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Abstract

Motivated by the increasing demand of 3D models for interactive applications, 3D model data-
bases require high quality metadata to provide effective retrieval and exploration possibilities.
The generation of such metadata is still an open problem for automated systems, whereas hu-
mans are able to process this task with minimal cognitive effort. In this thesis, we present a
framework to utilize a human workforce to generate meaningful annotations. Inspired by the
general purpose aspect of the reCAPTCHA approach, the concept of outsourcing is achieved
by integrating the task into a CAPTCHA challenge, i.e. a challenge for telling humans and
automated systems apart. To protect the system against automated attacks, the 3D models are
presented in an obfuscated manner such that they are only recognizable for humans.

In this work a new rendering approach is proposed that provides an obfuscated representa-
tion of an animated scene containing 3D objects. The basic principle of the obfuscation approach
is to capture the salient geometry features of the objects. New methods are introduced to reveal
additional features of the object surface texture, allowing the user to provide more specific anno-
tations. A user study was conducted to evaluate the approach presented with regard to the limits
of human object recognition abilities. A test procedure is presented that allows to determine
the degree of difficulty and, consequently, the definition of a difficulty threshold to implement
human perceptual limits. To avoid testing all possible parameter combinations, two perception-
related dimensions are introduced in the user evaluation to select relevant technical parameters.

Therefore, a method that is specialized on the obfuscation of animated scenes containing
static 3D models is shown, and, in addition, a method to determine the perceptual limits of
object recognition in this context is proposed.
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Kurzfassung

Aufgrund des steigenden Bedarfs an 3D Modellen für interaktive Anwendungen, benötigen
3D Modelldatenbanken hochqualitative Metadaten um Usern effektive Explorations- und Re-
trievalfunktionen zu ermöglichen. Das damit verbundene Annotierungsproblem, welches dem
Generieren von jenen Metadaten entspricht, stellt für automatische Systeme weiterhin ein of-
fenes Problem dar. Menschen hingegen sind in der Lage diese Aufgabe mit minimalem ko-
gnitivem Aufwand zu bewältigen. Im Zuge dieser Arbeit wird ein Framework präsentiert, das
diese menschlichen Fähigkeiten zur Annotierung von 3D Modellen nützt. Inspiriert durch den
reCAPTCHA Ansatz wird dabei der Annotierungsprozess durch Integration in eine CAPTCHA
Challenge ausgelagert um damit gleichzeitig automatische Systeme von Menschen zu unter-
scheiden. Automatisierte Angriffe auf das System werden verhindert, indem die Objekte in einer
verschleierten Form dargestellt werden, sodass sie lediglich für Menschen erkennbar sind.

In dieser Arbeit wird eine neue Renderingmethode vorgestellt, die eine verschleierte Reprä-
sentation einer animierten Szene mit 3D Objekten ermöglicht. Die Grundidee dieses Ansatzes
ist die auffälligen Geometriemerkmale der Objekte darzustellen. Diese Idee wird durch lokales
Anzeigen der Objektoberfläche erweitert um genauere Annotationen zu ermöglichen. Zur Evalu-
ierung des Ansatzes wurde eine Anwenderstudie durchgeführt um die Grenzen der menschlichen
Objektwahrnehmung zu testen. Damit wird gleichzeitig eine Testmethodik vorgestellt, die es er-
laubt den Schwierigkeitsgrad der Verschleierung (obfuscation) zu bestimmen und ermöglicht so-
mit auch die Definition eines Grenzwertes in Abhängigkeit der Wahrnehmungsgrenzen. Da eine
Erhebung über alle möglichen Kombinationen von technischen Parametern mit den verfügbaren
Ressourcen unvereinbar ist, werden relevante Parameter auf Basis von wahrnehmungsbezoge-
ne Parameter ausgewählt, die gleichzeitig als Dimensionen für die Evaluierung herangezogen
werden.

Somit wird mit dieser Diplomarbeit ein Verfahren vorgestellt, das auf die Verschleierung (ob-
fuscation) von animierten Szenen mit statischen 3D Objekten spezialisiert ist. In diesem Kontext
wird eine Evaluierungsmethode zur Bestimmung der Wahrnehmungsgrenzen präsentiert.
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CHAPTER 1
Introduction

1.1 Motivation

The increasing popularity of interactive 3D applications, supported by recently established in-
teraction concepts, is directly coupled with the demand for high quality 3D models. Examples
of such applications are map-visualizations (e.g. Google Earth), the gaming segment or ar-
chaeological reconstructions of cultural heritage. In the course of the application development
process, the creation and design of adequate models is a time-consuming task that requires spe-
cialized skills and qualifications. Motivated by these workflow-issues, well known services like
Google 3D Warehouse [24] or TurboSquid [59] provide collections containing multiple hundred
thousands of 3D models.

Similar to image collections, exploring and searching for specific models in databases with
large scale dimensions is enabled by an appropriate retrieval technique. Users usually access
the databases by providing a high-level description of the desired objects, formulated in a text-
query. To process such queries, additional metadata associated with each model is needed.
Automatic extraction of new metadata from object features is a common problem in the field of
image and object retrieval; the missing link between the low- and high-level features is known
as the semantic gap [44]. Therefore, the textual annotation of models with semantically relevant
keywords is in general done in a manual way. Depending on the guidelines of the service,
the quality and the number of resulting annotations can vary significantly. The problem of
poor annotation quality becomes more evident when performing a practical search for the term
eagle on Google Warehouse – examples of retrieved objects are shown in Figure 1.1 and sorted
according to their ranking in the results.

Motivating humans to participate the process of annotation can be accomplished in differ-
ent ways. Ahn and Dabbish [1], for example, introduced with the ESP game a method where
the annotation task is encapsulated by a multiplayer online gaming concept. In contrast to the
entertainment based approach, paid solutions are realized using crowdsourcing services like the
Amazon Mechanical Turk [34] where the annotation task is broken down into a set of short
Human Intelligence Tasks which can then be performed by the crowd, consisting of several hun-
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Figure 1.1: Ordered exemplary results for the term eagle on Google 3D Warehouse, where the
first occurrence of the animal was on page 3. (figures from [24])

dred thousand workers. With the reCAPTCHA approach Ahn et al. [4] introduced a method to
integrate human-computation-tasks into a web-security processing context. A common problem
for online services such as free email providers, public user polls, messages boards etc. is their
abuse through automated processes and bot systems. To cope with this problem, a puzzle, which
has to be solved by the user, is included in the process (e.g. registration). Those puzzles are
designed in a way such that humans can solve the given problem with minimal effort, while it
remains a hard or unsolvable problem for computers. This concept was first described by Ahn
et al. [2] as CAPTCHA (Completely Automated Public Turing test to tell Computers and Hu-
mans Apart) and allows the service to consequently validate a user as human. The reCAPTCHA
concept utilizes the effort of solving CAPTCHAs for a useful purpose, more precisely, the user
solves the CAPTCHA by transcribing words into written form that can not be recognized by
state-of-the-art Optical Character Recognition (OCR) algorithms.

1.2 Problem Statement and Aim of this Work

Inspired by the general purpose aspect of the reCAPTCHA approach, this work aims at an
analogous integration of the 3D model annotation task in terms of a CAPTCHA challenge.
reCAPTCHA uses words scanned from books which can not be interpreted reliably by current
OCR algorithms as a transcription problem for the CAPTCHA challenge. In detail, it uses two
words, the control word, which is known, and an unknown word. If the user transcribes the
control word correctly, it is assumed that the unknown word is also transcribed correctly.

In this work the control and transcription principle introduced with the reCAPTCHA ap-
proach is adapted from a text-based method to a CAPTCHA challenge defined by the usage of
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3D models. Instead of presenting the user two words, which have to be transcribed, two objects
from a given model database have to be textually annotated by the user to pass the challenge.
Therefore, the formalism of the human-computation-tasks switches from a transcription prob-
lem to an annotation problem. Visualizing the 3D objects using standard rendering techniques
creates potential security issues that could invalidate the CAPTCHA capabilities of the system.
A specific example for an automatic way to solve this kind of challenges could exploit Google
Image Search [25] by using rendered images from a challenge as query image. Results from the
image search and the corresponding meta information is utilized as solution for the challenge.
To protect the system against automated attacks, the idea is to present the 3D models in an ob-
fuscated manner such that they are only recognizable for humans. Besides this aspect, the usage
of 3D models introduces an additional dependency on the object orientation, because relevant
features for the object recognition could be distributed across the object geometry. As static im-
ages do not provide the required flexibility, a successive change of the orientation over time can
overcome this issue. Moreover, this kind of animation has a supporting effect regarding security
aspects.

From the demand of an obfuscated object visualisation follows the main task of this work,
which is the design of a rendering pipeline that uses 3D models from a given database as input
and synthesizes an animated sequence of the objects by introducing synthetic manipulations.
Based on the approach proposed by Mitra et al. [47], which aims at the obfuscation of 3D
models in static images, further extensions are presented to reveal additional object features and
to meet challenges regarding security aspects when using animated scenes.

The intended use of our system in a CAPTCHA context implies that the generated scenes
should only be recognizable for humans – therefore the obfuscation process directly addresses
the abilities of the human perception. Hence, the second goal of this work is to establish a
method for determining the link between the degree of obfuscation and the degree of difficulty.

The main research question of this work is how to construct a processing pipeline that obfus-
cates 3D models in a way such that it is still recognizable for humans while it is unrecognisable
for automatic systems. This implies a second question on how to evaluate the presented obfus-
cation approach regarding the level of difficulty. As concrete computation or analytical models
of complex object perception are not available, a user based evaluation has to be conducted to
determine the performance and limitation of human object recognition in our context.

1.3 Contributions

In the following the main contributions of this thesis are outlined, the scope of these contribu-
tions include a wide range of topics, starting from computer vision to cognitive sciences:

• Object obfuscation rendering pipeline
An algorithm is proposed that is specialized on the generation of an animated and obfus-
cated visualization of 3D scenes containing static 3D models. The generated visualiza-
tions of this pipeline contain the obfuscated object and, in addition, a synthesized back-
ground. To prevent automatic detection of the obfuscated object, we present a method to
guarantee a certain degree of temporal coherence in both the object and the background
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region of the animation. By including additional object features, future extensions are
outlined that enable more detailed user annotations or annotations on a higher semantic
level.

• Perceptually related parameters
In general, an obfuscation can be achieved in a variety of ways due to the high number
of degrees of freedoms of this problem. Our presented method represents a subset of the
possible design space, which is characterized by a number of technical parameters. Due to
the missing link between the technical parameters and their effect from a perceptual point
of view, the number of parameters are abstracted and represented by a set of perceptually
motivated parameters.

• Perceptual user study
A novel method for testing the interaction between technical parameters of the rendering
prototype is proposed by measuring the degree of difficulty at the same time. In addition
to that, a new approach for testing the usability across different settings is presented.

Beside these contributions, the rendering technique presented in this work could be incorporated
with the crowdsourcing game from the concurrently written thesis of Felberbauer [19]. The
main idea of the game presented is to generate annotations in a competitive gameplay, where
new keywords are generated and simultaneously rated by the users. The obfuscated visualization
could be used in the existing game concept to increase the difficulty of the standard 3D model
annotation levels.

1.4 Structure

This thesis is structured into the following six main chapters:

1. Introduction
With the first chapter the main motivation, the problem statement and aim of this work
were presented. Moreover the contributions of the thesis were outlined and it contains the
current section which provides a structural overview of the thesis.

2. Background & Related Work
The basic principle of the thesis is related to multiple and different research fields, from
computer vision to topics focused on the basics of human visual perception. In this chapter
the fundamentals for the obfuscation method described in the next chapter are explained
and corresponding state-of-the-art approaches are presented.

3. Overview
Starting with a brief overview on the big picture of the CAPTCHA system, the specific
role of the rendering engine is pointed out.

4. Obfuscated Rendering
In this chapter, the main idea of the obfuscated rendering approach is outlined, followed
by detailed explanations of the several stages of the proposed obfuscation pipeline.
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5. Results
The main topic of this chapter is the evaluation of the proposed method in terms of a
user study. The conception, realization and results of the user based evaluation approach
developed in this thesis are discussed. An additional test using the state-of-the-art optical
flow approach is performed and corresponding findings are presented.

6. Conclusion and Future Work
The final chapter briefly summarizes the highlights of this thesis and lists the most impor-
tant findings as well as some implications for future work.
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CHAPTER 2
Background & Related Work

As this work is strongly related to human perceptual aspects, the first part of this chapter explains
the fundamentals and principles of the human visual perception. Next, details about CAPTCHA
systems and the state-of-the-art are presented. Due to the fact that the main idea and the work
itself includes concepts of crowdsourcing, this topic represents the last part of this chapter.

2.1 Visual Perception

Bruce et al. [5] define perception as the ability to detect structures and events of the environment
based on information derived from energies. These energies are produced by the surroundings
and can be perceived as long as humans are sensitive enough to them.

2.1.1 The Visual System - a Physiological Overview

The type of energy can be radically different: possibilities range from kinetic energy in form
of air pressure waves, impact pressure or thermal energy over chemical energy for olfaction to
electromagnetic radiation. Especially the energy in form of light allows humans to perceive
their environment through vision. From a more physical perspective, light is an electromagnetic
radiation with a specific wavelength range of approximately 400 to 700 nm [5, 30]. In terms of
the practically relevant spectrum which is defined from radio waves with wavelengths of 1011

nm to X-rays with a wavelength of 10−1 nm, visible light represents only a small part and is
located between the near infra-red and the ultraviolet parts. For the transportation of energy, the
model of photons is used. Photons are discrete particles consisting of a quantum of energy and
moves at the speed of light in empty space. [5, 30]

The process of human vision starts where a photon is absorbed and converted into electrical
signals by the eye [30]. Figure 2.1a illustrates the most important physiological parts of the
human eye. The light traverses the optical apparatus (defined by cornea, intra-ocular fluid, lens
and the vitreous body) and the refractive lens system and finally meets the photosensitive area of
the eye, the retina [12, 22]. Hence, the eye shows a high similarity to a simplified camera model
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with a lens, a changeable aperture (the iris) and a sensor (the retina). By adjusting the curvature
of the lens using the ciliary muscles, its refractivity is changed, which is used to focus the image
on the retina.

Optical Axis

Visual Axis

Fovea

Light

Retina

Equator

nasal temporal

Lens

Cornea

Iris

Ciliary 
Muscle

Optic Nerve

Enlarged 
selection of 
the Retina

(a)

Incomming light

Ganglion cell

Amacrine cell

Bipolar cell

Horizontal cell

rods
cones

Pigment 
epithelium cell

(b)

Figure 2.1: Illustration of the most important parts of the eye (a) and the schematic construction
of the retinal cell layers (b). (figures adapted from [40])

Different layers of nerve cells (see Figure 2.1b) enable the retina to convert light into nerve
impulses and do an early preprocessing of those signals. Photoreceptor cells provide the required
sensitivity and sensorial function to absorb the incoming light. This incoming light causes a
photochemical reaction involving rhodopsin pigments which are responsible for transforming
the light stimulus into electrochemical signals (photo-electrical transduction) [5, 12]. In case of
the human duplex retina, two main types of photoreceptors can be distinguished, namely rods
and cones [30]. Rod receptors show, compared to cones, a remarkably lower level of activation,
which enables monochromatic vision under low-light-level conditions (scotopic vision). In con-
trast to the high sensitivity (magnitudes of 100), the resolution and visual acuity are degraded
compared to cones [12]. Under standard daylight situations the cone receptors become active.
This enables the perception of color information with a high degree of details (photopic vision).
Cones can further be classified into Short, Medium and Long type, representing the wavelength
of their highest corresponding response (λmax = {420nm, 535nm, 565nm}) regarding the vis-
ible light [12].

The ~6 · 106 cones and ~120 · 106 rods are not equally distributed over the retinal surface
[22]. The fovea centralis is located 5 ◦ temporal on the eye’s optical axis. It contains only cones
with a density of approximately 1.4 ·105 cones/mm2. As shown in Figure 2.2, the cones’ density
rapidly decreases with an increasing angle on the optical axis. Rods show the highest density
at approx. 30 ◦ with 1.5 · 105 cones/mm2 decreasing to approx. 0.5 · 105 cones/mm2. A closer
look at the cross section of the retina reveals an indentation at the position of the fovea. In this
cone-dominated region, the other nerve cell layers (bipolar, amacrine, horizontal and ganglion)
are displaced from the fovea centralis to the peripheral areas [21].
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Figure 2.2: Retinal density distribution of rods and cones (figure from [39]).

Bipolar nerve cells create the connection between photoreceptor and ganglion cells. In the
foveal region, the ratio of photoreceptors (108) to ganglion cells (106) is lower than in the rest
of the retina. Hence, one bipolar cell is connected to only a few cones, allowing the ganglion
cells a detailed processing of the receptor excitations, resulting in high visual acuity. As stated
in Frotscher [22], electrophysiological studies have shown that groups of sensory cells are com-
bined to receptive fields (RF) and act as functional groups. Those concentrically shaped recep-
tive fields model the convergence of multiple photoreceptors to one single ganglion cell. As a
consequence each ganglion cell has a receptive field [5]. These lateral connection links are es-
tablished by horizontal and amacrine cells. The concept of RF divides the RF area into a circular
area at the center and a toroidal surrounding area. Center-on RF cells show an impulse response
when light falls into the center, while light in the surrounding area leads to repression of the
impulse response. Center-off RF have the inverse characteristics. Consequently, this contrary
signal behavior allows the perception of contrasts and object edges. [5, 12, 22]

Using the optic nerves, the output of the ganglion cells is projected to different areas of
the brain in form of action potentials, where the topographical arrangement of the information
is retained under the projection (retinotopic mapping). The main part of the ganglion cells
projects to the lateral geniculate nuclei (LGN) of the thalamus, which is organized into six layers.
Different cell sizes further categorizes the first two layer as magnocellular and the remaining four
as parvocellular layers. Consequently, retinal ganglion cells can be further partitioned into M-
and P-type cells. M cells provide information about fast changes and motions, which is enabled
by their high- and low contrast flickering sensitivity. On the other hand, P cells transmit color
information in terms of color opponency. This means that colors are represented as luminance,
red-green and blue-yellow differences. As stated by Bruce et al. [5] the LGN has the function of
a relay between retina and the visual cortex in the visual pathway. For further details about the
visual pathways in the brain, the reader is referred to [5, chap. 3]. [5, 21]

Beside the sensorial functionality of the eyes, they have to be aligned to provide a foveal
projection of an object, which is realized by the oculomotor system. In addition to the general
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motion of the eye (abduction, adduction, elevation and depressive), the extraocular muscles are
responsible to keep the eyes focused on the object. Image stabilization is achieved by infor-
mation of vestibular organs (vestibular-ocular - VOR) and optokinetic reflexes (OKR). Target
respectively object selection can be seen as initiator for higher visual and cognitive processes.
Eye movements can be divided into saccades, slow pursuit movements and vergence movements.
Saccades are quick (about 100 ◦ sec−1), short and abrupt motions of the eye for the foveal align-
ment of the target. Slow (� 100 ◦ sec−1) pursuit movements allow the eye to follow the motion
of the target and vergence movements are used to keep track in depth changes. Fixation relates
to stationary phases of the eye where the optical information is processed. However, during sac-
cades, a masking effect (saccadic suppression) occurs. Moreover, drifts and tremor movements
in fixation phases are corrected by microsaccades. [12, 21]

2.1.2 Objection Recognition

The previous section 2.1.1 presented the physiological pipeline of how the environment is pro-
cessed by the eye and especially by the retina. The question of how we are able to utilize those
resulting neuronal signals that arise from incoming light patterns on the retina and how they lead
to impressions of objects is still a topic of research [5].

Marr et al. [46] formulate the visual perception as a computational theory to express which
kind of information is essential for the visual system and how it is used. To process the variety
of information types in a scene, an efficient representation is required. The modular framework
proposed by Marr et al. [46] is structured into three separated and series-connected units where
each uses one representation as input and transforms it into a different one.

1. Primal Sketch
The first stage is based on a large gray-level intensity array as approximation of the retinal
image. Introducing the concept of the primal sketch allows a reduction of a large 2D in-
tensity array to a compact description by identifying local intensity changes in the image.
Despite the information reduction, the relevant data for higher image analysis is preserved.
Therefore, the primal sketch describes the position and the type of crucial changes in in-
tensity. At first, the image is spatially filtered using image operators that correspond to
the characteristics of the receptive fields of retinal and cortical cells. Applying filters of
different size and combining features which are present at all scales results in the raw
primal sketch. Defining a hierarchical relation between individual features of the raw pri-
mal sketch culminates in the full primal sketch that provides texture, contour and shading
information. [5, 46]

2. 21/2-D Sketch
In the second processing unit, the low level features provided by the primal sketch are
used to derive a viewer-centered representation of the visible scene surface properties.
This includes the relative position and depth as well as the orientation information and is
formally known as 21/2-D sketch. [46]
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3. 3D Model Representation
In contrast to the 21/2-D sketch, the third part of the modular framework aims at an object-
centered representation of the scene. Based on the object shape and the shape axis, the
object is decomposed into volumetric primitives. Figure 2.3a illustrates that symmetric
objects can be described in terms of a set of generalized cones of variable size along
the axis. When applying this kind of abstraction to an human figure as show in Figure
2.3b, this results in a set of cones, each representing different parts of the human body.
Analogous to a stick figure, the components are connected in a hierarchical structure.
Furthermore, Figure 2.3b demonstrates how the hierarchical aspect involves also different
level of detail. This allows at the same time the matching of the object on several levels
against the known models in memory. [5, 46]

(a) (b)

Figure 2.3: (a) Schematic decomposition of objects with generalized cones; (b) Modeling
human figure using hierarchical structured representations with different level of detail.
(figures from [5])

As we have seen, Marr et al. [46] proposed a one-way processing framework which aims at de-
scribing the visual processing in a purely bottom-up manner. It also defines where perceptually
driven (top-down) aspects, like knowledge of the environment, are included to solve ambiguity
problems [5]. Moreover, instead of finding direct physiological links to the behavior of cells,
Marr’s approach defines the algorithm on which the cells operate. It is part of Marr’s three levels
of theory: the computational level, as stated before, describes the problem of visual perception
and the algorithmic level formulates the methods which are used to solve the problem; psy-
chology and neurophysiological evidence explains the way how the algorithms are implemented
(implementation level) in the pathway [5].

Gestalt Theory

According to Marr et al., the full primal sketch is formed by grouping individual low-level
features together. In this section, we go into more detail on how perceptual organization is
achieved in conjunction with the Gestalt theory.

In our usual view of the environment, we are able to recognize objects without problems
as long as objects do not have camouflage properties. Furthermore, we can associate properties
(e.g. texture, boundaries etc.) with objects. From this follows the ability to differentiate between
the object and the background. Nevertheless, it is possible to create images like the well known
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face / vase picture by E. Rubin shown in Figure 2.4a that demonstrates the possible ambiguity
of fore- and background. At each point of time we are able to perceive only one of the two
figures, either the pair of faces or the white vase. Figure 2.4b shows that the ambiguity can also
occur in the figure itself. The figure in Jastrow’s picture can be perceived as a duck or rabbit,
but not at the same time. While both examples are constant in their 2D features, the higher level
interpretation of the features leads to different descriptions that can vary abruptly. [5]

(a) (b)

Figure 2.4: (a) face / vase picture by E. Rubin (b) duck-rabbit image by J. Jastrow (figures from
[5])

The Gestalt theory principles describe the grouping effects of the perceptual organization.
Based on the following principles, the impression that individual subregions of a figure are part
of a larger region emerges [5]:

• Proximity and Similarity
Objects within a scene that are located near to each other are grouped together. The dots
in Figure 2.5a appear either as rows (increased vertical spacing) or as columns (increased
horizontal spacing). For equally spaced dots, neither rows nor columns can be perceived
(Figure 2.5c). Similar to proximity, objects which have a similar appearance are grouped
together. Figure 2.5d illustrates the combination of proximity and similarity, where despite
higher vertical spacing, the grouping of proximity is overridden by similarity, resulting in
column-wise grouping.

(a) (b) (c) (d)

Figure 2.5: Perception of columns (a) and rows (b) based on effects of proximity; (c)
shows ambiguity for equal horizontal and vertical spacing; (d) despite higher vertical
spacing the proximity effect is overridden by similarity. (figures from [5])
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• Common Fate and Good Continuation
Objects that have a common direction and speed (e.g. swarm of birds) are grouped to-
gether. Beside the grouping by motion, the property of good continuation is favored over
rapid changes - e.g. the lines in Figure 2.6a are perceived as two smooth lines crossing
at point X instead of two v-shaped lines with an abrupt change at X. Even when objects
significantly differ in appearance, proximity and continuation can lead to a grouping im-
pression (Figure 2.6b). „Good continuation may be considered the spatial analogue of
common fate“ [5].

X

(a) (b)

Figure 2.6: Good continuation - (a) lines are perceived as smooth lines; (b) continuation
despite different appearance. (figures from [20])

• Closure
Even when parts of an object are not present, we tend to mentally fill in additional infor-
mation to form a closed representation of the object. As a consequence, closure allows us
to perceive objects. The set of arc-shaped lines in Figure 2.7b is perceived as a broken cir-
cle and Figure 2.7a appears to be a horseman instead of a cluster of meaningless speckles.
[5, 20, 52]

(a) (b)

Figure 2.7: Due to the effect of closure, in spite of missing parts, our brain completes (a)
to a horseman and (b) to a circle. (figures from [20])

• Relative Size, Orientation and Surroundedness
Figure 2.8 shows overlapping objects with different relative areas. The smaller black
object in Figure 2.8a is perceived as a figure on the large white circle. Decreasing the size
of the black figure magnifies the impression of being a foreground figure (Figure 2.8b).
Figure 2.8c illustrates the human preference of horizontally and vertically oriented figures.
Hence, the white area seems to be a foreground figure on a black background.
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(a) (b) (c)

Figure 2.8: Discrimination of fore- and background objects; (a) perception of a black
propeller on white background; (b) enhances the effect of (a); (c) vertical and horizontal
alignment of the white regions allows the white regions to be perceived as foreground.
(figures from [5])

The presented Gestalt principles manifest in the law of Prägnanz or law of good figure. “Every
stimulus pattern is seen in such a way that the resulting structure is as simple as possible.” [23]
When taking a closer look at the four dots in Figure 2.9, their arrangement implies the impression
of corners of a square instead of a cross-shaped figure. “The square is a closed, symmetrical
form, which the Gestaltists maintained was the most stable.” [5] From the perspective of research
in computer vision, Mitra et al. [47] proposed an approach that allows to render images from 3D
models by considering the main principles of the Gestalt theory. The proposed synthesis method
creates images that allow only humans to perceive the projections of the 3D models from the
whole image, while selective parts of the image do not contain meaningful information.

Figure 2.9: Law of Prägnanz - perception of dots as corners of a square instead of a more
complex form, e.g. a rotated plus-sign. (figure from [5])

Depth Perception

Paintings and photographs can create the impression of depth, despite the fact that their flat 2D
surfaces does not contain any real depth information. The visual result of this project corre-
sponds to a series of 2D images viewed on a standard screen. Therefore, this section aims at on
the derivation of monocular depth-cues based on “flat” 2D images. For example, linear perspec-
tive appears when viewing along railway tracks so that they seem to converge in the horizon.
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Based on the fact that railway tracks remain parallel, even in the horizon, the linear perspec-
tive creates the effect of great distance. When arranging different instances of objects in depth,
decrementing the relative size of an object implies a greater distance from the viewer. When
the distance in depth between objects is small, relative size can lead to ambiguous information.
Overlap or interposition between the objects resolves this ambiguity and creates a well-defined
ordering of the objects. Occlusions can result in a partially visible object. Despite the reduced
information about the occluded object, humans perform a filling-in-process of information to
create a complete and stable representation of the object, which is known as amodal completion
(also see 2.1.2). [5, 9]

Apart from pictorial depth cues for static images discussed so far, relative motion of objects
in an image sequence also contributes to the perception of depth. For a static viewer, the motion
of two objects at different distances (Figure 2.10) leads to different relative motions of the pro-
jected retinal image (i.e. the relation between the speed of the images is inverse-proportional to
the object distance); the relative motion corresponds to the motion parallax. [9, 32]

Figure 2.10: Illustration of the motion parallax when observing two objects A and B at different
depths. Motion of the observer (left) or the objects (right) causes higher retinal distances (b1−b2)
for the nearer object B than for object A (a1 − a2). (figure from [5])

In Marr’s computational theory, the several types of depth cues relate to parallel process-
ing units. Despite the mixed information input from various depth cues, our depth-perception
is encapsulated in a single form of representation; this relates to an integration of the depth
cues. Marr’s theory describes this kind of integration by the concept of the 21/2-D sketch. As
already discussed in the beginning of this section, the 21/2-D sketch uses the available depth cues
to construct a viewer-centered representation of the scene surfaces, containing relative depth
information. [5]
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2.2 CAPTCHA

The abbreviation CAPTCHA was first introduced by Ahn et al. [2] and stands for Completely
Automated Public Turing Test to Tell Computers and Humans Apart. As the name already re-
veals, the concept of CAPTCHA is to formulate a test in a way such that humans can solve the
task with minimal cognitive effort, while the given task remains a hard or unsolvable problem for
computer programs. More detailed, the term public relates to the idea of an open source concept
to avoid the establishment of black box systems (security by obscurity principle). In addition,
the word CAPTCHA defines a relation to the Turing-Test. In this test, a human judge is con-
fronted with two separated players, where one of the players is a machine. In terms of a natural
conversation, both players try to convince the judge of being human. If the judge is not able to
differentiate between human and machine, despite intensive interrogation, the machine passed
the Turing-Test. That way, CAPTCHAs are similar to Turing-Tests, only that humans and ma-
chines are discriminated by a machine; CAPTCHAs allow to perform an automated Turing-Test.
As a consequence of the definition, the underlying problem of a CAPTCHA challenge should
relate to an open artificial intelligence (AI) problem (e.g. recognize distorted text). [2, 3] „A
CAPTCHA implies a win-win situation: either the CAPTCHA is not broken and there is a way
to differentiate humans from computers, or the CAPTCHA is broken and a useful AI problem is
solved.“ [3]

2.2.1 Applications

A common problem of web-services are automated malicious interactions with their interface.
Utilizing the CAPTCHA concept, the abuse through automatic processing is intended to be
blocked in an early stage. The flexibility of CAPTCHA-tests allow the application in a variety
of systems:

• Online Polls
In 1999, the online magazine slashdot.com started an online voting about the best gradu-
ate school in computer science. This voting ended, despite the recording of the participant
IP addresses, in a competition between voting-bots written by students of Carnegie Mel-
lon University (CMU) and students of the Massachusetts Institute of Technology (MIT).
While the MIT (21.156 votes) won the voting by a narrow margin against CMU (21.032
votes) other universities did not exceeded the level of 1000 votes and therefore illustrates
the manipulability through automatic systems. [2, 3]

• Email Provider, Social Networks and Online Marketplaces
Free email provider protect their sign up forms to avoid automated mass-registrations of
email addresses, which are furthermore used as source for email-spam. [49] On social net-
works like Facebook.com, CAPTCHAs help to block the creation of fake profiles, whose
main purpose are phishing and scam attacks. On Ebay, CAPTCHAs shield the market-
place against mass-generated defrauding auctions. Other potential applications for this
kind of security mechanism are blogs and bulletin boards, because these platforms are
usually target for the propagation of spam in form of fake comments and postings. [7]
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• Search Engine Indexing
While the robots exclusion standard is only a convention to control the indexing-process
of a website by well-behaving search spiders and crawlers, a more strict access control can
be achieved for instance by using CAPTCHAs to lock out crawlers from sensible parts of
a website. [2, 3]

• Protection against Dictionary Attacks
Testing thousands of passwords using a dictionary approach could be prohibited by in-
cluding a CAPTCHA challenge after a certain number of wrong attempts. [2, 3]

Taking into account that Ebay delivers 14 million CAPTCHA challenges per week [7] and Ahn
et al. [4] report to serve more than 100 million CAPTCHA challenges every day on over 100,000
websites, the CAPTCHA concept can be seen as well spread and common on the web.

2.2.2 State of the Art

CAPTCHA challenges are not necessarily limited to a visual representation. Yan and El Ahmad
[61] describe the classification into the following three main types:

• Text-based Schemes
Text-based CAPTCHAs are the most frequent type on the web. They are characterized
by applying distortion-patterns to generated or natural language strings in a way such that
they remain readable for humans but become unrecognizable for machines. [4, 7]

• Sound-based Schemes
To pass this type of challenge, the user has to enter a sequence of signs, usually numbers,
dictated by a distorted and superimposed voice. Due to accessibility reasons, audio-based
systems are used in combination with other types. [6]

• Image-based Schemes
The puzzle challenge focus on performing an image processing task based on synthetic or
natural images.

Based on these types, we take a closer look at state of the art CAPTCHA approaches in the
following.

reCAPTCHA

The most popular and representative example of a text-based CAPTCHA system is the re-
CAPTCHA approach proposed by Ahn et al. [4]. The idea of this approach is to utilize the
human cognitive effort required to solve a CAPTCHA puzzle for a useful purpose. The high
degree of distribution and the fact that more than 100 million challenges are served every day
highlights the high potential of aggregated human workforce, which would otherwise end up
being wasted.

When solving the text-based reCAPTCHA challenge, a user helps to transcribe words that
stemming from a book digitization process that cannot be recognized reliably by state of the
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art optical character recognition (OCR) systems. Due to the validation constraint, a challenge
consists of two words, the control word, which is known, and an unknown word (see Figure
2.11). This concept is based on the idea that if the user transcribes the control word correctly, it
can be assumed that the unknown word is also transcribed correctly. User inputs for unknown
words are interpreted in the form of votes; when a certain transcription of an unknown word
reaches a specific number of votes, it becomes a control word for future challenges.

Figure 2.11: reCAPTCHA challenge and the relation to scanned book text. (figure from [4])

Based on the fact that the pool of control words consists of words that cannot be recognized
by two state of the art OCR systems, an algorithm which reliably recognizes the given distorted
words would imply an improvement in OCR research. Ahn et al. [4] stated that their approach
reaches a transcription accuracy of 99.1% compared to 83.5% of standard OCR systems using
two manual human transcriptions as ground truth. Moreover, the result after a runtime of one
year are 1.2 billions processed challenges, which equals the transcription of about 17,600 books
(assuming 100,000 words / book). [4]

TagCaptcha

Image retrieval provides a query-based interface which enables users to find and access relevant
images in an image collection like a database. In text-based frameworks, the formalism of the
query is defined by a high level keyword description of the desired images. As a consequence of
text-descriptors, additional annotation metadata for the images is required. A common problem
in the task of image retrieval is the non-existing direct relation between low-level and high-level
features, known as semantic gap. Therefore, the semantic gap hinders an automatic annotation
of the image database. [44]

With TagCaptcha, Morrison et al. [48] propose a concept to overcome the problem of image-
annotation by including the task into an image-based CAPTCHA system. Similar to the re-
CAPTCHA approach, a TagCaptcha challenge consists of a set of images. More precisely, the
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set is composed of an unknown and a verification / control subset. As illustrated in Figure 2.12,
the user describes the presented set of images using English keywords. If an image of the un-
known set is tagged with at least two similar keywords from different users, the image becomes
part of the verification set. For the verification of the user input with the corresponding set of
control keywords, a two step matching-process is used. As a first instance, the base form of the
input is determined and tested for matches. If the matching process ends without agreements,
the similarity of the given input is compared against WordNet [54] using the WUP measurement
proposed by Wu and Palmer [60]. The WUP distance defines the allowed hierarchical seman-
tic distance between keywords (e.g. horse and camel are both animals) and therefore specifies
the ratio between usability (accepting higher level descriptions like e.g. animal for horse) and
vulnerability of the system.

Figure 2.12: TagCaptcha interface (figure from [48])

Within the scope of a user study with 12 participants performing 20 CAPTCHA challenges,
Morrison et al. reported a success rate of about 70%. The authors state that the relative low suc-
cess rate, compared to text-based CAPTCHAs (approximately over 90%), could be reasoned by
the high degree of subjectivity involved in the annotation process. Moreover, language barriers,
context and the aspect of personal experience can have influence on the individual annotation
performance.

Asirra

Another representative of image-based CAPTCHA systems is Asirra, introduced by Elson et al.
[15]. Similar to TagCaptcha proposed by Morrison et al. [48], the challenge is defined by a
higher-level description problem. More precisely, a challenge consists of 12 images provided
by petfinder.com, where the user has to select either all cat or all dog images from the mixed
set of images. The petfinder.com database consists of millions of manually annotated images
of homeless pets, increasing by 10,000 new images each day. Besides the integration of links
for adopting the shown pets (Figure 2.13), user-related location information is considered to
select primarily pets that can be adopted in the user’s area. Based on a user study including 332
participants, Elson et al. have shown that 99.6% of the users can solve a challenge in less than 30
seconds. Therefore, the Asirra approach shows how CAPTCHAs can be utilized for a general
purpose in a social context.
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Figure 2.13: Asirra challenge (figure from [16])

AniCAP

Chow and Susilo [8] introduced AniCAP, an animated 3D CAPTCHA which targets the human
ability to perceive depth from relative motion (see also 2.1.2) based on the motion parallax.
In this text-based approach, the main characters of the challenge are overlapping background
characters which have the same properties regarding to font and color. By arranging main and
background characters at different levels of depth, the impression of depth in an animated scene
is enabled (Figure 2.14a). To avoid occlusion effects as described in Section 2.1.2, foreground
characters have additional transparency-properties. The resistance regarding segmentation is
realized by applying local (Figure 2.14b) and global (Figure 2.14c) distortions to individual
characters respectively the whole scene of the animation.

(a) no distortions (b) local distortions (c) global and local distortions

Figure 2.14: Overview of AniCAP distortions (figures from [8])
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2.3 Crowdsourcing

The term crowdsourcing was first introduced by Howe [33] and is the composition of the two
words crowd, an abstraction of a group of participating individuals, and outsourcing. More-
over, the usage of this term in a variety of applications resulted in a continuous development
and evolution of the term’s definition and meaning. Motivated from the inconsistent definitions,
Estelles-Arolas and Gonzalez-Ladron-de Guevara collected and compared 40 state-of-the-art
definitions from scientific publications in their paper [18]. Based on the analysis and interpre-
tation of the series of definitions, the authors stated the following general definition of the word
crowdsourcing: „Crowdsourcing is a type of participative online activity in which an individual,
an institution, a non-profit organization, or company proposes to a group of individuals of vary-
ing knowledge, heterogeneity, and number, via a flexible open call, the voluntary undertaking
of a task. The undertaking of the task, of variable complexity and modularity, and in which the
crowd should participate bringing their work, money, knowledge and/or experience, always en-
tails mutual benefit. The user will receive the satisfaction of a given type of need, be it economic,
social recognition, self-esteem, or the development of individual skills, while the crowdsourcer
will obtain and utilize to their advantage that what the user has brought to the venture, whose
form will depend on the type of activity undertaken.“ [18] At this point it has to be noted that
the proposed definition aims at covering a wide spectrum of applications. Hence, this generic
definition has to be adapted and extended to a specific and focused context.

2.3.1 Amazon Mechanical Turk

A popular representative for crowdsourcing is the online platform Amazon Mechanical Turk
(AMT) [34] with more than 200,000 registered workers. The concept of AMT is built on the
idea to break down tasks or given problems to a series of microtasks, which can be performed
by the crowd of workers. More in detail, requesters can post microtasks in form of Human
Intelligence Tasks (HIT), which define the task and the reward for performing the HIT. The pay-
ment for HITs is specified by the requester and ranges from 0.01$ for short tasks like doing a
Google search, to e.g. 30$ for more complex tasks like transcriptions of audio recordings. A
massive on-demand workforce characterized by a high degree of diversity in education, knowl-
edge, experience and demographic background gives researchers the opportunity to utilize a
high number of individuals at low monetary costs. With the diversity mentioned, the question
of significance and quality of the collected data arises. The popularity and the open-call concept
of the AMT also attracts malicious workers, which have to be considered when discussing the
aspect of quality. A common method of cheating is to provide random answers to minimize
the completion time while maximizing profit. Furthermore, Kittur et al. [38] states that there is
a relation between completion time and random answers. This process of submitting random
answers can be automated by using bots that harvest available HITs. Well-organized spammers
act in groups, sharing answers or trying to provide the same feedback for a given task to achieve
a high agreement. Instead of sharing answers, another method of attacking the microtask market
is to reuse prior submitted answers in cloned instances of workers. [13, 38, 55]

Motivated by the question of the practical quality, Kittur et al. [38] investigated how the Me-
chanical Turk can be used for the purpose of user studies. Within the scope of two experiments,
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the task for the participants was defined by rating 14 Wikipedia articles based on the Wikipedia-
featured article criteria. To estimate the quality of ratings, the results are compared to ratings
from experienced Wikipedia users. The first experiment ended with 210 ratings submitted by 58
workers. When analyzing the free-text responses, about the half of the feedback relates to non-
relevant data. As an additional indicator for fraud response, samples with completion times less
than one minute (64 ratings) were marked as invalid. From about 123 (58%) flagged samples,
73% are related to only 8 users, representing only a small group of malicious workers. On the
basis of the first experiment, the aim of the second experiment was to reduce the high amount of
invalid responses. The task’s concept of the first experiment was extended by additional quanti-
tative and automatically verifiable questions like e.g. the number of figures or references. With
the new design, 124 worker submitted 277 ratings. On the one hand the per user rating was
lower, but on the other hand the amount of flagged responses was reduced to 7, compared to
127 from the first experiment. Kittur et al. concludes that considering quantitative and verifiable
control questions into the process of designing the experiment can remarkably reduce invalid
responses. Furthermore, the concept of the experiment should be designed in a way such that
the effort of deliberately providing wrong feedback is equal to the effort of faithfully completing
the task. Taking the proposed design recommendations into account allows the utilization of the
AMT in a meaningful way for conducting research.

2.3.2 Image Annotation

As described in Section 2.2.2, image annotation relates to the process of generating additional
image metadata which can be used e.g. for retrieval tasks. As an example for text-based anno-
tation, we took a closer look at the TagCaptcha [48] approach that embeds the concept of image
annotation and crowdsourcing in terms of a CAPTCHA system.

In contrast to microtask platforms like AMT, games offer a different kind of workforce
which is mainly motivated by entertainment and the competitive challenge. With the ESP game
for example, Ahn and Dabbish [1] presented an interactive online system where a crowd of
players perform the task of annotation in a gaming situation. The game is designed in a way
such that two players are randomly paired without knowing the identity of each other. Both
players get the same images from a database and have to annotate them. The main idea of the
ESP game is that the two players find a consensus regarding their annotations. More precisely,
without knowing the keywords of each other, the current image is processed if both players enter
the same keyword. Hence, the aim of the players is to find agreements in as much images as
possible within 2.5 minutes (see Figure 2.15). To avoid repeated agreements on too general
keywords (e.g. animal or person), each keyword match is added into an a taboo list related to the
image. If the image occurs again in an other round, the users are not allowed to submit words
contained in the taboo list. Using the concept of a taboo list increases the degree of difficulty and
guarantees the diversity of the image tags at the same time. As a consequence, only keywords
with an existing agreement are used for annotation task itself.
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After a four-month evaluation of the ESP game, Ahn and Dabbish reported that 13,630
user annotated 293,760 images with 1,271,451 tags. Based on the average annotation rate of
3.89 images per minute, 5,000 permanent players could label a database containing 425,000,000
images in 31 days. These results highlight the potential benefit of crowdsourced metadata for
large image collection as e.g. the Google image search. [1, 58]

Figure 2.15: ESP game interface (Figure from [27])

2.3.3 The Dark Side

In previous sections, we pointed out that crowdsourcing can be a powerful concept to perform
non-automatable tasks with purpose. However, negative drawbacks are usually related to the
crowd’s heterogeneity, worker payment conditions and quality. This section is focused on those
aspects, where the immense workforce of a crowd processes tasks with unethical characteristics.
The open structure of the internet and the related demographic diversity makes it difficult to
enforce strict policies against unethical behavior. In this sense, the definition of unethical be-
havior can change remarkably between different demographic groups. Studies have shown that
compared to real life situations, the „anonymity“ of the internet lowers one’s inhibition level for
unethical behavior, which allows to find more people to perform such tasks at the same time. On
the other hand, by design of a task, its unethical manner could be hidden by splitting the task in
independent subtasks, while participants performing single subtasks are unaware of the whole
picture. [29]
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Harris [29] described three common techniques that are used by task requester with unethical
motives:

• Social Engineering
Social engineering is used to deceive and manipulate people to expose sensible informa-
tion or perform certain actions. Identity theft and phishing are common examples for
social engineering with a financial intention. In relation to the crowd, peer pressure spec-
ifies another form of social engineering; swimming against the tide is seen as inconsistent
to the human nature. Forming an artificial group with the crowd could be used to establish
the situation of peer pressure at minimum costs. [29]

• Attack and Run
User accounts on websites are a wide-spread method to assign a specific identity to a user.
Depending on the degree of anonymity, it can be distinguished between identity intensive
and relaxed websites. While identity intensive sites aim at verifying the real identity of
a user (e.g. paid subscriptions), identity relaxed systems preserve the user anonymity to
some degree, which can have negative effects when using those identity for validation on
other websites. This loose handling of identities can be seen as potential starting point for
building false identities. [29]

• Human Computation Tests
Using the human computation capacities in a malicious context directly addresses the pre-
viously described concept of CAPTCHAs (see Section 2.2). Per definition, CAPTCHAs
are designed in a way such that humans can solve the challenges with minimal effort
and therefore represent an ideal candidate for the human computation possibilities of the
crowd. According to Motoyama et al. [49], bypassing CAPTCHAs with human labor-
ers has grown to an industrial market. Costs for on-demand human-based CAPTCHA-
solving services are oriented on high quantities of CAPTCHAs and start at 1$ per 1000
challenges. Outsourcing the task to low-wage countries over the internet in a global man-
ner keeps the occurring costs at a minimum. Wages of workers are commonly arranged at
approximately 0.75$ per 1000 CAPTCHAs. The increasing pressure of competition and
the fact that solving CAPTCHAs does not require specialized skills leads to a shift of the
human labor from Eastern Europe to workers from Bangladesh, China, India and Viet-
nam. Nevertheless, Motoyama et al. [49] tested 8 providers for their quality and reported
a response accuracy of 86-89% , which is remarkable higher compared to the accuracy
of 18% achieved with OCR solutions like CaptchaOCR. Due to the fact that a million of
CAPTCHAs can be solved for less than 1000$, CAPTCHAs are no guarantee against au-
tomated large scale access. From an economic point of view, Motoyama et al. concludes
that the usage of solving-services has a significant impact on the attackers profit and is
thus limited to attackers whose business model is efficient enough to compensate these
costs.

As an alternative to paid solutions, another approach is to include the solving process into
a different task. Based on this idea, Egele et al. [14] proposed the injection of 3rd party
CAPTCHAs into a web session of an unsuspecting user. On the previously infected user
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system, interactions with web applications are intercepted, allowing the attacker to seam-
lessly smuggle CAPTCHAs directly into the session. Since the smuggled CAPTCHAs
are injected within the workflow of the web application, the victim can not differentiate
between smuggled and authentic CAPTCHAs of the application. In the evaluation pro-
cess, 17 working installations of the malicious browser plug-in were achieved, requesting
167 CAPTCHAs during a test period of 14 days. Results report a success rate of 75%.
When resending unanswered challenges to other users, the success rate increases to 93%.
Applying these results to large scale dimensions of botnets, the low costs for infrastructure
and the capability of bot masters to upgrade „clients“ with the malicious plug-in points
out the potential of the approach described.

Harris [29] highlights that combating this techniques of unethical behavior is still an open prob-
lem. Laws that sentence such behavior are too inflexible and difficult to enforce at a global
scope. Moreover, Harris notes that teaching ethic as part of eduction or a reputation oriented
identity system could reduce the unethical progress on crowdsourcing platforms. The global
characteristic of the crowd minimizes the effect of the proposed suggestions at the same time,
because the problem is shifted to regions where the revenue plays an overriding role to ethics.
[29]
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CHAPTER 3
Overview

This chapter provides an overview over the CAPTCHA concept and describes the role of the
proposed obfuscation method in this context.

3.1 The Big Picture

As mentioned in Chapter 1, 3D model databases like Google’s 3D Warehouse [24] require high-
quality metadata to provide effective retrieval and exploration functionalities. The generation
of this metadata is still an open problem. Ahn et al. [4] demonstrated with the reCAPTCHA
approach that crowd-based data generation can reach large-scale dimensions while performing
the role of a security mechanism at the same time. Inspired by the reCAPTCHA [4] approach,
the main idea of this work is motivated by the annotation of 3D models with additional meta-
data using the CAPTCHA (see Section 2.2) process. Similar to distortions applied in text-based
CAPTCHAs, our approach uses an obfuscated representation of the 3D models to meet the
security characteristics of CAPTCHAs. A challenge is the visualization of 3D models in an ob-
fuscated manner, which have to be annotated. More precisely, as in the reCAPTCHA approach,
two models are used for a challenge, implementing the idea of an unknown object, which has
none or sparse metadata, and a known or control object, which has a reference set of keywords
assigned.

Figure 3.1 illustrates the schematic structure of the proposed system. From a user perspec-
tive, a challenge is the task of recognition and textual description of two obfuscated objects
presented in form of a video. In detail, the user response can contain relevant perceived features
or the semantic description of the shown object, given as keywords. Those keyword-responses
are processed by the Challenge Manager. As a first step, the user is validated to be a human
by checking the response for the control object with the reference set, stored in the metadata
database. Comparing keywords can include a series of processing steps, starting from quick
string matches up to a check against a semantic hierarchy as used in [48]. The advantage of
verification on a semantic level is that a response does not have to match at character level, be-
cause keywords are compared based on their meaning. If the annotation of the control object
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is successfully verified, it is assumed that the annotation of the unknown object is also correct,
resulting in new keywords for the unknown object.

Furthermore, the Challenge Manager is responsible for maintaining the set of keywords for a
specific model. Depending on the size of these sets, the models are selected for future challenges.
A challenge puzzle is represented in form of a video containing the animated and obfuscated vi-
sualization of two selected objects. The Challenge Manager requests new challenge videos from
the Obfuscated Renderer, which directly uses the 3D model repository for the generation of the
obfuscated output. As the core element of the framework is defined by the visualization compo-
nent, the scope of this work is the conception of the rendering element that will be explained in
detail in the course of the following Chapter 4.
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Figure 3.1: 3D CAPTCHA Framework Overview

3.2 Obfuscated Rendering – The Main Principle

According to the definition of the CAPTCHA concept (see Section 2.2), only humans should be
able to pass a challenge. To protect the system against automated attacks, we use a synthetization
method that provides an obfuscated representation of a given 3D object.

The basic idea of this approach is to use just the salient parts of the objects for the visual-
ization, while remaining parts are neglected (see Figure 3.2). Due to the capability of humans
to mentally fill in missing parts in an image, the resulting sparse representation is sufficient for
the recognition of the objects. The actual location of the object is hidden from automated ap-
proaches by introducing additional clutter in the background. This background obfuscation is
achieved by copying parts of the object into the background and applying additional distortions
to them.

Moreover, as the 3D databases contain primarily static models, continuous object transfor-
mations are used to create an animated scene. This animation enables the user to perceive the
salient features of the object that could be distributed across the whole object geometry. In many
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cases, color and texture features are crucial for the detailed identification of the objects shown.
Based on the textures of the object, the dominant colors are determined and used for coloring
the obfuscated visualization (context color). Texture features, on the other hand, are integrated
in the representation by locally revealing the object surface. Providing these additional object
features allows a more precise identification of the object and is likely to improve the quality of
user annotations.

(a) (b)

Figure 3.2: The difference between source model (a) and the result of the object obfuscation (b).

3.3 Comparison to Related Work

Compared to related CAPTCHA approaches (see Section 2.2), which are primarily based on the
obfuscation of text strings, the proposed method is motivated by obfuscating 3D models in a
manner such that the most relevant object features are shown for recognition and annotation in
terms of the CAPTCHA task. The approach introduced by Mitra et al. [47] represents the basis
for this work; it aims at the generation of static images by revealing low-frequency geometry
features. Our method extends this approach by focusing on the animated visualization of static
models. Furthermore, the technique of Mitra et al. is extended by including additional color and
texture features of the model, enabling a more specific annotation of the objects.
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CHAPTER 4
Obfuscated Rendering

In Section 3.1, the rendering component was put into the context of the whole framework; this
section provides a detailed description of the obfuscated rendering engine. Figure 4.1 describes
the abstracted schematic view of the obfuscation pipeline. The schematic organization shows
that the structure of our pipeline is composed of four components – the 3D model processing,
the object obfuscation, the background synthesis and the combination of the object with the
background.

Model A and B

Obfuscation Process

Use obf. Model 
Data

Object 
Obfuscation

Model 
Database

Model Loading 
and Preprocessing

Background 
Generation

Merge Object and 
Background

Obf. Output

Figure 4.1: Obfuscated Renderer Overview

Section 4.1 describes how the scene has to be set up for the subsequent obfuscation process.
This step includes scaling and aligning of the 3D models based on perceptual parameters as well
as the transformation of the objects according to their desired pose in the animation sequence.
The object obfuscation, presented in Section 4.2, is the first step of the actual obfuscation pro-
cess. This step generates a sparse representation of the object by removing parts of the object
which are not essential for the recognition task (see Figures 4.2b and 4.2c). Section 4.3 explains
the generation of background clutter which shows similar spatial and temporal characteristics as
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the object (Figure 4.2d). As described in Section 4.4, the results of both obfuscation steps are
composed into a single image (Figure 4.2e). In course of Section 4.5, we introduce additional
experimental features (see Figure 4.2f), to integrate color and texture features in the obfuscation
process, which allow a more detailed annotation by the users. Section 4.7 covers the technical
and design challenges of the implementation.

(a) (b) (c)

(d) (e) (f)

Figure 4.2: Obfuscation processing steps – (a) source model, (b) importance map and sampling,
(c) object obfuscation, (d) background generation, (e) blending of the object with the background
and (f) experimental features.

4.1 Model Processing

Well-known services like Google’s 3D Warehouse [24] or TurboSquid [59] provide access to
several hundred thousands of 3D models through their collections. In general, these models are
used as 3D representations of real objects based on polygon meshes. However, the majority
of available models are only static and do not contain any kind of animation. To model sur-
face characteristics like color and structure, the usage of textures is common. Since 3D model
databases do not always have textures, they have to be seen as optional data; for this thesis, we
therefore use only static 3D models with optional texture information.
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4.1.1 Foveal Coverage

As a first step of the processing pipeline, the 3D model is loaded and converted into a hierar-
chically organized structure. Due to its arbitrary scaling, it has to be normalized to a common
scene dimension. A simple approach could be to extract the axis-aligned bounding box (AABB)
and rescale the object so that the AABB has unit size. While this method allows an exact and
well-defined alignment of multiple objects in a grid, we introduce a rescaling approach that is
motivated by perceptual considerations. As described in Section 2.1.1, the fovea enables sharp
vision at the center of the retina. Simplifying, this behavior can be modeled as an infinite cone,
originating at the eye, with an aperture angle of approximately 1− 2 ◦ [12]. As the output of the
rendering process is a 2D image displayed on a physical screen, intersecting this cone with the
screen results in a conic section (see Figure 4.4). Assuming the viewing direction of the observer
is orthogonal to the screen, the resulting circular area of the intersection corresponds to the area
that can be perceived sharply by the fovea and it is given by:

rf = tan
(α
2

)
∗ deye

Afc = r2f ∗ π (4.1)

where α denotes the aperture angle of 1 − 2 ◦, deye the distance from the eye to the screen and
Afc the foveal area. Knowing the physical dimensionswidthp and heightp of the display device
and the screen resolution allows determining the physical size of a pixel.

When rendering an object, the area of the projected image depends on the virtual view point.
For example, the projected area of a flat screen TV model differs significantly between the front
and side view. To overcome this issue, we use the AABB to approximate the projected object
area. In detail, the cross sectional area of the AABB (depicted in Figure 4.3) is projected into
screen space, resulting in the area Aobj . The perceived area of Aobj can be determined by
multiplying the area with the physical pixel dimensions.

Figure 4.3: The highlighted quad describes the area which is used to approximate the object
area.
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The perceptual parameter foveal coverage F is defined as the ratio F =
Afc

Aobj
of the foveal

area Afc to the object area Aobj and therefore describes the percentage of the object area that
fits in the foveal region. To meet a specific foveal coverage F , a scaling factor S has to be
determined. To do so, the foveal coverage Forig is first computed using the original scale of

the object; the scaling factor S to reach the desired foveal coverage F is then given by
√

F
Forig

.
Thus, the resulting scaling factor S is no longer a function of the largest side length of the
AABB, it is based on the projected area with respect to the foveal coverage. In scenes containing
multiple objects, the problem of unit scaling becomes more evident, as shown in Figure 4.5.
In this example, the width-to-height-ratios of the two models differ severely; the bunny has an
approximately cubic AABB, while the skeleton’s AABB is cuboid-shaped. Although the objects
are scaled to the same size, the projected (and therefore perceived areas) of the objects are
significantly different. This difference influences the ability to recognize the individual objects,
and the degree of difficulty in recognizing the objects would differ when using our obfuscation
method. However, a scaling based on the foveal coverage balances the size of the objects so that
their projected areas are equal.

deye

rf

width p

he
ig

ht
p fovea

α

projected object area 
approximation Aobj 

foveal area Afc

Figure 4.4: Foveal coverage - illustration of the observer and screen (with the physical dimen-
sions widthp and heightp). Outlined in blue, the conic model of the fovea and the resulting
circular area Afc on the screen can be seen. The orange region corresponds to the projected
object area approximation Aobj . The foveal coverage describes the ratio of the foveal area Afc
to the object area Aobj . (figures adapted from [40])
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4.1.2 Scene Grid

The next step in model processing is the alignment of the loaded objects to the scene so that
all objects have a specific position on the screen. Scaling based on foveal coverage requires
additional effort for the scene alignment, because once the objects are scaled to a common factor
of foveal coverage, their actual scaling can differ significantly. To cope with varying dimensions
of the individual AABBs we use a normalized screen-space alignment system.

The basic principle of this system is to equally distribute a set of points in screen space
depending on the number of objects in the scene. For example, if the scene contains two objects,
a single point is defined in each half of the screen. Next, a world-space position is determined
for each point by back-projecting the screen-space coordinates to the x-y plane in world space.
Each object is then translated to one of these world-space points. Using the steps described in
this section, we created a scene where objects are normalized to a common perception-related
scaling factor and distributed equally on the screen.

To integrate the concept of the reCAPTCHA [4] approach (see Section 2.11 for details), each
scene requires at least two objects, one being the unknown object and the other one the control
object. Beside the reCAPTCHA approach, the number of objects in a scenes depends on the
design of the CAPTCHA challenge itself. For example, another form of metadata generation
could be the selection of all upright oriented objects from a set of objects to determine the
orientation of the objects. Therefore, the following sections are valid for an arbitrary number of
objects and the reCAPTCHA equivalent is treated as a special instance of the general case.

(a) Unit-scaling (b) Scaling using foveal coverage

Figure 4.5: For scenes containing multiple objects, a scaling based on unit-scaling (a) produces
significant differences between the perceived object areas. In contrast, our proposed scaling
based on the foveal coverage (b) balances the size of the objects so that their perceived areas are
equal.

4.1.3 Animation and Importance-based Orientation

Due to the assumption that models have unconstrained specifications regarding orientation and
texture information, the visualization of the objects with a single image from a specific viewpoint
leads to unreliable results when used in recognition tasks. Parts of the object that are crucial for
recognition may not be visible from a static view. Assuming that models are upright, but their
front- and back is not known, we decided to apply a continuous rotation transformation while
maintaining a preselected point of view. This rotation enables to perceive multiple features
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that are distributed across the object. When specifying the rotational axis, the main upright
orientation of the object has to be maintained, otherwise, the uncommon orientation has negative
effects on the object recognition. In our approach, we suggest a rotational axis which is similar
but not equal to the model’s y-axis. Selecting the y-axis as rotational axis is sub-optimal for
rotationally symmetric objects (e.g. bottles), since the combination of animation and obfuscated
rendering would not convey the impression of a symmetric shape.

In most cases, a slightly downwards oriented view provides an optimal perspective on the
upright models. Due to the diversity of the models, especially flat objects (e.g. airplanes) do
not reveal enough of their shape characteristics for the recognition otherwise. While the object
rotation resolves the front and back sides issue, an appropriate slanting angle βs has to be se-
lected from a predefined interval to minimize recognition difficulties for such objects. At the
same time, this requirement raises the question on how to determine the corresponding slanting
angle βs within a predefined interval. Considering the rotational transformations applied to each
object, the corresponding angle βs should stay constant along the entire animation to avoid an
erratic motion of the object. To determine βs, a minimization problem is defined based on the
corresponding importance map information (see Section 4.2.1) [41, 47]. In short, the importance
map highlights the crucial parts of each object at a specific point in time and from a certain point
of view as a 2D texture. When defining the minimization problem, it has to be considered that
the importance varies as the view on the object changes. Therefore, to determine the overall
importance value for a certain angle βs, each object has to be sampled from multiple directions.
Based on the fact that the virtual viewpoint is static, the sampling is achieved by simulating
the rotation process and aggregating the resulting importance maps. Hence the minimization
problem is defined as

min
βs1,...βsn∈[−30 ◦,10 ◦]

((m ∗ Imax)−
m∑
i=1

I(fi(βsj))) (4.2)

where m is the number of sampled frames, Imax the maximal possible importance value in a
single frame and I(fi(βsj)) the accumulated importance at the frame i using a slanting angle
βsj . Minimizing the function by using the method proposed by Nelder and Mead [50] results in
a slanting angle where the importance over the whole animation is maximal. This angle remains
constant as long as the viewpoint does not change and therefore has to be evaluated once for
each object in an offline preprocessing step.

4.2 Object Obfuscation

The objective of the object obfuscation process is to extract an abstracted visualization which
contains only those elements of the object that are most relevant for the recognition task. This
abstraction, first proposed by Mitra et al. [47], results in a sparse representation of the object sur-
face, including only important regions and neglecting the remaining parts. Regarding perceptual
aspects, the sparse representation directly addresses the Gestalt principles (see Section 2.1.2),
where especially the principle of closure enables us to fill in missing information to create a
closed and stable impression of the object. Figure 4.6 illustrates the unobfuscated input model
and the result when performing the object obfuscation steps.
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As shown in Figure 4.1, the object obfuscation represents the initial step of the obfuscated
rendering pipeline. A more detailed overview of the rendering loop is provided in Figure 4.17.
In the subsequent sections, the individual parts of the pipeline are described in detail.

(a) (b)

Figure 4.6: The difference between source model (a) and the result of the object obfuscation (b).

4.2.1 Importance Map

When using random subsets of the object surface for the sparse representation, object detection is
made more difficult not only for computer vision algorithms, but also for humans. Consequently,
the first step in the obfuscation process is to determine regions on the surface that contain mean-
ingful characteristics of the object shape. Potential input data for determining these features are
silhouettes and the shading of the surface.

We use the concept of an importance map introduced by Mitra et al. [47], which is a single-
channel 2D texture defining the importance for each point of the projected object surface from
a specific point of view. Values in the importance map are in the interval [0, 1], where 1 cor-
responds to maximal importance and 0 to unimportant parts. As stated by Mitra et al., the
formulation of the importance map includes information about the surface geometry, the view-
point and the light position. In more detail, the importance map is composed by the following
two individual maps:

1. Silhouette Map
We aim to capture prominent features within the object boundaries which have similar
characteristics as edge- and silhouette-features, as these are important for object recogni-
tion. This can be achieved by computing the cosine of the angle between the view and the
normal vector of each fragment. This value is maximal if the view and the normal vector
are orthogonal to each other and decreases as the absolute angle decreases. To limit the
size of the silhouette, the minimal angle is clamped to a predefined limit. Evaluating the
silhouette for each fragment of the object results in a 2D silhouette map (see Figure 4.7a).
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2. Shading Map
To include less pronounced geometrical details of the object, an inverse version of standard
diffuse shading is used to highlight other relevant parts. Each fragment is set to 1− (n · l),
where n is the normalized normal vector and l the normalized light vector. This calculation
of the inverse diffuse shading for each fragment generates the 2D shading map (see Figure
4.7b). Values in the shading map are in the interval of [0, 1] due to the use of backface
culling. When comparing the shading and silhouette map, the silhouette map does not
capture any lighting or depth information. In contrast to that, shading corresponds to a
monocular depth cue and therefore describes the depth of the object surface.

Once the silhouette and shading map are generated, the importance map is derived by using a
pixel-wise maximum from the two maps. Figure 4.7 shows the individual maps and the final
product, the importance map.

(a) (b) (c)

Figure 4.7: The silhouette map (a) and the shading map (b) are combined to a single importance
map (c) by using their pixel-wise maximum.

Regarding the implementation in the rendering pipeline, the importance map is rendered
in the first pass, along with the Phong shaded version of the objects (see Figure 4.8). Due to
the fact that the generation of the importance map requires only fragment operations and some
trivial vertex operations, the method described can be implemented in a fragment shader on the
GPU.

4.2.2 Importance Sampling

To establish a sparse representation of the object containing only the important regions, the
surface of the object will be partially textured using a circular texture, called splat (see Section
4.2.3). A purely random distribution of these splats across the surface would imply that also non-
salient regions get textured. Therefore, the importance map is used as a basis for the distribution
of the samples, a process known as importance sampling. Ostromoukhov et al. [51] specify the
main problem as follows: An importance density I is given over a domain D in form a 2D array,
containing normalized discrete values with 0 ≤ I(x, y) ≤ 1 ∀(x, y) ∈ D. The goal is to find a
discrete set of sample points where the number of samples per unit area is directly proportional
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Figure 4.8: A subpart of the obfuscation pipeline describing the generation of the importance
map and the subsequent importance sampling. The reader is also referred to Figure 4.17 for a
complete view of the rendering pipeline.

to the corresponding importance density I . Ostromoukhov et al. [51] introduced an approach
for 2D importance sampling based on the well-known Penrose tiling for subdividing a given
importance map. Using the Penrose tiling in a hierarchical manner, Ostromoukhov et al. are
able to provide a multi-level subdivision of a given importance map while maintaining a Blue
Noise [51] spectral characteristic of the sample points.

As in the work of Mitra et al. [47], we apply this sampling method to the importance map
(see Figure 4.9). The result is a dense sampling of the silhouettes and regions where the in-
verse diffuse shading is maximal. In addition, the scale of the sampling grid can be controlled
by a parameter provided by the sampling method. If the scene contains multiple objects, the
performance of the sampling method can be further increased by limiting the sampling space
to a window derived from the projected AABB of the objects on the importance map. Tak-
ing into account that the constrained sampling space can vary significantly (see Section 4.1), the
area-related ratio between the sampling window and the whole importance map is used for renor-
malizing the scaling factor of the sampling method, establishing an equally distributed sampling
which is independent of the projected object area.

In the design of the rendering pipeline, the importance sampling is processed on the CPU in
a multithreaded manner. Due to the animation of the object, the generation of the importance
map as well as the importance sampling are processed for each frame of the animation. The
resulting discrete set of 2D sample points is the basis for all further stages of the system (see
Figures 4.8 and 4.17).
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(a) (b)

Figure 4.9: Visualization of resulting sets of sampling points with different scaling factors ((a)
300 and (b) 600).

4.2.3 Object Splatting

To generate a new object representation where surface information is sparsely distributed across
the object, the object is re-textured using the previously mentioned splats. More specifically,
the discrete set of samples generated from the importance map mark the center of each splat.
Due to the fact that importance sampling is a 2D process, the center points have to be back-
projected to 3D, e.g. by casting a ray from the eye to through the 2D point and intersecting
that ray with the object geometry, or by using a position buffer. As stated at the beginning
of this chapter, we made no constraints and assumptions regarding the surface complexity and
geometrical properties of the source objects. A robust texturing or decal method is essential to
avoid artifacts when applying splats to surfaces with high-frequency details.

The texturing method [56] used by Mitra et al. [47] has major shortcomings in this regard,
since the method cannot reliably handle surfaces with high-frequency peaks. In such cases the
decals get significantly distorted along these features. Schmidt et al. compensate this effect by
avoiding to texture the peaks, which would lead to unexpected holes in our case. Therefore,
we combine the GPU-based volumetric approach by Engel [17] and deferred decal technique
proposed by Lengyel [42] to handle decals on non-trivial geometry. In general, decals are 2D
textures which are applied to a specific region of the surface. The main idea of the method
introduced by Engel is to project a volumetric decal onto the surface using deferred rendering,
so the whole decal rendering is done using fragment operations.

In our case, decals are just the previously mentioned splats. The number and position of the
splats is determined by the importance sampling process. These (screen-space) points are used
as texture coordinates for a lookup in a position buffer to retrieve the corresponding world-space
position on the model surface. The point Pcenter describes the center of the splat. According
to the volumetric decal approach, we define a splat as a black spherical volume Vs with a given
(world-space) radius rsplat and centered at Pcenter (see Figure 4.10).
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Due to the fact that the rendering of splats requires only fragment operations, first, the frag-
ment processor has to be invoked for affected fragments by rendering a conservative dummy
bounding volume Vd with a radius rd > rsplat (e.g. sphere or cube) centered at Pcenter. For each
fragment, we need to find out whether the corresponding pixel belongs to an object and whether
that object is in the splat radius at the center of the pixel. To this end, the world-space position
P of the pixel is looked up in a position buffer. The distance from this world space position P
to Pcenter is evaluated to test whether the fragment is inside the splat volume Vs. If and only if
this distance is less than rsplat, the fragment is colored. The resulting textured surface region
corresponds to the intersection of the object surface with the spherical splat.

ncenter

Pcenter

Esplat

P
n

rsplat

d(P,E)

Figure 4.10: Schematic illustration of the volumetric decal approach – The spherical splat vol-
ume (highlighted in orange) with radius rsplat is centered at Pcenter on the object surface. Esplat
is the plane defined by Pcenter and the corresponding normal ~ncenter. d(P,E) denotes the Hesse
distance of the point P to the plane E.

The method described so far, however, does not take the surface characteristics of the object
into account. Therefore, we modify the calculation of the distance between P and Pcenter by
using the method proposed by Lengyel [42]. The idea of this approach is to create a wrapping
effect which is based on the surface slope and the normal distance of the fragment to the splat
center. Hence, this wrapping effect acts as an additional cue to convey the local surface charac-
teristics. To determine the surface slope, the required normal vectors ~ncenter of Pcenter and ~n of
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P are determined using a normal buffer; then, the length of the vector abs(~ncenter − ~n) is used
as an approximation of the surface slope. As illustrated in Figure 4.10, the point Pcenter and the
corresponding normal ~ncenter define the plane Esplat. The normal distance d(P,E) of a point P
to a plane E is calculated by using the Hesse normal form, which is defined as follows:

d(P,E) = ~n · p+ n0 (4.3)

where ~n denotes the normal vector of the plane E, p corresponds to the tested point and n0
to the offset of the plane from the origin. As the origin of our reference frame is Pcenter, the
offset n0 is 0, hence the signed distance d(P,Esplat) is calculated as ~ncenter · P . Weighting
the previously determined surface slope with d(P,Esplat) results in an offset-value. This offset-
value is subtracted from the distance of P to Pcenter before testing against rsplat. Therefore, the
offset-value changes the size of splat volume implicitly and in further consequence, deforms the
shape of the cross section of the object surface with the spherical splat according to the local
surface characteristics.

In the rendering process itself, the method described can be completely implemented in
the fragment shader. The required normal and position buffers are generated when rendering
the Phong-shaded visualization of the objects (see Figure 4.11). In each frame, the model is
rendered with the method described to generate a single channel texture, the obfuscated object
mask. (see Figure 4.6b for an exemplary result of one object). Note that only the textured regions
of the objects remain while all other parts are now handled as being transparent.
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Figure 4.11: Illustration of the relevant parts of the rendering pipeline which are responsible for
the object obfuscation. The reader is also referred to Figure 4.17 for a complete view of the
rendering pipeline.
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At this point in the processing pipeline, the object is textured at previously determined im-
portant regions. The previously mentioned blue noise characteristic of the importance-sampling
method implies a regular spacing of the splat texture on well-formed surfaces where the shading
map is relatively homogeneous. To avoid exploitation of these regular patterns, random jitter-
ing is applied to the sample points by shifting their coordinates on the tangential plane of the
underlying surface point and reprojecting the new coordinates back to the surface. In addition,
the degree of jittering for a specific sample point is weighted by the corresponding importance
value from the shading map, so that the jittering increases with increasing importance.

By construction, the importance distribution is more dense along the silhouette, so that these
regions have a higher number of splats per unit area. Splats on the silhouette tend to overlap each
other due to the potentially higher magnitude of the surface gradient, which directly influences
the wrapping effect of splats. Since those connected splats create edges along the silhouette,
further processing steps are focused on breaking the continuities of these implicitly produced
edges. The main idea is that after jittering of the sample points, the neighborhood of splats
located on the silhouette is scanned for overlapping regions. This concept is realized in a 2-pass
strategy (see Figure 4.11); in the first pass, the splats are rendered using the method described so
far. In the second pass, the texturing is repeated and splats are filtered based on the obfuscated
object mask M resulting from the first pass and the importance map. Before rendering a splat,
an area of 16 × 16 pixels is sampled around the center point of the splat on the texture M on
the GPU. To detect overlapping splat segments in M , the splats are additively blended in the
first pass. Based on the accumulated sum of the samples, the current splat is marked for further
filtering. Alternatively, if the surrounding sampling is too dense in important regions, the splat
is not rendered in the second pass to break the continuity. Since the second pass only requires a
single-channel texture, an additional channel is utilized to mark splats for the following filtering.

Morphological Filtering

As suggested in the work of Mitra et al. [47], we apply morphological operations to the splat
segments marked for further filtering. Figure 4.11 depicts that this step is implemented by the
next two passes of our pipeline. Mathematical morphology is an image processing method
that mainly operates on shapes within images. For a given binary image, pixels with value 1
belong to the object, while pixels with a value of 0 represent the background. In the following,
the concept of binary morphology is described. Based on the binary definition of the source
image, an additional structuring element is introduced, which is also a binary image containing
a predefined shape. The main idea of morphological operations is to test the structuring element
(e.g. a circle or box shape) against the whole image by aligning the structuring element at each
pixel. [28]

In a more formal manner, the given image A and the structuring element B are sets in
an Euclidean N-space, denoted as EN , with corresponding elements a = (a1, . . . , aN ) and
b = (b1, . . . , bN ). When this principle is applied to discrete images, the Euclidean spaces
correspond to 2D planes, while A and B consist of a number of non-overlapping square regions
– the pixels. In the first basic morphological operation, the dilation of A by B corresponds to
the set of all possible sums of the element vectors of A and B.
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Haralick et al. [28] specify the dilation as follows: Let A and B be subsets of EN . The
dilation of A by B is denoted by A⊕B and is defined by

A⊕B =
{
c ∈ EN | c = a+ b for some a ∈ A and b ∈ B

}
(4.4)

The morpholgical dual to dilation is known as erosion, which corresponds to the element-wise
subtraction, defined as

A	B =
{
x ∈ EN | x+ b ∈ A for every b ∈ B

}
(4.5)

The basic operators are combined to create new operators like the opening transformation. The
opening operator smooths the input as it removes elements smaller than the structuring element,
including small islands and spikes. In terms of the previously specified erode and dilation oper-
ators, the opening operator is defined as

A ◦B = (A	B)⊕B (4.6)

In our context, we use the opening operator to eliminate thin lines and splats which are smaller
than the structuring element to deform splats and to open thin connections between individual
splats to break their continuity. Due to the fact that the opening operator is the combination of
two operators, the integration of this filter process in the rendering pipeline is achieved by using
two passes (see Figure 4.11). The filtering uses the obfuscated object mask of the previous pass
as input. Both passes require only fragment operations, hence, in each pass a fullscreen quad is
rendered and the resulting output-texture of the predecessor is used as input. In addition, both
operators use the same circular-shaped structuring element stored in a binary texture. For each
fragment, the center of the structuring element is aligned to the fragment. Next, a pixel-wise
comparison of the structure element and the „underlying“ texture is done. The pixels inside the
structure element are accessed by precalculated offsets which are stored inside an array.

(a) Erosion (b) Dilation (c) Opening

Figure 4.12: Morphological Operators – Each operator (a-c) is applied to a dark-blue rectangle
using a disk-shaped structure element. The light-blue area corresponds to the result. (figures
from [35–37])
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From the formal definition of the erode operator follows that the fragment is only colored if
the structuring element completely fits into the tested region, otherwise, the fragment is set to
transparent. Therefore, the erode operator (see Figure 4.12a) reduces the textured regions in size
and removes segments which are smaller than the structuring element. In contrast, when using
the dilation operator, a fragment is colored if at least one pixel in the tested region coincides
with the structuring element (see Figure 4.12b). Hence, this operator extends a region by the
structuring element. When filtering marked splats along the silhouette with the opening operator
(see Figure 4.12c), thin lines and small speckles are removed, while thin connections between
individual splats are opened. The filtered result of the texturing step is shown in Figure 4.13b.

(a) (b)

Figure 4.13: Resulting object obfuscation (b) of the object (a) with applied jittering, splat and
morphological filtering; removed pixels are marked red.

4.3 Background Generation

From the schematic view of the obfuscation pipeline, shown in Figure 4.1, it is evident that the
object processing is only the first step towards the obfuscation of the whole scene. When simply
using the result of the object obfuscation (see Section 4.2), position and object boundaries are
obviously detectable, providing a coarse approximation of the object shape. Assuming that the
locations of the objects in the scene are unknown, an additional aim of the proposed method
is that the geometry and location of the contained objects cannot be recovered from windows
within a frame. However, as mentioned before, a blank background is not a practical solution to
meet this requirement. As a consequence, we describe in the following the processing steps for
synthesizing the background in an equivalent manner to the object obfuscation.

As proposed by Mitra et al. [47], the basic principle of generating the background is to in-
troduce clutter patterns as similar to the object texture as possible. The basis for this background
clutter is the result of the object obfuscation itself. Parts from the object of different sizes are
selected, copied, transformed, and pasted back into the background. Repeating those steps suf-
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ficiently often covers the background with splat patterns originated from the object. In detail, a
rectangular window of random size is used to select a predefined number of points from the cor-
responding discrete set of sampling points (see Section 4.2.1). Arbitrarily selecting the samples
within the window is the first step in disturbing the object pattern for the background. Once the
set of samples for the window is determined, the window is transformed by applying a random
rotation and translation in screen space, making sure that these transformations are limited to the
viewport (see Figure 4.14). To further prevent the production of a series of exact partial copies
of the object, sample points are individually distorted per window in screen space.

Figure 4.14: The principle of the background generation is to select windows (dashed selec-
tions) from the object region, then copy the window and finally transform the splats into the
background.

Considering that the final result is an animated sequence of consecutive frames, the ob-
fuscated visualization of the object alone shows a high degree of coherence in the temporal
dimension. This property has to be carried over to the background clutter generation to preserve
a strong masking effect. Synthesizing the background from scratch in each frame emphasizes
the perception of the object; the consequential high-frequency noise characteristic of the back-
ground, however, produces a mismatch between the temporal coherence of the fore- and back-
ground (c.f. Mitra et al. [47]). To reduce this discrepancy, an additional elementary property for
windows is introduced in our approach – the lifetime. The lifetime parameter allows a dynamic
specification of a temporal frame for individual windows, directly influencing the window co-
herence by defining how long a certain window is rendered. Using the properties of windows
described so far leads to a more detailed definition of two different types of windows:

• Static Window
The main idea behind a static window is to select a rectangular region of the screen (so
that the projected AABB of the object is at least partly covered) and to transform its
obfuscated content into the background. This behavior is similar to a copy-paste process
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which is repeated for each frame for the lifetime of the window. In detail, a different subset
of the object samples is selected within a window in each frame and rendered according
to the method described in Section 4.2.3. The splats are transformed into the background
by using an additional screen-space transformation (random rotation and translation). The
intended function of this type is to fill the background with clutter.

• Sticky Window
In contrast to static windows, these windows are focused on replicating the object motion
in the background. The motion characteristics of the object are captured by copying a
selected region of the obfuscated object surface into the background. For this, a set of
object samples is selected and stored within a window during its initialization. Compared
to static windows, the set of samples for sticky windows remains fixed for the whole
lifetime, while for static windows the corresponding set varies over time. As the object
rotates during the animation, we want to reproduce a similar motion of the stored set of
samples at a different location of the screen with a different orientation of the rotation axis.
Therefore, the world-space coordinates of the selected samples have to be determined
using the position buffer. Once the world-space position is determined, the per-frame
object animation is applied to all selected samples. At this point, the object samples
have the same motion characteristics as their corresponding surface point. To reuse the
method for splat rendering (see Section 4.2.3), the sample points have to be projected back
into screen space. Similar to static windows, an additional screen-space transformation
(random rotation and translation) is used to create a random position and motion direction
in the background.

In general, the spatial coherence of sticky windows arises from the fact that the selected
splats are located close to each other (within the window) and the number of splats re-
mains the same over the window lifetime. Replicating the object motion with the samples
provides the desired temporal coherence. Due to the fact that the set of the selected object
samples is fixed over the window lifetime, the inter-sample (world-space) spacing also
remains constant in this time interval. To avoid the generation of discriminative pattern
constellations, the position of each sample is slightly iteratively jittered.

The combination of both window types introduces spatial and temporal characteristics of the
obfuscated object in the background. A practical reason for increasing the coherence in the
background are potential exploits based on Scale-Invariant Feature Transform (SIFT) features.
The approach proposed by Lowe [45] describes a robust local feature descriptor which is in-
variant to scaling, affine transformations, partial occlusions and noise in the image. Without
any coherence in the background, SIFT features can track prominent features of the object over
multiple frames. By increasing coherence in the background, the background windows act as
attractor for SIFT features. As shown in Figure 4.15, the definition and management of the win-
dows in our rendering pipeline is done on the CPU side. By construction, windows correspond
to a subset of the object splats, thus to render the splats within a window we reuse the volumetric
decal method. Moreover, to distribute the window in the background, an individual screen-space
transformation is linked with each window (see also Section 4.7 for implementation details). For
sticky windows, an additional transformation matrix containing the object animation is required.
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Figure 4.15: Illustration of the background generation in the rendering pipeline, outlining the re-
quired resources. The reader is also referred to Figure 4.17 for a complete view of the rendering
pipeline.

Furthermore, a monochromatic color property is assigned to each of the background windows.
The colors are selected from a limited pool of colors which differ in brightness. The individual
color property is constant over a dynamic number of frames before another color is randomly
assigned from the pool. With each frame, all windows (all splats) are rendered from scratch and
are blended together into one texture.
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4.4 Merge Object and Background

The last step of the rendering pipeline is the combination of the images resulting from the object
obfuscation and background generation processes. The complete rendering pipeline is illus-
trated in Figure 4.17. Up to this point, the obfuscated object texture does not contain any color
information, hence it can be seen as a mask. Colors from the previously mentioned color pool
are associated with the mask of each object. The colors of the objects are changed, as for the
background windows, after a dynamic number of frames. However, this pure image-based step
only requires to render a fullscreen quad in which the obfuscated object mask is blended onto the
background texture. Note that all pixels of the obfuscated object texture that are not covered by
splats are handled as transparent, hence, these pixels are colored by background texture. Figure
4.16 shows the result of the proposed synthesis process.

Figure 4.16: Combination of the obfuscated objects with the background (objects are outlined
for illustrational purposes).
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4.5 Experimental Features

In this section, features of the obfuscation pipeline with experimental character are presented.
Their experimental character comes from the fact that their evaluation is beyond our available
resources and the scope of this thesis. Therefore, they are not tested via a user study. Moreover,
there is a possibility of strong dependency on the actual objects and complex behavior depending
on the selected parameter associated with these methods.

4.5.1 Partial Blending

The aim of this section is to enhance the object visibility for a human despite a high degree
of clutter in the background, while keeping the detectability for automatic algorithms equally
difficult. To make the recognition easier, untextured regions of the object could be made opaque
instead of transparent as described in Section 4.4. On the downside, this can lead to a stencil-
like effect when the background density is quite high compared to the textured area of the object.
As a consequence of this effect, implicit edges are formed between sparsely textured areas of
the object and the background (see Figure 4.18a). These edges could be exploited by edge
detectors to find and subsequently determine the objects in the scene. Another way to enhance
the object visibility could be achieved by reducing the rendered windows and/or splats next to
the object. This systematic reduction of the background clutter results in a halo effect around the
object, which becomes quite noticeable in the approach of Mitra et al. [47] when using animated
scenes.

To overcome these problems, we limit the blending with the background to the silhouette of
the object, while the remaining regions of the obfuscated remain opaque. Therefore, we propose
an extended silhouette map as a mask where untextured object regions are handled as transparent
and thus a blending with the background is explicitly allowed. To be more specific, within the
first pass of the rendering pipeline, an additional extended silhouette map is computed without
any clamping of the angle between the view and the normal vector. The resulting map is then
used in the blending of the obfuscated object mask and the background texture in the seventh
pass (see Figure 4.17). Using the extended silhouette map directly as a mask produces edges
within the object boundary, which have the same form as the object shape. To overcome this
issue, the inner contour line has to be perturbed so that their shape is no longer similar to the
object characteristics. From the definition of the silhouette map follows that its maximum is
located on the object boundaries (normal and view vector are orthogonal to each other) and de-
creases according to the object surface geometry. The inner shape of the silhouette is perturbed
by clamping the lower bound with a dynamic threshold. The variable characteristic of the thresh-
old is enabled by using the GPU-based noise function proposed by Gustavson [26]. Figure 4.18
describes the result of using a variable threshold, which generates a dynamic inner shape.

4.5.2 Color and Texture Features

The obfuscation pipeline as described so far reveals the salient geometry of the object, ignoring
any material-related features. Especially when surface details of models are simplified by using a
coarse geometry representation (e.g. buildings), offering only shape and geometric information,

51



(a) (b) (c)

Figure 4.18: Figure (a) illustrates the problem of indirectly produced edges (marked red) if
the background is dense while untextured areas of the object are not transparent. Using our
dynamic mask shown in Figure (b), based on increased object silhouette, allows to pass the
background over object boundaries, while main untextured areas of the object remain white.
Figure (c) shows the result of blending the object with the background using the mask marked
in (b) (object outlined).

the adequate recognition of the object becomes difficult. If the collection of models contains
objects with similar geometrical features without any context information (such as relative size,
model category, etc.), a high degree of ambiguity regarding the meaning of the object arises.
Therefore, this section proposes the first steps to introduce additional color and texture features
in the obfuscated scene representation. In some cases, where the color and texture information is
crucial to recognize and describe an object, this enables better recognition. The two well-known
models Mario and Luigi from the game series Super Mario Bros for example differ only in their
texture.

First, relevant information for the integration of color features in the obfuscation pipeline is
extracted when the model data is loaded. In this early stage of processing, texture and material
information is collected. Assuming that the model has associated texture data, the first step is to
constrain the used color domain to prevent a color noise characteristic. Dominant colors of each
texture are extracted by determining normalized histograms based on the Hue Saturation Value
(HSV) color model, calculating the average histogram per model and finally ordering the colors
by occurrence. These colors are utilized as reference colors for window and object coloring.
The combination with random colors or dominant colors of other models is possible to avoid
exploits using the color distribution as signatures for objects. From the set of reference colors,
one color is randomly selected and used to build a pool of jittered colors. Elements of this pool
are generated by distorting the reference color slightly in hue and value. The object, as well
as the background windows, are colored by selecting a random color from this pool (refer to
the blending step in the pipeline described in Section 4.4). After a dynamically defined time
interval, the reference color is switched. Within the time interval, additional jittering intervals
are introduced, avoiding constant colors of segments over the whole interval and to replicate the
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coloring behavior of the object. Optionally, to emphasize the fundamental task of recognizing
two objects in the scene, each of the two objects has its own color domain.

Revealing texture information on the object is realized by limiting the information provided
to small regions of the object surface. In detail, the idea is to use a discrete set of splats on
the object as a mask for texture rendering. As we defined in Section 4.2, the splats are located
along regions recognized as important in a geometric sense. For large flat areas the geometry
is irrelevant but the texture could be highly relevant. To determine the visually salient regions
of a textured object, more sophisticated methods have to be used (perhaps future work). It is
assumed that revealing texture and surface details in those regions reveals relevant features to
further support the object recognition. By locating a specialized attenuated light source LS next
to the object, splats in the radius of the light are marked for showing the underlying surface
texture – thus, unmasking the object surface. Rotating the light source around the object with
varying orbits unmasks different parts of the object surface, while limiting the effect at a specific
point of time to a local region on the object – therefore, the effect is described as local un-
masking. Introducing texture details on unsplatted object regions is achieved by modulating the
importance map with the light source to induce the generation of sample points in the affected
areas. Moreover, the inter-splat distance between splats can be controlled by weighting the splat
size with the influence of the light, which corresponds to the distance to LS (see Figure 4.19).

(a) (b) (c)

Figure 4.19: Local unmasking without increasing splat size (a) and with different degrees of
weighted splat size magnification (b-c).

From the implementation perspective, the first pass of the rendering pipeline is extended by
taking the rotating attenuated light sourceLS into account. The result is an additional unmasking
map (see Figure 4.20b) which is utilized to mark the splats for unmasking. In addition, the
modulation of the importance map with the unmasking map is also processed during the first
pass. As already mentioned, the unmasking map is used during the object obfuscation to increase
the size of the splats. Before rendering the splat in the fragment shader, the influence of LS is
determined at the splat center in the vertex shader. This influence is then used to change the
corresponding splat size. When blending the obfuscated object mask with the background in the
last step of the pipeline, the unmasking map defines which parts of the obfuscated object mask
are colored with the corresponding texture.
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So far, the texture data is limited to the object itself, implying possible high-color frequencies
in the object area. To create similar characteristics in the background, an additional window
type is introduced, the injection window. Injection windows are subtypes of static windows,
with the color property being extended by a texture. Procedural textures, arbitrary textures
from a repository or shaded surfaces of the actual or other objects are possible texture sources
for injection windows. By definition, unmasked areas are restricted to the object regions, the
reoccurrence of texture is a potential information to infer the actual object location. To simulate
this behavior of texture-reoccurrence in the background, a number injection points is allocated
across the scene, excluding the object areas. The occurrence of injection windows is restricted
to positions next to the injection points. Figure 4.20 shows the final composition of the coloring,
unmasking and usage of injection windows.

(a) (b)

(c)

Figure 4.20: For given models (a) unmasking areas are determined (b) by using orbital moving
attenuated light sources around the objects. Figure (c) shows the resulting obfuscated scene
using the local unmasking approach with additional injection windows (textured windows).
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4.6 Contributions Compared to Related Work

As the approach proposed by Mitra et al. [47] is the basis of our work, this section outlines the
main contributions and differences:

• It is assumed that the perceived size of the object influences the ability to recognize the
obfuscated representation of the objects. Therefore, the models are rescaled to a common
perception-related scaling factor which is based on the projected area of the individual
objects and the area covered by the foveal vision – the foveal coverage.

• In scenes containing multiple objects, rescaling the objects to a common foveal coverage
results in quite different scaling factors and dimensions for each object. To create a well-
structured scene, we use a normalized screen-space alignment system.

• As the 3D databases contain primarily static models, continuous object transformations
are used to create an animated scene. This animation enables the user to perceive the
salient features of the object that could be distributed across the whole object geometry.

• For the object obfuscation, we adapted the main principle of Mitra et al.. To enhance
the performance of the importance sampling task, we limit the sampling to the projected
AABB of each object, which allows to process the objects in parallel. For the rendering
of the splats, we use the concept of volumetric splats, which combines the deferred decal
technique proposed by Lengyel [42] and the GPU-based volumetric approach by Engel
[17]. This approach enables us to handle splats on non-trivial geometry and provides an
interactive visualization of the obfuscated scene. In contrast, Mitra et al. uses the texturing
approach proposed by Schmidt et al. [56] to apply 2D circular shaped textures (splats) onto
the object surface.

• Due to the fact that the scenes are animated, we extended the idea of background gener-
ation of Mitra et al. by introducing static and sticky windows. The aim of both window
types is to balance the spatial and temporal characteristics between the background and
the object.

• With the proposed partial blending approach, the visibility of the obfuscated object is
enhanced and the creation of implicit edges between the object and the background is
minimized.

• In some cases, the color and texture information of an object is crucial for the recognition
of the object. To integrate object related color features, a color is used which is based
on the dominant colors of the object texture for the rendering of the scene. With the
local unmasking concept, the texture features are locally blended with the obfuscated
visualization of the object. The additional injection window type replicates these texture
characteristics in the background.
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4.7 Technical Details

In the previous sections, the algorithms of the obfuscation approach were presented, in this
section, the main technical and design challenges are outlined.

4.7.1 Implementation Challenges

One feature of the implementation done for this thesis is the interactive visualization of the
proposed obfuscation method by making use of the capabilities of state-of-the-art graphics hard-
ware. We used the OpenGL 3.3 Core Profile interface for this purpose. Figure 4.17 illustrates the
rendering loop and the most relevant components involved in the processing pipeline. Despite
of the fact that the main part of the computations is implemented in shaders (OpenGL Shading
Language), the importance sampling and the linked window handling is processed on the CPU.

As mentioned in Section 4.2.1, we use the method proposed by Ostromoukhov et al. [51] to
perform importance sampling. Instead of sampling the whole importance map texture, sampling
is limited to the individual areas of the objects. The limitation enables a parallel processing
of the importance-map using the OpenMP framework, improving the performance of this CPU
intensive task. Due to the fact that the actual positions of the sampling points are required for
further processing, the transfer of the importance map to RAM, the sampling, and the final trans-
fer of the positions back to the GPU have to be executed before any subsequent computations
and constitute the main performance bottleneck of the implementation (pipeline stall). The main
principle of the GPU based part of the pipeline is inspired by deferred rendering techniques,
where information like normals, position etc. are stored in textures and used in the subsequent
rendering passes. The rendering of the splats (see Section 4.2.3) breaks this purely GPU-oriented
data-structure, due to the fact that the position of the splats are the result of the importance sam-
pling step. To integrate additional data that is generated on the CPU side into the pipeline,
Texture Buffer Objects (TBO) are used. TBOs are one-dimensional texture-arrays providing a
flexible structure for transferring data to the GPU. Rendering the splats requires rendering of a
dummy geometry (e.g., a cube) for each individual splat. For rendering a given number of ob-
jects with equal geometry, the concept of instancing is used. Each instance has a consistent ID
throughout the pipeline, which provides a reference to the associated data in the TBOs. Hence,
each instance has its own dataframe assigned in the TBO, containing the splat position, size, etc.
in aligned form.

The windows that represent the background obfuscation are specified by selecting a subset
of object sampling points within a rectangular window of arbitrary size. The splats for the back-
ground windows are rendered in the same way as the object splats. By applying an additional
screen-space transformation to the location of the splats, the windows are positioned apart of
the object and in the background. For this purpose, the window splats TBO, which encapsulates
again the position, color, scale etc. of the rendered splats, includes an index that points to an-
other TBO holding the transformation matrices for each window. A special case are splats that
correspond to sticky windows (see Section 4.3), because here the idea is to define a fixed set of
samples whose relative position is the same throughout the lifetime of the associated window.
Therefore, the initial world position is stored for each sample on the CPU side and for consecu-
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tive frames, the transformation between two frames is applied to the set, which yields the effect
of a coherent motion.

At the time of writing, there was no GPU-implementation of the importance sampling
method available and porting the method to the GPU was out of scope of this work. Despite
this drawback, the current implementation provides an interactive visualization of the obfusca-
tion approach averaging at 15 FPS (Intel i5 750 and NVIDIA GeForce GTX 260).

4.7.2 Offline Implementation

With respect to the big picture of the whole CAPTCHA system (see Section 3.1), we decided
to implement the obfuscated rendering engine in an offline system. While WebGL integrates
hardware-accelerated rendering of 3D visualizations directly in the browser environments and a
real-time implementation of the pipeline in the browser seems natural, the negative aspects of
such a solution is the missing native support of common browsers and the fact that WebGL is,
at the time of writing, not part of the W3C standard. Besides these formal issues, the current
implementation involves CPU- and GPU-intensive processing, which makes it impossible to
outsource the rendering part to a heterogeneous client side due to the low performance figures on
mobile devices. Furthermore, a client-side implementation of the rendering requires to transfer
the scene geometry and the texture data to the client, hence, the scene complexity affects the
required amount of data to transfer. Assuming that models could have high-definition textures
and a high polygon count, this can exceed multiple megabytes, which is generally not compatible
with the resources in a web application.

Based on these issues, the decision for an offline rendering system using videos as output
is the most compatible and portable solution for the intended application. For this purpose,
the videos for the challenges are created in advance, as both rendering and encoding cannot
be achieved in real-time. Using the open source FFmpeg library, the obfuscated scenes are
encoded with state-of-the-art video compressions standards, namely the h.264 (MP4) and VP8
(WebM) standards. At the time of writing, all common browsers support at least one of the used
compression methods. In combination with the HTML5 video element, no further plugins are
required to show the CAPTCHA challenges in form of a video.

57





CHAPTER 5
Results

This chapter covers the evaluation of the obfuscated rendering method previously presented.
The first part covers a perceptual user study that we conducted to determine the limits of human
object recognition abilities when using the obfuscation approach presented. In the second part
we evaluate the robustness of our method against a state-of-the-art feature-based optical flow
attack.

5.1 User Study

Since the intended application of the rendering engine described in Chapter 4 is its use as a fun-
damental part of a CAPTCHA system, the evaluation of the perceptual limits of the approach is
mainly user oriented and performed in form of a user study. Automatic approaches for exploit-
ing CAPTCHA systems are usually specialized and focused on one specific CAPTCHA method.
As no automated attacks to estimate the required level of obfuscation was available at the time
of creation, we decided to find the limits on a perceptual level using the aforementioned user
study. In this context, the question arises, which effects of the rendering process directly affect
the object recognition and how these impacts could be measured. Furthermore, we are interested
in the correlation between the obfuscation effects and the degree of difficulty.

Taking into account the aspects previously mentioned, we can formulate the main motivation
of the user study: Due to the nonexistence of definite limits and requirements regarding the
degree of obfuscation, we are searching for the upper bound of the human ability to recognize
objects. Estimation of this upper bound defines the limit before users are no longer able to
reliably identify the objects.

5.1.1 Distracting Parameters

In general, an obfuscation can be achieved in a wide variety of ways due to the high number
of degrees of freedoms of this problem. Our method represents a subset of the possible design
space, which is characterized by a number of technical parameters. In the following user study,
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we are interested in the effect of these technical parameters on the degree of difficulty of the ob-
ject recognition task. Due to the large number of technical parameters (approximately 20), a test
including all of these parameters is infeasible for the following reasons: Testing all parameters
simultaneously with, for example, 10 different values for each parameter would require 1020

test scenarios. It is obvious that these requirements are not compatible with a user-based eval-
uation method. When testing multiple parameters, the effect of potential interactions between
the parameters has to be considered. Limiting the tests to pairwise parameter tests corresponds
to a subset of all possible scenarios, where one parameter is variable and the other is fixed. It
is assumed that pairwise tests enable us to isolate the main characteristics of the parameters.
Despite this limitation, the number of required tests

((
20
2

)
∗ 10 = 1900

)
is still too high, hence

the number of tested parameters has to be reduced dramatically. The main idea is to select two
technical parameters that are as independent from each other as possible and show their rela-
tion to the following two perceptual-related parameters that we identified as the main perceptual
parameters in our context:

• Object Coherence
The idea of the object obfuscation process is to generate a sparse representation of the
object that contains only the important parts of the object. A sparse representation implies
that certain characteristics of the object are removed. In an obfuscated sequence, the
object coherence describes the amount of the visible object area in relation to the area of
the unobfuscated object over the whole sequence. In more detail, the largest connected
area is used to estimate the object coherence. It is assumed that the ability to recognize the
object is effected by the spatial characteristics of the representation. Thus, the recognition
of the object becomes more difficult with a sparser object representation.

To compute the object coherence, the obfuscated object mask Mi (see Section 4.2.3) and
an index map Ii of the unobfuscated representation are required for each frame i of the
sequence. Each frame is processed as follows: The aim of the first processing step is
to create a connection between splats which are located close to each other. An average
filter (10× 10 pixels) is applied to the mask Mi resulting in a blurred image Ni; next, Ni,
which has values in the interval of [0, 1], is converted into a binary image using a threshold
t = 0.3. The resulting image Ni now contains multiple regions (connected pixels with
a value of 1) that correspond to connected splats. From the following segmentation and
labeling ofNi, the boundaryBj of the largest connected area is determined. The boundary
Bj is used to encircle an area in Mi; the splats contained in this area are selected and their
total area Si is computed. The resulting object coherence Oi of frame i is defined as the
ratio Oi = Si

Ai
, where Ai denotes the area of the unobfuscated object based on the index

map Ii. The object coherence O of the whole sequence is defined as the mean value of the
object coherence Oi of all frames.

• Scene Complexity
We introduce the term scene complexity to describe the distracting effect of the back-
ground in relation to the shown object. It is assumed that this distraction increases with
increasing clutter in the background and therefore has a direct effect on the ability to rec-
ognize the object. To determine this effect on a perceptual level, we use the concept of
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salience. For a given obfuscated video sequence, the salience for each individual frame
is computed using the approach proposed by Hou et al. [31]. Additionally, we use an
object index map to accumulate the salience of either the object or the background in the
resulting salience map. These steps are executed on all frames of the sequence and the cor-
responding mean object salience SObj and mean background salience SBg are computed.
The scene complexity C is defined as their ratio C =

SBg

SObj
. Figure 5.1 illustrates the

concept of the salience ratio; with increasing clutter in the background, the salience of the
background increases. In scenes with low scene complexity (Figure 5.1a), the salience is
concentrated in the object area, while in scenes with a large degree of background clutter
(Figure 5.1b), the salience is quite balanced between the object and the background.

(a) low scene complexity (b) high scene complexity

Figure 5.1: Comparison between different values of scene complexity using the mean
salience map of a sequence (higher values correspond to higher salience).

It is assumed that the scene complexity as well as the object coherence have a direct effect
on the ability to recognize objects in a scene. Therefore, two parameters have to be selected,
one affecting only background clutter, whereas the other influences the object representation.
The technical parameters window count (see Section 4.3) and maximal splat size (see Section
4.2.3) are suited for this purpose, as they show not only the desired characteristics but also have
minimal influence on each other. From a perceptual point of view, Figure 5.2 illustrates that the
window count correlates with the scene complexity, while the object coherence correlates with
the splat size. Hence, these two parameters are selected as the two parameters which describe
the amount of user distraction.

5.1.2 1st Experiment – Degree of Difficulty

The aim of the first experiment is to find the limits of the human ability regarding the object
recognition task. As stated in the previous section, window count and splat size show the de-
sired influence on perceptual characteristics of the obfuscation result, which leads to the natural
assumption that they are main factors in describing the difficulty of the recognition task. The
main idea of the first experiment is to use these two distracting parameters as input and to sample
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Figure 5.2: Correlation of the technical parameters and the perceptual quantities for a character-
istic object.

them in a pairwise test for a limited set of parameter values. To measure the impact of a specific
parameter combination on the degree of difficulty, the users’ response time is used. The response
time is specified as the time that a human test subject needs to perform the object recognition
task. Our hypothesis that we want to validate is that the response time directly correlates with
the level of difficulty indicated by these two parameters.

Test Procedure

We use conventional grid sampling to evaluate the degree of difficulty for difference values of
window count and splat size. Each point of the 6×6 sampling grid represents a video containing
one object, located randomly in the left or right half of the video and with the associated values
of window count and splat size (see Appendix A.1 for all settings). The response time of a
test subject performing the object recognition task is measured and a validation of a correct
recognition is achieved by an additional textual annotation from the subject. A model repository
is created that contains 36 different objects that are well known around the world. Potential
effects based on the colors used are considered by the definition of 6 reference colors (red,
green, blue, yellow, gray scale and inverted gray scale). Object- and color-related influences
are minimized by shifting a fixed ordered list of objects through the sampling grid, meaning
that after 36 participants, each model was tested on each sampling point of the grid and each
occurred in every reference color six times. To avoid a gradual adaption to the parameters, the
samples are traversed in random order.

The study is implemented as an online experiment using state-of-the-art web technologies
like HTML5, JavaScript, PHP and MySQL. According to the previously described concept of
the experiment, all videos are prerendered and encoded with h264 (640 × 480, 25 FPS, 5 sec,
CRF 26 and the ’veryslow’ preset) resulting in a repository of 1296 videos. With the limitation
to a single codec, the inter-codec calibration with other well established codecs, like e.g. VP8
(WebM), is avoided. On the other hand, the common cross-browser compatibility problem limits
the compatibility to browsers that support h264 video playback natively.
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From the perspective of participants, the experiment starts by asking for demographic data
(age, gender and visual impairments) and the calibration of the user position according to the
foveal coverage (see Figure B.1a). Determining the resolution of the screen using JavaScript
requires only the specification of the physical screen dimensions to calculate the recommended
distance to the screen (for details see Section 4.1.1). In the test situation, first, the logic waits
until the video is loaded to enable playback without further buffering. Afterwards, the user can
start the video associated with a sample of window count and splat size by pressing a button,
which initiates the timer for measuring the response time at the same time (see Figure B.1b and
B.1c). In this phase the subject is asked to perform the task of recognition as fast as possible.
If the user is able to recognize the object, he stops the video and the time measurement by
pressing the spacebar, otherwise the system switches to the next sample after 30 seconds and the
obfuscated object is marked as not recognized. In case of a recognition, the video is faded out
and the user has to provide a textual description of the recognized object. After submission, a
possible solution is displayed to provide feedback (see Figure B.1d).

Participants have to process all 36 samples of the grid, and an additional training phase of 4
examples is integrated at the beginning of the test. This phase is equal to the test design, except
that the models are not from the test repository and do not vary in any parameter dimension.

Demographic Data

The experiment was conducted as an online experiment and participation was enabled by an
open call. In addition, the crowdsourcing service CrowdFlower [10] was used to involve higher
numbers of participants and to accomplish a certain degree of demographic diversity. According
to the users’ country of origin, the main three contributions came from Austria (59%), the United
States of America (22%) and Germany (8%). Summarizing the visualization of the demographic
data in Figure 5.2, the experiment was examined by 108 participants with a ratio of 65% male
and 35% female users. Considering the age of the participants, the main age groups correspond
to 20-30 (70%) and 30-40 (21%) years. Regarding visual impairments, 45% of the participants
stated to have myopia and another 18% specified to have astigmatism. Note that a participant
can have multiple visual impairments.

female: 34.3%

male: 65.7%

(a) gender distribution

20-30: 70.4%

30-40: 21.3%

40-50: 4.6%

over 60: 0.9%

under 20: 2.8%

(b) age groups
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visual impairments)

Figure 5.2: Visualization of demographic data from the first experiment.

Degree of Difficulty

Each of the 108 participants performed all 36 samples of the grid, resulting in 3888 samples.
Each of the samples was augmented with the following quadruple of information: the sample-
coordinates in the grid, the used model and scene color, the user response time and the object
description and the classification of the response as correct or wrong.

Besides responses that are classified as incorrect based on the object description, timeouts
(no recognition after 30 seconds) are another implicit class of incorrect responses. Consequently,
the total response error is specified by the sum of the timeouts and the number of incorrectly de-
scribed samples. In Figure 5.3b, the amount of incorrect responses is shown – the distribution
of the errors across the grid is depicted and normalized with respect to the maximum possible
occurrences. From analyzing the trend of the total response error in the grid, an approximately
monotonic behavior and the presence of interaction between the selected dimensions is observed.
This implies that with increasing window count and decreasing splat size, the error increases lin-
early. By definition of the total response error, the error shown in Figure 5.3b is the aggregation
of the errors provided by each of the color classes plotted in Figures 5.3c to 5.3h. Here, the lim-
ited set of samples per grid point (18 samples) causes a rather large variance of the distributions
of errors among the samples. However, the overall similarity of the trend is observable in each
color class. Table 5.1 lists the proportions of each color to the total response error, showing that
the error is equally distributed among the color classes. In comparison with other color classes,
the error distribution (see Figure 5.3f) of the yellow color class has a well-formed step slope
along the grid diagonal. At the same time, this slope defines a border where less than the half of
the samples are correct.

The analysis of the error distribution strongly points to the existence of an interaction be-
tween the selected parameters. Furthermore, the error rate can be interpreted as another indicator
for the degree of difficulty at a specific point of the grid. Based on this interpretation, the diffi-
culty increases with increasing window count and decreasing splat size.
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Red Green Blue Yellow Gray Inv. Gray

Error fraction [%] 15.07 17.49 16.57 17.49 16.34 17.03

Table 5.1: The error fractions of each color class on the total response error.

In contrast to the analysis of the error rate, an isolated observation of response timings, ne-
glecting incorrect samples, provides a quite limited way of interpretation. The problem becomes
more evident when taking a closer look at regions in the grid where the degree of difficulty is in-
tended to be high. Here, the number of valid responses decreases to a minimum and thus makes
it difficult to interpret the remaining samples in a meaningful manner. Therefore, to define an
expressive measurement for the degree of difficulty, a metric has to be specified that incorpo-
rates the error rate with response timings. For each point of the sampling grid, we collected a
series of response timings. This series consists of three types of responses: valid response times,
timeouts, and response timings with incorrect object description. To achieve a sorting according
to the response timings, the timings of responses with wrong descriptions are changed to 30
seconds and therefore are now equal with the set of timeouts. Sorting of the resulting series of
responses establishes a specific structure of the sampling data. The first segment corresponds
to valid responses and the following tail set contains samples which are interpreted as incorrect.
Determining the 75th percentile represents the upper bound response time of at least 75% of
the participants, providing at the same time a valid object description. Thus, the defined met-
ric is seen as a measurement for the degree of difficulty, represented by the resulting response
time. Plotting the response timings according to the metric specifies a height field, which can be
interpreted as connected surface by using linear interpolation (see Figures 5.4a and 5.4b).

Motivated by the aim to find an upper bound for the ability of human object recognition in the
context of our obfuscated rendering method, the metric introduced allows identifying significant
changes of the slope and, consequently, a change in the degree of difficulty. Based on the contour
plot in Figure 5.4b, this change can be observed approximately along the grid diagonal, where
the gap between the contour lines decreases, revealing an increasing slope. At the same time, the
increasing slope specifies a well-defined limit where the response time increases dramatically to
30 seconds, outlining those areas in the grid that are unsolvable for 75% of the users. Analyzing
the 6 scene colors (see Figures 5.4c to 5.4h), considering the limited sample size, shows a similar
distribution with no significant variations. Based on these observations, we selected a threshold
(outlined in Figure 5.5) such that the recognition performance is stable while the degree of
difficulty is still acceptable.

With this first experiment, an approach for determining and evaluating the degree of dif-
ficulty was proposed, highlighting the existence and effect of interaction between the tested
parameters. Based on the results, a threshold (highlighted in Figure 5.5) was determined that
corresponds to the limit of the human ability of object recognition using our obfuscation method.
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Figure 5.3: Normalized error occurrences across the sampled grid – (a-b) the total response
error, normalized to all 108 samples; (c-h) errors of each color class, normalized to the max.
possible occurrence of 18 samples;
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Figure 5.4: Visualization of the specified metric based on the 75th percentile of the responses –
(a-b) overall distribution and (c-h) each color class independently.
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5.1.3 2nd Experiment – Usability

In the first experiment, the degree of difficulty was determined by introducing a metric that
involves all available types of responses. As outlined in Figure 5.5, the derived threshold (see
Section 5.1.2 for details) corresponds to a limited area in the grid, consisting of a subset of grid
points. We interpret this threshold as the limit of the human ability of object recognition using
our obfuscation method. From the specifications made in the first experiment follows that sample
points on the threshold area equal in difficulty and model a specific configuration regarding the
window count and splat size. Based on these findings, the aim of the second experiment is to test
and compare those grid points to each other to find the most usable and pleasant configuration
for the user.
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Figure 5.5: Selected points and the resulting threshold area.

Pilot Study Experience

Before testing the complete set of points in the threshold area, we decided to perform a pilot
study to test if the following methodology acts as intended. For this purpose, a reduced subset of
7 sample points from the test area (shown in Figure 5.6a) is used for the comparison. Each point
of the test set is directly compared with all other points of the set, except comparisons with the
point itself and points that are direct neighbors in the grid, resulting in 13 pairwise comparisons.

Analogous to the procedure of the first experiment, the study is performed online using the
same video settings as stated in Section 5.1.2. In contrast to the first experiment, the main idea
of this test is to model the comparison of grid points by presenting the user two videos side by
side. The videos show the same object in the same scene color with different configurations that
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correspond to different points on the grid. The user can directly compare the configurations and
has to select the subjectively more pleasant one by clicking on the video. Participants have to
perform all comparisons twice, resulting in 26 responses per user. Equal to the first experiment,
models and colors are iterated through the sampling grid such that each user sees 26 models at
different positions in the grid. To avoid patterns in the sequence, the comparisons are arranged
randomly as well as the video arrangement within a comparison.

The concept of pairwise comparisons of t objects is modeled by using a t × t adjacency
matrix A, where the test objects are the set of sample points describing different parameter
configurations (illustrated in Figure 5.6b). Elements of the matrix hold the voting counter Aij ,
which is interpreted in the way that configuration i is preferred Aij times to configuration j
[57]. To estimate a ranking of the tested sample points, the total number of votes ai for each
configuration i is calculated by:

ai =
t∑

j=1

Ai,j , i 6= j (5.1)

Figure 5.6c illustrates the ranking of the 156 collected responses, provided by 6 participants in
the sampling grid. The plot reveals an obvious preference to a low window count and splat size.
Despite the clear results of the ranking, the direct user feedback was more important to check if
the procedure evaluates the intended aspects. The conclusion of the feedback is that comparing
the scenes simultaneously leads to a negligence of the object recognition and shifts the focus
to a purely aesthetic comparison of the scene as a whole. From the perceptual point of view,
by definition of the perceptual parameters (scene complexity and object coherence), the used
experiment design focuses on the scene complexity and ignores the effects caused by the object
coherence. Finally, the results and user feedback of this study lead us to the conclusion that the
object recognition task has always to be integrated into the testing procedure even if the aim of
the study are aesthetic and usability aspects.
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Figure 5.6: Pilot experiment – (a) the set of used sampling points, (b) the adjacency matrix
visualizing the votes from pairwise comparisons and (c) ranking of the test samples based on the
total number of votes in the sampling grid.
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Test Procedure

In the following experiment, the user acceptance is tested across the threshold area defined by 13
grid-points (see illustration in Figure 5.5), using pairwise comparisons between the individual
points. Similar to the pilot experiment, the main idea of the experiment is that two configurations
are presented and the user selects respectively votes the configuration which is more pleasant.

Based on the outcomes of the pilot study, the design of the experiment was changed such
that the intended task, the object recognition, is integrated in the comparison process. Inspired
by the procedure of the first experiment, the object recognition is integrated by using two videos
containing different objects with the same scene color for the specification of one comparison.
To validate the user response, the objects have to be textually annotated by the user. In detail, the
videos are shown independently of each other, hence, the user performs two object recognition
tasks and selects afterwards the more pleasant one (forced-choice principle). Reusing the model
repository (36 models) of the first experiment allows sampling 18 comparisons per participant.
In addition, another 2 comparisons are included at the beginning of the experiment as a training
phase, extending the model repository to 40 models.

Each possible combination of configurations results in
(
13
2

)
= 78 comparisons. Due to the

high number of comparisons, the concept of sampling allocation is changed to a progressive
approach, using an adjacency matrix as representation for the sampling. The samples are ran-
domly assigned to participants such that the sampling rate over all samples is equal (samples
are only used once per user). Two additional statistics (histograms) are linked with each entry
of the adjacency matrix, balancing the occurrence of models and colors. Compared to the first
experiment, each user response is stored, except the samples from the training phase.

This experiment is also implemented in form of an online experiment using the same tech-
nologies and video settings as stated in Section 5.1.2. The required set of videos is prerendered
using all possible variations regarding models and colors (3120 videos). From the perspective
of the participants, the experiment starts by inquiring demographic data (age, gender and visual
impairments) and the calibration of the user position according to the foveal coverage (see Fig-
ure B.2a). In contrast to the pilot study, the user has to perform the recognition task for each
configuration independently (see Figures B.2b and B.2c), followed by the pairwise comparison
based on the unobfuscated visualizations (see Figure B.2d). Using the unobfuscated represen-
tations provides a feedback about the solution and simultaneously avoids that the comparison is
focused on the overall scene complexity.

Demographic Data

Like in the first experiment, the crowdsourcing service CrowdFlower [10] was used to enable
a high number of participants. According to the users’ country of origin, the main three con-
tributions came from the United States of America (60%), Austria (20%) and Germany (9%).
As illustrated in Figure 5.7, the experiment was examined by 170 participants with a ratio of
56% male and 43% female users. Considering the age of the participants, the main age groups
correspond to 20-30 (61%) and 30-40 (24%) years. Similar to the first experiment, the main
visual impairments are myopia with 57% and astigmatism with 18%.
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female: 43.8%

male: 56.2%

(a) gender distribution

20-30: 61.2%

30-40: 24.1%

40-50: 8.8%

under 20: 5.9%

(b) age groups
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(c) visual impairments (74 participants are affect; note that one participant can have multiple visual
impairments)

Figure 5.7: Visualization of demographic data from the second experiment.

Ranking of Configurations

The 170 participants of the experiment performed 1653 valid comparisons (2540 total), which
corresponds to an average of 22 samples per comparison. A sample is classified as valid if both
objects are recognized correctly. According to the specification of the experiment, the result of
each comparison is a vote for a specific configuration. The results of the voting are modeled
using a 13 × 13 adjacency matrix A (shown in Figure 5.8), where elements Aij of the matrix
refer to votes for configuration i over j.

Based on the decisions made in the pairwise comparisons between the individual config-
urations, the Bradley-Terry-Luce (BTL) model is used to determine a ranking of the preferred
configurations [11, 53]. The BTL model can be formulated in terms of generalized linear models
using logit as the link function:

logit[pr(i preferred to j] = θi − θj (5.2)

where θi can be estimated by maximum likelihood. As detailed background information about
the BTL model is beyond the scope of this section; the reader is referred to the paper of Pietsch
[53]. A crucial advantage of the BTL model is that it is able to handle incomplete data sets,
thus it is not necessary to have an equal number of samples at each point of the sampled matrix.
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Figure 5.8: Adjacency matrix visualizing the votes for all possible combinations.

The collected data is fitted into a special matrix design where the columns denote the number of
comparisons and the rows to the response of one participant. Entries of the matrix can have three
values, 1 is interpreted as object A is preferred over object B, where the value 2 has the inverse
meaning. If no data is available for one comparison, it is marked with the value NA. From these
specifications and the number of participants, the final matrix has a dimension of 170× 78.

Using this matrix in combination with the BTL model results in the estimated worth pa-
rameters listed in table 5.2 (AIC 885.33). Since the estimates correspond to the ranking of the
individual configurations, the high significance of configuration 11 and 8 is interpreted as the
preferred configuration within the threshold area.

0 1 2 3 4 5 6
0,0901 0,0687 0,0781 0,0518 0,0885 0,0576 0,0905

7 8 9 10 11 12
0,0663 0,1078 0,0762 0,0573 0,0988 0,0682

Table 5.2: Estimated worth of the BTL approach using a generalized linear model; highly sig-
nificant configurations are highlighted.

Furthermore, the significance of the ranking is evaluated using a likelihood ratio test. The
idea behind this test is to determine how likely it is that the same ranking is achieved under the
assumption that the used statistical model is based on a random generator. To be more specific,
the distance between two statistical models, the random and our estimated one, is compared.
For this, the maximum likelihood (L1 and L2) is determined for both models as described by
Pietsch [53], and the ratio λ = L0/L1 is calculated, which is between 0 and 1. The ranking is
less likely to be reproducible by a random generator with decreasing λ. From the ratio λ the
χ2 is determined by χ2 = −2ln(λ), which increases with decreasing λ. Using the Chi Square
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distribution, the assumption is rejected if a certain confidence level is achieved. In our case, the
resulting χ2 = 41.19 corresponds to a p-value of 0.99 with 13 degrees of freedom. Hence, the
assumption that the ranking could be the result of a random model is rejected.
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Figure 5.9: (a) visualization of the estimated worths including std. errors and (b) resulting
ranking colorcoded in the original grid.

When comparing the ranking with the results (compare with Figure 5.6c) of the pilot study,
the monotonic behavior of the preferences changed substantially to a more balanced distribution.
Through integration of the recognition task, the ranking no longer depends on one of the tested
parameters. When the ranking of the tested points is compared to the degree of difficulty (see
Figure 5.9a and 5.5), a slight correlation can be observed.

Ranking of Objects

Based on the gathered data of the pairwise comparisons, a second ranking is performed to iden-
tify possible preferences between the used set of objects. In this context, user votes of the second
experiment are interpreted as a preference in the two presented objects. Consequently, the used
pairwise votes and model repository, containing 40 objects, is represented by a 40×40 adjacency
matrix modeling all 780 possible combinations.

When studying the ranking between the objects, it has to be considered that by construction
of the second experiment, an object recognition task is linked with the comparison. Moreover, it
can be assumed that the difficulty of the recognition task influences the subjects’ voting behavior.
This assumption is supported by the fact that 83% of the participants voted for the correctly
annotated model if the other object was not identified correctly. We define the preference of
object A over B if either object A was selected and both objects were recognized, or A was
recognized and B not.

73



Equivalent to the evaluation of the threshold area, a ranking of the preferred objects is deter-
mined using the BTL model. The result of this ranking is depicted with Figure 5.10. Supported
by the fact that the used obfuscation method reveals mainly low-frequency features, the plot
shows that objects with quite simple geometry containing sharp edges are preferred by the par-
ticipants. However, objects like the snail do not contain enough relevant low-level features and
are therefore less preferred. Analogous to the previous ranking of configurations, the ranking
is tested using log likelihood ratio test, resulting in a Chi Square value of χ2 = 359.40, which
corresponds to a p-value of 1.00 with 40 degrees of freedom. Therefore, the reported ranking
and the associated model is highly significant.
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Figure 5.10: Visualization of the model ranking based on the estimated worth parameters. The
models are sorted in descending order according to their ranking (from left to right).

74



5.2 SIFTflow

In contrast to the user-centered evaluation of the previous Section 5.1, this part aims at testing the
obfuscation approach from a computational perspective. At the same time, this evaluation rep-
resents a possible attack against the proposed method. Due to the focus on animated sequences,
we are interested in information which is generated between frames, especially in motion-related
features. Liu et al. [43] proposed with SIFTflow a method that is based on the optical flow of
image pairs. It uses the well-known SIFT features [45] for resolving feature correspondences
between frames instead of the pixel-based matching as used in traditional optical flow. A 128-
dimensional SIFT descriptor is determined for each pixel in the frame resulting in SIFT images.
Matching is done by using a coarse-to-fine principle, where at the top-level, a coarse matching
between SIFT descriptors is estimated. The coarse-to-fine hierarchy is processed by using the
information of the coarse matching to successively derive a finer and more detailed matching
between the SIFT images. From the correspondence of SIFT features, a 2D flow-vector can
be determined representing the motion of a specific feature from one frame to another. In our
context, this motion information could be utilized to identify the position of the object and its
motion characteristics (e.g. direction of rotation).

5.2.1 Test Procedure

The underlying idea of this test is to compute the flow vectors for a given obfuscated sequence
and check the resulting flow maps against a ground-truth. The ground truth is generated by eval-
uating the flow in the unobfuscated version. The following three different degrees of obfuscation
are tested in the test scenario:

1. object obfuscation without any kind of background processing

2. object and background obfuscation without the usage of experimental features (see Sec-
tion 4.5)

3. full set of features including experimental options

Test sequences consists of 125 frames and are generated using the resulting preferred configura-
tion of the user study (configuration 8 – window count: 40, splat-size: 0.081 – see Section 5.1.3)
and a model repository of 6 representative models derived from the object ranking (see Section
5.1.3), randomly paired to scenes.

Flowmaps are computed between successive frames using the SIFTflow approach [43] and
compared with the ground truth data provided by the unobfuscated sequence. Figure 5.12 de-
lineates examples of the obtained flowmaps from the obfuscated and unobfuscated scene using
the color encoding illustrated in Figure 5.11. The similarity between flowmaps is specified by
the element-wise comparison of the flow vectors based on differences in angle and magnitude,
resulting in a map of difference vectors. For evaluation, multiple degrees of allowed devia-
tions (0%, 10% and 20%) were defined; in detail, the allowed degree of difference in the vector
magnitude, to get classified as sufficient similar, is normalized to the minimal and maximal de-
viations of the whole difference-vector map. In contrast, an allowed angular difference of 20%
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(a) (b)

Figure 5.11: Flow visualization – (a) color encoding of corresponding flowvectors (b). (images
from [43])

corresponds to a maximal variation in orientation to the reference flow of ±36◦. At this point, it
has to be stated that SIFTflow shows an indeterministic behavior for blank white backgrounds.
Therefore, a regular grid of dots is integrated in all frames of the test samples and the ground
truth data.

(a) (b)

Figure 5.12: Example for flow maps of (a) an unobfuscated scene and (b) an obfuscated scene,
along with the respective ground truth.

5.2.2 Results

The procedure previously described implies that processing the sequences produces a set of
flow maps, where each vector of the map is consequently classified as correct or incorrect flow
depending on the degree of difference allowed. To further describe and compare the results
of the classification, the metric used corresponds to the ratio of the sufficiently similar flow
vectors to the whole scene – the scene flow. In addition, the object flow is specified as the
correct flow within the object boundaries. Both measures are calculated by the average over
all objects. Regions where no flow is detected in the test sequence and the ground truth are
explicitly considered as correct flow.

Figure 5.13 describes the resulting rates of matching flow when processing sequences con-
taining only the obfuscated objects. The sequences are evaluated for all defined degrees of
deviations (0%, 10% and 20%) as a function of the frames. As the mean values in Table 5.3
reveal, the overall detected scene flow matches to approximately 92% with the ground truth data
and is nearly independent from the rate of deviation. The high agreement with the ground truth
is reasoned due to the unbalanced ratio between the areas of the objects and the background.
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Obj. Flow (Scene Flow) [%]
Configuration 20% 10% 0%

Obj. obfuscation 39.9(93.6) 22.4(91.7) 9.8(89.9)

Std. obfuscation 34.9(31.9) 18.7(30.0) 5.3(28.4)

Std. obfuscation & exp. features 37.7(34.2) 20.5(32.2) 6.3(30.5)

Table 5.3: Mean results of object and scene flow for all test-configurations and for all three
degrees of deviation.

Taking the object flow into account highlights that up to 40% of the object motion could be
detected. Contrary to the scene flow, the object flow has an approximately linear characteristic
depending on the matching accuracy.

When introducing background-processing, the mean scene flow decreases from approxi-
mately 92% to 30% and therefore shows a significant impact on the scene flow (see Figure
5.14). The concept of copying parts of the object into the background, which involves the object
motion (see sticky windows in Section 4.3), functions as attractor for SIFTflow. Additional fluc-
tuations of the scene flow are the consequence of the dynamic spatio and temporal definition of
the background (see Section 4.3 for the definition of the lifetime parameter). Since windows in
the background are allowed to overlay untextured object-areas, the mean object flow slightly de-
creases compared to the first configuration (see Table 5.3). Despite the introduction and effects
of the dynamic background, the ratios between the degrees of differences remain approximately
the same.
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Figure 5.13: Test result using object obfuscation without background processing.

The previous configuration is the most conservative variant of the background generation.
Using the partial blending and local unmasking features produces, at first view, quite similar
results as without these features (see Figure 5.15). The change becomes more evident when
taking a closer look at the object flow. Compared to Figure 5.14, the main characteristic of
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Figure 5.14: Test result using object obfuscation and background processing, excluding experi-
mental features.

the object flow changed, containing less outliers and showing a high-frequency behavior. By
construction of the local unmasking feature, additional splats are generated and dynamically
increased to reveal more of the surface information but in a sparse manner. The smoother trend
over all frames indicates that the continuous motion of the unmasked area on the object surface
favors the tracking of the underlying surface features by SIFTflow.

The presented experiments showed that background processing reduces the correctly de-
tected scene flow to one third, so background processing is an effective attractor for motion
detection algorithms.
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Figure 5.15: Test result using object obfuscation and background processing, including experi-
mental features.
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CHAPTER 6
Conclusion and Future Work

In this work, we presented an algorithm for the generation of an animated and obfuscated visu-
alization of 3D scenes containing static 3D models. Inspired by the general-purpose idea behind
the reCAPTCHA approach and the problem of barely annotated 3D model repositories, we in-
tegrated the human computation task of annotation into the context of a CAPTCHA challenge.

Taking a closer look at the main problem revealed that an obfuscation can be achieved in
a variety of ways. Due to the fact that the 3D databases contain primarily static models, we
use continuous object transformations to create an animated scene. This animation enables
the user to perceive the salient features relevant for the recognition of the object that could
be distributed across the whole object geometry. However, new problems regarding spatial and
temporal aspects in the obfuscation process arise when using animated sequences; issues that are
directly addressed by our method. With the introduction of new components for the generation
of background clutter, the object is camouflaged by a background with similar temporal and
spatial coherence characteristics. The main idea of the obfuscation method is to reduce the
representation of the objects to their low-frequency geometry features. To enable a more detailed
and specific annotation of the models, additional surface features are revealed using the novel
local unmasking approach. Evaluating the method with SIFTflow, a state of the art optical
flow algorithm, has shown that the proposed background processing acts as attractor for motion
features and that a background obfuscation is required, otherwise main parts of the object motion
are trackable.

The second focus of this work was to determine the performance and limitation of human
object recognition capabilities in our context. By selecting two technical parameters as repre-
sentatives for abstracted perceptually related dimensions, the performance was evaluated first
in an online user study by using a grid sampling method. The results point to an interaction
between the selected dimensions and that these parameters affect the object recognition ability.
The introduction of a new metric enabled us to interpret the gathered results in terms of degrees
of difficulty. In addition, a well-defined threshold area was determined, corresponding to the
limits of human object recognition in this context. Due to the fact that the required degree of
obfuscation can not be determined, this perceptual limit defines the upper bound for the degree
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of obfuscation. In a subsequent experiment, the determined threshold area was tested for its user
acceptance. We presented a test procedure to create a ranking between the individual configu-
rations by performing pairwise comparisons, while focusing on the integration of the intended
recognition task at the same time. As part of the second experiment, the collected data was used
to derive a ranking of preferred objects. The resulting ranking has shown that objects with quite
simple geometry containing hard and dominant edges are preferred by users.

Besides these technical facts, from the direct user feedback, we observed a competitive com-
ponent in the course of the first experiment. Users tried to compare their individual recognition
performance with each other (e.g. number of correct samples and recognition timings). Hence,
the used experiment methodology has the potential to be integrated into a gaming scenario.

Future Work

In this work, we presented our obfuscated rendering method as part of a CAPTCHA system.
The algorithm requires two models as input and generates an obfuscated representation of the
scene in form of a video. To complete the big picture of the CAPTCHA framework, further
investigations has to be done on how to handle the annotation process. An important part of the
annotation process is the verification of the user input, which involves quite new problems when
comparing the annotations on a semantic level.

With respect to a practical use of the rendering algorithm, further improvements regarding
the reduction of the overall noise characteristics of the obfuscation method have to be imple-
mented to enhance the acceptance by the users. The experimental features (color and texture of
the object) raised additional open issues which have to be studied with respect of their security
and perceptual aspects. Due to these unresolved issues, a specialized user study has to be created
to understand their effects. Another problem to solve is that the approach shows a strong object
dependency, therefore not all objects have the same degree of difficulty. A potential improve-
ment of the method could be the change of the importance sampling to a preprocessing step,
where the object is completely sampled and the resulting set is filtered and optimized for the
rendering. The sampling optimization might consider relevant features of the surface texture to
enable a targeted unmasking.

When evaluating the security of our method, we noticed that there is a lack of a standardized
testing method and tools, making it impossible to estimate the realistic degree of security com-
pared to other methods. However, in this context it can be stated that, based on the fundamental
principle of this work, a successful automated recognition of the obfuscated objects implies at
the same time an advance in recognition technologies.
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APPENDIX A
User Study – Test Parameters

Obfuscation
window splat count [20 140]
window lifetime [0.25 0.8]
window size [0.35 0.65]
window color hue jitter [0.0 0.0]
window color value jitter [0.0 0.20]
window color saturation jitter [0.0 0.0]
window use random splat selection true
use additional background noise false
window parameter jitter interval [0.1 0.2]
use object unmasking false
object alpha [1.0 1.0]
object parameter jitter interval [0.5 1.5]
object fast parameter jitter interval [0.08 0.12]
light position [0.0 -25.0 30.0]

Object Properties
self rotation speed 216.0
self rotation axis [0.0 0.3 -0.025]
splat dense factor 450

Camera
foveal overview 0.225
eye position [0.0 0.0 -1.4]
yaw 0
pitch -0.1
fov 80

Video
duration 5
width 640
height 480
fps 25
outputcontainer mp4
h264 rc crf
h264 crf 26
h264 preset veryslow

Table A.1: Test parameters of the user study.
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APPENDIX B
User Study – User Interface

(a) (b)

(c) (d)

Figure B.1: User interface of the first experiment – (a) introduction and explanation, (b) loaded
sample, (c) test sample and (d) response validation using object annotation.
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(a) (b)

(c) (d)

Figure B.2: User interface of the second experiment – (a) introduction and explanation, (b-c)
independent recognition tasks and (d) preference selection using the unobfuscated representation
of the scenes.
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