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Abstract
Today, robots are used for always new tasks in our daily life. There are robot lawn mowers,
automatic vacuum cleaners, automatic guided vehicle systems or automatic walkers and
gripping aids for people with disabilities. The task is to extend the capabilities of modern
robots from simply following given procedures to achieve autonomous decisions. Thus, the
use of sensors to scan the environment becomes essential. Environmental information has
to be processed to avoid collisions or to achieve a robust detection of objects.

Particularly, laser sensors stand out for the detection of the environment due to their
high degree of accuracy. However, industrial and domestic applications often provide
single-view images. The challenge for the subsequent range image processing is to handle
the shadowing effects of object- and self-occlusions.

This thesis deals with the efficient interpretation of range images for industrial as well
as service robotics in an unstructured environment attempting to solve this single view
challenge.

For the industrial task of autonomous robot stitching a robust edge tracking method
of two overlapping carbon fibre mats has been researched. For this application real-time
performance is needed to guarantee continuous edge tracking. The key challenges are
robust edge detection and tracking in order to set the seams correctly and to control the
robot motion.

The domestic field exhibits clear differences to industrial applications. In comparison
to industrial applications where the robots act in specific robot cells with defined tasks,
domestic robot applications exhibit the problem of unstructured environments. Three
different cases for object grasping have been considered for this purpose:

Firstly, a method for robust detection of cylindrical objects in cluttered tabletop scenes
was developed. A reliable feature detection is essential for the safe detection and gripping
of cylindrical objects on the table.

Secondly, methods were developed to safely grasp arbitrary objects in cluttered table-
top scenes. Potential grasping points and poses are determined based on detected geomet-
rical features, e.g., edges, planes, curvatures, and rotation axis of the segmented objects.

Finally, a segmentation method for 3D objects into useful sub-parts was developed.
This work is based on the observation that human vision segments an object into different
parts and analyses their spatial and functional relationships before a grasping and manip-
ulation task is executed. A part-based description allows to detect the different parts and
functional properties (e.g., handles and container) of an object. The developed approach
represents a novel method to segment 3D point clouds as well as meshes.

All the developed methods of this thesis are evaluated in detail and show their efficiency
and robustness.





Kurzfassung
Heute finden Roboter Verwendung für immer neue Aufgaben im alltäglichen Leben, als
selbstfahrende Rasenmäher, Staubsauger, fahrerlose Transportsysteme oder als Geh- bzw.
Greifhilfe für Behinderte. Die Fähigkeiten eines modernen Roboters müssen dabei so er-
weitert werden, dass dieser nicht nur vorgegebenen Abläufen folgt, sondern eigenständige
Entscheidungen trifft. Um dies zu bewerkstelligen sind Sensoren zur Abtastung der Umge-
bung notwendig. Die Umgebungsdaten müssen ausgewertet werden, um Kollisionen zu
vermeiden oder Objekte bzw. deren Eigenschaften robust zu erkennen.

Lasersensoren zeichnen sich durch eine hohe Genauigkeit bei der Umgebungserfassung
aus. Jedoch sind die Objekte bei industriellen, als auch praktischen Anwendungen oft
nur von einer Seite zugänglich. Dadurch enstehen bei der Bildaufnahme durch einen
Laserscanner Abschattungen, welche für die Bildverarbeitung eine große Herausforderung
darstellen.

Diese Dissertation beschäftigt sich daher mit der effizienten Auswertung von Tiefen-
bildinformationen vom Industrie- bis zum Servicerobotikbereich bei einer veränderlichen
Umgebung mit einer eingeschränkten Umgebungserfassung.

Um das automatische Vernähen zweier überlagerter Kohlefasermatten zu ermöglichen
wurden Methoden zum sicheren Verfolgen des Kantenverlaufes entwickelt. Dabei ist
eine hohe Verarbeitungsgeschwindigkeit gefordert, die eine kontinuierliche Bewegung des
Roboters entlang der Nahtbahn gewährleistet. Die Herausforderung dabei ist eine robuste
Kantendetektion und -verfolgung, um eine korrekte Naht zu erreichen.

Der Bereich der Servicerobotik weist deutliche Unterschiede zum Industriebereich
auf. Während bei Industrieanwendungen ein Roboter in einer definierten Umgebung ar-
beitet, muß ein Roboter im Servicerobotikbereich mit einer veränderlichen Umgebung
zurechtkommen. Für diesen Zweck wurden drei Problemfälle zum Greifen von Objekten
betrachtet:

Zu Beginn wurde eine Methode entwickelt, um bekannte zylindrische Gegenstände
auf einem Tisch unter anderen Objekten zu erkennen und einzupassen. Eine verläßliche
Merkmalsdetektion ist notwendig, damit ein sicheres Greifen der zylindrischen Objekte
am Tisch ermöglicht wird.

Daraufhin wird versucht, die wissenschaftliche Lücke zum Greifen beliebiger Objekte zu
schließen. Basierend auf den detektierten, geometrischen Merkmalen wie Kanten, Ebenen,
Krümmungen und Rotationsachsen werden potentielle Greifpunkte als auch Positionierun-
gen des Robotergreifers berechnet.

Zuletzt wird das Segmentieren beliebiger Objekte in “sinnvolle” Einzelteile behandelt.
Diese Arbeit basiert auf der Tatsache, dass der Mensch unbewußt bevor er ein Objekt greift
und handhabt dieses in Einzelteile zerlegt und deren Zusammensetzung analysiert. Diese
Eigenschaft ermöglicht es dem Menschen zwischen den funktionalen Bereichen eines Ob-
jektes, wie zum Beispiel eines Henkels und dem Behälter, zu unterscheiden. Der in dieser
Arbeit vorgestellte Ansatz stellt eine neue und schnelle Möglichkeit dar, um Punktwolken
als auch Polygonnetze zu segmentieren.

Die in dieser Arbeit entwickelten Methoden wurden experimentell evaluiert und deren
Effektivität und Robustheit gezeigt.





Acknowledgements

I would like to express my gratitude to Markus Vincze for supervising my project em-
ployment and for his support and advice during the thesis work. I am also indebted to
Prof. Peter Kopacek for his review of this thesis as second supervisor. My gratitude ad-
ditionally goes to Prof. Alexander Weinmann from the Vienna University of Technology
who drummed up my interest for automation and control and supported the possibility to
write my thesis. I am grateful to my office colleagues of the V4R group at ACIN who con-
tinuously cared for an enjoyable working environment. Special thanks to Michael Zillich
for his inspiring ideas and many interesting discussions.

I further want to thank my mother for her support during all the years of my study
and finally, I am grateful to all the people who supported me with valuable comments and
discussions or with their patience and appreciation.





Contents

1 Introduction 1

1.1 Motivation and Problem Statement . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Feature Detection for Automated Fibre Mat Stitching . . . . . . . . 3

1.1.2 Feature Detection for Object Grasping . . . . . . . . . . . . . . . . 5

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Edge Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.2 Rapid Cylinder Detection . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.3 Grasping Point and Grasping Pose Detection . . . . . . . . . . . . . 7

1.2.4 Object Part Segmentation . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 State of the Art 9

2.1 Parametric Model Description . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Geometric Primitives . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.2 Generalised Cylinders . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Edge Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Curvature Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Range Image Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.1 Region-Based Range Image Segmentation . . . . . . . . . . . . . . 18

2.4.2 Edge-Based Range Image Segmentation . . . . . . . . . . . . . . . . 18

2.4.3 Object-Based Range Image Segmentation . . . . . . . . . . . . . . . 18

2.5 Model-Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5.1 Least-Squares Methods . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5.2 Model-Based Cylinder Detection . . . . . . . . . . . . . . . . . . . . 20

2.6 Mesh Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.6.1 Mesh Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.6.2 Manifold Geometry of Surfaces . . . . . . . . . . . . . . . . . . . . 25

2.6.3 Multi-Dimensional Scaling . . . . . . . . . . . . . . . . . . . . . . . 25

2.7 Grasping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.7.1 Biological and Psychological View . . . . . . . . . . . . . . . . . . . 27

2.7.2 Technical View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

i



3 Seam Following for Automated Industrial Fibre Mat Stitching 31
3.1 Project REDUX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.1 CFRP Composites Production Process . . . . . . . . . . . . . . . . 32
3.1.2 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Profile Pre-Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3 Edge Detection for Automated Robot Stitching . . . . . . . . . . . . . . . 42

3.3.1 Model-Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.2 Local Weighted-Voting . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.3 Gradient-Accumulation . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4 Edge Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.5 Detection Algorithm Improvements . . . . . . . . . . . . . . . . . . . . . . 47

3.5.1 Sum of Weight Function . . . . . . . . . . . . . . . . . . . . . . . . 48
3.5.2 Weighting Influence by Historic Edge Positions . . . . . . . . . . . 50
3.5.3 Minimal Edge Step Size . . . . . . . . . . . . . . . . . . . . . . . . 52

3.6 Detection Results Based on the “Base Sensor” . . . . . . . . . . . . . . . . 53
3.6.1 Double Edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.6.2 Slant Edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.6.3 Convex Edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.6.4 Runtime and Detection Rate . . . . . . . . . . . . . . . . . . . . . . 55

3.7 Detection Results Based on the “3 Lines Sensor” . . . . . . . . . . . . . . . 56
3.7.1 Runtime and Detection Rate . . . . . . . . . . . . . . . . . . . . . . 58
3.7.2 Influence of Detection Algorithm Improvements . . . . . . . . . . . 59

3.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4 Detection of Cylindrical Objects in Tabletop Scenes 63
4.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2 Method for Rapid Cylinder Detection . . . . . . . . . . . . . . . . . . . . . 66

4.2.1 Dominant Plane Fit . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2.2 Raw Data Pre-Processing and Normal Vector Calculation . . . . . . 68
4.2.3 Curvature Analysis and Segmentation . . . . . . . . . . . . . . . . . 70
4.2.4 Rapid Cylinder Fit . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3 Planning of the Robot Motions . . . . . . . . . . . . . . . . . . . . . . . . 75
4.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5 Grasping Point and Pose Detection of Unknown Objects on a Tabletop 87
5.1 Method of Grasping Point and Pose Detection . . . . . . . . . . . . . . . . 89

5.1.1 Raw Data Pre-Processing . . . . . . . . . . . . . . . . . . . . . . . 91
5.1.2 Range Image Segmentation . . . . . . . . . . . . . . . . . . . . . . 92
5.1.3 Pairwise Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.1.4 Approximation of 2.5D to 3D Objects . . . . . . . . . . . . . . . . . 99

5.2 Grasping Point and Pose Detection . . . . . . . . . . . . . . . . . . . . . . 100
5.3 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.3.1 Results Based on Laser Range Data . . . . . . . . . . . . . . . . . . 108

ii



5.3.2 Results Based on Dense Stereo Data . . . . . . . . . . . . . . . . . 111
5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6 Object Part Segmentation 119
6.1 Description Overview of the Method . . . . . . . . . . . . . . . . . . . . . 120
6.2 Segmentation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.2.1 Core Part Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.2.2 Cut Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.2.3 Options to Solve More Complex Segmentation Tasks . . . . . . . . 125

6.3 Segmentation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.4 Evaluation of the Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7 Conclusion and Future Work 139
7.1 Summary and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 139
7.2 Open Research Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Glossary 145

Bibliography 149

iii



iv



List of Figures

1.1 “The Big Picture” of the presented thesis. . . . . . . . . . . . . . . . . . . 2
1.2 Overview of an automated fibre mat stitching system. . . . . . . . . . . . . 4
1.3 Detection of grasping points and hand poses. . . . . . . . . . . . . . . . . . 5

2.1 Geometric primitives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Generalised cylinders. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Types of edges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Curvature representation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5 A triangle mesh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.6 Voronoi diagram and Delaunay triangulation of six points. . . . . . . . . . 23
2.7 Two-dimensional example of the power crust algorithm. . . . . . . . . . . . 24

3.1 Example of carbon fibre mats. . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 One side stitching principle with two needles. . . . . . . . . . . . . . . . . 34
3.3 The tufting principle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4 The blind stitching principle. . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.5 Sewing head. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.6 Airbus A380 rear pressure bulkhead. . . . . . . . . . . . . . . . . . . . . . 36
3.7 Portal sewing machine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.8 Industrial stitching robot with blind sewing head. . . . . . . . . . . . . . . 37
3.9 Robot guiding control loop. . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.10 System components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.11 Correction of the sewing path with sensor information. . . . . . . . . . . . 39
3.12 Close-up view of different laser stripe profiles including the edge. . . . . . . 39
3.13 Detailed overview of the laser stripe sensor and the stitching head. . . . . . 40
3.14 Flow chart of the edge detection approach. . . . . . . . . . . . . . . . . . . 41
3.15 Types of different edges and no edge types. . . . . . . . . . . . . . . . . . . 42
3.16 Normalisation of the laser stripe profile in the pre-processing step. . . . . . 42
3.17 Unfiltered 256 scan lines and edge detection results of all three methods. . 43
3.18 Illustration of the model-fitting method. . . . . . . . . . . . . . . . . . . . 44
3.19 Edge detection result of the local weighted-voting method. . . . . . . . . . 45
3.20 Illustration of the gradient-accumulation method. . . . . . . . . . . . . . . 46
3.21 Result of the gradient-accumulation method. . . . . . . . . . . . . . . . . . 46
3.22 Edge prediction to find the next edge position for the robot control unit. . 47
3.23 Accumulation of three algorithm results with several wrong maxima. . . . 49

v



3.24 Gray value scan data image with stable edge positions. . . . . . . . . . . . 50
3.25 Gray value scan data image with mirrored correction movement. . . . . . . 51
3.26 Gaussian bell curve weighting (the distance). . . . . . . . . . . . . . . . . . 52
3.27 All three different methods applied on a double edge. . . . . . . . . . . . . 54
3.28 All three different methods applied on a slant edge. . . . . . . . . . . . . . 54
3.29 Fibre mats draped on a cylinder. . . . . . . . . . . . . . . . . . . . . . . . 55
3.30 Normalisation of the laser scan line. . . . . . . . . . . . . . . . . . . . . . . 55
3.31 Detection rate of every method: “Base Sensor”. . . . . . . . . . . . . . . . 57
3.32 Phantom lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.33 Five overlapping scan lines of the “3 Lines Sensor”. . . . . . . . . . . . . . 58
3.34 Detection rate of every method: “3 Lines Sensor”. . . . . . . . . . . . . . . 59
3.35 Influence of detection algorithm improvements. . . . . . . . . . . . . . . . . 60

4.1 Overview of the system components and their interrelations. . . . . . . . . 65
4.2 Hand prosthesis of the company Otto Bock. . . . . . . . . . . . . . . . . . 65
4.3 Flow chart of the cylinder detection approach. . . . . . . . . . . . . . . . . 66
4.4 Raw point cloud. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.5 Maximum distance of two closest points. . . . . . . . . . . . . . . . . . . . 70
4.6 Close up of the calculated normal vectors. . . . . . . . . . . . . . . . . . . 70
4.7 Curvature analysis and segmentation. . . . . . . . . . . . . . . . . . . . . . 72
4.8 Segmentation result of the whole point cloud. . . . . . . . . . . . . . . . . 72
4.9 Radius calculation by circumscribing a triangle. . . . . . . . . . . . . . . . 74
4.10 Results of the axis fit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.11 Final result of the cylinder detection process. . . . . . . . . . . . . . . . . . 77
4.12 Visualisation of the trajectory with a simulation tool. . . . . . . . . . . . . 78
4.13 Comparison of the accuracy of a cylinder fit. . . . . . . . . . . . . . . . . . 81
4.14 Cylinder 1: Radius deviation. . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.15 Cylinder 1: Angle deviation. . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.16 Cylinder 1: Time comparison. . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.17 Cylinder 2: Radius deviation. . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.18 Cylinder 2: Angle deviation. . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.19 Cylinder 2: Time comparison. . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.1 Detected grasping points and poses. . . . . . . . . . . . . . . . . . . . . . . 88
5.2 Interactions between all computation steps. . . . . . . . . . . . . . . . . . . 89
5.3 Overview of the grasping algorithm. . . . . . . . . . . . . . . . . . . . . . . 90
5.4 Detection of the normal surface vector of the table plane. . . . . . . . . . . 93
5.5 Exposure of the raw point cloud. . . . . . . . . . . . . . . . . . . . . . . . 94
5.6 Segmentation result based on region-growing. . . . . . . . . . . . . . . . . 95
5.7 Segmentation result based on mesh generation. . . . . . . . . . . . . . . . . 96
5.8 Time comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.9 Time comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.10 Result after the merging step. . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.11 Visualisation of the experimental setup with a simulation tool. . . . . . . . 100
5.12 Detected grasping points and power grasps. . . . . . . . . . . . . . . . . . 101

vi



5.13 Detected grasping points and power grasps. . . . . . . . . . . . . . . . . . 102
5.14 Heat maps of one participant based on fixation duration. . . . . . . . . . . 103
5.15 Detection of the optimal power grasp. . . . . . . . . . . . . . . . . . . . . . 104
5.16 Objects to evaluate the grasping point and pose detection algorithm. . . . 106
5.17 Laser data: Detected grasping points and poses of unknown objects in a box.109
5.18 Left and right image of the camera. . . . . . . . . . . . . . . . . . . . . . . 111
5.19 Principle of epipolar geometry and rectification. . . . . . . . . . . . . . . . 113
5.20 Correction of the image distortion and rectification. . . . . . . . . . . . . . 113
5.21 Result of the 3D stereo reconstruction. . . . . . . . . . . . . . . . . . . . . 114
5.22 Detected grasping poses of unknown objects based on dense stereo data. . 115

6.1 Overview of the segmentation algorithm. . . . . . . . . . . . . . . . . . . . 121
6.2 Spherical mirroring of all points outside. . . . . . . . . . . . . . . . . . . . 122
6.3 Segmented core part with holes. . . . . . . . . . . . . . . . . . . . . . . . . 123
6.4 Reverse radial reflection of all outside points inside the sphere. . . . . . . . 123
6.5 Reverse radial reflection of all outside vertices inside the sphere. . . . . . . 125
6.6 Segmentation result based on region growing. . . . . . . . . . . . . . . . . 126
6.7 Segmentation of complex shapes. . . . . . . . . . . . . . . . . . . . . . . . 126
6.8 Pose-invariant mesh representation. . . . . . . . . . . . . . . . . . . . . . . 127
6.9 Segmentation result based on MDS. . . . . . . . . . . . . . . . . . . . . . . 128
6.10 Pose-invariance: based on a point cloud. . . . . . . . . . . . . . . . . . . . 128
6.11 Pose-invariance: based on a mesh. . . . . . . . . . . . . . . . . . . . . . . . 129
6.12 Influence of MDS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.13 Segmentation results based on a point cloud. . . . . . . . . . . . . . . . . . 130
6.14 Segmentation results based on a mesh. . . . . . . . . . . . . . . . . . . . . 131
6.15 Drawback of the segmentation method. . . . . . . . . . . . . . . . . . . . . 132
6.16 Possible solution to get a practical segmentation result. . . . . . . . . . . . 132
6.17 Object classes to evaluate the presented algorithm. . . . . . . . . . . . . . 134
6.18 Segmentation results when the centre is outside the shape or the object

consists of one part. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
6.19 Cut discrepancy for all specific object classes. . . . . . . . . . . . . . . . . 135
6.20 Cut discrepancy of all object classes. . . . . . . . . . . . . . . . . . . . . . 135
6.21 Rand index for all specific object classes. . . . . . . . . . . . . . . . . . . . 136
6.22 Rand index of all object classes. . . . . . . . . . . . . . . . . . . . . . . . . 136

7.1 Combination of laser range and dense stereo data. . . . . . . . . . . . . . . 142
7.2 Object pose and grasping pose detection. . . . . . . . . . . . . . . . . . . . 143

vii



viii



List of Tables

2.1 Summary of the geometric primitives shape and pose parameter. . . . . . . 11

3.1 Runtime of every method. . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.2 Detection rate of every method: “Base Sensor”. . . . . . . . . . . . . . . . 56
3.3 Detection rate of every method: “3 Lines Sensor”. . . . . . . . . . . . . . . 58

4.1 Evaluation of the problems during 50 runs. . . . . . . . . . . . . . . . . . . 78
4.2 Duration of every calculation step. . . . . . . . . . . . . . . . . . . . . . . 79
4.3 Comparison of the accuracy and the computational effort of a cylinder fit

depending on the number of points. . . . . . . . . . . . . . . . . . . . . . . 80
4.4 Comparison of the accuracy and the computational effort of a cylinder fit

for 2 defined cylinders. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.1 Duration of every calculation step. . . . . . . . . . . . . . . . . . . . . . . 107
5.2 Laser data: Detection and grasping rate of several unknown objects. . . . . 108
5.3 Laser data: Detection and grasping rate of touching unknown objects. . . . 109
5.4 Laser data: Detection and grasping rate of touching unknown objects in a

box. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.5 Laser data: Detection and grasping rate of a pile of touching unknown

objects on the table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.6 Dense stereo data: Detection and grasping rate of a pile of touching un-

known objects on the table based on dense stereo data. . . . . . . . . . . . 116

6.1 Comparison of the average computation time of every segmentation method.137

ix



x



Chapter 1

Introduction

“The human mind has first to construct forms,
independently, before we can find them in things.”

– Albert Einstein

This dissertation addresses the problem of robust feature detection in range images to
realise stable manipulation tasks. To obtain accurate 3D object information laser range
scanners or stereo cameras are used to obtain 3D coordinates of points on object surfaces.
In order to minimise the computational effort, accurate model representation is needed in
order to allow a faster feature detection. Robust feature detection contains the extraction
of lines, edges, and planar regions directly from range images. The goal is to present and
experimentally evaluate some 3D vision based techniques and to demonstrate how these
techniques can be employed during typical robotic tasks. The problems of robustness
and flexibility in terms of feature detection are addressed. These detected features in
combination with a task based a-priori knowledge enable safe and efficient robot handling
and manipulation tasks.

To augment the possibilities and flexibility of robots in different applications, 3D vision
systems are needed to obtain higher performance of automated processes. Hence efficient
methods for 3D image processing are used.

Humans show an extraordinary capability for several manipulation and detection tasks
of objects [Kuhtz-Buschbeck et al., 1998]. E.g., grasping of objects above or beside, de-
pending on possible collisions, and scaling of the grip aperture adequately, according to
various sizes of the target object. This is one of the characteristics that most distinguishes
humans from other species of living creatures in the world. Manipulation is one of the most
useful and challenging tasks in any robot research system and represents a key component
for many robotic applications in all kinds of areas such as industry, medicine, services,
the automobile industry and space robotics. Robotics manipulation range from the design
of robotic hands, object detection, segmentation, physics of contacts among objects, to
studies on neurological and psychological foundations of manipulation.

In general, these applications need to be flexible enough in order to deal with
unstructured and uncertain working environments. In the case of grasping tasks this
uncertainty stems from several sources: pose estimation of the objects, relevant features
of objects, and the diversity of tasks to perform with the objects. To overcome these

1
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difficulties, a combination of a wide range of partial solutions is used. Among them,
relevant sensory information is needed.

The goal of this work is to advance well-known topics of 3D image processing to
realise more robust methods for industrial applications. The considered areas are:
edge detection, object detection and object segmentation. Fig. 1.1 illustrates “The Big
Picture” of the presented thesis to realise a step towards full automation.

Figure 1.1: “The Big Picture” of the presented thesis.

There exists a number of robust edge detection and tracking methods for industrial
applications, however these methods exhibit big problems for new tasks such as automated
robot stitching of carbon fibre mats. The novelty is based on the combination of different
existing and newly developed edge detection methods to carry out robust edge tracking in
the presence of outliers and artefacts in noisy range data using an industrial robot.

The grasping of arbitrary, unknown objects on a table by a robot arm represents
an unsolved problem also for fundamental research. The considered areas for this
task are: object detection, grasping point and pose detection, and object segmenta-
tion to realise robust grasping of unknown objects for industrial deployment in future time.

This thesis introduces two research areas to realise fast, robust, and efficient range
image processing for robot manipulation.

The first part of this work considers a novel method for fast and robust real-time edge
detection for optical seam following. Several edge detection methods are combined in a
voting scheme to increase the edge tracking robustness.

The second part presents three challenges for grasping:

1. Rapid detection of cylindrical objects:
The first application in grasping considers a low-level contribution in rapid detection
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of cylindrical objects on a table to realise a stable grasp, and manipulation with a 7
DOF robot arm based on a single view.

2. Grasping of unknown objects:
The second part describes a robust approach to calculate possible grasping points
and poses for unknown objects placed on a table, scanned from a single view. In
particular, a novel method to accomplish this is presented. In order to deal with
unknown objects, a grasping system must be able to use its sensors to detect and
extract all necessary information about the object, since they are not yet available
as a model. This information is then used to decide on the most convenient way to
grasp the object.

3. Point cloud segmentation to obtain different object parts:
The third part presents a novel point cloud and mesh segmentation method to
extract an object into different parts. Some sub-parts of an object deliver po-
tential grasping poses [Huebner et al., 2008]. Additionally, dividing a point cloud
into simpler sub-parts has several benefits in modelling [Funkhouser et al., 2004],
robotics [Huebner et al., 2008] or collision detection [Li et al., 2001].

To exploit the flexibility of robots 3D vision systems are required in both parts for
high performance automated processes. Thus, 3D image processing is the important link
between the robot vision and its autonomous behaviour.

In the following Section 1.1, a motivation for this research is given ending up in a
presentation of the problem statement. The contributions of this thesis are described in
Section 1.2 and finally, the organization of this dissertation is provided in Section 1.3.

1.1 Motivation and Problem Statement

Robotic appliances are increasingly becoming a bigger part in our everyday lives. In
the near future, service robots will support people with several handicaps to improve
the quality of their lives, which includes a high demand of robustness and flexibility.
Today most of the work carried out in robotics is still concerned with finding solutions
to fundamental problems like object detection, segmentation, grasping or handling. To
solve these problems robust feature detection is used to obtain process relevant and task
specific information.

3D data is extensively used for feature detection by using stereo systems or laser range
scanners. Due to the high amount of data, efficient methods for 3D image processing in the
growing field of robotics are needed to realise the necessary requirements. The motivation
of this thesis is to take a step towards full automation and to rapidly detect features for
industrial and robotic applications.

1.1.1 Feature Detection for Automated Fibre Mat Stitching

Textiles produced with carbon fibres are becoming increasingly important for the auto-
mobile and aeronautic industry. Robust and light-weight components are manufactured
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by infiltrating the carbon fibres with resin. The gluing of these carbon fibre reinforced
polymer (CFRP) composites strains several parts in the final hardening step and thus a
new technology is needed to improve the pre-forming process. Sewing instead of gluing
strengthens the final properties and achieves better solidity and durability. First industrial
applications such as the AIRBUS A380 rear pressure bulkhead have been realised by show-
ing the potential of the stitching technology. In this case the stitching head is mounted
on a portal and the sewing process is performed in 2D. To achieve a 3D application, an
industrial robot equipped with a sewing head is used. One of the final goals is to achieve
lot-size-one production with an industrial robot.

Today, teach-in programming, i.e. an operator code specifying points on the trajec-
tory for flexible production, is no longer state-of-the-art. Sensors are used to interact
with the robot control for a fully automatic process. During the stitching process possible
obstacles are detected and the trajectory along the edge of the fibre mats is adjusted.
Using such a visual approach, a higher reproducibility and precision of the seams is ex-
pected [Sim et al., 2002].

The objective is to develop a high-precision automated stitching system. So a laser
range sensor is used in front of the sewing head to guide the robot along the carbon
fibre edges as illustrated in Fig. 1.2. The key challenge is reliable, robust edge detection
and tracking in order to set the seams correctly and to control the robot motion. Range
scanners are one of the most efficient ways of measuring the carbon fibre mats.

Figure 1.2: Overview of the edge detection and tracking approach for an automated fibre
mat stitching system.

The challenge is to find a reliable and robust method to detect the edge between two
overlapped carbon fibre layers, because this data is the main perceptive input for robot
control. The difficulties to overcome are the black and reflective carbon fibres, an edge
height between 0.3mm and 1.1mm, outliers, and obstacles. To obtain reliable results a
two out of three voting scheme for edge detection is applied.
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1.1.2 Feature Detection for Object Grasping

“People have always been fascinated by the exquisite precision and flexibility of the human
hand. When hand meets object, we confront the overlapping worlds of sensorimotor and
cognitive functions” [Castiello, 2005]. Although partial solutions for certain cases exist,
there is still no general valid solution to grasp an object. In the near future, service robots
will support people with several handicaps to improve the quality of their lives. One of
the required key technologies is to set up the grasping ability of the robot. This includes
autonomous object detection of a wide variety of various objects scanned from one single
view in a cluttered setting. The determination of the object pose enables a grasp motion
to fulfil the task of providing objects from any position on a table to the user. That also
includes the segmentation of the objects on the table as illustrated in Fig. 1.3.

Figure 1.3: Detection of grasping points and hand poses. The green points display the
computed grasping points for rotationally symmetric objects. The red points show an al-
ternative grasp along the top rim. The illustrated hand poses show a possible grasp for the
remaining graspable objects.

Human vision segments an object into sub-parts and analyses their spatial and func-
tional relationships [Shipley and Kellman, 2001]. A part-based description allows to detect
the different reciprocal functional properties of an object.

The task of grasping an unknown object, is often considered trivial from our human
point of view. Humans use prior knowledge to perform simple tasks like opening a door
or grasping a mug from a table. The solution is that a very complicated task must be
designed as a series of simpler tasks. The system has to detect the object, prepare a
grasping motion and then grasp, handle, and manipulate the object.

An additional challenge is that the acquired range images are sparse, due to the laser
and camera shadows and from a single view, the rear side of an object is not visible due
to self occlusions and the front side may be occluded by other objects.
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1.2 Contributions

Robust feature detection is an important part in range image processing and scene un-
derstanding. Depending on the complexity of the model structure, different methods are
possible. This thesis handles the problem of efficient model feature detection for several
tasks under the constraint of achieving fast and robust results.

The first contribution of this work presents an efficient two out of three voting scheme
for robust 2D edge detection and tracking in an industrial environment.

To work towards a solution for the challenge of grasping unknown objects, three con-
tributions will be presented: a rapid cylinder fitting method, a robust grasping point and
pose detection based on 2.5D range images, and finally model part segmentation based on
3D point clouds.

1.2.1 Edge Detection

Edge detection and tracking is a well analysed section in the field of range image processing.
However, the main problem is that especially industrial applications need a robust and
real-time edge detection method to handle the problem of noisy scan lines under changing
light, surface, and material conditions to close the gap between laboratory research and
flexible industrial production.

The approach of an automated CAD (Computer Aided Design) based path planning
and a sensor guided edge detection to realise a path adjustment can be applied for a sewing
process that realises lot-size-one production.

Contributions in this field have been made by introducing a real-time approach where
existing and new developed edge detection methods are combined in a voting scheme to
increase the edge tracking robustness [Richtsfeld et al., 2007a]. The novelty is based on
different edge detection methods and their combination to carry out robust edge tracking
in the presence of outliers and artefacts in noisy range data using an industrial robot. The
individually developed methods show a very high reliability [Biegelbauer et al., 2007].

The experiments show that a two out of three voting over three methods achieves a
better detection result than the individual methods. Thus the approach of a voting scheme
for edge detection and localisation is suitable for the use in related industrial applications
under difficult conditions. Two different laser stripe sensors have been tested, whereby the
developed edge detection methods and the voting scheme highlighted their flexibility and
robustness. Chapter 3 describes the approach in detail and demonstrates the robust-
ness and computational effectiveness [Biegelbauer et al., 2007, Richtsfeld et al., 2007a,
Richtsfeld et al., 2007b, Richtsfeld et al., 2007c].

1.2.2 Rapid Cylinder Detection

Least-square fitting is a well known and popular method to fit cylinders into range data,
but this technique works well only with a good enough estimation of the starting pose,
noiseless range data and enough data points around the barrel. Section 2.5 summarises
least-square fitting and model-based cylinder detection.

6



1. Introduction

In the fields of industrial and home robotics, the requirements of complete 3D data,
noiselessness, and obstacle-free situations are often not provided. The contribution of this
work is a fast and robust method optimised for fitting cylinders in sparse and noisy range
data under difficult and changing light conditions recorded from a single view.

Observing the curvature of the scanned objects is needed to segment and detect the
cylindrical object. The method presents a cylinder fit based on random samples to handle
the typical outlier problem.

The first step of the approach is to discover the table surface by a RANSAC-
based [Fischler and Bolles, 1981] plane fit and to analyse the curvature of the objects
with the normal surface vectors. As a second step, these curvature points are used to
segment all objects on the table and to calculate the radius with a RANSAC-based 3D
circle fit. The normal surface vectors are used to calculate the cylinder axis and the pose
of the detected cylinder. Chapter 4 describes the approach in detail and demonstrates
the robustness and computational effectiveness compared with the standard least-square
fitting of cylindrical objects [Richtsfeld et al., 2008].

1.2.3 Grasping Point and Grasping Pose Detection

The grasping task was studied from a psychological, biological, and engineering focus but
still remains unresolved. Although partial solutions for certain cases exist, there is still no
general valid solution. Section 2.7 gives a short summary of the wide field of grasping and
highlights the difficulties in establishing a stable grasp.

In home robotics the grasping task is usually limited to a small number of known and
simple object shapes. The contribution of this work is a fast and robust method to identify
potential grasping points and grasping poses based on the top surfaces of the unknown
object shapes on a table. Therefore only one single view from the laser range scanner is
available where 2.5D point clouds are obtained. The acquired range images are sparse due
to single scanning with laser and camera shadows.

As mentioned above, the algorithm detects the table surface with a RANSAC-based
plane fit. The algorithm then segments the objects on the table. Different segmenta-
tion methods have been tested, based on region-growing and mesh generation. To avoid
a possible over-segmentation of rotationally symmetric objects, an additional merging
step is implemented. Then the algorithm analyses the curvature of the objects with the
normal surface vectors, which are calculated by a principal component analysis (PCA)
either on the point clouds or automatically during the mesh generation step. The top
surface of the objects is also detected with a RANSAC-based plane fit taking the nor-
mal surface vectors into account. Based on the information received, potential grasp-
ing points and poses are detected by analysing the top rim or shape of the objects,
whereby parallel planes or surface patches are detected and used to obtain a poten-
tial grasp from a single view. Chapter 5 describes the approach and the developed
method in detail and demonstrates the robustness and computational effectiveness by
grasping a variety of objects [Richtsfeld and Vincze, 2008a, Richtsfeld and Vincze, 2008b,
Richtsfeld and Vincze, 2008c, Richtsfeld and Zillich, 2008, Richtsfeld and Vincze, 2009b].
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1.2.4 Object Part Segmentation

Dividing a point cloud into simpler sub-parts has several advantages for mod-
elling [Funkhouser et al., 2004], robotics [Huebner et al., 2008] or collision detec-
tion [Li et al., 2001]. The presented work includes a new segmentation algorithm, based
on radial reflection. Although the examples in Chapter 6 are related to applications in the
area of computer graphics and robotics, the majority of the algorithm developed here can
be applied with only trivial modifications to more complex segmentation problems. The
segmentation pipeline consists of a convex hull-based segmentation algorithm to identify
the potential core part and all sub-parts of the object.

The contribution is an advanced method based on the work of [Katz et al., 2005], which
directly segments a point cloud and the algorithm is also able to segment a mesh. Chap-
ter 6 describes the method in detail and demonstrates the robustness and computational
effectiveness compared with standard segmentation methods. Additionally, the cut dis-
crepancy and the rand index of the proposed method have been evaluated with the help of
10 object classes [Richtsfeld and Vincze, 2009a]. In comparison with other segmentation
methods the proposed algorithm based on radial reflection shows best time performance.

1.3 Thesis Overview

This thesis is organised as follows: Starting with the state-of-the-art technology in Chap-
ter 2, a theoretical background is given of: edge detection, curvature analysis, and segmen-
tation methods. An overview of geometric fitting, mathematical methods for least-squares
minimisation and mesh processing is also presented. Finally, this chapter introduces grasp-
ing from a biological, psychological, and technical view.

Chapter 3 presents an application-driven research project. This is necessary to un-
derstand the motivation of this thesis and the research potential in the future, of which
feature detection in range images is needed. Hence an edge detection method based on
a two out of three voting over three methods is presented. The experiments show that a
voting over three methods achieves a better detection result than the individual methods.

Chapter 4 introduces a simple and quite fast method for a rapid detection of known
cylindrical objects in range images. This low-level 3D image processing is evaluated in
detail with a performance analysis.

Chapter 5 describes a new and efficient method for the calculation of grasping points
and poses for unknown objects based on range data. The proposed grasping method is
evaluated in detail with a grasp analysis.

Chapter 6 presents a 3D point cloud and mesh segmentation method. The efficiency
of this method is presented with a lot of different shape examples.

All methods are evaluated in terms of robustness and computational performance.
Finally this work is concluded with a discussion on the reliability of rapid object

detection methods in Chapter 7, which ends up with future research topics, e.g. a concept
of a fully automated learning, registration and detection system.

8



Chapter 2

State of the Art

“A scientific theory should be as simple as possible, but not simpler.”
– Albert Einstein

This chapter looks at the research literature on 3D part and feature detection. The model-
based detection of features requires a 3D object description, and the reason why Section 2.1
summarises geometric primitives, generalised cylinders and their applications in 3D vision.

Section 2.2 presents different edge detection methods on single scan lines. Based on
these methods, Section 2.3 reviews the literature on curvature analysis focused on 3D
point clouds.

Section 2.4 gives an overview of point cloud segmentation methods. Different methods
to carry out automatic 3D object segmentation into meaningful parts have been published
in the last few years. 3D model segmentation algorithms can be categorised into two
main classes. The first class is developed for applications like reverse engineering of CAD
models [Attene et al., 2006b]. The second class attempts to segment natural objects into
meaningful parts and are mainly region-based or edge-based range image segmentation
methods.

Section 2.5 introduces least-squares fitting, by describing the common mathematical
methods. The fitting of the geometric models in point clouds is an important issue. A
fast and robust detection process is especially required for industrial applications.

Section 2.6 gives a short overview of mesh processing and the most important basics
are illustrated there. A point cloud can be also represented by a mesh. A mesh or
grid is a combination of vertices, edges and faces that define the shape of an object in 3D
modelling. Normally the faces consist of triangles or other simple convex polygons because
this simplifies rendering and more general concave shapes could be composed. Thus, mesh
processing is a difficult and significant task in 3D image processing. Different methods,
however can only operate on a mesh.

Concluding this chapter, Section 2.7 reviews the literature on grasping from a biologi-
cal, psychological, and technical view.
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2.1 Parametric Model Description

A large number of basic parametric models can be found by reviewing the research lit-
erature used in 3D computer vision, particulary on especially point clouds. A point
cloud is a set of points in a 3D coordinate system. These points are defined by x,
y, and z coordinates. These models range from simple descriptions to highly complex
representations. The number of shape parameters varies depending on the complexity
of the model shape. Simple model shapes like spheres, cylinders, cones, toroids, and
cubes with a few number of parameters for shape description are geometric primitives.
More complex shapes like generalised cylinders [Zerroug, 1999], superquadrics [Barr, 1981],
and geons [Biederman, 1987] are models whose complexity in shape is limited as
well as the number of parameters. In contrast high parametric models like hyper-
quadrics [Haverinen and Röning, 2000], implicit polynomials [Keren et al., 1994], and
spherical harmonic surfaces [Brechbühler et al., 1992] can represent any arbitrary shape
with an open number of parameters.

In order to avoid an overstrain of the reader with methods and characteristics of para-
metric model description in detail, the author gives only a short overview in the fields of
geometric primitives and generalised cylinders.

2.1.1 Geometric Primitives

Geometric primitives are used in 3D vision for object recovery, recognition and detection.
Fig. 2.1 presents the models by the increasing number of parameters. Tab. 2.1 illustrates
the number of parameters for a full 3D description, with r, R, h, s, Ψ as shape param-
eters, p = (x, y, z)> as position point, and a = (ax, ay, az)

> as orientation vector. Instead
of using the orientation vector a, which contains redundant orientation information for
rotationally symmetric objects the angles α and β describe the orientation of the ob-
ject by defining a rotation around the x- and y-axis of the world coordinate system. A

(a) (b) (c) (d) (e)

Figure 2.1: Geometric primitives: (a) sphere, (b) cylinder, (c) cone, (d) torus, (e) cube.

cube is not a rotationally symmetric object, so the orientation vector for a unique pose
determination must be defined with three angles: α, β, γ. The orientation vector goes
through the centre pc and is perpendicular to the top surface. With the lateral length s
the cube is fully described in 3D space. The description of range data has been intensively
researched by fitting geometric primitives [Feddema and Little, 1997, Lukacs et al., 1998,
Marshall et al., 2001, Taylor and Kleeman, 2003]. Rotationally symmetric primitives can
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Shape Pose # Parameters

Sphere r pc 4
Cylinder r, h pa, α, β 7

Cone h,Ψ pa, α, β 7
Torus r, R pc, α, β 7
Cube s pc, α, β, γ 7

Table 2.1: Summary of the geometric primitives shape and pose parameter.

be described with an implicit closed form, whereas with a cube no closed form description
is possible [Taylor and Kleeman, 2002]. Instead a cube can only be modelled by more
complex model descriptions such as a superquadric, hyperquadric or spherical harmonic
surface.

The following sections give an overview in model description of geometric primitives
with their parameters and distance functions. This description is needed to obtain the
objective function for the least-squares fitting, which will be an important part in a later
case. Initially a general description of a plane is presented, to give a fully comprehensive
overview.

Plane

In general, a plane is not part of the geometric primitives. However, its role is very
important for primitives and more complex models. Normally a plane is described with
three points p0, p1, p2, with none of them being coincident and not all of them being
collinear. It is possible to directly derive any one of the several representations of a
plane from three points [Schneider and Eberly, 2003]. In the following the implicit, the
parametric, and the explicit plane representations are described.

• The implicit equation of a plane through three points satisfies:∣∣∣∣∣∣
x− p0,x y − p0,y z − p0,z

p1,x − p0,x p1,y − p0,y p1,z − p0,z

p2,x − p0,x p2,y − p0,y p2,z − p0,z

∣∣∣∣∣∣ = 0. (2.1)

The final equation is:
ax+ by + cz + d = 0. (2.2)

• The parametric equation of a plane through three points satisfies:

p(s, t) = p0 + s(p1 − p0) + t(p2 − p0). (2.3)

• The explicit representation requires one point on the surface, the normal plane vector,
and a third parameter d, which represents the perpendicular distance to the origin,
to be known. From three points the normal surface vector can be calculated as cross
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product of the vectors between two pairs of points. Arbitrarily choosing p0 as the
point on the surface, and the normal vector ~n as (p1 − p0)× (p2 − p0):

p0 · ~n+ d = 0. (2.4)

Sphere

A sphere represents the simplest geometric model and is described by a centre pc and a
radius r, so that the implicit equation for the sphere is [Schneider and Eberly, 2003]:

f(p) = ‖p− pc‖2 = r2. (2.5)

The intersection of a linear component and a sphere, defined by an origin O and a
direction vector d̂ can be computed by substituting the equation for a linear component:

‖p− pc‖2 = r2, (2.6)

‖O + td̂− pc‖2 = r2, (2.7)

‖(O − pc) + td̂‖2 = r2. (2.8)

The second-order equation is of the form:

at2 + bt+ c = 0 (2.9)

and can be solved by using the quadratic formula1:

t = −d̂ · (O − pc)±
√

(d̂ · (O − pc))2 − ((O − pc) · (O − pc)− r2). (2.10)

Cylinder

Another important geometric primitive in our daily life is the cylinder. A cylinder has a
centre point pc, unit-length axis d̂, radius r, and height h. The end disks of the cylinder
are located at pc ± (h/2)d̂. Assuming û and v̂ is one unit-length vectors so that û, v̂, d̂ is
a right-handed set of orthonormal vectors [Schneider and Eberly, 2003]:

d̂ = û× v̂. (2.11)

The points on the cylinder barrel are parameterised by:

O(θ, t) = pc + (r · cos θ)û+ (r · sinθ)v̂ + td̂, θ ∈ [0, 2π], |t| ≤ h/2. (2.12)

The end disks are parameterised by:

O(θ, ρ) = pc + (ρ · cos θ)û+ (ρ · sinθ)v̂ ± (h/2)d̂, θ ∈ [0, 2π], ρ ≤ [0, r]. (2.13)

The projections of a cylinder (onto a line or plane) are determined by the cylinder wall
and not the end disks and the quadratic representation of a cylinder wall is defined as:

(O − pc)> = (I− d̂d̂>)(O − pc) = r2 (2.14)

and the boundness of the cylinder is specified by:

|d̂ · (O − pc)| ≤ h/2. (2.15)

1Note that a quadratic equation of the form ax2 + bx + c = 0 has the solutions x = −b±
√

b2−4ac
2a .

12



2. State of the Art

Cone

The cone is the next geometric primitive to be introduced. The cone has a ver-
tex V , axis direction vector â, and an angle θ between the axis and the outer
edge [Schneider and Eberly, 2003]. In most applications, the cone is acute, and so:
θ ≤ [0, π/2]. Assuming that, in fact, the cone is acute, so cosθ > 0. The algebraic
condition is:

â ·
(

X − V
‖X − V ‖

)
= cos θ. (2.16)

The quadratic representation is:

(â · (X − V ))2 = (cos2 θ)‖X − V ‖2. (2.17)

Torus

A torus as geometric primitive is a quadric surface (4th degree), most commonly known as
a “doughnut”. A torus may be defined by rotating a circle about an axis lying in the plane
of the circle [Schneider and Eberly, 2003]. There are different alternative representations
possible and two different implicit definitions:

x4 + y4 + z4 + x2y2 + 2x2z2 + 2y2z2 − 2(r2
0 + r2

1)x2

+ 2(r2
0 − r2

1)y2 − 2(r2
0 + r2

1)z2 + (r2
0 − r2

1)2 = 0
(2.18)

and
(r0 −

√
x2 + y2)2 + z2 = r2

1 (2.19)

and as a parametric definition:

x = (r0 + r1 cos v) cosu,

y = (r0 + r1 cos v) sinu,

z = r1 sinu,

(2.20)

where r0 is the radius from the centre of the torus to the centre of the tube of the
torus and r1 is the radius of the tube itself. In general, the major radius is bigger than the
minor radius (r0 > r1); this corresponds to a ring torus; the others are horn torus r0 = r1
and the self-intersection spindle torus r0 < r1

2.

Cube

Lastly, the geometric primitive the cube is presented. A cube has a special role among
geometric primitives, because it is not a rotationally symmetric object. As description of
the whole surface of a cube in 3D space, a centre point pc, and the orientation of defined
axis, is required. Afterwards, all plane parameters can be derived. Thus a least-squares

2Weissenstein, 1999, http://mathworld.wolfram.com/Torus.html
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fit of a cube in point clouds is not as simple as with the other primitives. In this case each
plane has to be fitted using an orthogonal distance from a point p to a line or respectively
to a plane. Note that a cube can be more easily described with a more complex model
where a closed distance function is used, e.g. superquadrics.

2.1.2 Generalised Cylinders

A fundamental problem in 3D computer vision is the recovery of 3D shapes from image
data. One way to simplify the presentation are generalised cylinders (GCs), which combine
volume and surface information quite concisely, as illustrated in Fig. 2.2(a). Fig. 2.2(b)
shows that generalised cylinders can be used to model more complex objects. Generalised
cylinders are the first dedicated part-level models in computer vision [Zerroug, 1999]. A
generalised cylinder is composed of an axis, a base cross-section, and a sweeping rule which
describes, in closed-form, how the cross-section evolves along the axis of the cylinder. If
the cross-section is perpendicular to the axis, generalised cylinders are referred to as Right
Generalised Cylinders (RGCs) [Dior et al., 1997, Williams et al., 1997].

The definition of the axis a as a function of the arc length s in a fixed coordinate
system (x, y, z) is:

a(s) = (x(s), y(s), z(s)) . (2.21)

The sweeping rule is more conveniently expressed in a local coordinate system. It can
be defined by a cross-section boundary, which is parameterised by a parameter r:

sweeping rule = (x(r, s), y(r, s)). (2.22)

To limit the complexity and to simplify the recovery of generalised cylinders from range
images, constraints are often used. Straight axes and a constant sweeping rule are the main
constraints added to generalised cylinders. Generalised cylinders are particularly attrac-
tive for the modelling of elongated shapes, because the axis of generalised cylinders often
provides an intuitive method to conceptualise the design of a shape [Pillow et al., 1994].
The recovery of generalised cylinders from intensity images has been studied by
many researchers and the expressiveness of generalised cylinder representation makes it
well suited for visual representation [Grisoni and Marchal, 2003, Rao and Nevatia, 1988,
Mohan and Nevatia, 1989, Zerrough and Nevatia, 1999]. [Pan et al., 2005] presented a
parametric reconstruction of generalised cylinders. The reconstruction is achieved by some
general assumptions on GCs and can, therefore, be applied to a broader subclass of GCs.

The recovery of generalised cylinders from intensity images is a complex issue, because
it must rely on complicated rules to group low-level image features (edges, corners, and
surface normals) to finally assemble them into generalised cylinders. The problems are
based on the complicated parameterisation of generalised cylinders and the lack of a fitting
function to provide a direct evaluation criterion on how well the model generalised cylinder
fits the image data [Jaklic et al., 2000]. Only the recovery of a restricted subset of gen-
eralised cylinders such as straight homogeneous generalised cylinders [Ponce et al., 1989]
has been presented in literature so far.
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(a) (b)

Figure 2.2: Generalised cylinders: (a) A generalised cylinder is defined as a volume formed
by sweeping a cross-section along an axis. (b) A generalised cylinder with an arbitrary
shaped axis and the displayed sweeping function [Coquillart, 1987].

2.2 Edge Detection

Edge detection is a popular and well-investigated issue in computer vision. Fig. 2.3 illus-
trates the main types of edges. One of the oldest edge detectors is the Roberts opera-

Figure 2.3: Types of edges: step edges, roof edges, and line edges with positive and negative
direction.

tor [Roberts, 1965] which calculates the magnitude of the gradient using the approximated
first derivative. This operator is very fast but sensitive to noise. Smoothing the raw data
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with a Gaussian filter and calculating the zero-crossings of the second derivatives improves
the robustness as shown with the Marr-Hildreth edge detector [Marr and Hildreth, 1980].
The most popular operator is the Canny edge detector [Canny, 1986], well suited for noisy
step edges. That is a multi-scale Gaussian-smoothed approach finding the locally strongest
gradient using the second derivatives and is, therefore, computationally time-consuming.

A totally different approach that is well-suited for range images is the scan line ap-
proximation [Jiang and Bunke, 1999]. The raw data points are approximated by a set of
bivariate polynomial functions, where the discontinuity of the fitted functions indicate the
edge position. An improved scan line approach, better handling outliers, is proposed by
Katsoulas et al. [Katsoulas and Werber, 2004] using an additional statistical merging step.
Based on these techniques, Section 3.1 introduces a real-time edge detection method by
voting the results of different detection methods to achieve more robust results.

2.3 Curvature Analysis

Estimating intrinsic geometric properties of a surface from range images is an important
part of numerous algorithms in machine vision. Generally, two different approaches are
classified to represent an object: a volumetric and a boundary-based method. A volumetric
description utilises global characteristics of a 3D object (e.g. principal axis, inertia matrix
or tensor-based moment functions). Boundary-based methods describe an object with
properties of the boundary and their relationships. Segmentation, object recognition and
detection tasks are mainly based on the differential invariant properties by estimating the
Gaussian curvature K and the mean curvature H [Trucco and Verri, 1998] as illustrated in
Fig. 2.4. The two principal curvatures at a point p of a surface S measure how the surface

(a) (b)

Figure 2.4: Curvature representation: (a) Gaussian curvature. (b) Mean curvature. Ex-
ample code from the freely available VTK library, http://public.kitware.com/vtk.
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bends by different amounts in different directions at that point. A normal plane at a point
p on a differentiable surface S also contains a unique direction tangent to the surface and
cuts the surface into a plane curve, p ∈ S. This curve contains different curvatures for
different normal planes at p and κ1 and κ2 are the maximum and minimum values of this
curvature.

Hereby the Gaussian curvature K is defined as:

K = κ1κ2. (2.23)

Another presentation is given by:

K(p) = det(S(p)), (2.24)

whereby S is the shape operator.
The mean curvature H is defined as:

H =
κ1 + κ2

2
. (2.25)

A more general presentation is:

H =
1

n

n∑
i=1

κi. (2.26)

[Surazhsky et al., 2003] analysed different computation schemes for local estimation of
intrinsic curvature of the geometric properties. The algorithms and their modifications
were tested on triangular meshes and compared with the Gaussian and mean curvatures of
the non uniform rational B-spline surfaces (NURBs). It shows that the best algorithm for
the Gaussian curvature estimation is the Gauss-Bonnet scheme and for the mean curvature
it is the paraboloid fit method.

2.4 Range Image Segmentation

Segmentation is a crucial task to separate range images into useful
parts [Hoover et al., 1995]. It is obvious from the results that there exists no per-
fect segmentation algorithm. Each algorithm has its own benefits depending on the task.
On the whole, a good segmentation result is given if regions can be approximated from a
given set of surface functions. To realise this step, two main different approaches exist:
region-based and edge-based range image segmentation. Other approaches are: segmen-
tation of range data into planar surfaces, curved surfaces, and surfaces of revolution.
Region-based segmentation methods search for homogenous regions based on surface
approximation and edge-based methods aim to segment boundaries between homogenous
image regions. One drawback is that edge-based range segmentation algorithms often
produce gaps between boundaries so region-based methods are more frequently used in
practice. Additionally, the discontinuities of curved surfaces are smooth and hard to
locate, and therefore edge-based range segmentation algorithms tend to under-segment
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range images. [Hoover et al., 1995, Hoover et al., 1996] presented a method to evaluate
the results of different range image segmentation algorithms. They developed a tool
to objectively compare a machine-generated segmentation against the specified ground
truth.

2.4.1 Region-Based Range Image Segmentation

Region-based range image segmentation algorithms can be categorised into two main
groups: parametric model-based range segmentation algorithms and region-growing al-
gorithms. Parametric segmentation algorithms make use of parametric surface mod-
els and group data points to find out which points are part of the assumed mod-
els [Bab-Hadiashar and Gheissari, 2006]. Region-growing algorithms detect groups of
neighbouring points based on homogeneous criteria. These criteria are formulated so
that the segmented regions correspond to the surfaces of an object. Normally this step
results in an over-segmentation. This failure can be adjusted with an additional merging
step [Djebali et al., 2002]. In some cases the result is extended by employing an additional
region-growing strategy. Different methods based on iterative or random methods can be
used to obtain the initial regions.

2.4.2 Edge-Based Range Image Segmentation

These algorithms are based on edge detection and the labelling of edges to extract edges
from a range image in order to find discontinuities of regions. Different edge types and
methods are described in Section 2.2 and Section 2.3. After the edge detection step,
edges with defined common properties are clustered together. [Fan et al., 1989] presented
a typical method based on the detection of discontinuities using zero-crossing and cur-
vature values. Here the range image is segmented at discontinuities to obtain an initial
segmentation.

2.4.3 Object-Based Range Image Segmentation

Different methods for automatic 3D object segmentation into meaningful parts have
been published in the last few years. 3D Model Segmentation algorithms can be cate-
gorised into two main classes. The first class is developed for applications like reverse
engineering of CAD models [Attene et al., 2006b]. The second class aims to segment
natural objects into meaningful parts. Most work on mesh segmentation, which is de-
scribed in detail in Section 2.6 is based on iterative clustering. This method generates
a mesh and segments all disconnected fragments with a face (triangle) connectivity fil-
ter. [Shlafman et al., 2002] segmented models into meaningful pieces using k-means clus-
tering. Based on this idea, [Katz and Tal, 2003] developed a fuzzy clustering method
and used minimal boundary cuts to achieve smoother boundaries between clusters. Un-
supervised clustering techniques like mean shift can also be applied to mesh segmen-
tation [Shamir et al., 2004]. [Cornea et al., 2005] published a method using skeletons to
generate a hierarchical mesh decomposition. Meanwhile, [Katz et al., 2005] published a
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mesh segmentation algorithm based on pose-invariant models and the extraction of the
core part and feature points. The method is able to produce consistent results, but works
only on meshes. A computation intensive method is used to find feature points to limit
the complexity and the number of parts.

2.5 Model-Fitting

The main fitting methods in literature can be divided into two general techniques: the
least-squares fitting [Lawson and Hanson, 1974] and the clustering [Besl and Jain, 1985]
method. The least-squares methods are focused on finding the sets of parameters to
minimise the distance between the data points and the curve or surface; the clustering
methods are based on mapping data points to the parameter space, such as the Hough
transform [Hough, 1962] or the accumulation methods. The least-squares method is the
preferred technique of fitting geometric shapes to 3D point clouds, because the clustering
methods are time-consuming and computationally expensive and thus mainly used to fit
lines and curves to point data in 2D space [Duda and Hart, 1972]. Least-squares fitting is
reviewed in detail in this section for this reason.

2.5.1 Least-Squares Methods

Based on a distance measure, the least-squares technique calculates the least-squares
sum of the range data points to the geometric model. Several metrics exist: the alge-
braic distance, the euclidean distance, and the taubin approximation within the objec-
tive function of the minimisation process. [Faber and Fischer, 2001b] illustrated that the
best results regarding quality and accuracy is obtained by using the euclidean distance.
In contrast the taubin approximation [Taubin, 1991, Taubin, 1993] or the algebraic dis-
tance [Fitzgibbon and Fisher, 1995] lead to a bias in the fitting results. Hence this section
reviews only the euclidian distance function.

Euclidean Distance

Euclidean distances are invariant to transformations in euclidean space and do not exhibit
the high curvature bias. The euclidean distance dE between a point pi and a surface is
the distance between pi and the surface point pE whose tangent is orthogonal to the line
joining pi and pE.

For primitive surfaces like planes, spheres, cylinders, cones and toroids, a closed form
expression exists for the euclidean distance from a point pi to the zero set. However, the
expression of the euclidean distance to other curves or surfaces like superquadric or geons
is more complicated and there exists no closed form, therefore an iterative procedure to
estimate the euclidean distance must be carried out [Faber and Fischer, 2001a].
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2.5.2 Model-Based Cylinder Detection

This section reviews the state-of-the-art model-based object detection using cylinders as
members of geometric primitives and focuses on object detection dealing with 3D point
clouds acquired from laser range data.

In literature, many curvature-based approaches have been introduced to detect cylindri-
cal objects in range images. [Yokoya and Levine, 1989] achieved an improved detection re-
sult by using a hybrid approach combining the mean H and the Gaussian curvature K seg-
mentation with a step and roof edge detection. The work of [Hameiri and Shimshoni, 2003]
is based on principal curvature histogrammes for cylinder fragment detection. An-
other approach of analysing the Gaussian image and the convexity of surface patches
was proposed by [Taylor and Kleeman, 2003]. In contrast to curvature-based ap-
proaches, [Marshall et al., 2001] follows an approach by fitting least-squares models to
segment a scene for object detection. [Attene et al., 2006a] approximates the object with
cylinders based on a mesh representation. The idea of the robust axis determination of
rotationally symmetric parts [Yacoub and Menard, 1997] is used for an improved and ad-
vanced determination of the cylinder pose. Chapter 4 introduces a sample-based approach,
such as the RANSAC algorithm [Fischler and Bolles, 1981] for a cylinder estimation, which
satisfies the required accuracy, short processing time and also operating on sparse data.

2.6 Mesh Processing

“I hate meshes. I cannot believe how hard this is. Geometry is hard.”
– David Baraff, Senior Research Scientist, Pixar Animation Studios

This section exposes the basics of surface approximation based on point clouds with 3D
meshes and the way how to process such meshes with different operators. Since mesh
processing is a growing field in 3D computer vision and this section reviews the state-of-
the-art methods used today. A triangulated mesh is a discrete structure that can be used
to approximate a surface in Euclidian space Rk.

2.6.1 Mesh Generation

Mesh generation is an important practice of generating shapes from data points captured
from real objects by laser range scanners. A triangulated mesh is a discrete structure,
which can be used to approximate a surface which contains triangles or other simple con-
vex polygons in euclidian space. It consists of three types of geometric components: ver-
tices, edges, and faces. Vertices are points which describe the corners or intersections of
geometric shapes. Edges are lines whose end points are vertices and faces are convex poly-
gons. A finite collection of vertices, edges, and faces is called: polygonal mesh or polymesh
with the following conditions [Schneider and Eberly, 2003]:

• Each vertex must be shared by at least one edge.

• Each edge must be shared by at least one face.
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• If two faces intersect, the vertex or edge of intersection must be a component in the
mesh.

If all faces are triangles, the model is called a triangle mesh or trimesh as illustrated
in Fig. 2.5. If the mesh has no multiple connected sub-meshes, the mesh is said to be

Figure 2.5: A triangle mesh: The vertex of the intersection (coloured red) and all sur-
rounding faces.

connected. A connected mesh is said to be a manifold mesh if each edge in the mesh is
shared by at most two faces. Also, a connected mesh is said to be a closed mesh if it is
manifold with each edge shared by exactly two faces and is non-self-intersecting, otherwise
it is an open mesh.

In general, it will be differentiated between structured and unstructured meshes. In
a structured mesh all elements have the topology of a regular grid; Unstructured meshes
are often computed by using quadtrees or a Delaunay triangulation of point clouds. The
following sections describe the basic knowledge needed for mesh processing to understand
the procedure which will be further adjusted in this work.

Voronoi Diagram

A Voronoi diagram or Dirichlet tessellation is the decomposition of a metric space de-
termined by distances to a specified discrete set of points in the space as illustrated in
Fig. 2.6(a). Voronoi diagrams find widespread applications in areas such as nearest neigh-
bour clustering, facility location, path planning or crystallography.

Let P = (p1, p2, ..., pn) be a set of points in the two-dimensional Euclidean plane
called sites. The plane is then partitioned by assigning every point in the plane to its
nearest site. All those points assigned to pi from the Voronoi region V (pi)

3:

V (pi) = {x : |pi − x| ≤ |pj − x| ∀j 6= i}. (2.27)

The condition in this case is that this site has to be closed. If P contains only three
points: p1, p2, and p3, the diagram contains the bisectors B12, B23, and B31. In this case,
the perpendicular bisectors of the three sides of a triangle all pass through one point, the

3The Voronoi region is not a polygon by our definition of polygon, because it might be unbounded.
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circum centre, the centre of the unique circle that passes through the triangle’s vertices.
However, the circumcentre of a triangle is not always inside the triangle.

If H(pi, pj) is a closed half plane with boundary Bij and containing the point pi, then
H(pi, pj) can be considered as all the points that are closer to pi as to pj. Hence the
Voronoi region V (pi) can be described as:

V (pi) =
⋂
i6=j

H(pi, pj), (2.28)

where the notation implies that the intersection is to be taken over all i and j provided
that i 6= j. Note that the Voronoi regions are convex and, if the regions are bounded,
they are convex polygons. The edges are called Voronoi edges and the vertices Voronoi
vertices, at which a point on the interior of a Voronoi edge has two nearest sites, and a
Voronoi vertex has at least three nearest sites [O’Rourke, 1998].

One of the main characteristics of a Voronoi diagram is the correspondence of the dual
graph of a Voronoi diagram to the Delaunay triangulation for the same set of points P
as illustrated in Fig. 2.6(c). It can also be defined as a triangulation of the sites with the
property that for each triangle the circumcircle C(v) (v is the centre of the circle C(v))
does not contain any other sites.

Other properties are:

• Each Voronoi region V (pi) is convex.

• If pj is the nearest neighbour to pi, then (pi, pj) is an edge of the Delaunay trian-
gulation D(P ).

• If there is a circle through pi and pj that contains no other sites, then (pi, pj) is an
edge of D(P ).

The Voronoi cells can also be defined by measuring distances to objects that are not
points. In this case the Voronoi diagram with these cells is also called the medial axis.
The medial axis is used in segmentation, recognition and other computational applica-
tions, and a simplified version of the Voronoi diagram of line segments is the straight
skeleton [O’Rourke, 1998].

Delaunay Triangulation

The Voronoi diagram V (P ) and the Delaunay triangulation D(P ) are dual structures as
illustrated in Fig. 2.6(b). Each contains the same information, but represents it in another
form. As defined by [O’Rourke, 1998] the properties of a Delaunay triangulation are:

• D(P ) is the straight-line dual of V (P ).

• D(P ) is a triangulation, if no four points of P are cocircular. Every face is a triangle.
This is Delaunay’s theorem. The faces of D(P ) are called Delaunay triangles.

• Each face (triangle) of D(P ) corresponds to a vertex of V (P ).
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(a) (b) (c)

Figure 2.6: Voronoi diagram and Delaunay triangulation of six points: (a) Voronoi dia-
gram with circum circles of the triangles. (b) Delaunay triangulation with circum circles
of the triangles. (c) Correspondence between Voronoi diagram and Delaunay triangulation.
Illustrated with the “Voronoi diagram / Delaunay triangulation” program by Paul Chew.

• Each edge of D(P ) corresponds to an edge of V (P ).

• Each node of D(P ) corresponds to a region of V (P ).

• The boundary of D(P ) is the convex hull of the sites.

• The interior of each (triangle) face of D(P ) contains no sites.

Chapter 5 describes a potential application of the Delaunay triangulation to segment
different objects on a table. At first all table points are detected with a RANSAC-
based [Fischler and Bolles, 1981] plane fit and all remaining points are used to realise
a mesh based on the Delaunay triangulation. All segments (objects) of the generated
mesh are extracted from the mesh by a triangle connectivity filter. This step segments
the mesh into different components.

Surface Reconstruction

A high amount of surface reconstruction methods can be found by reviewing the research
literature. [Boissonnat, 1984] presents a method which labels a subset of the Delaunay
tetrahedra of the surface S as the interior of the solid. Another algorithm based on
the Delaunay triangulation is the α-shape algorithm of [Edelsbrunner and Mücke, 1994].
Hereby α-shapes are a generalisation of the convex hull4 of a point set and for α = ∞,
the α-shape is identical to the convex hull. The disadvantage of α-shapes for surface
reconstruction is as follows: if the sampling is non-uniform it is sometimes impossible to
choose α to balance hole-filling against loss of detail. [Bernardini et al., 1999] developed a
system based on α-shapes while avoiding the computation of the Voronoi diagram, making
reconstruction of larger models possible.

The power crust algorithm for surface reconstruction [Amenta et al., 2001] of 3D mod-
els is a very interesting method, because this algorithm delivers very good results and is
quite fast. It realises a construction which takes a sample of points from the surface of

4A convex hull for a set of points w in a real vector space is the minimal convex set containing w.
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a 3D object and produces a surface mesh and an approximate medial surface axis. The
approach approximates the medial axis transform (MAT) of the object. The medial axis
transform is a skeletal shape representation of the object. It represents a solid by the set
of maximal balls completely included in the interior space rather than by the set of points
on the boundary. Then it uses an inverse transform to produce the surface representa-
tion of the MAT. Fig. 2.75 represents a two-dimensional version of the algorithm. The

(a) (b) (c)

(d) (e)

Figure 2.7: Two-dimensional example of the power crust reconstruction method. (a) An
object with its medial axis. One maximal interior ball is shown. (b) The Voronoi dia-
gram of S with the Voronoi ball surrounding one pole. In 2D it is possible to select all
Voronoi vertices as poles, but not in 3D. (c) The inner and outer polar balls. Outer
polar balls with centres at infinity degenerate to half spaces on the convex hull. (d) The
power diagram cells of the poles. (e) The power crust and the power shape of its interior
solid [Amenta et al., 2001].

disadvantage of this algorithm is the sensitivity to noise and outliers. [Kolluri et al., 2004]
developed the noise-resistant eigencrust algorithm for reconstructing a watertight surface
from point cloud data. The output of this algorithm is a triangulated surface composed
of triangulated faces, where an inside tetrahedron meets an outside tetrahedron. This

5I would like to thank Prof. Nina Amenta from the University of California department of computer
science for providing Fig. 2.7
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procedure guarantees that the output surface is watertight.

2.6.2 Manifold Geometry of Surfaces

This section studies the numerical computation of geodesic distances on Riemannian man-
ifolds. In Riemannian geometry, a Riemannian manifold6 is a real differentiable manifold,
in which each tangent space is equipped with an inner product, which varies smoothly from
point to point. The metric is a positive definite metric tensor, which allows one to define
various notions such as angles, lengths of curves, areas, volumes, curvatures, gradients of
functions, and divergence of vector fields [Hirsch, 1997].

Riemannian Manifold

A parameterised surface is embedded in some Euclidean domain Rk, which allows the
definition of a local metric based on the first fundamental form Iϕ. For an embedded
manifold M⊂ Rk, the first fundamental form is [Gray et al., 1997]:

Iϕ =

(
∂ϕ

∂ui
,
∂ϕ

∂uj

)
i,j=1,2

. (2.29)

It is possible to consider directly a field of positive definite tensors on a parametric
domain D = Rn (normally: n = 2 for surfaces and n = 3 for volumes). A Riemannian
manifold is an abstract parametric space M ⊂ Rn equipped with a metric x ∈ M 7→
H(x) ∈ Rn×n positive definite. Using the Riemannian metric one can compute the length
of a curve (γ(t))Tt=0:

L(γ) =

∫ T

0

√
γ′(t)TH(γ(t))γ′(t)dt. (2.30)

Geodesic Distances

The local Riemannian metric allows the definition of a global metric on the spaceM using
the shortest path, which corresponds to geodesic distances. A geodesic on a surface is a
curve connecting two points that is shorter than any other curve that connects the two
points. This is known as a geodesic curve. The arc length of that curve is called the geodesic
distance [Schneider and Eberly, 2003]. For two points on a plane the shortest distance is
the line connecting the points. For example, an ellipsoid has two paths between antipodal
points and a sphere which has infinitely many paths between two antipodal points. In
general, this is a difficult problem for smooth surfaces. The problem becomes simpler
when restricted to manifold triangle meshes, but it is still difficult to implement.

2.6.3 Multi-Dimensional Scaling

To realise a pose-invariant mesh representation, multi-dimensional scaling (MDS) is used.
MDS [Cazals et al., 2009] is a generic name for a family of algorithms that constructs

6A manifold is a mathematical space that on a small enough scale resembles the Euclidean space of a
certain dimension.
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a configuration of points in a target metric space from information about inter-point
distances (dissimilarities), measured in some other metric space [Bronstein et al., 2006,
Bronstein et al., 2008, Rosman et al., 2008]. In the experiments, dissimilarities are de-
fined as geodesic distances δij between all vertices vi on the mesh M in a symmetrical
dissimilarities matrix ∆ = N ×N between N points on a Riemannian manifold S.

Methods to calculate the dissimilarity matrix more effectively are based on the fast
marching method on triangulated domains [Kimmel and Sethian, 1998] or parametric fast
marching [Spira and Kimmel, 2004].

It will be differentiated between metric and non-metric MDS (Shephard-Kruskal). Met-
ric MDS (see Eq. (2.31)) preserves the intervals and the ratios between the dissimilarities
while the non-metric MDS (see Eq. (2.32)) only preserves the order of the dissimilarities.
The goal is to minimise the embedding error, i.e. minimising the sum of distances between
the optimally scaled data f(δij) and the euclidean distances dij, where f is an optimal
monotonic function in order to obtain optimally scaled similarities. Thereby a stress func-
tion Fs will be used to measure the degree of correspondence of the distances between
vertices given by:

Fsm =

√∑
i6=j

(f(δij)− dij)2, (2.31)

Fsnm =

√∑
i6=j(f(δij)− dij)2∑

i6=j d
2
ij

(2.32)

and each vertex in MDS space corresponds to a vertex in euclidean space.
[Bronstein et al., 2006], [Rosman et al., 2008] developed one of the most efficient algo-

rithms to minimise the stress using an iterative optimisation algorithm (see Eq. (2.33)), the
scaled gradient descent algorithm (SMACOF). A short basic description of the algorithm
is given as follows:

minx
∑
i<j

(dij(X)− δij)2. (2.33)

The gradient of the stress function is:

∇Xs(X) = 2UX − 2B(X)X, (2.34)

where U denotes matrix pseudoinverse,

uij =

{
−1 if i 6= j

N − 1 if i = j
(2.35)

and B(X) is a N ×N matrix depending on X with the elements:

bij =


−δijd−1

ij (X) if i = j and dij 6= 0
0 if i = j and dij = 0

−
∑

j 6=i bij if i = j
. (2.36)

The gradient descent step can be performed with a multiplicative update:

X(k+1) = U †B(X(k))X(k). (2.37)
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The result is a monotonous non-increasing sequence of stress values and is equivalent to
a steepest scaled descent iteration with constant step size. [Rosman et al., 2008] describe
this algorithm to realise MDS in greater detail.

2.7 Grasping

In the last few decades, the problem of grasping novel objects in a fully automatic way
has gained increasing importance in robotics. The following literature review focuses on
the grasping of objects from a biological, psychological, and a technical view.

2.7.1 Biological and Psychological View

This section reviews the selective processing of visual input information for manual reach-
ing and grasping manipulations. First, a biological fundamental model of infant learning
is discussed, followed by different psychological views. The psychological point of view
analyses approaches in object learning by object interacting. Furthermore, the influences
of the object pose for grasping and the effects of potential obstacles on the table during
grasping are discussed. An explicit connection between these views and the developed
grasping method is presented in Chapter 5. Thus the biological and psychological findings
have been integrated in the algorithm for the grasping of unknown objects.

After observing infant movements for a long time the ILGM (Infant Learning to Grasp
Model) found out that early arm movements of infants are related to the development
of object direction reaching which finally leads to grasping. Infants prefer to grasp an
object by visualising the top surface of the object, thus the final grasping pose and the
trajectory to reach the object are directed towards the form and characteristics of the top
surface [von Hofsten, 1982]. The term ILGA (Infant Learning Grasping and Affordances)
contains the visual input provided by the shape of the target object. Visual feedback is
used to bring the fingers into contact with shape features like handles, top surfaces or
task-specific parts of the object.

[Fagg and Arbib, 1998] developed the FARS model, which focuses especially on the
action-execution step. [Aarno et al., 2007] presented an idea that the robot should, like a
human infant, learn about objects by interacting with them, forming representations of
the objects and their categories.

The brain has often been characterised as a sensory-motor interface that selects visu-
ospatial7 information about the environment and transforms it into goal-directed move-
ments. Grasping different objects in different poses is a difficult task, for which hu-
mans have developed a wide variety of movement patterns in the course of their evolu-
tion [Kuhtz-Buschbeck et al., 1998]. Vision is the most important source of information
needed to successfully interact with objects [Schneiberg et al., 2002], and it is impossible
to prepare arbitrarily many movement goals at once.

7“Pertaining to the ability to comprehend visual representations and their spatial relation-
ships” [Mosby, 2009].
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Grasping an object starts with a reach-to-grasp movement that brings the hand
close to the object of interest, followed by a second phase in which the appropri-
ate grasp type is formed and the movement is piloted to the points of applica-
tion [Smeets and Brenner, 1999]. In a manipulation phase, the grasp is stabilised and
grip forces are continuously adjusted to compensate for the changing forces of grav-
ity. [Schulz et al., 2005] developed a prosthetic hand that closely approximates the grasp-
ing abilities of a human hand. The used five-finger hand has 15 DOF driven by small-sized
flexible fluidic actuators.

[Smeets and Brenner, 1999] considered the multiple movement goals with a pattern
analysis where the thumb and index finger point towards selected positions on the surface
of an object. Object features, such as: weight, surfaces or the centre of gravity are relevant
object information for a successful grasping process and cannot be obtained only by visual
information.

[Johansson et al., 2001] studied eye-hand coordination during grasping. During the
experiments their participants initially had to grasp a bar and then to use it to press
a button without colliding with an obstacle along the transportation path. How-
ever, [Brouwer et al., 2009] pointed out that in this task setup only one point of appli-
cation was visible to the actor, the second contact point was occluded by the rear side
of the object. From this point of view, the study of course cannot resolve the question
of which surface parts of an object are visually selected before or during grasping move-
ments. [Brouwer et al., 2009] further investigated the fixation behaviour of human actors
during grasping under conditions where all potential grasping points of application were
clearly visible. An interesting result of their work is that open fixation behaviour in a
grasping task becomes different from gaze control in a free-viewing condition. Another
result is that the initial fixation can select only one of the two points of interest, the applica-
tion points of index finger and thumb. They relied on the fact that thumb and index finger
presumably play different roles in precision grasps. Previously it had been shown that the
thumb generally guides the hand to the object, whereas the index finger seems to be used
in order to regulate the hand’s aperture during the final grasping phase. Nevertheless, the
gaze can only be at one location at a time and the span of time to complete the reach-
to-grasp movement is not sufficiently reached to scan the object. [Brouwer et al., 2009]
claims that the centre of gravity of the object also has an essential effect.

Normally, we do not act on isolated objects but often in cluttered or even crowded visual
environments. The presence of an obstacle plays an important role for the visual prepa-
ration and the motor programming of a successful grasp. Obstacles need to be actively
avoided and therefore integrated into the action plan [Tresilian, 1998, Tresilian, 1999].

[Tresilian, 1998] showed that people generally keep their hands outside of a region that
surrounds the obstacle by a minimum preferred distance. Several studies have shown
that the initial reaching component takes longer if an obstacle is present than com-
pared to the same movement executed without any obstacles [Biegstraaten et al., 2003,
Jackson et al., 1995].
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2.7.2 Technical View

This section summarises grasping from a technical point of view. The described methods
are separated into the learning of objects, 2D and 3D input data based algorithms, path
planning, a grasp simulator to check potential grasps, and grasp affordances.

[Saxena et al., 2008] have developed a learning algorithm that predicts the grasp po-
sition of an object directly as a function of its image. Their algorithm focuses on the
task of identifying grasping points that are trained with labelled synthetic images of a
different number of objects. [Detry et al., 2009] addressed the problem of learning and
representing object grasp affordances. They analysed learned grasp hypothesis densities
from both imitation and visual cues, and presented grasp empirical densities learned by a
robot from physical experience. [Speth et al., 2008] propose fast 2D contour-based grasp
planning algorithms. Images of the target object from different points of view are used to
recover critical 3D information like the size, location and the pose.

[Kragic and Bjorkman, 2006] have analysed a vision-guided grasping system. Their
approach is based on integrated monocular and binocular cues from five cameras to pro-
vide robust 3D object information. The system is applicable to well-textured, unknown
objects. A three fingered hand equipped with tactile sensors is used to grasp the object
in an interactive manner. [Bone et al., 2008] presented a combination of online silhouette
and structured-light 3D object modelling with online grasp planning and execution with
parallel-jaw grippers. Their algorithm analyses the solid model, generates a robust force
closure grasp and outputs the required gripper pose for grasping the object. They consider
the complete 3D model of one object segmented into single parts. After the segmentation
step each single part is fitted with a simple geometric model. A learning step is finally
needed in order to find the object component that humans choose to grasp.

[Stansfield, 1990] presents a system for grasping 3D objects with unknown geom-
etry using a Salisbury robotic hand placing every object on a motorised and rotat-
ing table under a laser scanner to generate a set of 3D points combined to form a
3D model. [Wang and Jiang, 2005] have developed a framework of automatic grasp-
ing of unknown objects by using a laser range scanner and a simulation environ-
ment. [Boughorbel and Zhang, 2007] have observed industrial bin picking tasks and have
developed a system that provides accurate 3D models of parts and objects in the bin to
realise precise grasping operations, but their superquadrics based object modelling ap-
proach can only be used for rotationally symmetric objects. [Richtsfeld and Zillich, 2008]
have published a method to calculate possible grasping points for unknown objects
with the help of the flat top surfaces of the objects based on a laser range scan-
ner system. However, different approaches for grasping quasi planar objects ex-
ist [Sanz et al., 1999]. [Huebner et al., 2008] have applied a method to envelop given 3D
data points into primitive box shapes by a fit-and-split-algorithm with an efficient mini-
mum volume bounding box. These box shapes give efficient clues for planning grasps on
arbitrary objects. Another 3D model-based work is presented by [El-Khoury et al., 2007].

The problem of automatic grasp generation and planning for robotic hands have been
analysed by [Ekvall and Kragic, 2007]. Shape primitives are used in synergy to provide
a basis for a grasp evaluation process when the exact pose of the object is not available.
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The presented algorithm calculates the approach vector based on the sensory input and,
in addition, tactile information that finally results in a stable grasp. “GraspIt!”, an in-
teractive grasp simulator for different hands, hand configurations and objects has been
developed by [Miller and Allen, 2004]. In the beginning they use shape primitives, by
modelling an object as a sphere, cylinder, cone or box [Miller and Knoop, 2003]. A set of
rules to generate possible grasp positions is used. [Xue et al., 2008] applied this simulator
for an initial grasp by combining hand pre-shapes and automatically generated approach
directions. Their approach is based on a fixed relative position and orientation between
the robotic hand and the object, all the contact points between the fingers and the ob-
ject are efficiently found. A search process tries to improve the grasp quality by moving
the fingers to the neighbouring joints and evaluates the grasp quality. [Borst et al., 2003]
show that although it is not necessary in every case to generate optimal grasp positions,
they reduce the number of candidate grasps by randomly generating hand configuration
dependent on the object surface. Their approach works well if the goal is to find a fairly
good grasp which is suitable and as fast as possible. [Goldfeder et al., 2007] present a grasp
planner which considers the full range of parameters of a real hand and an arbitrary object
including physical and material properties as well as environmental obstacles and forces.

A framework for the development of robotic applications on the synthesis and execution
of grasps has been created by [Recatalà et al., 2008]. [Li et al., 2007] realised a data-driven
approach for grasp synthesis. Their algorithm uses a database of captured human grasps
to find out the best grasp by matching hand shape to object shape.
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Chapter 3

Seam Following for Automated
Industrial Fibre Mat Stitching

“Nothing shocks me. I’m a scientist.”
– Harrison Ford as Indiana Jones

In 1961, the first industrial robot “Unimate” joined the assembly line at a General Motors
plant to sequence and stack hot die-cast metal components [Nocks, 2007]. Since that time,
the robot has been increasingly applied in different fields of industrial automation. Robots
that are able to do a variety of different tasks in sequence, like picking up an object from
defined places, performing manufacturing tasks such as assembly, inspection, welding or
painting, and moving it to another defined place are more useful than those that can do
only one job. To realise a higher flexibility of the robots and to operate in more complex
production environments sensors are mounted on the robots. The most suitable sensors
for a robot to work autonomously are vision systems. In the last few decades a lot of
research work has been done with the aspect to realise a robotic lot-size-one production.

The introductory chapter of this thesis starts with an industrial project of automated
fibre mat stitching based on range image processing dealing with low batch sizes. In this
project “REDUX” (Continuous Process Chain for Robot Stitched Preforms) sensors are
used to interact with the robot control unit for a fully automatic stitching process. Carbon
fibre mats are draped on a model and stitched together by a sewing robot. A laser range
sensor is mounted in front of the sewing head to guide the robot along the carbon fibre
edges. The novel contribution to this project is a fully automated sensor guided sewing
robot for carbon fibre textiles. During the stitching process, these sensors detect possible
obstacles and adjust the trajectory along the edges of the mats in relation to a given
distance between the seam and the edge.

This chapter summarises the defined tasks, describes the system for carbon fibre mat
stitching, presents the newly-developed method to realise robust edge detection and track-
ing, and finally discusses the results.

31



3. Seam Following for Automated Industrial Fibre Mat Stitching

3.1 Project REDUX

Today, automobile and aeronautics industry increasingly use robust and light weight parts
made of Carbon Fibre Reinforced Polymer (CFRP). Besides the mechanical properties,
CFRP elements have the advantage of integrating external elements easily into the CFRP
elements due to the specific production process. Several different production techniques for
CFRP elements are possible. However, the production of small batches or single elements
is a time-consuming and complex task.

Under the leadership of EADS1 Deutschland GmbH, a research union of industrial and
scientific partners was formed in October 2005 to improve the production process of CFRP
elements. The project was called REDUX2 and the main goal was to gain a higher degree
of automation during the production process. The name “REDUX” was chosen as an
acronym for the German “Realisierung einer durchgehenden Prozesskette zur effizienten
Produktion von CFK-Strukturen in textiler Preform- / RTM-Technik”.

A continuous process chain for robotic stitching of preforms from CAD (Computer
Aided Design) planning to the final output was developed to realise a simpler production
of prototypes. Robust and light weight components are manufactured by infiltrating the
carbon fibres with resin.

Teach-in programming to specify different points on the trajectory for a flexible pro-
duction is no longer state-of-the-art. Sensors are used to interact with the robot con-
trol unit for a fully automatic process [Sim et al., 2002]. Using such a visual approach,
a higher reproducibility and precision of the seams is expected [Richtsfeld et al., 2007a,
Richtsfeld et al., 2007c, Biegelbauer et al., 2007].

The main part of this work was to find a reliable and robust method to detect the
different edge types between two overlapped carbon fibre layers, because this data is the
main perceptive input for the robot control unit.

3.1.1 CFRP Composites Production Process

Carbon fibres are available in many different forms and there are many types of carbon
fibre mats, e.g. unidirectional mats, where all fibres are oriented in the same direction
or woven and plaited mats, where the bundles of fibres can be layered and oriented in
the opposite direction. Fig. 3.1 shows an example of such carbon fibre mat. The white
fibres hold and stabilise the black and reflective fibre texture. Different impregnation
techniques can be used to infiltrate the preform with the resin matrix. The most popular
techniques are the Resin Transfer Moulding (RTM) and the Vacuum Assisted Process
technique (VAP).

The Resin Transfer Moulding (RTM) technique is a frequently used technique in the
group of Closed Moulding or Resin Injection techniques [Murphy, 1998]. RTM describes
a system in which the mat is placed in a mould and then the mould is closed by a counter
mould. After this step the liquid resin is injected through an intake and another aperture

1European Aeronautic Defence and Space Company, http://www.eads.com
2This project was founded by the German Federal Ministry of Education and Research (Project No.:

01RI05089 - 01RI05096) and by the Austrian Science Foundation (Project No.: 810568/1553 SCK/SAI).

32

http://www.eads.com


3. Seam Following for Automated Industrial Fibre Mat Stitching

Figure 3.1: Example of carbon fibre mats.

is used to exhaust air from the closed mould. The composite is cured inside the closed
mould and the mould can be heated to shorten the cure time. During the injection step,
the resin is either pumped into the mould or drawn by a vacuum. After the cure process
the finished cured element can be removed.

A special form of Open Moulding techniques is the Vacuum Assisted Process
(VAP) [Li et al., 2004] method. The mat is placed onto a mould and a special mem-
brane is mounted over the element. Next the assembly is sealed and a connected vacuum
vent draws the resin into the carbon fibre mats.

Other techniques to apply the matrix to the carbon fibres are to spray the resin on the
mats inside a mould or to apply the resin by hand using a hand roller. These and several
other techniques can be found in [Murphy, 1998].

However, the gluing of these carbon fibre mats stresses the parts in the final hardening
step and thus a new method is needed to improve the preforming process. Sewing instead
of gluing increases the final properties and achieves better solidity and durability.

Over the last few years several different automated sewing machines and robots have
been developed by garment industries [Krockenberger and Nollek, 1991, Gershon, 1990],
whereas a robotic sewing machine handling carbon fibres has only just been pro-
posed [Filsinger et al., 2003]. There is a difference between one side stitching with two
needles [Witting, 2001], tufting [Sickinger and Hermann, 2001], and blind stitching tech-
nologies [Dewing et al., 1999].

In 2001, Witting presented a one side stitching technology with two needles. The
thread is sewn under the material as illustrated in Fig. 3.2.

In 2001, Sickinger described another one side stitching method using tufting technology.
Fig. 3.3 shows that the thread is stuck into the material by a needle and stays there due
to friction forces and Fig. 3.5(a) shows a tufting head made by KSL3.

3KSL Keilmann Sondermaschinenbau GmbH, http://www.ksl-lorsch.de
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(a) (b)

Figure 3.2: One side stitching principle with two needles: (a) one side stitching nee-
dles; (b) stitch pattern [Witting, 2001].

Figure 3.3: The tufting principle [Sickinger and Hermann, 2001].

Single side stitching offers many opportunities for composites. First, one has to dis-
tinguish between two different kinds of stitching methods: the structural method, which
improves the mechanical properties of composites, and the assembly method, which in-
volves stitching in order to enhance handling of the so called preforms. The advantage of
this technology is the accessibility to the preform. In 1999, Dewing described an industrial
robot capable of blind stitching, a technology where the thread is moved into the material
by a curved needle [Dewing et al., 1999]. The stitching head mounted on the robot is
patented as “Blind stitching apparatus and composite material manufacturing methods”.
Fig. 3.4 shows the principle of blind stitching and the stitch pattern and Fig. 3.5(b) shows
a blind stitching head.

First industrial applications such as the Airbus A380 rear pressure bulkhead as illus-
trated in Fig. 3.6 have been realised by SAERTEX4 and KSL have shown the potential
of blind stitching technology (see Fig. 3.7). Note that the stitching head is mounted on a
portal and the sewing process is performed in 2D [Filsinger et al., 2003].

However, for 3D applications, the need for higher flexibility is obvious. One possible
way to achieve this goal is to use an industrial robot with a stitching head adopted for
robotic applications and a laser stripe sensor mounted on the stitching head. In this new
system, faults in the seam track due to imprecise mat cutting or application to the model
should be minimised.

4SAERTEX GmbH and Co. KG, http://www.saertex.com
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(a) (b)

Figure 3.4: The blind stitching principle: (a) blind stitching needle; (b) stitch pat-
tern [Steinhilber, 2006].

(a) (b)

Figure 3.5: Sewing head, equipped with a: (a) tufting system; (b) blind stitching system.

3.1.2 System Overview

The goal of REDUX is to realise a continuous process chain for robot stitching preforms
starting with CAD design and continuing with the application of carbon fibre mats until
the end product is achieved. After the design of the CFRP element, a stitching track will
be included into the CAD model. Then the fibre mats are cut and inserted into the model
or draped onto the negative model and a stitching robot will sew the mats as specified in
the CAD model. The application of the sensor guided stitching process makes it possible
for the robot to handle minor inaccuracies autonomously. This becomes essential when
the carbon fibre mats are not precisely draped onto the model and the fibre mat edge
deviates significantly from the CAD path planning. These stitching programs are created
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Figure 3.6: Airbus A380 rear pressure bulkhead fabricated with CFRP composites.

Figure 3.7: Portal sewing machine.

by an offline programming tool and are uploaded to the robot control unit. To achieve edge
tracking, a laser stripe sensor is mounted on the stitching head to facilitate an autonomous
path followed by the robot as illustrated in Fig. 3.8. Sensor data processing detects the
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seam and sends the actual edge position to the robot control unit, which transfers the
deviation of the desired path to the robot and with this information the robot corrects the
position of the stitching head online.

Fig. 3.8 shows a blind stitching head realised by KSL, which is mounted on a KUKA5

125/2 robot. This 6 axis articulated robot can handle loads up to 125kg at an arm length
of 1000mm and has a repeatability accuracy of ±0.2mm. The maximum speed of the robot
is 2m/s. Fig. 3.9 gives an overview of the control loop for the edge detection process.

Figure 3.8: Industrial stitching robot with blind sewing head. The sewing head is equipped
with three different sensors to correct the sewing path and to determine the seam quality
directly after the sewing process.

To control the stitching process depending on the information of the sensors, a control
system merges the information from all sensors and the desired stitching track to an actual
movement track sent to the robot as illustrated in Fig. 3.10.

Fig. 3.8 shows three sensors mounted on the sewing head. Two sensors determine
the position and orientation of the carbon fibre mats to be sewed and the QA (quality

5KUKA Robotics, http://www.kuka-robotics.com/usa/en
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Figure 3.9: Robot guiding control loop.

assurance) sensor determines the seam quality after sewing. The determination of position
and orientation is carried out by a tactile sensor and a laser stripe sensor. The tactile sensor
gives information about the vertical distance between the sewing head and the surface.
The objective of the laser stripe sensor is to give information about the horizontal position
of the desired sewing track.

Figure 3.10: System components.

Then the real edge position is transmitted to the robot control unit. The robot control
unit compares the desired distance between the seam and the edge, determined by the
CAD data and the transmitted distance. The control unit includes this information in
the desired sewing track and corrects the coordinates of the seam track to the current
edge position as illustrated in Fig. 3.11. The correction of the sewing track is performed
continuously to realise the permanent correct sewing path.

Robust edge detection and tracking for different types of edges in order to control the
robot motion is needed. The difficulties to handle are the black and reflective carbon
fibres, an edge height less than 0.5mm, and outliers caused by spiky filaments. Fig. 3.12
shows typical profile data. An additional requirement is to detect the edges at a minimum
rate of 30Hz to enable a reasonably fast seaming.

Summarising to the best knowledge of the author, the system described in this
chapter is the first one using a laser range sensor for fully automated carbon fibre
sewing. It is standard for the task of robotic seam tracking to use the laser range
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Figure 3.11: Correction of the sewing path with sensor information [Schöffmann, 2008].

Figure 3.12: Close-up view of different laser stripe profiles including the edge. The edge
to be detected is indicated with a red ellipse.

sensors mainly applied in welding applications [Pritschow et al., 2002]. With welding
applications, the seams are geometrically well defined and comparatively easy to de-
tect in the range data because there is no reflection. Nevertheless, first attempts
have been made following textile seams on a planar workplace using a CCD cam-
era [Gershon and Porat, 1988]. Meanwhile, vision systems in textile robotics are mainly
used to check the quality of the seam after the sewing process because the sewing thread
is clearly visible [Dorrity, 1995, Bahlmann and Heidemann, 1999].

The sensors used in this special application have been developed and produced by the
company Falldorf Sensor6 GmbH. In the beginning, the standard “Base Sensor”, which

6Falldorf Sensor GmbH, http://www.falldorfsensor.de

39

http://www.falldorfsensor.de


3. Seam Following for Automated Industrial Fibre Mat Stitching

produces a 2D profile of the carbon fibre surface was used as illustrated in Fig. 3.13(a).
Later on, a newly developed range sensor the “3 Lines Sensor”, which produces two 2D
profiles of the carbon fibre surface was preferred. The first scan line is fixed and the second
scan line is alternately switched between the two positions. The setup of the new laser
stripe sensor and the stitching head is presented in Fig. 3.13(b).

(a) (b)

Figure 3.13: Detailed overview of the laser stripe sensor on the left and the stitching head
on the right: (a) Standard “Base Sensor” with one laser scan line. (b) Newly developed
“3 Lines Sensor” with the 1st fixed laser scan line and the 2nd laser scan line is alternately
switched between two positions.

The next section presents the proposed method in detail and starts with the flow chart
of the framework in Fig. 3.14 of the overall approach. It shows the main processing steps
from the required range image of the sensor to the actual edge position sent to the robot
control unit per XML data packages.

The method starts with a profile pre-processing step followed by the edge detection,
and edge prediction step. The normalisation of the laser stripe profiles is necessary to
handle the different profiles and to guarantee that every method is able to work on this
input data. For a robust edge detection and voting an edge is classified as detected cor-
rectly if at least two out of three methods find the edge within a certain tolerance. To
increase the detection rate, several profiles are considered depending on the robot veloc-
ity. The robot control unit needs the actual edge position to correct the path trajectory
every 100ms. The sampling rate of the laser range sensor varies from 30Hz to 100Hz,
depending on the reflectivity properties of the carbon fibre mats, and adjusts the expo-
sure time as necessary. Therefore, three to ten profiles are available to determine the
correct edge position. Assuming linear fibre mat edges inbetween two sampling instances
of 100ms, all detected edge positions - including the last transmitted edge position - are
used for edge prediction. The final edge point is selected by using a RANSAC-based line
fit [Fischler and Bolles, 1981]. Additionally, this increases robustness of edge detection.
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Figure 3.14: Flow chart of the edge detection approach. The interrelation of the main
processing steps of the control loop are illustrated.

3.2 Profile Pre-Processing

The laser stripe sensor delivers unfiltered point clouds that exhibit a non-linear relation-
ship between the pixel (px) position in the camera frame and the real world distance as
illustrated in Fig. 3.17(a). The height profile is transformed from camera coordinates to
real world coordinates, which is solved by a bilinear transformation using a look-up table
and a defined calibration object. The calibration object is scanned from different distances
and the profiles are evaluated. The resulting look-up table describes a curve progression
between the pixel (px) distance and the real world distance in mm. This curve is used to
determine a function 4th order for the conversion. In practice this method allows a flexible
possibility of calibrating different sensors on the same system.

The task of profile pre-processing is to filter the data from the sensor, normalise curved
and slanted profiles as illustrated in Fig. 3.15, and fill the holes caused by the filtering
procedure.

To eliminate the worst outliers and noises, the laser range data of one profile is filtered
sequentially by a geometrical filter. Geometric filtering is the most effective filter technique,
whereas the histogram filter tested achieved comparatively bad results. The geometric
filter analyses each data point and counts how many more data points in the neighbourhood
occur within a certain rectangular distance window.

The second task of profile pre-processing is to handle the different types of profiles,
shown in Fig. 3.15. In practice, as demonstrated by manufacturing examples, data align-
ment is required to obtain a flat profile. This step is necessary to apply global edge
detection methods. Global methods for edge detection work with the complete set of raw
data points of one laser stripe profile, whereas local methods only take a small number of
pixels from the profile. Thus the algorithms for global methods cannot find the edge of
convex/concave or slanted edges [Lee and Park, 1990].

To normalise the different profiles, a quadratic least-squares fit is used, as in Fig. 3.16.
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Figure 3.15: Types of different edges and no edge types.

This least-square distance function fits the curve to the profile data by finding the minimal
distance to all data points. The curve fitting preserves the edge and a normalised data
profile is generated.

The drawback is that the original information about the height related to the distance
of the sensor to the fibre mat is lost. To avoid this, the original unchanged data is saved
in the system together with the new normalised data profile.

As a direct result of normalising the data, the holes caused from the previous filtering
step can be filled by connecting boundary points with horizontal lines without causing
artificial edges.

Figure 3.16: Normalisation of the laser stripe profile in the pre-processing step.

3.3 Edge Detection for Automated Robot Stitching

This section describes how to detect the edge between overlapping carbon fibre mats in
normalised profiles. Of utmost importance is to obtain reliable detections over the range
of different profiles in real-time. The idea to increase the detection rate is to use voting
over three complementary individual edge detection methods, an approach taken when
building dependable systems for aviation. Specifically, an edge is classified as detected
correctly if at least two out of three methods find the edge within a certain tolerance of
1mm. The complimentary methods implemented are:

• Model-Fitting: global least-squares fitting of an edge model. This is adapted
from [Suetens et al., 1992] and works on the complete profile. Instead a profile pre-
processing step is essential.
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• Local Weighted-Voting: the neighbouring pixels of pre-selected edge candidates give
their vote, weighted with the edge height. This local method works on a small subset
of pixels and also achieves good results without a normalisation step.

• Gradient-Accumulation: sums up the gradient magnitude calculated with an
increasing kernel size. It is inspired by the Roberts operator [Roberts, 1965] and
mixes the global with the local approach.

Fig. 3.17(b) shows the noise of 256 unfiltered scan lines. The edge detection results of
all three individual methods are illustrated in Fig. 3.17(b).

(a) (b)

Figure 3.17: (a) Unfiltered 256 scan lines: a noise is clearly visible. The particularly dark
and bright coloured area is the correct step edge of two overlapped carbon fibre mats. (b)
Edge detection results of all three implemented individual methods based on filtered scan
lines. The detected edges of the model-fitting method are green, of the local weighted-voting
method blue, and of the gradient-accumulation method coloured red.

The following subsections present the proposed edge detection methods in detail. The
methods are based on laser stripe profiles with a length of 1024px.

3.3.1 Model-Fitting

In model-based recognition the target object shape is represented by its geometry: e.g.
a template represents an object as a rigid curve or an image. The advantage of model-
fitting is that the model encodes the object shape, thus allowing predictions of image
data. Coincidental features have less chance of being falsely recognised. To find the
optimal template location, a metric or a similarity measure is necessary that reflects how
well the image data matches the template [Suetens et al., 1992].

For an explicit description, the raw data points of a profile scan are defined as f(i)
and the model function of a positive step edge is used. Comparing the right column of
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Fig. 3.15 you will see the red-marked step edge, which illustrates such a model in Fig. 3.18.
The height of the minimum and maximum pixel is given by:

h(i, j) =

{
min(f(i)), i < j
max(f(i)), i ≥ j

, (3.1)

where j is the position of the edge. The least-squares sum of a desired edge position
is:

S(j) =
m∑
i=1

d(i, j)2, (3.2)

where m is the length of the profile line and d(i, j) the distance function:

d(i, j) = f(i)− h(i, j). (3.3)

Finding then the best fit, all pixel positions in the profile scan are evaluated and the
one with the smallest sum wins:

arg min
1≤j≤m

S(j). (3.4)

Fig. 3.18 illustrates this method with an example scan line of 1024px. Note, due to
computational efficiency, a prediction of possible edge candidates is previously passed.

Figure 3.18: Illustration of the model-fitting method.

3.3.2 Local Weighted-Voting

The proposed approach works as a local method using weighted-voting of every pixel in a
neighbourhood of the considered edge using a kernel size of usually n = 75px. Initially, a
prediction of potential edge candidate points is made by calculating the absolute difference
of neighbouring pixels. The first 30 most significant edge candidate points are used for
further processing. Considering a positive step edge, the edge height – respectively the
gradient – of each edge candidate is calculated with:

w(j) = |max(f(j + k))−min(f(j − k))|, 1 ≤ k ≤ 3. (3.5)

To further improve robustness, the following constraint was exploit. As already men-
tioned, spiky carbon filaments cause short but large step edges. To handle these unwanted
edges the local average is calculated with:

a(j) =
1

2n+ 1

j+n∑
i=j−n

f(i) (3.6)
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and all points which are above the average on the left side of the positive step edge
or below the average on the right side of the positive step edge obtain no weight for the
voting process. Hence, the voting function is written as:

v(i, j) =


j − i, (i < j) ∧ (f(i) < a(j))
i− j, (i > j) ∧ (f(i) > a(j))

0 , (i > j) ∧ (f(i) < a(j))
0 , (i < j) ∧ (f(i) > a(j))

(3.7)

with a voting factor i− n, respectively i + n, rating pixels stronger that are far away
from the edge position. Thus pixels with a larger distance to the edge position get a higher
weight, which is reasonable for strong frayed edges. The weighted voting sum is finally
given by:

S(j) = w(j)
n∑

i=−n

|v(i, j)| (3.8)

and the edge with the maximum sum ’considering only the pre-selected 30 edge can-
didates’ wins:

arg max
1≤j≤30

S(j). (3.9)

Fig. 3.19 illustrates this method with an example scan line with 1024px. Note that
sometimes several fibres can be disconnected from the edge and then two new additional
step edges are build. With this simple local method, the hit probability to detect the
correct edge by abnormal normalised scan lines is higher compared to the model-fitting
and the gradient-accumulation method.

Figure 3.19: Edge detection result of the local weighted-voting method.

3.3.3 Gradient-Accumulation

Generally, the position of a step edge is characterised through the maximum peak of the
first derivative. Inspired by the Roberts edge detector [Roberts, 1965], the scan line can
be expressed as the continuous height function f(x). Fig. 3.20 illustrates this method with
an example scan line with 1024px.

Hence, the magnitude of the gradient is given by:

g(x) =
∂f(x)

∂x
. (3.10)
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Figure 3.20: Illustration of the gradient-accumulation method.

Because of the pixel quantisation of the profile scan, the gradient has to be calculated
on discrete values and can therefore be approximated with:

g(i) = |f(i+ n)− f(i− n)|, (3.11)

where n is the kernel size for the approximation, usually n = 1. Applying the gradient
filter of Eq. (3.11) on the noisy profile raw data f(i) results in a gradient function g(i). Due
to the small edge height compared to the noise, no significant gradient peak indicating the
edge position can be detected. With the classical approach, outliers and artefacts cause
larger peaks than the edge itself and detection will fail. Increasing the kernel size n does
not change this fact.

Considering the fact that the algorithm is searching for a global step edge corrupted
with noise, a multi-scale gradient calculation will suppress the noise of the local outliers
and artefacts in the range data. Summing up the gradient functions for each pixel position
with different kernel sizes, the correct edge is determined as illustrated in Fig. 3.21. The

Figure 3.21: Result of the gradient-accumulation method after 10 iteration steps, the de-
tected scan line is highlighted.

modified function G(i) calculates the accumulated gradients using increasing kernel sizes:

G(i) =
n∑
k=1

|f(i+ k)− f(i− k)|, (3.12)

where n is the kernel size. Using a kernel size of 10% of every scan line has been found
to be optimal with respect to the calculation time and performance, based on the testing
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of several thousand profiles. Finally, the maximum of G(i) localises the position of the
edge. A more detailed description of this method can be found in the master thesis of
Walter Wohlkinger [Wohlkinger, 2007].

3.4 Edge Prediction

The three edge detection methods described above are executed independently on each
profile. The idea is to use two out of three voting to obtain a dependable result. The edge
of one profile is considered as successfully detected if at least two of three methods locate
the edge within a certain tolerance of 1mm. The evaluation in Section 3.6 and Section 3.7
will show that, due to the noisy raw data, the edge detection based on a single profile is
still not satisfactory. To further increase the detection rate, several profiles are considered
depending on the robot velocity.

The robot control unit needs the actual edge position for correcting the trajectory every
100ms. The sampling rate of the laser range sensor varies from 30Hz to 100Hz depending
on the reflectivity properties of the carbon fibre mats. Therefore, three to ten profiles are
available to determine the correct edge position as illustrated in Fig. 3.22. Assuming linear
fibre mat edges inbetween two sampling instances (100ms), all detected edge positions –
including the last transmitted edge position – are used to smooth the final edge position.

Figure 3.22: Edge prediction to find the next edge position for the robot control unit.

The final edge position is predicted by using a RANSAC-
based [Fischler and Bolles, 1981] line fit. This further increases the robustness of
edge detection as presented in Section 3.6.

3.5 Detection Algorithm Improvements

Two improvements are realised for the edge prediction step. The first one is a more
stable way for the two out of three voting, because each of the three methods shows
higher values at the edge position and this position produces the highest peak of the
accumulated weights. By then the closest two edges inside a defined threshold have been
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used to calculate the final edge position. The second improvement is a more robust way
to predict potential edge positions.

During the tests directly on the robot with the robot control unit one failure occurs.
The adjustment of the sensor head calculated by the control unit was too fast. Thus, the
scan line of the sensor mounted in front of the sewing head looks in the wrong direction,
causing the edge prediction with the line fit to find the false edge position. To correct
this incorrect edge prediction, the line fitting method is cancelled and an edge prediction
based on a probability analysis is implemented. Using this method the edge detection rate
improves.

3.5.1 Sum of Weight Function

As already described above, each algorithm calculates the most probable edge position and
the resulting edge positions are then combined to one single result. If incorrect results are
produced by the algorithm, these results have their origin in the analysed scan lines. In
which case, the feature of an interfering fibre, noise or outliers which could not be filtered
would be more significant than the actual edge.

Each of the edge detection algorithms focuses on different data features to calculate the
edge position. If the algorithms are not able to find the correct position due to multiple
influences, the highest significance of a potential edge position with all three methods is
calculated. The calculated weight functions of all three algorithms are summed up before
the position of the highest significance is searched and the weight values are accumulated.
Each of the three algorithms shows higher values at the edge position, producing the
highest peak of the accumulated weights. Meanwhile, the peaks of interferences do not
obtain the weights of each algorithm and consequently have a lower peak as illustrated
in Fig. 3.23. All three algorithms determine the edge position probability values in dif-
ferent magnitudes, so the values are normalised before summing the weights. Otherwise
the impact of the different algorithms on the result would be unequal. The position de-
termination of the algorithms is replaced. The minimum in the model-fit algorithm is
exchanged by:

wmf(j) = 1− S(j)

max(S(j))
. (3.13)

Here the values of the weighting function are normalised by division through the max-
imum value of the function and subtracted from one, since the smallest error sum charac-
terises the best model-fit.

The calculation of the highest voting sum is replaced by the normalised function of
voting point accumulations. The normalisation is performed through division by the max-
imum voting sum. The new weighting function for the local weighted-voting algorithm
can be written as:

wlwv(j) =
S(j)

max(S(j))
. (3.14)

The result of the gradient accumulation algorithm is replaced in the same way. The

48



3. Seam Following for Automated Industrial Fibre Mat Stitching

Figure 3.23: Accumulation of three algorithm results with several incorrect max-
ima [Schöffmann, 2008].

normalised weighting function of the gradient accumulation algorithm is:

wga(j) =
S(j)

max(S(j))
. (3.15)

Now, the final result combining the single findings of the three different algorithms can
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be performed by summing up the individual normalised weighting functions:

W(i) = wmf(i) + wlwv(i) + wga(i) (3.16)

and the edge position with the highest summed weight of all m (between 3 and 10
depending on the sampling rate of the laser) detected edge positions is calculated by:

arg max
1≤i≤m

W(i). (3.17)

As described in [Schöffmann, 2008], this procedure is more robust against false positive
edge detections, since less dominant edge positions are strengthened against dominant
interferences.

3.5.2 Weighting Influence by Historic Edge Positions

Above a method to smooth the edge detection results with a line fit was described. The
positions of every edge step are assumed not to change rapidly and so a line fit is calculated
for the past three to ten edge findings. The calculation of the line fit omits far off outliers
by using the RANSAC [Fischler and Bolles, 1981] algorithm. In Fig. 3.24 the successive

Figure 3.24: Gray value scan data image with stable edge positions.

scan data of a carbon fibre mat is illustrated as gray value image. The edge between two
mats can easily be seen as transition from dark gray to light gray. The calculated final
edge positions are marked with white dots. It can be noticed that the edge steps are along
a straight line. This data set results from a scan recording where the sensor head was
moved over the edge of overlapped fibre mats along a straight line. However, if the sensor
is attached to the sewing head and the edge detection is performed, the results of the edge
detection are used to correct the seam path. The adjustment of the robot head by the
robot control unit will be realised by the sensor.

This situation can be seen in Fig. 3.25. A metal ruler was attached to a carbon fibre
mat to simulate an edge. An edge modification in the shape of a half circle was clipped
to this ruler, while the CAD seam track data showed a straight path. The darker area in
the image represents the ruler, the lower part is the gray scale image of the carbon fibre
mat. The area between the red marker lines shows the half circle of the edge modification
recorded by the laser stripe sensor. The information about the divergence to the CAD
data was processed by the robot control unit and the robot head was moved to the right
side. In relation to the sensor, the ruler moved to the left side, which can be seen in the
area marked with blue lines. The area of the adjustment is slightly larger because the
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Figure 3.25: Gray value scan data image with mirrored correction movement.

correction is smoothed. The difference ∆t between the first occurrence of the modification
in the data and the beginning of the adjustment represents the distance between the scan
line and the centre of the sewing sledge in relation to the movement speed. Here the
scan line was approximately 80mm in front of the seam centre. The scan data shows a
shifting in the edge position at a moment where the edge in reality always is at the same
position. In this experiment, the robot head was only laterally shifted and not rotated. In
the final setting, the robot head is supposed to rotate to achieve the correct adjustment.
This rotation in the centre has even more impact on the sensor data, since if the distance
between centre and laser line is 80mm, a rotation of only 10◦ results in a shifting of
the edge of 14mm. Assuming if there are many minor adjustments during the stitching
process, it can be concluded that the edge positions in real life scan data are not situated
on a straight line. Therefore the basis for edge prediction by a line fit is not given any
longer.

An alternative solution was searched to utilise the information about the previously
found edge positions. The condition that the edge position in the real world system
does not change abruptly is still valid, although the representation in the sensor data is
more volatile than previously assumed. In the following, an algorithm for including the
information of edge positions into the prediction of a new position is presented.

If x and x1 are two points on a line, the Gaussian function:

fx = e−
(x−x1)2

2σ2 (3.18)

weights the distance of x to the point x1. A point x close to x1 gets a higher value, a
point further away a lower value, depending on the parameter σ which defines the width
of the Gaussian bell curve. Fig. 3.26 shows the Gaussian bell curve to weight the distance
of x to x1. If h(t) is a list of previously detected edge positions and n the length of the
history list, h(1) is the oldest detected edge and h(n) the latest detected edge stored in
the list. Thus:

gx =
n∑
t=1

te−
(h(t)−x)2

2σ2 (3.19)

gives the value of closeness to each of the stored edge positions and additionally adds
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Figure 3.26: Gaussian bell curve weighting (the distance of x to x1) [Schöffmann, 2008].

a linear weight for the currency of the historic edge position. The weight gained from
previously found edge positions is added to the function of accumulated algorithm weights
before searching the maximum. In order to regulate the maximal influence of historic edge
positions on the weighting function, a factor is included into the weighting of historic edge
positions. This factor limits the maximal value to one half of the current weight value.
The maximum of the bell curve is 1. The resulting function of edge probability weights
including the old position information Wh(i) is:

Wh(i) = W (i)

[
1 +

1

n(n+ 1)

n∑
t=1

je−
(h(t)−i)2

2σ2

]
(3.20)

and the highest summed weight of Eq. (3.17) is replaced by the search of the maximum
in Wh(i) by:

arg max
1≤i≤n

Wh(i). (3.21)

3.5.3 Minimal Edge Step Size

The drawback of searching the maximum values in the function of probability weights is
the fact that a maximum always exists. There are basically two reasons for the absence
of an edge step: either a single mat was scanned without an overlapping edge or the edge
was too small and respectively the scan data too noisy. In any case, if the data does not
include an edge step, the edge detection should not find any edges. To be able to detect
whether no edge exists in the data, a minimal edge step size is introduced. After searching
the area with the highest edge position probability, the step size at the found position
is tested to see whether it exceeds the threshold value. If the threshold is not reached,
the algorithm reports that no valid edge step could be found in the data. The data in
an area of ±10px around the calculated edge position is smoothed by a median filter for
the calculation of the step height. After smoothing the scan line, the local minima and
maxima in this area are searched and the difference between these values is considered the
edge step height. Currently the threshold is fixed to 0.3mm, which corresponds with the
smallest fibre mat type.
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3.6 Detection Results Based on the “Base Sensor”

Experiments are carried out acquiring 2D laser scan lines using the REDUX prototype to
evaluate the behaviour and the robustness of the edge detection method on real settings.
During REDUX, two different laser range scanners were used: at first, the standard “Base
Sensor”, and in a later stage of development, the “3 Lines Sensor” as illustrated in Fig. 3.13.
Both sensors have their own benefits and drawbacks, especially since the “3 Lines Sensor”
is not completely developed and the results reflect this factor.

Firstly, the detection results of the “Base Sensor” with one scan line and different
special cases are presented. In these tests, the edge prediction with the RANSAC-based
line fit and the two out of three voting within a small pixel tolerance are implemented.
Afterwards, the detection results based on the “3 Lines Sensor” are presented. Here
the weighting influence by historic edge positions and the sum of weight function are
implemented. At the end of this section, a comparison between both systems is given.

More than 50 different seam examples and about 30,000 profiles have been used to
evaluate the above methods and improvements. All tests were performed on a AMD Athlon
64X2 Dual Core 4800+ processor with 2GB RAM. First the edge detection behaviour is
shown on three examples of difficult cases, that is: a double edge, a slant edge, and a convex
edge profile. Then the performance of the methods is generally evaluated concerning the
computational effort and the detection rate.

3.6.1 Double Edges

Fig. 3.27 illustrates that whilst draping the fibre mats on the model, the fibre layers
shift in some cases and the resulting edge looks like a double edge. It shows that the
model-fitting method detects the correct edge (vertical red line), because the sum of the
distances is minimal in this position. The local weighted-voting method detects the same
edge, because the voting factors increase the probability to detect the correct edge. The
gradient-accumulation method detects also the correct edge by looking after the maximum
in the sum of the first derivatives, which can be seen in the course of the summed up
gradient.

3.6.2 Slant Edges

Another problematic case is shown in Fig. 3.28, which plots a laser stripe profile with a
slant edge after normalisation. The interesting point in this case is that every method
detects the correct edge, but at different positions in the area of the slant edge. This
naturally occurs because every method has its own edge detection criteria.

In the edge voting process, at least two edge detection results in one profile must be
located within a tolerance of up to 1mm for the line fitting calculation. In contrast to the
example of the double edge, where all three methods detect the same edge position, the
model-fitting and the gradient-accumulation results agree.

Note that the slant edge in Fig. 3.28 extends over about 2mm and the seam deviation
can be several centimeters. When using the edge voting method, only three times the robot
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(a)

(b)

(c)

Figure 3.27: All three different methods applied on a double edge: (a) Model-Fitting; (b)
Local Weighted-Voting; (c) Gradient-Accumulation.

(a)

(b)

(c)

Figure 3.28: All three different methods applied on a slant edge: (a) Model-Fitting; (b)
Local Weighted-Voting; (c) Gradient-Accumulation.

control unit could not be served with a valid edge position. The maximum deviation of
the correctly detected edges was 1mm.

3.6.3 Convex Edges

Sometimes the carbon fibre mats are draped on a cylinder, in this example with a radius
of 30mm, and thus the resulting edge looks like a convex edge as illustrated in Fig. 3.29.
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Fig. 3.30 shows that the two out of three voting method detects the correct edge with a
normalisation step of the profile.

Figure 3.29: Fibre mats draped on a cylinder with a radius of 30mm.

(a)

(b)

Figure 3.30: Laser scan line: (a) original scan line; (b) normalised scan line. The detected
edge is marked with a red vertical line.

Note that Fig. 3.27, Fig. 3.28, and Fig. 3.30 show a single profile result, whereas the
detected edges used for the edge voting are indicated with a thick vertical line.

3.6.4 Runtime and Detection Rate

To obtain the result in real-time, all methods including pre-processing must be sufficiently
fast. For robotic stitching, real-time is dependent on the frequency of the sensor, which
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in turn depends on the sewing speed of the robot. All tests have been made under the
same conditions: all tests have to be realised on the same fibre mats, respectively the
same laser stripe profiles for a statistical analysis with an exposure time of 12ms. Tab. 3.1
shows the results. When using all methods the maximum runtime was 4ms and confirms
the suitability of the method to obtain real-time operation. Adding the exposure time
of obtaining a profile, an effective scan rate of 62Hz was achieved for these experiments.
Finally, the detection rate granted a certain tolerance of 1mm was evaluated for the

Methods Min Average Max

Profile Pre-Processing 0.638ms 0.679ms 1.314ms
Model-Fitting 0.129ms 0.132ms 0.397ms
Local Weighted-Voting 0.208ms 0.249ms 0.502ms
Gradient-Accumulation 0.375ms 0.384ms 1.744ms

Sum including edge voting 1.445ms 1.445ms 3.957ms

Table 3.1: Runtime of every method.

three edge detection methods and the combined edge voting method. Evaluation is based
on 30, 000 semi-automatic hand labelled profiles from different mats, as exemplified in
Fig. 3.12. A positive detection is defined as a detection result within a tolerance of
1mm=̂12px of the labelled edge. Tab. 3.2 and Fig. 3.31 show the results achieved under
the same conditions as before.

Methods ±3px ±10px ±12px ±18px

Model-Fitting 85.7% 93.4% 94.3% 95.2%
Local Weighted-Voting 81.5% 84.4% 86.7% 91.2%
Gradient-Accumulation 65.3% 87.4% 94.3% 96.3%

Combined Result 80.4% 97.5% 99.3% 99.5%

Table 3.2: Detection rate of every method: “Base Sensor”.

During the experiments it was noticed that the mat type and the edge position have
a strong influence on the detection rate, but the evaluation is made over all possible mat
types during the production process.

3.7 Detection Results Based on the “3 Lines Sensor”

The developed “3 Lines Sensor” pointed out clear disadvantages in comparison with the
previously used “Base Sensor” with a single scan line. The only benefits are a robust mat
end and obstacle detection. The sensor determines a possible pixel position (the brightest
pixel point in the scan line) in each scan line of the CCD-chip for the 2nd scan line. If no
pixel position can be recognised in a line due to bad reflection or absorption characteristics
of the material, the pixel with the maximum brightness is determined. The pixels with the
maximum brightness can be adjusted anywhere in the scan line, usually from the previous
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Figure 3.31: Detection rate of every method: “Base Sensor”.

scan line. A noisy signal with so called “phantom lines” results as illustrated in Fig. 3.32.
Consequently, the 2nd scan line is only used for mat end or obstacle detection. The surface

Figure 3.32: Phantom lines: In the 2nd scan line (alternatively switched between two
positions) the pixel with the maximum brightness is determined, thus a wrong pixel position
is possible.

of carbon fibre mats is very uneven and reflects the laser light into different directions,
causing a high amount of noise in the surface profile data. Fig. 3.33 illustrates the high
amount of noise with five overlapping laser scan lines.

• Mat End Detection: The mat end is detected at the last moment if the alternately
switched scan lines reach the mat end. The mat end will be detected if no possible
edge is found with a minimum size of 0.3mm.

• Obstacle Detection: Obstacles which are lying on the sewing surface are detected
as soon as they are within the sensor range, as long as they are bigger than the
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Figure 3.33: Five overlapping scan lines with 1024px per scan line. A heavy noise with
more than 40% is clearly visible.

minimum size of 3mm. The obstacle is finally detected if it reaches the second
alternatively switched position (near the needle) of the 2nd scan line.

3.7.1 Runtime and Detection Rate

The runtime and detection rate granted a certain tolerance of 1mm=̂18px has also been
evaluated for the new laser range scanner with 3 scan lines. The runtime of the three
implemented methods is nearly the same as for the “Base Sensor”: the pre-processing step
needs approximately 0.15ms longer because of the heavy noise as illustrated in Fig. 3.33.
With regard to the detection rate, the evaluation is based on more than 10,000 semi-
automatic hand-labelled profiles from different mat types. Note that the mat type and
the edge height has a strong influence on the detection rate. A positive detection is defined
as a detection result within a tolerance of 1mm, which is totally sufficient for the sewing
task. Tab. 3.3 and Fig. 3.34 show the achieved results. For the edge detection task, only
the 1st fixed laser scan line is used. The alternatively switched 2nd laser scan line is used
for the mat end and the obstacle detection.

Methods ±3px ±10px ±12px ±18px

Model-Fitting 44.2% 68.5% 68.8% 73.8%
Local Weighted-Voting 38.2% 63.3% 64.2% 69.2%
Gradient-Accumulation 20.3% 65.2% 69.3% 78.3%

Combined Result 43.2% 70.4% 74.6% 79.9%

Table 3.3: Detection rate of every method: “3 Lines Sensor”.
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Figure 3.34: Detection rate of every method: “3 Lines Sensor”.

3.7.2 Influence of Detection Algorithm Improvements

The results of the single data sets were accumulated. Due to the origin of the recordings
of different mat types and scan positions, a general view of the detection quality has been
provided by accumulating the results of all data sets. The original edge detection method
for the “Base Sensor” provides a detection rate of 79.9% based on the scan lines from the
“3 Lines Sensor”. This value was improved to 86.4% by replacing the algorithm results
with sum of weight functions and historic edge positions as illustrated in Fig. 3.35(a).

Fig. 3.35(b) shows that the average detection quality is at 95.56% for edges in the
centre of the scan line (ignoring the influence of the mat type). The quality falls to
69.38% for edges at the boundaries of the scan line. A more detailed evaluation of the
edge detection results, influence of edge positions, mat types, and improvements can be
found in [Schöffmann, 2008].
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(a) (b)

Figure 3.35: (a) Influence of the weighting functions on the detection quality. The vertical
red line marks the required accuracy of 1mm. The pink line shows the detection quality
of the original edge detection method and the blue line shows the detection quality of the
improved method [Schöffmann, 2008]. (b) Influence of the edge position on the laser scan
line with regard to average detection quality [Schöffmann, 2008].
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3.8 Discussion

A summary of the advancement for real-time edge detection algorithms is presented. The
improvements focus on the treatment of very noisy and disturbed data. An efficient
and stable method is developed to address the special needs of real-time as well as the
importance of robust methods.

Contributions in this field have been made by introducing a real-time approach where
existing and new developed edge detection methods are combined in a voting scheme to
increase the edge tracking robustness [Richtsfeld et al., 2007a]. The novelty is based on
different edge detection methods and their combination to carry out a robust edge tracking
in the presence of outliers and artefacts in noisy range data using an industrial robot. The
individual developed methods show very high reliability [Biegelbauer et al., 2007].

The experiments show that a two out of three voting over three methods achieves
a better detection result than the individual methods. Thus the voting scheme for edge
detection and localisation is suitable for use in related industrial applications under difficult
conditions. Two different laser stripe sensors have been tested, whereby the developed edge
detection methods and the voting scheme highlighted their flexibility and robustness.

Several detailed analyses of the data profiles were accomplished. These analyses showed
good results during the evaluation of the “Base Sensor” data profiles in the beginning.
However, the first evaluation of the “3 Lines Sensor” profiles produced bad results with
the same methods, whereupon a new statistical method was implemented. The advanced
edge detection method does not use a RANSAC-based line fit to smooth the detected
edges because of the fast rotations of the sensor head during the stitching process. The
average of an additional scan line leads to a higher redundancy of the data profiles, but
at the same time the tracking of strongly curved seams requires an additional scan line.

The developed “3 Lines Sensor” pointed out clear disadvantages in comparison with
the previously used “Base Sensor” with a single scan line. The sensor determines a possible
pixel position for the 2nd scan line (the brightest pixel point in the scan line) in each scan
line of the CCD-chip. If no pixel position can be recognised in a line due to bad reflection
or absorption characteristics of the material, the pixel with the maximum brightness from
the previous scan line is determined. Consequently, a noisy signal with so called “phantom
lines” results. To eliminate this effect with the help of a filter is not 100% possible, since
with a stronger filter the searched edge can be also removed.

Project “REDUX” illustrates the feasibility of a continuous process chain for robotic
stitching from CAD planning and a sensor guided edge detection to realise a path ad-
justment, which can be applied for a sewing process that realises lot-size-one production.
In order to make an industrial application possible, still further research work must be
investigated in order to develop a sensor that also works on the difficult CFRP material.
In the stitching process, one must also consider, if it is essential to use a sensor, which has
a very high frame rate.
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Chapter 4

Detection of Cylindrical Objects in
Tabletop Scenes

“You must do the thing you think you cannot do”
– Eleanor Roosevelt

Vision systems are increasingly used in the fields of industrial automation and home
robotics. In the near future, service robots will support people to improve the quality of
their lives.

One of the required key technologies is the grasping ability of the robot. Assistance
robots must be able to perform tasks such as executing commands like “James, please
bring me my cup!”. In science fiction films like “Star Wars”, all robots are able to do
these jobs. In the real world, however, there is no robot able to support people in such a
way at home.

The aim of this work is the detection and grasping of a cylindrical object with given
shape parameters (radius and height as described in Tab. 2.1) from a clutter of different
objects on the table, which the robot arm delivers to a target position or to the user. The
developed method is robust under changing light conditions during a full day and suitable
for soft real-time1 processing.

Since there is no colour information available the objects cannot be detected and
segmented so easily. In contrast to industrial applications, environmental influences like
constant light conditions or pre-defined object positions cannot be assumed. That is (the
reason) why the distance between the objects has to be calculated for a region-growing
segmentation 2.4 step.

The cylinder grasping method is based on scanning the objects on the table with a
rotating laser range scanner and the execution of subsequent path planning and grasping
motions. The 2.5D point cloud obtained is analysed to detect the specific cylindrical
object, whereupon the robot calculates and performs a collision-free path to the given
cylindrical object and to the handover point.

2.5D means that the rear side of an object is not visible due to self-occlusion and the
front side may also be occluded by other objects. In case of a possible failure, feedback is

1A soft real-time system tolerates some time delay to fulfil a defined task.
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given to the user. The described system and the algorithm were tested during a full day
of life demo presentation in Vienna at YO!tech2 in 2007 and 2008.

The presented cylinder fitting method based on Random Circle Fitting (RCF) is com-
pared to the standard Least-Squares Cylinder Fitting (LSCF) method. Additionally, the
presented method can be easily extended to detect different given cylindrical objects.
However, the drawbacks of the presented method are: inability for cover the detection of
cylinders in an arbitrary position or incomplete range data of the cylindrical object.

Section 4.1 gives an overview of the developed system. Section 4.2 introduces a robust
method to detect a cylindrical object in a noisy point cloud with different surrounding
objects. In Section 4.4, the performance and the robustness of the algorithm is tested
and the cylinder detection method is evaluated and compared to standard least-squares
cylinder fitting. The comparison between the presented method and the standard least-
squares cylinder fitting is realised on synthetically-generated models to guarantee perfect
2.5D range images, without any outside influences. Section 4.5 finally concludes this
chapter with a short discussion about the evaluation results.

4.1 System Overview

Before the robot arm is able to handle the given cylindrical object, the system needs
information about the position, orientation, and possible surrounding objects based on
range images. A laser range scanner is used to acquire range images in which the 3D
shape of the objects on the table has to be directly recorded. A detailed description of
the used laser range scanner system is available in [Nössing, 2004].

The approach is based on scanning the objects on the table with a laser range scanner
on a pan/tilt unit and the subsequent path planning and the final grasping motion. The
spatial relation between the AMTEC3 robot arm with 7DOF and the scanning unit is
known.

First, the laser range scanner records the table scene and delivers a 2.5D point cloud.
A high resolution sensor is needed in order to obtain a reasonable number of points of the
objects with sufficient accuracy.

A red-light LASIRIS laser from StockerYale4 with a wavelength of 635nm and a
MAPP2500 CCD range camera from SICK IVP5 mounted on a PowerCube Wrist from
AMTEC robotics are used.

Fig. 4.1 shows that the robot arm is equipped with a human-like hand prosthesis of
the company Otto Bock6, which is used as gripper. The hand prosthesis has three active
fingers: the thumb, the index, and the middle finger; the last two fingers are just for
cosmetic reasons as illustrated in Fig. 4.2. It is a caliper gripper and can only perform
approximately a tip grasp or a cylindrical grasp. The integrated tactile force sensors are

2YO!tech, http://www.yo-tech.at
3AMTEC robotics GmbH, http://www.amtec-robotics.com
4StockerYale Inc., http://www.stockeryale.com
5SICK IVP Inc., http://www.sickivp.se
6Otto Bock GmbH, http://www.ottobock.de

64

http://www.yo-tech.at
http://www.amtec-robotics.com
http://www.stockeryale.com
http://www.sickivp.se
http://www.ottobock.de


4. Detection of Cylindrical Objects in Tabletop Scenes

Figure 4.1: Overview of the system components and their interrelations.

used to detect a potential sliding of the grasped object, which initialises a readjustment
of the grip force applied by the pressure of the fingers.

Figure 4.2: Hand prosthesis of the company Otto Bock. Caliper gripper with three
active fingers: thumb, index, and middle finger. A tactile force sensor (SUVA sen-
sor [Altrichter, 2008]) in the thumb is integrated to detect a potential sliding of objects
and an additional sensor is integrated in the thumb leverage.

It is thought that people will accept this type of gripper rather than an industrial
gripper due to the form and the optical characteristics. The virtual centre between the
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fingertip of the thumb and the index finger is defined as tool centre point (TCP) and the
TCP can be optionally changed. The seventh degree of freedom of the robot arm is a rota-
tional axis of the whole hand, required to enable complex object grasping or manipulation
tasks and allow some flexibility for avoiding obstacles. When objects are positioned closer
to each other, the grasping tests detect difficulties in grasping the cylindrical object. A
minimum distance of 20mm, equal to the diameter of the thumb of the hand prothesis,
has to be observed between the objects.

4.2 Method for Rapid Cylinder Detection

This section presents the method for rapid cylinder detection. Fig. 4.3 outlines the model-
based cylinder detection approach. It illustrates the main processing steps in gathering
the range data, from the recorded table scene to the actual pose of the cylindrical object.
The challenge of this approach leads to the segmentation of different objects on the table
and the detection of the pose of the cylindrical object in a 2.5D point cloud.

Figure 4.3: Flow chart of the cylinder detection approach.

Inspired by the work of Biegelbauer et al. [Biegelbauer and Vincze, 2000] demonstrat-
ing a method on how to detect a bore hole in noisy range data, based on circle fitting, the
following method was developed. In [Biegelbauer and Vincze, 2000], the rough position of
the bore hole was defined through CAD data and only an additional plane fit to detect
the ground plane was needed. From above, the complete circumference of the aperture of
the bore hole was clearly visible. The detected circumference points along the aperture
were used to calculate the radius of the bore hole with a transformation in a defined 2D
plane, based on the detected normal surface vector of the ground plane. Finally, a 2D
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circle fit was used to calculate the radius of the bore hole. The existence of a cylinder was
not checked because the bore hole was defined through CAD data.

The difference between [Biegelbauer and Vincze, 2000] and the presented cylinder de-
tection approach is the fact that there is no CAD data available and the searched cylindrical
object is on a table in a large search area with cluttered adjacent objects. Additionally,
the table top surface cannot be used to detect the radius of the cylindrical objects because
parts of the rear side of the cylindrical object may be occluded by other objects or by the
two shadows of the laser and camera, as illustrated in Fig. 4.4. For that reason only can
the top curvature points be used for a 3D circle fit.

The proposed method analyses and segments the curvature of different objects on the
table and detects a cylindrical object with a cylinder fitting method. The calculated
normal surface vectors are used to calculate the final cylinder axis orientation with a 3D
line fit.

Fig. 4.3 illustrates that the method starts with a dominant plane fit, followed by a
geometrical filter to detect potential outliers and calculate the normal surface vectors in
Section 4.2.2. Section 4.2.3 describes curvature analysis and the segmentation of the de-
tected curvature points. The normal vectors are used to detect the strongest curvature
points. Additionally, a line-based edge detection method is implemented to detect signifi-
cant edge points. The segmentation of the detected curvature points is needed to detect
the cylindrical object. The normal surface vectors are also needed for the rapid cylinder
fit as described in Section 4.2.4. This section deals with the problem of determining the
pose of the cylindrical object from 2.5D range data.

4.2.1 Dominant Plane Fit

Most of the table scene range images include the table plane. However, this plane is not
needed for the object detection step, it slows down the object detection process and raises
the likelihood of false detection. The first step is to detect and remove the raw data points
of the table plane. In the cylinder detection approach, the table plane is defined as the
dominant plane in the range image associated with more raw data points than any other
planes in the rest of the scene. Finding the dominant plane is achieved by randomly fitting
planes 100 times in the point cloud. A plane fit is generated by three randomly picked
points. From three points the normal surface vector is calculated as the cross product of
the direction vectors between two pairs of points. Each table plane hypothesis is verified
against the other 99. After 100 calculated plane hypotheses, the one with the most points
included with a defined threshold of 2mm wins. The distance of 2mm equals the average
distance between two neighbouring points in 100 range images calculated with a kd-tree
and closest point detection. Afterwards, all detected table points are used to calculate the
normal vector of the table plane again to achieve higher accuracy. Fig. 4.4 illustrates the
detected 17, 277 table plane points of the original n = 75, 863 points.

The calculated normal vector ~nt of the table plane Pt, a point of the plane p and the
origin of the camera coordinate system Oc are used to remove all points under the plane
with the plane equation:

~ntxpx + ~ntypy + ~ntzpz +D = 0, (4.1)
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Figure 4.4: Raw point cloud with 75, 863 points. The detected table surface is coloured
blue. The two shadows from laser and camera are clearly visible. The noise and outliers
detected by the geometrical filter are marked as red points.

D = −~ntxpx − ~ntypy − ~ntzpz. (4.2)

The value Fc represents the position of the camera coordinate system to the table plane
and Fpi the position of the currently selected point pi to the table plane:

Fc = ~ntxOcx + ~ntyOcy + ~ntzOcz +D, (4.3)

Fpi = ~ntxpix + ~ntypiy + ~ntzpiz +D. (4.4)

If Fpi · Fc > 0, the point pi and the origin of the camera coordinate system are on
the same side, and if Fpi · Fc < 0, the point pi is under the dominant plane and will be
removed.

4.2.2 Raw Data Pre-Processing and Normal Vector Calculation

The remaining point cloud P = {p0, ... , pn−1} of the objects are filtered to reduce noise
and outliers, which can arise by reflections. A geometrical filter based on the density allo-
cation of the points is used to remove outliers and the threshold parameters are calculated
with the help of the compression rate. This filter calculates the distance to the nearest
neighbour based on a kd-tree [Bentley, 1975] for each point pi, and then the minimum dmin,
maximum dmax, and average da of these distances. The distances are used to calculate the
compression rate τ :

da =
dmin + dmax

2
, (4.5)

dk =

∑n−1
i=0 di
n

, (4.6)

τ =
dk
da
. (4.7)
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Then all Na points inside a sphere with the radius da and all Nk points inside a sphere
with the radius dk around a given point pi are used to decide with the compression rate τ
if the given point pi is an outlier or not. If α < β, calculated with Eq. (4.8) and Eq. (4.9),
the given point pi is an outlier and will be removed, as shown in Fig. 4.4.

α = (da/Na)
τ (4.8)

β = (dk/Nk) (4.9)

To successfully analyse the curvature of the objects in the table top scene all normal
vectors of the points pi are used. To achieve that the normal vector calculation of a point
pi is approximated by a planar surface patch close to the point: The surface patch is
represented by a set of surrounding points P = {p1, ... , pm} of the given point pi based
on a local neighbourhood of 5mm, where p>i is a 3D point of this set of m points, and the
average of the point set is defined by:

px =

∑m
i=1 pxi
m

, py =

∑m
i=1 pyi
m

, pz =

∑m
i=1 pzi
m

. (4.10)

Using a local neighbourhood of 5mm shows best results with the used laser range
scanner and is evaluated in 100 scans. The maximum distance between two closest points
detected by nearest neighbour searching [Arya et al., 1998] over 100 point clouds is used.
The average distance da of all 100 maximum distances is approximately 5mm, as illustrated
in Fig. 4.5.

The covariance of a coordinate pair is given by:

cov(px, py) =
1

m− 1

m−1∑
i=0

(pxi − px) · (pyi − py) (4.11)

and the covariance matrix:

C =

 cov(px, px) cov(px, py) cov(px, pz)
cov(py, px) cov(py, py) cov(py, pz)
cov(pz, px) cov(pz, py) cov(pz, pz)

 (4.12)

is the initial for the principal component analysis [PCA] [Xu et al., 1992]. The normal
vector of the surface patch corresponds with the vector ~n, which is determined by the
eigenvalue problem C~n = λmin~n, where λmin is the smallest eigenvalue.

The determination of the normal vector with eigenvectors results in two possible and
opposite directions. The correct normal vector orientation is defined by the normal vector
with the smallest angle difference to the origin of the sensor coordinate system. Fig. 4.6(a)
shows 10% of the calculated normal vectors. In Fig. 4.6(b), all normal vectors are coloured
for a better visibility of the strongest curvature points. The (x, y, z) values of the normal
vectors multiplied by 255 are allocated to (R,G,B) values.
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Figure 4.5: Maximum distances of two closest points detected by nearest neighbour search-
ing [Arya et al., 1998] over 100 whole point clouds. The average distance da of all maxi-
mum distances is approximately 5mm.

(a) (b)

Figure 4.6: Close up of the calculated normal vectors. (a) Representation of 10% of the
calculated normal vectors. The correct normal vector orientation is defined by the normal
vector with the smallest angle difference to the origin of the sensor coordinate system. (b)
Coloured normal vectors for a better visibility of the strongest curvature points.

4.2.3 Curvature Analysis and Segmentation

To robustly detect the given cylindrical objects on the table, the different objects
have to be segmented. In this way, the individual objects are analysed, curva-
tures calculated, and (finally) the given cylindrical objects detected. Standard region-
growing [Bab-Hadiashar and Gheissari, 2006] to segment all objects based on the whole
point cloud P = {p0, ... , pn−1} without the table top surface is a very time-consuming
step. A faster method is the segmentation of only the strongest curvature points of the
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objects. Based on the calculated normal vectors ~n and an angle-based edge detection
method, the strongest curvature points are detected and only these points are used to
detect the cylindrical object. After the curvature analysis, the detected curvature points
are segmented into fragments. For that procedure, a region-growing based recursive flood-
filling function [Burger and Burge, 2007] is used, which enables soft real-time processing
for the cylinder detection approach, because of the reduced number of points.

The curvature analysis starts by detecting a set of surrounding points P = {p1, ... , pm}
of the given point pi based on a local neighbourhood of 5mm. The normal vectors ~nt of
these m points are used to calculate the angle difference to the given normal vector ~ni. If
αi > 20◦ (see Eq. (4.13)) the given point pi is classified as a strong curvature point, as
illustrated in green points in Fig. 4.7(a).

cosαi =
m∑
t=1

~ni · ~nt
‖~ni‖‖~nt‖

(4.13)

Each point pi of the point cloud is stored line by line, since as the table scene is
recorded by the laser-stripe sensor. So to detect strong edge points, a local line-based
edge detection method is used. The algorithm computes the distance respectively from
the direction vector to the point in front pi−1, and after from pi+1 to the given point pi.
Next, it calculates the angle βi between these three points. If the outer angle βi between
these three points is smaller than 110◦, the (given) local edge of three points fulfils the
conditions as a strong curvature and the point pi is classified as a strong curvature point,
illustrated in red points in Fig. 4.7(a). An angle approximately of α = 20◦ and β = 110◦,
determined by 1000 trials, has an optimal balance between the edge detection result and
the average curvature allocation of the cylindrical object:

cos βi =
(pi − pi−1) · (pi − pi+1)

‖(pi − pi−1)‖‖(pi − pi+1)‖
. (4.14)

An object or part is defined as a set of points with distances between neighbours below a
threshold dca. A kd-tree [Bentley, 1975] is built to find neighbours and the recursive flood-
filling function [Burger and Burge, 2007] is used to identify connected point sets. dca is
the average distance between all m curvature points pci , calculated by nearest neighbour
point pcnt searching [Arya et al., 1998]. This step segments the curvature points of the
different objects on the table into different components or fragments:

dca =

∑m
t=1 |pci − pcnt|

m
. (4.15)

To belong to a fragment of the object, the distance d between a fracture element pw
and the given point pi must be smaller than the average distance dca. Fig. 4.7(b) shows
the segmentation result of the curvature points. These segmented curvature parts are used
in the next step to detect the given cylindrical objects:

d =
√

(pxi − pxw)2 + (pyi − pyw)2 + (pzi − pzw)2, (4.16)
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(a) (b)

Figure 4.7: Curvature analysis and segmentation: (a) Detected curvature points. The
detected curvature points based on the normal vectors are coloured green and the edges
based on a local line edge detection method are coloured red. (b) Segmented curvature
fragments to produce a rapid cylinder detection.

d < dca. (4.17)

The segmentation of the 1, 391 strongest curvature points needs about 0.485s and enables
soft real-time performance. In comparison, the segmentation based on recursive flood-
filling function [Burger and Burge, 2007] of all 17, 277 object points requires about 30s
and Fig. 4.8 shows the segmentation result of all object points [Richtsfeld et al., 2008].

Figure 4.8: Segmentation result of the whole point cloud.

4.2.4 Rapid Cylinder Fit

The next step is a sequential model-based cylinder fit into the segmented top curvature
points. The problem with global or local optimisation methods, e.g. the Levenberg-
Marquardt method [Levenberg, 1944], [Marquardt, 1963], is the instant estimation of all
parameters, which requires a good initial value. This method is very time-consuming
because of iterative comparison of the complete object with the fit criteria.
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The proposed method is a model-based cylinder fit starting with a sequential circle
fit to the top rim curvature points to detect the given cylindrical objects and, finally, the
position and orientation of the axis. For computational efficiency, the previously calculated
normal vectors ~ni are used to calculate the cylinder axis orientation. The task is to detect
the given cylindrical objects based on the segmented top curvature points in the point
cloud. Note that the top surface of the objects must be recorded with the range scanner
to guarantee a successful detection of the cylindrical objects.

The next sections describe the circle fitting method into the top curvature points and
the calculation of the final rotation axis to detect the pose of the cylindrical object.

• Radius Calculation

The estimation of the axis orientation and cylinder detection is realised by a 3D circle fit
into the top curvature points. The top curvature points are detected with the previously
calculated normal vectors. The normal vector in x-direction is bigger than in y- or z-
direction, nx > ny and nx > nz. The radius and the height of the given cylindrical object
are used to detect the cylindrical object on the table based on the segmented curvature
points. Standard least-squares circle fitting fails because of the cylinder fragments and
due to the noise of 2.5D range data. As described in [Biegelbauer and Vincze, 2000], a
robust method of estimating the radius can be achieved by circumscribing a circle to a
triangle. Fig. 4.9 shows that three curvature points (A, B, C) of one segmented part are
randomly picked and the radius r is calculated by:

dca = (C − A) · (B − A),
dba = (C −B) · (A−B),
dcb = (A− C) · (B − C),

(4.18)

n1 = dba · dcb,
n2 = dcb · dca,
n3 = dca · dba,

(4.19)

r =

√
(dca + dba)(dba + dcb)(dcb + dca)/(n1 + n2 + n3)

2
. (4.20)

The centre cm of the circle is calculated by:

cm =
(n2 + n3)A+ (n3 + n1)B + (n1 + n2)C

2(n1 + n2 + n3)
. (4.21)

The triangle area A and the circumference u are calculated by the radius r:

A = r2π, (4.22)

u = 2rπ. (4.23)

To realise a robust radius calculation, i.e. a robust cylinder detection in noisy range
data, the random selection of three curvature points and the radius calculation is repeated
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Figure 4.9: Radius calculation by circumscribing a triangle built from three randomly picked
points of the segmented top curvature points of the cylinder fragment.

100 times and the minimum distance dmin of all t top curvature points pc of the segmented
fragment to the circumference wins:

dj =
t−1∑
i=0

|r − pci|, (4.24)

arg min
1≤j≤100

dj. (4.25)

Then all top curvature points of the fragment are used to decide if the analysed frag-
ment is part of a cylindrical object with a range tolerance of 2mm. Remember, the distance
of 2mm equals the average distance between two neighbouring points in 100 scans. For
an explicit description, the curvature points are defined as pc, and cm is the previously
calculated circle centre with a radius r. The error must be smaller than a defined threshold:

|‖~pc − ~cm‖ − r| ≤ 2. (4.26)

If more than 80% of the top curvature points agree with the calculated circle, the
analysed fragment is defined as a fragment of a cylindrical object. A threshold of 80% is
chosen to eliminate potential noise. Then all radii rf of the f detected circle fragments
are used to detect the cylindrical object with the known radius rdef , and the radius with
the smallest deviation wins:

arg min
1≤i≤f

|ri − rdef |. (4.27)

The result of the circle fitting method is illustrated in Fig. 4.10(b). The curvature
points of this run and all remaining points along the circle axis pbi with a threshold
of 2mm, which fulfil the fit criteria, are examined more closely with the cylinder fit to
calculate the 3D pose of the cylinder axis. The points pbi are illustrated in Fig. 4.11 as
blue points.
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• Rotation Axis Calculation

To finally compute the 3D pose of the cylinder axis, the cylinder normal surface vectors
~ni and the calculated radius r are used. Fig. 4.10(a) illustrates that all normal surface
vectors of the cylinder barrel approximately cross the cylinder axis. This fact is used to
calculate the cylinder axis ~v. Points of the cylinder axis pai can be found by multiplying
all normal surface vectors ~nbi of the points pbi with the calculated radius r. It must be
guaranteed that the normal vectors arise in the direction of the cylinder axis. The axis of
the cylinder corresponds with the vector ~v, which is determined by the eigenvalue problem
C~v = λmax~v and λmax is the largest eigenvalue of the complete point set. The final axis
vector ~v is calculated by a 3D line fit.

The calculated cylinder axis ~v, the top curvature points, the detected table normal
surface vector ~ntab, and the height h of the cylindrical object are used to calculate the
circle centre cm again. This step is important to guarantee that the circle centre cm is
along the cylinder axis ~v.

Fig. 4.10 shows 10% of all calculated normal vectors and the result of the axis fit. The
final cylinder axis is defined by a vector ~v and a point cg which is the centre of gravity of
the cylindrical object. cg is calculated with the the cylinder axis vector ~v, the circle centre
cm, and the height h of the selected cylindrical object:

cg = cm −
h

2
· ~v. (4.28)

Fig. 4.11 shows the final result of the cylinder detection process. All points pbi which
fulfil the fit criteria are illustrated as blue points. In this case, the task was to detect two
given cylindrical objects. Alg. 1 explains the final axis pose estimation.

Algorithm 1 Axis Pose Estimation.

begin
calculate cylinder axis points: pai = pbi + ~nbi · r
3D line fit across the cylinder axis points pai to calculate the cylinder axis: ~v
calculation of the circle centre cm again
calculation of the centre of gravity of the cylinder: cg

end

4.3 Planning of the Robot Motions

The task of this section is to calculate a collision free robot path and to execute the
grasping activity safely. The commercial path planning tool THOR (Tool Handling the
Operations of Robots) from the company AMROSE robotics7 is used. The disadvantage
of this path planning tool is the fact that it is RANSAC-based, which means that for

7AMROSE robotics Inc., http://www.amrose.dk
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(a) (b)

Figure 4.10: (a) Distribution of the normal surface vectors ~nbi to calculate the final cylin-
der axis by a 3D line fit. The ends of the calculated normal vectors determine the cylinder
axis. (b) Results of the axis fit. The final cylinder pose is determined by the the centre of
gravity cg and the axis orientation vector ~v.

the same situation and grasping pose different trajectories are possible. The first step is
performed by the path planning tool from AMROSE robotics. The input into this tool
is the detected cylinder pose, the environment model and a transformation between the
robot coordinate system and the range scanner coordinate system. All objects on the
table and the detected cylindrical object have to be transmitted to the path planner as
a mesh in stl-file format (Stereo Lithography file format), calculated by a 3D Delaunay
triangulation [O’Rourke, 1998]. These object models are important for the path planner
to calculate a collision-free trajectory to the desired object. The TCP of the gripper is
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Figure 4.11: Final result of the cylinder detection process. The normal surface vectors
of the marked-blue points pbi are used to calculate the final cylinder pose. In this case
two given cylindrical objects are successfully detected. The shape parameters (radius and
height) of the third cylindrical object are not given.

defined as the centre between the thumb, the index, and the middle finger.

The TCP of the gripper and the calculated centre of gravity cg of the cylindrical
object agree in the final grasping pose. It must be guaranteed that both the centre cg of
the cylindrical object and the cylindrical object itself are high enough, so that the gripper
or the robot arm does not collide with the table. Otherwise the path planner is not able
to calculate a collision-free path. In addition, the grasping approach of the robot arm and
the grasping orientation must be defined, which can result in difficulties, especially when
several objects surround the cylindrical target object on the table.

The start position to achieve the final grasping pose is defined as 200mm above the
selected cylindrical object along the calculated cylinder axis ~v to guarantee that the robot
and the gripper do not collide with the table or one of the surrounding objects. The
calculation of the final grasp orientation of the hand prosthesis is part of the path planning
tool and depends on the position of all the surrounding objects. Before the grasping task
is approved, the user can check a simulation of the calculated trajectory and decide if it is
safe enough to handle the object (see Fig. 4.12). Then the robot arm executes the offline
programmed trajectory and the user can initiate the closing of the gripper, which initiates
feedback about the successful execution of a grasping task. As soon as the gripper encloses
the object, the robot motion to the transfer point starts. Finally, the desired object can
be placed at a defined position or be directly handed over to the user. The algorithm is
implemented in C++ using the Visualisation Tool Kit (VTK)8.

8Freely available open source software, http://public.kitware.com/vtk
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Figure 4.12: Visualisation of the trajectory with a simulation tool. The white cylinder is
the grasping object. The green cylinder is a second given grasping object and the black
object fragments are the obstacles.

4.4 Experimental Evaluation

First, the performance of the cylinder detection method itself is evaluated and then the
results of the method are compared with a standard least-squares cylinder fitting method.
Additionally, this section demonstrates that an approach based on random samples is very
efficient with respect to the computational cost. The presented method shows robustness
during a live demo presentation in Vienna at YO!tech9 in 2007 and 2008. On the demon-
stration day, about 50 runs were performed, during which two given cylindrical objects
with r = 25.75mm, h = 173mm and r = 26.75mm, h = 134mm were to be detected in
the point cloud and grasped by the robot. The main problem that rarely appeared was
a malfunction of the path planning tool, because no suitable trajectory could be found
and the path planning system had to be restarted. Sometimes the last two fingers shift
the grasp object, but without any effect on the success of the grasping process. Tab. 4.1
shows a short analysis of the problems within 50 runs. The presented method and does
not suffer from inaccuracy and has practical implications.

problems number of events influence [%]

path planning 11 11 22
hand prosthesis 4 0 0
object recognition 2 2 4∑

17 13 26

Table 4.1: Evaluation of the problems as a percentage [%] during 50 runs.

9YO!tech, http://www.yo-tech.at
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The cylinder detection approach is performed by a PC with 2.0GHz Intel Core 2 Duo
processor and takes about 4.6s, see Tab. 4.2, depending on the range image size. For
visualisation of the results, VTK has been used and for time measurement, the proposed
algorithm has been implemented in C++.

calculation steps t [s]

plane fit 1.406
geometrical filter 1.938
normal vector calculation 0.312
curvature analysis 0.469
curvature points segmentation 0.485
cylinder detection 0.015∑

4.625

Table 4.2: Duration of every calculation step for the presented point cloud in Fig. 4.11.

Next, the results of the Random Circle Fitting (RCF) and the standard Least-Squares
Fitting (LSF) method are presented. The processing time depends on the range image
size, the normal surface vector calculation, and the curvature analysis, whereby the last
two steps are most time-consuming. It is possible to reduce the radius to find the point
neighbours for the local normal surface vector calculation. In this work the radius is
set to 5mm (explained in Section 4.2.2), but with a smaller radius the required time for
the normal vector calculation is dramatically reduced. However, to get accurate normal
vectors, a bigger radius is essential. As described in Section 2.5, the least-squares fitting
(LSF) of geometric models requires an iterative optimisation process, while the proposed
method is based on three random points and their associated circumscribing circle. The
last column in Tab. 4.3 shows the required pre-processing time (ppt) for the normal surface
vector calculation and the curvature analysis.

The influence of the range image size on the fitting result for a synthetically-generated
cylinder with r = 10mm, h = 100mm, ~v = {1, 0, 0}, and of the original 20, 000 points
is presented, and the number of iteration steps is fixed to 100 for the LSF and the RCF
method. Tab. 4.3 illustrates the influence of the number of points of the cylinder fragments
on the computation time. The tests were performed on a reduced resolution starting
from 1, 000 points (5%) up to 20, 000 points (100%). Fig. 4.13 illustrates the incremental
advancement of the radius deviation and angle deviation by a rising resolution of the point
cloud.

Tab. 4.3 and Fig. 4.13 shows that both methods find nearly the same average radius
with r = 9.4642mm for the LSF method and r = 9.6816mm for the RCF method over
all fragments. It is clearly visible that the pre-processing step is the most time-consuming
step and if it is required to realise segmentation or curvature analysis, RCF will be faster
than LSF because the normal surface vectors needed are already calculated. In this case,
the advantage of RCF is the computational cost. For up to 2, 000 points, RCF will be a
little comparative faster than LSF.

The last point of the performance evaluation is a comparison of the presented cylinder
fit with a standard least-square cylinder fit on synthetically-generated 2.5D range data

79



4. Detection of Cylindrical Objects in Tabletop Scenes

method no. of points % r [mm] |∆r| [mm] |∆v| [◦]
∑

t [s] ppt [s]

LSF 20, 000 100 9.60 0.40 0.0193 1.11 -
RCF 20, 000 100 10.21 0.21 0.0146 6.23 6.22

LSF 10, 000 50 9.56 0.44 0.0223 0.56 -
RCF 10, 000 50 9.78 0.22 0.0210 1.68 1.67

LSF 4, 000 25 9.48 0.52 0.0326 0.24 -
RCF 4, 000 25 9.74 0.26 0.0320 0.32 0.31

LSF 2, 000 10 9.35 0.65 0.0396 0.13 -
RCF 2, 000 10 9.70 0.30 0.0390 0.10 0.09

LSF 1, 000 5 9.29 0.71 0.0618 0.06 -
RCF 1, 000 5 9.62 0.38 0.0525 0.02 0.02

Table 4.3: Comparison of the accuracy and the computational effort of a cylinder fit using
LSF and RCF method for 100 iterations by a synthetically-generated 2.5D cylinder with
r = 10mm. The cylinder fragments have a resolution starting from 1, 000 points (5%) up
to 20, 000 points (100%).

of cylindrical objects. The synthetically-generated 2.5D cylinders have exact dimensions
of r = 25.75mm, h = 173mm for cylinder 1 with 29, 953 points, and r = 26.25mm,
h = 134mm for cylinder 2 with 34, 981 points. Regarding the fitting criteria, the final
radius, the orientation and the computation time are investigated. To keep the results
comparable, the cylindrical object points are synthetically-generated and the radius to
find the point neighbours is set to 3mm. Searching for a local minimum requires a good
starting pose to converge to the global minimum. The PCA algorithm is used to get a
good starting pose of the cylinder axis. The pose estimation based on this method works
well for full 3D point data of the cylindrical object. However, with the obtained 2.5D
point data, the misplacement in the first iteration steps is rather high. Tab. 4.4 compares
the results of the presented RCF method and the standard LSF method with 100 iteration
steps. In this case |∆v| is the solid angle deviation of the final cylinder axis to the cylinder
axis of the synthetically-generated cylindrical object. The time requirement of the RCF
method depends on the range image size as presented beforehand and the pre-processing
step required for cylinder 1: 2.594s and for cylinder 2: 4.078s.

method cyl. no. pose est. iterations r [mm] |∆r| [mm] |∆v| [◦] t [s]

LSF 1 PCA 100 27.732 1.982 0.107 1.656
RCF 1 - 100 26.318 0.568 0.047 2.625

LSF 2 PCA 100 28.264 2.014 0.153 1.812
RCF 2 - 100 26.655 0.405 0.069 4.110

Table 4.4: Comparison of the accuracy and the computational effort of a cylinder fit using
LSF and RCF method for 100 iterations by synthetically-generated 2.5D point clouds.

The following Fig. 4.14, 4.15, 4.16, 4.17, 4.18 and 4.19 show that an increased number
of samples does not improve the result, but the influence of the outliers slightly decrease.
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Figure 4.13: Comparison of the accuracy of a cylinder fit using LSF and RCF method for
100 iterations by a synthetically-generated 2.5D cylinder with r = 10mm. The cylinder
fragments have a resolution beginning from 1, 000 points (5%) of up to 20, 000 points
(100%).

Fig. 4.14 and Fig. 4.17 illustrate that the RCF method clearly achieves a more exact
cylinder radius with less samples from the radius calculation and also better results for
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the angle deviation as the LSF method, see Fig. 4.15 and Fig. 4.18. The disadvantage of
the presented method is the need for more time, especially for the normal surface vector
calculation depending on the range image size as illustrated in Fig. 4.16 and Fig. 4.19.
Nevertheless, it is essential for several different applications in range image processing
to calculate the normal vectors and to realise a curvature analysis as well as adjacent
methods, for which the presented method is absolutely eligible.

To conclude the experimental evaluation, the presented fitting method for cylindrical
objects achieves reliable and robust results compared to standard least-squares fitting. The
processing time depends on two factors: The first, that the RCF-based method achieves
fast and robust results depending on the raw data points and the second, that the calcu-
lated normal surface vectors and curvature points are used for the cylinder fit.
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Figure 4.14: Cylinder 1 (29, 953 points): Radius deviation.

Figure 4.15: Cylinder 1 (29, 953 points): Angle deviation.

Figure 4.16: Cylinder 1 (29, 953 points): Time comparison.
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Figure 4.17: Cylinder 2 (34, 981 points): Radius deviation.

Figure 4.18: Cylinder 2 (34, 981 points): Angle deviation.

Figure 4.19: Cylinder 2 (34, 981 points): Time comparison.
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4.5 Discussion

This chapter presented a system with a fixed robot arm and a scanning unit on a table,
which is able to detect and grasp given cylindrical objects with cluttered adjacent objects
in soft real-time.

In the field of home robotics, the requirements of full 3D data, noiselessness, and
obstacle-free situations are often not provided. The contribution of this work is a fast
and practical method optimised for fitting cylinders in sparse and noisy range data under
difficult and changing light conditions recorded from a single view. The improvements
focus on the treatment of different objects on the table. The system must distinguish
between them and detect the given cylindrical object.

First, the table surface is extracted by a RANSAC-based plane fit and the curva-
ture of the objects is analysed by the normal surface vectors and a local edge detection
method. The segmented curvature fragments are used to detect the cylindrical object by
a RANSAC-based 3D circle fit to handle the typical outlier problem. The final circle axis
is calculated with the normal surface vectors of the cylinder barrel points, the calculated
radius, and a 3D line fit.

The experimental evaluation shows that the presented fitting method for cylindrical
objects achieves reliable results in comparison to standard least-squares cylinder fitting.
Thus the deviation of the radius, the angle deviation, and the calculation time are eval-
uated more precisely. The radius deviation and also the angle deviation are essentially
smaller than with the standard least-squares cylinder fitting method. The processing time
depends on the number of raw data points of the whole point cloud and the radius to
detect neighbouring points needed to calculate the normal surface vector of a given point.
Additionally, the time-consumption is linear with the number of iterations. In comparison
with other standard fitting approaches, the proposed algorithm shows reliable and robust
results in a fraction of time without the pre-processing step to calculate the normal vec-
tors. While the least-squares fit does not need to calculate normal vectors, segmentation
does and therefore must be calculated. One interesting point is that the presented method
shows better results with a reduced resolution of the point cloud. Different resolutions
were also analysed to confirm this point of view.

The entire system exhibited its practical behaviour at a live demo presentation. During
the demonstration day, about 50 runs were performed in which the cylinder detection failed
in only 2 cases, whereas path planning failed in 11 cases. The result indicates that this
strategy is feasible to complete a grasping task automatically under this framework.
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Chapter 5

Grasping Point and Pose Detection
of Unknown Objects on a Tabletop

“Science is everything we understand well enough to explain to a computer.
Art is everything else.”

– David Knuth

In the last few decades, the problem of grasping and manipulation of unknown objects
in a fully automatic way has gained increasing importance, mainly due to the wide-spread
use of service and rehabilitation robotics [Casals et al., 2000, Martens and Ruchel, 2001,
Ivlev and Martens, 2005]. The grasping of unknown objects from a single view is an
especially difficult problem because the pose and shape of different objects are unknown,
and the possible hand configurations to perform a stable grasp are numerous.

The aim of this work is the detection and grasping of arbitrary objects from a clutter
of different objects on the table, which the robot arm delivers to a target position or to
the user.

The problem of an automatic 2.5D reconstruction to obtain practical grasping points
and poses consists of several challenges. An object might be detected in several discon-
nected parts, due to missing sensor data from shadows or poor surface reflectance. Without
any model information, adjacent objects may appear as one object in the recorded point
cloud and hidden objects on the rear side of larger objects cannot be detected. However,
due to the symmetry of most everyday objects, one view is often sufficient to realise a
stable power grasp. As described in Section 2.7.1 [Brouwer et al., 2009] pointed out that
for humans only the view of one side of the object is sufficient to successfully grasp an
object.

This chapter presents a robust method of the segmentation of a 2.5D point cloud into
shapes, assembly of rotationally symmetric parts into objects, and calculation of grasping
points and poses despite noise, outliers, and shadows. The algorithm was developed for
arbitrary unknown objects in different poses, on top of each other or side by side with a
special focus on rotationally symmetric objects. If objects cannot be separated because
they are stacked on top of each other they are considered as one object. A grasp will disam-
biguate the situation. The algorithm detects and merges clipped rotationally symmetric
parts, because this object class can be robustly identified [Richtsfeld and Vincze, 2008a]
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and allows a cylindrical grasp as well as a tip grasp [Schulz et al., 2005] along the top rim.
For all other arbitrary objects, the presented method calculates potential power grasps
based on the top surfaces with a 3D model of the gripper as illustrated in Fig. 5.1. The
shape information recovered from a single view is too limited and no complete object
information is available, hence, to calculate force-closure grasps.

Figure 5.1: Detected grasping points and poses. The green points display the grasping
points for rotationally symmetric objects. The red point shows an alternative grasp along
the top rim. The illustrated hand poses show possible power grasps for the remaining
graspable objects.

For a general evaluation of the presented method, the following categories have been
defined: serval similar objects in different poses, connected objects, and scattered objects
in a box as well as a pile of objects. Tests based on laser range and dense stereo data have
been carried out to illustrate the robustness of the proposed algorithm. The experimental
results demonstrate the effectiveness of the proposed method to grasp a wide range of
objects.

This work was supported by the EU-Project “GRASP” with the grant agreement num-
ber 215821. The aim of this project is the design of a cognitive system to perform grasping
and manipulation tasks in unforeseen situations. This project goes beyond the classical
perceive-act or act-perceive approach and implements a predict-act-perceive paradigm
based on human brain research. These consolidated findings are used to develop methods
for the grasping process, since input information images and point clouds from table top
scenes are used.

The outline of this chapter is as follows: Section 5.1 specifies different methods of
segmenting a 2.5D point cloud into parts and the assembly of parts into objects, and
characterises the merging of clipped rotationally symmetric objects. For the segmenta-
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tion step, region-growing and mesh segmentation were tested with a special focus on the
computation time. Section 5.2 details the calculation of grasping points for rotationally
symmetric objects and optimal grasping poses for arbitrary objects to grasp and manip-
ulate an object without collision. Section 5.3 shows the achieved results and Section 5.4
finally concludes this chapter.

5.1 Method of Grasping Point and Pose Detection

This section presents the developed method to grasp unknown objects in detail starting
with the flow chart in Fig. 5.2 outlining the main components and their interactions. It
illustrates all processing steps from scanning the objects on the table to obtain the range
image, grasping point and pose detection by the grasping algorithm, and path planning
for the final grasping step.

A flexible interaction and feedback between robot and user is necessary. In doing
so the robot sends a feedback to the user about the successful execution of the grasping
task, by measuring the aperture angle of the gripper with the SUVA sensor, see Fig. 4.2.
The robot has to detect the position and orientation of the object among all surrounding
objects on the table. This includes an autonomous feature detection and grasp motion
planning to fulfil the task of providing objects in an arbitrary pose on a table to the user.
The pose of the objects on the table is unknown, thus the algorithm tries to grasp the
topmost object.

Therefore, the path planner sends feedback to the grasping algorithm about the
successful calculation of a possible trajectory to reach the grasping object and the
grasping algorithm obtains information about a successful grasp. This information is
needed by the path planner because the grasped and handled object can be eliminated
in the table scene as a potential obstacle for the next grasping or path planning task.
Another possibility is to scan the tabletop scene again.

Figure 5.2: Interactions between all computation steps.

Fig. 5.3 presents the main parts of the grasping algorithm. It illustrates the processing
steps from raw data pre-processing to the grasping point and grasping pose detection. The
proposed method presents a robust way of calculating potential power grasps of unknown
objects without collision using a 3D model of the used gripper.
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The challenge of this approach is the segmentation of different objects on the table
and the detection of the grasping points and poses in a 2.5D point cloud. Additionally, an
object might be detected as being composed of several disconnected parts, due to missing
sensor data from shadows or poor surface reflectance.

Figure 5.3: Overview of the grasping algorithm.

As illustrated in Fig. 5.3 the grasping algorithm consists of six main steps:

• Raw Data Pre-Processing: An image of the tabletop surface is created by pre-
processing raw data points with a plane fit, and a geometrical filter or smoothing
filter is used to reduce noise and outliers.

• Range Image Segmentation: This procedure identifies different objects or parts of
fragments in the point cloud.

• Pairwise Matching: Finding top curvature points, indicating the top rim of an object
part, fit a 3D circle to these points, and merge clipped rotationally symmetric objects.

• Approximation of 2.5D Objects to 3D Objects: This step is only important to de-
tect potential collisions with the path planning tool. The algorithm distinguishes
between:

- Rotationally Symmetric Objects: Adds additional points by using the calculated
rotation axis.

- Arbitrary Objects: The non-visible sides of the objects will be closed with planes
which are normal to the table plane.

• Grasping Point and Pose Detection:
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- Grasping Point Detection: Rotationally symmetric objects allow a cylindrical grasp
as well as a tip grasp along the top rim for open objects.

- Grasping Pose Detection: The power grasp for arbitrary objects is calculated with
a 3D model of the used gripper.

• Collision Detection: Considers all surrounding objects and the table surface as po-
tential obstacles, in order to evaluate the calculated grasping pose.

The proposed algorithm segments different objects on the table and calculates possible
grasps for unknown objects. The system receives the table scene by an unstructured
point cloud scanned from one single view. As described in Section 5.1.1, the method
starts with a pre-processing step to detect the table surface with a plane fit in the range
image followed by a geometrical filter to detect potential outliers and a smoothing filter to
reduce noise. Section 5.1.2 presents two different segmentation methods, which have been
tested and compared to get best segmentation results dependent on time. Section 5.1.3
presents the detection and merging of clipped rotationally symmetric object parts, since
this object class can be robustly identified. The approximation of 2.5D objects to 3D
objects as described in Section 5.1.4 is only important to detect potential collisions by
the path planning tool. Section 5.2 describes the main part of the proposed grasping
algorithm. The grasping point detection algorithm is limited to rotationally symmetric
objects, which differentiates between open and closed objects. In addition to this object
class, cylindrical grasps are calculated by the path planning tool. If no suitable grasp
can be detected because of collision, an alternative tip grasp along the top rim will be
calculated. For all arbitrary objects, the method calculates potential power grasps and
considers all surrounding objects and the table surface as obstacles.

5.1.1 Raw Data Pre-Processing

Almost every range image of a tabletop scene includes the table surface. However, the
table surface is not needed for the grasping point and pose detection. Hence, the first
step is to detect and remove the tabletop plane points associated with the ground plane
in the raw data points. The plane is only used to detect potential collisions of the final
grasping poses and can be used as reference for the robot as described in Section 4.2.2.
The table plane is normally the dominant plane in the range image associated with more
raw data points than in the rest of the point cloud. This definition fails in cases with
many objects on the table as illustrated in Fig. 5.4(a).

The robust detection of the table plane is achieved by calculating all normal surface
vectors, which are used to evaluate all raw data points for the plane fit [Stiene et al., 2006].
On the normal vector ~n, the calculation of a point p is approximated by a planar surface
patch close to the point with a radius of 5mm. This 5mm (radius) corresponds to the
average distance between the two closest points over 100 whole point clouds, as discussed
in Section 4.2.2. The normal vector of the surface patch corresponds to the vector ~n
which is determined by the eigenvalue problem Cn = λmin, where λmin is the smallest
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eigenvalue and C is the covariance matrix of the surface patch point set as defined in
Eq. (4.12).

At the start, a geometrical filter can be used to reduce noise and outliers, depending
on the setup and the environmental influences.

The tabletop scene is recorded with the range scanner mounted on the side over the
table, in order to overlook a large range of the table as illustrated in Fig. 4.1. To detect
the deepest plane (associated with the table plane) the convex hull Hull of the complete
point set with n points (see Fig. 5.4(a)) is calculated:

Hull = ConvexHull

(
n−1⋃
i=0

pi

)
. (5.1)

Fig. 5.4(b) shows the convex hull of the complete point set. The blue vertices1 of the
convex hull correspond with the outside points of the original raw data points. These m
points are used to detect the deepest plane; by testing all possible planes on the convex
hull. Fig. 5.4(c) shows the three detected hull vertices representing the deepest plane;
Fig. 5.4(d) illustrates the resulting normal vector ~nref calculated with the cross product
of the direction vectors between two pairs of the three detected points. The point pref on
this plane is calculated by the circumcentre of these three plane points.

The normal vector ~nref and the point pref are used to detect all points of the raw data,
which are part of the table plane with a normal distance of 5mm (average of the maximum
distances of the two closest points detected by the nearest neighbour when searching over
100 whole point clouds (see Fig. 4.5)) to the plane as illustrated in Fig. 5.5(a). It is
simply practical to use a threshold to minimise the number of points and to speed up the
calculation time because only the points in the defined threshold are used for the final
plane fit.

Finding the final table plane is achieved by randomly fitting planes in the evaluated
table points 100 times. After 100 calculated plane hypothesis the one with the most
included points with a defined threshold of 2mm wins. The threshold of 2mm is motivated
by the average distance between two neighbouring points in 100 range images, calculated
by closest point detection. Afterwards all detected table points are used to calculate the
final normal surface vector of the table plane ~ntab again to achieve higher accuracy as
illustrated in Fig. 5.5(b).

Fig. 5.5(b) shows the remaining point cloud of the objects, which should be filtered to
reduce noise and outliers. A geometrical filter based on the density allocation of the points
is used to remove outliers and the threshold parameters are calculated with the help of the
compression rate. A detailed description can be found in Section 4.2.2. To reduce noise,
the point cloud of the objects is smoothed with an average filter.

5.1.2 Range Image Segmentation

Range image segmentation is one of the biggest challenges in computer vision. A correct
segmentation result of the different objects on the table is an inalienable part of calculat-

1In geometry, a vertex is a special kind of point, which describes the corners or intersections of geometric
shapes and a polygon is a set of faces.
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(a) (b)

(c) (d)

Figure 5.4: Detection of the normal surface vector of the table plane. (a) Raw point
cloud with 42, 023 points. (b) Convex hull of the complete point cloud. The 126 blue
points illustrate the vertices of the convex hull, which correspond to the outside points of
the original point cloud. (c) The blue vertices are used to detect the deepest plane of the
convex hull, which is defined by the three coloured magenta vertices. (d) Calculated normal
surface vector ~nref defined by the three vertices of the deepest plane. The red point pref on
this plane is calculated by the circumcentre of these three plane points.

ing grasping points and poses. This section presents two different possible segmentation
methods and evaluates the results with a special focus on the computation time. For
this comparison the region-growing algorithm [Bab-Hadiashar and Gheissari, 2006] and a
segmentation method based on a mesh generation are tested.

An object or part is defined as a set of points with distances between neighbours.
For that a kd-tree [Bentley, 1975] is generated and the minimum dmin, maximum dmax,
and average distance da between two closest points points [Arya et al., 1998] as input
information for the segmentation step are calculated. The result may contain an over- or
an under-segmentation depending on the overlap of the objects as illustrated in Fig. 5.6
and Fig. 5.7.
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(a) (b)

Figure 5.5: Exposure of the raw point cloud with 42, 023 points. The detected table surface
is coloured blue. The two shadows of the laser and the camera are clearly visible. The
noise and outliers detected by the geometrical filter are marked red. (a) Evaluated points,
which are used to calculate the final table plane. Representation of 10% of the calculated
normal vectors of the evaluated points. (b) The detected table surface includes 19, 646
points. After the filtering step the final point cloud includes 22, 339 points of the original
22, 377 object points.

• Region-Growing

Region-growing methods often give very good segmentation results that correspond well
with the observed objects in the table scene. Region-growing approaches exploit the fact
that points which are close together are part of the same object. Different characteristics,
like the average distance between all points, colour, texture, and size can be chosen as
similarity criteria.

As explained in Alg. 2, the presented region-growing algorithm is based on the recur-
sive flood-filling function [Burger and Burge, 2007] to identify connected point sets. For
this function, the average distance da over all remaining points after the plane detection
and filtering step is used as input information for the segmentation step. As described
in [Richtsfeld and Vincze, 2008a] the distance d is defined as euclidian distance with an
additional weighting factor wg derived from the angle between the normal vectors ~n of the
neighbouring points pi and pm:

d =
√

(pxi − pxm)2 + (pyi − pym)2 + (pzi − pzm)2, (5.2)

cosα =
~ni · ~nm
‖~ni‖‖ ~nm‖

, (5.3)

wg = 1− | cos(α)|. (5.4)

If d · wg < da then the considered point pi is part of the same region as the point
pm. Fig. 5.6 illustrates that the weighting factor wg derived from the angle between the
normal vectors ~n of two neighbouring points has an influence on the segmentation result
and helps to segment objects placed on top of each other.
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Algorithm 2 Overview of the region-growing algorithm.

begin
1. choose the start point (more than one start point can be chosen)
2. take a neighbouring point and add it to the region if it has a smaller

distance with the weighting factor than the average distance
3. repeat step 2. for each of the newly added points
4. stop if no more points can be added and choose a new starting point,

which is not part of a detected region
end

(a) (b)

Figure 5.6: Segmentation result based on region-growing. Objects placed on top of each
other are encircled red. (a) Region-growing result based on distances only. (b) Region-
growing result based on distances with additional weighting factors wg. The successfully
segmented fragments are clearly visible. However, the extension with the help of the normal
vectors works by an intersection angle > 60◦, otherwise an under-segmentation results as
clearly visible by the overlapping objects on the left side (green fragments).

• Mesh Segmentation

The segmentation of a 2.5D point cloud can be also achieved with a mesh generation based
on the triangles calculated by a 3D Delaunay triangulation [O’Rourke, 1998], as explained
in Alg. 3.

Delaunay triangulations are used to build topological structures from unstructured
points. If points are injected into the triangulation, the algorithm finds the closest previ-
ously inserted point. Edelsbrunner’s α-shape algorithm [Edelsbrunner and Mücke, 1994]
is implemented to realise the 3D Delaunay triangulation. This method is described in
detail in Section 2.6.1.

The necessary settings for the mesh generation will be achieved with dmin, dmax, and
da between all neighbouring points [Richtsfeld and Vincze, 2008b]. dmax is the needed
alpha value for the circumsphere. A detailed description for mesh generation based on
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a Delaunay triangulation can be found in Section 2.6.1. Then all segments of the mesh
are extracted by a triangle connectivity filter [Belmonte et al., 2004]. This step segments
the mesh into different objects or parts of fragments. An additional cut refinement is not
necessary [Richtsfeld and Vincze, 2008c].

Algorithm 3 Overview of the mesh segmentation algorithm.

begin
1. 3D mesh generation of the complete point cloud based on a 3D Delaunay

triangulation [O’Rourke, 1998, Edelsbrunner and Mücke, 1994]
2. Extraction of all objects or parts with a triangle connectivity fil-

ter [Belmonte et al., 2004]
end

Figure 5.7: Segmentation result based on mesh generation. The over- and under-segmented
objects are encircled red.

• Time Comparison

The results for both methods have been practical implications in the following pre-
processing steps. The region-growing algorithm, however, needs more time than the mesh
segmentation method. Fig. 5.8 and Fig. 5.9 compare the time performance and results of
both segmentation methods by means of 5 different table scenes.

To keep the necessary computation time for the grasping point and pose detection
algorithm as short as possible, the segmentation method based on a mesh generation is
used.
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(a) region-growing (table scene 1, 21, 117 object
points, 59, 397 table points): 92.562s

(b) mesh segmentation (table scene 1, 21, 117
object points, 59, 397 table points): 19.796s

(c) region-growing (table scene 2, 20, 447 object
points, 34, 531 table points): 84.906s

(d) mesh segmentation (table scene 2, 20, 447
object points, 34, 531 table points): 19.360s

Figure 5.8: Time comparison of the region-growing algorithm and the mesh segmentation
method. It is clearly visible that the segmentation based on a mesh generation is faster.
However, both methods have practical implications for the following computation steps.

5.1.3 Pairwise Matching

After the object segmentation step, the algorithm finds the top surfaces of all objects
using a RANSAC-based plane fit and generates a 2D Delaunay triangulation. A detailed
description of a RANSAC-based plane fit can be found in Section 4.2.1. For the 2D
Delaunay triangulation, a method based on alpha-shapes [Edelsbrunner and Mücke, 1994]
is applied. This 2D surface information is used to extract the top rim points and top
feature edges of every object as illustrated in Fig. 5.10. As for the top surface detection,
the algorithm uses a pre-processing step to find all vertices of the object with a vector
~v normal to the table plane. For example, if the x-direction of the table normal surface
vector is the main direction (ntable[x] > ntable[y] and ntable[x] > ntable[z]), the main component
of the normal surface vector of the object vertices should be also nobject[x]. The normal
vectors of all vertices are calculated with the faces (triangles) of the generated mesh. With
the normal vectors, the top surface of the objects is guaranteed to be robustly detected,
and the surface Pi with the most included points in 100 trials wins:

arg max
1≤i≤100

Pi. (5.5)
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(a) region-growing (table scene 3, 28, 335 ob-
ject points, 55, 151 table points): 168.531s

(b) mesh segmentation (table scene 3, 28, 335
object points, 55, 151 table points): 30.500s

(c) region-growing (table scene 4, 24, 395 object
points, 61, 879 table points): 127.297s

(d) mesh segmentation (table scene 4, 24, 395
object points, 61, 879 table points): 28.672s

(e) region-growing (table scene 5, 16, 285 object
points, 17, 303 table points): 53.156s

(f) mesh segmentation (table scene 5, 16, 285 ob-
ject points, 17, 303 table points): 13.016s

Figure 5.9: Time comparison of the region-growing algorithm and the mesh segmentation
method. It is clearly visible that the segmentation based on a mesh generation is faster.
However, both methods have practical implications for the following computation steps.

The developed matching method is specifically for rotationally symmetric objects be-
cause this object class can be robustly detected and merged in a point cloud with unknown
objects. To detect the top circle rim of rotationally symmetric objects, a RANSAC-based
3D circle fit [Jiang and Cheng, 1999] with a range tolerance of 2mm is used. Several tests
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Figure 5.10: Result after the merging step. The red encircled, clipped rotationally sym-
metric parts are successfully merged to one object. The points marked blue show the top
rim points of the objects, detected with a 2D Delaunay triangulation.

have shown that this threshold provides good results for the current laser range scanner
setup. For an explicit description, the data points are defined as (pxi, pyi, pzi) and (cx,
cy, cz) is the circle’s centre with a radius r. The error must be smaller than the defined
threshold of 2mm:

|‖~p− ~c‖ − r| ≤ 2. (5.6)

This operation is repeated for every point of the top rim. The run with the maximum
number nmax of included points wins:

nmax = | {p|‖~p− ~c‖ − r| ≤ 2} | (5.7)

If more than 80% of the rim points of both parts (rotationally symmetric parts) lie on
the same circle, all points of both parts are examined more closely with the fit. Thus, the
distances of all points of both parts to the rotation axis are calculated, whereas section
planes are arranged along the rotation axis, and only the distances of the points to the
rotation axis in the respective section planes have to correspond:

d = (~p− ~c)× ~n. (5.8)

In Fig. 5.12 the yellow line represents the rotation axis of the object. If more than
80% of all points of both parts correspond with the neighbouring points along the rotation
axis, both parts are merged to one object as illustrated in Fig. 5.10.

5.1.4 Approximation of 2.5D to 3D Objects

This step is only important to avoid potential collisions with the path planning tool because
of missing model information. However, as clearly visible in Fig. 5.11, the path planning
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tool needs complete information to calculate a collision-free path. The closed rear side of
the objects is necessary to avoid possible collisions of the robot with the objects on the
table.

Figure 5.11: Visualisation of the experimental setup with a simulation tool, which is suit-
able to calculate the trajectory of the robot arm. The closed rear side of the objects on the
table by an approximation of 2.5D to 3D is necessary to avoid potential collisions of the
robot or gripper with the rear side of other surrounding objects.

During the matching step, the algorithm detects potential rotationally symmetric ob-
jects and merges clipped parts. With this information, the algorithm rotates points along
the axis by 360◦ in small 5◦ steps, which fulfil the necessary rotation constraint. This
means that the points rotated are only those, whose normal surface vector is normal to
the rotation axis and which build a circle with the neighbouring points along the section
plane of the rotation axis, as illustrated in Fig. 5.12. Because of this rather simple assump-
tion, object parts such as handles or objects close to the rotationally symmetric object are
not rotated. This method achieved suitable results during all the tests.

For all other arbitrary objects, the non-visible surfaces are closed with planes normal
to the table plane, as illustrated in Fig. 5.12. Filling the non-visible range with vertical
planes may lead to incorrect results, especially when the rear side of the objects is far from
vertical. However, this step is only necessary to avoid potential collisions with the path
planning tool.

5.2 Grasping Point and Pose Detection

The algorithm for grasping point detection is limited to rotationally symmetric objects
and the grasping poses or, to be more precise power grasps, are calculated for arbitrary
objects. After the segmentation step, the algorithm finds out if the object is open or closed
with a sphere fit into the top surface. The sphere is fitted into the centre of gravity of
the top surface and if there is no point of the object within the fitted sphere, the given
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Figure 5.12: Detected grasping points and power grasps. The green points illustrate the
computed grasping points for rotationally symmetric objects to perform a cylindrical grasp.
The red point shows an alternative tip grasp along the top rim, with one grasping point
being enough for an open object. The illustrated hand poses show possible power grasps for
the remaining graspable objects.

object is open. The radius r of the sphere, depends on the distance pd between the centre
of gravity and the nearest top rim point:

r = pd ·
2

3
. (5.9)

Then the grasping points of all cylindrical objects can be calculated. For every rota-
tionally symmetric object two grasping points are calculated in the middle of the object
for a cylindrical grasp (points coloured green as illustrated in Fig. 5.13, object no. 7).
If the path planner is not able to detect a collision-free path, the algorithm calculates
alternative grasping points along the top rim of the object near the strongest curvature,
as illustrated in Fig. 5.13, (object no. 7, red point). The algorithm finds out the strongest
curvature along the top rim with a Gaussian curvature filter [Porteous, 1994]. If it is an
open object, one grasping point is enough to realise a stable tip grasp near the top rim.
The grasping points are calculated in such a way that they are next to the robot arm,
mounted on the opposite side of the laser range scanner.

To successfully grasp an object, it is not always sufficient to locally find the best
grasping pose. The algorithm should calculate a stable power grasp to realise a good
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Figure 5.13: Detected grasping points and power grasps. The objects are numbered from
left to right. It is clearly visible that the overlapped objects no. 2 and 3 are detected as
one object. The segmented rotationally parts of object no. 7 are successfully merged to
one object. Object no. 5 was not detected as a rotationally symmetric object, because only
76% of the top surface points lie on the top circle rim. The green points on object no.
7 illustrate the computed grasping points for rotationally symmetric objects to realise a
cylindrical grasp. The red point shows an alternative tip grasp along the top rim. The
illustrated hand poses show possible power grasps for the remaining graspable objects.

grasp without collision as fast as possible. In general, conventional multi-dimensional
“brut force” search methods are not practical enough to solve this problem.

If there is only a limited field of view from above, which results in a 2.5D point cloud and
the need to calculate collision-free power grasps, only grasps from above will be calculated.
In the same way, infants prefer to grasp an object by visualising the top surface of the
object to avoid potential collisions as discussed in Section 2.7.1. It is interesting to observe
that people generally keep their hands outside a region that surrounds the obstacle at a
minimum distance. There is a higher probability of collision with other objects if you grasp
the object from the left or right-hand side. The robot might also collide with the table.
In addition, the left and right hand side of the grasping object is often not sufficiently
evident. Best results to successfully grasp the object are achieved if you grasp the object
from above, near the centre of the object. This experience is reflected by a study of
Tristian Nakagawa et al. [Nakagawa et al., 2008]2. [Nakagawa et al., 2008] analysed the
fixation duration (called heat maps) of 6 participants during the first 500ms with a head-

2I would like to thank Prof. Heiner Deubel from the Ludwig-Maximilians-University department of
psychology for providing Fig. 5.14
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mounted video based eye-tracker. First the participants registered the position of the
object and then they decided where they would grasp the object from above.

Figure 5.14: Heat maps of one participant based on fixation duration during the first 500ms
of each trial. The first row shows the centre of the detected object and the second row shows
the central point for a grasp from above [Nakagawa et al., 2008].

Fig. 5.14 shows the heat maps of one participant based on fixation duration during the
first 500ms of each trial. The first row shows the centre of the detected object and the
second row shows the central point for a grasp from above. Based on this expertise the
following method was developed. It is clearly visible that the central point is along the
top surface near the centre of the object, which reflects the position of the thumb or the
fingers of the power grasp calculated with the presented method.

In the beginning, the internal centre and the principal axis of the top surface are
calculated with a transformation that fits and transforms a sphere inside (see the elliptical
surfaces coloured blue in Fig. 5.15(b)). If it is a Gaussian distributed point cloud and the
transformation is applied to a unit sphere, the transformed sphere illustrates the covariance
structure of the point cloud. After the transformation, this sphere has an elliptical form
in alignment with the top surface points with the principal axis being calculated. The
algorithm transforms the rotation axis of the gripper (defined by the fingertip of the
thumb, the index, and the last finger as illustrated in Fig. 5.15(a)) along the principal axis
of the top surface of the object and the TCP (centre of the fingertips) of the gripper are
translated to the centre of the top surface ctop, whereby TCP = ctop results. The hand is
rotated in such a way that the normal vector of the hand aligns in reverse direction to the
normal vector of the top surface. Afterwards the hand is shifted along the normal vector
down to a possible collision with the grasping object. Both the possible power grasps from
the left and right are tested, and the one which encloses the object most tightly wins,
guaranteeing a collision-free and stable power grasp as illustrated in Fig. 5.15(b).
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(a)

(b)

Figure 5.15: Detection of the optimal power grasp. (a) The rotation axis of the hand must
be aligned with the principal axis of the top surface. (b) The hand is transformed and
rotated along the principal axis of the top surface. After this step the algorithm checks
potential collisions with all surrounding objects.
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The calculated power grasp is checked to identify a potential collision with the re-
maining objects and the table. Thus the algorithm determines if it is possible to grasp
the object depending on the other objects, as illustrated in Fig. 5.13. An obb-tree is
used [Gottschalk et al., 1996] for collision detection.
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5.3 Experimental Evaluation

The system presented in Section 4.1 is again used in this work. Fig. 4.1 showed that the
system is equipped with an additional camera to realise a 3D dense stereo reconstruction.
The camera captures two images with two defined angularities at −4◦ (left image) and
0◦ (right image) by a pitch of −37◦ of the pan/tilt unit to overlook the tabletop scene as
illustrated in Fig. 5.18.

The tool centre point (TCP) to grasp arbitrary objects is defined by the centre of
gravity of the tip of the thumb, the index, and the little finger. The TCP to grasp
rotationally symmetric objects is defined by the centre of gravity of the thumb and the
index finger. For this reason two grasping types: the cylindrical grasp and the tip grasp
along the top rim have been implemented.

To provide a general evaluation of the presented method, different objects and cate-
gories have been defined. All the 12 defined objects for the evaluation are presented in
Fig. 5.16. Different situations like several objects in different poses, touching objects, and
scattered objects in a box as well as a pile of objects have been defined as grasp cate-
gories. Additionally, tests based on dense stereo data have been carried out to illustrate
the robustness of the presented grasping algorithm.

Figure 5.16: 12 different objects were selected to evaluate the grasping point and pose
detection algorithm, from left: 1. Salt Shaker (cylinder), 2. Sweets (cylinder), 3. Spread
(cylinder), 4. Sweets (half cylinder), 5. Melba Toast (cuboid), 6. Dextrose (cuboid), 7.
Salt Shaker (cuboid), 8. Sweets (pentagon object), 9. Coffee Cup, 10. Shower Bath Gel
(paraboloid), 11. Cleaner (paraboloid), 12. Sweets (prism).
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The detected grasping points and power grasps are tested directly on the objects with
the AMTEC 7DOF robot arm and the Otto Bock hand as the gripper. The object seg-
mentation, merging, grasping point, grasping pose, and collision detection is performed by
a PC with 2.0GHz Intel Core 2 Duo processor and takes a duration of 66s depending on
the number of objects on the table, see Tab. 5.1. The algorithm is implemented in C++
using the Visualization Tool Kit (VTK).

calculation steps time [s]

plane fit 1.4
mesh generation 35
mesh segmentation 0.7
top surface detection 0.9
merging rotationally symmetric objects 2
approximation of 3D objects 6
grasping point detection 3.5
grasping pose detection 6.5
collision detection 10∑

66

Table 5.1: Duration of every calculation step.
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5.3.1 Results Based on Laser Range Data

In the following evaluation the grasping rate, which reflects the grasping success, was
analysed depending on the detection rate for the defined grasp categories. A successful
robust grasp is defined as a grasp with delivering the grasped object to a determined
position. In addition, the evaluation was arranged by a third person3 in order to make a
fair analysis possible.

Tab. 5.2 shows the detection and grasping rate of all 12 defined objects to evaluate the
presented method. Every object was scanned 10 times in different poses and the algorithm
tried to detect features to realise a stable grasp. Tab. 5.2 shows a grasping rate of 80.65%,
which depends on the detection rate of 95% over all 12 several unknown objects.

object no. object detection rate [%] grasping rate [%]

1 Salt Shaker (cylinder) 100 100
2 Sweets (cylinder) 80 87.50
3 Spread (cylinder) 90 77.77
4 Sweets (half cylinder) 80 62.50
5 Melba Toast (cuboid) 90 100
6 Dextrose (cuboid) 100 100
7 Salt Shaker (cuboid) 100 100
8 Sweets (pentagon object) 100 100
9 Coffee Cup 100 60
10 Shower Bath (paraboloid) 100 50
11 Cleaner (paraboloid) 100 40
12 Sweets (prism) 100 90

Overall 95.00 80.65

Table 5.2: Laser data: Detection and grasping rate of several unknown objects. Each object
was tested 10 times in different poses.

This result illustrates the high reliability of the detected features to calculate possible
grasping points and poses. The grasping rate proves that the developed method calculates
stable grasps for several objects on a table. The grasping success of object no. 4 depends
on the orientation of the object on the table. If the half cylinder lies with the cylinder
side on the tabletop and if the top surface is not completely visible, due to absorption or
reflection, the calculated grasping pose fails. In contrast object no. 11 is very heavy and
has a smooth surface, which results in a stick-slip effect.

Several objects placed on a table hardly ever appear in the real world, hence touching
objects are also evaluated as a separate categories. Tab. 5.3 illustrates the result of the
evaluation in this case. The object grasped was in each case the highest object out of the
reminder. No one ever grasps the bottom object in a carrier bag because of the collision
of the hand with objects placed on top. For this category a detection rate of 87.17% was
achieved with a resulting grasping rate of 77.57%.

3I would like to thank Dipl.-Ing.(FH) Thomas Vrca for evaluating the grasping success of the presented
algorithm.
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object no. object detection rate [%] grasping rate [%]

1 Salt Shaker (cylinder) 100 40
2 Sweets (cylinder) 80 100
3 Spread (cylinder) 90 66.67
4 Sweets (half cylinder) 90 66.67
5 Melba Toast (cuboid) 100 100
6 Dextrose (cuboid) 90 100
7 Salt Shaker (cuboid) 100 100
8 Sweets (pentagon object) 100 90
9 Coffee Cup 80 87.50
10 Shower Bath (paraboloid) 100 30
11 Cleaner (paraboloid) 80 50
12 Sweets (prism) 60 100

Overall 89.17 77.57

Table 5.3: Laser data: Detection and grasping rate of touching unknown objects. The
grasped object was the topmost object in each case. Each table top scene for each object
was tested 10 times in different poses in combination with 2 to 5 other objects.

Figure 5.17: Laser data: Detected grasping points and poses of unknown objects in a box.
There is a lower detection rate, because of possible collisions of the hand with the box.

Then a very complex case of objects in different poses in a box was evaluated. Fig. 5.17
illustrates that there is a lower detection rate because of possible collisions of the gripper
with the box. Tab. 5.4 shows the detection of 77.50% of the objects and grasping rate
of 82.70% overall. However, with a grasping rate of 82.70%, the developed method has a
high reliability to detect necessary features to successfully grasp the objects.

Finally, a pile of touching objects was evaluated. This happens if the purchase is simply
emptied on the kitchen table at home. With a detection rate of 82.50% and a grasping rate
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object no. object detection rate [%] grasping rate [%]

1 Salt Shaker (cylinder) 80 87.50
2 Sweets (cylinder) 30 100
3 Spread (cylinder) 60 100
4 Sweets (half cylinder) 90 66.67
5 Melba Toast (cuboid) 80 100
6 Dextrose (cuboid) 70 100
7 Salt Shaker (cuboid) 90 100
8 Sweets (pentagon object) 80 87.50
9 Coffee Cup 100 60
10 Shower Bath (paraboloid) 80 25
11 Cleaner (paraboloid) 100 80
12 Sweets (prism) 70 85.71

Overall 77.50 82.70

Table 5.4: Laser data: Detection and grasping rate of touching unknown objects in a box.
The grasped object was the topmost object in each case. Each scene for each object was
tested 10 times in different poses and combinations with all other objects.

of 79.40% presented in Tab. 5.5, the presented method shows a high level of robustness.

object no. object detection rate [%] grasping rate [%]

1 Salt Shaker (cylinder) 100 50
2 Sweets (cylinder) 30 66.67
3 Spread (cylinder) 90 77.78
4 Sweets (half cylinder) 60 50
5 Melba Toast (cuboid) 80 100
6 Dextrose (cuboid) 80 75
7 Salt Shaker (cuboid) 100 100
8 Sweets (pentagon object) 100 100
9 Coffee Cup 80 100
10 Shower Bath (paraboloid) 90 55.56
11 Cleaner (paraboloid) 90 77.78
12 Sweets (prism) 90 100

Overall 82.50 79.40

Table 5.5: Laser data: Detection and grasping rate of a pile of touching unknown objects
on the table. The grasped object was the topmost object in each case. Each scene for each
object was tested 10 times in different poses and combinations with all other objects.
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5.3.2 Results Based on Dense Stereo Data

The last case was evaluated again based on dense stereo data, recorded with the stereo
system presented in Section 5.3. With the dense stereo data only a potential power grasp
was calculated because of more noise and outliers in these input data.

The accuracy of a stereo reconstruction depends on the accuracy achieved in four
important steps of the process: camera calibration, rectification of stereo images, disparity
calculation and triangulation of 3D points. Poor performance in untextured regions is a
common problem of correlation methods based on area block matching.

Below a short overview of a 3D stereo reconstruction is given4:

“Stereo reconstruction is using two images of an object to compute its 3D coordinates
in the real world. The camera is observing the object from a different point of view and
the images appear shifted to a certain extent. The amount of the object shift is called
disparity, which is the key information to determine the physical position of an object in
the real world.

(a) (b)

Figure 5.18: (a) Left and (b) right image of the camera at two defined angularities of the
pan/tilt unit to overlook the tabletop scene.

Camera parameters are required for the stereo reconstruction, which are obtained by
a camera calibration. The aim in this process is to find parameters belonging to two
categories: internal (consisting of focal length, principal point coordinates and distortion
parameters data) and external (rotation matrix R and translation vector T with respect to
the reference coordinate frame). While internal parameters describe properties of the image
projection through the lens, external parameters give the information about the relative
position of the camera coordinate frame regarding a fixed reference coordinate frame. For

4I would like to thank Dipl.-Ing. Dzemaludin Efendic. His master thesis [Efendic, 2008] presents the
basis for the following short overview in 3D reconstruction.
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this task the “Camera Calibration Toolbox for Matlab5” was used.
Inaccuracy during the lens production process lead to deformations of the image projec-

tion, commonly appearing as barrel and pincushion distortion. The image distortions are
modelled as radial and tangential distortions. Radial distortion causes bending of a straight
line on the image, with the bending centre in the principal point. Tangential distortion is
a pixel shift in the tangential direction on a circle centred in the principal point.

The distortion of a particular image pixel is related to the second and fourth power
of its distance from the principal point6, quantified by two radial (k1 and k2) and two
tangential (p1 and p2) distortion parameters. If x and y describe the physical coordinates
of an undistorted image pixel, the physical coordinates xd and yd of the corresponding pixel
in the initial, distorted image are given by:

xd = x+ x · [k1 · r2 + k2 · r4] + [2 · p1 · x · y + p2 · (r2 + 2 · x2)], (5.10)

yd = y + y · [k1 · r2 + k2 · r4] + [2 · p1 · x · y + p2 · (r2 + 2 · y2)] (5.11)

with
r2 = x2 + y2. (5.12)

Stereo parameters can be computed by using the extrinsic parameters of the stereo
cameras [Trucco and Verri, 1998]. Since they are related to the same reference coordinate
frame, the rotation matrices of the left Rl and right Rr camera produce immediately:

R = Rr ·Rl
T . (5.13)

Similarly, the translation vector T follows from the translation vector of the left Tl

and right Tr camera as:
T = Tl − (Rl ·Rr

T ) ·Tr. (5.14)

Correction of the image distortion, requires to start with a pixel Pu of the undis-
torted image and to “jump back” to a certain point Pd on the distorted image and the
rectification of the stereo images is closely tied to the epipolar geometry of the stereo
setup [Trucco and Verri, 1998] as illustrated in Fig. 5.19. Fig. 5.20 shows the result of the
correction of distortion and rectification of the images.

A point P is projected on the image planes along the lines of sight connecting it
with the camera’s focal points Ol and Or. Together with the direction linking Ol and Or,
the lines of sight define a triangle surface representing a part of the epipolar plane. The
intersections of the epipolar plane with the image planes are called epipolar lines. The
adjective “epipolar” originates from the term “epipole” used to name points of the image
planes (El and Er) that intersect with the connecting line between Ol and Or. All epipolar
lines of an image are passing through its epipole.

5Camera Calibration Toolbox for Matlab, Jean-Yves Bouguet, http://www.vision.caltech.edu/bouguetj
/index.html

6Open Source Computer Vision Library, Reference Manual, Issued in USA, Order Number: 123456-001.
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(a) (b)

Figure 5.19: Principle of epipolar geometry and rectification: (a) The intersections of the
epipolar plane with the image planes are called epipolar lines. (b) The aim is to produce
images with horizontal and collinear epipolar lines.

(a) (b)

Figure 5.20: Result of the correction of the image distortion and rectification on the (a)
left and (b) right image.

The point’s projections Pl and Pr must lie on the corresponding epipolar lines. This
is the motivation for performing rectification of the stereo images, with the aim to produce
images with horizontal and collinear epipolar lines [Trucco and Verri, 1998]. It means,
that the corresponding epipolar lines (thus the corresponding projections Pl and Pr of the
point P as well) of the rectified images will be placed along the same row of the image pixel
matrix.

Two pixels of the left and right stereo image showing the same object point are called
corresponding pixels. Corresponding pixels of the rectified stereo images with horizontal
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epipolar lines vary only in their horizontal coordinate values. The difference d of the
corresponding pixel coordinates xr (for the right image) and xl (for the left image):

d = xr − xl. (5.15)

is referred to as disparity.
Computing disparities for all image pixels is the key step in reconstructing object’s

3D geometry. All the information needed for making the object’s 3D model is con-
tained in its disparity values. There is a direct link between the position of an object
with respect to the stereo cameras and its disparity value, which allows to compute the
3D coordinates of objects by a triangulation. Results of the disparity search are stored
in a lookup-table (LUT) called disparity map. In a disparity map every image pixel re-
ceives a disparity value assigned. There exist different methods to calculate the disparity
map [Scharstein and Szeliski, 2002, Trucco and Verri, 1998].

The used method for finding image disparities is area block matching with a “sliding
window” [Mühlmann et al., 2002]. This method relies on using a local cost function to
evaluate the similarity level of potentially matching pixels. In practice, pixel colour in-
tensities from a window-shaped area around the correspondence candidates are compared
by computing a correlation function, in order to assess them. Commonly used correlation
functions are sum of absolute differences (SAD) and sum of squared differences (SSD).”
Fig. 5.21 shows the result of the 3D dense stereo reconstruction and Fig. 5.22(d) the
detected grasping pose.

Figure 5.21: Result of the 3D stereo reconstruction.

To create a dense stereo calibration onto the laser range coordinate system as precisely
as possible the laser range scanner was used to scan the same chessboard as used for the
camera calibration. At the obtained point cloud, a marker was set as reference point to
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the camera coordinate system. The blue table surface was filtered directly in the images
and all pixels with the dominant colour component blue were removed before the 3D
reconstruction started.

In Fig. 5.22, it is clearly visible that the resulting mesh has a higher inaccuracy
due to noise and outliers than the segmented mesh in Fig. 5.17 based on a range scanner
system. A detailed analysis and comparative study is given in [Efendic, 2008]. Fig. 5.21
shows some example results of the presented method to calculate a power grasp.

(a) (b) (c)

(d) (e) (f)

Figure 5.22: Detected grasping poses of unknown objects based on dense stereo data.

Tab. 5.6 shows that the quality of the input data has a strong influence on the detection
rate followed by the grasping rate. But the presented method reaches a practical grasping
rate of 66.62%, even in this difficult and complex case.
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object no. object detection rate [%] grasping rate [%]

1 Salt Shaker (cylinder) 100 70
2 Sweets (cylinder) 60 66.67
3 Spread (cylinder) 70 71.43
4 Sweets (half cylinder) 40 75
5 Melba Toast (cuboid) 80 100
6 Dextrose (cuboid) 40 75
7 Salt Shaker (cuboid) 90 88.89
8 Sweets (pentagon object) 90 88.89
9 Coffee Cup 40 50
10 Shower Bath (paraboloid) 100 60
11 Cleaner (paraboloid) 70 28.57
12 Sweets (prism) 50 100

Overall 69.17 66.62

Table 5.6: Dense stereo data: Detection and grasping rate of a pile of touching unknown
objects on the table. The grasped object was the topmost object in each case. Each scene
for each object was tested 5 times in different poses and combinations with 2 to 5 other
objects.
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5.4 Discussion

The presented method for automatic grasping of unknown objects with a 3D model of
the used gripper demonstrates a high reliability. In addition, the presented method was
also tested on dense stereo data. The approach for object grasping is well suited to use
in related applications under difficult conditions and can be applied to a reasonable set of
objects.

The algorithm calculates potential grasping points and poses based on the top surface
of the objects. The method was developed for arbitrary objects in different poses, on
top of each other or side by side with a special focus on rotationally symmetric objects.
If objects cannot be separated because they are stacked on top of each other, they are
considered as one object. If the algorithm detects clipped rotationally symmetric parts,
these fragments are merged because this object class can be robustly identified using the
symmetry assumption, allowing a cylindrical grasp as well as a tip grasp along the top
rim. If objects cannot be separated because they are stacked on top of each other they
are considered as one object. A grasp will disambiguate the situation. For this objects,
the algorithm calculates a power grasp based on the top surface.

With the dense stereo data only a potential power grasp was calculated, due to a lot
of noise and outliers of these data.

The evaluation takes 12 objects in different daily life situations as categories:

• several objects in different poses,

• 3 - 5 touching objects,

• objects in a box,

• and a pile of touching objects (same as scattered objects without a box).

After testing each object in 10 different poses for different categories, the algorithm
shows the following results. The algorithm reaches for laser range data a grasping rate of
80.65% for several objects, 77.57% for touching objects, 82.70% for objects in a box, and
79.40% for a pile of objects.

Based on dense stereo data a pile of touching objects was tested and the algorithm
reached a grasping rate of 66.62%.

Problems remain when important parts of shiny objects are not visible to the laser
range scanner, hence the presented algorithm is neither able to calculate correct grasping
points nor the pose of the object. Furthermore, the quality of the point cloud may not
be good enough to guarantee a successful grasp. The success of the grasping algorithm
depends on ambient light, object surface properties, laser-beam reflectance, and absorption
of the objects.

This work points out the general feasibility to realise stable grasps from only one single
view. That means that occluded objects cannot be analysed or grasped. It was assumed
that the top surface of all objects on the table are clearly visible.
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Chapter 6

Object Part Segmentation

“Clouds are not spheres,
mountains are not cones,
coastlines are not circles,
and bark is not smooth,
nor does lightning travel

in a straight line.”
– Benoit Mandelbrot

The human vision segments an object into different parts and analyses their spatial
and functional relationships [Shipley and Kellman, 2001]. A part-based description allows
one to detect the different parts and functional properties of an object.

This chapter introduces a 3D segmentation algorithm, based on spherical mirroring,
which works directly on point clouds and meshes to address the problem of partitioning a
3D object into useful sub-parts.

Segmentation is a crucial task of partitioning range images into useful parts. It is
obvious from the results that no perfect segmentation algorithm exists. Each algorithm
has its own benefits depending on the task. In general, a good segmentation result is
achieved if regions can be approximated by a given set of surface functions as described
in 2.4.

An ideal shape descriptor finds the main features of an object and segments it into
useful parts, which can be used for automatic processes such as fitting, registration, fea-
ture extraction [Gumhold et al., 2001] or comparison of shapes. Dividing a point cloud
into simpler sub-parts has also several benefits for modelling [Funkhouser et al., 2004],
robotics [Huebner et al., 2008] or collision detection [Li et al., 2001]. The object should
be segmented into parts that correspond to relevant features, e.g. handles or the core part
of the object.

In the last few decades, many different algorithms have been proposed in this grow-
ing field, e.g. feature point and core extraction [Katz et al., 2005], Hierarchical Fit-
ting Primitives (HFP) [Attene et al., 2006a], spectral methods [Zhang et al., 2007], K-
Means [Shlafman et al., 2002], random walks [Lai et al., 2008], and the shape diameter
function (SDF) [Shapira et al., 2008]. Most of them can only segment a watertight mesh
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and not a point cloud. In robotics especially, it is not always possible to generate a
watertight mesh.

The motivation was to develop an algorithm which segments a point cloud into useful
sub-parts without any model assumptions and fixed thresholds. This is significant because
the input data can be deducted from different systems. So the algorithm also segments
a mesh and is expandable to solve more complex segmentation tasks. Additionally, the
algorithm is invariant under rotation, translation, and scaling.

An experimental evaluation of a number of complex objects demonstrates the robust-
ness and the efficiency of the proposed algorithm and the results prove that it compares
well with a number of state-of-the-art 3D object segmentation algorithms. Additionally,
the metrics “cut discrepancy” and the “rand index” of the proposed method have been
evaluated with the help of 10 different object classes [Chen et al., 2009].

This comparison study has been done with the K-Means clustering method, the shape
diameter function (SDF) and especially with the feature point and core extraction method.

The developed algorithm is based on spherical mirroring as the core extraction method.
This allows different changes of the main influence factors, like the position of the centre
for spherical mirroring or the change of the topology of the object. Thus such a method is
expandable to solve more complex segmentation tasks. To realise a fair comparison, the
study is based on the original meshes because the mesh segmentation results of all 3 other
algorithms are freely available [Chen et al., 2009] and are also achieved without changing
the topology of the object.

The main difference to the existing core extraction algorithm is the calculation of
an additional convex hull to get a hole-free core part, used to segment a point cloud.
In [Katz et al., 2005], the algorithm segments the shape of the object hierarchically and
stops automatically when the current segment S i has no feature points or when the fraction
of vertices contained in the convex hull is above a fixed threshold. In comparison, the
proposed algorithm works without any fixed thresholds or parameters.

6.1 Description Overview of the Method

This section presents the method for 3D object part segmentation. Fig. 6.11,2 outlines
the segmentation approach in detail. It illustrates the main processing steps taking the
3D point cloud of the object as input data (see Fig. 6.1(a)) to the segmented parts of the
object based on spherical mirroring, as illustrated in Fig. 6.1(h).

Firstly, the algorithm calculates the internal centre and the radius of the bound-
ing sphere by computing the smallest enclosing sphere of points [Gärtner, 1999], see
Fig. 6.1(b). Then all points are spherically mirrored (radially reflected) outside in the re-
verse direction to the centre. Fig. 6.1(c) illustrates that all points inside the original point
cloud are farthest away after this step. Fig. 6.1(d) shows the convex hull [O’Rourke, 1998]
(coloured yellow) calculated with the reflected point cloud to detect all points farthest
away inside the original point cloud. This step allows the automatic detection of the core

1All images are best viewed in colour. In each case the core part is coloured red.
2Freely available at the Aim@Shape repository, http://shapes.aim-at-shape.net/index.php
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.1: Overview of the segmentation algorithm.

part of the object. To carry out a hole-free segmentation of the core part, all mirrored
points lying on the convex hull move towards the centre depending on the distances of the
neighbouring points [Arya et al., 1998], see Fig. 6.1(e). Based on these points an inner
convex hull is calculated. Fig. 6.1(f) shows that this red inner convex hull surrounds the
core part of the object, whereby all adhering parts of the core part will be automatically
cut off. Fig. 6.1(g) shows the detected core part of the object. Then the algorithm au-
tomatically segments the remaining 3D point cloud into a set of sub-parts by recursive
flood-filling [Burger and Burge, 2007], see Fig. 6.1(h).

6.2 Segmentation Method

The proposed algorithm consists of two main steps: “Core Part Extraction” and “Cut
Refinement”. Section 6.2.1 presents all the calculation steps for detecting the core part of
the object. Section 6.2.2 clarifies all the steps of segmenting the 3D point cloud into a set
of sub-parts by recursive flood-filling. Section 6.2.3 presents possible options of solving
more complex segmentation tasks.
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6.2.1 Core Part Extraction

This section describes every stage of the proposed segmentation algorithm to detect the
core part of the object based on the principle of spherical mirroring (radial reflection).
The advantage of the algorithm means, that the presented method also segments a mesh
with only trivial changes.

The location of the chosen internal centre C has a strong influence on the segmentation
result. There are different ways of computing an internal centre: The way that usually
shows the best results is the calculation of the internal centre C by computing the small-
est enclosing sphere of points [Gärtner, 1999]. [Katz et al., 2005] presented a method of
approximating the internal centre based on level of hierarchy.

The bounding sphere is defined by the maximum distance R between the centre C and
all points pi:

R = max‖pi − C‖. (6.1)

Fig. 6.1(b) illustrates the calculated bounding sphere (coloured blue), the centre of the
sphere (coloured cyan), and the points of the 3D model lying on the sphere (coloured dark
blue) with the maximum distance R to the centre.

Every point pi of the point cloud P = {p0, ... , pn−1} with n points is spherically
mirrored outside the calculated sphere, as illustrated in Fig. 6.1(c) and Fig. 6.2:

p,i = pi + 2(R− ‖ pi − C ‖)
(pi − C)
‖ pi − C ‖

. (6.2)

Figure 6.2: Spherical mirroring of all points pi outside the sphere towards the position p,i
with the calculated radius R and the centre C of the sphere.

Thus all points farthest inside the original point cloud become farthest away after this
step (see Fig. 6.2). By calculating the convex hull Hout [O’Rourke, 1998] (see Eq. (6.3)) of
the reflected point cloud, all k points which are farthest away are automatically detected,
as illustrated in Fig. 6.1(d). Each of these k points has a corresponding point on the
original point cloud, and these points are fragments of the core part.

Hout = ConvexHull

(
n−1⋃
i=0

p,i

)
(6.3)
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Figure 6.3: Segmented core part with holes. The holes inside the core part are encircled
blue.

Fig. 6.3 demonstrates that the detected core part includes a lot of holes. To solve this
problem, each point p,i residing on the convex hull Hout with a corresponding point pi of
the original point cloud will more towards the centre inside the sphere with an offset.

Figure 6.4: All k points, which lie on the convex hull are radially reflected inside the sphere
with an offset off . The offset off is calculated by the neighbouring points of the considered
point pi.

The offset for every point p,i to eliminate possible holes depends on the distances of the
neighbouring points [Arya et al., 1998], as illustrated in Fig. 6.4. Hence, the algorithm
calculates the distance between the nearest neighbour for each point of the original point
cloud and searches for the maximum distance dmax between two closest points. Then the
algorithm finds all z neighbouring points pn with the maximum distance dmax for every
point pi with a corresponding point p,i of the reflected point cloud, and calculates the offset
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off . This step is important to achieve a hole-free core part:

off =

z−1∑
n=0

||pn − C| − |pi − C||

z
. (6.4)

Fig. 6.1(e) shows that all k points p,i which lie on the outer convex hull Hout will lead
to a reverse radial reflected with an own offset:

p,,i = p,i − 2(R+ off− ‖ p,i − C ‖)
(p,i − C)
‖ p,i − C ‖

. (6.5)

These k reversely reflected points p,,i are used to calculate an inner convex hull Hin, as
illustrated in Fig. 6.1(f) (red convex hull), surrounding the core part:

Hin = ConvexHull

(
k−1⋃
i=0

p,,i

)
. (6.6)

The resulting inner convex hull Hin surrounds the core part of the object and is used to
separate the point cloud into a core part and a remaining part, as illustrated in Fig. 6.1(g).

At a mesh M, all points pi are vertices vi, which are special kinds of points that
describe the corners or intersections of geometric shapes. In this case the offset off of a
given vertex v,i on the convex hull Hout is calculated with all z connected vertices vn of
the corresponding vertex vi of the original mesh (see Eq. (6.7)). At a mesh no closest
point and neighbouring search is needed. The neighbouring vertices are the vertices of the
adjacent faces of the mesh M, as illustrated in Fig. 6.5.

off =

z−1∑
n=0

||vn − C| − |vi − C||

z
(6.7)

Then v,,i is calculated with Eq. (6.5) in the same way as with the point cloud. The
resulting inner convex hull Hin is used to detect all faces (triangles) inside.

6.2.2 Cut Refinement

This section describes every stage of the proposed segmentation algorithm, which segments
the remaining point cloud into different sub-parts. If the core part of the point cloud is
found, all the other segments of the remaining point cloud are extracted by recursive flood-
filling [Burger and Burge, 2007] as illustrated in Fig. 6.1(h) and Fig. 6.6. An object-part
is defined as a set of points with distances between neighbours below a threshold da. A
kd-tree [Bentley, 1975] finds point neighbours and a region growing method (the recursive
flood-filling function [Burger and Burge, 2007]) is used to identify connected point sets. da
is the average distance between the neighbouring points, calculated by nearest neighbour
searching [Arya et al., 1998] of the remaining point cloud.
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(a) (b)

Figure 6.5: Reverse radial reflection of all outside vertices inside the sphere with an offset
off : (a) All z connected vertices (coloured dark blue) of the adjacent faces are used to
calculate an additional offset for the considered vertex (red coloured). This offset off is
used to avoid potential holes. (b) The vertex vi is spherically mirrored outside the sphere
to v,i and if this vertex lies on the convex hull Hout, the vertex is transformed inside the
sphere with an offset off to v,,i .

To belong to a fragment of the object, the distance d between a point pa and the given
point pi must be smaller than the average distance da:

d < da. (6.8)

This region growing method segments the remaining point cloud into different sub-parts.
It is possible to improve the segmentation result with the help of a substantially

curvature-based filter [Trucco and Fisher, 1995], a mean shift, Gaussian/mean curvature,
additional weighting factors [Richtsfeld and Vincze, 2009a], or a feature point based ap-
proach [Katz et al., 2005].

If the segmented object is a meshM, all sub-parts of the mesh are extracted by a face
(triangle) connectivity filter. This filter segments the remaining mesh automatically into
different sub-parts.

6.2.3 Options to Solve More Complex Segmentation Tasks

The main characteristic of the presented algorithm is its expandability to solve more
complex segmentation tasks. In Fig. 6.7(a)3, a more complex shape is presented, consisting
of alternating convex and concave parts. Fig. 6.7(b) illustrates the segmentation result
based on the proposed algorithm. Fig. 6.7(b) shows that the core part is not completely
detected and all sub-parts like the legs and the head are not successfully segmented.

To successfully segment the horse, it is possible to expand the algorithm to obtain a
pose-invariant model representation. Hence, the algorithm generates a 3D mesh based on

3The 3D model is freely available at the Aim@Shape repository.
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Figure 6.6: Segmentation result based on region growing with the recursive flood filling
function.

(a) (b)

Figure 6.7: Segmentation of complex shapes: (a) Complex shape with 5, 360 points, consist-
ing of alternating convex and concave parts. (b) Segmentation result based on the proposed
algorithm.

the power crust algorithm [Amenta et al., 2001] (see Fig. 6.8(a)) and multi-dimensional
scaling (MDS) is used to get a pose-invariant model representation, see Fig. 6.8(b).

MDS is a generic name for a family of algorithms that construct a configuration of
points in a target metric space with information about inter-point distances (dissimilar-
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(a) (b)

Figure 6.8: Pose-invariant mesh representation: (a) Triangle mesh calculated with the
power crust algorithm, which consists of 58, 441 vertices. (b) Pose-invariant model repre-
sentation based on MDS.

ities) measured in some other metric space [Bronstein et al., 2006]. Dissimilarities are
defined as geodesic distances δij between all vertices vi on the mesh M in a symmetrical
dissimilarities matrix ∆ = N ×N between N points on a Riemannian manifold S. One
should distinguish between metric and non-metric MDS (Shephard-Kruskal). Metric MDS
preserves the intervals and the ratios between the dissimilarities, whereas non-metric MDS
only preserves the order of the dissimilarities.

The scaled gradient-descent algorithm (SMACOF) is used for MDS as published
by [Bronstein et al., 2006]. A detailed description of this method can be found in Sec-
tion 2.6.3. The result of the SMACOF algorithm is a monotonous non-increasing sequence
of stress values, which is equivalent to a scaled steepest descent iteration with constant
step size.

The aim is to minimise the embedding error, i.e. minimising the sum of distances
between the optimally scaled data f(δij) and the euclidean distances dij, where f is an
optimal monotonic function (in order to obtain optimally scaled similarities):

minx
∑
i<j

(dij(X)− δij)2. (6.9)

A stress function Fs is used to measure the degree of correspondence of the distances
between vertices.

Each vertex in MDS space corresponds to a vertex in euclidean space and every point of
the original point cloud corresponds to a vertex in euclidean space. In order to speed up the
calculation time, the geodesic distances are calculated only on a reduced set of landmark
points. Approximately 5, 360 vertices of the generated mesh with a corresponding point
of the input point cloud as landmark points lead to an optimal balance between accuracy
of representation and time.
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Figure 6.9: Segmentation result based on MDS.

Fig. 6.9 shows the segmentation result based on MDS.

Fig. 6.104 illustrates the segmentation results based on pose-invariant model represen-
tation of a point cloud and Fig. 6.11 of a mesh. In every case the algorithm successfully
segments the arms, the legs, the tail, and the head.

Figure 6.10: Pose-invariance: each model-based on a point cloud is segmented separately.

Fig. 6.125 illustrates the influence of MDS. Without MDS the algorithm segments only
the palm, whereas the thumb and the fingers are one part. However, with MDS the
algorithm also segments the specific fingers. The index and the middle finger are in reality
connected, thus the segmentation result is correct.

4All models are freely available at the Aim@Shape repository.
5Own model, created with the 3D Scanner VIVID 700 of MINOLTA.
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Figure 6.11: Pose-invariance: each model-based on a mesh is segmented separately.

(a) (b)

Figure 6.12: Influence of MDS: (a) Result without MDS. (b) Result with MDS.

6.3 Segmentation Results

This section presents several segmentation results without MDS on point clouds (see
Fig. 6.13) and meshes (see Fig. 6.14). All 3D models are freely available at the Aim@Shape
repository.

The presented algorithm fails if the object consists of only one main part because the
method always aims to segment the object as illustrated in Fig. 6.15(a). Another drawback
is the sensitivity to the location of the internal centre C of the sphere, which has a strong
influence on the segmentation result. If the centre of the bounding sphere is outside the
shape of the object (see Fig. 6.15(b)), the algorithm fails (see Fig. 6.15(c)).

Thus, it is essential that the approximated centre is inside the shape of the object.
Fig. 6.16 shows that, in this case, a possible solution is the use of the centre of gravity of
the object. If no centre inside the shape can be found, the algorithm stops.
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(a) (b)

(c) (d)

Figure 6.13: Segmentation results based on a point cloud: (a) cup, (b) cap, (c) frog,
and (d) man.

On a 3.2GHz machine with 2GB RAM, the algorithm needs on average 20min to
generate a pose-invariant mesh representation for a point cloud with 3, 000 points. The
time-consuming part is the calculation of the symmetrical dissimilarities matrix ∆ =
N × N with all geodesic distances δij. Core extraction needs less than 10sec, including
the segmentation of all sub-parts of the 3D model. However, the calculation time has a
quadric dependence to the number of points. The algorithm is implemented in C++ using
the Visualization Tool Kit (VTK)6.

6.4 Evaluation of the Algorithm

This section compares and evaluates the presented method with the K-Means clustering
method [Shlafman et al., 2002], the shape diameter function (SDF) [Shapira et al., 2008]
and, in particular the core extraction method [Katz et al., 2005].

The developed algorithm is based on spherical mirroring as the core extraction method,
which allows different changes of main influence factors, like the position of the centre for
spherical mirroring or the change of the objects topology. The main difference to the

6Freely available open source software, http://public.kitware.com/vtk
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(a) (b)

(c) (d)

Figure 6.14: Segmentation results based on a mesh: (a) bunny, (b) frog, (c) pig, and (d)
grimace.

core extraction algorithm is the possibility to segment a point cloud without any fixed
thresholds or parameters.

The evaluation has been conducted without MDS based on meshes for a fair comparison
because the mesh segmentation results of all 3 other algorithms are also achieved without
changing the topology of the object.

Chen et al. [Chen et al., 2009] published a benchmark7 with different object classes,
segmentation results of different methods, and hand segmented models to compare the
segmentation results of an own algorithm with others. This work [Chen et al., 2009] is
the basis for the realised evaluation with hand segmented models, which are used as
ground truth. Additionally, it also summarises fundamental knowledge of the following
segmentation methods:

“K-Means: [Shlafman et al., 2002] describe an algorithm based on K-Means

7Freely available benchmark, http://segeval.cs.princeton.edu
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(a) (b) (c)

Figure 6.15: Segmentation results: (a) The object consists of only one part. (b) The centre
of the bounding sphere is outside the shape of the object. (c) Segmentation result if the
centre of the bounding sphere is outside the shape of the object.

(a) (b)

Figure 6.16: Possible solution to get a practical segmentation result: (a) The centre of
the bounding sphere is the centre of gravity of the object. (b) Segmentation result with the
centre of gravity of the object as centre of the bounding sphere.

clustering of faces. Given a user-specified number of segments, k, the algo-
rithm first selects a set of k seed faces to represent clusters by continually
selecting the further face from any previously selected. Then, it iterates be-
tween: 1. assigning all faces to the cluster with the closest representative seed,
and 2. adjusting the seed of each cluster to lie at the centre of the faces as-
signed to it. This iteration continues until the assignment of faces to clusters
converges. The implementation of [Chen et al., 2009] differs from the origi-
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nal [Shlafman et al., 2002], the distances on the dual graph of the mesh are
computed with a penalty related to the dihedral angle of each traversed edge
using the method in [Funkhouser et al., 2004].”

“Shape Diameter Function: [Shapira et al., 2008] describe an algorithm,
which measures the diameter of an objects volume in the neighbourhood of a
point on the surface. The SDF is computed for the centroid of every face, and
then the segmentation proceeds in two steps. First, a Gaussian Mixture Model
is used to fit k Gaussians to the histogram of all SDF values in order to pro-
duce a vector of length k for each face indicating its probability to be assigned
to each of the SDF clusters. Second, the alpha expansion graph-cut algorithm
is used to refine the segmentation to minimise an energy function that com-
bines the probabilistic vectors from step one along with boundary smoothness
and concaveness. The algorithm proceeds hierarchically for a given number of
“partitioning candidates”, which determines the output number of segments.
Followed by the authors’ advice, the number of partitioning candidates was set
to 5, and the algorithm determines the number of segments automatically.”

“Core extraction: [Katz et al., 2005] propose a hierarchical decomposition
algorithm that performs four main steps at each stage: transformation of the
mesh vertices into a pose insensitive representation using multi-dimensional
scaling, extraction of prominent feature points, extraction of core components
using spherical mirroring, and refinement of boundaries to follow the natural
seams of the mesh. The algorithm partitions segments hierarchically, stopping
automatically when the current segment S i has no feature points or when the
fraction of vertices contained in the convex hull is above a threshold.”

Two metrics have been used to evaluate how well the segmentation results match the
human-generated segmentations. The metrics “cut discrepancy” and “rand index” are
applied to evaluate the proposed algorithm based on 10 object classes and each object
class consists of 20 different models. Fig. 6.17 gives an overview of the 10 object classes.

The first metric “Cut Discrepancy” sums up the distances from points along the cuts
to the closest cuts in the ground truth segmentation. The cut discrepancy provides an
intuitive measure of how well boundaries align. The disadvantage is its sensitivity to the
segmentation granularity. Thus, it is undefined when a model has zero cuts. It decreases
to zero if more cuts are added to the ground truth segmentation.

The second metric “Rand Index” measures the likelihood that a pair of faces are
either in the same segment in two segmentations or in different segments in both seg-
mentations [Rand, 1971]. A detailed description of the analysed metrics can be found
in [Chen et al., 2009].

In the case of the object classes Bird and Cup, the centre of the sphere is in most cases
outside the shape (e.g. cup: 19 of 20 cases), whereas the object class Mech the shape
usually consists of only one part (in most cases), see Fig. 6.18. Normally, the algorithm
stops if the centre is outside the shape, but for this evaluation these object classes are
considered for a fair comparison.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 6.17: Overview of the 10 different object classes to evaluate the presented algo-
rithm: (a) Airplane, (b) Armadillo, (c) Vase, (d) Bird, (e) Bust, (f) Cup, (g) Four-
leg, (h) Mech, (i) Teddy, and (j) Bearing. The segmentation results are based on the
proposed algorithm.

(a) (b) (c)

Figure 6.18: The segmentation result fails when the centre is outside the shape or the
object consists of only one part: (a) Cup, (b) Bird, and (c) Mech.

The advantage of analysing different object classes with different metrics is discovering
which segmentation algorithm attains significant results for which object class.

Fig. 6.19 shows that especially for the object class Cup, the cut discrepancy of the
presented algorithm reaches the highest value. Thus, the developed method is not suitable
for the object class Cup, since the computed centre of the sphere is nearly always (in 19
of 20 cases) outside the shape of the object. In comparison with the results of the other
methods, the proposed method achieves good results for the object classes Teddy, Mech,
Bust, and Bird.

Fig. 6.20 illustrates the evaluation result of all object classes for the cut discrepancy.
The cut discrepancy of the presented method is better than the cut discrepancy of the
core extraction method as a consequence of the detected centre and the consideration of
neighbouring points or faces. Fig. 6.20 shows that the shape diameter function obtains
the best result over all object classes and the presented algorithm is more suitable than
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Figure 6.19: Comparison of the cut discrepancy of different segmentation algorithms for
all specific object classes.

Figure 6.20: Comparison of the cut discrepancy of different segmentation algorithms of all
object classes.

the K-Means clustering method.

Fig. 6.21 illustrates the comparison of the rand index of different segmentation algo-
rithms for all specific object classes and Fig. 6.22 illustrates the result of all object classes.
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Figure 6.21: Comparison of the rand index of different segmentation algorithms for all
specific object classes.

Figure 6.22: Comparison of the rand index of different segmentation algorithms of all
object classes.

For nearly every object class the presented method reaches higher values than the core
extraction method [Katz et al., 2005]. This result arises from the influence of the itera-
tive process of the core extraction method [Katz et al., 2005] to close the core part based
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on the detected feature points and the fixed threshold. This method [Katz et al., 2005]
has the following drawbacks: This iterative function operates only on meshes and is very
time-consuming. The shape diameter function also achieves the best result for the rand
index; it only operates on a mesh. However, the rand index of the presented method is
more suitable than the rand index of the K-Means clustering method.

Tab. 6.1 shows the average computation time of every segmentation algorithm. In
comparison with the other tested methods the proposed method based on radial reflection
shows best time performance. The average computation time of the other segmentation
methods is based on the values presented in [Chen et al., 2009].

Segmentation Algorithm t [s]

SDF 8.9
Proposed Method 4.2
Core Extraction 19.5
K-Means 2.5

Table 6.1: Average computation time of every segmentation method.

The result of the presented comparison study reflects the published evaluation result
of [Chen et al., 2009] completely.
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6.5 Discussion

To begin with the algorithm calculates the internal centre and the radius of the bounding
sphere by computing the smallest enclosing sphere of points. This sphere is used to mirror
all points outside. Then a convex hull is used to detect all points farthest outside of the
reflected point cloud. These outside points correspond with the core part of the input
object. To realise a hole-free segmentation of the core part all mirrored points, which
lie on the convex hull, are moved towards the centre depending on the distances of the
neighbouring points. Based on these points, an inner convex hull which surrounds the
core part of the object is calculated. Then, the algorithm automatically segments the
remaining 3D point cloud into a set of sub-parts by a region growing method.

An experimental evaluation of 10 different object classes demonstrates the robustness
and efficiency of the proposed algorithm and the results prove that it compares well with
a number of state-of-the-art 3D object segmentation algorithms. A comparison study has
been done with the K-Means clustering method, the shape diameter function (SDF), and
the core extraction method. Additionally, the metrics “cut discrepancy” and “rand index”
of the proposed method have been evaluated. To realise a fair comparison, the evaluation
is based on the original meshes since the mesh segmentation results of all three other
algorithms are also achieved without changing the topology of the object.

The result for the cut discrepancy of the presented method is more exact than the
result of the core extraction and the K-Means clustering method as a consequence of
the detected centre and the consideration of the neighbouring points or faces. The core
extraction algorithm obtains better results for the rand index as it uses an iterative process
to close the core part. However, better results are achieved with the proposed algorithm
than with the K-Means clustering method. The shape diameter function (SDF) achieves
best results for both metrics. The presented comparison study reflects the published
evaluation result of [Chen et al., 2009] completely.

The proposed segmentation algorithm represents a flexible and completely automatic
way of segmenting a 3D point cloud or a mesh. In comparison with other methods the
proposed algorithm based on radial reflection shows best time performance. The algorithm
works directly on point clouds and meshes, and shows a high reliability of segmenting
an object into parts that correspond to relevant features. Additionally, the presented
algorithm works without any model assumptions and fixed thresholds, making it possible
to segment models deducted from different systems. A further significant characteristic
of the presented algorithm is its expandability to solve more complex segmentation tasks.
Applying MDS to change the topology of the shape to create a pose-invariant model
representation is only one possibility.
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Chapter 7

Conclusion and Future Work

“Science is a wonderful thing if one does not have to earn ones living at it.”
– Albert Einstein

This dissertation presents robust feature detection approaches in range images to realise
stable object detection, segmentation, and grasping tasks in variable environments with a
restricted field of view. In particular, novel model-based methods are proposed to achieve
robust and reliable detection results of object features related to specific handling, and
manipulation tasks in industrial as well as in service robotics. Due to the high amount of
point data, another issue of the presented methods is to keep the processing time low to
rapidly detecting features and objects for industrial and robotic applications.

One major contribution of this thesis is the development of methods to detect relevant
features for following robotic tasks as edge tracking and grasping. Additionally, a novel
method to segment a 3D point cloud as well as a mesh into useful sub-parts was developed.
The effectiveness of these contributions is demonstrated by showing results from a variety
of different approaches to take a step towards full automation of industrial and robotic
applications.

7.1 Summary and Contributions

The presented project “REDUX” in Chapter 3 illustrates the feasibility of an au-
tonomously guided robot stitching system to realise a lot-size-one production. To achieve
a better solidity and durability of two overlapping carbon fibre layers, an automated fibre
mat stitching system is needed. At the moment, the stitching path is predefined and in-
flexible to minor changes. A fully automated sewing process is developed to realise a more
flexible stitching system and to increase the efficiency of the whole fabrication process.

Contributions in this field have been made by introducing a real-time approach.
Existing and newly developed edge detection methods are combined in a voting scheme
to increase the edge tracking robustness. The novelty is based on different edge detection
methods and their combination to carry out robust edge tracking in the presence of
outliers and artefacts in noisy range data. The individually developed methods show very
high reliability. The experiments illustrate that a two out of three voting of three methods
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achieves a better detection result than the individual methods. Thus, the voting scheme
for edge detection and localisation is suitable for the use in related industrial applications
under difficult conditions. The experiments show that for the “Base Sensor” a two out of
three voting over the three developed methods achieves a detection result of 99.3% and
the edges are located within 1.0mm. The “3 Lines Sensor” achieves a detection result of
86.4% by replacing the algorithm results with sum of weight functions and historic edge
positions. For both sensors the achieved detection results are totally sufficient for the
sewing process, where draping is only accurate to a few centimeters.

Chapter 4 presents a system of detecting and grasping given cylindrical objects
with cluttered adjacent objects on a table in soft real-time. The method is optimised
for fitting cylinders in sparse and noisy range data under difficult and changing light
conditions recorded from a single view. The contributions focus on the treatment of
different objects on the table. The system must distinguish between them and detect the
defined cylindrical objects. The entire system exhibited its practical behaviour at a live
demo presentation.

The experimental evaluation shows that the developed fitting method for cylindrical
objects achieves reliable results in comparison to standard least-squares cylinder fitting
methods. The radius deviation and also the angle deviation are essentially smaller than
the results of the least-squares cylinder fitting method. The processing time depends on
the number of raw data points of the whole point cloud.

Chapter 5 introduces a method of automatic grasping of unknown objects with a
3D model of the used gripper. The approach to object grasping is well suited for the use
in related applications under different conditions and can be applied to a reasonable set of
objects. From a single view, the rear side of an object is not visible due to self occlusions
and the front side may be occluded by other objects. The algorithm is developed for
arbitrary objects in different poses, on top of each other or side by side, with a special
focus on rotationally symmetric objects. If objects cannot be separated because they
are stacked on top of each other, they are considered as one object. If the algorithm
detects clipped rotationally symmetric parts, these parts are merged because this object
class can be robustly identified and allows a cylindrical grasp as well as a tip grasp along
the top rim. For all other objects, the algorithm calculates a power grasp based on the
detected top surface of the object. The algorithm reaches a grasping rate of 80.65% for
several objects, 77.57% for touching objects, 82.70% for objects in a box, and 79.40% for
a bunch of objects. With dense stereo data, a grasping rate of 66.62% was reached. The
success of the grasping algorithm depends on ambient light, object surface properties,
laser-beam reflectance, and absorption of the objects. For point data based on dense
stereo reconstruction the texture of the objects must be sufficient.

Chapter 6 presents a flexible and completely automatic way of segmenting a 3D
point cloud. The algorithm works directly on point clouds as well as meshes and shows
a high reliability for segmenting an object into sub-parts corresponding to the relevant
features. Additionally, the presented algorithm works without any model assumptions
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and fixed thresholds, which makes it possible to segment models deducted from different
systems.

An experimental evaluation of 10 different object classes demonstrates the robustness
and the efficiency of the proposed algorithm. A comparative study has been done with the
K-Means clustering method, the shape diameter function (SDF) and the core extraction
method. Additionally, the metrics “cut discrepancy” and “rand index” of the proposed
method have been evaluated. In comparison with the other segmentation methods the
proposed algorithm based on radial reflection shows best time performance. The results
prove that it compares well with a number of state-of-the-art 3D object segmentation
algorithms.

7.2 Open Research Work

Today, a lot of different systems to grasp and manipulate known objects in well-defined
poses exist. A challenging task which should be tackled in the future is to develop a
fully automatic system to realise function-based grasping and manipulation of arbitrary
objects. The presented methods in Chapter 4, Chapter 5, and Chapter 6 represent a basis
for solving this challenging task.

This section illustrates a way for a totally independent mobile robot platform which
processes given commands like “James, please bring me my cup!” and behaves au-
tonomously to solve the given tasks. A mobile robot should be able to perform actions in
an unknown, variable environment. It should grasp, manipulate and place objects, open
and close doors and cupboards, and assist elderly and handicapped people.

Laser range data offer high accuracy, whereas dense stereo systems are more flexible.
With the assistance of a laser range scanner, the typical problem is missing sensor data
because of absorption, as illustrated in Fig. 7.1(a). Fig. 7.1(b) shows that a dense stereo
system needs textured objects to realise a 3D reconstruction. Laser range scanners are es-
sential to obtain accurate point clouds. To filter the noisy stereo point cloud, the described
geometrical filter in Section 4.2.2 can be used. The combination reflects the advantages
of both systems, as shown in Fig. 7.1(c). Hence, both systems should be mounted and
calibrated on the robot arm. The system should attempt together different views of the
interesting object by either moving the robot arm or the object.

All point clouds of the different views can be merged into one point cloud with the well-
known trajectory of the robot to obtain more object information. Afterwards, all objects
in this point cloud will be segmented for the following steps, as illustrated in Fig. 7.2(a).
For the segmentation step, the presented methods in Chapter 4 and Chapter 5 can be
used.

Fig. 7.2(b) shows the detection of the pose of the Amicelli box, which can
be reached with a registration [Pottmann et al., 2004] or iterative closest point
(ICP) [Besl and McKay, 1992] method. The use of the colour information of the dense
stereo data would be an extension of existing registration methods. Function-based grasp-
ing poses should be predefined for known objects and the algorithm will automatically
find the best gripper pose in regard to all the objects in clutter. For unknown objects
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(a) (b)

(c)

Figure 7.1: Combination of laser range and dense stereo data: (a) Point cloud based on
a laser range scanner. It is clearly visible that the range scanner is not able to scan the
cube, because of absorption. (b) Point cloud based on dense stereo data, including a lot
of noise and outliers. (c) Combination of laser range and dense stereo data to utilise the
advantages of both systems.

potential grasping poses should be detected based on the detected features, such as top
surfaces, handles, and parallel surfaces, as described in Chapter 5.

The detected power grasp for the cube and the top power grasp for the cleaning aerosol
can are based on the presented method in Chapter 5. The lateral grasping pose for
the cleaning aerosol can represents a possible expansion of the grasping features. These
features should be extended for more object classes in the future.
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(a) (b)

Figure 7.2: Segmentation and grasping pose detection: (a) Segmentation result of the
combined point cloud. (b) Detection of the correct object pose of the known object (Amicelli
box) and detection of possible grasping poses based on detected features.
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Glossary

3D – Three Dimensional.

CAD – Computer Aided Design.

CCD – Charge Coupled Device – camera’s sensor chip technology.

CFK – CarbonFaserverstärkter Kunststoff.

CFRP – Carbon Fibre Reinforced Polymer.

DOF – Degrees Of Freedom – in most cases the degrees of freedom are related to
translation and rotation in an Euclidean 3D space.

GC – Generalised Cylinder.

GEONS – GEOmetric icoNS:
In 1987, Biederman proposed the “Recognition by Components” theory which offers
an explanation of human visual object recognition [Biederman, 1987]. The funda-
mental assumption of this theory is that there exists a small number (i.e. 36) of
fundamental part primitives, whose boolean combinations can represent more com-
plicated objects for the purpose of “primal access”.

GUI – Graphical User Interface.

HFP – Hierarchical Fitting Primitives.

ICP – Iterative Closest Point.

ILGA – Infant Learning Grasping and Affordances.

ILGM – Infant Learning to Grasp Model.

LASER – Light Amplification by Stimulated Emission of Radiation.

LSCF – Least-Squares Cylinder Fitting.

LSF – Least-Squares Fitting.

LUT – Lookup-Table.

MAT – Medial Axis Transform.

MDS – Multi-Dimensional Scaling.
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NURBs – Non Uniform Rational B-spline surfaces.

OLP – Off-Line Programming – this term is used in robot programming.

Origin – Define the coordinate frame centre.

PCA – Principal Component Analysis – image processing methodology [Xu et al., 1992].

POSE – Position and Orientation – if nothing else is noted the pose is defined with 6
DOF (3 for the position and 3 for the orientation in a 3D space).

Power Grasp – A power grasp is commonly defined as a grasp type, which uses many
contact points, which are not only on the fingertips but also on the inner side of
the fingers and even the palm. The advantage of a power grasp is the passive
resistance of the hand against external forces, which provides robustness against
external disturbances [Zhang et al., 1994].

ppt – pre-processing time.

px – Picture Element or PiXel is the smallest item of information in an image.

QA – Quality Assurance.

Range Data – Three dimensional point cloud measured from a laser range scanner.

Range Image – Three dimensional point cloud measured from a laser range scanner.

RANSAC – Random Sample and Consensus – algorithm proposed
by [Fischler and Bolles, 1981].

RCF – Random Circle Fitting.

Real-Time – Definition given in the German industry standards, DIN 44300:
The operating mode of a computer system in which the programs for the processing
of data arriving from the outside are permanently ready, so that their results will
be available within predetermined periods of time; the arrival times of the data can
be randomly distributed or be already a priori determined depending on the different
applications.

RGC – Right Generalised Cylinder.

RTM – Resin Transfer Moulding technique.

SDF – Shape Diameter Function.

SMACOF – Scaled Gradient Descent Algorithm.

STL – Stereo Lithography - file format for a 3D mesh.

SUVA sensor – Schweizerische Unfallversicherungsanstalt sensor, Luzern/Schweiz.

TCP – Tool Centre Point – tool reference point of a robot arm.

THOR – Tool Handling the Operations of Robots.
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UDP – User Data Protocol.

VAP – Vacuum Assisted Process technique.

VTK – Visualisation Tool Kit – freely available open source soft-
ware, http://public.kitware.com/vtk.

XML – eXtensible Markup Language.
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[Belmonte et al., 2004] Belmonte, Ó., Remolar, I., Ribelles, J., Chover, M., and
Fernández, M. (2004). Efficiently using connectivity information between triangles in a
mesh for real-time rendering. Elsevier Science, 20(8):1263–1273.

149



Bibliography

[Bentley, 1975] Bentley, J. (1975). Multidimensional Binary Search Trees Used for Asso-
ciative Searching. Communications of the ACM, 18(19):509–517.

[Bernardini et al., 1999] Bernardini, F., Mittleman, J., Rushmeier, H., Silva, C., and
Taubin, G. (1999). The Ball-Pivoting Algorithm for Surface Reconstruction. IEEE
Transactions on Visualization and Computer Graphics, 5(4):349–359.

[Besl and Jain, 1985] Besl, P. and Jain, R. (1985). Three-Dimensional Object Recognition.
ACM; Computing Survey, 17(1):75–145.

[Besl and McKay, 1992] Besl, P. and McKay, H. (1992). A Method for Registration of 3-D
Shapes. IEEE Transactions on Pattern Analysis and Machine Intelligenc, 14(2):239–
256.

[Biederman, 1987] Biederman, I. (1987). Recognition-by-Components: A Theory of Hu-
man Image Understanding. APA Journal; Psychological Review, 94(2):115–147.

[Biegelbauer et al., 2007] Biegelbauer, G., Richtsfeld, M., Wohlkinger, W., Vincze, M.,
and Herkt, M. (2007). Optical Seam Following for Automated Robot Sewing. In Pro-
ceedings of the IEEE Conference on Robotics and Automation, pages 4758–4763.

[Biegelbauer and Vincze, 2000] Biegelbauer, G. and Vincze, M. (2000). Fast and Robust
Bore Detection in Range Image Data for Industrial Automation. In Proceedings of the
2nd International Symposium on 3D Data Processing, pages 526–533.

[Biegstraaten et al., 2003] Biegstraaten, M., Smeets, J., and Brenner, E. (2003). The
influence of obstacles on the speed of grasping. Springer; Experimental Brain Research,
149(4):530–534.

[Boissonnat, 1984] Boissonnat, J. (1984). Geometric Structures for Three-Dimensional
Shape Representation. ACM Transactions on Graphics, 3(4):266–286.

[Bone et al., 2008] Bone, G., Lambert, A., and Edwards, M. (2008). Automated Modelling
and Robotic Grasping of Unknown Three-Dimensional Objects. In Proceedings of the
IEEE Conference on Robotics and Automation, pages 292–298.

[Borst et al., 2003] Borst, C., Fischer, M., and Hirzinger, G. (2003). Grasping the Dice
by Dicing the Grasp. In Proceedings of the IEEE/RSJ Conference on Robotics and
Systems, pages 3692–3697.

[Boughorbel and Zhang, 2007] Boughorbel, F. and Zhang, Y. (2007). Laser ranging and
video imaging for bin picking. Assembly Automation, 23(1):53–59.

[Brechbühler et al., 1992] Brechbühler, C., Gerig, G., and Kübler, O. (1992). Surface
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