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Abstract

This thesis deals with the mechanical behavior of ’Cross Laminated Timber (CLT)’
plates, which is a well-established high-performance wood product used for modern
domestic architecture as well as in structural engineering. Only recently, building
regulations have been changed to allow application of wooden load-bearing com-
ponents in multi-storied houses. CLT is playing an important role there. Though,
currently available material models cannot capture the distinctive mechanical be-
havior of this shear compliant laminate and its plate-specific load transfer. Com-
monly, CLT is assessed by simplifying design approaches based on beam-theory.
Under application of the Finite Element Method (FEM), an alternative and more
precise analysis of the mechanical behavior is possible.

The main task of this thesis was to develop a simulation tool generating a FE
model of a 3-layered quadratic CLT plate, where in particular a suitable description
of the fracture behavior under tensile load should be integrated. When building the
individual layers in the model of CLT, randomly distributed board lengths as well
as randomly distributed densities and knot contents (in terms of KAR-values) are
taken into consideration. The simulation-program, defining the model for the FE
analysis with the commercial FE package Abaqus TM, is written in Matlab TM. It
generates the geometry sections of the CLT plate as well as locally varying stiffness
and strength values. The latter are determined from local densities andKAR-values
by means of micromechanical models, developed at the Institute for Mechanics of
Materials and Structures. Emphasis was placed on the ability of the simulation
program to generate matched model definitions with different mesh densities, in
order to investigate the influence of the chosen mesh on the simulation results.

The results of computations performed on a generated sample plate are qualita-
tively discussed. Furthermore, the effect of crack formation between the lamellae
of a CLT plate is investigated.

Kurzfassung

Diese Arbeit befasst sich mit der Untersuchung des Materialverhaltens von Brett-
sperrholz-Platten (englisch ‘Cross Laminated Timber’ – CLT). CLT hat sich als
gängiger Holzwerkstoff sowohl im Wohnbau als auch im modernen konstruktiven
Ingenieurholzbau etabliert. Um moderne Holzwerkstoffe entsprechend ihrer Eig-
nung einsetzen zu können, wurden Normen und Verordnungen für das Bauwesen
dahingehend adaptiert, dass nun auch die Konstruktion mehrgeschossiger Gebäude
mit einer tragende Struktur aus Holzwerkstoffen möglich ist. Und CLT ist ein ge-
wichtiger Vertreter in der Familie von konstruktiven Holzwerkstoffen. Jedoch gibt
es derzeit noch kein adäquates mechanischen Materialmodell für CLT, was einer
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Ausnutzung der gesamten Leistungsfähigkeit dieses flächigen Holzwerkstoffes ent-
gegensteht. CLT ist charakterisiert durch die inhomogene und anisotrope Materi-
alstruktur des Grundwerkstoffes Holz auf der einen Seite, und die dem spezifischen
Aufbau, mit aus 90◦ gegeneinander gedrehten Brettlagen, geschuldeten Eigenschaf-
ten. Diese äußern sich in einer hohen Schubnachgiebigkeit der mittleren Schichten
und den daraus resultierenden spezifischen Lastverhältnissen innerhalb der Platten.
Derzeit werden für die Bemessung von CLT vereinfachende Rechenmodelle ange-
wandt, die überwiegend auf der Stabtheorie basieren. Jedoch ist in Anwendung
der Finiten Elemente Methode (FEM) eine umfangreichere und präzisere mecha-
nische Berechnung auch bei Holzwerkstoffen möglich. Die Modellbildung gestaltet
sich hingegen komplexer als zum Beispiel im Stahl- oder Betonbau, wo FEM längst
eine Anwendung in der täglichen Baupraxis erfahren hat.

Die wesentliche Aufgabe der hier präsentierten Arbeit bestand darin, ein Simu-
lations-programm zur Generierung einer quadratischen CLT-Platte zu entwickeln.
Im Besonderen sollte ein Modell etabliert werden, welches die Rissbildung zwischen
den einzelnen Lamellen in der Zugzone bei hoher Biegebeanspruchung mechanisch
abbilden kann. Um ein werkstoffmechanisches Modell von CLT zu erstellen, ist
es zuallererst nötig den Aufbau der einzelnen Schichten aus Schnitthölzern zu be-
trachten. In diesen Schichten sind die Längen der einzelnen Schnittholzabschnitte
bedingt durch den Herstellungsprozess zufallsverteilt; ebenso unterliegen die Roh-
dichten und der abmindernde Einfluss von Ästen einer statistischen Verteilung. Bei
der Erstellung des FE-Modells werden diese charakteristischen Verteilungen be-
rücksichtigt, in dem den in geometrische Einheiten aufgeteilten Modell jeweils ver-
schiedene Steifigkeits- und Festigkeitswerte zugewiesen werden. Letztere werden in
Anwendung eines mikromechanischen Modells (entwickelt am Institut für Mechanik
der Werkstoffe und Strukturen) aus der Rohdichte und dem KAR-Wert, welcher
den Einfluss der Ästigkeit beschreibt, ermittelt. Die FE-Berechnungen sowie die
mechanische Auswertungen erfolgen mit dem kommerziellen Programm Abaqus TM,
das Simulationsprogramm wurde in Matlab TM erstellt. Bei der Festlegung der Spe-
zifikationen des Simulationsprogramms wurde darauf geachtet, dass bei der Gene-
rierung von CLT-Platten die Feinheit des FE-Netzes aller Modellabschnitte para-
metergesteuert definiert werden kann, um so den Einfluss dieser Feinheit bei der
mechanischen Analyse des Modells untersuchen zu können.

Die Ergebnisse der Berechnungen werden am Ende der Arbeit anhand einer re-
präsentativen Platte qualitativ ausgewertet. Ein Schwerpunkt der Analyse lag dabei
auf der Untersuchung des mechanischen Einflusses der Riss-bildung auf das Gesamt-
system der Platte.



Contents

1 Basic concept 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Previous work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 General description of CLT . . . . . . . . . . . . . . . . . . . . . . . 3

2 Theoretical background, input data for the computation program 5

2.1 Generalized Hooke’s law . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Modulus of elasticity, shear-modulus and Poisson’s ratio . . . . . . . 7
2.3 Strength values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Influence of knots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4.1 Reduction of modulus of elasticity and shear-modulus . . . . 10
2.4.2 Reduction of strength values . . . . . . . . . . . . . . . . . . 11

2.5 Assembly of Cross Laminated Timber . . . . . . . . . . . . . . . . . 13
2.5.1 Position of finger joints – lengths of boards . . . . . . . . . . 15
2.5.2 Density of boards . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5.3 KAR-values of bricks . . . . . . . . . . . . . . . . . . . . . . . 17

3 Simulation-program 18

3.1 Principle of modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Mesh generating section . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Material and mechanical - parameter section . . . . . . . . . . . . . . 31
3.4 Node and element - sets generating section . . . . . . . . . . . . . . . 37
3.5 File generating section . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4 FEM-calculation, discussion 44

4.1 Plate geometry, applied load, and boundary of the sample plate . . . 44
4.2 Cross-sectional warping and stress distributions of CLT . . . . . . . 45
4.3 Force - displacment relation, crack initiation . . . . . . . . . . . . . . 47
4.4 Crack formation – influence on the distribution of stress . . . . . . . 48

5 Conclusions 52

5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.2 Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

I



Chapter 1

Basic concept

1.1 Motivation

Cross Laminated Timber (CLT, ger. «Brettsperrholz») is a well-established high-
performance wood product, and it enjoys great popularity in modern domestic
architecture as well as in structural engineering. Currently, with the simplifying
design approaches based on beam-theory, the distinctive mechanical characteristics
of CLT, namely two-dimensional load transfer, multi-layer assembly, very high shear
compliance of thick cross-lying layers, and anisotropy of the laminae, cannot be
captured completely. Under application of the Finite Element Method (FEM), an
alternative and more precise analysis of the mechanical behavior is possible. Based
on former work at the Institute for Mechanics of Materials and Structures (IMWS),
this thesis is a specific enhancement of an already existing model for CLT [Radecki-
Pawlik, 2009]. The mechanic behavior of a quadratic CLT-Plate under uniformly
distributed loading condition is in the main focus of this thesis. In particular a
suitable description of the fracture behavior under tensile load is integrated.

Due to the pronounced anisotropy of the basic material wood as well as the char-
acteristic assembling of CLT, the material behavior of CLT is studied by means
of representative model sections, denoted as «CLT-Plates» in the following, which
constitute the basis for the subsequent simulation. In relation to the structure
of the calculation model, this thesis is organized in two parts: On the one hand,
«simulation-program» generates adequate workpieces, on the other hand the «FE-
program» performs the computations and is finally used for investigation of the
CLT-Plates. The simulation-program is written in Matlab TM and defines parame-
ters controlling the geometry of the CLT-plates as well as the load situation. More-
over, it specifies appropriate material parameters for the section-divided CLT-Plate.
Applying the FE-program (Abaqus TM) the approximate solution of the displace-
ment and stress-state of the CLT-Plate is determined. Compared to the mentioned
former work, «cohesive-elements» were embedded in the tension-field of theplate.
By means of these elements, the fracture behavior of wood under tension-load
should be described.

1
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1.2 Previous work

In timber-frame constructions, glulam beams are mainly strained in one direction.
Therefore, one-dimensional beam theories are used for their static analysis. Though,
by means of beam theories, mechanical characteristics of CLT cannot be represented
sufficiently. Nowadays, use of the FEM is a standard design approach in concrete
constructions to use the FE-method for determining the dimensions of plates. For
a more efficient use of plate-like engineered wood products, the application of plate
theories will be required.

Several studies have dealt with analytic calculations for laminated timber. At the
IMWS, Stürzenbecher [Stürzenbecher, 2010] investigated and compared various
common and advanced plate theories in relation to their accuracy as well as to
their possible fields of application. Using a simply supported quadratic plate as
example, he assessed classical plate theory as reference and various advanced plate
theories (e.g. Murakami’s Zig-Zag plate theory, Ren’s Plate Theory), followed
by an evaluation of the exact analytical solution derived by Pagano [Pagano,
1970]. The investigations resulted in the conclusion, that only Ren’s Plate Theory
approximates the exact solution sufficiently well. All the other theories are not
capable to describe the characteristic mechanical behavior of CLT.

Radecki [Radecki-Pawlik, 2009] compared selected analytic exact results from
the thesis of Stürzenbecher with numeric calculations, carried out by means
of the FEM. The focus of his thesis lies on the investigation of normal and shear
stresses at significant points of the plate. Their calculations were based on an
elastic-plastic material behavior in the compression field of the CLT-Plate. Based on
a comparison of the obtained load-displacement diagram with that of the reference-
plate, which is calculated with ideal-elastic behavior, the elastic limit of the plate is
calculated. In the present thesis, the simulation model by Radecki is extended by a
fracture mechanical approach for wood under tension load. For the implementation
of fracture mechanical material behavior, «cohesive-elements» were embedded in
the FE-calculation. Also a parameter-controlled mesh-design is established, what
enables a direct comparison of a coarse and a fine discretization level at otherwise
identical geometry and material parameters.

1.3 Structure

The thesis is organized in four chapters. After the introductory chapter the basic
mechanic constitutive equations are presented in Chapter 2. Furthermore regres-
sion equations for the determination of elastic parameters and strength values from
the technological parameters density ρ and moisture content u in by means of a
micromechanical model are explained. The influence of knots on the mechanical
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properties is discussed thereafter as well as distribution functions for technologi-
cal parameters and the knot content. To assign technological parameters to the
material sections, the plate is divided in, distribution funcionts are presented. As
completion of the theoretical background, the assembly of CLT and the distinctive
approach for the modeling process as well as the used material models are pre-
sented. Chapter 3 describes the concept of the simulation program. As starting
section, the ability of the simulation program is presented by means of a generated
3-layered CLT plate. In subsequent sections of this chapter, the principle of creat-
ing a FE model for CLT plates using Abaqus and the course of the data generating
process are explained. The geometry and material parameter generating sections,
as parts of a Matlab-script file, as well as data storing variables are discussed; for
exemplification code sections are listed of cited. Results of the FE calculation for
a sample plate are discussed in Chapter 4 . Furthermore some example plots are
presented to show the abilities of the simulation program. The thesis is closed with
some conclusion and perspective for future work.

1.4 General description of CLT

Cross Laminated Timber is a massive wood product, which is made up of ordinary
flat boards glued together in a cross-layered fashion (Fig. 1.1) . It is used in the
field of load carrying constructions.

Finger joint

X, u

Z,wY, v

Figure 1.1: Cross laminated timber

CLT is built up by at least three layers, mostly glued together to rectangu-
lar plates, typically with a symmetric layup. Due to the characteristic assembly,
the cross lying layers constrain dimensional changes of all adjacent layers result-
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ing from an alternating moisture content. Therefore, high dimensional stability is
reached. The boards, from which the layers are assembled, are connected by finger
joints. The thickness of boards varies due to production circumstances from 12
to 45 mm. Currently, CLT is manufactured industrialy exclusively from coniferous
wood. Separate layers are bonded together with polyurethane-glue. The bonding
is approximately rigid.

In comparison to frame constructions the advantages of constructions built out
of CLT are: smaller component heights, enabling slender but robust shear walls;
enhanced sound insulation as well as improved fire protection due to the massive
building material; major design flexibility based on the missing grid pattern; almost
no limitations concerning the application of loads.

All the investigations in this thesis are performed for a three-layer assembly. The
subsequently discussed CLT-Plates are characterized by identical layer thicknesses
of both interior and surface layers.



Chapter 2

Theoretical background, input data

for the computation program

Wood is a naturally grown, highly optimized material. From a microscopic view, it
shows an inhomogeneous, porous structure consisting of cell wall substance and cell
wall cavities. Its mechanical characteristics are pronouncedly anisotropic, which is
a consequence of the elongated arrangement of the cell structure and the orientation
of the cell walls. As a result of the anisotropic structure, there are widely differing
mechanical properties in longitudinal and transverse direction of a log.

In this section, all calculations required for the subsequent determination of me-
chanical parameters as input for the simulation-program are presented. They are
formulated as functions of three basic wood properties: density ρ [g/cm3], mois-
ture content u in [%], and influence of knots, expressed by the knot area ratio
(KAR-value).

2.1 Generalized Hooke’s law

For the performance of structure analysis in the framework of continuum mechanics,
mechanical parameters of homogeneous wood material need to be defined. Based
on the characteristics of an ideal log with its ring-wise organized cell structure
(growth rings), a cylindric coordinate system is convenient for the formulation of
constitutive, kinematic and kinetic relations. At the level of separate boards, the
primary material directions can be defined in an orthogonal coordinate system
(Fig. 2.1), because of the small board dimension and the thus negligible curvature
of the growth rings.

The mechanical behavior is described in the framework of elasticity theory using
Hooke’s law. Assuming a hyperelasic material model, an elastic potential exists.
Considering the symmetry of strains εkl, stresses σij , and the material compliance
matrix Dijkl as as well as the restriction to orthogonal anisotropy, the constitutive
relations are defined as

εij = Dijkl σkl , i, j, k, l = 1, 2, 3 (2.1)

5
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Figure 2.1: Sections of a log, primary material directions

wherein the elasticity-tensor Cijkl is defined as

C = D−1. (2.2)

Expressed in matrix-notation Hooke’s law for orthotropic materials reads in a
spatial formulation stress, considering the principal axes – longitudinal direction of
log L (= fiber direction), radial direction R, and tangential direction T according
to Fig. 2.1 – as,






εL

εR

εT

γLR

γRT

γTL







=


















1
EL

−νRL
ER

−νTL
ET

0 0 0

− νLR
EL

1
ER

−νTR
ET

0 0 0

− νLT
EL
−νRT
ER

1
ET

0 0 0

0 0 0 1
GLR

0 0

0 0 0 0 1
GRT

0

0 0 0 0 0 1
GTL
























σL

σR

σT

τLR

τRT

τTL







. (2.3)

The symmetry of the material compliance matrix results in the following necessary



Chapter 2 , Theoretical background 7

symmetry conditions

νLR
EL

=
νRL
ER
,

νRT
ER

=
νTR
ET
,

νTL
ET

=
νLT
EL
. (2.4)

Nine independent mechanical parameters are sufficient to formulate a constitutive
law for orthotropic materials: module of elasticity EL, ER, ET , Poisson’s ra-
tios νRL, νRT , νTL, and shear moduli GLR, GRT , GTL.

2.2 Modulus of elasticity, shear-modulus and Poisson’s

ratio

Mechanical properties, like strength and stiffness values of wood, are determined
from the technological parameters bulk density, moisture content, as well as influ-
ence of knots and growth imperfection. A micromechanical model was developed
at the IMWS, which enables the determination of elastic mechanical parameters of
clear wood (without knots or other growth irregularities) according to the aforemen-
tioned two main influencing values density ρ and moisture content u. Subsequently
the nine independent elastic parameters EL, ER, ET , νLR, νRT , νTL, GLR, GRT ,
GTL are defined in dependency of ρ and u. The particular influence of the latter two
parameters on individual elastic constants is determined from regression equations
based on the micromechanical model predictions for spruce wood:

EL= 9221 ( 0.0099 ρ2 +2.2171 ρ+0.0003 ) ( 0.3586 u2−1.4994 u+1.2853 )

ER= 474 ( 8.8179 ρ2−2.4399 ρ+0.3067 ) ( 1.4053 u2−6.0702 u+2.1586 )

ET = 319 ( 8.7603 ρ2−2.0279 ρ+0.1377 ) ( 1.5297 u2−6.2122 u+2.1822 )

GLR= 587 ( 0.7135 ρ2 +1.8226 ρ+0.0351 ) ( 0.3576 u2−2.4174 u+1.4697 )

GRT = 34 ( 21.887 ρ2−12.047 ρ+1.9763 ) ( 1.7218 u2−6.4270 u+2.2176 )

GTL= 576 ( 0.7135 ρ2 +1.8226 ρ+0.0351 ) ( 0.3576 u2−2.4174 u+1.4697 )

νLR= 0.3314 (−0.3026 ρ2−0.7715 ρ+1.4086 ) (−5.6132 u2 +1.8779 u+0.8380 )

νRT = 0.7305 ( 3.4835 ρ2−4.7469 ρ+2.4319 ) ( 1.6248 u2 +0.2281 u+0.8902 )

νRT = 0.0128 (−2.2411 ρ2 +4.9597 ρ−0.7771 ) (−9.4366 u2−0.2391 u+1.4210 )

(2.5)

The reduction of elastic parameters in consequence of influence of knots is discussed
in Subsection 2.4 .
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Table 2.1: Reference strength values

Type of strength,
direction

Symbol [N/mm2] ρ [g/cm3] Reference

Uniaxial tension,
longitudinal

f refy t, L 85.41 0.43 [Eberhardsteiner, 2002]

Uniaxial tension,
radial

f refy t, R 2.56 0.43 [Kühne, 1955]

Uniaxial tension,
tangential

f refy t, T 4.23 0.43 [Kühne, 1955]

Uniaxial compression,
tangential

f refy c, L 49.98 0.38 [Eberhardsteiner, 2002]

Uniaxial compression,
radial

f refy c,R 4.20 0.43 [Kühne, 1955]

Uniaxial compression,
tangential

f refy c, T 5.60 0.43 [Kühne, 1955]

Shear, longitudinal-
radial

f refy, LR 8.25 0.38 [Eberhardsteiner, 2002]

Shear, longitudinal-
tangential

f refy, LT 8.25 0.38 [Eberhardsteiner, 2002]

Shear, radial-
tangential

f refy, LR 2.50 0.38 approximated

2.3 Strength values

Along the lines of the elastic parameters, also the influence of density on the strength
values is determined by means of the micromechanical model for spruce wood. In-
fluence functions (Fig. 2.2), controlled by the density and generated with a constant
moisture content of u= 12%, are multiplied by reference strength values for clear
wood (Tab. 2.1), which gives the sought strength values without influence of knots
(2.6).

fy t, L = f refy t, L fst,L (ρ) , fy t, R = f refy t, R fst,R (ρ) , fy t, T = f refy t, T fst,T (ρ)

fy c, L = f refy c, L fsc,L (ρ) , fy c,R = f refy c,R fsc,R (ρ) , fy c, T = f refy c, T fsc,T (ρ)

fy, LR = f refy, LR fsLR (ρ) , fy, LT = f refy, LT fsLT (ρ) , fy,RT = f refy, RT fsRT (ρ)

(2.6)
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Figure 2.2: Influence functions versus density

The reduction of strength values in consequence of influences of knots is discussed
in subsection 2.4 .

2.4 Influence of knots

Mechanical properties of wood are significantly reduced by the influence of knots.
This influence on clear wood properties is estimated by means of the Knot Area
Ratio (KAR-value). The value is defined as the sum of the cross-sectional area of
knots related to the overall cross-sectional area of a board (see Fig. 2.3):

KAR =
A1 +A2

b h
(2.7)
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b
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LT

R

Figure 2.3: KAR

2.4.1 Reduction of modulus of elasticity and shear-modulus

To consider the influence of knots on all nine elastic constants, approximate reduc-
tion ratios are defined. Two reduction ratios are defined as apparent from Fig. 2.4 :
k l specifies the ratio between knot area and clear wood area in longitudinal di-
rection. For the reduction of elastic constants in relation to the tangential plane
(L–T - plane), k q ist defined as ratio between diameter of knot and a circle with
diameter of l. This results in

k l =
l − d

l
, k q =

l 2 − π
d 2

4
l 2

. (2.8)

Using the definition of the KAR-value (Fig. 2.3) the reduction ratios can be written
as follows:

k l = 1−KAR , k q = 1− π
KAR 2

4
. (2.9)
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h
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l

LT

R

Figure 2.4: Representative knot-dimensions

The moduli of elasticity are reduced as follows:

E kL = k l EL , E kR = k q ER , E kT = k l ET

G kLR = k l ELR , G kLT = k l ELT , G kRT = k l ERT
(2.10)

It is assumed that Poisson’s ratios νLR, νRT and νTL are not affected by knots.

2.4.2 Reduction of strength values

The strength values in (2.6) hold for clear, i.e. knot-free wood. The reduction of
the uniaxial tensile strengths in consequence of knots is determined as

f ky t, L = fy t, L e
−2.78 KAR ,

f ky t, R = fy t, R e
−4.56 KAR ,

f ky t, T = fy t, T e
−4.56 KAR .

(2.11)

According to experimental results of [Fleischmann, 2005], describing the reduction
of the uniaxial compression strength in consequence of knots, data are qualitatively
specified in (2.12), wherein rc = 50 . Experimental values are listed in Tab. 2.2 .



Chapter 2 , Theoretical background 12

Table 2.2: Experimental values in [N/mm2]

L R T - direction

f k,exy c 30.50 3.48 3.48

f ky c 46.20 5.15 5.15

f ky c, L =
f k,exy c, L

f exy c, L
fy c, L + (fy c, L −

f k,exy c, L

f exy c, L
) e−rc KAR

f ky c,R =
f k,exy c,R

f exy c,R
fy c,R + (fy c,R −

f k,exy c,R

f exy c,R
) e−rc KAR

f ky c, T =
f k,exy c, T

f exy c, T
fy c, T + (fy c, T −

f k,exy c, T

f exy c, T
) e−rc KAR

. (2.12)

Considerations based on Mohr’s circle are exploited in order to describe the influ-
ence of knots on the shear strengths. With clear wood values f y, ij , f y t, j, f y c, j –
i, j ∈ {L,R, T} , the angle φ ij is defined as

φ ij = tg−1 2 f y, ij
f y t, j − f y c, j

, (2.13)

according to Fig. 2.5 . Rearranging of (2.13) with reduced uniaxial strength values
for wood with knots and assuming constancy of the angle φ ij, results in

f ky, ij =
f ky t, j − f

k
y c, j

2
tg (φ ij) , (2.14)

and specifying (2.14) for different principal material directions yields the sought
shear strength values:

f ky, LR =
f ky t, R − f

k
y c,R

2
tg (φLR)

f ky, LT =
f ky t, T − f

k
y c, T

2
tg (φLT )

f ky, RT =
f ky t, T − f

k
y c, T

2
tg (φRT )

. (2.15)
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f ky ij

σi

φ ij

f y ij
τij

f y c j

φ kij

f ky c j f ky t j f y t j

Figure 2.5: Mohr’s circle for clear wood and wood with knots

2.5 Assembly of Cross Laminated Timber

As mentioned in the beginning, the investigations in this work are performed for a
three-layer assembly (Fig. 1.1) . The individual layers are built up of so called «end-
less lamellae», where the direction of wood fibres of the surface layers correspond
to the global X-axis; the direction of wood fibres of the interior layer corresponds
to the global Y -axis, and the plate normal direction maps the Z-axis (Fig 2.6) .

The endless lamella is made up of «boards» with variable length, which are
connected by means of finger joints on their face sides. The simulation process
depicted in Chapter 3 uses a different, theoretical approach than in the industrial
production process, where CLT is built up plate-wise and cutted to size in the
end. In this approach, each simulated CLT is built up of «one» endless lamella.
Only quadratic plates are considered. The lamella is divided into sections of length
«plate width». With these sections the CLT is built up in a consecutive manner,
as depicted in Fig 2.6 . The first section of the lamella starts at the origin of the
global X–Y –Z - coordinate system, with its longitudinal direction aligned in X-
direction. This is followed by section two, arranged in a parallel manner in the
same direction, and so on. When the last section of the lamella in layer 1 is
arranged, and so the dimension in Y - direction of the plate is reached, the same
sequence is done to assemble layer 2, by arranging the longitudinal direction of
the lamella sections in Y - direction. To specify KAR-values over the length of an
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endless lamella, it is partitioned in cells (in this thesis so-called «bricks»), which
have a fixed length of 150 mm (Fig. 2.6) . Though, the length of the boards the
lamella is built of, are randomly generated in order to mimic the available boards
in a factory for producing CLT as furhter laid down in Subsection 2.5.1 . Since
brick units are used for assignment of technological parameters (density ρ, KAR-
value, moisture content u) in the simulation described in Chapter 3, the randomly
calculated board length within the endless lamella has to be rasterized (detail in
Fig 2.6 ), i. e. subdivided into bricks.

X

X = 0 / Y = 0 /Z = 0
Starting point

Z

Y

Built-up direction
Layer 2Layer 1

Layer 3

Endless lamella

Rasterized length h

l w

[ · · ·
0

0
1

0
0

0
0

1
0

0 · · ·
] = fingj

Random «board»-length

«Brick»

Figure 2.6: Assembly, bottom view

The boards, the lamella is built up, have widths of 150 mm and thicknesses of
35 mm . Hence, the dimension of a brick are defined in line with Figs. 2.4 and 2.6 ,
as

150 mm / 150 mm / 35 mm .

[ l – length, L-direction / w – width, R-direction / h – height, T -direction ]
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CLT is built up of boards with varying technological parameters. For the numerical
simulation of the plate moisture content u and bulk density ρ are specified for each
particular board of an endless lamella, while – as mentioned before – theKAR-value
is assigned to each brick.

Based on these parameters, mechanical parameters of each board are calculated
(Sec. 2.2 – 2.4 ) . For the moisture content, a constant value according to standard
ambient condition and air humidity of u = 12 % is chosen for all boards within
the endless lamella. The mechanical characteristic of wood under tensile load is
approximately linear elastic, until a brittle fracture occurs (Fig. 2.7, graph (a) ) .
Hence, to represent the mechanical failure behavior of CLT, cohesive elements are
integrated in sections, where tension stress occurs. For the mechanical characteristic
under compression load, an ideal elastic-plastic failure model is assumed. The Tsai-

Wu failure criterion [Radecki-Pawlik, 2009] suitably describes the onset of failure
in orthotropic materials. Since plastic failure in compression never occured in the
simulations discussed in the following chapters, the theoretical background of plastic
failure is not presented in further detail in this thesis.

fracture

yield

Z

X

fy cL

(a) ideal elastic - fracture

(b) ideal elastic - plastic

ε

σ

Cross section of CLT

−ε

}

(b)
}

(a) fy t L

−σ

Figure 2.7: Material model

2.5.1 Position of finger joints – lengths of boards

To calculate the length of each specific board, the same statistical distribution as
in [Ehlbeck et al., 1985] is employed. The latter distribution is determined by an
evaluation of board lengths used in Danish glulam beams manufacturing companies.
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The board lengths are normal distributed with average µ = 4.30 m and standard
deviation σ = 0.71 m . Boards longer than 6.30 m and shorter than 2.40 m are
disregarded in the simulation of the endless lamellae. So, for the simulation of
the endless lamellae, boards with above described distributed lengths are randomly
chosen and bonded together.

2.5.2 Density of boards

Analogous to the specific board lengths within the endless lamellae, also the density
ρ of each board is chosen randomly. It is assumed that each board in the endless
lamella has a constant density over the whole board length. This simplification is
based upon experiments [Ehlbeck et al., 1985], in which it was demonstrated that,
within 80 % of a control sample of 111 boards, the variation of the density between
respective board endings is lower than 4 %. According to the same experiments
[Ehlbeck et al., 1985], the average density of spruce wood was determined to be
normal distributed with µ = 0.43 g/cm3 and σ = 0.05 g/cm3 .
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Figure 2.8: Weibull cumulative distribution of KAR-values



Chapter 2 , Theoretical background 17

2.5.3 KAR-values of bricks

Contrary to the constant density ρ over the entire board, the KAR-value varies
within the board and is assigned at brick level. The frequency distribution of the
KAR-values is defined based on an evaluation of 468 samples (see [Ehlbeck et al.,
1985]), related to the visual grade class II of wood. The values range from 0 up to
0.45, and they are approximately Weibull distributed, wherein

f(x |a, b) = b a−b xb−1 e−(xa )
b
I(0,∞)(x) (2.16)

is the Weibull probability density function (see [Matlab Documentation, 2009]) ,
with scale parameter a = 0.0714 and shape parameter b = 0.8565 . The correspond-
ing cumulative distribution of Eq. (2.16) is presented in Fig. 2.8 . Hence, each brick
has a randomly chosen KAR-value out of the range 0 < KAR < 0.45.
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Simulation-program

In this section, both the aim and the functionality of the simulation program are
outlined. The FE-model is established in order to compute deflections, stresses,
and strains of CLT plates. To simulate the CLT plates, FE software Abaqus TM is
used in version 6.9-2 .

The simulation program is used to build up the FE-model of quadratic, three-
layer CLT plates with characteristic technological and design properties as laid down
in Section 2.5 . By means of mesh density parameters for all sections of the assembly,
the fineness of the mesh and, thus, the number of elements used to discretize one
brick, can be specified. Mechanical parameters (such as elastic material parameters
and strength values) are calculated for each brick (Fig. 2.6), serving as lowest unit
for assignment of technological parameters (such as density ρ).

conditions
Boundary

Plate length

Z,w
X, u

Y, v

Plate length

Figure 3.1: Boundary conditions

18
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In Fig. 3.1 the FE-model of a plate, generated with the simulation program and
constrained with boundary conditions, is presented. The default boundary condi-
tions used in this thesis and depicted in Fig. 3.1 allow displacements of the nodes
only perpendicular to the edges in the plate plane. The directions of arrows dis-
played at lateral faces of the plate represent the restricted degrees of freedom. In
mechanical terms, this means:

at surface x = 0 and x = 〈plate width〉 : u = 0 ,

at surface y = 0 and y = 〈plate width〉 : v = 0 .

A distributed load is standardly applied to the topside of the plate (Fig. 3.2).

load
DistributedZ

X
Y

detailed in Fig 3.3
Secion of assembly

Plate length

Plate length

Figure 3.2: Distributed load

The theoretical background of the material behavior used in the framework of
the FE calculations is discussed in Chapter 2. To implement the mechanical failure
model of CLT under uniformly distributed load, cohesive elements are integrated in
layer2 and layer3 (Fig. 2.6), where tension stresses occur. According to Section 2.5 ,
mechanical parameters are randomly assigned to the bricks, wherein the elastic pa-
rameters, according to the linear theory of elasticity (Section 2.1), are calculated
from the technological parameters density ρ, KAR-value, and moisture content u
(Sec. 2.5). Strength values assigned to the cohesive elements, are calculated accord-
ing to Section 2.3 . The strength values are required for evaluating the nominal
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stress criterion of damage initiation of cohesive elements. They are calculated anal-
ogous to the elastic parameters, from the technological parameters (ρ, KAR, u) of
adjacent bricks, whereas the values are taken from the weakest respective adjacent
brick .

3.1 Principle of modeling

In the FE model, two types of elements are used: Three-dimensional solid stress/dis-
placement elements, for describing elastic material behavior, and cohesive elements,
which enable to create cracks in surface layers when a critical tension stress is ex-
ceeded. Figure 3.3 shows a section of the exterior layer 1 (Fig. 3.2) of the schematic
assembly of CLT used for the FE-simulation. Note, that in Fig. 3.3 as well as in
all subsequent figures the angle of view is changed: In all figures depicting mesh
generating details, the Z-axis is directed bottom-up.

All «bricks» as specified in Sec. 2.5 are encased by cohesive elements. The blue,
green, and orange planes in Fig. 3.3 are representing geometrical sections of cohesive
elements. Even though cohesive elements are composed of two faces (see Fig. 3.7),
they are displayed planar in Fig. 3.3 in a schematical manner. For a better illus-
tration of sections in Fig. 3.3, the orange cohesive section is only depicted once.
It is required, that the rectangularly assembled solid bricks are encased by these
cohesive elements in order to be able to reproduce the cracking process. Otherwise,
if cohesive elements are only located between bricks in longitudinal direction of the
endless lamella (green cohesive sections in Fig. 3.3), the crack process doesn’t start
due to constraints at the corner nodes of the solid section bricks.

bril
bril

b
r
i
h

Cohesive section

Y
Z

X

20-node quadratic element

Solid section

}

Brick

Meshed brick

R L
T

Figure 3.3: Assembly of cohesive and solid sections
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So, the FE model is built up of rectangularly arranged copies (from now on
named assembly) of the following four geometrical sections as shown in Fig. 3.3: the
solid section brick with cuboid shape, which is meshed with three-dimensional solid
stress/displacement elements; the cohesive interface between solid bricks in X–Z -
plane (blue); the cohesive interface in longitudinal direction in Y –Z - plane (green);
the cohesive interface between layers in X–Y - plane (orange). In the simulation
program, parameters are assigned to these sections, where all finite elements inside
the section have identical material parameters. As already mentioned, the mesh
density is variable in the solid section as well as in the cohesive section. For example,
in Fig. 3.3 a solid section brick meshed with density of «four elements per brick»
is shown; the nodes of a C3D20-solid stress/displacement element are plotted. To
build up the assembly of these sections, a global coordinate system is introduced.
The relation between the local L–R–T - system, for bricks in layer 1, and the global
X–Y –Z - system is also apparent in Fig. 3.3 .

To apply boundary conditions and loads to the FE-model of CLT, miscellaneous
sets of nodes and elements are defined within the simulation program. Two exam-
ples: one node set is generated for each of the lateral edges; to apply distributed
load (Fig. 3.2) to the top side of the plate, an element set of the top layer is com-
piled. These node sets are defined after the mesh has been built. The amplitude
of loads, the degrees of freedoms for which boundary conditions apply, as well
as other parameters such as control values for solution techniques, are set in the
the last subsection of the program, the so called «history definition» pursuant to
Abaqus notation. In the input section of the simulation program, parameters defin-
ing dimensions are specified in [mm], and parameters defining loads are specified in
[N/mm2] .

For the FE analysis by Abaqus/Standard TM, there are two options how to handle
the input process. The first option is to design the model section with the integrated
computer aided engineering (CAE) application. This is advantageous in most cases
because it is easy to define all aspects of the model with integrated design modules
(for example, defining the geometry, defining material properties, and generating
the mesh). In this way, a model is built up from which Abaqus/CAE generates
an input-file (job name.inp) to be submitted to the solver Abaqus/Standard. The
second option is to generate the input-file manually (e. g. with a text editor) or in
the framework of an I/O-program. The input-file contains all definitions required
to perform the analysis. Representing the model in the form of keywords, the file
is written in ASCII format. In this thesis, the latter option to generate the input-
file is used, employing Matlab programming language. The big advantage of using
Matlab TM as I/O-program is the ability to conveniently allocate varying material
parameters to each finite element. The disadvantage of an in principal complicated
mesh generation does not take effect here considering the rectangular geometry of
CLT as well as using bricks as finite elements and not prisms.
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Start

of wood properties:
Random assigment

elastic constants
Strength values of

solid section bricks

Mesh generation

Input: Dimension/geometry

On/Off - switches

Position of finger-joints

KAR-values of each brick
Density of boards

Mesh density

KAR, on brick-level

Assignment of techno-
logical parameters ρ,

Calculation strength

cohesive section

Write .inp-file

End

Sets for boundary
Node sets

values of

Element sets

parameters on brick-level
Assignment of mechanical

Calculation:

Orthotropic elasticity with

Figure 3.4: Flowchart of the Matlab - simulation program

The main file in Matlab, controlling the generation of the input file for Abaqus,
is inpgen.m. The file inpgen.m is subdivided in several logical sections apparent
in the flowchart Fig. 3.4 . In the following subsections, the detailed programming
structure and the data handling are explained. All variables are commented at
the beginning of the inpgen.m-script file; variables only used in subroutines are
commented in the corresponding function file.

Matlab is optimized for matrix manipulations. Therefore all data are stored as
compact as possible in form of arrays to reduce the quantity of variables.
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3.2 Mesh generating section

At the beginning of the inpgen.m-script-file, all required geometry data are spec-
ified. The parameters bril = 150, brih = 35 define the dimensions of a brick
according to Fig. 3.3 ; units are set in [mm]. The parameter bripsi defines the
number of rectangularly arranged bricks per side in X and Y - direction. An equal
number of bricks is assumed in the two directions, so that only quadratic plates can
be simulated. Accordingly brilay defines the number of layers generated. In this
simulation only brilay = 3 is supported for a correct functionality. The parame-
ters epbrxy, epbrz determine the mesh density of the solid brick (e. g. the meshed
brick in Fig. 3.3 with four C3D20-elements per brick is generated with epbrxy=2,
epbrz=1).

Listing 3.1: Mesh generating section 1

dcon=[ bril/ epbrxy *0.5 , brih/ epbrz *0.5]

for briz=1: brilay

for brixx =1: bripsi

for briyy =1: bripsi

brinr= sprintf (’%d%02d%02d%d’,1,brixx ,briyy ,briz)

brinr= str2double( brinr)

stbr (1)=( brixx -1)*(bril+ brimxy)

stbr (2)=( briyy -1)*(bril+ brimxy)

stbr (3)=( briz -1)*(brih+ brimz)

for knodez =3:2:( epbrz*2+1)

for inodex =3:2:( epbrxy*2+1)

for jnodey =3:2:( epbrxy*2+1)

stbr (1)=( brixx -1)*(bril+ brimxy)

stbr (2)=( briyy -1)*(bril+ brimxy)

stbr (3)=( briz -1)*(brih+ brimz)

elenr= sprintf (’%d%d%d’ ,(inodex -1)/2 ,...

(jnodey -1)/2 ,( knodez -1)/2)

elenr= str2double( sprintf (’%05g%s’,brinr , elenr ))

In a similar way, the mesh density of the cohesive interfaces (three types; shown
as blue, green, and orange layers in the figure) is controlled by covpxy, covpz,
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cohpxh. With brimxy, the thickness of the cohesive layer aligned in, X–Z, Y –Z -
direction is specified (blue and green planes in Fig. 3.3). Similar the thickness of the
cohesive layer aligned in X–Y - direction (orange), is specified with brimz. dcon(1)

stands for the half length of a solid element in X and Y - direction, dcon(2) for the
half length in Z - direction, respectively.

The generation of nodes with specification of their coordinates is organized on
two levels (List. 3.1). First, three for-loops on the «brick level» control the number
of the bricks in each of the three orthogonal directions X, Y , and Z. Therein the
range of the loops is controlled by the number of rectangularly arranged bricks
per side, specified by the parameters brilay in Z - direction, and bripsi in X and
Y - direction, respectively.
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Figure 3.5: Syntax of element- and node-numbering

The current number of the brick is stored in the control variables briz, brixx,
briyy. These control variables build a 6-digit brick number with syntax 〈l XXYYZ 〉,
where the first digit 〈l〉 is a node label, 〈XX〉 is the placeholder for brixx, 〈YY 〉
for briyy, and 〈Z 〉 for briz. The label 〈l〉= 1 in digit 1 of the brick number rep-
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resents the solid section brick. The brick with brick number 1 01022 in Fig. 3.5 ,
therefore is placed in row 1 in X - direction (〈XX〉= 01), in row 2 in Y - direction
(〈YY 〉 = 02), and in row 2 in Z - direction (thus layer 2, 〈Z 〉 = 2). The (global)
node number is created by adding three digits (denoted as sub number in Fig. 3.5)
describing the node location to the brick number. As an example, the blue marked
node in Fig. 3.5 located at 513 is considered. It is associated with the first solid
section brick in X - direction; hence, 〈XX〉= 01 is stored in digits 2 and 3 of the
node number 1 01011 513 .

Following their digit-based syntax, brick and node numbers are stored as variables
of type character array. To generate the brick number, the sprintf-command is
used for this reason. str2double converts numbers stored as string into a numeric
type number.

In each loop cycle on brick level, the coordinate of the node with number 〈current
brick number〉111 is calculated and stored in strbr. These first nodes in each brick
are marked orange in Fig. 3.5 and serve as reference points for the subsequent
calculations on the «element level». On this second level, the node coordinates
of elements related to the current brick (controlled by above «brick level») and
the element numbers related to the current brick are calculated and stored. The
number of for-loops on the «element level» is controlled by epbrxy and epbrz,
according to the number of elements in X and Y - direction and in Z - direction,
respectively. The current number of the element is stored in the control variables
knodez, jnodey, inodex.

Listing 3.2: Mesh generating section 2

absno = [stbr (1)+2*dcon (1)*(inodex -1)/2 ,...

stbr (2)+2*dcon (1)*(jnodey -1)/2 ,...

stbr (3)+2*dcon (2)*(knodez -1)/2]

nodel (01 ,:)=[absno (1) -2* dcon (1) ,...

elnonr =[111 311 331 131 113 313 333 133 ...

elnonr= elnonr +( inodex -3)*100+...

(jnodey -3)*10+(knodez -3)*1

nodenr= nobrif(brinr ,elnonr ,20)

Element numbers are built of the current brick number, using the aforementioned
syntax 〈l XXYYZ 〉, and of a sub number with syntax 〈xyz〉. To generate these last
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three digits 〈xyz〉, again the sprintf-command is used. 〈x〉, the seventh digit in the
element number, refers to current control variable inodex. Accordingly, 〈y〉 refers to
current control variable inodey, and 〈z〉 to inodez. Again the element numbering
is explained by means of an example in reference to Fig. 3.5 . The brown marked
element with element number 1 01011 211 is the second element in X - direction
of the current brick; so 〈x〉= 2 is stored in digit 7 of the aforementioned element
number 1 01011 211 .
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Figure 3.6: Solid section element

The calculation of the coordinates of all 20 nodes of the current element (List. 3.2)
is done in the «element level» cycles (for knodez=3:2:. . . ). In each loop cycle,
the coordinates of reference node number 7, according to local node numbering
convention are calculated and stored in absno. Thereby, dcon(1) stands for the
half length of an solid element in X and Y - direction, which equals the distance
between two knots. Accordingly dcon(2) stands for the half length of a solid
element in Z - direction. The coordinates of the current element are calculated
and assembled in the 20×3 - matrix nodel. Calculation of coordinates is done in
reference to the aforementioned reference node with coordinates stored in strbr.

To define elements based on the nodes and to generate node sets, the local number
of the nodes within an element has to be known. The local node ordering and the
corresponding local coordinate system for elements in Abaqus is depicted in Fig. 3.6
[Abaqus Manual, 2009, 25.1.4 Node ordering and face numbering on elements]. For
the interrelation between the global node number with syntax 〈l XXYYZ xyz〉 and
the local node number according to the node numbering convention of solid 20-
node elements, compare Fig. 3.5 and Fig. 3.6 . Reference nodes (node, with local
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number 7, of Fig. 3.6) are marked green in Fig. 3.5 .
For assigning global and local node numbers, a buffer vector elnonr is used.

This vector contains 20 sub numbers (digits 7, 8, and 9 – part 〈xyz〉 of global
element number, defining the position of nodes within the element) for the 20
nodes of the current element. The sub numbers 〈xyz〉 in vector elnonr are sorted
according to the local element node numbering of 20-node elements. Initially, they
are specified for the first element (element 111 in Fig. 3.5). elnonr is updated,
in each loop by the current control variables knodez, jnodey and inodex. For
example, the first five sub numbers of elnonr, when passing through the cycle
of element 1 01011 111, are [111,311,331,131,113,313,333,133,211,321,231,

121,213,323,233,123,112,312,332,132].
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〈brick-no.〉132
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With subroutine nobrif, the node definition matrix nodbr1 is built, which as-
signs the global number, coordinates, and the current element number to each
node. The first column is made up by a vector nodenr, which contains the node
numbers of type 〈l XXYYZ xyz〉, sorted in order of the local element node num-
bering: So, for exemplification, the eight nodes representing the vertices of brick
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number 1 01011 211 in sequence of node ordering (Fig. 3.6) , stored in row 1 – 8
of column vector nodenr, are:[1 01011 311;1 01011 511;1 01011 531;1 01011 331;

1 01011 313;1 01011 513;1 01011 531;1 01011 331;. . . ]. The 20×3 - matrix nodel

follows, containing the appropriate coordinates of the nodes. Finally, the last col-
umn of nodbr1 includes the element numbers. The data in the vector nodel and the
coordinate matrix are passed to the node definition matrix nodbr1 in each element
level cycle. Node numbers passed by row vector nodenr are stored in column 1;
coordinates of the 20×3 - matrix nodel in column 2 – 4; the current element number
elenr in column 5.

As noted in the beginning of this chapter, the FE-assembly is built up out of
rectangularly arranged copies of four different geometrical sections: one solid section
and three cohesive interface sections – marked as blue, green, and orange planes in
Fig. 3.3 . The node generating commands for the solid section are depicted in detail
in the previous paragraph. The node generation for cohesive elements allocated to
the interface sections, proceeds in a similar way. Some details are different, and
they are discussed in the following.
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Figure 3.7: Cohesive section elements

Cohesive elements are arranged in between solid section bricks according to
Fig 3.3 . For labeling of the three different cohesive interface sections, the nam-
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ing convention of Abaqus, using local face numbers for side faces of hexahedron
elements, is employed. The face labels according to Fig. 3.6 are assigned to digit 1
of the element and node numbers (Syntax 〈l XXYYZ xyz〉). For example, the iden-
tifier label in digit 1 of the element number of elements allocated to the cohesive
section on face 5 is l=5; that means, that all node and element numbers allocated
to the cohesive section on face 5 are of type 5〈XXYYZ xyz〉. For nodes and ele-
ments allocated to cohesive sections on face 4 and face 2, the same notation with
label identifier l=4 and l = 2, respectively, is used. As mentioned before, the label
l=1 is used for the solid sections.

Cohesive elements are composed of two faces (a bottom and a top face), sepa-
rated by the cohesive zone thickness which is adjustable by the variable brimxy for
cohesive section on face 5 and face 4, and by brimz for cohesive section on face 2
(Fig. 3.7) . 3D cohesive elements have nodes on their bottom face and correspond-
ing nodes on their top face. Again, the building of elements from nodes and the
generation of node sets for cohesive elements requires knowledge of the local node
numbers in the element. The sequence of node ordering defines the orientation of
the thickness direction (orientation of 3 - axes in Fig. 3.7) . The thickness direction
of cohesive elements is always identical with the normal direction of one of the side
faces 5, 4, or 2, respectively

nodnr nodel elenr
︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

nodbr4 =
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〈brick-no.〉111

〈x -, y -, z - coordinates〉

〈element-no.〉
〈brick-no.〉121
〈brick-no.〉122
〈brick-no.〉112
〈brick-no.〉211
〈brick-no.〉221
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Elements within the cohesive section do not use shared nodes with solid section
elements due to different mesh densities in these sections. For the order of node
numbering of cohesive elements according to Abaqus, see Fig. 3.7. Node sets of the
cohesive elements are stored in nodbr5, nodbr4, nodbr2, for which the format is
identical to nodbr1. For example, nodes and elements in cohesive section on face 4
with identifier label l=4 are stored in the matrix nodbr4.

Listing 3.3: Plot section

if swplot ||0

nx= nodbr1 (: ,2)

ny= nodbr1 (: ,3)

nz= nodbr1 (: ,4)

nfx= nodel ([1:4 1 5:8 5 6 2 3 7 8 4] ,1)

nfy= nodel ([1:4 1 5:8 5 6 2 3 7 8 4] ,2)

nfz= nodel ([1:4 1 5:8 5 6 2 3 7 8 4] ,3)

plot3(nfx ,nfy ,nfz ,’--k’)

For monitoring the aforementioned mesh generating commands in a direct man-
ner, a plot routine is integrated in the mesh generating section: The plotting
function (List. 3.3) is switched on and off with the switch swplot. The plotting
commands create a lattice model of the assembled elements. In an example plot
(Fig. 3.8), nodes of cohesive elements allocated to face 5 are marked blue, nodes of
cohesive section on face 4 are marked green, and nodes of cohesive section on face 2
are marked red. Edges of cohesive elements are plotted as continuous line, edges of
solid elements as dashed lines.

At the end of the node generating section (List. 3.4), double node definitions
in nodbr 1, 5, 4, 2 are eliminated by a subroutine called nodbrsort. The new
coordinate matrices are named cnodbr 1, 5, 4, 2:

Listing 3.4: Mesh generating section 3

cnodbr1 = nodbrsort( nodbr1)

cnodbr5 = nodbrsort( nodbr5)

cnodbr4 = nodbrsort( nodbr4)

cnodbr2 = nodbrsort( nodbr2)
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Figure 3.8: Output of plot subroutine in Matlab

3.3 Material and mechanical - parameter section

In this section, the procedure of calculating material and mechanical parameters
is explained. A short description of relevant subroutines is given below. Material
parameters are calculated from technological parameters for each brick, as the low-
est unit for assignment of technological parameters (Fig. 2.6) . The parameters are
calculated according to Section 2.2 for elastic parameters, and to Section 2.3 for
strength values.

Listing 3.5: Material paramter section

laml= inlmem (5)*bril

kar=kardist (laml ,bril , seed (3))

[rho ,fingj ]= dendist (laml ,...

bril , seed (1:2))

rho= genpar3d (rho ,bripsi , brilay)

kar= genpar3d (kar ,bripsi , brilay)
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To determine and store the technological parameters (List. 3.5), density ρ, KAR-
values, and the positions of finger joints for each brick, three row vectors (rho, kar,
fingj) with dimension 〈bricks/plate〉 or equivalently 〈lamella-length/brick-length〉
are initialized – all components of these vectors are set to 0. The length of the
endless lamella is calculated in laml, whereat inlmen(5) is the counter for loop
cycles on brick level. For example, the endless lamella of the CLT plate in Fig. 3.1
with 8 bricks per side (bripsi = 8), has an overall length of 192·〈brick length〉
( 8·8·3=192 , resulting from 〈number of bricks in the fitted lamella section〉·〈number
of lamella sections arranged side by side〉 · 〈number of plate layers〉 ). Thus, 192
would be stored in inlmen(5). Each component of the row vectors (rho, kar,
fingj) is allocated to a corresponding brick of the endless lamella in a consecutive
manner. For understanding the relation between the endless lamellae and the built-
up of CLT in this simulation, see Fig. 2.6 . In this figure, bricks, as sections of the
endless lamella, and for demonstration their corresponding components in the row
vector fingj are depicted.

With subroutine kardist, a KAR-value is calculated for each brick, according
to the distribution discussed in Subsection 2.5.3 . To determine the positions of fin-
ger joints, the subroutine geodist calculates the randomly distributed lengths of
boards, of which the endless lamella is built. The distribution of the board lengths,
parameters mean value µ and standard deviation σ are set inside the subroutine
function files (geodist.m). The distribution of board lengths is discussed in Sub-
section 2.5.1 . Since bricks form the lowest unit used for assignment of technological
parameters, the calculated board lengths have to be rasterized into sections of the
brick length as described in Section 2.5 . Bricks at board ends hold a 1 in the
corresponding component of fingj, bricks inside the board hold a 0. Subroutine
dendist calculates the density of each brick according to Subsection 2.5.2 on ba-
sis of positions of finger joints (fingj) . The same also applies for the fixing of
distribution parameters for board densities ρ, in dendist.m.

To generate random values according to a given distribution, like it is needed for
the generation of the aforementioned technological parameters KAR, ρ and 〈length
of board〉, random numbers are used. Pseudo random numbers in Matlab come from
a random number stream. To reiterate plates with identical material parameters at
varying mesh densities, a control value of the random number stream is set. With
the parameter simn, defined in the input section, the control value for the random
stream is determined. The triple of control values needed for the three 〈. . . 〉dist.m-
subroutines are stored in the file seed.dat in form of a row data matrix.

genpar3d assembles the row vectors kar, rho and fingj into a multidimensional
cell array with dimension ‘〈bricks/side〉- by 〈bricks/side〉- by 〈number of layers〉-
array’. A cell array is a collection of containers called «cells» in which different types
of variables can be stored. The assembly proceeds in an equivalent manner as the
crosswise building of CLT out of the endless lamellae (Fig. 2.6) . For exemplification,
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the illustration in Fig. 3.9 uses the concept of a page to represent a three-dimensional
cell array. The size of the array 〈4, 4, 3〉 – 〈rows, columns, pages〉, used for the array
in the figure coincide with a CLT plate with geometry bripsi=4 and brilay=3.

(1, 1, 3)
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(3, 1, 3)

(1, 2, 3)

(2, 2, 3)
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(4, 2, 2)
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(1, 4, 2)
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(4, 2, 1)
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(4, 3, 1)

(1, 4, 1)

(2, 4, 1)

(3, 4, 1)

(4, 4, 1)

Page

Column

Row

Figure 3.9: Multidimensional array in Matlab

The mechanical parameters such as elastic constants and strength values, cal-
culated from technological parameters ρ and KAR with the code in List. 3.6, are
stored similarly to these parameters in three-dimensional cell arrays. So, mechani-
cal parameters of each brick are stored in a 9×12 - matrix, which is itself nested in
a 〈bricks/side〉×〈bricks/side〉×〈number of layers〉 - matrix of type multidimensional
cell array.

Listing 3.6: Mechanical parameter section 1

par=cell(bripsi ,bripsi ,brilay )

for briz=1: brilay

for briyy =1: bripsi

for brixx =1: bripsi

parwm= zeros (9 ,12)

parwm (7 ,1:9)= strength (rho(brixx ,briyy ,briz) ,...

kar(brixx ,briyy , briz))

parwm (9 ,1:9)= elastpar (rho(brixx ,briyy ,briz) ,...

kar(brixx ,briyy , briz))

par(brixx ,briyy ,briz )={ parwm }; end;end;end
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Again, loops on brick level are used to compute the mechanical parameters of
each brick. Mechanical parameters are calculated by subroutines strength and
elastpar. Subroutine [stren]=strength(rho,kar) calculates nine strength values
according to Sec. 2.3 :

fy t, L , fy t, R , fy t, T , fy c, L , fy c,R , fy c, T , fy LR , fy LT , fy RT

Subroutine [p]=elastpar(rho,kar) calculates the nine elastic constants of the
current brick according to Sec. 2.2 , :

EL , ER , ET , νLR , νRT , νTL , GLR , GLT , GRT

They are assembled in the buffer variable parwm. At the end of each loop cycle,
the 9×12 - matrix parwm is stored in that cell of the three-dimensional cell array
par, for which the position 〈row, column, page〉 correspond to the brick numbering
specified by 〈brixx, briyy, briz〉.

In addition to the aforementioned mechanical parameters, other mechanical pa-
rameters (e.g. elasticity tensor C and Tsai Wu - parameters, which are not used
in the simulation) are stored in the 9×12 - matrix parwm:

parwm =
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〈elasticity-tensor C〉
see Section 2.1 , Eq. (2.3)

6×6 - matrix

fy t, L fy t, R fy t, T fy c, L fy c,R fy c, T fy LR fy LT fyRT

〈12 Tsai Wu - parameter〉

EL ER ET νLR νRT νTL GLR GLT GRT
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Cracks are reproduced with cohesive elements. Damage initiation of cohesive
elements refers to the beginning of disappearance of the cohesive element’s stiffness.
Damage initiation begins when the stresses satisfy the maximum nominal stress
criterion. Therein, damage is assumed to initiate when the maximum nominal
stress ratio reaches a value of one. This criterion can be represented as

max

{

〈σi〉

f y t, i
,
σij
f y, ij
,
σik
f y, ik

}

= 1 , i, j, k ∈ {L,R, T} . (3.1)
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The 〈 〉 - brackets only take a non-zero value according to their argument in case of
a positive stress σi. They are used to signify that a pure compressive stress state
does not initiate damage. Strength values fy t, L, fy t, R, fy t, T , fy, LR, fy, LT , fy,RT
(Sec. 2.3) represent the peak values of the nominal stress at deformations either
purely normal to the interface or purely in the first or the second shear direction,
respectively.

The Abaqus output identifiers variable MAXSCRT indicates, whether the maximum
nominal stress damage initiation criterion has been satisfied at a material point.
The variable is disscussed by means of a sample plate in Section 4.4 .

To define the mechanical behavior of cohesive elements, a ‘traction-separation’
approach is used [Abaqus Manual, 2009, 26.5.6 Defining the constitutive response
of cohesive elements using a traction-separation description]. For example, the
traction - separation description for the cohesive section on face 4 (detail of the
cohesive element in Fig. 3.10, allocated to the global Y –Z - plane or local R–T -
plane) requires three elastic constants and three strength values, related to the
local R–T - plane:

Elastic constants – EL , GLR , GLT ,

strength values – fy t, L , fy LR , fy LT .

Hence, to define three cohesive sections allocated to a brick, 18 parameters have to
be extracted from the material parameter 9×12 - matrix of type parwm (Page 34)
of the two adjacent solid bricks.

Listing 3.7: Mechanical parameter section 2

parcoh= cell(bripsi ,bripsi ,brilay)

for briz=1: brilay

for briyy =1: bripsi

for brixx =1: bripsi

% strength-parameter
parcohwm (2 ,1)= min( parwm{brixx ,briyy ,briz }...

(7 ,1) , parwm{ brixx+1,briyy ,briz }(7 ,1))

parcohwm (2 ,2)= min( parwm{brixx ,briyy ,briz }...

(7 ,7) , parwm{ brixx+1,briyy ,briz }(7 ,7))
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% E, G - moduli
parcohwm (2 ,4)= min( parwm{brixx ,briyy ,briz }...

(9 ,1) , parwm{ brixx+1,briyy ,briz }(9 ,1))

parcohwm (2 ,5)= min( parwm{brixx ,briyy ,briz }...

(9 ,7) , parwm{ brixx+1,briyy ,briz }(9 ,7))

parcoh(brixx ,briyy ,briz)={ parcohwm }; end;end;end

In Listing 3.7 , the assignment of aforementioned mechanical parameters is de-
scribed. Loops on brick level are used, to align the aforementioned mechanical pa-
rameters for cohesive elements. They are assembled in the buffer matrix parcohwm,
wherein the six parameters stored in row 1 are required for material definition of
the cohesive section on face 5, parameters in row 2 are required for cohesive section
on face 4, and parameters in row 3 are required for the cohesive section on face 2.
The function min is used, to filter the sought weakest parameters of adjacent solid
bricks. For example, to define the strength value in L - direction (fiber direction) of
the cohesive element detailed in 3.10 , the smaller value fy t, L of both bricks with
position 〈brixx, briyy, briz〉 and 〈brixx + 1, briyy, briz〉 is taken, and stored
in 〈2,1〉 of parcohwm.

Face 5
Face 2

Face 4

the weakest values
of elastic constants

Determination of

and strength values
ent in cohesive

section on face 4

Cohesive elem-X

Z

LR

T

Y

σLR
σLL

σLT

σLT

σLL
σLR

Figure 3.10: Read-out of strength values and elastic constants for the cohesive
section

The mechanical parameters for the cohesive sections in parcohwm are stored sim-
ilarly to the parameters for the solid section, in a three-dimensional cell array called
parcoh, in which the matrices parcohwm for each element are included at the place
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specified by the locations of the adjacent bricks.

parcohwm =










fy t, T fy, LT fy,RT ET GLR GRT

fy t, L fy, LR fy, LT EL GLT GLT

fy t, R fy, LR fy,RT ER GLR GRT










3.4 Node and element - sets generating section

The surfaces of the solid and cohesive sections are tied together with mesh tie con-
straints according to [Abaqus Manual, 2009, 28.3.1 Mesh tie constraints]. To define
surfaces, element sets containing all elements on brick surfaces are required. For
example, elements with element numbers 1 01011 211 and 1 01011 221 in Fig. 3.5
are located on face 4 of brick number 1 01011. To define all six surfaces of a solid
brick with a variable mesh density, six element sets have to be defined: one for each
face.

Listing 3.8: Element set generating section

elebr1= nodbr1 (: ,5)

elebr1= elesort (elebr1)

for briz=1: brilay

for briyy =1: bripsi

for brixx =1: bripsi

ibl (1)= ibl (1)+1

elebr= elebr1 ((1: elepbr )+((ibl (1) -1)*elepbr ))

j=max( epbrxy ^2, epbrxy*epbrz)*(ibl (1) -1)

% Elementset Face 4
j=max( epbrxy ^2, epbrxy*epbrz)*(ibl (1) -1)

for i=1: epbrxy ^2*epbrz

if isface(elebr(i),7,epbrxy )

j=j+1

elefa1(j ,4)= elebr(i)

end

end; end;end;end
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elebr1 contains all element numbers of the assembly, which are allocated to
20-node solid section elements. Again, loops on brick level (List. 3.8) are used to
identify and sort elements of the current brick according to their position on exterior
side faces. Here, ibl(1) is a counter on brick level needed to control the access to
elebr1.

The subroutine [logical]=isface(elenr,digit,location) compares selectiv-
ely digits (digit) of element numbers (elenr, 〈l XXYYZ xyz〉) with parameters
indicating the element location in the brick (location). For example, brick number
1 01011 in Fig. 3.5 is investigated: to check, if one of the four elements, in the brick
is located on exterior face 4 of the brick, the decisive digit 7 has to be compared
with 〈elements per brick in X - direction〉 – 2 in this configuration. So, in this
case digit 7 of element number 1 01011 211 has to be compared with value 2. As
output, logical true – 1, or false – 0 is displayed. For the example case, the result of
isface is logical true – 1. The identified elements become part of the element set in
column 1 of elefa1, which contains elements of all bricks, sorted by the location of
elements in reference to exterior faces 1 to 6 . The side face number which elements
are assigned to, is defined by the column number in elefa1:
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All other element and node sets are generated similarly to the aforementioned
example, by filtering for decisive digit(s) of element and node numbers.

In Fig. 3.11 and Fig. 3.12, element and node sets generated in these section of
the simulation program are presented. Figure 3.11 shows all cohesive sections as
part of the model of the sample plate. While in Fig. 4.7 only cohesive sections of
the bottom layer and on face 5 of the solid bricks are shown, herein also cohesive
sections on face 4 and face 2 are depicted. Furthermore, the structure of the bottom
layer, composed of parallel arranged boards, is apparent – for exemplification, every
second board in the bottom layer is switched off. Board sets are stored in the data
matrix elslam.

The node set for applying boundary conditions is apparent in Fig. 3.12 . For
exemplification, the brick mismatch is set unequal to zero with brimxy and brimz.
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Solid bricks with a mesh density of 〈n.o. elements/solid brick〉=8 are shown. Node
sets for boundary conditions are stored in ndsbound.
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Figure 3.11: Cohesive grid, element set for boards
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Figure 3.12: Node set for boundary
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3.5 File generating section

In the closing section of the Matlab script file inpgen.m, the already generated data
(Sec. 3.2 – 3.4) is reprocessed for printout to an Abaqus input-file, to be submitted
to the solver Abaqus/Standard. A short summary of using input-files for Abaqus
FE-calculation is done in Section 3.1 . Here, the main parts of this section are
discussed.

The variable job name, which specifies the name of the Abaqus input-file
(job name.inp), displays specification details of the generated FE-model of the
CLT plate. Its syntax is

b〈n.o. bricks/side〉 f〈n.o. elements/solid brick〉-〈n.o. elements/cohesive sec. 5, 4〉-
〈n.o. elements/cohesive section 2〉 s5〈running number of simulation〉.inp .

In List. 3.9 , the assembly of these file name is presented. Mesh density parameters
bripsi, elepbr, copfav and copfah, which are introduced into the file name, have
been in Section 3.2 . To generate the job name, the sprintf-command is used,
wherein the acronym ‘n. o.’ stands for ‘number of ’.

Listing 3.9: File generating section 1

filena= sprintf (’inp/b%g_f%g -%g -% g_s%g.inp ’ ,...

bripsi ,elepbr ,copfav ,copfah , simn)

fid=fopen(filena ,’w’)

fprintf (fid ,’*NODE\n**\n’);

for i=1: size(cnodbr1 ,1)

fprintf (fid ,’%10d ,%13.4f ,%13.4f ,%13.4f\n’ ,...

cnodbr1 (i,1) , cnodbr1 (i ,2) , cnodbr1 (i ,3) ,...

cnodbr1 (i ,4));

end

The file identifier fid is assigned by the command fopen, which creates a new file
for writing with name job name.inp. By access on fid, data is appended to the
currently open input file. At first, the node definition ( *NODE ) for solid elements
stored in cnodbr1 is printed. To print data out of matrices, for-loops are used
with a range controlled by the number of rows, the matrices are composed of; kind
of process flow is used for all subsequent printout sections.
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Listing 3.10: File generating section 2

fid=fopen(filena ,’w’)

for briz=1: brilay

for brixx =1: bripsi

for briyy =1: bripsi

fprintf (fid ,’*ELEMENT , TYPE=C3D20\n’);

for ielem = 1: elepbr

fprintf (fid ,[ ’%10u ,%10u ,%10u ,%10u,’...

’%10u ,%10u ,%10u ,%10u,’] ,...

nodbr1 (( inl (1) -1)*20*elepbr +20*ielem -19 ,5)

fprintf (fid ,’*ELSET , ELSET=BRICK -1%05u ,...

INTERNAL \n’,brinr)

for i=1: elepbr

elenr=nodbr1 (( inl (1) -1)*20*elepbr +20*i -19 ,5)

fprintf (fid ,’%9u’,elenr ); end

fprintf (fid ,[ ’*SOLID SECTION ,’...

’ELSET=BRICK -1%05u, ORIENTATION=LAYER -1,’...

’MATERIAL =M%05u\n’],brinr , brinr); end;end;end

fprintf (fid ,[ ’*ORIENTATION ,NAME=LAYER -1\n’...

’ 1, 0, 0, 0, 0, 1\n 1 ,0\n’...

’*ORIENTATION ,NAME=LAYER -2\n’...

’ 1, 0, 0, 0, 0, 1\n 2 ,90\n’]);

Like in aforementioned sections, loop cycles on brick level are used to write out
data concerning brick definition (List. 3.10). In these cycles, the following keywords
are defined: *ELEMENT - definition of element connectivity based on node numbers;
*ELSET – definition of element sets for material section assignment (Sec. 3.3), el-
ement sets for surface definitions (elefa〈no.〉 in Sec. 3.4); *SURFACE - definition of
surfaces on brick level; *SOLID SECTION and *COHESIVE SECTION definition of sec-
tions for material specifications. For keyword definition details, see [Abaqus Man-
ual, 2009, Abaqus Keywords Reference Manual]. For a specification of data matrices
used for printout in this section, see Tab. 3.1 .

For example, to define the eight solid elements allocated to the current brick in
Fig. 3.6 , the for - loop requires eight cycles according to the number of elements per
brick (elenr) to readout element definition data from nodbr1 (detailed on Page 27).
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In the section definition, the principal material directions for each brick are de-
fined. For bricks in layer 1, orientations according to the direction of the lamellae
in the exterior layer 1 and layer 3 are assigned. The same procedure applies for
bricks in layer 2. The definition of the orientation is done after the loop cycles on
brick level with keyword *ORIENTATION .

Listing 3.11: File generating section 3

fprintf (fid ,’*NSET ,NSET=BOUND -13 -0’)

for i=1: size(ndsbound ,1)

nodnr= ndsbound (i ,1)

fprintf (fid ,’ %9u’,nodnr); end

fprintf (fid ,[ ’*TIE ,NAME =%05u-5, ADJUST=NO ,...

’TYPE= SURFACE TO SURFACE \n ’...

’I.SURFACE -1%05u-3,I.SURFACE -1%05u -5\n’] ,...

brinr ,brinr +10 , brinr)

for briz=1: brilay

for brixx =1: bripsi

for briyy =1: bripsi

fprintf (fid ,[ ’*MATERIAL , NAME=M%05u\n*ELASTIC ’ ,...

’TYPE= ENGINEERING CONSTANTS\n’...

’%8.2f ,%7.2f ,%7.2f ,%8.6f ,%8.6f ,%8.6f,’...

’%7.2f ,%7.2f\n%8.2f\n’],brinr ,...

par{brixx ,briyy , briz}(9 ,1) ,...

A exemplarily printout conditions of a node set needed for specification of bound-
ary conditions is depicted in List.3.11 . Node sets for boundary are stored in
ndsbound; In column 1 of (ndsbound(i,1)), all nodes located at the lateral face
with attribute x = 0 are stored. They are printed out in a node set called
NSET=BOUND-13-0 .

To «tie» surfaces of sections of the FE assembly with each other, the *TIE -
keyword is used according [Abaqus Manual, 2009, 28.3.1 Mesh tie constraints].

To printout material definition, the mechanical parameters stored in par (Sec-
tion 3.3) are required. Due to the data type of par (three dimensional cell array),
the access is again made to by loop cycles on brick level. In the example, engineer-
ing constants (nine elastic parameter) are printed out of row 9 of the 9×12 - matrix
parwm (Page 34), which is located at a position corresponding to the current brick
controlled by 〈brixx, briyy, briz〉.
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Table 3.1: Data matrices used for printout

nodbr1 nodbr5

nodbr4 nodbr2

Node number data matrices containing nodal coordi-
nates, as well as the allocation ot the nodes to elements
(nodbr1 – solids, nodbr〈no.〉 – cohesives). For the lay-
out of the variables nodbr1, nodbr4 – see Pages 27 and
29 in Section 3.2 . Used for element definition with
keyword *ELEMENT .

cnodbr1 cnodbr5

cnodbr4 cnodbr2

Node numbers with nodal coordinates without mul-
tiple node definitions like in nodbr〈no.〉 No element
numbers assigned. Used for node definition with key-
word *NODE .

par parcoh Three dimensional cell array storing material param-
eters. Parameters for solid bricks are stored in cells
of par, with format of type parwm – see Page 34 .
Strength values and elastic constants for cohesive el-
ements are stored in cells of parcoh, with format of
type parcohwm – see Page 37 .

ndsbound Node sets for boundary conditions; four sets in
columns 1 – 4, one for each lateral face according to
Fig. 3.1 .

elefa1 elefa5

elefa4 elefa2

Element sets for surface definition of bricks see Sec-
tion 3.4; elefa1 (see Page 38) . The surface definition
variable for solid brick elements contains six columns
of element sets according to the hexahedron shape
with six side faces. Element sets in elefa〈no.〉 are
required for the surface definition of the cohesive sec-
tions. They contain two columns of element sets for
surface definition, due to the composition of cohesive
elements of two faces.

elslam Contains element sets of solid elements, assigned to
boards with randomly distributed lengths, respec-
tively. Boards are sections of which the endless lamella
is built (Section 2.5).



Chapter 4

FEM-calculation, discussion

In this chapter, results of the FE calculations of CLT plates, built-up with the
simulation program presented in Chapter 3 , are discussed.

Due to convergence problems in the FE analysis, at progressive fracture in co-
hesive layers, ultimate failure loads were not determined. Rather, a qualitative
discussion of results of the FE calculation has been made. Furthermore, node and
element sets generated with the simulation program are displayed in figures in order
to present the features of the model.

4.1 Plate geometry, applied load, and boundary of

the sample plate

The mechanical behavior of CLT plates discussed in below sections is based on
calculations of a sample plate displayed in Fig. 4.1 .
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Figure 4.1: Sample CLT plate

44



Chapter 4 , FEM-calculation 45

As specified in Section 3.2, the lateral length (a = b) of the quadratic sample
plate (Fig. 4.1) is controlled by the numbers of parallel arranged ‘lamella sections’.
The dimensions of the endless lamella, of which the CLT plate is composed, are set
according to Fig. 2.6 in Section 2.5 with 〈width〉= 150 mm and 〈height〉= 35 mm .
As apparent in the figure, the example plate is built-up of 20 ‘lamella sections’ per
side, which results in a lateral plate length of a=b=3000 mm . The example plate
with three layers has a total thickness of h=105 mm . The plate is generated with
distribution parameters, ‘length of boards’, ‘density ρ’, and ‘KAR - value’, accord-
ing to Subsections 2.5.1 – 2.5.1 . The unequal lengths of the boards (as subparts of
the endless lamella) are apparent in Fig. 4.1 .

The sample plate used for the studies is subjected to a distributed load according
to Fig. 3.2 . The sample plate is simply supported (Fig. 3.1) as specified in detail
on Page 19 .

The simulating process used for the plate, is load controlled. Due to the aforemen-
tioned convergence problems, the load level set for the sample plate (0.2 N/mm2)
could not be reached. All investigations of the stress and displacement states in
below paragraphs, are made on a load level of about 52 % of the aforementioned
distributed load. It is the load level for the current plate configuration (geometry,
mesh density, technological parameters), at which convergence problems occur.

In the following study, distributions of stresses through the plate thickness as
well as displacement components are investigated on selected positions of the CLT
plate.

4.2 Cross-sectional warping and stress distri-

butions of CLT

The laminate specific, zig-zag shaped course of the in-plane displacement across
the plate thickness is studied on the sample plate discussed in Section 4.1 , Fig. 4.1 .
Figure 4.2 depicts the characteristic courses of u and v across the thickness, at
the position (marked in Fig. 4.1), where they assume their maximum values: u at
(0, b2 , z) and v at (a2 , 0, z). The zig-zag shape of the displacement u is most obvious.
It results from the high shear deformations in the middle layer in consequence of
the high stiffness contrast in X - direction of the two exterior layers and the interior
layer, in combination with the very low shear modulus GRT of the latter in the
X–Z - plane. Regarding the displacement v, there is almost no zig-zag pattern
observed. The middle layer exhibits high bending stiffness in the Y - direction, so
that the soft surface layers just follow the displacement predominately enforced by
the middle layer Stürzenbecher [2010].
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Figure 4.2: Displacement course through the plate thickness;
u at (0, b2 , z) and v at (a2 , 0, z)

Element based results like stresses, subscripted with x, y, z, are applied to the
global X –Y –Z directions of the coordinate system shown in Fig. 4.1 , as in all
subsequent figures. In Fig. 4.3 the two in-plane stress components σxx and σyy are
presented. They exhibit the correct characteristic shape, namely discontinuities at
the layer boundaries and considerably different slopes in soft and stiff layers. The
in-plane shear stresses τzx and τzy are presented in Fig. 4.4.
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Figure 4.4: Course of shear stresses through the plate thick-
ness; τzx at (0, b2 , z) and τzy at (a2 , 0, z)

4.3 Force - displacment relation, crack initiation

As mentioned in Section 4.1, convergence problems of the FEM solver occurs during
the formation of cracks in the bottom surface layer (z = h), which is subject to
tension stresses. In Fig. 4.5, the force-displacement curve at the plate’s center point
(a2 ,
b
2 , h) is plotted. The ordinate of the diagram is labeled with ‘Reaction force’, as

the sum of bearing forces acting at constraint nodes (red nodes in Fig. 3.12). In load
controlled non-linear simulation procedures, the load is applied in steps. In the load
curve in Fig. 4.5, steps are marked with ‘cross’ - symbols. The first crack occurs at
step number eight (marked). From there on, the increment-size is more and more
reduced by the solver-algorithm of Abaqus. The depicted load curve exhibits 38
steps; at step 38 the numerical calculation process is stopped manually.

The force-displacement diagram shows the characteristic linear elastic material
behavior of the plate until the first crack occurs at step eight (Fig. 4.5). Despite the
initiating crack process and the local mechanical failure in according to the model
‘ideal elastic - fracture’ presented in Fig. 2.7 , the mechanical characteristic of the
system ‘CLT plate’ remains almost linear at the global scala until the abort at step
38. To visualize the initiating crack process, model plots of the sample plate are
discussed below in Section 4.4 .

A global linear mechanical characteristic was also observed in tests on CLT plates
with a similar test setup, carried out by MPA Stuttgart on behalf of IMWS in spring
2011.
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Figure 4.5: Displacement w at plate center point (a2 ,
b
2 , h)

4.4 Crack formation – influence on the distribution of

stress

In Sections 4.2 – 4.3, the distribution of stresses through the plate thickness as well
as the load-displacement curve over time at the plate’s center point were presented.
The results of these studies, coincide with the investigations on plates with elastic
material behavior done by Radecki [Radecki-Pawlik, 2009, Chapter 6].

In the current section, special issues concerning the specific built-up of gener-
ated CLT plates are discussed. Furthermore, the mechanical behavior concerning
the formation of cracks in the performed calculation of the sample plate are pre-
sented: the characteristic normal stress distribution in global X - direction (local
L - direction in surface layers); the displacement field in Z - direction of the cracked
sample plate; the state of the fracture formation in the cohesive sections of the
bottom layer, specified by a variable indicating the damage initiation criterion.

The mesh density of the solid section used for the calculation of the sample plate
is apparent in Fig. 4.7 . In the remaining figures, only edges of «sections» according
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to the definition in Section 3.1 are plotted.
Indices 〈1, 2, 3〉 used by Abaqus and appearing in the figures correspond to X –
Y –Z denoting the directions of the global coordinate system used in this work.
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Figure 4.6: Distribution of stress component σxx [N/mm2]
at the bottom surface

In Fig. 4.6, the stress component in fiber direction, σxx , of the bottom layer is
plotted. As apparent, the amplitude of the stress state depends on the material
parameter of each lamella section. The high stiffness contrast of the parallel ar-
ranged lamella sections is apparent through the different sizes of the tension stress
components σxx in these sections. Soft lamella sections just follow stiffer lamella
sections exhibiting a higher specific higher Young’s modulus EL.

The variable MAXSCRT plotted in Fig. 3.11 indicates whether the maximum nomi-
nal stress damage initiation criterion (Equation 3.1) has been satisfied. The margin
of MAXSCRT rages from 0 to 1, where a value of 1 indicates that the initiation crite-
rion has been met [Abaqus Manual, 2009, 29.5.6 Defining the constitutive response
of cohesive elements using a traction-separation description].

Hence, in red colored cohesive layers (Fig. 3.11) the criterion has been satisfied
and a crack has occurred. Whether it is open, depends on the quality of the strain
state for which the damage initiation criterion has been met, namely if strains
occurred in purely normal directions or purely in the first or the second shear
direction.

In calculations of several plates with varying geometries and properly assignment
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Figure 4.7: Cohesive layers in between lamella sections in
L - direction; MAXSCRT - criterion; meshed solid
section

to the sections, generated by the Matlab-simulation program (Chap. 3), the forma-
tion of cracks always occurs first in cohesive layers arranged in between the parallel
arranged lamella sections, as it is the case for the sample plate shown in Fig. 3.11. .
Hence, it is obvious that these cracks those are allways located next to the line sup-
port of the CLT plate, occured due to the breakdown of cohesive elements initiated
by shear stresses those are matching the maximum nominal stress criterion.
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Figure 4.8: Distribution of deflections w [mm], at the
bottom surface

Fig. 4.8 shows the distribution of deflections of the plate’s bottom face in Z -
direction. The asymmetrical displacement field results from two cracks in the field
along the line support at (x, b, h). The two cracks in between the 15th and the 16th
lamella section aligned in X - direction, as well as in between the 19th and the 20th
section, are apparent as double lines at the bottom surface.
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Conclusions

5.1 Summary

This thesis deals with the development of a simulation tool for the investigation of
the mechanical behavior of early stages of brittle failure in quadratic 3-layer CLT
plates under distributed load. The main focus was to create a FE model for these
plates, including a fracture mechanical approach for wood under tensile load, in
which the mesh density and material sections can be flexibly defined. This ap-
proach enables to compare simulation plates modeled with almost similar material
parameters obtained for different mesh densities. To build up the individual lay-
ers in the model of CLT, an ‘endless lamella’ was defined, where variable lengths,
densities, and knot contents of boards are taken into consideration. To assign the
mentioned technological parameters to parts of the CLT plate (the endless lamella,
respectively) was divided into sections of ‘bricks’ and ‘boards’. Mechanical param-
eters of wood (elastic constants and strength values) are calculated on basis of
a micromechanical model, as functions of the technological parameters density ρ,
knot content of boards KAR, and moisture content u. The assembly as foundation
of the modeling process, as well as the data flow of the simulation program were
detailed and explained by examples.

In the last section, an example calculation of a plate generated by the simulation
program was shown. The high shear compliance of CLT due to its cross-wise lay-up
and the highly anisotropic behavior of its constitutive layers was discussed on basis
of the computation results. To investigate the mechanical behavior of the plate
during the crack formation, a load-displacement curve was presented. A general
pattern of cracking was observed in the calculations of several plates with randomly
generated geometries and material paramter assignments, namely that the initial
formation of cracks occurs in cohesive layers arranged in longitudinal direction
next to the line support as shown in Fig. 4.7 . For the load-displacement curve, also
different plates showed the same hand of an almost linear mechanical characteristic
during the crack formation process.

52
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5.2 Perspective

The structured layout of the specific program sections (see flowchart on Fig. 3.4)
enables a relatively easy enhancement of the ability of the simulation program
presented in this thesis. The mesh generating section as core of the simulation
program, with its characteristic node and element numbering scheme, allows to
define different geometries by a straightforward adaptation of the program code. For
example, an extension of the mesh generating section in order to generate arbitrary
multilayer non-quadratic CLT plates (e. g. CLT elements with three, four, five
layers) is possible with a reasonable effort. Furthermore, the implementation of cut-
out areas is feasible, if their dimensions coincide with the lamella-width increment.
But it is essential, to stick to the assembly of rectangularly arranged ‘brick’-sections
as units for material parameter assignment. The distinctive node and element
numbering syntax enables an easy definition of additional surface, node, or edge
sets to apply various types of loading as well as boundary conditions. The plastic
material model (suitably described through the Tsai-Wu failure criterion) for onset
for plastification in the compressive zone of CLT is not fully integrated yet, but
could easily be added.

With the developed subroutines, containing a controllable random stream se-
lection switch for distribution parameters, the stochastic analysis of investigated
plates is possible.
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