
Abstract Argumentation and
Answer-Set Programming

Modelling the Resolution-Based Grounded

Semantics

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Computational Intelligence

eingereicht von

Christian Weichselbaum
Matrikelnummer 0525522

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Privatdoz. Dipl.-Ing. Dr.techn. Stefan WOLTRAN
Mitwirkung: Projektass. Dipl.-Ing. Sarah Alice GAGGL

Wien, 24.01.2013
(Unterschrift Verfasser) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Abstract Argumentation and
Answer-Set Programming

Modelling the Resolution-Based Grounded

Semantics

MASTER THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Computational Intelligence

by

Christian Weichselbaum
Registration Number 0525522

at the Faculty of Informatics
at the Vienna University of Technology

Advisor: Privatdoz. Dipl.-Ing. Dr.techn. Stefan WOLTRAN
Assistance: Projektass. Dipl.-Ing. Sarah Alice GAGGL

Vienna, 24.01.2013
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Christian Weichselbaum
Brandfeldgasse 14, 2120 Obersdorf

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -
einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i

Acknowledgements

It is with immense gratitude that I acknowledge the support and help of my advisor Stefan
Woltran and his assistance Sarah A. Gaggl who guided me into the field of abstract argumen-
tation and lead me to the goal of completing my studies in Computational Intelligence. I also
deeply appreciate the help of Johannes Wallner, who did not hesitate to share his experience
with me and swiftly responded anytime, I had a question.
Also, I am indepted to my parents for making it possible for me to obtain such great education,
and I would like to thank them for the many years of support prior to my graduation. Last but
not least, I owe my deepest gratitude to Sabrina, who always is there to patiently and with love
support me in reaching my goals.

iii

Abstract

Since its emergence in the 20th century, the field of argumentation in Artificial Intelligence (AI)
has experienced significant growth. One central topic within this field is the acceptability of
arguments for which P. M. Dung [19] introduced a theory based on the notion of abstract ar-
gumentation frameworks. These frameworks are simply consisting of a set of arguments and
a binary relation constituting attacks, without any inner structure. Since arguments may at-
tack each other, it is the case that not all of them might be able to stand together. Therefore,
arguments are subject to an evaluation method, of which the formal definition is called an argu-
mentation semantics . This method can either be declarative or procedural. In order to be able
to compare those semantics, several formal principles have been defined [6] which should be
fulfilled by a single extension or the whole set of extensions of a semantics. In their paper On
the resolution-based family of abstract argumentation semantics and its grounded instance [5]
P. Baroni, P. E. Dunne and M. Giacomin introduced a new family of semantics for abstract argu-
mentation systems, among them the resolution-based grounded semantics, which has the unique
property of satisfying all principles. There have already been encodings developed within the
realm of answer-set programming (ASP) [39], a form of declarative programming oriented to-
wards difficult search problems and based on the stable model semantics as presented by M. Gel-
fond and V. Lifschitz [36]. Yet there are still performance problems with the encodings of this
particular semantics. Our task is to develop ASP encodings, based on an algorithm presented
by P. Baroni and M. Giacomin [6] that compute the extensions of this semantics and provide
performance gains compared to existing approaches. These encodings shall then be incorpo-
rated in the ASPARTIX system, introduced by U. Egly et al. [25]. Furthermore, we keep track
of any optimizations which result in a performance gain since they might be applicable on other
semantics as well.

v

Kurzfassung

Seit seiner Entstehung im 20. Jahrhundert hat das Feld der Argumentation innerhalb der KI ein
deutliches Wachstum erlebt. Ein zentrales Thema ist die Akzeptanz von Argumenten für die
P. M. Dung [19] eine neue Theorie, welche auf dem Begriff der Abstract Argumentation Fra-
meworks beruht, entwickelt hat. Diese Frameworks bestehen aus zwei Mengen: einer Menge
von Argumenten und einer binären Relation, welche die Angriffe - auch Attacks gennant - dar-
stellt. Diese Argumente besitzen jedoch keine innere Struktur, daher auch der Name Abstract
Argumentation. Da sich Argumente gegenseitig attackieren können, sind nicht alle Argumente
gemeinsam haltbar. Aus diesem Grund wendet man auf die Argumente eine Evaluierungsme-
thode an, welche auch als Semantik bezeichnet wird. Diese Methode kann entweder deklara-
tiv oder prozedural sein. Um diese Semantiken vergleichen zu können, wurden einige formale
Prinzipien definiert [6], die von einer einzelnen Extension oder der ganzen Menge von Exten-
sionen einer Semantik erfüllt werden können. In ihrer Arbeit On the resolution-based family
of abstract argumentation semantics and its grounded instance [5] haben P. Baroni, P. E. Dun-
ne, und M. Giacomin eine neue Familie von Semantiken für Abstract Argumentation Systeme
eingeführt. Unter diesen Semantiken befindet sich die Resolution-Based Grounded Semantics,
welche die einzigartige Eigenschaft hat, alle formalen Prinzipien zu erfüllen, die in ihrer bereits
erwähnten Arbeit [6] präsentiert wurden. Im Bereich der Answer Set Programmierung wurden
bereits Kodierungen dieser neuen Semantik entwickelt. Answer Set Programming (ASP) [39],
ist eine deklarative Programmiersprache, welche für komplexe Suchprobleme entwickelt wur-
de. Diese Programmiersprache basiert auf der Stable Model Semantics, welche von M. Gelfond
und V. Lifschitz [36] eingeführt wurde. Die existierenden Kodierungen leiden jedoch noch unter
Performance Problemen, weshalb wir es uns zur Aufgabe gemacht haben ein eigenes ASP Pro-
gramm mit besserer Leistung zu entwickeln. Unsere Kodierung basiert auf einem Algorithmus,
der von P. Baroni und M. Giacomin [6] präsentiert wurde. Diese Kodierungen sollen dann im
ASPARTIX System einbindbar sein, welches von U. Egly et al. [25] entwickelt wurde. Des wei-
teren versuchen wir jene Code-Segmente und Optimierungen zu identifizieren, welche zu einer
Leistungssteigerung bei der Berechnung der Extensionen führen.

vii

Contents

1 Introduction 1
1.1 Main Contributions . 2
1.2 Related Work . 3
1.3 Organization . 4

2 Background 5
2.1 Complexity . 5
2.2 Abstract Argumentation . 8
2.3 Answer-Set Programming . 24

3 ASP based Argumentation 47
3.1 Encodings of Standard Semantics . 47
3.2 Previous Encodings of the Resolution Based Grounded Semantics 52

4 New Encodings of the Resolution Based Grounded Semantics 57
4.1 Outline . 57
4.2 Encoding . 58
4.3 Another Variant of a Verification-Algorithm Based Encoding 64

5 Experimental Evaluation 69
5.1 Test Set . 69
5.2 Test Environment . 69
5.3 The Candidate Encodings . 70
5.4 Results . 70
5.5 Observations . 83

6 Summary and Future Work 85

Bibliography 87

ix

CHAPTER 1
Introduction

In our daily life we deal a lot with different forms of argumentation. Whether we have to find
a common decision, are negotiating, are trying to pursuade somebody to accept our ideas or are
simply asking for the reason behind some behavior.
Since Aristotle, science has tried to find mechanisms and methods to distinguish between legit-
imate arguments and flawed arguments, also called fallacies. Deductive logic and other similar
formal approaches did not prove useful for this purpose, since in natural language we often
deal with incomplete, vague or uncertain information. We may also often have to deal with
enthymemes, which are implicit premises. So in the last third of the 20th century a new school
of thought called informal logic, gained momentum in order to be able to analyze the structures
that constitute argument components and to evaluate the argumentation processes. There are
four major tasks in argumentation which can be identified:

1. The task of identification, which deals with identifying the premises and conclusions of an
argument and also checks whether it fits the argumentation scheme in the corresponding
text of discourse.

2. The task of analysis, which identifies implicit premises and conclusions, and makes them
explicit, which is necessary for proper argument evaluation.

3. The task of evaluation, which determines whether an argument is weak or strong or if it
can withstand the general criteria and principles, that are applied to it.

4. The task of invention, which deals with the construction of new arguments in order to
support a desired conclusion.

But in order to be able to computationally deal with any arguments in natural language, we have
to formalize them in some way. Some common approaches are defeasible logic programming as
presented in an article by A. Garcia and G. Simari [29], defeasible argumentation with specifity-
based preferences as presented in an article by G. Simari and R. Loui [48] or Argumentation
Based on Classical Logic as presented by P. Besnard and A. Hunter [10] which we will take a

1

look at and shortly describe in Chapter 2: Background.

One central topic within the field of argumentation in artificial intelligence is the acceptabil-
ity of arguments which, considering the four major tasks of argumentation, belongs to the task
of evaluation. In argumentation, in order to formally define the acceptability of an argument,
P. M. Dung [19] introduced a theory, which is based on the notion of abstract argumentation
frameworks. These frameworks are simply consisting of a set of arguments and a binary relation
constituting attacks, where arguments are not assumed to have any specific structure. Since ar-
guments may attack each other, it is the case that not all of them might be able to stand together.
Therefore one has to develop formal methods which, based on this theory, determine for a given
argument whether it is accepted or not. Those formal methods are called argumentation seman-
tics. Two major approaches can be identified in order to realize such semantics: The reduction
approach and the direct approach. In the direct approach, one picks a programming language
of choice and develops a customized algorithm which is tailored just to realize this particular
theory. Whereas in the reduction approach one builds a solution based on existing software
which has proven great performance in similar tasks. Such an approach makes use of answer-set
programming (ASP) [39]. ASP is a form of declarative programming, oriented towards diffi-
cult search problems and based on the stable model semantics as presented by M. Gelfond and
V. Lifschitz [36].
In abstract argumentation a variety of different semantics has been proposed. In order to be
able to compare them, several formal principles have been defined [6] which should be ful-
filled by a single extension or the whole set of extensions of a semantics. In their paper On
the resolution-based family of abstract argumentation semantics and its grounded instance [5],
P. Baroni, P. E. Dunne, and M. Giacomin introduced a new family of semantics for abstract argu-
mentation systems, among them the resolution-based grounded semantics which has the unique
property of satisfying all principles. There already exist ASP encodings of various semantics,
including the resolution-based grounded semantics. This semantics, such as some others, is
not easy to encode. Hence, there are still performance problems with the encodings of the
resolution-based grounded semantics semantics. Our task is to develop ASP encodings, based
on an algorithm presented by P. Baroni and M. Giacomin [6] that compute the extensions of this
semantics and provide performance gains compared to existing approaches. These encodings
shall then be incorporated in the ASPARTIX system, introduced by U. Egly et al. [25] .

1.1 Main Contributions

In this section we stipulate the contributions this thesis aims to make to the field of abstract
argumentation within the realm of answer-set programming. As already mentioned, there are
existing approaches to encoding the resolution-based grounded semantics but yet there is room
for improvement.

1. Primarily with this thesis we expect to find an alternative way of realizing the resolution-

2

based grounded semantics based on an ASP encoding which provides a significant perfor-
mance gain. Therefor, we will develop a Guess & Check answer-set program, based on
the verification algorithm VERGR∗ presented in [6]. With this encoding, we will conduct
performance comparisons with existing encodings for the same problem.

2. In the process of developing our novel approach, we will apply different ASP modeling
techniques known to achieve performance gains of answer set programs, such as using ag-
gregates or symmetry breaking, which aims at eliminating symmetric parts of the search
space. We will retain the specific optimizations which can be identified successfully.
Those optimizations do not only contribute to a better encoding for the resolution-based
grounded semantics, but due to their relation to the encodings of other extension based se-
mantics within the field of abstract argumentation, they might be applicable on semantics
other than the resolution-based grounded semantics as well.

3. Finally, we will contribute a thourough analysis of which answer-set programming solver
is best suited for computing the extensions of the resolution-based grounded semantics.

1.2 Related Work

Work related to this thesis, is situated in the task of evaluation within argumentation. As previ-
ously mentioned, the approaches of developing encodings in this field which evaluate the accept-
ability of arguments, are divided into the reduction approach and the direct approach. All the
work related to our solution belongs to the reduction approach. One example within this realm
is Constraint Satisfaction Programming (CSP), upon which several methods have been based. A
CSP basically consists of a triple 〈V,D,C〉 that is composed of a finite set of variables V , a do-
main D for each variable v ∈ V and finally a set of constraints, C. The constraints are imposed
on an arbitrary set of variables X ⊆ V and govern the assignment of values to the respecitve
variables. A solution to a problem in CSP is found if all constraints are satisfied. Applications of
CSP in the field of abstract argumentation can be found in the article by S. Bistarelli et al. [12]
who specify constraints for several principles such as conflict-freeness or admissibility. Further
applications of CSP within the same area can be found in [1, 13].
Another approach constituting the scope of work related to this thesis, is ASP-based. One of
these related approaches has been proposed by C. Nieves et al. [42] and is based on a method
relying on the use of propositional formulas, another one by T. Wakaki and K. Nitta, presented
in their article [54]. Also within the scope of related work, one can find the approach of U.
Egly et al. [24, 25] where answer-set programming encodings are proposed that compute the
extensions of the conflict-free, admissible, preferred, stable, complete and grounded semantics.
Other similar concepts also exist. The most closely related works are two existing approaches
computing the resolution-based grounded semantics:

1. Proposed by W. Dvořák et al. [22], the first approach is based on an algorithm which was
originally proposed by Baroni et al. [5]. It is primarily based on the Guess & Check
paradigm and on the iteration over sets.

3

2. This second approach by W. Dvořák et al. [22] is based on the meta-modeling techniques
as proposed in [32] by M. Gebser et al.

1.3 Organization

This thesis is structured into 6 chapters. The first chapter contains the introduction, some words
on the main contributions, an overview of related work and this section, introducing the structure.
The second chapter provides the necessary background on complexity theory, abstract argumen-
tation and answer-set programming. We continue with a chapter on ASP based argumentation,
where we first present approaches for encodings of the standard semantics of abstract argumen-
tation with answer-set programming. Also in this chapter, we include an overview of alternative
ways for encoding the resolution-based grounded semantics. We continue with a chapter, where
we present our novel encoding of the resolution-based grounded semantics and a detailed de-
scription of the new approach, proposed by W. Dvořák et al. which has been simultaneously
developed. After the chapter on the new encodings of the resolution-based grounded semantics
follows a chapter on the experimental evaluation. We provide a thorough description of the test
set, the environment in which we conducted our benchmarks and again provide a short overview
of the candidate encodings which we compared to our implementation. We provide a detailed
section on our results and a description of the observations we made, especially with respect
to optimization possibilities of the encodings. At the end of our thesis, in an extra chapter, we
shortly summarize the main discoveries and outline what may be open for future work.

4

CHAPTER 2
Background

In this chapter we provide an extensive overview over and the necessary background of the dif-
ferent fields and technologies that we encountered during the development of this thesis. Section
2.1 provides a short introduction into the realm of complexity theory and gives an overview of
complexity classes and the polynomial hierarchy which we will refer to again later on. In the
subsequent section 2.2 we provide a general introduction into the field of Argumentation in Ar-
tificial Intelligence. We hope to provide the reader with a brief glimpse on how to derive abstract
arguments from real world arguments and how those arguments are then dealt with in abstract
argumentation. The main part of this section constitutes a particular description of abstract ar-
gumentation. We provide a general point of view on the concept of labeling-based semantics
and a more detailed explication of extension-based semantics along with its principles. In this
section the reader may also find a detailed overview over the most important extension-based
semantics and a table of their complexity results. Lastly we include a thorough introduction of
the resolution-based grounded semantics. In the last section 2.3 we provide an introduction of
Answer-Set Programming which we used to realize our encodings of the abstract argumentation
semantics. We describe the general concept of answer-set programming and the stable model
semantics. Furthermore in this section, the reader will find a general survey of the various lan-
guage extensions of answer-set programming and different modeling techniques. Last but not
least, we included a description of CLASP and DLV, two answer-set programming solvers which
we used in our research and implementation.

2.1 Complexity

In this section we provide a short introduction of complexity theory and the different complexity
classes which we will need later when describing argumentation, answer-set programming and
our implementation.

5

Complexity theory is the part of theoretical computer science that attempts to prove
that certain transformations from input to output are impossible to compute using a
reasonable amount of resources. [44]

Computational problems can be assigned to different classes, depending on their use of certain
resources such as run time or space. Complexity theory deals with the properties and relations
of those classes. The classification of each problem is based solely on the problem itself, re-
gardless of any possible algorithm that may be used for its computation. In order to explain
the decision problems of abstract argumentation we provide a brief overview over the complex-
ity classes we will need in the subsequent section. These classes include P, NP, NP-complete,
co-NP, P-complete, co-NP-complete and ΠP

2 -complete. For further details about these classes
please refer to C. H. Papadimitriou [43].

The complexity class P

The complexity class P is one of the most fundamental complexity classes. It contains all the
problems P which are solvable in polynomial time. In other words, it contains those problems
for which a solution can be found by an algorithm within nk + k computation steps, for some
constant k.

Definition 1. A decision problem D is in complexity class P, iff there exists a program Π that
decides D and Π has a runtime for each instance I of D with an upper-bound O(|I|k), where k
is a constant and |I| denotes the size of an instance I .

NP

Another fundamental complexity class is NP. It includes all decision problems D which are
solvable in polynomial time by a non-deterministic Turing machine. The complexity class P is
contained in the class of NP. Problems within this class are characterized by their property that
they can be verified quickly whether any given instance I is a positive solution of D, but there
is no fast algorithm known that can find all such solutions, at this time.

Definition 2. A certificate relation R for a problem D is a relation R ⊆ Instances(D) × Cert,
where Cert is a set of finite objects such that I ∈ Instances(D) is a positive instance of D iff
∃C ∈ Cert : (I, C) ∈ R.

Definition 3. In order for a problem P to be in NP it has to have a polynomially balanced
certificate relation R that is polynomially decidable.
A certificate relation R is polynomially decidable if there is a polynomial-time algorithm which
checks whether a pair of an instance I and a certificate C, (I, C) ∈ R.
A certificate relation R is polynomially balanced if (I, C) ∈ R⇒ |C| ≤ |I|k for some constant
k ≥ 1.

6

NP-complete

The class of NP-complete (NP-c) decision problems is a class of problems where each prob-
lem D lies in NP and every other NP-complete problem can be reduced to D in polynomial
time. These problems are as well characterized by the property that they can be verified quickly
whether any given instance I is a positive solution of D, but there is no fast algorithm known
that can find all such solutions, at this time.

Definition 4. A decision problem D is NP-complete, iff the following two conditions hold:

1. D is in NP

2. Every NP-complete decision problem can be reduced to D in polynomial time.

co-NP-complete

Each co-NP-complete problem D has a complement problem D̄ that is NP-complete. Before
we are able to introduce the definition of co-NP-complete problems, we have to define co-NP
problems.

Definition 5. The set C of co-NP problems is defined as follows: C = {D | D̄ ∈ NP} where
D̄ denotes the complement of a problem D.

Now that we have defined co-NP problems, we can continue with the definition of co-NP-
complete problems.

Definition 6. A decision problem D is co-NP-complete iff the following two conditions hold:

1. D is in co-NP

2. Every co-NP-complete decision problem can be reduced toD by a polynomial-time many-
to-one reduction.

P-complete

Another important notion is P-completeness, for which we also would like to provide a defini-
tion.

Definition 7. A decision problem D is P-complete if following two conditions hold

1. D is in P

2. Every P-complete decision problem can be reduced to D by an appropriate reduction

whereas an appropriate reduction is of lower complexity than P and the specific type of reduction
may vary.

7

ΠP
2 -complete

ΠP
2 -complete is a class of the polynomial-time hierarchy which is defined in terms of polynomial-

time bounded oracle machines. Oracles are supposed to solve a problem of their respective class
within a single computational step and therefore their runtime can be neglected. Now, before
we define ΠP

2 -completeness we introduce the definition of the polynomial-time hierarchy as
described by L. J. Stockmeyer in [50].

Definition 8. The polynomial-time hierarchy is {ΣP
k ,Π

P
k ,∆

P
k : k ≥ 0}

where ΣP
0 = ΠP

0 = ∆P
0 = P and P is the set of all decision problems, solvable in polynomial

time.
For any k > 0 we define:

ΣP
i+1 = NPΣPi

ΠP
i+1 = co-NPΣPi

∆P
i+1 = PΣPi

where i ≥ 0 and PΣPi for instance, denotes the set of decision problems, solvable by a Turing
machine in class P , with the help of an oracle for some complete problem in class ΣP

i .

ΠP
2 stands for co-NPNP which means that decision problems in ΠP

2 can be solved by a co-NP
decision procedure, that accesses an oracle with an NP-decision procedure.

Definition 9. Now having defined ΠP
2 , a problem is ΠP

2 -complete if and only if it is a member
of the set of the problems in ΠP

2 and at the same time ΠP
2 -hard.

2.2 Abstract Argumentation

In this section we provide the necessary background of argumentation and a detailed description
of the resolution based grounded semantics. As already mentioned in the introduction, before we
continue with a detailed description of abstract argumentation, we shortly describe how one can
acquire arguments from the natural language in order to formally deal with arguments. Some
common approaches are defeasible logic programming as presented in an article by A. Garcia
and G. Simari [29], defeasible argumentation with specificity-based preferences as presented in
an article by G. Simari and R. Loui [48] or Argumentation Based on Classical Logic as presented
by P. Besnard and A. Hunter [10]. We decided to focus on the latter one, so let us start with the
technique described by P. Besnard and A. Hunter.

From Natural Language to Arguments - Argumentation Based on Classical Logic

When describing a method of transforming arguments from natural language into a representa-
tion in classical logic as presented in an article by P. Besnard and A. Hunter [10], we assume
that the basics of classical logic are known to the reader. We will stick to the notations used

8

by P. Besnard and A. Hunter: Atoms are represented by lower case roman letters (a, b, c, . . .).
Formulas will be represented by greek letters such as (α, β, γ, . . .). We will use ∧, ∨, → and
¬ as representation for the corresponding logical connectives conjunction, disjunction, implica-
tion, and negation . ` denotes the binary consequence relation of classical logic. A fixed ∆ is
assumed to constitute the knowledge-base which is a finite set of formulae. There is no a priori
restriction to the contents of ∆ which can be arbitrarily complex. Formulae which represent
both certain and uncertain information can be contained in the knowledge-base. Any arguments
and counter-arguments will be formed from this knowledge-base. There is no restriction to the
knowledge-base or even its sub-formulae to be consistent. No meta-level information, such as
orderings or priorities are assumed about any formulae in ∆. Now we are able to define an
argument for argumentation based on classical logic.

Definition 10. An argument A is a pair 〈Φ, α〉 such that:

• Φ 6` ⊥.

• Φ ` α.

• Φ is a minimal subset of ∆ satisfying Φ ` α.

where we say that A = 〈Φ, α〉 is an argument for α, which is called the claim. Furthermore Φ
is called the support for the claim α. The pair 〈Φ, α〉 itself, in general is not an element of ∆.

Example 1. We present an example from the article by P. Besnard and A. Hunter [10]. Consider
a discussion in a newspaper editorial office about whether or not to proceed with the publica-
tion of some indiscretion about a prominent politician. Suppose the key bits of information are
captured by the following five statements.
p Simon Jones is a Member of Parliament
p→ ¬q If Simon Jones is a Member of Parliament then we need not keep quiet about

details of his private life
r Simon Jones just resigned from the House of Commons
r → ¬p If Simon Jones just resigned from the House of Commons then he is not a

Member of Parliament
¬p→ q If Simon Jones is not a Member of Parliament then we need to keep quiet

about details of his private life

Now, we are able to form arguments from Example 1. For further use, in latter sections, we
will assign letters to them:

• a: 〈{p, p→ ¬q},¬q〉

• b: 〈{r, r → ¬p},¬p〉

• c: 〈{r, r → ¬p,¬p→ q}, q〉

9

We picked two different kinds of attacks, undercuts and rebuttals, within the realm of argu-
mentation which we will shortly describe with the help of the previous examples. Argument a
is formed of the first two statements from Example 1 and claims that we do not have to be quiet
about Simon Jones’ private life. Argument b is formed of the next two statements and claims
that Simon Jones is not a Member of the Parliament, hence it attacks the support of argument a.
This form of attack is called undercut.

Definition 11. An undercut for an argument 〈φ, α〉 is an argument 〈ψ,¬(φ1 ∧ . . .∧ φn)〉 where
{φ1, . . . , φn} ⊆ φ.

Argument c is formed of the last three statements and claims that we have to remain quiet
about Simon Jones’ private life. As a result it attacks the claim of our first argument. This form
of attack, where arguments have opposed claims, is called rebuttal.

Definition 12. An argument 〈ψ, β〉 is a rebuttal for an argument 〈φ, α〉 iff β = ¬α

For more in-depth knowledge about this kind of transformations, we refer to the already
mentioned article by P. Besnard and A. Hunter [10]. P. Besnard and A. Hunter [10] also in-
troduced structures, called argument trees, which provide means for evaluating such formal
arguments. Argument trees are formal structures which represent all possible paths an argumen-
tation might take, originating from an initial argument represented by the root node. They are
an approach of casting the process of argumentation into a formal frame. The tree structure was
aptly chosen, since an argumentation process usually starts with an initial argument from which
grows some claim. Most of the time such arguments give rise to more counter-arguments which
in turn again give rise to counter-arguments. Since an argument quite often has multiple counter-
arguments, one can see that, from a single initial argument, multiple courses of argumentation
can arise, similar to a tree growing from the root. Each branch of the tree continues until the
point where no subsequent counter-argument needs a new item in its support.

Definition 13. An argument tree for a claim α, is a tree where each node is an argument such
that [10]:

1. The root is an argument for the claim α.

2. For no node 〈φ, β〉 with ancestor nodes 〈φ1, β1〉, . . . 〈φnβn〉, where n ≥ 0, is φ a subset
of φ1 ∪ . . . ∪ φn.

3. The children nodes of a node N consist of all canonical undercuts for N that obey the
previous statement.

For the definition of canonical undercuts and a more detailed description of argument trees,
the interested reader may refer to [10]. Now, in order to determine whether a root argument is
justified or warranted, as P. Besnard and A. Hunter call it, a judge function is introduced which
marks each node of the tree as undefeated U or defeated D.

10

Definition 14. The judge function labels each argument tree T either warranted or unwarranted
such that each T is warranted by the judge function iff Mark(Ar) = U where Ar is the root
node of T . For all nodes Ai in T , if there exists a child Aj of Ai such that Mark(Aj) = U , then
it follows that Mark(Ai) = D, otherwise Mark(Ai) = U . From that it follows that the root of
a tree T is undefeated if all of its children are defeated. [10]

From that definition one can see that argument trees provide means of evaluating the justifi-
cation state of an argument solely based on the tree structure. But this method of evaluating an
argumentation process is confined to argumentations which can be represented by a single tree
structure. In the next section we will present a more widely applicable framework which can be
used for evaulating argument structures, consisting of arbitrary graphs.

Abstract Argumentation

In the previous section we described how one can transform arguments from natural language
into formal arguments. An argument may have a complex internal structure, or represent several
intuitive meanings. In abstract argumentation an argument does not possess any internal struc-
ture and simply is anything which attacks other arguments or may be attacked by them. Those
attacks do not possess any internal structure either. They may include undercuts, rebuttals and
other types of attacks, and have no other meaning. While the method by P. Besnard and A.
Hunter [10] resulted in a tree, other abstraction methods might result in richer structures such as
directed graphs. We now turn our attention to such objects.

The abstract argumentation framework as introduced in his pivotal paper by P. Dung [19],
is a pair consisting of two sets. A set of arguments and a set of binary relations constituting
attacks. As we already mentioned, he abstracted away any internal structure, hence, the term ab-
stract argumentation framework. This simple structure of an abstract argumentation framework
is suited for a graph representation, where the arguments are represented by nodes and directed
edges constitute the attack relations. Such a graphical representation of an abstract argumen-
tation framework is called a defeat graph. We will frequently use it in order to visualize our
examples in this thesis.

Definition 15. An Abstract Argumentation Framework (AF) is a pair 〈A,R〉, where A is a set
of elements which are called arguments andR ⊆ A×A is a set of binary relations, called attack
relations. A pair (a, b) ∈ R means that argument a attacks argument b, which is also denoted
as a→ b. (a, b) /∈ R is also denoted as a 6→ b.

In abstract argumentation there are two special notions of attacks. It might be the case that
an argument a is attacking itself, as shown in Figure 2.1. Either because its conclusion itself
is contradictory or its conclusion is a contradiction to its premise. We call such a situation a
self-defeating attack. It might also be the case that two arguments a and b are attacking each
other, as depicted in Figure 2.2. Such an attack situation is called a mutual attack.

11

a

Figure 2.1: An attack relation (a, a) ∈ R, where an argument a attacks itself.

a b

Figure 2.2: Both attack relations (a, b) and (b, a) are in R. Such attacks are called mutual.

a

b

c

Figure 2.3: An argumentation framework, based on Example 1

Definition 16. Let G = 〈A,R〉 be an AF. An attack relation (a, a) ∈ R, where an argument
attacks itself is called self-defeating. And if both (a, b) and (b, a) are in R, those attacks are
called mutual. The set of mutual attacks, of an argumentation framework G, MG is defined as
follows: MG = {(a, b) ∈ R | a 6= b ∧ b→ a}.

We now take a look at Example 1 which we introduced in the previous section and transform
it into an abstract argumentation framework as depicted in Figure 2.3. As one can see, our ar-
gumentation framework clearly does not only represent our example. It could as well represent
a totally different situation, with the same attack relations between the arguments, what basi-
cally is the idea behind abstract argumentation. The fact that we abstract away from any internal
structure results in the possibility of analyzing certain properties independently, without dealing
with any specific aspect of the arguments. Opposed to this advantage, we have the side effect of
losing expressiveness which makes the direct use of abstract argumentation less attractive in any
application context.

Abstract Argumentation Semantics

Now, that arguments may attack each other, there clearly might be arguments which are not
able to stand together. Therefore the notion of the justification state of an argument has been
introduced in the literature. Informally, an argument is justified if it is, solely or together with
other arguments, able to survive the attacks it receives. Otherwise, the argument is regarded as

12

not being justified or rejected. In order to determine the state of each argument and the sets
of arguments which are capable of surviving together, several semantics have been introduced
which govern the evaluation process. Those semantics are formal methods which can either
be declarative or procedural, and are called abstract argumentation semantics. Two different
approaches exist for those semantics. The extension-based semantics are formal definitions of
how to derive a set of extensions from an argumentation framework AF = 〈A,R〉, where a
single extension is a subset of A. Whereas the labeling-based semantics are a formal definition
of how to derive a set of labelings from an argumentation framework AF = 〈A,R〉. Where a
labeling L : A → L is the assignment of labels, taken from a predefined set of different labels
L, to arguments A of the argumentation framework.
Before we describe the different semantics, we define some notations for different properties of
argument sets that we will use in our subsequent definitions. The notation we use is based on the
article On principle-based evaluation of extension-based argumentation semantics by Baroni et
al. [6] adapted and extended where needed to fit our implementation.

Definition 17. Given an argumentation framework AF = 〈A,R〉, two subsets of arguments
S ⊆ A and P ⊆ A and an argument x ∈ A, let us define some notations:

• S → x ≡ ∃y ∈ S : y → x

• x→ S ≡ ∃y ∈ S : x→ y

• S → P ≡ ∃x ∈ S, y ∈ P : x→ y

• SC , the complement of S is defined as SC = A\S

• x− ≡ {y ∈ A | y → x}

• x+ ≡ {y ∈ A | x→ y}

Definition 18. Let AF = 〈A,R〉 be an argumentation framework and S ⊆ A be a subset of its
arguments. Then the set of attackers of S is denoted as S− = {x ∈ A | x → S} and the set
of arguments, attacked by S is denoted as S+ = {x ∈ A | S → x}. The range of a set S is
denoted as S⊕ = S ∪ S+.

In some definitions, we will encounter the restriction of an argumentation framework AF =
〈A,R〉 to a subset S ⊆ A. It is defined as follows.

Definition 19. The restriction of an argumentation framework G = 〈A,R〉 to a set S ⊆ A is
denoted as G↓S and defined as following: G↓S= 〈S,R ∩ (S × S)〉.

Definition 20. Let G = 〈A,R〉 be an argumentation framework. A set S ⊆ A is untattacked or
initial iff S− = ∅. The set of unattacked arguments in G is denoted as IN (G).

Now that we have defined the notion of unattacked or initial arguments, we are able to
formally define externally unattacked sets which are also needed later in this chapter in order to
describe certain principles relying on them.

13

a

b

c

d

Figure 2.4: An argumentation framework AF = 〈{a, b, c, d}, {(a, b), (b, a), (c, d)}〉

Definition 21. Given an argumentation framework AF = 〈A,R〉, then a non-empty set S ⊆ A
is regarded as externally unattacked iff @a ∈ (A\S) : a → S. The set of externally unattacked
sets of AF is denoted as US(AF).

Labeling-Based Semantics

In this thesis, we will work with extension-based semantics, but in order to provide a proper
overview of abstract argumentation, we now shortly introduce the labeling-based semantics. The
basic idea underlying this semantics is to assign labels to each argument of an argumentation-
framework from a predefined set of labels. An example for such a set of labels might be
{in, out, undecided}. The labeling-based semantics are formal definitions of how to derive a
set of labelings from an argumentation framework AF = 〈A,R〉, where a labeling L : A → L
is the assignment of labels, taken from a predefined set of different labels L to arguments A of
the argumentation framework. The set of all possible label mappings from A to L is denoted as
L(A,L). The labelings of an abstract argumentation framework AF = 〈A,R〉 with respect to
a semantics S, is a subset of L(A,L) and denoted as LS(AF) ⊆ L(A,L). We present a short
example, based on the argumentation framework, as depicted in Figure 2.4:

Example 2. Let S1 be a hypothetical labeling-based semantics, where an argument is labelled
in only if it receives no attacks, and is labelled out if it is attacked by arguments labelled in and
otherwise labelled undecided. Let AF1 = 〈{a, b, c, d}, {(a, b), (b, a), (c, d)}〉 be an argumen-
tation framework. Then applying semantics S1 on our example AF1 would result in following
labeling LS1(AF1) = {{(a, undecided), (b, undecided), (c, in), (d, out)}}.

For further examples and a more comprehensive overview of labeling-based semantics, we
refer to [4].

Extension-Based Semantics

An extension-based argumentation semantics is a formal definition of principles ruling the argu-
ment evaluation process and specifying which subsets of arguments of an argumentation frame-
workAF = 〈A,R〉 are acceptable and able to survive together. Such a set is called an extension.

14

Definition 22. Let AF = 〈A,R〉 be an argumentation framework and S a generic argumen-
tation semantics, then the set of extensions prescribed by S for AF is denoted as ES(AF).
DS = {G | ES(G) 6= ∅} denotes the set of argumentation frameworks for which, with respect
to semantics S, at least one extension exists. If for a semantics S all argumentation frameworks
belong to DS , it is said to be universally defined.

Now if there is exactly one extension by a semantics, this semantics belongs to the unique-
status approach. Otherwise, if there are more than one extension prescribed by a semantics, it
belongs to the multiple-status approach.

Definition 23. A semantics belongs to the unique status approach if it fulfills the following cri-
terion: ∀G ∈ DS : |ES(G)| = 1. Otherwise it belongs to the multiple-status approach.

As we already noted, extensions describe the justification state of an argument. When we
take the extension membership to distinguish the different justification states, we basically have
two different types of justification. If an argument is contained in each extension of an argumen-
tation framework, it is regarded as skeptically justified. We say that an argument is credulously
justified if it is part of at least one extension. It can be deduced from the above definitions,
that for unique-status approaches these two classifications coincide and therefore several refine-
ments to this particular justification state exist. For further justification states, the reader may
refer to [7], where a more detailed overview is provided.

Definition 24. LetAF = 〈A,R〉 be an argumentation framework and S be a semantics, then an
argument x ∈ A is skeptically justified in AF w.r.t. S iff ∀E ∈ ES(AF) : x ∈ E. An argument
x ∈ A is credulously justified iff ∃E ∈ ES(AF) : x ∈ E.

Principles for Extension-Based Semantics

Before introducing the different extension-based semantics of abstract argumentation frame-
works and explaining the motivation that drove the development of the resolution-based grounded
semantics, we will provide a general set of desirable properties as presented in [6], which are
shared by some or all semantics. When presenting these principles, we will distinguish between
properties of individual extensions or the whole set of extensions. First of all, we introduce the
two most important principles, underlying the definition of extension-based semantics. These
are language independence and the conflict free principles.

Definition 25. Two argumentation frameworks AF1 = 〈A1, R1〉 and AF2 = 〈A2, R2〉 are
called isomorphic which is denoted as AF1 $m AF2, iff there exists a bijective mapping m :
A1 → A2 such that (a, b) ∈ R1, (m(a),m(b)) ∈ R2.

Intuitively, the language independence principle stands for the fact that any extension pre-
scribed by a semantics, solely depends on the attack relations between arguments. It essentially
describes the idea of abstract argumentation, where our results only depend upon the structure
of the defeat graph, described by an abstract argumentation framework.

15

Definition 26. A semantics S satisfies the language independence principle if and only if ∀AF1 ∈
DS , ∀AF2 ∈ DS : AF1 $m AF2, ES(AF2) = {M(E) | E ∈ ES(AF1)}, where M(E) = {y |
∃x ∈ E, y = m(a)}.

The conflict free principle intuitively describes the idea of extensions being sets of arguments
that are able of being acceptable to one another meaning that within their arguments there are no
conflicts or attacks, respectively.

Definition 27. Let AF = 〈A,R〉 be an argumentation framework and P ⊆ A a subset of A.
Then P is conflict-free in AF, denoted as cf(P), iff 6 ∃x, y ∈ P such that x → y. The conflict-
free principle is satisfied by a semantics S iff ∀AF ∈ DS , ∀E ∈ ES(AF) E is conflict-free in
AF.

As stated in [6] all extension-based semantics proposed in the literature adhere to the con-
flict free principle. So does the resolution-based grounded semantics, introduced in [5] which
we focus on in this thesis.

One of the basic principles is based on the expectations towards the arguments of an exten-
sion to be able to “survive attacks together“ or in other words “to stand on their own“. This
requires the extension to be free of conflicts and it requests the arguments of an extension to
attack each attack that it is receiving from outside. In order to formally define the principle of
admissibility we first have to introduce the notion of an argument being acceptable with respect
to a set S ⊆ A.

Definition 28. Let AF = 〈A,R〉 be an argumentation framework, a ∈ A an argument and
S ⊆ A a subset of the frameworks arguments. Then a is acceptable w.r.t. S in AF iff ∀b ∈ A :
b→ a⇒ S → b.

Now, that we have introduced the notion of acceptability of arguments w.r.t. a semantics
in an argumentation framework, we are ready to describe a function that returns the set of all
acceptable arguments of an AF w.r.t. a semantics S .

Definition 29. Let AF = 〈A,R〉 be an argumentation framework, then FAF : 2A → 2A is
a function, called the characteristic function which, given a subset S ⊆ A returns the set of
acceptable arguments wrt. S in an AF.

Having defined the acceptability of an argument and the characteristic function, we now
define the admissibility of a set S ⊆ A:

Definition 30. Let AF = 〈A,R〉 be an argumentation framework, then a set S ⊆ A is ad-
missible, iff it is conflict-free and ∀a ∈ S : a ∈ FAF (S). The set of admissible sets of an
argumentation framework AF is denoted as AS(AF).

Having defined the admissibility of a set, we are now able to formally introduce the principle
of admissibility for semantics of an abstract argumentation frameworks.

16

Definition 31. A semantics S satisfies the admissibility principle iff ∀AF ∈ DS : ES(AF) ⊆
AS(AF), or stated differently, ∀E ∈ ES(AF) : a ∈ E ⇒ (∀b ∈ {a}− : E → b).

The reinstatement principle intuitively states that if the attackers of an argument a are in
turn attacked by an extension E, then they do not have any effect on the justification state of a
and a therefore can be seen as reinstated and be a part of the extension itself. The reinstatement
principle constitutes the converse to the implication of the admissibility principle.

Definition 32. A semantics S satisfies the reinstatement principle iff ∀AF ∈ DS , ∀E ∈ ES(AF) :
(∀b ∈ A, b→ a⇒ E → b)⇒ a ∈ E.

A further principle deals with another constraint towards the extensions of a semantics adher-
ing to it. It deals with possible inclusion relationships and requires no extension within a set of
extensions that can be a proper subset of another one. The I-maximality principle is fundamental
when the evaluation of skeptical justification is desired.

Definition 33. A set of extensions E is I-maximal iff ∀E1, E2 ∈ E : E1 ⊆ E2 ⇒ E1 = E2. A
semantics S satisfies the I-maximality principle iff ∀AF ∈ DS : ES is I-maximal.

The directionality criterion intuitively deals with the idea, that an argument’s justification
state shall only be affected by the justification state of its defeaters, of their defeaters justification
state and so on. Whereby the arguments that were defeated by this argument should not have any
effect on its justification state. Therefore, we can define the directionality criterion by imposing
this requirement on any unattacked set of an argumentation framework to be unaffected by any
remaining argument outside the set.

Definition 34. A semantics S satisfies the directionality criterion iff ∀AF ∈ DS ,∀U ∈ US(AF) :
AES(AF,U) = ES(AF ↓U), where AES(AF,U) , {(E ∩ U) | E ∈ ES(AF)} ⊆ 2U .

In order to define the last two principles that we will need in order to describe the motivation
behind the introduction of the resolution-based grounded semantics, we first have to introduce
the notion of skepticism, which is elaborately defined by P. Baroni and M. Giacomin in [6]. Intu-
itively this notion is based on the idea that an abstract argumentation semantics is more skeptical
than another semantics, if it makes less committed choices about the justification state of argu-
ments in an argumentation framework. This means that this semantics is more likely to leave the
justification state of an argument undecided.
We define a generic skepticism-relation �E between two sets of extensions of an argumentation
framework AF = 〈A,R〉: Let E1 and E2 be two arbitrary extensions of AF , then E1 � E2

means, that E1 is at least as skeptical as E2. Note that, as stated in [6], these skepticism relations
impose a partial, but not necessarily a total order, which means that there might be two sets of
extensions which are not comparable.

17

Definition 35. Two sets of extensions, E1 and E2 fulfill relation E1 �E∩ E2 iff⋂
E1∈E1

E1 ⊆
⋂

E2∈E2

E2

E1 �E∩ E2 represents the fact that arguments which are skeptically justified according to E1

are also skeptically justified according to E2.

Definition 36. Two sets of extensions, E1 and E2, fulfill E1 �EW E2 iff ∀E2 ∈ E2∃E1 ∈ E1 :
E1 ⊆ E2.

Definition 37. Given an argumentation framework AF , two sets of extensions, E1 and E2 of
AF , fulfill relation: E1 �ES E2 iff E1 �EW E2 and ∀E1 ∈ E1∃E2 ∈ E2 : E1 ⊆ E2.

The skepticism-relation�A is based on the following intuition: Consider one argumentation
framework AF = 〈A,R〉 with two arguments a, b ∈ A and a single attack (a, b) ∈ R. In that
argumentation framework, any semantic would reject b and accept a with the highest commit-
ment. Now if we add an attack (b, a) to R, we clearly create an argumentation framework where
only a more skeptical commitment is appropriate. Generalizing this observation by transforming
unidirectional attacks into mutual ones results in less committed justification states of the nodes
involved.

Definition 38. LetAF = 〈A,R〉 be an argumentation framework, then CONF(AF) , {(a, b) ∈
R | a→ b ∨ b→ a}.

Before we are able to define the skepticism-relation�A, we have to define CONF(AF) the
set of undirectional conflicts of an argumentation framework.

Definition 39. Given two argumentation frameworks AF1 = 〈A1, R1〉 and AF2 = 〈A2, R2〉,
then AF1 �A AF2 iff CONF(AF1) = CONF(AF2) and R2 ⊆ R1.

Equipped with preceding definitions, we are able to define the notion of skepticism adequacy
which guarantees the preservation of the skepticism-relation when applying a semantics S to two
argumentation frameworks subject to this relation. In other words skepticism adequacy states
that if a skepticism-relation between two argumentation frameworks is present, the same relation
also holds for their extensions.

Definition 40. A semantics S is �E-skepticism-adequate, given a skepticism-relation �E be-
tween sets of extensions, denoted as SA�E (S) iff for any pair of argumentation frameworksAF
and AF ′ such that AF �A AF ′ the following condition holds: ES(AF) �E ES(AF ′)

Since �A consists of an equality and a set inclusion relation it describes a partial order
which implies that there exist argumentation frameworks which are not comparable and within
the comparable AF s multiple maximal AF s w.r.t. �A can exist [6].

18

a b c d e

Figure 2.5: AF = 〈{a, b, c, d, e},{(a, b),(c, b),(c, d),(d, c),(d, e),(e, e)}〉

Definition 41. Let AF = 〈A,R〉 be an argumentation framework, then RES(AF) denotes the
set of argumentation frameworks which are comparable to AF and maximal w.r.t. �A.

As last principle we describe the resolution adequacy criterion, as presented in [6], which
intuitively states that an argument should be skeptically justified in AF , if it is skeptically justi-
fied in every possible resolution of AF , which is formally stated by the⇐ part of the following
formula and proposed by S. Mogdil in [41]:

a ∈
⋂

E∈ES(AF)

E ⇔ ∀AF’ ∈ RES(AF) : a ∈
⋂

E∈ES(AF)

E

Now Baroni et al. [6] provide a generalized version of this formula which is made parametric
w.r.t. skepticism relations between sets of extensions by the use of the following intermediary
formulation and: UR(AF, S) =

⋃
AF’∈RES(AF) ES(AF’)

Definition 42. Given a skepticism relation �E between sets of extensions, a semantics S is
�Eresolution adequate, denoted RA�E (S), iff for any argumentation framework it holds that
UR(AF, S) �E ES(AF).

Different Extension-Based Argumentation Semantics

Now that we have presented the different principles for extension-based argumentation seman-
tics among Dung’s traditional semantics [19], we now provide a collection of different extension-
based semantics, including the resolution-based grounded semantics which is the only one ful-
filling all the principles as presented in the previous section.
We introduce an example that we borrowed from [22] to point out the differences of the various
semantics:

Example 3. Our example abstract argumentation framework AF consists of following argu-
ments A = {a, b, c, d, e} and attack relations {(a, b), (c, b), (c, d), (d, c), (d, e), (e, e)}.

The intuition of the stable semantics which is a multiple-status approach, is quickly ex-
plained. The extensions of this semantics are conflict-free and they attack every argument outside
the extension. More formally it is defined as follows:

19

a

b

c

Figure 2.6: An argumentation framework AF = 〈{a, b, c}, {(a, b), (b, c), (c, a)}〉

Definition 43. Let AF = 〈A,R〉 be an argumentation framework, then a set S ⊆ A is a stable
extension w.r.t. AF iff S is conflict-free and ∀a ∈ A : a 6∈ S ⇒ S → a.

When taking a look at our example 2.5, we have the following conflict-free sets: {{a, c},
{a, d}, {b, d}, {a}, {b} , {c}, {d}, ∅ }. But only {a, d} does attack all arguments of AF which
are outside the extension.

Lets define the term complete extension, but since it is also frequently referred to as complete
semantics in current literature as mentioned in [45], we will too stick to this term in this thesis.
Its notion is based on the idea that its extension should be conflict-free, able to defend itself
and include all arguments that it receives. Hence, the complete semantics fulfills the principles
of admissibility and reinstatement and by P. Baroni and M. Giacomin [6] it has been proven to
satisfy the directionality principle. The complete extension is a semantics which is a multiple-
status approach

Definition 44. Let AF = 〈A,R〉 be an argumentation framework, then a set S ⊆ A is a
complete extension of AF iff S ∈ AS(AF) ∧ FAF (E) ⊆ S or, in words, if and only if S is
admissible and each argument of A which is acceptable wrt. S belongs to S

Due to the fact that the complete semantics does include the initial arguments, the argu-
ments defended by them, and the arguments defended by the defended arguments, in some
special case the complete semantics includes the empty extension. In the case, where no ar-
gument is not attacked as can be seen in our Example 2.5, we have three resulting extensions:
{{a, c}, {a, d}, {a}}.

Example 4. For the argumentation framework AF = 〈{a, b, c}, {(a, b), (b, c), (c, a)}〉 we have
the following admissible sets: AS(AF) = {{∅}} and trivially every argument defended by the
empty set belongs to the empty set, so the resulting complete extensions are: {{∅}}.

We already introduced the stable semantics which relies on the somewhat strict requirement
that any extension S of an argumentation framework AF = 〈A,R〉 has to attack all the argu-
ments A\S outside the extension. The preferred extension differs here by only specifying the
extensions to be as large as possible and to be able to defend themselves. More formally:

20

a c d e

Figure 2.7: AF1 = 〈{a, c, d, e}, {(c, d), (d, c), (d, e), (e, e)}〉

Definition 45. Let AF = 〈A,R〉 be an argumentation framework, then a set S ⊆ A is a
preferred extension w.r.t. AF iff S is a maximal (w.r.t. set inclusion) element of AS(AF).

Like the stable semantics, the preferred semantics is a traditional multiple-status approach.
In Example 2.5 AF = 〈{a, b, c, d, e}, {(a, b), (c, b), (c, d), (d, c), (d, e), (e, e)}〉 does yield fol-
lowing admissible sets: {{a, c}, {a, d}, {a}, {c}, {d}, ∅} of which only {{a, c}, {a, d}} are
maximal and hence preferred extensions.

The notion of the grounded extension which is a unique-status approach, is based on the
intuition that, starting with the set S = IN (AF) of initial arguments of an argumentation
framework AF , we incrementally increase S. We do so by suppressing the arguments attacked
by S in a new, modified argumentation framework and identifying a possible new set of initial
arguments. Those arguments are then added to S and the whole procedure is repeated until we
reach a point where no new initial arguments are found. In fact this procedure corresponds to
the iterated application of the characteristic function FAF which is applied until a fixed point of
FAF has been reached.

Definition 46. Let AF = 〈A,R〉 be an argumentation framework, then the grounded extension
of AF is the least fixed point of the characteristic function FAF . The grounded extension of an
argumentation framework AF is denoted as GE(AF).

For any finitary argumentation frameworkAF = 〈A,R〉 it is proven in [19] that GE(AF) =⋃∞
i=1F i(∅). (Let AF = 〈A,R〉 be an argumentation framework, then AF is finitary if for any

x ∈ A, {x}− is finite.)

We will show you how to acquire the grounded extension of an argumentation framework,
based on our example 2.5 AF = 〈{a, b, c, d, e}, {(a, b), (c, b), (c, d), (d, c), (d, e), (e, e)}〉. The
set S of initial arguments for AF is {a}. Then we construct a new argumentation framework
AF1 = 〈{a, c, d, e}, {(c, d), (d, c), (d, e), (e, e)}〉, shown in Figure 2.7, by suppressing the ar-
guments attacked by a.
At this step, the set of initial arguments does not grow. Hence the resulting extension simply

consists of the argument {a}
Besides the four traditional Dung’s semantics which we already explained in more detail,

there exist various other semantics in abstract argumentation. Those further semantics include
the CF2-semantics, introduced by P. Baroni et al. [8] which is based on conflict-freeness and
the graph-theoretical notion of strongly connected components (SCCs). Other examples are for
instance the semi-stable semantics, further examined by M. Caminada in [16]. Furthermore,

21

the ideal-semantics as presented by P. M. Dung et al. in [20], which provides a unique-status
approach that is based on the admissibility and skeptical justification under preferred semantics,
and the prudent-semantics as introduced by S. Coste-Marquis et al. [17] which considers a more
extensive notion of attack.
Finally, there is the resolution-based grounded semantics [5] for which we provide a more de-
tailed description.

Resolution-Based Grounded Semantics

In section 2.2 we have already introduced all the desirable properties for abstract argumentation
semantics and we have already presented the various existing semantics. Unfortunately they do
not satisfy the whole set of properties. In their article, P. Baroni et al. [5] asked themselves the
question, as to whether those desirable properties are even achievable by one single semantics
and whether it was feasible and practical to drive the definition of abstract argumentation se-
mantics by formal criteria rather than basic intuitions. They answered both of these questions
positively and introduced the resolution-based grounded semantics which possesses all the de-
sirable properties.
Before we are able to define the resolution-based grounded semantics, we have to define the
notion of resolution of an argumentation framework. This notion is based on the idea that each
mutual attack represents an undecided situation in the abstract argumentation framework. These
undecided situations are resolved by resolution, where one of the arguments in the mutual-attack
is suppressed in favor of the other argument, thereby converting a mutual attack into an unidi-
rectional one.

Definition 47. Let G = 〈A,R〉 be an AF. A partial resolution of this AF is defined as any subset
β ⊂ MG where, if (x, y) ∈ β then (y, x) /∈ β. The AF where partial resolution is applied, is
denoted as Gβ = 〈A,R\β〉. A full resolution γ is any partial resolution β where exactly one
of each mutual attacks in MG occurs or MGγ = ∅ respectively. FR(G) is the set of all full
resolutions of G. The set of argumentation frameworks, resulting from the set of full resolutions
is denoted as FRAF(G) = {Gβ | β ∈ FR(G)}.

Definition 48. Let AF = 〈A,R〉 be an argumentation framework. Then a set S ⊆ A is called a
resolution-based grounded extension of AF , denoted as EGR∗(AF), if there exists a resolution
β such that GE(A,R\β) = S and 6 ∃β′ for which GE(A,R\β′) ⊂ S.

We will provide a short example, which will show how the resolution-based grounded se-
mantics works.

Example 5. The example framework 2.8 is composed as follows:

AF = 〈{a, b, c, d, e, f}, {(a, b), (c, b), (d, b), (c, d), (d, c), (c, e), (d, e), (e, f)}〉

There is exactly one mutual attack between c and d. From that we derive following two, non-
empty resolutions FR(AF) = {{(c, d)}, {(d, c)}}. Now we determine the grounded extensions
of

AF1 = 〈{a, b, c, d, e, f}, {(a, b), (c, b), (d, b), (d, c), (c, e), (d, e), (e, f)}〉

22

a b

c

d

e f

Figure 2.8: An argumentation framework to illustrate the application of resolution based
grounded semantics [22]

and
AF2 = 〈{a, b, c, d, e, f}, {(a, b), (c, b), (d, b), (c, d), (c, e), (d, e), (e, f)}〉

for which we get following results: GE(AF1) = {a, d, f} and GE(AF2) = {a, c, f}, which
compose the extension of the resolution-based grounded semantics: {{a, d, f}, {a, c, f}}.

Computational Properties of the Semantics

Since we are interested in the performance of our encoding of the resolution-based grounded
semantics, we will provide a selection of the computational properties of the four traditional
semantics and the resolution-based grounded semantics. We focus on the complexity results of
three decision problems for a semantics σ which arise in the field of abstract argumentation.

1. Credulous Acceptance Credσ: Let G = 〈A,R〉 be an AF and a ∈ A, an argument of AF .
Is a in at least one S ∈ σ(G)?

2. Skeptical Acceptance Skeptσ: Let G = 〈A,R〉 be an AF and a ∈ A, an argument of AF .
Is a element of each S ∈ σ(G)?

3. Verification of an extension Verσ: Let G = 〈A,R〉 be an AF and S ⊆ A be a set. Is
S ∈ σ(G)?

The computational properties of the stable and preferred semantics have been summarized
by P. E. Dunne and M. Wooldridge in [21]. For further information on the complexity results
of the complete semantics we refer to the article of S. Coste-Marquis et al. [18]. We obtained
the computational properties of the grounded semantics from [23], an article by W. Dvořák and
S. Woltran. When introducing the resolution-based grounded semantics in [5], Baroni et al.
provided elaborate proofs for its computational properties.

Relation between Semantics

In Figure 2.9 we depict the is-a relationship, between the different semantics of abstract ar-
gumentation. The semantics, which we described in more detail, are highlighted in Figure 2.9.
Other semantics which we do not present in this figure are not dealt with in this thesis.

23

complete stable grounded preferred GR*
Credσ NP-c NP-c P-c NP-c NP-c
Skeptσ P-c NP-c P-c ΠP

2 -c coNP-c
Verσ L P-c P-c coNP-c P

Table 2.1: Complexity table of abstract argumentation semantics, where -c stands for the com-
pleteness of the respective class

stable

stage cf2

naive

semi-stable

preferred

complete

admissible

conflict-free

ideal

eager

grounded

res-b. grounded

Figure 2.9: Relation between abstract argumentation semantics.

2.3 Answer-Set Programming

In this section we present the necessary background knowledge on answer-set programming, its
extensions and modeling techniques. We start by explaining how ASP is based on the stable
model semantics as introduced by M. Gelfond and V. Lifschitz in [36] and introduce the nota-
tional conventions that we are going to use throughout this thesis when dealing with answer-set
programming. Then we present some of the language extensions of ASP: Integrity constraints,
choice rules, weight constraints and optimization statements. We continue by describing the
architecture of an ASP solver and conclude the background of answer-set programming with the
presentation of a variety of different modeling techniques.

Answer set programming (ASP) is a form of declarative programming oriented to-
wards difficult search problems. [39]

24

Answer-Set Programming is a declarative problem solving approach with origins in Non-
monotonic Reasoning and Logic Programming, where as opposed to imperative programming,
one formalizes the problem and a problem instance and transfers the task of finding a solution to
the answer-set programming framework. Answer-Set Programming is based on the stable model
semantics as introduced by M. Gelfond and V. Lifschitz in [36], a semantics for normal logic
programs with negation, and on the default theories described by R. Reiter in [47].

But before we start to formally describe answer-set programming, we introduce the nota-
tional conventions that we use throughout this thesis. Furthermore we suppose that the reader
has a basic understanding of Logic and Logic Programming (especially of classical and first or-
der logic). > and⊥ stands for true and false. ← stands for the conditional if in logic programs, ,
and ”,” stands for the conjunction. The disjunction simply is denoted by ∨. The default-negation
is denoted by not or ∼.

The formal definition of answer-set programming is based on the extension of classical
logic programs which are also called horn logic programs, as described in [27]. Classical logic
programs are programs that are built of rules, called horn clauses which are clauses with exactly
one positive literal, called head.

Definition 49. A classical logic program P is a finite set of clauses of the following form:

A← B1, . . . , Bm

where A and B1, . . . , Bm are atoms of a first-order language Σ. Literal A is also called the
head of the rules, where B1, . . . , Bm is called the body. Rules with an empty body are called
facts.

These logic programs are the problem specification and the problem instances. The solutions
to the problem are represented by models of those logic programs. These solutions are called
stable models or answer sets.

Definition 50. Given a logic program P and Σ the signature of P , then the Hebrand Universe
of P , denoted asHU(P), is the set of all terms which can be formed over all constants in Σ.
The Herbrand Base of P , denoted as H(P), is the set of all ground atoms which can be formed
from predicates occurring in P and the terms inHU(P).
The Herbrand Interpretation I, is an interpretation over the Herbrand Universe HU(P) and a
subset I ⊆ H(P).
A Herbrand Interpretation I is a Herbrand Model M of P , if M |=Σ P .
M(P) is the set of all Herbrand Models of P .

Since in classical logic programs we deal with atoms of a first-order language we have to
ground these programs in order to determine their models. The process of grounding can be
regarded as a universal quantification over all variable occurrences.

25

Definition 51. A ground instance of a horn clauseC, as defined above, is any clauseC obtained
by the following substitution, which we denote as grnd :

grnd : VAR(C)→ HU(P)

where VAR(C) denotes the set of variables, contained in a clause C and HU(P) denotes the
Herbrand universe.
The ground instantiation of a program P is denoted by grd(P) =

⋃
r∈P grd(r). [27]

For each rule r of the program P , grd(r) denotes the set of ground instances of a rule r. It
is obtained by replacing all variables in r by ground terms, until no variable is left.

The solution of a classical logic program is represented by the smallest Herbrand model,
which can be determined by the use of the fixed point semantics on the grounded instance of
a logic program, which intuitively is an iterative approach, where in each step new atoms are
derived from the rules and facts of the programs, as well the previously derived atoms until we
can not derive any more atoms. When determining the least fixed point we apply a monotonic,
immediate consequence operator TP as elaborately explained in [27].

Definition 52. TP : 2H(P) → 2H(P) is an operator, defined as follows:

TP (I) =

{
A

∣∣∣∣ there exists a rule A← B1, . . . , Bm ∈ grnd(P)
such that{B1, . . . , Bm} ⊆ I

where T 0
P = ∅ and T i+1

P = TP (T i
P) for i ≥ 0. [27]

The least fixed point lfp(P) of a program P is its smallest Herbrand model and therefore its
result.

Definition 53. The recursive application of TP , T i+1
P = TP (T i

P) for i ≥ 0 has a least fixed
point lfp(TP) and converges to it. There exists no model I ∈M(P) such that I ⊂ lfp(P).

When dealing with knowledge representation and reasoning, an important notion is the
Closed World Assumption, as described in [46]. The closed world assumption states that any-
thing that is not explicitly known to be true is assumed to be false.

Under the closed world assumption, certain answers are admitted as a result of
failure to find a proof. More specifically, if no proof of a positive ground literal
exists, then the negation of that literal is assumed to be true. [46]

Definition 54. The closed world assumption (CWA) is the assumption that anything which is not
known to be true, is assumed to be false. In other words, any proposition that fails to be proven,
leads to its negation being true.

26

Classical logic programs are subject to the closed world assumption. This changes in normal
logic programs, with the introduction of the negation-as-failure. Negation-as-failure extends
classical logic programming by the possibility of directly dealing with incomplete information.
Hence, the closed world assumption is no longer applied automatically to all predicates. We
distinguish between those predicates which are explicitly false, and those which fail to be proven.
Whereas in classical logic programs, we only can derive a single model, the smallest Herbrand
model, in normal logic programs we can get multiple stable models.

Answer-Set Programming is based on extended logic programs, which extend normal logic
programs by the notion of classical negation. Now, an extended logic program P is a set of rules
of the following form:

r : H ← A1, ..., An,not B1, ...,not Bm.

where H is called head of r:

head(r) = H

A1, . . . , An, B1, . . . , Bm are literals and not stands for the default negation. A literal l is ei-
ther an atom p or a negated atom ¬p. An atom p is an expression p(t1, . . . , tn) where t1, . . . , tn
are terms. In an extended logic program not A is true for a literal A if A is not explicitly
true, whereas ¬A is true if A explicitly is false. pos(r) = {A1, . . . , An} is the set of positive
literals, neg(r) = {B1, . . . , Bm} is the set of negative literals. The literals P (t1, ..., tn) and
¬P (t1, ..., tn) are called complementary. If l is a literal, the complementary literal is denoted
as l̄. A set of literals is called consistent, if it does not contain any complementary literals. A
consistent set is also called a state. [9]
A state S of an extended logic program P with no default negation is closed w.r.t. P if for each
rule r ∈ P it holds that if pos(r) ⊆ S it follows that head(r) ∩ S 6= ∅.

The programs we are dealing with are ASP programs, which are guaranteed to have finite
ground programs. Therefore rule safety is necessary, which requires that each rule r of a program
P fulfills the following criterion:

Definition 55. A rule is safe if each variable in that rule appears in at least one positive literal
within the body. A program P is safe, if each rule r ∈ P is safe.

From now on, in this section, when describing programs, we are strictly referring to safe
programs.

Definition 56. Let P be an extended logic program we define the reduct PS of P w.r.t.. a state
S as follows:

PS := {H←A1, ..., An|H←A1, ..., An,not B1, ...,not Bm ∈ P, {B1, ..., Bm}∩S = ∅}

This reduct also is known as Gelfond-Lifschitz-Reduct.

The Gelfond-Lifschitz-Reduct is informally constructed as follows:

27

• First we delete each rule r that has a negative literal not Bi in its body with Bi ∈ S.

• Secondly, we eliminate all negative literals of the form not Bi from the remaining rules.

Now that we have defined the Gelfond-Lifschitz-Reduct, we can describe the notion of stable
models. Stable models, which mostly are referred to as answer sets of a program, are defined as
follows [27]:

Definition 57. An interpretation S of a program P is a stable model of P if S = lfp(PS), where
PS stands for the Gelfond-Lifschitz-Reduct of P w.r.t. S.

Before we continue with various language extensions and later on in this chapter introduce
the guess & check methodology, we find it necessary to present the notion of unstratified nega-
tion. Therefore we have to take a look at what makes a program P stratified. A program P is
stratified if an evaluation ordering can be found such that we are able to evaluate each negated
relation with the relation’s meaning being determined beforehand. Formally stratified programs
can be defined by the use of a dependency graph as presented in [3]:

Definition 58. Let P be a program, then we define the dependency graphG = 〈V,E〉 as follows:

• The vertices V of the graph represent the predicates p of P .

• Two predicates p and q share an edge (p, q) ∈ E iff p is in the head of a rule R ∈ P and
q is in the body of R.

• An edge (p, q) ∈ E may be positive or negative. An edge (p, q) is positive iff there is a
rule R ∈ P for which p is in the head of a rule R and q occurs positively in the body of
R. (p, q) is negative iff there is a rule R ∈ P for which p is in the head of R and q occurs
negatively in the body of R.

Now that the dependency graph has been defined, we present the following definition:

Definition 59. A program P is stratified iff in its dependency graph there are no cycles contain-
ing a negative edge. [3]

Therefore we have an unstratified negation if for the negated relation in a rule no evaluation
ordering exists such that the relations truth value can be predetermined beforehand. We present
you with an example for a program with unstratified negation and one example for a program
with stratified negation:

Example 6. Let P be a program with the following two rules:

p(X)← q(X).

q(X)←not p(X).

Here the dependency graph would include following set of edges:{(p, q), (q, p)}. As can be seen
the graph would not contain a cycle with a negative edge, since for (q, p). p occurs negatively
in the body. Hence P is regarded as unstratified.

28

Example 7. We consider another program P with the rules:

p(X)← q(X).

q(X)←not o(X).

o(X).

The dependency graph of P contains the following edges: {(p, q), (q, o)}. It clearly does not
contain any cycle. And since the dependency graph does not contain any negative cycle, depen-
dency graph P is stratified.

Language Extensions

Various language extensions for answer-set programming have been introduced, in order to in-
crease compressiveness and to explore possible applications. They serve different purposes, such
as eliminating unwanted models from the answer sets or performing optimization tasks. Some
of these language extensions could result in an elevated level of complexity. The extensions
which we describe are:

• Integrity constraints

• Choice rules

• Disjunctive rules

• Weight constraints

• Optimization statements

One important extension are integrity constraints. Their purpose is to eliminate models that do
not meet the specified constraints. This elimination is based on the use of auxiliary predicates
as shown below and described in detail in [27, 39].

p←A1, ..., An,not p,not B1, ...,not Bm.

In this formula, by using the auxiliary predicate p, we create a situation in which each model
that does satisfy A1, ..., An,not B1, ...,not Bm. is rendered unstable.

Example 8. The program Pi: p ← not p. As explicitly explained in [27], constraints work as
follows: We consider two different kinds of interpretations M1 and M2 for Pi. The first type M1

is an interpretation, where p 6∈ M , thus the body of p←not p is satisfied and p should be true
in M this however is contradictory to p not being in M , which was the condition for the rules
body to be true. The second type M2 is an interpretation where p ∈ M , therefore the body of
the rule is false and Pi is satisfied by M2. But remember the definition of stable models: An
interpretation S of P is a stable model of P if S = lfp(PS). lfp(PM2) = ∅ which is different to
M2, hence M2 does not constitute a stable model of Pi.

29

For convenience reasons, the auxiliary predicate is omitted and constraints are rules of the
following form:

←A1, ..., An,not B1, ...,not Bm.

Below, we show how integrity constraints can be used to check the validity of a given 3-coloring
of a graph G = 〈V,E〉, where V are the vertices and E ⊆ V × V are the edges of the graph. A
valid 3-coloring of a graph G is an assignment of colors, three in number, to vertices of G, such
that no two adjacent vertices share the same color.

Example 9. Let G = 〈V,E〉 be our graph and L : V → C be our color assignment, where C
is a set of three colors C = {red , green, blue}. Now, when translating the problem of finding
a valid 3-coloring of G, our color assignment L is represented by the predicates: red(X),
green(X) and blue(X), where X is a variable. Vertices are represented by the unary predicate
v/1 and the edges by a binary predicate e/2. We expect a color assignment, where each vertex
has a color assigned. In order to check for a valid 3-coloring, we first check whether each node
has at least one color from the set C assigned:

← v(X),not red(X),not green(X),not blue(X).

And now make use of following integrity constraints to check that no neighboring vertices share
the same color:

← red(X), red(Y), v(X), v(Y), e(X,Y), X! = Y.

← green(X), green(Y), v(X), v(Y), e(X,Y), X! = Y.

← blue(X), blue(Y), v(X), v(Y), e(X,Y), X! = Y.

If an answer-set remains, we have got a valid 3-coloring.

Another extension are Choice rules [52]. Choice rules are used to encode choices over
subsets of head literals. These rules are of the following form:

{A1, ..., Am}←Am+1, ..., An,not An+1, ...,not Al

where 0 ≤ m ≤ n ≤ l and Ai for i = 0 . . . l are literals. The semantical meaning of a choice
rule is given the body literals are satisfied that each possible subset of the head can be included
in the stable model of a program. To illustrate their function, we present an example:

Example 10. We choose a very simple rule with an empty body:

{a, b}←

This rule results in the answer-sets {}, {a}, {b} and {a, b}.

30

A helpful extension are disjunctive logic programs, where the rule heads are allowed to
contain disjunctive information. They usually are used to represent indefinite knowledge and
are of the following form:

A1 ∨ . . . ∨Am←Am+1, . . . , An,not An+1, . . . ,not Al

where 0 ≤ m ≤ n ≤ l and Ai for i = 0 . . . l are literals. We illustrate the use of disjunctive
rules, with the following example:

Example 11. The following rule encodes the possibility that a switch s is either on or off which
is represented by the predicates on/1 and off/1:

on(s) ∨ off (s)← switch(s).

An answer set X of a disjunctive logic program P is a ⊆-minimal set of atoms being closed
under PX [2]. The rule r : A1 ∨ . . . ∨ Am←Am+1, . . . , An,not An+1, . . . ,not Al results
in a different answer set for each literal A1, . . . , Am, if pos(r) ∈ S and neg(r) 6∈ S for a
state S of a disjunctive logic program. So semantically for each answer set we conclude that
one of the alternatives from the rule head is true. The complexity of the underlying decision
problem is raised by the usage of disjunctive rules [26]. For a detailed overview over the different
complexity results, we refer to Table 2.2 of the complexity subsection.

Furthermore, weight constraint rules [49] provide another extension of normal logic pro-
grams. Those rules come with a lower and an upper bound, both of which can be omitted.
Lower and upper bounds may theoretically be real numbers, but so far we encountered only
integer implementations in the common answer-set programming solvers. We will provide the
syntax of those rules, which is as follows:

A0← l{a1 = wA1 , . . . , An = wAn , B1 = wB1 , . . . , Bm = wBm}

A0← l{a1 = wA1 , . . . , An = wAn , B1 = wB1 , . . . , Bm = wBm}u

where Ai for i = 0 . . . n, n ≥ 0 are positive literals and Bj for j = 1 . . .m,m ≥ 0 are
literals with default negation. l and u represent the lower and upper bound. w1, . . . , wn can be
positive as well as negative integers or real numbers respectively. Albeit, if negative weights
are used, the complexity of the program is increased by one level in the polynomial hierarchy.
Semantically, a weight constraint rule is satisfied, if the sum of all weights contained in this rule,
lies within the given bounds.

l ≥
∑
ai∈S

wai +
∑
bi 6∈S

wbi ≤ u

A special form of weight constraint rules are cardinality rules [49]. Those rules are used for
controlling the cardinality of subsets and can be applied by only providing a lower bound, or by
providing both, lower and upper bound as shown below:

A0← l{A1, . . . , Am,not Am+1, . . . ,not An}

31

A0← l{A1, . . . , Am,not Am+1, . . . ,not An}u

where 0 ≤ m ≤ n and Ai for i = 0 . . . n are literals. l and u are integer and represent the lower
and upper bound. Intuitively a cardinality rule is a weight constraint rule with all its weights set
to 1, as depicted below:

A0← l{A1 = 1, . . . , Am = 1,not Am+1 = 1, . . . ,not An = 1}

A0← l{A1 = 1, . . . , Am = 1,not Am+1 = 1, . . . ,not An = 1}u

Sometimes we want to find the optimum among all possible solutions. Therefore answer-set
programming comes with another powerful extension, optimization statements [49]. Here we
optimize w.r.t. the weights of a subset of literals and have the choice between minimizing and
maximizing. Although, as is well known, a minimization problem can easily be transformed
into a maximization problem. We are for convenience reasons provided with both possibilities:

minimize{a1 = wA1 , . . . , An = wAn , B1 = wB1 , . . . , Bm = wBm}

maximize{a1 = wA1 , . . . , An = wAn , B1 = wB1 , . . . , Bm = wBm}

where Ai for i = 0 . . . n, n ≥ 0 are positive literals and Bj for j = 1 . . .m,m ≥ 0 are literals
with default negation. These rules allow us to derive the stable models S with the smallest or
largest weight with respect to some statement M , which is either subject to maximization or
minimization:

w(M,S) =
∑
ai∈S

wai +
∑
bi 6∈S

wbi

Another language extension, which can be combined with other rules such as cardinality
rules or optimization statements and disjunctive rule heads are conditional literals.

` : d

where ` is a literal and the conditional d is constituted by a domain predicate. Such a con-
ditional literal is evaluated by conducting a substitution on ` : d in a program P where for the
resulting `′ : d′, d′ is in the stable model of P . [49]

Aggregates are the last extension we would like to mention. Aggregates are used to ex-
press or to determine properties of a set of elements and are similar to aggregates in SQL
databases [14]. Both Answer-Set Programming solvers that we describe in this chapter pro-
vide this particular language extension, although with slightly different syntax and usage. For
this reason we omit a detailed description here and refer to the respective subsections on DLV
and CLASP.

Architecture of Answer-Set Programming Solvers

Figure 2.10 depicts the whole process of solving a problem with the help of answer-set pro-
gramming. The problem itself, first of all, has to be translated into a logic program. Several

32

Problem

Logic Program Grounder Solver Stable Models

Solution

Figure 2.10: The ASP process

answer-set programming solvers offer slightly different syntax and may provide several lan-
guage extensions, but basically they all are fed with extended logic programs. The process of
determining the answer sets of those logic programs can basically be split into two separate
stages. In the first stage, the logic program undergoes the grounding process, where a program
P which may contain variables, is replaced by its ground instance grnd(P). In the second stage
a solver conducts the model search, which may result in none, a single or multiple stables model,
the answer sets of an ASP program. These resulting answer sets may then be interpreted, de-
pending on the application context. Some of the solvers combine those two stages in one single
executable, others consist of two executables where one does the grounding and the other con-
ducts the propositional model search.
Basically the grounder simply replaces the program P by its ground instance grnd(P), but for
efficiency reasons intelligent grounding techniques have been developed, which result in much
smaller grounded instances. The underlying idea is that many of the resulting literals such as
repeated literals in the body of rules, or tautological rules can be omitted without having any
effect on the resulting answer sets. Advances in database technology also had an effect on the
development of efficient grounders, since many problems in grounding are shared with database
applications [14].
After the grounding process, the propositional program is processed by a solver. These solvers
are based on sophisticated SAT-solvers which make use of techniques such as backtracking,
clause-learning and heuristics [14].

Answer-Set Programming Modeling Techniques

Now that we have presented various language extensions of answer-set programming, we are
ready to introduce a collection of four modeling techniques, which partially may involve the use
of these extensions. The modeling techniques, which we present are:

• guess & check

• saturation

• iteration over sets

The most common modeling technique is the Guess and Check methodology, which is also
referred to as Generate-and-Test and is elaborately explained by V. Lifschitz in [38]. In this

33

technique we employ two steps. In the first step, a set of candidate solutions is generated, which
is then filtered in the second step by constraints as follows:

1. Nondeterminism, obtained by the use of unstratified negation or choice rules, is used to
generate a set of candidate solutions.

2. The ”Check” or ”Test” in this methodology primarily consists of constraint rules. Those
constraint rules may include plain integrity constraints, cardinality constraints, weight
constraints or optimization statements. This part of the process might include auxiliary
predicates as well.

Again, as an example, we refer to the problem of 3-colorability of a graph G = 〈V,E〉,
where V are the vertices and E ⊆ V × V are the edges of the graph again and we look for
a valid 3-coloring of a graph G which is an assignment of colors such that no pair of adjacent
vertices is assigned the same color.

Example 12. Let G = 〈V,E〉 be a graph and our color assignment L : V → C , where C is a
set of three colors C = {red , green, blue}. Now, when translating the problem of finding a valid
3-coloring of G, our colors are represented by the predicates: red(X), green(X) and blue(X),
where X is a variable. The nodes are represented by node(X) and edges between two nodes X
and Y are encoded as follows: edge(X,Y). Now that we have our graph representation, we are
ready to encode our ”Guess” and ”Check” program:
The ”Guess” consists of a disjunctive/choice rule:

red(X), green(X), blue(X)← node(X).}Guess

And the ”Check” consists of the following three rules:

←red(X), red(Y), edge(X,Y).

←green(X), green(Y), edge(X,Y).

←blue(X), blue(Y), edge(X,Y).

Check

Example 13. Here we encode the same example again, but instead of choice rules, we make
use of unstratified and double negation. Again we let G = 〈V,E〉 be a graph and our color
assignment L : V → C , where C is a set of three colors C = {red , green, blue}. Now, when
translating the problem of finding a valid 3-coloring of G, our colors are represented by the
predicates:red(X), green(X) and blue(X), where X is a variable. The nodes are represented
by node(X) and edges between two nodes X and Y are encoded as follows: edge(X,Y). Now
that we have our graph representation, we are ready to encode our ”Guess” and ”Check” pro-
gram:

34

red(X)←not¬red(X),node(X).

¬red(X)←notred(X),node(X).

green(X)←not¬green(X),node(X).

¬green(X)←notgreen(X),node(X).

blue(X)←not¬blue(X),node(X).

¬blue(X)←notblue(X),node(X).


Guess

←red(X), red(Y), edge(X,Y).

←green(X), green(Y), edge(X,Y).

←blue(X), blue(Y), edge(X,Y).

Check

The next technique that we present is the saturation technique. It is used to test whether a
property holds for all possible guesses in an ASP program. This means for instance that one can
check whether or not a solution to a problem exists and if so provide a single answer set for that
case. When considering 3-colorability as an example, one can check whether or not a graph is
3-colorable by the use of saturation.
To check whether a property holds for all guesses of a program P , we have to define an answer
set candidate which constitutes a witness for its satisfaction. We call it Msat , which is the single
answer set if the wanted property is present in all guesses. Otherwise, if the desired property
does not hold for every guess, there will be an answer set M which is not fully saturated and
M¬sat ⊂ Msat . Due to the definition of stable models this yields the result that Msat is not a
stable model anymore and is therefore not included in the answer sets of P . [27]

Also in [27] a general design rule for the saturation process in answer-set programming is
presented for performing a check whether a given property Pr holds:

1. Define the search space of all guesses, by either choice rules or the use of unstratified
negation. We call that search space subprogram Pguess .

2. Use a subprogram Pcheck in order to verify if property Pr holds for an arbitrary guess
MG.

3. If Pr holds, we perform the saturation on MG to generate Msat.

4. If the property Pr does not hold for MG, then program P does yield a strict subset
M¬sat ⊂ Msat .

For this technique we choose the example of checking whether a given graph is bipartite. A
graph G = 〈V,E〉 is bipartite if it can be divided into two disjoint sets U1 ⊆ V and U2 = V \U1

such that every edge of E connects a vertex x ∈ U1 to a vertex y ∈ U2. This problem is the
same as checking whether a graph is two-colorable and can be encoded as follows:

Example 14. Let G = 〈V,E〉 be a graph. Then V are the vertices and E ⊆ V × V are the
edges of the graph. The vertices are represented by facts v/1 and the edges are represented by

35

a binary predicate e/2. Now the two disjunctive subsets of V , U1 ⊆ V and U2 = V \U1 are
represented by the predicates u1/1 and u2/1.

u1 (X) ∨ u2 (X)← v(x).}Pguess

not_bip← u1 (X), u1 (Y), edge(X,Y).

not_bip← u2 (X), u2 (Y), edge(X,Y).

}
Pcheck

u1 (X)←not_bip, v(X).

u2 (X)←not_bip, v(X).

}
Psaturate

In the first subprogram Pguess we use a choice rule to guess every possible subset-assignment for
the vertices of G. In the subsequent subprogram Pcheck we now check whether the assignment
of subsets to vertices is legal according to the definition of a bipartite graph. If the assignment
at some point does constitute a witness for a bipartite graph, not_bip does not hold at that
point and we do not saturate this answer set. In the next step Psaturate and P together with the
graph does not yield the saturated answer set Msat . Otherwise, for each step we saturate every
possible answer set and the single answer set Msat is the result which indicates that the graph
is not bipartite.

The last technique we present is iteration over a set, which may serve several purposes such
as testing whether a property holds for all answer-sets without the use of negation. There are two
primary reasons for using such a method. The first one is to avoid the use of negation where it
could lead to undesired behavior such as cyclic negation. The second one is the use of iteration
over a set in combination with the saturation technique. [27].
Another application of this technique is to recursively generate answer-sets. Here a successor
relation is used to label the answer-set of a program in order to iteratively apply the program
again on its result in order to compute a new answer-set.
The effect of iteration is reached by the use of an ordering, which is imposed on some part of
the domain of the problem encoding, as we can see in the example below. Then the smallest
element of a domain is determined to be a starting point for the iteration. With the help of
the successor relationship from the ordering, the successor variable of the variable labeling the
current iteration step is determined.

Example 15. Here an order is put on the vertices of a graph G = 〈V,E〉, where the vertices V
are represented by the predicate node/1.

lt(X,Y)← node(X),node(Y), X < Y.

nsucc(X,Z)← lt(X,Y), lt(Y,Z).

succ(X,Y)← lt(X,Y),not nsucc(X,Y).

ninf (X)← lt(Y,X).

nsup(X)← lt(X,Y).

inf (X)← not ninf (X),node(X).

sup(X)← not nsup(X),node(X).

36

The predicate succ/2 denotes the successor relationship, where the predicates inf/1 and
sup/1 represent the smallest, respectively the largest domain element.

Complexity of ASP

In this subsection we include a brief look at complexity results within the field of Answer-Set
Programming as provided by [22]. Since we too are dealing with fixed programs, there is no
need to for adaptations and therefore we can focus on data complexity. More specifically we
are dealing with the data complexity of checking whether P (D) |= A with P being a logic
program, D being the input database and A a set of ground atoms. We distinguish between two
types of decision problems. Here |=c stands for credulous reasoning and |=s stands for skeptical
reasoning.

e normal programs disjunctive programs optimization programs
|=c NP ΣP

2 ΣP
2

|=s coNP ΠP
2 ΠP

2

Table 2.2: Complexity for logic programs. [22]

Answer-Set Programming Systems

In this subsection we present the Answer-Set Programming systems which we use for computing
our encodings. The first such system is an implementation of Disjunctive Logic Programming
which was developed by the Technische Universität Wien and the University of Calabria, called
DLV. The second system, which we use is CLASP in combination with GRINGO. Both are part
of the ”Potsdam Answer Set Collection” [30,33] and have been developed, as the name implies,
at the University of Potsdam.

DLV

DLV [11] is an implementation of Disjunctive Logic Programming which was developed by the
Technische Universität Wien and the University of Calabria.
Disjunctive Logic Programs are programs where disjunction is allowed in the head of the rules
and negation may occur in the body of the rules. The semantics, which is implemented in DLV
is the answer set semantics as presented by V. Lifschitz [39]. As a result a disjunctive logic
program may have several models called answer sets. Furthermore, DLV is extended with weak
constraints [37] .
The syntax of DLV is constructed as follows:
Variables are denoted as strings, which start with an uppercase letter. Strings which start with
a lowercase letter denote constants. Positive integer constants and strings are surrounded with
double quotes. Terms are either a variable or a constant. Atoms are predicates p of the form
p(t1, ..., tn). A literal l is either an atom p or a negated atom ¬p. Negation as failure is denoted
by literals l with a preceding not: not l. The complementary of a classic literal l, ¬l is defined

37

as ¬p if l = p and as p otherwise.

The disjunction a1∨ ...∨an is called the head of the rule and b1, ..., bk, not bk+1, ..., not bm
denote the body. A rule without head is called an integrity constraint and a rule, which has
precisely one head literal is called normal. A rule with empty body is called fact (”:-” can be
omitted). A special type of integrity constraint are weak constraints. As opposed to standard
constraints, these constraints do not necessarily need to be satisfied. Hence their violation does
not remove an answer-set from the solution. Yet the solver aims to minimize the weight of vio-
lated weak constraints. Furthermore it is possible to prioritize weak constraints. When applying
prioritization, the violations of the weak constraints with the highest priority are minimized first.
This minimization continues with the lower priority levels in descending order.

Definition. Weak constraints contain the symbol ”:∼” instead of ”: −”. They are an expression
of following form:
:∼ b1, ..., bk, not bk+1, ..., not bm.[w : l]
where w stands for weight and l for the layer. w and l are both positive integer constants.

Before we present the various aggregates supported by DLV, we have to define symbolic sets
which aggregates work with. A symbolic set is defined in DLV as follows [11]:

Definition 60. Let vars be a set of local variables and conj is a set of non-aggregate literals,
then

{vars : conj}

syntactically denotes a symbolic set. A variable is considered local if it occurs in at least one
literal of conj , and does not appear outside the symbolic set. A global variable, is a variable
that occurs outside the symbolic set. Literals of conj may contain constants, local variables,
and global variables.

DLV offers aggregate predicates which allow one to express properties over a set of ele-
ments. They can be contained in the body of rules and constraints. Aggregates may also be
negated by the default negation. The aggregates which DLV supports are: #count, #min,
#max, #sum and #times. Their meaning and function is described in Table 2.3.

An example of such a predicate use might be:

Example 16. Suppose we want to count the number of directed edges, connected to a vertex of
a graph. A vertex is represented by the predicate v/1 and an edge is represented by the predicate
e/2. Then the following rule determines the number N of edges (outgoing and incoming) for
each vertex X .

1 edges (X , N) :− N = N1 + N2 , N1 = # c o u n t {Z : e (X , Z) } , N2 = # c o u n t {Z : e (Z , X) } ,
v (X) .

Furthermore DLV supports a variety of comparative predicates (see Table 2.4) to enable the
comparison of constants. Those constants encompass integers as well as any other type of sym-
bols, but note that only for the integer comparison the semantics is determined. For all other

38

aggregate function of the aggregate
#count cardinality of the local set
#min computes the minimum value of the first local vari-

able to be aggregated over in the symbolic set
#max computes the maximum value of the first local vari-

able to be aggregated over in the symbolic set
#sum returns the sum of the first local variable to be ag-

gregated over in the symbolic set
#times computes the product of the first local variable to be

aggregated over in the symbolic set

Table 2.3: built in aggregates

type of constants only a fixed ordering can be guaranteed.

predicate meaning
== or = equal
!= not equal
< less than
<= less than or equal
> greater than
>= greater than or equal

Table 2.4: built in comparative predicates [11]

Another set of supported predicates are arithmetic predicates as depicted in Table 2.5. In
order to make use of this extension provided by DLV, an upper limit N for integers has to be
provided in the command line. DLV only does work with positive integers and if one provides
integer constants outside this range in the input, DLV responds by issuing a warning. The
arguments of arithmetic predicates always consist of zero or more input arguments (which have
to fulfill the safety criterion) and exactly one output argument. Note that arithmetic predicates
in DLV will never return a negative output argument. [11]

The last functionality of DLV we would like to mention is guards. Guards are either variables
or numeric values. They are a means to compare values which aggregate predicates return. We
distinguish between two types of guards, ordinary guards and assignment guards, which are
used as variables to store the return value of an aggregate. Aggregates with assignment guards
always evaluate to true.

CLASP

As an alternative answer-set programming solver technology, we chose CLASP and GRINGO.
Both are part of the ”Potsdam Answer Set Collection” [30, 33] and have been developed, as
the name implies, at the University of Potsdam. All the programs of the ”Potsdam Answer Set

39

predicate meaning
#int(X) is true, iff X is a known integer.
#succ(X, Y) is true, iff X + 1 = Y holds.
#prec(X, Y) is true, iff X − 1 = Y holds.
#mod(X, Y, Z) is true, iff (XmodY) = Z holds.
#absdiff(X, Y, Z) is true, iff |X − Y | = Z holds.
+(X,Y,Z), or alternatively: Z=X+Y is true, iff Z = X + Y holds.
*(X,Y,Z), or alternatively: Z=X*Y is true, iff Z = X × Y holds.
-(X,Y,Z), or alternatively: Z=X-Y is true, iff Z = X − Y holds.
/(X,Y,Z), or alternatively: Z=X/Y is true, iff Z = X ÷ Y holds.

Table 2.5: built in arithmetic predicates [11]

Problem

Logic Program Grounder
(GRINGO)

Ground Program
(Lparse format)

Solver
(CLASP) Stable Models

Solution

Figure 2.11: The ASP solving process with CLASP and GRINGO

Collection” are written in C++ and published under the GNU General Public License [31].
CLASP is a conflict-driven answer-set solver which combines the high-level modeling capac-
ities of Answer-Set Programming with state-of-the-art techniques from the area of Boolean
constraint-solving. [34]. GRINGO is a grounder for logic programs under answer sets semantics
and has originally been developed as a combination and extension of the grounding approaches
of lparse and DLV [35]. GRINGO’s primary purpose is to preprocess given logic programs
and perform variable substitution. The task performed by GRINGO can be split into four dif-
ferent phases. In the first phase, the input program is checked syntactically for correctness
and an internal representation of it is generated. In the second phase, GRINGO verifies that a
finite equivalent ground instantiation exists for the input. Then the ground instances are com-
puted according to a predetermined schedule in order to evaluate in the 4th and last phase, the
newly derived ground instances [35]. The output of gringo can then be passed to CLASP in an
lparse [51] format. CLASP then applies techniques, such as conflict driven clause learning [40]
and various heuristics. The application of CLASP on the grounded output of gringo then results
in the desired answer sets, as depicted in Figure 2.11.

The input language of GRINGO consists of rules, facts, integrity constraints and a variety of
meta-statements. Rules, facts and integrity constraints are constructed from terms, the most basic
ones of which are integers, constants and variables. A special type of variables are anonymous
variables, which are denoted as ’_’. Anonymous variables are similar to standard variables, with

40

one difference: each occurrence of ’_’ is treated as a newly introduced variable. Furthermore,
special constants exist such as ’#infinum’ and ’#supremum’ which stand for the smallest and the
largest possible value. A rule is represented by a construct of the following form:

A0: −L1, . . . , Ln

whereA0 is an atom that constitutes the head of the rule. The body is composed of a conjunction
of literals, separated by a comma. Any literal is denoted as Li for 1 ≤ i ≤ n and consists of an
atom A or a negated atom notA, where not stands for the default negation. It remains to note,
that GRINGO expects the rules of a program to be safe. Facts are rules with an empty body and
of the following form:

A0.

Again A0 is an atom. Integrity constraints are rules with an empty head and are represented in
the following way:

: −L1, . . . , Ln

A term which does not contain any variable is denoted as a ground term. Subsequently, we will
further describe the various parts, which extend the input language of GRINGO.

Classical negation in front of atoms and denoted as − (not to confuse with default negation)
is permitted in front of atoms −A. In contrast to default negation, where the negation of an
atom holds as long as the atoms truth itself cannot be established, classical negation of an atom
only holds if the complementary of the atom can be established. Classical negation constitutes
merely a extra syntactic feature, which can be constructed by the use of integrity constraints [31].

CLASPD an extended version of CLASP does come with support for disjunctive rules. As
already explained they are rules with disjunctions in their heads. In the rule heads, atoms of a
disjunction are separated by a pipe symbol ’|’. Those disjunctions are usually used to represent
indefinite knowledge and are one possible way of performing the guess & check technique.
As already mentioned in our section on complexity of answer-set programming, disjunction in
rule heads does increase the complexity of programs. Again we return to our example of 3-
colorability and show how a guess & check procedure is encoded with the help of disjunctive
rules as in CLASPD.

Example 17. Let G = 〈V,E〉 be a graph and our color assignment L : V → C , where C is a
set of three colors C = {red , green, blue}. Now, when translating the problem of finding a valid
3-coloring of G, our colors are represented by the predicates:red(X), green(X) and blue(X),
where X is a variable. The nodes are represented by node(X) and edges between two nodes X
and Y are encoded as follows: edge(X,Y). Now that we have our graph representation, we are
ready to encode our ”Guess” and ”Check” program:
The ”Guess” consists of a disjunctive rule:

1 red (X) | green (X) | b l u e (X) :− node (X) .
2
3 :− red (X) , red (Y) , edge (X , Y) .
4 :− green (X) , g reen (Y) , edge (X , Y) .
5 :− b l u e (X) , b l u e (Y) , edge (X , Y) .

41

GRINGO comes with a great number of different arithmetic functions, which are presented
in Table 2.3. Please note that it is not allowed to bind variables in the scope of an arithmetic

operation symbols
addition +
subtraction -
unary minus -
multiplication *
division / or #div
modulo \ or #mod
absolute | · | or #abs
power ∗∗ or #pow
bitwise and &
bitwise or ?
bitwise xor ˆ
bitwise complement ˜

Table 2.6: built-in arithmetic functions

function by a corresponding atom. [31]

Example 18. We present some small examples of how these arithmetic predicates can be used:

1 v a l u e 1 (4) . v a l u e 2 (8) .
2 a d d i t i o n (V1 + V2) :− v a l u e 1 (V1) , v a l u e 2 (V2) .
3 s u b t r a c t i o n (V2 − V1) :− v a l u e 1 (V1) , v a l u e 2 (V2) .
4 m u l t i p l i c a t i o n (V1 ∗ V2) :− v a l u e 1 (V1) , v a l u e 2 (V2) .
5 d i v i s i o n (V1 / V2) :− v a l u e 1 (V1) , v a l u e 2 (V2) .
6 modulo (# mod (V1 , V2)) :− v a l u e 1 (V1) , v a l u e 2 (V2) .
7 modulo (V1 #mod V2) :− v a l u e 1 (V1) , v a l u e 2 (V2) .
8 modulo (V1 \ V2) :− v a l u e 1 (V1) , v a l u e 2 (V2) .
9 a b s o l u t e (# abs (V)) :− v a l u e 1 (V) .

10 power (V1 ∗∗ V2) :− v a l u e 1 (V1) , v a l u e 2 (V2) .

As the reader can see various notations for the same operation are valid.

Furthermore the following comparison predicates are supported:

predicate meaning
== equal
!= not equal
< less than
<= less than or equal
> greater than
>= greater than or equal

Table 2.7: built-in comparison predicates

42

Comparison predicates can be evaluated with integers as well as arbitrary ground terms,
where constants are ordered lexicographically and the function symbols are ordered according
to their arity first and then lexicographically. If the name is the same, they are ordered compo-
nent wise. Integers are always smaller than constants and constants are smaller than function
symbols. Note: Arithmetic functions are always evaluated before the application of comparison
predicates [31].

Furthermore, built-in predicates ”=” and ” :=”, used as assignment operators, are provided.
These predicates unify a term on the right side of the predicate to a non-ground term on the
left-hand side [31].

GRINGO offers some convenience when defining a great number of facts through the use of
intervals of integers. We provide an example:

Example 19. Let fact/1 be an arbitrary unary predicate, then we define a list of facts over a
range of integers from i to j as follows:

fact(i..j).

Another feature that is supported by GRINGO, are conditions, which allow for instantiating
variables to collections of terms within a single rule. This feature is quite convenient in order to
define more compact representations of aggregates or for defining conjunctions or disjunctions
over many arbitrarily ground atoms. Note three important limitations for a correct application
of conditions [31]:

• All predicates on the right-hand side of a condition must either be domain predicates or
built-in.

• Each variable within an atom in front of a condition must occur on the right-hand side or
be global.

• Global variables are prioritized over local ones. One has to choose local variables with
care in order to avoid accidental conflicts.

Example 20. We present an example where conditions are used for compact representations of
aggregates. Let G = 〈V,E〉. The nodes are represented by node(X) and edges between two
nodes X and Y are encoded as follows: edge(X,Y).

1 e d g e c o u n t (X , V1 + V2) :− V1 = # c o u n t { edge (X , _) : node (X) } , V2 = # c o u n t { edge
(X , _) : node (X) } .

Here we count the number of edges for a given node.

Pooling, which is represented by the symbol ”;” is a method to achieve a more compact
representation for atoms where we encode several options. Pooled arguments in a term of the
rule body are expanded to a conjunction of the different options, where pooled arguments of a
term in the head are expanded to multiple rules with the various options in the head [31].

43

An extensive collection of aggregates is provided, which in general are of the following
form:

l op [L1 = w1, . . . Ln = wn]u

where l and u are the lower and the upper bound. Li, for 1 ≤ i ≤ n are a multi-set of literals,
for which wi denotes the weight. An aggregate evaluates to true, if the operation op applied
to the multi-set lies within the specified bounds. The fact that multi-sets are used results in the
possibility of the same literals occurring multiple times within that multi-sets. In the table below
you will find the various aggregates which are supported: If aggregates, which are allowed to

aggregate function of the aggregate
#count count literals (allowed, without bounds, on right-hand side of assignments)
#min minimum weight (allowed, without bounds, on right-hand side of assignments)
#max maximum weight (allowed, without bounds, on right-hand side of assignments)
#sum sum of the weights (allowed, without bounds, on right-hand side of assignments)
#avg average of the weights
#even true if the number of true literals within the multi-set is even
#odd true if the number of true literals within the multi-set is odd

Table 2.8: built in aggregates

be used in that way are placed on the right-hand side of an assignment, it is advised to only use
domain predicates within that aggregate, because otherwise a space-blow up may be the result.
#count is a special aggregate of the form:

#count {L1, . . . Ln}u

which comes only with an upper bound u and all weights set to 1 by default. Another special set
of aggregates are #even and #odd , which are aggregates with all weights set to 1 and no lower
or upper bounds specified. Like the #count aggregate, these aggregates have curly brackets
instead of square brackets. In the aggregates where curly brackets are used repeated occurrence
of literals is not counted. Regarding variables in aggregates: here an atom occurring within an
aggregate behaves similar to an atom of the left side of a rule. Any variable occurring within an
aggregate is local and has to be bound by a variable which occurs outside the aggregate or by a
variable occurring on the right-hand side of a condition [31].

Optimization statements are a language extension which is of course included as well. One
kind of optimization statements is built upon multi-sets and denoted with square brackets. Here
weights might be provided. The other kind is denoted with curly brackets and no extra weight
assignments are possible. For both types of optimization statements, priority levels might be
provided. For compatibility reasons with LPARSE, default priorities are assigned, if multiple
optimization statements are used. Their priorities are then determined by the the occurrence of
the statements in the program. The later a statement occurs, the higher its priority is. Syntacti-
cally optimization statements are constructed as follows:

opt [L1 = w1@p1, . . . Ln = wn@pn]

44

opt {L1@p1, . . . Ln@pn}

where again Li, for 1 ≤ i ≤ n are a multi-set or a set of literals. wi denotes the weight and pi
denotes the priority levels.

Example 21. We present an example which concisely depicts a program that makes use of
optimization statements. Suppose a project manager of some company wants to build a project
team based on following criteria: The team should consist of at least 5 employees of which at
least one is an electrical engineer. The team should have the best experience, but incur minimal
cost. Experience is of more importance than minimizing the costs.

1 # h i d e .
2 #show in_ team / 1 .
3 employee (1 . . 1 0) .
4 e x p e r i e n c e (1 , 4) . e x p e r i e n c e (2 , 3) . e x p e r i e n c e (3 , 3) . e x p e r i e n c e (4 , 3) .

e x p e r i e n c e (5 , 3) .
5 e x p e r i e n c e (6 , 3) . e x p e r i e n c e (7 , 3) . e x p e r i e n c e (8 , 3) . e x p e r i e n c e (9 , 3) .

e x p e r i e n c e (1 0 , 3) .
6 c o s t (1 , 5) . c o s t (2 , 2) . c o s t (3 , 7) . c o s t (4 , 6) . c o s t (5 , 4) .
7 c o s t (6 , 3) . c o s t (7 , 4) . c o s t (8 , 5) . c o s t (9 , 9) . c o s t (1 0 , 3) .
8 e l e c t r i c a l _ e n g i n e e r (3) .
9 e l e c t r i c a l _ e n g i n e e r (5) .

10
11 i n_ t eam (X) :− not −i n_ t eam (X) , employee (X) .
12 −i n_ t eam (X) :− not i n_ t eam (X) , employee (X) .
13
14 e l e c t r i c a l e n g i n e e r :− i n_ t eam (X) , e l e c t r i c a l _ e n g i n e e r (X) .
15 # maximize [in_ t eam (X) : e x p e r i e n c e (X , Y)=Y@1] .
16 # m i n i m i z e [in_ t eam (X) : c o s t (X , Y)=Y@2] .
17
18 :− V = # c o u n t { in_ t eam (X) } , V < 5 .
19 :− not e l e c t r i c a l e n g i n e e r .

Lines 1 and 2 are meta-statements which we will describe subsequently. In line 3, we generate
10 employees. In lines 4 to 10 we use three different predicates to assign to each employee an
experience value, a cost factor and the qualification of being an electrical engineer. Line 11 and
12 constitute the guess of the assignment of employees to the team. Line 14 is a rule which tells
us, if our team includes an electrical engineer. In line 15 and 16, we provide the optimization
statements. We want to maximize the experience in the team and at the same moment minimize
the cost. Line 18 and 19 are integrity constraints which assure that the team is not smaller than
the size of 5 and that an electrical engineer is included.

The meta-statements which are supported include the symbols which denote a line as a com-
ment ”%” and the symbols ”%*” and ”*%” which denote a multi-line comment. Furthermore,
the statements ”#show” and ”#hide” can be used to explicitly state which predicates shall be
shown or hidden in the answer sets. Below we present an example we borrowed from [31], to
show how these statements are used.

Example 22. An example how the meta-statements ”#show” and ”#hide” are used:

45

1 # h i d e . % S u p p r e s s a l l atoms i n o u t p u t
2 # h i d e p / 3 . % S u p p r e s s a l l atoms o f p r e d i c a t e p / 3 i n o u t p u t
3 # h i d e p (X , Y) : q (X) . % S u p p r e s s p / 3 i f t h e c o n d i t i o n h o l d s
4 #show p / 3 . % I n c l u d e a l l atoms o f p r e d i c a t e p / 3 i n o u t p u t
5 #show (X , Y) : q (X) . % I n c l u d e p / 3 i f t h e c o n d i t i o n h o l d s

46

CHAPTER 3
ASP based Argumentation

In this chapter, we provide an extensive overview over the existing approaches with respect to
abstract argumentation in answer-set programming. In the first section we present an overview
following the survey on abstract argumentation in answer-set programming by F. Toni and
M. Sergot , provided in [53], which deals with the approach by C. Nieves et al. [42], which
is based on a method relying on the use of propositional formulas, another by T. Wakaki and
K. Nitta, presented in their article [54]. Furthermore, the survey summarizes the approach of
U. Egly et al. [24, 25] to compute the extensions of the conflict-free, admissible, preferred, sta-
ble, complete and grounded semantics. Last-mentioned is the encoding of the ideal semantics
proposed by W. Faber and S. Woltran in [28].
We continue with a section in which we present two existing approaches to computing the
resolution-based grounded semantics with the help of answer-set programming. The first one
was developed by S. Woltran et al. and is based on an algorithm which was originally proposed
by Baroni et al. [5]. It is primarily based on the Guess & Check paradigm and on the iteration
over sets. The second approach is based on the meta-modeling technique as proposed in [32] by
M. Gebser et al.

3.1 Encodings of Standard Semantics

In this section we present various approaches to encoding the standard semantics of abstract
argumentation, basically following the article of F. Toni and M. Sergot [53]. This article pro-
vides an extensive survey on those approaches, using answer-set programming for computing
the extensions. These encodings provide a (mostly) one-to-one correspondence between the
answer-sets of the different encodings and the extensions of the semantics. When describing the
different approaches, F. Toni and M. Sergot differentiate between them by the kind of extension
these encodings focus on and by type of mappings and the correspondences they define. They
categorize them into two distinct groups. All the approaches mentioned by F. Toni and M. Ser-
got, rely on DLV as answer-set solver.

47

The first approach to be explained is the computation of the preferred extension proposed
by C. Nieves et al. [42], which is based on a method using propositional formulas. With those
propositional formulas conditions for sets of arguments of an abstract argumentation framework
G = 〈A,R〉 are described. The answer-sets of this approach are in one-to-one correspondence
with the extensions of the preferred extension. It consists of a mapping, which results in a
disjunctive logic program that defines a predicate def , where each pair (x, y) ∈ R is represented
by a rule:

def (x) ∨ def (y).

For each pair (x, y) ∈ R furthermore another rule is added:

def (x)← def (z1), . . . , def (zk).

where (k ≥ 0) and the arguments z1, . . . zk are defenders of x against y, which means for each
zi : att(zi, y) ∈ R there does not exist another attack of y in R. Then the preferred extension is
defined as the complement of each answer-set of the encoding described, meaning an argument
x is in the extension if the corresponding predicate def (x) is not part of the answer-set. For a
detailed description please refer to [53].

In their article T. Wakaki and K. Nitta [54], present encodings for the complete, stable,
preferred, grounded and semi-stable semantics. Their approach is based on the reinstatement
labelings as introduced by M. Caminada [15], which essentially are total functions, mapping
from arguments of an AF to labels {in, out , undec}. Where arguments are labelled in all its
attackers are labelled out and arguments are labelled out if there exists an argument which is
attacking it and is labelled in . For each encoding, an argumentation framework AF = 〈A,R〉
is translated into an input database F̂ as follows:

F̂ = {arg(a) | a ∈ A} ∪ {att(a, b) | (a, b) ∈ R}

Then the complete extensions, for instance, are determined by the following encoding:

Πcompl = {in(X)← arg(X),not ng(X).

ng(X)← in(Y), att(Y,X).

ng(X)← undec, att(Y,X).

out(X)← in(Y), att(Y,X).

undec(X)← arg(X),not in(X),not out(X).}

Here, as well, the resulting answer-sets are in one-to-one correspondence with the extensions of
the complete semantics. Each argument labelled in is an argument of the extension. As opposed
to the latter approach by U. Egly et al. (see below) and where maximality checks are performed
implicitly, T. Wakaki and K. Nitta perform the maximality checks separately in a form of pro-
cessing. For a more in-depth overview, we again refer to [53].

48

In their articles U. Egly et al. [24, 25] propose encodings for the extensions of the conflict-
free, admissible, preferred, stable, complete and grounded semantics. The first step transforms
the input argumentation framework AF = 〈A,R〉 into answer-set programming rules:

F̂ = {arg(a) | a ∈ A} ∪ {att(a, b) | (a, b) ∈ R}

For computing the extensions of the different semantics, they follow a modular approach. By
combining the input AF F̂ with one or more sets of rules each of which responsible for a certain
semantics.

We begin by describing the encoding for computing the conflict-free extensions for a given
AF which is constructed as follows:

Πcf = {in(X)← not out(X), arg(X).

out(X)← not in(X), arg(X).

← in(X), in(Y), defeat(X,Y).}

Πcf starts with a guess, and then discards all models which are not conflict-free. The resulting
extensions are obtained by computing the answer sets, for a logic program F̂ ∪ Πcf , which are
in a one-to-one correspondence with the respective extensions. For the remaining semantics ad-
missible, preferred, stable, complete and grounded, the technique works in the same fashion.

We continue with the description of the encoding for the admissible semantics. This encod-
ing relies on the computation of the conflict-free extensions and adds a rule-set for discarding
all answer-set where arguments within an extension are not defended by the extension itself.

Πadm = Πcf ∪ {defeated(X)← in(Y), defeat(Y,X).

not_defended(X)← defeat(Y,X),not defeated(Y).

← in(X),not_defended(X).}

The encoding for the complete extension Πcomp builds on the encoding of the admissible
extension Πadm and adds a constraint which discards all answer-set where arguments defended
by the extension are not contained in that extension.

Πcomp = Πadm ∪ {← out(X),not not_defended(X).}

The two answer-set programming modeling techniques saturation and iteration over sets,
require an order< over the domain elements, in order to be able to construct some form of loops.
This order, together with some helper predicates succ/2, inf/1, sup/1, lt/1, is provided
by the following module Π< which is also used by all the encodings which we subsequently
describe.

49

Π< = {lt(X,Y)← arg(X), arg(Y), X < Y.

nsucc(X,Z)← lt(X,Y), lt(Y,Z).

succ(X,Y)← lt(X,Y),not nsucc(X,Y).

ninf (X)← lt(Y,X).

nsup(X)← lt(X,Y).

inf (X)← not ninf (X), arg(X).

sup(X)← not nsup(X), arg(X).}

Before we are able to present the encoding of the grounded semantics, we have to present
Πdefended which includes the needed predicate defended/1. The predicate defended/1
itself is based on another predicate that is included in Πdefended , defended_upto/2. For
instance defended_upto(X,Y) encodes the fact that an argument X is defended by a current
assignment with respect to all arguments U ≤ Y [24].

Πdefended = {defended_upto(X,Y)← inf (Y), arg(X),not defeat(Y,X).

defended_upto(X,Y)← inf (Y), in(Z), defeat(Z, Y),

defeat(Y,X).

defended_upto(X,Y)← succ(Z, Y), defended_upto(X,Z),

not defeat(Y,X).

defended_upto(X,Y)← succ(Z, Y), in(V), defeat(V, Y),

defeat(Y,X).

defended(X)← sup(Y), defended_upto(X,Y).}

Having defined defended/1, the encoding of the grounded semantics [24] can be presented:

Πground = Π< ∪Πdefended ∪ {in(X)← defended(X).}

The last encoding, proposed by U. Egly et al., which we describe carries out the task of com-
puting the preferred extensions. For encoding the preferred semantics, U. Egly et al. make use
of the saturation technique. Since the encoding of the preferred extension is not as trivial as the
computation of the previous semantics, we recall the definition of the preferred semantics: Let
AF = 〈A,R〉 be an argumentation framework, then a set S ⊆ A is a preferred extension w.r.t.
AF iff S is a maximal (w.r.t. set inclusion) element of AS(AF). Built upon the computation of
the admissible extensions Πadm U. Egly et al. construct a second guess using the new predicates
inN/1 and outN/1. This guess of a subset S′ ⊂ S is based on disjunction instead of default
negation. The use of disjunction allows both predicates, inN/1 and outN/1, to hold for an
argument. The saturation is performed such that both predicates, inN/1 and outN/1, can be
derived for each argument a ∈ S′ where S′ does not characterize an admissible extension. Now
if this saturation is successful for each S′ ⊂ S, the underlying interpretation is considered an

50

answer-set for the encoding. This procedure is perfomed with the help of the newly introduced
predicate spoil/0, which is our witness for the saturation:

Πspoil = {inN (X) ∨ outN (X)← out(X).

inN (X)← in(X).

spoil← eq .

spoil← inN (X), inN (Y), defeat(X,Y).

spoil← inN (X), outN (Y), defeat(Y,X), undefeated(Y).

inN (X)← spoil , arg(X).

outN (X)← spoil , arg(X).

←not spoil}

The constraint ←not spoil makes sure that a guess only survives if it is saturated. Πspoil

does need some additional intermediary predicates which are introduced by the module Πhelpers .
eq/0 is a predicate, relying on eq_upto/1, which holds if S′ = S. The unary predicate
undefeated/1 holds for an argument if it is undefeated by the elements of S′.

Πhelpers = Π< ∪ {eq_upto(Y)← inf (Y), in(Y), inN (Y).

eq_upto(Y)← inf (Y), out(Y), outN (Y).

eq_upto(Y)← succ(Z, Y), in(Y), inN (Y), eq_upto(Z).

eq_upto(Y)← succ(Z, Y), out(Y), outN (Y), eq_upto(Z).

eq← sup(Y), eq_upto(Y).

undefeated_upto(X,Y)← inf (Y), outN (X), outN (Y).

undefeated_upto(X,Y)← inf (Y), outN (X),not defeat(Y,X).

undefeated_upto(X,Y)← succ(Z, Y), undefeated_upto(X,Z),

outN (Y).

undefeated_upto(X,Y)← succ(Z, Y), undefeated_upto(X,Z),

not defeat(Y,X).

undefeated(X)← sup(Y), undefeated_upto(X,Y)}}

The encoding of the preferred extension now is composed as follows:

Πpref = Πadm ∪Πhelpers ∪Πspoil

For further details and an elaborate documentation, we refer the interested reader to [24] .

The last approach, which is summarized by F. Toni and M. Sergot, is the encoding of the
ideal semantics, proposed by W. Faber and S. Woltran in [28], which is based on manifold
answer set programs. Those manifold answer set programs are encodings that allow multiple
forms of meta-reasoning. For a detailed description please refer to [53].

51

3.2 Previous Encodings of the Resolution Based Grounded
Semantics

In this subsection we are presenting two alternative approaches for encoding the resolution-based
grounded semantics. The first is a simple ASP program without any optimization statements and
based on a verification algorithm proposed by Baroni et al. [5]. The second approach is based
on the meta modeling techniques provided by Gebser et al. [32].
Before we present these two different kinds of encodings we will describe how an argumentation
framework, for which we want to determine the extensions, is represented in ASP. Let AF =
〈A,R〉 be the fixed input argumentation framework, then it is translated into an input database
F̂ as follows:

F̂ = {arg(a) | a ∈ A} ∪ {defeat(a, b) | (a, b) ∈ R}
When describing the ASP encodings we stick to the conventions used in [22] and split them into
modules which we describe and treat them separately.
Prior to describing the different encodings, we provide three modules which will be part of all
the approaches we present, including our realization of the verification algorithm [5].
The first module πcf together with F̂ constitutes a program, which guesses a set S ∈ A, where
the unary predicates in/1 and out/1 indicate that an argument a is either a ∈ S or a 6∈ S.
With the help of a constraint rule Πcf , which we introduced in the previous subsection, one re-
moves all answer sets which are not conflict-free.

A last common module Πrange computes the range S⊕ = S ∪ S+ of a subset S ⊆ A.

Πrange = {in_range(X)← arg in(X).

in_range(X)← in(Y), defeat(Y,X).

not_in_range(X)← arg(X),not in_range.}

Now we provide definitions which we will need to describe the encodings. The first defi-
nition is the cut of an argumentation framework G, denoted as CUT (G) and obtained by sup-
pressing the arguments to a specific range in the grounded extensions.

Definition 61. The cut of an argumentation framework G = 〈A,R〉, denoted as CUT (G)
is defined as the argumentation framework which is obtained by the restriction of G to the
arguments A of G, where the arguments of GE(G)⊕ are excluded. CUT (G) = G ↓A\GE(G)⊕

The next definition deals with the notion of stability of a set S ∈ A in another set T ∈ A
w.r.t. to an argumentation framework G = 〈A,R〉, and is denoted as st (G)(S, T).

Definition 62. [5] Given an argumentation frameworkG = 〈A,R〉 and two sets S, T ∈ A then
S is stable in T w.r.t. G, denoted as st (G)(S, T), iff ∀a ∈ (T\S) : a ∈ (S ∩ T)+.

Taken from [5] we provide a formal characterization of the extensions of the resolution-based
grounded semantics, which consists of three conditions checked in the verification algorithm
in [5], this constitutes the foundation of the encoding provided by S. Woltran et al. [22] as well
as of the encoding, which is proposed in this thesis.

52

Definition 63. [5] Let G be an argumentation framework G = 〈A,R〉, such that CUT (G) 6=
〈∅, ∅〉 and MR(CUT (G)) = ∅, letting W = ΠG , where ΠG =

⋃
V ∈MR(CUT (G)) V , S =

GE(G) and T = U\S⊕, then U ∈ EGR∗(G) if the following three conditions hold:

1. U ∩ S⊕ = S.

2. stCUT (G)(T,W).

3. (T ∩WC) ∈ EGR∗(CUT (G) ↓WC\(T∩W)+)

Furthermore we provide the definition of the set of strongly connected components of an
argumentation frameworkG = 〈A,R〉, denoted as SCCS (G), which is taken from graph theory,
describing the set of vertices, or arguments in our case, that are the maximal connected subgraphs
of a graph or an argumentation framework, respectively.

Definition 64. [5] The set of strongly connected components of an argumentation framework
G = 〈A,R〉 is denoted as SCCS (G). The strongly connected component decomposition of G
partitions the argumentsA into equivalence classes induced by the relation p(x, y), defined over
A × A. p(x, y) holds iff x = y or there exists a directed path from x to y and a directed path
from y to x in G.

Based on the following lemma, we define the set of minimal relevant components MR(G)
of an argumentation framework G.

Lemma 1. [5] Given a non-empty argumentation framework G = 〈A,R〉 with |SCCS (G)| =
1, the condition (i) for any full resolution β of G ∃x such that {x}−Gβ = ∅ is equivalent to the
conjunction (ii) of the following three conditions:

(a) ∀x ∈ A, 〈x, x〉 6∈ R;

(b) R is symmetric, i.e. 〈x, y〉 ∈ R⇔ 〈y, x〉 ∈ R ;

(c) the undirected graph Ḡ formed by replacing each (directed) pair {〈x, y〉, 〈y, x〉} with a
single undirected edge {x, y} is acyclic.

Now, as a last definition before we start describing the encodings, we provide the set of
minimal relevant strongly connected components MR(G) of an argumentation framework G.

Definition 65. [5, 22] Given a non-empty argumentation framework G = 〈A,R〉, a set S ∈
SCCS (G) is minimal relevant, if S is a minimal element of ≺ and G ↓S satisfies the conditions
(a)-(c) of Lemma 1. ≺ denotes a partial order over the set SCCS (G) = {S1, . . . , Sn}, denoted
as (Si ≺ Sj) for i 6= j, which is defined if ∃x ∈ Si, y ∈ Sj such that there is a direct path from
x to y in G.
The set of minimal relevant strongly connected components of an argumentation framework G
is denoted as MR(G).

53

Verification Algorithm Based Encoding

In their article [22] W. Dvořák et al. propose an encoding of the resolution-based grounded se-
mantics which is based on the verification algorithm listed in Listing 4.1, like the encoding that
we introduce in this thesis. This verification algorithm was originally proposed by Baroni et
al. in their article On the resolution based family of abstract argumentation and its grounded
instance [5]. The Guess & Check paradigm is the major modeling technique applied in this
realization of the semantics. As mentioned before, this encoding incorporates the modules Πcf

and Π< the first one being used to guess all possible conflict-free sets and the latter one is the
foundation of the iterative applied check procedure. This procedure cheks whether the condi-
tions of Definition 65 and 63 are met by any guess. Due to the fact that our encoding, is based
on the same verification algorithm, we provide a detailed description of this approach in Chapter
4 to support the reader with better means for understanding both encodings and their differences.

Meta ASP Encodings

In their article Complex optimization in answer set programming [32], M. Gebser et al. propose
an approach to address complex optimization and preference handling criteria such as inclusion-
based minimization. Without the meta ASP modeling techniques this would require other, more
cumbersome modeling techniques, such as saturation. The metasp approach is based on a series
of reusable ASP encodings, which handle those different optimization and preference handling
criteria, and enable their availability for use by other ASP programs. The meta-modeling tech-
nique is basically composed of three steps: First, the ASP encoding is reified by the grounder
gringo, which generates the ground version of the given program and returns the resulting facts.
In a second step the grounder is executed again but this time with the result of the previous
grounding process together with the meta-programs which realize the optimization part. In the
third step claspD is executed in order to perform the solving task.
The meta-modeling approach offers a collection of encodings which provides answer-set inclu-
sion minimization among other complex optimization capacities. Therfore it poses an efficient
approach of tackling the problem of encoding the resolution-based grounded semantics. In this
subsection we describe two meta ASP encodings of resolution-based grounded semantics as
proposed by W. Dvořák et al. in [22], which make use of the answer-set inclusion minimization
and omits prioritization and weights. These two encodings use inclusion minimization for deter-
mining the resolutions and they differ in the fact that the first encoding calculates the grounded
extension for a guessed resolution explicitly, while the second encoding acquires the complete
extensions for the guessed resolution, and subsequently applies subset minimization to retrieve
the grounded extensions.

Both meta ASP encodings use the same ASP module Πres to determine the resolutions of an
argumentation framework :

54

Πres = {defeat_minus_beta(X,Y)← defeat(X,Y),not defeat_minus_beta(Y,X),

X 6= Y.

defeat_minus_beta(X,Y)← defeat(X,Y),not defeat(Y,X).

defeat_minus_beta(X,X)← defeat(X,X).}

We continue by describing the modules which used realize the first metasp approach. We
again need an order, which is put on the domain of arguments arg/1, and therefor use the
module Π<, which we already defined in the previous subsection, and its helper predicates
inf/1, succ/2 and sup/1. Now that an order has been defined, we are able to provide the
next module Πdefended :

Πdefended = {defended_upto(X,Y)← inf (Y), in(X),not defeat_minus_beta(Y,X).

defended_upto(X,Y)← inf (Y), in(Z), defeat_minus_beta(Z, Y),

defeat_minus_beta(Y,X).

defended_upto(X,Y)← succ(Z, Y), defended_upto(X,Z),

not defeat_minus_beta(Y,X).

defended_upto(X,Y)← succ(Z, Y), in(V), defeat_minus_beta(V, Y),

defeat_minus_beta(Y,X).

defended(X)← sup(Y), defended_upto(X,Y).}

Having defined Πdefended , one is able to explicitly determine the grounded extension as
follows:

Πgrd = Π< ∪Πdefended ∪ {in(X)← defended(X)}

Πgrd∗_metasp combines all the previous modules and adds the statement for minimizing
in/1:

Πgrd∗_metasp = Πgrd ∪Πres ∪ {#minimize[in]}

The second encoding does differ slightly and as already mentioned it initially acquires the
complete extensions for the guessed resolutions and then uses subset minimization. But, since
complete extensions are based on admissible sets, for this case an intermediary module is used.
A module which has already been introduced in 3.1 and which has been slightly adapted to fit
into the metasp approach:

Πadm = Πcf ∪ {defeated(X)← in, defeat(Y,X).

← in(X), defeat(Y,X),not defeated(Y).}

55

Now the module Πcom is composed as follows:

Πcom = Πadm ∪ {undefended(X)← defeat_minus_beta(Y,X),not defeated(Y).

← out(X),notundefended(X)}.

The extensions in the second encoding are now computed by acquiring the subset minimiza-
tion from the complete extensions.

Π′grd∗_metasp = Πcom ∪Πres ∪ {#minimize[in]}

Both versions of meta ASP encodings are computed by applying Π to the given argumentation
frameworks F̂ , where Π stands for either Πgrd∗_metasp or Π′grd∗_metasp . This step is performed
by calling gringo with the -reify option on Π(F̂). Now the output is redirected with the
pipe command once more to gringo, where meta.lp, metaO.lp, metaD.lp are applied together
with the statement (echo ”optimize(1,1,incl).”), triggering the use of subset inclu-
sion for the optimization step with priority and weight set to 1:

gringo -reify Π(F̂) | gringo -{meta.lp, metaO.lp, metaD.lp} \
<(echo ”optimize(1,1,incl).”) | claspD 0

Finally claspD with the option 0 (which tells clasp to compute all answer sets) is called to
conduct the solving process.

56

CHAPTER 4
New Encodings of the Resolution Based

Grounded Semantics

In this chapter we present our new approach for encoding the resolution-based grounded seman-
tics. This approach is fully based on the verification Algorithm 4.1, proposed by Baroni et al
[5] and is realized with answer-set programming as previously mentioned. Like S. Woltran et
al. [22] for their implementation of the resolution-based grounded semantics, we also follow the
ASPARTIX approach which was proposed by U. Egly et al. [25]. To begin we present a brief
outline before presenting the details of our implementation. Since the approach approach by
S. Woltran et al. [22] has been developed in parallel to our solution, we conclude this chapter
with a detailed description of this realization of the resolution-based grounded semantics. Thus
the reader is provided with the neccesary means for understanding any differences and the latter
performance comparison.

4.1 Outline

We describe how the argumentation framework is represented for which we want to determine
the extensions. Let AF = 〈A,R〉 be the fixed input argumentation framework, then it is trans-
lated into an input database F̂ as follows:

F̂ = {arg(a) | a ∈ A} ∪ {att(a, b) | (a, b) ∈ R}

As we did with the previous encodings, we stick to the conventions, used in [22], with this novell
approach, and split our encoding into modules which we describe and treat separately.

Our encoding starts with guessing all possible sets S ⊆ A of G = 〈A,R〉 and then uses
the verification algorithm to filter out the sets, not belonging to the set of the resolution-based
grounded extensions EGR∗(G = 〈A,R〉), by checking the conditions of Definition 65 and 63
(Definition 63 demands the iterative structure of our check procedure).

57

Listing 4.1: Verifying that U ∈ EGR∗(G = 〈A,R〉)
1 p r o c e d u r e GR∗ − V ER(G = 〈A,R〉, U) r e t u r n s b o o l e a n
2 S := GE(G)
3 i f (U ∩ S⊕ 6= S) t h e n
4 r e t u r n f a l s e
5 end i f
6 T := U\S
7 i f CUT (G) = 〈∅, ∅〉 or MR(CUT (G)) = ∅ t h e n
8 i f T = ∅ t h e n
9 r e t u r n t rue

10 e l s e
11 r e t u r n f a l s e
12 end i f
13 e l s e
14 W := ΠG

15 end i f
16 i f ¬stCUT (G)(T,W) t h e n
17 r e t u r n f a l s e
18 e l s e
19 r e t u r n GR∗ − V ER(CUT (G) ↓WC\(T∩W)+ (T ∩WC))
20 end i f
21 end

4.2 Encoding

Now we start with the detailed description of our implementation. The first module Πcf , together
with F̂ constitutes a program, which guesses a set S ∈ A, where the unary predicate u/1
indicates that an argument a is either a ∈ S or a 6∈ S. With the help of a constraint rule, Πcf

removes all answer sets which are not conflict free.

Πcf = {u(X)← arg(X),not ¬u(X).

¬u(X)← arg(X),not u(X).

← u(X), u(Y), att(X,Y).}

Based on the order imposed on the domain elements, we introduce the module Πinit , which
initializes the iteration by supplying predicates representing the arguments of the argumentation
framework and the arguments of set S, with an extra variable I . This variable, is assigned
the smallest domain element in order to represent the first step in the iteration, due to predicate
inf/1 from module Π<. In the remaining modules of our encoding, we will use the last variable
of each predicate to label it with the current domain element associated with the iteration.

Πinit = {iarg(X, I)← arg(X), inf (I).

iu(X, I)← u(X), inf (I).} ∪Π<

58

The predicates iarg/2 and iu/2 represent the labelled copies of arguments of the input
framework and the guessed set S. The following module Πgrd is a module we borrowed from
the existing encoding of the grounded extension and modified to be repeatedly used, once in
each iteration, by labeling its predicates with the variable I , (like U. Egly et al. [24, 25]).

The first predicate of Πgrd is defeat/3 which denotes any defeated arguments in iteration
step I . With the remaining rules of the module, we determine the grounded extension of itera-
tion N , which is the least fixed point of the characteristic function FAF that is represented by
the predicate defendedN/2, and computed via defended_upto/3. The predicate in/2
simply represents the extension membership of an argument in the grounded extension of the
current iteration.

Πgrd = {defeat(X,Y, I)← iarg(X, I), iarg(Y, I), att(X,Y).

defended_upto(X,Y, I)← inf (Y), iarg(X, I),not defeat(Y,X, I).

defended_upto(X,Y, I)← inf (Y), in(Z, I), defeat(Z, Y, I), defeat(Y,X, I).

defended_upto(X,Y, I)← succ(Z, Y), defended_upto(X,Z, I),

not defeat(Y,X, I).

defended_upto(X,Y, I)← succ(Z, Y), defended_upto(X,Z, I),

in(V, I), defeat(V, Y, I), defeat(Y,X, I).

defended(X, I)← sup(Y), defended_upto(X,Y, I).

in(X, I)← defended(X, I).}

The components Πcf as well as Πgrd , in their original form, have already been proposed by
Egly et al. [24, 25]. Their predicate names just have been adapted to fit our encoding and their
rule heads and bodies have been retrofitted to comply with our approach by performing an iter-
ation over sets.

We continue with Πunps where we check whether (U ∩ S⊕) 6= S. Therefore we first deter-
mine S⊕, the range of S which is represented in our encoding by susp/2. Now we are ready to
compute (U ∩ S⊕), which is denoted by the predicate unps/2. Now with the constraint rules
of Πunps we discard all answer-sets, where (U ∩ S⊕) 6= S.

Πunps = {susp(X, I)← in(X, I).

susp(X, I)← iarg(X, I), in(S, I), att(S,X).

unps(X, I)← iu(X, I), susp(X, I).

← unps(X, I),not in(X, I).

← in(X, I),not unps(X, I).}

The next module, Πcut determines the cut of our given argumentation framework, G. Recall
that CUT (G) = G ↓A\GE(G)⊕ .

59

Πcut = {cut(X, I)← iarg(X, I),not susp(X, I).}

Now that we defined the module for deriving the cut, we can continue by determining the set
of minimal relevant strongly connected components SCCS (CUT (G)), of the cut of G. Again
we recall that for a non-empty argumentation framework G = 〈A,R〉, a set S ∈ SCCS (G) is
minimal relevant, if S is a minimal element of ≺ and G ↓S satisfies the conditions (a)-(c) of
Lemma 1.
The strongly connected components of an argumentation framework are defined per Definition
64 as equivalence classes, induced by a relation p(x, y) which holds if x = y or there exists a
directed path from x to y and a directed path from y to x in G. First we determine each directed
path, which is represented by the predicate path3. Since we want to determine MR(CUT (G)),
we restrict the set of arguments which we consider for the path, to the arguments of the cut. This
is achieved by the use of the predicate cut/2 in the rules body. The last two rules introduce the
predicate p/3 which represents the relation p(x, y).

Πscc_opt = {path(X,Y, I)← cut(X, I), cut(Y, I), att(X,Y).

path(X,Z, I)← cut(X, I), cut(Z, I), path(X,Y, I), path(Y, Z, I).

p(X,Y, I)← cut(X, I), cut(Y, I), X == Y.

p(X,Y, I)← path(X,Y, I), path(Y,X, I), X < Y.}

After initial test runs we decided to look for ways of improving our encoding. The original
draft of Πscc_opt left room for optimization. It is denoted as Πscc_opt and a comparison of its
performance to Πscc_opt can be found in the subsequent chapter. We applied an optimization
technique, which is known as symmetry breaking within the answer-set programming commu-
nity. It is a technique aiming to eliminate redundant parts in the search space and thus reducing
computation time. In this case we generated a large amount of answer sets where a redundant
symmetry was present within the p/3 predicates. Those predicates represent the symmetric re-
lation p(x, y) which, as already stated, holds if there exists a bidirectional path between x and y
or if x = y. Now since this relation is symmetrical it is sufficient to derive only one relation of
the pair p(x, y) and p(y, x), which is achieved by exploiting the order of the domain elements
once more.

Πscc = {path(X,Y, I)← cut(X, I), cut(Y, I), att(X,Y).

path(X,Z, I)← cut(X, I), cut(Z, I), path(X,Y, I), path(Y, Z, I).

p(X,Y, I)← cut(X, I), cut(Y, I), X == Y.

p(X,Y, I)← path(X,Y, I), path(Y,X, I).}

As can be seen above, to acquire an optimized answer-set program Πscc_opt we modified our
initial approach Πscc for replacing the following rule

p(X,Y, I)← path(X,Y, I), path(Y,X, I).

60

with
p(X,Y, I)← path(X,Y, I), path(Y,X, I), X < Y.

As can be seen this change permits only one of the equivalent relations p(x, y) and p(y, x) to be
included in the answer-set. With these results, we can continue with the module Πminscc that is
used to filter out from the SCCs, which were determined in Πscc_opt , and are a minimal element
of ≺. With the help of the rule which introduces the predicate sccattacked/2, we check
whether any of the elements of an SCC is attacked from an element of another SCC. Hence for
each minimal SCC, represented in this encoding by the predicate me, the default negation of
sccattacked/2 must hold. Furthermore, we introduce a predicate label/2 to label each
SCC with a selected argument, which we determine with the help of the order that we put on the
domain of elements with Π< and the predicate bigger/2.

Πminscc = {sccattacked(X, I)← p(X,Y, I), p(O,, I), att(O, Y),not p(O,X, I).

me(X, I)← p(X,, I),not sccattacked(X, I).

bigger(X,Y, I)← p(X,Y, I), p(Y,Z, I), X < Y, Y < Z.

label(Y, I)← p(X,Y, I),not bigger(X,Y, I),me(Y, I), X < Y.

scc(X,L, I)← p(X,L, I), label(L, I).}

We split the task of checking whether MR(CUT (G)) satisfies the conditions (a)-(c) of
Lemma 1 into three modules, which we merge with module Πmr later on. Let us begin with
Πmr1 , with which we cover conditions (a) and (b). Condition (a), ∀x ∈ A, 〈x, x〉 6∈ R, states
that no self-attacks are allowed within a minimal relevant component. With the help of the pred-
icate sccatt/3 we identify all the attacks within a SCC and the head of the second rule Πmr1 ,
eselfatt/2 determines if self-attacks exist. The predicate scclemma8a/2 is derived if
there are no single self-attacks in a strongly connected component and condition (a) is satisfied.
Condition (b), states that R, the attack relations within the SCC, have to be symmetric, i.e.
〈x, y〉 ∈ R ⇔ 〈y, x〉 ∈ R. With the second to last rule we check whether there is an attack
〈x, y〉 ∈ R for which there does not exist an 〈y, x〉 ∈ R and in that case the head of the rule
can be derived. We use the last rule to label a SCC with the predicate scclemma8b if no
asymmetries are present.

Πmr1 = {sccatt(X,Y, I)← att(X,Y), scc(X,L, I), scc(Y,L, I).

eselfatt(L, I)← scc(X,L, I), att(X,X).

scclemma8a(L, I)← label(L, I),not eselfatt(L, I).

asymmetric(L, I)← sccatt(X,Y, I),not sccatt(Y,X, I), scc(X,L, I),

scc(Y, L, I).

scclemma8b(L, I)← label(L, I),not asymmetric(L, I).}

It remains to check the last condition (c) of Lemma 1, which is a little bit more cumbersome
to check than the previous conditions. This involves the use of aggregates in this encoding. We

61

recollect that the undirected graph Ḡ formed by replacing each (directed) pair {〈x, y〉, 〈y, x〉}
with a single undirected edge {x, y} has to be acyclic. In this case, G is the strongly connected
component and we describe with the first rule of the next module, the undirected graph Ḡ by
replacing each (directed) pair {〈x, y〉, 〈y, x〉} with a single undirected edge {x, y}. Condition
(b) of Lemma 1 guarantees that all the directed attacks of the current SCC are symmetric. Hence
vertices that have been connected in the initial graph remain connected in the undirected graph.
Together with the fact that we are dealing with strongly connected components, condition (b)
assures that the acquired undirected graph is connected, which makes the cycle detection much
simpler than it usually would be, since it only requires a rule to check whether the number of
arguments is greater than the number of undirected edges in the graph Ḡ. The first rule of Πcyclic

transforms the pairs of attacks into an undirected edge. This enables us to check whether the
resulting graph is acyclic. cyclic/2 can be derived for the current SCC if the number of
undirected edges is greater than or equal to the number of arguments in the SCC.

Πcyclic = {udgscc(X,Y, I)← sccatt(X,Y, I), sccatt(Y,X, I), X < Y.

cyclic(L, I)← #count{Z : scc(Z,L, I)} = V,

V <= #count{X,Y : scc(X,L, I), scc(Y,L, I),

udgscc(X,Y, I)},
#int(V), label(L, I).}

Πmr2 = {scclemma8c(L, I)← label(L, I),not cyclic(L, I).

mr(X, I)← scc(X,L, I), scclemma8a(L, I), scclemma8b(L, I),

scclemma8c(L, I).}

Module Πmr2 now makes use of Πcyclic in order to check for a given SCC whether it is
acyclic and then introduces a new predicate mr/2, which marks any strongly connected com-
ponent in the current iteration I that fulfills all the conditions of Lemma 1, making it a minimal
relevant SCC. For convenience reasons we unite the modules responsible for this task into a
single module:

Πmr = Πmr1 ∪Πcyclic ∪Πmr2 ∪Πminscc ∪Πscc_opt ∪Πcut

Having derived all the arguments belonging to MR(CUT (G)), we can continue checking
whether U ∈ EGR∗(G) according to Definition 63. The next module conducts exactly the same
checks as listed in the lines 7 to 15 from the algorithm 4.1, proposed by Baroni et al. [5].

Listing 4.2: Excerpt from Listing 4.1 (lines 7-15)
7 i f CUT (G) = 〈∅, ∅〉 or MR(CUT (G)) = ∅ t h e n
8 i f T = ∅ t h e n
9 r e t u r n t rue

10 e l s e
11 r e t u r n f a l s e

62

12 end i f
13 e l s e
14 W := ΠG

15 end i f

The predicate ecut/1 can be derived if CUT (G) 6= 〈∅, ∅〉 and the predicate emr/1 if
MR(CUT (G)) 6= ∅. The predicate et/1 can be derived for an iteration, if T 6= ∅. Now the
two last rules of Πcheck are constraints to remove all answer sets where CUT (G) = 〈∅, ∅〉 or
MR(CUT (G)) = ∅ and T 6= ∅.

Πcheck = {t(X, I)← iu(X, I),not in(X, I).

emr(I)←mr(_, I).

ecut(I)← cut(_, I).

escclemma8c(I)← scclemma8c(_, I).

et(I)← t(_, I).

← arg(I), et(I),not emr(I).

← arg(I), et(I),not ecut(I).}

As one can conclude from the listing below, our next module Πstable incorporates the check
whether stCUT (G)(T,W) holds for the current iteration. Otherwise if CUT (G) 6= 〈∅, ∅〉 and
MR(CUT (G)) 6= ∅ the next iteration is instantiated in Πiterate and the algorithm proceeds.

Listing 4.3: Excerpt from Listing 4.1(lines 16-21)
16 i f ¬stCUT (G)(T,W) t h e n
17 r e t u r n f a l s e
18 e l s e
19 r e t u r n GR∗ − V ER(CUT (G) ↓WC\(T∩W)+ , (T ∩WC))

20 end i f
21 end

We recall Definition 62: given an argumentation frameworkG = 〈A,R〉 and two sets S, T ∈
A then S is stable in T w.r.t. G, denoted as st (G)(S, T), iff ∀a ∈ (T\S) : a ∈ (S ∩ T)+. Now,
for the check whether stCUT (G)(T,W) holds, we first have to determine the set (W\T). It is
represented by the predicate wot/2. Next we want to determine (T ∩W) before we acquire
(T ∩W)+. (T ∩W) is computed by the second rule and represented by the predicate tnw/2.
Now (T ∩W)+ is derived with the second to last rule and represented by the predicate tnwp/2.
With the constraint rule in Πstable we now discard all answer-sets where ¬stCUT (G)(T,W)
holds.

Πstable = {wot(X, I)← mr(X, I),nott(X, I).

tnw(X, I)← t(X, I),mr(X, I).

tnwp(X, I)← tnw(Y, I), iarg(X, I), att(Y,X).

← wot(X, I),not tnwp(X, I).}

63

The first two rules of the module Πiterate are our stopping criteria which mean that we do
have an answer-set to our input and no further iteration is necessary. The stopping criteria are
met if either CUT (G) = 〈∅, ∅〉 and T = ∅ or MR(CUT (G)) = ∅ and T = ∅.
The remaining rules of Πiterate build the arguments for the next iteration CUT (G) ↓WC\(T∩W)+

and (T ∩ WC). We start with computing the set WC , which is represented by the predicate
wc/2. With the next rule we determine the predicate wcotnwp/2 which is the set of argu-
ments in WC\(T ∩W)+. Now we are ready to compute the cut CUT (G) ↓WC\(T∩W)+ , which
is represented by cutgwcotnwp/2 and constitutes the arguments of the argumentation frame-
work for the next iteration which are represented by iarg/2 and computed in the succeeding
rule, where they are assigned by the successor label for the next iteration with help of the predi-
cate succ/2 which is provided by the order we imposed on the domain elements in Π<. It then
remains to compute the set (T ∩WC) which is done in the second to last rule with the predicate
tnwc/2 in its rule head. The last rule takes the arguments for which the predicate tnwc/2 can
be derived, assigns them a succeeding iteration label, as we did for iarg and equips them with
the predicate iu/2, which constitutes the set U in the next iteration.

Πiterate = {stop(I)← arg(I),not escclemma8c(I),not et(I).

stop(I)← arg(I),not ecut(I),not et(I).

wc(X, I)← iarg(X, I),not mr(X, I).

wcotnwp(X, I)← wc(X, I),not tnwp(X, I).

cutgwcotnwp(X, I) : −cut(X, I),wcotnwp(X, I).

iarg(X, II)← cutgwcotnwp(X, I), succ(I, II),not stop(I).

tnwc(X, I)← wc(X, I), t(X, I).

iu(X, II)← tnwc(X, I), succ(I, II),not stop(I).}

In the end we combine all the modules, which result in our encoding of the resolution-based
grounded semantics Πveruegropt :

Πveruegr = Πmr ∪Πcheck ∪Πstable ∪Πiterate ∪Πunps ∪Πgrd ∪Πinit ∪Πgrd ∪Πcf ∪Π<

For testing how our improved encoding performs in comparison to the initial version, we also
combine the modules of the initial encoding without the optimization to form a fully functional
encoding Πveruegr . Πveruegr consists of the same modules as Πveruegropt , with the only difference
being that Πmr uses the initial module Πscc instead of Πscc_opt :

Πmr = Πmr1 ∪Πcyclic ∪Πmr2 ∪Πminscc ∪Πscc ∪Πcut

4.3 Another Variant of a Verification-Algorithm Based Encoding

Due to the fact that the encoding which is proposed by W. Dvořák et al. [22] shares a lot of sim-
ilarities with our realization of the resolution-based grounded semantics, we decided to discuss

64

its details in our implementation chapter. As already mentioned before, this encoding incorpo-
rates the initially introduced modules Πcf and Π<, since the first one is used to guess all possible
conflict-free sets and the latter one is the foundation of the iteratively applied check procedure.
It is checked whether the conditions of Definition 65 and 63 are met by any guess.

The first module we deal with is Πarg_set , which introduces three new predicates arg_set/2,
inU/2 and defeatN/3. These predicates are a copy of the arguments present in the guess
and the defeats, and are equipped with an additional variableN , which is needed for the iterative
procedure. The predicate inf/1 is used to acquire the smallest identifier of the order resulting
from Π<.

Πarg_set = {arg_set(N,X)← arg(X), inf (N).

inU (N,X)← in(X), inf (N).

defeatN (n, Y,X)← arg_set(N,X), argset(N,Y), defeat(Y,X).}

The following two modules, ΠdefendedN and ΠgroundN determine the grounded extension of
iteration N , which is the least fixed point of the characteristic function FAF that is represented
by the predicate defendedN/2 and computed via def_uN/3.

ΠdefendedN = {def _uN (N,X, Y)← inf (Y), arg_set(N,X),not defeatN (N,Y,X).

def _uN (N,X, Y)← inf (Y), inS (N,Z), defeatN (N,Z, Y),

defeatN (N,Y,X).

def _uN (N,X, Y)← succ(Z, Y),not defeatN (N,Y,X),

def _uN (N,X,Z).

def _uN (N,X, Y)← succ(Z, Y),not def _uN (N,X,Z), inS (N,V),

defeatN (N,V, Y), defeatN (N,Y,X).

defendedN (N,X)← sup(Y), def _uN (N,X, Y).}

Again each predicate carries the variableN , identifying the current iteration for the predicate
inS/2 which stands for the membership of an argument in the grounded extension.

ΠgroundN = Πcf ∪Π< ∪Πarg_set ∪ΠdefendedN ∪ {inS (N,X)← defendedN (N,X).}

The next module, ΠF_minus_range , introduces three new predicates. It computes the argu-
ments in CUT (G) which are represented by the predicate not_in_SplusN/2. Further-
more, U ∩ S⊕ is represented by u_cap_Splus/2 and S⊕ is represented by the predicate
in_SplusN/2. Finally, ΠF_minus_range discards all answer-sets where U ∩ S⊕ 6= S.

65

ΠF_minus_range = {in_SplusN (N,X)← inS (N,X).

in_SplusN (N,X)← inS (N,Y), defeatN (N,Y,X).

u_cap_Splus(N,X)← inU (N,X), in_SplusN (N,X).

← u_cap_Splus(N,X),not inS (N,X).

←not u_cap_Splus(N,X), inS (N,X).

not_in_SplusN (N,X)← arg_set(N,X),not in_SplusN (N,X).}

The module ΠMR computes the set of minimal relevant strongly connected components
of an argumentation framework G which for our case is the cut of AF G and denoted as
MR(CUT (G), computed by ΠF_minus_range at the current iteration N . We recall that for a
non-empty argumentation framework G = 〈A,R〉, a set S ∈ SCCS (G) is minimal relevant, if
S is a minimal element of ≺ and G ↓S satisfies the conditions (a)-(c) of Lemma 1.
In the module ΠMR the predicate mr/2 denotes the membership of an argument in the set of
minimal relevant SCCs, for an iteration step N . The first two rules of ΠMR compute the SCCs,
which are represented by predicate reach/3, where reach(N,X, Y) states that there is a path
in CUT (G) between the arguments X and Y at iteration step N . In the subsequent rules, it
is verified whether the criteria of Lemma 1 are met. Condition a) is checked by the rule which
contains the predicate self_defeat/2 as a rule head, which states that an argument is self-
defeating. Condition b) is verified by the predicate nsym/2 , which indicates that an argument
does not have a symmetric attack to an argument within the same component. The predicates
reachnotvia/4 and cyc/4, are responsible in the cycle detection, which is necessary to
check whether condition c) of Lemma 1 holds - the undirected graph, formed by replacing each
(directed) pair {〈x, y〉, 〈y, x〉} of a component with a single undirected edge {x, y} has to be
acyclic. The predicate bad/2 is used to mark a component as violating condition c) or a). With
the rule containing the predicate pos_mr(N,X) in the rule head, an argument x is said to be a
possible candidate for being in MR(CUT (G)) if it is in CUT (G), not self-defeating, acyclic
w.r.t. to the definition of condition c) in Lemma 1 and for each y ∈ CUT (G) it holds that
〈x, y〉 ∈ CUT (G) ⇔ 〈y, x〉 ∈ CUT (G). The second to last rule is used to determine whether
a strongly connected component is minimal w.r.t. ≺. Now the last predicate mr/2 marks which
argument belongs to a minimal relevant strongly connected component by checking whether the
predicate pos_mr/2 holds and notminimal/2 does not hold.

66

ΠMR = {reach(N,X, Y)←not_in_SplusN (N,X),not_im_SplusN (N,Y), defeatN (N,X, Y).

reach(N,X, Y)←not_in_SplusN (N,X), defeatN (N,X,Z), reach(N,Z, Y),

X! = Y.

self _defeat(N,X)←not_in_SplusN (N,X), defeatN (N,X,X).

nsym(N,X)←not_in_SplusN (N,X),not_in_SplusN (N,Y), defeatN (N,X, Y),

not defeatN (N,Y,X), reach(N,X, Y), reach(N,Y,X), X! = Y.

nsym(N,Y)←not_in_SplusN (N,X),not_in_SplusN (N,Y), defeatN (N,X, Y),

not defeatN (N,Y,X), reach(N,X, Y), reach(N,Y,X), X! = Y.

reachnotvia(N,X, V, Y)← defeatN (n,X, Y),not_im_SplusN (N,V),

reach(N,X, Y), reach(N,Y,X), X! = V, Y ! = V.

reachnotvia(N,X, V, Y)← reachnotvia(N,X, V, Z), reach(N,X, Y),

reachnotvia(N,Z, V, Y), reach(N,Y,X),

Z! = V,X! = V, Y ! = V.

cyc(N,X, Y, Z)← defeatN (N,X, Y), defeatN (N,Y,X),

defeatN (N,Y, Z), defeatN (N,Z, Y),

reachnotvia(N,X, Y, Z), X! = Y, Y ! = Z,X! = Z.

bad(N,Y)← cyc(N,X,U, V), reach(N,X, Y), reach(N,Y,X).

bad(N,Y)← self _defeat(N,X), reach(N,X, Y), reach(N,Y,X).

pos_mr(N,X)←not_in_SplusN (N,X),not bad(N,X),not self _defeat(N,X),

not nsym(N,X).

notminimal(N,Z)← reach(N,X, Y), reach(N,Y,X),

reach(N,X,Z),not reach(N,Z,X).

mr(N,X)← pos_mr(N,X),not notminimal(N,X).}

Now the main difference between our novell encoding and this approach is the cycle detec-
tion, as can be seen in the following excerpt of our approach:

Πcyclic = {udgscc(X,Y, I)← sccatt(X,Y, I), sccatt(Y,X, I), X < Y.

cyclic(L, I)←#count{Z : scc(Z,L, I)} = V,

V <= #count{X,Y : scc(X,L, I), scc(Y,L, I),

udgscc(X,Y, I)},
#int(V), label(L, I).}

As already mentioned the undirected graph in which we are looking for cycles is connected,
which makes the cycle detection much simpler than it usually would be. So with the first rule
of Πcyclic we transform the pairs of attacks into an undirected edge. Then we continue to count
edges and vertices in the transformed graph in order to check whether this graph is acyclic. For
performing this step, as can be seen above, we make use of aggregates. This use of aggregates
and the utilization of the fact that we only look for cycles in connected acyclic graphs constitute
the two major differences which can be identified.

67

We continue with module ΠstableN in which parts of Definition 63 are checked. The first
rule of the module generates the set T = U\S⊕ and the second rule introduces the predicate
nemptyT/1, telling whether T is not empty for an iteration N . The third rule introduces
emptyT/1, that is present for an iteration N if nemptyT/1 is not the case. With the help
of emptyT/1 and the predicate not_exists_mr introduced in rule 5, all guesses where
T 6= ∅ but MR(CUT (G)) = ∅ are removed by the third to last rule in ΠstableN . With the
rule containing the newly introduced predicate defeated/2 in its rule-head, all the arguments
which are defeated by T are determined. The last rule eliminates all the answer-sets where
¬stCUT (G)(T,ΠG) is the case.

ΠstableN = {t(N,X)← inU (N,X),not inS (N,X).

nemptyT (N)← t(N,X).

emptyT (N)←not empty(N), arg_set(N,X).

existsMR(N)←mr(N,X),not_in_SplusN (N,X).

not_exists_mr(N)←not existsMR(N),not_in_Splus(N,X).

true(N)← emptyT (N),not existsMR(N).

←not_exists_mr(N),nemptyT (N).

defeated(N,X)←mr(N,X),mr(N,Y), t(N,Y), defeatN (N,Y,X).

←not t(N,X),not defeated(N,X),mr(N,X).}

Predicatetrue/1 of module ΠstableN is used to check whether the iteration realized by
module Πiterate has to halt. The first rule of Πiterate computes the set (T ∩ ΠG)⊕ and with the
second rule, the next iteration is initiated with the predicates arg_set/2 and inU/2, if the
iteration is not ihalted by the presence of true(N) for iteration N . The predicate succ/2 is
used to acquire a new domain element M , labeling the next iteration.

Πiterate = {t_mrOplus(N,Y)← t(n,X),mr(N,X), defeatN (N,X, Y).

arg_set(M,X)←not_in_SplusN (N,X),not mr(N,X),

not t_mrOplus(N,X), succ(N,M),not true(N).

inU (M,X)← t(N,X),not mr(N,X), succ(N,M),not true(N).}

The last module Πgrd∗ combines all the modules, and these all constitute the encoding.

Πgrd∗ = ΠgroundN ∪ΠF_minus_range ∪ΠMR ∪ΠstableN ∪Πiterate .

In our results section we provide a detailed performance comparison and investigate the
major differences between our encoding and the encoding of W. Dvořák et al.

68

CHAPTER 5
Experimental Evaluation

5.1 Test Set

For testing our encoding and comparing its performance to the previous encoding by W. Dvořák et al.
we fully relied on a subset of the test set provided by W. Dvořák et al. in [22]. The argumenta-
tion frameworks of this test set have all been randomly generated with an argument size between
20 and 110 arguments. Two parametrized methods have been used for generating them.

1. Arbitrary AF G = 〈A,R〉: For any pair a, b ∈ A the attack (a, b) is inserted into G with
a given probability p.

2. Grid-structured AF G = 〈A,R〉: Every argument is arranged in a (n×m) grid, i.e. con-
nected to its neighbors via attacks. The actual values for n and m depend on the total
number of arguments; more precisely we let n be either 5, 15, or 25 and m is then chosen
accordingly. For every neighbor b of a either the mutual attack {(a, b), (b, a)} is added
with a probability p, or a single attack is inserted into G. The direction of the single
attack is chosen randomly with equal chance. For the grids we consider two neighbor-
hoods, namely 4-neighborhood and 8-neighborhood. The former connects all arguments
horizontally and vertically, the latter is connecting them also diagonally.

For both methods, the probability p has been 0.1 and 0.4.

5.2 Test Environment

The tests were executed on an openSUSE based machine with eight Intel Xeon processors (2.33
GHz) and 49 GB memory. The DLV version we used was the following releaseDLV [build
BEN/Dec 21 2011 gcc 4.6.1]
The clasp version we used is clasp 2.0.6 (64-bit)
The claspD version we used is claspD - Version: 1.1.2

69

The gringo version we used is gringo 3.0.4

5.3 The Candidate Encodings

In this section we briefly recapitulate the encodings we compared in our experiments. First of
all, there is our encoding Πveruegr_opt and its initial version without the optimization Πveruegr ,
which, as already mentioned, are both based on the verification algorithm 4.1, proposed by Ba-
roni et al.
Then there are Πgrd∗_metasp and Π′grd∗_metasp two metasp encodings of resolution-based grounded
semantics that we already described, which were proposed by W. Dvořák et al. in [22] and are
based on the metasp approach, proposed by M. Gebser et al. [32].
Finally, there is the encoding Πgrd∗, proposed by W. Dvořák et al. in their article [22]. For the
encodings Πveruegr , Πveruegr_opt and Πgrd∗ we compare CLASP and DLV. In order for Πveruegr

and Πveruegr_opt to be compatible with CLASP we had to slightly modify the rules containing
aggregates.

Πcyclic = {udgscc(X,Y, I)← sccatt(X,Y, I), sccatt(Y,X, I), X < Y.

cyclic(L, I)←#count{Z : scc(Z,L, I)} = V,

V <= #count{X,Y : scc(X,L, I), scc(Y, L, I),

udgscc(X,Y, I)},
#int(V), label(L, I).}

Since the only aggregates we use appear in Πcyclic , we only have to adapt this part of our
encodings to make them CLASP-compatible, resulting in a new module Πcyclic′ . For further
details on the differences between CLASP and DLV, please refer to our background section.

Πcyclic′ = {udgscc(X,Y, I)← sccatt(X,Y, I), sccatt(Y,X, I), X < Y.

cyclic(L, I)←V = #count{scc(Z,L, I) : arg(Z)},
W = #count{udgscc(X,Y, L, I) : arg(X) : arg(Y) : d(z)},
V <= W, label(L, I).}

In order to differentiate between the DLV and the CLASP version of the respective encodings
in the benchmark figures, we altered the names of the encodings as described in Table 5.1.

5.4 Results

To obtain results which are easily comparable to the results provided by W. Dvořák et al. in
[22], we also stick to calculating the average computation time and the timeout percentage.
Since we are also interested in the differences with respect to the time it takes for grounding the
various encodings with the input instances, one of our benchmarks, focused on the grounding
time percentage.

70

encoding CLASP version DLV version
Πgrd∗ Πgrd∗(lp) Πgrd∗(dl)
Πveruegr Πveruegr(lp) Πveruegr(dl)

Πveruegr_opt Πveruegr_opt(lp) Πveruegr_opt(dl)

Table 5.1: Names of the encodings in the benchmarks.

Initial benchmarks

The first benchmark we performed is a comparison between the encodings Πveruegr , Πgrd∗,
Πgrd∗_metasp and Π′grd∗_metasp . Whereas for Πveruegr and Πgrd∗, we compared the CLASP and
DLV version of the encodings. As can be seen in Figure 5.1, we here are interested in the aver-
age computation time as well as the timeout percentage achieved by the different encodings.

In Figure 5.1 one can see that Π′grd∗_metasp showed the best performance with respect to
computation time, whereas for the smaller instances Πveruegr in combination with CLASP per-
formed slightly better. When we take a look at the timeouts we can clearly see that the best per-
formance was achieved by Πveruegr when executed with CLASP. We also noticed that Πveruegr

performed much better than Πgrd∗. Another trend which can be seen is that the encodings in
general performed better when executed with CLASP, but we will discuss this in more detail
later.

Performance Gain, Achieved by our Encoding

In this section we take a deeper look into performance differences between Πveruegr_opt , Πgrd∗
and the metasp encodings. We wanted to better understand the reasons for the observerd per-
formance gap between Πveruegr_opt and the other encodings for the resolution-based grounded
semantics, since this knowledge might be of use in other semantics encodings, in abstract argu-
mentation as well.
The first apparent difference between Πgrd∗ and Πveruegr_opt is the cycle detection. For a more
detailed analysis of the question which differences bear the most significant gain, we omit our
symmetry breaking optimization and use our initial encoding Πveruegr . Since we want to verify
how much of an effect the cycle detection (based on aggregates) had on computation time per-
formance, we constructed a second version Πgrd∗_cx from Πgrd∗. In Πgrd∗_cx we exchanged the
rules responsible for the cycle detection which is required for checking whether MR(CUT (G))
satisfies condition (c) of Lemma 1. The exchange of rules only affects the module ΠMR of
Πgrd∗, which in Πgrd∗_cx is substituted by ΠMR_CX .

71

20 30 40 50 60 70 80 90

0
1

0
0

2
0

0
3

0
0

Average Computation Time

Number of Arguments

T
im

e
 (

s
e

c
) Πveruegr(dl)

Πgrd*(dl)

Πveruegr(lp)

Πgrd*(lp)

Πgrd*_metasp

Π′grd*_metasp

20 30 40 50 60 70 80 90

0
2

0
6

0
1

0
0

Timeout Percentage

Number of Arguments

P
e

rc
e

n
ta

g
e Πveruegr(dl)

Πgrd*(dl)

Πveruegr(lp)

Πgrd*(lp)

Πgrd*_metasp

Π′grd*_metasp

Figure 5.1: Computation time and timeout statistics of Πveruegr , Πgrd∗, Πgrd∗_metasp and
Π′grd∗_metasp .

72

ΠMR = {
...

reachnotvia(N,X, V, Y)← defeatN (n,X, Y),not_im_SplusN (N,V),

reach(N,X, Y), reach(N,Y,X), X! = V, Y ! = V.

reachnotvia(N,X, V, Y)← reachnotvia(N,X, V, Z), reach(N,X, Y),

reachnotvia(N,Z, V, Y), reach(N,Y,X),

Z! = V,X! = V, Y ! = V.

cyc(N,X, Y, Z)← defeatN (N,X, Y), defeatN (N,Y,X),

defeatN (N,Y, Z), defeatN (N,Z, Y),

reachnotvia(N,X, Y, Z), X! = Y, Y ! = Z,X! = Z.

bad(N,Y)← cyc(N,X,U, V), reach(N,X, Y), reach(N,Y,X).

...

}

For readability reasons we omit the rules responsible for the cycle detection, which were not
affected by the exchange. It can easily be seen what adaptions we made and where the aggre-
gates are used. For a more detailed explanation, we refer to the section which describes our
implementation, where we extensively describe how the cycle detection operates with the help
of aggregates.

ΠMR_CX = {
...

bigger(N,X, Y)← reach(N,X, Y), reach(N,Y, Z), X < Y, Y < Z.

label(N,Y)← reach(N,X, Y),not bigger(N,X, Y), X < Y.

scc(N,X,L)← reach(N,X,L), label(N,L).

udgscc(N,X, Y)← defeatN (N,X, Y), defeatN (N,Y,X), X < Y.

cyc(N,L)←#count{Z : scc(N,Z,L)} = V,

V <= #count{P,Q : scc(N,P,L), scc(N,Q,L),

udgscc(N,P,Q)},
#int(V), label(N,L).

bad(N,Y)← cyc(N,L), scc(N,Y, L).

...

}

73

20 30 40 50 60 70 80 90

0
1

0
0

2
0

0
3

0
0

Average Computation Time

Number of Arguments

T
im

e
 (

s
e

c
)

Πveruegr(dl)

Πgrd*(dl)

Πgrd*_cx(dl)

20 30 40 50 60 70 80 90

0
2

0
6

0
1

0
0

Timeout Percentage

Number of Arguments

P
e

rc
e

n
ta

g
e

Πveruegr(dl)

Πgrd*(dl)

Πgrd*_cx(dl)

Figure 5.2: Computation time and timeout statistics of Πgrd∗, Πgrd∗_cx and Πveruegr

In Figure 5.2 we provide benchmarks for comparing the performance of Πgrd∗, Πgrd∗_cx
and Πveruegr . We entirely relied on DLV for this set of test runs. Again, we were interested in
computation time and timeout percentage.

From the results depicted in Figure 5.2, we can see that, for small instances, the exchange
of the cycle detection resulted in the expected performance gain of Πgrd∗_cx . Why this is not the
case for larger instances remains a subject of further investigation in future work.

In Figure 5.3 we depict the results from showing us how our encoding with the symmetry
breaking optimization Πveruegr_opt performs, compared to our initial encoding.

74

20 30 40 50 60 70 80 90

0
1

0
0

2
0

0
3

0
0

Average Computation Time

Number of Arguments

T
im

e
 (

s
e

c
)

Πveruegr_opt(dl)

Πveruegr(lp)

Πveruegr_opt(lp)

20 30 40 50 60 70 80 90

0
2

0
6

0
1

0
0

Timeout Percentage

Number of Arguments

P
e

rc
e

n
ta

g
e

Πveruegr_opt(dl)

Πveruegr(lp)

Πveruegr_opt(lp)

Figure 5.3: Symmetry breaking optimization.

75

We can see that this small optimization comes with a significant performance gain. Likewise
one can notice that the encodings so far perform better when executed by CLASP. This leads
to our decision to create more detailed statistics on the performance difference between CLASP
and DLV. In Figure 5.4 we depict separate computation time and timeout statistics for the dif-
ferent kinds of AFs. The first two graphs show a comparison of the encodings for the arbitrarily
generated AFs. Here it can be seen that each encoding regardless of whether it was run in com-
bination with CLASP or DLV, performed poorly and quickly timed out. Yet one can notice, that
CLASP always performed slightly better. This observation can be seen for the 4-grid and 8-grid
AFs as well, whereby the performance was better when compared to the arbitrarily generated
instances. There is only one exception in the statistics for the 4-grid AFs, where DLV performed
better than CLASP for larger instances in combination with the encoding Πgrd∗. With respect to
this discovery, the remaining statistics compare the metasp encodings to the CLASP version of
Πgrd∗ and Πveruegr_opt .

In Figure 5.5, we present a boxplot for the encodings: Πveruegr_opt , Πveruegr , Πgrd∗,
Πgrd∗_metasp and Π′grd∗_metasp . We chose to generate this representation of our benchmarks
to get a proper visualization of the spread of the results in various measurements. We com-
pared the computation time performance of each encoding with respect to the individual kinds
of AFs. We notice that with our novel encoding of the resolution-based grounded semantics,
Πveruegr_opt , we achieve the best overall performance for the given test instances of AFs. As
expected, the application of symmetry breaking resulted in equally improved performance for
all the test instances. Now we take a look at the metasp encodings. One can notice that the over-
all performance of them is worse than the performance of Πveruegr_opt , but for a great number
of outliers, the computation time is considerably small. So we surmise that there is a kind of
argumentation frameworks that is equally distributed across the different kinds of test instances
we created on which the metasp encodings have an superior performance but the deeper analysis
of this fact is not within the scope of this thesis.
When dealing with answer-set programming an important index is the grounding time of answer-
set programs. Hence in Figure 5.6, we provide box plots depicting the average grounding time
percentage of the different encodings. One can clearly see that with our encoding symmetry
breaking only slightly affected the grounding time percentage. Also, one can observe that Πgrd∗
and our novel encoding share almost the same grounding time ratio as opposed to the metasp
encodings. Their grounding time percentage is remarkably short, which means that the solver
consumes the most computation time.

The last statistics we present are a detailed comparison of the encodings Πgrd∗, Πgrd∗_metasp ,
Π′grd∗_metasp and Πveruegr_opt . Like in the previous statistics we provide a comparison of those
encodings in the Figures 5.7, 5.8 and 5.9 with respect to average computation time and time-
out percentage. Each figure deals with one particular type of instances. Again, the types of
instances we compare are arbitrary, 4-grid and 8-grid AFs. On the arbitrary AFs and for larger
instances, the metasp encodings show the best performance, which are clearly shown by the
average computation times as well in the timout percentage. For smaller instances our novel
encoding Πveruegr_opt performs better. When analyzing the results for the 4-grid AFs, we can

76

20 30 40 50 60 70 80 90

0
1
0
0

2
0
0

3
0
0

Average Computation Time (arbitrary)

Number of Arguments

T
im

e
 (

s
e
c
) Πveruegr(dl)

Πgrd*(dl)

Πveruegr(lp)

Πgrd*(lp)

Πveruegr_opt(dl)

Πveruegr_opt(lp)

20 30 40 50 60 70 80 90

0
2
0

6
0

1
0
0

Timeout Percentage (arbitrary)

Number of Arguments

P
e
rc

e
n
ta

g
e Πveruegr(dl)

Πgrd*(dl)

Πveruegr(lp)

Πgrd*(lp)

Πveruegr_opt(dl)

Πveruegr_opt(lp)

20 30 40 50 60 70 80 90

0
1
0
0

2
0
0

3
0
0

Average Computation Time (4−grid)

Number of Arguments

T
im

e
 (

s
e
c
) Πveruegr(dl)

Πgrd*(dl)

Πveruegr(lp)

Πgrd*(lp)

Πveruegr_opt(dl)

Πveruegr_opt(lp)

20 30 40 50 60 70 80 90

0
2
0

6
0

1
0
0

Timeout Percentage (4−grid)

Number of Arguments

P
e
rc

e
n
ta

g
e Πveruegr(dl)

Πgrd*(dl)

Πveruegr(lp)

Πgrd*(lp)

Πveruegr_opt(dl)

Πveruegr_opt(lp)

20 30 40 50 60 70 80 90

0
1
0
0

2
0
0

3
0
0

Average Computation Time (8−grid)

Number of Arguments

T
im

e
 (

s
e
c
) Πveruegr(dl)

Πgrd*(dl)

Πveruegr(lp)

Πgrd*(lp)

Πveruegr_opt(dl)

Πveruegr_opt(lp)

20 30 40 50 60 70 80 90

0
2
0

6
0

1
0
0

Timeout Percentage (8−grid)

Number of Arguments

P
e
rc

e
n
ta

g
e Πveruegr(dl)

Πgrd*(dl)

Πveruegr(lp)

Πgrd*(lp)

Πveruegr_opt(dl)

Πveruegr_opt(lp)

Figure 5.4: Detailed statistics for comparing DLV with GRINGO/CLASP.

77

0

50

100

150

200

250

300

Box Plot Πveruegr(lp)

arbitrary 4−grid 8−grid

0

50

100

150

200

250

300

Box Plot Πveruegr_opt(lp)

arbitrary 4−grid 8−grid

0

50

100

150

200

250

300

Box Plot Πgrd*_metasp

arbitrary 4−grid 8−grid

0

50

100

150

200

250

300

Box Plot Π′grd*_metasp

arbitrary 4−grid 8−grid

Figure 5.5: Boxplot of computation times.

78

2
0

4
0

6
0

8
0

Box Plot Πveruegr(lp)

arbitrary 4−grid 8−grid

2
0

4
0

6
0

8
0

Box Plot Πveruegr_opt(lp)

arbitrary 4−grid 8−grid

0
2
0

4
0

6
0

8
0

Box Plot Πgrd*_metasp

arbitrary 4−grid 8−grid

0
2
0

4
0

6
0

8
0

Box Plot Π′grd*_metasp

arbitrary 4−grid 8−grid

4
0

6
0

8
0

1
0
0

Box Plot Πgrd*(lp)

arbitrary 4−grid 8−grid

Figure 5.6: Average grounding time percentage.

79

20 30 40 50 60 70 80 90

0
1

0
0

2
0

0
3

0
0

Average Computation Time

Number of Arguments

T
im

e
 (

s
e

c
)

Πgrd*(lp)

Πgrd*_metasp

Π′grd*_metasp

Πveruegr_opt(lp)

20 30 40 50 60 70 80 90

0
2

0
6

0
1

0
0

Timeout Percentage

Number of Arguments

P
e

rc
e

n
ta

g
e

Πgrd*(lp)

Πgrd*_metasp

Π′grd*_metasp

Πveruegr_opt(lp)

Figure 5.7: Average computation time and timeout percentage (arbitrary).

see that our novel encoding performs significantly better for the smaller instances up to a size
between 70 and 80 arguments. Here for the largest instances of our benchmark, Π′grd∗_metasp

shows the best performance with respect to average computation time. Although we point out
that Π′grd∗_metasp also shows a much higher timeout percentage throughout the whole range of
argumentation framework sizes. And recalling the box plot comparison of the overall compu-
tation time, we surmise the good average computation time is due to a great number of outliers
with remarkably short computation time. On the 8-grid AFs our encoding did yield the best
results with a timeout percentage of 0 up to instances of argument size 40. The average compu-
tation time as well as the timeout percentage always remained below that of the other encodings.

80

20 30 40 50 60 70 80 90

0
1

0
0

2
0

0
3

0
0

Average Computation Time

Number of Arguments

T
im

e
 (

s
e

c
)

Πgrd*(lp)

Πgrd*_metasp

Π′grd*_metasp

Πveruegr_opt(lp)

20 30 40 50 60 70 80 90

0
2

0
6

0
1

0
0

Timeout Percentage

Number of Arguments

P
e

rc
e

n
ta

g
e

Πgrd*(lp)

Πgrd*_metasp

Π′grd*_metasp

Πveruegr_opt(lp)

Figure 5.8: Average computation time and timeout percentage (4-grid).

81

20 30 40 50 60 70 80 90

0
1

0
0

2
0

0
3

0
0

Average Computation Time

Number of Arguments

T
im

e
 (

s
e

c
)

Πgrd*(lp)

Πgrd*_metasp

Π′grd*_metasp

Πveruegr_opt(lp)

20 30 40 50 60 70 80 90

0
2

0
6

0
1

0
0

Timeout Percentage

Number of Arguments

P
e

rc
e

n
ta

g
e

Πgrd*(lp)

Πgrd*_metasp

Π′grd*_metasp

Πveruegr_opt(lp)

Figure 5.9: Average computation time and timeout percentage (8-grid).

82

5.5 Observations

In this section we summarize the different observations which could be made with respect to our
benchmarks. The first observation we would like to mention is the performance gap between
CLASP and DLV. Then we present the observations we made when comparing the average
computation time and timeout percentage for Πveruegr_opt , Πgrd∗ and the metasp encodings.
Finally, we want to mention the difference between metasp and the remaining encodings of the
resolution-based grounded semantics with respect to the grounding time percentage.

DLV vs. CLASP

In the initial benchmarks we performed we noticed a slight performance advantage with CLASP.
In the statistics shown in Figure 5.4 we performed a detailed comparison, and came to the con-
clusion that CLASP in general yielded a shorter computation time for the different encodings.
We observed for each encoding executed with CLASP and GRINGO, regardless which type of
argumentation frameworks were used, resulted in a performance gain. There was only one ex-
ception, which we encountered in the statistics for the 4-grid AFs. Here DLV performed slightly
better than CLASP for larger instances in combination with Πgrd∗.

Comparison to other Encodings

Based on the statistics for the detailed comparison of the encodings Πgrd∗, Πgrd∗_metasp ,
Π′grd∗_metasp and Πveruegr_opt , we made the observation that our novel encoding, Πveruegr_opt ,
outperformed all the other encodings of the resolution-based grounded semantics for the smaller
instances of AFs with an argument size up to 40. For arbitrary and 4-grid AFs, the metasp
encodings performed slightly better on the larger instances. But based on the statistics, shown
in the box plots in Figure 5.5, we surmise that this performance advantage of Πgrd∗_metasp ,
Π′grd∗_metasp for large instances is due to a great number of outliers with a relatively low compu-
tation time. We also confirmed in our results, that for small instances our aggregate-based cycle
detection resulted in a performance gain.

Grounding Time Percentage

When dealing with answer-set programming an important index is the grounding time of answer-
set programs. Hence, in Figure 5.6 we provide box plots depicting the average grounding time
percentage of each encoding. We observed that Πgrd∗ and our novel encoding share almost the
same grounding time ratio as opposed to the metasp encodings. Their grounding time percentage
is remarkable small. From that we conclude that the metasp encodings possess a great advantage
with respect to grounding time, but considering the average computation times as a whole, in
comparison to our encoding the solver had a much larger computation time. We noticed that the
metasp encodings seem to shift the workload from the grounder to the solver.

83

CHAPTER 6
Summary and Future Work

With this thesis we documented our development of a Guess & Check answer set program, based
on the verification algorithm presented in [6] for computing the extensions of the resolution-
based grounded semantics. We performed an elaborate performance comparison with various
encodings of the resolution-based grounded semantics in the realm of answer-set programming.
We compared our solution to Πgrd∗_metasp and Π′grd∗_metasp , two meta ASP encodings of the
resolution-based grounded semantics, which were proposed by by W. Dvořák et al. in [22] and
are based on the metasp approach, proposed by M. Gebser et al. [32]. We too compared our
realization to the encoding Πgrd∗, proposed by W. Dvořák et al. in their article [22], which also
is based on the verification algorithm presented in [6] and follows the Guess & Check paradigm.
During the process of development we discovered the positive effects of an optimization tech-
nique which is known as symmetry breaking within the field of answer-set programming. We
observed that for existing encodings of the resolution-based grounded semantics CLASP to-
gether with GRINGO performed significantly better than DLV. A deeper analysis of why this is
the case remains subject to future work. We furthermore came to the conclusion that our novel
encoding performed remarkably well compared to existing solutions. For smaller instances its
performance was unmatched, while for larger instances the performance advantage depended on
the type of argumentation framework.

85

Bibliography

[1] Leila Amgoud and Caroline Devred. Argumentation frameworks as constraint satisfaction
problems. In Proceedings of the 5th international conference on Scalable uncertainty
management, SUM’11, pages 110–122, Berlin, Heidelberg, 2011. Springer-Verlag.

[2] Christian Anger, Kathrin Konczak, Thomas Linke, and Torsten Schaub. A glimpse of
answer set programming. KI, 19(1):12–, 2005.

[3] Krzysztof R. Apt, Howard A. Blair, and Adrian Walker. Towards a theory of declarative
knowledge. In Foundations of Deductive Databases and Logic Programming., pages 89–
148. Morgan Kaufmann, 1988.

[4] Pietro Baroni, Martin Caminada, and Massimiliano Giacomin. Review: an introduction to
argumentation semantics. The Knowledge Engineering Review, 26(4):365–410, December
2011.

[5] Pietro Baroni, Paul E. Dunne, and Massimilano Giacomin. On the resolution-based fam-
ily of abstract argumentation semantics and its grounded instance. Artificial Intelligence,
175:791–813, March 2011.

[6] Pietro Baroni and Massimiliano Giacomin. On principle-based evaluation of extension-
based argumentation semantics. Artificial Intelligence, 171:675–700, July 2007.

[7] Pietro Baroni and Massimiliano Giacomin. Semantics of abstract argument systems. In
Guillermo Simari and Iyad Rahwan, editors, Argumentation in Artificial Intelligence, pages
25–44. Springer US, 2009.

[8] Pietro Baroni, Massimiliano Giacomin, and Giovanni Guida. SCC-recursiveness: a gen-
eral schema for argumentation semantics. Artificial Intelligence, 168(1):162–210, October
2005.

[9] C. Beierle and G. Kern-Isberner. Methoden wissensbasierter Systeme - Grundlagen, Algo-
rithmen, Anwendungen. Vieweg+Teubner Verlag, 4., verbesserte Auflage, 2008.

[10] Philippe Besnard and Anthony Hunter. Argumentation based on classical logic. In
Guillermo Simari and Iyad Rahwan, editors, Argumentation in Artificial Intelligence, pages
133–152. Springer US, 2009.

87

[11] Robert Bihlmeyer, Wolfgang Faber, Giuseppe Ielpa, Vincenzino Lio, and Gerald Pfeifer.
dlv - user manual. http://www.dlvsystem.com, 10 2012.

[12] Stefano Bistarelli and Francesco Santini. Conarg: A constraint-based computational frame-
work for argumentation systems. In Proceedings of the IEEE 23rd International Confer-
ence on Tools with Artificial Intelligence, ICTAI 2011, pages 605–612, 2011.

[13] Stefano Bistarelli and Francesco Santini. Modeling and solving afs with a constraint-
based tool: conarg. In Proceedings of the First international conference on Theory and
Applications of Formal Argumentation, TAFA 11, pages 99–116, Berlin, Heidelberg, 2012.
Springer-Verlag.

[14] Gerhard Brewka, Thomas Eiter, and Miroslaw Truszczynski. Answer set programming at
a glance. Commun. ACM, 54(12):92–103, 2011.

[15] Martin Caminada. On the issue of reinstatement in argumentation. In Proceedings of the
10th European conference on Logics in Artificial Intelligence, JELIA’06, pages 111–123,
Berlin, Heidelberg, 2006. Springer-Verlag.

[16] Martin Caminada. Semi-stable semantics. In Proceedings of the 2006 conference on
Computational Models of Argument, pages 121–130, Amsterdam, The Netherlands, The
Netherlands, 2006. IOS Press.

[17] Sylvie Coste-Marquis, Caroline Devred, and Pierre Marquis. Prudent semantics for ar-
gumentation frameworks. In Proceedings of the 17th IEEE International Conference on
Tools with Artificial Intelligence, ICTAI ’05, pages 568–572, Washington, DC, USA, 2005.
IEEE Computer Society.

[18] Sylvie Coste-Marquis, Caroline Devred, and Pierre Marquis. Symmetric argumentation
frameworks. In Proceedings of the 8th European conference on Symbolic and Quantita-
tive Approaches to Reasoning with Uncertainty, ECSQARU’05, pages 317–328, Berlin,
Heidelberg, 2005. Springer-Verlag.

[19] Phan Minh Dung. On the acceptability of arguments and its fundamental role in nonmono-
tonic reasoning, logic programming and n-person games. Artifical Intelligence, 77(2):321–
357, September 1995.

[20] Phan Minh Dung, Paolo Mancarella, and Francesca Toni. A dialectic procedure for scep-
tical, assumption-based argumentation. In Proceedings of the 2006 conference on Com-
putational Models of Argument, pages 145–156, Amsterdam, The Netherlands, 2006. IOS
Press.

[21] Paul E. Dunne and Michael Wooldridge. Complexity of abstract argumentation. In
Guillermo Simari and Iyad Rahwan, editors, Argumentation in Artificial Intelligence, pages
85–104. Springer US, 2009.

88

http://www.dlvsystem.com

[22] Wolfgang Dvořák, Sarah Alice Gaggl, Johannes Peter Wallner, and Stefan Woltran. Mak-
ing use of advances in answer-set programming for abstract argumentation systems. CoRR,
abs/1108.4942, 2011.

[23] Wolfgang Dvořák and Stefan Woltran. On the intertranslatability of argumentation seman-
tics. Journal of Artificial Intelligence Research, 41(2):445–475, May 2011.

[24] Uwe Egly, Sarah Alice Gaggl, and Stefan Woltran. Answer-set programming encodings
for argumentation frameworks. Argument & Computation, 1(2):147–177, 2010.

[25] Uwe Egly, Sarah Alice Gaggl, and Stefan Woltran. Aspartix: Implementing argumenta-
tion frameworks using answer-set programming. In Proceedings of the 24th International
Conference on Logic Programming, ICLP ’08, pages 734–738, Berlin, Heidelberg, 2008.
Springer-Verlag.

[26] Thomas Eiter and Georg Gottlob. On the computational cost of disjunctive logic program-
ming: Propositional case. Annals of Mathematics and Artificial Intelligence, 15:289–323,
1995.

[27] Thomas Eiter, Giovambattista Ianni, and Thomas Krennwallner. Answer set programming:
A primer. In Sergio Tessaris, Enrico Franconi, Thomas Eiter, Claudio Gutierrez, Siegfried
Handschuh, Marie-Christine Rousset, and Renate A. Schmidt, editors, Reasoning Web. Se-
mantic Technologies for Information Systems, volume 5689 of Lecture Notes in Computer
Science, pages 40–110. Springer Berlin Heidelberg, 2009.

[28] Wolfgang Faber and Stefan Woltran. Manifold answer-set programs for meta-reasoning. In
Proceedings of the 10th International Conference on Logic Programming and Nonmono-
tonic Reasoning, LPNMR ’09, pages 115–128, Berlin, Heidelberg, 2009. Springer-Verlag.

[29] Alejandro J. García and Guillermo R. Simari. Defeasible logic programming: an argu-
mentative approach. Theory and Practice of Logic Programming, 4(2):95–138, January
2004.

[30] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Max Ostrowski, Torsten Schaub,
and Marius T. Schneider. Potassco: The Potsdam answer set solving collection. http:
//potassco.sourceforge.net, 12 2012.

[31] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Max Ostrowski, Torsten Schaub,
and Sven Thiele. A user’s guide to gringo, clasp, clingo and iclingo, 2008.

[32] Martin Gebser, Roland Kaminski, and Torsten Schaub. Complex optimization in answer
set programming. Theory and Practice of Logic Programming, 11(Special Issue 4-5):821–
839, 2011.

[33] Martin Gebser, Benjamin Kaufmann, Roland Kaminski, Max Ostrowski, Torsten Schaub,
and Marius Schneider. Potassco: The potsdam answer set solving collection. AI Commun.,
24(2):107–124, April 2011.

89

http://potassco.sourceforge.net
http://potassco.sourceforge.net

[34] Martin Gebser, Benjamin Kaufmann, André Neumann, and Torsten Schaub. Clasp: a
conflict-driven answer set solver. In Proceedings of the 9th international conference on
Logic programming and nonmonotonic reasoning, LPNMR’07, pages 260–265, Berlin,
Heidelberg, 2007. Springer-Verlag.

[35] Martin Gebser, Torsten Schaub, and Sven Thiele. Gringo: a new grounder for answer
set programming. In Proceedings of the 9th international conference on Logic program-
ming and nonmonotonic reasoning, LPNMR’07, pages 266–271, Berlin, Heidelberg, 2007.
Springer-Verlag.

[36] Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic program-
ming. In International Conference on Logic Programming/Joint International Conference
and Symposium on Logic Programming, pages 1070–1080. MIT Press, 1988.

[37] Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gottlob, Simona Perri,
and Francesco Scarcello. The dlv system for knowledge representation and reasoning.
ACM Transactions on Computational Logic, 7:499–562, 2002.

[38] Vladimir Lifschitz. Answer set programming and plan generation. Artificial Intelligence,
138:2002, 2002.

[39] Vladimir Lifschitz. What is answer set programming? In Proceedings of the 23rd national
conference on Artificial intelligence - Volume 3, pages 1594–1597. AAAI Press, 2008.

[40] David G. Mitchell. A sat solver primer. Bulletin of the EATCS, 85:112–132, 2005.

[41] Sanjay Modgil. Hierarchical argumentation. In Michael Fisher, Wiebe van der Hoek,
Boris Konev, and Alexei Lisitsa, editors, Logics in Artificial Intelligence, 10th European
Conference, JELIA 2006, Liverpool, UK, September 13-15, 2006, Proceedings, volume
4160 of Lecture Notes in Computer Science, pages 319–332. Springer, 2006.

[42] Juan C. Nieves, Ulises Cortés, and Mauricio Osorio. Preferred extensions as stable models.
Theory and Practice of Logic Programming, 8(4):527–543, 2008.

[43] Christos H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[44] Christos H. Papadimitriou. Computational complexity. In Encyclopedia of Computer Sci-
ence, pages 260–265. John Wiley and Sons Ltd., Chichester, UK, 2003.

[45] Iyad Rahwan and Guillermo R. Simari, editors. Argumentation in Artificial Intelligence.
Springer-Verlag, Berlin, 2009.

[46] Raymond Reiter. On closed world data bases. In H. Gallaire and J. Minker, editors, Logic
and Data Bases, pages 55–76. Plenum, New York / London, 1978.

[47] Raymond Reiter. A logic for default reasoning. Artificial Intelligence, 13(1-2):81 – 132,
1980. Special Issue on Non-Monotonic Logic.

90

[48] Guillermo R. Simari and Ronald P. Loui. A mathematical treatment of defeasible reasoning
and its implementation. Artificial Intelligence, 53(2-3):125–157, February 1992.

[49] Patrik Simons, Ilkka Niemelá, and Timo Soininen. Extending and implementing the stable
model semantics. Artificial Intelligence, 138(1-2):181–234, June 2002.

[50] Larry J. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science,
3(1):1 – 22, 1976.

[51] Tommi Syrjánen. Lparse 1.0 user’s manual.

[52] Tommi Syrjánen and Ilkka Niemelá. The smodels system. In Logic Programming and
Nonmotonic Reasoning, volume 2173 of Lecture Notes in Computer Science, pages 434–
438. Springer Berlin Heidelberg, 2001.

[53] Francesca Toni and Marek Sergot. Argumentation and answer set programming. In Mar-
cello Balduccini and TranCao Son, editors, Logic Programming, Knowledge Representa-
tion, and Nonmonotonic Reasoning, volume 6565 of Lecture Notes in Computer Science,
pages 164–180. Springer Berlin Heidelberg, 2011.

[54] Toshiko Wakaki and Katsumi Nitta. New frontiers in artificial intelligence. In Hiromitsu
Hattori, Takahiro Kawamura, Tsuyoshi Idé, Makoto Yokoo, and Yohei Murakami, editors,
Lecture Notes in Computer Science, pages 254–269. Springer-Verlag, Berlin, Heidelberg,
2009.

91

	Introduction
	Main Contributions
	Related Work
	Organization

	Background
	Complexity
	Abstract Argumentation
	Answer-Set Programming

	ASP based Argumentation
	Encodings of Standard Semantics
	Previous Encodings of the Resolution Based Grounded Semantics

	New Encodings of the Resolution Based Grounded Semantics
	Outline
	Encoding
	Another Variant of a Verification-Algorithm Based Encoding

	Experimental Evaluation
	Test Set
	Test Environment
	The Candidate Encodings
	Results
	Observations

	Summary and Future Work
	Bibliography

