
Softw Syst Model
DOI 10.1007/s10270-016-0528-y

SPECIAL SECTION PAPER

Leveraging annotation-based modeling with JUMP

Alexander Bergmayr1 · Michael Grossniklaus2 · Manuel Wimmer1 · Gerti Kappel1

Received: 7 May 2015 / Revised: 21 April 2016 / Accepted: 23 April 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract The capability of UML profiles to serve as anno-
tation mechanism has been recognized in both research
and industry. Today’s modeling tools offer profiles specific
to platforms, such as Java, as they facilitate model-based
engineering approaches. However, considering the large
number of possible annotations in Java, manually develop-
ing the corresponding profiles would only be achievable by
huge development andmaintenance efforts. Thus, leveraging
annotation-based modeling requires an automated approach
capable of generating platform-specific profiles from Java
libraries. To address this challenge, we present the fully
automated transformation chain realized by Jump, thereby
continuing existing mapping efforts between Java and UML
by emphasizing on annotations and profiles. The evaluation
of Jump shows that it scales for large Java libraries and gen-
erates profiles of equal or even improved quality compared to
profiles currently used in practice. Furthermore, we demon-
strate the practical value of Jump by contributing profiles
that facilitate reverse engineering and forward engineering
processes for the Java platform by applying it to a modern-
ization scenario.

Keywords Java annotations · UML profiles · Model-based
software engineering · Forward engineering · Reverse
engineering

Communicated by Dr. Jürgen Dingel and Wolfram Schulte.

B Alexander Bergmayr
bergmayr@big.tuwien.ac.at

1 TU Wien, Favoritenstrasse 9-11, 1040 Vienna, Austria

2 University of Konstanz, P.O. Box 188, 78457 Konstanz,
Germany

1 Introduction

Since the introduction of the profile mechanism in UML,
numerous profiles have been developed [65], many of which
are available by the OMG standardization body [60]. Also in
industry, their practical value has been recognized as today’s
modeling tools offer already predefined stereotypes covered
by profiles. They are considered as a major ingredient for
current model-based software engineering approaches [10]
by providing features supplementary to the UML standard
metamodel. This powerful capability of profiles can also
be exploited in terms of an annotation mechanism [71]. As
a result, they leverage annotation-based modeling, where
defined stereotypes show similar capabilities as annotations
over program elements [24,56].

Annotating program elements is widely adopted in prac-
tice [66,69], and various programming languages provide
concepts to support them, e.g., annotations in Java and Scala,
attributes in C#, and decorators in Python. For the scope
of this article, we focus on Java annotations since they
have already been introduced in [63], and therefore, many
well-known libraries embrace them. For instance, the Java
Persistence API (JPA) [42] provides annotations to denote
strong and weak entities, Enterprise Java Beans (EJB)1 [25]
defines annotations to manage the state of session beans, and
recently the Checker framework [17] uses type annotations
introduced in Java 8 to indicate that an expression is never
null. Hence, deriving stereotypes from established program-
ming libraries to produce corresponding UML profiles on
the model level is desirable [4,31,49]. For instance, IBM’s
Rational SoftwareArchitect provides profiles for certain Java
libraries. By applying such profiles, platform-independent

1 The UML specification contains a simplified EJB profile to discuss
the benefits of the profile mechanism and demonstrate its application.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-016-0528-y&domain=pdf


A. Bergmayr et al.

models (PIMs) are refined into models specific to a plat-
form (PSMs), where the platform refers to the library from
which the profile was derived. Turning this forward engi-
neering (FE) perspective into a reverse engineering (RE)
one, existing programs can be represented as UML mod-
els that capture annotations by applying the corresponding
profiles. Therefore, platform-specific profiles and their appli-
cation are beneficial from both perspectives. In a RE process,
model analyzers can exploit captured stereotypes to facil-
itate comprehension [15], whereas profiled UML models,
i.e., models to which profiles are applied, pave the way for
model transformers to generate richer program code in an FE
process [71].

For that reason, we have realized Jump [6] that enables
UML profiles to be generated automatically from Java
libraries, which use annotations. Considering the large num-
ber of possible annotations in Java, manually developing
the corresponding profiles would only be achievable by a
huge development and maintenance effort. For instance,
in the ARTIST project [5], we are confronted with this
problem, as we work toward a model-based engineer-
ing approach for modernizing applications by novel cloud
offerings. This involves representing PSMs that refer to
the platform of existing applications, e.g., the JPA, when
considering persistence, and the platform of “cloudified”
applications, e.g., the Objectify library [57], when consid-
ering cloud datastores. Supporting JPA annotations on the
model level facilitates distinguishing between plain associ-
ation and composition relationships and precisely deciding
on multiplicities, which, in general, is not easy to grasp [11].
UML models profiled by Objectify annotations enable gen-
erating method bodies even from a structural viewpoint.
These examples highlight the practical value of platform-
specificRE andFE tools, which are developed in theARTIST
project.

In this article, we present the fully automatic transfor-
mation chain realized by Jump. We propose an effective
conceptual mapping between the two considered techni-
cal spaces [41,48]: Java and UML. Our approach targets
users who employ UML in order to realize reverse engi-
neering and forward engineering processes where software
artifacts are implemented in Java. Therefore, we continue the
long tradition of investigating mappings between Java and
UML [26,36,46,54].However, in this article,we also address
Java annotations and UML profiles in the mapping process.
This necessitates overcoming existing heterogeneities that,
e.g., refer to the target specification of Java annotations and
other peculiarities of how Java annotation types are declared.
In this respect, we discuss the support of current modeling
tools to represent Java annotations in UML and highlight the
benefits of the mapping realized by Jump. It allows annota-
tions to be applied in a controlled UML standard-compliant
way as the generated stereotypes extend exactly the required

UML meta-classes. From a language engineering perspec-
tive, stereotypes facilitate defining constraints and model
operations because they can directly be used as explicit types
similar to a meta-class in UML. Jump realizes a mapping
between Java’s annotation language and UML’s profile lan-
guage. It enables the generation of specific stereotypes for
corresponding annotations, which in turn leverage platform-
specific profiles. As a basis for our generative approach,
we employ model transformation techniques [19]. As a
result, it allows engineers to “jump” from Java libraries
to UML profiles. We collect all the generated profiles and
make them publicly available in terms of the UML-Profile-
Store [74], thereby complementing OMG’s collection of
standardized profileswith supplementary profiles for the Java
platform.

This article is an extension of our paper [6] at the MoD-
ELS 2014 conference. We introduce three main extensions
over the previous conference version. First, we consider nov-
elties of Java 8 regarding repeating annotations as it leads us
to revisit how stereotypes are defined and applied in profile
applications [50], while leaving type annotations as subject
for future work. We discuss pros and cons of three signifi-
cantly different solutions to support repeating stereotypes in
analogy to repeating annotations and modifications required
to the current UML 2.4 formal specification and its Eclipse-
based reference implementation that are implied by two of
them. Second, we improve our previously introduced map-
ping to support the generation of profiles with repeating
stereotypes. Moreover, we briefly discuss the contribution of
the UML-Profile-Store to the Eclipse UML Profiles Repos-
itory (UPR) [75]. Our aim is to share all generated UML
profiles with the Eclipse modeling community. Third, to
strengthen the evaluation of our approach, we report on the
scalability of Jump by providing performance measures of
applying it to large Java code bases and demonstrate its prac-
ticability by applying it to amodernization scenario including
both RE and FE processes.

The remainder of this paper is structured as follows. In
Sect. 2, we motivate the practical value of platform-specific
profiles by a typical Jump use case and give the background
forUMLProfiles and Java Annotations in terms ofmetamod-
els. Then, in Sect. 3, we discuss how repeating stereotypes
may be introduced into UML. We present Jump in Sect. 4
by providing insights into our proposed conceptual mapping
and elaborating effective solutions to overcome existing het-
erogeneities between Java and UML. In Sect. 5, we discuss
our prototypical implementation based on Eclipse and its
contribution to the Eclipse UPR, while in Sect. 6, we eval-
uate Jump. In particular, we (1) compare our methodology
how to represent annotations and annotation types in UML
with methodologies used in current UML tools, (2) evalu-
ate the quality of automatically generated profiles compared
to profiles used in practice, (3) show that Jump scales for

123



Leveraging annotation-based modeling with Jump

«En�ty» 
Order 

«Id» - id: Long [0..1] 

«En�ty» 
OrderLine 

«Embeddable» 
Address 

[0..1] 
«Embedded» 
- deliveryAddress 

- street: String [0..1] 

ShoppingCart - order 
[0..1] 

Order 
- id: Integer [0..1] {id} 

Address OrderLine 

- orderLines [1..*] - deliveryAddress [0..1] 

- street: String [0..1] 

«En�ty» 
Order 

«Id» - id: Long [0..1] 

«Embed» 
Address 

- orderLines [0..1] - deliveryAddress [1..*] 

- street: String [0..1] «Id» - id: Long [0..1] 

«En�ty» 
OrderLine 

«Id» - id: Long [0..1] 

«Profile» 
JPA 

«Profile» 
Objec�fy 

«apply» 

Annotated Applica�on Classes 

Sliced Domain Classes 

Annotated Domain Classes 

- id: Integer [0..1] {id} 

Composi�on 
Iden�fier 

Composi�on 

Precise 
Mul�plicity

cloudify 

RE Scenario 
PSM2PIM 

FE Scenario 
PIM2PSM 

«Profile» 
Valida�on 

«OneToMany»{cascade=[All]} 
                         «Size»{min=1} 

[0..*] - orderLines 

«En�ty» 
Product 

«En�ty» 
Category 

«Id» - id: Long [0..1] «Id» - id: Long [0..1] 

«En�ty» 
Item 

«Id» - id: Long [0..1] 

- products 
[0..*] 

«OneToMany» 
{cascade=[All]} 

- item 

[0..1] 

- items 
«OneToMany» 
{cascade=[All]} 

[0..*] 

Item 
- id: Integer [0..1] {id} 

Product 
- id: Integer [0..1] {id} 

Iden�fier 

- item [0..1] 
- items 
[0..*] 

Category 
- id: Integer [0..1] {id} 

- products 

[0..*] 

Iden�fier Iden�fier 

Composi�on 
Composi�on 

«En�ty» 
Product 

«En�ty» 
Category 

«Id» - id: Long [0..1] «Id» - id: Long [0..1] 

«En�ty» 
Item 

«Id» - id: Long [0..1] 

- products 
[0..*] 

- items 
[0..*] 

«Library» 
java.lang 

«import» «apply» «apply» 

«Library» 
java.lang 

«import» 

- item 

[0..1] 

Fig. 1 Typical Jump use case

Java libraries used in practice, and (4) report on our experi-
ences applying Jump to a modernization scenario. Finally, in
Sect. 7, we discuss related work and conclude in Sect. 8 with
an outlook on future work.

2 Motivation and background

Java annotations and UML profiles can be considered as
general injection mechanisms for varying purposes. For
instance, UML profiles are used to specify variation points
of general UML semantics, introduce classifiers in addi-
tion to the standard UML classifiers, explicitly document
design decisions, and capture platform-specific terminology.
To motivate the practical value of platform-specific profiles
that are generated from annotation-based Java libraries, we
introduce a typical Jump use case. Then, we discuss the
concepts of Java’s annotation mechanism and briefly intro-
duce UML’s profile mechanism to establish the basis for our
approach.

2.1 Application of platform-specific UML profiles

A typical Jump use case is linked to scenarios in the setting
of reverse engineering and forward engineering. These use
cases are of particular relevance to migration projects, which
aim at reinterpreting existing reengineering processes [44]
in light of advanced model-based software engineering
approaches [30]. In this respect, UML profiles play an
important role as they enable the annotation of models with
platform-specific information [66]. To demonstrate a con-
crete use case, we selected the JPA and Objectify profile
from the area of data modeling. The idea is to replace the
former profile by the latter one, thereby realizing a change of
the data access platform as typically required by “moving-
to-the-cloud” scenarios. Figure 1 depicts an excerpt of the
PSMs of a typical eCommerce web application, where the
platform refers to the selected profiles. From the JPA-based
PSM, a sliced PIM is generated that sets the focus solely
on the domain classes, i.e., annotated with JPA stereotypes,
which are intended to be modified. Even better, this gen-
erated PIM interprets JPA stereotypes in terms of native

123



A. Bergmayr et al.

UML concepts. As a result, the accuracy of the PIM is
improved because it explicitly captures identifiers, composi-
tions, and more precise multiplicities. These improvements
in the PIM demonstrate the practical value of considering
platform-specific information in the context of amodel-based
RE scenario. Furthermore, they leverage the refinement of
the PIM toward an Objectify-based PSMwithout the need to
identify mappings between the pertinent platforms. From the
produced Objectify-based PSM, program code can be gen-
erated by also interpreting applied stereotypes in the context
of a FE scenario. For instance, method bodies for CRUD
operations can be generated for domain classes as they are
indicated by the respective stereotypes and generated code
elements can be automatically annotated. Clearly, Jump acts
as an enabler for both RE and FE scenarios by providing the
required platform-specific profiles.

2.2 Representation of Java annotations in UML

Currently, three significantly different solutions exist to
support Java annotations forUMLmodels: The built-in anno-
tation feature of modeling tools is used, a generic profile for
Java is provided, which enables capturing annotations and
their type declarations, and profiles are offered, which are
specific to a Java library or even an application with custom
annotation typedeclarations. Thefirst solution is certainly the
most generic one as it goes beyond Java and UML. Clearly,
it facilitates capturing Java annotations, though the type dec-
laration of an annotation in terms of a UML element and
its application are not connected. A generic profile for Java
emulates the representational capabilities of Java’s annota-
tion language. Although with this approach the connection
of annotation type declarations and their applications can be
ensured, the native support of UML for annotating elements
with stereotypes is still neglected. However, stereotypes
specifically defined for annotation typeswould facilitate their
application in a controlled UML standard-compliant way as
they extend only the required UML meta-classes. From a
language engineering perspective, such stereotypes facilitate
defining constraints and model operations, such as model
analysis or transformations, because they can directly be
used in terms of explicit types similar to a meta-class in
UML. Jump is based on a conceptualmapping between Java’s
annotation language and UML’s profile language [6], which
enables the generation of specific stereotypes for correspond-
ing annotation types that in turn leverage platform-specific
profiles.

2.3 Java annotations and UML profiles

Before annotations can be applied on code elements, they
need to be declared in terms of annotation types. A rough
overview of the main concepts behind annotations in Java

Annota�onType 

Annota�onType 
Element 

name : String [1] 
target : ElementType [*] 
repeatable : Boolean [1] 

type : ReturnType [1] 
name : String [1] 

annota�on 
TypeElement {ordered} * 

   JavaAnnota�on 

«enumera�on»
ModifierType 
– public 
– abstract 

– Annota�onType 
– Constructor 
– Field 
– LocalVariable 
– Method 
– Package 
– Parameter 
– Type 
– TypeParameter 
– TypeUse 
– All 

«enumera�on» 
ElementType 

– Primi�veType 
– String 
– Class 
– Class<T> 
– EnumType 
– Annota�onType 
– ArrayType 

«enumera�on» 
ReturnType 

Annota�on 

ElementValuePair 

type 

element 
Value 

iden�fier : String [1] 

1 

1 

annota�on 
* 

Modifier 
modifier : ModifierType [0..2] 

modifier 0..1 

modifier 0..1 

value * 

ElementValue 
default 
Value 

0..1 

Fig. 2 Metamodel of Java annotations

is given in the metamodel depicted in Fig. 2. We extracted
this metamodel from the JLS8 [64]. AnnotationTypes
declare the possible annotations for code elements and
may have, similar to Java interface declarations, optional
modifiers. They are identified by a name.Annotation
Types may themselves be subject for annotations. An
Annotation references to its type and composes
ElementValuePairs. They capture values passed to an
annotation. Most importantly for the context of this work is
the target annotation that is represented in the metamodel
as an attribute for simplicity reasons. It is a meta-annotation
because it can only be applied to declared annotation types to
indicate the code elements that are valid bases for an appli-
cation of an AnnotationType. The set of valid bases
are captured by the literals of ElementType enumeration.
Note that we omitted the newly introduced TypeUse and
TypeParameter literals as they are considered as part of
future work. Generally, UML does not support such annota-
tions by default as it would require to extend not only meta-
classes but also meta-features, which is not yet supported.
The body of an annotation type declaration consists of zero or
more AnnotationTypeElements for holding informa-
tion of AnnotationType applications. They are declared
in terms of method signatures with optional modifiers,
a mandatory return type and name, and an optional
default value that is returned if no custom value is set.
The default value needs to conform to the defined return
type of the AnnotationTypeElement. For instance,
if the defined return type is AnnotationType, the

123



Leveraging annotation-based modeling with Jump

Stereotype 

Property 

Extension 

ExtensionEnd 

UML 

Classes 

Profiles 

owned 
A�ribute 

0..1 
* class 

extension 

ownedEnd 
1 

type 1 

extensionEnd 
* 

extension * 

1 metaclass 

NamedElement 
name : String [0..1] 
visibility : VisibilityKind [0..1]  

isAbstract : Boolean [1] 

«enumera�on» 
VisibilityKind 

– public 
– protected 
– private 
– package 

Class 

Associa�on 

Fig. 3 Metamodel of UML profiles

default value needs to be an Annotation, which
inherits from ElementValue. This abstract meta-class
is specialized by other meta-classes, e.g., Conditional
Expression to support the non-array ReturnTypes
and ElementValueArrayInitializer to support
one-dimensional arrays thereof. For the sake of brevity,
these additional specializations of ElementValue are
omitted.

With the introduction of UML 2, the profile mechanism
has been significantly improved compared to the beginnings
of UML [31]. In particular, a profile modeling language has
been incorporated in the UML language family to precisely
define how profiles are applied on UML models and how
stereotypes are applied to elements of those models. Figure 3
depicts the core elements of UML’sProfiles package and
relates them to the Classes package of UML2.

A Stereotype is a specific meta-class used to extend
meta-classes of the UMLmetamodel. This enables platform-
specific concepts to be injected into instances ofmeta-classes
that are extended by a defined stereotype. TheStereotype
meta-class specializes the meta-class Class. Hence, it
inherits modeling capabilities such as properties. Similar
to AnnotationTypes, an instance of a Stereotype
is identified by a name and modified by an optional

2 Several classifiers, relationships, and features are omitted.We restruc-
tured some relationships for reasons of comprehensibility [8]. For
instance, in the standard UML metamodel Class inherits indirectly
from NamedElement; hence, we reduced the intermediate meta-
classes forming a deep inheritance hierarchy.

visibility and the mandatory isAbstract prop-
erty. A defined stereotype references the extended meta-
classes via instances of the Extension relationship. The
Extension relationship inherits from the Association
meta-class. As a result, it is a binary relationship with two
association ends where both are realized by a Property.
The property that points to the extended meta-class is con-
tained by the defined stereotype, whereas the extension
contains the other association end. It realizes the reference
from the extended meta-class back to the defined stereotype.
This back reference is represented by the ExtensionEnd
meta-class, which inherits from Property.

2.4 Defining stereotypes for declared annotations types

To demonstrate the relationship between annotations and
stereotypes, we set the focus on the Order class of the JPA-
based PSM in Fig. 1. Listing 1 shows the application of the
Entity annotation type to the Order class, whereas List-
ing 2 depicts the respective declaration at the programming
level.

Listing 1 Application of Entity annotation
package . . . ;
import javax .persistence .Entity ;

@Entity (name = "Order" )
publ ic c l a s s Order {

. . .
}

Listing 2 Declaration of Entity annotation
package javax .persistence ;
import java .lang .annotation . ∗ ;
@Target (ElementType .TYPE )
publ ic @interface Entity {
String name ( ) de fau l t "" ;

}

The corresponding UML representations are shown in
Figs. 4 and 5. They demonstrate the stereotype application to
the Order class and the Entity definition by a stereotype.

Considering the former, the UML profile which covers the
Entity stereotype needs to be applied to theOrder’s pack-

«Metaclass»
Class

«Metamodel»
UML

«Stereotype»
En�ty

name : String = "" [0..1]

«Profile»
javax.persistence

«import»

«En�ty»
Order

«En�ty»
name = "Order"

«instan�ate» «apply»

En�ty

name = "Order"

«reference»

«instan�ate»

metamodel
level

model
level

Fig. 4 Application of Entity stereotype

123



A. Bergmayr et al.

«Metaclass»
Type

«Stereotype»
En�ty

name : String = "" [0..1]

«import» «Profile»
javax.persistence

«Metamodel»
UML

«Metaclass»
Stereotype

«instan�ate»

metamodel
level

model
level

Fig. 5 Declaration of Entity stereotype

age as a prerequisite for the stereotype application. Applying
a stereotype means that it is instantiated similar to any other
meta-class that is used to create elements on the model level,
e.g., the Order class which is an instance of the meta-class
Class. Hence, a declared stereotype can be considered as
part of the metamodel level if the focus is on the stereotype
application [4]. A stereotype instance references the element
on themodel level towhich the respective stereotype has been
applied. In our example, the Order class is thus referenced
by an instance of the declared Entity stereotype.

Considering the declaration of the Entity stereotype,
it comprises as expected the name property corresponding
to the annotation type element of the Entity annotation
type. To ensure that it provides at least similar capabilities
as the Entity annotation type, the Extension relationship
references the UML meta-class Type.

Since Java 8, repeating annotations enable the same anno-
tation to be repeated multiple times in the place where it is
declared. Obviously, this repeatable application of annota-
tions has an effect on determining the multiplicity of the
ExtensionEnd contained by the Extension relation-
ship. In case of repeating annotations, the multiplicity should
be 0..*, which expresses that the corresponding stereotype
can also be applied to base elements3 multiple times. How-
ever, the UML standard introduces an OCL constraint, see
page 683 of the standard [61], that explicitly hinders the
application of the same stereotype to the same base element
more than once. As shown in Listing 3, the OCL constraint
restricts the upper bound of the extension end to 1.

Listing 3 Multiplicity constraint on ExtensionEnd
(self−>lowerBound ( ) = 0 or self−>lowerBound ( ) = 1)

↪→and self−>upperBound ( ) = 1

When considering a stereotype as a means to classify base
elements, the restriction on the upper bound of the extension
end seems reasonable. Classifying the same base element

3 A stereotype is applicable to a base element if it is an instance of a
meta-class extended by the stereotype. Considering theEntity stereo-
type, it extends the meta-class Type. As a result, it can be applied to
all instances of the meta-class Type.

twice by the same stereotype is obviously inappropriate. In
contrast, when considering a stereotype as a means to anno-
tate base elements, there are use cases for applying the same
stereotype to a base element multiple times. For instance,
in the context of model versioning dedicated stereotypes
can be used to visualize changes to a model element, e.g.,
“update class,” and highlight potential conflicts, e.g., contra-
dicting updates to a class, as a result of concurrently edited
model versions [12]. As updates to classes may be manifold,
the respective stereotype is ideally applied to the changed
class several times where each atomic change is captured
by exactly one applied stereotype. To give another example,
expressing several queries for an entity with the JPA pro-
file require to apply the NamedQuery stereotype multiple
times. As a result, even though repeating stereotypes in anal-
ogy to repeating annotations are currently not supported by
standard UML, they are still desirable.

3 Repeating stereotypes

To realize repeating stereotypes, several solutions are con-
ceivable. Table 1 summarizes three such possible solutions
and shows pros and cons for all of them. Concerning the
UML metamodel and tools that depend on it, we refer to the
Eclipse-based reference implementation.

The first solution is fully compliant to the current UML
standard. In fact, it does not actually apply several stereo-
types to a base element. Instead, a dedicated stereotype acts
as a container for the repeating stereotypes. This solution
foresees that the container stereotype is explicitly created by
the modeler. As a result, changes to the UML metamodel
and tools built on top of its API are not required because
the repeating stereotypes are only referenced by their con-
tainer stereotypes rather than applied to base elements. On
the contrary, however, standard operations, for instance, to
apply stereotypes and retrieve them, are not applicable by
this solution for repeating stereotypes as they provide the
expected result only for stereotypes that are applied follow-
ing the standard procedures. This drawback is compensated
by the second solution. It emulates repeating stereotypes as
a result of slight modifications to the operations provided
for stereotypes. Even though, similarly to the first solution,
a container stereotype is exploited also by the second solu-
tion, this container is automatically generated on demand.
Moreover, as a result of the modifications required by this
solution, all standard operations for stereotypes are applica-
ble also to repeating stereotypes.However, the extension ends
pointing to them need to be multivalued to ensure that they
can be applied multiple times. Consequently, this solution
neglects the multiplicity constraint of the ExtensionEnd
meta-class, which in turn leads to profiles that do not fully
conform to the current UML metamodel. Still, the compati-

123



Leveraging annotation-based modeling with Jump

Table 1 Possible solutions for repeating stereotypes

Solution Stereotype Changes in UML
metamodel and tools

Backward compatibility

Repeatable application Container UML metamodel Tools

Composition of multiple
stereotypes

Not supported only
contained by a
dedicated stereotype

Explicitly modeled Not required Yes Yes

Emulation of repeating
stereotypes

Supported but contained
by a dedicated
stereotype

Automatically generated Yes, moderate effort No Yes

Native support for
repeating stereotypes

Supported Not required Yes, relatively high
effort

No No

bility with existing tools can be ensured because the required
changes can completely be hidden by the UML metamodel
API. This backward compatibility cannot be maintained by
the third solution. To natively support repeating stereotypes
without providing a dedicated container stereotype requires
not only changes in the UML metamodel API but also how
they are represented and edited by the tools. For instance,
applied stereotypes are represented according to unique cat-
egories to which also their features are assigned, where the
category is derived from the name of a stereotype. Applying
the same stereotype multiple times to the same base element
would result in a single category to which all the features of
the applied stereotypes are assigned.

To demonstrate how the profiles with repeating stereo-
types of the three discussed solutions differ from each other,
we refer again to the NamedQuery annotation of the JPA.
Listing 4 shows its declaration as a repeatable annotation,
whereas Listing 5 declares the required container annotation.
For compatibility reasons, in Java8, repeating annotations are
stored in a container annotation that is automatically gener-
ated by the Java compiler once the annotation is applied.

Listing 4 Declaration of NamedQuery repeating annotation
package javax .persistence ;
import java .lang .annotation . ∗ ;
@Target ({ElementType .TYPE})
@Repeatable (NamedQueries . c l a s s )
publ ic @interface NamedQuery {

String name ( ) ;
String query ( ) ;

}

Listing 5 Declaration of NamedQueries container annotation
package javax .persistence ;
import java .lang .annotation . ∗ ;
@Target ({ElementType .TYPE})
publ ic @interface NamedQueries {

NamedQuery [ ] value ( ) ;
}

Considering the possible profile solutions in Figs. 6, 7,
and 8 for the annotation declarations,we selected the notation
used to represent associations and their member ends instead
of extensions [50] to explicitly indicate the multiplicities of

«Metaclass» 
Type 

«Stereotype» 
NamedQuery 

name : String [1] 
query : String [1]  

«import» 

«Metamodel» 
UML 

«Profile» 
javax.persistence 

«Stereotype» 
NamedQueries value 

[0..*] 

base_Type 

extension_Type 
NamedQueries 

[1] 

[0..1] 

Fig. 6 Profile for composing multiple stereotypes, see first solution in
Table 1

«Metaclass» 
Type 

«Stereotype» 
NamedQuery 

name : String [1] 
query : String [1]  

«import» 

«Metamodel» 
UML 

«Profile» 
javax.persistence 

extension_ 
NamedQuery 

base_Type 

[0..*] 

[1] 

«Stereotype» 
NamedQueries value 

[0..*] 

base_Type [1] 

[0..1] 
extension_Type 
NamedQueries 

Fig. 7 Profile for emulating repeating stereotypes, see second solution
in Table 1

the extension relationships. The first profile depicted in Fig. 6
allows multiple NamedQuery stereotypes to be composed
by its container stereotype. As expected, the latter extends
Type, where the multiplicity of the extension end point-
ing to the NamedQueries stereotype is 0..1. It indicates
that the container stereotype can be applied once, which is
sufficient because the composition relationship between the

123



A. Bergmayr et al.

«Metaclass» 
Type 

«Stereotype» 
NamedQuery 

name : String [1] 
query : String [1]  

«Profile» 
javax.persistence 

base_Type 

[0..*] 

[1] 

«import» 

«Metamodel» 
UML 

extension_Type 
NamedQueries 

Fig. 8 Profile for native support of repeating stereotypes, see third
solution in Table 1

NamedQueries stereotype and the NamedQuery stereo-
type is multivalued.

Similarly, the second profile shown in Fig. 7 exploits a
multivalued composition relationship to emulate repeating
stereotypes. The main difference compared to the first pro-
file is that the NamedQuery stereotype also extends Type,
where the multiplicity of the extension end pointing to the
stereotype is 0..*, which indicates that it is a repeating stereo-
type. As a result, the NamedQuery stereotype is applicable
to base elements that are instances of the meta-class Type. It
is important that the extension relationships of both defined
stereotypes point to the same meta-class because the con-
tainer stereotype needs to be applicable to exactly the same
set of base elements as the repeating stereotype. In fact, this
solution resembles the realization of repeating annotations
in Java 8. From the perspective of a modeler, the second
profile is more powerful compared to the first one, as the
required container stereotype is managed in the background
by the UML metamodel API and hence fully transparent to
the modeler. The development effort is slightly higher and
the profile more complex because an additional extension
relationship is required for the repeating stereotype.

Finally, the profile envisaged for the native support of
repeating stereotypes is shown in Fig. 8. It does not require a
container stereotype to capture repeating stereotypes because
they are assumed to be directly applied to the base ele-
ments. The main difference to the previous solution is that
each applied repeating stereotype is captured by its own
StereotypeApplication instead of composed by an
artificially introduced container stereotype for reasons of
backward compatibility. The latter can be considered as the
trade-off between natively supporting repeating stereotypes
and guaranteeing that the solution is compatible at least with
tools that are built on top of the UML metamodel API.

Concerning support for the three discussed solutions of
repeating stereotypes and the pertinent profiles, Jump allows
the generation of these profiles by passing the respective

Inject 
Code  

Generate 
UML Profile 

Apply 
UML Profile 

Generate 
UML Model 

Generate 
Code Model 

Apply 
UML Profile 

UML Model 

Profiled UML Model 

Java Code 

UML Profile 

RE Scenario 

G
W

 

Extract 
Code  

Inject 
Code  

Java Code 

Code Model 

Profiled UML Model 

Code Model Code Model 

Java Code 

M
W

 

Slice Profiled 
UML Model 

FE Scenario Profile Genera�on 

Pla�orm- 
independent 
UML Model 

Fig. 9 Processes for UMLprofile generation and application scenarios

configuration option. Hence, the modeler can decide which
profile version should be generated from a Java library.
Clearly, to emulate repeating stereotypes a modified UML
metamodel API is required, whereas native support for them
requires also modifications in the tools built on top of this
API. We consider support for a native realization of repeat-
ing stereotypes as future work.

4 Generating UML profiles from Java libraries

We start our investigation for generating UML profiles from
annotation-based Java libraries by presenting the process of
Jump, as shown in Fig. 9. The entry point to the profile gen-
eration is Java Code that is translated into a what we call
Code Model conforming to MOF [58]/EMF [21]. As a result
of this first step, the transition from a text-based representa-
tion into a model-based representation is accomplished. The
generated Code Model is a one-to-one representation of the
Java Code and the basis for generating aUML Profile, which
captures Java annotation type declarations in terms of UML
stereotypes (see middle of Fig. 9). They serve as foundation
to exploit profiles as an annotation mechanism [71].

In case of the RE scenario, aCode Model is generated in a
first step similar to the UML profile generation. The Profiled
UML Model is generated from the Code Model by taking
into account profiles that provide stereotypes correspond-
ing to annotations in the Code Model (see left hand side of
Fig. 9). Annotated elements of the Code Model indicate the
elements of the Profiled UML Model to which those stereo-
types need to be applied. As shown in Fig. 1, stereotypes
applied to elements of the Profiled UML Model may lead to
a more accurate Platform-independent UML Model if they
are appropriately interpreted by a model slicer [9]. This slic-
ing step is specific to the interpreted stereotypes and hence
the profiles that cover them, whereas the steps of generating

123



Leveraging annotation-based modeling with Jump

a Profiled UML Model and an intermediate Code Model are
completely generic in the sense that any Java application and
library can be translated into a Profiled UML Model.

A Profiled UML Model is accomplished in the case of the
FE scenario (see right hand side of Fig. 9) by applying profiles
to aPlatform-independent UMLmodel.While UML’s profile
mechanism is generic in the sense that arbitrary profiles can
be applied to a UML model, automating the application of
stereotypes to particular elements is certainly specific to the
application scenario. In contrast, both the generation of the
Code Model and the extraction of the Java Code are generic
provided that the employed code generation facility supports
stereotypes.

Considering the generation of stereotypes compared to the
RE and FE scenarios where those stereotypes are applied, the
respective profile generation process operates at a different
level as the processes supporting the two application scenario
because declared stereotypes can be considered as part of the
metamodel level instead of the model level (see Sect. 2.4).
Following this classification into different levels, the profile
generation is a meta-level process, which produces elements
at the metamodel level.

Finally, bridging the two technical spaces [41] we are con-
fronted with, i.e., GrammarWare (GW) [45] and ModelWare
(MW) [48], is required for the two scenarios as well as Jump.

4.1 Bridging technical spaces

Transforming plain Java code into a UML-based repre-
sentation requires overcoming the different encoding and
resolving language heterogeneities. Concerning the first
aspect, the Java codeneeds to be encoded according to the for-
mat imposed by the modeling environment [7]. Concerning
the second aspect, a bridge between Java and UML based on
translations requires a conceptual mapping between the two
languages. Instead of directly translating plain Java code into
a UML-based representation, the use of a two-step approach
is preferable [37], which is also applied by Jump. In a first
step, Java Code is translated into a Code Model that uses
Java terminology and structures conforming to the Javameta-
model provided by MoDisco [14]. This Code Model is the
basis for generating UML profiles and input for the second
step that is dedicated to resolving languageheterogeneities by
relying on the correspondences between the Java and UML
metamodels.

4.2 Generating UML profiles

To facilitate the generation of UML profiles, we present
a conceptual mapping between Java’s annotation language
and the profile language of UML. Therefore, stereotypes
play a vital role for representing annotation types on the
model level as they enable their application in a controlled

UML standard-compliant way. From a language engineering
perspective, stereotypes only extend the requiredUMLmeta-
classes and facilitate defining constraints and model opera-
tions, such as model analysis or transformations, because
they can directly be used in terms of explicit types similar to
ameta-class inUML.Our proposedmapping is generic in the
sense that any declared annotation type can be represented
by a stereotype.

4.2.1 AnnotationType → Stereotype

The mapping presented in Table 2 provides the basis to gen-
erate an applicable Stereotype from an Annotation
Type. First of all, it needs to be decided if a stereotype should
be generated at all, because container annotations required
to declare repeating annotations may not in any case result
in a corresponding container stereotype as discussed in the
previous Sect. 3. For that reason, a corresponding container
stereotype is generated from a container annotation only if
it is required, which depends on the provided configuration
parameter passed by themodeler.Whether an annotation type
is exploited as a container annotation is indicated by themeta-
annotation Repeatable applied to the annotation type for
which the container annotation is declared. Listing 6 gives
the respective function to check for container annotations.

Listing 6 Definition of isContainerAnnotation
context AnntotationType def :
Annotation .allInstances ( ) −> select (a : Annotation |

↪→ a .type .name=’Repeatable’ ) −> collect(value)
↪→−> exists (elementValue .type= s e l f )

In cases where repeating stereotypes should be com-
posed by a dedicated stereotype instead of directly applied
to a base element, see first row in Table 1, or emulated in
terms of repeating annotations, see second row in Table 1;
a container stereotype is generated. Otherwise, its genera-
tion is neglected; see third row in Table 1. The function
requiresContainerStereotype provides a boolean value of the
decision taken by the modeler.

Generally, the generation of a stereotype from an annota-
tion type requires not only its signature to be considered,
but also Java’s Target meta-annotation. It determines
the set of code elements an annotation type is applica-
ble to. The name and, with two exceptions, the defined
modifiers of an AnnotationType can straightfor-
wardly be mapped to UML. First, the abstract modifier
would lead to Stereotypes that cannot be instantiated if
directly mapped. The problem is caused by Java’s language
definition. Although the abstract modifier is supported
to facilitate one common type declaration production rule, it
does not restrict the application of AnnotationTypes. To
ensure the same behavior on theUML level, we never declare
a Stereotype to be abstract. Second, because annota-
tions are considered as modifiers, it needs to be ensured

123



A. Bergmayr et al.

Table 2 AnnotationType
to Stereotype mapping

1 See Listing 6 for further details
2 It provides a boolean value of the decision taken by the modeler regarding repeating stereotypes
3 See Listing 7 for further details
4 AnnotationTypes that are intended to used only inside other annotations require a zero multiplicity
(e.g., QueryHint of the JPA)
5 See Listing 8 for its specification
6 See Listing 9 for its specification
7 See Listing 10 for its specification

that the Target annotation is properly treated. In fact, the
defined set of Java ElementTypes determines the required
set of Extensions to UML meta-classes that specify the
application context of the stereotypes. Listing 7 defines the
correspondences between Java ElementTypes and UML
meta-classes.

Listing 7 Definition of getMetaclasses
context ElementType def : getMetaclasses : Se t (uml : :

↪→Element) =
if ( s e l f =AnnotationType) then Set {uml : :Stereotype}
else if ( s e l f =Constructor) then Set {uml : :Operation}
else if ( s e l f =Field) then Set {uml : :EnumerationLiteral

↪→ , uml : :Property}
else if ( s e l f =LocaleVariable) then Set {uml : :Property}
else if ( s e l f =Method ) then Set {uml : :Operation , uml : :

↪→Property}
else if ( s e l f =Package) then Set {uml : :Package}
else if ( s e l f =Parameter ) then Set {uml : :Parameter}
else if ( s e l f =Type ) then Set {uml : :Type}
else if ( s e l f =All ) then Set {uml : : Class , uml : :

↪→Enumeration , uml : :Interface , uml : :Operation ,
↪→uml : : Package , uml : : Parameter , uml : :Property ,
↪→uml : :Stereotype}

Most Java ElementTypes correspond well to UML
meta-classes. Still, some constraints are required to precisely

restrict the application scope of the generated Stereotype
according to their intention. UML does not explicitly sup-
port a constructor meta-class. The workaround is to map the
Constructor to Operation and introduce a constraint
that emulates the naming convention for constructors in Java,
as depicted in Listing 8. Note that annotation types can have
several target types. Thus, before validating the OCL con-
straint, we have to check which target is actually used in the
application.

Listing 8 Constructor constraint
context generated Stereotype inv :
s e l f .base_Operation .oclIsDefined ( ) impl i e s
s e l f .base_Operation .name= s e l f .base_Operation .

↪→oclContainer ( ) .oclAsType (uml : :Classifier ) .
↪→name

Similarly, the mapping of Java methods to UML requires
a constraint as a declaredmethod of an AnnotationType,
i.e., AnnotationTypeElement, is mapped to a
Property rather than an Operation in UML. This is
because such methods do not provide a custom realization
but merely return their assigned value when they get called.

123



Leveraging annotation-based modeling with Jump

Table 3
AnnotationTypeElement
to Property mapping

1 Extracts the type of the array

Properties inUMLprovide exactly this behavior.Hence,
the constraint in Listing 9 ensures that stereotypes generated
from annotation types that target Javamethods are applicable
also to Property if they are contained by a Stereotype.

Listing 9 Method constraint
context generated Stereotype inv :
s e l f .base_Property .oclIsDefined ( ) impl i e s
s e l f .base_Property .oclContainer ( ) .oclIsTypeOf(uml : :

↪→Stereotype )

Listing 10 Type constraint
context ToBeGeneratedStereotype inv :
s e l f .base_Type .oclIsDefined ( ) impl i e s
Set {uml : :Stereotype ,uml : : Class ,uml : :Enumeration ,uml

↪→ : :Interface} −> includes( s e l f .base_Type .
↪→oclType ( ) )

Finally, we use a constraint to overcome the heterogeneity
of Java’s and UML’s scope of Type. Consequently, stereo-
types that extend Type are constrained to those elements
that correspond to the set of elements generalized by Java’s
Type: AnnotationType, Class, Enumeration, and
Interface. The clear benefit of this approach is a smaller
number of generated extension relationships between stereo-
types and meta-classes in the profile. The constraint is
depicted in Listing 10.

4.2.2 AnnotationTypeElement → Property

An AnnotationTypeElement is mapped to a
Property as depicted in Table 3. Except for the fact that
UML properties cannot be defined as abstract,
AnnotationTypeElements straightforwardly corres-
pond to Properties. In Java, AnnotationTypes can-
not explicitly inherit from super annotations. Therefore, the
abstractmodifier is rarely used in practice. To fully sup-
port all return types of AnnotationTypeElements, we
introduce a Stereotype to address the generic capabil-

ities of java.lang.Class, which is not the case for
UML’s meta-class Class. Hence, we apply our custom
JGenericType stereotype to properties with return type
Class<T>.

5 Implementation and collected UML profiles

To show the feasibility of Jump, we implemented a pro-
totype based on the Eclipse ecosystem. We developed
three transformation chains— JavaCode2UMLProfile, Java-
Code2ProfiledUML, and ProfiledUML2JavaCode—to real-
ize Jump and the RE and FE processes are shown in Fig. 9.
For injecting Java code, we employedMoDisco [14]. Hence,
Jump can be considered as a model discoverer to extract
UML profiles from Java libraries. To realize the FE sce-
nario, we extended the Java-based transformer provided by
Obeo Network4. The prototype and the collection of pro-
files that we have generated for the evaluation of Jump are
available at theUML-Profile-Store [74]. It covers 20 profiles,
comprising in total over 700 stereotypes. To share these pro-
files with existing community portals, we submitted them
also to ReMoDD [29]. Since early 2014, an Eclipse project
is dedicated to develop a centralized repository that hosts
standardized UML profiles, such as SoaML [59]. The UML-
Profile-Store complements the set of standardized profiles of
the UML Profiles Repository (UPR) with profiles specific to
the Java platform. Contributing these Java-specific profiles to
the UPR appears obvious. Therefore, the Eclipse modeling
community can access them via a common repository for
standardized platform-independent profiles as well as pro-
files that are specific to a platform such as Java.

4 Obeo Network: http://marketplace.eclipse.org/content/uml-java-
generator.

123

http://marketplace.eclipse.org/content/uml-java-generator
http://marketplace.eclipse.org/content/uml-java-generator


A. Bergmayr et al.

6 Evaluation

The evaluation of Jump is fourfold. First, we compare it
with existing modeling tools regarding their representational
capabilities for dealing with the declaration and application
of Java annotation types. Second, we compare UML pro-
files automatically generated by Jump with UML profiles
delivered by IBM’s Rational Software Architect. Therefore,
our focus is on estimating the quality of the generated UML
profiles. Third, to show that Jump scales we report on its
application to different Java libraries which are widely used
in practice. Finally, we demonstrate the practical relevance
of Jump in the context of a modernization scenario to the
cloud.

– RQ1:What are the methods of current modeling tools to
represent Java annotation types and their applications in
UML and what are the practical implications?

– RQ2: How is the quality of UML profiles automatically
generated from annotation-based Java libraries com-
pared to UML profiles used in practice?

– RQ3: Does Jump scale for Java libraries and applica-
tions used in practice?

– RQ4: How can developers benefit from JUMP by apply-
ing it in a modernization scenario?

In the following, we are going to answer these four
research questions RQ1–RQ4 in the Sects. 6.1–6.4.

6.1 Methodological evaluation

As several commercial and open-source modeling tools pro-
vide modeling capabilities for UML and the Java platform,
the aim of this study is to investigate on their methods for
dealing with the application and declaration of annotations.
For that reason, we set the focus on a Java-based reverse
engineering example that includes annotations and their dec-
larations. We aim to answer (RQ1) by defining a set of
comparison criteria that mainly address (1) how the con-
ceptual mapping between Java and UML for annotations
is achieved by current modeling tools and (2) the genera-
tive capabilities of these tools regarding profiles. Based on
the defined criteria, we evaluate six representative modeling
tools and JUMP.

6.1.1 Comparison criteria

As there are different approaches on how annotation types
and their applications are represented on the model level,
the first and the second comparison criteria (CC1 and CC2)
refer exactly to these extensional capabilities. The third cri-
terion (CC3) refers to the support of generative capabilities
regarding profiles.

– CC1: How are Java annotations applied toUMLmodels?
– CC2: How are Java annotation type declarations repre-
sented in UML?

– CC3: Is the generation of UML profiles from Java code
supported?

6.1.2 Selected tools

We selected six major industrial modeling tools that claim to
support reverse engineering capabilities for Java and UML,
as summarized in Table 4.

6.1.3 Evaluation procedure

We defined a simple reference application [74] that declares
a Java class to which we applied an annotation type from an
external library. For the purpose of importing the applica-
tion, we activated the offered functionality of the modeling
tools required for a reverse engineering scenario from Java to
UML. While some of the modeling tools are delivered with
standard configurations, other modeling tools allow config-
urations to change the reverse engineering capabilities by
using specific wizards. Moreover, some modeling tools go
one step further and allow modifications on the transforma-
tion scripts used for the import of Java code. We evaluated
the capabilities of the modeling tools offered in the standard
settings and explored the different wizard configurations if
supported, but we restrained from modifying transformation
scripts.

6.1.4 Results

The results of our comparison are summarized in Table 4. It
shows that the investigated tools apply one of the three sig-
nificantly different approaches to represent Java annotations
in UML. We have already discussed these approaches and
their pros and cons in Sect. 2.2. While all evaluated mod-
eling tools support the generation of annotated UML class
diagrams from Java applications, none of them is capable
of generating profiles dedicated to Java libraries. Only the
Rational Software Architect also exploits the powerful capa-
bilities of stereotypes and profiles for capturing declared Java
annotation types.

6.2 Quality evaluation

As UML profiles are already offered by current modeling
tools, the aim of this study is to investigate their quality in
comparison with profiles automatically generated by Jump.
For that reason, we conducted a positivist case study [51]
based on real-world Java libraries to evaluate the commonal-
ities and differences between generated profiles and profiles
used in practice by following the guidelines of Roneson

123



Leveraging annotation-based modeling with Jump

Table 4 Comparison results

Modeling Tool Mapping (Java -> UML) UML profile
generation

Name Version Availability Annotation application Annotation
declaration

Altova UML 2015 Commerical and free for
academic use

Generic Java profile Interface −

ArgoUML 0.34 Open-source Generic Java profile Interface –

Enterprise
architect

9.3 Commerical and free for
academic use

Built-in tool feature Interface −

Magic draw 18.0 Commerical and free
trial version

Generic Java profile Interface −

Rational software
architect

8.5.1 Commerical and free for
academic use

Specific profiles Stereotype −

Visual paradigm 12.1 Commercial and free
community edition

Built-in tool feature Class −

JUMP 1.1.0 Open-source Specific profiles Stereotype +

and Hörst [70]. We aim to answer (RQ2) by defining the
requirements of the case study, briefly mention the used
Java libraries, and specify the measures based on which
the comparison is conducted. Then, we discuss the results
of our study not only from a syntactic perspective, but
also from a semantic one. The rationale behind this two-
step approach is that even though a syntactical matching
process for comparing the profiles provides already valu-
able results, some interesting correspondences may still be
uncovered because of potential syntactical and structural het-
erogeneities [79] between the compared profiles and the
conservative matching strategy applied for the syntactical
comparison.

6.2.1 Case study design

To conduct this study, the source code of Java libraries
that exploit annotations is required. Furthermore, we require
existing profiles that claim to support the selected Java
libraries on the model level. To accomplish an appropriate
coverage of different scenarios, the selected Java libraries
ideally comprise different intrinsic properties with respect
to the design complexity and exploited language elements.
Unfortunately, profiles specific to Java libraries in reasonable
quality are rarely available. Consequently, in the process of
selecting the Java libraries for this study, we were also con-
fronted with the actual offering of modeling tools. IBM’s
Rational Software Architect (RSA) is obviously close to
Jump and offers several profiles of well-known Java libraries
mainly for code generation purposes. Thus, we conducted
this study by relying on profiles of RSA in version 8.5.1. We
selected four established Java libraries for which the source
code is available and a correspondingRSAprofile in the same
major version is offered: Java Persistence API (JPA), Enter-

prise Java Beans (EJB), Struts and Hibernate. RSA offers
them in a UML standard-compliant way. Consequently, we
could directly compare themwithout an intermediate conver-
sion step. All the case study data including the Java libraries
and the profiles are available at our project web site [74].

6.2.2 Case study measures

The measures used in the case study are based on model
comparison techniques [47]. Thus,we are interested in equiv-
alent elements that reside in our generated profiles and in the
RSA profiles, elements that reside in both solutions but still
show differences in their features, and elements that are only
available in one of the compared solutions. The measures
for estimating the quality of the generated profiles are col-
lected in a two-step matching process. While the first step
automatically collects measures based on syntactic model
comparison, the second step relies on manually processing
differences produced in the first step to deal with semantic
aspects.

In the syntactic model comparison, we compute the fol-
lowing measures for certain model elements. To determine
element correspondences, we employ as matching heuristic
name equivalence, i.e., only if two elements have completely
the same name, they are considered to be corresponding. If an
element has no name, such as the Extension relationship,
it is considered that the elements are corresponding if their
source and target elements correspond. Finally, fine-grained
comparison of the feature values for the given elements is per-
formed. Regarding model elements, we set the focus on (1)
Stereotypes that are common to both and unique either
to Jump or RSA, (2) differences regarding theExtensions
of common Stereotypes, and (3) differences regarding
the Properties such Stereotypes cover.

123



A. Bergmayr et al.

In the semantic model comparison, we take the syntactical
differences as input and aim at finding additional correspon-
dences between elements which are hardly explored by a
pure syntactic comparison due to the conservative match-
ing strategy. We investigate unmatched elements, especially
stereotypes, in our generated profiles and in the RSAprofiles,
and reason about possible element correspondences beyond
string equivalences. Finally, in the semantic processing, we
further evaluate the correspondences found in the first phase
due to the potential syntactical and structural heterogeneities.

6.2.3 Results

We now present the results of applying Jump to the selected
Java libraries and compare them to the profiles offered by
RSA. They are also available at our project web site [74].
The absolute number of generated stereotypes by Jump and
the provided ones by RSA are depicted in Fig. 10.

Figure 11 shows (1) the number of stereotypes generated
by Jump but not covered by the RSA profiles, (2) the num-
ber of stereotypes that are exclusively covered by the RSA
profiles, and (3) the number of stereotypes that are com-
mon to both. These results include correspondences between
stereotypes detected throughout the syntactic and semantic
comparison. For instance, the EJB profile of RSA covers
stereotypes that refer to the @Local and @Remote annota-

0

20

40

60

80

100

120

EJB Hibernate JPA Struts

# 
St

er
eo

ty
pe

s

JUMP RSA

Fig. 10 Absolute number of stereotypes

0

20

40

60

80

100

120

EJB Hibernate JPA Struts

# 
St

er
eo

ty
pe

s

Unique to JUMP Unique to RSA Common

Fig. 11 Comparison of stereotypes

0

10

20

30

40

50

EJB Hibernate JPA Struts

# 
Ex

te
ns

io
ns

Missing in JUMP Missing in RSA More Specific in RSA

Fig. 12 Comparison of extensions

tions of the EJB library, though their signature additionally
contains the substring “Interface”. Another example
refers to the class QueryHint in the JPA profile of RSA,
which is in fact an annotation type in the JPA library. In
our solution, the QueryHint is represented by a stereotype
even though it is also valid to use a class instead, because the
QueryHint cannot actually be applied, but can rather only
be used inside of another annotation. Although some stereo-
types in the set of common ones show differences regarding
the meta-classes they extend, we granted them to be equal
if the extended meta-classes are related by a generalization
relationship.We encountered this case in the EJB and the JPA
library with respect to extensions of the meta-classes Type
and Class. Stereotypes generated by Jump extend the more
generalmeta-classType because the scope of Java’s element
type Type also covers Enumeration, Interface, and
AnnotationType in addition to Class.

The comparison regarding extensions of stereotypes com-
mon to both Jump and RSA is shown in Fig. 12. In a few
cases, the RSA profiles comprise extensions to the UML
meta-class Association to allow stereotypes on associ-
ations between elements rather than on properties contained
by associations. Although both modeling variants are valid,
we adhere to the second one as it is more accurate w.r.t. the
target specifications of the original annotation type declara-
tions.

Finally, in Fig. 13, the differences regarding the proper-
ties of common stereotypes are presented. Except for the
JPA profile, we cover all stereotype properties of the RSA
profiles. Consequently, our profiles are more complete. The
main reason for missing properties in our JPA profile seems
to be that RSA provides additional properties for code gen-
eration purposes, but these properties are not covered by the
JPA library.

6.2.4 Discussion

In this study, we have demonstrated that automatically gen-
erated UML profiles from Java libraries comprise a more

123



Leveraging annotation-based modeling with Jump

0

10

20

30

40

50

60

70

EJB Hibernate JPA Struts

# 
Pr

op
er

�e
s

Missing in JUMP Missing in RSA Different Type in RSA

Fig. 13 Comparison of properties

comprehensive set of stereotypes and features compared to
profiles used in practice for the purpose of supporting such
libraries. Clearly, the purpose of the developed profiles plays
an important role. From a forward engineering perspective,
one may argue that the set of stereotypes which is actually
supported by the accompanying code generators is reason-
able to capture on the model level. In fact, RSA offers code
generation capabilities specific to the profiles we have eval-
uated in this study. However, for unsupported annotations,
which have no corresponding stereotypes, code generators
may only produce program code by conventions without
allowing developers to intervene in this generation process on
the model level. From a reverse engineering perspective, we
would lose relevant information on the model level if offered
profiles provide less capabilities compared to the program-
ming level, which is, however, the case for RSA profiles.
Hence, with a fully automated approach, the quality of cur-
rent profiles can be improved by providing more complete
stereotypes that precisely capture the intention of the origi-
nal annotation types in terms of target definitions, member
declarations, and return values of such members.

6.2.5 Threats to validity

There are two main threats that may jeopardize the inter-
nal validity of this study. First, we consider only profiles
from RSA. The main reason for this procedure is that RSA
applies a similar approach as Jump and offers specific UML
profiles for Java libraries. Furthermore, RSA offers standard-
compliant UML profiles that conform to the same UML 2
metamodel implementation as used in Jump. Second, it may
be possible that we missed correspondences between ele-
ments of the profiles involved in the study. Several kinds of
heterogeneities [79] exist that are real challenges for model
matching algorithms and, thus, may affect the results of our
study. However, by applying a two-step matching process
which includes a syntactic as well as semantic comparison
phase, we tried to minimize the possibility of missing corre-
spondences as a result of different naming conventions and

modeling styles. While in the first phase we used a quite
conservative matching strategy to avoid false positives, we
applied a rather liberal strategy in the second phase to avoid
losing potential correspondences.

Concerning external validity, Jump sets the focus on Java
annotations. Many libraries embrace them, and real-world
cases provide validity for annotated Java code [66]. However,
we cannot claim any results outside of Java.

6.3 Scalability evaluation

To report on the scalability of the Jump tool, wemeasured the
execution time of applying the JavaCode2UMLProfile and
JavaCode2ProfiledUML transformations to several libraries
used in practice and real-world applications. In order to
answer (RQ3), these chains were executed in Eclipse Luna
4.4.2 with Java 1.8 on commodity hardware: Intel Core
i5-2520-M CPU, 2.50 GHz, 8,00 GB RAM,Windows 7 Pro-
fessional 64 Bit. Tables 5 and 6 summarize our obtained
results by emphasizing (1) the number of elements in the
intermediate Java model, i.e., the input of the transforma-
tions, and the produced UML profile / model, i.e., the output
of the transformations, (2) the number of declared and
applied stereotypes, and (3) the measured execution times.
Two results are accompanied with scatter plots, see Figs. 14
and 15, which show the ratio of model size and execution
time for UML profile generation and profiled UML model

Table 5 Performance measures: UML profile generation

Library Size of input/
output model

Applied
stereotypes

Execution
time in sec

EJB [25] 10K/1.5K 32 1.302

JPA [42] 20K/4K 84 2.165

Objectify [57] 40K/0,6K 20 1.442

Struts [73] 90K/2.5K 38 3.672

Hibernate [38] 300K/5K 108 12.042

Spring [72] 500K/3K 63 9.463

EclipseLink [22] 700K/6K 127 19.193

Table 6 Performance measures: profiled UML model generation

Application Size of input/
output model

Declared
stereotypes

Execution
time in sec

EJB [25] 10K/0.6K 5 (1 Profile) 1.647

Petstore (PS) [67] 10K/1.5K 287 (12 Profiles) 3.977

DEWS core [5] 30K/3K 253 (2 Profiles) 2.179

Struts [73] 90K/20K 753 (2 Profiles) 8.447

Findbugs [27] 100K/ 50K 1808 (3 Profiles) 22.267

Spring [72] 500K/90K 7973 (3 Profiles) 50.909

EclipseLink [22] 700K/200K 7117 (3 Profiles) 177.978

123



A. Bergmayr et al.

EJB 

JPA 
Objec�fy 

Struts 

Hibernate 

Spring 

EclipseLink 

0
2
4
6
8

10
12
14
16
18
20
22

0 100 200 300 400 500 600 700

Ex
ec

u�
on

 �
m

e 
in

 se
c 

Size of input model in K 

EJB 

JPA Objec�fy Struts 

Hibernate 

Spring 

EclipseLink 

0
2
4
6
8

10
12
14
16
18
20
22

0 1 2 3 4 5 6

Ex
ec

u�
on

 �
m

e 
in

 se
c 

Size of output model in K 

Fig. 14 Ratio of model size and execution time for UML profile gen-
eration

generation, respectively. The scatter plots include a linear
regression curve to show the trend of increasing execution
time w.r.t. growing model size by considering both input and
output models.

The rationale behind our selection of libraries and appli-
cations is to consider small-sized to large-sized libraries and
applications with varying number of declared and applied
stereotypes. Clearly, the size of the input models passed to
the transformations as well as the size of the produced out-
put models has a strong impact on the execution time of the
Jump tool as they are traversed throughout the generation
of profiles and profiled models. Regarding the UML profile
generation, the number of generated stereotypes is another
main factor that impacts on the execution time. Generally,
the more stereotypes are generated, the more extensions to
UML meta-classes and features of these stereotypes need to
be created. As a result, the number of produced stereotypes
has a strong impact on the size of the generated UML profile.
For instance, even though the JPA is compared to Objectify
smaller in size, the execution time is higher because a lot
more transformation rules are applied when considering the
number of declared stereotypes. Similarly, the execution time
of generating a profile for EclipseLink is twice as high as it
is for Spring, which can be explained by the major difference
in the number of declared stereotypes, i.e., 127 versus 63.

EJB 

PS 

DEWS 
Struts 

Findbugs 

Spring 

EclipseLink 

0
20
40
60
80

100
120
140
160
180
200

0 100 200 300 400 500 600 700

Ex
ec

u�
on

 �
m

e 
in

 se
c 

# Size of input model in K 

EJB 

PS 

DEWS 
Struts 

Findbugs 

Spring 

EclipseLink 

0
20
40
60
80

100
120
140
160
180
200

0 20 40 60 80 100 120 140 160 180 200

Ex
ec

u�
on

 �
m

e 
in

 se
c 

Size of output model in K 

Fig. 15 Ratio of model size and execution time for profiled UML
model generation

Regarding the generation of profiled UML models, the
more stereotypes fromdifferentUMLprofiles are applied, the
higher is the execution time. Similarly, the number of applied
stereotypes and their respective profiles influences the execu-
tion time. For instance, in the Petstore (PS), stereotypes are
applied from 12 different profiles, which explains the higher
execution time compared to DEWS core, even though the
input model of the latter is larger in size. Considering the
measured results for Struts and Findbugs show the strong
impact of the size of the generated output model and the
number of applied stereotypes on the execution time. Even
though the input models of Struts and Findbugs are almost
similar in size, the execution time of the latter is more than
twice as high as of the former. This can be explained by the
fact that the output model and the number of applied stereo-
types in the case of Findbugs are double in size compared to
Struts. If the size of both input and output models is as large
as it is in case of EclipseLink, the high memory consumption
and as a result the excessive use of garbage collection may
also be an additional factor that influences execution time.
This is one reason why the execution time for EclipseLink is
above the overall estimated trend, see Fig. 15. Considering
the execution time of the profiled UML model generation,
it is generally higher compared to profiles because the class

123



Leveraging annotation-based modeling with Jump

structure of the former is much larger in size compared to the
latter. For instance, considering EclipseLink and the number
of generated stereotypes compared to classes the factor is
almost 30.

6.4 Practicability evaluation

As Jump is intended to be used by engineers that produce
platform-specific profiles not only to support transformations
of a RE process but also in an FE one, we report on our
experiences of applying it in the context of a software mod-
ernization to the cloud that involves both processes. In doing
so, we elaborate on the use case motivated in Sect. 2.1, where
a change of the data access platform is discussed and pro-
vides insights into the transition of a JPA-based solution to an
Objectify-based solution aimed to be hosted on the Google
Cloud Platform. This cloud-based solution allows entities
to be retrieved not only by plain service classes but also
via a REST-based client which basically resembles Google’s
Cloud Endpoints service5 (cf. e.g., [23]). To carry out the
transition toward a cloud-based solution, we apply Kazman’s
“horseshoe” [44] in light of model-driven software engineer-
ing (MDSE) and cloud-oriented software modernization. As
a result of applying advancedMDSE techniques, we reverse-
engineered an environment-independent6 domain model in
a quality that allowed us to directly refine it toward an
environment-specific one fromwhich we generated the com-
plete cloud-based solution. In this modernization scenario,
we particularly emphasize the benefit of annotation-based
modeling to improve the quality of the reverse-engineered
domain model and to generate model artifacts that could
have hardly been generated otherwise. Based on our insights
gained from the outlined modernization scenario, we aim to
answer (RQ4).

6.4.1 Jump in action

The conceptual overview shown in Fig. 16 relates all the
code, model, and transformation artifacts involved in our
modernization scenario. Considering the first step in the RE
process, aUMLmodel that captures the complete on-premise
application from a structural perspective is generated. More-
over, Java libraries are reverse-engineered into corresponding
UML libraries and UML profiles as they enable succeeding
transformations to exploit information that is specific for the
current environment mainly to provide abstractions over the
initially generated environment-specificmodel (ESM) and to
improve their quality. For instance, the profiled model rep-

5 Google Cloud Endpoints: https://cloud.google.com/appengine/docs/
java/endpoints/.
6 The term environment is used in analogy to platform as introduced
by the MDA paradigm.

On premise
applica�on

ESM

EIDM

CESM

Cloud based
applica�onTransi�onJava

libraries

ProfiledUML2
JavaCode

JavaCode2
UMLLibrary

JavaCode2
UMLProfile

JavaCode2
ProfiledUML

ProfiledUML2
SlicedUML

UML2
ProfiledUML

Model and code ar�facts
Transforma�on ar�facts

ESM … Environment specific model
EIDM … Environment independent
domain model
CESM … Cloud environment specific
modelImport

Input / output

Annota�on based
slicing & analysis

Objec�fy & Rest
based refinement

Fig. 16 Modernization roadmap to the cloud

resented in Fig. 17 captures the two entities and the service
class to retrieve them as shown in Listing 11.

Listing 11 Relationship between Category and Product
/∗ Category ∗ /
package domain ;

import javax .persistence . ∗ ;
import java .util . ∗ ;
@Entity (name = "Category" )
publ ic c l a s s Category {

@Id pr iva te Long id ;
@OneToMany(mappedBy = "category" , cascade =

↪→CascadeType .ALL ) pr iva te List<Product>
↪→products ;

}

/∗ Product ∗ /
package domain ;

import javax .persistence . ∗ ;
@Entity (name = "Product" )
publ ic c l a s s Product {

@Id pr iva te Long id ;
@ManyToOne pr iva te Category category ;

}

/∗ Catalog Service ∗ /
package service ;

import javax .persistence . ∗ ;
import java .util . ∗ ;
import domain . ∗ ;
publ ic c l a s s CatalogService

pr iva te EntityManager em ;

publ ic Category findCategory(Long categoryId) {
if (categoryId == null ) throw new

↪→ValidationException ("Invalid category id"
↪→ ) ;

return em .find (Category . c la s s , categoryId ) ;
}

publ ic Product findProduct(Long productId ) {

123

https://cloud.google.com/appengine/docs/java/endpoints/
https://cloud.google.com/appengine/docs/java/endpoints/


A. Bergmayr et al.

«En�ty» 
Category 

«Id» - id: Long [0..1] 
«OneToMany»{ 
mappedBy = category, 
cascade=CascadeType.ALL}  
- products: List<Product> 

«En�ty» 
Product 

CatalogService 

+ findAllCategories (): List<Category> 
+ findAllProducts(): List<Product> 

domain 

service 

«Id» - id: Long [0..1] 
«ManyToOne» 
- category: Category 

«Profile» 
JPA 

«apply» 

«Library» 
java.u�l 

«import» 

«import» 
«import» 

Fig. 17 Reverse-engineered model specific to the Java and JPA envi-
ronment (ESM)

Category 
- id: Integer[0..1] {id} 

Product 
- id: Integer[0..1] {id} 

[0..*] 
- products 

domain 
«Library» 

UML 
Primitives 

Types 

«import» 

Fig. 18 Environment-independent domain model (EIDM)

if (productId == null ) throw new
↪→ValidationException ("Invalid product id" )
↪→ ;

return em .find (Product . c la s s , productId ) ;
}

}

This model is specific to the Java environment as the
products property and both methods findAll
Categories and findAllProducts are of type java
.util.List and the JPA as all the applied stereotypes
refer to corresponding annotations of it.

In the second step of the RE process, the domain model is
sliced from the ESM by withdrawing all model elements that
do not denote entities and turning Java-specific types into cor-
responding UML concepts. Considering the former, we have
implemented an annotation-based slicer where the slicing
criterion that captures the point of interest is a set of stereo-
types.Model elements towhich at least one of the stereotypes
is applied are considered as part of the computed model
slice (e.g., Entity and Embeddable). Moreover, stereo-
types applied to the ESM are analyzed mainly to improve the
quality of the sliced environment-independent domainmodel
(EIDM). The EIDM is shown in Fig. 18.

For instance, the composition relationship between
Category and Product of the EIDM has been gener-
ated on the basis of the @OneToMany stereotype applied
to the products property of the Category contained
by the ESM. The selected CascadeType allows the com-
position relationship to be derived where its member ends
are determined by the property to which the @OneToMany
stereotype is applied and the property assigned to the
mappedBy element. Without this detailed consideration
of the @OneToMany stereotype, we would at best be
able to generate properties with the respective types, i.e.,
Category and Product. Concerning Java-specific types,

Generate
Service

Interface

Generate
Ge�er/Se�er

Annotate
Domain
Model

Annotate
Service

Interface

Generate
Service
Proxy

Generate
Service
Classes

[front end] [back end]

Objec�fy
profile

JAX RS
profile

Jackson
profile

Back end
CESM

EIDM

Front end
CESM

Google
client
library

Objec�fy
library

Generate
Ge�er/Se�er
for Objec�fy

Objec�fy
library

[front end] [back end]

Fig. 19 Refinement of EIDM toward CESM

we mainly turned collection types of properties into multi-
valued properties and primitive types known from Java into
primitive types offered by UML.

Based on the reverse-engineered EIDM, we started the
refinement toward the target environment as part of the
FE process. In fact, we produced two different cloud
environment-specific models (CESM) one for the “front-
end” that is considered as the API used by the REST-based
clients and one for the “back-end” that is connected to the
clouddatastore of theGoogleCloudPlatform.Client requests
are delegated from the front-end to the back-end. How the
corresponding front-end CESM and back-end CESM is gen-
erated from the EIDM is depicted in Fig. 19.

It shows the process and the main models, profiles, and
libraries involved in the refinement. In the first step, service
interfaces and service methods are generated for the entities
of the domain model to create, read, update, and delete them.
For instance, the CategoryService interface in Fig. 20
and 21 is a result of this first step.

Depending on whether the front-end CESM or the back-
end CESM is generated, getter/setter methods are generated
either in a standard way or specific for Objectify. In case
of generating the back-end CESM, the EIDM is annotated
with stereotypes of the Objectify profile and the Jack-
son7 [39] profile before concrete service classes for the
service interfaces are generated. For instance, an explicit
composition relationship between two entities where the

7 Jackson is a JSON processor.

123



Leveraging annotation-based modeling with Jump

CategoryServiceImpl 

+ findCategory(long id): Category 

domain 

service 

«Interface» 
«Path, Produces, Consumes» 

CategoryService 

value=CategoryService 
«Path» 

value=[applica�on/json] 
«Produces» 

value=[applica�on/json] 
«Consumes» 

«POST, Path»{value=findCategory}  
+ findCategory (long id): Category 

«En�ty» 
Order 

«Id» - id: Long [1] 

«Embed» 
Address 

[0..1] - deliveryAddress 

[1..*] 

- street: String [0..1] 

«En�ty» 
OrderLine 

«En�ty, 
JsonIden�tyInfo» 

Product 

«En�ty, 
JsonIden�tyInfo» 

Category 

«Id» - id: Long [1] 

«Id» - id: Long [1] 

«En�ty» 
Item 

«Id» - id: Long [1] 

- products [0..*] 
- item 

- items 
[0..*] 

[0..1] 

«Id» - id: Long [1] 

- orderLines 

findCategoryBehavior=return 
OfyService.ofy().load().type(Cat
egory.class).filter("id", Id).first(). 
now(); 

«Profile» 
Objec�fy 

«apply» 

«Library» 
java.lang 

«import» 

«Profile» 
Jackson 

«apply» 

«Library» 
Objec�fy 

«import» 

«Profile» 
JAX-RS 

«apply» 

«Library» 
java.lang 

«import» 

«Library» 
Objec�fy 

«import» 

Fig. 20 Modernized back-end model specific to the target cloud envi-
ronment

CategoryServiceProxy 

+ findCategory(long id): Category 

ServiceProxy 

+ makeRequest(path : String, 
   h�pMethod : String): H�pResponse 

service 

domain 

Order 

- id: Long [1] 

Address 

[0..1] - deliveryAddress 

[1..*] 

- street: String [0..1] 

OrderLine 

«JsonIden�tyInfo» 
Product 

«JsonIden�tyInfo» 
Category 

- id: Long [1] 

- id: Long [1] 

Item 
- id: Long [1] 

- products [0..*] - item 
- items 

[0..*] 

[0..1] 

- id: Long [1] 

- orderLines 

«Interface» 
«Path, Produces, Consumes» 

CategoryService 

value=CategoryService 
«Path» 

value=[applica�on/json] 
«Produces» 

value=[applica�on/json] 
«Consumes» 

«POST, Path»{value=findCategory}  
+ findCategory (long id): Category 

findCategoryBehavior= 
try { 
   H�pResponse response = this. 
   makeRequest("/CategoryService/find 
   Category", "POST", id); 
   return response.parseAs(Category.class); 
} catch (IOExcep�on e) { … } 

«apply» 

«Library» 
java.lang 

«import» 

«Profile» 
Jackson 

«Library» 
Objec�fy 

«import» 

«Profile» 
JAX-RS 

«apply» 

«Library» 
java.lang 

«import» 

«Library» 
Google.client 

«import» 

Fig. 21 Modernized front-end model specific to the target cloud envi-
ronment

contained one cannot be identified by a dedicated property
indicates that the latter entity needs to be embedded by the
former entity. This embedding of entities can be expressed
in Objectify via the Embed stereotype, e.g., the Address
domain class in Fig. 20. Moreover, the Id stereotype is
required for generating the behavior of service methods
where the identifier of an entity needs to be accessed, e.g., the
method findCategory(long entityId) of the ser-
vice classCategoryService in Fig. 20. In cases of cyclic
or bidirectional relationships between entities the stereo-

type, JsonIdentityInfo is required for instructing the
serialization and de-serialization process as part of a REST-
based solution to turn bidirectional relationships into cross-
references of a tree-based structure as determined by JSON.

Annotating the service interfaces with stereotypes of the
JAX-RS8 [40] profile is a prerequisite for exposing them
to clients. Moreover, these stereotypes are required to gen-
erate the behavior of the service proxies as part of the
front-end CESM. For instance, to correctly deal with the
HttpResponse object of the findCategory(long
entityId) method in the CategoryServiceProxy,
the Path stereotypes applied to the service interfaces and
service operations, and the stereotypes determining theREST
method need to be accessed.

Having generated both the front-end CESM and the back-
end CESM as a result of the above refinement steps, the
corresponding Java code can be produced from them. For that
reason, we have adapted the Java-based model transformer
provided by Obeo Network in several respects.

1. Stereotypes for which the corresponding annota-
tions need to be produced

2. OpaqueBehaviors that are used to generate method
bodies

3. ElementImports as they indicate the required import
statements of the Java code

Listing 12 shows the generated back-end Java code for the
Category domain class, whereas in Listing 13 its front-end
Java code is given.

Listing 12 Generated back-end code for Category
/∗ Category ∗ /
package domain ;

import com .googlecode .objectify . ∗ ;
import com .fasterxml .jackson .annotation . ∗ ;
import java .util . ∗ ;
import domain .Product ;

@Entity
@Json Iden t i t y In fo (generator = IntSequenceGenerator .

↪→c la s s ,property = "@id" )
publ ic c l a s s Category {

@Id pr iva te Long id ;
pr iva te List<Ref<Product>> products ;

}

/∗ CategoryService ∗ /
package service

import javax .ws .rs .∗
import domain .Category ;

@Path (value = "CategoryService" )
@Produces (value = {"application/json"})
@Consumes (value = {"application/json"})
publ ic interface CategoryService {

@POST
@Path (value = "findCategory" )

8 JAX-RS is a Java API for RESTful Web Services.

123



A. Bergmayr et al.

publ ic Category findCategory(long id ) ;
}

/∗ CategoryServiceImpl ∗ /
package service

import domain .Category ;
import service .CategoryService ;
import service .OfyService ;

publ ic c l a s s CategoryServiceImpl implements
↪→CategoryService {

publ ic Category findCategory(long id ) {
return OfyService .ofy ( ) .load ( ) .type (Category

↪→ . c l a s s ) .filter ("id" , id ) .first ( ) .now
↪→ ( ) ;

}
}

Listing 13 Generated front-end code for Category
/∗ Category ∗ /
package domain ;

import com .fasterxml .jackson .annotation . ∗ ;
import java .util . ∗ ;
import domain .Product ;

@Json Iden t i t y In fo (generator = IntSequenceGenerator .
↪→c la s s ,property = "@id" )

publ ic c l a s s Category {

pr iva te Long id ;
pr iva te List<Product> products ;

}

/∗ CategoryService ∗ /
package service

import javax .ws .rs .∗
import domain .Category ;

@Path (value = "CategoryService" )
@Produces (value = {"application/json"})
@Consumes (value = {"application/json"})
publ ic interface CategoryService {

@POST
@Path (value = "findCategory" )
publ ic Category findCategory(long id ) ;

}

/∗ CategoryServiceProxy ∗ /
package proxy

import com .google .api .client .http .HttpResponse ;
import java .io .IOException ;
import domain .Category ;
import proxy .ServiceProxy ;
import service .CategoryService ;

publ ic c l a s s CategoryServiceProxy extends
↪→ServiceProxy implements CategoryService {

publ ic Category findCategory(long id ) {
try {

HttpResponse response = this .makeRequest
↪→ ("/CategoryService/findCategory" ,
↪→ "POST" , id ) ;
return response .parseAs(Category .

↪→ c l a s s ) ;
} catch (IOException e ) {

/ / log error message
}
return null ;

}
}

6.4.2 Synopsis

We have shown the transition of a non-cloud application into
a cloud application with a focus on modernizing the data
access layer. As a result of the RE process, we obtained
an environment-independent domain model from which we
generated environment-specific models for the back-end as
well as the front-end of the REST-based solution hosted on
the Google Cloud Platform. Objectify is used to manage the
access to the cloud datastore. Table 7 gives some quantitative
characteristics of the eCommerce web application we dealt
with in the modernization scenario.

The ESM reflects its structural elements, whereas the
EIDM captures the essence of the entities without opera-
tions to access their properties as these operations may not fit
the requirements of the target environment anyhow. Finally,
the CESM’s produced for the front-end and the back-end
represent the structure as well as the behavior of the cloud-
based solution. We distinguish model elements that can be
reused from model elements that are generated as part of
the FE process. In fact, the domain classes of the original
implementation can obviously be reused for the front-end.
Service classes are newly generated as they need to be appro-
priately annotated and the service proxies have not existed
in the original implementation. Regarding the back-end, all
the artifacts are newly generated as the change from JPA
to Objectify requires to modify the domain classes and the
service classes to access them. Finally, Table 8 summarizes
the benefits of annotation-based modeling in the context of
our modernization scenario. While the presented stereotypes
were automatically applied in our modernization scenario
by model transformations, other stereotypes may directly
be applied by engineers in a manual refinement step. For
instance, Objectify provides annotations to index properties
of entities or cache retrieved entity instances. As all the anno-
tations of Objectify are captured by respective stereotypes
on the model level, the engineers have full control over such
platform-specific decisions at any phase of the forward engi-
neering process.

7 Related work

With respect to the contribution of this paper, namely to gen-
erate UML profiles from Java libraries, we consider three
threads of related work. First, we discuss mappings between
Java and UML because Jump builds on existing efforts in this
respect. Thereafter, generative approaches dealingwithUML
profiles and JavaAnnotation Types are discussed. Finally, we
consider approaches that supportmetamodel generation from
programming libraries.

123



Leveraging annotation-based modeling with Jump

Table 7 Quantitative
characteristics

Model element types Number of model elements

ESM EIDM CESM

Front-end Back-end

Reused Generated Reused Generated

Classes/interfaces/enumerations 39 9 9 13 – 22

Properties 157 49 40 5 – 40

Operations 263 – 85* 74* – 153*

Annotations 287 – – 78 – 95

∗ Including behavior

Table 8 Benefits of annotated models

Profile Stereotype Benefit

Objectify Entity Indicates entities that need to be persisted and allows the entity registry to be generated

Id Indicates properties that identify domain classes and allows the behavior of service classes to be
generated

Jackson JsonIdentityInfo Allows cross-references to be produced

JAX-RS Path Allows the URL of the service request to be generated

POST, PUT, DELETE Indicates the employed REST method and allows the service request to be completed

7.1 Mapping Java and UML

The elaboration on the mapping between Java and UML
has a long tradition in software engineering research [26,36,
46,54]. Round-trip engineering for UML and Java has been
extensively studied in the development of FUJABA [54]. One
particular concept of UML that received much attention in
the context of Java code generation is the association con-
cept [2,33,34]. However, none of these approaches consider
the transformation of annotation types and their applications
from Java to UML. The only exception is the mTurnpike
approach [76] that considers Java annotations on the model
level. Therefore, round-trip transformations between UML
models and Java code are realized by considering stereotypes
and annotations in the transformations. In contrast, Jump
sets the focus on the automated generation of UML profiles
that facilitate round-trip transformations or transformations
in general. Besides academic efforts, today’s modeling tools
support the transformation of Java code to UML models,
and vice versa. Their current capabilities and limitations
w.r.t. Jump are discussed in Sect. 6.1.

7.2 Generating UML profiles and Java annotation types

The only approaches we are aware of that deal with auto-
mated generation of profiles fall into the research area
concerned with bridging the gap between MOF-based meta-
models and UML’s profile mechanism, which is also related
to the discussion of an external domain-specific modeling
languages (DSML) compared to an internal DSML where

the host language is UML [28]. Considering the latter, they
are internal in the sense that they are embedded in a host
language [53] providing the base elements for which exten-
sions and constraints are developed. In contrast, external
DSMLs are built from scratch and have their own custom
concepts without explicit relationships to any existing lan-
guage. Mernik et al. [53] discuss when and how to develop
internal and external DS(M)Ls. Several papers discuss the
pros and cons of these approaches, e.g., Selic [71] and their
combination, e.g., Weisemöller and Schürr [77].

Visualizing domain-specific models in UML with pro-
files is discussed in [35]. Abouzahra et al. [1] present an
approach for interoperability of UML models and DSML
models based on mappings between the DSML metamodel
and the UML profile. Brucker and Doser [13] go one step
further and propose an approach for extending a DSML
metamodel for deriving model transformations able to trans-
formDSMLmodels into UMLmodels that are automatically
annotated with stereotypes. A related approach is presented
by Wimmer [78], where mappings between the UML meta-
model and a DSML metamodel are defined and processed to
generate UML profiles for the given DSMLs.

Considering the generation of Java annotation types from
DSML models, Ann [18] is a recent approach for modeling
Java annotation types. It provides code generation facilities to
produce the Java code of modeled annotation types as well
as respective annotation processors that implement valida-
tion rules for annotations applied to program element. For
instance, the Entity annotation type of the JPA requires
that one or several attributes of the annotated Java class define

123



A. Bergmayr et al.

the primary key. One possibility to define it is to apply the Id
annotation type to an attribute of the respective Java class.
Validating invariants can also be achieved for UML models
by associatingOCL constraints with stereotypes. In this case,
the validation would be carried out before the Java code is
actually generated from the UML model.

7.3 Generating metamodels

To the best of our knowledge, there is only one automated
approach for generating modeling languages from program-
ming libraries. All other automated approaches that deal with
exploring libraries, such as [14], set their focus on the gen-
eration of domain models rather than a language.

API2MoL [16] deals with generating metamodels based
on Ecore [21] from Java APIs as well as models conform-
ing to the generated metamodels for Java objects instantiated
from the Java APIs, and vice versa. As a result, an external
DSML is generated from a Java API. While the general idea
and motivation of the API2MoL approach are comparable to
Jump, there is a significant difference on how the DSML
is realized. Jump targets UML modelers that are familiar
with UML class diagrams and generates internal DSMLs
by exploiting UML’s language-inherent extension mecha-
nism, i.e., UML Profiles. Furthermore, annotations are not
explicitly considered in the metamodel generation process
of API2MoL. One possible reason for neglecting them is
that standard versions of current meta-modeling languages,
such as Ecore, do not support language-inherent exten-
sion mechanisms out of the box [50]. Antkiewicz et al. [3]
present amethodology for creating framework-specificmod-
eling languages. While we aim for an automated approach,
Antkiewicz et al. use a manual one to create the metamodel
and the transformations betweenmodel instances and instan-
tiated objects of the frameworks. Again, annotations are
not captured by the created languages. Finally, Noguera et
al. [55] propose the extraction of annotation models in terms
of class diagrams from a set of annotation types with the pur-
pose to define validation constraints for the consistent use
of annotations. They mention the study of the relationship
of stereotypes and annotation types as interesting subject for
future work, only.

Research of related fields considers ontologies as a kind
of (meta)model [32]. In particular, research on ontology
extraction from different artifacts is subsumed under ontol-
ogy learning [20]. We are aware of only one approach for
extracting ontologies from APIs [68]. It neglects, however,
annotations. Furthermore,most of the current ontology learn-
ing approaches focus on the extraction of concepts and
their taxonomic relationships. Finding non-taxonomic rela-
tionships (e.g., associations between classes) and intrinsic
attributes are the least considered problems [43] in this field.

7.4 Synopsis

To summarize, Jump is—to the best of our knowledge—the
first approach to generate standard-compliant UML profiles
from Java libraries that exploit annotations. While other
existing approaches are capable of producing (meta)models
from Java code, the annotation concept has not receivedmuch
attention. This is, however, in contradiction with the frequent
use and ever-growing importance of the annotation concept
on the programming level. Therefore, support for annotations
on the model level has to be provided. We applied an internal
DSML approach by exploiting the language-inherent exten-
sion mechanism of UML. It perfectly suits the annotation
mechanism of Java. As a result, we close an important gap
between programming and modeling.

8 Conclusion

With Jump, we proposed an approach to close the gap
between programming and modeling concerning annotation
mechanisms. We set the focus on the “Java2UML” case and
demonstrated the feasibility of Jump by generating high-
quality UML profiles for numerous Java libraries used in
practice and by applying it to a practically relevant mod-
ernization scenario including both RE and FE processes.
The results gained by our evaluation are promising, and an
extensive set of profiles is already available for leveraging
annotation-based modeling.

Still, a number of future challenges remain to further
integrate programming and modeling. Some interesting dif-
ferences between Java annotations and UML profiles remain
to be explored.On theUMLside, inheritance between stereo-
types is possible, a concept that is not supported by Java for
annotation types. Thus, the design quality of automatically
generatedUMLprofiles can be enhanced by exploiting inher-
itance.

On the Java side, retention policies determine at which
stages annotations are accessible. UML stereotypes are con-
sidered only at design time. Therefore, an interesting line of
future work is to support stereotype applications also during
run time, which becomes especially interesting for exe-
cutable models, a research area that is currently experiencing
its renaissance by the emergence of the fUML standard [62]
and work in this context (cf. e.g., [52]).

Regarding the novelties of Java 8, we plan to study how
stereotypes can be applied to the use of a type inUML in anal-
ogy to type annotations in Java. However, this would require
the possibility to annotate not only model elements in UML,
but also the references betweenmodel elements which is cur-
rently not possible with UML profiles. Moreover, we aim to
study the support of annotations in other programming lan-
guages, e.g., by investigating attributes in C# and decorators

123



Leveraging annotation-based modeling with Jump

in Python, and how these concepts correspond to UML pro-
files.

In order to allow UML profiles to be applied to a wider
range of modeling languages that support class-based rep-
resentations similar to UML, our idea is to generalize them
based on EMF profiles [50]. Finally, as we set the focus in
this work to platform-specific profiles, we plan to extend this
scope to profiles that capture annotations independent of plat-
forms, thereby shifting their application to amore conceptual
level.

Acknowledgments Open access funding provided by [TU Wien
(TUW)]. This work is co-funded by the European Commission under
the ICT Policy Support Programme, Grant No. 317859. We thank the
anonymous reviewers for their critical reflection and suggestions of our
previous paper at the MoDELS 2014 conference. Moreover, we thank
the anonymous reviewers of this article for their valuable comments.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

1. Abouzahra, A., Bézivin, J., Fabro, M.D.D., Jouault, F.: A practical
approach to bridgingdomain specific languageswithUMLprofiles.
In: Proceedings of International Workshop on Best Practices for
Model-Driven Software Development, pp. 1–8 (2005)

2. Akehurst, D.H., Howells, W.G.J., McDonald-Maier, K.D.: Imple-
menting associations: UML 2.0 to Java 5. Softw. Syst. Model. 6(1),
3–35 (2007)

3. Antkiewicz, M., Czarnecki, K., Stephan, M.: Engineering of
framework-specific modeling languages. IEEE Trans. Softw. Eng.
35(6), 795–824 (2009)

4. Atkinson, C., Kühne, T., Henderson-Sellers, B.: Systematic stereo-
type usage. Softw. Syst. Model. 2(3), 153–163 (2003)

5. Bergmayr, A., Bruneliere, H., Cánovas, J., Gorroñogoitia, J.,
Kousiouris, G., Kyriazis, D., Langer, P., Menychtas, A., Orue-
Echevarria, L., Pezuela, C., Wimmer, M.: Migrating legacy soft-
ware to the cloud with ARTIST. In: Proceedings of European
Conference on SoftwareMaintenance andReengineering (CSMR),
pp. 465–468 (2013)

6. Bergmayr, A., Grossniklaus, M., Wimmer, M., Kappel, G.:
JUMP—from Java annotations to UML profiles. In: Proceedings
of the International Conference onModel Driven Engineering Lan-
guages and Systems (MODELS), pp. 552–568 (2014)

7. Bergmayr, A., Wimmer, M.: Generating metamodels from gram-
mars by chaining translational and by-example techniques. In:
Proceedings of InternationalWorkshop onModel-driven Engineer-
ing By Example (MDEBE), pp. 22–31 (2013)

8. Bergmayr, A., Wimmer, M., Retschitzegger, W., Zdun, U.: Taking
the pick out of the bunch—type-safe shrinking of metamodels. In:
Proceedings ofGermanConference on Software Engineering (SE),
pp. 85–98 (2013)

9. Blouin, A., Combemale, B., Baudry, B., Beaudoux, O.: Kompren:
modeling and generating model slicers. Softw. Syst. Model. 14(1),
321–337 (2015)

10. Brambilla, M., Cabot, J., Wimmer, M.: Model-Driven Software
Engineering in Practice. Morgan & Claypool, San Rafael (2012)

11. Briand,L.C., Labiche,Y., Leduc, J.: Toward the reverse engineering
of UML sequence diagrams for distributed Java software. IEEE
Trans. Softw. Eng. 32(9), 642–663 (2006)

12. Brosch, P., Kargl, H., Langer, P., Seidl, M., Wieland, K., Wimmer,
M., Kappel, G.: Conflicts as first-class entities: a UML profile for
model versioning. In: Proceedings of International Workshop and
Symposia onModels in Software Engineering, pp. 184–193 (2010)

13. Brucker, A.D., Doser, J.: Metamodel-based UML notations for
domain-specific languages. In: Proceedings of International Work-
shop on Software Language Engineering (ATEM), pp. 1–15 (2007)

14. Bruneliere, H., Cabot, J., Jouault, F., Madiot, F.: MoDisco: A
generic and extensible framework for model driven reverse engi-
neering. In: Proceedings of InternationalConference onAutomated
Software Engineering (ASE), pp. 173–174 (2010)

15. Canfora,G.,DiPenta,M.,Cerulo,L.:Achievements and challenges
in software reverse engineering. Commun. ACM 54(4), 142–151
(2011)

16. Cánovas, J., Jouault, F., Cabot, J., Molina, J.G.: API2MoL:
automating the building of bridges between apis and model-driven
engineering. Inf. Softw. Technol. 54(3), 257–273 (2012)

17. Checker framework: Project Web Site. http://types.cs.washington.
edu/checker-framework (2016)

18. Córdoba, I., de Lara, J.: A modelling language for the effective
design of Java annotations. In: Proceedings of International Sym-
posium on Applied Computing (SAC), pp. 2087–2092 (2015)

19. Czarnecki, K., Helsen, S.: Feature-based survey of model transfor-
mation approaches. IBM Syst. J. 45(3), 621–646 (2006)

20. Drumond, L., Girardi, R.: A survey of ontology learning proce-
dures. In: Proceedings of International Workshop on Ontologies
and their Applications (WONTO), pp. 13–24 (2008)

21. Eclipse Foundation: Eclipse Modeling Framework (EMF). https://
www.eclipse.org/modeling/emf (2014)

22. EclipseLink: Project Web Site. https://www.eclipse.org/
eclipselink (2016)

23. Ed-Douibi, H., Izquierdo, J.L.C., Gómez, A., Tisi, M., Cabot, J.:
EMF-REST: generation of RESTful APIs from models, CoRR.
arXiv:1504.03498s (2015)

24. Eichberg, M., Schäfer, T., Mezini, M.: Using annotations to check
structural properties of classes. In: Proceedings of International
Conference on Fundamental Approaches to Software Engineering
(FASE), pp. 237–252 (2005)

25. EJB: Project Web Site. http://www.oracle.com/technetwork/java/
javaee/ejb/index.html (2016)

26. Engels, G., Hücking, R., Sauer, S.,Wagner, A.: UML collaboration
diagrams and their transformation to Java. In: Proceedings of Inter-
national Conference on The Unified Modeling Language (UML),
pp. 473–488 (1999)

27. Findbugs: ProjectWeb Site. http://findbugs.sourceforge.net (2016)
28. Fowler,M.: Domain-Specific Languages. Addison-Wesley, Boston

(2010)
29. France, R.B., Bieman, J.M., Mandalaparty, S.P., Cheng,

B.H.C., Jensen, A.C.: Repository for model driven development
(ReMoDD). In: Proceedings of International Conference on Soft-
ware Engineering (ICSE), pp. 1471–1472 (2012)

30. France, R.B., Rumpe, B.: The evolution of modeling research chal-
lenges. Softw. Syst. Model. 12(2), 223–225 (2013)

31. Fuentes-Fernández, L.,Vallecillo,A.:An introduction toUMLpro-
files. Eur. J. Inf. Prof. 5(2), 5–13 (2004)

32. Gasevic, D., Djuric, D., Devedzic, V.: Model Driven Engineering
and Ontology Development, 2nd edn. Springer, Berlin (2009)

33. Génova, G., del Castillo, C.R., Lloréns, J.: Mapping UML associ-
ations into Java code. J. Object Technol. 2(5), 135–162 (2003)

34. Gessenharter, D.: Mapping the UML2 Semantics of associations
to a Java code generation model. In: Proceedings of International

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://types.cs.washington.edu/checker-framework
http://types.cs.washington.edu/checker-framework
https://www.eclipse.org/modeling/emf
https://www.eclipse.org/modeling/emf
https://www.eclipse.org/eclipselink
https://www.eclipse.org/eclipselink
http://arxiv.org/abs/1504.03498s
http://www.oracle.com/technetwork/java/javaee/ejb/index.html
http://www.oracle.com/technetwork/java/javaee/ejb/index.html
http://findbugs.sourceforge.net


A. Bergmayr et al.

Conference onModel Driven Engineering Languages and Systems
(MoDELS), pp. 813–827 (2008)

35. Graaf, B., van Deursen, A.: Visualisation of domain-specific mod-
elling languages using UML. In: Proceedings of International
Conference on Engineering of Computer-Based Systems (ECBS),
pp. 586–595 (2007)

36. Harrison, W., Barton, C., Raghavachari, M.: Mapping UML
designs to Java. In: Proceedings of International Conference on
Object-Oriented Programming Systems, Languages & Applica-
tions (OOPSLA), pp. 178–187 (2000)

37. Heidenreich, F., Johannes, J., Seifert, M., Wende, C.: Closing the
gap between modelling and Java. In: Proceedings of International
Conference on Software Language Engineering (SLE), pp. 374–
383 (2010)

38. Hibernate: Project Web Site. http://hibernate.org/orm (2016)
39. Jackson: Project Web Site. http://jackson.codehaus.org (2016)
40. JAX-RS: Project Web Site. https://jax-rs-spec.java.net (2016)
41. Jézéquel, J.M., Combemale, B., Derrien, S., Guy, C., Rajopadhye,

S.: Bridging the chasmbetweenMDEand theworld of compilation.
Softw. Syst. Model. 11(4), 581–597 (2012)

42. JPA: Project Web Site. http://www.oracle.com/technetwork/java/
javaee/tech/persistence-jsp-140049.html (2016)

43. Kavalec, M., Maedche, A., Svátek, V.: Discovery of lexical entries
for non-taxonomic relations in ontology learning. In: Proceedings
of International Conference on Current Trends in Theory and Prac-
tice of Computer Science (SOFSEM), pp. 249–256 (2004)

44. Kazman,R.,Woods, S.G.,Carrière, S.J.: Requirements for integrat-
ing software architecture and reengineering models: CORUM II.
In: Proceedings of International Working Conference on Reverse
Engineering (WCRE), pp. 154–163 (1998)

45. Klint, P., Lämmel, R., Verhoef, C.: Toward an engineering disci-
pline for grammarware. ACMTrans. Softw. Eng. Methodol. 14(3),
331–380 (2005)

46. Kollman, R., Selonen, P., Stroulia, E., Systä, T., Zündorf, A.:
A study on the current state of the art in tool-supported UML-
based static reverse engineering. In: Proceedings of International
Working Conference on Reverse Engineering (WCRE), pp. 22–32
(2002)

47. Kolovos, D., Di Ruscio, D., Pierantonio, A., Paige, R.: Different
models for model matching: an analysis of approaches to support
model differencing. In: Proceedings of International Workshop on
Comparison and Versioning of Software Models (CVSM), pp. 1–6
(2009)

48. Kurtev, I., Bézivin, J., Akşit, M.: Technological spaces: an initial
appraisal. In: Proceedings of International Conference on Cooper-
ative Information Systems (CoopIS), pp. 1–6 (2002)

49. Langer, P., Wieland, K., Wimmer, M., Cabot, J.: From UML pro-
files to EMF profiles and beyond. In: Proceedings of International
Conference on Objects, Models, Components, Patterns (TOOLS)
(2011)

50. Langer, P., Wieland, K., Wimmer, M., Cabot, J.: EMF profiles: a
lightweight extension approach forEMFmodels. J.ObjectTechnol.
11(1), 1–29 (2012)

51. Lee, A.S.: A scientific methodology for MIS case studies. MIS Q.
13(1), 33–50 (1989)

52. Mayerhofer, T., Langer, P., Kappel, G.: A runtimemodel for fUML.
In: Proceedings of International Workshop on Models@run.time,
pp. 53–58 (2012)

53. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop
domain-specific languages. ACM Comput. Surv. 37(4), 316–344
(2005)

54. Nickel, U., Niere, J., Zündorf, A.: The FUJABA environment. In:
Proceedings of International Conference on Software Engineering
(ICSE), pp. 742–745 (2000)

55. Noguera, C., Duchien, L.: Annotation framework validation using
domainmodels. In: Proceedings of EuropeanConference onModel

Driven Architecture—Foundations and Applications (ECMDA-
FA), LNCS, vol. 5095, pp. 48–62. Springer (2008)

56. Noguera, C., Pawlak, R.: AVal: an extensible attribute-oriented pro-
gramming validator for Java. J. Softw. Maint. Evol. Res. Pract.
19(4), 253–275 (2007)

57. Objectify-AppEngine: Project Web Site. https://code.google.com/
p/objectify-appengine (2016)

58. OMG: Meta Object Facility (MOF). http://www.omg.org/spec/
MOF (2011)

59. OMG: Service oriented architecture modeling language (soaml).
http://www.omg.org/spec/SoaML (2012)

60. OMG: Catalog of UML Profile Specifications. http://www.omg.
org/spec/#Profile (2014)

61. OMG: Unified Modeling Language (UML). http://www.omg.org/
spec/UML (2015)

62. OMG: Semantics of a Foundational Subset for Executable UML
Models (FUML). http://www.omg.org/spec/FUML (2016)

63. Oracle: JSR 175: A metadata facility for the Java programming
language. http://jcp.org/en/jsr/detail?id=175 (2004)

64. Oracle: JLS8. http://docs.oracle.com/javase/specs (2015)
65. Pardillo, J.: A systematic review on the definition of UML profiles.

In: Proceedings of InternationalConference onModelDrivenEngi-
neering Languages and Systems (MoDELS), pp. 407–422 (2010)

66. Parnin, C., Bird, C., Murphy-Hill, E.: Adoption and use of Java
generics. Empir. Softw. Eng. 18(6), 1–43 (2012)

67. Petstore: Project Web Site. http://oracle.com/technetwork/java/
index-136650.html (2016)

68. Ratiu, D., Feilkas, M., Jürjens, J.: Extracting domain ontologies
from domain specific APIs. In: Proceedings of European Confer-
ence on Software Maintenance and Reengineering (CSMR), pp.
203–212 (2008)

69. Rocha, H., Valente, M.T.: How annotations are used in Java: an
empirical study. In: Proceedings of International Conference on
Software Engineering & Knowledge Engineering (SEKE), pp.
426–431 (2011)

70. Runeson, P., Höst, M.: Guidelines for conducting and reporting
case study research in software engineering. Empir. Softw. Eng.
14(2), 131–164 (2009)

71. Selic, B.: The less well known UML—a short user guide. In: Pro-
ceedings of International School on FormalMethods for theDesign
of Computer, Communication, and Software Systems (SFM), pp.
1–20 (2012)

72. Spring: Project Web Site. http://projects.spring.io/spring-
framework (2016)

73. Struts: Project Web Site. http://struts.apache.org (2016)
74. UML-Profile-Store: Project Web Site. https://github.com/

alexander-bergmayr/jump (2016)
75. UPR: Eclipse UML Profiles Repository. https://projects.eclipse.

org/projects/modeling.upr (2016)
76. Wada, H., Suzuki, J.: Modeling turnpike frontend system: a model-

driven development framework leveraging UML metamodeling
and attribute-oriented programming. In: Proceedings of Interna-
tional Conference on Model Driven Engineering Languages and
Systems (MoDELS), pp. 584–600 (2005)

77. Weisemöller, I., Schürr, A.: A comparison of standard compli-
ant ways to define domain specific languages. In: Proceedings
of International Workshops and Symposia on Models in Software
Engineering, pp. 47–58 (2007)

78. Wimmer, M.: A semi-automatic approach for bridging DSMLs
with UML. IJWIS 5(3), 372–404 (2009)

79. Wimmer, M., Kappel, G., Kusel, A., Retschitzegger, W., Schön-
boeck, J., Schwinger, W.: Towards an expressivity benchmark for
mappings based on a systematic classification of heterogeneities.
In: Proceedings of International Workshop onModel-Driven Inter-
operability (MDI), pp. 32–41 (2010)

123

http://hibernate.org/orm
http://jackson.codehaus.org
https://jax-rs-spec.java.net
http://www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-140049.html
http://www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-140049.html
https://code.google.com/p/objectify-appengine
https://code.google.com/p/objectify-appengine
http://www.omg.org/spec/MOF
http://www.omg.org/spec/MOF
http://www.omg.org/spec/SoaML
http://www.omg.org/spec/#Profile
http://www.omg.org/spec/#Profile
http://www.omg.org/spec/UML
http://www.omg.org/spec/UML
http://www.omg.org/spec/FUML
http://jcp.org/en/jsr/detail?id=175
http://docs.oracle.com/javase/specs
http://oracle.com/technetwork/java/index-136650.html
http://oracle.com/technetwork/java/index-136650.html
http://projects.spring.io/spring-framework
http://projects.spring.io/spring-framework
http://struts.apache.org
https://github.com/alexander-bergmayr/jump
https://github.com/alexander-bergmayr/jump
https://projects.eclipse.org/projects/modeling.upr
https://projects.eclipse.org/projects/modeling.upr


Leveraging annotation-based modeling with Jump

Alexander Bergmayr is a
researcher at the Business Infor-
matics Group of TU Wien.
His current work is concerned
with model-driven techniques
and their application in model-
based reverse and forward engi-
neering to automate the mod-
ernization of legacy software
towards cloud environments.
Contact him at bergmayr@big.
tuwien.ac.at or visit http://big.
tuwien.ac.at/staff/abergmayr.

MichaelGrossniklaus is a junior
professor for databases and infor-
mation systems in the Depart-
ment of Computer and Informa-
tion Science at the University of
Konstanz. His research focuses
on query processing techniques
for novel and emerging applica-
tion domains, such as graph data
processing, data stream analyt-
ics, and data management in the
cloud. Contact him at michael.
grossniklaus@uni-konstanz.de
or visit http://informatik.uni-
konstanz.de/grossniklaus.

Manuel Wimmer is a senior
researcher at the Business Infor-
matics Group of TU Wien. His
research interests comprise foun-
dations of model engineering
techniques as well as their appli-
cation in domains such as tool
interoperability, legacymodeling
tool modernization, model ver-
sioning and evolution, software
reverse engineering and migra-
tion, web engineering, cloud
computing, and smart produc-
tion. For further information
about his research activities con-

tact him at wimmer@big.tuwien.ac.at or visit http://big.tuwien.ac.at/
staff/mwimmer.

Gerti Kappel is a full profes-
sor in the Institute of Software
Technology and Interactive Sys-
tems of TU Wien, heading the
Business Informatics Group. Her
current research interests include
model engineering, web engi-
neering, as well as process engi-
neering. For further information
about her research activities con-
tact her at gerti@big.tuwien.ac.at
or visit http://big.tuwien.ac.at/
staff/gkappel.

123

http://big.tuwien.ac.at/staff/abergmayr
http://big.tuwien.ac.at/staff/abergmayr
http://informatik.uni-konstanz.de/grossniklaus
http://informatik.uni-konstanz.de/grossniklaus
http://big.tuwien.ac.at/staff/mwimmer
http://big.tuwien.ac.at/staff/mwimmer
http://big.tuwien.ac.at/staff/gkappel
http://big.tuwien.ac.at/staff/gkappel

	Leveraging annotation-based modeling with Jump
	Abstract
	1 Introduction
	2 Motivation and background
	2.1 Application of platform-specific UML profiles
	2.2 Representation of Java annotations in UML
	2.3 Java annotations and UML profiles
	2.4 Defining stereotypes for declared annotations types

	3 Repeating stereotypes
	4 Generating UML profiles from Java libraries
	4.1 Bridging technical spaces
	4.2 Generating UML profiles
	4.2.1 AnnotationType rightarrow Stereotype
	4.2.2 AnnotationTypeElement rightarrow Property


	5 Implementation and collected UML profiles
	6 Evaluation
	6.1 Methodological evaluation
	6.1.1 Comparison criteria
	6.1.2 Selected tools
	6.1.3 Evaluation procedure
	6.1.4 Results

	6.2 Quality evaluation
	6.2.1 Case study design
	6.2.2 Case study measures
	6.2.3 Results
	6.2.4 Discussion
	6.2.5 Threats to validity

	6.3 Scalability evaluation
	6.4 Practicability evaluation
	6.4.1 Jump in action
	6.4.2 Synopsis


	7 Related work
	7.1 Mapping Java and UML
	7.2 Generating UML profiles and Java annotation types
	7.3 Generating metamodels
	7.4 Synopsis

	8 Conclusion
	Acknowledgments
	References




