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Abstract

The motion of small, density-matched particles in a thermocapillary flow of a liquid bridge

under zero gravity is considered. Due to the absence of buoyancy, the flow is driven by

thermally induced Marangoni forces only. The present work proposes that the interaction

of particle and liquid free surface is the key effect for the formation of so-called particle

accumulation structures (PAS).

The particle motion is determined by using a simplified version of the Maxey–Riley equa-

tion. It turns out that particle trajectories and flow streamlines agree in excellent ap-

proximation for sufficiently small and density-matched tracers in zero gravity. From this

observation follows a close linkage of PAS to a closed streamline in a supercritical flow.

This closed streamline arises within a frame of reference that rotates at the same angular

velocity as the travelling hydrothermal wave. This results in a new perception of PAS -

from now on primarily a phenomenon of the hydrothermal wave’s flow topology.

In supercritical flows, PAS arises as a nearly closed trajectory orbiting around a closed

streamline of the supercritical flow. The attraction of all particles to the vicinity of this

closed streamline is modelled by sequenced interactions of particle and liquid free surface

caused by the finite size of the tracer.

The result of this work can explain particle accumulation for small, density-matched tracers

in supercritical, incompressible flows in liquid bridges under zero gravity.
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Kurzfassung

Die vorliegende Arbeit behandelt die Dynamik von kleinen, dichtegleichen Teilchen in

der thermokapillaren Strömung einer Flüssigkeitsbrücke unter Schwerelosigkeit. Durch

Fehlen natürlicher Konvektion ist die Strömung ausschließlich vom thermisch induzierten

Marangonieffekt getrieben. In weiterer Folge wird ein Vorschlag erarbeitet, der die Wech-

selwirkung der Teilchen mit der freien Flüssigkeitsoberfläche als den Schlüsseleffekt zur

Ausbildung der so genannten PAS (particle accumulation structure) identifiziert.

Die Berechnung der Teilchendynamik erfolgt mit einer vereinfachten Form der Maxey–

Riley Gleichung. Die Ergebnisse zeigen, dass Teilchentrajektorien und Stromlinien für

hinreichend kleine, dichtegleiche Teilchen unter Schwerelosigkeit übereinstimmen. Daraus

folgt eine enge Verknüpfung von PAS mit einer geschlossenen Stromlinie der überkritis-

chen Strömung. Diese geschlossene Stromlinie zeigt sich in einem rotierenden Bezugssys-

tem, welches mit der gleichen Winkelgeschwindigkeit umläuft wie die Hydrothermalwelle.

Damit erscheint PAS unter einem völlig neuen Blickwinkel - von nun an primär als ein

Phänomen der Strömungstopologie.

Für überkritische Strömungen folgt PAS als eine nahezu geschlossene Trajektorie, die

eine geschlossene Stromlinie der überkritischen Strömung umkreist. Die Attraktion der

Teilchen in die Nähe dieser Stromlinie erfolgt durch aufeinanderfolgendeWechselwirkungen

zwischen Teilchen und freier Oberfläche, bedingt durch die endliche Größe der Teilchen.

Die Ergebnisse dieser Arbeit geben eine Erklärung für die Akkumulation kleiner, dichte-

gleicher Teilchen in der überkritischen, inkompressiblen Strömung einer Flüssigkeitsbrücke

unter Schwerelosigkeit.
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1 Motivation

Particle-laden flows are of great importance in nature and for industrial applications. An

important aspect is to understand the process of dispersion and the spatial distribution

of the particulate phase. The clustering of inertial particles has recently been considered

by Haller and Sapsis [1]. But even in the absence of inertial effects small particles can

accumulate in an incompressible flow [2].

This work is motivated by recent results of experiments on thermocapillary flows, hence

flows that are driven by thermally induced Marangoni convection only. The considered ex-

perimental setup consists of a differentially heated cylindrical liquid bridge, corresponding

to the half zone model of the floating zone process.

In a model experiment Schwabe et al. [3] observed that tracer particles used for flow visu-

alization did not remain well distributed in the liquid volume: under certain conditions,

they accumulate along a closed line that moves in the unsteady flow. They called this

phenomenon dynamic particle accumulation structure (PAS).

Dynamic PAS can take various shapes [4, 2, 5], depending on the Marangoni number.

Typically, a closed ribbon of particles seems to be wound once or several times around a

toroid and rotates like a rigid body with constant angular velocity. An experiment under

nearly zero gravity conditions confirmed, that gravity is not required for PAS to occur [6].

Additionally, PAS formation is most rapid for density-matched tracers [2]. A necessary

prerequisite for dynamic PAS, however, is an underlying flow in form of a pure azimuthally

travelling hydrothermal wave [7, 8].

Yet, the fundamental mechanism by which PAS is realized has remained illusive.
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2 Introduction to PAS

This section should give an overview of some basics concerning the phenomena of particle

accumulation structures (PAS) in cylindrical liquid bridges.

2.1 Zone melting

The zone melting process or floating zone process is a technique for the fabrication of

high-purity single crystals.

Zone melting process

In principle this crucible-free process converts a solid

polycrystalline rod into a monocrystalline one. The

picture shows a typical arrangement of the floating

zone process consisting of an upright (slowly rotating)

rod in an inert atmosphere where a small part of the

rod is heated and molten inductively.

The process starts at one end of the rod melting it

and exposing it to a seed crystal. Once the melt is

seeded, the heater and the narrow region of molten

polycrystalline material, respectively, move axially to

the other end of the rod.

The achievements of zone melting are firstly a monocrystalline solidification due to the

seed crystal and secondly a purification due to the chemical potential ratio which forces

impurities to diffuse into the liquid, accumulate there and get transferred to the other

end of the rod. Finally, the former polycrystalline rod is transformed into a high purity

monocrystalline rod. Repetition of the process increases purity.

The floating zone process provides high purity at high costs. The vast majority of industrial

manufactured (silicon) single crystals is obtained from the cheaper Czochralski process.

2



2.2. THE LIQUID BRIDGE

2.2 The liquid bridge

For the present work, the most interesting detail of the floating zone process is the men-

tioned narrow region of molten material. This molten zone represents a liquid bridge lim-

ited by solid rods on both sides, the polycrystalline rod on one side, the monocrystalline

rod on the other and the liquid free surface as boundary to the ambient atmosphere. A

principle sketch of the liquid bridge is shown in the central image of figure 2.1.

2.2.1 Models

The most common models for the liquid bridge of the floating zone process are the full

zone model and the half zone model as shown in figure 2.1.

z

r
ϕ

(a)

Ttop = Tm +∆T

Tbot = Tm

crystal

melt

crystal

Tm

Tm

z

r
ϕ

(b)

Figure 2.1: The image in the center shows the principle sketch of the liquid bridge in the

floating zone crystal growth process. The half zone model is shown on the left

(a) and the full zone model on the right (b). Taken from Leypoldt [9].

The most obvious simplification of both models is the assumption of a non-deformable

liquid free surface. The liquid bridge is therefore modelled as a cylinder of height d and

of radius R and the fundamental geometrical parameter is the aspect ratio

Γ =
d

R
. (2.1)

With some proper boundary conditions, numerical investigations can be done for both

models, but experiments are carried out using the so-called half zone model. The experi-

3



2.2. THE LIQUID BRIDGE

mental half zone consists of a liquid bridge connecting two rods and being kept in place by

its surface tension σ. Both rods are sustained at a constant temperature difference ∆T ,

responsible for the thermocapillary flow inside the liquid bridge after all. According to the

half zone model, shown in figure 2.1, the bottom rod at melting temperature Tbot = Tm

represents the cold side and the top rod at Tbot = Tm +∆T represents the hot side. The

liquid bridge will be from now on a synonym for the half zone model of the floating zone

process.

2.2.2 Convection

Before focussing on the fluid motion inside the liquid bridge, a short summary and sub-

division of two of the three well-known basic principles of heat and mass transfer will be

given (thermal radiation as third principle does not play any role for the present case).

1. convective heat transfer, thermal convection, convection - energy transfer due to

mass transfer and fluid motion respectively

a) forced convection, advective convection, advection: fluid motion is driven by

external forces

b) natural convection, free convection: fluid motion is caused by thermal in-

duced density variations (subject to the presence of gravity)

c) Marangoni convection: fluid motion is caused by surface tension gradients

(Marangoni effect)

i. thermocapillary convection: surface tension gradients are induced by tem-

perature variations

ii. solutocapillary convection: surface tension gradients are induced by con-

centration variations

2. heat conduction, conduction - energy transfer due to collisions of molecules

In the liquid bridge, heat transfer is a result of conduction and convection. Due to the

absence of external mechanisms, convection is thermally induced only and the arising flow

in the liquid bridge is therefore a result of the temperature difference ∆T between the rods.

The thermally induced convection is again partly thermocapillary convection and partly

natural convection. The smaller liquid bridges are, the more thermocapillary convection

dominates the natural convection. This is due to the fact that the Marangoni number

scales with d whereas the Rayleigh number scales with d3. In case of zero gravity, free

convection is disabled anyway and the flow is driven by the Marangoni effect only.

4



2.3. THERMOCAPILLARY FLOW STRUCTURES

2.3 Thermocapillary flow structures

Numerical and experimental investigations have shown several types of thermocapillary

flows. The Marangoni number

Ma = − ∂σ

∂T ∗

d

µκ
∆T =

γd

ρ0ν2
ν

κ
∆T = RePr , (2.2)

as product of thermocapillary Reynolds number

Re =
γd

ρ0ν2
∆T (2.3)

and Prandtl number

Pr =
ν

κ
(2.4)

is helpful for the characterization of these thermocapillary flow structures. The given

parameters are the surface tension coefficient γ = −∂σ/∂T ∗ with surface tension σ and

(dimensional) fluid temperature T ∗, fluid density ρ0, kinematic viscosity ν, dynamic viscos-

ity µ = νρ0, thermal diffusivity κ and reference temperature difference ∆T = Ttop − Tbot.

Appendix A gives an overview of the systematics in the nomenclature, introduces the

scaling procedure and summarizes all dimensional and dimensionless parameters.

The transition from the two-dimensional steady flow to a three-dimensional, time depen-

dent oscillatory flow marks a significant change in state and is indicated by the critical

Marangoni number Mac which is directly related to a critical Reynolds number Rec. Both

can be related to a critical temperature difference ∆Tc, hence

Mac = Rec Pr ∝ ∆Tc . (2.5)

2.3.1 Subcritical flow state

In the subcritical case Ma < Mac the flow is a steady, two-dimensional, toroidal vortex

flow. A schematic sketch of this flow, also called basic flow, is given in figure 2.2.

2.3.2 Supercritical flow states

If the critical Marangoni number is exceeded, i.e. Ma > Mac, the basic flow gets unstable

and disturbance waves get amplified. After a period of exponential growth the amplitude

of the most dangerous perturbation saturates. The result is a three-dimensional, time

5



2.3. THERMOCAPILLARY FLOW STRUCTURES

Figure 2.2: Principle sketch of the steady thermocapillary two-dimensional flow (basic

flow) in a liquid bridge. Taken from Schwabe et al. [2].

dependent oscillatory flow. The arising instability at Mac is the result of a Hopf bifurcation

and commonly referred to as hydrothermal wave (HTW) according to Smith and Davis

[7]. In the region between Mac and the chaotic state there are again two distinguishable

states which are called the standing wave (pulsating flow) and the travelling wave (rotating

flow). The prediction which state will arise as long-time-asymptotic solution is nontrivial.

For zero gravity and adiabatic boundary conditions Leypoldt et al. [10] found for 1.5 ≤
Pr < 7.8 travelling waves as stable solutions immediately above the critical value Rec.

Additionally for 4 ≤ Pr ≤ 7 these waves will be stabilized if the Reynolds number is

further increased.

The travelling wave is the most important flow structure for PAS where in turn the stand-

ing wave state is of no interest because PAS does not develop there. More information

about the standing wave can be found in Tanaka et al. [4].

Both states appear with the same azimuthal wave number m, which is called the funda-

mental wave number of the HTW. It depends primarily on the aspect ratio Γ via the

relation

mΓ ≈ 2.2 . (2.6)

With given fundamental wave numbers m = 1, 2, 3, . . . and (2.6), the optimum aspect

6



2.3. THERMOCAPILLARY FLOW STRUCTURES

ratios are Γ ≈ 2.2, 1.1, 0.7, . . . . Otherwise the fundamental wave number of the HTW is

not very robust and certain interactions of modes with different wave numbers can lead

to a complicated flow dynamics. If the aspect ratio is chosen such that (2.6) is almost

fulfilled and if in addition the Marangoni number is not too large, i.e. Ma ≈ (2 . . . 3)Mac,

the HTW has a pure modal structure composed by the fundamental wave number and its

harmonics only. In that case the flow is strictly space and time periodic. Experiments

have shown that this periodicity is required for PAS to be observed. Figure 2.3 shows

regions of well developed PAS in the Γ−Ma-plane.

Figure 2.3: Well developed PAS regions in the Γ−Ma-plane for NaNO3 (Pr = 8). The

symbols indicate the fundamental wave number: m = 1 (•), m = 2 (�), m = 3

(N), m = 4 (�). In empty regions PAS did not develop or developed only

faintly. Taken from Schwabe et al. [2].

The most important requirements for experiments on liquid bridges and PAS respectively

are transparency of the fluid and moderate working temperatures. These properties are

typically provided by fluids of high Prandtl numbers. Fluids of low Prandtl numbers, like

metals, are unfavorable for experiments due to opacity and high melting points.

7



2.4. PARTICLE ACCUMULATION STRUCTURES

2.4 Particle accumulation structures

If PAS is observed from above (axially) it appears as a windmill pattern with m (funda-

mental wave number of HTW) blades rotating at a constant angular velocity. Figure 2.4

shows PAS with different fundamental wave numbers, corresponding to different aspect

ratios Γ.

Figure 2.4: Different experimental PAS (Pr = 8) with fundamental wave numbers. From

left to right: m = 2, m = 3, m = 4, m = 5. Taken from Tanaka et al. [4].

All for now mentioned particle accumulation structures at relatively low Marangoni num-

bers are called by Tanaka SL-I-PAS - spiral loop I PAS. At higher Marangoni numbers

more complicated particle accumulation structures may arise like the SL-II-PAS, shown

next to the SL-I-PAS in figure 2.5 for m = 3. These structures typically arise at higher

temperature differences, corresponding to Ma ≈ 3Mac. Figure 2.6 shows the regions of ex-

istence for particle accumulation structures of different wave numbers and different shapes

for a melt with Pr = 8.

Figure 2.5: Wire models for the visualization of SL-I-PAS (left) and SL-II-PAS (right) of

fundamental wave number m = 3. Taken from Tanaka et al. [4].

8



2.4. PARTICLE ACCUMULATION STRUCTURES

Figure 2.6: Regions of existence for SL-I-PAS and SL-II-PAS in the Γ−Ma-plane for a melt

with Pr = 8. Taken from Tanaka et al. [4].
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3 The Flow

The flow in a liquid bridge is driven by two different driving forces. Firstly one finds

buoyancy forces due to thermally induced density variations, hence natural convection.

Secondly surface tension gradients along the liquid free surface lead to surface stresses

and drive a thermocapillary flow. One speaks of thermocapillary convection, if the surface

tension gradients are induced by temperature variations. For the present model, both, the

density and the surface tension variations are implemented as discussed in the following

section.

3.1 Oberbeck–Boussinesq approximation

The velocity field u(x, t), the temperature field T (x, t) and the pressure field p(x, t) in

a cylindrical liquid bridge are calculated using Leypoldt’s code Poseidon [9]. The cal-

culation bases on the Oberbeck–Boussinesq approximation, see e.g. Drazin & Reid [11],

applicable for incompressible fluids and small temperature variations. This means that the

temperature variation over the liquid bridge ∆T has to be small compared to the mean

temperature T0 = (Ttop +Tbot)/2, hence ∆T ≪ T0. Here is a short summary of the major

assumptions of the mentioned model implemented in Poseidon.

3.1.1 Fluid parameters

For the description of the fluid motion some material parameters are required. The pri-

mary material parameters of an incompressible, Newtonian fluid are the density ρf and the

dynamic viscosity µ or alternatively the kinematic viscosity ν. For the liquid free surface

one additionally needs the surface tension σ and the surface tension coefficient γ. The

required parameters concerning heat transfer are the heat transfer coefficient h and the

thermal conductivity λ or alternatively the thermal diffusivity κ = λ/ρfcp with the spe-

cific heat capacity cp. All mentioned parameters are in general functions of temperature,

pressure and concentration.

10



3.1. OBERBECK–BOUSSINESQ APPROXIMATION

For the Oberbeck–Boussinesq approximation firstly only the temperature dependencies are

taken into account. Secondly the assumption of small temperature variations motivates a

first-order Taylor series approximation at the mean temperature T0. Some analysis of the

coefficient’s magnitudes excuses to set all of the material parameters, except the density

ρf and the surface tension σ, to constants, namely to their values at T0.

The first-order Taylor series approximation of the density

ρf = ρf(T
∗) ≈ ρ0 (1− β(T ∗ − T0)) (3.1)

with the dimensional temperature difference T ∗−T0, the mean temperature T0, the density

at the mean temperature ρ0 = ρf(T0) and the isobaric thermal expansion coefficient at T0

β = − 1

ρ0

(
∂ρf
∂T ∗

)

p∗

∣∣∣∣
T0

= const. (3.2)

shows a non negligible first-order term. Nevertheless the first-order term is in turn only

included in the momentum equation as the buoyancy term and the constant fraction ρ0 is

added to the hydrostatic pressure

−∇p∗ + ρfgeg ≈ −∇p∗ − ρ0 (1− β(T ∗ − T0)) gez =

= −∇(p∗ + ρ0gz
∗) + ρ0βg(T

∗ − T0)ez . (3.3)

Similarly the first-order Taylor series approximation of the surface tension yields

σ = σ(T ∗) ≈ σ0 − γ(T ∗ − T0) (3.4)

with the surface tension at the mean temperature σ0 = σ(T0) and the surface tension

coefficient at T0

γ = − ∂σ

∂T ∗

∣∣∣∣
T0

= const. (3.5)

The surface tension approximation is used to model the boundary condition at the liquid

free surface, as can be studied in the next section.

3.1.2 Boundary conditions

Walls

The boundary conditions for the flow at the upper and lower walls, at z = ±0.5, are

taken as the no-slip condition for the velocity field and temperature-matching of wall and

fluid, i.e.

u = 0 and T = ±1

2
at z = ±1

2
. (3.6)
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3.1. OBERBECK–BOUSSINESQ APPROXIMATION

Constant temperature conditions imply that the heat conductivity of the support material

is infinitely large. These boundary conditions are approximated experimentally by using

e.g. copper as wall material.

Liquid free surface

The code of Poseidon assumes a non deformed liquid free surface, which is of perfect

upright cylindrical shape. This can be achieved by vanishingly small Bond and Capillary

numbers

Bo =
ρ0gd

2

σ0
≪ 1 , Ca =

γ∆T

σ0
≪ 1 . (3.7)

The Bond number, as measure for the importance of the capillary force compared to the

gravitational force, gives an estimate to the gravitational induced surface deformation.

These static surface deformations vanish completely at the absence of gravity or are neg-

ligibly small in case of a very small liquid bridge. In turn the importance of the dynamic

pressure induced surface deformations can be estimated with the Capillary number.

With the assumed perfect cylindrical shape of the liquid free surface and by considering

an inviscid gas, the tangential stress balance reads (see appendix B.4)

2D · er +Re(I− erer) · ∇T = 0 (3.8)

with the strain-rate tensor D, the unity matrix I, the outward normal unit vector er, the

dimensionless temperature difference T = (T ∗−T0)/∆T and the thermocapillary Reynolds

number (2.3). With the boundary condition for the radial velocity ur = 0, one can obtain

from (3.8) and (B.18) the boundary conditions for the tangential velocity field at the liquid

free surface, which are

(
∂r −

1

r

)
uϕ +

Re

r
∂ϕT = 0

∂ruz +Re ∂zT = 0





at r = R =
1

Γ
. (3.9)

These are the thermocapillary boundary conditions. Poseidon can also treat the

liquid free surface with rigid boundary conditions, i.e. with u = 0. In this case, the

Marangoni convection is disabled and the flow is driven by buoyancy only.

The heat transfer between fluid and ambient gas is given by Newton’s law of heat transfer

∂rT + Bi(T − Ta) = 0 (3.10)
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3.1. OBERBECK–BOUSSINESQ APPROXIMATION

where different temperature profiles can be assumed. A common choice for the half zone

model is a linear temperature profile in axial direction of the ambient gas, like Ta = z.

In the full zone model, Poseidon provides instead of the linear temperature profile of the

ambient gas a Gaussian and a parabolic profile.

A nondimensional measure for the heat transfer is the Biot number

Bi =
hd

λ
. (3.11)

The Biot number is a measure for the strength of the heat exchange with the ambient

atmosphere. Setting Bi = 0 means adiabatic boundary conditions where the heat transfer

over the liquid free surface is disabled and one speaks of thermal insulation. In this case

the ambient gas temperature profile is irrelevant. In turn, Bi =∞ forces the temperature

profile of the liquid free surface to be equal to the temperature profile of the ambient

gas.

3.1.3 The dynamic equations

The dimensionless Oberbeck–Boussinesq equations for momentum and heat transfer, to-

gether with the incompressible continuity equation are

(∂t + u · ∇)u = −∇p+∇2u+GrTez , (3.12)

(∂t + u · ∇)T =
1

Pr
∇2T , (3.13)

∇ · u = 0 . (3.14)

The chosen time scale d2/ν is the viscous diffusion time.

Together with the boundary conditions, the flow depends on 5 dimensionless parame-

ters. These are the fundamental aspect ratio (2.1), the Prandtl number (2.4), the ther-

mocapillary Reynolds number (2.3), the Biot number (3.11) and the Grashof number

Gr =
βgd3

ν2
∆T . (3.15)

The thermocapillary Reynolds number and the Biot number are required to model the

boundary conditions at the liquid free surface.
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3.2. HYDROTHERMAL WAVES

3.2 Hydrothermal waves

For supercritical conditions, nonlinear hydrothermal waves are solutions of the problem. In

a certain range of Marangoni numbers, stable hydrothermal waves of constant amplitudes

exist for t → ∞. Since theses waves are periodic with a fundamental azimuthal wave

number, they can be represented by a Fourier series, which writes in the inertial frame of

reference K as

u(x, t) =

∞∑

n=0

un(r, z) e
in(mϕ−ωt) + c.c. = ui(x, t)ei (3.16)

with complex amplitudes un including the relative phases of the Fourier modes. All

considered Fourier components are harmonics of the HTW’s fundamental mode m and

propagate at the same azimuthal phase velocity (no dispersion), such that the entire flow

field rotates like a rigid body with the constant angular velocity

Ω =
ω

m
ez = Ωez = const. (3.17)

The data provided by Poseidon represents a snapshot of the velocity field at t = t0 (with t0

as end of simulation) from the K−frame of reference according to (3.16). The upper image

of figure 3.1 shows such a snapshot including the rotational direction of the wave.

Due to the behaviour of the travelling HTW, a coordinate transformation

x = xiei −→ x′(t) = x′i(t)e
′
i (3.18)

to the rotating coordinates

r′ = r , ϕ′(t) = ϕ− Ωt , z′ = z , (3.19)

yields the K−field again, but now denoted in rotating coordinates

u(x′) =

∞∑

n=0

un(r
′, z′) e inmϕ′

+ c.c. = ui(x
′)e′i . (3.20)

This notation will be very helpful in section 4.3 but is to handle with care, because the

executed coordinate substitution is only half way of the field transformation from K to

K′. The observer in K′ notices beside the already transformed coordinates (x → x′),

transformed velocities (u→ u′) as well, i.e.

u(x′) = ui(x
′)e′i −→ u′(x′) = u′i(x

′)e′i (3.21)
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3.2. HYDROTHERMAL WAVES

with the velocity transformation

u′(x′) = u(x′)−Ω× x′ . (3.22)

Finally, the velocity field u′(x′) of (3.22) represents the steady flow, as seen by a rotating

observer in K′. It is shown in the lower image of figure 3.1.

At this point some reader would probably tend to identify the images the other way round,

such that the upper image shows the steady flow and lower one the flow with the travelling

wave due to the strong azimuthal component - but this is a delusion. One should keep in

mind, that waves, like the HTW, do not show their propagation velocity on a snapshot.

The observation of the fluid from the rotating frame of reference K′ yields the benefit of a

steady flow, but for the observation of the particle and for its equation of motion, one has

to implement Coriolis- and centrifugal-forces, which is described in chapter 4.3.

Again, even if u(x′) stands for a notation in rotating coordinates x′(t), the velocity field

is still observed from the K−frame, corresponding to the space-time-point (x, t) and x′(t)

respectively. On the other hand the velocity field u′(x′) is the flow described in rotating

coordinates and observed from the K′−frame. Therefore, one has to distinguish

u(x, t) = u(x′) but u(x′) 6= u′(x′) . (3.23)
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3.2. HYDROTHERMAL WAVES

Figure 3.1: Flow field observation in K and K′ at z = 0 from above. The flow is defined by

the parameters Γ = 0.66, Pr = 4, Re = 1800, Gr = Bi = 0, the fundamental

wave number of the HTW is m = 3 and its angular velocity Ω = −10.145.
Upper image: Snapshot of the flow field u(x, t) for t = t0 in K. The entire flow
rotates like a rigid body with the constant angular velocity Ω in the indicated

direction. Lower image: Steady flow field u′(x′) in K′.
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4 The Particle

4.1 Equations of motion

The derivation of a realistic equation of motion for a small rigid spherical tracer in a

nonuniform flow was provided by Maxey and Riley [12]. The following section gives an

overview of their article to show the major ideas.

Following the mentioned article, all (kinematic) quantities are dimensional in this sec-

tion 4.1. The dimensionless form will be worked out in section 4.2.

The considerations start in an inertial frame of reference K. Within this frame of reference

space and time is denoted with x and t, the undisturbed flow field (in absence of the

particle) with u(x, t), the position of the particle’s center of mass and its velocity with

y(t) and ẏ(t). The particle is a sphere of radius a and mass mp. The fluid has a density

of ρ0, a dynamic viscosity of µ and a kinematic viscosity of ν = µ/ρ0.

Due to the motion of the particle through the flow, the undisturbed flow u(x, t) is modified,

represented by the real flow w(x, t). This modified flow has to satisfy the Navier–Stokes

equations for incompressible fluids, which are

ρ0

(
∂wi

∂t
+ wj

∂wi

∂xj

)
= − ∂p

∂xi
+ µ

∂2wi

∂xj∂xj
+ ρ0gi and

∂wi

∂xi
= 0 . (4.1)

The additional conditions

w = ẏ + ω × (x− y) with x on the particle surface (4.2)

w = u as |x− y | → ∞ (4.3)

are the no-slip condition (4.2), that constitutes full velocity matching on the particle’s

surface including a rotational motion of the tracer with angular velocity ω(t), and the

second condition (4.3) ensures, that the real flow w(x, t) and the undisturbed flow u(x, t)

are identical at infinity.
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4.1. EQUATIONS OF MOTION

The equations of motion for a particle of mass mp in an arbitrary flow are

mpÿi =

∮

O

Sijnj do+mpgi . (4.4)

Hence the acceleration of a particle ÿ(t) in a flow is given by the integral of the fluid

stress tensor Sij over the particle surface O with its outward normal vector n and the

acceleration of gravity g. The main challenge will be the evaluation of the fluid stress

tensor.

In the next step one changes into the new frame of reference K′′, which is moving with

the particle and is located in its center of mass. Within this frame of reference the space

coordinate is denoted by x′′ and the real flow field by w′′(x′′, t). In the new frame of

reference K′′, the real flow is decomposed into the fraction of the undisturbed flow u′′(x′′, t)

and the disturbance flow v′′(x′′, t) caused by the particle. Summarized, one finds for the

structure of the real flow in the particle frame of reference K′′

x′′ = x− y , (4.5)

u′′ = u− ẏ , (4.6)

w′′ = w − ẏ = u′′ + v′′ . (4.7)

In the new frame K′′ the Navier–Stokes equations for the undisturbed flow are

ρ0

(
∂u′′i
∂t

+ u′′j
∂u′′i
∂x′′j

)
= −∂p′′(u)

∂x′′i
+ µ

∂2u′′i
∂x′′j∂x

′′
j

+ ρ0 (gi − ÿi) (4.8)

and those for the disturbance flow

ρ0

(
∂v′′i
∂t

+ u′′j
∂v′′i
∂x′′j

+ v′′j
∂u′′i
∂x′′j

+ v′′j
∂v′′i
∂x′′j

)
= −∂p′′(v)

∂x′′i
+ µ

∂2v′′i
∂x′′j∂x

′′
j

(4.9)

with the pressure fractions p′′(u)(x′′) and p′′(v)(x′′) caused by the respective flow.

In equations (4.9), Maxey & Riley neglect all convective terms. This can be done in case

of a sufficiently small perturbation flow due to the particle. This condition can be cast

more precisely into a particle Reynolds number Rep and a Stokes number St. With the

representative velocity W0 = |ẏ − u|, describing the velocity mismatch of particle and

(undisturbed) flow, characteristic length and velocity of the flow L0 and U0 respectively,

the particle Reynolds number and the (interim) Stokes number are

Rep =
aW0

ν
, St =

a2U0

νL0
=

(
a

L0

)2

Re (4.10)

with the fluid Reynolds number Re = L0U0/ν.
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4.1. EQUATIONS OF MOTION

Only if Rep ≪ 1 and St≪ 1, the simplification of dropping the convective terms in (4.9)

is justified. If the approximation should hold for high fluid Reynolds numbers as well, i.e.

for Re≫ 1, the condition of a small Stokes number implies a condition for the size of the

tracer, which is then

a

L0
≪ 1 . (4.11)

The transformation to K′′ and the decomposition of the flow field w′′(x′′, t) yields the

decomposed stress tensor

S′′
ij = S

′′(u)
ij + S

′′(v)
ij = −p′′(u)δij + µ

(
∂u′′i
∂x′′j

+
∂u′′j
∂x′′i

)
− p′′(v)δij + µ

(
∂v′′i
∂x′′j

+
∂v′′j
∂x′′i

)
. (4.12)

The force, the fluid exerts on the sphere, can thus be decomposed into a force from the

undisturbed flow F (u) and a force from the disturbance flow F (v), i.e.

∮

O

S′′
ijnj do =

∮

O

(
S
′′(u)
ij + S

′′(v)
ij

)
nj do = F

(u)
i + F

(v)
i . (4.13)

4.1.1 The force from the undisturbed flow

To calculate F (u), the respective surface integral of (4.13) is transformed into a volume

integral, thus

F
(u)
i =

∮

O

S
′′(u)
ij nj do =

∫

V

∂jS
′′(u)
ij dV . (4.14)

Under the assumption that the sphere is sufficiently small compared to the variations of

the undisturbed flow, Maxey and Riley followed that the integrand is nearly uniform over

the sphere and find the approximation

F
(u)
i = ∂jS

′′(u)
ij

∫

V

dV =
4π

3
a3

(
−∂p′′(u)

∂x′′i
+ µ

∂2u′′i
∂x′′j∂x

′′
j

)
. (4.15)

With equations (4.8) and back transformation into the inertial frame of reference K by

using (4.6), one finds

F
(u)
i = −mfgi +mf

(
∂ui
∂t

+ uj
∂ui
∂xj

)

x=y(t)

(4.16)

with the particle-displaced fluid mass mf. The buoyancy force −mfgi arises as part of the

hydrostatic pressure distribution contained in p′′(u).
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4.1. EQUATIONS OF MOTION

The intermediate result for the equations of motion is then given by

mpÿi = F
(v)
i + F

(B)
i + F

(P)
i =

= F
(v)
i + (mp −mf)gi +mf

Dui
Dt

.
(4.17)

The arising forces are due to buoyancy F (B) and due to the pressure-gradient of the

undisturbed flow F (P).

Equations (4.17) use the convective derivative following a fluid element of the undisturbed

flow u on its pathline, but evaluated at the instantaneous particle position, thus

Dui
Dt

=

(
∂ui
∂t

+ uj
∂ui
∂xj

)

x=y(t)

(4.18)

which is to distinguish from the convective derivative following the particle through the

undisturbed flow u on its trajectory, denoted by

dui
dt

=

(
∂ui
∂t

+ ẏj
∂ui
∂xj

)

x=y(t)

. (4.19)

The implementation of these two different derivatives into the final equations of motion

is subject of rich discussions, as one can study in [12] or [13]. Nevertheless, in case of

small particle Reynolds numbers, the difference between these two derivatives is negligibly

small.

4.1.2 The force from the disturbance flow

For the completion of the equations of motion, the force from the disturbance flow

F
(v)
i =

∮

O

S
′′(v)
ij nj do (4.20)

must still be evaluated. This requires much more effort than the evaluation of F (u), as

can be estimated from the result

F
(v)
i = F

(A)
i + F

(S)
i + F

(H)
i =

= −mf

2

[
ÿi −

d

dt

(
ui +

a2

10
∇2ui

)]
− 6πaµ

(
ẏi − ui −

a2

6
∇2ui

)
−

− 6πa2µ√
πν

∫ t

0
dt′

1√
(t− t′)

d

dt′

(
ẏi − ui −

a2

6
∇2ui

)
,

(4.21)

which holds in the K−frame of reference. The terms are the added mass F (A), viscous

Stokes drag F (S) and viscous drag from the Basset history term F (H). The term ∼ a2∇2u,

arising three times in the equations, is the so-called Faxén correction.
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The final equations of motion for a small rigid spherical tracer in a general nonuniform

flow read

mpÿi = F
(B)
i + F

(P)
i + F

(S)
i + F

(A)
i + F

(H)
i =

= (mp −mf)gi + mf
Dui
Dt

− 6πaµ

(
ẏi − ui −

a2

6
∇2ui

)
−

− mf

2

[
ÿi −

d

dt

(
ui +

a2

10
∇2ui

)]
−

− 6πa2µ√
πν

∫ t

0
dt′

1√
(t− t′)

d

dt′

(
ẏi − ui −

a2

6
∇2ui

)

(4.22)

valid under the restrictions mentioned above,

Rep ≪ 1 , St≪ 1 ,
a

L0
≪ 1 . (4.23)

Additionally, equations (4.22) require for their validity as initial conditions t0 = 0 and

particle–flow velocity-matching at t0, i.e.

ẏ(t0) = u(x0, t0)|x0=y(t0) . (4.24)

The field variable u in (4.22) has to be evaluated at the current particle position and is to

read as

u = u(x, t) =̂ u(x, t)|x=y(t) . (4.25)

Due to the assumption of a vanishing particle Reynolds number Rep, the final equations of

Maxey and Riley do not include finite-size particle effects. These are the Saffman effect due

to the shear of the undisturbed flow and the Oseen correction to the Stokes drag, arising

due to particle rotation. With the assumption of a small particle Reynolds numbers, these

effects are small compared to the dominating Stokes drag and can be neglected, whereupon

these conclusion holds for now only for the interior region of the liquid bridge. A detailed

discussion, whether the Saffman effect plays a relevant role for the liquid bridge, where

shear flows are induced by thermocapillary forces as well, can be found in Domesi [14].

He worked out the magnitude of the lift force, a generalized form of the Saffman effect,

and concluded that the formation of PAS will not be affected by the lift force, but particle

trajectories will deviate slightly, especially in the transient period, from those without lift

force.

Moreover, particle–particle interactions are excluded anyway and particle–boundary inter-

actions are still to work out.
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4.2 Simplifications

In most cases equations (4.22) can be simplified. Following the arguments of Maxey and

Riley, the Basset history force F (H) is important in case of high-amplitude oscillating flows

and corresponding to Babiano et al. [13] one can neglect the Faxén corrections, again for

the case of a sufficiently small particle. Taking into account the spherical geometry of

the tracer with masses mp = V ρp, mf = V ρ0 and volume V = 4πa3/3, equations (4.22)

reduce to

(
ρp +

ρ0
2

) dẏ∗i
dt∗

= − 9µ

2a2
(ẏ∗i − u∗i ) + ρ0

(
Du∗i
Dt∗

+
1

2

du∗i
dt∗

)
+ (ρp − ρ0)gi . (4.26)

In contrast to the last section 4.1, all dimensional kinematic quantities are now indicated

by an asterisk and the dimensionless ones are denoted without asterisk. Dividing the

equations by the fluid density ρ0, using the density ratio ̺ = ρp/ρ0 and the common scaling

method, as it is shown in appendix A.3, one finds the dimensionless form of (4.26)

(
̺+

1

2

)
U2
0

L0

d

dt
ẏi = −9νU0

2a2
(ẏi − ui) +

U2
0

L0

(
Dui
Dt

+
1

2

dui
dt

)
+ (̺− 1)gi . (4.27)

Babiano et al. [13] exchanged the derivative of the flow field in the added mass term from

(4.19) to (4.18). This is the correct form, already mentioned by Maxey & Riley [12].

Again, for small particle Reynolds numbers, as considered for the present investigations,

these two derivatives are identical in excellent approximation anyway. The mentioned

exchange leads to another simplification, which is

Dui
Dt

+
1

2

dui
dt

→ 3

2

Dui
Dt

. (4.28)

Introducing the Froude number and the Stokes number, which is now modified compared

to (4.10),

Fr =
U0√
gL0

=
ν√
gd3

, St =
2

9

a2U0

νL0
=

2

9

a2

d2
, (4.29)

the equations of motion in the dimensionless form finally become

ÿ =
1

̺+ 1
2

[
− 1

St
(ẏ − u) +

3

2

Du

Dt
+

̺− 1

Fr2
eg

]
(4.30)

with the unit vector eg pointing into the direction of gravity.

The equations of motion (4.30) are a system of three coupled non-linear ordinary differ-

ential equations (ODE) of second order for yi(t).

22



4.3. TRANSFORMATIONS

4.3 Transformations

4.3.1 Transformation to the rotating frame of reference

As mentioned in section 3.2, the flow field can be observed from a distinguished frame of

reference in which the flow is steady. This is the rotating and, hence, an accelerated frame

of reference K′. For the equations of motion one has to take into account the additional

Coriolis and centrifugal accelerations (see appendix B.2), so that the equations of motion

in K′ read

ÿ′ =
1

̺+ 1
2

[
− 1

St
(ẏ − u) +

3

2

Du

Dt
+

̺− 1

Fr2
eg

]

︸ ︷︷ ︸
ÿ

−2Ω× ẏ′ −Ω× (Ω× y′) . (4.31)

The interpretation of these new equations must be considered with caution, because they

contain quantities from both frames of reference, K and K′. In particular the treatment

of the field variable u requires some diligent review. For a consistent differential equation,

all quantities concerning the particle have to be exclusively denoted in the K′−frame. For

now all underbraced terms of (4.31), representing the acceleration ÿ(t), are to read in the

K−frame.

The Stokes term of (4.31) accounts for the particle–flow velocity-mismatch in K, which is,

as in general relative velocities are, invariant under coordinate transformation and reads

for both frames of reference

ẏ − u = ẏ(t)− u(x, t)|x=y(t)︸ ︷︷ ︸
in K

= ẏ′(t)− u′(x′)|x′=y′(t)︸ ︷︷ ︸
in K′

= ẏ′ − u′ . (4.32)

The transformation of the substantive derivative is shown in appendix B.3 and reads as

Du

Dt
=

(
u′ · ∇′u′ + 2Ω× u′ +Ω× (Ω× x′)

)

x′=y′(t)

(4.33)

Due to the assumed orientation of the liquid bridge, the direction of gravity, the cylinder

axis and therefore the rotational axis match, i.e.

eg = −ez = −e′z =⇒ Ω = Ω′ . (4.34)

Starting from the K−frame equations of motion (4.30) one ends up at the final K′−frame

equations:
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ÿ′ =
1

̺+ 1
2

[
− 1

St
(ẏ′ − u′) +

3

2
u′ · ∇′u′ − ̺− 1

Fr2
ez

]
− 2Ω×

(
ẏ′ − 3

2̺+ 1
u′

)
−

−Ω× (Ω× y′)

(
1− 3

2̺+ 1

)
with u′ = u′(x′)|x′=y′(t) .

(4.35)

Due to the output format of Poseidon u(x′), representing the velocity field in K but

described in rotating coordinates, the alternative version of the substantive derivative

(B.40) seems to be more practical and the equations of motion follow as

ÿ′ =
1

̺+ 1
2

{
− 1

St

(
ẏ′ − (u−Ω× y′)

)
+

3

2

[
(u−Ω× y′) · ∇′u+Ω× u

]
− ̺− 1

Fr2
ez

}
−

− 2Ω× ẏ′ −Ω× (Ω× y′) with u = u(x′)|x′=y′(t)

(4.36)

where all quantities concerning the particle are again given in K′ but the flow is now

described in the inertial frame of reference in rotating coordinates, hence u = u(x′), as

used by Poseidon.

4.3.2 Transformation to cylindrical coordinates

Expressing the time derivatives of the position vector and the convective derivative in

cylindrical coordinates (see appendix B.1), separation of the cylindrical unit vectors and

ordering by the second derivatives, equations (4.36) get to

r̈′ =
1

̺+ 1
2

{
− 1

St
(ṙ′ − ur′)+

+
3

2

[ (
ur′∂r′ +

(uϕ′

r′
− Ω

)
∂ϕ′ + uz′∂z′

)
ur′ −

u2ϕ′

r′

]}
+ r′

(
ϕ̇′ +Ω

)2
,

ϕ̈′ =
1

̺+ 1
2

{
− 1

St

(
ϕ̇′ −

(uϕ′

r′
− Ω

))
+

+
1

r′
3

2

[(
ur′∂r′ +

(uϕ′

r′
− Ω

)
∂ϕ′ + uz′∂z′

)
uϕ′ +

ur′uϕ′

r′

]}
− 2ṙ′

r′
(ϕ̇′ +Ω) ,

z̈′ =
1

̺+ 1
2

{
− 1

St
(ż′ − uz′) +

3

2

(
ur′∂r′ +

(uϕ′

r′
−Ω

)
∂ϕ′ + uz′∂z′

)
uz′ −

̺− 1

Fr2

}
.

(4.37)
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4.3.3 Transformation to ODEs of first order

For any MATLAB-solver odeXX, one needs to transform the system of 3 ODEs of second

order in a system of 6 ODEs of first order. This is done with the substitutions

r′ → y1 , ϕ′ → y2 , z′ → y3 ,

ṙ′ → y4 , ϕ̇′ → y5 , ż′ → y6 .
(4.38)

Due to computational economy, the constant factors

C̺ =
1

̺+ 1
2

, CSt = −
1

St
, CFr =

̺− 1

Fr2
(4.39)

are computed only once and the repeatedly used factors

ȳ1 =
1

r′
, y∗5 = ϕ̇′ +Ω , Ω∗ =

uϕ′

r′
− Ω (4.40)

are computed once for each integration step.

For convenience, all primed characters are renamed from now, i.e.

∂ξ′ → ∂ξ and uξ′ → uξ with ξ = r, ϕ, z . (4.41)

With all definitions from above, one finds the required ODE-system of first order

ẏ1 = y4 ,

ẏ2 = y5 ,

ẏ3 = y6 ,

ẏ4 = C̺CSt (y4 − ur) + 1.5C̺

(
ur∂rur +Ω∗∂ϕur + uz∂zur − ȳ1u

2
ϕ

)
+ y1y

∗2
5 ,

ẏ5 = C̺CSt (y5 − Ω∗) + 1.5C̺ȳ1 (ur∂ruϕ +Ω∗∂ϕuϕ + uz∂zuϕ + ȳ1uruϕ)− 2ȳ1y4y
∗
5 ,

ẏ6 = C̺CSt (y6 − uz) + 1.5C̺ (ur∂ruz +Ω∗∂ϕuz + uz∂zuz)− C̺CFr .

(4.42)

4.4 Particle–boundary interaction

The equations of motion are valid for the interior region of the liquid bridge. In case the

particle reaches any physical boundary of the liquid bridge, which are in vertical direction

the bottom and top disks at z = ±1/2 and in radial direction the liquid free surface at
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r = R = 1/Γ, the model must be modified. This is in detail contents of section 5.2.3. Here

only some more quantities concerning the particle–boundary interaction are introduced.

From a given Stokes number St, the common scales (see appendix A.3) and with equa-

tion (4.29), one can easily derive the dimensionless particle radius a/d as

St =
2a2U0

9νL0
=

2a2

9d2
−→ a

d
=

√
9

2
St . (4.43)

Due to the finite size of the particle, the maximum reachable (dimensionless) positions

for the particle’s center of mass are the contact radius R† in radial direction and the

vertical contact position z†, which read

R† =
R

d
− a

d
and z† =

1

2
− a

d
. (4.44)

Figure 4.1 is a principle sketch to illustrate the introduced contact boundaries, shown as

dashed lines.

Figure 4.1: Principle sketch with the maximum reachable positions (dashed lines) for a

spherical particle (red) of radius a. The physical boundaries are the liquid free

surface (green) at r = R and in this case the upper disk (hatched) at z = 1/2.

The contact boundaries are R† and z†.
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5 Numerics

The assumed one-way coupling and the structure of the travelling hydrothermal wave

allows to decouple the calculations of flow field and particle trajectory. Firstly the flow

field is determined with Leypoldt’s code Poseidon [9] (FORTRAN90) and secondly the

trajectories are derived with MTrace (MATLAB) which was developed exclusively for this

purpose. The following chapter gives an overview on the basic internal structure of both

simulation programmes.

5.1 Poseidon

Poseidon integrates the Oberbeck–Boussinesq equations by a finite volume method in ra-

dial and axial direction coupled to a pseudo-spectral Fourier method in azimuthal direction

on a so-called staggered grid. The velocity field u(x, t) is represented by a sequence of flow

states at each time step provided within the inertial frame of reference K in cylindrical

coordinates on the staggered grid, hence for t = t0 this is

u(x, t0) = ur(r, ϕ, z, t0)er + uϕ(r, ϕ, z, t0)eϕ + uz(r, ϕ, z, t0)ez . (5.1)

5.1.1 Staggered grid

For a staggered grid the five field variables ur, uϕ, uz, T, p are not given at every grid point,

but rather in a staggered fashion as shown in figure 5.1. The thin lines appearing in the

figure are the cell boundaries of the discrete mesh generated by Poseidon. One can easily

notice that the pressure p, the temperature T and the azimuthal velocity uϕ are not given

on the cell boundaries but in the center of each cell. On the other hand the radial velocity

ur is only given on the vertical cell boundaries and the axial velocity uz is only given on the

horizontal cell boundaries. Due to the staggered grid, all matrices holding the respective

flow variables are of different size, which yields some more effort for the data management

(see appendix C.2).
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ur uϕ T, p

uz

Figure 5.1: Staggered grid with the arrangement of all flow field variables, (© - uϕ, T, p),

(△ - uz) and (� - ur). Taken from Leypoldt [9].

5.1.2 Pseudo-spectral method

In any case, the azimuthal periodicity of the arising flow calls for a spectral method in ϕ.

The finite azimuthal grid resolution implies a truncation of the (theoretically infinite)

Fourier series and this truncation error becomes manifest as the so-called aliasing effect.

Hence, all Fourier components with wave numbers higher than the maximum representable

wave number appear as contributions to lower but represented wave numbers. Poseidon

has no implemented strategy to suppress aliasing. Nevertheless, the effects due to aliasing

can be reduced by increasing the azimuthal resolution, such that any flow can be achieved

with an adequate accuracy by using a moderate azimuthal grid resolution Nϕ.

If the Reynolds number is slightly above the critical value, three-dimensional flows in liquid

bridges of aspect ratios Γ = O(1) contain only a small number of relevant Fourier modes.

If the Reynolds number is increased, higher Fourier modes are excited and have to be

taken into account. This is done by increasing the azimuthal resolution Nϕ. For instance,

the arising HTW in a liquid bridge of aspect ratio Γ = 0.66 has the fundamental wave

number m = 3. For covering the first two harmonics, i.e. n = {0, 3, 6}, one will need at

least an azimuthal grid resolution of Nϕ = 2(nmax + 1) = 14.

Aliasing mainly affects those modes with higher wave numbers. For a quantitative esti-

mate onto the aliased contributions, Leypoldt [9] compared the results of two simulations

with different azimuthal grid resolutions (Nϕ = 14 and Nϕ = 22) for a liquid bridge of
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aspect ratio Γ = 1 and Re ≈ 1.5Rec. To be more precise, he compared the amplitudes

of all harmonics at a certain position. He found a relative discrepancy of 1% for the

fundamental mode and large relative errors for all higher harmonics due to aliasing. How-

ever, the amplitudes of the higher harmonics are small compared to the amplitude of the

fundamental mode and therefore the absolute error is still in the range of 1%.

The extensive relative errors caused by aliasing due to an undersized azimuthal grid resolu-

tion limits quantitative statements for higher harmonics. Nevertheless, the small absolute

error shows that the character of the flow is not influenced essentially by aliasing. For

the subsequent reduction of the aliasing effect, a post filtering procedure is applied to the

velocity field as discussed in section 5.2.1.

5.2 MTrace

The trajectory solver MTrace is highly dominated by the implementation of several MAT-

LAB built-in functions. The mentioned functions are fft for the filtering procedure of the

flow field (see 5.2.1), the 3D-interpolation function interp3 together with the piecewise

cubic Hermite interpolation function pchip for the interpolation procedure of the flow field

(see 5.2.4) and the ODE-solver itself, whereby ode15s was selected (see 5.2.2).

5.2.1 Mode filter

As already depicted in section 5.1.2 Poseidon’s pseudo-spectral method is subject to the

aliasing effect. For the present case one knows that a pure travelling wave is of the

form (3.16), composed by the HTW’s fundamental mode and its harmonics only. With

an adequate azimuthal grid resolution the contributions due to aliasing are only small

and the post-filtering procedure results in a pure hydrothermal wave composed by its

(major) harmonics only. Even if the filtering procedure eliminates all non-harmonics, the

contributions due to aliasing to the HTW’s harmonics are not removable subsequently.

Again, for a proper azimuthal grid resolution, these fractions are only small. Figures 5.2

and 5.3 show a representative result of a Fourier transform, here of the radial velocity

component ur, as an example for the magnitudes of all Fourier components.

The filtering procedure is carried out as follows for all field variables (ur, uϕ, uz, T, p):

• Start at the first field variable of Poseidon’s original flow data, like ur.
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• Transform the selected flow variable to Fourier space by passing the azimuthal data

set of every single (r, z)−tuple to MATLAB’s built-in function fft.

• Apply inverse Fourier transform back to position space again according to equation

(B.70) but only by using user-selected wave numbers, for instance n = {0, 3, 6, 9}.

5.2.2 Integration

Generally a Runge–Kutta based ODE-solver is in most cases a good guess for a first

try. Also MATLAB recommends to start with ode45, a one-step solver based on an

explicit Runge–Kutta formula, the Dormand–Prince pair, which works best for non-stiff

systems [15]. In case of stiff systems, MATLAB recommends ode15s, a multistep solver

based on the numerical differentiation formulas (NDF) or optionally working with the

backward differentiation formulas (BDF), also referred to as Gear’s method [15].

The dominating Stokes term in the equation of motion is a strong indication for a stiff

system. A comparison of the integration times of ode45 and ode15s shows in fact an

advantage by using ode15s. The results are qualitatively identical, but integration is

much faster and therefore all calculations in this work are done with ode15s. A good

description of this solver including a mathematical discussion of its algorithm can be

found in Haidinger [16].

Based on a comparison with a high accuracy reference calculation, where both tolerances

were set to 10−12, the ODE-solver’s standard tolerances are chosen as

RelTol = 10−4 and AbsTol = 10−6 (5.2)

which yield qualitatively identical results compared to the high accuracy integration.

As already mentioned in section 4.4 the particle’s domain of definition is limited by the

contact boundaries R† and z†. For the detection of any particle–boundary interaction,

MATLAB’s built-in ODE-subroutine events is used, a very easy but powerful tool and

essential for post processing as well. This subroutine calls after every successful integra-

tion step a user-defined function and proves all conditions of this function to be either true

or false. If any condition is true, an so-called event is detected, for instance a particle–

boundary interaction. In any case this event will be documented by writing the recent state

vector to yeout and an integer to ieout, which stands for a simple code to identify the

respective event. After that, the ODE-solver checks whether the event results in the trun-

cation of integration (and reinitialization) or if the event is designated for documentation

purposes only and integration continues as usual.
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Figure 5.2: Fourier amplitudes |ãn| for wave numbers n = {0 . . . 9} of the radial velocity

ur of a flow determined by Γ = 0.66, Pr = 4, Re = 1800, Gr = Bi = 0.

Fundamental wave number of the HTW is m = 3 and azimuthal resolution is

Nϕ = 22.
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Figure 5.3: Fourier phases ϕn for wave numbers n = {0 . . . 9} of the radial velocity ur of a

flow determined by Γ = 0.66, Pr = 4, Re = 1800, Gr = Bi = 0. Fundamental

wave number of the HTW is m = 3 and azimuthal resolution is Nϕ = 22.
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5.2.3 Particle–boundary interaction model

The particle–boundary interaction, especially the interaction with the liquid free surface,

is a complicated process. Realistic models of particle–free surface interactions must take

into account the wetting properties (contact angle) and surface deflections as presented in

Vassileva et al. [17] or Do-Quang et al. [18].

The numerical effort for the implementation of these models is very high. Therefore,

one shall implement a simple but practical approach which allows to explicitly compute

trajectories of many different particles, like it was already done by Domesi [14]. Simple

particle–boundary interaction models has also been used by Melnikov [19] and Kawamura

[20].

It turns out that the simple interaction models implemented in MTrace, both discussed in

more detail below, lead to results that compare very well with experiments. Both models

assume the limit case of perfect particle–fluid wettability, corresponding to the contact

angle θ = 0.

Fully elastic reflection model

Probably the simplest and most obvious model for a particle–surface interaction is the fully

elastic reflection model (FER-model). In this model the respective velocity component

gets inverted (ẏξ → −ẏξ) as the particle hits any surface in ξ−direction. The particle

momentum is fully conserved and the resulting movement of the particle corresponds to

that of a bouncing ball.

Within the FER-model and exemplarily for the vertical boundary interaction at ±z† one

has:

1. If |z| = z† =⇒ terminate ODE–solver.

2. Reinitialization of the particle state by taking the last value of the solution and

overwrite the vertical velocity by ż = −ż.

3. Restart ODE–solver with new initial state vector.

Even if the free surface is considered as non deformable, the PER-model seems to be far

from a realistic description because the movement of a small particle (St ≪ 1) in a fluid

is highly dissipative due to the Stokes drag (∝ St−1). The relaxation of the assumption of

a conserved radial momentum leads to the partially elastic reflection model.
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Partially elastic reflection model

With the partially elastic reflection model (PER-model) the radial momentum is

no longer conserved. It yields results in excellent agreement to the FER-model but its

numerics is more efficient. If a particle hits any boundary in ξ−direction, the respective

velocity component is set to zero (ẏξ → 0) and additionally the respective acceleration

component is forced to zero (ÿξ → 0) as long as the particle acceleration points into the

outward direction of the liquid bridge. Within the PER-model the particle momentum is

not fully conserved, because the ξ−component gets annihilated.

Within the PER-model and exemplarily for the radial boundary interaction at R† one

has:

1. If r = R† =⇒ terminate ODE–solver.

2. Reinitialization of the particle state by taking the last value of the solution and

overwrite the radial velocity by ṙ = 0.

3. Restart ODE–solver with new initial state vector.

4. Calculation of r̈

5. If r̈ > 0 =⇒ r̈ = 0

Comparison of both models

Both considered boundary interaction models are numerically very efficient and the results

are close to experimental evidence. Figure 5.4 shows the projection of a representative

particle trajectory derived in both models. In view of the dimensionless particle radius of

only a/d = 0.02 and the radial scale, one can easily see that the results of both models

are qualitatively the same.

The upper images of figure 5.5 show again the trajectories of figure 5.4 including all surface

collision and release points. The lower images are close-ups of the upper (left) and lower

(right) interaction regions where the characteristic movement of the particle is illustrated

for both models. Due to the annihilation of the radial momentum in the PER-model it is

clear that the final surface release point has to be different in general.

In consideration of the negligible discrepancy of the results of both models, the decisive

point for the final choice of the boundary interaction model is the numerical efficiency,

where finally the PER-model is to favour. Furthermore the assumption of the PER-model
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seems to be more physical than the assumed conserved radial momentum of the FER-

model.
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Figure 5.4: Projections of a representative trajectory into the r−z−plane, derived with the

FER-model (red) and the PER-model (blue). Calculations are done in a liquid

bridge of Γ = 0.66, Re = 1800, Pr = 4, Gr = Bi = 0 with a density-matched

(̺ = 1) particle of St = 10−4.

5.2.4 Interpolation

For the integration of the equations of motion the ODE-solver firstly needs the velocity

components and secondly all components of the velocity gradient (Jacobian) for any arbi-

trary point in the liquid bridge. These data can only be obtained by interpolation and the

adequate built-in function for this task is MATLAB’s 3D-interpolation routine interp3

providing linear and spline interpolation. The choice of the interpolation strategy is a

compromise between accuracy and computing time.

The fastest method is the linear interpolation which can be performed locally, i.e. only

the values of the immediate grid neighbours are needed. This is high efficient but one has

still to carry out an additional procedure for the evaluation of the Jacobian. The best

results for the velocity components are found by a global spline interpolation, where the

data of the entire flow is taken into account. The global spline interpolation yields good
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Figure 5.5: Upper images: Projections of a representative trajectory into the r− z−plane,
calculated with the PER-model (left) and the FER-model (right). Red dots

indicate collision points of the particle with the liquid free surface and blue dots

indicate surface release points. Lower images: Close-up of the upper and lower

particle–liquid free surface interaction regions. Blue trajectory is determined

within the PER-model and red one within the FER-model.
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results but is enormously time consuming. The (local) linear interpolation for all velocity

components is approximately 50-times faster than the global spline interpolation.

A reduction of the numerical effort can be achieved by a reduction of the grid that is taken

into account for the interpolation corresponding to a local interpolation. In case of a

spline interpolation, the reduced grid results in a reduced number of interpolation points,

hence the spline of a local interpolation will in general not agree to the spline of the more

accurate global interpolation. To shield the interpolation result from the tendency to

overshoot, the spline interpolation is replaced by a Hermite spline interpolation and the

final implemented interpolation procedure is a combination of a (linear) pre-interpolation

with interp3 followed by a local piecewise cubic hermite spline interpolation with pchip.

Another advantage of pchip is the high efficient evaluation of the Jacobian by the usage of

the underlying analytical interpolation function. The interpolation procedure consists of

three steps: grid trimming, pre-interpolation and local Hermite interpolation, all discussed

in detail below.

Grid trimming

To reduce the numerical effort, the interpolation procedure doesn’t take the entire flow

field data into account. The intention is to find a reduced grid segment that represents

the flow locally. Due to the staggered grid, this reduced grid is to carry out for every

field variable separately. Since the interpolation point is far from any (quasi)-boundaries,

which are

• radial: r = 0 and r = R†

• azimuthal: ϕ = 0/2π

• vertical: z = ±z†,

the reduced grid is found quite simply by taking the two immediate grid neighbours on

every side in each spatial direction. The final segment is then of size 4× 4× 4 grid points

plus the single point y for the interpolation, representing the current particle position. A

one-dimensional illustration of the grid point arrangement of the reduced grid is

[ xpos-1 , xpos , yi , xpos+1 , xpos+2 ] (5.3)

with the intermediate point yi and his two grid neighbours on every side. The grid point

xpos is defined as the first point on the respective grid axis, which is smaller, or in case of the

vertical axis larger, than yi. In case the particle and the interpolation point y respectively

is close to any (quasi)-boundary the trimming procedure is slightly adapted.
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A simple linear interpolation requires only one neighbouring grid point on each side in

every direction, but a higher accuracy interpolation like the followed Hermite interpolation

requires at least more than only one grid neighbour.

Even if the reduced segment represents a cylinder segment it is effectively treated as a

cuboid. Figure 5.6 illustrates a reduced grid segment. All thin black lines represent

the grid boundaries where the field variables are given on selected points. Due to the

staggered grid method these points are not simply the grid boundary intersection points.

The red circle represents the particle position y where the velocity field has to be evaluated.

All green lines are the boundaries of the cross sectional planes, discussed in more detail

below.

Figure 5.6: Reduced grid segment with interpolation point y.

Pre-interpolation

Once the point is located and the grid is trimmed for every field variable one can think

of three distinguished planes, which are the cross sectional planes through y as shown in

figure 5.7 (indicated in green in figure 5.6).

In general not a single value of any field variable is known on the cross sectional planes

through y. In the next step all surrounding grid points of the cube (fig. 5.6) are pro-

jected on these planes. The subsequent allocation of these projected grid points with field

variables is then called pre-interpolation and is done with MATLAB’s 3D-interpolation

routine interp3. Up to this point the field variables of y are still unknown but all grid

points on the cross sectional planes are allocated with interpolated data. These allo-
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Figure 5.7: Cross sectional planes of the reduced grid with interpolation point y.

cated grid points represent the basis for the final one-dimensional piecewise Hermite cubic

spline interpolations (pchip) which is done once for every cross sectional plane. With the

three interpolants (one for every plane) the velocities and all first spatial derivatives (with

MATLAB’s built-in function fnder) at y are evaluated.

Hermite interpolation

Compared to the ordinary polynomial spline, which guarantees continuity of first and

second derivative at all grid points, a piecewise Hermite spline works without continuity

of the second derivate. By relaxing the condition of continuity of the second derivative a

degree of freedom is generated, which is then used to construct an interpolation function

which is monotonous. The resulting interpolant shows no short-wavelength oscillations or

overshoots.
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6 Theory

Before the numerical results are discussed, a recapitulation of the previous chapters gives

an overview on the system one is dealing with and acknowledges the approximations

made.

6.1 Size of the system

The particle motion in the liquid bridge is modelled in form of a system of three coupled

non-linear ordinary differential equations of second order. The ingredients for this ODE-

system are on the one hand some dimensionless parameters defining flow and particle and

on the other hand the initial conditions of the particle.

The parameter space of the flow was identified as five-dimensional, spanned by the aspect

ratio Γ, Re, Pr, Gr and Bi numbers. In case of zero gravity and adiabatic boundary con-

dition for the liquid free surface, the Grashof and Biot numbers vanish and the parameter

space is reduced to an effective three-dimensional one.

The parameter space of the particle is three-dimensional, spanned by the density ratio ̺,

St and Fr numbers. Furthermore, zero gravity means that the Froude number does not

play any role as well.

Hence, the dimension of the parameter space of the flow-particle-system is 8 or 5 in case

of zero gravity and adiabatic boundary conditions.

In addition, all possible initial states of the particle are in general represented by the six-

dimensional phase space, whereas flow–particle velocity-matching at the initial particle

position reduces the initial phase space to an effective three-dimensional one, corresponding

to the position space which is again represented by the geometry of the liquid bridge with

its finite volume.

With all the mentioned simplifications, zero gravity, adiabatic boundary conditions and

initial flow–particle velocity-matching, one deals for the initial conditions with a five-
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dimensional parameter space coupled to the three-dimensional finite size phase space of

the particles initial state.

6.2 Assumptions of the model

Below one finds a summary of all approximations made, which are either of numerical or

systematic nature.

• Flow: Oberbeck–Boussinesq approximation

– Neglect the free surface deformation

– Consideration of small temperature variations only

– Use of Newton’s heat transfer law

• Flow: Numerics

– Discretization errors, mainly caused by aliasing (error due to truncation of

Fourier-series) and the subsequent flow field filtering procedure

– Flow field interpolation

• Particle: Maxey–Riley equation

– Consideration of perfect spherical particles

– Neglect finite size particle effects

– Neglect terms in the equation of Maxey & Riley (e.g. Faxén corrections)

– Particles are monodisperse, i.e. of same Stokes number

– Numerical errors, especially of the ODE-solver

• Particle: Interactions

– Consideration of one-way coupling only

– Use of simple particle–boundary interaction model

– Neglect particle–particle interactions

In addition, the non-linearity of the ODE-system indicates chaotic behaviour. Some re-

gions of the liquid bridge are in fact very sensitive on small deviations of the particles

initial state or on variations of any model variable. Even the choice of the computers

operating system leads for selected trajectories to different results.

On the other hand PAS turns out to be an extremely robust phenomenon. Chapter 11 will

show PAS formation even for ideal passive tracers by using the FER-model as particle–

boundary interaction model.
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7 Subcritical analysis: Re = 1000

The subcritical case is of special interest for the present work, because the basic ideas on

the PAS-mechanism are formed here. In a next step these ideas will be transferred to the

supercritical flow. Additionally this section is used for the introduction of some recurring

visualization strategies.

The present chapter will focus onto the zero gravity flow

Pr = 4 , Γ = 0.66 , Gr = 0 , Bi = 0 . (7.1)

With the given parameters one can estimate the critical Reynolds number from figure 7.1

as Rec ≈ 1080, whereas the slightly subcritical value Re = 1000 is chosen for the present

investigation.

Figure 7.1: Neutral curves of the thermocapillary flow in a liquid bridge for Pr = 4, Gr = 0

and Bi = 0. Taken from Kuhlmann [21].
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7.1 Simulation with Poseidon

The grid resolution is chosen as Nr × Nz × Nϕ = 50 × 40 × 14. For a higher resolution

of the boundary layers, the grid is not uniformly spaced and subject to a geometric grid

compression in radial and axial direction. The compression factors are fr = 0.96 in radial

and fz = −0.93 in axial direction with reference points z = 0 and r = R = 1.515. The

azimuthal division is homogeneous.

The simulation reached the stable 2D-state within a dimensionless time period of t = 2,

i.e. within two time units of the momentum diffusion time.

Figure 8.3 shows velocity and temperature fields in an arbitrary vertical cross section (top

image) and a representative horizontal cross section at z = 0 (bottom image) of the liquid

bridge. The absence of any azimuthal velocity component in the horizontal cross section

illustrates the clear two-dimensional flow structure. In addition the vertical cross section

demonstrates the toroidal vortex nature.

The white areas around the cylinder axis and around the outer radial boundary, which is

the liquid free surface, indicate regions without data. This is due to the staggered grid,

which does not provide temperature T and axial velocity uz at the radial boundaries. The

outermost radial coordinate, where the velocity field is known completely, corresponds to

the radial coordinate of the outermost cell-center rout = rcenter(Nr) (see appendix C.2).

The distance between rout and the liquid free surface at r = R defines a narrow dataless

gap δ = R − rout which implies a minimum particle size and a minimum Stokes number

Stmin respectively, deduced from

St =
2a2

9d2
=⇒ Stmin =

2

9
δ2 . (7.2)

For the present liquid bridge one finds δ = R− rout = 1.5150− 1.5103 = 4.7 · 10−3, which

corresponds to Stmin ≈ 5 · 10−6. Due to numerical reasons a practicable minimum particle

size lies slightly above the theoretical minimum value.

For demonstration purposes only, a size corresponding to St = 5 · 10−5 is chosen for now.

From this Stokes number one can easily follow the contact radius R† = 1.5.

A liquid bridge of radius R = 3 mm, like it was used in Schwabe et al. [2], and a particle

size equivalent to St = 5 · 10−5 result in the dimensional particle radius

Γ =
d

R
= 0.66 ≈ 2

3
−→ d ≈ 2mm −→ a = d

√
4.5 St ≈ 30µm . (7.3)

Hence the particle diameter dp ≈ 60µm ranges in the upper region of the investigations

of Schwabe et al. [2].
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Figure 7.2: Vertical cross section (top) and horizontal cross section at z = 0 (bottom) of

the liquid bridge to show representative temperature field and velocity field

u(x).
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7.2 PAS-mechanism

The following section will clarify the PAS-mechanism for the subcritical flow in a step by

step manner.

Streamlines and pathlines

Another common method for the visualization of a flow field is the usage of streamlines

instead of the velocity field. Streamlines x(s, t0) are parameterized with the arc length s

and are given for a certain time t0 as curves tangent to the velocity field vectors. With a

well-known flow field u(x, t0), a streamline is determined by fulfilling the equation

d

ds
x(s, t0) =

u(x, t0)

|u(x, t0)|
. (7.4)

In a general unsteady flow, streamlines are to distinguish from pathlines, which are simply

trajectories of individual fluid elements. From a given flow field u(x, t) a single path-

line x(t) is determined by

d

dt
x(t) = u(x, t) . (7.5)

Pathlines can be interpreted as trajectories of massless point particles. In steady flows,

streamlines and pathlines are identical.

Figure 7.3 shows the streamlines of the steady subcritical flow corresponding to the flow

field given in the upper image of figure 7.2. Due to numerical reasons the presented

streamlines are not exactly closed.

Equation of motion for the subcritical flow

The equation of motion for a small spherical particle is given by (4.35) and reduces for

the subcritical flow (Ω = 0) in zero gravity (Fr→∞) to

ÿ =
1

̺+ 1
2

[
− 1

St
(ẏ − u) +

3

2
u · ∇u

]
. (7.6)

Obviously the particle properties size (∝ St) and inertia (∝ ̺) are responsible for a devia-

tion of the particle trajectory from the pathline. Below, these particle properties will get

suppressed step by step for a clear assignment of the PAS-mechanism.
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7.2. PAS-MECHANISM

Figure 7.3: Streamlines of the subcritical flow in the vertical cross section.

Model of a density-matched tracer of infinitesimal size

The most easiest thinkable model is dealing with ideal passive particles - density-matched

tracers of infinitesimal size. Firstly, density-matching means ̺ = 1 and reduces (7.6) to

ÿ = − 2

3 St
(ẏ − u) + u · ∇u . (7.7)

Secondly, an infinitesimal size corresponds to a vanishing Stokes number (St → 0) which

simplifies (7.7) again to

ÿ = u · ∇u =⇒ ẏ = u . (7.8)

In the limit of St → 0, the Stokes drag, which acts on the velocity mismatch of particle

and fluid with the reciprocal value of St, balances particle velocity and local fluid velocity

instantaneously. Thus the particle trajectories correspond exactly to the pathlines and in

case of a steady flow to the streamlines. Hence uniformly distributed particles would follow

the pathlines and streamlines respectively corresponding to their initial positions. Particle

segregation would be then contradictory to continuity, hence PAS can’t get realized and

therefore this model is oversimplified and not the appropriate approach for the present

problem. For that reason one has to take a step further.
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7.2. PAS-MECHANISM

Model of a density-matched tracer of quasi-finite size

Again, a density-matched tracer is considered, but now of quasi-finite size. The term

quasi-finite size stands for a tracer of radius a according to a given Stokes number St≪ 1

but it is assumed that this sufficiently small particle still follows the pathline in excellent

approximation. This assumption corresponds to the negligence of the Stokes drag, even if

the particle is of finite size, and the particle trajectory is still determined by (7.8). The

additional attribute of a particle of quasi-finite size was already introduced in section 4.4.

Hence, a spherical tracer of radius a is not able to follow pathlines lying between the

contact radius R† and the liquid free surface.

Figure 7.4 shows again the streamlines of figure 7.3 in a close up. The vertical red line

indicates the contact radius R† as the maximum reachable radial position for the particle’s

center of mass. One will easily notice three distinguished streamlines (blue and green)

which are tangent to the contact radius. The corresponding tangent points are indicated

as blue dots. These tangent points are simply found by searching after a vanishing radial

velocity component at the contact radius R†.

Figure 7.4: Close up of vertical cross section of subcritical flow with contact radius R†

(red), tangent streamlines plus tangent points (blue) and the PAS-streamline

(green).
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7.2. PAS-MECHANISM

The tangent points of the vertical cross section appear on the unrolled cylinder surface of

the contact radius as closed graphs, shown in the upper image of figure 7.5. These graphs

are called from now on the release lines. The shortcuts for the release lines and tangent

points respectively are from top to bottom L1 − L3. In case of the present subcritical

2D-flow, the release lines are simply circles, illustrated in figure 7.6. The most important

streamline of the system, also referred to as PAS-streamline, corresponds in this case to

the uppermost release line (L1), green-coloured in figure 7.4. The streamline corresponding

to the release line L2 is of no relevance.
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Figure 7.5: Unrolled cylinder surface at R† showing velocity field u(x) and release lines

L1 − L3 in the upper image, temperature field in the central image and alto-

gether in the lowermost image.

The PAS-streamline is the result of the finite-particle-radius effect, the first and most

important PAS-mechanism. For the explanation of the finite-particle-radius effect one has

to make use of the PER-model, introduced in section 5.2.3. Basically one can distinguish

between streamlines enclosed by the PAS-streamline and streamlines crossing the contact

radius, whereas the PAS-streamline separates the enclosed streamlines from those crossing

the contact radius.
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7.2. PAS-MECHANISM

Figure 7.6: Bird’s eye view of the liquid bridge with flow field u(x) at z = 0. The black

marker at the surface indicates the point x = {r = R,ϕ = 0, z = 0} and serves

for orientation only. The release lines L1−L3 at R† are shown as black circles.

All particles with an initial position outside the PAS-streamline will travel along their

corresponding streamlines until they reach the liquid free surface and the contact radius

respectively. The particle’s center of mass will then slide along the contact radius as long

as the radial velocity component of the flow faces outwards. The points at which the radial

velocity component changes sign and turns inwards again, represent the release points

for the particle. These points are firstly L1, transferring the particle directly onto the

PAS-streamline and secondly L3, transferring the particle after another revolution onto

the PAS-streamline.

All particles with an initial position inside the PAS-streamline will orbit on the correspond-

ing (closed) streamline and are therefore not able to reach the liquid free surface. Due to

that reason, all particles inside the PAS-streamline remain there and do not segregate.

Summarized, the finite-particle-radius effect is identified as the first PAS-mechanism,

which brings all particles initially located outside the PAS-streamline onto the PAS-

streamline. In the discussed model all particles initially located inside the PAS-streamline,

also referred to as core particles, will remain on their corresponding streamlines for-

ever.
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From figure 7.7 one can clearly see the result of the finite particle radius effect, which has

transferred the majority of all particles initially located outside the PAS-streamline onto

the PAS-streamline within a time period of t = 1.

Figure 7.7: Particle distribution for density-matched tracers of quasi-finite size after t = 0,

t = 0.2, t = 1, t = 10. Flow and particle parameters as introduced.
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Model of a density-matched tracer of finite size

Within this model the particle size is taken fully into account, the trajectory is now

determined by (7.7) and will deviate from the streamline due to the Stokes drag. For a

considered particle size corresponding to St = O(10−5) the effect of the Stokes drag is only

very small and is of the order of the numerical uncertainties. For the mentioned particle

sizes a clear statement regarding the action of the Stokes drag is therefore not possible.

Model of a general tracer of finite size

In the general case, within the present model, its dynamics is firstly determined by equation

(7.6) and secondly by the finite-particle-radius effect. For particles of ̺ > 1 an effective

centrifugal force can lead to another PAS-mechanism. If the effective centrifugal force is

sufficiently larger all core particles will be continual transferred onto outer orbits until

they collide with the surface and get transferred onto the PAS-streamline as well. This is

called from now on the centrifugal effect.

In three dimensions the PAS-streamline of the vertical cross section is a toroidal surface.

This means that all initially randomly distributed particles, which occupied the entire

available phase space, are transferred to a subspace. Hence, the finite-particle-radius

effect in combination with the centrifugal effect reduces the occupied phase space by one

dimension.

For the subcritical and zero gravity case, the PAS-mechanism can be summarized to:

If a particle hits the liquid free surface anywhere, it will be transferred without

fail onto the PAS-stream surface at least within one single revolution. In the

end, all particles of ̺ ≥ 1 will reach the surface due to the centrifugal effect.
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8 Supercritical analysis: Re = 1800

The PAS-mechanisms seems to be clear for the subcritical case, as shown in the last

chapter. Now it will be tried to apply the found mechanisms to a three-dimensional

supercritical flow. At the same time PAS is no longer a two-dimensional surface but

appears in the supercritical flow as a one-dimensional string.

8.1 Simulation parameters

Flow parameters

This section considers the same parameters as before, merely the Reynolds number is

increased, i.e.

Pr = 4 , Γ = 0.66 , Re = 1800 , Gr = 0 , Bi = 0 . (8.1)

For these parameters, the fundamental wave number of the HTW is m = 3 with angular

velocity Ω = −10.145.

The grid resolution is Nr ×Nz × Nϕ = 50 × 40 × 22. It is stretched as in the subcritical

case, with radial/vertical compression factors fr = 0.96/fz = −0.93 and corresponding

reference points z = 0 and r = R = 1.515. The resulting dataless gap in this grid is again

δ = 4.7 · 10−3 with a theoretical minimum Stokes number of Stmin ≈ 5 · 10−6.

Particle parameters

The density-matched particles are moving in zero gravity and are chosen to be of same

size as used in the subcritical flow. Hence the particle parameters are

̺ = 1 , St = 5 · 10−5 , Fr =∞ . (8.2)
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8.2. SUPERCRITICAL FLOW

For the integration of the equations of motion (4.36) the following parameters are chosen:

boundary interaction model is the PER-model in both cases, ODE-solvers tolerances are

set to RelTol = 10−4 and AbsTol = 10−6 and the pre-interpolation method is chosen as

linear. The flow field data is not used in the original form but Fourier filtered including the

constant fraction (n = 0) and the first three harmonics of the HTW, i.e. n = {0, 3, 6, 9}.

Initial positions

As carried out for the subcritical case, the finite-particle-radius effect is assumed to be the

major mechanism for PAS development. Therefore, one starts the investigation considering

particles placed initially on the the contact radius R†, hence the initial position represents

the first surface collision.

Trajectories of 360 particles are computed for the time period t = [0, 6]. All particles start

velocity-matched at the contact radius R†, uniformly distributed on the unit circle. For

the axial initial positions some height between the calculated release line L1 and the upper

disk is required. The choice of z = 0.4 guarantees an initial position above L1 for every

particle. Hence the initial positions are the one-dimensional set of points

Y ′
init = {Y ′ ∈ R

6 | r′ = R† , ϕ′ =
kπ

180
, z′ = 0.4 , ẏ′ = u′(x′)} , k = 0, 1, . . . , 359 .

(8.3)

The integration time was chosen as t = 6, corresponding to NΩ ≈ 9.7 HTW revolutions,

determined by

NΩ =
t

τ
with τ =

2π

Ω
. (8.4)

8.2 Supercritical flow

8.2.1 Poseidon procedure

Starting from the state of rest and the thermal conduction state, hence u = 0 and T = z,

the simulation reached the unstable 2D–state within a dimensionless time period of t = 1.5.

After imposing a perturbation of the temperature field [22]

∆T (r, ϕ, z) = AT
r

R
sin

π(z + d/2)

d
sin (mϕ+ ϕ0) (8.5)
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8.2. SUPERCRITICAL FLOW

with perturbation amplitude AT , azimuthal wave number of perturbationm and azimuthal

phase of perturbation ϕ0

AT = 0.1 , m = 3 , ϕ0 = 0 (8.6)

an unstable standing wave emanates, well developed after another time period of t = 2.

In the last step the velocity field of this standing wave is again perturbed with a pertur-

bation for every velocity component [22]

∆ui(r, ϕ, z) = Ai
r

R
sin

π(z + d/2)

d
sin (mϕ+ ϕ0) , i = r, ϕ, z (8.7)

all with m = 3, ϕ0 = 0 and perturbation amplitudes

Ar = −10 , Aϕ = 6 , Az = 3 . (8.8)

Both perturbations (8.5 - 8.7) can be simply imposed by defining Ai, m and ϕ0 in Posei-

don’s input file.

The simulation is truncated if the Nusselt numbers have converged sufficiently to their

constant values, hence if the weighted amplitudes of all Nusselt numbers are below 0.01%.

Figure 8.1 shows the temporal development of all three Nusselt numbers and their tendency

to converge if the simulation reaches the pure travelling wave solution.

At the end of simulation t0 = 8, a well formed travelling wave solution is found, where

t = 0 stands for the velocity perturbation onset.
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8.2. SUPERCRITICAL FLOW

Figure 8.1: Temporal development of Nusselt numbers: uppermost image Nutop for top

disk, central image Nubot for bottom disk and lowermost image Nusrf for the

liquid free surface. At t = 0 the perturbation of the temperature field (8.5) is

imposed and at t = 2 the perturbation of the velocity field (8.7).
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8.2.2 Solution

Representative temperature and velocity fields are shown in figure 8.3. Even if the flow is

three-dimensional, the vertical cross section is qualitatively the same as in the subcritical

case and shows in principle a basic flow. The horizontal cross section shows a flow field

u(x, t0) which rotates like a rigid body in the indicated direction. The flow of figure 8.4

corresponds to u′(x′), i.e. the flow is observed from the rotating frame of reference. The

release lines L1 − L3 are shown as well. They are no longer simple circles as for the

subcritical case. In figure 8.5 one can see the release lines on the unrolled cylindrical

surface of the contact radius R†.

From figure 8.2 one can easily understand the definition of the azimuthal point of refer-

ence, i.e. ϕ′ = 0. It is defined at the maximum surface temperature of the fundamental

perturbation wave (here m = 3) in the mid-plane of the liquid bridge, i.e. at z = 0.

Figure 8.2: Temperature field T (x′) of the fundamental perturbation wavem = 3 at z = 0.
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Figure 8.3: Vertical cross section (top) and horizontal cross section at z = 0 (bottom) of

the liquid bridge to show representative (total) temperature field T (x, t0) and

velocity field u(x, t0). The arrow indicates the rotational direction of the flow

(Ω = −10.145).
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Figure 8.4: Bird’s eye view of the liquid bridge with flow field u′(x′) (rotating frame of

reference K′) at z = 0. The black marker at the surface indicates the point

x′ = {r′ = R,ϕ′ = 0, z′ = 0} and serves for orientation only. The release lines

L1 − L3 at R† are shown as black lines.
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Figure 8.5: Unrolled cylinder surface at R† showing velocity field u(x, t0) and release lines

L1−L3 in the uppermost image, temperature field T (x, t0) in the central image

and altogether in the lowermost image. The vertical velocity component uz is

scaled by 1/5 and the arrow indicates the travelling direction of the HTW.
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8.3 PAS analysis

After the simulation period of t = 6, one finds the majority of all particles, i.e. 340 out

of 360, in the primary SL-I-PAS, shown in figure 8.6. This agrees qualitatively excellent

to experimental evidence, see Ueno et al. [5], Tanaka et al. [4] or Schwabe et al. [2] for

instance.

The remaining 20 particles are in a noticeable regular structure, called from now on sec-

ondary structure, shown as blue trajectories in figure 8.7. Due to the doubled number

of wings, i.e. number of windings around the mean primary vortex, one might tend to

identify this structure as a SL-II-PAS on the first view.

Preliminary arguments against this speculation is firstly the documented shape of the

SL-II-PAS by Tanaka et al. [4], from which the secondary structure deviates significantly

and secondly the low Reynolds number (Re ≈ 1.7Rec) of the given simulation. Typical

Reynolds numbers for the occurrence of SL-II-PAS are documented as Re & 3Rec. The

secondary structure seems to be of different nature and is discussed in more detail below.

8.3.1 Classification of Trajectories

In the recent simulation, the hydrothermal wave is travelling clockwise1 within the K−
frame with constant angular velocity Ω = −10.145. In turn, all particles are travelling

anticlockwise within the K′−frame with an averaged angular velocity ω′ = 2π/τ ′p, where

τ ′p is the length of period for a particle travelling around the z−axis within the rotating

frame of reference K′. The result for ω′ vs. the particle’s initial angles is shown in figure

8.8. The horizontal blue line in figure 8.8 shows the value of the hydrothermal wave’s

angular velocity Ω within the inertial frame of reference K.

As it turns out, all SL-I-PAS forming particles are moving in good approximation with the

same averaged angular velocity ω′
PAS ≈ 14.5 > Ω. The averaged angular velocity within

the inertial frame of reference ω = ω′+Ω yields an anticlockwise net movement, wherefrom

one can follow that PAS-particles run into the opposite direction as the HTW does. The

experimental report onto this behaviour can be found in Ueno et al. [5].

In turn the rotational velocities of all particles forming the secondary structure deviate

significantly from ω′
PAS and furthermore their angular velocities are slightly below the

value of Ω, which results in a clockwise net movement within the K−frame.

1The observation is always from above.
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Figure 8.6: Selected particles forming a well developed SL-I-PAS from bird’s eye view and

from above in the K′−frame for time period t = [5, 6].
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Figure 8.7: Beside the already introduced SL-I-PAS, some particles form a secondary struc-

ture from bird’s eye view and from above K′−frame for time period t = [5, 6].

62



8.3. PAS ANALYSIS

Figure 8.8: Averaged angular velocities ω′ for all particles vs. their initial angles ϕ′
init.

Value of the HTW’s angular velocity Ω is shown as blue line.

Figure 8.9 shows the trajectory of a single PAS-particle (ϕ′
init = 50◦) and figure 8.10

shows the trajectory of a secondary structure particle (ϕ′
init = 100◦) observed from the

rotating K′−frame (upper images) and from the inertial K−frame (lower images) for the

time period t = [4.76, 6] corresponding to 2 full HTW revolutions. The fields are plotted

at z = 0 as they appear for the respective observer. The green dot indicates the particle’s

starting position, the red dot its final position and the blue dots indicate free surface

collisions.

In figure 8.9 one can clearly notice the mentioned anticlockwise net movement in K and

that the particle movement goes along with free surface interactions.

With the lower image of figure 8.10, showing a representative trajectory of the secondary

structure from the inertial K−frame, and with the experimental research of Ueno et al. [5],

one can identify the secondary structure as a limit case of the core structure. Speaking of

a limit case is motivated by the fact, that the shown trajectories are not free of surface

interactions. In analogy to the subcritical case it is reasonable to define supercritical

core particles as particles that are trapped in the central vortex flow. Additionally core

particles do not get in contact with the liquid free surface. Therefore, the trajectories of

the secondary structure do not represent core particles by the given definition.

Further integration until t = 20 yields for another 6 (out of 20) secondary structure

particles attraction to SL-I-PAS. The changeover from the secondary structure to SL-I-PAS

is shown in figure 8.11 observed from the rotating K′−frame and in figure 8.12 observed

from the inertial K−frame. The upper images show the trajectory within the time period

t = [5, 8.6] where the particle is moving exclusively in the secondary structure. For a better

view onto the particle movement, the trajectory is split-up and the final position of the
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Figure 8.9: SL-I-PAS particle trajectory from above for the time period of 2 full HTW

revolutions. Upper image: Observation from the rotating frame K′. Lower

image: Observation from the inertial frame K. The green dot indicates the

particle’s starting position, the red dot its final position and the blue dots

indicate free surface collisions.
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Figure 8.10: Trajectory of a secondary structure particle from above for the time period

of 2 full HTW revolutions. Upper image: Observation from the rotating

frame K′. Lower image: Observation from the inertial frame K. The green

dot indicates the particle’s starting position, the red dot its final position and

the blue dots indicate free surface collisions.
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upper image corresponds to the starting position of the lower image. This position is chosen

slightly before the most peculiar change of the particle movement takes place, where the

changeover to PAS is initiated. Due to the absence of surface interaction the changeover

is initiated by the flow only, but it seems to be most likely that the following sequence of

surface interactions is important to stabilize the trajectory to PAS. The possibility of a

transfer to the stable SL-I-PAS identifies the secondary structure as a transient state.

8.3.2 Poincaré map

For the visualization of the particles chronological development a proper quantity is needed.

The chosen quantity is the intersection point of a trajectory with the mid-plane z = 0. Fur-

thermore, it is differentiated between top-down intersections (blue indicated) and bottom-

up intersections (green indicated). This visualization corresponds to a basic Poincaré map

and is shown for two selected trajectories on the left hand side of figure 8.13.

The right hand side of figure 8.13 shows another visualization strategy of the corresponding

trajectories, called from now on DFT-fingerprint. The DFT-fingerprint is found by a

Fourier transform of the azimuthal coordinates of the Poincaré intersection points ϕ′
n|z=0

representing the set of all top down intersections of a single trajectory with the mid-

plane z = 0. This set of real coordinates results in a set of complex Fourier coefficients

ãn, whereas a DFT-fingerprint plot represents the normalized amplitudes |ãn|. Due to the

fact that especially different types of trajectories realize a different number of intersections

in the same time period, the abscissas are not equal and fingerprints are therefore only

comparable qualitatively. However, the DFT-fingerprint is a very helpful tool for a quick

classification of trajectories. The zero-component |ã0| is suppressed in all DFT-fingerprint

plots.

Figure 8.13 shows an example for both types of the introduced trajectories. As expected,

the SL-I-PAS is represented by a single pair of Fourier coefficients and in turn the core tra-

jectory is represented by a slightly diffuse Fourier spectrum around two distinct modes.

8.3.3 Domains of attraction

In reference to the subcritical case, the collision of particle and liquid free surface seems

to be the major effect for PAS development. For the subcritical case it was established

that any collision of a particle with the liquid free surface results in a (rapid) transfer to

PAS.
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Figure 8.11: Changeover from the secondary structure to SL-I-PAS for ϕinit = 138◦ ob-

served from the inertial K−frame. Upper image: time interval t = [5, 8.6].

Lower image: time interval t = [8.6, 10.5]. The green dot indicates the parti-

cle’s starting position, the red dot its final position and the blue dots indicate

free surface collisions.
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Figure 8.12: Changeover from the secondary structure to SL-I-PAS for ϕinit = 138◦ ob-

served from the rotating K′−frame. Upper image: time interval t = [5, 8.6].

Lower image: time interval t = [8.6, 10.5]. The green dot indicates the parti-

cle’s starting position, the red dot its final position and the blue dots indicate

free surface collisions.
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Figure 8.13: Upper images: SL-I-PAS trajectory (ϕ′
init = 50◦), Lower images: core tra-

jectory (ϕ′
init = 100◦). Left column: Poincaré maps with plane z = 0 for

t = [0, 6]. Blue markers indicate top-down movement, green markers indicate

bottom-up movement. Right column: DFT-fingerprints of the respective tra-

jectory.
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All initial positions of the supercritical simulation already comply with the subcritical

requirement of a surface collision. Hence, the direct translation of the found subcriti-

cal PAS condition to the supercritical case would mean rapid PAS development for all

simulated particles due to the given surface collision. However, as demonstrated, some

particles remain in long transient states and it is no longer true that PAS develops rapidly

and therefore necessarily due to any surface collision. This observation has to result in a

modification of the 2D PAS-condition for supercritical flows.

If PAS does not develop necessarily from every initial position, corresponding to a surface

collision, one needs an estimate of the PAS domains of attraction. For that reason, the

azimuthal coordinates of all Poincaré intersection points ϕ′
n|z=0 are plotted altogether

for all trajectories. This is done in figure 8.14, showing ϕ′
n|z=0 of all trajectories on the

ordinate vs. the trajectories’ initial angles ϕ′
init for the total time period t = [0, 6]. Again,

blue and green markers distinguish between ascending and descending movement.

Most peculiar is the nearly straight line from the bottom left to the top right corner,

representing all first Poincaré intersection points, and two sets each with three horizontal

significant lines, representing the Poincaré intersection points of particles forming PAS.

Furthermore the image stands out due to alternating vertical segments of approximately

same size.

For getting a better view on the introduced map, figure 8.15 shows the map again but with

a reduced time period without transient phase, i.e. for t = [2, 6]. Additionally the initial

angle ϕ′
init is now replaced by the initial surface release angle ϕ′

1|L1
, a more representative

value. The initial surface release angle is defined as the first azimuthal coordinate of the

position where the tracer stops its exclusive sliding movement and releases from the surface

to travel inwards again. For the present particle parameters all release points will accord

in excellent approximation to L1 and L3 respectively. The already mentioned alternating

segments are now bordered by vertical red lines with an exact spacing of ∆ϕ′ = 60◦. The

choice seems to be a good first guess in consideration of the HTW’s fundamental wave

number m = 3. The first border is defined at ϕ′
1|L1

= 28◦.

Figure 8.15 shows that PAS development is basically distributed over the entire unit circle

but there are three significant segments confining PAS-forming trajectories only. These

segments will be called from now on A-segments. Particles with a surface release angle

within an A-segment are transferred to PAS rapidly. Therefore, the A-segments can be

understood as a subspace (in position space) of the domain of attraction (in the phase

space) for PAS. For the remaining segments, called from now on R-segments, a statement

is not possible for now. A particle with a surface release angle within one of the R-segments
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Figure 8.14: Azimuthal coordinate of all Poincaré intersection points ϕ′
n|z=0 vs. particle

initial angle ϕ′
init for total time period t = [0, 6]. Blue markers indicate top-

down, green markers indicate bottom-up movement.

is, in contrast to a particle releasing in an A-segment, not determined whether it will form

PAS or not.

8.3.4 Influence of surface collision

For subcritical flow it was shown that the interaction of particle and liquid free surface is a

necessary and sufficient condition for PAS development. The recent simulation shows

that this is no longer true for supercritical flows.

Figure 8.16 shows the projections of all computed trajectories on the unrolled cylinder

surface at R† for the short starting period t = [0, 0.03]. Red dots indicate particle-surface

collision points, blue dots surface release points. Every particle starts at the same height
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Figure 8.15: Azimuthal coordinate of all Poincaré intersection points ϕ′
n|z=0 vs. initial

surface release angle ϕ′
1|L1

for reduced time period t = [2, 6]. Blue markers

indicate top-down, green markers indicate bottom-up movement. Vertical red

lines confine segments of exactly ∆ϕ′ = 60◦.

z = 0.4 with a surface collision, slides along the surface until it reaches the release line L1,

where it releases from the surface again.

In the top image all trajectories with a surface release angle within an A-segment are blue-

coloured, all those with a surface release angle within a R-segment are red-coloured, as one

can easily proof with the vertical red borders. Obviously all blue trajectories release at

L1 only, whereas the majority of all red trajectories release from L3 as well. The bottom

image illustrates whether a particle will reach PAS (blue coloured) or not (red coloured)

within a time period of t = [0, 6].

From the bottom image of figure 8.16 the behaviour of particles with a surface release from

L1 within an A-segment seems to be clear. It is most likely that all particles emerging
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Figure 8.16: Unrolled cylinder surface at R† with trajectory projections for the starting

period t = [0, 0.03]. Red dots indicate collision points, blue dots release

points. Top: Blue trajectories are of surface release angle within A-segments,

red trajectories are within R-segments. Bottom: Blue trajectories indicate

PAS-particles, red trajectories indicate no-PAS particles at t = 6.
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from release line L1 within an A-segment are transferred to PAS in a one-to-one analogy

to the subcritical case. In turn a PAS-transfer for particles releasing from L3 within an

A-segment is not guaranteed.

The treatment of the R-segments is more delicate. From the bottom image of figure

8.16 one is not able to find a correlation between PAS development, initial positions and

initial surface release angles respectively. Neither particles emerging from L1 in one of

the R-segments nor particles emerging from L3, independently if the release point is in an

A- or R-segment, show clear characteristics. The PAS development of particles starting

in R-segments is therefore possibly not primarily dependent on the initial position and

the initial surface release angle respectively, and has something to do with the temporal

development of the trajectory.

For covering the temporal development of the trajectories with respect to the surface

collisions, figure 8.17 shows in dependency of the initial surface release angle a frequency

distribution of liquid free surface releases. The top image shows the total number of surface

releases in all A-segments and the bottom image shows the total number of surface releases

in all R-segments for every single particle. All red bars below the abscissa indicate no-PAS

trajectories.

From figure 8.17 one can follow:

1. All particles with an initial surface release angle within an A-segment are free of

R-segment collisions.

2. All tracers without a single A-segment surface release are no-PAS particles. =⇒ The

A-segment surface release is a necessary condition for PAS development.

3. Not all tracers with A-segment surface releases are in PAS. =⇒ The A-segment

surface release is not a sufficient condition for PAS development

To get a final PAS-condition holding for all particles, another frequency distribution, as

already done in figure 8.17, is set up but now distinguishing between A-segment surface

releases above z = 0, corresponding to L1-releases, and below z = 0, corresponding to

L3-releases. The result is shown in figure 8.18.

The upper image of figure 8.18 shows that all particles without any upper A-segment

surface release are no-PAS particles. As already carried out, the A-segment surface release

is a necessary condition for PAS. Figure 8.18 shows that only particles with upper A-

segment releases are forming PAS and all no-PAS particles are those with not a single

upper A-segment surface release.
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Figure 8.17: Number of surface releases N vs. initial surface release angle ϕ′
1|L1

for

total time period t = [0, 6]. Top: Total number of surface releases in A-

segments NA. Bottom: Total number of surface releases in R-segments NR.

Vertical red lines border the segments from each other.

=⇒ The upper A-segment surface release is the necessary and sufficient con-

dition for supercritical, zero gravity PAS development.

This means that only stream surfaces emerging from L1 in certain regions enable PAS

development. The stream surface emerging from L3 does not bring forward PAS devel-

opment. Even if it seems to be clear that the number of A-segments correlate to the

fundamental mode of the HTW, the positions of the borders are still assumptions and for

now not deducible from any underlying data.

The PAS forming process goes along with A-segment collisions/releases only, as can be

seen from figure 8.17. It seems to be obvious that the constriction of all these trajectories

to a 1-dimensional string is an effect of sequenced collisions/releases in A-segments.
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Figure 8.18: Number of A-segment surface releases NA vs. initial surface release an-

gle ϕ′
1|L1

for total time period t = [0, 6]. Top: Total number of upper A-

segment surface releases NA|L1
. Bottom: Total number of lower A-segment

surface releases NA|L3
.

8.3.5 Segment borders

For the present density-matched case, the equations of motion (4.35) reduce to

ÿ′ = − 2

3St
(ẏ′ − u′) + u′ · ∇′u′ − 2Ω×

(
ẏ′ − u′

)
. (8.9)

Figure 8.19 gives an estimate of the relative velocity difference between particle velocity

ẏi and local fluid velocity ui

∆vi =

∣∣∣∣
ui − ẏi

ui

∣∣∣∣ , i = r, ϕ, z (8.10)

for every velocity component. The arising peaks in figure 8.19 are mainly caused by

surface interactions. For convenience, ∆vi are forced to zero for all time intervals the

particle slides along the liquid free surface. Apart from some remaining peaks, one finds

a vanishing particle–flow velocity-mismatch in good approximation, i.e. ẏ′ − u′ ≈ 0.

Together with (8.9) the remaining driving force for the particle equates to the convective

derivative of the flow within the K′−frame

ÿ′ ≈ u′ · ∇′u′ (8.11)
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and therefore the particle trajectories and the streamlines of the flow will agree in excellent

approximation. This realization will lead to a more interesting conclusion in chapter 11.

Figure 8.19: Relative velocity differences for a PAS-particle (ϕ′
init = 50◦) for total time

period t = [0, 6]. Red dots indicate surface collisions.

For particles sliding along the liquid free surface, the only driving force is the tangential

component of the convective derivative, which reads as

a′
‖ = e′ϕ

(
u′ϕ
R†

∂ϕ′ + u′z∂z′

)
u′ϕ + e′z

(
u′ϕ
R†

∂ϕ′ + u′z∂z′

)
u′z (8.12)

and is shown in the uppermost image of figure 8.20. The central image illustrates the

azimuthal component of (8.12) only, hence

a′ϕ =
u′ϕ
R†

∂ϕ′u′ϕ + u′z∂z′u
′
ϕ (8.13)

and the lowermost image represents the normalized spatial derivative of the azimuthal

component

∂ϕ′a′ϕ
max |∂ϕ′a′ϕ|

(8.14)

together with the projection of the SL-I-PAS. All images show the upper release line L1

as well. The expected perfect periodicity of 2π/3 is missing due to the interpolation

procedure. One has to keep in mind that not a single value of any field variable is given

at R†.

The most important image of figure 8.20 is the central one, showing the azimuthal force

acting on a particle that is sliding along the liquid free surface. The information of the

lowermost image is in principle equivalent to that of the central image but the picture
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is more intuitive and interpretation is easier. The azimuthal derivative of the central

image shows an acceptable correlation between the segment borders and the regions that

are divergent and convergent respectively. The A-segments appear as those regions

where the azimuthal acceleration is convergent.

Figure 8.20: Topmost image: tangential acceleration (8.12) at R†. Central image: az-

imuthal acceleration (8.13) at R†. Lowermost image: normalized azimuthal

derivative of the azimuthal acceleration (8.14).

8.3.6 Convergence to PAS

The last section has shown that only those particles are attracted to PAS that emerge

from L1 in certain regions. The present supercritical flow represents a nontrivial, incom-

pressible, three-dimensional flow, where the closure of streamlines is no longer stringent

as this is the case for the incompressible two-dimensional (subcritical) flow. Due to that

reason streamlines emerging from L1 are in general no longer tangent streamlines as in the

subcritical flow. Hence, these streamlines will in general intersect the cylinder surface of

the contact radius again. If the intersection of trajectory and cylinder surface takes place

in an A-segment then the tangential acceleration will lead to a focussing behaviour and
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the final constriction of the trajectories to a single string.

Figure 8.21 shows the iterated map ϕ′
n|z=0 → ϕ′

n+1|z=0 where ϕ
′
n|z=0 stands for sequenced

(top down) angles of the Poincaré intersection points ϕn of a single trajectory. The map

illustrates only the development of trajectories with an initial surface release angle within

the first A-segment. It shows that all particles, once released from the liquid free surface

in the upper region of an A-segment, are attracted to a fixed point corresponding to the

surface release point of PAS. This fixed point is the intersection point of the map with the

diagonal.

Figure 8.21: Iterated map ϕ′
n|z=0 → ϕ′

n+1|z=0.
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9 Slightly supercritical: Re = 1300

This chapter will test the found PAS-condition for a slightly supercritical flow by varying

the particle size as well.

9.1 Simulation parameters

Flow parameters

This slightly supercritical zero gravity flow is defined by

Pr = 4 , Γ = 0.66 , Re = 1300 , Gr = 0 , Bi = 0 . (9.1)

The fundamental wave number of the arising HTW is again m = 3. Some Fourier analysis

of the temperature field’s temporal development at certain checkpoints (given by Poseidon

in separate output file) yields for the HTW’s angular velocity

Ω = −8.90 . (9.2)

The grid resolution is chosen as Nr×Nz×Nϕ = 50×40×14. The grid compression factors

are fr = 0.96 in radial and fz = −0.93 in axial direction with reference points z = 0 and

r = R = 1.515.

The procedure to find the travelling wave solution is equivalent to section 8.2.1. The

simulation is started with u = 0 and T = z and reaches the unstable 2D–state within a

dimensionless time period of t = 2. The parameters of the temperature field perturbation

are AT = 0.1, m = 3 and ϕ0 = 0. The emanating unstable standing wave is shown in

figure 9.1 for t1 = 2 and t2 = 4 where t = 0 stands for the instant at which the temperature

perturbation field is imposed.
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Figure 9.1: Standing wave development after t1 = 2 (top) and t2 = 4 (bottom) with t = 0

as temperature perturbation onset. The images show the velocity field u(x, ti)

and the temperature field T (x, ti) in the mid-plane z = 0 from the inertial

frame of reference K.
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The parameters for the perturbation of the velocity field are Ar = −10, Aϕ = 6 and

Az = 3 all with m = 3 and ϕ0 = 100◦. The well formed travelling wave solution is found

at t0 = 10, where t = 0 stands for the velocity field perturbation onset. The horizontal

cross section of the liquid bridge is shown in figure 9.2.

Figure 9.2: Travelling wave solution at t0 = 10 developed from the standing wave after

the velocity perturbation onset at t = 0. The image shows the velocity field

u(x, t0) and the temperature field T (x, t0) in the mid-plane z = 0 from the

inertial frame of reference K.

Particle parameters

The variation of the particle size concentrates onto ”small particles” and ”large particles”.

From a given Stokes number and an assumed liquid bridge of radius R ≈ 3mm, the

dimensional particle diameters dp follow from dp = 2ΓR
√
4.5 St and are for the chosen

parameters

St = 6 · 10−6 −→ dp ≈ 21µm ,

St = 5 · 10−5 −→ dp ≈ 60µm .
(9.3)
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The remaining particle parameters are

̺ = 1 , Fr =∞ . (9.4)

Initial positions

The initial positions are again chosen at the contact radius R†, in vertical direction at

z = 0.4 and azimuthally in the reduced segment ϕ = [0◦, 120◦] spaced by ∆ϕ = 2◦, i.e.

Y ′
init = {Y ′ ∈ R

6 | r′ = R† , ϕ′ =
kπ

180
, z′ = 0.4 , ẏ′ = u′(x′)} , k = 0, 2, 4, . . . , 120 .

(9.5)

To reduce numerical effort and due to the periodicity of the flow, the reduced segment

should give a representative result. The integration time was chosen as t = 6, correspond-

ing to NΩ ≈ 8.5 HTW revolutions, determined by (8.4).

9.2 Results

Figure 10.2 shows the already introduced map (collection of all Poincaré maps) for the

reduced time period t = [3, 6] for small and large particles.

The result for the small particles seem to be clear and PAS does not occur for the considered

time period. Chapter 11 will show that PAS development is most likely impossible for this

case and the time period is not essential.

In turn the large particles form PAS that develops only faintly. Most peculiar for this case

is the fact that surface collisions are in general rare events and vanish soon completely.

Particles starting from an A-segment (ϕ′ ≈ [100◦, 120◦]) reach the unfinished PAS by some

surface interactions but after PAS has developed partly, surface collisions stop. From this

point string constriction stops as well, in accordance to section 8.3.6, and the particles

remain in the unfinished PAS as show in figure 9.4.

The final understanding of PAS will be worked out in the following chapters, where one

will see that the given results of the large particles in the slightly supercritical flow are

partly numerical generated as well.
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Figure 9.3: Azimuthal coordinate of all Poincaré intersection points ϕ′
n|z=0 vs. initial

surface release angle ϕ′
1|L1

for reduced time period t = [3, 6]. Left image:

small particle (St = 6 · 10−6). Right image: large particle (St = 5 · 10−5). Blue

markers indicate top-down, green markers indicate bottom-up movement.
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Figure 9.4: PAS development for large particles (St = 5 ·10−5) after surface collisions have

stopped for t = [3, 6] and ϕ′
init = [100◦, 120◦].
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10 Supercritical: Re = 2600

This chapter focus on another supercritical flow and the results will give rise to a more

detailed analysis of the flow topology, discussed in the next chapter.

10.1 Simulation parameters

This supercritical zero gravity flow is defined by

Pr = 4 , Γ = 0.66 , Re = 2600 , Gr = 0 , Bi = 0 . (10.1)

The fundamental mode of the arising HTW is again m = 3 and the Fourier checkpoint

analysis yields for the HTW’s angular velocity

Ω = −12.3 . (10.2)

The grid resolution is chosen as Nr×Nz×Nϕ = 50×40×14. The grid compression factors

are fr = 0.96 in radial and fz = −0.93 in axial direction with reference points z = 0 and

r = R = 1.515.

The procedure to find the travelling wave solution is equivalent to section 8.2.1. Starting

from u = 0 and T = z, the simulation reaches the unstable 2D–state within a dimensionless

time period of t = 0.5. The parameters of the velocity field perturbation are Ar = −10,
Aϕ = 6 and Az = 3 all with m = 3 and ϕ0 = 0.

The well formed travelling wave solution is found at t0 = 5 where t = 0 stands for the

velocity perturbation onset. The horizontal cross section of the liquid bridge is shown in

figure 10.1.

All particle parameters and initial positions are chosen as in the slightly supercritical case,

see (9.3 - 9.5). The integration time was chosen as t = 8, corresponding to NΩ ≈ 15.7

HTW revolutions.
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Figure 10.1: Travelling wave solution at t0 = 5 developed from the 2D–state after the

velocity perturbation onset at t = 0. The image shows the velocity field

u(x, t0) and the temperature field T (x, t0) in the mid-plane z = 0 from the

inertial frame of reference K.

10.2 Results

Figure 10.2 shows again the already introduced map for the reduced time period t = [1, 8]

for small and large particles. One can easily see that the large particles (right image) are

running into PAS rapidly, where in turn the small particles (left image) run into PAS as

well but need more time for PAS-development.

The rapid PAS-forming process of the large particles can be estimated from figure 10.3

showing selected trajectories for the time periods t = [0, 0.35], t = [0.35, 0.7] and t =

[1, 1.35] where t = 0.35 accords approximately to one revolution of a tracer around the

z−axis.

The lowermost image of figure 10.3 contains qualitatively the same result as found for

large particles in the slightly supercritical case (Re = 1300). After PAS is sufficiently

developed, no more surface collisions occur. Some further analysis of the small particles

shows that they form SL-I-PAS in the same manner than the large particles, starting with
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a short sequence of surface collisions and doing finally without surface collisions. The SL-

I-PAS of both considered particle sizes are identical, hence the shape of PAS seems to be

independent from the Stokes number. With the already checked assumption that particle

and flow velocity agree at any space-time point for sufficiently small, density-matched

tracers one can conclude (for now) that PAS represents exactly a closed streamline of

the flow. This would mean that PAS is primarily a phenomenon of the hydrothermal

wave’s topology in combination with the particle–surface interaction model. Hence, PAS

formation due to inertial effects caused by the particle size and the density ratio would

get second-ranked.

Figure 10.4 shows the projection of PAS and the contact radius for both considered particle

sizes in the r− z−plane. One can clearly see that R† of the large particle (blue) is nearly

tangent (by chance) to PAS where the observed rapid PAS development probably has its

origin. In turn the contact radius R† of the small particle (red) is relatively far from PAS

and this could be the reason that PAS develops only faintly.

From this observation one can estimate a criterion for a minimum particle size and a

minimum Stokes number respectively: If the particle radius is smaller than the minimum

distance between the closed streamline and the liquid free surface, a particle transfer to

the closed streamline and PAS respectively is not possible. On the other hand figure 10.4

shows that even those particles are attracted to PAS which are actually too small in terms

of the given assumption. The attraction of a particle, corresponding in its dynamics to

that of an ideal passive tracer, in an incompressible flow without surface interactions is

unphysical and most likely caused by a numerical effect. To get a final understanding of

the transfer process some more analysis is needed, which is contents of the next chapter.
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Figure 10.2: Azimuthal coordinate of all Poincaré intersection points ϕ′
n|z=0 vs. initial

surface release angle ϕ′
1|L1

for reduced time period t = [1, 8]. Left image:

small particle (St = 6·10−6). Right image: large particle (St = 5 ·10−5). Blue

markers indicate top-down, green markers indicate bottom-up movement.

89



10.2. RESULTS

Figure 10.3: PAS development for large particles (St = 5 · 10−5). Uppermost image: t =

[0, 0.35]. Central image: t = [0.35, 0.7]. Lowermost image: t = [1, 1.35].
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Figure 10.4: PAS-projection of the supercritical flow Re = 2600 into the r − z−plane.
Vertical red line indicates R† of small particle (St = 6 · 10−6), vertical blue

line indicates R† of large particle (St = 5 · 10−5).
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11 Flow topology

From the previous chapters it is obvious that PAS is close to a closed streamline and that

the latter is related to PAS formation. Therefore, it seems useful to search for closed

streamlines of the flow in the rotating frame of reference.

11.1 Closed streamlines

To find closed streamlines, a vertical cross section of the supercritical flow introduced in

chapter 8 (Re = 1800) is considered and the ODE-system

ṙ′ = u′r , ϕ̇′ =
u′ϕ
r′

, ż′ = u′z (11.1)

is solved for initial positions that cover the vertical plane sufficiently dense. The integration

will be terminated if the streamline has finished the first revolution around the z−axis,
i.e. integration is considered for ϕ′ = [0, 2π]. From the initial position x′init = {r′0, ϕ′

0 =

0, z′0} and the final position x′final = {r′1, ϕ′
1 = 2π, z′1} the radial and axial offsets of every

streamline are recorded, hence

∆r = r′1 − r′0 , ∆z = z′1 − z′0 . (11.2)

Closed streamlines are then found at x′ where both offsets vanish simultaneously.

Figure 11.1 shows the result for the radial offset ∆r (above) and the axial offset ∆z

(below) on a calculated mesh of 0.01 × 0.01. White squares indicate positions without

data.1 These positions correspond to rejected streamlines where the integration failed due

to stability problems of the ODE-solver at the immediate vicinity of the liquid free surface.

A subsequent spline-interpolation of both data sets closes the data gaps and determines

a smoother result for the isolines where the offsets are zero. These isolines are shown in

figure 11.2, black for ∆r = 0 and red for ∆z = 0. The underlying coloured function is the

absolute value of the offset

∆ =
√

∆r2 +∆z2 . (11.3)

1Numerics treats these data as NaN.
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Figure 11.1: Original data of ∆r (above) and ∆z (below).
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Figure 11.2: Map of interpolated data with isolines of ∆r (black) and ∆z (red). Coloured

background is the absolute value of the offset ∆. Open green symbols indicate

closed and robust streamlines within the K′−frame. Wave numbers of the

streamlines found are m = 3 (◦) and m = 9 (⋄).
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At any intersection both offsets vanish simultaneously and indicate numerically closed

streamlines. Basically the number of intersections and closed streamlines respectively

seems to be enormous. The majority of all intersections lies in a noticeable central band

and most of all points out of this band are not reproducible as closed streamlines.2 This is

caused by the rapid change of ∆ in the vicinity of the intersection points. It is not clear if

these pretended closed streamlines are either a result of numerically generated overshoots

of the interpolation procedure or if these streamlines are very sensitive on the variation of

the initial conditions.

Apart from the center band, some isolated intersection points are found and indicated in

figure 11.2 by open green symbols. In contrast to the center band, these closed streamlines

are robust and easy to reproduce. The robustness can be estimated from the underlying

function of the absolute value ∆, which varies in its neighbourhood only linearly. The two

mentioned closed and robust streamlines are shown in figure 11.3.

Figure 11.3: Closed and robust streamlines found as indicated in figure 11.2, SL-I-PAS

with m = 3 (black, ◦); m = 9 (blue, ⋄).

2This conclusion is found by the evaluation of some sample points, not all intersections are checked.
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11.2 Transfer mechanism

It is already shown that a sufficiently small, density-matched particle follows the stream-

line of the flow in excellent approximation. If a tracer is not initially located on the closed

streamline, a transfer to this closed streamline would mean an intersection of the stream-

line corresponding to the initial position of the tracer and the closed streamline. Due to

the steadiness (in the rotating frame) and uniqueness of the flow field, streamline inter-

sections are impossible. Hence, a mechanism is required that allow particles to swap to

other streamlines and finally to a stable trajectory which is equivalent to PAS. One can-

didate for a transfer process of particles from one streamline to another is the introduced

finite-particle-radius effect. Therewith all particles slide along R† and swap continuously

from one streamline to another and obviously reach a stable configuration, namely PAS

corresponding to one out of a certain number of closed streamlines.

At this point one ends up at a one-to-one analogy of PAS in subcritical and supercrit-

ical flows: PAS is the result of the interaction between finite sized particles and liquid

free surface, where all particles are transferred by their sliding movement on R† from one

streamline to another until they reach a closed streamline. The only difference between

the two cases is the number of closed streamlines. In subcritical, incompressible flows all

streamlines are closed and in principle suitable for PAS. In supercritical, incompressible

flows, streamlines are in general not closed (after one revolution around the z−axis) and
only a certain number of closed and robust streamlines exist. Furthermore, if these men-

tioned streamlines should be relevant for PAS, they have to get very close to the liquid

free surface.

The only remaining question is about the details of the transfer process, discussed below by

distinguishing three cases. For this upcoming proposal onto the PAS forming mechanism

one assumes that the closed streamline, called from now on C0, is surrounded in its vicinity

by an infinite number of nested closed stream tubes. The streamlines on any such closed

stream tube wind around C0 on a toroidal tube in an incommensurate fashion. This

assumption is motivated by the found robustness of the closed streamlines. Unfortunately,

due to numerical uncertainties, it is not possible to show these stream tubes because C0

appears as attractor for all streamlines in its vicinity. Due to incompressibility of the fluid

a real streamline attraction is forbidden and the arising effect is numerically generated

only.

A closed streamline C0 that is getting very close to the liquid free surface is considered,

hence the minimum distance between C0 and R is in the range of the particle radius a,

wherefrom three cases are to distinguish as discussed below.

96



11.2. TRANSFER MECHANISM

Tangential closed streamline

The ideal case is considered first. Hence, in full analogy to the subcritical flow, the closed

streamline C0 is exactly tangent to the contact radius R†. Therefrom one can follow that

PAS and C0 have to be identical. In supercritical flows this case is only possible for one

single particle size.

Figure 11.4 shows a cross section through the closed streamline’s tangent point Q0. The

plane is perpendicular to u(Q0). The grey shaded area between R and R† indicates the

tracer’s inaccessible region of the liquid bridge. The circles around Q0 illustrate the cross

sections of closed stream tubes. For simplicity the stream tubes are considered as tori.

As already introduced in the foregoing chapters, PAS-particles release after their phase of

sliding from the contact radius R† at the release line L1. This release point is from now on

specified as P0. Due to the identity of PAS and C0 in the present case, the release point

P0 and the closed streamline’s center Q0 are identical.

R†

R

x

y

Q0 = P0

Figure 11.4: Schematic visualization of small stream tubes around the closed streamline

with center Q0. The depicted plane is a cross section through Q0 perpen-

dicular to u(Q0). The release point of PAS P0 is in this case identical to

Q0.

To understand the transfer process one assumes that all streamlines in the vicinity of the

closed streamline C0 wind around it with a constant angular rate. In other words every

passive tracer that orbits around C0 on a closed stream tube will cover an angle θ between

two sequenced surface collisions. The angle θ is measured by the center Q0 and not by

the z−axis. Furthermore θ is unknown but for simplicity assumed to be constant.
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11.2. TRANSFER MECHANISM

Figure 11.5 illustrates the transfer model. If a tracer collides with the liquid free surface,

it gets transferred (projected) on R† (y = 0), slides along R† until it reaches the release

line (L1) and leaves the contact radius on another closed stream tube which is now closer

to Q0 than its original stream tube. The release points are indicated in figure 11.5 as

red dots. Before the tracer reaches the surface again, it winds around C0 by covering the

angle θ (blue arrow). Successive collisions of any tracer on a closed stream tube will finally

lead to a transfer to the closed streamline C0 representing PAS.

R†

R

x

y

Q0 = P0

Figure 11.5: Schematic visualization of the transfer process for the tangent streamline.

Intersecting closed streamline

If the Stokes number is increased, C0 intersects the contact radius R† and an exact agree-

ment of PAS and C0 is no longer possible. Figure 11.6 shows the projection of both, the

closed streamline C0 (green) and the closed PAS trajectory (blue), on the unrolled cylin-

der surface at R†. The short red lines indicate the sliding movement on R†. The piercing

points of the closed streamline through R† are indicated as asterisks. One can see from

the figure, that PAS winds around C0 as already assumed above.

Figure 11.7 sketches the situation of figure 11.6 as cross section. The plane is chosen

through Q0 perpendicular to u(Q0), where Q0 represents the point of maximum separa-

tion b between the closed streamline C0 and the contact radius R†. The PAS release point

P0 is no longer identical to Q0. For simplicity both points, P0 and Q0, are considered to

lie in the same plane.
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11.2. TRANSFER MECHANISM

Figure 11.6: Projection of closed streamline C0 (green) and PAS (blue) on the unrolled

cylinder surface at R†. The red lines indicate the sliding movement on the

contact radius, red dots are surface collisions, green dots surface releases and

the black graphs are the surface release lines. The piercing points of the closed

streamline are indicated as asterisks.
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11.2. TRANSFER MECHANISM

R†

R

x

y

Q0

P0

b

Figure 11.7: Schematic visualization of small stream tubes around the closed streamline

with center Q0. The depicted plane is a cross section through Q0 perpendic-

ular to u(Q0). The distance b represents the maximum separation between

C0 and R†. The release point of PAS is indicated as P0.

The application of the model from above yields the situation sketched in figure 11.8. If a

collision is encountered, the particle is transferred (projected) to y = b and releases from

the surface at (xn, yn). The particle returns to the liquid free surface again by covering

the angle ϕ = 2πj/m around the z−axis and by covering the angle θj around the closed

streamline C0 with j ∈ N. The rule

xn+1 = xn cos θ − yn sin θ ,

yn+1 = min (b, xn sin θ + yn cos θ)
(11.4)

maps the coordinates from the foregoing release point (xn, yn) to the coordinates of the

following release point (xn+1, yn+1).

The map (11.4) has the trivial fixed points xn+1 = xn(−1)k for θ = kπ, k ∈ Z and the

non-trivial fixed point

(x∗, y∗) =

(
− b

tan(θ/2)
, b

)
for b ≤ 0 . (11.5)

The coordinates (x∗, y∗) represent the stable PAS release point P0. The map (11.4) and the

convergence to the coordinates of the PAS release point P0 (11.5), hold for the assumption

of a constant angular rate (θ = const.) and an intersection of the closed streamline C0

with the contact radius R†.
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11.2. TRANSFER MECHANISM

From this result one can clearly see that PAS formation is even possible for an intersecting

closed streamline. The result is a stable, (nearly) closed trajectory, namely PAS, which

orbits around the closed streamline C0. The result of the assumed model compare well

with the result of the simulation. This becomes particularly clear in figure 11.6, where

PAS as closed trajectory orbits around C0. The tangential streamline is included as limit

case with b = 0, where PAS and C0 are exactly identical.

R†

R

x

y

Q0

P0

Figure 11.8: Schematic visualization of the transfer process for the intersecting closed

streamline.

Non-intersecting closed streamline

The final case considers a Stokes number corresponding to a particle radius which is

smaller than the minimum distance between C0 and the liquid free surface, hence b > 0.

The situation is sketched in figure 11.9.

The application of the introduced model is shown in figure 11.10. Particles are again

transferred by surface interactions to inner stream tubes as long as the particles reach the

point P0 (see figure 11.9) corresponding to the tangent point of the tangential stream tube

(red circles in figures 11.9 and 11.10). Once a particle releases from P0, it will stay on the

corresponding tangential stream tube. PAS arises in this case not as a closed trajectory

but as a small stream tube enclosing the closed streamline. The proof of this case within

a numerical simulation is difficult, because as mentioned in the last chapter, numerical

effects lead to an attraction of all particles in the vicinity of the closed streamline.
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11.2. TRANSFER MECHANISM

R†

R

x

y

Q0

P0

b

Figure 11.9: Schematic visualization of small stream tubes around the closed streamline

with center Q0. The depicted plane is a cross section through Q0 perpendic-

ular to u(Q0). The distance b represents the maximum separation between

C0 and R†. The release point of PAS is indicated as P0.

R†

R

x

y

Q0

Figure 11.10: Schematic visualization of transfer process for the non-intersecting closed

streamline.
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12 Summary

This work has numerically studied the dynamics of small, density-matched tracers in purely

thermocapillary flows (zero gravity) of a liquid bridge to clarify the formation mechanisms

of so-called particle accumulation structures (PAS). The choice of zero gravity and density-

matching tries to identify the pure mechanisms behind PAS formation.

The flow is determined in the Oberbeck–Boussinesq approximation with the code of Ley-

poldt [9] and the particle motion is integrated with a simplified version of the Maxey–Riley

equation. The ODE-solver for the particle trajectories was developed by the author in

MATLAB.

The assumed one-way coupling and the characteristics of the travelling hydrothermal

wave allows a transformation into a rotating frame of reference where the flow is steady.

This liberates from a simultaneous simulation of flow and particle motion. The particle–

boundary interaction is implemented as the very basic but common partially elastic re-

flection model.

The primary PAS mechanism, hence the particle transfer to a single streamline, is identified

for subcritical 2D–flows as particle–liquid free surface interaction caused by the particle’s

finite size. In subcritical flows, the collision of particle and liquid free surface is the

necessary and sufficient condition for PAS development. This idea of PAS formation is

then transferred to the supercritical three-dimensional flow, where the analysis shows as

necessary and sufficient condition particle–liquid free surface interactions as well but now

restricted to certain regions.

It turns out that particle trajectories and flow streamlines agree in excellent approximation

for sufficiently small and density-matched tracers in zero gravity. This realization leads to

the speculation that PAS is a representative of a closed streamline in three-dimensional

supercritical flows. A basic analysis of the flow topology shows that the supercritical flow

contains in fact only a certain number of robust, closed streamlines. Additionally it turns

out that PAS is very close to one of these closed streamlines.
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At the end PAS arises as a (nearly) closed trajectory that orbits around a closed streamline.

In the limit case, PAS is identical to the closed streamline of the three-dimensional flow.

The attraction of the particles to the closed streamline is modelled by sequenced particle–

liquid free surface interactions.
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A Nomenclature

A.1 Basic notation

Frames of reference

The inertial frame of reference, which is the laboratory frame, is denoted by K and the

rotating frame of reference of the hydrothermal wave is identified as K′. Other frames are

indicated double primed and so forth. All quantities measured in a frame are primed like

the respective frame.

Kinematic quantities

The velocity field of the flow is indicated by u(x, t) whereas the space coordinate for the

flow is throughout x. The notation of the components of the field is chosen as ux, uy, uz

in cartesian coordinates and as ur, uϕ, uz in cylindrical coordinates.

The particle position is exclusively identified by y(t) and its velocity by ẏ(t).

The acceleration of gravity is indicated by g and points into the direction eg which is

typically −ez.

Indication of dimensional quantities

For a consistent notation, all quantities arising both, dimensional and dimensionless,

should be identified clearly either to be dimensional or dimensionless. Typically this is

done by using a superscripted asterisk for the dimensional quantities, but in most sections

of the present work, the asterisk is set aside for well arranged, not overloaded characters.

At the beginning of all concerned sections, a short note will clarify the treatment of the

asterisk.
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A.2. DIMENSIONAL PARAMETERS

Laplace operator

For a clear determination from the greek capital delta, the Laplace operator is written

throughout as ∇2.

A.2 Dimensional parameters

Table A.1: List of all dimensional material and geometrical parameters used in this work.

If not mentioned otherwise, the parameters are measured at the mean temper-

ature T0 and are set to constants.

Liquid Bridge

d height

R radius

Fluid

ρf density as function of temperature ρf = ρf(T
∗)

σ surface tension as function of temperature σ = σ(T ∗)

ρ0 density at the mean temperature ρ0 = ρf(T0)

σ0 surface tension at the mean temperature σ0 = σ(T0)

µ dynamic viscosity

ν kinematic viscosity

λ thermal conductivity

cp specific heat capacity (at constant pressure)

κ thermal diffusivity

β isobaric thermal expansion coefficient

γ surface tension coefficient

h heat transfer coefficient

S, Sij stress tensor

D,Dij strain rate tensor

Particle

a radius

mp mass

ρp density
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A.3. SCALES

A.3 Scales

The common scaling method for the kinematic quantities is shown below and is done

with some representative values for length L0, velocity U0 and time t0. The dimensionless

kinematic quantities are found with the scales

xi =
x∗i
L0

, ui =
u∗i
U0

, t =
t∗

t0
. (A.1)

According to the geometry of the liquid bridge, the scaling parameters are

L0 = d , U0 =
ν

d
, t0 =

L0

U0
=

d2

ν
. (A.2)

The chosen time scale t0 is the viscous diffusion time.

The scaling procedures for pressure p∗ and temperature difference (T ∗ − T0) are

p =
p∗

P0
, T =

T ∗ − T0

∆T
(A.3)

with the mean temperature

T0 =
Ttop + Tbot

2
(A.4)

deduced from the temperatures of the top and bottom disks, which are indicated as Ttop

and Tbot respectively.

The reference pressure P0 and the reference temperature difference ∆T act as the scaling

parameters and read

P0 = ρ0 U
2
0 =

ρ0ν
2

d2
, ∆T = Ttop − Tbot . (A.5)

The scaling procedure for the most important terms of the Navier-Stokes equations yield

du∗i
dt∗

=
U0

t0

dui
dt

=
ν2

d3
du

dt
, (A.6)

− 1

ρ0

∂p∗

∂x∗i
= − 1

ρ0

P0

L0

∂p

∂xi
= −ν2

d3
∇p , (A.7)

ν
∂2u∗i

∂x∗j∂x
∗
j

= ν
U0

L2
0

∂2ui
∂xj∂xj

=
ν2

d3
∇2u , (A.8)

βg(T ∗ − T0) = βg∆T T . (A.9)
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A.4. DIMENSIONLESS PARAMETERS

A.4 Dimensionless parameters

Flow and liquid bridge

The fundamental geometrical parameter is the aspect ratio of the liquid bridge

Γ =
d

R
. (A.10)

The parameter space of the thermocapillary flow inside the liquid bridge is five-dimensional

and characterized by the mentioned aspect ratio Γ, thermocapillary Reynolds number,

Prandtl, Grashof and Biot numbers

Re =
γd

ρ0ν2
∆T , Pr =

ν

κ
, Gr =

βgd3

ν2
∆T , Bi =

hd

λ
. (A.11)

Another very important parameter for the characterization of the flow is the Marangoni

number

Ma =
γd

ρ0νκ
∆T = RePr . (A.12)

as product of thermocapillary Reynolds number and Prandtl number.

Due to the assumption of a non deformed free fluid surface, one needs to achieve vanishingly

small Bond and Capillary numbers

Bo =
ρ0gd

2

σ0
≪ 1 , Ca =

γ∆T

σ0
≪ 1 . (A.13)

These two parameters are preconditions and therefore excluded from the fluid parameter

space.

Particle

The parameter space of the particle is three-dimensional and defined by the density ratio ̺,

Stokes and Froude numbers

̺ =
ρp
ρ0

, St =
2a2

9d2
, Fr =

ν√
gd3

. (A.14)

A vanishingly small particle Reynolds number Rep ≪ 1 is a precondition for the particle,

such that the inclusion of this value into the parameter space is not necessary.
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B Fundamentals

B.1 Cylindrical coordinates

Domain of definition:

r ≥ 0 , 0 ≤ ϕ < 2π , −∞ ≤ z ≤ ∞ (B.1)

An arbitrary vector u in cartesian and cylindrical notation writes as

u = ux(x, y, z)ex + uy(x, y, z)ey + uz(x, y, z)ez = (B.2)

= ur(r, ϕ, z)er + uϕ(r, ϕ, z)eϕ + uz(r, ϕ, z)ez (B.3)

with the cylindrical unit vectors

er =




cosϕ

sinϕ

0


 , eϕ =




− sinϕ

cosϕ

0


 , ez =




0

0

1


 . (B.4)

Position vector

The position vector y, written in cylindrical coordinates with cartesian and cylindrical

unit vectors respectively, writes as

y =




r cosϕ

r sinϕ

z


 = rer + zez . (B.5)

The time derivatives up to the order of two of the position vector are

y = rer + zez (B.6)

ẏ = ṙer + rϕ̇eϕ + żez (B.7)

ÿ = (r̈ − rϕ̇2)er + (2ṙϕ̇+ rϕ̈)eϕ + z̈ez . (B.8)
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B.1. CYLINDRICAL COORDINATES

Vector transformation

The transformation of an arbitrary vector u from cylindrical notation (B.3) to cartesian

notation (B.2) is done by the matrix operation




ux

uy

uz


 =




cosϕ − sinϕ 0

sinϕ cosϕ 0

0 0 1


 ·




ur

uϕ

uz


 . (B.9)

with the transformation matrix A. The reverse transformation is done with the inverse

transformation matrix, which is in this case simply the transposed one, i.e. A−1 = AT.

Nabla operations

With the nabla operator in cylindrical coordinates

∇ = er∂r +
eϕ

r
∂ϕ + ez∂z (B.10)

and the spatial derivatives

∂ϕer = eϕ , ∂ϕeϕ = −er (B.11)

one can understand the following nabla operations denoted in cylindrical coordinates.

1. Nabla operations on a scalar function f = f(r, ϕ, z)

a) Gradient

∇f = er∂rf +
eϕ

r
∂ϕf + ez∂zf (B.12)

(B.13)

b) Scalar Laplace operation

∇2f =

(
1

r
+ ∂r

)
∂rf +

1

r2
∂2
ϕf + ∂2

zf (B.14)

2. Nabla operations on a vector function of (B.3)

a) Divergence

∇ · u =

(
1

r
+ ∂r

)
ur +

1

r
∂ϕuϕ + ∂zuz (B.15)
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b) Vectorial Laplace operation

∇2u = er

(
∇2ur −

ur
r2
− 2

r2
∂ϕuϕ

)
+

+ eϕ

(
∇2uϕ −

uϕ
r2

+
2

r2
∂ϕur

)
+

+ ez∇2uz

(B.16)

c) Convective derivative

(u · ∇)u =
(
ur∂r +

uϕ
r
∂ϕ + uz∂z

)
u =

= er

[(
ur∂r +

uϕ
r
∂ϕ + uz∂z

)
ur −

u2ϕ
r

]
+

+ eϕ

[(
ur∂r +

uϕ
r
∂ϕ + uz∂z

)
uϕ +

uruϕ
r

]
+

+ ez

(
ur∂r +

uϕ
r
∂ϕ + uz∂z

)
uz

(B.17)

3. Tensor operation

a) Strain rate tensor

D =
1

2

(
∇u+ (∇u)T

)
= erer∂rur +

eϕeϕ

r
(∂ϕuϕ + ur) + ezez∂zuz+

+
1

2
(ereϕ + eϕer)

(
∂ruϕ +

∂ϕur
r
− uϕ

r

)
+

+
1

2
(erez + ezer) (∂ruz + ∂zur)+

+
1

2
(eϕez + ezeϕ)

(
∂ϕuz
r

+ ∂zuϕ

)

(B.18)
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B.2 Equation of motion in a rotating frame of reference

An inertial frame of reference K and a rotating and hence non inertial frame of reference

K′ is considered. The rotating K′−frame rotates with the constant angular velocity

Ω = Ωez = Ωe′z = const. (B.19)

The position vector y denoted in these two frames is

y = yiei = y′ie
′
i = y′ . (B.20)

For an observer in K, the unit vectors e′i of frame K′ are time dependent, such that one

computes the time derivative of those as

de′i
dt

= Ω× e′i . (B.21)

From (B.21) one finds the relations for the velocities and accelerations between the two

frames of reference

ẏ = ẏ′ +Ω× y′ , (B.22)

ÿ = ÿ′ + 2Ω× ẏ′ +Ω× (Ω× y′) . (B.23)

The equation of motion for a particle of mass m, observed in the K-frame, can be easily

written down with the fundamental law of Newton

mÿ = F . (B.24)

For the particle observation in K′, the equation of motion has to get modified by inserting

(B.23) into (B.24)

mÿ′ + 2mΩ× ẏ′ +mΩ× (Ω× y′) = mÿ . (B.25)

The two arising terms represent Coriolis force and centrifugal force.

For the rotating frame of reference K′ one finally finds

ÿ′ = ÿ − 2Ω × ẏ′ −Ω×
(
Ω× y′

)
. (B.26)
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B.3. SUBSTANTIVE DERIVATIVE IN A ROTATING FRAME OF REFERENCE

B.3 Substantive derivative in a rotating frame of reference

The substantive derivative for the velocity field u = u(x, t) given in the inertial frame of

reference K reads as

Du

Dt
=

∂u

∂t
+ u · ∇u . (B.27)

With the field transformation

u = u′ +Ω× x′ (B.28)

the convective derivative in terms of the K′−field u′ = u′(x′) simply follows by using the

substitution of (B.28), hence

u · ∇u = (u′ +Ω× x′) · ∇′(u′ +Ω× x′) =

= u′ · ∇′u′ + (Ω× x′) · ∇′u′ + u′ · ∇′(Ω× x′) + (Ω× x′) · ∇(Ω× x′) (B.29)

and with the identities

u′ · ∇′(Ω× x′) = Ω× u′

(Ω× x′) · ∇(Ω× x′) = Ω× (Ω× x′)
(B.30)

the convective derivative in terms of u′ writes as

u · ∇u = u′ · ∇′u′ + (Ω × x′) · ∇′u′ +Ω× u′ +Ω× (Ω× x′) . (B.31)

The evaluation of the local derivative

∂u

∂t
=

∂

∂t
(u′ +Ω× x′) (B.32)

is more delicate, because one has to keep in mind that the local derivative has to be carried

out for a fixed position in the K−frame (for x = const.), hence

∂

∂t
(Ω× x′ + u′) = Ω×

�
�
�7
0

∂x′

∂t
+

∂u′

∂t

∣∣∣∣
x=const.

(B.33)

For the outstanding term

∂u′

∂t

∣∣∣∣
x=const.

=
∂

∂t
u′i(x

′)e′i(t) = u′i
∂e′i
∂t

+ e′i
∂u′i
∂t

∣∣∣∣
x=const.

(B.34)

firstly one has to account for the explicit time dependency of the unit vectors and finds

u′i
∂e′i
∂t

= u′iΩ× e′i = Ω× u′ . (B.35)
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B.3. SUBSTANTIVE DERIVATIVE IN A ROTATING FRAME OF REFERENCE

The local derivative of a scalar field φ = φ(x, t) given in the K−frame is connected to the

local derivative of the transformed field φ′ = φ(x′, t) given a rotating K′−frame by the

transformation rule

∂φ(x, t)

∂t
=

∂φ′

∂t
− (Ω× x′) · ∇′φ′ =

∂φ(x′, t)

∂t

∣∣∣∣
x=const.

(B.36)

The application of the transformation rule (B.36) to the components u′i in (B.34) together

with (B.35) yields

∂u

∂t
= Ω× u′ + e′i

(
∂u′i
∂t
− (Ω× x′) · ∇′u′i

)
(B.37)

and with the explicit time independent velocity components u′i = u′i(x
′), the local deriva-

tive in terms of u′ reduces to

∂u

∂t
= Ω× u′ − (Ω× x′) · ∇′u′ . (B.38)

The final substantive derivative in terms of the K′−field u′ = u′(x′) follows as

Du

Dt
= u′ · ∇′u′ + 2Ω × u′ +Ω× (Ω × x′) . (B.39)

An alternative formulation of the substantive derivative is found by using the rotating

coordinates notation of the K−field u = u(x′), hence

Du

Dt
=
(
u−Ω× x′

)
· ∇′u+Ω× u . (B.40)

By using the field transformation u = u′ +Ω × x′ in (B.40) and the identities of (B.30),

one will end up at (B.39) again.
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B.4. VELOCITY GRADIENT, STRAIN RATE TENSOR AND STRESS TENSOR

B.4 Velocity gradient, strain rate tensor and stress tensor

Analysis of the fluid motion

A first-order Taylor series approximation of the velocity component uj at x+dx yields

uj(x+ dx) = uj(x) +
∂uj
∂xi

dxi (B.41)

The velocity gradient of u

Lij =
∂uj
∂xi

= ∂iuj = gradu = ∇u (B.42)

can be split into the antisymmetric and symmetric fractions

Lij = ∂iuj =
1

2

(
∂uj
∂xi
− ∂ui

∂xj

)

︸ ︷︷ ︸
L[ij]︸︷︷︸

antisymm. fraction

+
1

2

(
∂uj
∂xi

+
∂ui
∂xj

)

︸ ︷︷ ︸
L(ij) = Dij︸ ︷︷ ︸
symm. fraction

. (B.43)

With this decomposition, one finds the Taylor series expansion (B.41) as

uj(x+ dx ) = uj(x )︸ ︷︷ ︸
a

+ L[ij] dxi︸ ︷︷ ︸
b

+ Dij dxi︸ ︷︷ ︸
c

(B.44)

and end up at Helmholtz’ interpretation of the fluid motion:

a represents a simple translation.

b represents the rigid body rotation

L[ij] dxi = (ω × dx)j (B.45)

with the angular velocity

ω =
1

2
∇× u . (B.46)

b represents the strain of the fluid, specified by the strain-rate tensor

Dij =
1

2

(
∂uj
∂xi

+
∂ui
∂xj

)
=

1

2

(
∇u+ (∇u)T

)
= D . (B.47)

This tensor is responsible for the viscous forces and therefore connected to the viscous

stress tensor τij, as one can study in the next paragraph.
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From the strain rate tensor to the stress tensor

The stress tensor Sij denoted with the hydrostatic pressure p and the viscous stress ten-

sor τij reads

Sij = −p δij + τij . (B.48)

In case of a fluid at rest, all components of the viscous stress tensor vanish and only the

hydrostatic pressure remains. With some more analysis, one finds that the viscous stress

tensor and the strain rate tensor are connected. For a Newtonian fluid this connection is

the linear relation [23]

τij = 2µDij + λ(∂kuk)δij (B.49)

with the dynamic viscosity µ and the interim viscosity coefficient λ. Introducing the bulk

viscosity or also referred to as second viscosity

ζ = λ+
2

3
µ (B.50)

the full stress tensor of equation (B.48) together with (B.49) gets to

Sij = −p δij + µ

(
2Dij −

2

3
(∂kuk)δij

)
+ ζ(∂kuk)δij . (B.51)

In the important case of an incompressible fluid, the continuity equation ∂kuk = ∇·u = 0

reduces the stress tensor to

Sij = −p δij + 2µDij = −p I+ 2µD = S (B.52)

where the coordinate-free notation uses the identity matrix I.

Stress balance at an interface

Considering an interface of two immiscible fluids, like liquid (l) and gas (g), the trivial

static force balance is in case of a flat surface simply p(l) = p(g). In case of a curved

interface, one finds the Young–Laplace equation

p(l) − p(g) = σ∇ · n = σ(∂knk) (B.53)

with the surface tension σ and the normal unit vector of the surface facing into the direction

of the gas n.
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For the dynamical and therefore general case, the pressure has to be replaced by the

respective stress tensor, i.e. −p(x)δij → S
(x)
ij . Additionally, if the surface tension varies

along the interface, the tangential force ∇‖σ has to be taken into account. This force,

acting along the surface into the direction of increasing surface tension, is responsible for

the Marangoni effect.

With the tangential Nabla operator

∇‖ = (δij − ninj)∂j (B.54)

the general stress balance then reads [24]

(
S
(l)
ij − S

(g)
ij

)
nj = −σ(∂knk)nj + (δij − ninj)∂jσ . (B.55)

For the tangential stress balance, used for the boundary conditions model of Leypoldt (see

3.1.2), surface deformations are assumed to be absent, such that the liquid free surface

is of perfect upright cylindrical shape and the normal unit vector n simply gets to the

cylindrical radial unit vector er. Additionally the fluid is considered as incompressible and

the ambient gas is considered as inviscid, such that its viscous stress tensor vanish. For

a tangential balance, one can neglect all radial acting forces, which are the pressure force

and the Laplace pressure force for the present case. In dimensional quantities this is

2µD
∗(l)
ij nj − (δij − ninj)∂jσ = 0 (B.56)

Recalling the Oberbeck–Boussinesq approximation with its first–order Taylor series ap-

proximation of the surface tension σ = σ(T ∗) ≈ σ0−γ(T ∗−T0) and by using the common

scales, equation (B.56) gets to

2ρ0ν
ν

d2
D

(l)
ij nj +

γ∆T

d
(δij − ninj)∂jT = 0 . (B.57)

From here the thermocapillary Reynolds number

Re =
γd

ρ0ν2
∆T (B.58)

has its origin. By renaming D
(l)
ij → Dij one finds the final dimensionless equation

2Dijnj +Re(δij − ninj)∂jT = 0 (B.59)

or in coordinate-free notation for the present cylindrical geometry with the radial unit

vector as normal vector

2D · er +Re(I− erer) · ∇T = 0 . (B.60)
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B.5 Discrete Fourier transform

Given is a set of N (assumed as even) equally spaced data points {ak} of a real and

T−periodic signal in position space, i.e.

ak = a(φk) = a(kδ) , k = 0, . . . , N − 1 , δ =
T

N
. (B.61)

The discrete Fourier transform (DFT) of this data set with the MATLAB built-in function

fft brings N complex Fourier coefficients

{ãk} , k = 0, . . . , N − 1 , ãk ∈ C . (B.62)

The DFTs from position space to fourier space and vice versa are defined as [15]

ãk =

N−1∑

n=0

ane
− 2πi

N
kn , ak =

1

N

N−1∑

n=0

ãne
2πi
N

kn . (B.63)

The expansion of the exponent by δ in the formula of the inverse transform yields

ak = a(φk) =
1

N

N−1∑

n=0

ãne
2πi
Nδ

nkδ =
1

N

N−1∑

n=0

ãne
2πi
T

nφk (B.64)

and by replacing the discrete variable φk with the continuous position space variable φ, one

finds the interpolation function a(φ) for the discrete data set {ak}. Taking into account

T = 2π and ãn = |ãn|e iϕn with ϕn = Arg(ãn), the interpolation function gets to

a(φ) =
1

N

N−1∑

n=0

|ãn|e iϕne inφ . (B.65)

Due to the reality of the position space signal, almost all Fourier coefficients appear as

complex conjugate pairs, i.e.

ãn = ã∗N−n , n = 1, . . . , nmax , nmax =
N

2
− 1 (B.66)

In (B.66) the zero-component ã0 is excluded, because it represents the constant fraction

and has to be real at all, such that the phase ϕ0 is either ϕ0 = 0 or ϕ0 = π and contains

the sign only.

Another important and helpful characteristics of the DFT is the relation

ãN−n = ã−n , n = 1, . . . , nmax (B.67)

which allows the so-called wrapping, a reordering process of all Fourier components ãk

with index k ∈ [N2 + 1, N − 1]. For the considered real function, equation (B.66) together

with (B.67) yields

ã∗n = ãN−n = ã−n , n = 1, . . . , nmax (B.68)

118



B.5. DISCRETE FOURIER TRANSFORM

and therefore the interpolation function (B.65) can be written as

a(φ) =
1

N

{
|ã0|e iϕ0 +

nmax∑

n=1

|ãn|
(
e i(ϕn+nφ) + e−i(ϕn+nφ)

)}
. (B.69)

Finally this reads in real notation

a(φ) =
1

N

{
|ã0| cosϕ0 + 2

N

2
−1∑

n=1

|ãn| cos(nφ+ ϕn)

}
. (B.70)

According to the theorem of Nyquist a continuous position space signal which contains

modes up to nmax requires for a full reconstruction at least N = 2(nmax+1) equally spaced

data points.
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C Manual for MTrace

The particle trajectories are determined by MTrace, an ODE-solver developed for the

recent purpose only. This chapter should give a short overview of the internal structure,

the input and output data for quick orientation.

C.1 Structure

The main script for the calculation of the trajectories is MTrace.m, generating one output

file for every single trajectory. The reading procedure is decomposed to f_readparam.m,

reading the user-defined data from MTrace.dat, and f_readfluid.m, reading the flow field

data from the ASCII-file flowdata.dat. Additionally there are some secondary functions

addressed by the mentioned scripts as shown below.

• MTrace.m −→ Tr_X_StY_rhoZ_NN.dat

– f_readparam.m ←− MTrace.dat

– f_readfluid.m ←− flowdata.dat

∗ f_FT.m

∗ f_iFT.m

– f_trace.m

– f_event.m

For fast post processing within MATLAB, its highly recommended to import the ASCII

file Tr_X_StY_rhoZ_NN.dat to a MAT-file by the usage of import_mat.m. The result are 4

MAT-files, holding the state vectors of all imported trajectories (yXX.mat) and the events

(eXX.mat) in cartesian (xCa.mat) and cylindrical (xCy.mat) coordinates.

• import_mat.m −→ yCa.mat, eCa.mat, yCy.mat, eCy.mat

– f_read.m ←− Tr_X_StY_rhoZ_NN.dat
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To generate flowdata.dat in ASCII format, one has to run the FORTRAN90 script

import.f90 with the original binary Poseidon output file flowdata.2.

Secondary functions

The functions concerning the Fourier transform, f_FT.m and f_iFT.m, are only a few lines

of code and easy to understand. Both functions are required in case the mode filter is on

(flag_DFT=1), whereas f_FT.m performs a DFT from position space to Fourier space and

f_iFT.m performs the inverse DFT from Fourier space back to position space again, but

with user-defined modes (modes) only.

The functions f_trace.m and f_event.m are required by the ODE-solver. In f_trace.m

most of the MTrace.m overall-calculation (exclusive of MATLAB’s built-in functions) is

done, where at least 80% of all lines are addressed to the interpolation procedure of the

flow field. The rest represents the calculation of the values necessary for the ODE-solver’s

next integration step. A modification of the equations of motion is in principle easy and

can be done at the end of the file. In case the reader wants to rebuild the interpolation

scheme, a detailed analysis of the code is required, which should not be contents of this

manual.

Finally the function f_event.m is required either for the reinitialization of the parti-

cle state, as the particle hits any boundary or for simple documentation, as the parti-

cle crosses any user-defined hyper-surface in phase space. Every MATLAB ODE-solver

odeXXx supports the option events as an implemented subroutine. One can find some

more explanation and examples by searching odeset in MATLAB help. For the present

case f_event.m is essential for the implementation of the particle-boundary interaction.

f readparam.m

The user-defined ASCII-file MTrace.dat contains all primary parameters for the calcula-

tion and is read by f_readparam.m. A short description of all input parameters is given

in table C.1 and a representative MTrace.dat-file is shown in table C.2.
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Table C.1: Description of all input parameters in MTrace.dat

MATLAB thesis possible

character char. description of character values

Stokes St Stokes number real

rho ̺ particle-fluid density ratio real

flag_g – gravity: 0g = 0, 1g = 1 0 / 1

Froude Fr Froude number real

Omega Ω angular velocity of HTW real

datafilename – filename of Poseidon’s output file (ASCII) char

flag_old – reading strategy: regular = 0, old = 1 0 / 1

flag_DFT – filter of flow field: on = 1, off = 0 0 / 1

no of modes – number of selected modes integer

modes n Definition of all modes, which should be integers

included in the flow field.

method – pre-interpolation method linear / spline

RT – positive exponent of rel. error for ODE-solver integer

AT – positive exponent of abs. error for ODE-solver integer

refl_r – PER (0) or FER-model (1) in rad. direction 0 / 1

refl_z – PER (0) or FER-model (1) in vert. direction 0 / 1

tstart – temporal start of integration real

tfinal – temporal abort of integration real

tres – temporal resolution of output data real

The datafilename must not refer to Poseidon’s original binary output file (suffix: .2),

but to the converted ASCII file. The conversion has to be done with the FORTRAN90

script import.f90. If a file is converted by import.f90, then flag_old = 0. Nevertheless

there are sill some old files, converted to ASCII differently, where one would have to set

flag_old = 1.

If the flow field data should pass the filtering procedure, one has to set flag_DFT = 1.

Then the user has to tell the reading procedure how many modes there are to read in

modes with the value no of modes. At last, modes holds all selected modes for the inverse

Fourier transform (Note that n = 0 is included anyway!) .

Its highly recommended to use method = linear as pre-interpolation method and the

PER-model in both cases, i.e. refl_r = refl_z = 0.
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Table C.2: MTrace.dat-file

Stokes: 5.0e-5

rho: 1.0

flag_g: 0

Froude: 0

Omega: -10.145

datafilename: Pr4Re18_new.dat

flag_old: 0

flag_DFT: 1

no_of_modes: 3

modes: 3 6 9

method: linear

RT: 6

AT: 8

refl_r: 0

refl_z: 0

tstart: 0

tfinal: 4

tres: 1.0E-3

f readfluid.m

This script reads and prepares all data concerning the liquid bridge, which is in detail:

1. Reading the data from Poseidon’s output (ASCII).

2. Preparing the coordinate vectors of the staggered grid and doing some basic calcu-

lations concerning the boundaries.

3. Appliance of the filter procedure to the flow field (if selected).
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Table C.3: Overview of some important internal variables generated by f_readfluid.m

MATLAB thesis method

character character description of character of enquiry

Nr Nr radial resolution read

Nz Nz vertical resolution read

Nphi Nϕ azimuthal resolution read

Vr ur radial velocity field read/calc.

Vz uz vertical velocity field read/calc.

Vphi uϕ azimuthal velocity field read/calc.

T T temperature field read/calc.

P p pressure field read/calc.

r_stag – radial coordinate vector read

r_center – radial coordinate vector calculated

phi_stag – azimuthal coordinate vector read

z_stag – vertical coordinate vector read

z_center – vertical coordinate vector calculated

z_centerE – vertical coordinate vector calculated

R R radius of liquid bridge read

Gamma Γ aspect ratio of liquid bridge calculated

a a particle radius calculated

R_star R† contact radius calculated

z_star z† vertical contact position calculated

MTrace.m

In contrast to all other mentioned files, where a inspection of the code by the reader is

definitely not necessary, a more detailed view to the code of the (still very short) main

file MTrace.m is not avoidable. Especially the allocation of the particle’s initial positions

is designed to be flexible and has to be carried out by the user.

The results of every single trajectory are written to the ASCII file Tr_X_StY_rhoZ_NN.dat,

where the placeholders of the filename stand for

1. X: mode filter is on (X=f) or off (X=o)

2. Y: Stokes number multiplied by 105
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3. Z: density ratio ̺

4. NN: number of trajectory (typically corresponding to initial angle in degree)

The contents of the output-file is shown in table C.4. Additionally some essential pa-

rameters used by the simulation are written in a self-explanatory way at the end of the

file.

Table C.4: Output variables included in Tr_X_StY_rhoZ_NN.dat

MATLAB

character description of character

size output length of trajectory’s time vector

tout time vector of trajectory

yout state vector of trajectory Y (t) = (r, ϕ, z, ṙ, ϕ̇, ż )

size events length of event’s time vector

ieout vector with event’s identification code (ID)

teout time vector of events

yeout state vector of events E(t) = (r, ϕ, z, ṙ, ϕ̇, ż )

import mat.m

With this script, one can import the ASCII data of several trajectories to MAT-files,

standing out due to a high access rate. As mentioned at the beginning of this manual, these

4 MAT-files correspond to matrices holding the state vectors of the trajectories (yXX.mat)

and events (eXX.mat) in cartesian (xCa.mat) and cylindrical (xCy.mat) coordinates.

An increase of the row number corresponds to an increase in time, the allocation of the

column numbers can be seen from table C.5 and the allocation of the third matrix index

corresponds to the number of the trajectory.

One should keep in mind that the cylindrical matrices hold the azimuthal velocities uϕ

instead of ϕ̇ as in the ASCII output file.

The event-function f_event.m in its original form contains the documentation of events

summarized in table C.6. The function can be easily adapted by the user individually.
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Table C.5: Allocation of columns in matrices for all MAT-files generated by import_mat.m

MAT-file 1 2 3 4 5 6 7 8

yCa.mat t x y z ux uy uz

eCa.mat t ID x y z ux uy uz

yCy.mat t r ϕ z ur uϕ uz

eCy.mat t ID r ϕ z ur uϕ uz

Table C.6: Decoding table for vector ieout

ID description

1 radial contact point at R†

2 vertical contact point at ±z†

3 radial release point from R†

4 vertical release point from ±z†

5 top-down piercing point of trajectory at z = 0

6 bottom-up piercing point of trajectory at z = 0
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C.2 Staggered data handling

Due to the staggered grid all matrices holding the field variables are of different size. Here

is a short overview of the internal data management of MTrace.

Basically Poseidon is working with an individual grid resolution of Nr ×Nϕ ×Nz. These

values are the numbers of cell layers in each direction or in other words the number of cell

centers in each direction.

ur uϕ T, p

uz

Figure C.1: Staggered grid with the arrangement of all flow field variables, (© - uϕ, T, p),

(△ - uz) and (� - ur). Taken from Leypoldt [9].

In radial direction two coordinate vectors are to distinguish. Firstly r_stag indicates the

position of the cell boundaries and secondly r_center holds the radial positions of the cell

centers, i.e.

r_stag =

[
0, . . . , r

(s)
i , . . . ,

1

Γ

]
i =1, . . . , Nr + 1 (C.1)

r_center =

[
. . . , r

(c)
j =

1

2
(r

(s)
j+1 − r

(s)
j ), . . .

]
j =1, . . . , Nr . (C.2)

For the azimuthal direction only one coordinate vector is needed, holding the equally

spaced angles ϕk, which is

phi_stag =

[
. . . , ϕk =

2π

Nϕ
(k − 1), . . .

]
k = 1, . . . , Nϕ . (C.3)
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In axial direction there are, similar to the radial direction, again two coordinate vectors.

The vertical positions of the cell boundaries are indicated with z_stag and the vertically

centered positions are written in z_center, i.e.

z_stag =
[
0.5, . . . , z

(s)
l , . . . ,−0.5

]
l =1, . . . , Nz + 1 (C.4)

z_center =

[
. . . , z(c)m =

1

2
(z

(s)
m+1 − z(s)m ), . . .

]
m =1, . . . , Nz . (C.5)

The no-slip condition at the upper and lower disks, at z = ±0.5 where all velocity com-

ponents vanish, allows an extension of the centered data vector z_center to the extended

vector z_centerE. This brings some advantages for the interpolation. All calculations

concerning ur, uϕ and T are done with the extended vector, which is then

z_centerE = [0.5, z_center ,−0.5] . (C.6)

Table C.7: Size of all coordinate vectors

r_stag Nr + 1

r_center Nr

phi_stag Nϕ

z_stag Nz + 1

z_center Nz

z_centerE Nz + 2

Table C.8: Coordinate allocation and matrix size of the flow field variables

z r ϕ matrix size

ur z_centerE r_stag phi_stag (Nz + 2) × (Nr + 1) × Nϕ

uϕ z_centerE r_center phi_stag (Nz + 2) × Nr × Nϕ

uz z_stag r_center phi_stag (Nz + 1) × Nr × Nϕ

p z_center r_center phi_stag Nz × Nr × Nϕ

T z_centerE r_center phi_stag (Nz + 2) × Nr × Nϕ

The matrix size is denoted as the matrices appear in MATLAB. This was done in the most

intuitive way, this means r is increasing by increasing the column number, z is decreasing

by increasing the row number and ϕ is increasing by increasing the third matrix index.
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