
DISSERTATION

Calibrating the CERN ATLAS
Experiment with E/p

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines Doktors der
technischen Wissenschaften unter der Leitung von

Univ. Prof. Dipl.-Ing. Dr. Christian Fabjan
E141
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Kurzfassung

Innerhalb des ATLAS Experiments werden zwei Protonstrahlen mit einer Schwerpunkt-

energie von
√
s = 14 TeV zur Kollision gebracht und die dabei entstehenden Teilchen

detektiert. Diese Protonstrahlen werden durch den Large Hadron Collider (LHC) des

European Center of Particle Physics, CERN, in Genf erzeugt.

Für essentielle Punkte des Physikprogramms von ATLAS, wie z.B. die Suche nach dem

Higgs–Boson, ist die Qualität der Energiemessung von Elektronen und Photonen durch

das elektromagnetische Kalorimeter von entscheidender Bedeutung.

Das zentrale Thema der Dissertation ist die relative Kalibrierung der Energieskala des

elektromagnetischen Kalorimeters und der Impulsskala des inneren Spurendetektors.

Diese Kalibrierung basiert auf der Verteilung des Verhältnisses E/p für Elektronen,

wobei E die Energie gemessen durch das elektromagnetische Kalorimeter und p der

Impuls gemessen durch den inneren Spurendetektor bezeichnen.

Ausgangspunkt ist der Combined Test Beam 2004, ein Teststrahlversuch im Jahre 2004,

bei dem ein vollständiges Segment des ATLAS Detektors mit verschiedenen Teilchen

mit Energien von 1GeV bis 350GeV beschossen wurde. Zuerst habe ich die Kalib-

rierung der Energiemessung des elektromagnetischen Kalorimeters für Elektronen mit-

tels Monte Carlo Simulationen untersucht. Die mit dieser Methode erzielte Qualität

der Kalibrierung wird anhand von Daten des Combined Test Beam 2004 demonstriert.

Im Anschluss daran habe ich ein Model für die E/p Verteilung entwickelt, welches es

ermöglicht, die relativen Skalen des elektromagnetischen Kalorimeters und des inneren

Spurendetektors zu extrahieren. Die Leistungsfähigkeit dieses Modells wird zuerst für

den Combined Test Beam 2004 demonstriert und dann auf Monte Carlo Simulationen

für den vollständigen ATLAS Detektor angewandt.

Die Energieskala des elektromagnetischen Kalorimeters wird letzten Endes mit

Elektron/Positron–Paaren von Z Bosonzerfällen bestimmt werden. Allerdings ist dafür

eine sehr große Anzahl von Ereignissen notwendig. Daher wird die Leistungsfähigkeit

der von mir entwickelten Kalibrierung mit begrenzter Statistik präsentiert. Weiters kann
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mit dieser Methode die Energieskala für verschiedene Energiebereiche bestimmt werden.

Dies erlaubt eine in–situ Messung der Linearität des elektromagnetischen Kalorimeters.

Diese Vorgehensweise ist nur durch die verfügbare Anzahl von Elektronen mit hoher En-

ergie und schlussendlich durch die Fähigkeit des inneren Spurendetektors, den Impuls

sehr hochenergetischer Teilchen zu messen, begrenzt.

II



Abstract

Inside the ATLAS experiment two proton beams will collide with a center of mass energy

of
√
s = 14 TeV. These proton beams will be delivered with unprecedented high collision

rates by the Large Hadron Collider (LHC) at the European Center of Particle Physics,

CERN.

For important parts of the physics program of ATLAS, e.g. the search for the Higgs

boson, the performance of the electromagnetic calorimeter, whose primary task is to

measure the energy of electrons and photons, is crucial.

The main topic of this thesis is the intercalibration of the energy scale of the electromag-

netic calorimeter and the momentum scale of the inner detector. This is an important

consistency test for these two detectors. The intercalibration is performed by inves-

tigating the ratio E/p for electrons, i.e. the ratio of the energy E measured by the

electromagnetic calorimeter and the momentum p measured by the inner detector.

The starting point is the Combined Test Beam (CTB) 2004, where a segment of the

ATLAS detector was exposed to different particle beams with different energies, ranging

from 1 GeV to 350 GeV. First, I have investigated a calibration procedure using Monte

Carlo simulation for the energy measured by the electromagnetic calorimeter for elec-

trons. The performance of this procedure is presented for data taken in the CTB 2004.

Second, I have developed a model for E/p which allows the disentanglement of the ratio

of the two scales from tail effects from the different detector response functions of the

inner detector and the electromagnetic calorimeter. The performance of this model for

intercalibration is shown for the Monte Carlo simulation for the CTB 2004 and com-

pared to data taken in the CTB 2004. Finally I have evaluated the performance of this

method for the full ATLAS detector using Monte Carlo simulation.

Although the energy scale of the electromagnetic calorimeter will ultimately be deter-

mined with electron/positron pairs from Z boson decays, the potential of the intercali-

bration method with initial data, and therefore limited statistics, is presented. With the

presented intercalibration method the energy scale can also be determined for various
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electron energies, thereby measuring the linearity of the electromagnetic calorimeter in

situ. This will only be limited by statistics, i.e. the number of electrons produced at high

energies, and ultimately the capability of the inner detector to measure the momentum

of charged particles at very high energies.
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1 The Large Hadron Collider

This chapter is devoted to the Large Hadron Collider accelerator complex (section 1.1)

and the major experiments that are going to make use of the collisions provided by the

Large Hadron Collider (section 1.2).

1.1 The Large Hadron Collider accelerator complex

The Large Hadron Collider (LHC) is a hadron accelerator and storage ring collider at

CERN near Geneva [1]. It is located in the tunnel where previously the Large Electron

Positron (LEP) collider had been installed. This tunnel has a circumference of 26659

meters and an internal diameter of 3.7m in the arcs. This constraint essentially did

not allow the construction of two completely separate proton rings. Instead, the so

called twin-bore magnet design was chosen meaning that the windings for the two beam

channels are situated in a common cold mass and cryostat. Because the LHC is a

particle–particle collider (and not a particle–antiparticle collider as the Tevatron for

example), the magnetic flux has to be directed in the opposite sense for the two beam

channels.

The schematic layout of the LHC is shown in figure 1.1. The LHC consists of 8 sectors.

In the middle of all sectors are the so called long straight sections where the beams can be

collided. This will only be done at Interaction Point (IP) 1 for the ATLAS experiment,

at IP 2 for the LHCb experiment, at IP 5 for the CMS experiment and at IP 8 for the

ALICE experiment. The other long straight sections will be used for beam cleaning, for

the beam dump and to house the radio frequency (RF) system.

In order to keep the particles on orbit 1232 superconducting dipole magnets are used.

These dipole magnets have a nominal field of 8.33 T corresponding to a nominal energy

of 7 TeV per beam. The dipole magnets are made up of NbTi Rutherford cables that are

cooled down to 1.9 K with superfluid helium. The quality requirements for the dipole

magnets are very high. The upper bound on the relative variations of the integrated

field, the field shape imperfection and their reproducibility is 10−4. In addition to the

1



Figure 1.1: The schematic layout of the Large Hadron Collider (LHC).

dipole magnets the LHC magnet system contains a variety of different magnets such as

focusing and defocusing quadrupole magnets or chromaticity correcting sextupoles. A

full inventory of the LHC magnet system is given in [1].

The primary operation mode for the LHC will be to collide 2 proton beams. From

the proton source the protons are first accelerated by the Linac2, then by the Proton

Synchrotron Booster (PSB), then by the Proton Synchrotron (PS) and then by the

Super Proton Synchrotron (SPS) to an energy of 450 GeV, which is the injection energy

into the LHC. Through dedicated transfer lines the protons are injected into the LHC

which then accelerates the protons to the design energy of 7 TeV per beam, resulting in

a center of mass energy of
√
s = 14 TeV for proton–proton collisions. The protons are

divided into 2808 bunches where each bunch contains 1.15·1011 protons. This results in

a beam current of 0.58 A. The interval between bunch crossings for collisions is 25 ns.

In the first year of LHC operation neither the design energy nor the design luminosity

will be reached. It is planned to operate at 3.5TeV per beam at the beginning and then

to increase the energy to 5TeV per beam in the first year of operation.

The peak luminosity that will be delivered to the ATLAS and CMS experiments is

1034 cm−2 s−1, which corresponds to approximately 109 collisions per second. This peak

luminosity is unprecedented for a hadron collider and cannot be achieved with a proton–

antiproton machine (like the Tevatron) with present day technology. Mainly due to beam

loss from collisions the luminosity degrades over time. The estimated luminosity lifetime

(the time after the luminosity has fallen to 1/e of the initial luminosity) is estimated to be
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14.9 h. The expected average turnaround time (time between two runs needed to ramp

down the machine and to ramp it up again) is around 7 hours implying an optimum run

duration of 12 hours. Together with the assumption of 200 days of machine operation

per year and accounting for the uncertainty of the average turnaround time, this yields

a maximum total integrated luminosity1 of 80-120 fb−1 per year.

Apart from colliding protons the LHC is also able to accelerate and collide fully stripped

lead (208Pb82+) ions at a center of mass energy of
√
s = 1148 TeV, meaning 2.8 TeV

per nucleon per beam. The maximum luminosity for ion–ion collisions that will be

delivered at IP8 for the ALICE experiment which is a dedicated heavy ion experiment

is 1.0·1027cm−2s−1.

1.2 Experiments at the Large Hadron Collider

This section describes the main experiments that will be operated at the LHC. The

ATLAS experiment will be presented in chapter 2 in more detail.

1.2.1 ALICE

ALICE (A Large Ion Collider Experiment) is a general–purpose detector dedicated to

heavy ion physics [2]. It primary will probe quantumchromodynamics (QCD) at extreme

energy densities and temperatures which lead to the production of quark–gluon plasma.

The schematic layout of ALICE is shown in figure 1.2. ALICE uses the solenoid magnet

from the previous L3 experiment at LEP to provide the magnetic field for the central

barrel part of the detector. A dipole magnet creates the magnetic field for the forward

muon spectrometer.

At the interaction point inside ALICE, lead ions will be collided with a center of mass

energy of
√
s = 1148TeV at a luminosity of 1027 cm−2 s−1. This will lead to extreme

charged particle multiplicities at mid–rapidity, i.e. close to the plain which containts the

inertaction point and is orthogonal to the beam axis. The ALICE detector is designed

to operate at charged particle multiplicities up to dN/dη = 8000. The most recent

estimate including extrapolations of measurements done by the RHIC detector at the

Brookhaven National Laboratory is dN/dη = 1500− 4000.

1The integrated luminosity L is defined as the integral of the luminosity over time. The average number
of events N for a process for a certain time interval is the product of the integrated luminosity for
the time interval and the cross section for the process σ, i.e. N = Lσ.
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Figure 1.2: The schematic layout of the ALICE detector.

These high charged particle multiplicities constrained the choice of tracking detectors

severely. Three tracking systems are employed in the barrel part of ALICE. The Inner

Tracking System (ITS) made up of 6 silicon layers, the Time Projection Chamber (TPC)

with a very low material budget and the Transition Radiation Detector (TRD) which

also contributes to electron identification. Further systems for particle identification are

the Time of Flight (TOF) array using Multigap Resistive Plate Chambers and the High

Momentum Particle Identification Detector (HMPID) consisting of proximity–focusing

Ring Imaging Cherenkov (RICH) counters.

The PHOton Spectrometer (PHOS) is a single–arm high–resolution high–granularity

electromagnetic spectrometer consisting of 2 parts. The first is the electromagnetic

calorimeter made up of 17.920 PbWO4 crystals. PbWO4 was chosen because of its very

small moliere radius and radiation length. The calorimeter is highly segmented and has

a depth of 20 radiation lengths. The second is a Charged–Particle Veto (CPV) detector.

This is a Multi–Wire Proportional Chamber (MWPC) with a charged particle rejection

better than 99%. The primary focus of PHOS is meson identification at low pT and

photon identification and energy measurement.

The Electro Magnetic CALorimeter (EMCal) is a large Pb–scintillator sampling

calorimeter with cylindrical geometry that is read out via wavelength–shifting fibres.

Its main goal is to study jets, and in particular the interaction of energetic partons with

dense partonic matter.

The design criterion for the forward muon spectrometer was a mass resolution of

100MeV/c2 to allow the separation of all states of heavy quark resonances like
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J/Ψ, ψ
′
,Υ,Υ

′
,Υ

′′
. The forward muon spectrometer covers a pseudo–rapidity range of

−4 < η < −2.4. Ten planes of modules are used for the inner muon tracking, four planes

of Resistive Plate Chambers for the outer muon tracking.

1.2.2 CMS

The Compact Muon Solenoid (CMS) is a general-purpose detector, high luminosity

detector [3]. The schematic layout of CMS is shown in figure 1.3.

Figure 1.3: The schematic layout of the CMS detector.

Although the physics program of CMS is very similar to that of ATLAS, very different

design decisions have been made. Most striking, CMS will use only one superconducting

magnet to produce a 4 T solenoidal field in the central cylindrical region (diameter 6 m,

length 12.5 m). The magnet is made of NbTi and the energy stored in it is 2.6 GJ.

The Inner Tracking System consists exclusively of silicium detectors. This choice was

driven by the granularity, speed and radiation hardness requirements. At design lumi-

nosity of 1034 cm−2 s−1 on average 1000 particles will be created from 20 simultaneous

proton-proton collisions per bunch crossing. The measurement of the track parameters

of all the charged particles and the reconstruction of displaced secondary vertices for

τ and b–jet tagging are the main purpose of the Inner Tracking System. Its coverage

in pseudo–rapidity is |η| ≤ 2.5. This is achieved by 3 barrel pixel layers and 10 silicon

strip larrel layers and their corresponding endcap detectors. In total the Inner Tracking

System has an area of active silicon of 200 m2, making it the largest silicon tracker ever

built.
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The Electromagnetic Calorimeter (ECAL) is a homogeneous scintillation calorimeter. It

consists of 61200 PbWO4 crystalls. PbWO4 has a very small radiation length (0.89 cm)

and Molire radius (2.2 cm) making it possible to implement a compact design for the

ECAL. Furthermore its scintillation decay time is comparable to the LHC bunch crossing

time of 25 ns. The scintillation photons are detected by Avalanche Photodiodes (APDs)

in the barrel and by Vacuum Phototriodes (VPTs) in the endcaps. A laser monitor

system is used to monitor the evolution of the crystal transparency which degrades

under irradiation. The information of this system is used for calibration purposes.

The Hadronic Calorimeter (HCAL) is a sampling calorimeter using brass as absorber

and plastic scintillator as active medium. It is read out via wavelength–shifting fibres.

The HCAL and the ECAL are both placed inside the solenoid magnet coil. Due to this

restriction an outer hadron calorimeter had to be placed outside of the solenoid magnet

to provide a sufficient interaction depth for the barrel region.

Two forward detectors are employed. The Centauro And Strange Object Research (CAS-

TOR) detector is a quartz-tungsten sampling calorimeter with a pseudo–rapidity cover-

age of 5.2 < |η| < 6.6 for diffractive and low–x studies.. The Zero Degree Calorimeter

(ZDC) is a quartz-tungsten sampling calorimeter which covers the pseudo–rapidity range

|η| ≥ 8.3 for neutral particles contributing to heavy ion and proton-proton diffractive

physics.

The muon system covers the pseudo–rapidity range |η| < 2.4. In the barrel part |η| < 1.2

Drift Tube (DT) chambers are used. The endcaps are equipped with Cathode Strip

Chambers (CSC) because of higher particle rates. Both systems can trigger on the

transverse momentum2 pT of muons. In addition, Resistive Plate Chambers (RPC)

are also used for triggering purposes. Together with the inner tracking system a good

momentum resolution is achieved, about 5% for muons at 1 TeV/c. The charge of the

muon can be unambiguously determined up to 1 TeV/c.

1.2.3 LHCb

The LHCb experiment will study heavy flavour physics at the LHC [4]. The main

point of its physics program is the search for new physics via CP violation and rare

decays of beauty and charm hadrons, mainly Bd, Bs and D mesons. The B mesons

will be generated via bb̄ production which has a cross section of approx. 500 µb at 14

2The transverse momentum pT is defined as the component of the momentum vector that is orthogonal
to the beam axis.
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TeV center of mass energy for proton-proton collisions. The optimal luminosity for p-p

collisions for LHCb is 2·1032 cm−2 s−1. At this level of luminosity the detector occupancy

and radiation damage are kept at a reasonable level and on average there is less then a

single proton-proton interaction per bunch crossing. In order to stay at this luminosity

level at nominal LHC running conditions the beam focus at the LHCb interaction point

can be adjusted independently from the other interaction points.

The schematic layout of LHCb is shown in figure 1.4. LHCb is an asymmetric experiment

(wrt. η) with an acceptance range of 1.6 < η < 4.9. The magnet that provides the

magnetic field for the outer tracking system is a warm magnet. The direction of the

magnetic field will be changed periodically in order to control the systematic effects for

CP asymmetry measurements.

Figure 1.4: The schematic layout of the LHCb detector.

The tracking system of LHCb consists of 3 parts. The Vertex Locator (VELO) is posi-

tioned next to the interaction region and its main purpose is the measurement of tracks

in the proximity of the interaction region. These measurements are crucial for the identi-

fication of displaced secondary vertices that are characteristic for b and c–hadron decays.

The Silicon Tracker consists of two detectors, namely the Tracker Turicensis (TT) and

the Inner Tracker (IT). Both of them use silicon microstrip sensors. The TT is posi-

tioned upstream of the magnet while the IT is located downstream. Both have small

overall material keeping the degradation of the resolution due to multiple scattering at

an acceptable level. The Outer Tracker (OT) is designed as a drift time detector using

drift tubes filled with a mixture of Argon (70%) and CO2 (30%).
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Particle identification is provided by two Ring Imaging Cherenkov (RICH) detectors.

RICH1 is located upstream of the magnet while the RICH2 is situated downstream.

RICH1 uses aerogel and C4F10 radiators to separate pions from kaons at the low mo-

mentum charged particle range from 1 to 60 GeV/c while RICH2 employs CF4 a radiator

in the high momentum range from 15 to well above 100 GeV/c. Both use a spherical

mirror to reflect the cherenkov photons out of the spectrometer acceptance and than a

flat mirror to propagate them to the Hybrid Photon Detectors (HPDs). The HPDs can

measure photons at wavelengths of 200–600 nm.

The calorimeter system consists of an electromagnetic calorimeter (ECAL) which is a

Pb–scintillator sampling calorimeter and a hadronic calorimeter (HCAL) which is an

Iron–scintillator sampling calorimeter. Both are read out via wavelength–shifting fibres.

The systems contribute to the particle identification of electrons, photons and hadrons

and also measure their energy. Prompt photons and π0 also have to be reconstructed

well for flavour tagging.

The first muon station is situated right upstream of the electromagnetic calorimeter.

A triple Gas Electron Multiplier (GEM) detector is used in its inner region to deal

with the expected particle rate. The outer region of the first muon station and the

other four muon stations that are downstream of the calorimeters consist of Multi-Wire

Proportional Chambers (MWPC). The first three muon stations perform tracking while

the two outer most stations are used to identify penetrating particles.
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2 The ATLAS Experminent

The ATLAS (A Toroidal LHC ApparatuS) detector is a general–purpose detector that

will take data from proton–proton collisions at the LHC with a center of mass energy

of 14TeV at a design luminosity of 1034 cm−2 s−1 [5]. The requirements imposed by the

physics program of ATLAS are discussed in section 2.1. After describing the magnet

system of ATLAS in section 2.2, the three main detector subsystems are presented in

the following sections, the Inner Detector in section 2.3, the calorimetry subsystems in

section 2.4 and the muon spectrometer in section 2.5. The overall layout of the ATLAS

detector is shown in figure 2.1.

Figure 2.1: Cut-away view of the ATLAS detector. The dimensions of the detector are
25 m in height and 44 m in length. The overall weight of the detector is approximately
7000 tonnes. Taken from [5].
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2.1 Physics requirements

A primary task of the ATLAS detector is the search for the standard model Higgs

boson H which is a benchmark process for many of the subdetectors of ATLAS since the

production and decay mechanisms vary considerably as a function of the Higgs boson

mass. Important decay channels are H → γγ, H → bb̄ and H → ZZ(∗). The sensitivity of

ATLAS for the discovery of a Standard Model Higgs boson in terms of the significance

of the signal for Higgs boson decays as a function of the Higgs boson mass and the

integrated luminosity is shown in figure 2.2.
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Figure 2.2: Significance contours for different Standard Model Higgs masses and
integrated luminosities. The solid curve represents the 5σ discovery contour. The
median significance is shown with a colour according to the legend. The hatched area
below 2 fb−1 indicates the region where the approximations used in the combination of
the four decay channels are not accurate, although they are expected to be
conservative.

Searches for physics beyond the standard model will include processes with a transverse

momentum pT up to a few TeV. For the search for new heavy gauge bosons W
′
and Z

′
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through their lepontic decays this means that the resolution and charge identification

must still be accurate in this high momentum range. The search for quark compositeness

involves very high pT jets and requires a good linearity for jet energies up to several TeV.

Another variable sensitive to physics beyond the standard model is the missing trans-

verse energy1 Emiss
T . For supersymmetric models2 where the R-parity is conserved, the

decay of supersymmetric particles would proceed in cascades where the lightest stable

supersymmetric particle (LSP) would not be able to decay any further and would escape

the detector nearly without interacting with the detector therefore creating a significant

Emiss
T . Other models that have experimental signatures including a significant Emiss

T are

extra dimensions models and quantum gravity.

The ATLAS detector will also perform high precision tests of the standard model of

particle physics. Among the properties to be measured are the top quark mass, the top

quark spin and the W boson mass with a desired precision of 10MeV.

At the design luminosity of 1034 cm−2 s−1 approximately 23 inelastic proton–proton colli-

sions will occur at each bunch crossing. Together with a bunch crossing spacing of 25 ns

this will result in a enormous particle production rate that requires a highly efficient

trigger system to detect events of interest over the large background as well as fast and

radiation hard sensors and electronics.

All the benchmark processes mentioned above lead to the following requirements for the

ATLAS detector, see table 2.1:

1. Large acceptance in ϕ and in pseudorapidity for a good Emiss
T resolution.

2. Good charged-particle momentum resolution, charge identification and reconstruc-

tion efficency in the inner tracker. Good resolution for secondary vertices for τ

1Since the detector inertial system is the center of mass system of the colliding protons, the vector
sum of the momenta of all particles is zero for each proton-proton collision. Since the detector
does not cover a small stereo angle around the beam axis, the sum of the momenta of the particles
in the detector acceptance region can be deviate from 0. However, the transverse component of
the momenta in the uncovered regions is very small. As a consequence the sum of the transverse
momenta of the particles in the detector acceptance region is always very close to 0. If a particle
has significant momentum and escapes the detector unmeasured, i.e. a neutrino, the sum of the
measured transverse momenta is not zero and this is denoted missing transverse energy, Emiss

T .
2Supersymmetry is the concept for an invariance that links fermions and bosons. Every fermion has

a bosonic supersymmetric partner and every boson has a fermionic supersymmetric partner. The
main advantage of Supersymmetry is that the loop corrections in the Higgs mass renormalization
cancel exactly due to the opposite sign for fermions and bosons, therefore solving the hierarchy
problem in an elegant way.
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and b-jet tagging.

3. Excellent electromagnetic calorimetry for electron and photon identification and

measurements.

4. Hadronic calorimetry with large coverage for jet and Emiss
T measurement.

5. Good muon momentum resolution, charge identification and reconstruction effi-

cency in the muon spectrometer up to the TeV range.

6. The electronics and sensor elements must be fast and radiation–hard due to the

experimental conditions at the LHC.

7. Efficient trigger also for low pT objects with sufficient background rejection.

Turning these requirements into numbers yields the required performance listed in ta-

ble 2.1.

Detector component Resolution η measurement η trigger
Tracking σpT /pT = 0.05%pT ⊕ 1% |η| < 2.5
Electromagnetic calorimetry σE/E = 10%/

√
E ⊕ 0.7% |η| < 3.2 |η| < 2.5

Hadronic calorimetry
barrel and endcap σE/E = 50%/

√
E ⊕ 3% |η| < 3.2 |η| < 3.2

forward σE/E = 100%/
√

E ⊕ 10% 3.1 < |η| < 4.9 3.1 < |η| < 4.9
Muon spectrometer σpT /pT = 10% at pT =1TeV |η| < 2.7 |η| < 2.4

Table 2.1: Required performance of the ATLAS detector. The unit for E is GeV, the
unit for pT is GeV/c.

2.2 Magnet System

In contrast to the CMS detector, where only one solenoidal field is used, the ATLAS

detector employs a unique hybrid system of four superconducting magnets to provide

the magnetic field for the inner tracking detector called Inner Detector and the muon

spectrometer. The total size of the magnetic system in 22m in diameter and 26m in

length. The stored energy in the system im 1.6GJ.

Central solenoid

The central solenoid provides the solenoidal field for the momentum measurement in the

Inner Detector. The solenoidal field is aligned with the beam axis and has a nominal
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strength of 2T. The superconducting cables are made out of Al–stabilized NbTi. The

central solenoid is located inside the electromagnetic barrel calorimeter. In order to

achieve the required performance of the electromagnetic barrel calorimeter, the material

budget of the central solenoid is crucial. A thickness of only 0.66 radiation lengths at

normal incidence has been achieved.

Barrel toroid

The barrel toroid provides the toroidal field for the momentum measurement in the

barrel part (|η| < 1.4) of the muon spectrometer. The bending power provided by the

barrel toroid is 1.5 to 5.5Tm. The eight coils of the barrel toroid are housed in eight

separate cryostats. These are linked together by a support structure to deal with the

Lorentz force which amounts to the equivalent of 1400 tonnes.

Endcap toroids

The two endcap toroids provide the toroidal field for the momentum measurement in the

endcap part (1.6 < |η| < 2.7) of the muon spectrometer. The bending power provided

by the endcap toroids is 1 to 7.5Tm.

In the transition region (1.4 < |η| < 1.6) the magnetic fields of the barrel and the endcap

toroids overlap and the provided bending power is lower than in the other regions.

2.3 Inner Detector

At the design luminosity of the LHC approximately 1000 particles will emerge from the

collision point every 25 ns. The primary task of the Inner Detector is to measure the

tracks of the charged particles. Based on these tracks, the Inner Detector will measure

the transverse momentum of charged particles down to a transverse momentum pT of

0.5 GeV/c. It will reconstruct the primary vertex as well as secondary vertices, e.g.

from τ leptons, b–quarks or c–quarks, if present. Furthermore the Inner Detector will

contribute to electron identification by measuring transistion radiation. The bending

power required for the momentum measurement is provided by the central solenoid.

The layout of the Inner Detector is shown in figure 2.3.
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Figure 2.3: Cut-away view of the ATLAS Inner Detector. Taken from [5].

Pixel Detector

The Pixel detector is a sillicon detector consisting of 1744 pixels sensors with 46080

readout channels per sensor. The barrel part features three cylindrical layers, the two

endcaps three discs each. The thickness is 250µ with a nominal pixel size 50x400µm2.

The Pixel detector will provide discrete space–points that will be used for high resolution

tracking.

The standard bias voltage is 150V, although after 10 years of operation up to 600V will

be needed for good charge collection to compensate the degradation of the performance

due to radiation damage.

Silicon Microstrip Tracker

The Silicon Microstrip Tracker (SCT) is also a sillicon detector consisting of 15192

sensors with 768 strips per sensor. The barrel part features four cylindrical layers, the

two endcaps 9 discs each. The thickness is 285µm. The SCT will provide stereo pairs

to the tracking algorithms.

The standard bias voltage is 150V, although after 10 years of operation up to 350V will

14



be needed for good charge collection to compensate the degradation of the performance

due to radiation damage.

Transition Radiation Tracker

The Transition Radiation Tracker (TRT) consists of polyimide drift tubes of 4mm di-

ameter. They are operated at 1530V resulting in a gain factor of 2.5x104 and provide

R − ϕ information only. The chosen gas mixture is 70%Xe, 27% CO2 and 3%O2 at

5-10mbar over–pressure. The TRT covers the pseudorapidity range of |η| < 2.0 and has

351000 readout channels.

In addition to providing typically 36 hits per track to the tracking algorithms, the

TRT also contributes to the electron identification. The low energy transition radiation

photons emitted by traversing electrons are absorbed in the gas mixture and yield much

larger signal amplitudes for electrons than for minimum ionizing charged particles. The

electron identification capabilities are implemented by using a high threshold to detect

the enhanced signal for electrons in addition to a low threshold for identifying standard

hits for tracking.

2.4 Calorimetry

All calorimeters employed by ATLAS are sampling calorimeters. The electromagnetic

(subsection 2.4.1) and hadronic (subsection 2.4.2) calorimeters cover the pseudorapidity

range of |η| < 4.9. The layout of the calorimetry system is shown in figure 2.4.

2.4.1 Liquid Argon Electromagnetic Calorimeter

The Liquid Argon Electromagnetic Calorimeter is a sampling calorimeter using lead

as the absorber and liquid argon as the active material. It consists of a barrel part

(|η| < 1.475) and two endcaps (1.375 < |η| < 3.2). A special geometry (accordion)

has been developed to provide complete ϕ symmetry without azimuthal cracks has been

chosen for the barrel and the endcaps.

The Liquid Argon Electromagnetic Barrel Calorimeter (LAr EMB) is described in chap-

ter 4 in more detail since the calibration of the electron energy measurement with the

LAr EMB in the Combined Test Beam 2004 is the subject of chapter 5.

Each endcap consists of two co–axial wheel–like structures. The outer wheel (1.375 <
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Figure 2.4: Cut-away view of the ATLAS calorimeter system. Taken from [5].

|η| < 2.5) and the inner wheel (2.5 < |η| < 3.2) are separated by a 3mm gap whose

position corresponds to the end of the acceptance of the Inner Detector. The precision

region of the outer wheel (1.5 < |η| < 2.5) is segmented into three layers in depth, the

other regions into two layers. For the region of 1.5 < |η| < 1.8 a liquid argon presampler

is used to estimate the energy loss in front of the calorimeter in order to improve the

energy measurement. The thickness of the endcaps is at least 24 radiation lengths.

2.4.2 Hadronic Calorimeters

Tile calorimeter

The Tile Calorimeter consists of a barrel part (|η| < 1.0) and two extended barrels

(0.8 < |η| < 1.7). It is a sampling calorimeter using iron as the absorber and scintillating

tiles as the active medium. The tiles are readout at two sides by wavelength shifting

fibres into two independent photomultiplier tubes. The tiles are oriented radially and

normal to the beam axis providing an almost seamless azimuthal coverage. The Tile

Calorimeter is radially segmented into three layers and its radial depth is 7.4 interaction

lengths (λ). Together with the electromagnetic calorimeter this yields a depth of 9.7 λ

of active material in the barrel region. This is sufficient to achieve the desired resolution
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for high energy jets (see table 2.1).

Liquid Argon Hadronic Endcap calorimeter

The Liquid Argon Hadronic Endcap calorimeter is a sampling calorimeter with liquid

argon as active and copper as absorber material and covers the pseudorapidity range

of 1.5 < |η| < 3.2. It consists of two independent wheels per endcap and shares a

common cryostat together with the electromagnetic endcap calorimeter and the Forward

Calorimeter. Each wheel is divided into two segments in depth.

Liquid Argon Forward Calorimeter

The Liquid Argon Forward Calorimeter (FCal) is a sampling calorimeter and uses liquid

argon as the active medium. For each endcap the FCal is segmented into three layers

in depth, the first optimized for eletromagnetic measurements using copper as absorber

material and the other two devoted to the measurement of the hadronic interactions using

tungsten as absorber material. The covered pseudorapidity range is 3.1 < |η| < 4.9.

2.5 Muon Spectrometer

The driving performance requirement for the muon spectrometer was a 10% momentum

resolution for 1TeV muon tracks. For these tracks the sagitta along the beam axis is

approximately 500µm given the bending power provided by the toroid magnet systems.

In order to achieve the desired momentum resolution, the sagitta has to be measured with

a precision of ≤50µm. Due to the large volume of the muon spectrometer the relative

alignment between the chambers is crucial for its overall performance. The precision of

the relative alignment of chambers has to be 30µm. Optical alignment sensors are used

in addition to track–based alignment algorithms to meet this requirement.

The muon spectrometer covers a pseudorapidity range of |η| < 2.7 and can be used for

triggering on muon tracks up to |η| < 2.4. The layout of the muon spectrometer is

shown in figure 2.5.

Monitored Drift Tubes

The Monitored Drift Tubes (MDT) are drift tube chambers operating with a gas mixture

of 93%Ar and 7%CO2 at 3 bar. The drift time for the MDTs is 700 ns. They cover a

pseudorapidity range of |η| < 2.7 (|η| < 2.0 for the innermost layer) and provide high
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Figure 2.5: Cut-away view of the ATLAS muon system. Taken from [5].

precision measurements of the track coordinates.

There are 1150 MDT chambers with 354000 readout channels in total.

Cathode Strip Chambers

In the pseudorapidity range of 2.0 < |η| < 2.7 in the innermost layer the MDT chambers

are replaced by Cathode Strip Chambers (CSC) because of the high particle flux and

muon track density. The CSCs are multiwire proportional chambers with the wires

oriented in the radial direction. Both cathodes are segmented, one perpendicular and

one parallel to the wire. The interpolation between the charges induced on neighbouring

cathode strips are used to compute the position of the track.

Together with the MDTs the CSCs contribute to the precision tracking for muons. In

total there are 32 CSC with 31000 readout channels.
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Resistive Plate Chambers

In the pseudorapidity range of |η| < 1.05 Resistive Plate Chambers (RPC) are used to

trigger on muon tracks. In addition they will provide a second coordinate measurement

in the non–bending ϕ projection to complement the MDT measurement. The RPC is

a parallel electrode–plate detector with a distance of 2mm between the plates. It is

filled with a gas mixture of 94.7%C2H2F4, 5% Iso-C4H10 and 0.3%SF6 and operated at

4.9 kV/mm. The intrinsic time resolution for the RPCs is 1.5 ns. There are 606 RPCs

with 373000 readout channels.

Thin Gap Chambers

In the pseudorapidity range of 1.05 < |η| < 2.4 Thin Gap Chambers (TGC) are used to

trigger on muon tracks. In addition they will provide a second coordinate measurement

in the non–bending ϕ projection in the pseudorapidity range of 1.05 < |η| < 2.7 to

complement the MDT measurement. The TGCs are multiwire proportional chambers

filled with a highly quenching gas mixture of 55%COs and 45%n–C5H12 (n-pentane)

and operated with a gas gain of 3x105. The intrinsic time resolution for the TGCs is

4 ns. There are 3588 TGCs with 318000 readout channels.
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3 Electromagnetic Calorimetry

This chapter describes the fundamental principles of electromagnetic calorimetry and is

based on [6–8]. After discussing the energy loss of electrons while passing through matter

in section 3.1 and the interaction of photons with matter in section 3.2, the principles

of the development of the electromagnetic cascades are described in section 3.3. The

deposition of the energy inside the absorber material is discussed in section 3.4 and,

finally, the energy resolution of electromagnetic calorimeters is treated in section 3.5.

3.1 Energy loss of electrons

Since for high energy electrons, i.e. with an energy higher than the critical energy defined

below, the emission of bremsstrahlung is the dominant process through which they loose

energy when traversing matter (see figure 3.1 for the energy loss of electrons in lead),

the characteristic length for the energy loss of high energy electrons in matter is the

radiation length X0 defined as the mean distance after which the remaining energy of

the high energy electron is 1/e of its initial energy. A fit to experimental data yields the

approximation [6]

X0(g/cm
2) =

716 g cm−2 A

Z (Z + 1) ln(287/
√
Z)
, (3.1)

where Z is the atomic mass and A is atomic number of the matter that is traversed.

The differential cross section can be approximated by [6]

d σ

d k
=

A

X0NA k

(
4

3
− 4

3
y + y2

)
, (3.2)

where y = k/E is the fraction of the electron’s energy transfered to the radiated photon

and NA is Avogadro’s number.

The critical energy Ec can be defined as the energy at which the energy losses due to
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Figure 3.1: Fractional energy loss for electrons and positrons per radiation length in
lead (X0(Pb) = 6.37 g/cm2) as a function of the electron or positron energy. Taken
from [6].

bremsstrahlung and ionization are equal. An approximation for Ec is given by

Ec =
610 (710) MeV

Z + 1.24 (0.92)
(3.3)

for solid (gaseous) absorber materials.

3.2 Interactions of photons with matter

The cross section of the various interactions of photons with lead are shown in figure 3.2.

For high energies pair production in the nuclear field is the dominant process and its

cross section can be approximated by

σ =
7A

9X0NA

, (3.4)

where X0 denotes the radiation length of the material through with the photon travels

(see section 3.1), A is the atomic mass of the traversed matter and NA is Avogadro’s

number. This means that after traversing a length of 9 X0

7
the probability of a photon

to convert into an electron–positron pair is 1 − 1/e, or, in other words, 1/e that it has

not converted.

Therefore a common length scale, the radiation length, governs the interactions for
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electrons and photons at high energies.
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Figure 3.2: Total cross sections for photons in lead as a function of the photon energy.
σe.p. is the cross section for the atomic photoelectric effect, σRayleigh and σCompton for
the (coherent) Rayleigh scattering and the (incoherent) Compton scattering, κnuc and
κe for the pair production in the nuclear field and the electron field. Taken from [6].

3.3 Electromagnetic cascades

As shown in sections 3.1 and 3.2, the dominant process for high energy electrons is

bremsstrahlung and for high energy photons it is pair production. Both processes have

a common characteristic length scale, the radiation length of the absorber material.

For a high energy electron impinging a block of matter this means that it will most

likely emit a bremsstrahlung photon which itself will convert via pair production into an

electron–positron pair. This electron and positron will themselves emit bremsstrahlungs

photons, which will also convert. This results in a whole cascade of bremsstrahlung and

pair production events that create a shower of electrons/positrons and photons. This

mechanism is called electromagnetic cascade and its main properties can be characterized

by the radiation length X0 of the absorber material.
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The mean longitudinal shower profile obtained from Monte Carlo simulation is shown

in figure 3.3. It can be described with the so-called Longo–Sestilli formula [9]

dE

dt
= E0 b

(bt)a−1e−bt

Γ(a)
, (3.5)

where E0 denotes the initial energy of the incident particle, t = x/X0 is the depth inside

the material in radiation lengths and the parameters a and b depend on the type of the

incident particle, i.e. whether it is an electron, a positron or a photon.
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Figure 3.3: Fractional energy deposition of a 30 GeV electron–induced electromagnetic
cascade in iron obtain with Monte Carlo simulation (EGS4). Circles indicate the
number of electrons with total energy greater than 1.5MeV crossing planes at X0/2
intervals (scale on the right) and the squares the number of photons with an energy
greater than 1.5MeV crossing the planes (scaled down to have the same area as the
electron distribution). Taken from [6].

The mean position tmax of the shower maximum can be approximately described by

tmax ≈ ln
E0

Ec

+ t0, (3.6)

with tmax in radiation lengths, E0 denotes the initial energy of the incident particle and

t0 depends on the type of the incident particle, i.e. 0.5 for electrons/positrons and -0.5

for photons. Equation 3.6 shows that the mean position tmax of the shower maximum

scales logarithmically with the initial energy
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The depth range [0, t95%] where on average 95% of the energy of the incident particle is

deposited, is approximately given by

t95% = tmax + 0.08Z + 9.6. (3.7)

As tmax, t95% scales logarithmically with the initial energy making it feasible to build

calorimeters for very high energies.

3.4 Energy deposition

During the electromagnetic cascade by bremsstrahlung and pair production processes,

the energy of the initial particle is distributed among all the shower particles; energy is

deposited in the material mostly by ionization and excitation.

3.5 Energy resolution of electromagnetic calorimeters

The basic working principle of calorimetry is the measurement of the energy of an inci-

dent particle through total absorption of the particle and its shower.

Therefore and due to the fact that the energy is mainly deposited by ionization and

excitation, the measured energy E for an incident electron with initial energy E0 is

in first order proportional to the sum T0 of the lengths of all charged tracks in the

electromagnetic cascade, also denoted the total track length,

E ∝ T0. (3.8)

The total track length itself is proportional to the inital energy E0

T0 ∝ E0. (3.9)

Under the assumption that the total track length T0 is Poisson distributed, its standard

deviation is σT0 =
√
T0. Putting this together with equations 3.8 and 3.9 and dividing by

the initial energy to obtain the resolution of the energy measurement due to fluctuations

of the electromagnetic cascade as a function of the initial energy E0 yields

σE(E0)

E0

∝ 1√
T0

∝ 1√
E0

. (3.10)
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For a realistic calorimeter the resolution of the energy measurement for an incident

electron with initial energy E0 can be described by

σE(E0)

E0

=
a√
E0

⊕ b

E0

⊕ c (3.11)

where ⊕ denotes quadratic summation. The three terms on the right hand side are

discussed in the following subsections.

3.5.1 Stochastic term

The first term on the right hand side of equation 3.11 is denoted stochastic term and

describes the contribution of the stochastic fluctuations of the energy deposition of the

electromagnetic cascade. For homogenous calorimeters, i.e. calorimeters where the en-

ergy reduction and the signal generation occur in the same material, a is typically a few

%GeV
1
2 . For sampling calorimeters, i.e. calorimeters where the main energy absorption

and the signal generation occur in alternating layers of absorber and active material,

the fraction of the energy deposited in the active medium wrt. the total energy deposit

fluctuates from event to event. The number of charged particles Nch that cross the active

layers of the sampling calorimeter is proportional to the initial energy E0 of the incident

particle and inversely proportional to the thickness of the absorber layers tl

Nch ∝
E0

tl
. (3.12)

Applying the same arguments as for the derivation of equation 3.10 leads to

σE(E0)

E0

∝ 1√
Nch

∝
√

tl
E0

. (3.13)

This implies that by decreasing the thickness of the absorber layers tl the resolution can

be improved. In reality this approach is limited by external factors like the constraints

of the fabrication process.

Typical values of a for sampling calorimeters are 5-20%GeV
1
2 .

3.5.2 Noise term

The second term on the right hand side of equation 3.11 is denoted noise term and

describes the contribution of the electronic noise of the read–out chain.
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A theoretical limit can be set by the thermal noise before the preamplifier. The equiva-

lent noise charge Q of the electronic noise induced by the thermal noise is given by

Q =
√

4 kB T R δF (3.14)

where kB is Boltzmann’s constant, T the temperature, R the equivalent noise resistance

of the preamplifier and δF the bandwidth. High rates imply a high bandwidth which

means – applying equation 3.14 – a large noise.

For sampling calorimeters, the sampling fraction has an impact on the noise term. The

sampling fraction fsamp is defined by

fsamp =
Eactive

mip

Eactive
mip + Eabsorber

mip

(3.15)

where Eactive
mip and Eabsorber

mip denote the energy deposited by a minimum ionizing particle

in active and in the absorber material.

Increasing the sampling fraction means a larger signal from the active medium, which

means a higher signal–to–noise ratio which leads to a decrease of the noise term.

Typical values of b are 50MeV per readout channel for calorimeters designed for ener-

gies of several GeV and 150–300MeV per readout channel for calorimeters designed for

energies up to several TeV.

3.5.3 Constant term

The last term on the right hand side of equation 3.11 is denoted constant term and

describes the nonuniformity coming from variations of the response of the calorimeter

wrt. the impact position of the particle.

Possible sources of these variations are irregular detector geometries, temperature gradi-

ents (of the order of 0.3K for the ATLAS Liquid Argon calorimeter), radiation damage

or imperfectly calibrated detector regions.

Typical values of c are ≤1%.
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4 The ATLAS Electromagnetic Barrel

Calorimeter

The ATLAS Electromagnetic Barrel Calorimeter is the central part of the ATLAS Elec-

tromagnetic Calorimeter covering the pseudorapidity range of |η| < 1.4. The main pur-

pose of the ATLAS Electromagnetic Barrel Calorimeter is the precision measurement of

electrons and photons. The measured quantities include the energy, the position as well

as the longitudinal and lateral shower shape. In addition it measures the first part of

hadronic showers as part of the ATLAS calorimeter system.

The performance requirements are presented in section 4.1, the design of the ATLAS

Electromagnetic Barrel Calorimeter is discussed in section 4.2 and the shape of the

signals produced by the traversing particles is shown in section 4.3.

4.1 Performance requirements

The required resolution [10] for the ATLAS Electromagnetic Barrel Calorimeter is

σE/E = 10% GeV
1
2/
√
E ⊕ c/E ⊕ 0.7% (4.1)

where the global constant term 0.7% is determined by the local constant term and the

uniformity of the detector. The term c is the noise term which contains the electronic

noise contribution (∼200 MeV in the barrel) and the pile–up noise contribution that

depends on the luminosity.

The electromagnetic showers must be contained very well in order to reduce the impact

of longitudinal leakage on the resolution. The chosen minimal thickness was 22 radiation

length.

A good angular resolution is required especially for photons. The computation of the

invariant mass for decays like H→ γγ has to rely on the angular measurement between
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the photons from the calorimeter since the photons leave no track in the Inner Detector.

The requirement on the absolute energy scale clearly depends on the given physics

process to be studied. For most measurements and searches the absolute energy scale has

to be known with a precision of at least 0.5%; however, for some precision measurements

the accuracy of the absolute energy scale has to be for better, e.g. 0.02% for the W boson

mass measurement [11].

4.2 Design

The Liquid Argon Electromagnetic Barrel Calorimeter is a sampling calorimeter using

lead as the absorber and liquid argon as the active material. It covers the pseudorapidity

range of |η| < 1.4 and consists in total of approximately 110.000 read–out channels [12].

4.2.1 Accordion geometry

In contrast to most of the calorimeters used for high energy physics where the absorber

layers are positioned in such a way that the particles impinge approximately perpendic-

ularly, the ATLAS Electromagnetic Barrel Calorimeter is designed using the so called

accordion geometry which is shown in figure 4.1. The absorber layers and the electrodes

are shaped like an accordion with the folds approximately perpendicular to the incoming

particle. This geometry allows to route the signal and high voltage cables in the front

as well as in the back of the detector volume. As a consequence the calorimeter has a

seamless geometrical coverage in ϕ and exhibits no gaps whatsoever for services. Fur-

thermore the cell boundaries are chosen in a way that they point towards the interaction

point.

2.1mm

Inner G10 bar Outer G10 bar

Figure 4.1: Accordion geometry of the absorber.

The gap between the absorber layers and the electrodes is filled with liquid argon. The
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layout is presented in figure 4.2. The absorber is made out of a steel–lead sandwich of

a thickness of 2.2mm. The lead sheet is 1.53mm thick for η < 0.8 and 1.13mm for

η > 0.8. The width of the liquid argon gap is 2.12mm for each side of the read-out

electrode. The read-out electrodes consist of three copper layers that are glued together

and are separated by Kapton layers. The inner layer acts as the signal layer and is

isolated from the other two high voltage layers. The nominal setting for the potential

between the electrode high voltage layers and the absorbers (ground) is 2000V.

Li
qu

id
 A

rg
on

 G
ap

Steel

Lead

Steel

Copper Kapton

Prepreg

Prepreg

Ground
HV

Signal

Figure 4.2: Schematic layout of the absorber, the liquid argon gap and the read-out
electrode (three layers glued together).

The signal is induced in the read-out electrodes by the drift of the ionization electrons

in the electric field created by the high voltage.

4.2.2 Presampler

Since there is a significant amount of material in front of the electromagnetic calorimeter,

the amount of energy deposited in this material has to be estimated. This is done using

a presampler that is placed in front of the accordion calorimeter.

The presampler is a thin (11mm) active layer of liquid argon enclosed by a 0.4mm thin

glass-epoxy shell.
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The procedure how the presampler is used to estimate the energy deposited upstream

electromagnetic calorimeter is described in section 5.7.1

4.2.3 Granularity

The ATLAS Electromagnetic Barrel Calorimeter is longitudinally segmented into three

layers, called the strip, middle and back layer or also sampling 1, sampling 2 and sampling

3. A sketch is shown in figure 4.3.

The granularity in the η−ϕ plane is different for the three layers and reflects the trade–

offs between the required position resolution and shower shape identification on the one

side and the number of readout channel on the other. The granularity of the strip layer

is very fine in η, providing a good angular resolution in the η direction and π0 rejection

capabilities. The middle cells are also used for seeding clusters for the trigger since most

of the energy is deposited in this layer for electrons and photons above approximately

10GeV (depending on η).

The thickness of the ATLAS Electromagnetic Barrel Calorimeter varies from 22 radiation

lengths (barrel) to 33 radiation lengths (gap region).

Layer ∆η ∆ϕ Depth (radiation lengths)
Strip 0.025/8 2π/64 2.5-4.5
Middle 0.025 2π/256 16.5-19
Back 0.05 2π/256 1.4-7

Table 4.1: Granularity for the three layers of the ATLAS Electromagnetic Barrel
Calorimeter.

4.3 Signal shape

The signal is induced by the drift of the ionization electrons in the electric field in the

liquid argon gaps. Its approximately triangular shape is shown in figure 4.4(a).

Right after the signal is amplified by the preamplifier it is transformed by a shaping am-

plifier in order to optimize the signal-to-noise ratio. The triangular signal is transformed

into a narrow peak and a long undershoot (see figure 4.4(b)). The signal is sampled only

in the vicinity of the peak because the amplitude of the peak is proportional to the

energy deposit in the cell [13]. The calibration of the read out chain is discussed in

section 5.5.
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Figure 4.3: Sketch of a barrel module of the electromagnetic calorimeter. The
accordion structure and the granularity in η and ϕ of the cells of each of the three
layers is shown.
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Figure 4.4: Signal (a) induced by the drift of the ionization electrons in the electric
field in the liauid argon gaps and the signal after shaping (b). The black circles
indicate the sampling points of the shaped signal.
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5 Calibrating the Electron Energy

Measurement for the Combined Test

Beam 2004

This chapter describes the calibration of the electron energy measurement for the Com-

bined Test Beam (CTB) 2004 in the presence of a magnetic field in the Inner Detector.

The whole calibration chain for the electron energy measurement in ATLAS consists of

the following three consecutive steps:

1. Calibration of the readout channels, also called electronic calibration.

2. Calibration of the energy response of the whole electromagnetic calorimeter.

3. Further calibration using physics events in ATLAS from LHC collision data, e.g.

electrons from Z→ee decays to calibrate the absolute scale or inclusive electrons

using E/p to calibrate the relative scale between the Inner Detector and the elec-

tromagnetic calorimeter.

This chapter focuses on calibration of the energy response of the whole electromagnetic

calorimeter (item 2) and therefore the term calibration will be used in this chapter for

this aspect of the calibration chain.

For an electron impinging the detector a cluster of cells, i.e. readout channels, is formed

and associated to the electron. Based on the energies from the cells in the cluster

the inital energy, denoted calibrated cluster energy, of the electron is computed. The

sequence of procedures for this computation is shown in figure 5.1.

After a brief description of the setup (section 5.1) and the data samples (section 5.2),

the event selection (section 5.3) and beam related weighting procedures (section 5.4) are

presented. Section 5.5 recapitulates the way the energy deposited in a single calorimeter

cell is measured and how clusters are formed out of these cells. This is followed by a

comparison of the Monte Carlo simulation to data (section 5.6). Finally a Monte Carlo
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Readout channel
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Calibrated Cluster
Energy
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Energy

Calibration runs
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Calibration Hits

Cluster
Calibration
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MC simulation

Figure 5.1: Sequence of procedures to compute the calibrated cluster energy. The
Readout channel calibration and the Clustering are briefly discussed in section 5.5. The
Calibration Hits Method and Cluster calibration are presented in section 5.7. Monte
Carlo simulation to data comparisons are discussed in section 5.6 for the Visible
Cluster Energies and in section 5.8 for the Calibrated Cluster Energy.

based calibration procedure for the cluster energy is presented in section 5.7 and applied

to data in section 5.8 in order to extract the linearity and resolution for the liquid argon

calorimeter in the presence of a magnetic field in the Inner Detector.

5.1 The Combined Test Beam 2004

During the Combined Test Beam 2004 data was taken from June until November 2004.

The data that is used in this thesis comes from the last data taking period where all

sub detectors participated. A sketch of the fully combined setup is shown in figure 5.2,

including the coordinate system for the CTB 2004. A detailed description of the CTB
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2004 can be found in [14]. The fully combined setup consisted of the following compo-
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Inclination of cryostat = 11.25o

Additional material for LAr material study and position of
BIS chamber

zx

Figure 5.2: Setup of the Combined Test Beam 2004.

nents [15]:

Pixel detector Two modules for each of the three pixel layers (B, 1 and 2 as defined

in [16]), adding up to six pixel modules in total.

Semiconductor Tracker (SCT) Two modules for each of the four layers of the SCT [17],

meaning 8 modules in total.

Transition Radiation Tracker (TRT) Two barrel wedges, constituting 1/8 of a barrel

wheel [18].

LAr electromagnetic barrel calorimeter (LAr EMB) One module, constituting 1/16

of a barrel wheel [19].

Tile calorimeter Three long barrel modules and three extended barrel modules, consti-

tuting 3/98 of a barrel wheel [20].

Muon spectrometer Three stations of monitored drift tube barrel chambers and three

stations of monitored drift tube endcap chambers. For some runs, including the

runs used in this analysis, a monitored drift tube BIS type chamber was positioned

in front of the LAr EMB cryostat.
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The CTB 2004 setup included a magnet in order to evaluate the performance of the

various detector sub systems in the presence of a solenoidal magnetic field in the Inner

Detector like it will be the case for the full ATLAS detector taking data from LHC

collisions. The MBPS magnet produced a field for the pixel and SCT modules. The

magnetic field was directed in such a way that charged particles passing through the

pixel and SCT detector were deviated in ϕ (angle in the y–z plane). Contrary to the

full ATLAS setup, the TRT was not positioned inside the magnetic field.

In order to be able to measure the response of the calorimeters to particles impinging

at different η1 positions the electromagnetic and hadronic calorimeter modules were

mounted on a movable table that could be rotated in θ (angle in the x–z plane) and

translated along the x–direction.

The electrons for the runs that are used in this analysis have been provided by the

CERN H8 beam line. The H8 beam is created by directing 400 GeV/c protons from the

CERN Super Proton Synchrotron (SPS) onto a primary target made of up to 300 mm

of Beryllium. The emerging secondary beam has momenta between 9 GeV/c and 350

GeV/c. The beam line that uses this beam is called the high energy beam line.

A sketch of the H8 beam line instrumentation is shown in figure 5.3, a detailed description

is given in [21]. The high energy beam line was equipped with two Čerenkov counters.

CHRV1 was furthest upstream and is not shown in figure 5.3. CHRV2,HE was located 1

m upstream of the last bending magnet of the VLE spectrometer. The beam profile was

determined using four beam chambers (BC-1, BC0, BC1 and BC2). The main trigger

consisted of three scintillators (S1, S2 and S3). In order to reject muon halo from the

beam a scintillator (SMH) with a hole of 3.4 cm in diameter was used in anti-coincidence

with S1,S2 and S3.

The momentum selection for the high energy beam line is performed using a spectrometer

consisting of two collimators and two triplets of bending magnets [14].

The momentum selection for the high energy beam line is done 400m upstream of the

Combined Test Beam 2004 setup. Between the collimator that performs this selection

and the setup, the beam particles traverse air, four mylar windows of two beam pipes

and one Čerenkov counter CHRV1. These contributions add up to 15% of a radiation

length and are collectively denoted as far upstream material. Since the beam line optic

for these 400m has been designed for the nominal beam momentum and the fact that

1The pseudo rapidity η is defined by η = −ln tan θ
2 where θ is the angle in the x–z plane.
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Figure 5.3: H8 beam line instrumentation. The straight line represents the high energy
beam line that was used for the data analyzed in this thesis.

Run number pnominal
beam ηnominal MBPS current Events < pbeam > σ(pbeam)

(GeV/c) (A) (GeV/c) (GeV/c)
2102399 100 0.45 -850 200000 99.80 ± 0.11 0.24
2102400 50 0.45 -850 200000 50.29 ± 0.10 0.12
2102413 20 0.45 -850 70000 20.16 ± 0.09 0.05
2102452 80 0.45 -850 200000 80.0 ± 0.10 0.19

Table 5.1: Run number, nominal beam momentum, nominal η impact position, current
in the MBPS magnet that provides the field for the inner detector, total number of
events taken, estimated average beam momentum and beam spread for the data
samples used in this analysis.

some particles loose energy (and therefore momentum) while traversing the far upstream

material, the acceptance of this part of the beam line has to be taken into account in

the simulation. This is described in subsection 5.4.1.

5.2 Data samples

The data samples that were taken during the CTB 2004 and used for the analysis in this

thesis are listed in table 5.1. The average beam momentum < pbeam > and the beam

spread σ(pbeam) was computed for each run using the collimator currents from the beam

momentum selection spectrometer described in section 5.1.

5.3 Event selection

This section describes the event selection procedure for the CTB 2004. Subsection 5.3.1

is devoted to particle identification for electrons, subsection 5.3.2 describes the require-
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ments concerning the beam quality and subsection 5.3.3 deals with detector imper-

fections. Finally subsection 5.3.4 discusses the quality requirements for reconstructed

electron–like objects.

5.3.1 Particle identification

The purpose of the procedures described in this subsection is to select only events for

the analysis that are triggered from an electron from the beam entering the calorimeter.

Requirements concerning measurement variables from the beam line instrumentation

present only in the data samples are only applied there. Requirements that involve

measurement variables from the calorimeters or the inner detector are applied both to

the data and to the simulation samples in order to avoid introducing any bias. Where

this has not been possible it is explicitly stated.

The following requirements have to be met for an event to be accepted:

1. Less than 700 MeV are deposited in the first tile calorimeter layer. The purpose

of this requirement is to reject pions.

2. Less than one percent of the energy deposited in the calorimeters is deposited in

the tile calorimeter. The purpose of this requirement is to reject pions.

3. There must be at least 20 hits in the TRT. The purpose of this requirement is to

be sure to have a good track in the TRT.

4. TRT High Level Hit Probability> 0.15: The purpose of this requirement is to reject

pions and muons. This requirement is applied only to the data samples, since the

TRT High Level Hit Probability is not correctly modeled in the simulation, and

only electrons have been simulated.

5. Trigger from the trigger scintillators S1∧S2: This requirement guarantees that

only beam particle triggered events are considered and not random tirggers that

were injected to measure pedestal levels. Since the trigger scintillators are not

simulated, the requirement is applied only to the data samples.

6. Muon halo veto scintillator (SMH) < 460 ADC: The purpose of this requirement

is to reject muons. Since the muon halo veto scintillator is not simulated, the

requirement is applied only to the data samples.

7. Cherenkov counter CHRV2,HE > 650 ADC: The purpose of this requirement is

to reject pions for the run at 20 GeV/c nominal beam momentum. Since the
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cherenkov counter is not simulated, the requirement is applied only to the data

samples.

5.3.2 Beam quality

Two additional cuts2 are applied to the data to ensure that only particles from the

central part of the beam and no particles from the beam halo are used.
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Figure 5.4: Beam chambers BC-1 vs. BC0 x (top left) and y (bottom left)
measurements with fitted line. Distribution of the orthogonal distances (∆xBC-1 and
∆yBC-1) from this line for x (top right) and y (bottom right) values together with a
Gaussian fitted to the core of the distribution.

1. The x values measured by the beam chambers BC-1 and BC0 are linearly correlated

since the setup is rigid and there is no magnetic field in the flight path between

these two beam chambers. The same is true for y values. The left plots of figure 5.4

show the distributions for x and y. A line is fitted to each of the distributions and

the orthogonal distances (∆xBC-1 and ∆yBC-1) are plotted in the right plots of

figure 5.4. Gaussians are fitted to the orthogonal distance distributions and 3

times the σ of a Gaussian is defined as the largest allowed absolute orthogonal

2The term cut refers to a requirement to has to be fulfilled for an event to be considered for the
analysis. If the requirement is not fulfilled, the event is cutted away from the analysis.
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Figure 5.5: Beam chambers BC-1 vs. BC0 x (top left) and y (bottom left)
measurements with fitted line with 3σ cut applied. Distribution of the orthogonal
distances (∆xBC-1 and ∆yBC-1) from this line for x (top right) and y (bottom right)
values together with a Gaussian fitted to the core of the distribution.

pnominal
beam (GeV/c) (min,max) BC1x (mm) (min,max) BC1y (mm)

20 (−15,+7) (−13,+12)
50 (−15,+5) (−15,+15)
80 (−5,+7) (−10,+10)
100 (−15,+7) (−15,+15)

Table 5.2: Allowed ranges for the x and y values (denoted BC1x and BC1y) of beam
chamber BC1 for all beam momenta.

distance. The x and y distributions and the corresponding orthogonal distance

distributions with these cuts applied are shown in figure 5.5.

2. The x and y values (denoted BC1x and BC1y) of beam chamber BC1 are restricted

to ranges where the total visible energy in the electromagnetic calorimeter is flat

with respect to BC1x and BC1y. The intervals used are given in table 5.2.
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5.3.3 Detector imperfections

This subsection describes the procedures to discard events that have been affected by

detector imperfections.

Coherent noise in the presampler

This cut is used to reject events with coherent noise in the presampler layer. In order to

achieve this, the distribution of the presampler cell energies of all cells outside the region

where the beam hits the calorimeter is considered, i.e. |ηcell − ηbeam| > 0.2. If there is

no coherent noise present, this distribution is a Gaussian with mean equal to 0 and an

rms equal to the average noise of the cells. Let n+
PS denote the number of presampler

cells with positive energy and n−PS the number of presampler cells with negative energy.

An event is rejected if
∣∣∣n+

PS−n−PS

n+
PS+n−PS

∣∣∣ > 0.6. Since the coherent noise is not simulated this

cut is only applied to the data samples.

Shaper problem

The cells at 0 < ϕcell < 0.1, ηcell = 0.3875 in the middle layer suffered from an unstable

signal shaper. The stochastic distortion of the signal shape introduced a variation of the

order of 3% for the gain values. Although the effect on the reconstructed cluster energy

is fairly small, all events with clusters that contain any of these cells are discarded. In

order not to introduce a bias this cut is applied both to the data samples and to the

simulation samples.

5.3.4 Quality of reconstructed objects

The purpose of the requirements described in this subsection is to select events that

have a reconstructed electron–like object. This object consists of a cluster in the elec-

tromagnetic calorimeter and a track in the Inner Detector that is geometrically matched

to the cluster.

Track to cluster matching

A track in the inner detector can be extrapolated to the liquid argon calorimeter and

the η and ϕ coordinates of this extrapolation can be computed. In order for a track to

be matched to a cluster the following two conditions are imposed

• |ϕTrack − ϕCluster| < 0.05 rad,
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• |ηTrack − ηCluster| < 0.01.

For each event all possible track–cluster combinations are tested whether the track

matches to the cluster or not. The event is accepted for the analysis if there is at

least one matched track-cluster combination.

Track quality

At least 2 hits in the pixel detector for the matched track are required. This requirement

ensures an acceptable track quality.

5.4 Event weighting

This section discusses two weighting schemes that are applied for the CTB 2004. In

general, a weighting scheme is a technique in statistical data analysis where a number,

i.e. a weight, is assigned to each data item of the analysis. The weight reflects the

relative importance of the corresponding data item. As a consequence, some data items

are more emphasized than others. In the case of this analysis, a weight is assigned to

each event. Since a combination of weighting schemes is employed, the total weight of

an event is the product of the individual weights computed by all weighting schemes for

the given event.

For some distributions, e.g. the impact profiles, there is a difference between the sim-

ulated Monte Carlo samples and the data samples. The purpose of the event weighing

is to make these samples comparable. In order to achieve this, the events in the two

samples are weighted in such a way that the differences between the simulated Monte

Carlo samples and the data samples vanish for the distributions mentioned above.

A weighting scheme to describe the beam line acceptance is presented in subsection 5.4.1.

The angular weighting procedure introduced in subsection 5.4.2 is used to match the

impact profiles of the Monte Carlo simulation to data.

5.4.1 Beam line acceptance

Particles which loose a signficant amount of energy in the beam line will have a smaller

probability to reach the trigger scintillators. Since the beam line was not modeled in the

Monte Carlo simulation, a weighting scheme is employed to simulate the acceptance of

the beam line. In the simulation a detector is placed directly after the far upstream ma-

terial (see section 5.1 and subsection 5.6.1). For each event the ratio of the energy of the

44



most energetic particle Ẽ measured by this detector and the nominal beam energy, i.e.

Ẽ/Enominal
beam , is used to compute a weight from the weighting curve shown in figure 5.6.

This weight is attributed all measurement variables of the event. The weighting curve

has been obtained by a dedicated beam line simulation beforehand [22]. The application

of the beam line acceptance weight has no significant impact on the calorimeter measure-

ments, but is needed for a correct description of the tail of the momentum measurement

in the inner detector (see figure 5.7).
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Figure 5.6: Beam line acceptance weight function.

5.4.2 Angular weighting

The beam profile is modeled in the Monte Carlo simulation to reflect the real beam

profile. Since this is possible only to a certain extent an additional weighting scheme is

introduced. For the data and the Monte Carlo sample for a given nominal beam momen-

tum, the η and ϕ distributions of the clusters (see subsection 5.6.2) in the calorimeter

are computed and binned into histograms. In order to obtain the best angular resolution

possible, the strips layer cells are used for the computation of η and the middle layer

cells for the computation of ϕ. For each bin in the η and ϕ histograms a weighting
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factor is computed in the following way: If the bin content for the Monte Carlo sample

is larger than for the data sample, this bin gets the ratio between data content and

Monte Carlo simulation content (which is by definition smaller than 1) as weight for

the Monte Carlo sample and 1 as weight for the data sample. If the bin content for the

data sample is larger than for the Monte Carlo sample, it is done the other way round.

This ensures that the distributions for the Monte Carlo and the data samples are equal

after weighting and that all weights that are used are ≤ 1, therefore avoiding numerical

instabilities.

For each event that is accepted for the analysis all measurement variables are weighted

with these weighting distributions where the η and ϕ position of the cluster is used to

determine the bins whose weights are used.
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5.5 Energy measurement

The calibration of the energy measurement of the LAr calorimeter consists of two con-

secutive steps. First the raw signal (in ADC counts) for each cell is converted into the

deposited energy in the cell. This step is denoted as electronic calibration and shortly

discussed in subsection 5.5.1. During the second step clusters are formed out of calorime-

ter cells and an estimate of the initial energy of the impinging particle associated with

the cluster is computed. The cluster formation algorithm is briefly described in subsec-

tion 5.5.2 and section 5.7 is devoted to a Monte Carlo simulation based procedure for

computing the estimate for the initial energy of the particle.

5.5.1 Electronic calibration

A very detailed discussion of the electronic calibration and cell energy reconstruction for

the LAr EMB calorimeter is given in [23].

The signals that are induced by the drifting ions in the liquid argon gaps of the calorime-

ter are amplified, shaped and then digitized at a sampling rate of 40 MHz in one of the

three available gain channels. In the CTB 2004 setup six samples are digitized in contrast

to ATLAS where five samples are digitized. From these six samples in the CTB 2004

five samples si closest to the signal peak are chosen and the signal amplitude ADCpeak

is computed by the Optimal Filtering Method [24]

ADCpeak =
5∑

i=1

ai (si − p) (5.1)

where ai are the optimal filtering coefficients that are computed from the predicted

ionization pulses obtained using the technique described in [25] and p is the pedestal

value which is the mean of the signal values generated by the electronic noise that is

measured in dedicated calibration runs.

From the signal amplitude ADCpeak the cell energy Ecell is computed by

Ecell = FDAC→µAFµA→MeV
1

MPhys

MCal

∑
i=1,2

Ri [ADCpeak]
i (5.2)

where the factorsRi model the electronic gain with a second order polynomial, converting

the ADCpeak amplitude into the equivalent current units (DAC). The factor MPhys

MCal takes

the difference between the amplitudes of a calibration and an ionization signal of the
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same current for the electronic gain into account [25–28]. The constants FDAC→µA and

FµA→MeV finally transform the current (DAC) into energy (MeV). The details of the

computation and validation of all the calibration constants used in equations 5.1 and

5.2 are described in [23].

The conversion factor FµA→MeV between the current measured by the LAr readout cells

and the corresponding deposited energy3 applied in the data reconstruction is taken

from the 2002 liquid argon standalone test beam [29]. This conversion factor depends

on the temperature of the liquid argon in the cells and during the 2002 liquid argon

standalone test beam this temperature was not known with a precision of 0.1 K like at

the Combined Test Beam 2004. The absolute energy scale of the LAr calorimeter was

therefore extracted from CTB 2004 data. The scale factor is computed by comparing

Monte Carlo simulation to data for runs with a nominal beam momentum of 180 GeV/c

taken in different periods of the Combined Test Beam 2004. The computation yields a

scale factor of 1.038±0.007. The error of 0.7% is composed of

• the uncertainty of the spectrometer current measurement for these runs, 0.04%,

• the uncertainty of the absolute scale of the beam momentum selection for pbeam =

180 GeV/c, 0.52%,

• the response uniformity of the calorimeter, 0.4%.

5.5.2 Cluster building

In order to reduce the noise contribution to the energy measurement, a finite number

of cells is used to calculate the energy. The process of choosing which cells are used

is called cluster building. Several methods exist, e.g. topological clustering and sliding

window clustering. Here a sliding window algorithm is used.

For building clusters of calorimeter cells that correspond to the impinging electron the

standard ATLAS clustering [30] is used. For electrons, this means that a window of 3x7

middle cells (ηxϕ extension) is slided across the calorimeter and the position with the

highest energy content is used as seed position for the cluster. This seed is propagated to

the other layers of the calorimeter. For each layer, cells contained in windows centered at

the given seed for the layer are added to the cluster. The size of the window is different

for the various layers.

3This factor contains an average sampling fraction, hence Ecell is a rough estimate of the energy
deposited in this cell. In reality, the sampling fraction depends on the initial energy of the incident
particle and will be corrected afterwards (see section 5.7).
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5.6 Monte Carlo simulation and comparison to data

This section is devoted to the Monte Carlo simulation of the CTB 2004. After a descrip-

tion of the Monte Carlo simulation setup in subsection 5.6.1, the results of the Monte

Carlo simulation are compared to data taken in the CTB 2004. This comparison is

performed for the impact profile (subsection 5.6.2), the energy response for the different

layers of the calorimeter (subsection 5.6.3) and the development of the electromagnetic

shower (subsection 5.6.4). The Monte Carlo simulation to data comparison for the mo-

mentum measured by the Inner Detector is presented in subsection 5.6.5 because this

measurement is one of the ingredients for the intercalibration procedure presented in

chapter 6.

Since the calibration procedure (section 5.7) relies on Monte Carlo simulation a suffi-

ciently good agreement between the Monte Carlo simulation and the data is necessary

to achieve the required level of accuracy for the electron energy measurement. For the

required linearity of 5h the agreement between the Monte Carlo simulation and the

data for the sum of the visible energies of all cells in a cluster also has to be at the level

of 5h.

5.6.1 Monte Carlo simulation of the Combined Test Beam 2004

The response of the detector setup of the Combined Test Beam 2004 to the various

beam particles is simulated using the GEANT4 toolkit [31]. GEANT4 uses Monte Carlo

methods to simulate the physics processes when particles pass through matter. The

QGSP-EMV physics list was used to parameterize these physics processes. The details

of the geometric description of the Combined Test Beam 2004 in GEANT4 are described

in [32]. The simulated energy deposits are reconstructed with the same software as the

data. This is all done inside the ATLAS offline software framework ATHENA, release

12.0.95.

The far upstream material (section 5.1) is taken into account with a piece of aluminum

with the equivalent thickness of 15% of a radiation length placed directly downstream

of the GEANT4 particle generator. All particles that emerge from the far upstream

material are recorded in the simulation and are used to model the effect of the beam

line acceptance (subsection 5.4.1).

One effect that is not modeled in the simulation is the cross talk between strip and middle

layers. This cross talk has been measured by analyzing the response of the various cells
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to calibration pulses [33, 34]. A Middle-to-Strips cross-talk of Xmi→st = 0.05 % and a

Xst→mi = 0.15 % Strips-to-Middle cross-talk have been obtained (peak-to-peak values).

They are accounted for after the energy reconstruction by redistributing 8·Xmi→st·EMiddle

from the middle layer energy4 to the strip layer energy5 and Xst→mi · EStrips from the

strip layer energy to the middle layer energy.

The simulated electron momentum that is used in the Monte Carlo simulation is the

nominal beam momentum pnominal
beam for the given run (table 5.1). Since the average

beam momentum < pbeam > is not identical to the nominal beam momentum pnominal
beam

all energies in the Monte Carlo simulation are scaled by < pbeam > /pnominal
beam . This is

justified because the nonlinearities of the detector response are negligible for such small

scaling factors for the investigated beam momentum range.

5.6.2 Impact profile

The impact coordinates η and ϕ of a cluster are defined as the energy weighted η/ϕ

values of all strip/middle layer cells belonging to the cluster (equation 5.3).

η =

∑
i∈stripcells

ηiEi∑
i∈stripcells

Ei

,

ϕ =

∑
i∈middlecells

ϕiEi∑
i∈middlecells

Ei

,

(5.3)

where Ei, ηi and ϕi are the energy, η and ϕ values of a given cell.

The Monte Carlo simulation to data comparisons for η and ϕ are shown in figures 5.8

and 5.9 for all beam momenta.

Since the Monte Carlo simulation of the data is not good, the η and ϕ distributions from

the Monte Carlo simulation as well as from the data were used as input for the angular

weighting procedure described in subsection 5.4.2. The Monte Carlo simulation to data

comparisons for η and ϕ after the angular and beam line acceptance (subsection 5.4.1)

weighting are shown in figures 5.10 and 5.11 for all beam momenta. Due to the angular

4The sum of the energies of all cells of a given layer is denoted as its layer energy.
5Each middle cell has 8 adjacent strip cells.
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Figure 5.8: The η coordinate of the cluster for beam momenta of 20 GeV/c (left upper
plot), 50 GeV/c (right upper plot), 80 GeV/c and 100 GeV/c before weighting.
Shaded area: Monte Carlo simulation; dots: data.

weighting the residual differences between the Monte Carlo simulation distributions and

the data distributions come from the beam line acceptance weighting procedure.

5.6.3 Energy response

The Monte Carlo simulation to data comparisons for all beam momenta for the recon-

structed presampler layer energies EPS are shown in figure 5.12, for the reconstructed

strip layer energies Estrips in figure 5.13, for the reconstructed middle layer energies

EMiddle in figure 5.14 and for the reconstructed back layer energies EBack in figure 5.15.

The agreement concerning the shapes of the distributions is sufficiently good in general.

The scale agreement can be assessed by the Monte Carlo simulation to data comparisons

of the ratio of the means of the energy deposits for the various layers that are presented

in figure 5.16 for all beam momenta. For the strip and the middle layers the scale

agreement is at the level of 1% except for the middle layer at pbeam=20GeV/c where it

is 1.5%. The scale agreement for the presampler and the back layer is at the level of
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Figure 5.9: The ϕ coordinate of the cluster for beam momenta of 20 GeV/c (left upper
plot), 50 GeV/c (right upper plot), 80 GeV/c and 100 GeV/c before weighting.
Shaded area: Monte Carlo simulation; dots: data.

10%. However, since the reconstructed layer energies for these layers are typically 1-3%

of the visible energy, the impact on the agreement of the visible energy is below 0.3%.

The Monte Carlo simulation to data comparisons of the visible energy EV is which is the

sum of all layer energies is presented in figure 5.17 for all beam momenta. The shape

agreement is best at pbeam=20GeV/c and deteriorates with increasing beam momentum.

This is caused by tails towards lower energies that are larger in data than in the Monte

Carlo simulation. The same behaviour has been found for runs of the CTB 2004 without

magnetic field [14, 35]. The reason for this is that the beam line is not modeled in the

Monte Carlo simulation.

The visible energy EV is distributions are fitted with Crystall Ball functions6 and ratio

of the peak µEdata
calib

for the data and the peak µEMC
calib

for the Monte Carlo simulation is

plotted in figure 5.18 for all beam momenta. The deviation of µEdata
calib

/µEMC
calib

from 1 is

6The definition of the Crystall Ball function is given in section 6.1.2, equation 6.6.
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Figure 5.10: The η coordinate of the cluster for beam momenta of 20 GeV/c (left
upper plot), 50 GeV/c (right upper plot), 80 GeV/c and 100 GeV/c after weighting.
Shaded area: Monte Carlo simulation; dots: data.

within the energy scale uncertainty and the error bars. The main contributions to the

errors bars are the beam momentum uncertainty (data only) and the statistical errors.

5.6.4 Shower development

Three quantities are investigated in order to compare the description of the shower

development in the simulation with data. Concerning the lateral shower development

for each event the energy profile in η direction in the strip layer is aligned with respect

to the η position of the strip that received the highest energy deposit in this event. The

strip layer is particularly well suited for this task due to its fine granularity ∆ηstrips

in η. The aligned distance in η is denoted η̄, therefore η̄/∆ηstrips is the number of

strips that separates a given strip from the strip with the highest energy deposit in this

event. For each strip its energy relative to the total strip layer energy is filled into an

η̄/∆ηstrips binned histogram. The histograms with the Monte Carlo simulation to data

comparisons are shown in figure 5.19 for all beam momenta. The Monte Carlo simulation
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Figure 5.11: The ϕ coordinate of the cluster for beam momenta of 20 GeV/c (left
upper plot), 50 GeV/c (right upper plot), 80 GeV/c and 100 GeV/c after weighting.
Shaded area: Monte Carlo simulation; dots: data.

to data comparison for the Root Mean Square (RMS) of these histograms are presented

in figure 5.20. The RMS is 6-11% larger in data than in the Monte Carlo simulation, i.e.

the showers tend to be a bit narrower in the Monte Carlo simulation than in the data.

For the comparison of the longitudinal shower development two quantities are studied.

Since in both quantities reconstructed energies appear in the nominator as well as in the

denominator, they are independent of the global energy scale. The first quantity is the

shower depth Xmean defined as the energy weighted average layer depth of all accordion

layers by

Xmean =
EStripsXStrips + EMiddleXMiddle + EBack XBack

EStrips + EMiddle + EBack

(5.4)

where XStrips, XMiddle, XBack denote the average depth of the corresponding layer in

units of radiation lengths (X0) given in table 5.3. The Monte Carlo simulation to data

comparisons are shown in figure 5.21 for all beam momenta. Again there is sufficiently

good agreement, altough the simulated showers tend to get shorter with respect to the
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Figure 5.12: Energy deposit in the presampler for beam momenta of 20 GeV/c (left
upper plot), 50 GeV/c (right upper plot), 80 GeV/c and 100 GeV/c. Shaded area:
Monte Carlo simulation; dots: data.

data with increasing beam momentum.

Layer Xstart
layer (X0) Xstop

layer (X0) Xlayer (X0)

Presampler 1.50 1.78 1.64
Strips 2.18 6.41 4.29
Middle 6.41 25.02 15.71
Back 25.02 26.78 25.90

Table 5.3: LAr EMB layer boundaries and average depth at the beam impact point
(η = 0.442, ϕ = 0).

The second quantity for the longitudinal shower development is the ratio Estrips/Emiddle

of the energies of the strip and middle layers. This ratio is very sensitive to the amount

of material in front of the calorimeter. Therefore it can be used to assess the level of ac-

curateness of the material description in the simulation. The Monte Carlo simulation to

data comparisons are shown in figure 5.22 for all beam momenta. The shape agreement

is quite good, but on average Estrips/Emiddle decreases more strongly with increasing
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Figure 5.13: Energy deposit in the strip layer for beam momenta of 20 GeV/c (left
upper plot), 50 GeV/c (right upper plot), 80 GeV/c and 100 GeV/c. Shaded area:
Monte Carlo simulation; dots: data.

beam momentum in the data than in the Monte Carlo simulation . This implies that

the showers start earlier in the Monte Carlo simulation than in data confirming the

interpretation of the shower depth distributions in figure 5.21.

5.6.5 Momentum Analysis

The ratio pbeam/p of the beam momentum and the momentum measured by the Inner

Detector is shown in figure 5.23 for all beam momenta and compared to Monte Carlo

simulation. The inverse momentum is plotted because this quantity is actually measured

in the Inner Detector. The sagitta of the curved track is directly proportional to 1/p and

without bremsstrahlung and multiple scattering events is distributed like a Gaussian.

The agreement of the description of the tails of the distribution is sufficiently good, but

the scale agreement is not better than a few percent because of residual misalignment

between the various Inner Detector components that could not be resolved [36].
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Figure 5.14: Energy deposit in the middle layer for beam momenta of 20 GeV/c (left
upper plot), 50 GeV/c (right upper plot), 80 GeV/c and 100 GeV/c. Shaded area:
Monte Carlo simulation; dots: data.

5.6.6 Systematic Uncertainties

The level of accuracy of the Monte Carlo simulation description of the electromagnetic

shower development in the LAr calorimeter is affected by uncertainties associated with

the geometrical set-up and detector description (thickness of the lead absorbers, the

depth of the first layer, the exact amount of material in front of the strip compartment,

cables, electronics, the thickness of the cryostat and the amount of LAr in front of

the presampler). Similar uncertainties will be an issue for ATLAS taking data from

LHC collisions. Therefore, it is important to investigate them in the controlled test-

beam environment. However, the uncertainties associated with the description of the

combined test beam set-up itself will not be present in ATLAS. In order to understand

the true systematic effects relevant to ATLAS, the combined test beam set-up-related

uncertainties must be understood and a procedure developed to isolate them.

The dominant contributions of the total systematic uncertainty are
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Figure 5.15: Energy deposit in the back layer for beam momenta of 20 GeV/c (left
upper plot), 50 GeV/c (right upper plot), 80 GeV/c and 100 GeV/c. Shaded area:
Monte Carlo simulation; dots: data.

• Uncertainties in the knowledge of the beam momentum. Although the absolute

beam momentum may include large errors, the relative momentum shifts between

different nominal beam momenta are considerably smaller and depend on changes

in beam conditions (collimator apertures, magnet currents, etc). Their total con-

tribution is generally relatively small at the level of 0.1% (0.2% for a beam mo-

mentum of 20GeV/c and below) [14].

• Simulation uncertainties in the description of the electromagnetic shower develop-

ment by the simulation. Comparisons between GEANT4.8 (with multiple scatter-

ing) and GEANT4.7 (without multiple scattering) showed small differences at the

level of 1% in the lateral and longitudinal shower development.

• Uncertainties in the Monte Carlo simulation description of the beam line and the

description of the cryostat and the calorimeter. The impact of these contributions

on the uncertainty of the reconstructed energy is smaller than 0.4%. However, in

terms of linearity, the listed effects have a much larger impact at lower energies
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Figure 5.16: Monte Carlo simulation to data comparison for the mean of the energy
deposit for the presampler (left upper plot), strips (right upper plot), middle (left
lower plot) and back (right lower plot) layer energies.

than at higher energies; their impact on the linearity for energies > 20GeV is

estimated to be less than 0.1%. These uncertainties – except uncertainties of the

beam-line description – will also be present for ATLAS and are therefore listed

below. Most of them come from the limited precision of the measurement of some

parameters like the beam-line geometry, detector geometry, cross-talk, etc.

– Cross-talk in the strip compartment

– MPhys

MCal in the strip compartment (see subsection 5.5.1)

– Cross-talk between the strip and middle compartments

– Depth of the strip section compartment)

– Lead absorber thickness

– Monte Carlo simulation description of the presampler response

– Upstream material in the beam line

– Material in front of the presampler
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Figure 5.17: Visible energy for beam momenta of 20 GeV/c (left upper plot), 50
GeV/c (right upper plot), 80 GeV/c and 100 GeV/c. Shaded area: Monte Carlo
simulation; dots: data.

– Dead material between the presampler and the strip compartment

– Simulation of charge collection

– Monte Carlo simulation description of lateral and longitudinal shower shape

The dominant contributions of the total systematic uncertainty are quantified in ta-

ble 5.4. A detailed description of the systematic uncertainties can be found in [14].

5.7 The Calibration Hits Method

In the LAr EMB calorimeter only energy deposits inside the active material of the

calorimeter are measured. This implies that certain energy deposits are not measured

directly. These are

1. Energy deposited outside the electromagnetic calorimeter: In the Monte

Carlo simulation this energy is split into 3 contributions:
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Error Magnitude Uncertainty Effect on linearity
of effect from 9-250GeV

Cross-talk in strip layer 6% 0.5 % 0.1 %
Mphys/Mcali in strip layer 1 % < 0.1 %
Cross-talk between strip and middle layer < 1 % 0.1 % < 0.1 %
Strip-middle layer boundary - 1 mm 0.0
Lead thickness - 1 % < 0.1 %
PS response - 5 % < 0.1 %
Material in beam line 0.28 X0 0.05 X0 0.1 %
Material in front of PS 1.3 X0 0.02 X0 0.05 %
Material between PS-strip layer 0.75 X0 0.02 X0 0.2 %
Charge collection simulation 8% 2 % 0.1 %
EM shower shape modeling - 1 % < 0.1 %
Total < 0.4 %

Table 5.4: Summary of the effects of systematic uncertainties of the detector
description in the MC simulation on the electron energy linearity from 9-250GeV.
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Figure 5.19: Lateral shower profile for beam momenta of 20 GeV/c (left upper plot),
50 GeV/c (right upper plot), 80 GeV/c and 100 GeV/c. Shaded area: Monte Carlo
simulation; dots: data.
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Figure 5.20: Root Mean Square (RMS) of the lateral shower profiles for all beam
momenta (left). Monte Carlo simulation to data comparison for the Root Mean Square
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Figure 5.21: Longitudinal shower profile for beam momenta of 20 GeV/c (left upper
plot), 50 GeV/c (right upper plot), 80 GeV/c and 100 GeV/c. Shaded area: Monte
Carlo simulation; dots: data.

• Etrue
upstreamPS Energy deposited upstream of the presampler, see subsec-

tion 5.7.1.

• Etrue
PS−Acc Energy deposited between the presampler and the accordion, see

subsection 5.7.1.

• Etrue
downstream Energy deposited downstream of the accordion, see subsec-

tion 5.7.3.

2. Energy deposited inside the electromagnetic calorimeter, but outside of

the reconstructed cluster: In order to minimize the noise contribution, clusters

of finite size are used for the energy measurement. However, the energy deposits

in the calorimeter cells outside the cluster are not taken directly into account and

therefore have to be estimated, see subsection 5.7.2.

3. Energy deposited inside the reconstructed cluster in the inactive ma-

terial: Because the LAr EMB calorimeter is a sampling calorimeter and the de-

velopment and energy deposition of the electromagnetic cascade for an electron
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Figure 5.22: Ratio between the energy deposit in the strips layer and in the middle
layer for beam momenta of 20 GeV/c (left upper plot), 50 GeV/c (right upper plot),
80 GeV/c and 100 GeV/c. Shaded area: Monte Carlo simulation; dots: data.

is a stochastic process, the ratio of the energy deposits in the active and passive

material inside the cluster varies event by event and also as a function of the

beam momentum. At 0th order this ratio is approximated by a single factor which

is already applied at the cell reconstruction level. Higher order corrections are

presented in subsection 5.7.2.

These energy deposits are recorded as additional hits in the simulation, therefore the

name Calibration Hits Method.

The idea of this calibration procedure is to estimate these different kinds of energy

deposits by means of Monte Carlo simulations and correlate them to measurable quanti-

ties, namely the measured presampler energy EPS, the measured accordion energy EAcc

which is the sum of the strips, middle and back layer energies,

EAcc = EStrips + EMiddle + EBack, (5.5)
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Figure 5.23: Ratio pbeam/p of the beam momentum and the momentum measured by
the Inner Detector for beam momenta of 20 GeV/c (left upper plot), 50 GeV/c (right
upper plot), 80 GeV/c and 100 GeV/c. Shaded area: Monte Carlo simulation; dots:
data.

or the shower depth Xmean. Therefore quantities for the different energy deposits are

defined for each event. These quantites are binned wrt. the measurable quantity that

is used to parameterize the energy deposits. For each bin a representative value is

computed. Finally a fit to these extracted representative values is made in order to

obtain the desired parameterization for the estimate.

General strategy for the computation of representative values for distributions

For the distribution of a random variable there are various ways to extract a character-

istic number representing the average value of the random variable. The most obvious

choices are the mean, the median or the most probable value, also denoted as the peak

position, of the distribution. For an asymmetric distribution the values for these differ-

ent choices can differ considerably. Most of the distributions in this section as well as

the distribution of the variable to be calibrated with this method, the cluster energy,

are fairly asymmetric in the presence of a magnetic field in the Inner Detector.
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Over the last years a consensus has been established in the ATLAS Egamma group (the

group responsible for the calibration of electrons and photons) that the calibration of the

electron energy has to be performed with respect to the peak position of the calibrated

cluster energy. The reason for this choice is to minimize the effect of event selection

cuts for physics analyses. These cuts mostly affect events in the tails of the various

distributions and the dependece of peak values on these tails is the smallest among the

three possible strategies mentioned above. In order to be consistent, the peak position

of a distribution is used to characterize its average value throughout this section. Some

example distributions are shown in figure 5.24 in section 5.7.1.

5.7.1 Estimation of the energy deposited upstream of the accordion

The energy deposited upstream of the accordion consists of the energy deposited up-

stream of the presampler Etrue
upstreamPS, the energy deposited in the presampler Etrue

PS and

the energy deposited between the presampler and the accordion Etrue
PS−Acc. For a given

beam momentum the sum of these energies, denoted Etrue
upstreamAcc is estimated as a func-

tion of the measured presampler energy EPS. For bins of EPS covering the whole energy

range of presampler energy measurements, the Etrue
upstreamAcc distributions are accumu-

lated. The Etrue
upstreamAcc distributions are shown in figure 5.24 for pbeam=20GeV/c to

demonstrate the asymmetry of the distributions.

For each bin a fit with a Gaussian is performed around the peak and the mean of the

Gaussian Ētrue
upstreamAcc is attributed to the measured presampler energy corresponding

to the center of the bin. The resulting profiles are plotted in figure 5.25 for all beam

momenta.

For each beam momentum a line is fitted. The obtained offsets ā(pbeam) and slopes

b̄(pbeam) are shown in figure 5.26. For the runs at the Combined Test Beam 2004 with-

out magnetic field in the Inner Detector the offsets ā(pbeam) are a monotonously rising

function of pbeam [35]. With magnetic field in the Inner Detector, the tracks of the par-

ticles with lower momentum are bent more strongly resulting in a smaller impact angle.

This leads to an increase of the lengths of the tracks in the cryostat and therfore to

an increase of ā(pbeam). As a consequence, the obtained offsets ā(pbeam) are a nearly

constant function of pbeam within the erros.

Next, the offset as a function of the beam momentum is parameterized by fitting

â(pbeam) = a0 + a1 log pbeam, (5.6)

66



Figure 5.24: Etrue
upstreamAcc distributions for the various EPS bins for pbeam=20GeV/c.
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Figure 5.25: Energy deposited upstream of the accordion as a function of the
recostructed presampler energy for beam momenta of 20 GeV/c (left upper plot), 50
GeV/c (right upper plot), 80 GeV/c and 100 GeV/c.
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Figure 5.26: Offset (left) and slope (right) of the estimation of the energy deposited
upstream of the accordion (equations 5.6 and 5.7).
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and the slope by fitting

b̂(pbeam) = b0 + b1 log pbeam. (5.7)

with pbeam in units of GeV c−1 for the logarithms. These are the same parameterizations

that have also been used for the runs without magnetic field in the Inner Detector. The

slope is very well parameterized and the differences for the offset are at the level of 20

MeV. The fitted values are a0 = 0.45(1)GeV, a1 = −0.003(3)GeV, b0 = 0.89(2)GeV

and b1 = 0.43(5)GeV.

Then for a given event at a given beam momentum the energy deposited upstream of

the accordion is estimated by

Eestim
upstreamAcc(EPS, pbeam) = â(pbeam) + b̂(pbeam)EPS. (5.8)

In order to determine the particle energy without prior knowledge of the beam momen-

tum, an iterative procedure is applied, see subsection 5.7.4.

5.7.2 Estimation of the energy deposited in the accordion

The energy Etrue
Acc deposited in the accordion can be estimated either as a function of the

shower depth or as a function of the beam momentum.

For each event the ratio d of the energy deposited in the accordion and the measured

accordion energy (equation 5.5) is defined by

d =
Etrue

Acc

EAcc

. (5.9)

Beam momentum parameterization

For each beam momentum a Gaussian is fitted to the d distribution for the specific

beam momentum and the mean of this Gaussian d̄(pbeam) is extracted and plotted in

figure 5.27. Then d̄(pbeam) is approximated by fitting

d̂(pbeam) = d0 + d1 log pbeam + d2 log2 pbeam. (5.10)

with pbeam in units of GeV c−1 for the logarithms. The fitted values are d0 =

1.262516(15), d1 = 0.107626(8) and d2 = 0.011840(1).

For a given event at a given beam momentum the energy deposited in the accordion is
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Figure 5.27: Mean d̄(pbeam) of the Gaussian fitted to the d distribution (equation 5.9)

for all beam momenta and its parameterization d̂(pbeam).

estimated by

Eestim
Acc (EAcc, pbeam) = d̂(pbeam)EAcc. (5.11)

In order to determine the particle energy without prior knowledge of the beam momen-

tum, an iterative procedure is applied, see subsection 5.7.4.

Shower depth parameterization

The idea of this parameterization is to correct for sampling fraction fluctuations event by

event by relating the sampling fraction to the shower depth. Analyses of CTB 2004 data

have shown that this method works very well in the case without magnetic field [14].

For bins of the measured shower depth Xmean covering the whole shower depth range,

the d distributions are accumulated. For each bin a fit with a Gaussian is performed

and the mean of the Gaussian d̄(Xmean) is attributed to the measured shower depth

corresponding to the center of the bin. The resulting profiles for all beam momenta are
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plotted in figure 5.28.
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Figure 5.28: Mean d̄(pbeam) of the Gaussian fitted to the d distribution (equation 5.9)
as a function of the shower depth Xmean for all beam momenta.

Figure 5.28 demonstrates that the parameterization of d̄(Xmean) as a function of the

shower depth does not remove the dependence on the beam momentum. This is contrary

to what has been found for the Combined Test Beam 2004 for runs without magnetic

field in the Inner Detector [35]. The reason for this discrepancy is that in the presence

of the magnetic field the energy deposited inside the electromagnetic calorimeter but

outside of the reconstructed cluster relative to the energy of the particle depends on

the beam momentum. In figure 5.29 the mean d̄5x11(pbeam) of the Gaussian fitted to

the d distribution for clusters with a sliding window of 5x11 instead of 3x7 middle

cells (subsection 5.5.2) is shown as a function of the shower depth Xmean for all beam

momenta. These clusters are large enough to contain the whole shower in the calorimeter.

The fact that the beam momentum dependence is not there for the 5x11 clusters indicates

that the 3x7 cluster size together with the magnetic field generates the dependency of

d̄(Xmean) on the beam momentum. Therefore this parameterization is not used for the

linearity and resolution measurements in section 5.8.
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Figure 5.29: Mean d̄5x11(pbeam) of the Gaussian fitted to the d distribution
(equation 5.9) for 5x11 clusters as a function of the shower depth Xmean for all beam
momenta.

The same effect is also visible in ATLAS Monte Carlo simulation, although the effect

there is so small that the shower shape parameterization is used by default for the

electron energy calibration [37]. The reason why this effect is much smaller for the

ATLAS detector is that the geometric layout of the CTB 2004 is very different from

ATLAS including much larger distances between the inner detector components and the

LAr EMB calorimeter.

5.7.3 Estimation of the energy deposited downstream of the

accordion

The energy Etrue
downstream deposited downstream of the accordion can be estimated either

as a function of the shower depth or as a function of the beam momentum.

72



Beam momentum parameterization

For each beam momentum a Gaussian is fitted to the Etrue
downstream distribution and the

mean of the Gaussian Ētrue
downstream(pbeam) is obtained and plotted in figure 5.30. Then

Ētrue
downstream(pbeam) is approximated by fitting

Eestim
downstream(pbeam) = l0 pbeam + l1 p

2
beam. (5.12)

The fitted values are l0 = 9(4) 10−4 c and l1 = 2.3(7) 10−6 c2 GeV−1.

 (GeV/c)
beam

p

20 30 40 50 60 70 80 90 100

 (
G

eV
)

do
w

ns
tr

ea
m

tr
ue

E

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Figure 5.30: Mean of the energy deposited downstream of the accordion the all beam
momenta and its parameterization Eestim

downstream(pbeam) (equation 5.12).

In order to determine the particle energy without prior knowledge of the beam momen-

tum, an iterative procedure is applied, see subsection 5.7.4.

Shower depth parameterization

For each event the ratio of the energy deposited downstream of the accordion and the

measured accordion energy which is the sum of the measured strips, middle and back
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layer energies is defined by

l =
Etrue

downstream

EAcc

. (5.13)

For bins of the measured shower depth Xmean covering the whole shower depth range,

the l distributions are accumulated. For each bin a fit with a Gaussian is performed

and the mean of the Gaussian l̄(Xmean) is attributed to the measured shower depth

corresponding to the center of the bin. The resulting profiles for all beam momenta are

plotted in figure 5.31.
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Figure 5.31: Mean l̄(pbeam) of the Gaussian fitted to the l distribution (equation 5.13)
as a function of the shower depth Xmean for all beam momenta.

Figure 5.31 shows that the parameterization of the ratio of energy deposited downstream

of the accordion and the measured accordion energy does not completely remove the

dependence on the beam momentum. The remaining differences are at the half permill

level.

For the reasons shown in section 5.7.2, this parameterization is not used for the linearity

and resolution measurements in section 5.8.
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5.7.4 Iterative procedure

An iterative procedure is applied to compute the calibrated cluster energy. Starting

value for the estimate for the calibrated cluster energy is the visible energy. In each

iteration step the estimated calibrated cluster energy from the previous step together

with

E2 = p2 c2 +m2 c4 (5.14)

is used to estimate the proper beam/particle momentum to select the new estimation

coefficients. Here the knowledge that electrons have been selected from the beam is

used to justify the neglection of the rest mass term contribution to the particle energy.7

The selected estimation coefficients are then used to compute a new estimate for the

calibrated cluster energy.

Beam momentum parameterization

E0
Calib = EPS + EAcc

p0 =
E0

Calib

c
...

Ek
Calib = Eestim

upstreamAcc(EPS, p
k−1) + Eestim

Acc (EAcc, p
k−1) + Eestim

downstream(pk−1)

= â(pk−1) + b̂(pk−1)EPS + d̂(pk−1)EAcc + Eestim
downstream(pk−1) k > 0

pk =
Ek

Calib

c
k > 0 (5.15)

where pk is the k-th estimation of the particle momentum and Ek
Calib is the k-th esti-

mation of the particle energy. Eestim
upstreamAcc(EPS, p

k−1) = â(pk−1) + b̂(pk−1)EPS is used

to estimate the energy deposited upstream of the accordion and Eestim
Acc (EAcc, p

k−1) =

d̂(pk−1)EAcc to estimate the energy deposited in the accordion.

This iteration procedure is executed until the relative difference between the two con-

secutive ECalib values |Ek
Calib − Ek−1

Calib| is smaller than 10−6. On average 3 iterations are

required to meet this termination condition.

7The rest mass of an electron is me = 511 keV/c. The investigated beam momenta are > 10 GeV.
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5.8 Linearity and Resolution

The calibrated cluster energies are computed using the iteration scheme for the beam

momentum parameterization (equation 5.15). The Monte Carlo simulation to data com-

parison is shown in figure 5.32 for all beam momenta. The shape agreement for calibrated

cluster energy distributions is similar to the shape agreement for the visible energy dis-

tributions described in section 5.6.3. This means that the shape agreement is best at

pbeam=20GeV/c and deteriorates with increasing beam momentum due to low energy

tails larger in data than in the Monte Carlo simulation because the description of the

beam line is not included in the Monte Carlo simulation and the beam line acceptance

weighting (section 5.4.1) does only approximately describe the impact of the beam line.
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Figure 5.32: Calibrated energy for beam momenta of 20 GeV/c (left upper plot), 50
GeV/c (right upper plot), 80 GeV/c and 100 GeV/c. Shaded area: Monte Carlo
simulation; dots: data.

The calibrated cluster energy distributions are fitted with Crystall Ball functions8 and

the mean µEcalib
and the sigma σECalib

of these Crystall Ball functions divided by Ebeam =

8The definition of the Crystall Ball function is given in section 6.1.2, equation 6.6.
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pbeam · c are plotted in figures 5.33 and 5.34 to assess the linearity and resolution.
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Figure 5.33: Linearity for Monte Carlo simulation and data. The yellow band
representes the energy scale uncertainty for the data.

In figure 5.33 the deviation of µEcalib
/Ebeam from 1 is within the energy scale uncertainty

and the error bars. The main contributions to the errors bars are the beam momentum

uncertainty (data only) and the statistical errors. The root of the mean squared deviation

of µEcalib
/Ebeam from 1 is 0.10% for the Monte Carlo simulation and 0.60% for the data.

For the data this is within the energy scale uncertainty. Adjusting the energy scale,

the linearity defined as the unbiased estimate of the standard deviation of µEcalib
/Ebeam

is 0.10% for the Monte Carlo simulation and 0.28% for the data. This is within the

estimated systematic uncertainties discussed in section 5.6.6. Therefore the linearity at

the CTB 2004 is understood at the level of the estimated systematic uncertainties.

The resolution shown in figure 5.34 is described by

σECalib
(Ebeam)

Ebeam

=
a√
Ebeam

⊕ b

Ebeam

⊕ c (5.16)
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Run number pnominal
beam (GeV/c) Noise (MeV)

2102399 100 209.7
2102400 50 207.4
2102413 20 207.4
2102452 80 207.9

Table 5.5: Noise values for the 3x7 clusters for all beam momenta.

where the first term in the quadratic sum is the stochastic term, the second the noise

term and the third the local constant term as described in chapter 3. Since the noise of

the read out electronics was measured regularly during the whole CTB 2004 data taking

period by taking dedicated calibration runs, the noise values for the 3x7 clusters have

been subtracted quadratically for every measurement point in figure 5.34 before. They

have been computed for each run by averaging the noise values for the clusters over all

events of the runs. The noise value of a given cluster was computed as the quadratic

sum of the noise values of all cells in the cluster in their chosen read out gain for the

given event. The noise value of a given cell in a given read out gain was taken from the

previously mentioned calibration runs. The noise values are shown in table 5.5. The

noise increases slightly with increasing beam momentum because more cells are read out

in medium gain than in high gain due to the higher energy deposits and because the

noise for the medium gain is higher than for the high gain. The reason for this difference

in the noise for the various gains is the different bin size during digitization for the noise

amplified by the preamplifier. The impact of the different gain factors on the noise is

compensated by the gain depending FDAC→µA · FµA→MeV factor (see section 5.5.1).

Therefore the fit to extract a is done with b = 0 and c = 0.2% which is known from

previous test beams. The value for a extracted by the fit is (9.7±0.1)% GeV1/2 for Monte

Carlo simulation and (10.1 ± 0.1)% GeV1/2 for data which is compatible with previous

test beam results without magnetic field. It is the first measurement of a for the ATLAS

LAr calorimeter with particles traversing a magnetic field similar as for ATLAS data

taking at the LHC. However, the resolution for beam momenta of 80GeV/c and higher

is too small in the Monte Carlo simulation.
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6 Intercalibration with E/p for the

Combined Test Beam 2004

This chapter presents a method to intercalibrate the energy scale of the electromagnetic

calorimeter and the momentum scale of the Inner Detector. The intercalibration is

performed by investigating the ratio E/p for electrons, i.e. the ratio of the energy E

measured by the electromagnetic calorimeter and the momentum p measured by the

Inner Detector. This method was developed and tested with test beam data and has

been applied to ATLAS Monte Carlo simulations (see chapter 7).

The key concept of this intercalibration method is to extract information for the de-

tector response functions of the electromagnetic calorimeter, i.e. E/pbeam, and of the

Inner Detector, i.e. pbeam/p, from a fit to the E/p distribution. In order to be able to

achieve this, the E/p distribution has to be parameterized through the two individual

detector response functions E/pbeam and pbeam/p. Since E/pbeam and pbeam/p describe

not necessarily uncorrelated random variables, their correlation also has to be taken into

account for the E/p parameterization. Since the knowledge of the true momentum of

the particles, i.e. pbeam, is necessary to obtain a description of this correlation and this

knowledge will not be available for ATLAS, the correlation is computed for Monte Carlo

simulation.

The E/p parameterization is fitted to the observed E/p distribution and since it is

built upon the individual detector response functions, the fit parameters obtained from

the E/p fit reflect the properties of the individual response functions. This chapter is

devoted to the extraction of the relative scale of the two individual response functions.

Since the momentum scale of the Inner Detector is determined by the magnetic field

that has been measured very precisely [38], the relative scale can be used to transform

the momentum scale into the absolute energy scale of the electromagnetic calorimeter.

For each beam momentum pbeam the intercalibration is done in the following steps:

1. Derive parameterizations for the E/pbeam and pbeam/p distributions. For this step,
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the knowledge of the beam momentum is necessary.

2. E/p is modeled by convoluting E/pbeam and pbeam/p. This can be done by treating

E/pbeam and pbeam/p as independent random variables or by taking their correlation

into account. The knowledge of the beam momentum is used for the description

of the correlation.

3. The parameterization for E/p is fitted to the observed E/p distribution. All pa-

rameters except a relative scale parameter are kept fixed to their values obtained

in step 1.

The modeling of the E/p distribution is described in section 6.1. The details of the

relative scale extraction procedure are described in section 6.2 and results for combined

test beam data and Monte Carlo simulation are shown in section 6.3.

6.1 Modeling

6.1.1 Motivation

As presented in figure 5.32 in section 5.8 the energy response of the electromagnetic

calorimeter to a particle with a given momentum is not gaussian, showing a tail towards

lower energies. This comes from energy deposits due to bremsstrahlung in the material

upstream to the calorimeter. Using the calibration hits in the simulation and plotting

the energy of the particle Ebeam = pbeam c minus the energy lost upstream relative to

the energy of the particle (figure 6.1) shows this fact. The asymmetry of the curves in

figure 6.1 is partly corrected by the presampler in the Calibration Hits Method (see

section 5.7.1), however the tail is not completely removed and therefore has to be taken

into account for modeling the energy distribution.

6.1.2 Modeling of E/pbeam

Convolution model

Motivated by figure 6.1 one can make the following exponential ansatz to model the

beam energy minus the energy lost upstream of the calorimeter normalized to the beam

energy

fe(e; τE, E0) := c
1

τEE0 (eτE − 1)
e

e
τEE0 , e < E0 (6.1)

where E0 is a scale parameter and τE describes the tail towards lower energies.
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Figure 6.1: Relative energy content that reaches the calorimeter for all beam momenta
computed with Monte Carlo simulation. It can be seen that the tail towards lower
energies is approximately linear in the log–scale plot, i.e. exponential.

Next the detector resolution without upstream material can be modeled with a gaussian

with standard deviation σE:

D(x;σE) :=
1√

2πσE

e
−x2

2σ2
E (6.2)

Convoluting (6.1) and (6.2) to get the energy response of the calorimeter leads to

E(e; τE, E0, σE) =
∫ E0

0
fe(x; τE, E0) D(e− x;σE) dx (6.3)

= c
e

2eE0τE+σ2
E

2E0
2τE

2
„

Erf

»
eE0τE+σE

2
√

2E0τEσE

–
−Erf

»
eE0τE−E0

2τE+σE
2

√
2E0τEσE

–«
2

„
e

1
τE −1

«
E0τE

(6.4)

where Erf(x) denotes the gaussian error function defined by

Erf(x) =

∫ x

0

e−t2 dt. (6.5)

The parameters τE, E0, σE depend on the beam momentum pbeam. The position of the

peak of the distribution E(e; τE, E0, σE), denoted µe is a function of the parameters
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material τE (10−2) σE (10−2) E0 µe(τE, E0, σE)
nominal 4.84(6) 2.66(7) 1.0275(4) 1.0013(5)

additional 5.78(11) 2.32(9) 1.0267(7) 1.0003(7)

Table 6.1: The parameter values for the convolution model (equation 6.3) obtained
from a fit to the E/pbeam distribution for a beam momentum of pbeam=20GeV/c
without (nominal) and with additional material in the Inner Detector.

τE, E0, σE, i.e. µe = µe(τE, E0, σE).

This parameterization is capable of describing the effect of additional material in front of

the electromagnetic calorimeter. Since additional material should not affect the intrinsic

detector resolution, only the parameter τE should change. For a beam momentum of

20GeV/c additional material equivalent to 10% of a radiation length was placed between

the Pixel detector and the SCT and additional 20% between the SCT and the TRT. The

E/pbeam distribution without (solid line) and with (dashed line) this additional material

in the Inner Detector is shown in figure 6.2 together with the corresponding fits with

the convolution model. The obtained parameters are given in table 6.1. The two values

of E0 (with and without additional material) are compatible within the error bars,

whereas µe is as expected slightly lower for the run with additional material. There is

some correlation between the resolution σE and the tail parameter τE. The difference

of the resolution σE for the different material description is of the order of 3 standard

deviations, but the tail parameter τE is approximately 10 standard deviations larger for

the geometry description with additional material demonstrating the sensitivity of this

parameter to additional material in front of the electromagnetic calorimeter.

Although the convolution model describes the E/pbeam distributions at pbeam=20GeV/c

very well, the Crystall Ball model presented in the next subsection describes the E/pbeam

distributions far better at beam momenta above 20GeV/c. The Crystall Ball model is

therefore used for the combined test beam 2004 for E/pbeam distributions for the sake of

consistency.

Crystall Ball model

The E/pbeam distribution, see figure 5.32, for the CTB 2004 is modeled using the so–

called Crystall Ball function. The Crystal Ball function [39], named after the Crystal

Ball Collaboration, is a probability density function commonly used to model various

processes in high energy physics. It consists of a Gaussian core part and a power-law
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low-end tail below a certain threshold. These two parts are spliced together (via the

coefficients A and B) in such a way that the function and its first derivative are both

continuous. The Crystall Ball function fCB is given by

fCB(x;α, n, µ, σ) = N ·

{
exp(− (x−µ)2

2σ2 ) for x−µ
σ

> −α
A · (B − x−µ

σ
)−n for x−µ

σ
≤ −α

(6.6)

where

A =

(
n

|α|

)n

· exp

(
−|α|

2

2

)
B =

n

|α|
− |α| . (6.7)

N is a normalization factor and α, n, µ and σ are parameters.
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The model for the E/pbeam distribution, denoted E(e;αe, ne, µe, σe), is given by

E(e;αe, ne, µe, σe) = c fCB(e;αe, ne, µe, σe) (6.8)

where e = E/pbeam. The parameters αe, ne, µe, σe depend on the beam momentum pbeam.

6.1.3 Modeling of pbeam/p

The pbeam/p distribution for the CTB 2004 is modeled using a Crystall Ball function

that is mirrored at x = µ which is

fmirror(x;α, n, µ, σ) = fCB(µ− (x− µ);α, n, µ, σ) = fCB(2µ− x;α, n, µ, σ) (6.9)

with the Crystall Ball function defined in equations 6.6 and 6.7.

The model for the pbeam/p distribution, denoted Q(q;αq, nq, µq, σq), is given by

Q(q;αq, nq, µq, σq) = fmirror(q;αq, nq, µq, σq) (6.10)

where q = pbeam/p.

6.1.4 Modeling of E/p

For electrons in the considered energy range (E > 1GeV � me ≈ 511keV) we neglect

the mass term contribution to the particle energy and therefore use the approximation

E = pc. Since the measurement variables e and q are random variables, the distribution

R of the product r = e · q, which describes the ratio E/p, is given by

R(r) =

∫ ∞

−∞
f(E,Q)

( r
w
,w
) 1

w
dw (6.11)

where f(E,Q)(e, q) denotes the joint distribution of e and q. Using the parameterizations

E(e;αe, ne, µe, σe) and Q(q;αq, nq, µq, σq) for e (equation 6.8) and q (equation 6.10) and

the fact that E(e) > 0∀e ∈ R and Q(q) > 0∀q ∈ R, the joint distribution can be

rewritten as

f(E,Q) (e, q;αe, ne, µe, σe, αq, nq, µq, σq) = E(e;αe, ne, µe, σe)Q(q;αq, nq, µq, σq) · C(e, q)

(6.12)
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where C(e, q) describes the correlation between e and q. No correlation would be equiv-

alent to C(e, q) = 1. Inserting (6.12) into (6.11) leads to

R(r;αe, ne, µe, σe, αq, nq, µq, σq) =∫ ∞

−∞
E(

r

w
;αe, ne, µe, σe)Q(w;αq, nq, µq, σq)C(

r

w
,w)

1

w
dw (6.13)

Two ways of dealing with the correlation between e and q are considered.

No correlation

It is assumed that there is no correlation between e and q, i.e. e and q are independent

random variables. For the modeling this means C(e, q) = 1 in equation 6.13. This

should be the case for high energy electrons where the impact of bremsstrahlung on the

momentum measurement is small. Later it will be shown that the correlation between e

and q has to be taken into account in order to achieve a precision for the relative scale

at the 5h level.

Correlation obtained from Monte Carlo simulation

The continous function C(e, q) in equation 6.12 can be approximated by discrete values

for bins in e and q. C(e, q) is determined from Monte Carlo simulations by performing

the division

C(e, q) =
f(E,Q)(e, q)

E(e)Q(q)
(6.14)

bin–wise. In order to be able to compute C(e, q) the knowledge of the beam momentum

is necessary, but since the computation is performed bin–wise it is independent of the

choice of the parameterizations for E(e) and Q(q). The joint distributions f(E,Q)(e, q) of

e and q and C(e, q) extracted from Monte Carlo simulations are shown in for pbeam =20

GeV/c in figure 6.3, for pbeam =50 GeV/c in figure 6.4, for pbeam =80 GeV/c in figure 6.5

and for pbeam =100 GeV/c in figure 6.6. For pbeam =20 GeV/c the correlation factor

C(e, q) derived from Monte Carlo simulation shows a gradient in the up–left direction

in the parameter space where most of the events are located indicating correlation.

This gradient becomes smaller for pbeam =50 GeV/c and vanishes for pbeam =80 GeV/c

and pbeam =100 GeV/c. Therefore these figures show that the correlation decreases with

increasing beam momentum. Furthermore, the relative error on C(e, q) can become quite

large, especially at higher beam momenta. The qualitative behaviour of the correlation

in the data is well described by the Monte Carlo simulation, especially at pbeam=20GeV/c

87



where the correlation is most important.

The idea is to extract C(e, q) from Monte Carlo simulations and then apply it to data

in the same spirit as for the Calibration Hits Method in section 5.7.
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Figure 6.3: The joint distribution f(E,Q)(e, q) (equation 6.11) for Monte Carlo
simulation (top left and top right [log scale]), for CTB data (middle left and middle
right [log scale]), the correlation factor C(e, q) (equation 6.14) derived from Monte
Carlo simulation (bottom left) and the relative error of the correlation factor C(e, q)
(bottom right) for pbeam=20GeV/c.
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Figure 6.4: The joint distribution f(E,Q)(e, q) (equation 6.11) for Monte Carlo
simulation (top left and top right [log scale]), for CTB data (middle left and middle
right [log scale]), the correlation factor C(e, q) (equation 6.14) derived from Monte
Carlo simulation (bottom left) and the relative error of the correlation factor C(e, q)
(bottom right) for pbeam=50GeV/c.
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Figure 6.5: The joint distribution f(E,Q)(e, q) (equation 6.11) for Monte Carlo
simulation (top left and top right [log scale]), for CTB data (middle left and middle
right [log scale]), the correlation factor C(e, q) (equation 6.14) derived from Monte
Carlo simulation (bottom left) and the relative error of the correlation factor C(e, q)
(bottom right) for pbeam=80GeV/c.

6.2 Scale factor extraction

6.2.1 Procedure

This procedure is applied for each beam momentum pbeam separately. The parameters

α̂e, n̂e, µ̂e, σ̂e are obtained by fitting the Crystall Ball parameterization E(e;αe, ne, µe, σe)
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Figure 6.6: The joint distribution f(E,Q)(e, q) (equation 6.11) for Monte Carlo
simulation (top left and top right [log scale]), for CTB data (middle left and middle
right [log scale]), the correlation factor C(e, q) (equation 6.14) derived from Monte
Carlo simulation (bottom left) and the relative error of the correlation factor C(e, q)
(bottom right) for pbeam=100GeV/c.

(equation 6.8) to the E/pbeam distribution. The parameters α̂q, n̂q, µ̂q, σ̂q are computed

by fitting the mirror Crystall Ball parameterization Q(q;αq, nq, µq, σq) (equation 6.10)

to the pbeam/p distribution. Then the scale parameter µ̄e for the E/pbeam distribution

is calculated by fitting R(r; α̂e, n̂e, µ̄e, σ̂e, α̂q, n̂q, µ̂q, σ̂q) (equation 6.13) to the E/p dis-

tribution. In this fit only the µ̄e parameter is allowed to vary. The other parameters
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α̂e, n̂e, σ̂e, α̂q, n̂q, µ̂q, σ̂q are fixed to the values obtained by the E/pbeam and pbeam/p fits,

respectively. The relative scale factor is then defined by the ratio µ̄e/µ̂e.

This procedure is based on the assumption that the relative scale factor is close to 1 and

therefore the effect of the scaling of the parameters α̂e, n̂e, σ̂e is negligible. Otherwise

they would have to be scaled accordingly.

6.2.2 Validation and estimation of systematic errors

The procedure to extract the relative scale factor between the energy scale of the electro-

magnetic calorimeter and the momentum scale of the inner detector is validated using a

dedicated Monte Carlo simulation. The inputs for the Monte Carlo simulation are the

number of events N to be generated, the probability density function t(pbeam) for the

beam momentum and the parameterizations for E(e; pbeam) and Q(q; pbeam) as functions

of the beam momentum. Note that t(pbeam) can be a Dirac delta function for a specific

beam momentum or a function modeling the true momentum distribution of electrons

coming for a specific physics process, e.g. W→eν, in the ATLAS experiment.

An event is generated in the following steps:

1. Generate a random beam momentum p̂beam from t(pbeam),

2. generate a random ê from E(e; p̂beam),

3. generate a random q̂ from Q(q; p̂beam).

4. compute r̂ = ê q̂ (This means that no correlation between e and q is assumed.).

All the generated ê, q̂ and r̂ form the Ê(ê), Q̂(q̂) and R̂(r̂) distributions. Then the

procedure described in the previous subsection 6.2.1 is applied and the relative scale

factor µ̄e/µ̂e is extracted.

To estimate the errors arising from the fitting procedure, the procedure for a given N

and t(pbeam) has been repeated 104 times in the Monte Carlo simulation with different

seeds for the random number generator. Each time the relative scale factor µ̄e/µ̂e is

computed and accumulated. The mean and the standard deviation of the distribution

of the relative scale factor µ̄e/µ̂e is examined to validate the scale factor extraction

procedure. This distribution is shown for t(pbeam) = δ(50GeV/c) and N=1000 and for

t(pbeam) distributed like the true momentum of electrons coming from W→eν decays

(figure 6.8) and N=8000 in figure 6.7. For t(pbeam) = δ(50GeV/c) the µ̄e/µ̂e distribution
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is nicely gaussian whereas for the W→eν decay momentum distribution, which is itself

asymmetric, it is asymmetric. Therefore the mean of the distribution is used instead of

the mean of a gaussian fitted to the distribution.
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Figure 6.7: Distribution of the relative scale factor µ̄e/µ̂e for t(pbeam) = δ(50GeV/c)
and N=1000 (left) and for t(pbeam) distributed as the true momentum of electrons
coming from W→eν decays (figure 6.8) and N=8000 (right).

The mean and the standard deviation of the distribution of the relative scale factor µ̄e/µ̂e

are plotted as functions of N in figure 6.9 for the following beam momentum probability

density functions t(pbeam):

• t(pbeam) = δ(20GeV/c),

• t(pbeam) = δ(50GeV/c),

• t(pbeam) = δ(100GeV/c),

• t(pbeam) gaussian with µ=40GeV/c and σ=10GeV/c,

• t(pbeam) uniformly distributed between 20 GeV/c and 60 GeV/c,

• t(pbeam) distributed like the true momentum of electrons coming from W→eν de-

cays (figure 6.8)

• t(pbeam) distributed like the true momentum of electrons coming from W→eν de-

cays for pbeam <80 GeV/c

• t(pbeam) distributed like the true momentum of electrons coming from W→eν de-

cays 20 GeV/c< pbeam <60 GeV/c
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Figure 6.8: Momentum distribution of electrons coming from W→eν decays obtained
with PYTHIA.

From figure 6.9 it is clear that the standard deviation of the distribution of the relative

scale factor µ̄e/µ̂e (shown as error bars) decreases with increasing N as it is expected.

However after N=4000 the improvement gets very small implying that this is a good

working point with a standard deviation of ≈1.5h.

The mean of the distribution of the relative scale factor µ̄e/µ̂e is within 1h; for t(pbeam)

distributed like the momentum of electrons from W→eν decays it is within 2hdue to the

asymmetric shape of the distribution of the relative scale factor µ̄e/µ̂e for this case. When

the pbeam is restricted to be within 0 GeV/c< pbeam <60 GeV/c or 20 GeV/c< pbeam <60

GeV/c, the mean of the distribution of the relative scale factor µ̄e/µ̂e stays within 1h,

and well within the errors.

6.3 Scale parameter extraction for the Combined Test

Beam

The E/pbeam distribution with the fitted E(e; α̂e, n̂e, µ̂e, σ̂e) model, the pbeam/p distribu-

tion with the fitted Q(q; α̂q, n̂q, µ̂q, σ̂q) model and the E/pbeam distribution fitted with

R(r; α̂e, n̂e, µ̄e, σ̂e, α̂q, n̂q, µ̂q, σ̂q) without and with Monte Carlo simulation correlation

modeling are plotted in figure 6.10 (Monte Carlo simulation) and figure 6.11 (data)

for pbeam=20 GeV/c, in figure 6.12 (Monte Carlo simulation) and figure 6.13 (data)

for pbeam=50 GeV/c, in figure 6.14 (Monte Carlo simulation) and figure 6.15 (data) for

pbeam=80 GeV/c and in figure 6.16 (Monte Carlo simulation) and figure 6.17 (data) for

pbeam=100 GeV/c. The number of events after all cuts is given in table 6.2.
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Figure 6.9: Mean (band representing the error on the mean) and standard deviation
(error bars) of the distribution of the relative scale factor µ̄e/µ̂e as functions of N for
different beam momentum probability density distributions t(pbeam).
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Run number pnominal
beam (GeV/c) Events MC Events Data

2102399 100 55665 19075
2102400 50 56151 19723
2102413 20 41600 6583
2102452 80 57473 8180

Table 6.2: Number of events after all cuts for the Monte Carlo simulation and the data
for all beam momenta.

For pbeam=20 GeV/c and for pbeam=50 GeV/c the modeling of the correlation between

e and q is needed to improve the description of the shape of the E/p distributions. The

E/p distribution for data for pbeam=20 GeV/c is not perfectly described by applying

the correlation obtained from the Monte Carlo simulation implying that the correlation

is larger in data than in the Monte Carlo simulation. For pbeam=50 GeV/c the E/p

distribution for data is well described using the correlation obtained from the Monte

Carlo simulation. For pbeam=80 GeV/c and for pbeam=100 GeV/c the modeling of the

correlation between e and q yields only small improvements and introduces numerical

problems. They lead to small shape distortions around the peak of the E/p model

functions.

The relative scale factor µ̄e/µ̂e without and with Monte Carlo simulation correlation

modeling is plotted in figure 6.18 for all beam momenta. For pbeam=80 GeV/c and

higher the modeling of the correlation between e and q does not improve the relative

scale factor. For pbeam=50 GeV/c and specially for pbeam=20 GeV/c the modeling of the

correlation between e and q brings the relative scale factor down to the 2 respectively

5 permill level. Within the available statistics, the uncertainties on the relative scale

factor are comparable with the expectation from the dedicated validation Monte Carlo

simulation model.

This demonstrates that for the CTB 2004 a Monte Carlo simulation correlation modeling

can be used to extract the relative scale factor µ̄e/µ̂e from the data and therefore a similar

approach will be used for ATLAS. The description of the correlation should be easier

for ATLAS since the material distribution upstream of the electromagnetic calorimeter

is much better understood for ATLAS than for the CTB 2004.
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Figure 6.10: Monte Carlo simulation: The E/pbeam distribution with the fitted
E(e; α̂e, n̂e, µ̂e, σ̂e) model (top left), the pbeam/p distribution with the fitted
Q(q; α̂q, n̂q, µ̂q, σ̂q) model (top right) and the E/pbeam distribution fitted with
R(r; α̂e, n̂e, µ̄e, σ̂e, α̂q, n̂q, µ̂q, σ̂q) without (bottom left) and with (bottom right) Monte
Carlo simulation correlation modeling for Monte Carlo simulation for pbeam=20GeV/c.
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Figure 6.11: CTB data: The E/pbeam distribution with the fitted E(e; α̂e, n̂e, µ̂e, σ̂e)
model (top left), the pbeam/p distribution with the fitted Q(q; α̂q, n̂q, µ̂q, σ̂q) model (top
right) and the E/pbeam distribution fitted with R(r; α̂e, n̂e, µ̄e, σ̂e, α̂q, n̂q, µ̂q, σ̂q) without
(bottom left) and with (bottom right) Monte Carlo simulation correlation modeling for
CTB data for pbeam=20GeV/c.
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Figure 6.12: Monte Carlo simulation: The E/pbeam distribution with the fitted
E(e; α̂e, n̂e, µ̂e, σ̂e) model (top left), the pbeam/p distribution with the fitted
Q(q; α̂q, n̂q, µ̂q, σ̂q) model (top right) and the E/pbeam distribution fitted with
R(r; α̂e, n̂e, µ̄e, σ̂e, α̂q, n̂q, µ̂q, σ̂q) without (bottom left) and with (bottom right) Monte
Carlo simulation correlation modeling for Monte Carlo simulation for pbeam=50GeV/c.
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Figure 6.13: CTB data: The E/pbeam distribution with the fitted E(e; α̂e, n̂e, µ̂e, σ̂e)
model (top left), the pbeam/p distribution with the fitted Q(q; α̂q, n̂q, µ̂q, σ̂q) model (top
right) and the E/pbeam distribution fitted with R(r; α̂e, n̂e, µ̄e, σ̂e, α̂q, n̂q, µ̂q, σ̂q) without
(bottom left) and with (bottom right) Monte Carlo simulation correlation modeling for
CTB data for pbeam=50GeV/c.
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Figure 6.14: Monte Carlo simulation: The E/pbeam distribution with the fitted
E(e; α̂e, n̂e, µ̂e, σ̂e) model (top left), the pbeam/p distribution with the fitted
Q(q; α̂q, n̂q, µ̂q, σ̂q) model (top right) and the E/pbeam distribution fitted with
R(r; α̂e, n̂e, µ̄e, σ̂e, α̂q, n̂q, µ̂q, σ̂q) without (bottom left) and with (bottom right) Monte
Carlo simulation correlation modeling for Monte Carlo simulation for pbeam=80GeV/c.
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Figure 6.15: CTB data: The E/pbeam distribution with the fitted E(e; α̂e, n̂e, µ̂e, σ̂e)
model (top left), the pbeam/p distribution with the fitted Q(q; α̂q, n̂q, µ̂q, σ̂q) model (top
right) and the E/pbeam distribution fitted with R(r; α̂e, n̂e, µ̄e, σ̂e, α̂q, n̂q, µ̂q, σ̂q) without
(bottom left) and with (bottom right) Monte Carlo simulation correlation modeling for
CTB data for pbeam=80GeV/c.
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Figure 6.16: Monte Carlo simulation: The E/pbeam distribution with the fitted
E(e; α̂e, n̂e, µ̂e, σ̂e) model (top left), the pbeam/p distribution with the fitted
Q(q; α̂q, n̂q, µ̂q, σ̂q) model (top right) and the E/pbeam distribution fitted with
R(r; α̂e, n̂e, µ̄e, σ̂e, α̂q, n̂q, µ̂q, σ̂q) without (bottom left) and with (bottom right) Monte
Carlo simulation correlation modeling for Monte Carlo simulation for pbeam=100GeV/c.
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Figure 6.17: CTB data: The E/pbeam distribution with the fitted E(e; α̂e, n̂e, µ̂e, σ̂e)
model (top left), the pbeam/p distribution with the fitted Q(q; α̂q, n̂q, µ̂q, σ̂q) model (top
right) and the E/pbeam distribution fitted with R(r; α̂e, n̂e, µ̄e, σ̂e, α̂q, n̂q, µ̂q, σ̂q) without
(bottom left) and with (bottom right) Monte Carlo simulation correlation modeling for
CTB data for pbeam=100GeV/c.
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Figure 6.18: The relative scale factor µ̄e/µ̂e extracted from the E/p distributions
without (top) and with (bottom) correlation weighting for Monte Carlo simulation and
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6.4 Summary

In this chapter I have developed a parameterization of the E/p distribution that takes

the correlation between the energy E measured by the electromagnetic calorimeter and

the momentum p measured by the Inner Detector into account. After describing the pro-

cedure to extract the relative scale between the two detectors using this parameterization

of the E/p distribution, this procedure has been applied to data from the Combined Test

Beam 2004. Since the momentum scale of the Inner Detector is determined by the very

precisely measured magnetic field, the obtained precision for the absolute energy scale

for the electromagnetic calorimeter is 5h.
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7 Intercalibration with E/p for ATLAS

using Monte Carlo Simulation

In this chapter the method to intercalibrate the energy scale of the electromagnetic

calorimeter and the momentum scale of the Inner Detector which was developed for the

combined test beam 2004 (chapter 6) is applied to the Monte Carlo simulations for the

ATLAS detector.

The main difference between the two scenarios is that while in the combined test beam

2004 the particle momentum could be adjusted to a specific value, for data taken with

ATLAS from LHC collisions the particle momentum is not known a priori. Therefore

the parameterizations of the two individual detector response functions and the E/p

distribution are generalized to accomodate the distribution of the true particle momen-

tum. Electrons from specific physics processes, where the distribution of the true particle

momentum is known, will be used for the intercalibration method in ATLAS.

The modeling of the E/p distribution with an emphasis on the differences with respect

to the combined test beam 2004 is described in section 7.1. Section 7.2 is devoted

to the physics processes that produce electrons with a sufficient rate to be used for

the intercalibration method. The details of the relative scale extraction procedure are

described in section 7.4 and results for ATLAS Monte Carlo simulation are shown in

section 7.4.

7.1 Modeling

This section describes the modeling of the E/p distribution for electrons from a given

physics process (see section 7.2). A specific physics process together with the event

and particle selection defines the true momentum distribution t(ptrue, η, ϕ) which also

depends on the geometric position (η and ϕ) where the electron impinges the calorimeter.

Since the performance of the calorimeter and the inner detector varies over the geo-
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metrical coverage of the detector systems, a rectangular binning in the (η, ϕ) space

is introduced. Since the model coefficients vary from bin to bin, the modeling of the

E/p distribution described in this section is performed for every bin separately. An η–ϕ

bin is specified by the lower and upper bounds on η and ϕ, i.e. ηmin < η < ηmax and

ϕmin < ϕ < ϕmax.

7.1.1 Modeling of E/ptrue

The response function of the LAr electromagnetic calorimeter, i.e. the E/ptrue distribu-

tion denoted E(e) where e = E/ptrue, is a function of the geometrical position where the

electron impinges in the calorimeter, i.e. η and ϕ, and of the true electron momentum

ptrue. This means that E(e) = E(e; η, ϕ, ptrue). For a given η–ϕ bin, i.e. ηmin < η < ηmax

and ϕmin < ϕ < ϕmax, and a given true particle momentum distribution after event and

particle selection t(ptrue, η, ϕ) the mean response function EΣ(e) is

EΣ(e) =

ηmax∫
ηmin

ϕmax∫
ϕmin

∞∫
0

t(ptrue, η, ϕ)E(e; η, ϕ, ptrue)dptrue dϕ dη. (7.1)

This function is parameterized using the convolution model (equation 6.3 in subsec-

tion 6.1.2), i.e.

EΣ(e) = EΣ(e; τe, E0, σe). (7.2)

The position of the peak of the distribution EΣ(e; τe, E0, σe), denoted µe, is a function

of the parameters τe, E0, σe, i.e. µe = µe(τe, E0, σe).

7.1.2 Modeling of ptrue/p

The ptrue/p distribution, denoted Q(q) where q = ptrue/p is a function of the geometrical

position where the electron passes through the Inner Detector, i.e. η and ϕ, and of

the true electron momentum ptrue. Analogous to the response function of the LAr

electromagnetic calorimeter described in the previous subsection 7.1.1, this means that

Q(q) = Q(q; η, ϕ, ptrue). For a given η–ϕ bin, i.e. ηmin < η < ηmax and ϕmin < ϕ <

ϕmax, and a given true particle momentum distribution after event and particle selection

t(ptrue, η, ϕ) the mean ptrue/p distribution QΣ(q) is

QΣ(q) =

ηmax∫
ηmin

ϕmax∫
ϕmin

∞∫
0

t(ptrue, η, ϕ)Q(q; η, ϕ, ptrue)dptrue dϕ dη. (7.3)
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This function is modeled like the pbeam/p distribution for the CTB 2004 (subsection 6.1.3)

with a mirrored Crystall Ball function (equation 6.9), i.e.

QΣ(q) = QΣ(q;αq, nq, µq, σq). (7.4)

7.1.3 Modeling of E/p

For electrons in the considered energy range (E > 1GeV � me ≈ 511keV) we neglect

the mass term contribution to the particle energy and therefore use the approximation

E = pc. Since the measurement variables e and q are random variables, the distribution

R of the product r = e · q, which describes the ratio E/p, for a given η position, ϕ

position and a given true electron momentum ptrue is

R(r; η, ϕ, ptrue) =

∫ ∞

−∞
f(E,Q)

( r
w
,w; η, ϕ, ptrue

) 1

w
dw (7.5)

where f(E,Q)(e, q; η, ϕ, ptrue) denotes the joint distribution of e and q for the given η

position, the given ϕ position and the given true electron momentum ptrue. For a given

η–ϕ bin, i.e. ηmin < η < ηmax and ϕmin < ϕ < ϕmax, and a given true particle

momentum distribution after event and particle selection t(ptrue, η, ϕ) the mean E/p

distribution RΣ(r) is

RΣ(r) =

ηmax∫
ηmin

ϕmax∫
ϕmin

∞∫
0

t(ptrue, η, ϕ)R(r; η, ϕ, ptrue)dptrue dϕ dη. (7.6)

This function is far too complicated to be evaluated in a parameter fitting procedure.

Furthermore the joint distribution would have to be known for a larger volume in the

(ptrue, η, ϕ) parameter space. Therefore the joint distribution f(E,Q)(e, q; η, ϕ, ptrue) is ap-

proximated by a mean joint distribution f ∗(E,Q)

(
r
w
, w
)

for a given η–ϕ bin and a given true

particle momentum distribution after event and particle selection t(ptrue, η, ϕ). Together

with rearranging the sequence of the integrations and using the fact that t(ptrue, η, ϕ) is

a probability density function this yields

RΣ(r) =

ηmax∫
ηmin

ϕmax∫
ϕmin

∞∫
0

t(ptrue, η, ϕ)R(r; η, ϕ, ptrue)dptrue dϕ dη (7.7)
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=

ηmax∫
ηmin

ϕmax∫
ϕmin

∞∫
0

t(ptrue, η, ϕ)

∞∫
−∞

f(E,Q)

( r
w
,w; η, ϕ, ptrue)

) 1

w
dw dptrue dϕ dη (7.8)

≈
∞∫

−∞

f ∗(E,Q)

( r
w
,w
) 1

w
dw

ηmax∫
ηmin

ϕmax∫
ϕmin

∞∫
0

t(ptrue, η, ϕ) dptrue dϕ dη

︸ ︷︷ ︸
=1

(7.9)

=

∞∫
−∞

f ∗(E,Q)

( r
w
,w
) 1

w
dw. (7.10)

This approximation can also be interpreted in the following way: Instead of taking the

(ptrue, η, ϕ) substructure of E(e) and Q(q) into account, e and q are simply treated as

random variables for a given η–ϕ bin, i.e. ηmin < η < ηmax and ϕmin < ϕ < ϕmax, and a

given true particle momentum distribution after event and particle selection t(ptrue, η, ϕ).

They are distributed according to the EΣ and the QΣ distributions with a joint distri-

bution fΣ,(E,Q)(e, q). Analogue to subsection 6.1.4 the corresponding distribution RΣ of

the product r = e · q is

RΣ(r) =

∫ ∞

−∞
fΣ,(E,Q)

( r
w
,w
) 1

w
dw, (7.11)

where fΣ,(E,Q)(e, q) denotes the joint distribution of e and q and is used as the

mean joint distribution f ∗(E,Q)

(
r
w
, w
)
. Using the parameterizations EΣ(e; τe, E0, σe)

and QΣ(q;αq, nq, µq, σq) for e (equation 7.2) and q (equation 7.4) and the fact that

EΣ(e) > 0∀e ∈ R and QΣ(q) > 0∀q ∈ R, the joint distribution can be rewritten as

fΣ,(E,Q) (e, q) = EΣ(e)QΣ(q) · CΣ(e, q) (7.12)

where CΣ(e, q) describes the correlation between e and q. No correlation would be

equivalent to CΣ(e, q) = 1. Inserting (6.12) into (6.11) leads to

RΣ(r; τe, E0, σe, αq, nq, µq, σq) =∫ ∞

−∞
EΣ(

r

w
; τe, E0, σe)QΣ(w;αq, nq, µq, σq)CΣ(

r

w
,w)

1

w
dw (7.13)

which is the model that is used in this analysis.

Similar to the combined test beam 2004 (subsection 6.1.4) two ways of dealing with the
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correlation between e and q are considered.

No correlation

It is assumed that there is no correlation between e and q, i.e. e and q are independent

random variables. For the modeling this means CΣ(e, q) = 1 in equation 6.13. This

should be the case for high energy electrons where the impact of bremsstrahlung on the

momentum measurement is small.

Correlation obtained from Monte Carlo simulation

The continous function CΣ(e, q) in equation 7.12 can be approximated by discrete values

for bins in e and q. CΣ(e, q) is determined from Monte Carlo simulations by performing

the division

CΣ(e, q) =
fΣ,(E,Q)(e, q)

EΣ(e)QΣ(q)
(7.14)

bin–wise. In order to be able to compute CΣ(e, q) the knowledge of the true particle mo-

mentum is necessary, but since the computation is performed bin–wise it is independent

of the choice of the parameterizations for E(e) and Q(q).

The idea is to extract CΣ(e, q) from Monte Carlo simulations and then apply it to data

like it has been done for the combined test beam 2004 (section 6.1.4)

7.2 Physics processes

A chosen physics process together with the event and particle selection defines the true

particle momentum distribution after event and particle selection t(ptrue, η, ϕ) for ev-

ery η–ϕ bin. This true particle momentum distribution is needed as an input for the

modeling of the E/p distribution in section 7.1.

The five physics processes with the largest electron production cross sections are dis-

cussed in the following subsections.

7.2.1 W boson decays

The electrons that are most likely to be used for the intercalibration of the relative scales

of the inner detector and the electromagnetic calorimeter are electrons from W boson

decays, i.e. a W boson decaying into an electron and its antineutrino, abbreviated as

W→eν. For a center of mass energy of 10TeV the expected cross section is σ=11.764 nb.
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The expected efficiency for these events passing the trigger and having an electron in

the geometrical acceptance of the Inner Detector and the electromagnetic calorimeter is

ε=0.88. The pT,true distribution1 obtained from Monte Carlo simulation for an integrated

luminosity = 20 pb−1 is shown in figure 7.1. The pT,true distributions peak slightly below

40GeV/c and the electron in these events is generally well isolated.

7.2.2 Z boson decays

Electrons from Z bosons decaying into 2 electrons, i.e. Z→e+e−, have a similar pT

spectrum as the electrons from W boson decays and are also well isolated in general.

However, the cross section for Z boson decays is approximately 10 times smaller than

for W boson decays. Since two electrons are produced per Z boson decay, the number

of electrons from Z boson decays is approximately 5 times smaller than from W boson

decays. Due to this fact the electrons from Z boson decays will only increase the available

statistics by 20% and are therefore of less relevance than the electrons from W boson

decays.

7.2.3 Top quark decays

Another source of electrons are top quarks decays. The primary decay channel is the

top quark decaying into a b quark and a W boson [40], t→ W b. This yields an electron

in the case of a leptonic W boson decay, i.e. the W boson decaying into an electron and

a neutrino W→eν. The electrons from top quark decays have a similar pT spectrum as

the electrons from W boson decays with a slightly larger tail towards high pT because

they can be more boosted.

The cross section for electrons from top quark decays is much lower than the cross

section for electrons from W boson decays. Therefore electrons from top quark decays

are not considered in this thesis. Due to the larger tail and with a significant amount of

integrated luminosity, electrons for top quark decays are a source for high pT electrons

that can be used to probe the linearity of the electromagnetic calorimeter up to a few

hundred GeV.

1The true transverse particle momentum is shown instead of the true particle momentum because the
pT spectrum is constant as a function of η for many processes. For a given η position the transverse
momentum and the momentum are geometrically related via pT = p sin(θ) with θ = 2 arctan

(
e−|η|

)
.
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Figure 7.1: The pT,true distributions for electrons from W→eν decays for an integrated
luminosity of 20 pb−1 for the different η bins.
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7.2.4 J/ψ meson decays

J/ψ mesons decaying into two electrons, i.e J/ψ →e+e−, have an approximately 50 times

higher cross section than Z→e+e− decays. The main difference to the electrons from

W and Z boson decays is that the electrons from J/ψ →e+e− decays have far lower pT

with a pT spectrum peaking well below 10GeV/c. This is a clear disadvantage since the

performance of the electronmagnetic calorimeter is worse (due to the σE/E0 ∼ a/
√

(E0)

dependance) for low pT electrons and also less important since the electrons from most

of the interesting physics processes to be studied, e.g. W boson, Z boson, top quarks or

(perhaps) Higgs boson decays, have a far higher pT .

7.2.5 Heavy flavour decays

The most luminous source of electrons are QCD processes, namely heavy flavour decays.

Most of these electrons are inclusive electrons from b- and, to a lesser extent, from c-

quark decays. The cross section for electrons from b-quark decays is expected to be σ=

1.987µb for a center of mass energy of 10TeV. The main difference to the electrons from

W and Z boson decays is that the electrons from heavy flaour decays have far lower pT

with a pT spectrum peaking well below 10GeV/c. This is a clear disadvantage since the

performance of the electronmagnetic calorimeter is worse (due to the σE/E0 ∼ a/
√

(E0)

dependance) for low pT electrons and also less important since the electrons from most

of the interesting physics processes to be studied, e.g. W boson, Z boson, top quarks

or (perhaps) Higgs boson decays, have a far higher pT . Furthermore the heavy flavour

events tend to have many other particles close to the electron. Therefore the electrons

are not isolated and this results in a systematic shift of the reconstructed cluster energy

for the electron. This shift is on the level of 1% and still has to be understood [41].

7.3 Scale parameter extraction

The scale parameter is extracted for each η–ϕ bin and each true momentum distribution

t(ptrue, η, ϕ) separately. The parameters τ̂e, Ê0, σ̂e are obtained by fitting the convolu-

tion model EΣ(e; τe, E0, σe) (equation 7.2) to the E/ptrue distribution. The position of

the peak of the E/ptrue distribution is then given by µ̂ = µ(τ̂E, Ê0, σ̂E). The param-

eters α̂q, n̂q, µ̂q, σ̂q are computed by fitting the mirror Crystall Ball parameterization

QΣ(q;αq, nq, µq, σq) (equation 7.4) to the ptrue/p distribution. Then the scale parameter

µ̄e for the E/pbeam distribution is calculated by fitting R(r; τ̂e, Ē0, σ̂e, α̂q, n̂q, µ̂q, σ̂q) (equa-

tion 7.13) to the E/p distribution. In this fit only the Ē0 parameter is allowed to vary.
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The other parameters τ̂e, σ̂e, α̂q, n̂q, µ̂q, σ̂q are fixed to the values obtained by the E/ptrue

and ptrue/p fits, respectively. The scale parameter µ̄e is given by µ̄e = µe(τ̂E, Ē0, σ̂E).

The relative scale factor is then defined by the ratio µ̄e/µ̂e. Since the scale parameter

µ̂e for the E/pbeam distribution was computed using the Monte Carlo simulation and

therefore is assumed to be correct for the Monte Carlo simulation, the desired value for

the extracted relative scale factor µ̄e/µ̂e is 1.

This procedure is based on the assumption that the relative scale factor is close to 1 and

therefore the effect of the scaling of the parameters τ̂e, σ̂e is negligible. Otherwise they

would have to be scaled accordingly.

7.4 Scale parameter extraction for ATLAS Monte Carlo

simulation

The geometrical acceptance region of the electromagnetic calorimeter (|η| ≤2.47) was

divided into eight η bins. The η boundaries of the binning used in this analysis are

-2.47, -1.52, -1.37, -0.8, 0., 0.8, 1.37, 1.52 and 2.47, corresponding to the central barrel

(|η| ≤0.8), the extended barrel (0.8≤ |η| ≤1.37), the gap region (1.37≤ |η| ≤1.52)

between barrel and endcap and the endcap (1.52≤ |η| ≤2.47). Each bin covers the

whole ϕ range, i.e. −π ≤ ϕ ≤ π.

The scale parameter extraction procedure is first validated with a dedicated calibration

sample consisting only of one electron per event with a momentum of 50 GeV/c. The

relative scale factor µ̄e/µ̂e, expected to be 1, extracted from the E/p distributions with-

out and with correlation weighting is shown in figure 7.2 as a function of η. This plot

demonstrates that the modeling of the correlation between e and q brings the relative

scale factor to 1 to within 5 h for the gap region and to within 2 h for the barrel and

the endcap. Without the modeling of the correlation between e and q the deviation of

the relative scale factor from 1 can be up to 3%. Even in the central barrel the deviation

from 1 is systematically at +0.5%.

The relative scale factor µ̄e/µ̂e, expected to be 1, for electrons from W→eν decays is

shown in figure 7.3 as a function of η for an integrated luminosity of 5, 10 and 20 pb−1.

The extracted values are compatible with 1 within the error bars. With an integrated

luminosity of 20 pb−1 the relative scale factor can be computed with a precision of 2

permill for the barrel, with approximately 1% in the endcap and the gap region when

the modeling of the correlation is used. The reason for the worse precision in the endcap
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Figure 7.2: The relative scale factor µ̄e/µ̂e extracted from the E/p distributions
without and with correlation weighting for Monte Carlo simulation for 50 GeV/c
electrons as a function of η.

and the gap region is the smaller number of electrons due to a lower reconstruction

efficiency and a smaller bin size. With decreasing integrated luminosity and therefore

statistics, this precision deteriorates for the gap region and the endcap with the extended

barrel being affected to a lesser extent. This is due to the smaller bin size (gap region)

and the lower reconstruction efficiency in these regions. The modeling of the correlation

is indispensable for obtaining a relative scale factor within one percent to 1.

The parameter values obtained by the fits to the E/ptrue and ptrue/p distributions (sec-

tion 7.3) are presented in figure 7.4 as a function of η for an integrated luminosity of

20 pb−1. The tail parameter τ̂e and the resolution parameter σ̂e of the E/ptrue distri-

bution reflect the material distribution in the detector as a function of η. The same is

true for the resolution parameter σ̂q of the ptrue/p distribution and the regime change

parameter α̂q (more material means that the gaussian part of the Crystall Ball function

is smaller and therefore α̂q is smaller). The scale parameter Ê0 of the E/ptrue distri-

bution has to compensate the effect of the tail and the resolution to bring the peak

value to 1 in the ideal case. Since the understanding of the material effects is far less

advanced in the crack region [37], the value of Ê0 in the crack region may not be op-

timal. The peak position µ̂q of the ptrue/p distribution shows the shift of the peak due

to more bremsstrahlungs activity in regions with more material in the Inner Detector.

The power law parameter n̂q of the ptrue/p distribution is of less importance in general

and therefore omitted.

In the previous plots the start value of E0 for the fitting procedure was set to the value

from the fit to the E/ptrue distribution, Ê0. Therefore the knowledge of the relative
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Figure 7.3: The relative scale factor µ̄e/µ̂e extracted from the E/p distributions with
correlation weighting for Monte Carlo simulation for electrons from W→eν decays as a
function of η for an integrated luminosity of 5 pb−1, 10 pb−1 and 20 pb−1.

scale was indirectly injected. Furthermore the correlation distribution CΣ(e, q) gets

adjusted to the correct Ê0 position. In order to test the robustness of the scale parameter

extraction procedure a bias factor on the reconstructed energy E was artificially imposed

for the E/p distribution. Figure 7.5 shows the relative scale factor µ̄e/µ̂e as a function

of η for an injected bias factor of ±3%, ±1% und ±0.5% for an integrated luminosity of

20 pb−1. For a given injected bias factor λ the desired extracted relative scale factor is

1 + λ. Two effects are visible which interfere with each other. First, with increasing |λ|
the difference between the desired and the actual extracted relative scale factor becomes

larger, up to 1-2% for λ = ±3%. In addition, there is a tendency to overestimate λ. This

tendency increases with |η|. Taking these two effects into account, the following iterative

scheme for the extraction of the relative scale factor for each η–ϕ bin is employed
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Figure 7.4: Parameter values obtained by the fits to the E/ptrue and ptrue/p
distributions for Monte Carlo simulation for electrons from W→eν decays as a function
of η for an integrated luminosity of 20 pb−1.
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1. Compute Ei+1 = Ei µ̄i
e/µ̂e or start with E0 = E and i = 0,

2. Extract an estimate µ̄i
e/µ̂e for the relative scale factor based on Ei,

3. Continue with point 1 unless the difference between the two consecutive µ̄i
e/µ̂e

values is smaller than a reasonable threshold, i.e. 0.1%.

The precision of the extracted scale factor for an injected/initial bias should be compara-

ble to the one without initial bias (figure ) after a few iterations provided that the initial

bias is small, i.e. below 2-3% which is assumed to be the precision of the knowledge of

the scale factor for the electromagnetic calorimeter based on test beam work.

7.4.1 Geometry with additional material

In order to evaluate the influence of the material description of the detector on the

precision of the extracted relative scale factor, a dedicated geometry description of the

ATLAS detector with additional material was used. The geometrical acceptance of

the detector was divided in 8 regions (4 quadrants in ϕ and η positive/negative) and

a different material configuration was used for each region. In the region −π < ϕ <

−π
2

and η < 0 no material was added and therefore this corresponds to the nominal

material description. The amount of material in radiation lengths in the Inner Detector

and in front of the electromagnetic calorimeter is shown in figure 7.6 as a function

of η. The most important additions are additional material in the Inner Detector in

the upper hemisphere ϕ > 0 and additional material in the barrel cryostat upstream

the calorimeter for η > 0. Especially for the sensitive layers of the Inner Detector these

material additions are all much larger than the uncertainty but smaller increments would

not be visible. A detailed description of this dedicated geometry is given in Appendix

A.

For the geometry with additional material a Monte Carlo sample of electrons from

W→eν decays with an integrated luminosity of 13.5 pb−1 was used. Since the material

description is different for the 8 regions, the η–ϕ binning is also modified accordingly.

Using the bin boundaries in η like before, the ϕ range is additionally divided into 4

quadrants. Therefore the number of bins is increased by a factor of 4 reducing the

available statistic for each bin also by a factor of 4. As a consequence there is an

integrated luminosity of 3.4 pb−1 per quadrant.

As a first step the relative scale factor is extracted with correlation taken from the given

η–ϕ bin. This assumes the knowledge of the different amounts of material. Later the
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Figure 7.5: The relative scale factor µ̄e/µ̂e extracted from the E/p distributions with
correlation weighting for Monte Carlo simulation for electrons from W→eν decays as a
function of η for an imposed scale factor of -0.5%, -1%, -3%, 0.5%, 1% and 3% for an
integrated luminosity of 20 pb−1.
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Figure 7.6: Amount of material in radiation lengths in the Inner Detector (left) and in
front of the electromagnetic calorimeter (right) for all quadrants in ϕ as a function of η.

same exercise will be done without the prior exact knowledge of the material distribution.

The relative scale factor µ̄e/µ̂e, expected to be 1, is shown in figure 7.7 for all 4 quadrants

in ϕ as a function of η. The extracted values are compatible to 1 within errors. The

obtained precision is well compatible with the precision of the nominal geometry with

a comparable luminosity, i.e. figure 7.3(a). This means that the effect of the additional

material is well recovered by the proper modeling of the correlation.

Finally, the relative scale factor is extracted with correlation taken from the η–ϕ bin

corresponding to the nominal geometry at the same η position, i.e. from the region

−π < ϕ < −π
2

and η < 0. The relative scale factor µ̄e/µ̂e, expected to be 1, extracted

this way is shown in figure 7.8 for all 4 quadrants in ϕ as a function of η. Figure 7.8(b)

demonstrates that the impact of additional material in the cryostat of the electromag-

netic calorimeter on the precision of the extracted relative scale factor is very low because

the increase of bremsstrahlung activity in the cryostat has no impact on the momen-

tum measurement in the Inner Detector and therefore the correlation between e and q

remains unaffected. On the other hand, additional material in the Inner Detector has

a bigger impact (figures 7.8(c) and 7.8(d)), especially in the gap region and the endcap

where more material had been added. However, these material additions in the Inner

Detector are all much larger than the uncertainty of the knowledge of the corresponding

material contributions.
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Figure 7.7: The relative scale factor µ̄e/µ̂e extracted from the E/p distributions
without and with correlation weighting for Monte Carlo simulation for electrons from
W→eν decays as a function of η. The correlation has been taken from the given bin.
The four quadrants in ϕ are shown, −π < ϕ < −π

2
(top left), −π

2
< ϕ < 0 (top right),

0 < ϕ < π
2

(bottom left) and π
2
< ϕ < π (bottom right). The integrated luminosity is

3.4 pb−1 per quadrant.
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Figure 7.8: The relative scale factor µ̄e/µ̂e extracted from the E/p distributions
without and with correlation weighting for Monte Carlo simulation for electrons from
W→eν decays as a function of η. The correlation has been taken from the
corresponding bin in the octant −π < ϕ < −π

2
, η < 0. The four quadrants in ϕ are

shown, −π < ϕ < −π
2

(top left), −π
2
< ϕ < 0 (top right), 0 < ϕ < π

2
(bottom left) and

π
2
< ϕ < π (bottom right). The integrated luminosity is 3.4 pb−1 per quadrant.
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7.5 Summary

In this chapter the procedure to extract the relative scale between the electromagnetic

calorimeter and the Inner Detector using a parameterization of the E/p distribution

developed for the combined test beam 2004 (chapter 6), has been applied to Monte

Carlo simulation for ATLAS.

After the description of the modeling of the E/p distribution with an emphasis on the

differences with respect to the combined test beam 2004, the various physics processes

that could provide electrons with a sufficient rate have been discussed and W boson

decays into an electron and a neutrino, i.e. W→eν, have been idenified as the most

performant process for this intercalibration method.

By employing an iterative scheme, I have shown that the relative scale factor µ̄e/µ̂e

extracted from the E/p distributions for electrons from W→eν decays is always com-

patible with 1 within errors using the nominal material description in the Monte Carlo

simulation. Different variations of the material description have been used to evaluate

the systematic errors arising from an imperfect material description in the Monte Carlo

simulation. For the realistic variations the relative scale factor µ̄e/µ̂e is still compatible

with 1 within errors. A dedicated Monte Carlo simulation shows that the systematic

error due to the fitting procedure is at the 1hlevel.

As a consequence, I have shown that the intercalibration method allows the calibration

of the absolute energy scale of the electromagnetic calorimeter with an integrated lumi-

nosity of 20 pb−1 at the level of a few h including the systematic uncertainties arising

from the description of the material upstream of the electromagnetic calorimeter and

the parameter extraction procedure.
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8 The ATLAS calibration strategy for

electrons with early LHC collision

data

This chapter outlines the current strategy for the electron calibration with early LHC

collisions data. Section 8.1 presents the inputs for the calibration of electrons and

discusses their status. Section 8.2 presents the goals that have to be met for the electron

calibration. Different methods that can be used to improve the electron calibration are

presented in section 8.3 and, finally, section 8.4 shows how these different methods will

be combined to achieve the goals set for the electron calibration.

8.1 Inputs

The energy measurement of electrons will be calibrated using a dedicated variant of the

Calibration Hits Method [37] that was presented for the combined test beam 2004 in

section 5.7. The required inputs for this method are:

Monte Carlo simulation The Monte Carlo simulation is used to estimate the various,

not directly measured energy deposits in the detector. In order to make sure that

the extrapolation of the estimates for these energy deposits to the ATLAS detector

is correct, the material description of the detector in the Monte Carlo simulation

must be accurate on the ≤1% level. Presently, this level of understanding of the

material distribution is clearly not reached and is rather at the ≤5% level.

Absolute energy scale Since the absolute scale of the energy is a free parameter, it has

to be set by known physics processes such as Z→e+e− decays or by intercalibration

with the Inner Detector using E/p. Furthermore, the energy scale can vary from

module to module. The uniformity of the energy scale was investigated with cosmic

muons measured during the commissioning phase of the ATLAS detector and in

such a way probed at the 1% level.
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Concerning the Inner Detector the required inputs are:

Magnetic field map The magnetic field in the Inner Detector has been measured dur-

ing a dedicated precision measurement campaign [38, 42, 43]. The resulting field

residuals were less than 0.5mT, and the systematic error on the measurement of

track sagitta due to the field uncertainty was estimated to range from 2·10−4 to

12·10−4, depending on the tack rapidity.

Alignment of the various Inner Detector components An initial alignment of the In-

ner Detector components was done with cosmic muons. Since cosmic muons pre-

dominantly come in the vertical direction many alignment constants of the Inner

Detector could not be adjusted using cosmic muons and therefore have to be cor-

rected using collision particle tracks.

8.2 Goals

Energy scale

The electromagnetic energy scale is known from test beams to a precision of 2-3% over

wide range of energies (10GeV to 280GeV). The uncertainties are coming from the

imperfect knowledge of the temperature of the liquid argon in the test beams and of the

pulse shape. The electromagnetic energy scale at lower energies (0.5GeV to 10GeV) is

also important for jets. The goal is to establish the electromagnetic energy scale with

better than 1% accuracy with an integrated luminosity of 10 pb−1 using the Z mass peak

together with Z→e+e− decays as well as the E/p distribution for electrons from W boson

decays.

Linearity

Based on test beam measurements the electromagnetic calorimeter is known to be linear

to 0.2% over the high energy range and 0.5% over the 1-10 GeV range. The goal is to

verify the linearity with a precision better than 1% over the full eta range by studying

the electrons from J/ψ, Υ and Z decays with an integrated luminosity of 10-100 pb−1.

Electromagnetic calorimeter modul–to–modul cross-calibration

The energy scale spread between modules of the electromagnetic calorimeter is predicted

to be around 7h [44]. The goal is to measure to better than 0.5% using the E/p distri-

bution and Z→e+e− decays by the end of 2010. For this measurement it is important
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to know the material distribution in the detector quite well. The strategy will evolve

from uniformity in ϕ using the energy flow in minimum bias events at the beginning,

later switching to J/ψ →e+e− decays and the E/p distribution for electrons coming from

heavy flavour decays and ultimately Z→e+e− decays as well as the E/p distribution for

electrons from W boson decays for an integrated luminosity of 200 pb−1.

Resolution

The goal is to derive the full response function of the electromagnetic calorimeter. This

will be done with Z→e+e− decays as a function of η with an integrated luminosity of

200 pb−1.

Alignment of Inner Detector and the electromagnetic calorimeter

Although some indications of the alignment of the Inner Detector and the electromag-

netic calorimeter were obtained from cosmic muons measurements during the commis-

sioning phase of the ATLAS detector, the goal is to establish the alignment to a precision

of 0.2 mm with an integrated luminosity of a few pb−1 using electrons from heavy flavour

decays.

Material mapping in front of EM calorimeter

The material distribution in the detector is known from construction drawings and the

weighing of the various detector parts to a few percent of a radiation length. The goal

is to map the material distribution with data to 5% of a radiation length by summer

2010 and to 1-2% of a radiation length by end 2010. This will be done using photon

conversions and mix of other sensitive but less direct methods, e.g. longitudinal shower

shapes and studies of the tail parameter extracted from the E/p distribution.

8.3 Methods

8.3.1 Energy scale determination using Z→e+e−

The mass of the Z boson is very precisely known from the experiments at LEP to be

91.1876±0.0021GeV/c2. Furthermore the full functional form of the Z boson line shape

is also well known. Therefore Z→e+e− decays can be used to determine the energy scale

of the electromagnetic calorimeter. The procedure for ATLAS is documented in [45].

The basic idea is to split the geometrical coverage of the detector into regions, assign a
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scale factor to each region and then to minimize the difference of the expected Z boson

line shape and the measured Z boson line shape wrt. the scale parameters. For the

expected Z boson line shape the full response function of the electromagnetic calorimeter

including the tails is modeled instead of using a simple gaussian.

Z boson line shape modeling

The true line shape for the Z boson is modeled with a Breit–Wigner function

BW (M) =
Γ2

Z M
2/M2

Z

(M2 −M2
Z)

2
+ Γ2

Z M
4/M2

Z

, (8.1)

where MZ is the mass and ΓZ is the decay width of the Z boson.

In order to correct for small deviations from the Breit-Wigner line shape due to subtile

effects in proton–proton collisions a parton luminosity term L(M)

L(M) = M−β (8.2)

is mulitplied with the Breit–Wigner function and fitted to the Z boson mass distribution,

obtained with events generated with PYTHIA. The resulting value is β = 1.60± 0.01.

Inspired by the modeling of E/pbeam for the combined test beam 2004 (section 6.1.2) the

parameterization for the calorimeter response is derived as a gaussian convoluted with

an exponential tail which yields

R(x, σ, λ) = N(σ, λ)

b(σ,λ)∫
−∞

eλ t e−
(t−x)2

2 σ2 dt, (8.3)

where x = M/MZ − 1 and the parameters N(σ, λ) and b(σ, λ) are chosen such that

R(x, σ, λ) is a probability density function, i.e. its integral is equal to 1, and the most

probable value is at x = 0.

Combining equation 8.1, equation 8.2 and equation 8.3, the expected measured Z boson

mass line shape is given by

L(M) =

∞∫
−∞

BW (u)L(u)R(M − u) du. (8.4)
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Paramter fitting method

The geometrical coverage of the calorimeter is divided into 896 regions. The barrel part

(|η| < 1.4) is divided into regions of ∆η×∆ϕ = 0.2×0.2. The endcap part (|η| > 1.4) is

divided with a granularity of 0.2 in ϕ and with η boundaries of 1.4, 1.5, 1.6, 1.8, 2.0, 2.1,

2.3 and 2.5. For each region, index by i, a scale factor 1+αi is introduced to compensate

a possible miscalibration of the reconstructed electron energy, i.e.

Ecalib
i = Ereco

i (1 + αi). (8.5)

The di–electron invariant mass for an event, where one electron is measured in region i

and the other one in region j, is approximated as

Mij = M reco
ij

(
1 +

αi + αj

2

)
. (8.6)

The standard procedure to determine the 896 coefficients αi is to minimize the following

log-likelihood function

− lnLtot =
N∑

k=1

− lnL

(
Mk

1 +
αi(k)+αj(k)

2

)
, (8.7)

where L is given by equation 8.4, N is the total number of events, i(k) and j(k) denote

the two regions where the electrons are detected for a given event k and Mk = Mi(k)j(k)

is the di–elctron invariant mass for a given event k.

Since the solving of the full minimization problem (equation 8.7) is very time consuming,

a faster method, denoted iterative method has been developed. A region i is selected and

the coefficient αi is computed under the assumption that all other regions are perfectly

calibrated, i.e. aj = 0 ∀j 6= i. Therefore the function to be minimized is

− lnLiter =

Ni∑
k=1

− lnL

(
Mk

1 + αi

2

)
(8.8)

where k runs over all events with an electron in region i, L is given by equation 8.4 and

Mk = Mi j(k) is the di–electron invariant mass for the given event k.

For a single iteration step the minimization of equation 8.8 is done consecutively for

all regions of the calorimeter, i.e for all indices i. The iteration procedure typically

converges, i.e. |αl+1
i − αl

i| < 0.1% ∀i, after 5 iterations.
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Performance

The performance of the Z→e+e− energy scale determination method was evaluated with

a Monte Carlo simulation where miscalibration was simulated by injecting random scale

biases αbias
i into all regions of the calorimeter. Then the iterative procedure (equa-

tion 8.8) was used to compute αcalib
i in order to recover these miscalibrations. The

residual distributions αcalib
i − αbias

i , ∀i were fitted with a gaussian and the σ of this

gaussian is shown in figure 8.1 as a function of the integrated luminosity. For an inte-

grated luminosity of 100 pb−1 the expected resolution is 0.5% for the barrel part of the

calorimeter.
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Figure 8.1: Width of a gaussian fitted to the residual distribution αcalib
i − αbias

i for the
barrel part of the electromagnetic calorimeter (|η| < 1.4) as a function of the number of
events or the integrated luminosity. These residuals are shown for all events (triangles)
or for all events where both electrons are measured in the barrel (circles). [45]

The Z mass line shape before and after the corrections for the injected bias is shown in

figure 8.2 for the geometry with additional material to test the impact of the material

description on the energy scale. The shift due to the additional material is recovered

very well, at the level of 1 permill. However, the impact of additional material on the

reconstructed energy cannot be corrected for by a scale factor, but needs to be included

in the computation of the weights of the Calibration Hits Method.

The systematic uncertainty is estimated to be at approximately 0.2%. at the energy

corresponding to the Z boson mass. At other energy scales, the effects of the material

description dominate the systematic uncertainty. Extrapolating to the full pT spectrum

for the central part of the barrel (|η| < 0.6) yields an uncertainty of 0.5%. For the

non–central part of the detector these effects increase to 1-2% except for the gap region

where they are even larger [45].
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Figure 8.2: Distribution of the di–electron invariant mass for electrons (|η| < 1.4 or
1.8 < |η| < 2.5) before (dashed) and after (solid) corrections for the geometry with
additional material without and with additional random scale bias to simulate
miscalibration. [45]

8.3.2 Energy scale determination using E/p

A method for the energy scale determination using the momentum measurement and the

E/p distribution for electrons from W boson decays has been presented in the previous

chapter 7.

In additional to electrons from W boson decays, an effort to understand the impact of

the underlying event for the E/p distributions for electrons coming from heavy flavour

decays has been ramping up.

With a large integrated luminosity, high pT electrons from top quark decays can be used

to probe the linearity of the electromagnetic calorimeter up to several hundred GeV.

8.3.3 Material mapping using photon conversions

For photons with an energy measurable in ATLAS, i.e. above 1GeV, the cross section for

converting into an electron–positron pair is almost independent of the photon’s energy

and is given by

σ =
7A

9X0NA

. (8.9)
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Due to the stochastic nature of this process the probability that a photon converts while

passing a layer of material with thickness d is given by

p(d) = 1− e
− 7

9
d

X0 . (8.10)

Therefore by measuring the conversion probability in a given layer of material, its thick-

ness can be calculated.

A method to reconstruct photon conversions has been developed for the combined test

beam 2004 [46]. The basic idea is that the tracks of an electron–positron pair which is

produced in the conversion are measured by the Inner Detector and their intersection

vertex is used to determine the position of the conversion. During dedicated runs of the

combined test beam 2004 an additional copper foil with a thickness is 37µm was placed

upstream of the pixel detector. Figure 8.3 shows the results obtained with the CTB 2004

Monte Carlo simulation of the difference of the reconstructed conversion vertex position

and the true conversion vertex position taken from the Monte Carlo simulation. The
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Figure 8.3: Difference (in mm) of the reconstructed conversion vertex position and the
true conversion vertex position for the CTB 2004 Monte Carlo simulation.

resolution is 3.6, 4.7, 5.3 and 7.3 mm for the copper and the Pixel three layers. Since

the clearances between the layers for Pixel Detector and the SCT are about 35 mm and
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70 mm, the obtained resolution is good enough to observe the structure of the detector

layers.

The Monte Carlo simulation to data comparison for the combined test beam 2004 is

shown for the photon conversions in the copper foil in figure 8.4 and the Inner Detector

in figure 8.5.
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Figure 8.4: Reconstructed conversion vertex distribution (in mm) for the copper foil
for Monte Carlo simulation and CTB 2004 data.
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Figure 8.5: Reconstructed conversion vertex distribution (in mm) for the active layers
of the Inner Detector for Monte Carlo simulation and CTB 2004 data.

For ATLAS the same algorithm will be used to map the material distribution [5]. Pho-

tons coming from minimum bias events will be so abundant that right from the LHC

startup there will be enough statistics available so that the performance of this method
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will be dominated by its systematic errors. The number of reconstructed photon con-

versions NC(R) for a given material layer R is given by

NC(R) = N(R)p(R)ε(R) (8.11)

whereN(R) is total number of photons passing the layer, p(R) is the conversion probabil-

ity from equation 8.10 and ε(R) is the reconstruction efficiency of the photon conversions

that occur in the given layer. Since the total number of photons, i.e. the photon flux, will

be basically unknown, equation 8.11 is normalized to the number of photons NC(BP )

converting in the geometrically corresponding (N(R) = N(BP )) part of the beam pipe.

The reason for this normalization is that the material distribution in the beam pipe, i.e.

p(BP ), is very well known.

NC(R)

NC(BP )
=

N(R) p(R) ε(R)

N(BP ) p(BP ) ε(BP )
=

p(R) ε(R)

p(BP ) ε(BP )
(8.12)

Transforming this to express the desired quantity p(R) yields

p(R) =
NC(R) p(BP ) ε(BP )

NC(BP ) ε(R)
. (8.13)

The quantities NC(R) and NC(BP ) will be measured. The reconstruction efficiency

for photon conversions in the beam pipe ε(BP ) will be extracted from Monte Carlo

simulation and the probability for conversions in the beam pipe p(BP ) is well known

from the material description. Therefore the most difficult part will be to determine

the reconstruction efficiency for photon conversions in the given layer ε(R) which will

dominate the systematic error. One method under investigation to accomplish this is to

use also the Pixel support tube surrounding the Pixel detector as a second normalization

layer in addition to the beam pipe. It is made out of carbon and its material distribution

is also very well known.

The expected mapping of the material distribution in the Inner Detector is plotted in

figure 8.6 based on 500,000 minimum bias events.

8.3.4 Material mapping using the shower shape

The impact of the material distribution in front of the electromagnetic calorimeter on

the shower shape is well known from the combined test beam 2004 [14]. Several material

sensitive measurement variables were studied, i.e. the energy deposited in the strips layer
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Figure 8.6: Mapping of photon conversions as a function of z and radius, integrated
over ϕ, for the Inner Detector. The mapping has been made from 500,000 minimum
bias events, using 90,000 conversion electrons of pT > 0.5 GeV/c originating from
photons from pi0/η decays. Taken from [5].

relative to the total visible energy or the lateral shower shape measured by the energy

distribution in the strip layer in η direction.

In ATLAS, high pT electrons (pT >15GeV/c) coming from W decays can be used to

determine the amount of material in various locations [47]. In figure 8.7 the impact of

additional material equivalent to 7% of a radiation length between the presampler and

the strips layer on the relative energy deposit in the strip layer and on the lateral shower

width measured as the η width of the shower in the strip layer is shown using 2.5 million

events. In figure 8.8 the impact of additional material equivalent to 15% of a radiation

length in the cryostat on the relative energy deposit in the presampler layer, on the

relative energy deposit in the strip layer, on the relative energy fraction of the strip

layer outside a core of 3 strips and on the lateral shower width measured as the η width

of the shower in the strip layer is shown using 2.5 million events. Using these variables

the material in front of the calorimeter can be identified to the level of a few percent

of a radiation length. If differences in the shower shape variables between the Monte
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Carlo simulation and the data are observed for a certain region, the determination of

the position along the particle tracks in this region, where the material description in

the Monte Carlo simulation has to be modified, will be highly nontrivial and will have

to be cross–checked with the other presented methods.
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Figure 8.7: Distribution and profile versus ϕ for different material sensitive
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between the presampler and the strips layer.

8.3.5 Material mapping using E/p

Percentage of events in the tail of the E/p distribution

Detailed Monte Carlo simulation studies have revealed that the tail of the E/p distribu-

tion (E/p >2.0) is mainly populated by electrons, having emitted bremsstrahlung in the

pixel detector. The idea is therefore to correlate the fraction of the number of events in

the tail of the E/p distribution with the total material in the pixel detector [48].

Figure 8.9 shows the fraction of events in the tail of the E/p distribution (E/p >2.0) for

electrons coming from heavy flavour (red circles) decays and the amount of material in
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Figure 8.8: Distribution and profile versus ϕ for different material sensitive
measurement variables without (solid reference) and with (dashed) additional material
in the cryostat.
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the Pixel detector (lines) as a function of η. The fraction of tail events tracks the amount

of material in the pixel detector; however, the correlation still has to be quantified.

Figure 8.9: The fraction of events in the tail of the E/p distribution (E/p >2.0) for
electrons coming from heavy flavour (red circles) decays and the amount of material in
the Pixel detector (lines) as a function of η. On the right the axis for the amount of
material in the Pixel detector is added.

Fitting the tail of the E/p distribution

Using the modeling and fitting procedure described in chapter 7 the tail parameter

τe (equation 7.1) of the response function of the electromagnetic calorimeter can be

determined from the E/p distribution [49]. The tail parameter obtained from the E/p

distribution as well as the ratio of the tail parameter obtained from the E/p distribution

and the tail parameter obtained from the E/ptrue distribution are presented in figure 8.10

for an integrated luminosity of 24 pb−1 as a function of η. The precision is at the level

of 10-20% and still dominated by statistics.

Using the nominal material description and the geometry with additional material in

the Monte Carlo simulation the tail parameter τe obtained from the E/p distribution

can be correlated with the amount of material in front of the calorimeter at a given

η position. In figure 8.11 this correlation is plotted and modeled with an exponential

curve. For an integrated luminosity of 24 pb−1 and taking the correlation between the

fit parameters of the exponential model into account, the precision on the amount of

material in front of the calorimeter is 8.8% of a radiation length. Extrapolating these

results to an integrated luminosity of 100 pb−1 the amount of material in front of the
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Figure 8.10: The tail parameter, denoted ET , obtained from the E/p distribution and
the ratio of the tail parameter obtained from the E/p distribution and the tail
parameter obtained from the E/ptrue distribution as a function of η.

calorimeter can be determined with a precision of approximately 5% of a radiation

length.
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Figure 8.11: The tail parameter, denoted ET , of as a function of the amount of
material in front of the calorimeter.

8.4 Combined strategy

The calibration of electrons with the Calibration Hits methods for each η–ϕ bin relies

on the accurate material description in the Monte Carlo simulation and on the energy

scale. These two ingredients are not independent from each other, e.g. more material in
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the real detector than in the Monte Carlo simulation changes the position of the peak

of the response function of the electromagnetic calorimeter. Furthermore, the scale will

be set at low energy (3 GeV) by the J/ψ and at medium energy (40-50 GeV) by the Z

boson mass peak and by W boson decays. The impact of the material description on

the extrapolation from these energies to the whole energy spectrum also has to be taken

into account. The challenge will be to disentangle material effects from the calibration

of the energy scale and not to compensate material effects by applying scale factors for

different detector regions.

Starting with a coarse η–ϕ binning and gradually refining it, the calibration will be

performed in several iterations which involve the following steps for each η–ϕ bin:

1. Idenify discrepancies in sensitive measurement variables between the Monte Carlo

simulation and the data with the methods presented in section 8.3.

2. Derive a better estimate of the material description and the electron energy scale

parameter.

3. Rerun the Monte Carlo simulation with the updated material description and

electron energy scale parameter, derive the new calibration constants and perform

the Monte Carlo simulation to data comparison again.

The very details of the iteration process are still under discussion.

In the long term, the precision of the energy measurement of electrons for the various

parts of the energy spectrum will be driven by the needs of the physics program of

ATLAS. For example, the material description that is adequate for the Z mass peak

calibration is likely to be the good choice for the precision measurement of the W boson

mass. Since this material description is obtained with electrons in the same energy

range as the electrons for the W boson mass measurement, a partial compensation for

material effects by scale factors would only have a minor impact. For the search for a

heavy Z
′
boson with a mass larger than 1TeV/c2 the energy scale at a few hundred GeV

is essential. Therefore a partial compensation for material effects by scale factors would

have to be extrapolated to these energies and the impact would be much larger for the

Z
′
boson search.
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Conclusions

During the combined test beam in summer 2004 a slice of the ATLAS barrel detector -

including all detector sub systems from the inner tracker, the calorimetry to the muon

system - was exposed to particle beams (electrons, pions, photons, muons) with different

momenta (1 GeV/c to 350 GeV/c). The aim was to study the combined performance of

the different detector subsystems in ATLAS-like conditions. The first part of the thesis

covered the analysis of data taken at the combined test beam 2004 with the ATLAS LAr

calorimeter with particles traversing a magnetic field prior to their measurement similar

to ATLAS data taking. The calibration of the energy measurement for electrons with

the presence of a magnetic field has been investigated and the differences with respect

to the calibration without magnetic field have been analyzed. The linearity obtained is

0.28% for the energy range of 20 to 100GeV which is within the estimated systematic

uncertainties. The stochastic term of the energy resolution is (10.1±0.1)% GeV1/2 after

noise subtraction. This is compatible with previous test beam results without magnetic

field and fulfills the physics requirements for the ATLAS LAr calorimeter.

I developed a method to intercalibrate the energy scale of the electromagnetic calorimeter

and the momentum scale of the Inner Detector by investigating the E/p distribution for

electrons. This method has been evaluated with data from the combined test beam 2004.

It has been demonstrated that the correlation between E and p has to be taken into

account in order to intercalibrate the two scales with a precision better than a 1%. The

precision obtained for the relative scale is better than 5h when the correlation computed

with Monte Carlo is applied to the data and is limited by the available statistics.

The intercalibration method using the E/p distribution developed for the combined test

beam 2004 has been adapted for the ATLAS detector using electrons from W boson

decays and studied with Monte Carlo simulations. It has be demonstrated that the

intercalibration method will allow the calibration of the scale of the electromagnetic

calorimeter with an integrated luminosity of 20 pb−1, i.e. approximately 235.000 events,

at the level of a few h including the systematic uncertainties arising from the description

of the material upstream of the electromagnetic calorimeter and the parameter extraction
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procedure.

The intercalibration method which I have developed in this thesis will be used for the

calibration of the energy scale of the electromagnetic calorimeter with the first LHC

collisions data. It is one of the main ingredients to obtain a calibrated ATLAS detector

with an integrated luminosity of 100 pb−1. Using this calibration ATLAS will be ready

for discoveries beyond the present frontiers of experimental high energy physics.
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Appendix A

For the Monte Carlo simulation of the ATLAS detector a dedicated geometry has been

implemented to assess the impact of the material distribution in the detector on various

measurement variables. The ATLAS geometry tag for this geometry with additional

material is ATLAS-CSC-02-02-00.

The geometrical acceptance of the detector was divided in 8 regions (4 quadrants in

ϕ and η positive/negative) and a different material configuration was implemented by

adding additional material to the Inner Detector or the Liquid Argon electromagnetic

calorimeter for each region.

Inner Detector

For the Inner Detector, material was only added in the upper half of the detector (0 <

ϕ < π). The additional material was implemented as additional thin layers of material.

Carbon has been used when enough free space was available, otherwise aluminium or

copper has been used.

The depths of the material contributions are quoted in radiation lengths X0. They are

listed below for particles impinging normal to the surface.

• Sensitive layers (These additions are all much larger than the uncertainty but

smaller increments would not be visible.)

1. Barrel Pixel detector: Just after B-layer: +1% X0 (Aluminium)

2. Barrel SCT layer 2: increasing from +1% X0 at z = 0 to +3% X0 at z = zmax

(Carbon)

3. End-cap SCT disks 1 and 6 at side z < 0: +2% X0 (Copper)

4. End-cap SCT disks 3 and 5 at side z > 0: +3% X0 (Copper)

5. End-cap pixel disks: +1% X0 for disk 2 at side z < 0 and for disk 3 at side

z > 0 (Carbon)
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• Barrel services

1. Pixel barrel services in front of the pixel disks: +1% X0 (Carbon)

2. Pixel-SCT boundary: increasing from +0.6% X0 at z = zmin to +1.2% X0 at

z = zmax (Carbon)

3. TRT barrel at z = zmax: +3% X0 (Carbon)

• End-cap services

1. SCT end-cap services at R = 55 cm at side z < 0: +5% X0 (Copper)

2. SCT end-cap services at R = 55 cm at side z > 0: +5% X0 (Copper)

• Services along cryostat

1. PPB1 and PPF1 at side z < 0: +7.5% X0 (Copper)

2. PPB1 and PPF1 at side z > 0: +15% X0 (Copper)

3. Inner Detector end-plate and pixel services at side z < 0: +5.4% X0 (Alu-

minium + Copper)

4. Inner Detector end-plate and pixel services at side z > 0: +13.5% X0 (Alu-

minium + Copper)

5. All services along cryostat bore at side z < 0: +7.5% X0 (Copper)

6. All services along cryostat bore at side z > 0: +4.5% X0 (Copper)

Liquid Argon Electromagnetic Calorimeter

• Barrel cryostat upstream of the calorimeter: +8-11% X0 (radial, i.e to be multi-

plied by cosh(η) to get the amount seen by particles at η) for η > 0

• Between barrel presampler and strips: +5% X0 (radial) for π/2 < ϕ < −π/2 and

η > 0

• Between barrel presampler and strips: +5% X0 (radial) for −π/2 < ϕ < π/2 and

η < 0

• Barrel cryostat downstream of the calorimeter: +7-11% X0 (radial) for η > 0

• Gap barrel-endcap cryostats: Density of material increased by a factor of 1.7 (much

more than the expected uncertainty)
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Description of the material added to the Inner Detector in the Monte Carlo simulation
for the geometry ATLAS-CSC-02-02-00 for 0 < ϕ < π for side A (left), i.e. η > 0, and
for side C (right), i.e. η < 0.
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List of Acronyms

ALICE A Large Ion Collider Experiment. Heavy ion experiment at the LHC.

ATHENA ATLAS offline software framework.

ATLAS A Toroidal LHC ApparatuS. General purpose experiment at the LHC.

CERN European Center of Particle Physics located in Geneva, Switzerland.

CMS Compact Muon Solenoid. General purpose experiment at the LHC.

CSC Cathode Strip Chambers. Part of the ATLAS Muon Spectrometer.

CTB Combined Test Beam

FCal Forward Calorimeter. Part of the calorimeter system of ATLAS.

FEB Front End Board

LAr Liquid Argon

LAr EMB Liquid Argon Electromagnetic Barrel calorimeter. Part of the calorimeter

system of ATLAS.

LEP Large Electron–Positron collider previously located at CERN.

LHC Large Hadron Collider located at CERN.

LHCb Heavy flavour physics experiment at the LHC.

MC Monte Carlo (simulation)

MDT Monitored Drift Tubes. Part of the ATLAS Muon Spectrometer.

OFC Optimal Filter Coefficients. Computed with the Optimal Filtering Method.

QCD Quantumchromodynamics
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RPC Resistive Plate Chambers. Part of the ATLAS Muon Spectrometer.

SCT SemiConductor Tracker. Part of the ATLAS Inner Detector.

SPS CERN Super Proton Synchrotron

TGC Thin Gap Chambers. Part of the ATLAS Muon Spectrometer.

TRT Transition Radiation Tracker. Part of the ATLAS Inner Detector.
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in ganz Österreich im Jahr 1999)
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