
On the Limits of Expressiveness in
Abstract Argumentation Semantics:

Realizability and Signatures

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Computational Intelligence

eingereicht von

Thomas Linsbichler
Matrikelnummer 0726008

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Privatdoz. Dipl.-Ing. Dr.techn. Stefan Woltran
Mitwirkung: Dipl.-Ing. Dipl.-Ing. Dr.techn. Wolfgang Dvořák

Wien, 05.05.2013
(Unterschrift Verfasser) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

On the Limits of Expressiveness in
Abstract Argumentation Semantics:

Realizability and Signatures

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Computational Intelligence

by

Thomas Linsbichler
Registration Number 0726008

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Privatdoz. Dipl.-Ing. Dr.techn. Stefan Woltran
Assistance: Dipl.-Ing. Dipl.-Ing. Dr.techn. Wolfgang Dvořák

Vienna, 05.05.2013
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Thomas Linsbichler
Untere Hauptstraße 14, 3192 Hohenberg

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -
einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i

Acknowledgements

A whole lot of people have contributed to bringing me into the situation of being about to accom-
plish my studies and finally writing this Master’s thesis by their knowledge, friendship, music,
support, motivation and wisdom. I want to thank all of them and name a few of them.

First of all I would like to thank my advisors Stefan Woltran and Wolfgang Dvořák for
introducing me to the topic of abstract argumentation and for the considerable amount of time
they spent on discussions and proof-reading.

I would like to thank my parents, Andrea and Ferdinand Linsbichler, for being there and
making my studies possible, my girlfriend Katrin Gaupmann for her love and support, and my
brother Alexander Linsbichler for proof-reading and giving me valuable advices on formal is-
sues.

iii

Abstract

In recent years the research field of argumentation has become a major topic in the study of
Artificial Intelligence. In particular the formal approach of abstract argumentation introduced
by Dung [33] has aroused much interest of research. A so-called abstract argumentation frame-
work is a directed graph where nodes represent arguments and arrows represent conflicts be-
tween arguments, i.e. counter-arguments “attack” arguments by arrows. The question of which
arguments can be accepted out of an argumentation framework is answered by argumentation
semantics, where the outcome of applying a semantics to an argumentation framework is a set
of extensions.

Surprisingly, a systematic comparison of their capability in terms of multiple extensions,
and thus their expressive power in modelling multiple viewpoints with a single argumentation
framework has been neglected so far. Understanding which extensions can, in principle, go
together when a framework is evaluated with respect to a semantics of interest not only clarifies
the “strength” of that semantics but also is a crucial issue in several applications.

The aim of the master’s thesis is to study the expressiveness of the naive, stage, stable,
preferred, semi-stable, and complete semantics, by characterizing their signatures. The signature
of a semantics is defined as the set of all possible sets of extensions one can obtain from the
semantics, given an arbitrary argumentation framework.

For each semantics we give necessary conditions for an extension-set to be in the signature,
i.e. properties which are fulfilled by the outcomes of the semantics for each framework, as well as
(corresponding) sufficient conditions for an extension-set to be in the signature, which make the
extension-set realizable under the semantics. The thesis provides constructions of argumentation
frameworks realizing extension-sets under the various semantics.

The characterizations of the signatures of the semantics give rise to a systematic comparison
of their expressiveness. We show that, with one exception, all semantics we deal with possess
different levels of expressiveness.

Finally the thesis investigates strict realizability, i.e. realizing an extension-set by a frame-
work by not using additional arguments. Here we provide properties as stated above as well
as impossibility results, showing that extension-sets cannot be strictly realized under certain
conditions.

v

Kurzfassung

In den letzten Jahren hat sich das Forschungsfeld der Formalen Argumentation als eine Haupt-
strömung im Bereich der Künstlichen Intelligenz etabliert. Allen voran löste Dungs Ansatz der
Abstract Argumentation [33] großes Forschungsinteresse aus. Ein sogenanntes Abstract Argu-
mentation Framework (AF) ist ein gerichteter Graph, dessen Knoten Argumente und dessen
gerichtete Kanten Konflikte zwischen diesen Argumenten repräsentieren. Wird ein Argument
als Gegenargument zu einem anderen Argument angesehen, so wird dies durch eine gerichtete
Kante vom ersten zum zweiten Argument dargestellt. Die Frage, welche Argumente eines AFs
gemeinsam akzeptiert werden können, wird durch Semantiken beantwortet, wobei das Ergebnis
der Anwendung einer Semantik auf ein AF als eine Menge von Extensionen bezeichnet wird.

Überraschenderweise wurde bisher ein systematischer Vergleich der Ausdruckskraft ver-
schiedener Semantiken, und folglich deren Fähigkeit, verschiedene Standpunkte eines einzelnen
AFs darzustellen, vernachlässigt. Das Wissen über die Tatsache, welche Extensionen gemein-
sam das Ergebnis der Anwendung einer Semantik auf ein AF darstellen können, gibt nicht nur
Aufschlüsse über die Ausdrucksstärke einer Semantik. Vielmehr ist es auch von großem Vorteil
für eine Fülle von Anwendungen.

Das Ziel dieser Diplomarbeit ist die Untersuchung der Ausdrucksstärke der naive, stage, sta-
ble, preferred, semi-stable und complete Semantik. Dies wird durch die Charakterisierung der
Signaturen dieser Semantiken bewerkstelligt. Die Signatur einer Semantik ist durch die Men-
ge aller möglicher Mengen an Extensionen, die durch die Anwendung der Semantik auf ein
beliebiges AF erlangt werden können, definiert.

Die Arbeit definiert für jede Semantik notwendige Bedingungen für eine Menge an Exten-
sionen, um Teil der Signatur zu sein, also Eigenschaften, die von jedem Ergebnis der Semantik
erfüllt sind, sowie (entsprechende) hinreichende Bedingungen einer Menge an Extensionen, um
Teil der Signatur zu sein, also Eigenschaften, welche die Realisierbarkeit der Menge an Exten-
sionen durch die Semantik bezeugen. Weiters beinhaltet die Diplomarbeit Konstruktionen von
AFs, welche die gegebene Menge an Extensionen durch die jeweilige Semantik realisieren.

Die Charakterisierung der Signaturen der Semantiken ermöglicht einen systematischen Ver-
gleich derer Ausdruckskraft. Die Ergebnisse dieser Arbeit zeigen, dass, mit einer einzigen Aus-
nahme, alle behandelten Semantiken verschiedene Grade an Ausdrucksstärke aufweisen.

Schließlich untersucht die Arbeit Strikte Realisierbarkeit, d.h. Realisierbarkeit von Exten-
sionsmengen durch AFs, welche keine zusätzlichen Argumente verwenden. Dazu enthält die
Arbeit ähnliche Bedingungen wie oben bereits beschrieben, sowie Resultate, welche die Un-
möglichkeit der strikten Realisierbarkeit bestimmter Extensionsmengen bezeugen.

vii

Contents

1 Introduction 1
1.1 Argumentation and Artificial Intelligence . 1

The Argumentation Process . 2
Abstract Argumentation . 3

1.2 Limits of Expressiveness in Abstract Argumentation Semantics 3
1.3 Related Work . 6
1.4 Main Contributions . 6
1.5 Organization of the Thesis . 7

2 Preliminaries 9
2.1 Abstract Argumentation Frameworks . 9
2.2 Argumentation Semantics . 12
2.3 Propositional Logic . 21

3 Properties 25
3.1 Properties of Extension-Sets . 25
3.2 Properties of Argumentation Semantics . 32

Properties of cf -based Semantics . 32
Properties of adm-based Semantics . 35

4 Realizability 39
4.1 General Realizability . 39

Realizability of cf -based Semantics . 40
Realizability of adm-based Semantics . 44

4.2 Strict Realizability . 57

5 Signatures 63
5.1 Signatures of Argumentation Semantics . 63
5.2 Comparing the Levels of Disagreement . 65
5.3 Relations by Intertranslatability . 70
5.4 Discussion . 71

6 Conclusion 75
6.1 Summary . 75

ix

6.2 Implications . 76
6.3 Future Work . 77

Bibliography 79

x

CHAPTER 1
Introduction

1.1 Argumentation and Artificial Intelligence

The theory of argumentation comes within the oldest disciplines of philosophy by dating back to
ancient Greek philosophers and rhetoricians, such as Aristotle. It is concerned with identifying
the requirements that make an argument correct. As an interdisciplinary research area, argumen-
tation gives answers to “how assertions are proposed, discussed and resolved in the context of
issues upon which several diverging opinions may be held” [12]. It studies mechanisms to dis-
tinguish “legitimate” arguments having reasonable support from “flawed” arguments. Generally
speaking, it addresses how conclusions can be made by logical reasoning.

This gives rise to the use of formal logic and mathematical proof which already suggests the
connection of argumentation theory and the theory of computation. Actually, argumentation has
become a major topic in Artificial Intelligence (AI). A very popular and heavily studied formal-
ism is abstract argumentation as introduced by Dung in [33]. Argumentation has a big variety of
applications such as legal reasoning [53], dialogue games [47], decision support systems [1] or
multi-agent systems [58]. Also some notable systems incorporating argumentation theory such
as the Parmenides system [2, 27], the argumentation toolbox of the IMPACT project1 and the
ASPIC+ framework [51, 54] have emerged.

Being a vital research topic, argumentation can be found as a keyword at all major AI con-
ferences. The biennial conference “Computational Models of Argument (COMMA)”2 is solely
dedicated to argumentation, just as several workshops and the journal “Argument and Compu-
tation”3. The text books [55] and [14] give an overview of the studies on argumentation theory
and [12] summarizes recent work on argumentation in AI.

1http://www.policy-impact.eu/
2http://www.comma-conf.org/
3http://www.tandfonline.com/toc/tarc20/current

1

http://www.policy-impact.eu/
http://www.comma-conf.org/
http://www.tandfonline.com/toc/tarc20/current

The Argumentation Process

Put simply, argumentation consists of extracting arguments out of some knowledge base or di-
alogue, identifying conflicts between those arguments and finally finding a set of acceptable
arguments which is reasonably consistent based on the identified conflicts. This can be placed
in the context of a single agent arguing about decisions based on his knowledge or in the field
of multi-agent domains where the problem of diverging opinions has to be resolved. A famous
example of the latter case is the Liar Paradox:

Three persons A, B and C make the following statements:

• A: “I am a liar”.

• B: “Person A is a liar”.

• C: “Person B is a liar”.

The question that emerges is, which of the persons says the truth.

Having three single statements as knowledge base it is easy to see that the statements coincide
with the arguments. Let us denote the statements of persons A, B and C as arguments a, b and
c. Also the conflicts are immediate. While argument a stands in conflict with itself, argument b
defeats a and c defeats b. Reasoning about the validity of the given statements, i.e. finding the
set of acceptable arguments, is a non-trivial task. One could argue that accepting argument b is
reasonable as well as accepting argument c, since both do not stand in conflict for themselves.
On the other hand one could deny the acceptance of b as it is defeated by c without having a
counter-argument. We will come back to this issue in Section 2.2.

The following, more extensive description of the argumentation process is inspired by [23] and
taken out of [36]:

1. Start with or build the knowledge base

2. Extract arguments out of the knowledge base

3. Identify conflicts between arguments

4. Abstract from the internal structure of the arguments

5. Resolve conflicts between arguments and select acceptable subsets of arguments

6. Draw conclusions

For none of the steps there is a uniform way to accomplish the task. The knowledge base can
consist of a set of logical formulas or just a collection of informal opinions. When extract-
ing arguments out of the knowledge base (Step 2) there can be dispute on how to choose the
granularity of arguments. Also for the identification of conflicts (Step 3), numerous different
approaches can be applied. Recent work on the instantiation of argumentation systems tackles
these issues [23, 54]. However, the main contributions of this thesis are in the field of Dung’s

2

abstract argumentation frameworks [33], which form an abstraction obtained from Step 4 and
are a playground for various reasonable ways of detecting acceptable sets of arguments (Step
5); a process, which is described by argumentation semantics. The outcome of argumentation
semantics is then used to draw conclusion (Step 6) by considering the actual contents of the
accepted arguments.

Abstract Argumentation

Abstract argumentation frameworks (AFs for short), as introduced in Dung’s seminal paper [33],
conceal the concrete contents of arguments and only consider the relation between them. In fact,
AFs are just directed graphs, where nodes represent the arguments and edges represent conflicts
between the arguments. The popularity of these frameworks is based on their ability to pre-
serve simplicity and powerfulness at the same time. Argumentation semantics describe formal
methods to identify sets of acceptable arguments out of a given AF, where one such set of ac-
ceptable arguments is called an extension. The last 15 years have seen an enormous effort to
design, compare, and implement different semantics for Dung’s abstract argumentation frame-
works. While several semantics are already defined in [33], many others have been proposed by
various authors in the following years [4, 8, 21, 34, 60]. The interested reader finds an overview
in [3].

The fact that all steps in the argumentation process are, in general, intractable gives rise to
complexity analysis. For argumentation semantics this has been well studied. For an overview
on complexity results on argumentation semantics we refer to [35, 36].

Several implementations have been proposed in order to compute the outcomes of argu-
mentation semantics. These implementations can be grouped into two categories, the ones fol-
lowing a reduction approach and the ones following a direct approach. The idea of the reduc-
tion approach is to exploit existing efficient software, originally developed for other purposes.
Herein come, upon others, the SAT-based approach [13], the QBF-based approach [41], and the
ASP-based approach [40, 59]. The labelling approach [32, 50] and dynamic programming ap-
proaches [37] come within the big variety of direct approaches, where algorithms are developed
from scratch.

1.2 Limits of Expressiveness in Abstract Argumentation Semantics

As already mentioned, argumentation semantics are a topic of heavy research. Surprisingly, a
systematic comparison of their capability in terms of multiple extensions, and thus their power
in modelling multiple viewpoints with a single AF has been neglected so far. Understanding
which extensions can, in principle, go together when a framework is evaluated with respect to a
semantics of interest not only clarifies the “strength” of that semantics but also is a crucial issue
in several applications.

In this work, we close this gap by studying the signatures of several important semantics4

namely naive, preferred, complete, semi-stable, stage, and stable semantics [24, 33, 60]. By the

4 We will also study the signatures of conflict-free and admissible sets, which are no semantics in the narrow
sense.

3

term signature for a semantics σ we understand the set

Σσ = {σ(F) | F is an AF},

where σ(F) is the set of extensions we get by applying the semantics σ to the AF F . The sig-
nature of a semantics is the collection of extension-sets which can be obtained by the semantics.
Knowing whether a set of extensions S is contained in Σσ provides information on whether one
can find an AF where the application of the semantics σ has S as its result. We will provide
constructions for AFs where this is the case.

Characterizing the signatures and by that finding simple criteria to decide whether a set of
extensions S is contained in Σσ for different semantics σ is essential in many aspects. In what
follows, we highlight a few of them.

Expressiveness of Semantics Baroni et. al. have done an extensive comparison of semantics
by means of different properties (see [5–7]). So far these properties mostly focused on the
aspects of a single extension S ∈ S rather than on a set S thereof. An obvious exception
is incomparability5 (the sets in S are not proper subsets of each other). However, as we will
see, all of the standard semantics put additional (yet different) requirements on S in order to
be contained in the signature. The signatures also tell us about how much disagreement in the
shape of [16] can be obtained from certain semantics.

By characterizing the signatures, we will get a picture of the expressiveness of various se-
mantics, i.e. the levels of “disagreement” semantics can express. The comparison of signatures
of semantics also gives information whether two semantics can express the same extension-sets
or one semantics is more expressive then the other. Such a comparison has been done by recent
studies of intertranslatability issues [38,39], where signatures of semantics are put in relation to
each other6. More precisely, if there is a translation such that extensions in terms of semantics
σ of the transformed AF coincide with the extensions in terms of a different semantics θ of the
original AF, then θ is at least as expressive as σ, that is Σσ ⊆ Σθ in our terms. These results,
however, do not tell us anything about the actual contents of Σσ and Σθ. The results in this thesis
will give a full characterization of the contents of Σσ where σ stands for the naive, preferred,
complete, semi-stable, stage, and stable semantics.

Similar work has been done in other nonmonotonic formalisms. Studying the expressiveness
of KR formalisms is crucial in case not all possible sets of intended models have a syntactical
counterpart. In terms of classical logic, it is obvious that, for any given set I of interpretations,
there exists a propositional formula having I as its models. When it comes to fragments of
logic, the situation changes. We refer to [62] for a more recent study of this topic, also in
terms of how formulas can be constructed from a given set I of interpretations. As we will
point out in the next paragraph, knowing the expressiveness of the language under consideration
is important in the area of belief change. In this area recent work has focussed on revision
in fragments of logic and it is unsurprising that restricting expressiveness has to be taken into
consideration [30,31]. Finally, characterizations of possible outcomes have also been studied in
the area of logic programming under the answer-set semantics, see e.g. [42].

5 Incomparability is called I-maximality by Baroni et. al.
6 The term signature is not used in these papers yet.

4

Model-based Revision The results of this thesis are also important for constructing AFs. In-
deed, knowing whether a set S is contained in Σσ is a necessary condition which should be
checked before actually looking for an AF F which realizes S under σ, meaning that apply-
ing σ to F yields S, i.e. σ(F) = S. This is of high importance when dynamic aspects of
argumentation are considered, as, for instance, done in [15, 44]. As an example, suppose a
framework F possesses a set S as its σ-extensions and one asks for an adaptation of the frame-
work F such that its σ-extensions are given by S ∪ {E}, i.e. one extension shall be added.
Before starting to think on how the adapted framework could look like it is obviously crucial
to know whether an appropriate framework exists at all, i.e. whether (S ∪ {E}) ∈ Σσ. As
an example consider the preferred semantics, which will be formally introduced in Section 2.2.
For the moment, the thing that is important to know is that extensions of preferred semantics
are always incomparable and admissible. There exists some framework F which has the set
S = {{a, b}, {a, c}} as its preferred extensions. As preferred extensions are incomparable, ob-
viously an adaption of the framework, such that the preferred extensions of the new framework
are S ′ = {{a}, {a, b}, {a, c}}, is not possible. However, we will see later that there is also no
adapted framework F ′ having S ′′ = {{a, b}, {a, c}, {b, c}} as its preferred extensions, although
the elements of S ′′ are incomparable. We will see that there are other cases where model-based
belief revision is not possible due to other necessary properties of extension-sets.

Instantiation-based Argumentation We also stress the connections between the central topic
of this paper and work on instantiation-based argumentation [23]. In such studies the concept
of rationality postulates plays an important role as does the underlying principle of evaluating
argumentation semantics in generic terms. In other words, attention is focussed on properties
in common (for example conflict-freeness, reinstatement) rather than on aspects that highlight
distinctions (e.g. in stable extensions the potential for the set of extensions to be empty). In this
thesis our concern is, also, with characteristics shared by classes of extension-based semantics
with respect to the question of realizability. Our results will show that the rationality postulates
cannot be met by the naive semantics under any instantiation.

Pruning of Search-space There are numerous implementations for computing the extensions
of argumentation semantics [13,32,37,40,41,50,59]. In general, each of these implementations
builds up some search-space, from which it detects the desired extensions in an algorithmic way.
The most naive implementation would, given an AF F with the sets of arguments A, iterate
through all extension-candidates S ⊆ A and test whether S is a valid extension for a given
semantics σ. The search-space of this procedure is then the set of all extension-candidates,
i.e. {S | S ⊆ A}. Being aware of certain properties all extension-sets of a given semantics
fulfill, gives the possibility of pruning the search-space. We show this on another example with
preferred extensions, keeping in mind that the preferred extensions of any AF are incomparable.

Consider an AF F having the set A as arguments and a procedure P , which determines all
preferred extensions of F . Now assume P has detected {a, b, c} ⊆ A as a preferred extension.
By incomparability of preferred extension the search-space of P can be pruned in a way that all
A− and A+ with A− ⊂ {a, b, c} ⊂ A+ are removed from the set of extension-candidates. With

5

the knowledge of other necessary properties of extension-sets under certain semantics, more
involved pruning of search-space is possible.

1.3 Related Work

Many references to related work have already been given in Section 1.2. Here, we highlight the
research closest to the results of this thesis.

Comparison of semantics A systematic comparison of argumentation semantics can be found
in [5–7]. The authors introduce properties such as I-maximality, (strong) admissibility, (weak)
reinstatement, cf-reinstatement and directionality and show whether the common semantics ful-
fill these properties or not. However, except I-maximality, these properties refer to single exten-
sions instead of multiple extensions. Their work contributes to the direction of research, which
aims at developing the “right” semantics. The outcome of this direction of research has been
called a “plethora of argumentation semantics” by G. Simari7.

Intertranslatability The work which is closest to our investigations are recent studies on in-
tertranslatability issues [38,39,57]. The authors describe translations between the most common
argumentation semantics, where, given an AF F , a translation from semantics σ to semantics
θ builds another AF F ′ such that σ(F) and θ(F ′) stand in a certain relation to each other. If
σ(F) = θ(F ′) holds for every given F , the authors talk about exact translations. Such an exact
translation from σ to θ puts the signatures Σσ and Σθ into relation in a way that θ is at least as
expressive as σ. While [39] focusses on computationally efficient translations and gives results
which show the impossibility of such efficient translations between certain semantics, [38] tries
to give a full picture of intertranslatability by not restricting the translations.

Enforcement Another work which is related to the topic of realizability and signatures is re-
cent research on enforcement in abstract argumentation [9,10]. The authors give both possibility
and impossibility results related to the problem of enforcing a desired set of arguments. This
comes, to some extent, close to investigating sufficient conditions in order to provide realizabil-
ity of extension-sets.

1.4 Main Contributions

For the results in this thesis, the semantics of our interest are the naive, preferred, complete,
stable, semi-stable and stage semantics as well as conflict-free and admissible sets. The ultimate
goal is to characterize the signatures for each of these semantics, i.e. which sets of extensions
have an AF as their syntactical counterpart under a certain semantics. More specifically, the
main contributions of this thesis are:

7During the presentation of [48] at COMMA 2006.

6

• We categorize extension-sets by defining certain properties and show for each semantics of
our interest, which properties are fulfilled by each set of extensions obtained by applying
the semantics to any AF.

• We introduce and study realizability: the issue of whether it is possible to find, given a set
of extensions S and a semantics σ, an AF having exactly S as its σ-extensions.

• For each of the semantics we describe how to build an AF upon a realizable set of ex-
tensions. We define constructions of canonical frameworks (for each semantics σ), which
realize given extension-sets under σ. In order to formalize these constructions we make
use of propositional logic to describe certain dependencies between arguments.

• We also touch upon optimization issues and strengthen the concept of realizability in such
a way that we want to find an AF F which is solely built from arguments occurring in S
and delivers σ(F) = S (hence, no additional arguments to express S are required). We
show that for naive semantics each S ∈ Σnaive can be strictly realized, while this is not the
case for the other semantics.

• We identify characteristics of signatures in the main extension-based approaches. Ver-
ifying whether a set of extensions is in the signature tells us about whether this set of
extensions is realizable. Further we relate the signatures of the different semantics to each
other, and therefore obtain theorems concerning the expressiveness of semantics.

Methodology Being located in the field of theoretical computer science the main methodolog-
ical approach of the thesis is to use formal methods to prove or disprove claims. Methods of
discrete mathematics give a formal basis as well as set-theory and propositional logic. Further
fundamental theorems on semantics as given in [33] and intertranslatability results [38, 39] are
used to achieve results on realizability and signatures.

1.5 Organization of the Thesis

The remainder of the thesis will be organized as follows:

• In Chapter 2 the main concepts of abstract argumentation, argumentation semantics and
propositional logic will be introduced.

• Chapter 3 introduces, after giving some basic definitions, several properties of extension-
sets. Then for every semantics of our interest certain properties are proven to be fulfilled
by every extension-set obtained from the semantics.

• In Chapter 4 we will examine for each of the semantics, which properties an extension-
set has to fulfill in order to guarantee that one can find an AF realizing the extension-
set under the given semantics. Moreover, we will provide formal descriptions of how to
construct such AF for each of the semantics. Finally we will introduce the concept of strict
realizability and show, that with the exception of conflict-free sets and naive semantics,
general and strict realizability do not coincide in general.

7

• Chapter 5 assembles the results of Chapters 3 and 4 and gives the formal characterizations
of the signatures. It further relates the signatures to each other and by that gives a picture
of different levels of expressiveness of the semantics. Finally we show the connection of
the results of this thesis to recent work on intertranslatability [38, 39].

• In Chapter 6 we will conclude by summarizing our results, pointing out the implications
resulting from them and giving an outlook to possible future research directions.

8

CHAPTER 2
Preliminaries

This chapter aims at introducing the main concepts of abstract argumentation frameworks, argu-
mentation semantics, and propositional logic. This introduction makes no claim to be exhaus-
tive, but covers all concepts needed in order to propose and prove the main results of this thesis.
Abstract argumentation frameworks were first introduced in Dung’s seminal paper [33], proper
overviews can be found in [12] and [55]. Argumentation semantics have been introduced by
several authors over the years [4, 8, 21, 33, 60], an overview is given in [3]. For an exhaustive
work on propositional logic we refer to [43].

2.1 Abstract Argumentation Frameworks

Throughout this thesis we use A as a countably infinite set of arguments. We may just call A a
set of arguments, implicitly meaning a countably infinite one.

Definition 2.1. An argumentation framework (AF for short) is a pair F = (A,R) whereA ⊆ A
is a finite set of arguments and R ⊆ A× A is the attack relation. Given an AF F = (A,R) we
use AF to denote the set of arguments A and RF to denote the set of attacks R. The collection
of all AFs (over A) is given as AFA.

Note that basically, the set of arguments of an AF does not have to be finite. However, for
practical reasons, we restrict ourselves to finite AFs. We will give some notes on infinite AFs at
the end of Section 2.2.

Definition 2.2. Given an AF F = (A,R) we say a attacks b, or b is defeated by a if (a, b) ∈ R.
We write a 7→R b or, if no ambiguities arise, just a 7→ b for (a, b) ∈ R.

Definition 2.3. Given an AF F = (A,R), sets of arguments S, T ⊆ A and an argument a ∈ A,
we may use the following shortcuts:

• S 7→R a if ∃s ∈ S : s 7→R a.

9

a b c

Figure 2.1: AF Fl of the liar paradox

• a 7→R S if ∃s ∈ S : a 7→R s.

• S 7→R T if ∃s ∈ S ∃t ∈ T : s 7→R t.

Again, if no ambiguities arise, we may drop subscript R in 7→R.

In Chapter 1 we discussed the necessity of studying the theory of argumentation on the liar
paradox. The following example shows the liar paradox as an AF.

Example 2.1. Consider the liar paradox introduced in Chapter 1. The corresponding AF is given
by Fl = (A,R) where

A = {a, b, c} and

R = {(a, a), (b, a), (c, b)}.

The graphical representation of this framework is given in Figure 2.1.

As one can see, the graphical version of an AF is a directed graph, where the nodes are given
by the arguments and the arrows are given by the attacks. An arrow from a to b in the graph of
some AF F corresponds to (a, b) ∈ RF .

In the remainder of this thesis we may, especially for AFs of large size, omit the conventional
notation and only give the graphical representation.

Example 2.2. In the remainder of this chapter we will make heavy use of the AF Fs = (A,R)
where

A = {a, b, c, d, e} and

R = {(a, b), (c, b), (c, d), (d, c), (d, e), (e, e)}.

To show the behaviour of the different semantics we will use this framework as our first refer-
ence. Figure 2.2 shows its graphical representation.

One central concept when it comes to evaluating the justification of an argument is the
concept of defense.

a b c d e

Figure 2.2: Graphical representation of the AF Fs = ({a, b, c, d, e}, {(a, b), (c, b), (c, d),
(d, c), (d, e), (e, e)})

10

Definition 2.4. Given an AF F = (A,R), sets of arguments S, T ⊆ A and an argument a ∈ A,
we say

• a is defended by S (in F) if for each b ∈ A it holds: if b 7→R a then S 7→R b,

• T is defended by S (in F) if each t ∈ T is defended by S (in F), and

• S defends a from T (in F) if for all b ∈ T it holds: if b 7→R a then S 7→R b.

The function ΦF : 2A → 2A such that ΦF (S) = {a | a is defended by S in F} is called the
characteristic function of F .

In Dung’s seminal paper [33] the author uses the term acceptability and so “a is acceptable
with respect to S” is used instead of “a is defended by S”. In this thesis we will stick to the term
“defended by” since this seems to correspond to the intuition of having all attackers attacked.

The following technical lemma will be useful for the proofs of several propositions throughout
this thesis.

Lemma 2.1. Given an AF F = (A,R) and two sets of arguments S, T ⊆ A, the following
holds: If S is defended by itself in F and T is defended by itself in F , then S ∪ T is defended by
itself in F .

Proof. To the contrary assume that S ∪ T is not defended by itself in F . Then there exists a
b ∈ A with b 7→ (S ∪ T) such that (S ∪ T) 7→ b does not hold. We can distinguish between
two cases, either b 7→ S or b 7→ T . Consider b 7→ S. Since (S ∪ T) 7→ b does not hold, S 7→ b
does not hold either. Therefore S is not defended by itself in F which is a contradiction to the
assumption. The other case behaves symmetrically.

The fact that the union of two sets of arguments, where each of them defends itself, defends
itself too will be useful later on in this thesis. We will come back to that in Section 2.2.

We go on with some more definitions.

Definition 2.5. Given an AF F = (A,R) and a set of arguments S ⊆ A, the union of S with
the set of attacked arguments, or for short the range of S with respect to R, denoted by S+

R , is
defined as S ∪ {t | S 7→R t}.

Definition 2.6. Given two AFs F1 = (A1, R1) and F2 = (A2, R2) the union F1 ∪ F2 is given
by

F1 ∪ F2 = (A1 ∪A2, R1 ∪R2).

We examine the definitions given so far on the AFs given in Example 2.1 (see Figure 2.1)
and Example 2.2 (see Figure 2.2).

Example 2.3. Consider the AF Fl = (A,R) given by Figure 2.1. We observe that

• c is defended by {c} in Fl,

• a is defended by {a, c} in Fl,

11

a b c d e

Figure 2.3: Union of the AFs Fl from Figure 2.1 and Fs from Figure 2.2

• ΦFl
({c}) = {c}, ΦFl

({a}) = ΦFl
({b}) = ∅, and

• {b}+R = {a, b}.

Example 2.4. Consider the AF Fs = (A,R) given by Figure 2.2. We observe that

• {d} is defended by itself in Fs,

• {c, e} is defended by itself in Fs,

• {d} defends b from {c} in Fs (but not from a),

• ΦFs({d}) = {a, d}, and

• {c}+R = {b, c, d}.

Example 2.5. Let Fl be the AF given by Figure 2.1 and Fs the AF given by Figure 2.2. The
union F1 ∪ F2 of these two frameworks is the AF in Figure 2.3.

2.2 Argumentation Semantics

Given an argumentation framework there is no, and cannot be, consensus about which sets of
arguments collectively form a reasonable position. Different applications and fields of applica-
tion may require different rules how to identify such sets. An abstract argumentation semantics
is a formal method to identify conflict outcomes for any argumentation framework. It defines,
which sets of arguments can survive together the conflict given by an AF. In this thesis we deal
with the extension-based approach, where a set of arguments accepted by a semantics is called
an extension. For an excellent recent overview we refer to [3].

Definition 2.7. An (extension-based) semantics for abstract argumentation frameworks is a
function σ : AFA → 22

A
mapping each AF F to a set of extensions σ(F) ⊆ 2AF . A se-

mantics σ is called a unique status semantics if for each F , ‖σ(F)‖ = 1, otherwise it is called a
multiple status semantics.

Dung’s seminal paper [33] gives, besides the formal introduction of AFs, definitions of
the stable, preferred, complete and grounded semantics. The stage semantics were introduced
in [60], where also the semi-stable semantics were implicitly mentioned. The actual term “semi-
stable” was coined later in [21].

The most basic concept shared by all argumentation semantics in the literature is the concept
of conflict-freeness. Arguments going together into an extension should not be in conflict with
respect to the attack relation.

12

Definition 2.8. Given an AF F = (A,R), a set S ⊆ A is called conflict-free in F if there are
no a, b ∈ S such that a 7→R b. The collection of all conflict-free sets is denoted as cf(F).

Note that by this definition self-attacking arguments can never be in any conflict-free set.
As all semantics (presented in this thesis) share the concept of conflict-freeness, self-attacking
arguments cannot be part of any extension of any semantics. Since ∅ is conflict-free by definition,
there is always at least one conflict-free set, given an arbitrary AF.

Example 2.6. Take into account the AF Fs from Figure 2.2. The conflict free sets in Fs are
cf(Fs) = {∅, {a}, {b}, {c}, {d}, {a, c}, {a, d}, {b, d}}. Note that as e is self-attacking, i.e.
(e, e) ∈ RFs , there is no E ∈ cf(Fs) with e ∈ E. Further consider the arguments c and d. As
(c, d) ∈ RFs (and (d, c) ∈ RFs) there is no E ∈ cf(Fs) with {c, d} ⊆ E.

Having introduced conflict-freeness, we turn to another basic concept of argumentation se-
mantics, admissibility. The idea is, that each element of an admissible set has a kind of justifi-
cation in form of being defended by the set.

Definition 2.9. Given an AF F = (A,R), a set S ⊆ A is an admissible set in F if S is conflict-
free in F and S is defended by itself in F , i.e. for all b ∈ A where b 7→R a there is some s ∈ S
such that s 7→R b. The collection of all admissible sets is denoted as adm(F).

Note that again, there is always at least one admissible set, as ∅ is not only conflict-free, but
also defended by itself, and therefore ∅ ∈ adm(F) for any AF F .

An alternative definition can be given via the characteristic function.

Corollary 2.2. Given an AF F = (A,R), a set S ⊆ A is an admissible set in F if S is
conflict-free in F and S ⊆ ΦF (S).

Example 2.7. Again consider the AF Fs from Figure 2.2. The admissible sets are adm(Fs) =
{∅, {a}, {c}, {d}, {a, c}, {a, d}}. Take into account the conflict-free set {b, d}. Argument d
defends itself and b from attacker c, but b is not defended from attacker a. Therefore {b, d}
is not admissible. On the other hand consider the set {c, e}, which is defended by itself (see
Example 2.4). As e attacks itself, {c, e} is not conflict-free and therefore not admissible either.

It is easy to see by definition, that each admissible set is a conflict-free set. Another connec-
tion between admissible and conflict-free sets can be seen in Dung’s fundamental lemma [33]:

Lemma 2.3. Let S be an admissible set of arguments in an AF F , and a and a′ be arguments
which are defended by S in F . Then

1. S′ = S ∪ {a} is admissible in F , and

2. a′ is defended by S′ in F .

By Lemma 2.1 we know that the union of two sets of arguments, where each of them de-
fends itself, defends itself too. Together with Lemma 2.3 it follows that also the union of two
admissible sets is admissible itself.

13

Although not treated as semantics in the narrow sense in the literature, we will use the terms
“conflict-free semantics” and “admissible semantics” at some points throughout this thesis, since
when dealing with realizability and signatures we do not make a difference between conflict-free
and admissible sets and the other, traditional, semantics.

We will come back to admissibility but first put it aside and introduce another semantics.

Definition 2.10. Given an AF F = (A,R), a set S ⊆ A is a naive extension in F if S is
conflict-free in F and there is no T ∈ cf(F) with T ⊃ S. The collection of all naive extensions
is denoted as naive(F).

So naive extensions are the conflict-free sets, which are maximal with respect to set-inclu-
sion. Therefore they may be referred to as maximal conflict-free sets. It is easy to see that as
for each AF F there is always at least one conflict-free set, also the set of naive extensions is
non-empty.

Further note that as the definition of naive semantics does not make use of the concept of
defense and only forces the arguments of an extension to be conflict-free (and ⊆-maximal of
course), the direction of attacks in an AF does not matter. It only matters if there is an attack
between two arguments, but not which direction this attack has or if it is a symmetric attack. Of
course this also holds for conflict-free sets.

We look at another example.

Example 2.8. Consider the AF Fs from Figure 2.2. The naive extensions are naive(Fs) =
{{a, c}, {a, d}, {b, d}}. As one can easily see these are just the ⊆-maximal sets of cf(Fs).

By Definition 2.10 it is clear that each naive extension is a conflict-free set.

We now turn to the preferred semantics. Like the naive semantics, the preferred semantics
follows the idea of maximizing the accepted arguments. The difference is that the preferred
semantics takes into account maximal admissible sets, not maximal conflict-free sets.

Definition 2.11. Given an AF F = (A,R), a set S ⊆ A is a preferred extension in F if S
is admissible in F and there is no T ∈ adm(F) with T ⊃ S. The collection of all preferred
extensions in F is denoted as pref(F).

We have seen that, given an arbitrary AF, there is always at least one admissible set. There-
fore also a preferred extension exists.

Example 2.9. Take into account the AF Fs from Figure 2.2. The preferred extensions are
pref(Fs) = {{a, c}, {a, d}}. For each of the admissible sets {a}, {c}, {d} there is some E ∈
adm(Fs) such that E is a superset. Therefore these sets are no preferred extensions.

We now turn to complete semantics. While admissibility requires some justification for each
argument, complete semantics make one further step by permitting to abstain from arguments
only if there are no good reasons to do otherwise. More concrete, it enforces each argument
which is defended by some potential extension to be in the extension too. So the complete
semantics can be seen as “a strengthening of the basic requirements enforced by the idea of
admissibility” [3].

14

Definition 2.12. Given an AF F = (A,R), a set S ⊆ A is a complete extension in F if S
is admissible in F and for each a ∈ A that is defended by S in F it holds that a ∈ S. The
collection of all complete extensions in F is denoted as comp(F).

Again an alternative definition can be given by the characteristic function.

Corollary 2.4. Given an AF F = (A,R), a set S ⊆ A is a complete extension if S is conflict-
free and S = ΦF (S).

As one can see from this alternative definition, each complete extension is a fixed point of
the characteristic function Φ.

We look at an example:

Example 2.10. Again consider the AF Fs from Figure 2.2. The set of complete extensions is
comp(Fs) = {{a}, {a, c}, {a, d}}. For allE ∈ comp(Fs) it holds thatE = ΦFs(E). It does not
hold for {c} and {d} since a, having no attacker, is always defended and therefore a ∈ ΦFs({c})
and a ∈ ΦFs({d}).

It is easy to see by Definition 2.12 that each complete extension it an admissible set. Another
relation is given in [33]:

Proposition 2.5. Given an arbitrary AF F = (A,R), each preferred extension is a complete
extension.

In can be seen in Example 2.10 that the reverse does not hold, as {a} is a complete extension
but not a preferred extension (see Example 2.9).

By Proposition 2.5 it follows immediately that the set of complete extensions is non-empty.

The following lemma will be useful later in this thesis.

Lemma 2.6. Given an AF F = (A,R) and some admissible set E ∈ adm(F), there exists a
unique complete extension E′ ∈ comp(F) with E′ ⊇ E such that for all E′′ with E′ ⊃ E′′ ⊃ E
it holds that E′′ /∈ comp(F).

Proof. Consider someE ∈ adm(F). IfE ∈ comp(F) thenE′ = E. IfE /∈ comp(F) then there
exists a set of arguments D ⊆ (A \E) which is defended by E. By Lemma 2.3, E′ = E ∪D is
admissible, i.e. E′ ∈ adm(F). If E′ ∈ comp(F) we are done. If E′ /∈ comp(F) then again there
exists a set of argumentsD′ ⊆ (A\E′) which is defended byE′. By Lemma 2.3, E′′ = E′∪D′
is admissible, i.e. E′′ ∈ adm(F). As A is finite, we can show by induction that at some point
we get some unique Ē ⊃ E which is admissible and it holds that Ē ∈ comp(F) and for all Ẽ
with Ē ⊃ Ẽ ⊃ E, Ẽ /∈ comp(F).

So far we have presented solely multiple status semantics. The next, namely the grounded
semantics, is a unique status semantics, i.e. for each AF there is exactly one grounded extension
(cf. Definition 2.7). Considering each complete extension as a reasonable position, the grounded
extension is the set of arguments shared by all these reasonable positions.

15

Definition 2.13. Given an AF F = (A,R), a set S ⊆ A is a grounded extension if S ∈ comp(F)
and there is no T ∈ comp(F) with T ⊂ S. The collection of all grounded extensions in F is
denoted as grd(F)1.

As the set of complete extensions is non-empty and the grounded extension is just the ⊆-
minimal complete extension, the grounded extension always exists. Also each grounded exten-
sion is a complete extension.

An alternative definition of the grounded extension is by the least fixed point of the charac-
teristic function Φ.

Corollary 2.7. Given an AF F = (A,R), the grounded extension is given by
⋃
i=1,...,∞Φi

F (∅),
where Φ1

F (∅) = ΦF (∅) and Φi
F (∅) = ΦF (Φi−1

F (∅)) for i > 1.

In other words the grounded extension is obtained by the following algorithm, given some
AF F = (A,R) and starting with S = ∅:

1. Put each argument a ∈ A not attacked in F into S. If no such a exists, return S.

2. Remove from F all arguments in S+
F together with all adjacent attacks and continue with

step 1.

Example 2.11. First consider AF Fs from Figure 2.2. As a is not attacked in Fs, ΦFs(∅) = {a}.
Since {a} does not defend any other argument in Fs, ΦFs({a}) = {a} an therefore grd(Fs) =
{{a}}.

On the other hand consider AF Fu from Figure 2.3. All arguments have ingoing attacks,
hence ΦFu(∅) = ∅ and grd(Fu) = {∅}.

Note that, as the grounded semantics is unique, it holds that grd(F) =
⋂
E∈comp(F)E for

each AF F . However the grounded extension does not coincide with the intersection of all
preferred extensions in general. We show this in the following example.

Example 2.12. Consider the AF Fg = (A,R) in Figure 2.4. We get pref(Fg) = {{a, d}, {b, d}}
and therefore

⋂
E∈pref(Fg)

E = {d}. But, as ΦFg(∅) = ∅, it follows that grd(Fg) = {∅}.

We now turn to stable semantics. This semantics is based on stable models in logic program-
ming [46], extensions in default logic [56], and stable expansions in autoepistemic logic [52].
The idea is that a stable extension must defeat each argument not in the extension, and by that
let no argument “undecided”2, i.e. an argument must either be in the extension or be attacked by
an argument of the extension.

Definition 2.14. Given an AF F = (A,R), a set S ⊆ A is a stable extension in F if S is
conflict-free in F and for all a ∈ A \ S it holds that S 7→R a. The collection of all stable
extensions is denoted as stb(F).

1 As the grounded semantics is a unique status semantics, ‖grd(F)‖ = 1.
2 In the labelling-based approach [25] the stable extensions are defined by enforcing that no argument has the

label “undec”.

16

a

b

c d

Figure 2.4: AF Fg with {
⋂
E∈pref(Fg)

E} 6= grd(Fg) showing that {
⋂
E∈pref(F)E} = grd(F)

does not hold in general

The range of a stable extension always covers all arguments of the AF, i.e. it holds that
S ∈ stb(F) only if S+

R = A.
As a stable extension is conflict-free and its range captures all arguments, the term conflict-

free in Definition 2.14 can be replaced by one of the terms admissible, preferred and complete.
Hence the following proposition follows immediately.

Proposition 2.8. Given an arbitrary AF F = (A,R), each stable extension is a preferred
extension.

The reverse does not hold. This becomes clear by the fact that there are argumentation
frameworks which do not possess a stable extension, i.e. stb(F) = ∅. In contrast to all other
semantics we deal with in this thesis, stable semantics are not “universally defined” [7].

Example 2.13. First take into account AF Fs from Figure 2.2. We get one stable extension,
stb(Fs) = {a, d}. Consider, for example, the set {a, c}, then {a, c}+R = AFs \ {e}, hence {a, c}
is no stable extension.

Now consider AF Fl from Figure 2.1. The only conflict-free sets are {b} and {c}, and as
their ranges do not encompass all arguments AFs , it follows that stb(Fl) = ∅, i.e. Fl has no
stable extension.

The shortcomings of stable semantics are tackled by the following two semantics. We begin
with the stage semantics. A stage extension is not required to attack all arguments which are not
in the extension, but its range is required to be maximal with respect to set inclusion.

Definition 2.15. Given an AF F = (A,R), a set S ⊆ A is a stage extension in F if S is conflict-
free in F and there is no T ∈ cf(F) with T+

R ⊃ S+
R . The collection of all stage extensions in F

is denoted as stage(F).

The following propositions show the strong connection between stable and stage semantics.

Proposition 2.9. Given an arbitrary AF F = (A,R), each stable extension in F is a stage
extension in F .

Proposition 2.10. Given an arbitrary AF F = (A,R), it holds that if there exists at least one
stable extension in F , then each stage extension in F is a stable extension in F .

17

It is easy to see that as for each AF there is at least one conflict-free set, there is also a
range-maximal, conflict-free set, i.e. stage(F) is non-empty for each F .

All arguments not in the stage extension must be in some conflict with the extension, because
if not they would have to be in the extension. From this fact the following proposition follows
immediately:

Proposition 2.11. Given an arbitrary AF F = (A,R), each stage extension in F is a naive
extension in F .

Example 2.14. First consider the AF Fs from Figure 2.2. The set of stage extensions con-
tains one element, stage(Fs) = {{a, d}}. Note that {a, d}+R = AFs . Take, for example, the
set {a, c}, then {a, c}+R = (AFs \ {e}) ⊂ AFs , hence {a, c} is no stage extension. So we
have stage(Fs) = stb(Fs). This shows that the reverse of Proposition 2.11 does not hold, as
naive(Fs) = {{a, c}, {a, d}, {b, d}} (cf. Example 2.8).

We have seen in Example 2.13 that for AF Fl from Figure 2.1 no stable extension exists. The
only conflict-free sets are {b} and {c}, with incomparable ranges {b}+R = {a, b} and {c}+R =
{b, c}. Therefore stage(Fl) = {{b}, {c}}.

The semi-stable semantics was mentioned in [60] as admissible stages, and extensively ap-
proached in [21]. Semi-stable semantics are the counterpart to preferred semantics as stage
semantics are to naive semantics. The difference between semi-stable and preferred semantics
is that with semi-stable semantics not only the extension itself, but its range is maximized.

Definition 2.16. Given an AF F = (A,R), a set S ⊆ A is a semi-stable extension in F if S is
admissible in F and there is no T ∈ adm(F) with T+

R ⊃ S+
R . The collection of all semi-stable

extensions in F is denoted as sem(F).

It is easy to see that as for each AF there is at least one admissible set, there is also a range-
maximal, admissible set, i.e. sem(F) is non-empty for each F .

The following propositions dealing with the relationship of semi-stable semantics and stable
semantics on the one hand and preferred semantics on the other hand are taken out of and proved
in [21].

Proposition 2.12. Given an arbitrary AF F = (A,R), each stable extension in F is a semi-
stable extension in F .

Proposition 2.13. Given an arbitrary AF F = (A,R), each semi-stable extension in F is a
preferred extension in F .

Proposition 2.14. Given an arbitrary AF F = (A,R), it holds that if there exists at least one
stable extension in F , then each semi-stable extension in F is a stable extension in F .

Again we look at some examples:

Example 2.15. First consider AF Fs from Figure 2.2. We get one semi-stable extension,
sem(Fs) = {{a, d}}. The range {a, d}+R is AFs while all other admissible sets have smaller

18

stable

stage semi-stable

preferred grounded

complete

admissible

naive

conflict-free

Figure 2.5: Relations between semantics

range. Note that {a, c} ∈ pref(Fs) (cf. Example 2.9), but {a, c} /∈ sem(Fs), which shows that
the reverse of Proposition 2.13 does not hold.

Now consider AF Fl from Figure 2.1. By Example 2.13 we know that stb(Fl) = ∅. As
adm(Fl) = {{c}} also sem(Fl) = {{c}}. Recall that stage(Fl) = {{b}, {c}}, which shows that
semi-stable and stage semantics do not necessarily coincide if there is no stable extension.

The collection of “is-a”-relationships between the semantics covered in this chapter is sum-
marized in Figure 2.5. An arrow from semantics σ1 to semantics σ2 means that each σ1-
extension is also a σ2-extension. We have seen that reverse of none of these “is-a”-relations
holds in general, i.e. for no semantics σ1 and σ2, where each σ1-extension is also a σ2-extension,
it holds that each σ2-extension is also a σ1-extension in general. Therefore none of the seman-
tics coincide. However recall that for all AFs where at least one stable extension exists, stage,
semi-stable and stable semantics coincide.

Table 2.1 summarizes the examples of this chapter on the standard framework Fs from Exam-
ple 2.2 and shows again which sets of arguments are extensions under the various semantics. A
checkmark in row S and column σ has to be read as follows: S is an extension of Fs under the
σ-semantics, i.e. S ∈ σ(F). A “–” means that S is no extension of Fs under the σ-semantics,
i.e. S /∈ σ(F).

In Chapter 1 we mentioned that identifying the set of valid arguments for the liar paradox is a
non-trivial task. Table 2.2 shows the extensions for the AF Fl obtained from the liar paradox
(see Figure 2.1) under the semantics introduced in this chapter. Indeed the majority of semantics
(all except stable) agrees on c to be an extension. But naive and stage semantics, i.e. semantics
not based on admissibility, also accept b as an extension. Further note that as all semantics
introduced are based on conflict-freeness, no two- or more-element-extensions can be obtained
from any of the semantics in this example.

An interesting subclass of AFs are symmetric argumentation frameworks. These are frameworks
F = (A,R) where the attack relation is symmetric, i.e. if (a, b) ∈ R then also (b, a) ∈ R. They

19

cf naive stage stb adm pref sem comp grd

∅ X - - - X - - - -

{a} X - - - X - - X X

{b} X - - - - - - - -

{c} X - - - X - - - -

{d} X - - - X - - - -

{e} - - - - - - - - -

{a, c} X X - - X X - X -

{a, d} X X X X X X X X -

{b, d} X X - - - - - - -

Table 2.1: Extensions of Fs in Figure 2.2

were studied extensively in [29]. The authors make the following observations for symmetric
AFs, where the attack relation is irreflexive, i.e. there are no self-attacking arguments.

Proposition 2.15. For an irreflexive, symmetric AF F , the following holds:

• cf(F) = adm(F).

• stb(F) = pref(F) = naive(F) = stage(F) = sem(F).

• grd(F) = {a | @b : (b, a) ∈ R}.

As already mentioned in Section 2.1 we restrict ourselves to finite AFs. The reason for this is
that in infinite AFs the notion of maximiality with respect to set inclusion is not as immediate as
it is in finite frameworks. While the existence of complete, grounded and preferred extensions
is guaranteed not only in the finite, but also in the infinite case (see [26, 33]), it was shown
in [26, 60, 61] that there are infinite AFs where semi-stable and stage extensions do not exist.

cf naive stage stb adm pref sem comp grd

∅ X - - - X - - - -

{a} - - - - - - - - -

{b} X X X - - - - - -

{c} X X X - X X X X X

Table 2.2: Extensions of Fl in Figure 2.1

20

2.3 Propositional Logic

In Chapter 4, when we deal with realizing certain sets of extensions by constructing AFs we
will make use of propositional logic. Parts of the construction process will be described by
propositional formulas.

Therefore we give some basic definitions on propositional logic. We assume basic knowl-
edge on syntax and semantics. For a more comprehensive introduction we refer to [43] or to [20]
for the reader mastering the German language.

Definition 2.17. The alphabet of propositional logic is given by

• logical connectives ∨, ∧ and ¬,

• a countable set of propositional atoms P = {a, b, c, . . . },

• propositional constants > and ⊥, and

• auxiliary symbols (and).

The alphabet is the set of symbols which can occur in a propositional formula. In order to
actually build a formula, the symbols have to take on a certain structure. Therefor see the next
definition.

Definition 2.18. A propositional formula over P is defined as follows:

1. Each propositional atom and constant is a formula.

2. If α and β are formulas, then also (¬α), (α ∨ β) and (α ∧ β) are formulas.

3. Formulas are solely given by 1. and 2.

Note that we may omit brackets in cases where no ambiguities arise.
In terms of semantics we use the standard techniques of two-valued propositional logic. We

limit our introduction on the semantics of propositional logic to the following example.

Example 2.16. Consider the propositional formula F over the set of propositional atoms P =
{a, b, c},

F = ¬(a ∧ (¬(b ∨ c))),

and take, for instance, the truth assignment A = {a ← true, b ← false, c ← false}. As
b = false and c = false, (b ∨ c) evaluates to false, but its negation evaluates to true. Since
a = true, (a ∧ (¬(b ∨ c))) evaluates to true, which means that F evaluates to false.

On the other hand consider a truth assignmentA′, where a = false and b and c have arbitrary
truth values. With a = false, (a∧(¬(b∨c))) surely evaluates to false, and therefore F is true.

Definition 2.19. Given a propositional formula F over a set of propositional atoms P . Then an
interpretation (over P) is a set I ⊆ P with the intended meaning that each p ∈ P is

• true if p ∈ I , and

21

• false if p /∈ I .

I is a model of F , denoted by I |= F , if F evaluates to true under the truth-assignment
provided by I .

The interpretation, given as a set of atoms, is an implicit assignment of truth-values.

Definition 2.20. Given two propositional formulas F1 and F2 over the same set of propositional
atoms P . The formulas are logically equivalent, denoted by F1 ≡ F2, if the models of F1

coincide with the models of F2.

Example 2.17. Take into account the propositional formulas F1 = a∧b∧c and F2 = ¬((¬a)∨
(¬b) ∨ (¬c)). Since for both formulas the only interpretation over {a, b, c}, which is also a
model is I = {a, b, c} it holds that F1 ≡ F2.

When describing the construction of an AF we will make use of normal forms.

Definition 2.21. A formula is in disjunctive normal form (DNF) if it is of the form

n∨
i=1

(m(i)∧
j=1

ai,j
)

where each ai,j is a literal, i.e. either an atom or the negation of an atom. A formula in DNF is
positive if and only if no negation occurs in it. We call each conjunction of atoms (ai,1 ∧ · · · ∧
ai,m(i)) for each i a term.

Definition 2.22. A formula is in conjunctive normal form (CNF) if it is of the form

n∧
i=1

(m(i)∨
j=1

ai,j
)

where each ai,j is a literal. A formula in CNF is positive if and only if no negation occurs in it.
We call each disjunction of atoms (ai,1∨ · · · ∨ai,m(i)) for each i a clause. Further we may write
a CNF-formula as a set of clauses

{γ1, . . . , γn}

where γi is just the set of literals in clause i for each i. The empty set of clauses corresponds to
the formula >.

Example 2.18. Consider the formulaD = (a∧ b)∨ (a∧ c). D is in DNF. A logically equivalent
formula in CNF is C = a ∧ (b ∨ c), D ≡ C. The alternative notation of C in clause-form is
{{a}, {b, c}}.

Proposition 2.16. Given a formula C = {γ1, . . . , γn} in CNF, an interpretation I is a model
of C, denoted by I |= C, if and only if I is a model of each clause, i.e. I |= γi for each
i ∈ {1, . . . , n}.

22

Example 2.19. Consider the CNF-formula C = {{a}, {b, c}} from Example 2.18. Each model
M of C has to fulfill M |= a and M |= b∨ c. Therefore the models over {a, b, c} of C are {a, b},
{a, c} and {a, b, c}. Note that these models of C are also models of the logically equivalent
DNF-formula D = (a ∧ b) ∨ (a ∧ c).

Proposition 2.17. Each propositional formula (in DNF) can be converted to a logically equiv-
alent formula in CNF. Each propositional formula (in CNF) can be converted to a logically
equivalent formula in DNF.

The process of conversion makes use of the following equivalences:

1. a ∨ (b ∧ c) ≡ (a ∨ b) ∧ (a ∨ c)

2. a ∧ (b ∨ c) ≡ (a ∧ b) ∨ (a ∧ c)

3. ¬(a ∧ b) ≡ (¬a) ∨ (¬b)

4. ¬(a ∨ b) ≡ (¬a) ∧ (¬b)

5. ¬¬a ≡ a

Equivalences 1 and 2 are called distributive laws, 3 and 4 form the De Morgan’s laws and 5
can be referred to as double negative elimination.

As in the remainder of this thesis we will work with positive formulas in CNF (resp. DNF),
the following observation will be useful.

Proposition 2.18. Each positive DNF-formula can be converted to a logically equivalent posi-
tive CNF-formula. Each positive CNF-formula can be converted to a logically equivalent posi-
tive DNF-formula.

The transformation process when dealing with positive CNF- or DNF-formulas only makes
use of the distributive law. Nevertheless in terms of the size of the formula the conversion can
in some cases lead to an exponential blow-up. For a formula in DNF containing n terms the
logically equivalent formula in CNF can contain up to 2n clauses. In [49] the authors investigate
the size of CNF- and DNF-formulas in the context of conversion. We make this problem more
concrete with an example.

Example 2.20. Consider the following formula D in DNF:

D = (a1 ∧ b1) ∨ (a2 ∧ b2) ∨ · · · ∨ (an ∧ bn).

A minimal (in size) logically equivalent formula C in CNF is

23

C =(a1 ∨ a2 ∨ · · · ∨ an−1 ∨ an)∧
(a1 ∨ a2 ∨ · · · ∨ an−1 ∨ bn)∧
(a1 ∨ a2 ∨ · · · ∨ bn−1 ∨ an)∧
(a1 ∨ a2 ∨ · · · ∨ bn−1 ∨ bn)∧
. . .

(b1 ∨ a2 ∨ · · · ∨ bn−1 ∨ bn)∧
(a1 ∨ b2 ∨ · · · ∨ bn−1 ∨ bn)∧
(b1 ∨ b2 ∨ · · · ∨ bn−1 ∨ bn).

Each of the clauses contains either ai or bi for each i = 1, . . . , n. Therefore the number of
clauses of C is exactly 2n.

24

CHAPTER 3
Properties

Having introduced the basic concepts of abstract argumentation and propositional logic we are
now ready to come to the first main part of the thesis. We know that the outcome of a semantics
is a set of extensions. In this chapter we will introduce some properties such a set of extensions
can fulfill or not. Further we will examine the relations between those properties, i.e. whether
some properties imply another property. The second part of this chapter will be concerned with
showing that given some semantics, the set of extensions of any argumentation framework fulfills
certain properties. This gives us a first idea of how much disagreement a certain semantics can
express. We will do this for every multiple status semantics introduced in Chapter 2. For the
grounded semantics, a unique status semantics, there is not too much to say in this context,
except of course that each extension-set under the grounded semantics contains exactly one
extension, which also holds for every other unique status semantics.

3.1 Properties of Extension-Sets

When dealing with extension-based semantics in abstract argumentation, the result of applying
a certain semantics to an AF is a set of extensions, i.e. a set of sets of arguments. We will
use the term extension-set for those sets. This section gives some possible characteristics of
extension-sets, which will be useful to describe the capabilities of the semantics.

We begin with some basic definitions.

Definition 3.1. Given a set S ⊆ 2A. We use

• ArgsS to denote
⋃
S∈S S and

• PairsS to denote {(a, b) | ∃S ∈ S : {a, b} ⊆ S}.

A set S ⊆ 2A is called an extension-set (over A) if ArgsS is finite. We denote the set of all
extension-sets over A as ΣA = {S ⊆ 2A | ArgsS is finite}.

25

In words, ArgsS is the set of all arguments occurring in some element of an extension-set S ,
while PairsS is the set of pairs of arguments going together in an extension S ∈ S.

Example 3.1. We list some extension-sets, which we will use throughout this thesis. In this
chapter will use them in order to check the presented properties on these sets.

• S0 = {}

• S1 = {∅, {a}, {b}, {c}, {a, c}}

• S2 = {{a1, b2, b3}, {a2, b1, b3}, {a3, b1, b2}, {b1, b2, b3}}

• S3 = {{a1, b2, b3}, {a2, b1, b3}, {a3, b1, b2}}

• S4 = {{a, b}, {a, c, e}, {b, d, e}}

• S5 = {{a}, {b, c}, {a, c, d}}

• S6 = {{a}, {b}, {c}, {a, b, c}}

• S7 = {{a, b}, {b, c}, {c, a}}

Considering S5, we get

• ArgsS5 = {a, b, c, d} and

• PairsS5 = {(a, a), (a, c), (a, d), (b, b), (b, c), (c, c), (c, a), (c, b), (c, d), (d, d), (d, a), (d, c)}

Note that for any extension-set S, it holds that PairsS is symmetric and reflexive, i.e.

• if (a, b) ∈ PairsS then (b, a) ∈ PairsS , and

• for each a ∈ ArgsS , (a, a) ∈ PairsS .

A simple characteristic of an extension-set is that for any element of the extension-set, all
subsets of this element are in the extension-set too. We make this idea more formal with the
following two definitions.

Definition 3.2. Given an extension-set S ⊆ 2A, the downward-closure of S, dcl(S), is given by
{S′ ⊆ S | S ∈ S}.

Definition 3.3. Given an extension-set S ⊆ 2A, we call S downward-closed if S = dcl(S).

Example 3.2. It is easy to see that S0 and S1 are the only extension-sets given in Example 3.1,
which are downward-closed. S1 contains all subsets of {a, c}, namely {a}, {c} and ∅ as ex-
tensions. It is easy to see that S2, . . . ,S7 are not downward-closed, as none of them contains
the empty set, which is contained in each downward-closure of a non-empty extension-set. As
an example, the downward-closure of S4 is {∅} ∪ {{s} | s ∈ ArgsS4} ∪ {{x, y} | (x, y) ∈
PairsS4} ∪ S4.

26

We are ready to introduce the next possible characteristic of an extension-set.

Definition 3.4. Given an extension-set S ⊆ 2A, we call S tight if for all S ∈ S and a ∈ A it
holds that if (S ∪ {a}) /∈ S then there exists an s ∈ S such that (a, s) /∈ PairsS .

To describe the property of being tight, one could say that an argument a needs a reason for
not going into an extension together with an element of the extension-set. Such a reason is, that
it is not part of PairsS with at least one argument s of that element, i.e. there is no element of
the extension-set, which is a superset of {a, s}.

The following example tests the extension-sets of Example 3.1 on being tight.

Example 3.3. One can observe that the extension-sets S0, S1, S2 and S3 are tight, while S4,
S5, S6 and S7 are not. Consider S3 and take, for instance, E = {a1, b2, b3}. Then none of
(a1, b1), (a1, a2), and (a1, a3) is contained in PairsS3 . The other two extensions of S3 behave in
a symmetric way, meaning that S3 is tight.

On the other hand consider S4 and take E′ = {a, b}. Then (E′ ∪ {e}) /∈ S4, but both (a, e)
and (b, e) are contained in PairsS4 , showing that S4 is not tight.

Note that the extension-sets S5, S6 and S7 are not tight either.

The following property is actually the same as I-maximality in [5], but since at this point there
is no reason to talk about maximality, we call it as what it prescribes, incomparability.

Definition 3.5. Given an extension-set S ⊆ 2A, we call S incomparable if all elements S ∈ S
are pairwise incomparable, i.e. for each S, S′ ∈ S it holds that S ⊆ S′ implies S = S′.

Lemma 3.1. For any incomparable extension-set S ⊆ 2A it holds that if S is tight, then each
S ′ ⊆ S is tight too.

Proof. Consider some tight extension-set S and a subset S ′ ⊆ S thereof. From S ′ ⊆ S we
know that PairsS′ ⊆ PairsS , S ∈ S ′ ⇒ S ∈ S and with the fact that S is incomparable also
(S ∪ {a}) /∈ S ′ ⇒ (S ∪ {a}) /∈ S for any a ∈ A. So if the implication of Definition 3.4 holds
for all S ∈ S, it also holds for all S ∈ S ′, which means that S ′ is tight.

Corollary 3.2. For any incomparable extension-set S ⊆ 2A it holds that if dcl(S) is tight, then
S is tight too.

The following example shows that for a tight extension-set S its downward-closure is not
necessarily tight too. The reason for that is the following. Consider some extension-set S , an
element thereof S ∈ S and an argument a with (S ∪ {a}) /∈ S. As S is tight there is some
s ∈ S with (a, s) /∈ PairsS . Assume (a, t) ∈ PairsS for all other t ∈ S. But now consider
S′ = S \ {s}. As S′ ∈ dcl(S) and (a, t) ∈ PairsS for all t ∈ S′, the downward-close of S is not
tight. We make this more concrete with an example.

Example 3.4. To show that the other direction of Corollary 3.2 does not hold, i.e. that an
extension-set being tight does not imply that its downward-closure is tight, consider S3 from
Example 3.1. We have already seen in Example 3.3 that S3 is tight. However this is not the
fact for its downward-closure dcl(S3). In fact, {b2, b3} ∈ dcl(S3) and now for b1, we have

27

that {b1, b2, b3} /∈ dcl(S3) but both (b1, b2) and (b1, b3) are contained in Pairsdcl(S3) = PairsS3 .
Therefore dcl(S3) is not tight.

On the other hand, the downward-closure of S2, dcl(S2), is tight, since {b1, b2, b3} ∈ S2 and
therefore of course {b1, b2, b3} ∈ dcl(S2).

The next property represents just another, though interesting, way of describing a downward-
closed and tight extension-set.

Definition 3.6. Given an extension-set S ⊆ 2A, we call S cf-closed if for allA ⊆ ArgsS it holds
that if A /∈ S, then there exist some a, b ∈ A such that (a, b) /∈ PairsS .

Lemma 3.3. For each extension-set S ⊆ 2A it holds that the following are equivalent:

• S is downward-closed and tight.

• S is cf-closed.

Proof. In order to show the first direction consider a downward-closed and tight set S ⊆ 2A

which is not cf-closed. The latter means that there exists some A ⊆ ArgsS such that A /∈ S but
∀a, b ∈ A it holds that (a, b) ∈ PairsS . Consider some arbitrary a, b ∈ A. Since S is downward-
closed we infer {a, b} ∈ S and further that there is some B ∈ S and some c ∈ A such that
(B ∪ {c}) /∈ S with {a, b} ⊆ B ⊂ A. This contradicts S being tight, because (B ∪ {c}) /∈ S,
but also ∀s ∈ B : (s, c) ∈ PairsS .

To show the other direction consider a cf-closed set S ⊆ 2A. First assume S is not
downward-closed. Then there exist some A,B with A ⊂ B ⊆ ArgsS such that A /∈ S but
B ∈ S . Hence ∀a, b ∈ B : (a, b) ∈ PairsS , and also ∀a, b ∈ A : (a, b) ∈ PairsS , which
contradicts to S being cf-closed. Finally assume S is not tight, i.e. there exists some S ∈ S
and some a ∈ A such that (S ∪ {a}) /∈ S, but ∀s ∈ S : (a, s) ∈ PairsS . Since S ∈ S also
∀b, c ∈ (S ∪ {a}) : (b, c) ∈ PairsS , which, together with (S ∪ {a}) /∈ S contradicts S being
cf-closed.

Lemma 3.3 shows what was previously noted, namely that cf-closed is just a shortcut for
downward-closed and tight. Computationally checking if an extension-set S is cf-closed can be
very inefficient, as one has to check some property for each A ⊆ ArgsS . The definition of tight
is more compact in that sense, as one only has to check the “outskirts” of each S ∈ S. Therefore
we will rather use the term tight in the remainder of the thesis.

We continue by introducing another property of extension-sets.

Definition 3.7. Given an extension-set S ⊆ 2A, we call S adm-closed if for each A,B ∈ S the
following holds: if (a, b) ∈ PairsS for each a, b ∈ A ∪B, then also A ∪B ∈ S.

In words, for an extension-set to be adm-closed, if there is no good reason that the union of
two elements of the extension-set is not an element of the extension-set, then it is. Such a good
reason would be, if two arguments a and b of that union were not part of PairsS , i.e. there is no
element of the extension-set, which is a superset of {a, b}.

Again we look at an example.

28

Example 3.5. We again consider the extension-sets given in Example 3.1. Only S6 and S7
are not adm-closed, while S0, . . . ,S5 are adm-closed. Consider the extension-set S1. Take, for
instance, the extensions {a}, {c} ∈ S1, then the premise, namely that (a, c), (c, a) ∈ PairsS1 , as
well as the conclusion, that is {a, c} ∈ S1, hold. Since this is the only non-trivial case1 where
the premise of Definition 3.7 holds, S1 is adm-closed.

On the other hand take the extensions {a, b}, {b, c} ∈ S7. Then (a, b), (b, c), (c, a) as well
as their symmetric counterparts are in PairsS7 . But {a, b, c} /∈ S7, which means that S7 is not
adm-closed.

We show another relation between properties:

Lemma 3.4. For any extension-set S ⊆ 2A it holds that if S is downward-closed and tight, then
S is adm-closed.

Proof. Consider an extension-set S ⊆ 2A which is downward-closed and tight. To the contrary
assume that S is not adm-closed, i.e. there are some A,B ∈ S with (a, b) ∈ PairsS for each
a, b ∈ A∪B, but (A∪B) /∈ S. By Lemma 3.3 S is cf-closed, meaning that since (A∪B) /∈ S
there exist some a, b ∈ (A ∪B) such that (a, b) /∈ PairsS , a contradiction.

Knowing about the property adm-closed we turn to a different, yet related property, as we
will see in Lemma 3.8 and Lemma 3.9.

Definition 3.8. Given an extension-set S ⊆ 2A, we call S pref-closed if for each A,B ∈ S with
A 6= B, there exist a, b ∈ (A ∪B) such that (a, b) /∈ PairsS .

So in a pref-closed extension-set S , the union of any two elements of S must contain at least
two arguments a and b such that (a, b) is not in PairsS . The following lemma shows that this
holds also for any incomparable and tight extension-set.

Lemma 3.5. For any extension-set S ⊆ 2A it holds that if S is incomparable and tight, then S
is pref-closed.

Proof. In order to show that this implication holds, consider some incomparable and tight ex-
tension-set S ⊆ 2A and assume towards a contradiction that S is not pref-closed. That means
that there are some A,B ∈ S with A 6= B such that for all a, b ∈ (A ∪ B) it holds that
(a, b) ∈ PairsS . Since S is incomparable, B 6= ∅ and ∀b ∈ B : (A ∪ {b}) /∈ S. Considering
an arbitrary b ∈ B we get ∃a ∈ A : (a, b) /∈ PairsS by the fact that S is tight. But this is a
contradiction to ∀a, b ∈ (A ∪B) : (a, b) ∈ PairsS and therefore the implication holds.

The other direction does not hold. Particularly, a pref-closed extension-set is not necessarily
tight. However, the following holds:

Lemma 3.6. For any extension-set S ⊆ 2A it holds that if S is pref-closed, then S is incompa-
rable.

1 The trivial case is if ∅ is one of the two extensions; in this case the implication always holds.

29

Proof. Consider a pref-closed extension-set S ⊆ 2A. Towards a contradiction assume that S is
not incomparable, i.e. ∃A,B ∈ S : A ⊂ B. But then for all a, b ∈ B : (a, b) ∈ PairsS and
since (A ∪ B) = B also for all a, b ∈ (A ∪ B) : (a, b) ∈ PairsS . Thus S is not pref-closed, a
contradiction.

In the following example we check, if the extension-sets given in Example 3.1 are pref-
closed and show that the other direction of the implication of Lemma 3.5 does not hold, i.e. that
a pref-closed extension-set is not tight in general2.

Example 3.6. We show that the other direction of Lemma 3.5 does not hold. To this end consider
S4 from Example 3.1, which is incomparable but not tight (see Example 3.3). Let A = {a, b},
B = {a, c, e}, C = {b, d, e}, and observe that S4 = {A,B,C}. S4 is pref-closed, because:
b, c ∈ (A ∪ B) and (b, c) /∈ PairsS4 ; a, d ∈ (A ∪ C) and (a, d) /∈ PairsS4 ; c, d ∈ (B ∪ C) and
(c, d) /∈ PairsS4 .

One can check that S0, . . . ,S3 are pref-closed (necessarily by Lemma 3.5). S5 is not pref-
closed, which follows from the fact that S5 is not incomparable and Lemma 3.6. Also S6 and
S7 are not pref-closed, in S7 we have, for instance, @x, y ∈ ({a, b} ∪ {b, c}) such that (x, y) /∈
PairsS7 .

A pref-closed extension-set also stays pref-closed when removing some of its elements:

Lemma 3.7. Given an extension-set S ⊆ 2A which is pref-closed, it holds that any S ′ ⊆ S is
pref-closed too.

Proof. Consider some extension-sets S,S ′ with S ′ ⊆ S and, towards a contradiction, assume
that S is pref-closed and S ′ is not. The latter means that ∃A,B ∈ S ′ with A 6= B, such that
∀a, b ∈ (A ∪ B) : (a, b) ∈ PairsS′ . As S ′ ⊆ S it holds that A,B ∈ S and PairsS′ ⊆ PairsS .
Therefore it holds that ∀a, b ∈ (A ∪ B) : (a, b) ∈ PairsS , a contradiction to S being pref-
closed.

The properties adm-closed and pref-closed are closely related, as Lemma 3.8 and Lemma 3.9
show.

Lemma 3.8. Given an extension-set S ⊆ 2A, it holds that S is pref-closed iff it is incomparable
and adm-closed.

Proof. We first show that S being incomparable and adm-closed implies that S is pref-closed. To
this end let S be incomparable and adm-closed andA,B ∈ S, withA 6= B. By incomparability,
A 6= B implies (A ∪ B) /∈ S. Then since S is adm-closed, it follows that there exist a, b ∈
(A ∪B) such that (a, b) /∈ PairsS . Hence S is pref-closed.

It remains to show that S being pref-closed implies that S is incomparable as well as adm-
closed. We know from Lemma 3.6 that a pref-closed extension-set is incomparable. In order to
show that a pref-closed extension-set is also adm-closed, consider an extension-set S which is
not adm-closed. Then there are A,B ∈ S such that for all a, b ∈ (A ∪ B) : (a, b) ∈ PairsS ,
which means that S is not pref-closed.

2 Each pref-closed extension-set is incomparable though. We showed this in Lemma 3.6.

30

Lemma 3.9. For each incomparable extension-set S ⊆ 2A, it holds that S is pref-closed iff
S ∪ {∅} is adm-closed.

Proof. By the fact that PairsS = PairsS∪{∅} for all S ⊆ 2A, following Definition 3.7 it holds
that S ∪∅ is adm-closed iff S is adm-closed. Therefore both directions follow immediately from
Lemma 3.8.

Before introducing the next possible property of an extension-set we give the definition of
completion-sets.

Definition 3.9. Given an extension-set S ⊆ 2A and two sets A,B ∈ S, we define the com-
pletion-sets CS(A ∪ B) of A ∪ B as the set of ⊆-minimal sets C ∈ S with C ⊇ (A ∪ B). If
CS(A ∪B) consists of exactly one such ⊆-minimal set we denote this as CS(A ∪B).

In words this means that for two extensions, the completion-sets are extensions that contain
the union of these two extensions and are minimal with respect to set inclusion. There are cases
where for two sets A,B ∈ S there is no completion-set, one unique completion-set or many
completion-sets. Note that for A ⊂ B, CS = {{B}}, i.e. CS = {B}. We illustrate the three
cases by the following example.

Example 3.7. Consider the extension-set S7 from Example 3.1 and take, for instance, A =
{a, b} and B = {b, c}. Then there is no C ∈ S7 with C ⊇ (A∪B) and therefore CS7(A∪B) =
{}.

Next consider S6 and take A = {a} and B = {b}. Then there is a unique completion-set
and so CS6(A ∪B) = {{a, b, c}}, i.e. CS6(A ∪B) = {a, b, c}.

Finally consider the extension-set S∗ = {{a}, {b}, {a, b, c}, {a, b, d}}. For A = {a} and
B = {b} we get two completion-sets, namely CS∗({a, b}) = {{a, b, c}, {a, b, d}}.

Having at hand the concept of completion-sets, we can now give the definition of the property
of an extension-set being comp-closed.

Definition 3.10. Given an extension-set S ⊆ 2A, we call S comp-closed if for each A,B ∈ S
the following holds: if (a, b) ∈ PairsS for each a, b ∈ (A ∪ B), then there exists a unique
completion-set C ∈ CS(A ∪B), i.e. CS(A ∪B) is well-defined.

Lemma 3.10. For each extension-set S ⊆ 2A it holds that if S is adm-closed, then S is comp-
closed.

Proof. This follows immediately from the fact that given an extension-set S and A,B ∈ S,
A ∪B ∈ S implies CS(A ∪B) = A ∪B, i.e. A ∪B is the unique-set in CS(A ∪B).

One can see that comp-closed as a weakening of the notion adm-closed. For an extension-set
to be adm-closed, the union of two elements has to be an element of the extension-set too, if there
is no evidence of a conflict3 between any pair of arguments of the union. For an extension-set to
be comp-closed it is sufficient that any superset of the union (a unique one though) of these two
elements is in the extension-set in this case.

We check the property of being comp-closed on the extension-sets of Example 3.1.
3 In this case no evidence of a conflict means that no pair of arguments is in PairsS .

31

S0 S1 S2 S3 S4 S5 S6 S7
non-empty - X X X X X X X

downward-closed X X - - - - - -

dcl(S) tight X X X - - - - -

tight X X X X - - - -

incomparable X - X X X - - X

adm-closed X X X X X X - -

pref-closed X - X X X - - -

comp-closed X X X X X X X -

Table 3.1: Properties of extension-sets

Example 3.8. We have already seen that S0, . . . ,S5 are adm-closed. By Lemma 3.10 all these
sets are also comp-closed.

Now consider S6 and take, for instance, {a}, {b} ∈ S6. Since (a, a), (a, b), (b, a), (b, b) ∈
PairsS6 , but {a, b} /∈ S6, it is not adm-closed. But since {a, b, c} ∈ S6 and {a, b, c} ⊇ {a, b},
CS6({a, b}) = {{a, b, c}} and therefore S6 is indeed comp-closed.

On the other hand take the extensions {a, b}, {b, c} ∈ S7. Then (a, b), (b, c), (c, a) as well as
their symmetric counterparts are in PairsS7 . As we have seen in Example 3.7, CS7({a, b, c}) = ∅.
This holds for any pairs of extensions in S7 symmetrically, which means that S7 is not comp-
closed.

Table 3.1 summarizes the properties of the extension-sets presented in this section. We see that
the examples confirm the relationships between the properties. All sets with a tight downward-
closure are tight themselves, agreeing with Lemma 3.1 and Corollary 3.2. All downward-closed
and tight sets are also adm-closed, according to Lemma 3.4. As suggested by Lemma 3.5,
all incomparable and tight sets are pref-closed too. The extension-sets which are pref-closed
coincide with those which are incomparable and adm-closed, in accordance with Lemma 3.8.
Finally, all adm-closed extension-sets are also comp-closed, backing up Lemma 3.10.

3.2 Properties of Argumentation Semantics

In Section 3.1 we defined some properties for extension-sets and examined the relations between
these properties. Now we are going to go through all semantics introduced in Section 2.2, one
after the other, and check, which properties generally hold for an extension-set of an arbitrary
AF under a given semantics.

Properties of cf -based Semantics

We begin with semantics, whose definition is mainly based on the concept of conflict-freeness.

32

a1 a2 a3

b1 b2 b3

Figure 3.1: Argumentation framework Fn with naive(Fn) = S2

Conflict-free sets

Proposition 3.11. For each AF F = (A,R) it holds that cf(F) is a non-empty, downward-
closed and tight extension-set.

Proof. Since ∅ is always conflict-free, cf(F) is non-empty.
For any conflict-free set S it holds that all its subsets are conflict-free too, which means that

cf(F) is downward-closed.
In order to show that cf(F) is tight let S ∈ cf(F) and a ∈ A, such that (S ∪ {a}) /∈ cf(F).

It follows that there exists an argument s ∈ S such that s 7→ a or a 7→ s. Then {a, s} /∈ cf(F)
and since cf(F) is downward-closed, {a, s} 6⊆ T for any T ∈ cf(F). It follows that (a, s) /∈
Pairscf(F) and therefore the implication of Definition 3.4 holds.

We can also give an alternative characterization.

Corollary 3.12. For each AF F = (A,R) it holds that cf(F) is a non-empty and cf-closed
extension-set.

Proof. This follows immediately from Proposition 3.11 and Lemma 3.3, which says that each
downward-closed and tight extension-set is also cf-closed.

Naive semantics

Proposition 3.13. For each AF F = (A,R), naive(F) is a non-empty and incomparable exten-
sion-set where its downward-closure dcl(naive(F)) is tight.

Proof. Since the naive extensions are the maximal conflict-free sets in terms of set-inclusion,
naive(F) is non-empty (cf(F) is non-empty too) and incomparable.

From subset-maximality we observe that dcl(naive(F)) = cf(F). Since cf(F) is tight we
conclude that dcl(naive(F)) is tight.

A set of naive extensions is not only tight, but also its downward-closure is tight. For the
AF Fn in Figure 3.1 it holds that naive(Fn) = S2 (S2 was defined in Example 3.1). This is in
accordance with Proposition 3.13 as S2 is of course non-empty and incomparable and the fact
that its downward-closure is tight was discussed in Example 3.4. Further note that the direction
of the attacks in Fn does not affect the outcome of the naive semantics. Also for the AF Fst,
which is depicted in Figure 3.2, it holds that naive(Fst) = S2.

33

a1 a2 a3

b1 b2 b3

Figure 3.2: Argumentation framework Fst with stage(Fst) = stb(Fst) = S3

Stage semantics

Proposition 3.14. For each AF F = (A,R), stage(F) is a non-empty, incomparable and tight
extension-set.

Proof. As stage extensions are range maximal conflict-free sets and there is always at least one
conflict-free set, stage(F) is non-empty.

We know from Proposition 2.11 that stage(F) ⊆ naive(F). Since naive(F) is incomparable
and every subset of an incomparable set is incomparable itself, stage(F) is incomparable.

Recall from Proposition 3.13 that dcl(naive(F)) is tight. Knowing that naive(F) is incom-
parable we infer by Corollary 3.2 that naive(F) is tight. Since stage(F) ⊆ naive(F) it remains
to show that for each incomparable S ⊆ 2A it holds that if S is tight, then S ′ is tight for
each S ′ ⊆ S . Let S,S ′ ⊆ 2A with S ′ ⊆ S and let S be tight. Since PairsS′ ⊆ PairsS and
(S ∪ {a}) /∈ S ′ ⇒ (S ∪ {a}) /∈ S , the implication of Definition 3.4 holds for all S ∈ S ′ and
a ∈ A, and therefore S ′ is tight.

Proposition 3.14 gives weaker properties for extension-sets under the stage semantics than
Proposition 3.13 does for extension-sets under the naive semantics. While, given an arbitrary
AF F , dcl(naive(F)) is always tight, for stage semantics only stage(F) is always tight. The
AF Fst in Figure 3.2 shows that dcl(stage(Fst)) is not tight as stage(Fst) = S3 (S3 is taken
from Example 3.1) and the downward-closure of S3 is not tight by Example 3.4. Therefore
dcl(stage(F)) is not necessarily tight, given some framework F .

Stable semantics We now turn to stable semantics. We treat the stable semantics as cf -based
semantics, although of course each stable extension is an admissible set (see the summary of
“is-a”-relations in Figure 2.5), since the stable semantics implicitly follows the concept of ad-
missibility. The reasons for categorizing stable semantics as cf-based are on the one hand that
the basic definition of stable semantics only uses conflict-freeness and not admissibility, and on
the other hand that when it comes to realizing certain extension-sets under the stable semantics
(we will come to that in Section 4.1), the construction process will have much more in common
with the naive and stage semantics than with semantics which are admissibility-based in the
narrower sense of the word, as admissible, preferred, semi-stable and complete semantics.

Proposition 3.15. For each AF F = (A,R), stb(F) is an incomparable and tight extension-set.

34

Proof. First note that if stb(F) is the empty set of extensions, the proposition holds, since ∅ is
incomparable and tight by definition.

If stb(F) 6= ∅ we can, knowing that stb(F) ⊆ stage(F), use the same arguments as in the
proof of Proposition 3.14, i.e. every subset of an incomparable and tight set is an incomparable
and tight set itself. What follows is that stb(F) is incomparable and tight.

Properties of adm-based Semantics

We now turn to semantics, which are based on the central concept of admissibility.

Admissible sets

Proposition 3.16. For each AF F = (A,R), adm(F) is an adm-closed extension-set containing
∅.

Proof. By definition ∅ is always admissible. We show that adm(F) is adm-closed. Towards
a contradiction, assume that adm(F) is not adm-closed, i.e. there exist some B,C ∈ adm(F)
such that for all b, c ∈ (B ∪ C) it holds that (b, c) ∈ Pairsadm(F), but (B ∪ C) /∈ adm(F).
From Lemma 2.1 we know that since both B and C are admissible in F , B ∪ C is defended by
itself in F . So for (B ∪ C) /∈ adm(F) there must be a conflict in B ∪ C, i.e. ∃(b, c) ∈ R such
that {b, c} ⊆ (B ∪ C). But then, for all D ∈ adm(F), {b, c} 6⊆ D. Hence by Definition 3.1,
(b, c) /∈ Pairsadm(F), a contradiction.

By containing ∅, adm(F) is also non-empty for each F .

Preferred semantics

Proposition 3.17. For each AF F = (A,R), pref(F) is a non-empty and pref-closed extension-
set.

Proof. By definition the preferred semantics always proposes at least one extension, i.e. pref(F)
is non-empty.

To show that pref(F) is a pref-closed extension-set consider two extensions B,C ∈ pref(F)
with B 6= C. Towards a contradiction let us assume that for all a, b ∈ (B ∪ C) it holds that
(a, b) ∈ Pairspref(F). Hence, (B ∪ C) ∈ cf(F) and by Lemma 2.1 all arguments in B ∪ C are
defended by B ∪C. Thus (B ∪C) ∈ adm(F). But now B ∪C is an admissible superset of the
preferred extensions B and C, a contradiction to the subset-maximality of preferred extensions.

Proposition 3.17 suggests that the variety of extension-sets under the preferred semantics
is bigger than the one of extension-set under the stage and stable semantics. While, given an
arbitrary AF, the set of stage and stable extensions is tight, the set of preferred extensions is only
pref-closed, which is weaker than tight (cf. Proposition 3.5 and Example 3.6). Figure 3.3 shows
the AF Fp. The extension-set S4 from Example 3.1 coincides with the preferred extensions of
Fp, pref(Fp). As S4 is not tight, there cannot be any framework F with stage(F) = S4 or
stb(F) = S4.

35

a′

b′

a

b c

d e

f

Figure 3.3: Argumentation framework Fp with pref(Fp) = S4

We can also give an alternative characterization of the set of preferred extensions.

Corollary 3.18. For each AF F = (A,R), pref(F) is a non-empty, incomparable and adm-
closed extension-set.

Proof. This follows immediately from Proposition 3.17 and Lemma 3.8, which says that each
extension-set which is pref-closed is also adm-closed and incomparable.

Semi-stable semantics Turning to semi-stable semantics we will see that a set of extensions
under the semi-stable semantics fulfills the same properties as an extension-set under the pre-
ferred semantics (cf. Proposition 3.17).

Proposition 3.19. For each AF F = (A,R), sem(F) is a non-empty and pref-closed extension-
set.

Proof. By definition the semi-stable semantics always proposes at least one extension, which
means that sem(F) is non-empty. By the facts that sem(F) ⊆ pref(F) (see Proposition 2.13)
and that pref(F) is pref-closed (see Proposition 3.17), we get that sem(F) is pref-closed by
Lemma 3.7.

Complete semantics

Proposition 3.20. For each AF F = (A,R), comp(F) is a non-empty, comp-closed extension-
set where

⋂
S∈ comp(F) S ∈ comp(F).

Proof. First note that there is always at least one complete extension, namely the grounded
extension. Moreover the grounded extension is the unique ⊆-minimal complete extensions and
hence

⋂
S∈ comp(F) S ∈ comp(F). Finally consider two complete extensions E,E′ such that

(a, b) ∈ Pairscomp(F) for each a, b ∈ (E ∪ E′). By Lemma 2.1, E ∪ E′ is an admissible set and
thus can be extended to a unique complete extension C ⊇ (E ∪ E′) by Lemma 2.6. Therefore
comp(F) is comp-closed.

Proposition 3.20 suggests the weakest restrictions for extension-sets under the complete
semantics compared to all semantics considered. We will see in Section 4.1 that the set of
extension-sets where one can find a corresponding AF is largest for the complete semantics
compared to the other semantics too.

36

cf naive stage stb adm pref sem comp

non-empty X X X - X X X X

downward-closed X - - - - - - -

dcl(S) tight X X - - - - - -

tight X X X X - - - -

incomparable - X X X - X X -

adm-closed X X X X X X X -

pref-closed - X X X - X X -

comp-closed X X X X X X X X

Table 3.2: Properties of semantics

Summarizing the results of this chapter we have seen that necessary properties of extension-sets
differ between the semantics with the exception of semi-stable and preferred semantics. We
will see in Section 4.1 that these necessary properties are also sufficient properties in order to
realize an extension-set by an AF, i.e. to find an AF which provides the extension-set under the
particular semantics.

Table 3.2 gives an overview of the necessary properties of extension-sets under the different
semantics. A checkmark in line p and column σ has to be read as follows: For each AF F the
set of extensions under semantics σ, σ(F), fulfills property p.

37

CHAPTER 4
Realizability

In Chapter 3 we have introduced several properties of extension-sets and showed that extension-
sets under certain semantics always fulfill certain properties. This chapter aims at finding prop-
erties of extension-sets such that, given a semantics, one can always find an AF where the
extensions under the semantics coincide with the given extension-set, i.e. the extension-set is
realizable under the semantics. We will first look at general realizability, where we do not re-
strict the number of arguments of the AF. Second we will introduce strict realizability by only
allowing arguments which occur in the given extension-set to be in the set of arguments of the
constructed AF. We will see that the characteristics for general and strict realizability do not
coincide in general.

4.1 General Realizability

In the previous chapter we have given necessary characteristics for the extension-sets under the
semantics σ, where σ ∈ {cf, adm, naive, stb, stage, pref, sem, comp} are the semantics of our
interest. Now we will show that these characteristics are also sufficient. So we investigate which
sets of extensions can be realized by argumentation frameworks under a particular semantics σ.
To this end, we require the concept of realizability.

Definition 4.1. Given a semantics σ, an extension-set S is called σ-realizable if there exists an
AF F such that σ(F) = S. S is then realized by F under σ.

This turns our characteristics into the desired characterizations for the signatures Σσ, which
we will formally introduce in Chapter 5.

In order to show realizability, we will define several canonical argumentation frameworks,
where each of these frameworks will be based on a given extension-set. If the extensions (under
a semantics σ) of this AF coincide with the ones of the extension-set it was built upon for
every extension-set (fulfilling certain properties), realizability is shown. So the definitions of
these canonical frameworks can be seen as construction-guidelines of AFs realizing the given
extension-set under a semantics σ.

39

Realizability of cf -based Semantics

We start with the following concept of a canonical argumentation framework, which will under-
lie all subsequent results on realizability.

Construction 4.1. Given an extension-set S, we define the canonical argumentation framework
F cf
S as

F cf
S =

(
ArgsS , (ArgsS × ArgsS) \ PairsS

)
.

F cf
S is a symmetric argumentation framework, i.e. it only consists of symmetric attacks.

Also observe that F cf
S contains no self-attacking arguments since (a, a) ∈ PairsS and therefore

(a, a) /∈ R
F cf
S

for each a ∈ ArgsS . The underlying idea for specifying the relation is simple.
Whenever two arguments occur jointly in a set S ∈ S, we must not draw a relation between
these two arguments; otherwise we do so. The fact that two arguments a and b occur jointly in
a set S ∈ S is indicated by (a, b) ∈ PairsS (cf. Definition 3.1). Also note that the size of F cf

S is
polynomial in the size of S.

Of course this is just a basic construction and will not suffice to cover realizability of all se-
mantics. For S2 = {{a1, b2, b3}, {a2, b1, b3}, {a3, b1, b2}, {b1, b2, b3}} (see Example 3.1), F cf

S2
is exactly the AF depicted in Figure 3.1. As easily checked, naive(F cf

S2) = S2 holds. When
we consider the extension-set S3 = {{a1, b2, b3}, {a2, b1, b3}, {a3, b1, b2}}, i.e. S3 = S2 \
{{b1, b2, b3}}, we obtain the same framework F cf

S3 = F cf
S2 . In terms of naive semantics, this is

not problematic since there cannot be an AF F , where the extensions under the naive semantics
coincide with S3, since the downward-closure of S3 is not tight. We have already discussed
this in Section 3.2. However, this observation readily suggests that realizing S3 with, say, stable
semantics, requires additional concepts. We will come back to this issue later in this chapter1,
but first state some formal results on the canonical framework as defined in Construction 4.1.

Proposition 4.1. For each non-empty, downward-closed, and tight extension-set S, it holds that
cf(F cf

S) = S.

Proof. To show that cf(F cf
S) ⊆ S, observe that for each E ∈ cf(F cf

S), there are no a, b ∈ E with
(a, b) ∈ R

F cf
S

. Therefore by construction of R
F cf
S

, it holds that (a, b) ∈ PairsS for all a, b ∈ E.

Now suppose there exists an E′ ∈ cf(F cf
S) such that E′ /∈ S. Without loss of generality let E′ be

⊆-minimal with this property. Then E′ = (S ∪ {c}) for some S ∈ S. As S is tight there is an
s ∈ S such that (s, c) /∈ PairsS , a contradiction to the above observation.

To show that cf(F cf
S) ⊇ S, consider some S ∈ S. Then all a, b ∈ S are contained as pairs

(a, b) ∈ Pairs
F cf
S

, thus by construction of F cf
S , it holds that (a, b) 6∈ R

F cf
S

for all a, b ∈ S. Hence

S ∈ cf(F cf
S).

Example 4.1. Figure 4.1 shows F cf
S1 , which is obtained from Construction 4.1 on the basis of

S1 = {∅, {a}, {b}, {c}, {a, c}} from Example 3.1. F cf
S1 does not contain an attack between a

1 Construction 4.2 will introduce the additional concepts needed for stable and stage semantics.

40

a b c

Figure 4.1: AF F cf
S1 with cf(F cf

S1) = S1 where S1 = {∅, {a}, {b}, {c}, {a, c}}

and c since (a, c) ∈ PairsS1 . It is easy to verify that F cf
S1 realizes S1 under the conflict-free

semantics, i.e. cf(F cf
S1) = S1.

We turn to naive semantics and approach the characterization for naive-realizable sets by the
following result, which will be useful later.

Lemma 4.2. For each incomparable and tight extension-set S, it holds that S ⊆ naive(F cf
S).

Proof. Towards a contradiction assume there is some S ∈ S such that S /∈ naive(F cf
S). Then

either S /∈ cf(F cf
S) or ∃S′ ⊃ S : S′ ∈ cf(F cf

S). If S /∈ cf(F cf
S), then by Construction 4.1

∃a, b ∈ S : (a, b) /∈ PairsS , a contradiction to S ∈ S . Thus ∃S′ ⊃ S : S′ ∈ cf(F cf
S). Then by

construction of F cf
S it holds that ∀a, b ∈ S′ : (a, b) ∈ PairsS . Now consider some a ∈ S′ \ S.

Since S is incomparable, S ∪ {a} /∈ S . Therefore, since S is tight, ∃b ∈ S : (a, b) /∈ PairsS , a
contradiction.

So when constructing F cf
S for an incomparable and tight set S , every S ∈ S is a naive

extension of F cf
S . To ensure that the framework does not give any further naive extensions, the

necessary properties of S have to be even stricter:

Proposition 4.3. For each incomparable and non-empty extension-set S, where dcl(S) is tight,
it holds that naive(F cf

S) = S.

Proof. Consider some incomparable and non-empty extension-set S, where dcl(S) is tight.
Since dcl(S) is surely downward-closed, as well as tight and non-empty by the assumption, we
know from Proposition 4.1 that cf(F cf

dcl(S)) = dcl(S). By Argsdcl(S) = ArgsS and Pairsdcl(S) =

PairsS also F cf
dcl(S) = F cf

S holds, hence cf(F cf
S) = dcl(S). By construction of dcl(S) the ⊆-

maximal sets in dcl(S) are the sets S ∈ S (note that S is incomparable by assumption) and as
naive sets are just ⊆-maximal conflict-free, naive(F cf

S) = S.

So for the set of naive extensions of F cf
S to be equal to the extension-set S it was built upon,

not only S has to be tight but also its downward-closure dcl(S).

Example 4.2. As already stated before, the AF in Figure 3.1 is just F cf
S2 , which we get by

Construction 4.1 on the extension-set S2, for which it holds that it is non-empty, incomparable
and its downward-closure dcl(S2) is tight. As easily checked, naive(F cf

S2) = S2. We get the
same AF F cf

S3 = F cf
S2 for the tight set S3. However dcl(S3) is not tight. Confirming Lemma 4.2

and Proposition 4.3 we get that naive(F cf
S3) = S2 and therefore S3 ⊆ naive(F cf

S3), but S3 6=
naive(F cf

S3).

41

a

Figure 4.2: Fprim having stb(Fprim) = ∅

So far, in order to realize a set S we used a framework from AFA of the form (A,R) with
A = ArgsS , i.e. no additional arguments have to be introduced in order to construct the frame-
work. For the subsequent results we require, in general, frameworks with A ⊃ ArgsS . In
Section 4.2 we will go into more detail on this issue and show that this cannot be avoided. For
the moment, we recall that A is infinite, hence there are always enough arguments available in
A.

Let us proceed with stable and stage semantics. Stable semantics are the only semantics that
can realize S = ∅. Note that S = ∅ is easily stb-realizable:

Example 4.3. The primitive framework Fprim in Figure 4.2 has no stable extensions, there-
fore stb(Fprim) = ∅. All other semantics σ we deal with in this thesis have the empty set of
arguments as single extension, σ(Fprim) = {∅}. To get the empty set of arguments as sin-
gle extension with stable semantics an empty AF Fempty = (∅, ∅) is needed. It holds that
stb(Fempty) = {∅} as well as σ(Fempty) = {∅} for all other semantics σ.

If we look back at Proposition 3.14 and Proposition 3.15 the only difference between the
possible sets of extensions one can get when dealing with stable and stage semantics was the
case S = ∅. The next results show that this indeed is the only difference for stable and stage
semantics when it comes to realizing extension-sets.

Before we can do this, we need a more involved canonical framework. As the canon-
ical framework from Construction 4.1 is symmetric, it holds that for each extension-set S ,
naive(F cf

S) = stb(F cf
S) = stage(F cf

S) (cf. Proposition 2.15). So also with stable and stage
semantics we have the problem of undesired extensions for canonical frameworks built upon
extension-sets with a non-tight downward-closure. But in contrast to naive semantics we can
overcome this problem with the following construction, which is inspired by a translation in [38].

Construction 4.2. Given an extension-set S, we define the canonical argumentation framework
F st
S as

F st
S =

(
Ast
S , R

st
S
)
,

with

Ast
S = ArgsS ∪ {Ē | E ∈ X}, and

Rst
S = ((ArgsS × ArgsS) \ PairsS) ∪ {(Ē, Ē), (a, Ē) | E ∈ X , a ∈ ArgsS \ E}

where X = naive(F cf
S) \ S .

The idea of Construction 4.2 is to suitably extend the canonical framework F cf
S from Con-

struction 4.1 such that undesired stable and stage extensions are excluded. Coming back to our
example with S3 = {{a1, b2, b3}, {a2, b1, b3}, {a3, b1, b2}}, recall that F cf

S3 (see Figure 3.1) had

42

a1 a2 a3

b1 b2 b3

Ē

Figure 4.3: AF F st
S3 with stb(F st

S3) = stage(F st
S3) = S3 where S3 = {{a1, b2, b3}, {a2, b1, b3},

{a3, b1, b2}}

one such undesired stable and stage extension, E = {b1, b2, b3}. To get rid of it we add a new
argument which is attacked by all other arguments from S3 but not by E. Figure 4.3 shows this
behaviour by depicting F st

S3 , which realizes S3 under the stable and stage semantics.

Proposition 4.4. For each incomparable and tight extension-set S, there exists an AF F such
that stb(F) = S. If S 6= ∅, then stb(F st

S) = S.

Proof. We have seen in Example 4.3 that the empty set is easily stb-realizable by the AF Fprim
in Figure 4.2. In the following we deal with a non-empty S . By Lemma 4.2 we already know
that S ⊆ naive(F cf

S). Let X = naive(F cf
S)\S and consider F st

S from Construction 4.2. We show
that stb(F st

S) = S.
In order to show that stb(F st

S) ⊆ S , let E ∈ stb(F st
S). As all new arguments (compared to

F cf
S) Ē are self-attacking, also naive(F st

S) = naive(F cf
S) and therefore E ∈ naive(F st

S). Now as
naive(F st

S) = (X ∪ S) there are two options, either E ∈ X or E ∈ S. Consider the first case,
E ∈ X . By construction of F st

S , E 67→ Ē and also Ē /∈ E, thus E /∈ stb(F st
S), a contradiction.

Hence it must hold that E ∈ S, therefore stb(F st
S) ⊆ S.

It remains to show that stb(F st
S) ⊇ S. To this end consider someE ∈ S. By Lemma 4.2,E ∈

naive(F cf
S), and, as F cf

S is symmetric and irreflexive, we have E ∈ stb(F cf
S) by Proposition 2.15.

Now consider F st
S . As we do not change attacks between the arguments ArgsS , E ∈ naive(F st

S)
and E attacks all arguments in ArgsS \ E. Now consider an arbitrary argument Ē′ for E′ ∈ X .
Ē′ is attacked by all arguments a ∈ ArgsS \ E′ and as E,E′ are both naive sets (and thus
incomparable) at least one of these arguments must be contained in E. Hence E ∈ stb(F st

S)
follows.

The following proposition shows that stable and stage semantics coincide in terms of real-
izability, with the exception of the empty set of extensions, which cannot be realized under the
stage semantics. AFs realizing extension-sets under the stage semantics are also obtained from
Construction 4.2.

Proposition 4.5. For each non-empty, incomparable, and tight extension-set S, it holds that
stage(F st

S) = S.

43

Proof. We know from Proposition 4.4 that stb(F st
S) = S for each non-empty, incomparable and

tight extension-set S. Since for each F with stb(F) 6= ∅, stb(F) = stage(F) holds, it follows
that stage(F st

S) = S.

Realizability of adm-based Semantics

When dealing with admissibility-based semantics, the concept of defense comes into play. This
means that in order to realize an extension-set S under the admissibility-based semantics we
consider in this thesis, i.e. admissible sets as well as preferred, semi-stable and complete seman-
tics2 by some AF F , the construction of this F has to ensure that every extension S ∈ S is
defended by itself in F .

Towards such a suitable canonical AF for admissibility-based semantics we introduce the
following technical concept.

Definition 4.2. Given an extension-set S and an argument a ∈ ArgsS , we define Sa = {S ∈
S | a ∈ S} as the elements of S containing a. The defense-formula DefSa of argument a is > if
{a} ∈ S and ∨

S∈Sa

∧
s∈S\{a}

s

otherwise.
We call DefSa converted to a (logically equivalent) formula in conjunctive normal form CNF-

defense-formula CDefSa .

Intuitively, DefSa describes the conditions it takes for the argument a to be in an extension.
The propositional atoms of DefSa (and CDefSa) coincide with the arguments ArgsS . Each term
represents a set of arguments which jointly allows a to “join” an extension. If S is a set of
admissible extensions, each term represents the conjunction of arguments a is defended by.

Example 4.4. Consider the extension-set S5 = {{a}, {b, c}, {a, c, d}}. Then the defense-
formulas are DefS5a = >, DefS5b = c, DefS5c = b∨ (a∧d) and DefS5d = a∧ c. The corresponding
CNF-defense-formulas are given as

• CDefS5a = {},

• CDefS5b = {{c}},

• CDefS5c = {{a, b}, {b, d}}, and

• CDefS5d = {{a}, {c}}.
2 We also considered the grounded semantics, which is admissibility-based too. We do not take into account the

grounded semantics in this chapter, since any extension-set, which contains exactly one element, is trivially realizable
under the grounded semantics by the AF F = (ArgsS , ∅). This also holds for the ideal semantics [34] and the eager
semantics [22], which are also unique status semantics.

44

For extension-set S6 = {{a}, {b}, {c}, {a, b, c}} we have the trivial case that all arguments
out of ArgsS6 form one-element-sets in S6. Therefore DefS6a = DefS6b = DefS6c = > and
CDefS6a = CDefS6b = CDefS6c = {}

Finally considering S7 = {{a, b}, {b, c}, {c, a}}, the CNF-defense-formulas are

• CDefS7a = {{b, c}},

• CDefS7b = {{a, c}}, and

• CDefS7c = {{a, b}}.

The following lemma shows that the (CNF-)defense-formula for any argument a really captures
the intuition of describing which arguments it takes for a in order to join an element of the given
extension-set.

Lemma 4.6. Given an extension-set S and an argument a ∈ ArgsS , for each S ⊆ ArgsS with
a ∈ S the following holds: (S \ {a}) is a model of DefSa (resp. CDefSa) iff there exists an S′ ⊆ S
with a ∈ S′ such that S′ ∈ S.

Proof. The if-direction follows straight by definition of DefSa . Let S′ ∈ S with a ∈ S′, then the
conjunction of the elements of S′ \ {a} forms a term of DefSa . So S′ \ {a} is clearly a model of
DefSa .

To show the only-if-direction consider some S ⊆ ArgsS with a ∈ S where S \ {a} is a
model of DefSa . If DefSa = > then by Definition 4.2 it holds that {a} ∈ S, and S′ = {a} fulfills
the conditions. For S \ {a} to be a model of DefSa 6= >, there must be some term τ ∈ DefSa ,
whose elements form a subset of S \{a}. Consider such a term τ ∈ DefSa . Then by construction
of DefSa there is some S′ ∈ S with a ∈ S′, where S′ \ {a} coincides with the elements of τ . So
S′ ⊆ S.

Since DefSa ≡ CDefSa , these formulas can be used interchangeably in this proposition.

Having at hand a formula for each argument, where its models coincide with the sets of
arguments that defend this original argument, we can give the construction of our canonical
defense-argumentation-framework.

Construction 4.3. Given an extension-set S, we define the canonical defense-argumentation-
framework by extending the canonical AF F cf

S = (Acf
S , R

cf
S) to

F def
S = (Adef

S , R
def
S)

where

Adef
S = Acf

S ∪
⋃

a∈ArgsS

{αa,γ | γ ∈ CDefSa }, and

Rdef
S = Rcf

S ∪
⋃

a∈ArgsS

{(b, αa,γ), (αa,γ , αa,γ), (αa,γ , a) | γ ∈ CDefSa , b ∈ γ}.

45

a b

c

αc,{a,b}

αb,{a,c} αa,{b,c}

Figure 4.4: AF F def
S7 for S7 = {{a, b}, {b, c}, {c, a}}

The canonical defense-argumentation-framework consists of all arguments given in the ex-
tension-set plus a certain amount of additional arguments, αa,γ . First of all each of these new
arguments attacks itself in order not to be taken into account when it comes to figuring out
the admissible sets of the framework. Further αa,γ attacks argument a and is attacked by all
arguments occurring as literals in the clause γ ∈ CDefSa . So in this framework, for a to be
defended from αa,γ , it takes at least one argument of these occurring as literals in the clause γ
of CDefSa . Therefore this constructed framework depicts the intended meaning of the defense-
formulas, meaning that a certain argument needs other arguments to be defended.

First of all we will see that for any set of extensions S, with the framework F def
S from

Construction 4.3 it is guaranteed that all S ∈ S form admissible sets. We motivate this by an
example.

Example 4.5. Consider the extension-set S6 = {{a}, {b}, {c}, {a, b, c}} from Example 3.1.
Note that S6 is not adm-closed, but comp-closed (see Table 3.1). The CNF-defense-formulas
are given in Example 4.4. It is easy to verify that Rcf

S as well as Rdef
S are empty and therefore

F def
S6 = ({a, b, c}, ∅). So adm(F def

S6) = dcl(S6) and of course for all S ∈ S6 also S ∈ adm(F def
S6).

Still the other direction does not hold, because there are admissible sets of F def
S6 , namely ∅, {a, b},

{a, c}, and {b, c}, which are not in S6.
As another example consider the extension-set S7 = {{a, b}, {b, c}, {c, a}}, which is neither

adm-closed nor comp-closed. Again the CNF-defense-formulas are given in Example 4.4. The
constructed AF F def

S7 is given by Figure 4.4. One can verify that adm(F def
S7) = (S7∪{{a, b, c}}).

So again it holds that S7 ⊆ adm(F def
S7), but not the other direction since {a, b, c} /∈ S7.

Actually, for both cases, S6 and S7, there is no AF, which realizes one of the extension-sets
under the admissible semantics, as neither S6 nor S7 contains ∅. However, not even (S6 ∪ {∅})
nor (S7∪∅) is realizable under the admissible semantics, since we have seen in Proposition 3.16,
that for each AF F it holds that adm(F) is adm-closed.

We show that it holds for every extension-set, that each element of the extension-set is ad-
missible in the AF obtained by Construction 4.3.

Proposition 4.7. For each extension-set S it holds that S ⊆ adm(F def
S).

46

a b c d

αb,{c} αc,{a,b} αc,{b,d} αd,{a} αd,{c}

Figure 4.5: AF F def
S5∪{∅} with adm(F def

S5∪{∅} ∪ {∅}) = S5 ∪ {∅} where S5 = {{a}, {b, c},
{a, c, d}}

Proof. In order to show S ⊆ adm(F def
S), consider an arbitrary S ∈ S. If S = ∅, the assertion

trivially holds. If S consists of exactly one argument, i.e. S = {a}, then CDefSa is the empty set
of clauses. By definition of Rdef

S , a is then defended in F def
S and thus S ∈ adm(F def

S). Thus let
S ∈ S contain at least two arguments. By construction, S is conflict-free in F def

S , since conflicts
between two original arguments s1, s2 are only constructed if (s1, s2) /∈ PairsS , which is not the
case since S ∈ S.

It remains to show that each s ∈ S is defended by S in F def
S . Let s ∈ S. If {s} ∈ S , we

know from the one-element case that {s} ∈ adm(F def
S), so s is defended. On the other hand,

assume {s} /∈ S. By Lemma 4.6 we know that S \ {s} is a model of DefSs as well as of CDefSs .
The latter means that each clause γ ∈ CDefSs contains at least one variable tγ ∈ S \ {s}. Thus,
by construction of Rdef

S , it follows that S \ {s} 7→ αs,γ for each γ ∈ CDefSs , i.e. s is defended
by S \ {s} in F def

S . Hence S ∈ adm(F def
S) and therefore S ⊆ adm(F def

S).

Knowing that S ⊆ adm(F def
S) holds for any extension-set S, we will show now that the other

direction, i.e. adm(F def
S) ⊆ S , holds for all adm-closed extension-sets, meaning that such sets

are realizable under the admissible semantics.
Again we begin with an example.

Example 4.6. Again consider the extension-set S5, but extended by the empty extension. As ∅
is an admissible set in any AF, we need it in the extension-set in order to find an AF realizing
the extension-set. So we have S5∪{∅} = {∅, {a}, {b, c}, {a, c, d}}. Note that adding ∅ does not
make a difference with the (CNF-)defense-formulas. We have given the CNF-defense-formulas
in Example 4.4. F def

S5∪{∅} thus is given by the AF in Figure 4.5. Considering, for instance,

argument c, having CDefS5∪{∅}c = {{a, b}, {b, d}}, one can see that in F def
S5∪{∅} it takes a or b in

order to defend c from αc,{a,b}, and b or d in order to defend c from αc,{b,d}. Long story short,
adm(F def

S5∪{∅}) = (S5 ∪ {∅}).

Proposition 4.8. For each adm-closed extension-set S containing ∅, it holds that adm(F def
S) =

S.

47

Proof. We have already seen in Proposition 4.7, that adm(F def
S) ⊇ S holds for every extension-

set S.
So it remains to show that adm(F def

S) ⊆ S holds for each adm-closed extension-set S con-
taining ∅. Consider some S ∈ adm(F def

S). First of all, S cannot contain any of the self-attacking
arguments αa,γ . For S = ∅, S ∈ S holds by definition. If S consists of exactly one argument,
i.e. S = {a}, it must hold that ∀b ∈ A s.t. b 7→ a : a 7→ b. For that, by construction of F def

S , it
must hold that CDefSa = {}, therefore S ∈ S. Now assume S contains at least two arguments. S
being conflict-free, by definition of Rdef

S , guarantees that ∀a, b ∈ S : (a, b) ∈ PairsS . Let s ∈ S
with {s} /∈ adm(F def

S). Then we have αs,γ 7→ s for each γ ∈ CDefSs . Since s is defended by S,
for each γ ∈ CDefSs , it holds that ∃tγ ∈ (S \ {s}) : tγ 7→ αs,γ . By definition, thus tγ occurs
in the clause γ. It follows that T = {tγ | γ ∈ CDefSs } is a model of CDefSs and thus also of the
defense-formula DefSs . Then by Lemma 4.6 there is some S′ ⊆ T ∪ {s} with s ∈ S′ such that
S′ ∈ S. Recall also that in case {s} ∈ adm(F def

S), we know from above that {s} ∈ S. Connect-
ing these conclusions with the facts that S is adm-closed and ∀a, b ∈ S : (a, b) ∈ PairsS , we
get S ∈ S.

We can use the same construction to realize certain, namely non-empty and pref-closed,
extension-sets under the preferred semantics.

Example 4.7. In Example 4.6 we have seen that adm(F def
S5 ∪ {∅}) = (S5 ∪ {∅}). As S5 is not

pref-closed consider the pref-closed extension-set S ′5 = S5 \ {{a}} = {{b, c}, {a, c, d}}. We
get the following CNF-defense-formulas:

• CDefS
′
5
a = {{c}, {d}},

• CDefS
′
5
b = {{c}},

• CDefS
′
5
c = {{a, b}, {b, d}}, and

• CDefS
′
5
d = {{a}, {c}}.

Thus F def
S′5

is given by the AF in Figure 4.6. We observe that pref(F def
S′5

) = (adm(F def
S′5

) \ {∅}) =

S ′5.

Now we are ready to show that the AFs one obtains from Construction 4.3 are also suitable
to realize non-empty, pref-closed extension-sets under the preferred semantics.

Proposition 4.9. For each non-empty and pref-closed extension-set S , it holds that pref(F def
S) =

S.

Proof. Let S be a non-empty and pref-closed extension-set and S ′ = (S ∪ {∅}). Clearly S ′ is
non-empty. By Construction 4.3 it holds that F def

S′ = F def
S . From Lemma 3.9 we obtain that S ′ is

adm-closed. Then by Proposition 4.8 adm(F def
S) = S ′. As preferred extensions are ⊆-maximal

admissible sets and since S is incomparable by Lemma 3.8, pref(F def
S) = S follows.

48

αa,{c} αa,{d} αd,{a} αd,{c}

a b c d

αb,{c} αc,{a,b} αc,{b,d}

Figure 4.6: AF F def
S′5

where S ′5 = S5 \ {{a}} with pref(F def
S′5

) = (adm(F def
S′5

) \ {∅}) = S ′5

Another way to characterize the pref-realizable extension-sets is the following.

Corollary 4.10. For each non-empty, incomparable and adm-closed extension-set S, it holds
that pref(F def

S) = S.

Proof. This follows immediately from Proposition 4.9 and Lemma 3.8.

Coming to semi-stable semantics we have seen by Proposition 3.19 and Proposition 3.17
that extension-sets under the semi-stable and the preferred semantics share the same necessary
properties. We will show that being non-empty and pref-closed are also sufficient conditions for
an extension-set to be realizable under the semi-stable semantics. Therefor we will need a minor
adjustment to Construction 4.3 in order to deal with the range of extensions in the constructed
AF. The following construction is inspired by the first translation in [39], just the symmetry of
the additional attacks is omitted.

Construction 4.4. Given an extension-set S, we define the enhanced canonical defense-argu-
mentation-framework by extending the canonical defense-AF F def

S = (Adef
S , R

def
S) to

F sem
S = (Asem

S , Rsem
S),

where

Asem
S = Adef

S ∪
⋃

a∈ArgsS

{δa}, and

Rsem
S = Rdef

S ∪
⋃

a∈ArgsS

{(a, δa), (δa, δa)}.

The introduction of such a self-attacking argument δa for each a ∈ ArgsS which is attacked
by a has the effect that for two different extensions A,B ∈ S, where A 6⊆ B holds, also
A+ 6⊆ B+ holds.

49

αa,{c} αa,{d} αd,{a} αd,{c}

a δa b δb c δc d δd

αb,{c} αc,{a,b} αc,{b,d}

Figure 4.7: AF F sem
S′5

where S ′5 = S5 \ {{a}} with sem(F sem
S′5

) = S ′5

We look at an example before proposing the realizability-result.

Example 4.8. In Example 4.7 we have seen that pref(F def
S′5

) = S ′5, where S ′5 = (S5 \ {{a}}) =

{{b, c}, {a, c, d}}. Observe that in F def
S′5

= (Adef
S′5
, Rdef
S′5

), {a, c, d}+ = Adef
S′5

, but {b, c}+ =

Adef
S′5
\ {αa,{d}, αd,{a}}. Therefore {b, c} /∈ sem(F def

S′5
).

Now consider F sem
S′5

in Figure 4.7. As each argument x ∈ ArgsS′5 exclusively attacks some
δx, the range of the two extensions is incomparable, i.e. δb /∈ {a, c, d}+ and, for instance,
δa /∈ {b, c}+. Therefore sem(F sem

S′5
) = S ′5.

Proposition 4.11. For each non-empty, pref-closed extension-set S , it holds that sem(F sem
S) =

S.

Proof. First note that since each argument newly introduced in Construction 4.4, i.e. δa for a ∈
ArgsS , attacks itself and does not attack any a ∈ Asem

S , it follows that adm(F def
S) = adm(F sem

S)

and therefore also pref(F def
S) = pref(F sem

S) for each extension-set S.
As, for a non-empty and pref-closed extension-set S, we know pref(F def

S) = S and also
pref(F sem

S) = S, sem(F sem
S) ⊆ S follows from the fact that sem(F) ⊆ pref(F) for each AF F

(cf. Proposition 2.13).
It remains to show that S ⊆ sem(F sem

S). Consider someA,B ∈ S and to the contrary assume
that A+ ⊂ B+, meaning that A /∈ sem(F sem

S). Since A,B ∈ pref(F sem
S) it holds that A 6⊆ B.

Therefore there exists some a ∈ A \ B. But then, by definition of F sem
S in Construction 4.4,

δa ∈ A+, but δa /∈ B+, a contradiction to A+ ⊂ B+. Therefore for each A ∈ S it holds that
A ∈ sem(F sem

S), i.e. S ⊆ sem(F sem
S).

Now we turn to the complete semantics. When constructing an AF in order to realize some
extension-set under the complete semantics we not only have to take care of conflict-freeness
and defense of each element of the extension-set, but also have to ensure that the extensions we

50

want to realize are fixed-points of the characteristic function of the constructed AF. To this end
we first introduce another technical concept.

Definition 4.3. Given a comp-closed extension-set S and an argument a ∈ ArgsS , let T a =
{A ∪ B | A,B ∈ S,∀s, t ∈ A ∪ B : (s, t) ∈ PairsS , a /∈ (A ∪ B), a ∈ CS(A ∪ B)}3. We
define the completion-formula ComSa of argument a as > if T a = ∅ and∨

S∈T a

∧
s∈S

s

otherwise.
ComSa converted to a (logically equivalent) formula in conjunctive normal form we call CNF-

completion-formula CComSa .

Intuitively, the completion-formula of an argument a ∈ ArgsS describes the sets of argu-
ments which have to be “completed” by a. The idea behind the completion-formula is when
building an AF F on the basis of some comp-closed extension-set S, where some sets S /∈ S
are admissible one may need a concept to let these admissible sets in F defend other arguments
in order not to be complete extensions. In particular when dealing with a comp-closed extension-
set, one may have A,B ∈ S, but (A∪B) /∈ S (some unique C ⊇ (A∪B) with C ∈ S though).
In any AF F where A, B, and C are admissible, also A ∪ B is, so you need to force A ∪ B to
defend some a ∈ C \ (A ∪B) in order not to be a complete extension.

Example 4.9. Consider the extension-set S6 = {{a}, {b}, {c}, {a, b, c}}. Then the completion-
formulas are ComS6a = b ∧ c, ComS6b = a ∧ c and ComS6c = a ∧ b. The corresponding CNF-
completion-formulas are given as

• CComS6a = {{b}, {c}},

• CComS6b = {{a}, {c}}, and

• CComS6c = {{a}, {b}}.

We are now ready to define the canonical completion-argumentation-framework, which we
will use in order to realize extension-sets fulfilling sufficient conditions under the complete
semantics.

Construction 4.5. Given an extension-set S, let Gr =
⋂
S∈S S. We define the canonical

completion-argumentation-framework by extending the canonical AF F cf
S = (Acf

S , R
cf
S) to

F comp
S = (Acf

S ∪A
′def
S ∪A

comp
S ∪AgS , R

cf
S ∪R

′def
S ∪R

comp
S ∪RgS)

where

3 Note that as S is comp-closed, CS(A ∪ B) contains exactly one element, and therefore CS(A ∪ B) is well-
defined

51

a b c

βa,{b} βa,{c} βb,{a} βb,{c} βc,{a} βc,{b}

Figure 4.8: AF F comp
S′6

with comp(F comp
S′6

) = S ′6 where S ′6 = {∅, {a}, {b}, {c}, {a, b, c}}

A′def
S =

⋃
a∈(ArgsS\Gr)

{αa,γ | γ ∈ CDefSa },

Acomp
S =

⋃
a∈(ArgsS\Gr)

{βa,γ | γ ∈ CComSa },

AgS =
⋃

a∈(ArgsS\Gr),CComSa=>

{δa},

R′def
S =

⋃
a∈(ArgsS\Gr)

{(b, αa,γ), (αa,γ , αa,γ), (αa,γ , a) | γ ∈ CDefSa , b ∈ γ},

Rcomp
S =

⋃
a∈(ArgsS\Gr)

{(b, βa,γ), (βa,γ , βa,γ), (βa,γ , a), (a, βa,γ) | γ ∈ CComSa , b ∈ γ}, and

RgS =
⋃

a∈(ArgsS\Gr),CComSa=>

{(a, δa), (δa, δa), (δa, a)}.

Note that in F comp
S from Construction 4.5, each argument a ∈ Gr has no ingoing attacks.

By looking at Construction 4.5 in a procedural way, one could split the procedure into three
steps.

1. In a first step, with Rcf
S and R′def

S , the AF is build in a way that all S ∈ S are admissible
sets in F comp

S . This works nearly the same way as in Construction 4.3. Still there can be
admissible sets in F comp

S which are not in S.

2. In the second step, by addingRcomp
S , admissible setsA∪B whereA,B ∈ S, but (A∪B) /∈

S , are forced to defend certain arguments a ∈ CS(A ∪ B) to ensure that (A ∪ B) /∈
comp(F comp

S).

3. In the third and last step, adding RgS makes sure that the remaining admissible sets are
also complete extensions, since it is impossible for them to defend any argument a, where
δa 7→ a and only a 7→ δa.

In none of the steps, any attack on an argument a ∈ Gr is added in order to let Gr surely be the
least complete extension.

52

δa a c b δb

αc,{a} βc,{a} βc,{b}

Figure 4.9: AF F comp
S with comp(F comp

S) = S where S = {∅, {a}, {b}, {a, c}, {a, b, c}}

Example 4.10. Consider the extension-set S ′6 = S6 ∪ {∅} = {∅, {a}, {b}, {c}, {a, b, c}}. We
have given the CNF-completion-formulas in Example 4.9 (note that CComS6s = CComS

′
6
s for any

s ∈ ArgsS6). Further CDefS
′
6
s = {} for any s ∈ ArgsS6 (see Example 4.4). F comp

S′6
thus is given by

the AF in Figure 4.8. Consider, for instance, {a} ∈ S ′6 and {b} ∈ S ′6, where ({a} ∪ {b}) /∈ S ′6.
It is easy to see that {a} ∪ {b} is admissible in F comp

S′6
, but as {a} ∪ {b} defends arguments c

from its attackers βc,{a} and βc,{b}, it follows that {a, b} is not a complete extension of F comp
S′6

,
but {a, b, c} is. The same holds equivalently for {b, c} and {a, c}.

In F comp
S′6

from Example 4.10, it holds that Rdef
S′6

= RgS′6
= ∅. To get a better understanding of

the construction, we give another example.

Example 4.11. Consider the extension-set S = {∅, {a}, {b}, {a, c}, {a, b, c}}. The CNF-
defense-formulas are CDefSa = CDefSb = {} and CDefSc = {{a}}. The CNF-completion-
formulas are given by CComSa = CComSb = {} and CComSc = {{a}, {b}}. Hence the AF
F comp
S is the one depicted in Figure 4.9.

Proposition 4.12. For each non-empty and comp-closed extension-set S which contains Gr =⋂
S∈S S, it holds that comp(F comp

S) = S.

Proof. We begin by showing S ⊆ comp(Fcomp
S): Consider some S ∈ S. By Proposition 4.7 we

know that S ⊆ adm(F def
S), i.e. S is admissible in F def

S . Note that all attackers βa,γ ∈ Acomp
S and

δa ∈ AgS (these are just the additional arguments in F comp
S compared to F def

S) are re-attacked by
the argument they are attacking, which means that any argument is defended by itself from any
of these attackers. Also these arguments are self-attacking. Therefore S is admissible in F comp

S .
It remains to show that S is a complete extension of F comp

S , i.e. for all a defended by S,
a ∈ S. To the contrary, assume some a ∈ ArgsS \ S is defended by S in F comp

S . Note that
S ∪ {a} is then admissible in F comp

S by Dung’s fundamental lemma (Lemma 2.3). Further
note that a /∈ Gr since Gr ⊆ S. We distinguish between the cases that either there is some
βa,γ ∈ Acomp

S attacking a or not.

1. Consider the case that @βa,γ ∈ Acomp
S : (βa,γ , a) ∈ Rcomp

S . Hence CComa
S = Coma

S = >.
But then ∃δa ∈ AgS : (δa, a), (a, δa) ∈ RgS , and δa having no additional attackers, a
contradiction to the assumption that a is defended by S in F comp

S .

53

2. Now consider the case that ∃βa,γ ∈ Acomp
S : (βa,γ , a) ∈ Rcomp

S . In order to defend a, S
has to attack βa,γ for each γ ∈ CComSa . Then by Construction 4.5 S |= CComSa , and also
S |= ComSa . The latter means by Definition 4.3 that ∃A,B ∈ S : a /∈ (A ∪ B) ∧ a ∈
CS(A ∪B) ∧ S ⊇ (A ∪B). Consider such A,B ∈ S. Since a ∈ CS(A ∪B) but a /∈ S,
it follows that S 6⊇ CS(A ∪ B). If S ⊂ CS(A ∪ B), we get a contradiction to S being
comp-closed. The same holds in the last case, where S and CS(A∪B) are incomparable,
since CS(A ∪B) is then not a unique superset of A ∪B.

It remains to show that comp(Fcomp
S) ⊆ S: First of all, any S ∈ comp(F comp

S) cannot contain
any of the self-attacking arguments αa,γ ∈ A′def

S , βa,γ ∈ Acomp
S and δa ∈ AgS .

• We begin by considering the grounded extension of F comp
S , grd(F comp

S). We argue that
grd(F comp

S) = Gr, where Gr =
⋂
S∈S S. Note that Gr is contained in S by assumption.

Since Gr ⊆ S holds for all S ∈ S, there are no a ∈ ArgsS and b ∈ Gr such that (a, b) ∈
Rcf
S or (b, a) ∈ Rcf

S . Also by Construction 4.5 there are no attacks on any b ∈ Gr in any of
R′def
S , Rcomp

S and RgS . Therefore Gr ⊆ grd(F comp
S). Particularly, Gr is the set of arguments

in F comp
S with no ingoing attacks. We continue by showing that Gr ⊇ grd(F comp

S). Note
that for each argument s ∈ ArgsS with s /∈ Gr, there exists an a ∈ (AgS ∪ A

comp
S) such

that (a, s) either in RgS or in Rcomp
S . Consider such s ∈ ArgsS \Gr and a ∈ (AgS ∪A

comp
S)

and, towards a contradiction, assume s is defended by Gr, meaning s ∈ grd(F comp
S). If

(a, s) ∈ RgS , we get a contradiction to Gr defending s, since a is only attacked by s
and by itself. So (a, s) ∈ Rcomp

S . Then Gr must defend s from each attacking a, i.e.
Gr |= CComSs , and also Gr |= ComSs . Therefore by Construction 4.5 there must be some
term τ ∈ ComSs with Gr ⊇ τ . This means by Definition 4.3 there are someA,B ∈ S with
(A ∪ B) /∈ S and Gr ⊇ (A ∪ B). But this is a contradiction to Gr ∈ S as for all S ∈ S ,
S ⊇ Gr. Therefore Gr ⊆ grd(F comp

S) and also grd(F comp
S) = Gr.

• Finally we show that for each S ∈ (comp(F comp
S) \ {Gr}), it holds that S ∈ S. We begin

by arguing that C(A∪B) ⊆ S for each S ∈ (comp(F comp
S) \ {Gr}) and A,B ⊆ S, where

A,B ∈ S. To this end let S ∈ (comp(F comp
S) \ {Gr}) and A,B ⊆ S with A,B ∈ S.

As S is a complete extension, for all s ∈ ArgsS \ S4 it holds that s is not defended by S.
Consider such an s ∈ ArgsS \ S. By Construction 4.5 each argument is attacked either by
some a ∈ AgS or a ∈ Acomp

S .

1. Assume there is some a ∈ AgS such that (a, s) ∈ RgS . Then CComSs = {}, which
means by Definition 4.3 that @A′, B′ ∈ S : s /∈ (A′ ∪B′), s ∈ CS(A′ ∪B′). Hence
also s /∈ CS(A ∪B).

2. Assume there is some a ∈ Acomp
S such that (a, s) ∈ Rcomp

S and S 7→ a does not hold.
Then by Construction 4.5 S 6|= ComSs and also S 6|= CComSs . Hence S 6⊇ τ for any
term τ ∈ ComSs . This means by Definition 4.3 that @A′, B′ ∈ S : s /∈ A′ ∪B′ ∧ s ∈
CS(A′ ∪B′) ∧ S ⊇ (A′ ∪B′). Hence, again s /∈ CS(A ∪B).

4 Again it suffices to consider ArgsS since all other arguments in F comp
S are self-attacking.

54

Therefore CS(A ∪ B) ⊆ S for each S ∈ (comp(F comp
S) \ {Gr}) and A,B ⊆ S, where

A,B ∈ S.

Since S is a complete extension also S ∈ adm(F comp
S). So each s ∈ S is defended by S.

Consider some s ∈ S. By Construction 4.5, s defends itself from all possible attackers
in Acf

S , Acomp
S and AgS . So we take a look at the attackers in A′def

S . We have αs,γ 7→ s
for each γ ∈ CDefSs . Since s is defended by S, for each γ ∈ CDefSs , it holds that
∃tγ ∈ (S \ {s}) : tγ 7→ αs,γ . By definition, thus tγ occurs in the clause γ. It follows that
T = {tγ | γ ∈ CDefSs } is a model of CDefSs and thus also of the defense-formula DefSs .
Then by Lemma 4.6 there is some S′s ⊆ (T ∪ {s}) (also S′s ⊆ S) with s ∈ S′s such that
S′s ∈ S for each s ∈ S. We know from above that CS(S′s1 ∪ S

′
s2) ⊆ S for any s1, s2 ∈ S.

As S is comp-closed and therefore CS(S′s1 ∪ S
′
s2) ∈ S also S ∈ S.

Having shown that comp-closed extension-sets containing the intersection of all its elements
are realizable in general, we conclude the topic of realizability under the complete semantics
with a final example. In the examples seen so far the AFs obtained from Construction 4.5 had
no attacks between the initial arguments, i.e. ∀a, b ∈ S : (a, b) ∈ PairsS . The following example
will have some of these attacks.

Example 4.12. Consider the extension-set S = {∅, {a}, {b}, {x}, {y}, {x, y}, {a, b, c}}. The
CNF-defense-formulas are

• CDefSa = CDefSb = CDefSx = CDefSy = {} and

• CDefSc = {{a}, {b}},

and the CNF-completion-formulas are

• CComSa = CComSb = CComSx = CComSy = {} and

• CComSc = {{a}, {b}}.

The framework F comp
S obtained from Construction 4.5 is depicted in Figure 4.10. It holds that

comp(F comp
S) = S . One can see that the defense- and completion-formulas coincide for all

s ∈ ArgsS and that the arguments βc,{a} and βc,{b} and all in- and outgoing attacks could be
omitted, because the arguments αc,{a} and αc,{b} already fill their role of enforcing c to be in an
extension containing a and b.

Example 4.12 also shows a downside of Construction 4.5, as the AF F comp
S we get from

the construction contains many extra arguments, while S could be realized under the complete
semantics by a much more compact framework. Construction 4.5 is defined generally in order
to realize any comp-closed extension-set, therefore the size of a constructed AF can be much
bigger than necessary. In Section 5.2 we will see a much smaller AF realizing the extension-set
S from Example 4.12.

Corollary 4.13. Each extension-set S which is adm-realizable is also comp-realizable.

55

a

b

x

y

c

δa

δb

δx

δy

αc,{a}

αc,{b}

βc,{a}

βc,{b}

Figure 4.10: AF F comp
S realizing S = {∅, {a}, {b}, {x}, {y}, {x, y}, {a, b, c}} under the com-

plete semantics

Proof. As each adm-closed set is comp-closed by Lemma 3.10 and for each S containing ∅ it
holds that

⋂
S∈S S ∈ S, this follows immediately from Proposition 4.8 and Proposition 4.12.

We have seen that the necessary conditions from Chapter 3 coincide with the sufficient
conditions in terms of realizability given in this chapter. Table 4.1 summarizes, which of the
extension-sets defined in Example 3.1 are realizable with the semantics we consider. An entry
in line σ and column S has to be interpreted as follows:

• A checkmarkX indicates that S is realizable under the semantics σ.

• In addition, a number of the form x.y indicates that S is realizable under the semantics σ
and the AF doing so is depicted in Figure x.y.

56

S0 S1 S2 S3 S4 S5 S6 S7
cf - 4.1 - - - - - -

naive - - 3.1 - - - - -

stage - - 3.1 3.2 - - - -

stb 4.2 - 3.1 3.2 - - - -

adm - 4.1 (X) (X) (X) (4.5) - -

pref - - 3.1 3.2 3.3 - - -

sem - - 3.1 3.2 3.3 - - -

comp - X (X) 3.2 (X) (X) 4.8 -

Table 4.1: Realizability of the extension-sets from Example 3.1 under the semantics of our
interest

• If the number or the checkmark is in brackets, then not S but S ∪ {∅} is realizable under
the semantics σ.

• A “–” indicates that S is not realizable under the semantics σ.

4.2 Strict Realizability

In Section 4.1, we have investigated which sets of extensions can be realized by argumentation
frameworks under a particular semantics σ. In other words, given a collection S of sets of
arguments, we clarified whether there exists an AF F such that σ(F) = S. The following
sharpening of such a concept is natural: does there exist an AF F = (ArgsS , R) such that
σ(F) = S , i.e. can we find an AF without additional arguments which do not appear in the
desired extensions. We call a set of extensions strictly realizable under the semantics σ if such
an AF exists.

We make this idea formal:

Definition 4.4. Given a semantics σ, an extension-set S is called strictly σ-realizable if there
exists an AF F = (ArgsS , R) such that σ(F) = S. S is then strictly realized by F under σ.

We will see that for the conflict-free and naive semantics general and strict realizability
coincide. For the other semantics we deal with in this thesis this does not hold. We will show
why this is the case by giving examples of extension-sets, which are proven to be generally
realizable but are evidentially not strictly realizable.

We begin with the conflict-free semantics.

Proposition 4.14. Each non-empty, downward-closed, and tight extension-set S is strictly cf-
realized by F cf

S .

57

Proof. We know from Proposition 4.1 that each non-empty, downward-closed and tight exten-
sion-set S is cf-realizable by F cf

S . As Construction 4.1 does not introduce additional arguments
other than ArgsS , S is strictly cf-realizable.

Corollary 4.15. Each extension-set S which is cf-realizable, is also strictly cf-realizable.

As an example, the AF in Figure 4.1 strictly realizes the extension-set S1 = {∅, {a}, {b},
{c}, {a, c}} under the conflict-free semantics.

We continue with the naive semantics.

Proposition 4.16. Each incomparable and non-empty extension-set S, where dcl(S) is tight, is
strictly naive-realized by F cf

S .

Proof. We know from Proposition 4.3 that each incomparable and non-empty extension-set S ,
where dcl(S) is tight, is naive-realizable by F cf

S . As Construction 4.1 does not introduce addi-
tional arguments other than ArgsS , S is strictly naive-realizable.

Corollary 4.17. Each extension-set S which is naive-realizable, is also strictly naive-realizable.

Figure 3.1 shows the AF F cf
S2 , which strictly realizes the extension-set S2 from Example 3.1

under the naive semantics.
This correspondence between general and strict realizability does not hold for the other

semantics discussed in this thesis. We show this by giving examples, where extension-sets
fulfilling the conditions for general realizability are not strictly realizable.

We begin with the stable semantics.

Proposition 4.18. There exists an incomparable and tight extension-set S, which is not strictly
stb-realizable.

Proof. Consider the extension-set S = {{a, b, c}, {a, b, c′}, {a, b′, c}, {a′, b, c}, {a, b′, c′},
{a′, b, c′}, {a′, b′, c}}. It is easy to verify that S is incomparable and tight. Hence, by Proposi-
tion 4.4, it follows that S is stb-realizable. However the AF provided by Construction 4.2 makes
use of an argument not in ArgsS = {a, b, c, a′, b′, c′}. Figure 4.11 shows F st

S with the additional
argument Ē.

We now show that there is no AF F = (ArgsS , R) such that stb(F) = S. First, given that
the sets in S must be conflict-free the only possible attacks inR are (a, a′), (a′, a), (b, b′), (b′, b),
(c, c′), (c′, c). We next argue that all of them must be in R. As {a, b, c} ∈ stb(F) it attacks a′

and since (b, a′) and (c, a′) are in PairsS the only chance to do so is by (a, a′) ∈ R and similar as
{a′, b, c} ∈ stb(F) it attacks a and since (b, a) and (c, a) are in PairsS the only chance to do so
is (a′, a) ∈ R. By symmetry we obtain {(b, b′), (b′, b), (c, c′), (c′, c)} ⊆ R. Hence we obtain the
only possible attack relation R = {(a, a′), (a′, a), (b, b′), (b′, b), (c, c′), (c′, c)}. However, for
the resulting framework F = (ArgsS , R), we have that {a′, b′, c′} ∈ stb(F), but {a′, b′, c′} /∈ S.
Therefore S is not strictly stb-realizable.

We use the same example, with slightly different argumentation though, for stage semantics.

58

a b c

a′ b′ c′

Ē

Figure 4.11: AF F st
S where S = {{a, b, c}, {a, b, c′}, {a, b′, c}, {a, b′, c′}, {a′, b, c},

{a′, b, c′}, {a′, b′, c}}

Proposition 4.19. There exists a non-empty, incomparable and tight extension-set S, which is
not strictly stage-realizable.

Proof. Again consider the extension-set S = {{a, b, c}, {a, b, c′}, {a, b′, c}, {a′, b, c}, {a, b′, c′},
{a′, b, c}, {a′, b, c′}, {a′, b′, c}}. It is easy to verify that S is not only incomparable and tight,
but also non-empty. Hence, by Proposition 4.5, it follows that S is stage-realizable. We have
seen in Proposition 4.18 that the AF provided by Construction 4.2 (see Figure 4.11) makes use
of an additional argument.

We now show that there is no AF F = (ArgsS , R) such that stage(F) = S. Again the only
possible attacks in R are (a, a′), (a′, a), (b, b′), (b′, b), (c, c′), (c′, c). We next argue that all of
them must be in R. As {a, b, c} ∈ stage(F) and stage(F) ⊆ naive(F) either (a, a′) ∈ R or
(a′, a) ∈ R. Consider (a, a′) /∈ R then {a′, b, c}+ ⊃ {a, b, c}+, hence {a, b, c} /∈ stage(F),
a contradiction. The same holds for pairs (b, b′) and (c, c′). Thus again we obtain the attack-
relation R = {(a, a′), (a′, a), (b, b′), (b′, b), (c, c′), (c′, c)} and the AF F = (ArgsS , R) depicted
in Figure 4.12. We have that {a′, b′, c′} ∈ stage(F), but {a′, b′, c′} /∈ S. Therefore S is not
strictly stage-realizable.

Also for the admissible semantics, general and strict realizability do not coincide:

Proposition 4.20. There exists an adm-closed extension-set S containing ∅, which is not strictly
adm-realizable.

Proof. Consider the extension-set S = {∅, {a}, {a, b}}. It is easy to see that S is adm-closed,
cf. Definition 3.7. Indeed the AF F = ({a, b, c}, {(a, c), (c, b)}) (see Figure 4.13) realizes

a b c

a′ b′ c′

Figure 4.12: AF F used in Proposition 4.18 and Proposition 4.19

59

a c b

Figure 4.13: AF F having {∅, {a}, {a, b}} as its admissible sets

S under the admissible semantics, i.e. adm(F) = S. However, there does not exist an AF
F ′ = (A,R) with adm(F ′) = S and A = {a, b}, since by {a, b} ∈ S there cannot be any attack
between a and b nor any self attacks in F ′. But then adm(F ′) = {∅, {a}, {b}, {a, b}} and by
that adm(F ′) 6= S. Therefore S is not strictly adm-realizable.

We can give the following sufficient conditions for extension-sets to be strictly realizable
under the admissible semantics.

Proposition 4.21. Any extension-set which is non-empty, downward-closed, and tight is strictly
adm-realizable.

Proof. Proposition 4.1 shows that for each non-empty, downward-closed and tight extension-
set S, it holds that cf(F cf

S) = S . As F cf
S is symmetric and R

F cf
S

is irreflexive, adm(F cf
S) = S

by Proposition 2.15. As Construction 4.1 does not introduce additional arguments other than
ArgsS , S is strictly adm-realizable.

Note that there are extension-sets not fulfilling the properties given in Proposition 4.21
which are strictly realizable under the admissible semantics as well. For example consider
the extension-set S = {∅, {a}, {c}, {a, b}}. S is not downward-closed as {b} /∈ S , but the
AF F = ({a, b, c}, {(a, b), (b, a), (b, c)}) strictly realizes S under the admissible semantics, i.e.
adm(F) = S and AF = ArgsS .

Proposition 4.22. There exists a non-empty and pref-closed extension-set S which is neither
strictly pref-realizable nor strictly sem-realizable.

Proof. Consider the extension-set S = {{a, b}, {a, c, e}, {b, d, e}}. It is easy to see that S
is pref-closed, cf. Definition 3.8. Figure 3.3 shows an AF realizing S under the semi-stable
and preferred semantics. However, that AF contains the additional arguments a′, b′ and f not
occurring in ArgsS . Suppose there exists an AF F = (ArgsS , R) such that σ(F) = S for
σ = {pref, sem}. Since {a, c, e}, {b, d, e} ∈ S , it is clear that R must not contain an edge
involving e. But then, e is contained in each extension E ∈ σ(F) (in particular, for the case
of semi-stable extensions, since e is not attacked in such an F). It follows that σ(F) 6= S, and
therefore S is neither strictly pref-realizable nor strictly sem-realizable.

In other words Proposition 4.22 shows that being non-empty and pref-closed are not suffi-
cient conditions for an extension-set to be pref-realizable or sem-realizable. Proposition 4.23
shows that even stricter conditions (non-empty, incomparable, and tight) are not sufficient in
order to be realized under preferred semantics as well as under semi-stable semantics.

Proposition 4.23. There exists a non-empty, incomparable, and tight extension-set S which is
neither strictly pref-realizable nor strictly sem-realizable.

60

δa δb δc

a b c

αa,{b,c} αb,{a,c} αc,{a,c}

a′ b′ c′

δa′ δb′ δc′

Figure 4.14: AF F sem
S where S = {{a, b, c}, {a, b, c′}, {a, b′, c}, {a, b′, c′}, {a′, b, c},

{a′, b, c′}, {a′, b′, c}}

Proof. As before consider the extension-set S = {{a, b, c}, {a, b, c′}, {a, b′, c}, {a, b′, c′},
{a′, b, c}, {a′, b, c′}, {a′, b′, c}}. It is easy to verify that S is non-empty, incomparable and tight.
Hence, by Lemma 3.5 and Proposition 4.9, S is pref-realizable and further by Proposition 4.11 it
is sem-realizable. The AF F sem

S realizing S under the preferred and semi-stable semantics is de-
picted in Figure 4.14. Note that the arguments {δx | x ∈ ArgsS} and their corresponding attacks
are not necessary in order to realize S under the preferred semantics. However in both cases the
AF makes use of additional arguments. We now show that there is no AF F = (ArgsS , R) such
that pref(F) = S or sem(F) = S .

Assume there is such an AF F = (ArgsS , R). First, given that the sets in S must be conflict-
free the only possible attacks inR are (a, a′), (a′, a), (b, b′), (b′, b), (c, c′), (c′, c). We next argue
that all of them must be in R.

• pref: As {a′, b, c} ∈ pref(F) it must be ⊆-maximal. Consider the argument a. There
must be a conflict between {a′, b, c} and a in order to preserve ⊆-maximality. The only
way to do so is (a, a′) ∈ R and/or (a′, a) ∈ R. Assume (a, a′) ∈ R then for {a′, b, c}
to stay admissible, also (a′, a) ∈ R. On the other hand assume (a′, a) ∈ R then for
{a, b′, c′} ∈ S to stay admissible, also (a′, a) ∈ R. The same holds symmetrically for b
and c, so F is the AF in Figure 4.12. But then {a′, b′, c′} ∈ pref(F), but {a′, b′, c′} /∈ S.
Therefore S is not strictly pref-realizable.

• sem: As {a, b, c} ∈ S , but {a′, b′, c′} /∈ S one of the following must hold: {a′, b′, c′} /∈
adm(F) or {a, b, c}+ ⊃ {a′, b′, c′}+. Considering the possible attacks both can only be
the case if {a, b, c} 7→R {a′, b′, c′}. Without loss of generality assume (a, a′) ∈ R. Then
for {a′, b, c} ∈ S to be admissible also (a′, a) ∈ R. The same holds symmetrically for b

61

a c b d

Figure 4.15: AF F realizing S = {∅, {a}, {a, b}} under complete semantics

and c, so F is the AF in Figure 4.12. But then {a′, b′, c′} ∈ sem(F), but {a′, b′, c′} /∈ S .
Therefore S is not strictly sem-realizable.

Proposition 4.24. There exists a comp-closed extension-set S where
⋂
S∈S S ∈ S, which is not

strictly comp-realizable.

Proof. Consider S = {∅, {a}, {a, b}}. It is easy to see that S is comp-closed, cf. Defini-
tion 3.10, and that

⋂
S∈S S = ∅ ∈ S . Indeed S is comp-realizable, namely for instance by

the AF F = ({a, b, c, d}, {(a, c), (c, a), (c, c), (c, b), (b, d), (d, b), (d, d)}) (see Figure 4.15),
where comp(F) = S. However, there does not exist an F ′ = (A,R) with σ(F ′) = S and
A = {a, b}, since by {a, b} ∈ S there cannot be any attack between a and b nor any self attacks
in F ′. But then comp(F ′) = {{a, b}} and obviously comp(F ′) 6= S . Therefore S is not strictly
comp-realizable.

In Propositions 4.18, 4.19, 4.20, 4.22 and 4.24 we have shown that for stable, stage, ad-
missible, preferred, semi-stable and complete semantics general and strict realizability do not
coincide. First investigations indicate that finding exact characterizations for extension-sets to
be strictly realizable is a non-trivial task. Having some ideas in mind, we leave this to future
work.

62

CHAPTER 5
Signatures

We are now ready to give our main results. Assembling the results of Chapter 3 and Chapter 4 we
can formally define the signature of a semantics and give a full characterization of the signatures
of the semantics of our interest. Further we are going to relate these signatures to each other
and by that compare the levels of expressiveness of the semantics. Finally we will show the
connections to the recent work on intertranslatability [38,39,57], discussing similarities but also
differences.

5.1 Signatures of Argumentation Semantics

In Chapter 3 we have dealt with properties of semantics which hold for every argumentation
framework. In particular we have given characteristics for the sets of extensions provided by
certain semantics which describe the shape of these extension-sets no matter how the underlying
AF looks like.

Then, in Chapter 4 we have examined, which properties an extension-set has to fulfill in order
to guarantee that there is some AF that realizes this extension-set under a particular semantics,
i.e. the extensions under the semantics coincide with the extension-set.

The combination of these two aspects leads us to the definition of a signature. The signa-
ture of a semantics σ is the set of extension-sets which can be realized by some AF under the
semantics σ.

Definition 5.1. The signature Σσ of a semantics σ is defined as

Σσ = {σ(F) | F ∈ AFA} .

So consider some semantics σ. If, given an arbitrary AF, the set of extensions under σ fulfills
a certain property, then this property is just a necessary condition for an extension-set to be in the
signature Σσ. On the other hand, if all extension-sets fulfilling a certain property can be realized
under the semantics σ, then this property is a sufficient condition for an extension-set to be in

63

the signature Σσ. If the necessary and sufficient conditions coincide, we have the description of
which extension-sets the signature is composed of. As this is the case for the propositions given
in Chapters 3 and 4 we can give the signatures for the semantics of our interest.

Theorem 5.1. The signatures for the considered semantics of interest are given by the following
collections of extension sets.

Σcf = {S 6= ∅ | S is downward-closed and tight} (5.1)

Σnaive = {S 6= ∅ | S is incomparable and dcl(S) is tight} (5.2)

Σstb = {S | S is incomparable and tight} (5.3)

Σstage = {S 6= ∅ | S is incomparable and tight} (5.4)

Σadm = {S 6= ∅ | S is adm-closed and contains ∅} (5.5)

Σpref = {S 6= ∅ | S is pref-closed} (5.6)

Σsem = {S 6= ∅ | S is pref-closed} (5.7)

Σcomp = {S 6= ∅ | S is comp-closed and contains
⋂
S∈S

S} (5.8)

Proof. (5.1): As for each AF F it holds that cf(F) is non-empty, downward closed and tight by
Proposition 3.11, Σcf ⊆ {S 6= ∅ | S is downward-closed and tight} holds. On the other hand
since for each non-empty, downward closed and tight extension-set S there is some AF F with
cf(F) = S by Proposition 4.1 it holds that Σcf ⊇ {S 6= ∅ | S is downward-closed and tight}.
Hence the characterization of Σcf follows. We obtain the signatures of the remaining semantics
in the same manner.
(5.2): Σnaive follows from Proposition 3.13 and Proposition 4.3.
(5.3): Σstb follows from Proposition 3.15 and Proposition 4.4.
(5.4): Σstage follows from Proposition 3.14 and Proposition 4.5.
(5.5): Σadm follows from Proposition 3.16 and Proposition 4.8.
(5.6): Σpref follows from Proposition 3.17 and Proposition 4.9.
(5.7): Σsem follows from Proposition 3.19 and Proposition 4.11.
(5.8): Σcomp follows from Proposition 3.20 and Proposition 4.12.

In Section 4.2 we have gone one step further and examined, which extension-sets can be
realized under a certain semantics without introducing additional arguments. This gives rise to
the introduction of the strict signature.

Definition 5.2. The strict signature Σs
σ of a semantics σ is defined as

Σs
σ =

{
σ(F) | F ∈ AFA with AF = Argsσ(F)

}
.

In words, some extension-set S is in the strict signature of some semantics σ, i.e. S ∈ Σs
σ, if

there is some AF F , where the arguments AF coincide with the arguments contained in S, i.e.
AF = ArgsS and σ(F) = S. We give the characterizations for the strict signatures we know
about so far.

64

Theorem 5.2. The strict signatures for the considered semantics of interest are given by the
following collections of extension sets.

Σs
cf = {S 6= ∅ | S is downward-closed and tight} (5.9)

Σs
naive = {S 6= ∅ | S is incomparable and dcl(S) is tight} (5.10)

Proof. (5.9) follows from Proposition 3.11 and Proposition 4.1 and the fact that Construction 4.1
does not introduce additional arguments.

(5.10) follows from Proposition 3.13 and Proposition 4.3 and the fact that Construction 4.1
does not introduce additional arguments.

It is easy to see that for any semantics σ it holds that Σs
σ ⊆ Σσ. For σ ∈ {stage, stb, adm,

pref, sem, comp} however, Σs
σ ⊇ Σσ does not hold and therefore Σs

σ ⊂ Σσ. We will come to
that in Theorems 5.8, 5.9, 5.10, 5.11 and 5.13.

Let us now address the topic of whether the empty set of arguments should be an extension or
not. As we have seen in Section 2.2, given an AF F , the empty set of arguments is always a
conflict-free set in F as well as an admissible set in F . On the other hand ∅ is a naive, preferred,
stable, stage and semi-stable extension in F if and only if F possesses no other extension under
the given semantics. Only the complete semantics behaves a little more involved. Here ∅ is
a complete extension if it is the grounded extension, which is the case if there is no argument
without ingoing attacks.

Accepting the empty set of arguments as an extension can be seen as leaving open the op-
portunity that none of the arguments is acceptable. We have seen that the different semantics
decide about that more or less independently from the given AF. In order to take a look at the
expressiveness of semantics without caring about whether the semantics accepts the empty set
of arguments as an extension, we introduce the ∅-extended signature.

Definition 5.3. The ∅-extended signature Σ∅σ of a semantics σ is defined as

Σσ = {σ(F) ∪ {∅} | F ∈ AFA} .

The ∅-extended signature of a semantics σ is the set of extension-sets, which can be realized
by some AF under the semantics σ, with each of them extended by the empty extension. We will
see in Section 5.2 that considering the ∅-extended signatures makes a difference in the relations
between the semantics.

5.2 Comparing the Levels of Disagreement

The signatures given in Theorem 5.1 describe the sets of extensions which can be the outcome of
applying a certain semantics to an arbitrary AF. In other words a signature describes the levels
of disagreement that can be expressed by a semantics. In the following we are going to compare
the semantics of our interest in terms of their capabilities of expressiveness.

65

Theorem 5.3. The expressiveness of conflict-free, admissible, and complete semantics is related
in the following way:

Σcf ⊂ Σadm ⊂ Σcomp.

Proof. Every downward-closed and tight extension-set S is adm-closed by Lemma 3.4. As for
each S ∈ Σcf it holds that S 6= ∅ and therefore ∅ ∈ S by S being downward-closed, Σcf ⊆ Σadm
holds.

As S5 = {{a}, {b, c}, {a, c, d}} from Example 3.1 is neither downward-closed nor tight, but
adm-closed though (see Examples 3.3 and 3.5), S5 ∈ Σadm, but S5 /∈ Σcf, therefore Σcf 6⊇ Σadm.
Hence Σcf ⊂ Σadm.

By Lemma 3.10 an adm-closed extension-set is also comp-closed. As each S ∈ Σadm contains
∅,
⋂
S∈S S = ∅. Therefore

⋂
S∈S S ∈ S, hence Σadm ⊆ Σcomp.

In order to show that Σadm 6⊇ Σcomp, consider the comp-closed (cf. Example 3.8) extension-
set S ′6 = (S6 ∪ {∅}) where S6 = {{a}, {b}, {c}, {a, b, c}} from Example 3.1. It holds that
S ′6 ∈ Σcomp, it is realized under the complete semantics by the AF in Figure 4.8. As S6 is not
adm-closed (cf. Example 3.5), S6 /∈ Σadm, therefore Σadm ⊂ Σcomp.

Theorem 5.4. The expressiveness of naive, stage, preferred, semi-stable, and complete seman-
tics is related in the following way:

Σnaive ⊂ Σstage ⊂ Σpref = Σsem.

Proof. Since for each extension-set S where dcl(S) is tight, it holds that S is tight too by Corol-
lary 3.2, it follows that Σnaive ⊆ Σstage.

Now consider S3 = {{a1, b2, b3}, {a2, b1, b3}, {a3, b1, b2}} from Example 3.1. Note that
dcl(S3) is not tight, therefore S3 /∈ Σnaive. S3 is tight (cf. Example 3.3), hence S3 ∈ Σstage, e.g.
realized under the stage semantics by the AF in Figure 3.2. So Σnaive 6⊇ Σstage and therefore
Σnaive ⊂ Σstage.

We know by Lemma 3.5 that each incomparable and tight extension-set is also pref-closed.
Therefore Σstage ⊆ Σpref.

As S4 = {{a, b}, {a, c, e}, {b, d, e}} from Example 3.1 is not tight, S4 /∈ Σstage. But since
S4 is pref-closed (see Example 3.6) it holds that S4 ∈ Σpref. The AF in Figure 3.3 realizes S4
under the preferred semantics. We follow that Σstage 6⊇ Σpref and therefore Σstage ⊂ Σpref.

Σpref = Σsem holds as the characterizations coincide according to Theorem 5.1.

Theorem 5.5. The expressiveness of stable and stage semantics differs only in the empty set of
extensions:

Σstage = (Σstb \ {∅}).

Proof. This follows immediately from the characterizations of Σstage and Σstb in Theorem 5.1.

66

a b

d c

Figure 5.1: AF strictly realizing S = {∅, {a, c}, {b, d}} under the admissible semantics

Theorem 5.6. The expressiveness of conflict-free and naive semantics is related in the following
way:

Σcf = {dcl(S) | S ∈ Σnaive}.

Proof. This is easy to see as for each S ∈ Σnaive, dcl(S) is tight and of course downward-
closed.

Theorem 5.7. The expressiveness of preferred and admissible semantics is related in the fol-
lowing way:

{S ∪ {∅} | S ∈ Σpref} ⊂ Σadm.

Proof. As we know from Lemma 3.9 for a pref-closed extension-set S it holds that S ∪ {∅} is
adm-closed. Therefore {S ∪ {∅} | S ∈ Σpref} ⊆ Σadm.

To show that {S ∪ {∅} | S ∈ Σpref} ⊇ Σadm cannot hold, consider the extension-set S =
{{a}, {a, b}}. Of course (S ∪ {∅}) ∈ Σadm, but as S is not incomparable, it is surely not pref-
closed and therefore (S ∪{∅}) /∈ {S ∪{∅} | S ∈ Σpref}. It follows that {S ∪{∅} | S ∈ Σpref} ⊂
Σadm.

Theorem 5.8. The following relations hold:

Σcf ⊂ Σs
adm ⊂ Σadm

Proof. Σcf ⊆ Σs
adm follows from Proposition 4.21. To show that Σcf 6⊇ Σs

adm, consider the
extension-set S = {∅, {a, c}, {b, d}}. S is not downward-closed, hence S /∈ Σcf. As under the
admissible semantics S is strictly realized by the AF in Figure 5.1 it holds that S ∈ Σs

adm and
therefore Σcf ⊂ Σs

adm.

While Σs
adm ⊆ Σadm trivially holds, we have seen Σs

adm 6⊇ Σadm in Proposition 4.20.

Theorem 5.9. The following relations hold:

Σnaive ⊂ Σs
stage ⊂ Σstage

67

Proof. First consider some extension-set S ∈ Σnaive. S is incomparable, non-empty and dcl(S)

is tight. By Proposition 4.3 naive(F cf
S) = S. As F cf

S is symmetric and R
F cf
S

is irreflexive,

stage(F cf
S) = S . As A

F cf
S

= ArgsS , i.e. F cf
S does not use additional arguments, it follows that

S ∈ Σs
stage and therefore Σnaive ⊆ Σs

stage.
In order to show that Σnaive 6⊇ Σs

stage consider extension-set S3 = {{a1, b2, b3}, {a2, b1, b3},
{a3, b1, b2}} from Example 3.1. dcl(S3) is not tight, hence S3 /∈ Σnaive. Since S3 is realized by
the AF in Figure 3.2, S3 ∈ Σstage and therefore Σnaive ⊂ Σs

stage.

While Σs
stage ⊆ Σstage trivially holds, we have seen Σs

stage 6⊇ Σstage in Proposition 4.19.

Theorem 5.10. The following relations hold:

Σnaive ⊂ Σs
stb ⊂ Σstb

Proof. Consider some extension-set S ∈ Σnaive. S is incomparable, non-empty and dcl(S)

is tight. By Proposition 4.3 naive(F cf
S) = S. As F cf

S is symmetric and R
F cf
S

is irreflexive,

stb(F cf
S) = S . As A

F cf
S

= ArgsS it follows S ∈ Σs
stb and therefore Σnaive ⊆ Σs

stb.

To show that Σnaive 6⊇ Σs
stb, again consider extension-set S3 = {{a1, b2, b3}, {a2, b1, b3},

{a3, b1, b2}} from Example 3.1. We know from Theorem 5.9 that S3 /∈ Σnaive. Since S3 is
realized by the AF in Figure 3.2, S3 ∈ Σstb and therefore Σnaive ⊂ Σs

stb.

While Σs
stb ⊆ Σstb trivially holds, we have seen Σs

stb 6⊇ Σstb in Proposition 4.18.

Theorem 5.11. The following relations hold for σ ∈ {sem, pref}:

Σs
σ ⊂ Σσ,

Σstage 6⊆ Σs
σ,

Σstb 6⊆ Σs
σ.

Proof. First note that the signatures of preferred and semi-stable semantics, Σpref and Σsem co-
incide (cf. 5.1).

While Σs
σ ⊆ Σσ trivially holds, it holds by Proposition 4.22 that there is a non-empty and

pref-closed extension-set S which is neither strictly pref-realizable nor strictly sem-realizable,
and therefore Σs

σ 6⊇ Σσ and hence Σs
σ ⊂ Σσ for σ ∈ {sem, pref}.

By Proposition 4.23 there is a non-empty, incomparable and tight extension-set S which is nei-
ther strictly pref-realizable nor strictly sem-realizable. However for such an S , there is some
AF F , such that stage(F) = S and stb(F) = S (cf. Propositions 4.5 and 4.4). Therefore
Σstage 6⊆ Σs

σ and Σstb 6⊆ Σs
σ for σ ∈ {sem, pref}.

68

a

b

x

y

c

Figure 5.2: AF strictly realizing S = {∅, {a}, {b}, {x}, {y}, {x, y}, {a, b, c}} under the com-
plete semantics

Theorem 5.12. The following relations hold:

Σs
comp 6⊆ Σadm,

Σadm 6⊆ Σs
comp.

Proof. In order to show that Σs
comp 6⊆ Σadm consider the extension-set S = {∅, {a}, {b},

{x}, {y}, {x, y}, {a, b, c}}. S is strictly comp-realizable as Figure 5.2 shows, hence S ∈ Σs
comp.

But as S is not adm-closed, S /∈ Σadm, and therefore Σs
comp 6⊆ Σadm.

In order to show that Σadm 6⊆ Σs
comp consider the extension-set T = {∅, {a}, {a, b}}. We have

seen in Proposition 4.20 that T is adm-realizable and in Proposition 4.24 that T is not strictly
comp-realizable, therefore Σadm 6⊆ Σs

comp.

Note that for the extension-set S = {∅, {a}, {b}, {x}, {y}, {x, y}, {a, b, c}} we have seen
the AF F comp

S obtained from Construction 4.5 in Figure 4.10. F comp
S also realizes S under the

complete semantics. The AF in Figure 5.2 does this in a more compact way. This already sug-
gests that for a certain amount of extension-sets, particularly ones which are strictly realizable,
constructions using none or less additional arguments can be found.

Theorem 5.13. The following relation holds:

Σs
comp ⊂ Σcomp

Proof. While Σs
comp ⊆ Σcomp trivially holds, we have seen Σs

comp 6⊇ Σcomp in Proposition 4.24.

So far we have mostly given relations between naive, stage, stable, preferred and semi-stable
semantics on the one side and between conflict-free, admissible and complete semantics on the
other side. As extension-sets of the former semantics share incomparability, the latter semantics
do not. When considering the ∅-extended signatures (cf. Definition 5.3) we get the following
relations.

Theorem 5.14. The following relations hold:

Σ∅naive ⊂ Σ∅stage = Σ∅stb ⊂ Σ∅pref = Σ∅sem ⊂ Σ∅adm ⊂ Σ∅comp.

69

Proof. The relations Σ∅naive ⊂ Σ∅stage, Σ∅stage ⊂ Σ∅pref and Σ∅pref = Σ∅sem follow immediately from
Theorem 5.4.

As ∅ /∈ Σ∅stb by definition, Σ∅stage = Σ∅stb follows from Theorem 5.5.
In order to show Σ∅pref ⊂ Σ∅adm, consider some S ∈ Σ∅pref and let S ′ = S \ {∅}. S ′ is pref-

closed and therefore also incomparable. By Lemma 3.9 it holds that S ′∪{∅} = S is adm-closed.
Hence S ∈ Σ∅adm and therefore Σ∅pref ⊂ Σ∅adm.

Finally since Σ∅adm = Σadm, Σ∅adm ⊂ Σ∅comp follows directly from Theorem 5.3.

5.3 Relations by Intertranslatability

In the introductory Chapter 1 we already mentioned the work on intertranslatability of semantics
[38, 39, 57] as related to our characterizations of signatures of semantics. Without yet using the
term signature, the results on intertranslatability show relations between signatures of semantics.
We recall the definition of an exact translation from [39].

Basically a translation Tr is a function mapping AFs to AFs. Given two semantics σ and θ,
a translation Tr is exact for σ ⇒ θ, if for every AF F it holds that σ(F) = θ(Tr(F)).

This definition immediately leads to the following proposition.

Proposition 5.15. Given two semantics σ and θ, it holds that if there exists an exact translation
for σ ⇒ θ, then Σσ ⊆ Σθ.

Proof. Consider two semantics σ and θ and a translation Tr which is exact for σ ⇒ θ. Further
consider some extension-set S ∈ Σσ. By Definition 5.1 of signatures there is some AF F with
σ(F) = S. Now as Tr is an exact translation for σ ⇒ θ, i.e. θ(Tr(F)) = S, which means that
Tr(F) realizes S under the semantics θ, i.e. S ∈ Σθ, and therefore Σσ ⊆ Σθ.

As an example we recall the definition of translation Tr1 from [39], which is proven to be
exact for pref ⇒ sem and adm ⇒ comp. The translation Tr1 is defined as Tr1(F) = (A∗, R∗),
where

A∗ = AF ∪ {a′ | a ∈ AF }, and

R∗ = RF ∪ {(a, a′), (a′, a), (a′, a′) | a ∈ AF }.

Figure 5.3 shows Tr1 on the standard AF Fs from Example 2.2 we used in Chapter 2.
In [39] the authors restrict themselves to computationally efficient translations and give,

besides Tr1 which is exact for pref ⇒ sem and adm ⇒ comp, an exact translation for stage ⇒
sem. Exact translations for naive⇒ stage, sem⇒ pref, and cf⇒ adm are given in [38], where
also possibly inefficient translations are taken into account.

Putting together these results already gives the following relations between signatures of
semantics:

Σnaive ⊆ Σstage ⊆ Σpref = Σsem

and

70

a b c d e

a′ b′ c′ d′ e′

Figure 5.3: Tr1(Fs) for the AF Fs from Example 2.2

Σcf ⊆ Σadm ⊆ Σcomp.

The characterizations of signatures given in this thesis add to the insights gained from inter-
translatability results in the following ways:

• First of all, the ⊆-relations are proven to be ⊂-relations by giving examples that the other
side of the set-inclusion cannot hold. Theorem 5.4 summarizes these results.

• Second and most important, the results on signatures of semantics not only show the rela-
tions between signatures, but give exact characterizations of the signatures, i.e. describe,
which extension-sets have an AF as counterpart under a certain semantics. This makes
the results beneficial for applications such as model-based revision or pruning of search-
space.

• By characterizing the signatures of semantics the relations between signatures, which were
known because of the existence of translations, are now shown to hold because of the
properties each extension-set in the signature of a certain semantics fulfills. This leads to a
better understanding of why the relations hold and what the difference between signatures
of two semantics is.

5.4 Discussion

The Venn diagram in Figure 5.4 depicts the relations between the signatures of the semantics
we considered in this thesis. The set ΣA contains all extension-sets S ⊆ 2A where ArgsS is
finite. The diagram shows the division of extension-sets into those which are in the signatures
of conflict-free, admissible, and complete semantics on the one side and these extension-sets
which are in the signatures of naive, stable, stage, preferred, and semi-stable semantics on the
other side. The dividing criterion is incomparability. Extension-sets of the latter semantics are
always incomparable, while ones of the former semantics are not. Moreover an extension-set S
under the conflict-free, admissible and complete semantics is only incomparable if it contains
solely the empty extension, i.e. S = {∅}. Therefore the only extension-set all signatures share
is {∅}. The signature that steps out of line is the one of the stable semantics. Σstb is the union of
Σstage and the empty set of extensions.

71

ΣA

{{∅}} Σnaive

Σstage

=

Σstb \ {∅}

Σpref

=

Σsem

ΣcfΣadmΣcomp

{∅}

Figure 5.4: Venn-Diagram showing the relations between the expressiveness of semantics

The division criterion of incomparability is left aside when considering the ∅-extended signa-
tures. The Venn diagram in Figure 5.5 depicts the relations between the ∅-extended signatures.
As each S ∈ Σ∅cf is downward-closed, {∅} is still the only extension-set shared by Σ∅cf and Σ∅σ,
where σ is an incomparable semantics. The ∅-extended signatures of admissible and complete
semantics are supersets of the signatures of incomparability-based semantics (cf. Theorem 5.14).
Σ∅A is the set of all extension-sets S = (S ′ ∪ {∅}) where S ′ ⊆ 2A and ArgsS is finite.

Although we have not given exact characterizations for strict signatures except for conflict-free

Σ∅A{{∅}} Σ∅naive

Σ∅stage
=

Σ∅stb

Σ∅pref
=

Σ∅sem

Σ∅adm Σ∅compΣ∅cf

Figure 5.5: Venn-Diagram showing the relation between the ∅-extended signatures

72

sets and naive semantics, the results in Section 5.2 already indicate some relations to general
signatures. Interestingly, the strict signature of the stage (resp. admissible) semantics is a proper
superset of the signature of the naive (resp. conflict-free) semantics (cf. Theorems 5.9 and 5.8),
while the strict signature of complete semantics is incomparable to the general signature of the
admissible semantics (cf. Theorem 5.12).

Interesting open questions are the following relations between (strict) signatures:

Σstage ∼ Σs
pref

Σstage ∼ Σs
sem

Σs
sem ∼ Σs

pref

By Theorem 5.11 we know that Σstage 6⊆ Σs
pref and Σstage 6⊆ Σs

sem, but by the lack of certain
knowledge we have to be content with being confident that future work will show that Σstage ⊃
Σs

pref and Σstage ⊃ Σs
sem hold, i.e. each extension-set S which is strictly realizable under the

preferred and semi-stable semantics is non-empty, incomparable, and tight.

73

CHAPTER 6
Conclusion

In this final chapter we are going to give a summary of the results achieved in this thesis. We
will further reveal the implications we can draw from these results, and finally give an outlook
to possible future research directions.

6.1 Summary

To begin with the main contribution, we characterized the signatures Σσ for the semantics
σ ∈ {cf, adm, naive, stage, stb, pref, sem, comp} (cf. Theorem 5.1) and therefore described the
expressiveness in terms of multiple viewpoints of each semantics. Knowing exactly about the
characterizations of a signature Σσ implies the following:

• Each set of extensions σ(F) obtained from applying semantics σ to an arbitrary AF F is
contained in Σσ, i.e. σ(F) ∈ Σσ.

• For each S ∈ Σσ there is some AF F which realizes S under σ, i.e. σ(F) = S.

Constructions 4.1, 4.2, 4.3, 4.4, and 4.5 give definitions of how to build such AFs realizing
a given extension-set under the various semantics.

The signatures are characterized by using the properties defined in Chapter 3 which makes
it rather straight-forward to check whether an extension-set is in the signature and can therefore
be realized.

The relations between signatures proposed in Section 5.2 gave some insights on the different
capabilities of semantics. To summarize some notable results:

• Stable and stage semantics are more expressive than naive semantics.

• The preferred semantics is more expressive than stage and stable semantics1.

1With the exception of ∅, which is only realizable by the stable semantics.

75

• The stable semantics is as expressive as the stage semantics2.

• The preferred semantics is as expressive as the semi-stable semantics.

• The complete semantics is more expressive than the admissible semantics.

We further strengthened the notion of a signature by introducing the strict signature Σs
σ

which is the collection of extension-sets where one can find an AF F which is solely built from
arguments occurring in S and delivers σ(F) = S. In other words no additional arguments to
express S are required. We showed that Σs

σ = Σσ holds for σ ∈ {cf, naive}, while for all
other semantics of our interest we showed that Σs

σ ⊆ Σσ. Moreover, we showed that e.g. not
even Σstage ⊆ Σs

pref holds, i.e. there exists an extension-set which is realizable under the stage
semantics, but not strictly realizable under the preferred semantics.

6.2 Implications

In Section 1.2 we pointed out the importance of signatures when it comes to model-based belief
revision. Knowing whether a set of extensions S is contained in Σσ is a necessary condition
which should be checked before actually looking for an AF F which realizes S under σ. In
an example in the introductory Chapter 1 we showed that some revised extension-set was not
realizable with the preferred semantics, since preferred extensions are incomparable. We have
seen in this thesis that the expressive power of semantics differs from semantics to semantics not
only by incomparability. The following example makes this more concrete.

Example 6.1. Consider the framework F in Figure 6.1. First note that stb(F) = {{a, c, e},
{b, d, e}}. Now one asks for adaption of the framework such that the extension is revised in
a way that also {a, b} is a stable extension, i.e. the desired set of extensions S4 = {{a, b},
{a, c, e}, {b, d, e}} (see Example 3.1). This is not possible as S4 is not tight (cf. Example 3.3)
and therefore not realizable under the stable semantics.

However, this case behaves different with the preferred semantics. First note that pref(F) =
stb(F) holds for the AF F in Figure 6.1. Moreover with preferred semantics one can meet the
desires of adaption of F such that {a, b} is an extension too. The AF Fp in Figure 3.3 has S4 as
its preferred extensions. One can verify that the desired set of extensions S4 is realizable under
the preferred semantics as S4 is pref-closed (see Example 3.6).

In the introductory chapter we also mentioned that being aware of the signature of a semantics,
a concrete implementation can prune its search-space according to the characterization of the
signature. In an example in Chapter 1 we showed this for a case where all sub- and supersets
of an already found extension could be removed from the set of possible extension-candidates
because of incomparability.

Having the exact characteristics of signatures at hand, one can do more involved pruning
of search space. The following example shows how pruning can be done when computing the
complete extensions, knowing that the set of complete extensions is comp-closed (cf. Defini-
tion 3.10).

2With the exception of ∅, which is only realizable by the stable semantics.

76

a b

d c

x e

Figure 6.1: AF F with stb(F) = pref(F) = {{a, c, e}, {b, d, e}}

Example 6.2. Consider an AF F = (A,R) and a procedure P which determines all complete
extensions of F , i.e. comp(F). Now assume P has found S1 = {a}, S2 = {b}, and S3 =
{a, b, c} as complete extensions and revealed that {a, b} is no complete extension. As comp(F)
is comp-closed by Proposition 3.20 there exists a unique completion-set Ccomp(F)({a}∪ {b}) ⊆
{a, b}. Since {a, b} /∈ comp(F) it follows that Ccomp(F)({a} ∪ {b}) = {a, b, c}. Therefore the
search-space of P can be pruned in a way that all S′, where S′ ⊃ {a, b} and c /∈ S′, are removed
from the set of extension-candidates.

6.3 Future Work

Future work on the topic of realizability and signatures could go in various directions.
First of all the exact characterization of the strict signature of stable, stage, preferred, semi-

stable, and complete semantics is still open. Strict signatures are important in cases where the
application does not allow self-attacking arguments or no additional arguments at all.

Secondly, we have only taken into account some argumentation semantics, the most heavily
studied though. Future work could investigate the signatures of other semantics, such as the
cf2-semantics [8, 45], and the resolution-based grounded semantics [4]. Especially the results
on resolution-based grounded semantics appear to be interesting, as their extensions meet all
the properties defined in [5] and therefore the semantics is seen as the “best” in that context. A
characterization of the signature of the resolution-based grounded semantics would shed a light
on to which extent the quality in the sense of [5] influences the expressiveness of the semantics.

Since we have viewed semantics here only in an extension-based way, it would also be of
high interest to extend our studies to labelling-based semantics [25]. While with extension-
based semantics, an extension defines itself by the arguments which are in the extension and
these which are not, the application of a semantics in the labelling-based way of [25] provides a
set of labellings, where each labelling maps one of three labels to each argument: the label “in”
to the arguments in the corresponding extension; the label “out” to those being attacked by “in”-
arguments; and the label “undec” to all other arguments. In this context it is e.g. unlikely that
the signatures of stable and stage semantics coincide as they nearly3 do in the extension-based
context.

3Except ∅.

77

Moreover there are several extensions to Dung’s argumentation frameworks, where it is
worth investigating on the expressiveness of semantics. Examples, to name some of them, are
value-based argumentation frameworks [11], bipolar argumentation frameworks [28] and ab-
stract dialectical frameworks [18, 19].

Another important open issue is complexity analysis. Especially, as one particular applica-
tion of our results is the problem of recasting, i.e. to decide whether the σ-extensions of a given
AF can be expressed via a different semantics θ. The relevance of this problem is, for instance,
given by the fact that θ is a semantics for which we have faster systems available. Complexity
results of the recasting problem are of high interest, they most likely go up to ΠP

2 -completeness
at least.

The provided definitions of canonical argumentation frameworks could give rise to finding
appropriate normal-forms for AFs. The fact that, given a certain semantics, each extension-set
in the corresponding signature can be realized by an AF obtained by using a uniform construc-
tion, makes it clear, that a very limited amount of AFs suffices in order to capture all realizable
extension-sets. A definition of normal-forms together with proper translations could be benefi-
cial. Similar work in the field of logic programming has been done in [17].

Finally, current implementations of argumentation semantics can use the result on signatures
in order to prune search-space as described in Section 1.2 and made concrete in Example 6.2.

78

Bibliography

[1] Katie Atkinson. Value-based argumentation for democratic decision support. In Paul E.
Dunne and Trevor J. M. Bench-Capon, editors, Computational Models of Argument: Pro-
ceedings of COMMA 2006, volume 144 of Frontiers in Artificial Intelligence and Applica-
tions, pages 47–58. IOS Press, 2006.

[2] Katie Atkinson, Trevor J. M. Bench-Capon, and Peter McBurney. Parmenides: Facilitating
deliberation in democracies. Artificial Intelligence and Law, 14(4):261–275, 2006.

[3] Pietro Baroni, Martin Caminada, and Massimiliano Giacomin. An introduction to argu-
mentation semantics. Knowledge Engineering Review, 26(4):365–410, 2011.

[4] Pietro Baroni, Paul E. Dunne, and Massimiliano Giacomin. On the resolution-based fam-
ily of abstract argumentation semantics and its grounded instance. Artificial Intelligence,
175(3-4):791–813, 2011.

[5] Pietro Baroni and Massimiliano Giacomin. On principle-based evaluation of extension-
based argumentation semantics. Artificial Intelligence, 171(10-15):675–700, 2007.

[6] Pietro Baroni and Massimiliano Giacomin. A systematic classification of argumentation
frameworks where semantics agree. In Philippe Besnard, Sylvie Doutre, and Anthony
Hunter, editors, Computational Models of Argument: Proceedings of COMMA 2008, vol-
ume 172 of Frontiers in Artificial Intelligence and Applications, pages 37–48. IOS Press,
2008.

[7] Pietro Baroni and Massimiliano Giacomin. Semantics of abstract argument systems. In
Guillermo Simari and Iyad Rahwan, editors, Argumentation in Artificial Intelligence, pages
25–44. Springer US, 2009.

[8] Pietro Baroni, Massimiliano Giacomin, and Giovanni Guida. SCC-Recursiveness: A gen-
eral schema for argumentation semantics. Artificial Intelligence, 168(1-2):162–210, 2005.

[9] Ringo Baumann. What does it take to enforce an argument? minimal change in abstract
argumentation. In Luc De Raedt, Christian Bessière, Didier Dubois, Patrick Doherty, Paolo
Frasconi, Fredrik Heintz, and Peter J. F. Lucas, editors, ECAI 2012 - 20th European Con-
ference on Artificial Intelligence. Including Prestigious Applications of Artificial Intelli-
gence (PAIS-2012) System Demonstrations Track, volume 242 of Frontiers in Artificial
Intelligence and Applications, pages 127–132. IOS Press, 2012.

79

[10] Ringo Baumann and Gerhard Brewka. Expanding argumentation frameworks: Enforcing
and monotonicity results. In Pietro Baroni, Federico Cerutti, Massimiliano Giacomin, and
Guillermo Ricardo Simari, editors, Computational Models of Argument: Proceedings of
COMMA 2010, volume 216 of Frontiers in Artificial Intelligence and Applications, pages
75–86. IOS Press, 2010.

[11] Trevor J. M. Bench-Capon. Persuasion in practical argument using value-based argumen-
tation frameworks. Journal of Logic and Computation, 13(3):429–448, 2003.

[12] Trevor J. M. Bench-Capon and Paul E. Dunne. Argumentation in artificial intelligence.
Artificial Intelligence, 171(10-15):619–641, 2007.

[13] Philippe Besnard and Sylvie Doutre. Checking the acceptability of a set of arguments.
In James P. Delgrande and Torsten Schaub, editors, 10th International Workshop on Non-
Monotonic Reasoning (NMR 2004), Proceedings, pages 59–64, 2004.

[14] Philippe Besnard and Anthony Hunter. Elements of Argumentation. MIT Press, 2008.

[15] Pierre Bisquert, Claudette Cayrol, Florence Dupin de Saint-Cyr, and Marie-Christine
Lagasquie-Schiex. Duality between addition and removal - a tool for studying change
in argumentation. In Salvatore Greco, Bernadette Bouchon-Meunier, Giulianella Coletti,
Mario Fedrizzi, Benedetto Matarazzo, and Ronald R. Yager, editors, Advances on Com-
putational Intelligence - 14th International Conference on Information Processing and
Management of Uncertainty in Knowledge-Based Systems, IPMU 2012, Proceedings, Part
I, volume 297 of Communications in Computer and Information Science, pages 219–229.
Springer, 2012.

[16] Richard Booth, Martin Caminada, Mikolaj Podlaszewski, and Iyad Rahwan. Quantifying
disagreement in argument-based reasoning. In Wiebe van der Hoek, Lin Padgham, Vincent
Conitzer, and Michael Winikoff, editors, International Conference on Autonomous Agents
and Multiagent Systems, AAMAS 2012, Proceedings, pages 493–500. IFAAMAS, 2012.

[17] Stefan Brass and Jürgen Dix. Semantics of (disjunctive) logic programs based on partial
evaluation. Journal of Logic Programming, 40(1):1–46, 1999.

[18] Gerhard Brewka, Paul E. Dunne, and Stefan Woltran. Relating the semantics of abstract
dialectical frameworks and standard AFs. In Toby Walsh, editor, IJCAI 2011, Proceed-
ings of the 22nd International Joint Conference on Artificial Intelligence, pages 780–785.
IJCAI/AAAI, 2011.

[19] Gerhard Brewka and Stefan Woltran. Abstract dialectical frameworks. In Fangzhen Lin,
Ulrike Sattler, and Miroslaw Truszczynski, editors, Principles of Knowledge Representa-
tion and Reasoning: Proceedings of the Twelfth International Conference, KR 2010. AAAI
Press, 2010.

[20] Hans Kleine Büning and Theodor Lettmann. Aussagenlogik - Deduktion und Algorithmen.
Leitfäden und Monographien der Informatik. Teubner, 1994.

80

[21] Martin Caminada. Semi-stable semantics. In Paul E. Dunne and Trevor J. M. Bench-
Capon, editors, Computational Models of Argument: Proceedings of COMMA 2006, vol-
ume 144 of Frontiers in Artificial Intelligence and Applications, pages 121–130. IOS Press,
2006.

[22] Martin Caminada. Comparing two unique extension semantics for formal argumentation:
ideal and eager. In Proceedings of the 19th Belgian-Dutch Conference on Artificial Intelli-
gence (BNAIC 2007), pages 81–87, 2007.

[23] Martin Caminada and Leila Amgoud. On the evaluation of argumentation formalisms.
Artificial Intelligence, 171(5-6):286–310, 2007.

[24] Martin Caminada, Walter Alexandre Carnielli, and Paul E. Dunne. Semi-stable semantics.
Journal of Logic and Computation, 22(5):1207–1254, 2012.

[25] Martin Caminada and Dov M. Gabbay. A logical account of formal argumentation. Studia
Logica, 93(2):109–145, 2009.

[26] Martin Caminada and Bart Verheij. On the existence of semi-stable extensions. Proceed-
ings of the 22nd Benelux Conference on Artificial Intelligence (BNAIC 2010), 2010.

[27] Dan Cartwright and Katie Atkinson. Political engagement through tools for argumenta-
tion. In Philippe Besnard, Sylvie Doutre, and Anthony Hunter, editors, Computational
Models of Argument: Proceedings of COMMA 2008, volume 172 of Frontiers in Artificial
Intelligence and Applications, pages 116–127. IOS Press, 2008.

[28] Claudette Cayrol and Marie-Christine Lagasquie-Schiex. Bipolar abstract argumentation
systems. In Argumentation in Artificial Intelligence, pages 65–84. Springer, 2009.

[29] Sylvie Coste-Marquis, Caroline Devred, and Pierre Marquis. Symmetric argumentation
frameworks. In Lluis Godo, editor, Symbolic and Quantitative Approaches to Reasoning
with Uncertainty, 8th European Conference, Proceedings, volume 3571 of Lecture Notes
in Computer Science, pages 317–328. Springer, 2005.

[30] Nadia Creignou, Odile Papini, Reinhard Pichler, and Stefan Woltran. Belief revision within
fragments of propositional logic. In Gerhard Brewka, Thomas Eiter, and Sheila A. McIl-
raith, editors, Principles of Knowledge Representation and Reasoning: Proceedings of the
Thirteenth International Conference. AAAI Press, 2012.

[31] James P. Delgrande and Pavlos Peppas. Revising horn theories. In Toby Walsh, editor,
IJCAI 2011, Proceedings of the 22nd International Joint Conference on Artificial Intelli-
gence, pages 839–844. IJCAI/AAAI, 2011.

[32] Sylvie Doutre and Jérôme Mengin. Preferred extensions of argumentation frameworks:
Query answering and computation. In Rajeev Goré, Alexander Leitsch, and Tobias
Nipkow, editors, Automated Reasoning, First International Joint Conference, IJCAR
2001, Proceedings, volume 2083 of Lecture Notes in Computer Science, pages 272–288.
Springer, 2001.

81

[33] Phan Minh Dung. On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artificial Intelligence,
77(2):321–357, 1995.

[34] Phan Minh Dung, Paolo Mancarella, and Francesca Toni. Computing ideal sceptical argu-
mentation. Artificial Intelligence, 171(10-15):642–674, 2007.

[35] Paul E. Dunne and Michael Wooldridge. Complexity of abstract argumentation. In Argu-
mentation in Artificial Intelligence, pages 85–104. Springer, 2009.

[36] Wolfgang Dvořák. Computational Aspects of Abstract Argumentation. PhD thesis, Vienna
University of Technology, 2012.

[37] Wolfgang Dvořák, Reinhard Pichler, and Stefan Woltran. Towards fixed-parameter
tractable algorithms for abstract argumentation. Artificial Intelligence, 186:1–37, 2012.

[38] Wolfgang Dvořák and Christof Spanring. Comparing the expressiveness of argumentation
semantics. In Bart Verheij, Stefan Szeider, and Stefan Woltran, editors, Computational
Models of Argument - Proceedings of COMMA 2012, volume 245 of Frontiers in Artificial
Intelligence and Applications, pages 261–272. IOS Press, 2012.

[39] Wolfgang Dvořák and Stefan Woltran. On the intertranslatability of argumentation seman-
tics. Journal of Artificial Intelligence Research (JAIR), 41:445–475, 2011.

[40] Uwe Egly, Sarah Alice Gaggl, and Stefan Woltran. Answer-set programming encodings
for argumentation frameworks. Argument and Computation, 1(2):147–177, 2010.

[41] Uwe Egly and Stefan Woltran. Reasoning in argumentation frameworks using quantified
boolean formulas. In Paul E. Dunne and Trevor J. M. Bench-Capon, editors, Computational
Models of Argument: Proceedings of COMMA 2006, volume 144 of Frontiers in Artificial
Intelligence and Applications, pages 133–144. IOS Press, 2006.

[42] Thomas Eiter, Michael Fink, and Stefan Woltran. Semantical characterizations and com-
plexity of equivalences in answer set programming. ACM Transactions on Computational
Logic (TOCL), 8(3), 2007.

[43] Herbert B. Enderton. A Mathematical Introduction to Logic. Academic Press, 1972.

[44] Marcelo A. Falappa, Alejandro Javier Garcı́a, Gabriele Kern-Isberner, and Guillermo Ri-
cardo Simari. On the evolving relation between belief revision and argumentation. Knowl-
edge Engineering Review, 26(1):35–43, 2011.

[45] Sarah Alice Gaggl and Stefan Woltran. cf2 semantics revisited. In Pietro Baroni, Federico
Cerutti, Massimiliano Giacomin, and Guillermo Ricardo Simari, editors, Computational
Models of Argument: Proceedings of COMMA 2010, volume 216 of Frontiers in Artificial
Intelligence and Applications, pages 243–254. IOS Press, 2010.

82

[46] Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic program-
ming. In Proceedings of the 5th International Conference on Logic programming, pages
1070–1080, 1988.

[47] Hadassa Jakobovits and Dirk Vermeir. Dialectic semantics for argumentation frameworks.
In Proceedings of the 7th International Conference on Artificial intelligence and Law,
pages 53–62. ACM, 1999.

[48] Diego C. Martı́nez, Alejandro Javier Garcı́a, and Guillermo Ricardo Simari. On accept-
ability in abstract argumentation frameworks with an extended defeat relation. In Paul E.
Dunne and Trevor J. M. Bench-Capon, editors, Computational Models of Argument: Pro-
ceedings of COMMA 2006, volume 144 of Frontiers in Artificial Intelligence and Applica-
tions, pages 273–278. IOS Press, 2006.

[49] Peter Bro Miltersen, Jaikumar Radhakrishnan, and Ingo Wegener. On converting CNF to
DNF. In Branislav Rovan and Peter Vojtás, editors, Mathematical Foundations of Com-
puter Science 2003, 28th International Symposium, Proceedings, pages 612–621, 2003.

[50] Sanjay Modgil and Martin Caminada. Proof theories and algorithms for abstract argumen-
tation frameworks. In Argumentation in Artificial Intelligence, pages 105–129. Springer,
2009.

[51] Sanjay Modgil and Henry Prakken. Revisiting preferences and argumentation. In Toby
Walsh, editor, IJCAI 2011, Proceedings of the 22nd International Joint Conference on
Artificial Intelligence, pages 1021–1026. IJCAI/AAAI, 2011.

[52] Robert C. Moore. Semantical considerations on nonmonotonic logic. Artificial Intelli-
gence, 25(1):75–94, 1985.

[53] Henry Prakken. A logical framework for modelling legal argument. In Proceedings of the
4th International Conference on Artificial Intelligence and Law, pages 1–9. ACM, 1993.

[54] Henry Prakken. An abstract framework for argumentation with structured arguments. Ar-
gument and Computation, 1(2):93–124, 2010.

[55] Iyad Rahwan and Guillermo R. Simari, editors. Argumentation in Artificial Intelligence.
Springer, 2009.

[56] Raymond Reiter. A logic for default reasoning. Artificial Intelligence, 13(1–2):81–132,
1980.

[57] Christof Spanring. Intertranslatability Results for Abstract Argumentation Semantics.
Master’s thesis, Vienna University of Technology, 2012.

[58] Katia P. Sycara. Persuasive argumentation in negotiation. Theory and Decision, 28(3):203–
242, 1990.

83

[59] Francesca Toni and Marek Sergot. Argumentation and answer set programming. In Logic
Programming, Knowledge Representation, and Nonmonotonic Reasoning, pages 164–180.
Springer, 2011.

[60] Bart Verheij. Two approaches to dialectical argumentation: admissible sets and argumen-
tation stages. In John-Jules C. Meyer and Linda C. van der Gaag, editors, Proceedings of
the 8th Dutch Conference on Artificial Intelligence, pages 357–368, 1996.

[61] Bart Verheij. Deflog: on the logical interpretation of prima facie justified assumptions.
Journal of Logic and Computation, 13(3):319–346, 2003.

[62] Bruno Zanuttini and Jean-Jacques Hébrard. A unified framework for structure identifica-
tion. Information Processing Letters, 81(6):335–339, 2002.

84

	Introduction
	Argumentation and Artificial Intelligence
	The Argumentation Process
	Abstract Argumentation

	Limits of Expressiveness in Abstract Argumentation Semantics
	Related Work
	Main Contributions
	Organization of the Thesis

	Preliminaries
	Abstract Argumentation Frameworks
	Argumentation Semantics
	Propositional Logic

	Properties
	Properties of Extension-Sets
	Properties of Argumentation Semantics
	Properties of cf-based Semantics
	Properties of adm-based Semantics

	Realizability
	General Realizability
	Realizability of cf-based Semantics
	Realizability of adm-based Semantics

	Strict Realizability

	Signatures
	Signatures of Argumentation Semantics
	Comparing the Levels of Disagreement
	Relations by Intertranslatability
	Discussion

	Conclusion
	Summary
	Implications
	Future Work

	Bibliography

