer sets Given a program P, compute all answer sets A ∈
ANS(P).

Example 2.1. Suppose that P1 is the following program:

a(X) ∨ b(X)← d(X)
c(X)← a(X)
c(X)← b(X)

d(0).d(1).

We have that HBP = {a(0), b(0), c(0), d(0), a(1), b(1), c(1), d(1)}. The ground program
Ground(P1) is:

a(0) ∨ b(0)← d(0)
c(0)← a(0)
c(0)← b(0)

a(1) ∨ b(1)← d(1)
c(1)← a(1)
c(1)← b(1)

d(0).d(1).
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There are exactly four answer sets of P1:

• A1 = {d(0), d(1), a(0), a(1), c(0), c(1)}

• A2 = {d(0), d(1), a(0), b(1), c(0), c(1)}

• A3 = {d(0), d(1), a(1), b(0), c(0), c(1)} and

• A4 = {d(0), d(1), b(0), b(1), c(0), c(1)}.

Notice that the GL-reduct of P1 w.r.t each Ai, PAi
1 , 1 ≤ i ≤ 4 is the same as Ground(P1).

The atoms d(0) and d(1) has to be in each model of PAi
1 since they are given as facts.

Moreover, from the rules a(0)vb(0)← d(0) and a(1)vb(1)← d(1) we infer that at least
one of a(0) or b(0) and a(1) or b(1) must be in each of the models as well. The subset
minimal sets satisfying these properties are exactly the answer sets given above.

It is clear that each of c(0), c(1), d(0) and d(1) is bravely and cautiously true w.r.t P1.
On the other hand, each of a(0), a(1), b(0) and b(1) is also bravely true, but cautiously
false, w.r.t P1.

We will now review some restrictions and analysis to logic programs which will allow for
an efficient evaluation of the programs.

2.2.3 Program Stratification

The notion of program stratification was first introduced independently in [Apt et al., 1988]
and [Gelder, 1989]. Przymusinski generalized the notion to constraint-free disjunctive logic
programs [Przymusinski, 1989, 1991].

Definition 2.4. We say that a ground program P is stratified iff there exists a function
λ : Lit(P) 7→ N+ such that for every rule r ∈ P of the form 2.1, there exists a c ∈ N+ such
that:

1. λ(h) = c for all h ∈ H(r)

2. λ(b) ≤ c for all b ∈ B+(r) and

3. λ(b) < c for all b ∈ B−(r)

It is well known that such stratification function λ can be efficiently found, if it exists.
In particular, if a program is positive, then it is clearly stratified. Stratified programs
allow for a more efficient evaluation than unrestricted programs. If the program is free of
integrity constraints, then it is guaranteed to have at least one answer set.

The main idea in the evaluation of a stratified program is to perform a layered computation
of the answer set of the rules in the program, where each layer is identified by the values of
the stratification function λ on the negative body literals of the rules.

Example 2.2. Suppose P2 is the following program:

a← b,not c
d← b,not a

p ∨ q ← a,not d
b.



18 Preliminaries

Program P2 is stratified, since the function λ′ defined as:

• λ′(c) = λ′(b) = 0

• λ′(a) = 1

• λ′(d) = 2 and

• λ′(p) = λ′(q) = 3

satisfies all the conditions for the stratification function λ described in Definition 2.4. We
can compute the answer sets of P2 in the following manner:

1. We start off with the fact b, which must be true and belong to any answer set of P2.

2. Since no rule concludes c, it must not belong to any answer set of P2, hence not c is
true. By the rule a← b,not c, it is concluded that a is true as well

3. Since a is provably true, the rule d← b,not a cannot be applied to derive d.

4. Because a is true and d is not provably true, the last rule p ∨ q ← a,not d concludes
p or q must be true in one of the answer sets. In conclusion, we derive two answer
sets of P2: {a, b, p} and {a, b, q}.

Example 2.3. Consider the program P3 as follows:

a← not b
b← not p
p← not q
q ← not a

Program P3 is not stratified, hence a layered evaluation as performed in Example 2.2 is
not possible. To compute the answer sets, one must resort to guessing model candidates
and then checking whether the candidates satisfy the condition of being an answer set.

In the case where P is non-ground, stratification is defined on the ground program
Ground(P). Consider the following example:

Example 2.4. Take program P4 as follows:

p(X)← q(X),not r(X)
r(X)← s(X)

s(0).q(0).q(1).

The ground program Ground(P4) is:

p(0)← q(0),not r(0)
r(0)← s(0)
p(1)← q(1),not r(1)
r(1)← s(1)

s(0).q(0).q(1).

Stratification on Ground(P4) can be obtained by considering the function λ′ defined as:

• λ′(s(0)) = λ′(s(1)) = λ′(q(0)) = λ′(q(1)) = 0.

• λ′(r(0)) = λ′(r(1)) = 1.

• λ′(p(0)) = λ′(p(1)) = 2.
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2.2.4 Head-cycle-freeness

Another possible restriction to an EDLP is called head-cycle-freeness. To describe the
definition of head-cycle free, we first introduce the notion of positive dependency graph of a
program.

The positive dependency graph of a program P is a directed graph where each predicate
p occurring in P is a node and there is an edge from p1 to p2 if there is a rule r ∈ P
such that p1 ∈ H(r) and p2 ∈ B+(r). A program P is called head-cycle-free (HCF) iff its
positive dependency graph does not contain cycles that go through two literals occurring
in the head of a rule in P. For such programs, [Ben-Eliyahu and Dechter, 1994] showed
the result described in Theorem 2.5:

Theorem 2.5. (cf. [Ben-Eliyahu and Dechter, 1994]) Given a HCF EDLP P , a consistent
interpretation S is an answer set iff

1. S satisfies each rule in P, and

2. there is a function φ : Lit(P) 7→ N+ such that for each literal l in S there is a rule r
in P satisfying the conditions:

a) B+(r) ⊆ S
b) B−(r) ∩ S = ∅
c) l ∈ H(r)
d) S ∩ (H(r) \ {l} = ∅
e) φ(l′) < φ(l) for each l′ ∈ B+(r)

The essence of this theorem is that HCF programs (in contrast with unrestricted
disjunctive programs) allow for a leveled evaluation of the logic program if we know the
function φ satisfying the above properties. In fact, head-cycle-free disjunction does not
increase the expressivity of the program over the normal logic programs, since a head cycle
free disjunctive rule can be replaced by a set of semantically equivalent normal rules using
the so-called shifting process [Dix et al., 1996].

Definition 2.5. If r is a disjunctive rule of the form 2.1 in a HCF program P, we define
shift(r) as the following set of k normal rules:

a1 ← B(r),not a2, . . . ,not ak
...
ai ← B(r),not a1, . . . ,not ai−1,not ai+1, . . . ,not ak

...
ak ← B(r),not a1, . . . ,not ak−1

For a HCF program P, we define shift(P) as the normal program obtained by shifting
every disjunctive rule in P.

It has been shown [Ben-Eliyahu and Dechter, 1994, Dix et al., 1996] that for a HCF
program P, shift(P) is a semantically equivalent program to P. However, shifting a
non-HCF program does not yield an equivalent program.

Example 2.6. The following HCF program P3:

a ∨ b← c

c.
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is semantically equivalent to the program shift(P3) below:

a← c,not b
b← c,not a
c.

Example 2.7. It is easy to verify that the following non-HCF program, P4:

a ∨ b ←
a← b

b← a

has exactly one answer set {a, b}, whereas shift(P4):

a← b

b← a

a← not b
b← not a

has no answer set.

2.2.5 Program Modularity and Dependency Analysis

In devising an operational semantics for logic programs, analyzing dependency information
between head and body of a rule is a common tool that can be used to efficiently evaluate the
program. The common approaches that have been studied in this topic include the notion
of stratification and local stratification [Przymusinski, 1989], modular stratification [Ross,
1990] and splitting sets [Lifschitz and Turner, 1994]. In [Eiter et al., 1997, Oikarinen and
Janhunen, 2008], strongly connected components (SCCs) of the program dependency graph
is used to find a modular decomposition of disjunctive logic programs, while [Schindlauer,
2006] described an architecture where dependency analysis and splitting sets are used in
conjunction with SCC analysis to perform modular evaluation of a more expressive class of
logic programs called HEX-programs. We will review the results obtained in these works,
focusing on the relevant points with respect to this thesis.

Following [Lifschitz and Turner, 1994], a splitting set for a ground program P is any set
U of literals such that for every rule r ∈ P, if H(r) ∩ U 6= ∅ then Lit(r) ⊂ U . If U is a
splitting set for P, we say that U splits P. The set of rules r ∈ P such that Lit(r) ⊆ U is
called the bottom of P relative to the splitting set U and denoted by bU (P). The program
P \ bU (P) is called the top of P relative to U . It is clear that the head literals of every
rule in P \ bU (P) belong to Lit(P) \ U .

Let U be a splitting set for a program P. Consider a set of literals X. For each rule
r ∈ Ground(P) such that B+(r) ∩Ground(U) ⊆ X and (B−(r) ∩Ground(U)) ∩X = ∅,
create a new rule r′, where H(r′) = H(r), B+(r′) = B+(r) \ Ground(U) and B−(r′) =
B−(r) \Ground(U). We define eU (P, X) = {r′ | r ∈ P}.

A solution to P w.r.t U is a pair 〈X,Y 〉 of sets of literals such that:

• X is an answer set for bU (P),

• Y is an answer set for eU (P \ bU (P), X),

• X ∪ Y is consistent.
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Theorem 2.8. Splitting Set Theorem (cf. [Lifschitz and Turner, 1994]). Let U be a
splitting set for P. A set of literals A is a consistent answer set of P iff A = X ∪ Y for
some solution 〈X,Y 〉 to P w.r.t U .

Example 2.9. Consider the following program P5:

a← c,not b
b← c,not a

p ∨ q ← a,not b
c.

The set U = {a, b, c} is a splitting set for P5. The bottom of P5 w.r.t U , bU (P5) is

a← c,not b
b← c,not a
c.

A solution to P5 is 〈{a, c}, {p}〉 since {a, b} is an answer set of bU (P5) and {p} is an answer
set of eU (P5 \ bU (P5), {a, c}) = p ∨ q ← . Hence, {a, c, p} is an answer set of P5.

Splitting sets allow for a modular evaluation of logic programs in the sense that programs
are divided into modules which can be evaluated separately. To further take advantage of
such modular property of logic programs, we analyze the dependency information in the
program and apply the splitting sets theorem on different parts of the program. In order
to proceed in this direction, first we define the program dependency graph.

Definition 2.6. For a program P, let a, b ∈ Lit(P) be classical literals appearing in P.
We say that a depends positively on b (a→p b), if one of the following conditions holds:

1. There is some rule r ∈ P such that a ∈ H(r) and b ∈ B+(r)

2. There are some rules r1, r2 ∈ P such that a ∈ B(r1) and b ∈ H(r2), and a and b are
unifiable.

We say that a depends negatively on b (a →n b), iff there is some rule r ∈ P such that
a ∈ H(r) and b ∈ B−(r). We write a→1 b iff a→p b or a→n b. The dependency graph of
P , DGP is the graph 〈L,→1〉, where L ⊆ Lit(P) is the set of classical literals appearing in
P. We denote by →, the transitive closure of →1. A strongly connected component (SCC)
of DGP is a maximal set of classical literals S ⊂ Lit(P) such that a→ b for every a, b ∈ S
satisfying a 6= b.

Using the SCC analysis, we can split the program into program components, where each
component can be evaluated in a layered manner based on repeated application of the
splitting set theorem. Given the dependency graph DGP of a program P and its set of
SCCs, we say that PCS is the program component of P associated with an SCC S of
DGP iff PCS is the maximal set of rules r ∈ P such that for every r ∈ PCS , Lit(r) ⊆ S.
We denote by Comp(P), the set of all program components in P. For any two program
components PCS and PCT , we define the dependency relation between program components
as follows: PCS depends on PCT ( PCS ⇀ PCT ) iff there are two literals a ∈ S and b ∈ T
such that a→ b in DGP .

Definition 2.7. The program component dependency graph CGP of P is the graph defined
by 〈Comp(P),⇀〉.
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By its definition, the program component dependency graph of a program P is a directed
acyclic graph (DAG). Using the splitting set theorem, we may evaluate a logic program
in a layered manner according to the structure of its program component dependency
graph. The answer sets of a program can be composed from the answer sets of its program
components.

Example 2.10. Suppose P6 is the following program:

p.

a ∨ b← p

c ∨ d← p

x← a, c.

y ← b, d.

We have the following 5 strongly connected components in the dependency graph DGP6 :

C1 = {p}
C2 = {a, b}
C3 = {c, d}
C4 = {x}
C5 = {y}

with the following program components associated with them:

PC1 = {p}
PC2 = {a ∨ b← p}
PC3 = {c ∨ d← p}
PC4 = {x← a, c}
PC5 = {y ← b, d}

We have that ANS(PC1) = {{p}}. Going up along CGP6 , we compute the answer sets
of PC2 and PC3 using ANS(PC1) as an input. We obtain ANS(PC2) = {{a, p}, {b, p}}
and ANS(PC3) = {{c, p}, {d, p}}. Each possible combination of the answer sets of PC2

and PC3 gives a possible input for the evaluation of PC4 and PC5, for example: with the
input {a, c, p}, PC4 has one answer set {x, a, c, p}. In the end, the set of all the answer
sets of P6 is {{a, c, p, x}, {b, c, p}, {a, d, p}, {b, d, p, y}}.

2.2.6 Answer Set Programming Solvers

Several systems have been developed and implemented that performs evaluation on input
of logic programs based on the answer set semantics. We refer to these systems as Answer
Set Programming (ASP) solvers, or simply answer set solvers. Several well-known ASP
solvers are DLV [Leone et al., 2006], clasp/claspD [Gebser et al., 2009, Drescher et al., 2008],
SMODELS [Simons et al., 2002] and ASSAT [Lin and Zhao, 2002]. We review these systems
and point out specific restrictions and extensions that they provide.

DLV

The DLV system2 was developed as a joint work of the University of Calabria and Vienna
Technical University and is still being actively maintained. It is an efficient engine for

2http://www.science.at/proj/dlv/
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computing answer sets and accepts as core input language the disjunctive logic programs
as defined in Section 2.2.1. DLV also extends the language of logic programs with the
following syntactic and semantic extensions:

(1) Weak constraints The DLV system provides an extension called weak constraints
which allows for computation of optimal answer sets w.r.t to a certain penalization
and prioritization. We refer the reader to [Buccafurri et al., 1997, 2000] for further
discussion on the syntax and semantics of weak constraints in DLV.

(2) Built-in predicates To provide a more intuitive syntax for the commonly used compar-
ison predicates, DLV provides the built-in predicates “X < Y ”, “X <= Y ”,“X > Y ”,
“X >= Y ”, and “X! = Y ” with the obvious semantic of “less-than”, “less-than-or-
equal-to”, “greater-than”, “greater-than-or-equal-to” and “not-equal-to”, respectively.
Comparison predicates can be used on string literals as well as integer values, so long as
they appear on the positive bodies of the rules (or constraints). However, full support
for integer arithmetic has not been developed yet. Several built-in predicates such as
A = B + C and A = B ∗ C for integer addition and multiplication are provided to
emulate arithmetic operation, in conjunction with the use of the predicate “#int(X)”
which holds for all nonnegative integers, up to a (user-defined) limit.

(3) Aggregate predicates Taking the idea from the database query languages, DLV also
provides the so-called aggregate predicates[Dell’Armi et al., 2003]. Aggregate predicates
allow for expressing properties over a set of elements, such as count, minimum and
maximum. They can appear in bodies of the rules and constraints, possibly negated
using the negation-as-failure (not ). The use of aggregate predicates can make the
encoding of problems in a more concise and natural way, by minimizing the use of
auxiliary predicates and recursive programs. In terms of efficiency, encoding using
aggregate predicates often outperforms those without by reducing the size of the
ground instantiation of the program. For a brief example of the syntax and semantic
of aggregate predicates, consider the following construct:

1000 ≤ #max{X : employee(Y ),monthlySalary(Y,X)} ≤ 2000

The above aggregate predicate evaluates to true for all interpretations where the
maximum salary for any employee is between 1000 and 2000.

Lparse and Smodels

SMODELS [Simons et al., 2002] is a system for solving logic programs under the answer set
semantics developed by the researchers at the Helsinski University Technology. SMODELS
itself cannot directly receive an input in the syntax of the logic programs defined so far, as is
the case with DLV, but it uses a front-end called Lparse (developed by the same researchers)
to perform preprocessing and grounding/instantiation. The resulting output from Lparse is
a concise numeric representation of ground program computed from the input program,
which is read by SMODELS to generate the answer sets. Initially, SMODELS was not built
with the capability to evaluate disjunctive logic programs, however, an extended version
called GnT [Janhunen et al., 2006] has been developed to handle disjunctive logic programs.

SMODELS requires a stricter safety condition than the one described in Definition 2.1.
The input program for SMODELS must satisfy the condition of being domain-restricted :
any variables appearing in a rule must appear in a so-called domain predicate in the positive
body literals of the rule. Intuitively, the domain predicates of a program are predicates
appearing in the program which are defined non-recursively, for details, see [Niemela et al.,
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2000]. This restriction does not actually reduce the expressivity of the language itself.
However, the weaker safety condition imposed by DLV does allow for a more concise and
natural encoding of certain problems.

SMODELS allows for an extension of the logical syntax by supporting cardinality con-
straint rules. The main idea is that a cardinality constraint such as:

1{a, b,not c}2

holds in a model if at least 1 but at most 2 of the literals {a, b,not } are satisfied. This
allows for a compact representation of problems where such cardinality constraint rules are
applicable.

Postdam Answer Set Solving Collection

The Postdam Answer Set Solving Collection (Potassco) is a collection of answer set solving
tools comprising of several answer sets solvers and grounders, developed by researchers at
University of Postdam. The main answer solving system is Potassco is clasp [Gebser et al.,
2009], for solving normal/HCF program, and claspD [Drescher et al., 2008] for solving
disjunctive programs. clasp and claspD receives as input ground programs in the format
of Lparse. Hence, similar to SMODELS, clasp and claspD must be used in conjunction
with a grounder, such as Lparse. The Potassco project also provides their own grounder
system, called GrinGo. It uses virtually the same input-output format as Lparse, and can
be interchanged with Lparse as a grounder.

The Potassco project received a special attention recently, as it won the 2009 ASP
Competition, scoring highest among other ASP solver systems. To achieve its performance
level, clasp and claspD use sophisticated techniques such as: conflict-driven nogood learning,
backjumping, restarts and unit propagations.

ASSAT

The system ASSAT takes a different approach at implementing the answer set semantics.
The main idea behind its operational semantics lies on the concept of program completion
and loop formulas(see [Lin and Zhao, 2002] for details). For an input consisting of a
normal logic program, logical formulas corresponding the program and its completion are
constructed. Afterwards, for each loop appearing in the program, a formula is constructed
and added to the set of formulas obtained thus far in a selective manner. The resulting
logical theory is then solved using a SAT solver to obtain the answer sets of the input
program. As such, ASSAT can be viewed as a translator, transforming the problem of
computing the answer sets of a logic program into a satisfiability problem solvable using
any standard SAT solver.

As is the case with SMODELS, ASSAT does not have its own grounding/instantiation
module and relies on Lparse to provide an input of ground logic programs. To perform the
actual satisfiability checking, some of the available SAT solvers such as: Chaff2, Walksat,
GRASP, Satz and SATO has been used and tested, with Chaff2 being the one to perform
best.

2.3 Computational Complexity

We review the topics in computational complexity and provides summary of the complexity
results of the reasoning tasks for classes of logic programs. We assume that the reader
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is already familiar with the basic concepts in computational complexity, such as: Turing
machine, problem reductions, completeness and determinism vs nondeterminism. For a
complete treatment of the subjects, see e.g., [Papadimitriou, 1994, Garey and Johnson,
1979].

2.3.1 Complexity Classes

Recall that the complexity class P, resp. NP is the class of decision problems (“yes”
or “no” problems) which can be computed on a deterministic, resp. nondeterministic
Turing Machines in polynomial time. For a complexity class C, the complementary
class is denoted by coC. The Polynomial Hierarchy PH is defined recursively as follows:
ΣP

0 = ΠP
0 = ∆P

0 = P, while

ΣP
k = NPΣP

k−1

ΠP
k = coΣP

k−1

∆P
k = PΣP

k−1

for k ≥ 1, and finally PH =
⋃
k≥0 ΣP

k . Furthermore, DP = {L ∩ L′ | L ∈ NP, L′ ∈ coNP}.
The complexity class PSPACE is the class of problems computable on deterministic Turing
Machines with polynomial space, while NEXPTIME and NEXPSPACE denote the classes of
problems decidable by nondeterministic Turing Machines in exponential time, resp. space.
We recall that the following relations hold

NP ⊆ DP ⊆ PH ⊆ PSPACE ⊆ NEXPTIME

It is generally believed that these inclusions are strict, and that PH is a true hier-
archy of classes with increasing complexity. A canonical problem for the classes un-
der PSPACE is the problem of deciding whether a quantified Boolean formula (QBF)
∃x1 . . . ∃xm∀xm+1 . . . ∀xnE, n > m ≥ 1, is valid, where E is a propositional formula built
from atoms x1, . . . , xn. The unrestricted version of QBF itself is known to be PSPACE-
complete, however, under the restriction of m = 1 and n = 2,3 QBF falls under the
complexity class ΣP

2 [Garey and Johnson, 1979].

2.3.2 Complexity of Logic Programming

We provide a brief summary to the complexity results of the reasoning tasks in logic
programming. For a comprehensive survey to the complexity results of various classes of
logic programs, we refer to [Dantsin et al., 2001]. We start by considering the propositional
(variable-free) fragment of logic programs. As presented in [Eiter and Gottlob, 1993], we
have the following results:

Theorem 2.11. Given a finite propositional EDLP, deciding whether it has an answer set
is ΣP

2 -complete.

Proof. Membership in ΣP
2 follows from the fact that for a propositional EDLP P , deciding

whether an interpretation S is a consistent answer set of P is in coNP. A guess for a
consistent answer set of P can be verified with a call to an NP-oracle, hence the problem
is in NPNP. The main idea to prove hardness is a reduction from the problem of deciding
if an instance of QBF is valid, which is known to be in ΣP

2 . This is done by encoding

3The QBFproblem under this restriction is also called 2QBF
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an instance of QBF, Q in an EDLP PQ and showing that Q is satisfiable iff PQ has an
answer set. We refer the reader to [Eiter and Gottlob, 1993] for the exact details of this
encoding.

In fact, the result above remains true even under the conditions that negation-as-failure
has a single occurrence in P and each rule head contains at most two atoms. The following
result shows the complexity of brave reasoning in EDLP.

Theorem 2.12. Given a propositional EDLP P and a set of atoms S, deciding whether
S occurs in any answer set of P is ΣP

2 -complete. The result remains valid even under the
conditions that: P is positive, each rule head in P contains one or two atoms and S is a
single atom.

Proof. Membership follows from the fact that a guess for a consistent answer set A of P
such that S ⊆ A can be done in polynomial time using an NP-oracle. Hardness can be
proved by considering a positive program P , and the program P ′ = P ∪ {a← not a}. It
is easy to verify that in this case, it holds that the statements: (i) P ′ has an answer set
and (ii) a is contained in any answer set of P , are equivalent to each other. Since deciding
whether (i) is true or not is known to be ΣP

2 -hard, the result follows.

It is a quite intuitive result that the complexity of deciding answer set existence and
brave reasoning fall in the same class, since both problems basically boils down to asking
for existence of answer set satisfying certain properties. Cautious reasoning, on the other
hand, reflect the complementary problem of deciding whether no answer set with certain
properties exists. Naturally, we would expect such problem to be in the complementary
class of ΠP

2 . The result presented in [Eiter and Gottlob, 1993] confirms this expectation.

Theorem 2.13. Given a propositional EDLP P and a set of atoms S, deciding whether S
is contained in every answer set of P is ΠP

2 -complete, even for the restrictions that: “not ”
has a single occurrence in P , each rule head in P has one or two atoms and S consists of
only one atom.

Proof. Membership in ΠP
2 follows from the fact that a guess for an answer set A of P such

that S 6⊆ A can be verified in polynomial time using an NP-oracle. Hence, the complement
problem of cautious reasoning is in ΣP

2 , which proves membership of cautious reasoning in
ΠP

2 . To prove hardness, without loss of generality, consider the case that S has only one
element, S = {a}. Consider the program P ′ = P ∪ {← a}. Then the following statements
are equivalent: (i) P ′ has a consistent answer set, (ii) S is not contained in every answer
set of P . Since (i) is known to be ΣP

2 -hard in Theorem 2.12, the complement of (ii) is
ΠP

2 -hard, which proves the result.

For HCF disjunctive programs, as shown in [Ben-Eliyahu and Dechter, 1994], reasoning
tasks fall under the lower complexity class coNP-complete, and thus, such programs are
transformable to (disjunction-free) normal logic programs under the stable model semantics.

Complexity results for various classes of the non-ground EDLP have been derived,
see e.g., [Eiter et al., 1997, 1998]. In general, the complexity of the reasoning tasks for
disjunctive logic programs for the non-ground case is one exponential higher compared
to the corresponding reasoning tasks for the propositional case. In particular, reasoning
tasks with complexity in ΣP

2 -complete for the propositional case becomes NEXPNP for the
non-ground case. Intuitively, we can see that the process of grounding a logic program
itself might already be exponential, even for programs without negation, a fact which
contributes to the exponentially higher complexity for the reasoning tasks of non-ground
logic programs.
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Programs with Bounded Predicate Arities

In this chapter, we focus our attention to the class of logic programs with bounded predicate
arities. To state it more formally, we are considering the class of all logic programs P such
that there exist a fixed bound k, with every predicate arity a in P satisfying a ≤ k. As
it turns out cf. [Eiter et al., 2007], the complexity of the reasoning tasks in this class of
programs is much lower than for programs where the arity of the predicates are unbounded.
Specifically, it has been shown that the reasoning tasks have complexity well within the
polynomial hierarchy, and is thus far cheaper to evaluate than unrestricted programs.

The restriction of bounded predicate arities in logic programs is actually very relevant
in practice, since most problems usually expressible using a set of arities with fixed arities
to encode relationships between objects. In fact, in such areas as graph theory, planning,
knowledge representation and many other areas where logic programming is applicable,
most of the interesting problems are expressible using programs with predicate arities of at
most 3. Often, complex relationships requiring higher predicate arities can be broken up
into predicates with smaller arities. Most importantly, representations of problems in logic
programs that require the predicate arities to vary as one of the parametric input of the
problem specification are quite rarely encountered in real world applications.

We start this chapter by providing a summary and discussion on the complexity results of
programs with bounded predicate arities. We will then a look at how the competitive ASP
solver systems performs on such programs, specifically with regard to the space requirements
during the grounding steps. As it turns out, each of the systems performs a grounding
step on the input program which requires an exponential space, contrary to the results
that programs with bounded predicate arities have complexity in the polynomial hierarchy.
We will conclude the chapter with a discussion on an approach that has been suggested to
overcome this problem (using a meta-interpretation technique) and the limitations it has.

3.1 Complexity results

Following [Eiter et al., 2007], we would like denote the taxonomy of the classes of logic
programs in a succinct notation. We define the classes DL[L] where L ⊆ {nots,not ,∨h,∨}.
The set L is used to denote the (possibly combined) admission of:

• nots: (default) negation; the program remains stratified

• not : unrestricted default negation

27
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• ∨h: disjunction; the program remains HCF

• ∨: unrestricted disjunction

Thus, we have for instance, that DL[∨h,nots] contains all HCF stratified programs and
DL[∨,not ] is the full EDLP as defined in Section 2.2.1.

At this point, we would like to review the complexity results for propositional logic
programs, as this would give a baseline for comparison against the results for non-ground
programs with bounded predicate arities. Using the notation above, we can summarize the
complexity of the three canonical reasoning tasks: answer set existence, brave reasoning
and cautious reasoning on propositional logic programs for each class in the taxonomy as
displayed in Table 3.1.

Existence/brave/cautious {} {nots} {not}

{} P/P/P P/P/P P/NP/coNP
{∨h} NP/NP/coNP NP/NP/coNP NP/NP/coNP
{∨} NP/ΣP

2 /coNP ΣP
2 /ΣP

2 /ΠP
2 ΣP

2 /ΣP
2 /ΠP

2

Table 3.1: Complexity results for the propositional fragment of logic programs

We now turn to the complexity results for non-ground programs with bounded predicate
arities. We will examine each of three reasoning tasks, and discuss how these results
compare to the propositional case.

3.1.1 Answer set existence

The complexity results of answer set existence for programs with bounded predicate arities
are summarized in Table 3.1.1.

Answer set existence {} {nots} {not}

{} coNP ∆P
2 ΣP

2

{∨h} ΣP
2 ΣP

2 ΣP
2

{∨} ΣP
2 ΣP

3 ΣP
3

Table 3.2: Complexity results of answer set existence for programs with bounded predicate
arities

Informally, we can understand these results as follows. First, we note that guessing an
interpretation I ⊆ HBP and deciding whether I satisfies PI is in ΣP

2 . To decide whether
I is a minimal model of P, we can use an oracle to guess I ′ ⊂ I and check whether I ′

satisfies PI . Such oracle would have ΣP
2 membership, since it first needs to guess a subset

I ′ ⊂ I (with complexity NP) and for each of this I ′, it needs to check that I satisfies PI
(also in NP). This means that the complexity of answer set existence is in ΣP

3 for the
general case. For DL[∨], to decide answer set existence, we observe that existence of a
(not necessarily minimal) model implies the existence of an answer set. Thus, minimality
check can be omitted, which implies that answer set existence stays within ΣP

2 for this
class. For DL[not ] programs, we can ensure minimality by not only guessing I, but also
a (polynomial size) set of founded proofs for I with respect to PI . A founded proof of a
literal a is a sequence of rule applications r1θ1 . . . rkθk which derives a from scratch. The
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proofs can be checked in polynomial time, and constitute a witness that the corresponding
set of ground literal must be in any answer set of the program. Applying this analysis to
check answer set existence for the classes of DL[], DL[nots] and DL[not ] programs, we
obtain the respective complexity results of coNP, ∆P

2 and ΣP
2 . From the discussion on the

equivalence of HCF programs and normal programs by way of the shifting operators (cf.
Section 2.2.4), we can infer also that answer set existence for DL[∨h] is in ΣP

2 as well. For
detailed formal proofs, including hardness property for each result, we refer to [Eiter et al.,
2007].

In comparison with the complexity results for the propositional case, answer set existence
for bounded predicate arities moves one level up in the polynomial hierarchy for every
class, except for the class of DL[nots], where it jumps from tractable to the second level of
PH. In this case, we cannot do better than checking stratum by stratum, which requires a
polynomial number of NP-oracle calls, thus the ∆P

2 result.

3.1.2 Brave and cautious reasoning

The complexity results for brave and cautious reasoning for programs with bounded
predicate arities obtained in [Eiter et al., 2007] are summarized in Table 3.1.2.

Brave/cautious reasoning {} {nots} {not}

{} DP1/NP ∆P
2 ΣP

2 /ΠP
2

{∨h} ΣP
2 /ΠP

2 ΣP
2 /ΠP

2 ΣP
2 /ΠP

2

{∨} ΣP
3 /ΠP

2 ΣP
3 /ΠP

3 ΣP
3 /ΠP

3

Table 3.3: Complexity results of brave and cautious reasoning for programs with bounded
predicate arities

The DP result for Horn programs comes from the fact that brave reasoning for this
class of programs requires a conjunction of two independent decisions, one is in NP and
the other is in coNP. The former refers to the test of minimality, while the latter is to
show that no contradiction is derivable (which is not needed in the case of definite Horn
programs). For normal programs with stratified negation, again we have a slightly higher
complexity, since we must a (polynomial) number of NP problems according to the strata
of the program, i.e two NP oracle calls are needed per stratum. The other results are quite
a natural change compared to the respective results for the propositional case, where the
complexity of brave and cautious reasoning for each program class is one level higher in
the polynomial hierarchy. Also, as is the case for propositional programs, the complexity
of brave reasoning for DL[∨] is one level higher than cautious reasoning, due to the fact
that minimality is needed for the former, but not for the latter.

3.2 Evaluation on current systems

One of the important implications of the complexity results summarized in the previous
section is that reasoning tasks on programs with bounded predicate arities is feasible under
polynomial space. However, experimental results given in [Eiter et al., 2007] show that
the current ASP solver systems do not respect this complexity bound, the reason being
that they create a ground program which is equivalent to the input, which in general has
exponential size, even for programs with bounded predicate arities. It should be noted,
however, that these systems may employ optimization techniques to minimize the cost of a
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full grounding step, but in general, exponential space behavior is still observable. We refer
the reader to [Eiter et al., 2007] for the complete experimental results on this subject.

We now focus our attention on three systems: DLV, GrinGo/ with clasp/claspD and
Lparse with SMODELS. In evaluating an input program, these systems perform three
main steps: i) grounding, ii) model generation and iii) model checking. The grounding
step produces an equivalent ground program. A partial evaluation may be carried out
towards parts of the program. Specifically, the normal-stratified rules of the program can
be evaluated efficiently using a variant of an algorithm called the generalized semi-naive
evaluation technique [Ullman, 1989]. In DLV, this step is performed by a module called
Instantiator/Intelligent-Grounding(IG)[Leone et al., 2006]. DLV provides the facility to
perform only instantiation/grounding, instead of fully evaluating the program, by specifying
the command line option -instantiate. The output of this instantiation is formatted in
a syntactically correct (ground) logic program. In Lparse-SMODELS, the grounding step is
performed by Lparse, which also performs semi-naive evaluation to the normal-stratified
portion of the program. The output produced by Lparse, however, uses a different format
using a numeric representation for the literals appearing in the program. The use of such
format allows for a more concise representation of the ground program.

In DLV’s Instantiator/IG, the grounding step initially computes the set of ground literals
I = IT ∪ IPT which contains all ”relevant” ground literals in the input program. The set
IT is the set of true literals, in the sense that, they have been determined to be true in
every answer set of the program, while the set IPT is the set of possibly true literals, which
may or may not be in some answer sets of the program. To fully evaluate the literals in
IPT , further computation using a guess and check approach needs to be done, which is
done by the other modules in DLV: Model Generator and Model Checker.

The set IT is first initialized with the facts (EDB) of the input program. It is then
extended with the head of the (ground) rules instantiated from a rule r which is simplified
into facts using the following simplification steps:

• If a positive body q is in B+(r), and q ∈ IT , then delete q from B+(r).

• If a negative body literal not q is in B−(r) and q 6∈ I, then delete not q from B−(r).

• If a negative body literal not q is on B−(r) and q ∈ IT , then delete the instantiated
rule.

In order to exploit stratifications and increase efficiency, evaluation of the extension of
the predicates is performed according to a topological ordering in the dependency graph.
This ordering ensures that, if a rule with a body containing predicate q then the rules
for predicate q has been instantiated before and its true instances are already in I. In
particular, for disjunction-free stratified program, all generated rule instances will be
simplified to facts or deleted, leaving only I = IT as the (single) answer set.

For rules that contain disjunction or unstratified negation, the instantiated head of each
of these rules can be true/false in an answer set. Each of these (ground) head literals is
being put into IPT , the ”possibly true” literals. All the (ground) literals which appear in
an instantiated rule that contains a literal already in IPT will also be put in IPT . We refer
to [Leone et al., 2006, Perri et al., 2007, Leone et al., 2001] for more thorough discussions
on DLV’s instantiation and grounding techniques.
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Example 3.1. Let P1 be:

d(0).d(1).
e(X)← d(X). (3.1)

p(0, X)← e(X),not q(1, X). (3.2)
q(1, X)← e(X),not p(0, X). (3.3)

r ← p(Y,X1), p(Y,X2), e(Y ), e(X1), e(X2). (3.4)

For program P1, DLV computes IT by first initializing it with {d(0), d(1)} . The second rule
can then be evaluated, giving the extensions {e(1), e(0)}, so that IT = {d(0), d(1), e(0), e(1)}.
p/2 and q/2 appears in unstratified rules, hence their extensions will be put into IPT .
Rules (3) and (4) have only one positive body literals, e(X). Instantiating this literal
with the known extensions e(0) and e(1), we obtain IPT = {p(0, 0), p(0, 1), q(1, 0), q(1, 1)}.
Finally, r is added to IPT , after instantiating the body of rule (5) with any of the known
extensions for p/2 and e/1 which are already in IPT .

A literal with predicate q is solved if: 1) q is defined solely by non-disjunctive rules, 2) q
does not depend (even transitively) to any unstratified predicate or disjunctive predicate.
The simplification steps described above will be able to fully evaluate solved literals, and
determine its truth values. However, for unsolved literals, there will be rules that cannot
be further simplified and the evaluation of these literals need to be done using model
generation and model checking.

Consider program P1 in Example 3.1 above. Literals e(0), e(1) are solved and thus can
be completely evaluated, and is known to be true in all answer sets of the program. Literals
p(1, 0), p(1, 1), q(0, 0) and q(0, 1) are also solved, since no defining rules are instantiated
for them, and they are known to be false in all answer sets of P1. However, literals
p(0, 1), p(0, 0), q(0, 1), q(0, 0) and r are not solved, because they depend on unstratified
rules. The simplification steps described above will result in the so-called residual ground
rules. In Example 3.1, the resulting residual ground rules are:

p(0, 0)← not q(1, 0).
p(0, 1)← not q(1, 1).
q(1, 0)← not p(0, 0).
q(1, 1)← not p(0, 1).

r ← p(0, 0).
r ← p(0, 1), p(0, 0).
r ← p(0, 1).

This instantiated ground rules will need to be submitted into the model generator and
model checker to be fully evaluated to obtain the answer sets of the program.

A careful observation to the method described above will reveal the fact that, for certain
classes of programs, even with bounded predicate arities, the resulting residual ground
program may have exponentially many rules.
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Example 3.2. Consider the class of programs Pk, where k ≥ 1 as follows:

a(0).a(1).a(2).b(0).
c(X)← a(X),not b(X)

p← a(X1), c(X1), . . . , a(Xk), c(Xk)
d(X) ∨ e(X)← c(X)

q ← a(X1), d(X1), . . . , a(Xk), d(Xk)

Instantiation technique as described above will recognize that the following portion of the
program Pk is stratified:

a(0).a(1).a(2).b(0).
c(X)← a(X),not b(X)

p← a(X1), c(X1), . . . , a(Xk), c(Xk)

Hence, the instantiation will evaluate this part of the program completely, obtaining the
set IT = {a(0), a(1), a(2), b(0), c(1), c(2), p} and leaves no residual ground rules. However,
continuing the evaluation to the next rules, we encounter the rule d(X) ∨ e(X)← c(X).
The ground rule d(0)∨ e(0)← c(0) can be omitted, since c(0) 6∈ I. On the other hand, the
ground rules d(1) ∨ e(1)← c(1) and d(2) ∨ e(2)← c(2) can only be simplified by deleting
the body literals c(1) and c(2), giving the ground rules d(1) ∨ e(1) and d(2) ∨ e(2). At this
point, the instantiation step puts d(1), d(2), e(1) and e(2) into IPT . Finally, the last rule
is instantiated to 2k residual ground rules, generated by substituting each of the variables
Xi, 1 ≤ i ≤ k with constant symbols 1 and 2. The simplification step only deletes the
body literals a(0) and a(1) from the rules. The complete residual program consisting of
2k + 2 rules is given below:

d(1) ∨ e(1)
d(2) ∨ e(2)

q ← d(0), . . . , d(0)
...
q ← d(1), . . . , d(1)

Lparse and GrinGo perform instantiation in a similar but slightly different manner than
DLV’s Instantiator/IG, due to the stricter safety condition in the language of Lparse/GrinGo,
which allows only domain-restricted rules in the input program. Each domain predicate in
the program will be fully evaluated, and the extensions computed from it must be true in
every answer set of the program. The property of being domain restricted for a predicate
is transitive, meaning that if, for a predicate p, all the rules defining p contain only domain
predicates which occur in the positive body literals of the rules, then p is also a domain
predicate. Simplification can then be performed similarly as in DLV’s Instantiator/IG to
obtain the ground residual program. As it is the case in DLV’s instantiation, the ground
program obtained from Lparse/GrinGo may contain exponentially many rules.

3.3 Meta-Interpreter Approach

As a possible solution to overcome the exponential space behavior of the instantia-
tion/grounding step on the current ASP solver systems, [Eiter et al., 2007] suggested
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the use of a meta-interpreter approach. Informally, this approach takes an input program
P and encodes/represents it as facts. A set of rules is then written to generate polynomially
bounded subsets of Ground(P ). A meta-interpretation logic program is then defined,
which basically follows the technique used in [Eiter et al., 2003] to perform evaluation on
these subsets. The resulting program should produce a polynomially sized grounding using
systems such as DLV and Lparse.

We describe this approach in a more detailed manner. For simplicity, we consider the
only the sublanguage of logic program containing only Horn rules. The meta-interpreter
approach defines the several modules as explained in the following descriptions.

Program Table. The program table is a set of facts representing the input program. To
allow such representation of the program, first rewrite the program into a new program
which contains only one predicate symbol. This can be done by selecting a fresh predicate
symbol and incorporating the original predicate symbols as its arguments, and filling
unused arguments with new constant symbols. The resulting program should have the
same intended meaning with the original program.

The program table is then written to encode the occurrences of literals in the rules.
Each head literal and body literal is encoded in a fact using the predicate tabH and tabB,
respectively. To identify the rule in which a literal occurs, a new constant symbol denoting
the label for each rule is specified as an argument of the predicates tabH and tabB. To
allow encoding of a variable X, a new constant symbol varX is used. A simple illustration
is given below:

Example 3.3. Consider the program P1 below:

p(X1, X5)← e(X1, X2), . . . , e(X4, X5)
reachable(X,Y )← p(X,Y )
reachable(X,Y )← reachable(X,Z), p(Z, Y )
e(v1, x1).e(v1, y1).e(x1, v2).e(y1, v2).
e(v2, x2).e(v2, y2).e(x2, v3).e(y2, v3).

Program P1 can be rewritten into program P ′1 which uses only the predicate symbol q as
follows:

q(p,X1, X5)← q(e,X1, X2), . . . , q(e,X4, X5)
q(reachable,X, Y )← q(p,X, Y )
q(reachable,X, Y )← q(reachable,X,Z), q(p, Z, Y )

q(e, v1, x1).q(e, v1, y1).q(e, x1, v2).q(e, y1, v2).
q(e, v2, x2).q(e, v2, y2).q(e, x2, v3).q(e, y2, v3).

The program table for P1 is then written as follows:

tabH(r1, p, varX1, varX5).tabB(r1, varX1, varX5). . . . tabB(r1, varX4, varX5).
tabH(r2, reachable, varX, varY ).tabB(p, varX, varY ).
tabH(r3, reachable, varX, varY ).tabB(r3, reachable, varX, varZ).tabB(r3, p, varZ, varY ).
tabH(r4, e, v1, x1).tabH(r5, e, v1, y1).tabB(r6, e, x1, v2).tabB(r7, e, y1, v2).
tabH(r8, e, v2, x2).tabH(r9, e, v2, y2).tabH(r10, e, x2, v3).tabH(r11, e, y2, v3).

We will refer to the program table obtained from a program P as P table.
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Program labels. Program label is a set of facts which encodes the properties of the input
program, such as the labels for the rules, the occurrences of the variable symbols in the rules
and the occurrences of the constant symbols. Moreover, a set of new constant symbols is
defined to denote the labels of the selected ground rules during the selection and valuation
step (defined afterwards). We know that we need at most num p ∗ num ca ground rules
selected, where num p, num c and a denote the number of predicate symbols, the number
of constant symbols and the (maximum) arity of the input program, respectively.

Example 3.4. For program P1 in Example 3.3, we have 7 constants, 3 predicates, and
arity 2. Hence, we have 3 ∗ 72 = 147 the following program labels:

rule(r1). . . . rule(r11).
rulevar(r1, varx1). rulevar(r1, varx2). rulevar(r1, varx3).
rulevar(r1, varx4). rulevar(r1, varx5). rulevar(r2, varx).
rulevar(r2, vary). rulevar(r3, vary). rulevar(r3, vary).
rulevar(r3, varz).
const(v1). const(v2). const(v3).
const(x1). const(x2). const(y1). const(y2).
label(l1). . . . label(l147).

We refer to the program label obtained from a program P as P label.

Instance selection. The instance selection module is a set of of rules which performs
nondeterministic instantiation to the rules in the input program and selection of the ground
rules. Using the information encoded in the program label, we write the instance selection
as follows:

sel(L,R) ∨ nsel(L,R)← label(L), rule(R)
← sel(L,R1), sel(L,R2), R1 <> R2

val(L, V,C) ∨ nval(L, V,C)← sel(L,R), rulevar(R, V ), const(C)
nval(L, V,C1) ∨ nval(L, V,C2)← sel(L,R), rulevar(R, V ),

const(C1), const(C2), C1 <> C2
valued(L, V )← val(L, V, )

← label(L), rule(R), sel(L,R),
rulevar(R, V ),not valued(L, V )

The first rule non-deterministically select a rule for each label, and the second rule makes
sure that no label is used in two different rules. The third rule non-deterministically valuate
each variable in a rule with a constant. The fourth rule eliminates the models for which
a variable is valuated with two different constants. The last two rules makes sure that
at each label, all the variables in the rules selected for that label are instantiated with a
constant. We refer later to this program as Sel.

Program Input. To provide a representation of the ground rules which can be used as an
input for the meta-interpreter, we define a module called program input. First, to encode
the ground literals occurring in a ground rule, we define a set of facts which map each
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possible combination of valuation of a literal with the available constant symbols. This can
be done using a set of facts of the form map(p, a1, a2, . . . , ak, id n) where p is a predicate
symbol and ai, i = 1, . . . , k are constant symbols occurring in the program, while id n is a
new constant symbol, unique for each mapping fact.

Using this mapping facts, we can represent the ground rules as facts obtained from the
rules generated by the following steps:

• Each facts can be directly included as an input for the meta-interpreter, since there
are no variables in facts, so no selection and valuation are necessary. For a fact F
with literal p(a1, a2, ..., ak) we create a rule:

head(A,F )← rule(F ),map(p, a1, . . . , ak, A)

• For a literal p(X1, X2, . . . , Xk) in the head of a rule R, where each Xi is a variable,
we create a rule:

head(A,L)← sel(L,R), tabh(R,X1, . . . , Xk), val(L,X1, V al1), . . . ,
val(L,Xk, V alk),map(p, V al1, . . . , V alk, L)

• For a literal p(X1, X2, . . . , Xk) in the body of a rule R, where each Xi is a variables,
we create a rule:

pbl(A,L)← sel(L,R), tabB(R,X1, . . . , Xk), val(L,X1, V al1), . . . ,
val(L,Xk, V alk),map(p, V al1, . . . , V alk, L)

Example 3.5. Referring to the program P1 in Example 3.3, we define the mapping facts
as follows:

map(e, v1, v1, id 1).
map(e, v1, v2, id 2).
...
map(reachable, y2, y2, id 147).

For the facts in program P1, the program input module for P1 will contain the following
rules:

head(A, r4)← rule(r4),map(e, v1, x1, id 1)
...

head(A, r11)← rule(r11),map(e, y2, v3, id 11)

assuming that id 1, . . . , id 11 are the constant symbols used in the mapping facts for each
of these facts. For the head literal p(X1, X5) in the first rule of P1, we create the following
rule:

head(A,L)← tabH(r1, p, varX1, varX5), val(L,X1, V al1),
val(L,X5, V al2),map(p, V al1, V al2, A)

We refer to the program input module for a program P as P input.
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Meta-interpreter. Finally, having defined the the representation for the ground rules,
we are ready to define the meta-interpreter module itself. It basically follows the format
given in [Eiter et al., 2003], except for some small details.

pos body exist(R)← pbl( , R)
pos body true(R)← label(R),not pos body exist(R)

pbl inbetween(X,Y,R)← pbl(X,R), pbl(Y,R), pbl(Z,R), X < Z,Z < Y

pbl notmax(X,R)← pbl(X,R), pbl(Y,R), X < Y

pbl notmin(X,R)← pbl(X,R), pbl(Y,R), Y < X

pos body true upto(R,X)← pbl(X,R),not pbl notmin(X,R), in AS(X)
pos body true upto(R,X)← pos body true upto(R, Y ), pbl(X,R), in AS(X), Y < X,

not pbl inbetween(Y,X,R)
pos body true(R)← pos body true upto(R,X),not pbl notmax(X,R)
neg body false(R)← nbl(X,R), in AS(X).

in AS(X)← head(X,R), pos body true(R),not neg body false(R).

Note that the meta-interpreter itself is also designed to handle evaluation of normal logic
programs with default negation. However, at the moment, the previous modules: program
table and program input assumes that the input program is Horn. This restriction may be
removed later on with a more suitable representation in these modules. We will refer to
this meta-interpretation program as Meta.

The meta-interpretation approach works by combining all the modules described above
into a single program. The answer sets of this new program will correspond to the answer
set of the answer set of the original program. Formally, if P denotes the input program,
then we construct the program P t = P table ∪ P label ∪ P input ∪ Sel ∪Meta. Without going
to the formal proof, we may intuitively see that for each answer set A ∈ AS(P ), there is
an answer set At ∈ AS(P t) which corresponds to A. Specifically, if A = {a1, . . . , ak}, then
the corresponding At will be of the form {in AS(m1), . . . , in AS(mk)}, where each mi is
the label for the mapping of ai, 1 ≤ i ≤ k as defined in P input.

The meta-interpreter approach described here has been pursued in an earlier work, and
some extensions of this approach has been considered. To allow default negation in the
rules, modifications on the program table, program label and program input has been
defined. Furthermore, since the answer sets produced by the meta-interpreter is computed
only from a subset of the original program, an additional step of checking that the answer
set does satisfy every rule in the original program is needed, if default negation occurs.
Some modifications on the instance selection modules have also been considered which
prunes the number of subsets of the ground program evaluated by the meta-interpreter.

To obtain a concrete picture of the performance of this meta-interpretation technique in
practical cases, an implementation of this method has been built. The implementation
works as a sort of translator, receiving an input program P and outputs the program P t

which can then be fed into an ASP solver. DLV was chosen as the backed solver for this
purpose. Experimental test results on the implementation showed that the meta-interpreter
approach does not perform quite as well as expected. Even though theoretically the output
program P t should use polynomial amount of space, some memory overhead caused by the
meta-interpretation technique proved to be quite big. Specifically, the instance selection
module, which contains two disjunctions to perform the selection and valuation of the
rules, generates many choice points along the way.
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Experimental results confirmed that the meta-interpreter approach is inefficient in
practice. Space consumption remains high, even though in theory, it is still polynomial
with respect to the input size. Furthermore, evaluation time increases exponentially with
increasing input size and is quite high even for small input programs. In the next chapter,
we describe a different approach to evaluate programs with bounded predicate arity.



4
Basic Evaluation Methods

In this chapter we propose three different methods for evaluating an input program P
with bounded predicate arities which stay under polynomial space. The first two methods
assume that P is normal or head-cycle-free (HCF) disjunctive. It follows from the discussion
in Section 2.2.4 that a HCF program can be rewritten into an equivalent normal program
using the shifting operation as defined in Definition 2.5. As a result, we can define the same
evaluation method for HCF programs as for normal programs. However, this property does
not apply to non-HCF programs. We hence propose another method to handle non-HCF
programs.

Before describing these evaluation methods, we present several definitions and observa-
tions used in the methods.

Definition 4.1. For a rule r, define pos(r) as the rule derived from r by deleting every
negative body literals in r, pos(r) = H(r)← B+(r). For a program P, define pos(P) to
be the program consisting of pos(r) where r is a rule in P which is not a constraint, or
more formally pos(P) = {pos(r) | r ∈ P, H(r) 6= ∅}.

Definition 4.2. Let P be any logic program. Then pos(shift(P)) is definite Horn, and
has exactly one answer set. Define SP to be the answer set of pos(shift(P)). To be more
precise, pos(shift(P)) might not have an answer set, due to the occurrence of a pair of
complementary atoms a and ¬a in different answer sets of P. In such cases, we allow SP
to be inconsistent.

We make the following observation:

Proposition 4.1. Every answer set A of P is a subset of SP .

Proof. Recall that every answer set A of P is the minimal model of PA. Now, let Ap denote
the answer set of the program pos(shift(PA)).1 We will show that A ⊆ Ap. Suppose, in
the contrary, we have that A * Ap. Consider the interpretation A′ = Ap ∩ A. We have
that A′  A. Let r be any rule in PA. We claim that A′ |= r. First, observe that r is
positive, and that any r′ ∈ pos(shift(r)) satisfies B+(r′) = B+(r) and H(r′) ⊆ H(r). If
we have B+(r) ⊆ A′, then since A′ ⊆ Ap, we can choose a rule r′ from pos(shift(r)) ⊆
pos(shift(PA)) such that A′ ∩H(r′) 6= ∅. Since H(r′) ⊆ H(r), we must have also that
A′ ∩H(r) 6= ∅, thus proving that A′ |= r for any r ∈ PA. This contradicts the fact that A
is the minimal model of PA. This contradiction proves that A ⊆ Ap.

1Similar to the definition of SP , we allow Ap to be inconsistent also.

38
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Now, observe that PA ⊆ pos(P). Hence, we have that shift(PA) ⊆ shift(pos(P)) and
also pos(shift(PA)) ⊆ pos(shift(pos(P))) = pos(shift(P)). Since both pos(shift(PA))
and pos(shift(P)) are positive, we can infer that the answer set of pos(shift(PA)), i.e.,
Ap, is a subset of the answer set of pos(shift(P)), i.e., SP . As a conclusion, we have that
A ⊆ Ap ⊆ SP .

Example 4.2. Take P as the following program:

a ∨ b← not c
d← a

¬d← b

We have that pos(shift(P )) is the following program:

a←
b←
d← a

¬d← b

and SP = {a, b, d,¬d}. It is easy to verify that every answer set of P is a subset of SP .

Another observation we make at this point, is that any answer set A of P must contain
the facts of P, plus all the atoms derivable from these facts and the definite rules of P.
Formally, we define the following:

Definition 4.3. For a program P, define Def(P) as the set of all definite Horn rules in
P. Define DP as the single answer set of Def(P) ∪ EDB(P).

We have the following result:

Proposition 4.3. Every answer set A ∈ ANS(P) satisfies A ⊇ DP .

For any logic program P, the sets DP and SP provide the lower and upper bound
estimates for the answer sets of P. This is one of several key concepts used in the
evaluation methods we are about to describe.

4.1 Evaluation Methods for Normal and HCF Programs

In this section, we assume that the input program P is HCF. After performing the shifting
operation, if needed, we obtain an equivalent normal program. To compute the answer
sets of P, we make the following observations. Let A be any answer set of P, then every
atom a ∈ A must be derivable using exactly one ground rule, because P is normal. Since
the size of A is polynomially bounded if P has bounded predicate arities, we can conclude
that every answer set A of P is computable using a polynomially bounded subset of P . In
fact, the size of this subset can be set exactly to |A|.

This motivates us to pursue the following approach: to compute all answer sets of the
normal program P with bounded predicate arities, we consider some polynomially bounded
subsets of P and then generate candidate answer sets from these subsets. Each candidate
answer set need not necessarily be an answer set of P, since it is derived only from a
subset of P and might not satisfy every rule in P. We call such candidate answer sets,
local answer sets on the ground that they are computed from only a subset of the input
program. Formally, if P ′ ⊆ P then we say that any A ∈ ANS(P ′) is a local answer set of
P. Lemma 4.4 characterizes the property of the local answer sets which are also answer
sets of the program.



40 Basic Evaluation Methods

Lemma 4.4 (Locality lemma). Let P be any logic program and P ′ ⊆ P. An answer set
A of P ′ is also an answer set of P if and only if for each rule r ∈ P holds that A |= r.

Proof. The “only-if” part is trivial since every answer set A of P must satisfy A |= r for
any r ∈ P. Now, assume that A |= r for all r ∈ P. Then A |= PA as well. Suppose that
A is not an answer set of P, then there must exists a proper subset A′ ⊂ A such that
A′ |= PA. However, since P ′ ⊆ P, it must also holds that A′ |= P ′A. But this means that
A is not a minimal model of P ′, a contradiction.

Hence, to ensure soundness of this approach, we must check whether each of the candidate
answer sets satisfies every rule of the program. For this purpose, we can use a simple
rewriting technique and applying it to the rules in P to produce a set of constraints for
checking satisfiability against the local answer set.

Definition 4.4. For any r ∈ P of the form 2.1, define cons(r) as the following the
constraint:

← b1 . . . , bm,not cm+1, . . . ,not cn,not a1, . . . ,not ak

Also, define cons(P) = {cons(r) | r ∈ P}

We claim the following proposition.

Proposition 4.5. For an interpretation I and program P, it holds that I |= P iff
cons(P) ∪ I is consistent

Proof. For the “only-if” part: suppose that cons(P) ∪ I is not consistent. Then there
must be a rule r′ ∈ P such that the body of cons(r′), B(cons(r′)) evaluates to true.
Since cons(P) ∪ I consists of only facts from I and constraints, it must be the case that
I |= B(cons(r′)). By the definition of cons(r′), it can be concluded that I |= B(cons(r′))
implies I |= B(r′) but I 6|= H(r′), which implies that I 6|= r, in contradiction with the
assumption that I |= P. Conversely, if cons(P) ∪ I is consistent, then it follows that for
every r ∈ P , I 6|= B(cons(r)). This means that either I 6|= B(r) or I |= H(r), each of which
implies that I |= r.

Hence, to check every local answer set I for satisfiability against the program P , we can
proceed by checking consistency for the program cons(P) ∪ I.

Example 4.6. Let P1 be the program:

p(X) ∨ q(X)← e(X)
r ← e(X1), p(X1), . . . , e(Xk), p(Xk)

e(0).e(1)

Program P1 is semantically equivalent to the following normal program P ′1, obtained from
P1 by shifting operation:

p(X)← e(X),not q(X)
q(X)← e(X),not p(X)

r ← e(X1), p(X1), . . . , e(Xk), p(Xk)
e(0).e(1).
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Ground(P ′1) contains 2k + 4 rules and two facts. However, it can be easily verified that
each answer set of P1 can be computed from a subset of Ground(P ′1) which contains at
most 3 rules (not including the facts). For example, the answer set {e(0), e(1), p(0), q(1), r}
of P1 is an answer set of the following subset of Ground(P ′1):

p(0)← e(0),not q(0)
q(1)← e(1),not p(1)
r ← e(1), p(1)

e(0).e(1).

Furthermore, according to Lemma 4.4, each candidate answer set A obtained from
evaluating a subset of Ground(P ′1) is also an answer set of P1 iff it satisfies every rule in
P1. Checking this condition can be done by constructing the following program cons(P ′1):

← e(X),not q(X),not p(X)
← e(X1), p(X1), . . . , e(Xk), p(Xk),not r
e(0).e(1).

and checking whether cons(P ′1) ∪A is consistent.

We summarize the approach for computing answer sets of a normal or HCF disjunctive
program P as follows:

(i) Perform shifting operation on P to get an equivalent normal program PN .

(ii) Compute local answer sets from polynomially bounded subsets of PN .

(iii) For every local answer set I obtained in step (iii), check whether I satisfies all the
rules in P

(iv) Output every local answer set I which satisfies the check in the previous step.

We will now present two different methods to compute the local answer sets of a program.

4.1.1 Method 1

We start by making the assumption that program P is normal. The main idea of this
method is to compute local answer sets by considering the minimum sized subsets of
Ground(P) which might produce an answer set. Since we know that any answer set
A ∈ ANS(P) satisfies A ⊆ SP , we can intuitively reason that A can be obtained by
considering the subsets of Ground(P) such that the set of head literals in the rules is
exactly SP . We formalize this idea by making the following definition:

Definition 4.5. Call a set of ground rules RP ⊆ Ground(P), a minimal subset guess of
P, iff it satisfies the following conditions:

(i) EDB(P) ⊆ RP .

(ii) For every literal l ∈ SP , there is exactly one rule r ∈ RP such that H(r) = {l}.

(iii) There is no rule r ∈ RP for which H(r) 6⊆ SP .

(iv) Every positive body literal b in each rule r ∈ RP satisfies b ∈ SP .
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Clearly, since |RP | = |SP | and SP is polynomially bounded, we can conclude that every
minimal subset guess of P is also polynomially bounded. We claim the following result:

Proposition 4.7. Every answer set A of a normal program P is an answer set of at least
one minimal subset guess RP of P

Proof. We will construct the required minimal subset guess from A. Since A is an answer
set of P, it holds that A = Least(PA). Consider the following sequence of interpretation
deriving A using the TPA operator: A0 = ∅, and for i ≥ 0, Ai = TPA(Ai−1). Since
A =

⋃
i≥0Ai, for each a ∈ A, we can choose the smallest j such that a ∈ Aj . For such j,

define ρ(a) as any rule in PA such that H(ρ(a)) = a. Let χ(a) be the rule in Ground(P)
corresponding to ρ(a), that is, ρ(a) is the result of deleting the negative body literals in
χ(a). Furthermore, we define χ(A) = {χ(a) | a ∈ A}. Also, for any b ∈ SP \A, define χ(b)
as any rule in Ground(P) such that H(χ(b)) = b, and finally define R = {χ(a) | a ∈ SP}.
By its definition, R satisfies all the conditions of a minimal subset guess of P

Now, observe that PA ⊆ RA. However, we also have that RA ⊆ PA, since R ⊆ P.
Hence, it must be the case that RA = PA. Since A ∈ ANS(P), it must be the case that
A ∈ ANS(R) also. Hence, we can take R as the required minimal subset guess for A. This
completes the proof.

Proposition 4.7 guarantees that by considering all minimal subset guesses of P, every
answer set A of P will be produced by Method 1. Together with Lemma 4.4, we have
proved that evaluation of logic programs under answer set semantics using Method 1 is
sound and complete. We state this result formally as follows:

Proposition 4.8. For a normal/HCF program P , every answer set produced by Method 1
is an answer set of P. Conversely, if A is an answer set of P, then Method 1 will produce
A.

Example 4.9. Consider program P1 from Example 4.6 with k = 2. We have that
SP1 = {e(0), e(1), p(0), p(1), q(0), q(1), r}. Consider the following minimal subset guess of
P1:

p(0)← e(0),not q(0)
q(0)← e(0),not p(0)
p(1)← e(1),not q(1)
q(1)← e(1),not p(1)
r ← e(0), p(0)
e(0).e(1).

This program has four answer sets, namely:

A1 = {e(0), e(1), p(0), p(1), r}
A2 = {e(0), e(1), p(0), q(1), r}
A3 = {e(0), e(1), q(0), p(1)}
A4 = {e(0), e(1), q(0), q(1)}

which are local answer sets for the original program P1. One of these four local answer sets
(A3) is actually not an answer set of P1. Indeed, A3 does not satisfy the last rule of P1.
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There is only one other answer set of P1 which has not been accounted for using the
above minimal subset guess: {e(0), e(1), q(0), p(1), r}. This answer set can be obtained by
considering the following minimal subset guess:

p(0)← e(0),not q(0)
q(0)← e(0),not p(0)
p(1)← e(1),not q(1)
q(1)← e(1),not p(1)
r ← e(1), p(1)
e(0).e(1).

To ensure completeness of Method 1, all possible minimal subset guess would have to
be considered. However, we can see from the example above, different minimal subset
guess might have common answer sets. Furthermore, since there may be exponentially
many answer set, we cannot store previously found answer sets to avoid recomputing them
again because this would lead to exponential space requirement. Hence, using Method 1 to
generate candidate answer sets might cause some answer sets to be recomputed several
times.

Example 4.10. For program P1 above, it can be verified that {e(0), e(1), p(0), p(1), r} is
an answer set of every minimal subset guess of P1.

4.1.2 Method 2

The main idea used in Method 2 to produce a local answer set is by observing that since
any answer set/local answer set A of P satisfies A ⊆ SP , we may find A by iterating over
the subsets of SP and checking each subset for minimality. Furthermore, based on the
result stated in Proposition 4.3, we know that only the subsets of SP satisfying DP ⊆ SP
need to be considered.

Suppose now, that we have an interpretation A such that DP ⊆ A ⊆ SP . To prove
minimality of A, we need to find a set of ground rules P ′ such that A is an answer set of
P ′. To this purpose, we define the following:

Definition 4.6. A subset RP,A of Ground(P) is called a supporting minimal subset guess
of P w.r.t A iff it satisfies the following properties:

(i) EDB(P) ⊆ RP,A.

(ii) For each a ∈ A, there exist exactly one r ∈ RP,A such that H(r) = {a}.

(iii) There is no rule r ∈ RP,A for which H(r) 6⊂ A.

(iv) For every rule r ∈ R, every positive body literal p ∈ B+(r) satisfies p ∈ A.

(v) No rule r ∈ R has a negative body literal not n ∈ B−(r) satisfying n ∈ A.

Clearly by the above definition, we have |RP,A| = |A|. Since A ⊆ SP and SP is
polynomially bounded if P has bounded predicate arities, we conclude that the supporting
minimal subset guesses of P for any A are also polynomially bounded.

If no supporting minimal subset guesses of P w.r.t A exists, then we can safely conclude
that A is not an answer set of P. If a supporting minimal subset guess RP,A of P w.r.t A
does exist, then proving the minimality of A can be done by showing that A is an answer
set of RP,A. In order to describe the approach we take to achieve this purpose, we need
the following definitions:
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Definition 4.7. The function π is defined recursively as follows:

• For an atom a = p(t1, . . . , tk), we define π(a) = p′(t1, . . . , tk), where p′ is a new
predicate symbol. Similarly, for a literal not a, π(not a) = not π(a).

• For a set of literals L = {l1, . . . , lk}, define π(L) = {π(l) | l ∈ L}

• For a rule r, define π(r) = H(r)← B+(r), π(B−(r))

• For a program R, define π(R) = {π(r) | r ∈ R}

Definition 4.8. For a set of literals L, define τ(L) to be the set of constraints

τ(L) = {← not l, π(l) | l ∈ L}

Consider the program R′P,A = π(RP,A) ∪ π(A) ∪ τ(A). We have the following result:

Lemma 4.11. R′P,A is consistent iff A is an answer set of RP,A.

Proof. Since π(A) ⊆ R′P,A, every answer set M of R′P,A must satisfy π(A) ⊆ M . Fur-
thermore, since we have the constraints τ(A) ⊆ R′P,A, it must be the case that A ⊆ M .
Consider the program π(RP,A). It is easy to see that π(RP,A)A = RAP,A. If R′P,A is
consistent, then it must be the case that A is the answer set of π(RP,A)A. This implies
that A is also the answer set of RAP,A, and consequently also of RP,A. Conversely, if R′P,A
is inconsistent, then A is not the answer set of π(RP,A)A, which implies that A is also not
the answer set of RAP,A.

Example 4.12. Consider again program P1 from Example 4.6:

p(X)← e(X),not q(X)
q(X)← e(X),not p(X)

r ← e(X1), p(X1), . . . , e(Xk), p(Xk)
e(0).e(1).

We have that SP = {e(0), e(1), q(0), q(1), p(0), p(1), r}. For the choice ofA = {e(0), e(1), p(0), q(1), r},
we have the following supporting minimal subset guess RP,A for A:

p(0)← e(0),not q(0)
q(1)← e(1),not p(1)
r ← e(0), p(0)

e(0).e(1).
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To check whether A is an answer set of RP,A, we construct the program R′P,A as follows:

e′(0).e′(1).
p′(0).q′(1).
r′.

p(0)← e(0),not q′(0)
q(1)← e(1),not p′(1)
r ← e(0), p(0)

e(0).e(1).
← p′(0),not p(0)
← q′(1),not q(1)
← r′,not r

Program R′P,A is consistent, with A as its single answer set. Hence, we conclude that A is
indeed an answer set of RP,A.

Once we established the fact that there is a supporting minimal subset guess R such
that A is an answer set of R, we proceed similarly as in Method 1 to check that A satisfies
every rule in P. We summarize the steps performed in Method 2 as follows:

(i) Compute the set of literals SP .

(ii) Enumerate interpretation A such that DP ⊆ A ⊆ SP .

(iii) For each A computed in step (ii), find a supporting minimal subset guess R of A such
that A is an answer set of R.

(iv) For each A satisfying the condition in step (iii), check whether A satisfies every rule
in P. If it does, then A is an answer set of P.

It is clear that since we begin the computation of a candidate answer set by first guessing
the interpretation, and then followed by finding the justification (the supporting subset),
no answer sets will be recomputed, as is the case when Method 1 is used.

Finally, to complete our discussion on Method 2, we state the soundness and completeness
property this method:

Proposition 4.13. For a program P , any output produced by Method 2 from evaluating
P is an answer set of P . Conversely, if A is an answer set of P , then Method 2 will produce
A.

Proof. If the evaluation using Method 2 on program P produces the answer set A, then it
must be the case that A is an answer set of some supporting minimal subset guess RA ⊆ P .
Moreover, we must have A |= P. By Lemma 4.4, A must be an answer set of P.

Suppose now that A is an answer set of P, then A must satisfy DP ⊆ A ⊆ SP . Hence
Method 2 will visit A during the subset generation step. Moreover, RP,A = PA is a
supporting minimal subset guess of A, and clearly A is an answer set of RP,A. Hence,
Method 2 will produce A as an output.
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4.2 Evaluation Method for non-HCF Disjunctive Programs

For non-HCF disjunctive programs, the property that each answer set A of a program P
can be computed from a subset of Ground(P) with size equals to |A| no longer holds.

Example 4.14. Let P2 be the program

a ∨ b←
a← b

b← a

The only answer set of P2 is {a, b}. Furthermore, no proper subset of P2 is sufficient to
derive {a, b}.

In general, for non-HCF programs, it is not possible to employ the strategy being used
in the previous section, by which we try to find answer sets of a program by computing
candidate answer sets from subsets of the program. It is generally not true that only
one rule is needed to derive an atom in an answer set, hence we cannot know the size of
the subset of the program sufficient to compute the answer sets. To evaluate non-HCF
programs with bounded predicate arities under polynomial space, we need to use a different
approach.

The approach we use will consists of two main steps:

(i) Generate sufficient number of models of the input program P. Not all models of P
need to be considered in order to find the answer sets of P . Specifically, following the
results in Proposition 4.1 and Proposition 4.3, we need only to consider models I of
P such that DP ⊆ I ⊆ SP .

(ii) For each model I of P considered in step (i), we check whether I is the minimal
model of the GL-reduct of P w.r.t I, PI . By definition, each such model is an answer
set of P

We will refer to this method as Disjunctive Method. The following explains the two steps
of Disjunctive Method in a more detailed manner:

4.2.1 Generating models

Consider the set PTP = SP \DP . We can generate models I of P satisfying DP ⊆ I ⊆ SP ,
using the following program:

G = {a ∨ ¬a | a ∈ PTP} ∪DP ∪ cons(P)

Intuitively, the program {a∨¬a | a ∈ PTP} ∪DP represents a “guess” of an interpretation
I such that DP ⊆ I ⊆ SP , while cons(P) makes sure that the answer set of G satisfies P.

However, we realize that G may have unbounded size rules which depend on disjunctions,
and evaluating such program using the current ASP solvers may cause exponential space.
The following approach is used to avoid this problem. First, we split the program P into
two parts, P = Small(P) ∪Big(P) as follows:

• Small(P) = {r ∈ P | |Ground(r)| ≤ B(P )}, where B(P ) is a polynomially bounded
number w.r.t the size of P .

• Big(P) = P \ Small(P)
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The program Small(P) represents the subset of P which contains the small rules, whereas
Big(P) represents the big rules, which may contain exponentially many ground rules.

We perform a two-step computation: generate candidate models using the guessing rules
as in G, but use only cons(Small(P)), instead of cons(P). Afterwards, we check these
candidate models using the rules is Big(P). Formally, let

GP = {a ∨ ¬a | a ∈ PTP} ∪DP ∪ cons(Small(P))

If I = A∩SP for some answer set A of GP , then I must satisfy DP ⊆ I ⊆ SP . Hence, if the
program I ∪ cons(Big(P)) is consistent, then I must satisfy I |= Small(P) ∪Big(P) = P .

Example 4.15. Let P3 be the following program:

p(X) ∨ q(X)← e(X)
p(X)← q(X)
q(X)← p(X)

r ← p(X1), q(X1), p(X2), q(X2), p(X3), q(X3)
e(0).e(1).

Let us assume, for the sake of the illustration, that Small(P3) is

p(X) ∨ q(X)← e(X)
p(X)← q(X)
q(X)← p(X)
e(0).e(1).

and Big(P3) is

r ← p(X1), q(X1), p(X2), q(X2), p(X3), q(X3)

We have that SP3 = {e(0), e(1), p(0), p(1), q(0), q(1), r}, DP3 = {e(0), e(1)}. Hence, GP3

is the folowing program:

p(0) ∨ ¬p(0)
p(1) ∨ ¬p(1)
q(0) ∨ ¬q(0)
q(1) ∨ ¬q(1)
r ∨ ¬r
← e(X),not p(X),not q(X)
← p(X),not q(X)
← q(X),not p(X)

e(0).e(1).

There are exactly two answer sets of GP :

(i) A1 = {e(0), e(1),¬r, q(0), q(1), p(0), p(1)} and

(ii) A2 = {e(0), e(1), r, q(0), q(1), p(0), p(1)}.
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The corresponding I1 = A1 ∩ SP3 and I2 = A2 ∩ SP3 are:

(i) I1 = {e(0), e(1), q(0), q(1), p(0), p(1)} and

(ii) I2 = {e(0), e(1), r, q(0), q(1), p(0), p(1)}.

The program Big(P3) has only one rule, which gives cons(Big(P3)) the following single
rule:

← not r, p(X1), q(X1), p(X2), q(X2), p(X3), q(X3)

It is easy to see that among I1 and I2, the only I such that I ∪ cons(Big(P3)) is consistent,
is I = I2. Hence, the only model of P3 that needs to be considered, in order to find the
answer sets of P3, is I2.

4.2.2 Checking minimality of the models

We recall that an interpretation I is a minimal model of P iff I is the subset minimal
set satisfying PI . Thus, to show that I is the minimal model of P, we can proceed by
enumerating the subsets I ′ of I and ensure that no I ′ satisfies PI . To achieve this goal, we
describe the following strategy. First, we construct the following program:

Pmin(I) = cons(shift(π(P)) ∪ π(I)

Then, the following proposition holds:

Proposition 4.16. The program Pmin(I) ∪ I ′ is consistent iff I ′ satisfies PI .

Proof. Suppose I ′ 6|= PI . Then, there is a rule r ∈ P such that I |= B−(r), I ′ |= B(r) but
I ′ 6|= H(r). Consider the constraint c = cons(shift(π(r))). Clearly, c ∈ Pmin(I). Since
I ′ |= B(r), we have that I ′ |= B+(c). Also, since I ′ 6|= H(r), π(I) ∪ I ′ |= B−(c). Putting
these two facts together, we conclude that π(I) ∪ I ′ |= B(c), and hence we have found an
instantiation of the constraint c which evaluates to true, implying the inconsistency of
Pmin(I)∪I ′. Conversely, if Pmin(I)∪I ′ is inconsistent, we can find a constraint c ∈ Pmin(I)
which is violated. Reasoning analogously to the steps above, the reader can verify that for
the rule r ∈ P such that c = cons(shift(π(r))), it holds that I ′ 6|= r. This completes the
proof.

Example 4.17. Consider program P4 as follows:

a ∨ b← not c
c← d,not a
d.

Let us take two models of P4: I1 = {b, c, d} and I2 = {a, d}. First, consider a proper subset
of I1: I ′1 = {c, d}. The program Pmin4 (I1) ∪ I ′1 is :

c′.d′.

← not a′,not b′,not c
← not c′, d′,not a

b.c.d.

This program is consistent, which means that I ′1 |= P I14 , and consequently, {b, c, d} is not a
minimal model of P4. On the other hand, it can be verified that for every proper subset I ′2
of I2, the program Pmin4 (I2) ∪ I ′2 is inconsistent, thus proving minimality of I2.
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We summarize the evaluation method for non-HCF disjunctive programs, as follows: for
an input program P:

(i) Split the program into Small(P) and Big(P).

(ii) Construct the program GP to generate candidate models

(iii) Find an answer set I of GP such that I ∪ cons(Big(P)) is consistent

(iv) For each model I obtained from the previous step, find a proper subset I ′ ⊂ I such
that PminI ∪ I ′ is consistent. If no such I ′ exists, then output I as an answer set of P .



5
Evaluation Framework

In this chapter, we propose a framework for efficiently evaluating a program with bounded
predicate arities using the three methods proposed in the previous chapter. In designing
the architecture for the evaluation framework, we recognize that the task of evaluating a
logic program under answer set semantics has been studied and implemented which results
in several ASP solvers, such as DLV, claspD, SMODELS and ASSAT. Many optimizations
techniques have been applied to these solvers to obtain a good evaluation performance.
However, as we have seen in the previous chapters, these ASP solvers currently do not
have a special evaluation techniques for logic programs with bounded predicate arities that
perform under polynomial space complexity.

In the previous chapter, we have described three evaluation methods for answer set
semantics which stays within polynomial space for programs with bounded predicate arities.
During the steps in these methods, we need to perform evaluations on certain subsets of
the program, as well as checking consistencies on some programs constructed from several
transformation procedures. On each of these steps, the program to be evaluated or checked
for consistency is either stratified or has a polynomially bounded number of ground rules.
Current ASP solvers are already capable of performing these types of reasoning tasks in
polynomial space with good performance, hence it would be beneficial to use these solvers
for these tasks.

As discussed in Chapter 2, Method 1 and Method 2 require generating subsets of
the ground input program which satisfy certain required conditions. This task basically
amounts to finding instantiations of the rules in a program, which can actually be performed
using standard Prolog resolution. We propose to use Prolog to perform this tasks, since
many Prolog implementations exist which have relatively good performance for unification
and query answering. Using Prolog will allow us to avoid constructing special purpose
functions to perform the ground program subsets enumeration, which may not perform
quite efficient.

Another aspect of the evaluation framework that will be examined in this chapter is the
strategy to exploit the modularity property of the programs. Our evaluation framework will
be based on the previous works in programs modularity and strongly connected component
(SCC) analysis, while the evaluation strategy will be designed such that it does not require
exponential space.

To explain the details of the framework, we will examine the components which will be
the building blocks for its architecture. Each component takes a specific type of input,
performs a certain task and returns an output. Each component may be composed of other

50
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(smaller) components which make up its functionality. The global view of the architecture
will present an overall picture of the interaction between the components to achieve the
goal of the evaluation framework. We first present the basic components of the framework.

5.1 Basic Framework Components

5.1.1 External ASP Solver

The architecture of the framework assumes that an external ASP solver is available, which
satisfies the following conditions:

(i) The ASP solver is capable of evaluating any stratified logic program under polynomial
space

(ii) The ASP solver is capable of evaluating any logic program (possibly unstratified)
under polynomial space, provided that the program has only polynomially many
ground rules.

(iii) The ASP solver provides a mechanism to interact with it in such a way that the
resulting answer sets from the evaluation can be read in a streaming way, i.e one
answer set at a time.

The conditions (i) and (ii) are required for the reason that the methods described in the
previous chapter requires steps which consist of evaluation of stratified logic programs and
programs with polynomially bounded size of ground rules. These two requirements are
satisfied by many of the current ASP solvers. The third condition is required in order to
avoid the implementation from having to store all answer sets of a program obtained from
the external ASP solver, since doing it clearly requires exponential space. This mechanism
can be easily realized by implementing a pipeline connection to the ASP solver, which can
be used to read answer sets from the ASP solver one answer set at a time.

We will refer to this component as ASPSolver. It receives two inputs: IDB, which is a
set of rules and EDB which is a set of facts. It provides two functionalities: computing the
answer sets of IDB ∪ EDB and checking whether IDB ∪ EDB is consistent. To achieve
these functionalities, the ASPSolver component is equipped with two functions, which we
will denote by getNextAnswerSet and answerSetsLeft. The first call for getNextAnswerSet
returns the first answer set of IDB∪EDB and subsequent calls will return the next answer
sets, until no more answer sets are available. Of course, the order by which the answer sets
are returned does not matter.

The functions answerSetsLeft returns the value true or false based on the condition
whether all answer sets have been returned using getNextAnswerSet or not. It should be
clear also that if IDB ∪ EDB is inconsistent, then answerSetsLeft will always return false.

Example 5.1. Let IDB be the following rules:

b← a,not c
c← a,not b
d← b

and let EDB = {a}. Then on the first call, ASPSolver(IDB,EDB).getNextAnswerSet may
return {a, b, d}, and the next call returns {a, c}. At this point, since all answer sets have
been returned, a call to ASPSolver(IDB,EDB).answerSetsLeft will return false.
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5.1.2 Prolog Engine

The architecture assumes the availability of a Prolog engine to perform queries on Prolog
programs that can be used in computing subsets of a logic program. This will be provided
by a component called PrologEngine. Component PrologEngine receives an input in the
form of a Prolog program, and provides functionality to perform queries as well as to add
and delete instances into the Prolog database.

The query functionality will be denoted by the function doQuery. This function takes
as an input a Prolog query and sends the query to the Prolog engine. To retrieve the
answers of the query, we define the functions getNextAnswer and answersLeft, which work in
a similar way to ASPSolver’s getNextAnswerSet and answerSetsLeft. Each answer returned
is a set of variables bindings satisfying the query specified by the previous call to doQuery
w.r.t the current program. We also define a function called checkQuery for this framework
component, used to perform a ground query to Prolog and returns a Boolean value true
or false.

To provide a way to add and delete instances to the Prolog database, the PrologEngine
component defines two functions: addFacts and delFacts. Each function takes as input a
set of facts, and performs Prolog’s assert or retract to each fact in the input.

Example 5.2. Let P be the following Prolog program:

p(X)← q(X),not r(X)
q(X)← s(X)

Let us first call the function PrologEngine(P ).addFacts({s(0), s(1)}). Then, set up a query
p(X) using a call to PrologEngine(P ).doQuery(p(X)). The first answer which may get by
calling PrologEngine(P ).getNextAnswer might be X/0, followed by X/1. If we now make
a call to PrologEngine(P ).addFacts({r(1)}) and perform the query p(X) once more, then
retrieving the answer using PrologEngine(P ).getNextAnswer will return only X/0. At this
point, PrologEngine(P ).answersLeft will return false.

5.1.3 Global Model Checker

In the evaluation step of both Method 1 and Method 2, there is a step where an interpretation
(the candidate answer set) is checked whether it satisfies all the rules of a program. We
describe here a simple component to encapsulate this functionality. We will call this
framework component ModelChecker. It receives as input a set of rules IDB. Only one
function is provided by this component, which is called checkModel. This function takes
as an input an interpretation I and return the value true or false depending whether I
models IDB or not.

To realize this functionality, first ModelChecker rewrite the rules in IDB into the set
of constraints cons(IDB), and then, using the component ASPSolver, it checks whether
cons(IDB) ∪ I is consistent. This simple process is described in Algorithm 1.

5.1.4 Model Generator

This component, which we will call ModelGen, is used to generate models of a program
which may potentially be an answer set of the program. It receives two input data: a set
of rules IDB and a set of facts EDB and outputs some models of IDB ∪ EDB. This
functionality is provided using two functions called getNextModel and modelsLeft.

To generate the required models from IDB ∪ EDB, we first apply the shifting operator
IDB. Let IDBs be the resulting program after applying this operation. Next, we take the
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Algorithm 1 Algorithm for ModelChecker

Input: IDB a set of rules, I an interpretation
Output: value true or false

1: Construct cons(IDB) from IDB
2: if ASPSolver(cons(IDB), I).answerSetsLeft = true then
3: return true
4: else
5: return false
6: end if

positive program obtained by deleting all the negative body literals in IDBs. Let IDB+
s

be the resulting program, which is a Horn program. We now need evaluate the program
IDB+

s ∪EDB under the paraconsistent answer set semantics to obtain a single answer set
PT . To emulate paraconsistent evaluation, we can simply rename each classically negated
atom ¬a appearing in IDB or EDB into neg a, and rename all the atoms having the form
neg a in PT back into ¬a.

After obtaining PT , we start to enumerate all the possible subsets of S ⊆ PT such
that EDB ⊆ S. For each such S, we check whether the program cons(IDB) ∪ S is
consistent. If it is consistent, then S will be one of the output returned by getNextModel.
The Algorithm 2 specifies how the models are generated in ModelGen.

Example 5.3. Let IDB be the following program:

a ∨ b← c,not d
p← e,not a

Then IDB+
s is the program:

a← c

b← c

p← e

and cons(IDB) is the following program:

← not a,not b, c,not d
← not p, e,not a

Let EDB = {c, e}. Then PT = {c, e, a, b, p}, and the models obtained using ModelGen are:
{c, e, a}, {c, e, a, p}, {c, e, b, p}, and {c, e, a, b, p}. Each of these models can be obtained by
invoking the function ModelGen(IDB,EDB).getNextModel.

It should be clear that not all models of IDB ∪ EDB are admitted as an output of
ModelGen. For example, in the program given above, the Herbrand base for IDB ∪ EDB:
{a, b, c, d, p, q} (which of course, is a model of the program) is not admitted as one of the
models obtained from ModelGen(IDB,EDB).getNextModel. However, from the discussions
in Section 4.1.1, we can conclude that all answer sets of the input program will be admitted
as outputs of this component.

5.1.5 Disjunctive Model Generator

Apart from the component ModelGen defined above, we also define another framework
component to generate models which is intended to be used during the evaluation of
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Algorithm 2 Generating models in ModelGen

Input: IDB a set of rules, EDB a set of facts
Output: some models of IDB ∪ EDB

1: IDBs ← Shift(IDB)
2: IDB+

s ← Positive(IDBs)
3: PT ← ASPSolver(IDB+

s , EDB).getNextAnswerSet
4: for each S ⊆ PT such that EDB ⊆ S do
5: if ModelChecker(IDB).checkModel(S) = true then
6: Output S
7: end if
8: end for

non-HCF programs. Let us call this component DisjunctiveModelGen. It receives as
input a program P and outputs models of the P . Similarly as component ModelGen,
DisjunctiveModelGen provides two functions to interface with, called getNextModel and
modelsLeft. The method by which the DisjunctiveModelGen performs its functionalities
follows the steps outlined in Section 4.2.1. It splits P into Small(P ) and Big(P ). It then
construct the program GP and compute the answer sets. Each answer set I from GP is
then used to construct the program I ∪ cons(Big(P )). If I ∪ cons(Big(P )) is consistent,
then I is returned as an output.

5.1.6 Program Subset Generators

In the steps of the evaluation methods for normal and HCF programs described in
Section 4.1, we need to generate some subsets of the grounded input program. Given a set
of normal rules IDB, a set of facts EDB and a set of atoms PT , in Method 1 we need
to generate the minimal subset guesses of IDB ∪EDB w.r.t PT , while in Method 2, we
need to generate the supporting minimal subset guesses of IDB ∪EDB w.r.t PT . These
will be performed by two components called SubsetGen1 and SubsetGen2, respectively.

The main processing steps employed in SubsetGen1 and SubsetGen2 consists of rewriting
the rules in IDB into Prolog programs to obtain all the substitutions required to instantiate
the rules in IDB to obtain the desired subset of the grounded program. For SubsetGen1,
this rewriting is performed as follows: for each r ∈ IDB, where r is of the form

h← B+(r), B−(r)

we define the following transformation1:

π1(r) = gr(h, r id, val(X))← B+(r)

where r id is a unique symbol assigned for each rule r ∈ IDB, and X is a vector of all
the variables appearing in r. If the rule r contains no variable, we simply put the Prolog
anonymous variable (the underscore ’ ’) in place of val(X). We define the Prolog program
IDBπ1 = {π1(r) | r ∈ IDB}. We load the program IDBπ1 into Prolog together with facts
EDB. To obtain the minimal subset guesses of IDB ∪EDB w.r.t PT , we first add the
facts in PT and then perform the following conjunctive query on the Prolog database:

QPT = gr(a1, R1, V1) ∧ . . . ∧ gr(ak, Rk, Vk)

1Note that r is normal, so it contains only one head atom
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where PT = {a1, . . . , ak}. Each answer to this query will be a set of substitutions
Sub = {Sub1, . . . , Subk}, where each Subi will be of the form 〈Ri/r i, val(c1, . . . , ck)〉,
which encodes the information to instantiate rule r i using substitutions X1/c1, . . . , Xk/ck.
Each answer contains all the information needed to instantiate the rules in IDB to obtain
the required subset of Ground(IDB).

Using the previously defined evaluation component PrologEngine, we can describe all the
steps performed in SubsetGen1 in Algorithm 3, where in this algorithm, we have defined
the following functions:

• createQuery is a function that takes as input a set of facts and produces the conjunctive
Prolog query as described above, and

• Instantiate is a function that takes as input a set of rules IDB and a set of substitutions
Sub, and outputs the set of ground rules obtained by instantiating the rules in IDB
using the substitutions in Sub.

Algorithm 3 Generating program subsets in SubsetGen1

Input: IDB a set of normal rules, EDB a set of facts, PT an interpretation
Output: A set of ground rules

1: Construct program IDBπ1 from IDB
2: PrologEngine(IDBπ1 ∪ EDB).addFacts(PT )
3: Q← createQuery(PT )
4: PrologEngine(IDBπ1 ∪ EDB).doQuery(Q)
5: while PrologEngine(IDBπ1 ∪ EDB).answersLeft = true do
6: Sub← PrologEngine(IDBπ1 ∪ EDB).getNextAnswer
7: CurrentSubset← Instantiate(IDB, Sub)
8: Output CurrentSubset
9: end while

Example 5.4. Let IDB be the following program:

p(X)← e(X),not q(X)
q(X)← e(X),not p(X)

r ← e(X1), e(X2), p(X1), p(X2)

and EDB = {e(0), e(1)}. Then IDBπ1 is the following Prolog program:

gr(p(X), r1, val(X))← e(X)
gr(q(X), r2, val(X))← e(X)
gr(r, r3, val(X1, X2))← e(X1), e(X2), p(X1), p(X2)

For PT = {p(0), p(1), q(1), r}, the corresponding conjunctive query is:

Q = gr(p(0), R1, V1) ∧ gr(p(1), R2, V2) ∧ gr(q(1), R3, V3) ∧ gr(r,R4, V4)

After adding the facts in PT into the Prolog database, we obtain the following answers for
the query Q:
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1. Sub1 = 〈R1/r1, V1/val(0), R2/r1, V2/val(1), R3/r2, V3/val(1), R4/r3, V4/val(0, 0)〉.
This answer corresponds to the following ground program Subset1:

p(0)← e(0),not q(0)
p(1)← e(1),not q(1)
q(1)← e(1),not p(1)
r ← e(0), p(0), e(0), p(0)

2. Sub2 = 〈R1/r1, V1/val(0), R2/r1, V2/val(1), R3/r2, V3/val(1), R4/r3, V4/val(1, 0)〉.
This answer corresponds to the following ground program Subset2:

p(0)← e(0),not q(0)
p(1)← e(1),not q(1)
q(1)← e(1),not p(1)
r ← e(1), p(1), e(0), p(0)

3. Sub3 = 〈R1/r1, V1/val(0), R2/r1, V2/val(1), R3/r2, V3/val(1), R4/r3, V4/val(0, 1)〉.
This answer corresponds to the following ground program Subset3:

p(0)← e(0),not q(0)
p(1)← e(1),not q(1)
q(1)← e(1),not p(1)
r ← e(0), p(0), e(1), p(1)

4. Sub4 = 〈R1/r1, V1/val(0), R2/r1, V2/val(1), R3/r2, V3/val(1), R4/r3, V4/val(1, 1)〉.
This answer corresponds to the following ground program Subset4:

p(0)← e(0),not q(0)
p(1)← e(1),not q(1)
q(1)← e(1),not p(1)
r ← e(1), p(1), e(1), p(1)

It can be seen that the programs Subset1, Subset2, Subset3 and Subset4 are exactly the
minimal subset guesses of IDB ∪ EDB w.r.t PT .

SubsetGen2 works in a manner similar to SubsetGen1. However, since we want only
supporting rules w.r.t a set of facts S, we need to filter out the rules which contain any
atom a ∈ S in the negative body literals. This amounts to putting the negative body
literals in the original rule as a NAF literal in the Prolog rule. Specifically, let r ∈ IDB be
a rule of the form

h← B+(r), B−(r)

then we define π2(r) as the following Prolog rule:

r = gr(h, r id, val(X))← B+(r), B−(r)

and we define IDBπ2 = {π2(r) | r ∈ IDB}. The procedure to generate the supporting
minimal subset guesses of IDB ∪EDB w.r.t to an interpretation S is performed similarly
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Algorithm 4 Generating program subsets in SubsetGen2

Input: IDB a set of normal rules, EDB a set of facts, S an interpretation
Output: A set of ground rules

1: Construct program IDBπ2 from IDB
2: PrologEngine(IDBπ2 ∪ EDB).addFacts(S)
3: Q← createQuery(S)
4: PrologEngine(IDBπ2 ∪ EDB).doQuery(Q)
5: while PrologEngine(IDBπ2 ∪ EDB).answersLeft = true do
6: Sub← PrologEngine(IDBπ2 ∪ EDB).getNextAnswer
7: CurrentSubset← Instantiate(IDB, Sub)
8: Output CurrentSubset
9: end while

10: PrologEngine(IDBπ2 ∪ EDB).delFacts(S)

as in SubsetGen1. However, since we need to generate these subsets w.r.t to several different
interpretations, we need to delete the previous interpretation S from the database before
starting to generate the subsets for the next interpretation S. Algorithm 4 details the
steps performed by SubsetGen2.

As a way of interfacing with the components SubsetGen1 and SubsetGen2, each component
is equipped with two functions: getNextSubset and subsetsLeft. The first returns the next
subset generated while the second returns the value true of false, depending on whether
any subset is left to be returned or not.

5.1.7 Answer Set Verifier

During the steps of Method 2, we perform a verification to determine whether or not an
interpretation is an answer set of a set of ground normal rules. Let A be the interpretation
an R be a set of ground normal rules. To verify that A is an answer set of R, we construct
the program R′A as described in Section 4.1.2 and then check whether R′A is consistent.

We denote the component to perform this functionality as ASVerifier. It receives as inputs
a set of ground normal rules R and an interpretation A and has a function called VerifyAS.
This function takes no input parameter and return the value true or false depending on
whether A is an answer set of R or not. This component utilizes the component ASPSolver
to check consistency of R′A. The mechanism is summarized in Algorithm 5.

Algorithm 5 Verifying an answer set using ASVerifier

Input: R a set of normal ground rules, A an interpretation
Output: value true or false

1: Construct program R′A from R and A
2: if ASPSolver(R′A, ∅).answerSetsLeft = true then
3: return true
4: else
5: return false
6: end if

5.1.8 Minimality Checker

In evaluating a non-HCF disjunctive program, one of the step required is to check the
minimality of a model. Given, an input program P and a model I of P , we need to
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determine that I is a minimal model of P , or equivalently, that there exist no proper subset
I ′ ⊂ I such that I ′ |= P I . Following along the steps outlined in Section 4.2.2, the check
is performed by enumerating the proper subsets of I ′ ⊂ I, and constructing the program
PminI′ . If the program PminI′ ∪ I is consistent, then I ′ |= P I , and we conclude that I is not
a minimal model of P .

As an optimization step, we can skip the subsets of I which does not contain the facts
of P , since any model of P must contain this set of facts. Furthermore, we can extend
the set of facts using the definite rules of P , since any atoms derived from the facts and
the definite rules must also be in any model of P . To put this idea formally: let Def(P )
denotes the definite rules of P , EDB(P ) be the set of facts in P and D be the (single)
answer set of Def(P ) ∪ EDB(P ). If I is a model of P , then I is a minimal model of P
iff no proper subsets of I ′ ⊂ I which satisfies D ⊆ I ′, satisfy I ′ |= P I . In other words, we
need only to check those subsets of I, I ′ such that D ⊆ I ′.

Let us define the component MinChecker that performs the checking for model minimality.
This component receives as input a program P and a model I of P . The framework
component shall provide a function called checkMin() which returns the value true or
false, depending on whether or not I is a minimal model of P . We propose two approaches
on how minimality checking is performed under the architecture framework. The first
approach uses Prolog, while the second one uses an ASP solver.

Minimality Checking with Prolog

Assume that we have a model I of a program P . We first compute the answer set of
EDB(P )∪Def(P ), call this D. To check minimality for P , first we represent the following
sets as sorted Prolog lists:

• the set I, represented by the Prolog fact model(LI), where LI is a sorted Prolog list
corresponding to I.

• the set D, represented by the Prolog fact definite(LD), where LD similarly contains
D in a sorted Prolog list.

To allow classically negated atoms in Prolog, we simply rename an atom ¬a into neg a,
provided that neg a is a new symbol unused in the input program.

We first define the Prolog clauses to generate proper subsets of a set (represented in a
sorted list) as follows:

gen sub([ ], [ ]).
gen sub([H|T ], [H|M ]): − gen sub(T,M).

gen sub([ |T ], S): − gen sub(T, S).
gen propsub([H|T ], [H|M ]): − gen propsub(T,M).

gen propsub([ |T ], S): − gen sub(T, S).

Assuming the availability of the commonly used Prolog predicate append/32, we construct
the clauses for generating the proper subsets I ′ ⊂ I which satisfies D ⊆ I ′:

model subset(I, IP ): − model(I), definite(D), append(D,S, I),
gen propsub(S, SP ), append(D,SP, IP ).

2It is assumed here that append(A, B, C) means that appending A to B results in C.
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To emulate the constraints in the program Pmin(I) introduced on Section 4.2, we define
the set of prolog rules V as follows: V = {violated← B(c)|c = cons(shift(π(r))),∀r ∈ P}.
For example: if P = {a ∨ b← c, d← not e, c} then V is the following Prolog program:

violated: − c,not a,not b.
violated: − not e′,not d.
violated: − not c.

To facilitate assertion and retraction on each atom member of a list L, we assume that we
have defined the predicates assert all/1 and retract all/1. For a subset IP of I represented
as a Prolog list, we define the predicate satisfy/1 as follows:

satisfy(IP ): − assert all(IP ),not violated,
retract all(IP ).

Note that retracting the atoms in IP is required since we may perform another checking
afterwards with a different IP . Finally, we define the minimality property of a model I
using the following Prolog clauses:

notmin(I): − model subset(I, S), satisfy(S).
min(I): − model(I),not notmin(I).

Denote by PminPL (I), the Prolog program obtained by putting all the clauses above
together. Minimality checking for I can then be performed by first asserting the facts
π(LI), and then performing the query min(LI) with the program PminPL (LI) on the Prolog
system.

We formalize the procedures of minimality checking using Prolog in the context of the
framework architecture we have defined so far. The framework component implementing
minimality checking using Prolog will be called PrologMinChecker. Algorithm 6 shows how
PrologMinChecker performs its functionality.

Algorithm 6 Checking for minimality using PrologMinChecker

Input: Program I and model I of P
Output: value true or false

1: Construct Prolog program PminPL (I) as described above
2: PrologEngine(PminPL (I)).addFacts(π(I))
3: if PrologEngine(PminPL (I)).checkQuery(min(I)) = false then
4: minimal = false
5: end if
6: Output minimal

Minimality Checking with ASP Solver

Checking minimality can also be done using an ASP solver. The main idea works similarly
as in the methods used to generate models, where subsets of an interpretation are generated
and checked for satisfaction. In this case, we are generating (proper) subsets of a model
I and checking whether one of the subsets satisfies the GL-reduct of the program with
respect to I.
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Let P be the input program, I the model which we will check for minimality and D be
the answer set of EBD(P )∪Def(P ). Generating the proper subsets I ′ ⊂ I which satisfies
D ⊆ I can be performed using the following program

Pg(I) = {a ∨ ¬a | a ∈ I \D} ∪D ∪ cI

where cI is the following constraint:

← a1, . . . , ak

if I = {a1 . . . , ak}. The constraint cI is used just to make sure that we do not accept I
itself to be considered as a proper subset. If A is an answer set of Pg(I), then I ′ = A∩ I is
a proper subset of I satisfying D ⊆ I ′. Conversely, if I ′ satisfies I ′ ⊂ I and D ⊆ I ′, then it
is easy to see that there must be an answer set A of Pg(I) such that I ′ = A ∩ I.

We recall the definition of Pmin(I) for a program P and a model I described in Sec-
tion 4.2.2, and the result obtained in Proposition 4.16: that minimality of I in P can be
proved by showing that there is no proper subset I ′ ⊂ I for which Pmin(I)∪ I ′ is consistent.
Using program Pg to generate the subsets I ′ of I, we may try to check minimality of I
by checking whether Pg(I) ∪ Pmin(I) is consistent or not. Unfortunately, evaluating this
program using the current ASP solvers directly may cause exponential space grounding,
since Pg(I) contains disjunctions and the rules in Pmin(I) may have unbounded number of
variables.

We use a technique similar as in the procedure of generating models: split the program
Pmin(I) into two parts, the small part and the big part. The small part can be evaluated
along with Pg(I), and the resulting answer sets can then be checked against the big part.
Using the functions Small and Big as defined in Section 4.2.1, we describe minimality
checking using ASP solvers as follows:

• Construct program Pg(I).

• Let P1 = Pg(I) ∪ Small(P )min(I).

• Let P2 = Big(P )min(I).

• Find an answer set I ′ of P1 such that P2 ∪ I ′ is consistent. If such I ′ exists, I is not
minimal. Otherwise, I is minimal.

By the definition of the function Small, P1 will have polynomially many ground rules,
and hence evaluating P1 using an ASP solver does not cause exponential space grounding.
Program P2 contains only constraints. Hence, the program P2∪I ′ is stratified and evaluating
it using an ASP solver will not cause exponential space grounding as well.

We summarized the procedure described here by defining a framework component which
implements minimality checking using ASP solvers using the steps explained above. We
call this framework components DisjunctiveModelChecker. Algorithm 7 shows how this
framework component is implemented in the context of the evaluation framework.

5.2 Evaluation Components

We describe three evaluation components that implement the three evaluation methods
which have been described in the previous chapter. Each of them will have a common set
of inputs and a common set of functions to interface with them, but each has different
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Algorithm 7 Minimality checking using external ASP solver
Input: IDB a set of rules, EDB a set of facts, model I of IDB ∪ EDB
Output: true or false indicating whether I is a minimal model

1: isMinimal← true
2: D = ASPSolver(Def(IDB), EDB).getNextAnswerSet
3: Pg(I)← {a ∨ ¬a | a ∈ I \D} ∪D ∪ cI
4: P1 ← Pg(I) ∪ Small(P )min(I)
5: while ASPSolver(P1, ∅).answerSetsLeft = true do
6: Ip ← ASPSolver(P1, ∅).getNextAnswerSet
7: if ASPSolver(Big(P )min(I), Ip).answerSetsLeft then
8: isMinimal← false
9: break

10: end if
11: end while
12: Output isMinimal

algorithms to implement their evaluation procedures based on which evaluation method it
corresponds to. The common inputs are IDB, a set of rules and EDB a set of facts, while
the set of common interface functions are called getNextAnswerSet and answerSetsLeft. The
function getNextAnswerSet returns the next answer set computed by the component from
IDB ∪ EDB while answerSetsLeft signals whether the component still has more answer
sets to be returned. We describe these components in details in the following sections.

5.2.1 Evaluation Component for Method 1

Following the steps in Section 4.1.1, we present a framework component called EvalMethod1
to perform evaluation using Method 1. The main steps performed by this evaluation
component are: generate minimal subset guesses using the component SubsetGen1,
compute the answer sets of the subsets using ASPSolver, and check that the answer
sets satisfies the input program, using ModelChecker. This process is summarized in
Algorithm 8.

Algorithm 8 Evaluating HCF programs using Method 1
Input: IDB a set of HCF rules, EDB a set of facts
Output: answer sets of IDB ∪ EDB

1: IDBs ← Shift(IDB)
2: IDB+

s ← Positive(IDBs)
3: PT ← ASPSolver(IDB+

s , EDB).getNextAnswerSet
4: while SubsetGen1(IDB,EDB,PT ).subsetsLeft = true do
5: CurrentSubset← SubsetGen1(IDB,EDB,PT ).getNextSubset
6: while ASPSolver(CurrentSubset, EDB).answerSetsLeft = true do
7: CandidateAS ← ASPSolver(CurrentSubset, IDB).getNextAnswerSet
8: if ModelChecker(IDB).checkModel(CandidateAS) = true then
9: Output CandidateAS

10: end if
11: end while
12: end while



62 Evaluation Framework

5.2.2 Evaluation Component for Method 2

Method 2 for answer set evaluation starts in manner similar to with Method 1: we compute
the set of possibly true atoms PT from IDB and EDB. Then, we enumerate the possible
subsets S of PT such that EDB ⊆ PT . For each such subset, we find a supporting minimal
subset guess R, and we verify that S is indeed an answer set of R. If S is an answer set of
R, the last step to be performed is to check whether S satisfies IDB. However, we could
also modify these steps such that this satisfaction checking is performed before we generate
the supporting minimal subset guesses for S. This would allow us to filter out non-models
from the subsets of S and avoid the unnecessary step of generating supporting minimal
subset guesses for these non-models.

Let us define a framework component to realize this evaluation method. We call this
framework component EvalMethod2. EvalMethod2 uses the previously defined components
to perform its functionalities. The framework component ModelGen generates the models
of IDB ∪EDB from PT . For each such model, we find a supporting minimal subset guess
such that the model is an answer set of the subset. This can be performed using the
components SubsetGen2 and ASVerifier defined previously. If we succeed in finding such
subset, then the model is indeed an answer set of IDB ∪ EDB, and we return it as an
output. This process is summarized in Algorithm 9.

Algorithm 9 Evaluating HCF programs using Method 2
Input: IDB a set of HCF rules, EDB a set of facts
Output: answer sets of IDB ∪ EDB

1: while ModelGen(IDB,EDB).modelsLeft = true do
2: I ← ModelGen(IDB,EDB).getNextModel
3: found← false
4: while found = false and SubsetGen2(IDB,EDB, I).subsetsLeft = true do
5: CurrentSubset← SubsetGen2(IDB,EDB, I).getNextSubset
6: if ASVerifier(CurrentSubset, I).verifyAS = true then
7: found← true
8: end if
9: end while

10: if found = true then
11: Output I
12: end if
13: end while

5.2.3 Evaluation Component for the Disjunctive Method

For non-HCF disjunctive programs, we define the evaluation component of the framework
which performs the evaluation of the programs using the method outline in Section 4.2.
The method starts by generating models of the input program, and then check each model
for minimality. The first step of this process can be performed using the component
DisjunctiveModelGen already defined previously. The second step is performed using the
minimality checker component MinChecker.

We denote the framework component implementing the evaluation of disjunctive programs
EvalDisjunctive. Algorithm 10 shows the processing performed by EvalDisjunctive.
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Algorithm 10 Evaluating a non-HCF program
Input: IDB a set of disjunctive rules, EDB a set of facts
Output: answer sets of IDB ∪ EDB

1: while DisjunctiveModelGen(IDB ∪ EDB).modelsLeft = true do
2: I ← DisjunctiveModelGen(IDB,EDB).getNextModel
3: if MinChecker(IDB ∪ EDB, I).checkMin = true then
4: Output I
5: end if
6: end while

Figure 5.1: Overall view of the architecture
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5.2.4 Overall view of the architecture

Figure 5.1 provides an overall view on the architecture described in the previous sections
and shows how each framework component interact with each other. The Controller
component represents the main control flow of the architecture and is in charged of
accepting input, performs preprocessing (parsing, safety checking etc.), invoking other
components to perform their tasks, and finally outputting the results. The controller
invokes the MethodSelector component (described below in Section 5.3.1) to determine
the appropriate method to use, and calls the selected method. Each evaluation method
component performs its task of computing answer sets and returns the results back to the
controller.

Both EvalMethod1 and EvalMethod2 employs program subset generator component
SubGen for generating ground program subsets. EvalMethod1 uses ModelChecker for checking
whether the local answer sets computed is a model of the input program. EvalMethod
obtains candidate answer set from ModelGen, the model generator. EvalMethod2 also uses
ASVerifier to verify that the model obtained from ModelGen is an answer set of the ground
program subset generated by SubsetGen. EvalDisjunctive also uses ModelGen to obtain
candidate answer sets. It then invokes MinChecker to test minimality of the candidate.

Both SubsetGen and MinChecker use the component PrologEngine to perform their tasks,
while ModelChecker, ModelGen and ASVerifier use ASPSolver. Finally, PrologEngine, resp.
ASPSolver perform the actual communication to the external Prolog, resp. ASP solver
system.

5.3 Program Modularity Analysis

In this section, we aim to provide an application of the methods in modularity analysis of
logic programs in the context of the evaluation framework of logic programs with bounded
predicate arities. Specifically, we intend to use the split program and SCC analysis to build
a more efficient evaluation framework for logic programs with bounded predicate arities.
One of the advantages of applying modularity analysis in evaluating a program is that
it allows us to confine the evaluation to a subset of the program (program component).
This certainly will provide an improvement on the efficiency of the evaluation, because
program components naturally have a smaller size than the whole program. In fact, for
certain programs, applying SCC analysis and splitting programs into program components
alone will allow us to avoid exponential space, which will otherwise be present when the
evaluation of the program is performed using the classical approach of computing the full
ground program in the first step.

Example 5.5. Take as an example, program P1 as follows:

p(X) ∨ q(X)← d(X)
r ← e(X1), p(X1), . . . , e(Xk), p(Xk)

d(0).d(1).

Evaluating P1 using the classical approach will cause exponential space. However, using
SCC analysis, we can split the program into two program components: one component
consists of the first rule, and another containing the second rule. Evaluating the first
program component, we get 4 answer sets. Each of this answer set is then fed to the second
component, which basically is just a Horn rule; evaluating it should not need exponential
space.
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In the context of evaluating programs with bounded predicate arities using the three
methods we described, we can reason about the advantages of applying modularity analysis
in the evaluation framework on each methods. One of the possible sources of the significant
portion of the time consumptions during the evaluation using Method 1 is in the enumeration
of the ground program subset. By applying modularity analysis, we may get smaller number
of ground program subsets to be considered in each program component, thus reducing the
overall evaluation time. In the second and third method, time consumption mainly depends
on the number of the guesses that have to be made to obtain the models. In general, the
number of guesses is exponential in the size of an interpretation. By applying modularity
analysis, we can confine the evaluation on each program component, thus reducing the
number of guesses that have to be made.

5.3.1 Evaluating a program component

Before we begin with the description of the strategy of evaluating the program components,
let us focus on the task of evaluating one program component, since evaluating a program
component can be done independently from the other program components. One question
that might come up is, which evaluation method is more appropriate to use for a particular
program component.

First, we observe that the property of being HCF/non-HCF for a program component
is preserved by the process of splitting a program during the SCC analysis. This can
be understood easily by recalling that the property of HCF/non-HCF is determined
by the existence of a cycle in the positive dependencies between atoms appearing in
the head of the program. Since splitting program into SCCs retains all the cycles of
dependencies (including cycles of positive dependencies), the property of being HCF/non-
HCF is preserved, and in fact confined to each program component. This allows us to
test for HCF/non-HCF condition in each program component, and use the appropriate
evaluation method accordingly.

Another possibility that we may consider is that the program component might actually
be stratified or having only polynomially many ground rules. In this case, it is not necessary
to use the evaluation methods that we have described for programs with bounded arities.
Since we are making the assumption that an external ASP solver is available that can
perform the evaluation for stratified programs or programs with polynomially many ground
rules under polynomial space efficiently, we can just use this external ASP solver to evaluate
such program components directly.

To go further along this line of reasoning, for program components which are normal/HC
but having exponentially many rules, we might consider to have a heuristic to select
between using Method 1 or Method 2, based on a certain criteria. Such criteria might
be: the type of the evaluation (generating all answer sets vs checking consistency), some
syntactical properties of the program component, or some other criteria which might be
relevant in the decision of using Method 1 or Method 2.

Ideally, one would want to have a certain mechanism that allows choosing the appropriate
methods according to a certain preference. However, as a guideline, the following principles
may be used by such heuristic:

(i) If the program component is stratified or if it has polynomially many ground rules,
then it is preferable to evaluate it directly using the external ASP solver.

(ii) If the program component is non-HCF, then there is no choice other than using the
evaluation methods for non-HCF programs.
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(iii) If the program component is HCF and has a small set of possibly true atoms, then
using Method 2 might be preferable, since evaluation using Method 2 does not cause
an answer set to be recomputed several times.

(iv) On the other hand, if the set of possibly true atoms is big, then using Method 1 might
be beneficial, since using it allows us to avoid having to enumerate a great number of
subsets.

(v) If the goal of the computation is only to check for consistency, where finding all
answer sets is not required, than using Method 1 might be preferable, because it
yields a better efficiency in this case.

To continue on our formalization of the framework, let us define a framework component
called MethodSelector that performs the task of selecting the appropriate or preferred
method of evaluation on a certain program component. This framework component takes
as input a program P and returns the selected method for evaluating component. Let us
denote the function to use to return the method from MethodSelector, getMethod. The
output of the function can either be Direct (which signifies that the selected method is a
direct evaluation by the external ASP solver), Method1, Method2 or Disjunctive.

We can now describe a framework component that perform the evaluation of one program
component. Let us call this framework component EvalComponent. It receives as inputs: a
set of rules IDB and a set of facts EDB in a program component and returns the answer
sets of the IDB∪EDB. Similarly as the previous framework components, the functionality
of EvalComponent is represented by two functions: answerSetsLeft and getNextAnswerSet.
Algorithm 11 gives a formalization of this framework component. Basically, this component
just queries the MethodSelector component to obtain the preferred method to use, and
then perform the evaluation using the appropriate evaluation component.

Algorithm 11 Evaluating a program component using EvalComponent

Input: IDB a set of disjunctive rules, EDB a set of facts
Output: answer sets of IDB ∪ EDB

1: SelectedMethod← MethodSelector(IDB ∪ EDB).getMethod
2: if SelectedMethod = Direct then
3: while ASPSolver(IDB,EDB).answerSetsLeft = true do
4: CurrentAS ← ASPSolver(IDB,EDB).getNextAnswerSet
5: Output CurrentAS
6: end while
7: else
8: Let EvalM be the framework evaluation component corresponding to
SelectedMethod

9: while EvalM(IDB,EDB).answerSetsLeft = true do
10: CurrentAS ← EvalM(IDB,EDB).getNextAnswerSet
11: Output CurrentAS
12: end while
13: end if

5.3.2 Evaluation strategy

Given a decomposition of a program into program components and the dependency graph
between them, a simple approach that one might consider when evaluating the program is
the following:
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(i) We start by evaluating the bottom components. Evaluation is done completely,
meaning that we obtain all the answer sets of these bottom components, and store
them for further use. These bottom components can then be discarded away.

(ii) Each stored answer set is then fed to the upper components, and evaluation on the
program components proceeds according to the order of the program components
in the dependency graph. All answer sets of each component is stored and the
components that has been evaluated is discarded away.

(iii) When we reach the top components, evaluation is complete, and all answer sets has
been stored. We just need to output each of these answer sets.

However, in the context of evaluating programs with bounded predicate arities, this
simple approach is not appropriate to be used with respect to the goal of preserving
polynomial space computation. One can easily see that the number of answer sets of a
program may be exponential, even for programs with polynomially many ground rules.
Thus, we need to devise an evaluation strategy which avoids storing all answer sets of each
program component.

The proposed strategy to be used is to allow evaluation in each program component
to retrieve one answer set at a time and feed this answer set to the upper components
until we reach the top component. Intuitively, we can view this evaluation strategy as a
process of streaming answer sets from the bottom components until the top components
one answer set at a time. Once we finish the streaming process for one answer set, we
will need to backtrack to the previous components in order to obtain the next answer sets.
In order to perform such strategy, we need first to arrange the program component in a
topological sort. Recall that, for a directed graph G = 〈V,E〉, a topological sort of G is a
partial linear ordering ≺ of V such that for any v, w ∈ V , v ≺ w iff there is a directed path
from v to w. Recall also that if G is acyclic, G always has at least one topological sort.

Note that the component dependency graph is always acyclic, hence, the existence of
a topological sort for the program components is guaranteed. By sorting the program
components in a topological sort, we ensure that when a program component is evaluated,
all the program components on which the current program component depends will have
already been evaluated.

Let us state this strategy in a more formal way. Suppose we have a topologically sorted
program components: C1, . . . , Cn. We provide an array data structure of size n, called
GlobalAS. Each GlobalAS[i] will store the currently obtained answer set for component
Ci. We proceed by evaluating each Ci in order of the sort, obtaining the current answer set
ai for each Ci and storing it in GlobalAS[i]. When we reach Cn, we construct the union of
all the answer sets stored in each GlobalAS[i], and output the result. We then backtrack
to the last component which still has answer sets left, and proceed the evaluation in this
manner until the first components has no more answer sets left.

Let us call a function by the name Evaluate that performs the process of evaluating
program components using the above strategy in a recursive manner. This function takes
as input the program components in a topological ordering and an index number that
allows for recursive calls to Evaluate. The evaluation is started using the call to Evaluate
with input index 1. Algorithm 12 shows how such function works, utilizing the previously
defined framework component EvalComponent.
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Algorithm 12 Evaluating program components
Input: C[1 . . . n] (program components), j (index)
Output: global answer sets of the components

1: EDBj ←
⋃
i≤j GlobalAS[i]

2: if j = n then
3: while EvalComponent(Cj , EDBj).answerSetsLeft do
4: AS ← EvalComponent(Cj , EDBj).getNextAnswetSet
5: Output AS
6: end while
7: else
8: while EvalComponent(Cj , EDBj).answerSetsLeft do
9: AS ← EvalComponent(Cj , EDBj).getNextAnswetSet

10: GlobalAS[j]← AS
11: Evaluate(C[1 . . . n], j + 1)
12: end while
13: end if



6
Implementation and Experimental Results

To provide a concrete implementation of the methods and framework defined in the previous
chapters, we have developed an application called BPA, for Bounded Predicate Arities.
BPA receives as input of logic programs and computes the answer sets of the programs
under answer set semantics using the three previously described evaluation methods.
We also performed an experimental testing using several problem instances to obtain a
concrete benchmark on how the methods compare against current ASP systems and to
verify that the methods and framework we described indeed perform the evaluation within
polynomial space. The experiment measures the performance of program evaluation using
BPA against evaluations using DLV and GrinGo/claspD, both with respect to time and
space consumptions.

We will start this chapter by first describing the implementation details of BPA, including
the choices of data structures, underlying algorithms and other technical choices made
during its development. This description should be thorough enough for those who want
to understand the internal workings of this system by studying the source code of the
system. We will then describe the details of the benchmark experiment performed as well
as provide a brief analysis of the results obtained from the experiment.

6.1 Architecture of BPA

As described in the previous chapter, the architectural framework we have designed for
performing evaluation of logic programs requires the use of an external ASP solver as a
back-end component, as well as a Prolog system to compute variable bindings during the
process of generating subsets of the ground rules. For this particular implementation, we
have selected DLV as the back-end ASP solver, due to its relatively efficient performance,
the author’s familiarity with it as well as for its ease of use (due to DLV having an integrated
grounder and model generator/model checker). The Prolog system we chose is XSB [Sagonas
et al., 1994], with the reason being that it has an easy to use, yet quite powerful Application
Programing Interface (API) to simplify the interaction and communication between XSB
and external applications.

BPA is written using C++ and follows the principles of Object Oriented Program-
ming (OOP) and software design patterns, to allow it to be flexible and easily extend-
able/modifiable. In particular, each framework component described in Chapter 5 is
represented by an abstract class, where each function/procedure provided by the framework
component is represented by a pure virtual method of the abstract class. The exact details
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of how each function is performed is left to be defined in the subclasses, allowing for an
easy way of modifying the details of the workings of each of the framework components.
For example, the framework component for generating models, ModelGen, is represented
by an abstract class ModelGenerator and the function for computing the models get-
NextModel is represented by the pure virtual function getNextModel() defined in the
class ModelGenerator. The exact details of how this function is implemented is defined
in a subclass of ModelGenerator called DisjunctiveModelGenerator. If one needs to
replace the algorithm for generating models defined in DisjunctiveModelGenerator with
another algorithm, then one just needs to define a new class derived from ModelGenerator,
implementing all the functionalities of a model generator as described in Section 5.1.4.
After that, one only needs to replace the instantiations of ModelGenerator in the classes
defining the framework evaluation components for Method 2 and the Disjunctive Method,
with the instantiations for the newly defined subclass. The polymorphism principle of
OOP should make it possible for the newly defined component to be used in the other
parts of the system without changing their source codes.

To speed up development of the system, we have used quite heavily some of the freely
available libraries for C++ programming language, including the Standard Template
Library1 (STL) and Boost2 to perform lower level algorithms and utility functions, such
as parsing, string manipulations, graph algorithms; and to provide basic data structures
to build upon. To keep the description brief, we will omit the explanations for describing
these libraries, and only focus on the relevant discussions with respect to the internal
workings of BPA itself.

6.1.1 Parser and Data structures

BPA accepts the core of the syntax of the logic programs as defined in Section 2.2.1, with an
extension of also allowing binary infix comparison predicates, such as: “=”,“<”, “ != ” etc.
Arithmetic operations have not been addressed, since it requires additional semantics not
yet considered in this work. Furthermore, to focus on defining the core semantics of logic
programs with bounded predicate arities, we have refrained from considering the extensions
of syntax and semantics of logic programs defined by current ASP solvers, such as weak
constraints and aggregates in DLV, and cardinality constraints defined in Lparse/GrinGo. In
essence, the syntax accepted by BPA lies in the common subset of the language accepted
by these ASP solvers.

Parsing in BPA is performed using the functionality provided by Boost Spirit, a library for
performing scanning and parsing included in Boost. Spirit allows for an easy specification
of the accepted syntax in a BNF-like C++ construct. For example, the following is part of
the syntax specification defined in BPA:

constant = symbol|stringconst|integer;
anon = leaf_node_d[ch_p(’_’)];
variable = leaf_node_d[upper_p >> *(alnum_p|ch_p(’_’))];
term = constant | variable | anon;

which can be intuitively understood as follows: a constant is made of either a symbol, a string
constant (constants such as: “Logic Program”) or an integer. An anonymous variable
is represented by an underscore “ ”, and a named variable by a string of alphanumeric
characters beginning with an uppercase letter (possibly also containing the character “ ”

1http://www.sgi.com/technology/stl/
2http://www.boost.org
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int the middle/end). A term is then defined to be either a constant, a (named) variable
or an anonymous variable. Using this construct, one can easily build syntax specification
quite rapidly and easily, compared to using traditional parsers/lexical analyzers such as
YACC/GNU Bison. However, it does come with a small performance overhead. But since
parsing the input program is done only once, we can safely ignore this little performance
overhead for most input programs.

During parsing, safety checking of the rules is also performed, following the safety
condition defined in Definition 2.1. If the rules/facts pass all the syntax specifications and
safety checking, they will be stored in the corresponding data structures to represent a set
of rules and a set of facts. An additional step of standardization apart is performed for
the rules containing variables: the variable names in the rule are renamed into “VAR 0”,
“VAR 1”,. . .,“VAR N” to simplify further processing.

This parsing functionality is implemented in the abstract class ProgramParser and its
subclass SpiritProgramParser. The safety checking procedure is implemented in a class
called SafetyChecker, which is one of the members of ProgramParser. If one needs to
replace this parsing algorithm with another algorithm, one can define a new subclass of
ProgramParser and replace the instantiation of ProgramParser in the main procedure of
BPA with the newly defined class. Finally, the class ProgramParser provides the methods
getEDB() and getIDB() to return the facts and the rules, respectively, of the input program
(assuming they have been correctly parsed and are safe).

To represent the constructs occurring in a logic program, such as: terms, atoms and
literals, we employ data structures which are modelled following those used in DLVHEX
[Schindlauer, 2006], with some additional functions needed to implement the methods used
in this work. Each basic data structure is implemented as a C++ class equipped with the
methods needed to manipulate the data contained inside it. The underlying storage itself
uses C++ STL containers, such as: set, vector and map. Furthermore, to simplify the
low-level mechanisms, such as: memory allocations and pointer management, BPA uses a
component of Boost Library called Shared Pointers, which helps avoid memory-related
problems in the use of program data structures, e.g., memory leaks and faulty pointer
arithmetic. The following described these basic data structures briefly.

Term

The class Term represents the concept of a term in the input program. A term can be
a constant symbol (such as: p, q), an integer constant, a (quoted) string constant (e.g.,
‘‘Foo Bar’’) or a variable (indicated by an uppercase letter in the beginning). The class
Term also defines utilities functions, such as: bindVariable() to substitute a variable
with a constant to compute the ground instantiations of an atom, a literal or a rule. The
arguments of an atom (including its predicate name) can then be represented as a vector
of Term’s.

Atom

An atom in a program is represented using the class Atom. As previously mentioned, an
atom can be modelled simply as a vector of terms. Thus, to store the data inside an atom,
we can use a vector container storing previously defined Term objects. The class Atom
itself acts as a wrapper of this vector of Term objects and provides methods needed for
further manipulations, such as: binding the variables inside an atom using a set of variable
substitutions, obtaining the predicate arity of the atom, and negating an atom. A boolean
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member of the class is used to signify whether the atom occurs positively or negatively (in
the classical sense).

A special type of Atom, called InfixAtom is used to represent the occurrences of infix
binary comparison predicates between atoms, e.g.,: “>”, “<=” and “!=”. BPA does not,
in itself, assign any semantic values for these comparison predicates, and leaves it to the
external ASP solver to evaluate the semantics of the comparison predicates. In fact, they
are treated equally as any other atoms, except for the fact that, during safety condition
checking, it is also required that any variables occurring in a comparison predicate must
also occur in the positive body literals of the rule. In other words, an atom consisting
of a comparison predicate is treated similarly as an atom occurring in the head and the
negative body literals, with regard to the safety condition.

Literal

A literal is simply an atom with an additional information of whether it occurs posi-
tively/negatively3 in the body of a rule. The class Literal provides a representation of
a literal in a program. It consists mainly of an AtomSet object and boolean member
indicating whether the literal occurs positively or negatively.

AtomSet

The class AtomSet represents the concept of a set of atoms, which in the context of answer
set semantics, encompasses constructs such as a set of facts, a model/interpretation and an
answer set. In these cases, an AtomSet consists only of ground atoms. However, an AtomSet
can also represent a set of non-ground atoms, such as the set of of atoms appearing in the
head of a rule. The class is equipped with methods required to analyze and manipulate an
atom set, such as: checking whether it is consistent, getting its size, finding its intersection
with other AtomSet, etc.

Rule

The class Rule represents a rule in a program. The data structure composing a Rule
object consists of an AtomSet object to represent the head literals, and a set of Literal
objects to represent the body literals of the rule. Several methods are defined for the
class to perform analysis of rule properties. For example, a method isDefinite() is used
to indicate whether the rule represented by the Rule object is definite or not. Another
function called isSmall() is used to determine whether the rule is considered to be small
or big, relative to a predetermined parameter. The parameter used in BPA is the maximum
number of ground rules which may be generated from the rules, and can be set/adjusted
according to the user’s input. These utility functions will make it easier to write the code
implementing the methods and algorithms described in the previous chapters.

Program

Finally, to represent an input program, we define a class Program, which mainly consists of
a set of Rule objects. To be exact, the class Program represents the set of rules (intensional
database) appearing in a program, whereas the set of facts (extensional database) in the
program is represented by an AtomSet. As the underlying storage for the rules, the STL’s
set container is used to store the pointers to the Rule objects. The use of a set container,

3In the sense of default negation.
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coupled with a standardization-apart preprocessing during the parsing step, allows us to
store efficiently a set of semantically equivalent rules, such as:

p(X,Y )← q(X,Y ), r(Y, Z)
p(A,B)← q(A,B), r(B, )

as one rule, to avoid the unnecessary overhead.
The class Program defines, among others, the following methods needed for implementing

the three evaluation methods described in Chapter 4:

• doShift(): performs the shifting operation on a program, as defined in Definition 2.5.

• getCons(): computes the result of the function cons(P ) for a program P as defined
in Definition 4.4.

• getPrimed(): implements the function π(P ) for a program P as defined in Defini-
tion 4.7.

• getDefinite(): returns the definite rules of the program.

• getSmall() and getBig(): returns the small and big rules of the program, respec-
tively, as described in Section 4.2.1

6.1.2 Framework Components

Following the framework architecture defined in Chapter 5, BPA defines a set of abstract
and derived classes representing each of the framework components. These classes are
briefly discussed in the following.

ASP Solver

The abstract class ASPSolver represents the framework component ASPSolver for commu-
nicating with an external ASP solver system. The functions provided by the framework
component ASPSolver as specified in Section 5.1 are declared as virtual methods of the
abstract class ASPSolver. For example, getNextAnswerSet() is used for returning the
next answer set read from the ASP solver. The implementation of these methods are then
defined in a derived subclass of ASPSolver specifying the details of how communication
with the particular external ASP solver is performed.

BPA uses DLV as the external ASP Solver and the mechanism for communication is
detailed in a subclass of ASPSolver called DLVASPSolver. Communication between BPA
and DLV mainly consists of setting up a Unix style pipe data channel for interprocess
communication, taking advantage of DLV’s command line switch “--”. Using pipe, it is
possible to read answer sets from DLV in a streaming fashion, i.e., one answer set at a time.
This is a necessary condition to stay in the polynomial space limit for the computation, since
storing all answer sets from a program (or program component) at once may potentially
require exponential space.

To use a different ASP solver in BPA, one needs to define a new subclass of ASPSolver
implementing the details of how communication with the external answer set can be
performed, including also: converting (serializing) the program objects into the right
textual representation accepted by the ASP solver, as well as parsing the output produced
by it. As soon as this is done, one can just replace the line instantiating the ASP solver
in the main program to use the newly defined class, and all the other parts should work
correctly. The polynomial space bound should still be maintained, as long as all the
conditions specified in Section 5.1.1 are satisfied by the chosen ASP solver.
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Prolog Engine

Similar to the ASP solver component, the framework component for interfacing with an
external Prolog engine in BPA is defined in an abstract base class, called PrologEngine,
with the particular implementation of the interface defined in a subclass of this class. BPA
uses XSB as the Prolog engine to compute subsets of the ground rules of a program. The
details of how to interface with XSB are specified in a subclass of PrologEngine called
XSBPrologEngine.

In Section 5.3.2, we described an evaluation strategy of program components along
the dependency graph. The evaluation strategy consists of a backtracking procedure for
evaluation of each of the program components, with each program component possibly
requiring the availability of a Prolog engine to compute the grounding rules. Since we
certainly do not want the facts/rules from one program component to interfere with an
active query to compute subsets of ground rules in another program component, there needs
to be a separate instance of the Prolog engine for each program component.4 This can be
performed either by using a process/thread creation generally provided by the operating
system to call each required Prolog instance (which may be cumbersome), or using the
Prolog engine’s built-in multithreading feature (if it is available). Fortunately, XSB supports
multithreading, using the C language API functions called xsb ccall thread create()
and xsb kill thread() to create and destroy the threads, respectively. Each created
thread is a separate full-fledged Prolog instance capable of storing its own databases and
performing queries. The class XSBPrologThread details the implementation of how each
thread perform common functions, such as: loading a program, asserting facts, sending a
query, retrieving answers from a query and so on.

Program Subset Generator

The Program Subset Generator components defined in Section 5.1.6 is defined in the abstract
class ProgramSubsetGenerator and implemented in a subclass of ProgramSubsetGenerator
called PrologProgramSubsetGenerator. Evaluation using both Method 1 and Method 2
can use this class to compute subsets of the ground rules of a program. The only difference
on how ground program subsets are generated in Method 1 and Method 2 (as defined in
Definition 4.5 and Definition 4.6) is that ground program subsets in Method 2 are computed
by considering also the negative body literals in the rules, to make sure that only the ground
rules supporting the models are produced. The class PrologProgramSubsetGenerator is
designed to handle both cases accordingly.

Model Generator

The framework component for generating models in BPA is defined in the abstract base
class ModelGenerator. This class only provides the declaration of the functions needed
in generating models, as defined in Section 5.1. The particular implementation of how to
generate models in BPA follows the outline of the method defined in Section 4.2, and is
given in a derived class called DisjunctiveModelGenerator.

As explained in Section 4.2, generating models is done by first computing the set of
possibly true atoms PT , and proceeds by generating subsets of this set, using classical
guessing rules a ∨ ¬a← for every a ∈ PT , plus some constraints obtained from the small
rules. This guessing program is submitted to the back-end ASP solvers, which will return

4To be more precise, only program components which are going to be evaluated using Method 1 and
Method 2 require a Prolog engine.
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back some candidate models. These candidate models are read one by one, and each one is
checked against the big rules, to ensure that it is indeed a model of the program.

The criteria for including a rule as small or big is determined by the previously mentioned
method of the class Rule called isSmall(), which in turn is determined by a parameter
setting adjustable during the invocation of BPA. The exact mechanism can be briefly
described as follows: suppose a rule has V many variables, and the program has C many
constants. First, if V is less than a certain predetermined constant, Vmax, then the rule is
considered to be small. Otherwise, for a predetermined parameter Nmax, if CV is larger
than Nmax, then the rule is considered to be big, otherwise it is small. In BPA, the
default values for Vmax is 4, while Nmax defaults to 10000. Both of them can be adjusted
accordingly at run time. The smaller the values for Vmax and Nmax are, the smaller the
space requirement for BPA will tend to be. However, computation might take longer, since
there tend to be less rules to filter out the candidate models during the guessing step, and
more candidate models (which turns out to be not a model) are produced.

Minimality Checker

Section 5.1.8 describes two approaches to minimality checking in the context of the
evaluation framework defined in Chapter 5, one uses an external ASP solver, and the
other uses a Prolog engine, to perform minimality checks. BPA provides both types
of minimality checking procedures, defined in the classes DisjunctiveMinChecker and
PrologMinChecker, respectively. These classes are defined as subclasses of the abstract
base class MinChecker, which provides a common interface method checkMin() to perform
minimality checking for both subclasses. The common interface makes it possible, if needed,
to switch between the two types of minimality checkers without affecting other parts of
the system.

After some early experimental testings, we found that the performance of minimality
checking using Prolog as described in Algorithm 6 tend to be poor. For some input
programs, it performs much worse than the minimality checking using an external ASP
solver as defined in Algorithm 7. The reason for this is that the enumeration process in the
algorithm does not permit any pruning of the subsets of the model that needs to be checked.
If the model being checked is actually minimal, the algorithm will have to go through all
(proper) subsets of the model first, before finally concluding that it is minimal5. Once the
size of the model to be checked for minimality reaches a certain number, enumerating all
these subsets is no longer feasible.

On the other hand, the approach for minimality checking using ASP solvers works better
for some input programs, because it allows pruning of some of the subsets of the model by
putting the small rules together with the rules used to generate the subsets. As a simple
illustration, consider the following program, P :

a ∨ b←
b← a

a← b

and the model I = {a, b}. To check minimality of I, the approach suggested in Algorithm 6
will require Prolog to generate all the proper subsets of I: ∅, {a} and {b} and performing
a query to check each subsets before concluding that each of them does not satisfy P I . On

5More precisely, only subsets of the model containing the answer set of the definite part of the program
are considered. However, this is a minor and irrelevant detail for this discussion.
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the other hand, Algorithm 7 will construct the following program:

a ∨ ¬a←
b ∨ ¬b←

← a, b

← not a,not b
← a,not b
← b,not a

a′.

b′.

in an attempt to generate a proper subset of I satisfying P I . However, the program above
is inconsistent, and the algorithm concludes directly that I is a minimal model.

Due to this performance reason, we have selected Algorithm 7 as the default algorithm
to use in BPA.

Evaluation Components

The three evaluation components described in Section 5.2.1, 5.2.2 and 5.2.3 are represented
by the abstract base class EvalComp. This abstract class captures the concept of evaluation
of a program (or program component) using a particular selected method. Each of the three
methods themselves are then implemented as subclasses of EvalComp, called EvalMethod1,
EvalMethod2 and EvalDisjunctive. Another subclass, called EvalDirect is used to
specify the evaluation procedure that simply feeds the program to the external ASP solver,
which is more appropriate for stratified or small programs/program components.

A special function declared in EvalComp and implemented in each of its subclasses, called
doEval(), is used to perform the actual evaluation step to obtain the answer sets of the
program, one at a time. For example, doEval() in EvalMethod2 consists of the steps for
getting the next model of the program (utilizing a ModelGenerator object), computing a
supporting minimal subset of the ground rules (using a ProgramSubsetGenerator object)
and verifying that the current model is an answer set of the generated ground rules. If it is,
then it will be stored in an internal representation of the class, ready to be returned through
the invocation of the method getNextAnswerSet(). Otherwise, doEval() will keep on
searching for an answer set, until there are no more models obtained from ModelGenerator.

A program code that needs to perform evaluation of a program using a certain method
simply instantiates the object of the appropriate method that it requires, and use the
methods answerSetsLeft() and getNextAnswerSet() on the object to loop through all
answer sets. The following code illustrates this:

EvalComp* eval;
eval = new EvalMethod1(/*input list*/) /* Or method 2, 3, direct */
while(eval->answerSetsLeft())
{

AtomSet as = eval->getNextAnswerSet();
/* Do some stuff with as */
.....

}

The base class for the evaluation component, EvalComp is abstract enough such that
one can extend the system, including introducing a new evaluation method by defining a
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subclass of EvalComp, following the conventions used in how the functions are named in
the class. The newly defined evaluation class can then be plugged into the main program
and called by program codes in other parts of the system.

6.1.3 Dependency Information and SCC Evaluation

Dependency graph representation and SCC computation in BPA are modelled after the
one of DLVHEX. To store dependency information between atoms/literals in the program
and to find program SCCs, the following data structures are defined in BPA:

Dependency

The class Dependency stores a dependency information between two different atoms
appearing in a program. Dependency information is taken at the non-ground level, and
considers also dependency between two unifying atoms. Four types of dependency between
atoms are considered:

• Positive head-body dependency, for example: in p(X) ← q(X), p(X) depends on
q(X) positively.

• Negative head-body dependency, for example: in q(X) ← d(X),not r(X), q(X)
depends on r(X) negatively.

• Disjunctive dependency, for example: in a ∨ b ← , a and b depend on each other
through disjunctive dependencies.

• Unifying dependency, for example: in the following program

p(X,Y )← e(X,Y )
r(X,Y )← p(X,Z), e(Z, Y )

we have that p(X,Y ) and p(X,Z) depend on each other through unifying dependen-
cies.

In each Dependency object, a Rule object for which the dependency comes from is associated
and stored.

AtomNode

The class AtomNode represents the concept of one node in the dependency graph of the
program. It stores the Atom object plus some additional information, including: the set of
dependencies the atom has, as well as the set of rules for which the atoms are associated
with. The function getRules() is used to retrieve these rules.

GraphBuilder

The task of building the dependency graph from the input program itself is performed by the
class GraphBuilder. The class does not actually has any data structure/storage purposes,
and its sole use is to build the AtomNode objects and Dependency objects associated with
them, according to the input program.
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ComponentFinder

The class ComponentFinder defines an abstract class for performing graph analysis to find
the strongly connected components of the program. The strategy BPA uses is to utilize
the functions provided by Boost Graph Library (BGL) for graph algorithms. First, the
dependency information contained in the AtomNode and Dependency objects are used to
create a copy of the dependency graph in BGL format. We can then use BGL’s function
string components() to find the SCCs of the graph. The details of this process are
implemented in a subclass of ComponentFinder called BoostComponentFinder.

ProgramComponent

The class ProgramComponents represents a program component as defined in Definition 2.6.
It stores a set of AtomNode objects associated with it, a set of other ProgramComponents
for which it depends on, and another set of ProgramComponents which depend on it.
These stored data allow for an easy navigation between ProgramComponents through their
dependency relation. A function called getBottom() returns a set of rules (in the form
of Program object) which is associated with the program component, by calling each
AtomNode’s getRules() function.

DependencyGraph

The class DependencyGraph is responsible for invoking the ComponentFinder to find SCCs,
and stores the resulting ProgramComponent objects and the dependency between them. A
DependencyGraph object created from an input program P is identical to the definition
of program component dependency graph defined in Definition 2.7. All the information
needed to perform evaluation along the SCCs are contained in DependencyGraph and once
it is set up, we are ready to perform the evaluation as described in Section 5.3.2. A final
task performed by DependencyGraph is to perform the topological sorting of the program
components. This is done in the member function getComponents(). The function returns
a vector of ProgramComponents already in a topological sort. The sorting procedure is
also provided by the Boost Graph Library, and we can simply use the function called
topological sort() in BGL to obtain the sorted components.

HCFDetector

Head-cycle detection is performed using the dependency information obtained in the
previous steps. In this case, negative dependencies do not play any role, and are ignored.
Since partitioning the dependency graph into SCCs will not break any head-cycles occurring
in the program, detecting head-cycle can be done at each program component, after SCC
analysis is completed. Head-cycle detection then proceeds similarly as the process of
finding SCCs, since a cycle is also an SCC. Boost Graph Library is again employed to
find these cycles. This results in a set of cycles involving AtomNode objects. At each cycle,
a step is performed that will check whether any two members of the cycle depend on
each other through disjunctive dependencies. If no such pair exists, then the program
component is declared to be HCF. Otherwise, it is non-HCF. The class HCFDetector and
BoostHCFDetector define the implementation of this head-cycle detection process.
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MethodSelector

As explained in Section 5.3.1, a mechanism is needed to make a decision of which method
will be used to evaluate each program component. At the very least, the mechanism should
decide that a non-HCF program should be evaluated using Disjunctive Method, while a
HCF-program can be evaluated with any of Method 1 or Method 2, according to a certain
predetermined criteria. In fact, it may also be the case that a normal/HCF program will
be evaluated more efficiently using the Disjunctive Method. Another simple optimization
efforts would be to detect whether the particular program component can already be
evaluated efficiently using the external ASP solver, without using any of three methods
described, thereby reducing any unnecessary overhead.

At this point, we do not specify in detail, how this decision should be made. In BPA,
an abstract class called MethodSelector is used to abstract away this decision process.
Any procedure implementing this decision process can then be specified in a subclass of
this class. In BPA, a simple method selection procedure is included, specified in the class
SimpleMethodSelector. There is certainly no claim that the method selection procedure
performed by this class is the optimal one, since its purpose is merely to illustrate how one
can write a method selection procedure in the context of the architecture of BPA, and to
provide BPA with a default decision of which method is to be used, in case the user does
not specify any preference.

GraphProcessor

The final piece in the architecture of BPA is the GraphProcessor class, which takes all
the information built from the previous data structures and performs the evaluation of
the input program according to the strategy laid out in Section 5.3.2. GraphProcessor
starts by obtaining the program components which are already topologically sorted from a
DependencyGraph object. It starts the computation (detailed in the function run()) by
receiving the facts of the input program as the initial input of the evaluation procedure.
It then follows the algorithm described in 5.3.2, using a recursive function named eval()
which implements the backtracking procedure of Algorithm 12. This function is also
responsible for printing out the answer sets, as well as controlling the execution and
termination of the overall evaluation. For example, it keeps track the number of answer
sets printed thus far, so that if a limit on the number of answer sets printed is supplied in
the beginning, execution can be stopped as soon as this limit is reached.

An overview of the relationships of the data structures and architecture components in
BPA, showing the flow of information between components, is shown in Figure 6.1.

6.1.4 Using BPA

BPA is written using the standard features of the C++ language, and uses only portable
libraries such as STL and Boost. Moreover, both DLV and XSB can be installed and run
in similar ways across different computer architectures and operating systems. Hence, it
should be possible to install and run BPA on different systems. However, there are certain
specific implementation details in BPA, such as the pipe data channel used to communicate
with the external ASP solver, which might not work in the same way for non-Unix-based
system, such as Windows. Also, due to time constraints, we have not been able to ensure
BPA to build and run on Windows systems. Nonetheless, it should be possible to adapt
the code for such implementation details to conform to any system infrastructures without
many problems.
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Figure 6.1: Architecture and flow of information in BPA
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For Unix/Unix-based systems, such Linux or OSX, compiling and installing BPA should
be a relatively easy process. In this section, we provide a brief guide to compiling, installing
and running BPA, which should work (perhaps with little adjustments) across all Unix-based
systems.

Installing BPA

Before installing BPA, we have to make sure that the requirements for compiling BPA are
met. At the very basic, the system should have a C++ preprocessor, compiler and linker
available, as well basic system libraries. Most Unix-based systems have these preinstalled.
Next, we need to install Boost development library, which is required by BPA. In Linux
distributions, these are usually provided as a ready-to-install all-in-one package6 comprising
of all the components of Boost library. One can also choose to install individual components
of Boost. At the very minimal, the following components should be present: Boost Spirit,
Boost String Algorithms, Boost Graph Library and Boost Shared Pointer Library. BPA
has been tested to work with Boost library version 1.35 and 1.36.

BPA uses DLV and XSB by default, so they need to be installed prior to compiling BPA.
Installing DLV is simple enough and needs no explanations. For XSB, one thing to note is
that BPA requires the multithreading feature of XSB, which is not activated by default.
To activate this feature, one must compile XSB with the compile option “--enable-mt”.
Further information can be obtained in XSB’s manual. BPA has been known to work with
XSB version 3.1 and 3.2.

The full source code for BPA is available at http://www.kr.tuwien.ac.at/research/systems/bpa.
To build the code, one can issue the following commands in the top-level directory of the
source code tree:

$ ./configure --with-xsb=PATHTOXSB --with-dlv=PATHTODLV
$ make

where PATHTOXSB and PATHTODLV specify the full path to where XSB (the top-level directory)
and DLV (the executable file) are located, respectively. If DLV’s executable file is already
in the system’s search path7, then one can omit the configuration option “--with-dlv”. If
the configuration option “--with-xsb” is omitted, then it is assumed that XSB is installed
in /home/$USER/XSB.

Once the compilation is done, and no errors occurred, there should be an executable
called bpa inside the src directory. To make it easy to use it, one can then copy this
executable to a preferred location, or make symbolic links to it.

Running BPA

The syntax for calling BPA is the following:

bpa [OPTIONS] [FILENAME]

If no filename is given, BPA will read from the standard input. Otherwise, it will read its
input from the specified filename. If more than one filename is given, only the first is read,
and the rest are ignored. The following is the list of options accepted by BPA:

• “-n=N”: stop after printing N answer sets. If N is 0 or not specified, BPA will
compute all answer sets and print them all. Note that, since Method 1 may produce

6In Debian-based distribution, it is called libboost-dev.
7Usually specified by the environment variable $PATH.
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the same answer set more than once, it cannot be guaranteed that these N answer
sets printed are actually N distinct answer sets. There is currently no possibility to
tell BPA to output exactly N distinct answer sets.

• “-m=M”: prefer method M to perform evaluation, where M is 1, 2 or 3, indicating the
use of Method 1, Method 2 or the Disjunctive Method, respectively. Program compo-
nents which are non-HCF will always be evaluated using the Disjunctive Method, no
matter what values are given in this option. Likewise, program components which
are identified as small or stratified will always be evaluated by directly sending them
to the external ASP solver. If this option is not given, a simple built-in heuristics
for selecting evaluation method in BPA will be used to determine which evaluation
method is preferred for each program component. A (non-official) value of 0 for
this option will force BPA to not use these three evaluation methods, and simply
pass each program component to the external ASP solver. This might be useful if
one is not interested in avoiding exponential space, and simply wants to use BPA’s
SCC/modularity feature to break down the input program into program components
and evaluate them separately.

• “-filter=p1[,p2[...]]”: filter the answer sets produced to contain only the ex-
tensions of the predicates p1, p2,. . .. Similar to DLV’s -filter option.

• “-vmax=V”: sets the maximum number of variables a rule can have to be considered
small. If a rule has less than, or equal to V variables, it will be considered as small,
and will be included as constraints during the first step of model generation in
Method 2 and the Disjunctive Method, and also during minimality checking in the
Disjunctive Method. If this option is not given, the default value for V is 4. If the
rule has more than V variables, then the decision of whether it is considered big or
small is determined by the parameter given in the command line option, “-grmax”.

• “-grmax=N”: sets the maximum number of possible ground rules a rule can have to be
considered to be small. If a rule has V variables, and V is greater than the value given
in the “-vmax” option, and if the program contains C number of constant symbols,
then the rule is considered to be small iff CV is less than, or equal to N ∗ 10000.
Otherwise, it is considered to be big. The default value for N , when “-grmax” is not
specified is taken to be 1; that is, by default CV is compared to 10000.

6.2 Experiments with BPA

To obtain a measure of the performance of BPA in comparison with the current ASP
solvers, we have conducted a benchmarking experiment using BPA, DLV and GrinGo/claspD.
We selected 6 problem classes, which we will describe in details shortly. These problems
are selected and are encoded in such a way that when they are evaluated using current
ASP solvers such as DLV and GrinGo/claspD, we can observe exponential space grounding
behavior. As a consequence, some of the encodings may not be the most efficient encodings
one can use for these problems. However, we note that the purpose of this experiment is
merely to show that BPA (and by extension, the three methods proposed) does indeed
perform its evaluation within polynomial space, even when other ASP solvers do not. We
start by describing the problem classes we have used in this experiment.
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6.2.1 Test Problems

2QBF

Description. We recall that the problem of 2QBF is the problem of deciding whether a
quantified Boolean (QBF) Φ = ∃X∀Y φ, where X and Y are disjoint sets of propositional
variables and φ = C1 ∨ . . . ∨ Ck is a DNF formula over X ∪ Y , is valid.

Encoding. A 2QBF problem is usually encoded in a propositional program (for example,
see e.g., [Leone et al., 2006]). However, we refrain from doing this, since in a propositional
program no grounding is necessary, and the program would be irrelevant for the purpose of
this experiment. We therefore construct a non-propositional encoding of 2QBF. We first
rephrase the problem as follows. Deciding whether Φ = ∃X∀Y φ is valid is equivalent to
deciding whether it is not the case that, for all assignments of X, there exist an assignment
for Y such that φ is false. This way, we may encode this problem as a constraint satisfaction
problem, by checking whether a rule encoding the truth value of ¬φ is violated or not.

We first represent ¬φ in CNF. If φ is given by

φ =
k∨
i=1

Di

where each Di = li,1 ∧ li,2 ∧ li,3, then ¬φ is given by

¬φ =
k∧
i=1

Ci

where each Ci = ¬li,1 ∨ ¬li,2 ∨ ¬li,3. We may encode the truth value of each possible
combinations of of negative/positive occurrences of the literals in a clause Ci using facts
of the predicates cp,n/3, with p + n = 3 intuitively mean that the clause has p positive
literals and n negative literals. For example, if a clause has exactly two of its literals occur
positively, say c = x1 ∨ ¬y2 ∨ y3, then the following set of facts

c2,1(1, 1, 1).
c2,1(1, 1, 0).
c2,1(1, 0, 1).
c2,1(1, 0, 0).
c2,1(0, 1, 1).
c2,1(0, 1, 0).
c2,1(0, 0, 0).

which contains each possible valuation of c2,1/3 using constants 1 and 0, except c2,1(0, 0, 1),
captures all the instances for which the clause is true. There are 7 facts for each of the
predicates c3,0/3, c2,1/3, c1,2/3 and c0,3/3, giving a total of 28 facts. We call this set
of facts Fc. Using Fc, we may represent each clause c ∈ C in the body of a rule with
the corresponding predicate cp,n/3. For example, the clause c = x1 ∨ ¬y2 ∨ y3 may be
represented by a literal c2,1(L1, L2, L3), where L1, L2, and L3 respectively binds the values
of x1, y3 and y2.

To check the satisfaction of the formula in each possible valuation of the variables xi ∈ X,
we add the following guessing clauses

val(xi, 0) ∨ val(xi, 1)← (6.1)
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Finally, the constraint to check the truth value of φ is written as

← val(x1, X1), . . . , val(xm, Xm), cσ(1)(L1,1, L1,2, L1,3), . . . , cσ(k)(Lk,1, Lk,2, Lk,3) (6.2)

where each cσ(i)(Li,1, Li,2, Li,3), 1 ≤ i ≤ k is the corresponding representation of clause Ci
in ¬φ, using the predicates c3,0/3, c2,1/3, c1,2/3 or c0,3/3, as described previously. As an
illustration, consider the following example:

Example 6.1. Let the QBF be Φ = ∃X∀Y φ and φ is

φ = (x1 ∧ ¬x2 ∧ y1) ∨ (¬x2 ∧ y1 ∧ ¬y3)

We have that

¬φ = (¬x1 ∨ x2 ∨ ¬y1) ∧ (x2 ∨ ¬y1 ∨ y3)

There are only two X-variables, x1 and x2. Thus, we have the following two guessing rules:

val(x1, 0) ∨ val(x1, 1)←
val(x2, 0) ∨ val(x2, 1)←

Finally, the constraint is written as

← val(x1, X1), val(x2, X2), c1,2(X2, X1, Y1), c2,1(X2, Y3, Y1)

Exponential space behavior is potentially observed when the solver is instantiating the
constraint, with increasing size of X.

Parameters and Instances. The parameters of the problem are the size of the sets X
and Y , as well as the number of clauses k. In total, we have selected 40 instances of 2QBF,
with |X| ranges from 5 to 22, |Y | from 6 to 25 and k from 5 to 32. The distribution of the
X and Y variables, as well as the sign of each variables occurring in the clauses have been
generated randomly. Since the goal of the experiment is merely to compare performances
of the three systems, the instance generator was not designed to produce “hard” instances.

Modified Strategic Companies

Description. The original Strategic Companies problem is described as follows: sup-
pose that there is a set of companies C = {c1, . . . , cn} owned by a holding and a set
P = {p1, . . . , pk} of products. For each ci, 1 ≤ i ≤ n, we have a set Pi ⊆ P of products
produced by ci, and a set Ri ⊂ Ci of companies controlling (owning) ci. We assume
that the holding produces all the products in P , that is

⋃
ci∈C Pi = P . Each company

may have more than one controlling set. A subset of the companies C ′ ⊆ C is called a
production-preserving set if the following conditions hold:

• the companies in C ′ produce all the products in P , i.e.,
⋃
ci∈C′ Pi = P , and

• The companies in C ′ are closed under the controlling relation, i.e., if Ri ⊆ C ′ for
some i, 1 ≤ i ≤ n, then ci ∈ C ′.

A subset minimal set C ′, which is production-preserving, is called a strategic set. A
company is called strategic iff ci ∈ C ′, for some strategic set C ′. We refer to e.g.,[Cadoli
et al., 1997] for more discussions on the problem.
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Despite the seemingly lengthy definition of the problem, it can actually be represented
and solved using a fairly simple logic program encoding. First, we adopt the restriction
used in [Cadoli et al., 1997, Leone et al., 2006] where each product is produced by at
most two companies (i.e., for each p ∈ P , |{ci | p ∈ Pi}| ≤ 2). Moreover, each company is
controlled by at most three other companies (i.e., for each i, 1 ≤ i ≤ n, |Ri| ≤ 3). These
restrictions do not reduce the complexity of the problem( which is ΣP

2 -complete).

Encoding. We encode first the production capability of each company, as well the control
relation between companies using the following set of facts:

(i) product by(p, ci, cj), if {ck | p ∈ Pk} = {ci, cj}, where ci and cj may coincide.

(ii) controlled by(ci, cj , ck, cl), if Ri = {cj , ck, cl}, where cj , ck and cl may not be distinct.

Then, the following program solves the Strategic Companies problem[Leone et al., 2006]:

strat(X) ∨ strat(Y )← product by(P,X, Y )
strat(W )← controlled by(W,X, Y, Z)

We observe however, that under this encoding, solving Strategic Companies using
current ASP solvers will not trigger the exponential space behavior that we are interested in.
We therefore add an additional requirement to this problem, as follows: given k companies
c1, . . . , ck, such that ci controls ci+1 for 1 ≤ i ≤ k − 1, if c1, c2, . . . , ck−1 is strategic, then
ck must also be strategic. We allow k to vary in different instances.

This additional requirement can be encoded by the following set of rules:

controlled(C,X1)← controlled by(C,X1, X2, X3)
controlled(C,X2)← controlled by(C,X1, X2, X3)
controlled(C,X3)← controlled by(C,X1, X2, X3)

strat(Xk)← controlled(X2, X1), controlled(X3, X2), . . . , controlled(Xk, Xk−1),
strat(X1), . . . , strat(Xk−1)

With this additional rules, exponential space behavior is potentially triggered when an
ASP solver grounds the last rule. We refer to this new problem as ChainStratComp, to
reflect the existence of a “chain query” in the last rule given above. As a last modification,
we require that at least two of the companies be strategic. Without loss of generality, let
the two companies selected be c0 and c1.

← not strat(c0)
← not strat(c1)

Parameters and Instances. Parameters set up for this problem are the number of
companies c, the total number of products, p and the size k used in the last rule. In
total, we have selected 44 instances of ChainStratComp, with the number of companies
ranging from 4 to 10, the number of products from 8 to 20 and k from 5 to 15. The control
relations and company-product relations have been generated randomly.

Layered non-HCF program

Description. We formulate a class of simple non-HCF programs to test how the Disjunctive
Method performs. The programs in the class do not actually corresponds to any real
problem/scenario. However, the intention of using such class of programs in this experiment



86 Implementation and Experimental Results

is merely to see how the evaluation of non-HCF programs (using Disjunctive Method)
compares to the evaluation of such programs using current ASP solvers.

We construct each program in this class as a layered program, with each layer consisting
of a set of rules containing a head cycle between literals appearing in the head of one of
the rules. At each layer, a rule is formulated that will potentially generate an exponential
number of ground rules. We will refer to this class of programs as Simple-NHCF.

Encoding. The program encoding consists of a set D of n facts of the form d1(i), 1 ≤ i ≤ n.
For each layer j, 1 ≤ j ≤ l, the layer Lj consists of the rules:

pi(1, X) ∨ . . . ∨ pi(k,X)← di(X)
pi(2, X)← pi(1, X)

...
pi(1, X)← pi(k,X)

ri ← di(X1), pi(Y,X1), . . . , di(Xk), pi(Y,Xk)
di+1(X)← ri, di(X)

The complete program is

P =
l⋃

i=1

Li ∪D.

An exponential number of ground rules can potentially be generated by instantiating the
rule ri ← di(X1), pi(Y,X1), . . . , di(Xk), pi(Y,Xk) in each layer i.

Parameters and Instances. Three parameters are used: the size of the initial set of
facts |D|, the length of the head-cycle (also the length of the rule deriving ri) k, and the
number of layers to build, l. We generated 48 instances of Simple-NHCF with n ranging
from 4 to 10, k from 5 to 10 and l chosen to be either 1 or 2.

Clique

Description. The problem Clique is stated as follows: given a graph G = 〈V,E〉, and a
positive integer k ≤ |V |, does G contain a clique of size k or more (i.e., a subset V ′ ⊆ V
with |V | ≥ k, such that for each v, w ∈ V ′, (v, w) ∈ V )?

Encoding. The input graph G is given as a set of facts of the form edge(v, w), indicating
that there is an edge between v and w. We assume that the graph is undirected and that
only one of edge(v, w) or edge(w, v) is enough to represent the edge relation between v
and w. The following rules perform the guess on a clique:

node(X)← edge(X, )
node(X)← edge( , X)

in(X) ∨ out(X)← node(X)
← in(X1), in(X2), X1 6= X2,not edge(X1, X2),not edge(X2, X1)

To express the existence of clique of size k, we use the following two rules:

ok ← node(X1), . . . , node(Xk), in(X1), . . . , in(Xk), X1 6= X2, . . . , Xk−1 6= Xk

← not ok

where the inequalities range over all possible pairs Xi, Xj with i < j. Exponentially many
ground rules may be obtained by instantiating the rule to derive ok.



6.2 Experiments with BPA 87

Parameters and Instances. To obtain the input graph for Clique instances, we generate
randomly graphs with n nodes, where n ranges from 5 to 23. At each node, 3 edges
connecting the node to other (possibly not distinct) nodes are randomly generated. From
these graphs, we then construct a set of Clique instances, where the size of the clique k,
is chosen to be between n/2 to n/4. In total, we have generated 32 instances of Clique.

Set Packing

Description. The problem of Set-Packing is stated as follows: given a collection C of
sets and a positive integer k ≤ |C|, does C contains at least k mutually disjoint sets?

Encoding. The input collection C is given as a set of facts set(s1), . . . , set(sn), where
s1, . . . , sn ∈ C. The members of each si can then be specified with a set of facts
member(si,mj), for each mj ∈ si. The rules used to generate a guess on a subcollection of
mutually disjoint sets from C are:

in(S) ∨ out(S)← set(S)
← in(S1), in(S2), S1 6= S2,member(S1, X),member(S2, X)

To express the existence of at least k mutually disjoint sets in C, we use the following rules:

ok ← set(S1), in(S1), . . . , set(Sk), in(Sk), S1 6= S2, . . . , Sk−1 6= Sk

← not ok

where the inequalities range over all possible pairs Si, Sj with i < j. Exponentially many
ground rules can be obtained as a result of instantiating the rule to derive ok.

Parameters and Instances. We have generated 87 test instances of Set-Packing, with
the number of sets ranging from 7 to 15, the maximum number of members each set ranges
from 2 to 7, and the size of the set packing between 2 to 11.

Layered n-Reachability

Description. Given a directed graph G0 = 〈V,E〉, we define the property of n-reachability
for any pair of vertexes v, w ∈ V as follows: w is n-reachable from v iff there is a set of
n + 1 vertexes s1 = v, s2, . . . , sn+1 = w such that for each i, 1 ≤ i ≤ n, (si, si + 1) ∈ E.
We write v →n w if w is n-reachable from v. The transitive closure of →n is denoted by
→+
n . The problem of n-Reachability is stated as: given a graph G0, compute all pairs of

v, w ∈ V such that v →+
n w.

To increase the complexity of n-Reachability, we opted to make the following modifi-
cations:

• First, in order to allow unstratified negation/disjunction in the problem encoding,
we formulate the problem so that the computed n-reachability is performed on the
subgraphs of the input graph. This would require an additional step of “guessing” a
subgraph G′0 ⊆ G0.

• We also require that there should be at least one pair of vertexes v and w such that
v →+

n w in G′0, since otherwise, the problem would be trivial.

• Additionally, no pair of vertexes x, y can be such that x→n+1 y in G′. This constraint
makes the problem to be even harder.
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Furthermore, to test the effect of the application of SCC and modularity analysis, we
design a “layered computation” of n-reachability, as follows. For each i, i ≥ 0, we define
a new graph Gi+1 = 〈V,E′〉 which is constructed by creating an edge for all pairs of v, w
such that v →n w in G′i (i.e., (v, w) ∈ E′ iff v →n w in G′i). Computation of n-reachability
is continued with the new graph Gi+1, and so on up to a certain number “layers”.

Encoding. The input graph is specified as a set of facts GF which encodes the edges of
G using the predicate edge/2: edge(v, w) ∈ GF iff (v, w) ∈ E. The computation starts by
specifying that G0 = G, using the rule e0(X)← edge(X). Then, for each i, 1 ≤ i ≤ l, we
define the rules for layer i, Li as follows:

si(X,Y ) ∨ nsi(X,Y )← ei−1(X,Y )
pi(X1, Xn+1)← si(X1, X2), . . . , si(Xn, Xn+1)

ri(X,Y )← pi(X,Y )
ri(X,Z)← ri(X,Y ), pi(Y,Z)
ei(X,Y )← ri(X,Y )
existsi ← pi(X,Y )

← not existsi
← pi(X,Y ), si(Y,Z)

The complete program is given by P1 = GF ∪ {e0(X)← edge(X)} ∪ L where

L =
l⋃

i=1

Li.

Exponential number of ground rules (w.r.t. the input size) are potentially generated by
instantiating the rule pi(X1, Xn+1)← si(X1, X2), . . . , si(Xn, Xn+1) on each layer i.

Parameters and Instances. We generate the graphs randomly, with the number of
vertexes n ranging from 5 to 15. Each vertex is connected with two other vertexes by two
randomly generated edges. The length of the reachability is chosen to vary between 2
until n/2, and the number of layers to build is at most 2. In total, we generated 42 test
instances for Layered n-Reachability.

6.2.2 Experiment Settings

We set up the experiment with a goal of measuring both time and space consumption of
each of DLV, GrinGo/claspD and BPA in deciding whether the input program instance is
consistent (i.e., has an answer set) or not. We believe that the three methods proposed
in this work should be able to perform quite reasonably well in finding one answer set
of a program, but not necessarily so when it needs to enumerate all answer sets. So, the
evaluation of the problem instances by the three systems will be only to decide that the
problem instances is consistent or not. In both DLV and BPA, we can limit the number of
answer sets printed to 1 by adding the command line switch “-n=1”. GrinGo/claspD by
default prints at most one answer set.

The experiment is performed on a 64-bit machine with 4 cores of Intel Xeon @ 3.00GHz
and 16 GB of RAM running OpenSUSE 11.0 with Linux kernel version 2.6.25.20 SMP. The
DLV version used is the version available at its home page8 at the time this experiment is

8http://www.dbai.tuwien.ac.at/proj/dlv/
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conducted, showing the build code BEN/Oct 11 2007. We also used the latest version of
GrinGo and claspD available at this time, with GrinGo version 2.0.3 and claspD version 1.19.
For every problem instance, we allowed a maximum execution time of 2 hours (7200s) and
a maximum of 2GB memory.

For BPA, if the input problem is normal/HCF, we may select between using Method
1 and Method 2. We performed both methods to see how they compare. Except for
ChainStratComp and Simple-NHCF which are non-HCF, we arrange the experiment
so that evaluation on each problem instance by BPA is performed using both Method 1 and
Method 2, by passing the command line switch “-m=1” and “-m=2”. No other command
line options are used.

We measure both time and space consumption for each evaluation by the three systems.
In most Unix systems, measuring a process’ time consumption can be done in a simple way:
most systems have a time command to do this. Measuring (maximum) memory usage
by a process is, however, not so simple. Since memory usage can increase and decrease
during the lifetime of a process, one must keep a record of the current maximum usage,
until the process is terminated. The POSIX standard actually defines a system call named
getrusage() which measures the resource usage of a process. One of the resources being
monitored is the maximum size of virtual memory ever used during the execution of the
process. Some BSD systems have implemented this, but unfortunately, Linux (which is
the operating systems we use for the experiment) does not have a complete support for all
components of getrusage(). Specifically, it does not yet support getting the maximum
memory usage of a process.

We came up with a solution to the problem by writing a small program which first
executes the ASP solvers as its child process, using the fork() and exec() system calls.
It then measures the memory usage of the child process by periodically checking the child
process’ status, which in Linux is exposed in the /proc filesystem. The period of the
checking is set to 10 microseconds, which we assume to be frequent enough to make sure
that it does not miss any important changes in memory usage. Several testing cases show
that the utility program works reasonably good, with a quite accurate measurement.

6.2.3 Experiment Results

Here we present the experiment results. A note on the graphs: some of the plots presented
shows an “oscillating” (zig-zag) pattern, instead of a monotonic pattern, as one might
expects. This is due to the way the data for the instances are sorted, before plotted. Since
each test problem has several parameters, we had to select one of them as the parameter
on which to sort the data. Therefore, an increase in the X-axis does not strictly mean an
increase in the “real-size” of the problem.

2QBF

From 40 test instances, DLV managed to complete the evaluation under the allowed resource
limit for 36 instances, while GrinGo/claspD could solve only 34 instances. BPA (using both
Method 1 and Method 2) managed to solve all 40 instances. Both DLV and GrinGo/claspD
did not complete execution on the failed instances because they exceeded the allowed space
limit.

The time usage of DLV, GrinGo/claspD and BPA, using Method 1 and Method 2 is given
in the graph of Figure 6.2. On all of the instances (except some small instances) BPA
managed to complete execution faster than both DLV and GrinGo/claspD. The are two

9http://potassco.sourceforge.net/
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peculiar instances where BPA took more time than the other systems. The first is the
instance with |X| = 14, |Y | = 19| and |C| = 28, where BPA Method 1 took 297 seconds
and BPA Method 2 took 306 seconds, compared to DLV’s 56 seconds and claspD’s 1 second.
The second instance has |X| = 16, |Y | = 21 and |C| = 32, where BPA took more than 1800
seconds, claspD took 27 seconds and DLV failed to complete within the resource limit. It is
interesting to note that these two instances are two of the biggest inconsistent instances of
the 40 instances tested.

The reason why BPA takes more time to solve these inconsistent instances may be
understood with the following reasoning. Method 1 and Method 2 basically work by
enumerating subsets ground rules and/or subsets of possibly true atoms. When the
program has an answer set, it may be enough to visit small number of these subsets in
order to find the answer sets. However, if the program is inconsistent, it may be the case
that both Method need to perform full enumeration of those subsets, before concluding
that the program has no answer sets. Moreover, if the program is inconsistent, the SCC
evaluation performed by BPA, which follows Algorithm 12, may need to go back and forth,
backtracking between lower stratum program components and higher stratum program
components many times before concluding that the program has no answer set.

For our encoding of 2QBF, the “guessing rules” given in 6.1 acts as the lower strata
program components which generates candidate answer sets, while the constraint given
in 6.2 act as the higher stratum program component which eliminates candidate answer
sets that do not satisfy the problem. If the program is inconsistent, Algorithm 12 will
go back and forth between the rules 6.1 and constraint 6.2 until no more candidate
answer set is produced. This can take a long time depending on the number of candidate
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answer sets generated by the lower strata program components. ASP solvers such as
claspD and DLV may infact have a more sophisticated backtracking procedure which can
detect inconsistencies much earlier, while the backtracking procedure used in Algorithm 12
certainly does not.

The space consumptions of the three systems for 2QBF instances are given in Figure 6.3.
From the presented graphs, we can easily see that BPA, using either Method 1 or Method 2,
can evaluate all 40 instances with relatively small space consumptions, ranging between
22-26 MB, compared to DLV and GrinGo/claspD, which exceeded the allowed space limit of
2GB for some instances. This confirms our expectation that both Method 1 and Method 2
should be able to evaluate the input programs under polynomial space.

ChainStratComp

From the 44 instances of ChainStratComp, DLV managed to complete evaluation for
only 30 instances; it failed to stay under the allowed memory limit for most of the instances
with parameter k (length of the “chain-query”) greater than, or equal to 12. GrinGo/claspD
managed to complete all of the test instances, but barely managed to evaluate the last
instance using 1951 MB of memory and almost half an hour execution times. BPA (using
Method 3) again completed all test instances with smaller memory usage and (most of
the cases) also less execution time. It is worth noting that the program used to encode
ChainStratComp is such that BPA cannot take any significant advantage of using
SCC/modularity evaluation, since all of the three “important” rules in the program are
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actually in one program component:

strat(X) ∨ strat(Y )← product by(P,X, Y )
strat(W )← controlled by(W,X, Y, Z)
strat(Xk)← controlled(X2, X1), controlled(X3, X2), . . . , controlled(Xk, Xk−1),

strat(X1), . . . , strat(Xk−1)

The results in time usage for the three systems for ChainStratComp shows the clear
advantage in execution time for BPA over DLV and GrinGo/claspD, especially for bigger
instances where the effect of performing full exponential grounding/instantiations in DLV
and GrinGo/claspD becomes much more significant. Figure 6.4 shows the time usage of the
three systems on ChainStratComp.

The space consumptions of the three system for ChainStratComp instances are shown
in Figure 6.5. BPA started out with a slightly higher memory consumption for the small
instances, compared to the other systems. However, memory consumption in BPA stayed
between about 20-21 MB for all the rest of the instances, proving that it does not perform
full instantiations of the program. The other two systems, on the other hand, clearly
showed that their memory consumptions grows exponentially with increasing input size.

Simple-NHCF

The instances of Simple-NHCF provide a more extreme view on how the methods we
proposed (in this case, Disjunctive Method, which is the relevant method to use since all
the instances are non-HCF) can improve the efficiency of the evaluation of a logic program
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with bounded predicate arities compared to other ASP solvers. From the 48 instances
tested, DLV managed to complete evaluation for only 14 instances, while GrinGo/claspD
completed 34 of the 48 instances. BPA completed all the test instances, and even more
than that, it evaluated every instance in a very short time (less than a second) and almost
constant space. Figure 6.6 and 6.7 shows the time and space usage on Simple-NHCF

To understand how BPA is able to perform so well for these programs, let us consider
the following instance of Simple-NHCF, P :

d0(1).
d0(2).

p0(1, X) ∨ p0(2, X) ∨ p0(3, X)← d0(X)
p0(2, X)← p0(1, X), d0(X)
p0(3, X)← p0(2, X), d0(X)
p0(1, X)← p0(3, X), d0(X)

r0← d0(X1), p0(Y,X1), d0(X2), p0(Y,X2), d0(X3), p0(Y,X3)
d1(X)← r0, d0(X)

We recall again the method used for generating models as explained in Section 4.2.1 and
Section 5.2.3, as well as the method used for checking minimality described in Section 4.2.2
and Section 5.1.8. Recall the definition of SP in Definition 4.2. We have that, for program
P ,

I = SP = {d0(1), d0(2), p0(1, 1), p0(1, 2), p0(2, 1), p0(2, 2), p0(3, 1), p0(3, 2), r0, d1(1), d1(2)}
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The Disjunctive Method will generate the models of P which are subsets of I. However, it
is easy to see that, due to the four rules

p0(1, X) ∨ p0(2, X) ∨ p0(3, X)← d0(X)
p0(2, X)← p0(1, X), d0(X)
p0(3, X)← p0(2, X), d0(X)
p0(1, X)← p0(3, X), d0(X)

the set {p0(1, 1), p0(1, 2), p0(2, 1), p0(2, 2), p0(3, 1), p0(3, 2)} must be contained in every
model of P . The atoms r0, d1(1) and d1(2) follows immediately, and we are left with only
one model to consider, I itself. No interpretation smaller than I is found to be a model on
the model generation step of Disjunctive Method.

We consider now the minimality checking using the method described in Section 5.1.8.
Minimality checking is performed by first constructing the program Pg(I)∪Small(P )min(I),
in attempt to produce a model smaller than I which satisfies P I . Note that P (and
every other instance of Simple-NHCF) is positive, which means that P I = P . We
may assume that the four rules above are considered small, since each of them always
contains one variable in all instances of Simple-NHCF. We can see that the program
Pg(I) ∪ Small(P )min(I) is inconsistent, since no proper subset I ′ of I satisfies the above
four rules. Therefore, the algorithm immediately concludes that I is minimal.

The program instances in Simple-NHCF represent the classes of program for which the
Disjunctive Method can consider as “easy”. Each instance of Simple-NHCF has only one
answer set, and the Disjunctive Method is able to arrive at the answer set quickly, without
causing exponential space consumption. In contrast to this, evaluations on the other ASP
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solvers have to wait for the grounders to compute exponentially many ground rules first,
because the grounders themselves cannot evaluate completely the rules containing the
head-cycle. Not only does this grounding step consume unnecessarily exponential amount
of space, but it also becomes the bottleneck for the evaluation of the programs.

Set Packing

From the 87 instances of Set-Packing tested, DLV completed 60 of them under the allowed
resource limit. GrinGo/claspD managed to complete 75 of them, while BPA completed
all test instances successfully. All the failed instances by the two ASP solvers are due to
the computation exceeding allowed space limit. Figure 6.8 and 6.9 shows the resource
consumptions of the three systems for Set-Packing.

Results for the time consumption of the three systems are fairly consistent with the
previous test problems: BPA is able to complete most of the test instances in shorter time
compared to the other two systems. Maximum time usage for an instance by GrinGo/claspD
was more than 400 seconds, while BPA uses only at most 14 seconds using Method 1 and
Method 2. DLV failed on most of the bigger instances, and the highest time consumption
by DLV was 41 seconds.

However, the space consumptions for the Set-Packing instances give us a bit different
view from the previous test problems. Even though we can see that the space consumption
by BPA still stays within limit, it is unexpectedly high; around 200 MB for some of the
instances. For most of the larger test instances, these values are still much smaller than the
space consumptions of the other two systems. However, the fact does raise a question on
why BPA requires so much memory, if it only stores a few ground rules at any given time.
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After some careful examinations, we discovered that this has something to do with a
technical issue related to XSB thread management used in BPA. Each Prolog thread in BPA
is started using an C API call xsb ccall thread create() to XSB. This call creates a new
XSB thread and allocates a memory block for use by the thread. When the Prolog thread
is no longer needed, BPA calls the function xsb kill thread() to destroy the thread.
In theory, the function call should also cause the Prolog thread to release the allocated
memory block. However, in some cases, this does not seem to happen. This causes the
seemingly higher memory usage, even though technically, most of the reserved memory
blocks are actually no longer used. Despite our sincerest efforts, this bug has not been
resolved. However, we note that this is only a technical issue which does not necessarily
invalidate the conclusion that the three methods used in BPA perform evaluation under
polynomial space, assuming that the input program has bounded predicate arities.

Clique

For the test problem Clique, we found that under the allowed resource limit, DLV completed
17 of the 32 instances, GrinGo/claspD completed 23 of them, while BPA with Method 1
and Method 2 completed all 32 test instances. For growing size of test instances, BPA
using Method 1 and Method 2 generally managed to complete the evaluation faster than
both other systems, with Method 1 performing slightly faster than Method 2. Figure 6.10
depicts the time consumptions of the three systems for the Clique instances. Note that,
in this plot, some of the data points for DLV and GrinGo/claspD are missing, especially for
the larger instances, because these systems failed to complete the evaluation under the
allowed resource limit.
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Turning our attention to the results of the space consumption by the three systems,
we see a similar pattern as observed in the results for Set-Packing. Even though BPA
used lower amounts of space for most of the test instances, compared to the exponentially
high amounts of space usages by the other two systems, we notice that BPA still used
unnecessarily high amount of memory. For the largest test instance, BPA used more than
1 GB of memory (the other two systems exceed the allowed resource limit of 2 GB for
this instance). It seemed that the effects of the technical bug in the implementation of
the XSB interface are much bigger for Clique than they are for Set-Packing. We assume
this might be due to the much larger size of the Herbrand base of Clique, compared to
Set-Packing.

Layered n-Reachability

The last test problem we considered is the layered n-Reachability problem. Unfortunately,
here we encounter another technical problem involving XSB. For the instances where the
input graph contains 9 nodes or more, XSB could not complete its computation and
complained about a memory corruption. We could not find the reason for this problem,
and the problem still remains unsolved. We concede that perhaps this problem appears
only because of the way communication between BPA and XSB is implemented, and
is not necessarily caused by XSB itself. In summary, from the 42 instances generated,
GrinGo/claspD successfully completed 25 instances, DLV completed 21 instances, while BPA
only managed to complete 7 smaller instances for which the memory problem did not occur.
For the bigger instances, BPA always fails due to the same memory-related problem.

This technical problem has prevented us from collecting enough data needed to make
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any comparison on how BPA performs against the other systems for the n-Reachability
problem. Nevertheless, we would like to stress the point that the poor results obtained
in this test problem are due to technical issues, and do not necessarily mean that the
evaluation methods used by BPA cannot perform well for the test problem. With a better
implementation, we believe that BPA, using Method 1 or Method 2, can perform reasonably
well also for this test problem. Unfortunately, due to time constraints, we have not been
able to pursue this matter any further.

6.2.4 Concluding Remarks

We have developed a system called BPA which implements the three methods described in
Chapter 4, and was designed following the architecture framework described in Chapter 5.
It uses DLV as its external ASP solver and XSB as the Prolog engine used to compute
subsets of the ground rules. We have also performed experimental tests on BPA using
several test problems, and compared its performance against DLV and GrinGo/claspD. The
goal of the experiment is to measure time and space consumptions on all three systems for
the task of deciding answer set existence.

The results obtained suggest that BPA does confirm our expectation of staying within
polynomial space for all the test instances, while also managed to finish evaluation of most
test instances in less time than the other two systems. As an exception, some inconsistent
program instances require BPA to complete its evaluation longer than DLV or GrinGo/claspD,
especially when using Method 1 or Method 2. This is quite understandable, since if a
program is inconsistent, it might be the case that Method 1 or Method 2 will have to visit
many ground subsets of the input program before deciding that none of them produces an
answer set. BPA using Disjunctive Method might not have the same problem, and might
be more efficient for inconsistent programs.

Despite the good results given by BPA, we have also seen that it still has some problems,
mainly technical ones, which prevent it from being able to efficiently evaluate (if at all)
several program instances used in the experiment. The technical problems mainly rise from
the use of XSB and how interaction between BPA and XSB is managed. With more efforts
and time, it should be possible to overcome this problem.



7
Conclusion

We studied the properties and complexity results of logic programs with bounded predicate
arities as presented in [Eiter et al., 2007]. From these results, we have learned that reasoning
tasks for logic programs with bounded predicate arities have lower complexities, and in
particular, that it is possible to perform the reasoning tasks within polynomial space.
We have observed that current ASP solvers do not yet take advantage of this fact, and
that specifically, evaluations of logic programs using current ASP solvers may still cause
exponential space grounding, even for programs with bounded predicate arities. This
manifests as the “grounding bottleneck” problem which can reduce efficiency, with respect
to both time and space.

We have pursued an approach as suggested in [Eiter et al., 2007], based on meta-
interpretation technique, which reduces an input program into a meta-interpreted form
such that its evaluation in current ASP solvers will not cause exponential space grounding.
However, we have discovered that the approach does not perform efficiently enough in
practice. We thus explored different approaches, leading to the results we presented in this
thesis.

The main result consists of three methods for evaluating logic programs with bounded
predicate arities which stays within polynomial space. The first two methods deal with
normal/HCF programs, and works in similar manners. The main principle used by the two
methods is that, for a normal/HCF program with bounded predicate arities, it is possible
to compute answer sets of the program by considering polynomially bounded subsets of
the ground rules and compute local answer sets from these subsets. A local answer set can
then be admitted as a global answer set of the program if it satisfies all the rules in the
program, i.e., if it is closed under the rules. Using these methods, it can bee seen that full
grounding of the input program at once is unnecessary, thus avoiding exponential space
requirement associated with it.

We presented also an evaluation method to deal with non-HCF disjunctive programs
with bounded predicate arities. The method consists of two main steps: 1) generate some
models of the program which can potentially be an answer set and 2) check the models
produced by the first step for minimality. Any model found by step 1) and satisfying the
minimality check in step 2) is then returned as an answer set of the program. We have
showed how these two steps can be reduced into the task of evaluating several programs
such that the evaluation does not cause exponential space grounding when using current
ASP solvers.

100
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A framework architecture has been designed and presented for performing logic pro-
gram evaluation using the three methods proposed. The framework allows for an easy
understanding on how the methods might be implemented by decomposing them into
smaller subtasks, each of which is performed by one framework component. We provided
a detailed algorithmic description of each framework component and also described how
the framework components cooperate with each other to achieve the overall goal. We
have also studied how program modularity analysis and strongly-connected components
decomposition are incorporated into the framework architecture to increase the overall
efficiency of logic program evaluation using the three proposed methods.

Finally, we have developed an implementation of the evaluation methods which is designed
according to the framework architecture. It uses DLV as an external ASP solver and utilized
XSB as the Prolog engine to perform tasks related to program subsets generation. We
tested the performance of the implementation in deciding answer set existence, and we
compared it against claspD and DLV, two of the most efficient ASP solvers available at
the moment. The experiment results have shown that the proposed methods can indeed
perform evaluation under polynomial space, in contrast to the two ASP solvers, which
clearly show exponential space grounding behavior. Moreover, we learned also that using
the methods and framework architecture proposed can considerably increase time efficiency
for many of test cases, as a result of avoiding the exponential space grounding. However,
we concede that for some test cases, performance with respect to time consumption for
our prototype system can be worse than the respective performance of claspD and DLV.
Such cases are observed especially when the input program is inconsistent. Whereas claspD
and DLV might be able to detect inconsistencies earlier using sophisticated techniques and
heuristics, our evaluation methods does not provide any means for pruning the search space
to arrive at inconsistency faster. They instead have to proceed in visiting many subsets of
the ground rules and/or many local answer sets, before concluding that the program has
no answer set.

7.1 Future Work

We believe we have achieved a promising result from this work, and especially, that the main
goal of the research has been accomplished: to present evaluation methods for bounded
predicate arities which stay within polynomial space, and which can perform reasonably
well in some practical situations. However, there are still some issues left unaddressed,
which can pave the way for further research into the topic. We list some of these in the
following:

1. As the experiment results have shown, performance of the methods with respect to
time consumption can be worse than the performance of current ASP solvers on the
same input program, especially for the case where the input program is inconsistent,
or having only few and relatively difficult to find answer sets. This might be due to the
way ground program subsets and local answer sets are generated in the methods. If
the program is inconsistent, then in the worst case, all possible subsets of the ground
rules will be visited. This is of course, more expensive (time-wise) than generating all
the ground rules at once, and perform evaluation directly on the generated ground
rules. Future works might consider ways in which one can detect inconsistency earlier
and avoid generating the ground program subsets, or possibly reducing the number
of subsets that need to be visited.
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2. The three methods proposed are, in one sense, more appropriate for decision-type
problems, where one only needs to know whether a program has an answer set (is
consistent) or not (is inconsistent). If the input program is consistent, most of the
time, the three methods manage to find an answer set in less time and using less
space than current ASP solvers. As pointed out in 1), it might not be the case when
the program is inconsistent. However, for optimization-type problems, the situation
might be even worse, since this type of problems always requires to have all answer
sets visited and checked for optimality.

3. We have intentionally refrained from considering some of the extensions to the core
language of logic programs commonly found in current ASP solvers. In particular, one
of the basic extensions available in virtually all the current ASP solvers is the support
for integer arithmetics. We do not consider how rules with integer arithmetics can
be evaluated using the three methods proposed, since grounding a literal containing
integer arithmetics requires a special treatment, which we could not fit nicely into the
schema of our evaluation methods. In contrast to this, binary comparison predicates
are easier since they follow the safety condition in Definition 2.1, and do not require
special treatment during the grounding process.

There are still other, more interesting extensions, such as: weak constraints [Buccafurri
et al., 1997], aggregates [Dell’Armi et al., 2003] and cardinality constraints [Simons
et al., 2002] which we have not considered as well. It should be an interesting research
topic to consider how one might integrate evaluation methods, such as the ones
we propose, into systems capable of performing evaluation of programs with these
extensions.

4. Regarding implementation details, we have seen some problems surfacing during the
experiment. Most of these are due to the less-than-perfect interface with the back-end
Prolog system, XSB. For an implementation-oriented research, one can investigate
better methods at interfacing with such Prolog systems, to allow more efficient and
more reliable memory management and to increase overall (time) performance. One
can also investigate the possibilities of using other Prolog systems, or perhaps using
other than Prolog (ASP solvers) to perform the tasks related to ground program
subsets generation.

5. Finally, a more ambitious topic to consider would be on how to integrate the proposed
methods into current ASP solvers themselves, as one of their native optimization
procedures. The framework architecture given in Chapter 5 assumes that the three
evaluation methods are to be implemented externally from current ASP solvers. This
approach suffers from the overhead of communications between the system and the
external ASP solver. However, there is nothing to prevent us from incorporating the
evaluation methods into one of the current ASP solvers, allowing the solver to avoid
exponential space grounding by itself. This system will be more likely to have better
performance since no communication overhead is imposed.
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