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Abstract

The development of software for distributed systems is often carried out with mid-
dleware that provides programming abstractions to ease the implementation. Space-
based middleware systems are based on tuple spaces and allow loosely coupled com-
ponents of a distributed system to coordinate over a shared data store. They provide
synchronization, time and space decoupling. However, tuple spaces offer no order
for the stored data objects which limits the coordination capabilities. eXtensible
Virtual Shared Memory (XVSM) is a space-based middleware architecture that al-
lows for more and flexible coordination and can be easily extended. Recently, it has
been specified with a formal model in several layers, of which the lower ones have
been implemented in Java as previous work.

This thesis describes the design and implementation of the upper layers of the
formal model in MOZARTSPACES 2.0, the Java implementation of XVSM. They
comprise the runtime, remote communication and the API. The runtime supports
blocking operations with timeouts and aspects to extend the middleware functional-
ity. Important is the fast scheduling of requests and the efficient handling of internal
events for blocking operations. As example for the extensibility of XVSM we imple-
ment publish /subscribe notifications with aspects. We also present an XML protocol
for the interoperable remote access to XVSM spaces and a synchronous and asyn-
chronous API. Benchmark results show that MOZARTSPACES 2.0 is considerably

faster than the previous version 1.0 for all operations and scales better.



Kurzfassung

Zur Entwicklung von Software fiir verteilte Systeme wird haufig Middleware verwen-
det die Programmierabstraktionen bereitstellt und damit die Implementierung ver-
einfacht. Space-basierte Middleware-Systeme basieren auf Tuple Spaces und ermogli-
chen lose gekoppelten Komponenten eines verteilten Systems die Koordination iiber
einen gemeinsamen Datenspeicher. Sie bieten Entkopplung beziiglich Synchronisie-
rung, Zeit und Raum. Allerdings haben die in Tuple Spaces gespeicherten Datenob-
jekte keine Ordnung, wodurch die Koordinationsméglichkeiten eingeschrankt sind.
eXtensible Virtual Shared Memory (XVSM) ist eine space-basierte Middleware-
Architektur welche mehr und flexible Koordination ermoglicht und einfach erweitert
werden kann. Kiirzlich wurde sie mit einem formalen Modell in mehreren Schichten
spezifiziert. Die unteren Schichten wurden im Rahmen einer anderen Diplomarbeit
in Java implementiert.

Diese Diplomarbeit beschreibt das Design und die Implementierung der oberen
Schichten des formalen Modells in MOZARTSPACES 2.0, der Java-Implementierung
von XVSM. Diese umfassen die Runtime, die Remote-Kommunikation und die
API. Die Runtime unterstiitzt blockierende Operationen mit Timeouts und Aspekte,
mit denen die Middleware-Funktionalitat erweitert werden kann. Wichtig ist dabei
das schnelle Scheduling von Requests und das effiziente Verarbeiten von internen
Events fiir die blockierenden Operationen. Als Beispiel fiir die Erweiterbarkeit von
XVSM implementieren wir “Publish /Subscribe”-Benachrichtigungen mit Aspekten.
Wir prasentieren auch ein XML-Protokoll fiir den interoperablen Remote-Zugriff auf
XVSM-Spaces und eine synchrone und asynchrone API. Benchmark-Ergebnisse zei-
gen, dass MOZARTSPACES 2.0 fiir alle Operationen erheblich schneller als die Vor-

gangerversion 1.0 ist und besser skaliert.
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1 Introduction

Today most computers are connected to a network and part of a distributed sys-
tem like the internet. In general, a distributed system is formed by computers that
are independent but look like a single coherent system to the user [T'S07]. Compo-
nents on this computers pass messages to communicate and coordinate their actions
[Cou05]. Compared to components on one computer, the communication between
computers is more complex, also because the computers in a distributed system can
be heterogeneous, for example, they can run different operation systems. There
middleware comes into play. Middleware is a software layer between the operating
system with basic network communication abilities and application components. It
is an abstraction that eases the development of distributed applications and may
partly hide the fact that an application is distributed.

There are different types of middleware regarding the programming abstraction
they offer. [Bak03] classifies middleware into four categories—distributed tuples,
message-oriented, distributed object and remote procedure call (RPC) middleware.
A similar classification can be found in [EmmO00]. RPC middleware allows to call
procedures over the network, similar to local procedure calls. Distributed object mid-
dleware extends the RPC functionality for objects of object-oriented programming
languages. Message-oriented middleware (MOM) allows for message exchange, usu-
ally in form of message queues. Distributed tuples is used in [Bak03] as category for
distributed relational databases with transactions (and transaction monitors) and
tuple spaces, a form of a shared memory.

One important characteristics for a middleware class is that of coupling, that is,
which forms of (de)coupling it supports. [AvdADtHO05] analyzes the coupling dimen-
sions synchronization, time and space. Synchronization (or thread) decoupling allows
non-blocking communication and thereby the interleaving of processing (computa-
tion) and communication. Sending and receiving messages can be either blocking
or non-blocking and blocking/non-blocking combinations are allowed (partial syn-
chronization decoupling). Time decoupling does not require sender and receiver to
be active at the same time, and therefore needs obviously another participant, a
place or medium to (temporarily) store the messages. Space decoupling allows in-

direct and anonymous communication, sender and receiver do not need to know or
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1 Introduction

hold references of each other. [AvdADtHO05] also classifies middleware solutions and
standards with the coupling dimensions. RPC and distributed object middleware
provide less decoupling than MOM or tuple spaces, which both offer space, time
and partial synchronization decoupling!. Therefore the use of MOM or tuple spaces
generally leads to comparatively less coupling or loose coupling.

Loose coupling is often desired in distributed systems and can be easily achieved
with middleware that allows for decoupling. An example is, when producers and
consumers of data work at different or varying speeds. A message queue or tuple
space could be used as buffer here. Another example is, when mobile devices that
are not always online need to communicate with each other. Time decoupling is
important in such a scenario and MOM or tuple spaces could be used. A (relational)
database would also be an option in this case. But databases generally do not
support blocking operation like most tuple spaces do as it is explained later.

MOM implementations like Java Message Service (JMS) [HBST02] allow processes
to send and receive message over specific queues (point-to-point model) or publish
and subscribe to messages categorized by a topic (publish/subscribe or pub/sub
model). With the pub/sub model we get time, space and synchronization decou-
pling [EFGKO03]. A tuple space is an abstraction for accessing a (virtual) shared
memory and was introduced to distributed systems with the Linda coordination
model [Gel85]. Tuples are collections of data values (like messages in MOM) and
they can be stored to and retrieved from a tuple space by the components in the
distributed systems. A tuple space implicitly provides time and space decoupling,
as tuples are stored independent of receivers and are retrieved based on their con-
tent. With non-blocking operations to access the tuple space we also get (partial)
synchronization decoupling.

While MOM and tuple spaces can offer the same degree of decoupling, they differ
in other properties as a comparison in [Marl10b] shows. With tuple spaces, com-
ponents communicate through a shared data store, the coordination is data-driven.
With the original point-to-point model of MOM, components are connected with
channels through which messages, that are controlled by the components, flow. The
coordination is control-driven (see also [Morl0]). Both middleware concepts were
extended and enhanced over time, so that recent implementations are more alike
than the original models, but the communication direction and the order of data

objects (messages or tuples) are still different. MOM facilitates unidirectional com-

[AvdADtHO5] lists the tuple space middleware implementations JavaSpaces and several MOM
middleware systems with partial synchronization decoupling because the sending of messages
blocks and only the receiving is non-blocking. We believe this is only an implementation
detail/issue. MOZARTSPACES 2.0 offers full synchronization decoupling.
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1 Introduction

munication with a fixed order of the messages, generally first-in first-out (FIFO). In
contrast, tuple spaces facilitate undirected communication without a defined order
of tuples (random access). Tuples are retrieved with templates that can match one
or more, possibly all, tuples. Subsequent read operations on an unchanged tuple
space may return different tuples. If a use case requires a specific order of tuples,
this has to be introduced and managed manually with the aid of sequence numbers.
With such additional effort tuple spaces can simulate MOM. The reverse is also true.
JMS, for example, can simulate the content-based retrieval with Message Selectors
for use cases where the FIFO order is not sufficient, although small differences re-
main (see [MarlOb] for details). Overall, the use of MOM or tuple spaces with a
data item order that is different from the default order of the model is possible but
cumbersome.

Extensible Virtual Shared Memory (XVSM) [11] is a middleware concept that is
influenced by the Linda model and other tuple spaces. One of its core functionality
is the support of different coordinators that can support arbitrary (complex) coor-
dination patterns and provide, for example, Linda-like selection of data items or a
FIFO order like MOM. XVSM has been described first in 2005 [KBMO05] and was
later implemented for the Java platform, named MOZARTSPACES [Sch08b, Pro08],
and for the NET platform as XCOSPACES [Sch08a, Kar09]. The two implementa-
tions were used in several projects for different use cases. The experience gained
by these applications and the efforts for making the implementations interoperable
showed where the XVSM model could be improved and that a more detailed formal
description is required. Hence, a formal model of XVSM has been developed as

basis for new or adapted implementations [CKS09, Cral0].

MozartSpaces 2.0

For the Java implementation of the new formal model, the new MOZARTSPACES
version 2.0, it was decided to implement it completely from scratch, which is partly
described in this thesis. As it will be explained in more detail in Chapter 3, XVSM
has internally a layered architecture. The core of XVSM is divided into four core
API (CAPI) layers. In MOZARTSPACES the layers CAPI-1 to CAPI-3 are combined,
their architecture and implementation is described in [Barl0]. The CAPI-3 layer
has an interface that provides methods to access data stored in the space with
transactions and above-mentioned coordinators.

The objective of this thesis is to realize the CAPI-4 layer, the MOZARTSPACES

runtime which supports blocking operations with timeouts and aspects that can
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1 Introduction

extend the functionality. It also treats the remote communication, the interopera-
ble protocol of XVSM (XVSMP) and the low-level embedded user API. The core
functionality of the runtime is the fast scheduling of incoming remote and embed-
ded requests and the dispatching of responses. Compared with the previous version
MOZARTSPACES 1.0, the new runtime should provide better performance and scala-
bility. Special attention should be paid to the prevention of concurrency related race
conditions and a clean, modular architecture that allows for easy extension. The
user API should also allow the asynchronous (non-blocking) invocation of space op-
erations, besides synchronous (blocking) calls. Of course the implementation should

also conform to the new formal model.

Main Results

In this thesis we present the architecture and implementation of the runtime for
MOZARTSPACES 2.0. It is implemented on top of the CAPI-3 implementation from
[Bar10] and completes the first implementation of the formal model of XVSM in
Java. To support blocking operations, the formal model describes the use of inter-
nal events and a wait container for blocked requests. We present and discuss an
alternative structure to manage the events and waiting requests. XVSM provides
transactions and uses locks on data structures to isolate them. We designed and
implemented a graph-based module to detect deadlocks of transactions because of
locks in MOZARTSPACES.

To allow for the interoperable remote communication with other platforms, we
designed and implemented the XVSMP based on an XML schema definition. To
access an XVSM space, the low-level user API that supports synchronous and
asynchronous calls can be used.

Benchmark results show that MOZARTSPACES 2.0 is much faster than the previ-
ous version. This is the case for all operations with embedded and remote access.
Concurrent tests show also that MOZARTSPACES 2.0 scales better than version 1.0.

Altogether, the implementation fulfills the performance requirements.

Thesis Structure

This thesis is organized as follows: Chapter 2 describes tuple spaces, the original
Linda model and tuple space middleware implementations for Java. They influenced
the development of the space-based middleware model XVSM that is described in
Chapter 3. The architecture of the MOZARTSPACES 2.0 runtime is explained in

17



1 Introduction

Chapter 4. Chapter 5 continues with a description of the extensibility, the remote
communication and the interoperable XML protocol of MOZARTSPACES. The low-
level embedded user API is presented in Chapter 6. Chapter 7 contains a short
description of the current structure of the MOZARTSPACES 2.0 implementation. The
evaluation in Chapter 8 provides a performance evaluation of the internal processing
in the MOZARTSPACES 2.0 runtime and benchmarks where MOZARTSPACES 2.0 is
compared to MOZARTSPACES 1.0. Chapter 9 lists some concrete ideas for future
work on XVSM and MOZARTSPACES, before we conclude in Chapter 10.

18



2 Tuple Spaces

This chapter gives an overview of important tuple space models and some imple-
mentations. Section 2.1 describes the seminal Linda model, where a tuple space is
used as data store. Section 2.2 gives a brief overview of T'Spaces, a Java tuple space
implementation. JavaSpaces is a tuple space specification for Java with several im-
plementations, described in Section 2.3. Section 2.4 points to comparisons of further
tuple space implementations and describes some recent implementations which are

not included in them.

2.1 Linda

Linda was developed in the 1980’s at Yale University and was introduced by David
Gelernter as basis for a distributed programming language in [Gel85]. Tt uses a tuple
space (space) as basis for generative communication. Processes communicate over
the space with tuples, a series of typed fields, which can be passive (data values/ob-
jects) or active (executable code). The communication is called generative because
the (generated) tuples exist in the space independent of the communicating pro-
cesses. In [GC92] Linda was termed a coordination language that forms a complete
programming language when it is combined with a computation language.

The space is accessed with six operations to generate, read and consume tuples
[CGR9]. out generates a tuple and adds it to the space. eval creates an active tuple
that is executed in a new process. The result is added as passive tuple to the space.
The operation rd reads a tuple from the space by returning a copy of it. in takes a
tuple from the space where it is removed (consuming read). out and eval are non-
blocking, but rd and in block when no matching tuple is available. The non-blocking
predicate variants for in, inp, and rd, rdp, return an error when no matching tuple
is found in the space. Selecting a matching tuple is performed associatively with a
template (template matching). A template is similar to a tuple, but for each field
it can have a value (actual parameter) or a wildcard (formal parameter) where only
the type but not a value is specified. A tuple in the space matches a template when

the values of the tuple’s fields are equal to the template’s fields (actual parameter)
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or of the same type (formal parameter). Tuples in the space have no order and are

matched and returned nondeterministically.

2.2 TSpaces

TSpaces [WMLF98, LCX*01] is a tuple space middleware for Java developed by
IBM. The project has been stopped but the software is still available as a free
download [10]. In TSpaces classes for tuples and fields are provided. There are
operations to write, read and take a tuple, similar to Linda but with other names
and without the eval functionality. The blocking operations to read and take a
tuple support a timeout, after which they return without a tuple. The TSpaces API
provides also a method to delete a tuple and operations to write, read, take and
delete multiple tuples as well as count how many tuples match a given template.
Tuples have an ID that can be used to read, take or update (replace) a specific tuple
and can have an expiration time, after which they are automatically removed from
the space. TSpaces also supports transactions that span multiple operations. For
event notifications, a callback method can be specified, which is called when a tuple
matching a template is written to the space.

TSpaces supports template matching similar to Linda and subtype matching, that
is, tuples also match if the types of tuples and their fields are subtypes of the types
of the template and its fields. Furthermore, it offers several types of queries as
alternative to template matching. Indexed queries match fields as name-value pairs
with optional value ranges. Tuples can use special XML fields which can be queried
with a subset of the early XML query language XQL. Queries can also be combined
with AND and OR operators. An additional space operation, rhonda, allows two
processes to atomically synchronize and exchange data over the space with template
matching. Moreover, command handlers can be added to a space, custom functions
that can be addressed with a name and extend the space functionality. In T'Spaces,
a server can run standalone or within the application that accesses it. A server
supports multiple (named) tuple spaces per instance and optionally persistence,

that is, the tuple spaces and their content will be saved across server restarts.

2.3 JavaSpaces

JavaSpaces [FHA99| is a tuple space specification for Java. The tuples are called
entries and are special Java objects that can be exchanged and coordinated with

a JavaSpaces service. Such a service provides an interface JavaSpace with several
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methods to access the space. The basic operations are write to insert an entry, read
to get an entry matching a given template and take to get and remove a matching
entry. JavaSpaces specifies template matching similar to the Linda model, with
the extension of subtype matching like in TSpaces. There are blocking and non-
blocking operations to read and take entries, both with a timeout parameter. The
functionality of the Linda eval is not provided by JavaSpaces. Event notifications
are supported with notify, which registers a callback method that is called when an
entry matching a template has been written to the space. The interface JavaSpace05
was added later and extends the interface JavaSpace with methods to write, read
and take multiple entries as well as register for special events in combination with
transaction visibility. Distributed transactions and leases, a way to manage an expire
time and the expiration of resources like entries or transactions, are provided by Jini.
In fact, JavaSpaces is part of the Jini technology, an architecture and environment
for distributed systems [Wal00].

Jini is based on Java Remote Method Invocation (RMI) and defines infrastruc-
ture services like discovery, distributed transactions, leases, events and so on. The
Jini Technology Starter Kit provides an implementation of these services and con-
tains the JavaSpaces implementation Outrigger. Originally developed by Sun Mi-
crosystems, it is now continued as the Apache River project [20]. Other currently
actively developed JavaSpaces implementations are Blitz [3], which is open source,
and GigaSpaces [7], which is commercial software that provides many extensions and
additional services in addition to the JavaSpaces specification. Outrigger, Blitz and
GigaSpaces support transient and persistent spaces. A JavaSpaces implementation
based on MOZARTSPACES 1.0 has been implemented and is described and evaluated
in [Kes08].

2.4 Other Models and Implementations

There exist many models and implementations for tuple spaces besides the ones de-
scribed above. Several of them were illustrated and compared to XVSM in earlier
publications. [Kes08] describes the JavaSpaces implementations Outrigger, Blitz
and GigaSpaces and the concepts of the tuple spaces ActiveSpace, Blossom, LIME,
LighTS, MARS, TSpaces, TuCSoN, XMLSpaces and XMLSpaces.NET, as well as
the space-based middleware Corso. [Sch08a| classifies and compares the middle-
ware solutions Blitz, GigaSpaces, LightTS and Corso that are based on a shared
data space model. The classification includes the coordination concepts, the sup-

ported operations, the extensibility and the architecture. [Mor10] briefly describes
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several coordination frameworks that are related to the Linda model and gives an
overview of their coordination and querying capabilities and which data format(s)
they support. His comparison includes the frameworks ActiveSpace, ATSpace, B-
Linda, Bauhaus Linda, Blossom, BONITA, Corso, DTuples, eLinda, GigaSpaces,
GLinda, Grinda, JADA, JavaSpaces, Kernel Linda, KLAIM, LIME, LighTS, LuCe,
MARS, P4-Linda, PLinda, PoliS, SwarmLinda, T'Spaces, TuCSoN and XMLSpaces.
Independent of XVSM, a comparison of the original Linda model (Yale Linda) to
the Java implementations TSpaces, JavaSpaces and GigaSpaces can be found in
[WCCO04], along with a description of the author’s system eLinda.

By searching for current space-based middleware, we found several new tuple space
implementations that are not mentioned in the references above. Four of them are
described below. For TIBCO ActiveSpaces [23] (not to be confused with an older
tuple space implementation named ActiveSpace, which is included in the review of
[Kes08]), not much information was found. It is a proprietary, commercial product
that cannot be downloaded (for free), and only a short description and superficial

documentation is available online.

2.4.1 SemiSpace

SemiSpace is an open source tuple space implementation for Java [12]. It was in-
spired by JavaSpaces, but it neither implements the JavaSpaces specification nor uses
Jini. Every Java object can be used as an entry, if it can be serialized by XStream
[25], the XML serialization library which is used internally to handle the data ob-
jects. The API provides operations to write, read and take entries. The blocking
read and take operations also have a timeout parameter. Template matching is sup-
ported, but without subtype matching. Event notifications can be registered similar
to JavaSpaces. Furthermore, leases are used for entries and event registrations, that
is, they expire after a specified duration, if the lease is not renewed. In contrast to
JavaSpaces, SemiSpace does not support transactions.

SemiSpace includes several optional modules that provide additional features. It
can be clustered with Terracotta [18] or combined with the integration framework
Apache Camel [21]. Furthermore, a SOAP web service interface with a Java client

APT exists, and a JavaScript API that can also be used from web browsers.

2.4.2 SQLSpaces

SQLSpaces is another open source tuple space for Java [2]. It provides an interface

that is very similar to T'Spaces, and the research group that develops it used TSpaces
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in their earlier work [WGHO07]. The basic functionality for tuple handling, event
notifications and transactions is practically the same as in T'Spaces (see Section 2.2).

As extensions, read and take operations can also be performed over multiple spaces
of a server with one call. A component called Object Tuple Mapper (OTM) allows to
write arbitrary data objects, whose classes are specifically annotated, to the space,
without the need to implement the SQLSpaces types for tuples and their fields. The
entry storage is performed with a relational database. Several database systems
are supported, the transactional semantics and the persistence behavior depends on
the one that is used. Space calls are internally handled as XML strings. They can
also be performed over a SOAP web service interface. SQLSpaces also supports
versioning for spaces. API methods are provided to create snapshots of one or more
spaces and access a specific snapshot of a space. While SQLSpaces is implemented
in Java, there are clients with limited functionality for other languages, currently
C#, Ruby, Prolog and PHP. Furthermore, a browser-based user interface allows
to investigate the contents of spaces and issue commands through a command-line

interpreter (shell).

2.4.3 Fly Object Space

Fly Object Space (Fly) is a tuple space with native implementations for several
operating systems (Windows, Linux, Mac OS X and Solaris). It is not open source
but freely available for non-commercial use [27]. A Fly server can be accessed with
one of the language bindings (clients) for Java, Scala and Ruby. They use a binary
protocol called Fly Binary Interface to access the server. The Java client has opera-
tions to write, read and take one or many entries. Arbitrary objects can be used as
entries, but the documentation does not mention interoperability between different
platforms, e.g, between Java and Ruby. Event notifications are supported by regis-
tering a callback method. Leases are used for entries and notifications. Transactions
are not supported. Fly supports lookup in a local network with multicast. It stores

entries only transiently in-memory.

2.4.4 Gruple

Gruple is an open source tuple space implementation written in Groovy, a program-
ming language for the Java Virtual Machine (JVM), like Java [26]. It has currently
no support for remote access and can thus only be used for in-process coordination.
Gruple supports multiple spaces and the interface to access a space provides meth-

ods to write (put), read (get), and take (take) tuples. A tuple is a map and can
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contain immutable standard or user-defined types. Template matching is used for
the selection of tuples. As extension to values and wildcards, closures can be used
in templates. Gruple provides transactions that can also be used to access several

spaces. The spaces are stored only in-memory and are not persisted.

2.4.5 Conclusion

The comparisons of space-based coordination frameworks in [Morl0] and [Sch08a]
show that XVSM has unique features like the flexible coordination and the ex-
tensibility with aspects. The implementations described above do not change that
situation. SemiSpace has extensions for clustering and integration, but cannot be
extended itself. SQLSpaces provides interesting features like versioning or coordi-
nation capabilities that extend the Linda template matching, but they are not as

flexible and extensible as the XVSM custom coordinators.
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In this chapter we give an overview of the space-based middleware architecture
XVSM. In Section 3.1 we present the basic concepts of XVSM. Section 3.2 de-
scribes the development of XVSM, the already existing implementations and their
applications. The new formal model of the XVSM core is outlined in Section 3.3
and the concept of profiles to extend the core functionality of XVSM is presented
briefly in Section 3.4.

3.1 Basic Concepts

At the heart of XVSM is the space. The data objects stored in an XVSM space are
called entries. They are not directly stored in the space but in containers that struc-
ture a space and can be seen as subspaces. The entries in a container are managed
by one or more coordinators. There are different coordinator types, for example, a
FIFO coordinator that ensures FIFO order of entries, or a Linda coordinator that
supports Linda template matching on entries. Figure 3.1 shows an example of a
container with three coordinators and eight entries. In this example all entries are
managed by the coordinator Random, an obligatory coordinator, but only a subset
by the coordinators FIFO and Key, which are used as so called optional coordinators.
XVSM also supports transactions to perform several of the subsequently explained
operations atomically, either all or none of them, and isolate concurrently running
transactions from each other.

XVSM has operations to create and destroy a container. Furthermore, a con-
tainer can have a name or it can be unnamed. If it has a name, it can be looked up
with the according operation. Additionally, a container can be exclusively locked
for a transaction. Further operations are provided to write entries to a container
and read, take or delete them from a container. Coordination data can be provided
for an entry that is written to the container. It is additional coordinator-specific
data like the key for an entry that is written to a container with a Key coordina-
tor (cf. Figure 3.1). When a read, take or delete operation is called, a selector

must be specified to select the entries on which the operation is performed. Thus
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Figure 3.1: Container with several coordinators and entries

these operations are called selecting operations. A selector is coordinator-specific,
for example, a FIFO selector is necessary to select entries managed by a FIFO co-
ordinator. The difference between the selecting operations is that read returns the
selected entries, take removes them from the container and returns them, and delete
just removes them from the container. The selecting operations in general allow to
select multiple entries, but the selection and thus also the number of entries that are
returned is controlled by the specific selectors and coordinators. Moreover, the se-
lecting operations can be called with a timeout that controls the blocking behavior,
that is, whether and how long the operation should block. Multiple entries and a
timeout is also supported for the write operation. In contrast to other tuple spaces,
in XVSM this operation can also block, because a container can be bounded, that
is, it can have a maximum number of entries. All container and entry operations
support transactions. For the transaction control, operations to create and commit
or rollback a transaction are provided. A transaction has a timeout, after which it
is automatically rolled back, if it has not been committed or rolled back yet.

The description above is for a single space. While XVSM can be used to coor-
dinate threads within one process, it is even more suitable for the collaboration of
processes on different computers (peers) in a distributed system. Applications on
different peers can access their own (embedded) space or other (remote) spaces with
the same API. Figure 3.2 shows the different variants of an XVSM instance or core.
Core A is an instance with a space that the user application in the same process can
access directly without remote communication. The core API can be used to access
the embedded space and any remote space; the remote communication is hidden.
Core B is a server instance of a space that is accessed only remotely, there is no

user application that could use the core API. Core C'is just a client without an own
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space. The difference between the access to the embedded container C2 and the
remote container C5 by Core A in Figure 3.2 is only the use of a different name to

refer to the location of the container.

Core A
take
Space A I
\
read create cont.
write Core API / delete Core C
er App atlo Core API

er Applicatio

Figure 3.2: XVSM peers with embedded and remote space access examples

We have now described different peers with a space (or just a client API) that
can coordinate each other over one or more spaces. This is what the XVSM core
provides. An extension on top of the core could hide the different spaces on the
peers and provide the user with the view of a common space, where a single space
location is not directly addressed. Such an extension is an example for a so-called
profile, a concept to extend XVSM that is described in Section 3.4.

3.2 Existing Implementations

XVSM is mainly influenced by the Linda model, tuple spaces that evolved from
Linda, and Corso [Kiith94], a virtual shared memory model also developed at the
Institute of Computer Languages of the TU Vienna. First concepts of XVSM
were published in 2005 and prototyped with Corso [KBMO05]. Afterwards XVSM
was implemented independently of Corso and in 2006 the first Java implementation
MOZARTSPACES was created. Version 1.0 was published in 2008 and is described
in [Sch08b] and [Pr608]. Later, and partly in parallel, a .NET implementation
of XVSM was created and named XCOSPACES. It is described in [Sch08a] and

[Kar09]. These two implementations can interoperate via an XML protocol, with
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some limitations regarding the data types of entries. They also support most of
the basic functionality of XVSM described in Section 3.1. However, the semantics
of the operations is not clearly defined and no formal model exists. Thus, the
implementations do not behave exactly the same and some workarounds are required
for interoperability. Because of these issues, ideas for improvements, experiences
from building applications with XVSM and the goal to eventually formally verify
XVSM, a formal model was developed. An early version of this model was published
in [KMS08b], parts of the current version in [CKS09]. The most complete description
of the formal model and a Haskell prototype based on it is presented in [Cral0].
While the formal model was developed, an XVSM implementation for embedded
devices was created [MarlOa]. It is termed TINYSPACES, uses the .NET Micro
Framework and partly follows already the formal model, though with limitations

because of the restricted environment of embedded devices.

3.2.1 Applications

Previous implementations of XVSM were used in a university course about space-
based middleware and several research projects with industry. For example, it
was used in an application for Intelligent Transport Systems (ITS) together with
a peer-to-peer (P2P) framework and some extensions [BFK*11, KMG*09]. The
P2P framework has been integrated into MOZARTSPACES 1.0 as profile with as-
pects (see Section 3.4) and was used for the distributed lookup and replication
of space containers with volatile geo-tagged data. The content-based access with
Linda template matching was used to retrieve the data. Another example is the
Self-Initiative Load Balancing Agents (SILBA) pattern where load balancing agents
coordinate themselves with a shared space [KSC09, SC11]. Because of the undi-
rected and loosely-coupled communication the space provides, it is well suitable
for this use case. The prototype used to implement the pattern uses also several
different XVSM coordinators. Further projects and applications are described by
Richard Mordinyi in [Mor10], where XVSM is also used as integration platform
and as an abstraction layer for agile software development. Because of its flexible
coordination capabilities, it can directly support different coordination models and
architectural styles (see also [MKS10]).

Although XVSM implementations were used successfully in several applications,
performance measurements show mixed results. A comparison of the two XVSM
implementations MOZARTSPACES 1.0 and XCOSPACES with the JavaSpaces imple-
mentations GigaSpaces and Blitz can be found in [KMM™08]. The benchmark in em-
bedded mode shows that GigaSpaces is fastest, followed XCOSPACES, Blitz and then
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MOZARTSPACES. Interestingly XCOSPACES is much faster than M OZARTSPACES.
Another benchmark in [L6w08] also shows that MOZARTSPACES 1.0 is relatively

slow. This was one of the reasons for creating a new implementation from scratch.

3.2.2 Runtime Architecture

The runtime model of the previous XVSM implementations is depicted in Figure 3.3
and consists of components that process messages, e.g., space operation requests,
and containers to queue these messages for the components. This model follows the
staged event-driven architecture (SEDA), where event-driven stages are connected
and decoupled by event queues [WCBO01]. SEDA stages have internally an event
handler, that runs on worker threads of a thread pool and processes incoming events
from the event queue. A resource controller manages the thread pool and queue.

In the XVSM runtime model an event (or message) is either a request, a response
to a request, or an internally used XVSM event for handling blocking operations.
The core processor (XP) takes requests from the request container, executes them,
and handles the results. If the result is OK, a response is written to the response
container and an event is written into the ewvent container, if a waiting request
could be woken up by it. In case of error an according response is written to the
response container. If there are not enough or too many entries to fulfill the request,
it is put into the wait container. The event processor takes events from the event
container, matches them with requests in the wait container and writes matching
requests to the request container (rescheduling). The timeout handler regularly
checks the wait container for requests that have timed out and moves them to the
request container'. The receiver and the sender are responsible for handling remote
requests and responses. The embedded API handles the access to the embedded and
remote spaces.

Figure 3.3 is taken from [Sch08a| where XCOSPACES is described. The model used
for MOZARTSPACES 1.0 in [Sch08b] is practically the same, just the event processor is
termed differently with wait (component). The containers in the runtime model are
described as XVSM containers and the according operations (write, take) are used.
In the actual implementations different data structures are used for performance
reasons, and other parts of the runtime are optimized as well.

In the MOZARTSPACES implementation an unbounded thread pool is used for the
XP. Tasks that process requests are executed in its worker thread tasks. The queue
of the XP thread pool is the request container, there is no response container. There

is also no explicit event container and event processor. The event handling is very

IThe timeout is also checked by the XP, where the timeout error response is created
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Figure 3.3: Runtime model of the previous XVSM version [Sch08a]

simple. A list of waiting request tasks is stored in each container and all tasks are
rescheduled after an operation affected that container. To process timeouts, there
is a separate timeout handler instance for each container, with entry requests for
this container, and one additional instance for the transaction timeouts. All timeout
handlers together use a thread pool for the periodic check for timed out requests
and transactions. A third thread pool is used by the sender and receiver for remote
communication. The embedded API is represented by the class Capi and allows
only synchronous calls.

In the XCOSPACES implementation the thread pool provided by the .NET Frame-
work is used for the XP. For the benchmarks in [KMM™08] the asynchronous pro-
gramming library Microsoft Concurrency and Coordination Runtime (CCR) with
an internal thread pool was used. These thread pools also have internal queues that
are used instead of an explicit request container. Like in MOZARTSPACES there
is no response container. However, the event handling is more sophisticated and
implemented like in the model. The event processor runs in its own thread, takes
event for event from the event container and processes it. The matching of waiting
requests and events compares the container, the operation/event type and in special

cases also the transaction. The timeout handler is implemented with .NET timers.
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The sender and receiver components are combined in a communication service. The

embedded API allows only synchronous requests.

3.3 Formal Model

This section outlines the formal model as described in [Cral0], except where oth-
erwise noted. It has already been implemented in the functional programming lan-
guage Haskell and is also the basis for MOZARTSPACES 2.0. First we describe the
fundamental data structures and operations on it, then the actual space operations

with a layered architecture.

3.3.1 XVSM Algebra

The algebraic basis for an XVSM space is a hierarchic collection of data objects and
other collections. The data objects and collections have a label that identifies them.
A collection can be a sequence (list), that has an order, or a multiset (bag), when the
order is not relevant. The basic data structure is an atree, which is defined in [Cral0]
as “either a sequence or a multiset of labeled xtrees, or an unstructured value like a
string or an integer”. A multiset of labeled xtrees is represented as [l:x1, lo:22, . . .]
and a sequence as (ly:xq,l3:x9,...). Multiset and sequence operations can be used
on xtrees. A path, consisting of the labels from the root downwards separated by
slashes, is used to access a sub-xtree. Items in a collection can have the same label.
In that case one item is selected indeterministically. For sequences the item can
be specified with an index number, but for multisets the ambiguity remains. A
sequence xtree could be (taken from [Cral0] as the following xtree, entry and query

examples)
X = (abc,a:24, a:42,b:[pi:3.14, e:“text”], [ |)
and accessed with a path like in
X.(b/e) = [pi:3.14, e:“text”].(e) = “text”.

An XVSM space with its containers is defined as a multiset xtree. A container
has a unique label and is itself a multiset xtree, containing the entries with a unique
label. An entry consists of properties, label-value pairs where the value can be

unstructured or an xtree. Entries are user-defined, a book could be represented, for
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example, as follows:

E, = [title:“JavaSpaces”, author:“Freeman”, author:“Hupfer” author:“Arnold”,

date:1999, publisher:“Addison-Wesley”, nPages:368]

In addition to this user data there is also meta data in a space. It is used internally
and can be stored at any level of the above described space xtree. Examples for meta
data are not yet processed requests, transaction locks or coordinator properties.
Besides the user containers there are also internal system containers which contain
such meta data. An overview of the internal meta data gives the XVSM meta
model in [Cral0]. The user and meta data together represent the complete space
at runtime. Several spaces together form the XVSM universe, where each space is
identified by a unique URI as label. Up to now, no more comprehensive construct,

like, for example, a multiverse, has been defined.

3.3.2 Query Language

The XVSM Query Language (XVSMQL) has been introduced to allow more efficient
access to sub-xtrees than by specifying a path. An XVSM Query (XQ) consists of
one or more Simple XQs (SXQ) which are chained together, that is, the output of an
SXQ is the input for the next SXQ. Each SXQ filters the input xtree; only properties
of the xtree that fulfill it are part of the output xtree and no data is added.

SXQs are partitioned into matchmakers, which are predicates that can be eval-
uated on a single element and evaluate to true or false, and selectors?, which op-
erate on the whole input xtree. There are predefined matchmakers, e.g., for com-
mon relational operators (=, #, <, <, >, >) and logical operators (A, V, =) to
combine matchmakers. Selectors are predefined for selecting a sub-collection of n
items with cnt (n) (cnt is short for count), sorting collections with sortup(p) and
sortdown(p) for the property values at path p, revert a sequence with reverse(),
and ensuring uniqueness with distinct (p). Additionally, wildcards (*) are allowed
in a path for a query to select properties. A combined query of three SXQs for the

entry example from above could be
((E1) | */author = “Hupfer” A */nPages > 300 | sortup(date)) = (E).

This query selects all entries with “Hupfer” as one of the authors and more than

300 pages from the the input sequence and sorts these entries in ascending order

2The selectors in XVSMQL are different from the coordinator-specific selectors to select entries
from a container with a selecting operation.
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by date. The input sequence contains (only) the example entry from above, which

fulfills this query and is thus present in the output sequence.

3.3.3 Layered Architecture

Based on the algebra and query language described above, XVSM is defined with a
layered architecture. Figure 3.4 shows the different layers that build on each other.
CAPI-1 provides basic atomic operations to access xtrees. CAPI-2 introduces trans-
actions where several operations are grouped to one atomic action. CAPI-3 adds
support for containers with user definable coordinators. These three layers support
already most of the data storage functionality of the space, but their operations
are synchronous and non-blocking. If an operation cannot be fulfilled, for example,
reading entries because the container is empty, the operation returns immediately
and indicates that in the result status (DELAYABLE in this example). In general, the

following status codes are defined:

OK: The operation finished successfully.

NOTOK: An error occurred, e.g., because of invalid argument values.

DELAYABLE: The operation cannot be fulfilled at the moment.

LOCKED: The operation was not fulfilled because a locked data structure was
encountered. This status is only returned by CAPI-2 and CAPI-3.

The runtime in CAPI-4 manages the timeout of operations and schedules the
request processing. It also initializes the meta model where system containers are
used. No coordinators or transactions are necessary to access these system con-
tainers, but the CAPI-1 operations alone are not sufficient, because they are non-
blocking. Therefore CAPI-B with blocking variants of the CAPI-1 operations was
added. The runtime also allows the extension of space operations with so-called
aspects. On top of it is the language independent XVSMP. The XVSM semantics
is defined at this layer. Language bindings that send and receive XVSMP messages
can be created above it. The runtime is called asynchronously by the XVSMP layer
or an embedded API.

The strict CAPI layering from the formal model is implemented in the Haskell
prototype. In MOZARTSPACES the layers CAPI-1, CAPI-2 and CAPI-3 are com-
bined for performance reasons. However, the same functionality is provided by the
interface of CAPI-3.
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Figure 3.4: Layered architecture of XVSM [Cral0]

3.3.4 Basic Operations, Transactions and Coordination

The basic atomic operations of CAPI-1 can be used to write an xtree at a specified
path and read or take an xtree with a path and query.

The transaction model of CAPI-2 has transactions and sub-transactions. Trans-
actions can be controlled by the user, sub-transactions are used in the runtime to
encapsulate the processing of a single (user) request. A sub-transaction is started
by the runtime at the beginning of the processing of a transactional request and
can span several CAPI-3 operations, though there is usually only one. The sub-
transaction is committed when the request processing was successful (status 0K),
otherwise it is rolled back. XVSM uses pessimistic concurrency control, that is,
xtrees are locked when they are accessed. There are different types of locks de-
pending on the operation that is used for access. Written xtrees have an insert
lock and are invisible for other transactions. Taken xtrees have a delete lock, the
visibility depends on the isolation level. For the isolation level REPEATABLE READ it
is exclusive, so other transactions cannot access the xtree. For the isolation level
READ_COMMITTED, implemented in CAPI-3 of MOZARTSPACES 2.0 [Barl0], other
transaction may read but not take delete-locked xtrees. When xtrees are read,

shared (non-exclusive) read locks are acquired for the isolation level REPEATABLE -
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READ. For the isolation level READ_COMMITTED no read locks are used. Also important
is the visibility between transactions and their sub-transactions. Concurrently active
sub-transactions are isolated like different transactions. However, sub-transactions
can access data locked by the parent transactions. When a sub-transaction is com-
mitted, all its locks are handed over to the parent transaction. To actually insert or
remove xtrees and remove the acquired locks on commit or rollback, a transaction
log with items for each transactional operation is kept. CAPI-2 offers operations to
create, commit and rollback transactions and sub-transactions, which are used by
CAPI-4. The CAPI-2 interface contains also transactional operations to write, read
and take xtrees. Additional operations exist to set exclusive locks, an additional
lock type, and retrieve readable and takeable properties at a path without locking
them.

In CAPI-3 we have containers to structure the space xtree. They contain entries
which are also xtrees. Optionally the containers can have a name that is unique in
the space. The CAPI-3 interface provides operations to create and destroy containers
and lookup named containers. These methods are transactional and an additional
method to exclusively lock a container for a transaction is provided. Coordinators
are specified when a container is created. There are two lists for them, one for the
obligatory and one for the optional coordinators. Obligatory coordinators manage
every entry in the container. In contrast, optional coordinators manage only the
entries for which they are specified with coordination data when they are written
to the container. CAPI-3 also offers transactional operations to write entries to a
container, and read, take or delete entries from a container. When entries are written
to a container, coordination data® corresponding to the container’s coordinators have
to be specified. They can pass entry-specific information to a coordinator. When
entries are read, taken or deleted, one or more read selectors have to be specified. If
more than one read selector is specified, they are executed consecutively, like SXQs
in XVSMQL, and only entries matching all selectors are returned.

There are several predefined coordinators which can be distinguished by their se-
lector functionality: the System coordinator, which just returns the specified num-
ber of entries, without any specific order. The FIFO and LIFO coordinator provide
queue ordering and stack functionality, respectively. The Linda coordinator allows
for template matching similar to the Linda model. The Query coordinator supports
XQs on entries. A unique key (value) can be used to access entries with the Key

coordinator, for the similar Label coordinator a non-unique label is used. With the

3The term write selectors is used in [Cral0]. Later we decided to replace it with the term
coordination data, because entries are not selected when they are written to a container and
we want to avoid confusion with the “read” selectors.
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Vector coordinator entries are accessed with their numeric index.

Compared to the original formal model, some changes regarding coordinators
were made to CAPI-3 of MOZARTSPACES during the development of the runtime.
In [Barl0] the same classes are used for read and write selectors. We changed that
and now distinguish coordination data for write and (read) selectors for selecting
operations. In addition to obligatory and optional, coordinators can now also be
implicit or explicit. For implicit obligatory coordinators no coordination data needs
to be specified when entries are written, the entries are automatically bookkeeped
by them. Implicit optional coordinators need to be addressed with according co-
ordination data. Explicit coordinators always need entry-specific coordination data
when an entry is written. The predefined coordinators Any, FIFO, LIFO, Linda,
Query and Random are implicit coordinators, Key, Label and Vector are explicit
coordinators. The Any coordinator is a new coordinator that has the coordination
functionality of the System coordinator and returns entries without a specific order.
The Random coordinator, already specified in [Barl0], is very similar, but shuffles

the entries before returning them.

3.3.5 Runtime Model

The runtime model is depicted in Figure 3.5. It is similar to the runtime model
of the previous XVSM version (cf. Figure 3.3), mainly the event processing looks
different. There is also a request container where user requests are written by the
embedded API and the receiver (green arrow), or taken by the sender for processing
on a remote core (blue arrow). The XP concurrently takes requests from the request
container and processes them. The result is written to the response container where
it is retrieved by the embedded API or a sender for a request from a remote core
(green arrow). For a request processed on another core the result can also be written
to the response container by the receiver (blue arrow).

The XP processes requests by calling the appropriate CAPI-3 operation and as-
pects (explained below). This leads to a result with a status code as explained in
Section 3.3.3. When the status is 0K or NOTOK, the request is completely processed
and a response with the result or error, respectively, is written to the response con-
tainer. When the status is LOCKED or DELAYABLE, the request is handed to the event
processing (see below), where it may be put into the wait container, if its time-
out value allows it. The timeout value can be specified by the user and influences

whether and for how long a request is blocked. It may be one of the following values:

e Integer > 0: This specifies the time in milliseconds, starting with the time

when it is taken from the request container by the XP, after which a timeout
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Figure 3.5: XVSM Runtime in the formal model [Cral0]

error response is created by the XP when the request is not yet completely

processed and rescheduled by the timeout processor (see below).

e ZERO: The request is processed once, that is, the according CAPI-3 operations
is called only once, and it is never rescheduled. An error is returned for the
status LOCKED and DELAYABLE.

e INFINITE: The request does not expire, it may indefinitely be blocked and

rescheduled as long as no result is available and no error occurs.

e TRY-ONCE: The request is processed once on the actual data with all neces-
sary locks acquired. The request is blocked when CAPI-3 returns LOCKED, an
error is returned for the status DELAYABLE.

The event processing described below may put a request into the wait container.
The timeout processor periodically checks for timed out requests in the wait con-
tainer and reschedules them. As the timeout is checked by the XP at the beginning
of the request processing, for such requests an error response is created subsequently
by the XP.
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Event Processing

XVSM has a blocking behavior for certain requests, i.e., they can be blocked when
they are not successfully processed by CAPI-3 or aspects, and return with status
LOCKED or DELAYABLE. Blocked requests are put into the wait container. They are
rescheduled, that is, put again into the request container, when matching events oc-
cur. For example, a read request on an empty container may return with DELAYABLE
and is rescheduled later when an entry is written to that container and the request
can possibly be fulfilled. In general, blocked requests wait for an event of a specific
category (type) that depends on the CAPI-3 result and the request type. When re-
quests are processed, events of specific types that also depend on the CAPI-3 result
and the request type are generated.

The event types insert (entry was written) and remove (entry was taken or
deleted) are relevant for the CAPI-3 status DELAYABLE. The blocked read request
from the example above would wait for insert and the write request would gen-
erate an insert event that matches the waiting read request and causes it to be
rescheduled. As the wait categories and events for a specific request are fixed, an
according coordinator behavior is expected in the event processing. For the status
LOCKED it is relevant whether the request was locked because of a lock of a transac-
tion or an active sub-transaction as explained in the following. A transaction can
be further used after a sub-transaction of it is rolled back and a sub-transaction
can set volatile locks (short-term locks) that are removed when it is rolled back. In
contrast, long-term locks from an already committed sub-transaction are held until
the transaction ends. We want to avoid unnecessary rescheduling of requests that
are blocked because of long-term locks by events generated due to the release of
short-term locks. Accordingly, the categories 1t_unlock when a request is locked
because of a long-term lock, and st_unlock when a request is locked because of a
short-term lock, are distinguished.

For the event processing in general we consider more information than the wait
category and the event type. Figure 3.6 shows the data structure that is used in the
wait container. We distinguish the wait categories insert, remove, 1t_unlock and
st_unlock for each container. Inside of a wait category are the waiting requests,
depicted with the information relevant for the event processing, and additional event
timestamps that are independent of waiting requests. The last committed time is the
last time that a transaction with operations on that container committed (or a sub-
transaction with a status that is not 0K was rolled back). The uncommitted times are
transaction-specific timestamps that indicate when events for that transaction were

processed the last time. The timestamps are necessary to prevent race conditions
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that can otherwise occur because of the concurrent request and event processing by
the XP. The transaction-specific timestamps are used to consider the transaction
visibility for the event processing and avoid to reschedule requests unnecessarily.
For a detailed description see [CralO]. While the event processing compares the
container, category, transaction and timestamps before a task is rescheduled, it
can still happen, that a request is rescheduled but can still not be fulfilled. An
example would be a blocked read request that selects two entries and is rescheduled
after a write request has written one entry to an empty container. By making the
event processing more fine-grained that could be prevented, but there is a trade-off
between the computational effort and complexity of the request processing and the

cost of unsuccessfully processing a request.

2 Last committed time: 3

Uncommitted times:
CIMOVE -tx2: 2

-tx4: 4

Waiting requests:

-R1: take, C1, tx1
o timestamp: 1
expire time: 11

last execution time: 4
o
timeout: 10

Figure 3.6: Data structure for waiting requests and event timestamps

Aspects

Aspects in XVSM are code segments that can be added dynamically during runtime
and are executed when a request is processed by the XP. The runtime provides
operations to add and remove aspects for so-called interception points (ipoints).
There are two ipoints for each request type, before (pre) and after (post) a request
is processed by the XP. Aspects are executed in the defined order. They can access
and modify the request (pre-aspects) or the result (post-aspects). They are an
implementation of the interceptor pattern that is also used for distributed object
middleware [SSRB00]. Aspects can be local, that is, only defined for a specific
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container, or global and executed for every space operation. They can use the
same sub-transaction that is used for the request processing and access the space
or external system inside of it. However, changes outside of the space are not
automatically committed or rolled back. Aspects can return the same return status
codes as CAPI operations (see Section 3.3.3). If an aspect returns with a status
code that is different from OK the execution of the aspects is aborted and this status
is returned instead of the actual CAPI-3 operation status. Pre-aspects can also
return SKIP to skip the execution of the actual CAPI operation. Every aspect can
access the so-called request context of the request, which is specified in the user API.
Thereby, arbitrary data can be passed to aspects, if necessary.

Overall, there is no exact definition of the aspects in the current formal model.
A simple implementation of them is described in Section 5.2. This implementation
is similar to the aspects in the previous XVSM implementations. Java classes that
implement a defined interface can be used as aspects. An extension could be to
support aspects written in an interoperable scripting language or allow for a more

flexible definition of interception points [KS05].

CAPI-4 Operations

The formal model defines CAPI-4 operations that are indirectly called by writing
a corresponding request into the request container. All operations have a space
URI, that specifies where the request shall be processed, and a (request) context
as parameter. There are operations to add and remove an aspect. Operations
to create, commit and rollback a transaction can be used for transaction control.
A timeout can be specified when a transaction is created. CAPI-4 also provides
operations to create, destroy, lookup and lock a container. Further operations allow
to write entries to a container, and read, take or delete entries from a container. A
timeout can be specified for the entry operations. Entry and container operations
are transactional and an explicitly created transaction can be passed to them. If no
transaction is specified, the runtime creates an transaction internally. This implicit
transaction is used like an explicit transaction but is automatically committed when
the request returns with a result, or rolled back when the request returns with an

error.

3.3.6 XVSMP and Language Bindings

XVSMP is the interoperable protocol that defines the XVSM semantics and can be
used for remote access to a space. It is not specified in detail for the new formal

model but essentially comprises the CAPI-4 operations from above with the defined
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semantics. The protocol describes the representation of the CAPI-4 request xtrees
and the corresponding responses as messages in an interoperable format, for example
XML. These messages can be asynchronously sent and received by the sender and
receiver of the runtime. Usually the response to a request is delivered to the space
where the corresponding request was issued. This is the standard request-response
message exchange pattern. A so-called answer container extends the request mes-
sage with an alternative destination for the response. This answer container can be
a user container on any space. In the request-response case the answer container
is wvirtual, it is the API that was used to send the request. This API can be the
embedded API (cf. Figure 3.5) or a language binding. Such a language binding can
provide an XVSM API for an arbitrary programming language. It translates API
calls to XVSMP request messages, sends them and receives response messages ei-
ther synchronously or asynchronously with callbacks. In [KRL07, KRMLO0S8, Lec08§]
a JavaScript API for XVSM is described. Although this API is for an older version
of XVSM, a similar implementation could be used for the new formal model and
its XVSMP.

3.4 Profiles

Profiles are extensions of the XVSM core. They can have their own API above the
embedded API or XVSMP, and extend the core functionality with modules. Mod-
ules can be aspects, custom coordinators, additional transport protocols or other
extensions that are plugged into the core. An example are notifications that im-
plement the publish-subscribe model [EFGKO03]. Notification support can be added
to XVSM with aspects [KMK*09, KMS08a]. One form of notifications has been
implemented for MOZARTSPACES 2.0 and is described in Section 5.2.5. This profile
uses aspects and provides a simple notification API that complements the core API.
Internally, existing requests are used and thus XVSMP is not extended. Further pro-
files include distributed lookup, replication, security extensions for authentication
and authorization, life cycle management, integration adapters and administrative
extensions for configuration and monitoring. Some profiles have already been de-
veloped for MOZARTSPACES 1.0. For example, [Goi09] describes distributed lookup

and several protocol plug-ins.
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Architecture

The last chapter described XVSM and the new formal model that is the basis for the
XVSM implementation MOZARTSPACES. This chapter describes the architecture
of the MOZARTSPACES 2.0 runtime that was implemented in the course of this
thesis. Section 4.1 starts with an overview before Section 4.2 describes the XP and
Section 4.3 the blocking behavior of the runtime. Section 4.4 explains the internal

configuration of the runtime.

4.1 Overview and Components

As described in Section 3.3.5, the runtime provides an environment for the concur-
rent execution of coordination operations. It adds support for blocking operations
with timeouts and manages and invokes aspects. It corresponds to CAPI-4 in the
layered architecture of the formal model and uses the CAPI-3 implementation de-
scribed in [Barl0]. The core API (see Chapter 6) provides embedded access to
spaces and the sender and receiver components (see Section 5.3) are responsible for
the remote access.

Compared with the formal model, several changes were made to the internal
structure for the implementation of the runtime. The reason is, that some parts
of the model are difficult to implement with high performance. This was already
experienced with the previous implementations and is explained in [SchO8al]. It
also affected the CAPI-3 architecture. CAPI-3 is internally not separated into the
different layers and there is no CAPI-1 interface. Accordingly, there is no CAPI-
B in MOZARTSPACES (cf. Figure 3.4) and the runtime cannot bootstrap itself
with own mechanisms. So the runtime uses no XVSM containers. None of the
runtime containers in the XVSM meta model actually exists in MOZARTSPACES.
The request, response and wait containers are implemented mainly with standard

Java collections as data structures that are not accessed with CAPI operations.
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4.1.1 Runtime Structure

Figure 4.1 shows the structure of the runtime, especially the data flow from outside
the runtime to the XP and back. The rectangles are components and the arrows
between them are marked with the types of the objects that are passed from one
component to the other. Compared to the runtime structure of the formal model,
we see that the request container is now named request handler and there is the
response distributor instead of the response container. This names should resemble
their functionality more accurately because they are not containers in the imple-
mentation. Furthermore, the message distributor and the response handler process
receive messages and the response distributor passes responses to the core API or
the sender. The wait container is now named wait & event manager and includes
the event processing. The requests and responses in Figure 4.1 are all encapsulated

into respective messages that contain some additional information.

Request
Message
(Request)

Receiver

Message Response

Message
Message Response [ ofo]p (Response)

Distributor Handler

Request
(write AC)

Request

Core
Request Response Response
Processor

Handler (XP) Distributor

Timeout Task, Events

Task
Processor

Wait & Event
Manager

Figure 4.1: MOZARTSPACES runtime structure

4.1.2 Messages, Requests, Responses and Tasks

There are objects of different types passed between the runtime components. In
general, the runtime processes request objects and returns a response object for each

request object. These objects are encapsulated into messages that contain a unique
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request identifier and routing information.

Figure 4.2 shows the message interface and classes. The request reference is the
unique identifier of a request, the content the actual request or response and the
answer container information defines the destination of the response. If it is not
set, the response is sent back to the virtual answer container of the core where the
request has been created. If it is set, it defines the container where the response
should be written to. The response is then written with a request that is created by
the response handler (see Figure 4.1). The answer container information is also the
reason for the difference between the request and response message classes regarding
the URI of the destination space. For a RequestMessage the destination space URI
is explicitly set. For a ResponseMessage it can be derived from either the request
reference, when the answer container information is not set, or the reference of the

answer container.

|

<<Interface>>
Message
+getRequestReference() : RequestReference
+getDestinationSpace() : URI
+getContent() : T
+getAnswerContainerinfo() : AnswerContainerinfo

A

AbstractMessage
-requestRef : RequestReference
-content: T
-answerContainerInfo : AnswerContainerinfo

IT: Request<?> !T : Response<?>|

R e —! !

RequestMessage ResponseMessage
-destinationSpace : URI

Figure 4.2: Message interface and classes

Figure 4.3 shows the hierarchy for the request classes. There is a concrete class
for each different type of operation to be performed on the space, because they have
different properties as arguments. How these properties are used in the runtime is
explained in Section 4.2.3. Many properties have a default value, others need to be

specified when a request is created with an API call as explained in Section 6.1.
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1
IR : serializable]

Figure 4.3: Class hierarchy for requests
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Figure 4.4 shows the response interface and the generic implementation that is
used for the responses of all request types. The result type depends on the request

type and is also explained in Section 4.2.3.

——————— 1
I

<<Interface>>
Response

+getResult() : R
+getError() : Throwable

A

[z

- L
GenericResponse

-result : R
-error ; Throwable

Figure 4.4: Class hierarchy for responses

A task is created for each request message that is handed over to the request
handler. There are different task types, one for each request type, as it is explained

in Section 4.2.2. A task execution eventually leads to a response, often also to events.

4.1.3 Data Flow between Components

In Figure 4.1 we can see that there are two ways how a request can enter the core,
through the core API or encapsulated in a message from a receiver. There is also the
special case that a write request is created for a response by the response handler,
when the response should be written to the space because an answer container has
been specified for the original request. In all cases the request is routed to the request
handler. The request handler creates a task for the request, which is executed in the
XP. If the task execution can completely process the request, a response is created.
Otherwise, the task is stored in the wait & event manager. In this case the task
is additionally put into the timeout processor, if a positive timeout value is set.
The execution of a task that accesses CAPI-3 generates events that are processed
in the wait & event manager. A task in the wait & event manager is rescheduled
and executed again when matching events are generated. For each request exactly
one response is created. The response is passed to the response distributor and,
depending on its origin and whether an answer container is set, forwarded to the
embedded core API or the sender. A response message sent from another core is
received by a MOZARTSPACES receiver and passed to the response handler. The

response it contains is either destined for a specific request in the core API or an
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answer container on that space. In the latter case, the response handler creates a
request from the response content, a standard write request, and passes it to the

request handler.

4.2 Core Processor (XP)

The XP is the part of the MOZARTSPACES runtime where the requests are actually

processed. This section describes the tasks and components used for it.

4.2.1 XP Structure

The XP is basically a thread pool inside the request handler where tasks are exe-
cuted. A task is a Runnable object that accesses CAPI-3 and runtime components
(transaction manager, aspect invoker, aspect manager) to process a request. It is
executed in a worker thread of the thread pool. Figure 4.5 shows this overall struc-
ture which is a more detailed view of the XP in Figure 4.1. There are different types
of tasks for requests, which is explained in the next section.

A thread pool consists of a number of threads that execute tasks, so called worker
threads, and code to manage these threads and the task execution. Thread pools pro-
vide better performance and manageability than a bunch of single threads. The cre-
ation and destruction of threads is computationally expensive. The worker threads
in the pool are reused, that is, they execute task after task and thereby mainly avoid
the creation/destruction overhead. The tasks are taken from a queue that is shared
by all worker threads. Which thread eventually executes it is usually decided by
the thread pool internally. The Java API provides different thread pools that can
be instantiated and are ready to use with one statement. Section 4.4.2 describes
which thread pools can be configured and used in the runtime and discusses their

advantages and disadvantages.

4.2.2 Request Task Creation

The requests that are processed in the MOZARTSPACES runtime can be of different
types and there is a concrete task class for each request class. The type hierarchy for
the tasks is shown in Figure 4.6 and is similar to the type hierarchy for the requests
in Figure 4.3. When a request is passed to the request handler, a task is created for
it—for example, a CreateTransactionTask for a CreateTransactionRequest or
a ReadEntriesTask for a ReadEntriesRequest. The request and its properties are

accessible from within the task, this information is used when the task is executed.
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Figure 4.5: Core processor structure
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Figure 4.6: Request task hierarchy
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4.2.3 Request Task Execution

The interface RequestHandler and its implementation ThreadPoolRequestHandler
are shown in Figure 4.7. When the ThreadPoolRequestHandler gets a request, it
internally creates a task for it and executes it with the thread pool, an instance
of ExecutorService. By default this is done asynchronously, that is, the call to
the execute method of the ExecutorService adds the task to the queue of the
thread pool and returns immediately, before the task is executed. However, the
details are at the discretion of the concrete thread pool and can be configured (see
Section 4.4.2).

<<Interface>>
RequestHandler
+processRequest(request : RequestMessage)
+rescheduleTask(task : Task)
+shutdown(wait : boolean)

i

ThreadPoolRequestHandler
-threadPool : ExecutorService

Figure 4.7: Request handler

When a task is executed, the run method implemented in AbstractTask is called
(cf. Figure 4.6). There the request timeout is checked. If it has been reached, a
response with an error is sent, otherwise the method runSpecific is called. This
method is either already specific for the concrete task or prepares the transaction
and sub-transaction used in the concrete task, if the task is transactional. For such
a TransactionalTask the method runInSubTransaction implements the main re-
quest processing. The request-specific part of the task execution is explained below.
After runInSubTransaction the sub-transaction is committed, and also the trans-
action if it was created implicitly. For all tasks, when runSpecific returns, the
request processing is either finished and a response with a result or error is sent, or
the task is blocked, that is, it is passed to the wait & event manager. Subsequently,
the wait & event manager is called to process the events generated by the request

processing.

Example Task Execution

An example for a task execution is shown in Figure 4.8. A ReadEntriesTask pro-

cesses a ReadEntriesRequest with an implicit transaction. In the runSpecific
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method the CAPI-3 implementation is called to create a new transaction, which
is added to the transaction manager. The task type specific method runInSub-
Transaction is invoked with a new sub-transaction. In it the aspect invoker is
called to execute the pre-aspects for read, then the actual read method of CAPI-3
and the post-aspects. Back in runSpecific the sub-transaction is committed and,
because CAPI-3 returned the status 0K and a result, the transaction is committed
as well. At the end of the AbstractTask’s run method the response with the list of
the read entries as result is handed to the response distributor and the wait & event

manager is called to process the events.
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Figure 4.8: Example sequence for a ReadEntriesTask execution
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Apart from error cases, the sequence for ReadEntriesTask would also be different
if an explicit transaction was used or the CAPI-3 call did not return a result and
thus the task was blocked. The differences for the other task types are explained
below. For the types of the results returned by the different task types see also the
description of the core API in Section 6.1. The aspect execution is described in
Section 4.2.5.

Request Property Usage

The properties of the request are used when the task is executed. Some of the
properties are specific for a request type, others are common for several request types
and inherited from superclasses (cf. Figure 4.3). The request objects themselves are
passed to the aspect invoker when the aspects are executed. The context property
from AbstractRequest is passed to the CAPI-3 method called by the container
and entry tasks. For TransactionRequests, the transaction reference is used if
it is set, otherwise a new transaction is created. The isolation level is currently
only used in the container and entry tasks and passed to CAPI-3 like the context.
The timeout properties of the entry tasks, the CreateTransactionTask and the
LookupContainerTask are used by the runtime in the timeout processors. The
usage of the other request properties are specific for a request type and explained

below.

Container and Entry Tasks

The container and entry tasks are all very similar to the ReadEntriesTask in the
example above. Different are the methods in the aspect invoker to execute the as-
pects, the CAPI-3 method that is called and the result type. The TakeEntriesTask
returns a list of entries like the ReadEntriesTask. The two other entry tasks,
WriteEntriesTask and DeleteEntriesTask return nothing. Regarding the con-
tainer tasks, the CreateContainerTask and the LookupContainerTask return a
container reference, DestroyContainerTask and LockContainerTask return noth-
ing. Except for the timeout property, the container and entry task’s specific request

properties are just passed to CAPI-3 (see Section 4.2.6).

Transaction Management Tasks

The tasks to create, commit or rollback a transaction invoke the aspects and call the
corresponding method of the transaction manager (see Section 4.2.4). The Prepare-

TransactionTask invokes the aspects but does not use the transaction manager in
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runInSubTransaction, the preparation of a transaction is performed by calling a
method of the internal transaction object. Regarding the return type, the Create-

TransactionTask returns a transaction reference, the other tasks return nothing.

Aspect Management Tasks

The aspect tasks use the aspect manager to add or remove an aspect (see Sec-
tion 4.2.5). The AddAspectTask returns an aspect reference, the RemoveAspectTask
nothing.

Other Tasks

There are additional tasks to clear the space and shut down the core. The Shutdown-
Task initiates the shutdown of the core. The ClearSpaceTask (not depicted in
Figure 4.6) does currently nothing because the meta-model that is needed to clear

the space is not implemented yet. Both tasks return nothing.

4.2.4 Transaction Management

In XVSM, CAPI-3 is used to create and commit or rollback transactions, but the
list of active transactions is kept in the runtime by the transaction manager. Its
interface is shown in Figure 4.9. Whenever a transaction is created by a task, it
is added with the method addTransaction. As we see in the interface, there is
a parameter of type TransactionReference and one of type Transaction. The
former is the external transaction representation, also used in the core API and in
requests, while the latter is the internal transaction object. The transaction manager
also gets the timeout value of a transaction and has an internal timeout processor
with a timeout handler to rollback a transaction when it expires. Such a rollback is
performed via the core API as a new request.

When a user commits or rollbacks a transaction, the respective methods of the
transaction manager are invoked in the corresponding task. When an implicit trans-
action is used, the commit method of the transaction manager is called at the end
of the task, if the request processing is completed and the task will not be blocked
(cf. Section 4.3 for blocking behavior). In case of an error the rollback method
is called instead of the commit method. Inside these methods the wait & event
manager is called (see Section 4.3.2). For tasks that use an explicit transaction
the getTransaction method is called to get the internal transaction object for the

transaction reference.
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Before a transaction can be committed or rollbacked, all of its sub-transactions
need to be finished, that is, committed or rollbacked. The method lockAndWaitFor-
SubTransactions has been added to the interface Transaction for that purpose.
Internally this method locks the transaction, that is, no new sub-transactions can
be created, and then blockingly waits for the sub-transactions to finish. It is also

called to prepare a transaction.

<<Interface>>
TransactionManager
+addTransaction(txRef : TransactionReference, tx : Transaction, timeout : long)
+getTransaction(txRef : TransactionReference) : Transaction
+commitTransaction(txRef : TransactionReference, implicitTx : boolean)
+rollbackTransaction(txRef : TransactionReference, implicitTx : boolean)

+shutdown()

DefaultTransactionManager
-transactions : Map<TransactionReference, Transaction>
-timedOutTransactions : Map<TransactionReference, Transaction>
-timeoutHandler : TransactionTimeoutHandler
-timeoutProcessor : TimeoutProcessor<TransactionReference>
-waitEventManager : WaitAndEventManager
-core : MzsCore

Figure 4.9: The interface and implementation of the transaction manager

4.2.5 Aspect Management and Invocation

Two components are used for aspect management in the runtime, the aspect manager
and the aspect invoker. The aspect manager has a list of the aspects registered for the
space or a specific container in the space. Its interface is shown in Figure 4.10. The
first three methods are called from the tasks to add or remove an aspect, the fourth,
removeContainer, is called in the DestroyContainerTask. The other methods are
used in the aspect invoker, which is called from the request tasks to execute the
registered aspects. It has the same interface as a space aspect (see Section 5.2).
There is currently one implementation, SerialAspectInvoker, that executes the

registered aspects in the same order as they were added to the aspect manager.
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Figure 4.10: The interface of the Aspect Manager
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Aspects have a return status that is OK, NOTOK, LOCKED, DELAYABLE or SKIP as de-
fined in the runtime model. The aspect invoker checks this return status and returns
immediately to the task, if the status is not OK, as it is illustrated by Figure 4.11.
In the task the execution path depends also on this status. For the status SKIP
in a pre-aspect the execution of all following pre-aspects and the actual operation
is skipped. When a post-aspect returns with SKIP all following post-aspects are
skipped. For the other return statuses of the aspect invoker the result is handled
like for the operation itself, as explained in Section 4.3. The CAPI-3 component in
Figure 4.11 is just an example. The same execution sequence for the aspects is also
performed for a transaction management task with the transaction manager instead
of CAPI-3, but the operation itself does not return a status and cannot block. De-
pending on the request type, a result of a specific type is expected from the actual
operation and returned in the response. When the operation is skipped by a pre-
aspect and after the post-aspects no such result is available, a corresponding error

is set in the response instead.

4.2.6 Container and Entry Operations

The runtime calls CAPI-3 methods to access containers and the entries in them. The
main CAPI-3 interface without method parameters is shown in Figure 4.12. During
the MOZARTSPACES startup one instance of a CAPI-3 implementation is created
and then used in the tasks. Currently there are two CAPI-3 implementations, one
that uses only the standard Java collections (called “javanative” or “native” im-
plementation) and an experimental prototype based on a relational database. The

details of the CAPI-3 implementations are explained in [Barl10].

4.3 Blocking Behavior

In XVSM, container and entry requests can be blocking, that is, they do not im-
mediately return with a result because they can currently not be fulfilled. This is
signaled with special return values of the CAPI-3 method calls. The result objects
returned by CAPI-3 can have the status LOCKED or DELAYABLE, besides the values
OK and NOTOK when the request could be processed (see Section 3.3.3). Figure 4.11
shows the possible sequences of one task execution. When the return status is 0K
the result is returned. When it is NOTOK an error is returned instead of a result. For
the status LOCKED or DELAYABLE the task is blocked and adds itself to the wait &

event manager, if the request timeout allows it.
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Figure 4.11: Example for a possible execution sequence of an operation and its as-
pects

Figure 4.12: The CAPI-3 interface [Barl0, cutout of Figure 9]
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4.3.1 Timeout Processing

The blocking behavior of requests can be controlled by the user with the request
timeout. Table 4.1 shows the compatibility of CAPI-3 return statuses and the
timeout values. The timeout can be a positive integer value or one of the constants
INFINITE, TRY_ONCE or ZERO explained in Section 3.3.5. If the timeout is a positive
value, the task adds itself to the timeout processor after it has added itself to the wait
& event manager. For an INFINITE timeout, or TRY ONCE and the status LOCKED,
there is no timeout in milliseconds after which the request times out. So the task
adds itself to the wait & event manager but not the timeout processor. For a request
timeout of ZERO and the status LOCKED or DELAYABLE, the task is not blocked and
an exception corresponding to the reason for the LOCKED/DELAYABLE CAPI-3 status
is sent as response, as well as for timeout TRY_ONCE and status DELAYABLE.

Table 4.1: Task blocking depending on CAPI-3 status and request timeout

Request timeout
Status Integer > 0 \ INFINITE \ TRY_ONCE \ ZERO
LOCKED block (timeout) | block block error
DELAYABLE || block (timeout) | block error error

Timeout Processor

The timeout processor has a simple interface (TimeoutProcessor) with methods to
add and remove generic elements that can time out. These generic elements have an
expire time and an arbitrary object as value, for example, a task object. To react
on elements that time out, a timeout handler can be set on the timeout processor.
An instance of this timeout processor is used for the tasks; the transaction manager
uses its own instance for the transactions.

The first TimeoutProcessor implementation used a DelayQueue internally. Thus,
in contrast to the previous XVSM implementations, it is non-polling, that is, there
is no periodic task that checks for timed out elements. However, micro-benchmarks
have shown that this timeout processor is slow and a second implementation based
on a ConcurrentNavigableMap has been implemented. There a task is scheduled
periodically to check for timed out elements and passes them to the timeout handler.
A non-polling variant of the second timeout processor would be possible by putting
the thread that checks for timeouts to sleep, until the first timeout is elapsed or an
element with an earlier timeout is added. In micro-benchmarks the second timeout
processor is faster than the first one, but its integration into the runtime requires

refactoring in CAPI-3 and is subject to future work.
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4.3.2 Wait & Event Manager

Tasks that must be blocked add themselves to the wait & event manager, which
corresponds to the wait container of the formal model. Its interface is depicted in
Figure 4.13. The addContainer and removeContainer methods are called after a
container has been created or destroyed. A task adds itself with addTask when it is
blocked and is removed with removeTask by the timeout handler after it timed out.
The methods processTransactionCommit and processTransactionRollback of
the wait & event manager are called from the transaction manager when a transac-
tion has been committed or rolled back, respectively. Furthermore, the wait & event
manager processes the events that are generated after a task has been executed in
the method processEvents. Internally it has a data structure with tasks and event
timestamps as shown in Figure 3.6. Tasks are removed from this data structure
when they time out or when matching events are processed, which is explained in

the next section.

<<Interface>>
WaitAndEventManager

+addContainer(container : ContainerReference)

+removeContainer(container : ContainerReference)

+addTask(task : Task, lastExecutionTime : long, eventTime : long)
+removeTask(task : Task)

+processTransactionCommit(transaction : TransactionReference, eventTime : long)
+processTransactionRollback(transaction : TransactionReference, eventTime : long)
+processEvents(task : Task, categories : WaitForCategory [], eventTime : long)

% <<enumeration>>
SynchronizedWaitAndEventManager WaitForCategory
-requestHandler : RequestHandler -INSERT
-requestTimeoutProcessor : TimeoutProcessor<Task> -REMOVE
-txManager : TransactionManager -UNLOCK LT
-asyncRescheduling : boolean -UNLOCK_ST

Figure 4.13: Wait & event manager types

Currently there is one wait & event manager implementation, the Synchronized-
WaitAndEventManager. Its name comes from the complete synchronization of all its
methods, that is, they are all synchronized. So it is relatively easy to avoid race

conditions, but this reduces the possible concurrency.
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4.3.3 Event Processing

In the runtime, events are generated after a request that accesses CAPI-3 has been
processed. They are immediately processed by the wait & event manager. The
event processing follows the formal model as described in [Cral0O] and summarized
in Section 3.3.5. Tasks that were added to the wait & event manager are rescheduled
when matching events are processed in the method processEvents. Events have
categories, a timestamp and are from a specific task. From the task the container
and the transaction are relevant for event processing (cf. method signature in Fig-
ure 4.13). The categories for events are from the WaitForCategory enumeration
that is used for blocked tasks. The categories where events are generated depend on
the request type and its CAPI-3 return status. Additionally, events from aspects are
generated when they use the special restricted CAPI-3 interface Capi3AspectPort.
This interface is accessible from within aspects for some ipoints and provides entry
operations on the container that is used in the request (see Section 5.2.2).

In the processEvents method, for each event category, container and transaction,
the timestamps are updated and the waiting tasks for this category, on the same
container and in the same transaction, are rescheduled. The events are only visible
within the transaction and made generally visible when the transaction manager
commits or rollbacks the transaction and calls the method processTransaction-
Commit or processTransactionRollback of the wait & event manager, respectively.

When tasks are rescheduled, they are usually passed to the request handler and
enqueued like new tasks. This is done synchronously in the thread that was used for
processing the request. For special configurations of the request handler, where its
executor service has no worker threads and executes tasks synchronously, tasks are
rescheduled asynchronously in an own thread pool to avoid race conditions because
of the concurrent modification of data structures in the wait & event manager. These
race conditions could occur for synchronous task execution and rescheduling due to
the event processing of the rescheduled task interfering with the event processing
of the original task execution where it was rescheduled, because the same thread is
used for both event processings and the Java monitor locks (which are behind the
synchronized keyword) are reentrant. So, either the execution or the rescheduling

of tasks has to be asynchronous.

4.3.4 Alternative Wait and Event Management

When the event processing for the formal model of XVSM and MOZARTSPACES 2.0

was designed, an alternative structure for the requests and events was discussed.
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This data structure can be seen as an extended version of the now implemented
wait & event manager and is depicted in Figure 4.14. It combines the wait container
and the request container from the formal model and contains all requests in the
runtime and also the event timestamps. Besides container and wait categories, also
the coordinators are distinguished to allow for more efficient request rescheduling,
event-request matching with finer granularity, and easier implementation of special
scheduling strategies and fairness.

The request and event data structure has a simple interface with methods to put
and get requests. Internally, the queue at the bottom contains references to request
collections and is used to signal in which collections requests are ready to be ex-
ecuted. This architecture, where each request is referenced in two collections, is
proposed because the otherwise needed polling or blocking read from many collec-
tions would block many threads (as many as collections where requests could be)
or would be computationally expensive otherwise. The strategies for the collections
define which entries (requests) are provided next. New requests are timestamped
and put into the container. They are taken and executed by the XP. If a request
cannot be processed, it is put back into the container. Events are processed on the

requests in the container similar to the wait & event manager.

read

C1 insert

New
Request 11 remove

"5’ 2.3 ) Request

o o
Request 2.2
(locked,
delayed)

Event
Notification Queue

Figure 4.14: Alternative structure for requests and events
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Details of Request and Event Processing

New requests are routed to the collection of the first coordinator, put there and
signaled in the notification queue (see the solid lines 1.1 and 1.2 on the left in
Figure 4.14). The XP takes collection references from the notification queue. It
then takes a request from the referenced collection and processes it (see the solid
lines 2.1, 2.2, and 2.3 on the right). Requests that are delayed because they cannot
be fulfilled, are put back into the suitable request collection. Internally the request
collections could be divided further, for example, there could be separate “sub-
collections” for the waiting requests and the requests that should be processed.
The event handling is performed on the request collections that are affected by the
event, which depends on the request and the coordinators used in it. For every
event a lastEventTimestamp in the suitable request collection is updated and the
matching waiting requests are rescheduled by signaling their availability through
the notification queue (see the dashed lines 3.1 and 3.2 on the left). Here the
event processing logic also used in the wait & event manager, that also takes the

transactions into account, could be used with small adjustments.

Strategies for Collections

As mentioned above, the collections and also the notification queue have only a sim-
ple interface to put and get requests, the actual behavior is determined by a queuing
strategy. There could be such a strategy for the notification queue to provide the
collection references in a round-robin manner, prioritize certain containers, or order
them by various criteria. Strategies for the request collections could be coordinator
specific with a simple queue as default implementation.

If the coordinator provides a matching strategy, this could be used for a more
accurate matching of waiting requests and events. As the coordinator also controls
the information that is returned with the request status, e.g., the entry count and
a key, this information could be used for event processing in addition to generic
information like the container reference and event category. For some coordinators,
new requests do not need to be executed, if “similar” requests are already waiting.
They can be put directly to the other waiting requests. An example for this is a
read request for one entry with the random coordinator. For other coordinators,

e.g., the key coordinator, this logic is different.
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Comparison with Separated Request and Wait Containers

The request and event management described in this section is clearly more complex
than the variant from the section before and the question is, whether the advantages
are worth the effort and outweigh the disadvantages. This also depends on the
strategies for the collections, which could be provided by the coordinators and put
requests, that would be blocked, directly to the waiting requests.

The advantages of this proposal are the following:

1. The performance is better when requests can be delayed immediately and do
not need to be processed. This could be significant if the CAPI-3 implemen-
tation or aspects are slow. By the way, not executing the aspects here would

change the semantics of the aspect execution.

2. The implementation of accurate, coordinator dependent matching of events
and waiting requests is easier and more flexible. Avoiding unnecessary request

rescheduling improves the performance.

3. The behavior of the runtime regarding correctness and fairness can be changed

easier because the logic is in one place.
The disadvantages of this proposal are the following:

1. The complexity of the data structures is bigger because the coordinators are

also distinguished and there are many request queues.

2. There is an overhead for the notification queue. An additional operation for

every request is required when it is inserted into or taken from the container.

3. The event processing is slower because several coordinator collections can be

affected by one event. This is a result of the deeper structuring.

4. When coordinator-specific matching strategies are used, this further slows
down the event processing. Additionally, coordinator logic is executed twice
when a request is woken up, in the event processing and in the actual request

processing.

5. The clear separation of the runtime and the coordinators in the CAPI-3 layer

is lost, if coordinator-dependent logic is used in the runtime.

The alternative wait and event management has not been implemented because
the overhead of the more complex event handling would probably exceed the effect

of avoiding unnecessary request processing. We expect that most requests can be
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directly processed without blocking and only few requests are in the wait container.
So the advantage would be very little but the slower event processing would affect
all requests. Particularly, we want to keep the “normal case”, that is, a request that

can be processed with the first execution and does not wake up other requests, fast.

4.3.5 Deadlock Handling

In general, deadlocks occur when a circular wait situation exists. For example,
task A locks resource R1 and tries to acquire the lock for resource R2 while task B
locks R2 and tries to acquire the lock for R1. Additionally the following deadlock
conditions must be fulfilled [CEST1]:

e Mutual exclusion: tasks can exclusively lock a resource, so that no other re-

quest can access it.

e Hold and wait: a task can hold locks and blockingly wait for resources that

are locked by other tasks.

e No preemption: tasks cannot be forced to release locks, they can only be
released by the task that holds the lock.

Deadlocks can occur in XVSM between two or more transaction whose requests

are processed in interleaving order, which is illustrated by the following example.

Example Deadlock

A minimal example of a deadlock is described in [Kar09] and shown in Figure 4.15.
It comprises two transactions, tx1 and tx2, each consisting of a take and a read
request. In tx1 the request R1t takes entries from container A and the request R1r
reads from container B. In tx2 the request R2t takes entries from container B and
the request R2r reads from container A. If the requests access the “same data” in
the respective containers, a deadlock can occur as follows. First R1t and R2t are
processed in any order, followed by R1r and R2r, again in any order. When the take
requests are processed, an exclusive lock is set! and they return with status 0K. If
now the read requests are executed, they return with status LOCKED, because the
locks set in the take operations are still present. Those locks are removed only when
the transactions commit or roll back. But this is not going to happen because the
read requests, that are part of the transactions, are both waiting for the release of
the locks.

'For the sake of simplicity we can assume that the whole container is locked, as depicted in
Figure 4.15. Which data is actually locked depends on the respective coordinator and the
isolation level.
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Figure 4.15: Deadlock example

Deadlock Detection

In the previous XVSM implementations deadlocks are neither prevented nor de-
tected but resolved by transaction timeouts [Kar09]. It would be to restricting and
costly to prevent or avoid them. But it is relatively easy to detect and resolve such
deadlocks. This is also the approach used for deadlock handling in many systems
that use pessimistic locking as a form of concurrency control, for example databases.
For tuple spaces, we have found no information about deadlock detection in the lit-
erature and the JavaSpaces implementations Outrigger, GigaSpaces XAP, and Blitz.
But in JavaSpaces, Jini transactions with a user-specified lease time are used, and
the transaction manager aborts transactions when the lease expires. This is very
similar to the behavior in the previous XVSM implementations where a transaction
timeout is supported.

For MOZARTSPACES 2.0 we use a graph-based approach to detect deadlocks, like
most other systems with deadlock handling do.

Transaction Wait-for Graph

We can depict the transactions in the XVSM core with a wait-for graph (WFG). A
WFG is a directed graph (digraph) with distinct arcs (directed edges) and no loops,
similar to a state graph in [CES71]. Here the vertices correspond to the transactions
and the arcs show a “wait-for” relation because of a lock. A transaction X within
which data is accessed that is exclusively locked by another transaction Y, is shown
as the vertex X with an arc to the vertex Y. Figure 4.16 shows the WFG for the
deadlock example that was described above. We can see that there is a cycle in the
WEFG, the necessary and sufficient condition for a deadlock.

For creating the WFG we need to consider only requests that return with status
LOCKED(1t), that is, data that is needed to process the request in CAPI-3 is locked
by another transaction where the sub-transaction is already committed (thus 1t for

“long-term” lock). Requests that return with status LOCKED(st) are rescheduled
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Rir

Figure 4.16: Wait-for-graph for the example deadlock in Figure 4.15

after the request that holds the corresponding short-term lock has been processed.
Because the request processing in CAPI-3 is carried out non-blockingly, no deadlock
can occur in that case. Requests that return with status DELAYABLE can be woken
up by new requests, hence they cannot cause deadlocks. Requests that return with
status OK or NOTOK are completed and never put into the wait container.

Whenever a request returns with status LOCKED(1t), an arc from the transaction
of this request to the transaction of the request that set the exclusive lock is added
to the WFG2. Whenever a locked request is rescheduled, the arc is removed from
the WFG3. The arcs in the WFG are distinct, that is, only one arc between two
vertices is allowed. This makes it easier to detect deadlocks. A list of the locked
requests is stored for each arc. So, if an arc already exists between two transactions,
the request is only added to that list. This can only happen if requests of the same
transaction are asynchronously sent to the runtime. Similarly, if a request from an
arc with more than one waiting requests is rescheduled, only the request is removed

from the list and not the whole arc.

Deadlock Detection Triggering and Algorithm

The deadlock detection can be triggered whenever an edge has been added to the
wait-for graph, that is, each time a request returns with status LOCKED(1t). Then
only one deadlock can exist, which is immediately detected. However, depending on
the number of locked requests and the cost of the deadlock detection, this may impair
the overall performance of the runtime. Therefore, the deadlock detection could be
started periodically. But this would be unnecessary polling, if no request had been
locked in the last period. Instead, the deadlock detection should be triggered once

for a period in which at least one request got locked. A timer is started when a

2The vertex for a transaction is implicitly added to the WFG if it is not present.
3The vertex for a transaction is implicitly removed from the WFG if its degree is 0.
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request is locked. When the timer expires, the deadlock detection is started. If
more than one request got locked, more than one deadlock could be present, at
most as many as requests got locked.

The deadlock detection itself can be performed with algorithms that find cycles in
a digraph. In [Hol72] an algorithm that “reduces” the WEG by successively marking
(removing) sinks, vertices without outgoing arcs, is presented. If the WFG cannot
be completely reduced, at least one deadlock exists and the remaining vertices are
involved. The time complexity of this algorithm is O(|V| 4 |A|), where |V| is the
number of vertices and | A| the number of arcs. Tarjan [Tar72] invented an algorithm
to find the strongly connected components (SCCs) of a digraph that is based on
depth-first search (DFS). A digraph is strongly connected if there is a path from
each vertex to every other vertex. The SCCs of a digraph are its strongly connected
subgraphs and if they all contain only one vertex (trivial SCCs) the digraph is
acyclic. Like for DF'S, the time complexity for Tarjan’s SCC algorithm is O(|V'|4|A|)
and it can be adapted easily to return the nontrivial SCCs of a digraph. The
vertices in such a nontrivial SCC correspond to the transactions that are involved
in one deadlock. There are other algorithms that find the SCCs of a digraph also in
O(|V| +|A]), but they are either slower by a constant factor (Kosaraju'’s algorithm)
or very similar but not so widespread (Gabow’s algorithm)[Sed03].

As mentioned above, many other systems with deadlock detection use a graph-
based approach, usually WFGs. [GR93] describes their use for transaction pro-
cessing, [Cou05] for distributed transactions and [CB05] for (distributed) database
systems. In practice, most current database systems support deadlock detection for
transactions. For example, Apache Derby [22], an open source relational database
management system implemented in Java, detects deadlocks by searching the graph
of all locks for cycles with a variant of DFS. It aborts the transaction which holds the
fewest number of locks and provides an error with a detailed message containing the
involved transactions, SQL statements, and locks. Apart from database systems,
a DFS-based deadlock detection algorithm is also used in the Sun Java HotSpot
Virtual Machine to detect thread deadlocks. [GR93] lists the C source code for

deadlock detection for transaction processing systems, also based on DF'S.

Deadlock Resolution

When a deadlock exists, it can be resolved by rolling back, one or more transactions
that are part of it. When the WFG is tested for deadlocks after each locked request,
only one deadlock can exist and only one transaction needs to be aborted to resolve

the deadlock. Otherwise, when the deadlock detection is performed less frequently,
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it may be necessary to rollback several transactions. We can select one transaction,
rollback it and check for deadlocks again or try to find the minimal set of transactions
that need to be aborted to resolve the deadlock. The latter is an NP-complete
problem, but in [TC99] several heuristics are presented, which select a transaction
based on the WFG structure. The heuristic that performed best in their simulations
selects the transaction where the maximal number of transactions can be reduced,
using the reduce algorithm mentioned above. This algorithm is in O(|V|(|V] +
|A])) time, as the reduce algorithm is performed for each vertex. It is optimal for
WFGs where each vertex can have one outgoing arc at most, which is the case for
synchronously used XVSM transactions.

For heuristics like the one mentioned above, it is assumed that aborting the min-
imal set of transactions is “optimal”. This might not be the case and the cost
for selecting a transaction to abort needs to be considered as well. Several other

heuristics could be used for that:

1. The transaction the most transactions are waiting for is selected. This trans-

action corresponds to the vertex with the highest indegree in the WFG.

2. The transaction with the fewest operations in the transaction log is selected.

This is an attempt to select the transaction with the minimal cost for rollback.

3. The transaction with the last processed locked request on an outgoing arc is

selected. This aborts the transaction with the request that closed the cycle.
4. The transaction with the lowest or highest start timestamp is selected.

5. No transaction is selected in the Runtime, but a special error is reported to
the users of the transactions that are part of the deadlock. If none of the

transactions is rolled back then, the deadlock is not resolved.

In any case, a detailed error message with all involved transactions and locks

should be returned to the user.

Implemented Basic Variant

Because deadlocks are probably rare and occur just temporarily when transaction
timeouts are used, only a basic variant of the deadlock handling described above is
included in the first release of MOZARTSPACES 2.0: every time a task is added to
the WFG it is searched for deadlocks with Tarjan’s SCC algorithm. If a deadlock
is found, this is only logged and no deadlock resolution is performed. Furthermore,

the deadlock detection is deactivated by default and needs to be activated manually.
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4.4 Startup and Configuration

To access a space, a MOZARTSPACES instance needs to be created. This is done
by a factory method using the passed configuration. The configuration parameters
influence mainly the remote communication and the threading. The configuration
is currently static and cannot be changed after the core has been created. The
configuration is passed to the factory via configuration objects. These configuration
objects can be read from a configuration file or created programmatically. A user
creates a MOZARTSPACES instance with the API that wraps the factory and reads
the configuration file. This is explained in Section 6.3.

The important configuration for the runtime is the XP thread pool, the entry
copier and whether a core has a runtime at all. As explained in Section 3.1, a
MOZARTSPACES core can be a client with no embedded space and hence no request

handler, XP or other runtime components.

4.4.1 Entry Copier

The entry copier is a small optional component that copies entries and if configured
also the request context. This is useful to avoid that the objects in the space can be
directly changed because of direct references from the application to an embedded
MOZARTSPACES core. Only when a request or response is transferred to another
core, the entries are copied automatically because the message is serialized. To use a
serializer for copying entries is one option, the other one is to implement an interface

with a method to clone the object for every class that is stored in the space.

4.4.2 XP Thread Pool Configuration

The configuration of the XP thread pool determines the concurrency behavior of
the runtime. The thread pool is an instance of the interface ExecutorService.

Currently three implementations of it can be configured:

1. The executor service is a thread pool with a fixed number of worker threads.
It is created with a factory method in the class Executors that is included
in the Java API and the number of threads can be configured. The threads

execute the tasks and are reused.

2. The executor service is a thread pool with an unbounded number of worker
threads. It is also created with a factory method in the class Executors. New

threads are created when tasks are added to the request handler and no thread
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is free. The threads are reused and threads that are unused for 60 seconds are

terminated.

3. The executor service is an instance of WithinThreadExecutorService, which
directly executes tasks that are added on the same thread. There are no
worker threads and the tasks are executed synchronously, in contrast to the
asynchronous execution when a real thread pool is used. Because multiple
threads of the application (for embedded requests) or the receiver may be

used, concurrency is still possible with this configuration.

The XP thread pool configuration affects the rescheduling of blocked tasks. If
the WithinThreadExecutorService is used, rescheduled tasks are executed with
an additional single thread executor service and not the main executor service of
the request handler (see Section 4.3.3).

The different thread pools mentioned above have different performance and scal-
ability characteristics. The variant without worker threads is the fastest because
there is no thread context switch necessary (see benchmark results in Chapter 8).
However, because the thread that adds the request to the request handler is reused,
it is neither suitable for use with the asynchronous core API (see Section 6.1) nor for
a transport protocol implementation without a thread pool nor when threads should
not be blocked at all. The thread pool with a fixed number of worker threads can
be used in such cases. It decouples adding a request to the request handler and
processing it. The number of threads can be configured in a configuration file (see
Section 6.3). There is also the option to use a thread pool with an unbounded num-
ber of worker threads instead of a fixed (maximal) number. This option should be
used with care, especially together with asynchronous core API calls. A thread is
relatively heavyweight and uses system resources. If the number of running threads
is too large this could cause an application crash, e.g., because the JVM is out
of memory. The exact limit for the number of threads depends on the JVM, its

configuration and the underlying operating system.

70



5 Extensibility, Remoting and
Interoperability

MOZARTSPACES is designed to be extensible in several ways. The coordination can
be defined with custom coordinators which is explained in Section 5.1. Aspects
can be used to execute arbitrary code before or after a request is processed in the
runtime. They are used to implement notifications and are described in Section 5.2.
Section 5.3 illustrates the remote communication in MOZARTSPACES, how messages
are sent and received and how the transport protocols are selected and can be re-
placed by custom implementations. The wire protocol of the remote communication
in XVSM is defined with the XVSMP, which is described in an interoperable XML-

based form in Section 5.4.

5.1 Custom Coordinators

In XVSM, entries in containers are managed by coordinators that are specified
when the container is created. A container’s coordinators can be one or more of
the predefined coordinators (see Section 3.3.4) and/or custom coordinators. Every
coordinator and the corresponding selector have to implement special interfaces.
In the Core API, a coordinator has to implement the interface Coordinator and
a selector the interface Selector. This coordinator and selector instances are also
passed to CAPI-3, where internally other types and classes can implement the actual
coordination logic. In the CAPI-3 Java Native implementation, coordinators have
to implement the interface NativeCoordinator, which extends Coordinator, and
selectors the interface NativeSelector, which extends Selector. The coordinator-
specific CoordinationData that is used to write entries, can be directly used in
CAPI-3.

The details of CAPI-3 Java Native and the interfaces for coordinators and se-
lectors are explained in [Barl0]. Important for the extensibility is that there are
generic coordinators and selectors, that are independent of the concrete CAPI-3

implementation and are used at the API level. They need to be translated to the
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CAPI-3 specific internal implementations. For example, the generic predefined FIFO
coordinator is represented by the class FifoCoordinator at the core API level and
implemented in the class DefaultFifoCoordinator in CAPI-3 Java Native. The
translation between generic coordinator objects and internal objects is performed
inside CAPI-3 Java Native and included for all predefined coordinators. But for
custom coordinators the translation needs to be extended. An easy way is to create
a map of coordinator translators that can be configured from the outside and con-
sists of coordinator translators that can translate a specific generic coordinator to
the internal coordinator implementation. Currently this map does not exist and the
source code of CAPI-3 would have to be changed for every new custom coordinator.
Of course this is not practicable and the workaround is to use the internal coordina-
tor implementation also in the API, which is possible because NativeCoordinator
extends Coordinator. The implementation of the above-mentioned map for the
coordinator translators is future work.

In addition to the translation between coordination classes at the API level and
inside CAPI-3, the creation of coordination classes is necessary for the interoperable
remote communication. The information about the coordinators, selectors and/or
the coordination data, together with their properties, is serialized as part of re-
quest messages (see the XML wire protocol in Section 5.4 as example). For the
deserialization a creator, that creates the coordination classes corresponding to the
coordination information in the serialized request, is required for each coordinator.
For the predefined coordinators such creators are implemented, but fur custom co-
ordinators they need to be written manually. The API method to add such creators

is subject of future work.

5.2 Aspects

Aspects can be used to execute arbitrary code before or after a request is processed
in the runtime. When a request is passed to the request handler, a task is created
to process this request. This task calls the aspects before and after the actual
request is processed. More precisely, the task calls the aspect invoker which gets the
aspects from the aspect manager and executes them (see Section 4.2.5). Aspects can
be added to and removed from the aspect manager for specific interception points
(ipoints). Every ipoint corresponds to a different aspect method. Figure 5.1 shows
the ipoint enumerations and Figure 5.2 the two corresponding aspect interfaces with
the aspect methods. As you can see from these figures, we differentiate between

container aspects and space aspects.
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Figure 5.1: Interception points for aspects
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Figure 5.2: Interfaces with aspect methods
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5.2.1 Container and Space Aspects

Container aspects (or local aspects) can be added for operations on a specific con-
tainer, that is, when a container reference is a property in the request or the result
of the request. This is obvious for entry requests, because they always specify a
specific container, and for the requests to lock or destroy a container. When a con-
tainer is created or looked up, the container reference is available after the operation
and container aspects can be added there. For the aspect management requests the
container reference is optional, the container aspects are only executed when one is
specified, that is, an aspect is added or removed for a specific container.

Space aspects (or global aspects) are always invoked before or after an opera-
tion on the space. They can be added for interception points of space operations
without a container reference, for example transaction management requests, and
for the interception points where container aspects can be added, where they are
executed for every request, regardless of the container reference. Additionally, ev-
ery space aspect can also be used as container aspect, that is, added for a specific
container and container ipoints, because the interface SpaceAspect extends the
interface ContainerAspect. Therefore, the space ipoints are a superset of the con-
tainer ipoints. The reason we use two separate enumerations for the ipoints is that

Java does not allow to extend enumerations.

5.2.2 Aspect Methods

The interfaces with the method signatures that aspects have to implement are
listed in Figure 5.2. There is a method for each ipoint before (pre) and after
(post) a request is processed. The only exception is the shutdown, where only
a pre-shutdown ipoint (and corresponding method) exists. For example, when a
ReadEntriesRequest is processed in a ReadEntriesTask, the preRead method of
the aspects is called before the actual read operation is performed in CAPI-3, and
the postRead method afterwards.

The aspect methods have not only different names for the ipoints but also differ
in the parameter list. Every method has the request as parameter, so aspects can
access all request properties. In particular, the request context can be accessed
and properties can be read and written there. This context object can be used to
pass arbitrary objects from API calls to aspects. Apart from the request, all “post”
methods get the result of the operation. This result is equal to the result of the
request, except for the deletion of entries where the deleted entries are passed to the

aspects but not returned as request result. And, for the transaction creation the
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internal transaction object and the transaction reference are passed to the aspects,
while only the reference is returned as result. Furthermore, aspect methods for
transactional requests get the internal transaction and sub-transaction objects as
well as the execution count, a counter variable with the repetition number the task
for the request is currently executed. For methods of requests that have a container
reference property, a special CAPI-3 interface Capi3AspectPort, that is limited to
entry operations on the container specified by the container reference, is provided.
This interface allows to directly call operations that otherwise would require a new
request that is processed by the runtime. This can be useful to make changes to
a container that would otherwise result in an infinite loop. For example, a pre- or
post-take aspect that also takes entries from the container would trigger itself infinite
recursively with a new core API request, but can now use the Capi3AspectPort for
its own take operation.

All aspect methods have a return value of the type AspectResult. This class
encapsulates the result status of the aspect (one of the values of the enumeration
AspectStatus—O0K, NOTOK, LOCKED, DELAYABLE or SKIP) and, optionally, an excep-
tion. This exception should be the error for the status NOTOK, or the reason for the
status LOCKED or DELAYABLE as defined in CAPI-3 (see [Barl0]). The handling of
the aspect status is described in Section 4.2.5. The aspect methods cannot return
a value that is used as result for the request. They can modify the request context
and the entry list, when entries are written or after they have been selected (read,

take, delete), but cannot directly change the result otherwise.

5.2.3 Aspect Manager

The aspect manager is described from the runtime perspective in Section 4.2.5. It
stores for every aspect that is added, for which ipoints and for container aspects
also for which container it is registered. This information is used by the aspect
invoker when the aspects are executed. The aspect manager creates and returns an
aspect reference when an aspect is added. This aspect reference can be used later
to remove the aspect from all or only a part of the registered ipoints. The current
aspect manager implementation, SimpleAspectManager, is not transactional and

does not support isolation, that is, it ignores the passed transaction.

5.2.4 Aspect Invoker

The aspect invoker calls aspects that have been added previously. It has the same

interface as a space aspect and its aspect methods are called from the respective
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request tasks. The current implementation, the SerialAspectInvoker, gets the
registered aspects from the aspect manager and invokes them in the same order as
they were added to the aspect manager. When container and space aspects can be
registered, for “pre”-ipoints first the space aspects and then the container aspects
are invoked, and for “post”-ipoints first the container aspects and then the space
aspects are invoked.

We can illustrate the execution sequence with an example, where two aspects, a
space aspect sal and a container aspect cal, are both added for the ipoints PRE_READ
and POST_READ, cal specifically for the container ¢1. When now entries are read
from c1, the aspect invoker’s preRead method is called from the ReadEntriesTask.
It invokes the correspondent methods of sal and then cal. Back in the task, the
read operation of CAPI-3 is called and then the postRead method of the aspect

invoker, which invokes the correspondent methods of cal and then sal.

5.2.5 Notifications

Notifications in MOZARTSPACES allow a user to get informed when the contents of
a container is accessed or changed. A user can create a notification for a container
and an operation and specify a listener that is called each time when an operation
has been performed on the container.

Notifications are implemented as an extension of the basic space functionality
with the help of aspects and a small API that allows for creating and destroying
notifications. We have implemented one specific notification flavour that is similar
to the notifications in MOZARTSPACES 1.0 and the Notificationl definition and its
implementation in XCOSPACES [Sch08a].

The user can create a notification by using the createNotification method of
the NotificationManager. The notification is represented by a Notification ob-
ject that can be used to remove the notification. When a notification is created,
the reference of a container, a listener object with a callback method and one or
more operations (WRITE, READ, TAKE, DELETE) can be specified. Internally, a noti-
fication container is created on the core of the container that should be observed.
A notification aspect for the “post”-ipoints of the specified operations is added to
the container that should be observed. Then the notification object is created and
an internal thread to take entries from the notification container, the notifier, is
created.

Figure 5.3 shows the basic structure of the notification. The notifier tries to take
entries from the notification container in a loop, until the notification is removed.

The take request is blocked when no entries are available. When an application
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performs an operation on the application container that is observed, for example,
it deletes entries from the container, the notification aspect writes a notification
entry to the notification container. This notification entry contains the operation
type, DELETE in our example, and the entries affected by the operation, the deleted
entries in our example. The notification entry is taken by the notifier, which calls the
observer, that is, the callback method of the listener object that has been specified

when the notification has been created.

[0Sl Notification RSl o notify
> . Notifier Observer
Container

Figure 5.3: Structure of the notification implementation with aspects
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By default, the notifier and the notification aspect use implicit transactions. Op-
tionally, a transaction can be specified when the notification is created. This trans-
action is then used to set-up the notification and the notifier uses it to take entries
from the notification container. The notification aspect uses the transaction of the
request on the application container to write the notification entries into the notifi-
cation container. If no transaction is specified for the notification or the application
uses another transaction than the notification, the notifier and the notification as-
pects use different transactions and the observer will be notified about all operations
when the transaction used by the application is committed. However, when the noti-
fication and the application use the same transaction, the notification entries in the
notification container are immediately visible for the notifier and thus the observer
is notified directly after each operation.

The current notification implementation is very simple, extending the function-
ality and improving the implementation itself is future work. For example, notifi-
cations could be more selective, that is, notify an observer only when entries that

match a specific selector are affected by an operation.

5.3 Remote Communication

Remote communication is necessary in MOZARTSPACES to access the space of other
cores on the same or a remote computer. Request and response messages need to

be sent and received. In the formal model and also in the overall runtime structure

78



5 Extensibility, Remoting and Interoperability

(see Figure 4.1) there is a sender for sending messages and a receiver for receiving
messages. In the implementation more than one sender and receiver is supported.
There is a sender and receiver pair for each transport protocol and a communication
manager that selects the sender for a request. The implementation of one transport
protocol, TCP with sockets, is included in the runtime. Figure 5.4 shows the im-
portant interfaces and classes for transport protocols, the communication manager
and the TCP socket transport. Additional transport protocols can be added to the
communication manager, but changes to the runtime factory (see Section 4.4) are

necessary, as there is currently no API support for that.

5.3.1 Communication Manager

When the communication manager is constructed it gets the senders and receivers.
For the senders this is a map where the scheme for a sender is used as key. The
current implementation SimpleCommunicationManager implements the interface
Sender, in its method sendMessage the sender is selected based on the scheme
of the destination space URI of the message. This value can be specified by the
user in the API (see Section 6.1). When, for example, a request is sent to the URI
xvsm://localhost:9876, the communication manager selects the sender for the
scheme xvsm and passes the message to it. There is also a default scheme to handle
URIs without a scheme, for example //localhost:9876.

Besides the selection of the sender, the SimpleCommunicationManager calls the
shutdown methods of the senders and receivers, when it is called to shutdown itself.

It will be extended as part of future work as outlined in Chapter 9.

<<Interface>> <<Interface>>
Sender Receiver
+sendMessage(message : Message) +shutdown(wait : boolean)
+shutdown(wait : boolean)

T |

TcpSocketSender TcpSocketReceiver
-serializer : Serializer -serializer : Serializer
-threadPool : ExecutorService -threadPool : ExecutorService
-messageDistributor : RemoteMessageDistributor

SimpleCommunicationManager
-receivers : List<Receiver>
-senders : Map<String, Sender>
-defaultScheme : String

Figure 5.4: Classes for the remote communication
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In contrast to the senders, where the communication manager selects the appropi-
ate sender, the receivers are currently independent of the communication manager
for transporting messages. A receiver has usually a listener that waits for incoming
connections and receives messages from such incoming connections. After deserializ-
ing a message the receiver passes it to the RemoteMessageDistributor (cf. Message
Distributor in Figure 4.1). While the senders and receivers are currently indepen-
dent classes, the sender and receiver for a specific transport protocol of course need
to be compatible.

When a sender is called from the runtime via the communication manager, the
message can be buffered and does not need to be sent immediately in the same
thread. If messages are sent asynchronously, they must be serialized before the
method sendMessage returns, because otherwise objects referenced in messages

could be changed after the message is created but before it is sent.

5.3.2 TCP Socket Transport

The TCP socket transport is implemented directly with the socket and 1/O classes
of the Java API. The sender is implemented in the class TcpSocketSender and the
receiver in TcpSocketReceiver, as shown in Figure 5.4. We decided to use the “old”
blocking I1/O classes (package java.io) and not the newer non-blocking I/0 classes
(package java.nio, called New I/O or short NIO), because they are easier to use
and we wanted to start with a basic remote communication implementation. For the
future, the TCP socket transport implementation can be replaced by a faster and
more scalable implementation that uses NIO. Especially applications with thousands
of open connections would benefit from the use of NIO, but we expect to have less
open connections for most use cases.

The classes in java.io are called blocking 1/O classes, because their methods can
block while they are “waiting for the network”, in particular the write methods of
an QutputStream and the read methods of an InputStream, which are used in the
TcpSocketSender and TcpSocketReceiver, respectively. To avoid that calls from
the asynchronous Core API block because of the blocking 1/O, sending messages is
performed asynchronously. The method sendMessage serializes the message object
to a byte array and stores it in a queue for the endpoint of the destination space
URI. The endpoint is the Internet Protocol (IP) address or the host name which
can be resolved to an IP address and the port number that identifies a socket ad-
dress and also an XVSM space. The serialization is performed by a configurable
serializer which is described below in Section 5.3.3. Sending the serialized messages

is performed in tasks, one for each endpoint. This MessageSendTasks are executed

80



5 Extensibility, Remoting and Interoperability

in a thread pool for the TCP socket transport. They open a connection and send
the messages for this endpoint. Failing connect and send attempts are retried and
after some time without new messages to send the connection is closed and the task
ends.

The TcpSocketReceiver has an internal thread with a server socket, that waits
for incoming connections on a specified port. For each connection a task to receive
messages is created and executed on a thread pool. This is the same thread pool
as for the TcpSocketSender and it can be configured in the same way as the XP
thread pool in the runtime (see Section 4.4.2). The task to receive messages tries
to read the serialized message. A configurable serializer that has to be compatible
with the serializer on the sender side, deserializes the message and passes it to the
RemoteMessageDistributor. When a read timeout occurs, the connection is closed
and the receive task ends.

As it is described above, the actual transport protocol used by the TCP socket
transport is very simple. There is no special handshake or additional connection
setup, the messages are simply exchanged when the TCP connection is established.
The messages are sent and received concurrently and independent of each other.
Each message is sent as an integer number that specifies the length of the following
byte array with the serialized message, and then the byte array itself. The exact
format of the integer number is defined by the interface java.io.DataOutput and
is the four bytes of the number in big-endian order (most significant byte first). The

format of the serialized message is determined by a serializer as explained next.

5.3.3 Serializer

The serializer determines how a message object is represented in the byte array that
is sent to another core by a sender and how it can be deserialized from such a byte
array back to a message object. It thereby defines the wire protocol for the remote
communication, when the TCP socket transport is used, together with the length of
the byte array as integer number (see previous paragraph). By serializing an object
to a byte array stream and deserializing it from there, a serializer can also make a
deep copy of objects and can be used in an entry copier (see Section 4.4.1).

Five different serializers are currently implemented. One of them, the Java-
BuiltinSerializer which uses the built-in Java binary serialization, is included
in the runtime. The other serializers are in separate modules and can be included
when desired (see Section 7.2 for details). Another binary serializer uses the Kryo
serialization library [17] because it is small, easy to use and also fast, according to

benchmark results in [1]. The Kryo serializer requires classes, whose instances are
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serialized, to have a no-argument constructor or class-specific serialization code. It
can currently not be used for remote communication because not all classes used in
messages meet this requirements. However, it can be used to copy entries.

For interoperable serialization, a text protocol or a binary protocol that is sup-
ported on various platforms is desirable. Because of the wide support and the ex-
isting experience we chose to use XML as basis. MOZARTSPACES 1.0 has an XML
serializer that complies with an XML Schema Definition (XSD) [WF04], which de-
scribes the structure of the requests serialized to XML. The serialization to XML
itself has been implemented manually, which is cumbersome and difficult to main-
tain. For the new version the first attempt was made with XStream [25], a library
that can serialize arbitrary Java objects to XML and back. However, the XML
generated by XStream is schemaless, that is, it does not follow a specific XSD. Fur-
thermore, it is difficult to configure XStream so that the generated XML is valid
for a given XSD. Thus we decided to use the Java Architecture for XML Binding
(JAXB) [13], start from an XSD and generate the matching Java code.

The structure of this XSD is explained in Section 5.4. We use the JAXB Binding
Compiler (xjc) to generate the Java interfaces and classes from the XSD. We do not
use the generated Java classes directly in the runtime and CAPI-3, because changes
in the XSD would affect the whole MOZARTSPACES implementation. The xjc code
generation is configurable but not flexible enough for our requirements. Especially
some requirements regarding thread-safety, for example that generated classes are
immutable, cannot be configured. So, instances of the generated Java classes are
translated to instances of the Java classes that are used in the runtime and CAPI-3.
In contrast to the manual XML serialization of MOZARTSPACES 1.0, this translation
is between Java types, not Java types and strings with XML, and is thus type safe.

The general XVSM XSD that is currently used has “gaps”, because some of the
types, for example for entry objects, cannot be defined universally. For this parts
of the XML messages we still use XStream, as this serialization is not covered by
JAXB and would have to be done manually otherwise. For a concrete use case,
when the types of the entry objects are known, these gaps can be filled with the
exact XSD statements. Moreover, XStream can also serialize Java objects in the
JavaScript Object Notation (JSON) format instead of XML with a simple configu-
ration change. After the built-in binary serialization, the binary serialization with
Kryo, the XML serialization with XStream, and the XML serialization with JAXB
(and XStream), this is currently the fifth implemented serializer. They are evalu-
ated in Section 8.3. Further serializers can be added by implementing the serializer

interface and adapting the MOZARTSPACES configuration file (see Section 6.3).
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5.4 XML Wire Protocol

This section describes the XML wire protocol of XVSM as it is used by the JAXB
XML serializer explained in Section 5.3.3. It can be used with the existing TCP
socket transport protocol (see Section 5.3.2) or similar transport protocols. It is
specified with XML Schema for the request and response messages. These mes-
sages consist of the same information as the message objects that are used in the
MOZARTSPACES runtime (see Section 4.1.2). An XML document that is valid for
the XVSMP schema contains a message as the only element. Listing 5.1 shows the
important parts of the definition for XVSMP and the messages. There we see the
XML header with the namespace for the following definitions (targetNamespace,
short tns), the message element, the abstract message and the concrete request
message. The response message definition is similar but not shown!. The main
difference is, that it contains a response element instead of a request element. For a
request message the contained request can be of different types, XSD inheritance is
used here like for the messages and in other parts of the schema.

Some of the elements and attributes in the schema are optional. In general, this
is the case for every attribute that is not defined with use="required" and every
element that has a minOccurs of 0, for example, the answerContainerInfo element
of the AbstractMessage in Listing 5.1. For this properties the same default values
as mentioned for the messages and requests (Section 4.1.2) and in the core API

(Section 6.1) are used.

<xsd:schema xmlns:xsd="http://www.w3.o0rg/2001/XMLSchema"
targetNamespace="http://www.xvsm.org/Protocol"

xmlns:tns="http://www.xvsm.org/Protocol" elementFormDefault="qualified">

<xsd:element name="message" type="tns:AbstractMessage" />

<xsd:complexType name="AbstractMessage" abstract="true">
<xsd:sequence>
<xsd:element name="answerContainerInfo" type="tns:AnswerContainerInfo"
minOccurs="0" />
</xsd:sequence>
<xsd:attribute name="ref" type="tns:RequestReference" use="required" />

</xsd:complexType>

<xsd:complexType name="RequestMessage">
<xsd:complexContent>
<xsd:extension base="tns:AbstractMessage">
<xsd:sequence>
<xsd:element name="request" type="tns:AbstractRequest" />
</xsd:sequence>
<xsd:attribute name="destinationSpace" type="xsd:anyURI" use="required" />

</xsd:extension>

!The full schema is included in the published MOZARTSPACES packages [16].
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</xsd:complexContent>
</xsd:complexType>

Listing 5.1: XVSMP XSD snippet for request messages

Listing 5.2 shows the request hierarchy for a request to read entries. This hierarchy

resembles the hierarchy of the request objects used in the runtime (see Figure 4.3).

<xsd:complexType name="AbstractRequest" abstract="true">

<xsd:sequence>

<xsd:element name="context" type="tns:PropertylList" minOccurs="0" />

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="TransactionalRequest" abstract="true">
<xsd:complexContent>
<xsd:extension base="tns:AbstractRequest">
<xsd:attribute name="transaction" type="tns:TransactionReference"
<xsd:attribute name="isolation" type="tns:IsolationLevel" />
</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="EntriesRequest" abstract="true">
<xsd:complexContent>
<xsd:extension base="tns:TransactionalRequest">
<xsd:attribute name="container" type="tns:ContainerReference"
use="required" />
<xsd:attribute name="timeout" type="tns:RequestTimeout" />
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="SelectingEntriesRequest" abstract="true">
<xsd:complexContent>
<xsd:extension base="tns:EntriesRequest">
<xsd:sequence>
<xsd:element name="selectors" type="tns:SelectorList" />
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="ReadEntriesRequest">
<xsd:complexContent>
<xsd:extension base="tns:SelectingEntriesRequest" />
</xsd:complexContent>
</xsd:complexType>

/>

Listing 5.2: XVSMP XSD snippet for the request to read entries

Listing 5.3 now shows an example XML message for a read request that is valid

for the definitions in the Listings 5.1 and 5.2. It has the request ID 7 on the core
xvsm://localhost:9876 from where it is sent to the core xvsm://localhost:4242

within an explicit transaction with the ID 2, that was previously created on that core.
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The request tries to read entries from the container with the ID 1 using a selector
of type AnySelector for a coordinator named AnyCoordinator and a timeout of
1000 milliseconds. In the message, the optional element answerContainerInfo is
not used, so the response is sent back to the virtual answer container of the core
xvsm://localhost:9876. In the request, default values are used for the request
context (null), the isolation level (REPEATABLE_READ) and the count of the selector

(1).

<?7xml version="1.0" encoding="UTF-8" standalone="yes"?7>

<message xmlns="http://www.xvsm.org/Protocol"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:type="RequestMessage" destinationSpace="xvsm://localhost:4242"
ref="xvsm://localhost:9876/requests/7">
<request xsi:type="ReadEntriesRequest" timeout="1000"
container="xvsm://localhost:4242/containers/1"
transaction="xvsm://localhost:4242/transactions/2">
<selectors>
<selector xsi:type="AnySelector" name="AnyCoordinator"/>
</selectors>
</request>

</message>

Listing 5.3: Example XML message for a read request

The response message to such a request message contains an entry response with
a list of entry values and the entry values themselves. Listing 5.4 shows the schema
definition for such a response. The entry values are the application data objects that
a user wrote to the space. Because the type of an application object is not fixed, the
only constraint is that it is Serializable, it cannot be exactly defined in the schema
and thus xsd:any is used. This allows to extend the XML document by arbitrary
elements. Because of the value skip for the processContents attribute, they only

need to be well-formed and should not be validated when they are processed.

<xsd:complexType name="AbstractResponse" abstract="true">
<xsd:sequence>
<xsd:element name="error" type="tns:Exception" minOccurs="0" />
</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="EntryResponse">
<xsd:complexContent>
<xsd:extension base="tns:AbstractResponse">
<xsd:sequence>
<xsd:element name="values" type="tns:EntryValuelList" />
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="EntryValueList">
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<xsd:sequence>
<xsd:element name="value" type="tns:EntryValue" minOccurs="0"
maxOccurs="unbounded" />
</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="EntryValue">
<xsd:sequence>
<xsd:any processContents="skip" minOccurs="0" />
</xsd:sequence>

</xsd:complexType>

Listing 5.4: XVSMP XSD snippet for a response with entry values

Listing 5.5 shows an example response message for the the request in Listing 5.3.
The entry value that is read is a date object, an instance of java.util.Date, and

it is serialized with XStream as explained in Section 5.3.3.

<message xmlns="http://www.xvsm.org/Protocol"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:type="ResponseMessage" ref="xvsm://localhost:9876/requests/7">
<response xsi:type="EntryResponse">

<values>

<value>
<date xmlns:ns3="http://www.xvsm.org/Protocol" xmlns="">
2011-04-07 15:54:59.125 CEST
</date>
</value>

</values>
</response>

</message>

Listing 5.5: Example XML message for a response with entries

5.4.1 Schema Interoperability

The XVSMP XML Schema is currently only supported by MOZARTSPACES 2.0,
there is no further XVSM implementation of the new formal model yet, but we tried
to make it as interoperable and extensible as possible. We assessed the interoperabil-
ity with the XML Schema Patterns for Databinding Detector [24]. Most patterns
identified by this tool are marked as basic (supported by most XML databinding
tools) and only some as advanced (less well supported). The detailed detector output
shows that the patterns identified in the schema are supported on the .NET plat-
form (xsd.exe version 2.0.50727.42) and by gSOAP, an open source SOAP/XML
toolkit for C++4. Furthermore, we generated C# code from the schema with the
tool xsd.exe version 2.0.50727.1432, included in Microsoft Visual Studio 2008. The
generated code looks similar to the Java code generated by JAXB and we expect

that it can be used in a similar way.
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Additionally, the current schema is based on previous work, especially the schema
for the existing XVSM implementations with an interoperable XML serialization
between the Java implementation MOZARTSPACES 1.0 and the .NET implementa-
tion XCOSPACEs [Kar(09]. However, compared to that schema, there were many
changes, because of changes in the underlying model or because they make working
with the generated code easier. One important change in the new schema is the use
of inheritance for the requests, instead of the XSD choice, because it is much easier
to handle in the conversion between the Java objects. Another one is the usage of
XSD any for entries and some other elements where the type is not fixed, whereas
the previous XVSM implementations support only a fixed set of entry data types
for the XML serialization. In the new XVSMP XML we try to support arbitrary

application objects as entries.
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6 Embedded Core API

After describing the MOZARTSPACES runtime and how it can be extended, we want
to present the core API in this chapter. For a user of the middleware who is not
interested in the internals, this API is all that is required to access a space. Sec-
tion 6.1 describes the basic interfaces of the core API. In Section 6.2 we describe the
other API types, the CAPI-3 related classes for coordination, which are not used
by the runtime and merely passed to the CAPI-3 implementation, and classes for
adding and removing aspects. Before a core is started it can be configured via an
XML file or configuration objects. That is explained in Section 6.3. This chapter
gives only an overview of the core API that is probably not detailed enough for
users of MOZARTSPACES. Additional documentation, including a tutorial and API
documentation generated with Javadoc, is available on the MOZARTSPACES website
[16].

6.1 Basic Interfaces and Requests

The basic interface to access XVSM cores is MzsCore. It is shown in Figure 6.1
and its send method allows to send a request to the space where it should be
processed. This method is overloaded because there are several possibilities to obtain

the response.
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6 Embedded Core API

6.1.1 Request-Response Calls

With the first two send methods in Figure 6.1, the request is processed and the
response is sent back asynchronously. The RequestFuture that is returned by this
methods represents the result of the request. It also implements the interface Future
(package java.util.concurrent) and provides methods to get the result, option-
ally with a timeout, or check whether the result is already available. The cancellation
of requests is not supported, the method cancel of Future returns always false.
The timeout to get the result is only relevant for the future and is not related to
any other timeout in the runtime or the request itself. If the request processing
failed, an according exception is thrown instead of a result returned. In addition
to obtaining the result with the returned future, the second send method allows
to specify a RequestCallbackHandler with callback methods for the result and a
possible error (see Figure 6.1), which are called when a response is available and the
result of the future is set.

With the send methods described above the API supports two invocation asyn-
chrony patterns [VKZ04]. The Future, where the caller decides to get a result or
wait for it, implements the poll object pattern. The request callback method, where
the caller is interrupted when the result arrives, implements the result callback pat-
tern. A third pattern, fire and forget, can be implemented with one of the send

methods described below and a not-existing answer container.

6.1.2 Calls with Answer Container

The three other send methods are for use with an answer container, an XVSM
container where the answer (result or error) shall be stored, that is, written with
a new request using the FIFO coordinator. Optionally a coordination key can be
specified, which is used for writing the answer to the answer container with the
default key coordinator, where it can later be selected with this key. There is also a
send method where the key is “generated” internally, with the currently only option
to use the unique request reference as key. So, the answer container needs to have
a default FIFO coordinator and optionally, when a key is specified, a default key

coordinator.

6.1.3 Creating Requests

The requests that can be sent with MzsCore are the same as shown in Figure 4.3. To
avoid possible thread-safety issues and changes by aspects, they are not beans with

setter methods but mainly immutable, that is, properties can only be set when a
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6 Embedded Core API

request is constructed. Therefore, request builders implement a fluent interface with
method chaining [FP10] and shall allow for shorter and easier readable statements.
Listing 6.1 shows how some example requests are built, for not specified request

properties the default values are set internally.

Request<TransactionReference> createTx = CreateTransactionRequest.
withTimeout (5000) .build () ;

Request<ContainerReference> createContainer = CreateContainerRequest.

withVerve () .name("c1").obligatoryCoords (coords) .build () ;

Request<?> write = WriteEntriesRequest.withContainer (cref).entries(entry).
timeout (1000) .transaction(txref).build () ;

Request <ArrayList<String>> read = ReadEntriesRequest.<String>withContainer (cref).
timeout (1000) . transaction(txref) .build () ;

Listing 6.1: Example request builder statements

However, after we implemented some example programs, the request builders
seemed to be more verbose and more complicated to use than a non-fluent “big”
interface or class (termed command-query API in [FP10]) with methods for all
implemented requests. Such an interface already exists for the previous XVSM
implementations and we also created one MOZARTSPACES 2.0. It allows synchronous
request-response calls. Additionally, we created an asynchronous variant for the

other forms of space interaction.

6.1.4 Synchronous Core API Class (Capi)

The class Capi provides methods for synchronous request-response calls. It is shown
in Figure 6.2 and contains a method for each request that can be processed by
the runtime!. Internally, a request object is created and sent to the space that is
either specified explicitly as URI or implicitly with a container, transaction or aspect
reference. Then the getResult method of the request future is called without a
timeout. Therefore, the methods return the result of the processed request or throw
an exception if the request processing failed. The methods are overloaded, Figure 6.2
shows the variants with all properties except the request context and isolation level.
When request properties are not in the method signature the default values are set

internally.

!The PrepareTransactionRequest is supported by the runtime but there is no method in the
Capi because it is intended for a future extension of MOZARTSPACES with distributed trans-
action support.
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6.1.5 Asynchronous Core API Class (AsyncCapi)

The class AsyncCapi is the asynchronous variant of Capi. The methods it provides
are basically the same, but they either return the request future and allow to pass a
callback handler or have parameters to specify the answer container and coordination

key, dependent on which variant of the overloaded method is used.

6.2 Additional API Classes

The parameters of the interfaces and classes explained above and the properties of
requests are also part of the core API. For some of them Java primitive types or
standard Java classes like String or URI are used, the types for others are defined
as part of MOZARTSPACES.

References identify a container (ContainerReference), transaction (Transaction-
Reference) or aspect (AspectReference). They have the same base class with an
ID and a space URI. The space URI identifies a core or space instance and the ID has
to be unique for a container, transaction or aspect of that space. Internally also re-
quests and corresponding responses use such a reference (RequestReference). The
reference classes have a string representation of the form <space-URI>/<reference-
type>/<ID>, for example, xvsm://localhost:4242/containers/1 for the container
with the ID 1 on the space xvsm://localhost:4242. This string representation is
also used in the XML protocol.

Another MOZARTSPACES-specific class is the RequestContext where arbitrary
properties (key-value pairs) can be set. The context of a request is passed to the
aspects and coordinators, when the request is processed, and can also be accessed by
the runtime. There are different prefixes for request, system, aspect and coordinator
properties that should categorize the properties and help to avoid naming conflicts
because of equal keys.

Not visible in the class diagrams but of course important are the exceptions used
to signal errors. There are different exception classes depending of the type of
error. Most of them are checked exceptions and sub-classes of MzsCoreException,
for example MzsTimeoutException, which is thrown when a request or transaction
timed out. Unchecked runtime exceptions, instances of MzsCoreRuntimeException,
are used when an error occurs that usually cannot be dealt with. Such exceptions
are used for example for configuration errors of the MOZARTSPACES core, internal
errors that should not occur or when an invalid transaction (already committed or

rollbacked, from another core) is used.
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6.2.1 Coordination Classes

Coordination classes are the classes for objects used by coordinators in CAPI-3.
They are different from the internal coordination classes and specify coordination
properties as part of requests. The runtime does not use them and passes them
directly to CAPI-3 when an operation is performed. There are classes that represent
a coordinator, classes to specify coordination properties when an entry is written
and classes to specify properties when entries are selected. A coordinator-specific
implementation of the interface Coordinator is used when a container is created. A
coordinator-specific CoordinationData implementation is part of an Entry object
when entries are written. This object contains the application data object, also
called entry value, and the coordination data. An implementation of Selector,
again coordinator-specific, is used to select the entries that should be read, taken or
deleted.

Another coordination-related type that the runtime just passes to CAPI-3 is the

isolation level, the possible values are defined by the enumeration IsolationLevel.

6.2.2 Aspect Classes

The important types for aspects have already been explained in Section 5.2, namely
the aspect interfaces in Figure 5.2 and the interception point enumerations in Fig-
ure 5.1. For the aspect interfaces there are abstract and empty implementations in
the classes AbstractContainerAspect and AbstractSpaceAspect. By extending
them and overriding the desired methods, aspects can be specified without imple-

menting (empty) aspect methods that are not needed.

6.3 Configuration

Besides the different parameters in the API methods that allow to influence how a
request is processed, some components of a MOZARTSPACES core can also be con-
figured by the user before it is started. The configuration affects mainly the runtime
as explained in Section 4.4 and the remote communication explained in Section 5.3.
The configuration can be set with a configuration file or programmatically with
configuration objects.

When a MzsCore instance is created with DefaultMzsCore.newInstance(), the
configuration is read from an XML configuration file. Listing 6.2 shows a configura-
tion file with the default values for all configurable options. The Apache Commons

Configuration library [19] is used for reading the configuration file. It supports the
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6 Embedded Core API

interpolation of variables for configuration options. In the example configuration
this is used for the serializer of the TCP socket transport and the space URI. If no
configuration file is found, or configuration options are not set in it, internal default

values are used.

<mozartspacesCoreConfig>
<embeddedSpace >true</embeddedSpace >
<coreProcessor >
<threads >10</threads>
</coreProcessor>
<serializers>
<serializer>javabuiltin</serializer>
</serializers>
<remoting>
<defaultScheme >xvsm</defaultScheme >
<transports>
<tcpsocket scheme="xvsm">
<threads >10</threads>
<receiverPort >9876</receiverPort >
<serializer>${serializers.serializer (0)}</serializer>
</tcpsocket >
</transports>
</remoting>
<spaceURI>${remoting.defaultSchemel}: //localhost:${remoting. transports. tcpsocket
.recetverPort}</spaceURI>
<entryCopier copyContext="false">
<none />
</entryCopier >
<capi3>javanative</capi3>

</mozartspacesCoreConfig>

Listing 6.2: Configuration file with default values

A tree of configuration objects is built from the read configuration options and
passed to another internal factory method that actually creates the MzsCore in-
stance. With the factory method DefaultMzsCore.newInstance(Configuration
config) a core instance can be created from programmatically created configuration

objects.
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7 Implementation

The implementation of MOZARTSPACES is based on the previous chapters. The ar-
chitecture and design description there is already quite detailed and is implemented
at the time of writing, except when otherwise noted. Together with the CAPI-3
implementation described in [Bar10], MOZARTSPACES is published as open source
software under the terms of the GNU Affero General Public License version 3 with
additional documentation [16].

MOZARTSPACES is implemented with the Java Standard Edition 6. We tried to
follow the guidelines in [Blo08| for the fundamental use of Java and the Java SE
Runtime Environment (JRE) APIs. For the concurrency-related implementation we
used mainly [GPBT06] as reference. One notable characteristic result is the use of
immutable objects where possible. These are objects whose state cannot be changed
after construction and that are implicitly thread-safe. Besides the JRE APIs we used

a few open source Java libraries.

7.1 Libraries

Many classes in MOZARTSPACES are marked with Java Concurrency in Practice
(JCiP) annotations [8] to describe whether they are thread-safe. The Simple Log-
ging Facade for Java (SLF4J) [9] is used for logging. It is an abstraction for various
logging frameworks. During development and in the examples the Native SLF4J im-
plementation Logback is used. To read the configuration from an XML configuration
file the Apache Commons Configuration library [19] is used. For the XML serializa-
tion of the XVSMP messages, the Java Architecture for XML Binding (JAXB) [13]
implementation included in Java SE 6 and XStream [25] were selected. An alterna-
tive binary serializer uses Kryo [17]. Besides these libraries, which are necessary to
run applications built with MOZARTSPACES, further tools and libraries are used for
development. They are all integrated into a Maven [Son08] project that is used for

managing and building the MOZARTSPACES packages, documentation and website.
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7.2 Maven Project Structure

The MOZARTSPACES Maven project is divided into several modules. Figure 7.1
shows the important modules of the project and dependencies. If a user wants to
create an application with MOZARTSPACES, she needs at least the runtime module,
which includes the core-api and the capi3-api modules. The runtime module also
depends on the capi3-javanative module, which is the only CAPI-3 implementation
included in the current version. The module capi3-javanative depends on guice, a de-
pendency injection framework used in MOZARTSPACES as described in [Bar10], and
the runtime module depends on commons-configuration (Apache Commons Config-
uration). Not shown in the figure are modules or dependencies that are required
in every module, namely the MOZARTSPACES module core-common and the library
dependencies jcip-annotations, slf4j-api and logback-classic.

The modules runtime, core-api, capi3 (capi3-api and capi3-javanative) and core-
common form the MOZARTSPACES core. Together with their dependencies they are
the minimal set of modules that is required to create an XVSM-based application in
Java. For notifications the corresponding module needs to be included in application
programs, as well as for alternative serializers with JAXB, XStream or Kryo.

Also not shown in Figure 7.1 are modules with only tests or examples, and the
wrapper module that allows to use most applications created for MOZARTSPACES 1.0

with the new version 2.0.
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Figure 7.1: Maven project structure—modules and dependencies
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The Maven project also includes several plugins that help to improve the soft-
ware quality or provide statistics. One calculates several source code metrics, in-
cluding the simple number of “Non Commenting Source Statements” (NCSS). All
MozARTSPACES modules together, but without the wrapper, examples and tests,
have currently 15232 NCSS in 446 Java classes. This also includes the CAPI-3 im-
plementation described in [Barl0]. The biggest modules are capi3-javanative and

runtime, followed by core-api.

7.3 Tests and Reviews

Test cases for MOZARTSPACES are also included in the Maven project. Unit tests
are in the same module as the class(es) to test. Integration tests are either in the
same module or in extra test modules. JUnit [6] is used for both test types, to mock
dependencies we use Mockito [4].

All MOZARTSPACES modules together, without the wrapper and examples but
including CAPI-3, have currently 692 JUnit tests. Besides test cases, the quality of

the architecture and source code was examined in reviews.
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8 Evaluation

The last chapters described the architecture and implementation of the runtime
with remote communication and the API of MOZARTSPACES. This chapter will
now evaluate the performance of MOZARTSPACES. We measure the time needed
for specific operations and configurations. For most tests we use the class Capi of
the embedded core APT (see Section 6.1.4) and include the whole core, the runtime
and CAPI-3, in the measurements. We focus on the runtime and do not include
detailed coordination benchmarks. Basic coordination benchmarks with CAPI-3 of
MOZARTSPACES 2.0 are described in [Barl0]. The CAPI-3 version used for that
benchmarks is an older version than the one used to obtain the results for this
chapter. We have made some optimizations in the meantime.

We first describe the evaluation scenario in Section 8.1. Section 8.2 then analyzes
the internal processing of the core, how much time the runtime needs compared to
CAPI-3 and how much time important phases of the request processing in the run-
time need. Section 8.3 shows the performance influence of important configuration
options. In Section 8.4 we compare MOZARTSPACES 1.0 to MOZARTSPACES 2.0.
Section 8.5 briefly shows some scalability results for MOZARTSPACES 2.0 with a

different number of clients and Section 8.6 summarizes the evaluation.

8.1 Evaluation Scenario

The same machine was used for all benchmarks, a laptop with an Intel Core 2 Duo
T7500 2.2 GHz CPU, 4 GB RAM, and Windows XP SP3 (32-bit) with all security
patches as operating system. All benchmark programs were run with the Java
HotSpot Server VM that is part of the Oracle Java SE Development Kit 6 Update
24. The VM arguments used are -server -Xmxlg. The first argument selects the
server VM, which is relevant because a different just-in-time (JIT) compiler than
for the default client VM is used [14]. A JIT compiler compiles portable bytecode
into native machine code when a program is executed. The JIT compiler in the
Java HotSpot server VM does this in a different way than the one in the client

VM. This can affect the execution of programs and thus our measurements. In
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general, the server VM is intended for long-running server applications which we see
as main application area for MOZARTSPACES. The second VM argument -Xmx1g
sets the maximum heap size to 1 GB. This relatively high value is used because some
benchmark programs write a lot of entries into a space, and cause out of memory
errors (OOME) otherwise.

We used MOZARTSPACES 2.0 110328 for all benchmarks. Unless stated otherwise,
we use an embedded space that is configured to use “0” threads for the XP thread
pool, that is, no worker threads for request processing as explained in Section 4.4.2.
As Section 8.3.1 shows, this is the fastest thread pool configuration. Apart from
that, we used the default values, in particular no entry copier, the isolation level
REPEATABLE READ and the javanative CAPI-3 implementation. An entry copier
is not necessary for most use cases and causes some overhead, as Section 8.3.2
shows. The isolation level REPEATABLE READ is defined to be the default in the
XVSM formal model. For CAPI-3 the javanative implementation is the only option,
because the prototype based on a relational database and described in [Bar10] is not
included in the current MOZARTSPACES 2.0 release. The logging level of logback was
globally configured to be INFO, so that only some information is logged at startup
and shutdown but no logging should be performed during the measurements, except
when something goes wrong. We accessed the space with the synchronous core API
class Capi serially in one thread, unless otherwise noted.

We implemented the benchmark programs as JUnit tests with special annotations
for JUnitBenchmarks 0.2.1 [15] that we used to measure the execution time. Unless
otherwise noted, we used 10 benchmark rounds and 1 warmup round. The warmup
round is like a normal benchmark round, but the time needed for it is not included
in the measurement. The reason is that the JIT compiler could interfere with the
measurement, that is, it could be active while the test case execution is measured,
and influence the result. The JIT compiler analyzes the program execution at the
beginning and then optimizes (partially recompiles) the native code. This is by
default done after 10000 invocations of a code block. The warmup phase should
run the later measured execution paths more often, so that code there is already
optimized when the execution is measured and the probability that the JIT compiler
recompiles this code again is low. After the warmup, JUnitBenchmarks runs the
actual benchmark rounds. Then it calculates the average execution time and the
standard deviation (SD). If the standard deviation is higher than 10 % of the average
value we mention that and describe whether this can be explained with VM behavior
like garbage collector (GC) activity or is caused by specifics of the MOZARTSPACES

runtime implementation.
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8.2 Internal Processing

In this section we analyze the internals of the runtime and the overhead compared to
CAPI-3. We used one instance of a special test class as entry for all tests. Its code is
shown in Appendix A.1. This instance is pre-created, that is, the time for creating it
is not included in the measurement. Also pre-created is the Any coordinator and the
according selector that we use. This coordinator is implicit and no coordination data
is specified when the entry is written. All transactional operations are performed

with implicit transactions.

8.2.1 Runtime Overhead

We compare the runtime to CAPI-3 by performing the same space operations from
the core API (Capi) and with the CAPI-3 interface (see Section 4.2.6). Our goal is
to measure the overhead caused by the runtime, that is, the additional time needed
for event processing and other components outside of CAPI-3. The CAPI-3 interface
has no timeout or aspect support, but we do not use that features in the test cases
and the effect in the containers in CAPI-3 is the same. While we have to call only
one method of Capi repeatedly and measure the time, at the CAPI-3 layer we have

to perform the following steps that the runtime does internally:

1. Create a transaction with the method newTransaction of CAPI-3.
2. Create a sub-transaction.

3. Call the actual CAPI-3 operation we want to perform.

4. Commit the sub-transaction.

5. Commit the transaction.

Table 8.1 shows the times for the operations we compare. The values for create con-
tainer show that the runtime does not scale here. We created only 1000 containers,
but the time needed by the runtime was already long, much more than for CAPI-3.
The SD is quite big (5.60 +3.04), because each benchmark round takes longer. We
found the reason in the event processing, where events are always processed on ev-
ery container when the (implicit) transaction is committed. Changing that requires
refactoring of CAPI-3 and is future work. When we immediately destroy a created
container, that is, only one container exists at the same time, which we measure
with the create—destroy operation pair, we do not see this scalability problem.

For the create transaction (TX) operation we got a high SD (1.12 £0.74) for the

runtime value. This is probably because the large number of added transactions,
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1100000 after the warmup and benchmark rounds, causes the collections in the
transaction manager to adapt their size and inserting new entries gets slower. The
create—commat TX operation pair, where a transaction is created and then immedi-
ately committed, does not show this behavior. The time in the table is for creating
transactions without a timeout. If we create transactions with a timeout this takes
longer (3.08 seconds), because the transactions are added to the timeout proces-
sor when they are created and removed from it when they are committed. Rolling
back transactions needs equal time as committing them, which can also be seen in
Table 8.5, and is therefore not tested here.

For the entry methods we have tested only read and write, there is no difference
in the runtime for the other selecting operations (take, delete) for status OK. For
testing the read operation we created a container, wrote one entry into it and read
that entry repeatedly. For testing the write operation we created a container at the
beginning of each round and destroyed it at the end. Initially, we did not destroy
the container after each round, thus filled it with 1100000 entries and got a high
SD (1.92 £0.45 for the Capi and 0.94 +0.55 for CAPI-3). This is a similar effect
as for create TX, but also for CAPI-3 because the collection with all containers is

stored there, while the transaction collection is stored in the runtime.

Table 8.1: Comparison of Capi and CAPI-3 interface: average time for 100 000 op-
erations (1000 for create container) in seconds and interface ratio

API Ratio
Operation(s) Capi | CAPI-3 | Capi/CAPI-3
create container 5.60 0.01 560.0
create—destroy container || 2.88 0.85 3.4
create TX 1.12 0.08 14.0
create—commit TX 1.32 0.13 10.2
read entry 1.30 0.24 5.4
write entry 1.44 0.38 3.8

We have also calculated the ratio between the time needed with the runtime
and CAPI-3, and included it in Table 8.1. The results show that the runtime
overhead factor is between 3.4 and 14, irrespective of create container where a special
scalability issue exists. We analyze the runtime performance further in the next

section, to find out in more detail where this overhead is spent.

8.2.2 Event Processing and Aspects Overhead

We expected that the main overhead in the runtime is spent for the event pro-

cessing and the aspects and wanted to analyze that further. This was achieved by
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commenting out portions of the runtime code for that specific phases and measuring
the time for read requests. This is possible because in the tests the requests do not
block, there were no aspects used and we know what CAPI-3 returns. We did not
use a profiler because we expected it to influence the results. We commented out
the calls to the event processing (EP) and the timestamp creation (TS) needed for
the event processing separately. We also commented out the calls to the aspect in-
voker and used a fixed result object instead of actually calling CAPI-3. The detailed
description of what we changed in the runtime code is in Appendix A.2. We com-
mented out these calls selectively, not all at once, to see the effect of the individual
changes. For example, we commented out the event processing and then measured
the time for the read operations. We used the results for the unchanged Capi calls
for comparison, obtained with exactly the same benchmark code. Table 8.2 shows
the results we obtained. For illustration the results for the CAPI-3 interface alone
(see Section 8.2.1) are included in the last line. By measuring the time needed af-
ter commenting out a specific portion of the runtime code (column overall in the
table), we do not directly get the time that would have been needed for it. We
estimate this time by subtracting the measured value from the result of the com-
plete read operation (see the column portion for the results). We also estimated the
duration for creating the timestamps by subtracting the time without event process-
ing (“Capi, EP”) from the time without event processing and timestamp creation
(“Capi, EP+TS”); this portion cannot be commented out independent of the event
processing. The difference to the 100 % in the portions row, 13.3 % of the overall
time, is spent in parts of the runtime that are not listed (API, request handler, glue
code, ...). The 13.3 % may also be imprecise because we measured the time for the

portions indirectly and not in the same benchmark run.

Table 8.2: Estimation of the duration of the phases event processing (EP), times-
tamp creation (TS), aspect invocation and CAPI-3 call as part of a Capi
call: average overall time and phase portion for 500 000 read operations
in seconds and percent

Overall, measured | Portion, calculated
API, excluded phase(s) | in seconds | in % | in seconds | in %
Capi 6.68 100.0 - -
Capi, EP 6.12 91.6 0.56 8.4
Capi, EP+TS 3.05 45.7 3.63 54.3
Capi, TS - - 3.07 46.0
Capi, aspects 5.95 89.1 0.73 10.9
Capi, CAPI-3 5.25 78.6 1.43 21.4
CAPI-3 1.22 18.3 - -
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The results are quite surprising for us. The majority of the time is spent for the
event processing and creating the timestamps needed for it. An estimated 46 % of
the time is spent only for creating the timestamps. We use the Java API method
nanoTime in the class java.lang.System, the most accurate time source for Java
in the standard API according to the documentation, to get the current time. As
the impact of having a faster way to get a timestamp would be significant, we want

to investigate that as future work.

8.3 Configuration Options

In this section we show the performance influence of important runtime options that

can be configured programmatically or with a configuration file (see Section 6.3).

8.3.1 XP Thread Pool

We executed read operations with different values for the number of threads in the
XP, that can be configured as described in Section 4.4.2. We used the special value
“0”, where the thread pool has no worker threads and tasks are executed directly in
the calling thread, and the values 1, 2, 5 and 10 for a thread pool with the respective
number of worker threads. We prepared the test by creating a container and writing
an entry to it that was then repeatedly read. We expected no significant difference
between the configurations, because we read serially and only with one thread.
The measured values are listed in Table 8.3. These results show that the use of a
thread pool with worker threads and the corresponding thread context switch has a
significant overhead and increases the time for the test by a factor of around 2.2, for
this special case of serial execution where no concurrency is possible. Consequently,
the thread pool should be used without worker threads. As Section 4.4.2 explains,
this is not possible when the asynchronous API is used and may not be advisable

for special transport handlers.

Table 8.3: Comparison of different thread pool configurations: average time for
100 000 operations in seconds

Number of threads

Operation 0 \ 1 \ 2 \ ) \ 10

| read [ 128290278 [2.81 ] 2.82 ]
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8.3.2 Entry Copier

We tested the speed of read and write operations with different entry copiers (see
Section 4.4.1). The default configuration uses no entry copier and we compare the
result for that configuration to the configurations with an entry copier to see the
overhead for the entry copying. The cloning entry copier requires the entry class
to implement an interface with a clone method, which is implemented in our test
entry as listed in Appendix A.1. We tested the serializing entry copier with the
Java built-in serializer and the serialization library Kryo (see Section 5.3.3). We
analyzed read and write operations because there is a difference regarding the entry
copying between them: for write the user entry, the application data, is encapsu-
lated in an instance of the class Entry, together with the optional coordination
data. In contrast, for read only the application data is returned and copied. The
results in Table 8.4 show that cloning entries causes almost no overhead; copying
entries with a serializer makes the embedded operations several times slower, also
for the serializer Kryo that outperforms the built-in serialization. We conclude that
immutable objects should be used when possible, because no copying is necessary in
that case. If entries should be copied and the speed of the operations is crucial, the
cloning entry copier should be used. If speed is not important and implementing the
cloning method is too time-consuming or not possible, a serializing entry copier can
be used. Kryo is faster than the built-in serialization in our tests, but may require

some configuration for custom entry classes (see [17]).

Table 8.4: Comparison of different entry copiers: average time for 100 000 operations
in seconds

Entry copier

Operation || none | cloning | serializing (built-in) | serializing (kryo)
read 1.27 1.31 5.24 4.43
write 1.46 1.54 5.56 4.69

8.3.3 Transport Serializer

For the remote access we tested the TCP socket transport with different serializers
described in Section 5.3.3. For each serializer we created two core instances in
the test program. We used one instance as client to access the other core where
we repeatedly read an entry and measured the time. The remote communication
was performed through the local loopback interface. Figure 8.1 shows the time for
the embedded access compared to the Java built-in binary serialization, the XML
serialization with JAXB and the XStream serializer with XML and JSON. We also
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measured the size of the first request and response message, that is, the length of
the byte array with the serialized message as it is sent over the socket connection.
Subsequent messages may vary slightly in their size for some serializers, because
each request has a counter value as ID that is represented as string in XML and
JSON messages. The results are depicted in Figure 8.2
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Figure 8.1: Comparison of different transport serializers: average time for 20000
read operations in seconds

The results show that the XML serialization with JAXB is slightly faster (5.5 %)
than the built-in binary serialization. The difference is bigger for the message size,
where especially the request message of the built-in serialization is much larger than
for JAXB (factor 3.36) or any other serializer. XStream JSON has the smallest
message size, but is also the slowest serializer in the test. However, in a scenario
with spaces on different machines and a relatively slow network in between, a smaller
message size is probably more important than fast (de)serialization. In that case
the difference between the embedded and the remote access is probably also much
bigger than in our test, where remote access with the fastest serializer (JAXB)
took 37 times longer than with embedded access, but without the latency of a
real network connection. The performance of the serializer Kryo would also be
interesting, because it was faster than the built-in serializer for copying entries (see

Section 8.3.2) and the messages are small for the serializer benchmark in [1]. It can

106



8 Evaluation

1,600 | 1,538 00 Request ||
— 1400 0 Response |
g
% 1,200 |- .
=
< 1,000 | 936 .
Q
N
‘w800 .
S0 :
£ 600 265 |
i 158 437 405
£ 400 300 960 |
200 - .
= = = Z
o = = @)
B . P -
@ < < z
5 = 2 s
8 -
Serializer

Figure 8.2: Comparison of different transport serializers: size of first request and
response message in bytes

currently not be used for remote communication (see Section 5.3.3), but we want to
adapt the runtime for it as future work.

Besides the performance also the interoperability can be important for certain
use cases. XML and JSON can be easily supported by XVSM implementations
on other platforms, while it would be cumbersome to support a binary serialization

format like it is used by the Java built-in serialization or Kryo.

8.4 Comparison to MozartSpaces 1.0

In this section we compare MOZARTSPACES 2.0 to MOZARTSPACES 1.0 r5212. We
used the FIFO coordinator for the tests, because it is predefined for both versions
and it is the fastest coordinator in MOZARTSPACES 1.0 for read operations according
to the benchmark results in [L6w08|. The coordinator is implicit and therefore need
not be specified when an entry is written. Furthermore, we used the same string of
10 characters for all test entries and accessed the space with implicit transactions.
The time for creating the coordinator, selector and entry objects is included in the

measured time for all tests.
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8.4.1 Embedded Serial Benchmarks

In a first step we performed serial embedded tests for the most important space op-
erations to compare the performance of the two MOZARTSPACES versions. Table 8.5
shows the results for the container operations. For the create container operation we
tested 1000 invocations with only 3 benchmark rounds and no warmup, because we
soon got an OOME for MOZARTSPACES 1.0 for more created containers. We have
already seen a scalability issue for create container in MOZARTSPACES 2.0 (see Sec-
tion 8.2.1), but MOZARTSPACES 1.0 performs even worse. The results for the create—
destroy container operation pair shows the same behavior for MOZARTSPACES 1.0,
which indicates a memory leak. The same operation is fast for MOZARTSPACES 2.0,
which is consistent with the results in Section 8.2.1. For the operations that do not
scale well we also got high SD values that are included in the table. The container
lookup operation scales well in both versions, but MOZARTSPACES 1.0 is faster by
a factor of 3.4.

Table 8.5: MOZARTSPACES versions comparison of container operations: average
time and standard deviation for 1000 (create and create—destroy) or
100000 (lookup) operations in seconds

MozartSpaces Ratio
Operation(s) || Version 1.0 | Version 2.0 | 1.0/2.0
create 4.43 £1.66 | 1.03 £0.54 4.3
create—destroy || 1.94 £0.76 0.21 9.2
lookup 3.52 1.04 3.4

Table 8.6 shows the results for the transaction operations. We measured an in-
creasing time needed for creating transactions without committing or rolling them
back in the meantime. We already experienced that for MOZARTSPACES 2.0 in Sec-
tion 8.2.1, but it seems to be worse for MOZARTSPACES 1.0. We got an OOME with
10 benchmark rounds and measured the time for only 5 rounds then. For the opera-
tion pairs create—commit and create—rollback transaction, where only one transaction
is active at the same time, we see constant execution times with MOZARTSPACES 2.0
being 2.5 times faster than MOZARTSPACES 1.0. Additionally, we can see that there
is practically no performance difference between committing and rolling back a trans-
action. However, the transactions were not used for any transactional operations in
our tests, which is unusual for a real use case.

For the entry operations we tested the read and write operations and the oper-
ation pairs write—delete and write-take. We tested the read and write operations
like in Section 8.2.1 with only one entry for read and a fresh container for each

round for write. For the operation pairs we also used one entry, which was removed
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Table 8.6: MOZARTSPACES versions comparison of transactions operations: average
time and standard deviation for 100 000 operations in seconds

MozartSpaces Ratio
Operation(s) | Version 1.0 | Version 2.0 | 1.0/2.0
create 275 £0.31 | 1.11 £0.75 2.5
create—commit 3.25 1.31 2.5
create—rollback 3.25 1.30 2.5

from the container by the second operation immediately after it has been written.

The results are listed in Figure 8.3. MOZARTSPACES 2.0 is constantly faster than

MoOZARTSPACES 1.0, by a factor between 6.4 and 6.9.
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Figure 8.3: MOZARTSPACES versions comparison of entry operations: average time
for 100 000 operations in seconds

8.4.2 Remote Serial Benchmarks

We also wanted to execute the tests described above with a remote space, but that
turned out to be rather difficult. The tests for MOZARTSPACES 1.0 hang without

an exception when they were executed. With the JDK tool jconsole we saw that

the Capi call was stuck in the method wait of the class VirtualAnswerContainer.

We looked for an error in our tests because MOZARTSPACES 1.0 has been quite

excessively used with remote access. We found out, that with the HotSpot client

VM instead of the server VM the tests ran more stable, and assume that there
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is a race condition in MOZARTSPACES 1.0. We obtained the results in Figure 8.4
with the VM argument -client to select the client VM (and -Xmx1g like for all
other instances and tests) for the MOZARTSPACES 1.0 server instance and the tests.
We started the MOZARTSPACES 2.0 server instance as planned with -server. In
contrast to the serializer tests in Section 8.3.3 the remote core ran in its own process.
Otherwise the remote access was similar and the local loopback interface with the

Java built-in binary serialization was used.
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Figure 8.4: MOZARTSPACES versions comparison of remote entry operations: aver-
age time for 1000 operations in seconds

Because of the instability and the low speed of MOZARTSPACES 1.0 we performed
the operations only 1000 times per round. First we had high SDs for the measured
values, probably because of the JIT compiler. Therefore we tried different settings
for the benchmark and warmup rounds until we found a way to run the tests and get
low SDs. The results for read and write in Figure 8.4 were measured the second time
we started the tests for an operation without restarting the server instances, which
we restarted after each tested operation otherwise. The values for the write—delete
and write-take operation pairs were measured the first time we ran the tests of an
operation for MOZARTSPACES 1.0, and the second time for MOZARTSPACES 2.0.

If we now finally look at the actual results, we see that MOZARTSPACES 2.0 is
clearly faster than version 1.0, by a factor between 10.9 and 11.5 depending on the

operation.

110



8 Evaluation

8.4.3 Concurrent Benchmarks

After the serial benchmarks above we performed concurrent benchmarks with the
same operations but executed them in 5 threads concurrently. The results in Ta-
ble 8.7 show that MOZARTSPACES 2.0 is again consistently faster than version 1.0,
as for the serial benchmarks above. Both versions have a speedup and execute the
concurrent operations faster than the serial operations (cf. Figure 8.3). We compare

the scalability of the two versions in Section 8.5.

Table 8.7: MOZARTSPACES versions comparison of concurrent entry operations in
embedded mode: average time in seconds for 100 000 operations, 20 000
in 5 concurrent threads each

MozartSpaces Ratio
Operation(s) || Version 1.0 | Version 2.0 | 1.0/2.0
read 6.91 0.82 8.4
write 8.69 1.01 8.6
write—delete 15.65 1.71 9.2
write-take 15.20 1.78 8.5

The results in Table 8.7 are for an embedded space. We were unable to get results
for a remote space and MOZARTSPACES 1.0. This was probably caused by the same

race condition that troubled us for the serial tests (see above).

8.5 Scalability

In this section we take a brief look at the scalability of MOZARTSPACES. We evaluate
the scalability with the speedup, defined in [Hil90] as the time needed for a task x
on one processor divided by the time needed for the same problem on n processors,
or as formula: 1
speedup(n, x) = m

We do not have n processors but one processor with n cores and a number of
threads. For our test machine these threads share the two cores. So the informative
value of our results for more than 2 threads is limited because they do not really
show the speedup that would be possible for a CPU with more cores. Because of this
hardware limitation, the best possible speedup for our concurrent tests compared to
the serial tests is 2, irrespective of the number of threads we use.

Figure 8.5 shows the speedup for the serial entry operation tests in Section 8.4.1
compared to the concurrent tests with 5 threads in Section 8.4.3. We see that

MOZARTSPACES 2.0 scales better than MOZARTSPACES 1.0 for all operations. The
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speedup of MOZARTSPACES 2.0 is between 1.5 and 1.6. Because the tests for the
comparison of the MOZARTSPACES versions are only with 1 and 5 threads, we

performed further tests with other numbers of threads that are described next.
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Figure 8.5: MOZARTSPACES versions speedup comparison of concurrent to serial en-
try operations in embedded mode (values from Figure 8.3 and Table 8.7)

Table 8.8 shows the speedup for 100000 concurrent read and write operations
with a different number of threads. Each of the n threads performed one n-th of the
operations. We get the maximum speedup for 2 threads, 1.8 for the read operation
and 1.7 for write. For more threads the speedup is lower, probably because of
overhead for the thread scheduling of the JVM and the operation system, which is
minimal for 2 threads on the 2 cores of the test machine. The measured times used

to calculate the speedup are listed in Appendix A.3.

Table 8.8: Comparison of a different number of application threads: speedup for
100 000 operations with MOZARTSPACES 2.0
Number of threads
Operation || 1| 2] 3] 4] 5] 10
read 10|18 |1.7]16 16|14
write 1.0/17]16|16 |16 | 1.5
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8.6 Summary

One of the major requirements for MOZARTSPACES 2.0 was a better performance
than for MOZARTSPACES 1.0. Particularly the runtime should process requests
faster and provide better scalability. The tests results which were presented in
the last sections show that these requirements are fulfilled. The comparison with
MOZARTSPACES 1.0 shows a superior performance for all measured aspects. The
processing of transaction, container and entry requests needs significantly less time.
This applies to the embedded mode where the space runs within the application, and
also the remote mode where it is accessed over a TCP socket connection. Moreover,
version 2.0 of MOZARTSPACES scales better than version 1.0. It shows a higher
speedup for all operations.

We have analyzed the performance behavior for important phases of the request
processing in the runtime and tested the influence of several configuration options.
We have seen a scalability issue of the event processing in the runtime when the
space has a large number of containers. The reason for it has been identified, the
required changes for eliminating it are subject to future work. The relatively high
portion of the time that is needed to get the timestamps for managing the blocking
behavior surprised us and we want to investigate that further and look for faster
alternatives.

While we have conducted some tests to assess the performance of the runtime, fur-
ther benchmarks of MOZARTSPACES could be performed. We have not measured
the performance when requests are blocked and rescheduled. Further evaluation
could also include the timeout processing and the asynchronous API. Additional
tests could target the predefined coordinators that are implemented in CAPI-3 and
assess the memory consumption of the space with different numbers of containers, co-
ordinators and entries. More sophisticated scenarios of concurrent operations could
be benchmarked, as well as the notification implementation. However, such an ex-
tended evaluation deserves a thesis on its own. This includes also the comparison of
MOZARTSPACES to the XVSM implementation XCOSPACES and other tuple spaces.
In [LowO08] the space-based middleware implementations MOZARTSPACES 1.0 and
GigaSpaces were compared to the JBoss Application Server and evaluated with a
number of benchmarks. [FWR™05] describes the measurement of throughput and
response time for tuple space operations with JavaSpaces as example. This related
work could help with the design of a framework for comparing the performance of

MOZARTSPACES 2.0 to other space-based middleware.
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MOZARTSPACES 2.0 is currently available as alpha version and used for research and
teaching. The ITS application mentioned in Section 3.2.1 has been migrated to the
new version. It is used in the software stack of the ROADSAFE project [5] where
it is part of a disruption tolerant connectivity service [PB11]. MOZARTSPACES
is also the basis for the prototype in the Secure Space project (FIT-IT project
825750). Several profiles will be implemented and extend the space with security
functionality. Furthermore, the new version is used by students in a course about
space-based computing and for several theses.

The future development of MOZARTSPACES is driven by the requirements of this
research projects and research topics. The next planned extensions are outlined in

the following:

e Performance Improvements: The performance issues discovered during
the evaluation should be fixed. This includes the bad scalability of the event
processing for many containers and the large overhead for creating the times-
tamps. As alternative to the method nanoTime to create timestamps, the use
of the method currentTimeMillis and logical timestamps should be evalu-
ated. Faster remote communication could be achieved with the Kryo binary
serializer and the use of the Java non-blocking I/O classes. Additionally, the
required refactoring to integrate the second timeout processor will improve the

performance for requests with a timeout.

e Meta Model Implementation: XVSM meta model support should be
added to XVSMP, the runtime and CAPI-3. This would be the basis for
runtime monitoring and configuration of the space. A management API, sep-
arated from the user API, to get and set meta information should be imple-
mented. An application to monitor and configure SEDA-based applications,

including an early version of MOZARTSPACES, is described in [Laf08].

e Higher Level APIs: The low-level interfaces Capi and AsyncCapi are quite
“procedural”, there are no objects representing containers nor transactions in

the user API. “Proxy” objects around the requests are a more object-oriented
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alternative to the current low-level interfaces. This could be complemented
with more abstract collection views of containers, e.g., a container with a

FIFO coordinator could be a java.util.Queue.

Web Service Interfaces: Making a space accessible as web service allows for
the easy use over HT'TP. A RESTful web service interface for MOZARTSPACES
is currently being developed. It can reuse parts of the XVSMP XML schema
to represent resources in XML or use a similar representation in JSON. Addi-
tionally, a SOAP-based web service could easily be implemented with the use
of the XVSMP XML schema for the body part of the SOAP messages.

Reliable Communication and additional Transport Services: The cur-
rent communication manager should be extended and support reliable commu-
nication, that is, resend lost messages, which currently needs to be handled on
application level. This requires changes to the TCP socket transport service
so that the receipt of messages is acknowledged Additional transport services
should be added. This includes the web service interfaces mentioned above
and further transport services. [Goi09] describes a transport manager with
transport units for TCP sockets, UDP, Pastry, XMPP and Mule ESB, which
were implemented for MOZARTSPACES 1.0.

Lookup, Replication and Persistence Profiles: These profiles were im-
plemented for the MOZARTSPACES 1.0 and should be adapted and extended.
[Goi09] describes the implementation of a lookup manager with lookup units
for XVSM (lookup container), LDAP, Pastry (DHT) and Gnutella. A very
simple replication profile is included in the Pastry lookup. An advanced repli-
cation profile is currently being developed for MOZARTSPACES 2.0. Persistence
should be added to the space with its containers, entries and aspects. A persis-
tence profile based on aspects has been developed for MOZARTSPACES 1.0. For
MOZARTSPACES 2.0 persistence will be integrated directly into the containers
of the CAPI-3 implementation.

Dynamic Code Downloading: Classes that are used for entry objects on
remote spaces, must be known to the remote JVM. This is usually achieved
by having the bytecode of those classes somewhere on the classpath of that
JVM. If new entry classes are created and used, their bytecode needs to be
transferred to the remote machine, which is cumbersome if done manually.
Java allows for the dynamic and remote loading of byte code, a feature which
is heavily used by Java RMI. Similarly, this would be possible over our remote

communication. However, that approach is limited to the Java platform and
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is not interoperable. To overcome that shortcoming, a platform-independent
representation of classes with their fields and annotations and the ability to
dynamically create bytecode on the target platform from that representation
is required. Additionally, the bytecode of at least the hashCode and equals
methods should be cross-compiled as well, to get the same matching seman-
tics on all platforms. Such a cross-compiling approach with an XML-based

intermediate bytecode format is described in [Pud09].

Framework Integration: Because of its extensibility with coordinators, as-
pects and profiles, MOZARTSPACES can be used as integration framework.
However, it could be required to integrate it into an existing infrastructure,
for example a Java EE application server. The integration of MOZARTSPACES
as Enterprise Information Systems (EIS) with Java EE is possible with the
Java EE Connector Architecture (JCA), specifically with resource adapters
[Sun09]. A MOZARTSPACES-specific resource adapter would allow access to
MOZARTSPACES from an Application Server (AS), e.g., from within an En-
terprise JavaBean (EJB), and also enable the use of components in the AS
from space-based applications and XVSM aspects. A basic resource adapter
for the integration of the virtual shared memory middleware Corso with an
earlier version of the JCA has been developed at the Space Based Computing
Group [Mar04]. Integration can also take place with transport services like ex-
plained above. Transport services for an Enterprise Service Bus (ESB) like the
Mules ESB mentioned above or Apache Camel [21], an open source integra-
tion framework, are particularly interesting. A MOZARTSPACES component
for Apache Camel would allow for the sending and receiving of messages with

the vast number of middleware systems Apache Camel supports.
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10 Conclusion

XVSM is a space-based middleware concept with unique features regarding coordi-
nation flexibility and extensibility with aspects. A new formal model with a layered
architecture specifies its detailed behavior [Cral(]. The lower layers up to CAPI-3
provide the storage of data entries in containers with transactions and coordinators.
They have been implemented as earlier work on MOZARTSPACES 2.0, the XVSM
reference implementation for Java [Barl0]. We described the architecture and im-
plementation of the runtime for MOZARTSPACES 2.0 that is built upon CAPI-3.
It supports blocking operations with timeouts and aspects to extend the middle-
ware functionality. We implemented the event processing with the wait container
for blocking operations as described in the formal model and discussed an alterna-
tive way to manage events and waiting requests. Additionally, deadlocks of XVSM
transactions are detected based on a wait-for graph.

For the remote access a communication manager with a TCP socket transport
has been implemented. We developed several serializers that can be used with
this transport and specify the concrete wire protocol. One of them is based on
an XML schema definition that specifies the interoperable XVSMP. A user API
allows embedded or remote access to an XVSM space. It supports synchronous
and asynchronous calls with poll objects and callbacks. Additionally, the result
of an operation can optionally be stored in a space container (answer container).
MOZARTSPACES supports the publish/subscribe model with notifications that we
implemented with XVSM aspects.

The evaluation of the implementation has shown that the runtime fulfills the
performance requirements. MOZARTSPACES 2.0 is considerably faster than the pre-
vious version MOZARTSPACES 1.0 ([Sch08b, Pr608]) for all operations. For example,
reading and writing entries in embedded mode (no remote communication) is faster
by a factor of 6.6 and 6.4, respectively. For the same operations in remote mode the
difference is even bigger with a factor of 10.9 (read) and 11.5 (write). Additionally,
MOZARTSPACES 2.0 scales better than version 1.0. We also analyzed the inter-
nals of the request processing in the runtime and measured the influence of various
configuration options. We will use the results to improve the runtime. Moreover,

extensions are planned for the use of MOZARTSPACES in research projects.
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A Appendix

A.1 Entry Class for Internal Tests

The class shown in Listing A.1 was used for the user entries in the tests in Section 8.2
and Section 8.3. The concrete definition is particularly important for the tests of

the entry copiers (Section 8.3.2) and the transport serializers (Section 8.3.3).

public final class TestEntry implements Serializable, MzsCloneable {

private static final long serialVersionUID = 1L;

// is set as wvalue for the field "bytes" with ALPHANUM.getBytes ();

public static final String ALPHANUM = "ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
// is set as value for the field "number"”

public static final int NUMBER = 42;

private final String key;
private final Double doubleValue;
private byte[] bytes;

private int number;

// mo-arg constructor for Kryo
@SuppressWarnings ("unused")
private TestEntry () {

this (null) ;

public TestEntry(final String key) {
this.key = key;
this.doubleValue = 5.26;

@0verride

public TestEntry clone() throws CloneNotSupportedException {
TestEntry clone = new TestEntry(key);
clone.bytes = bytes;
clone.number = number;

return clone;

// getters and setters omitted
// standard hashCode and equals methods gemerated with Eclipse omitted
}

Listing A.1: Test class for user entries
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A Appendix

A.2 Changes for Measuring Component Overhead

We commented out the following calls or portions of the runtime code to measure

the internal overhead in Section 8.2.2:

e Event Processing

— Class AbstractTask, method run: call of the method triggerEvents of

the interface WaitAndEventManager

— Class DefaultTransactionManager, method commitTx: invocation of
the method processTransactionCommit of the interface WaitAndEvent-

Manager

e Timestamp Creation: invocations of System.nanoTime

— Class AbstractTask, method run: at the start of the method (set
executionTime to 0 instead) and before the invocation of the method

triggerEvents (see above, also the lines in between)

— Class DefaultTransactionManager, method commitTx: before the event

processing call (see above)

e Aspect Invocation:

— ReadEntriesTask: the whole block for the pre- and post-aspect invoca-
tions and the condition for skipping the CAPI-3 read because of aspect

status SKIP; leave the return for the entries list

e CAPI-3:

— ReadEntriesTask: create a result object (DefaultReadOperation-

Result) with a list containing an instance of the test entry

A.3 Measurements for Scalability

The results in Table A.1 were used for the calculation of the speedup in Table 8.8.

Table A.1: Comparison of a different number of application threads: average time
for 100 000 operations in seconds with MOZARTSPACES 2.0

Number of threads

Operation 1] 2] 3] 4] 5] 10

read 1.26 | 0.70 | 0.75 | 0.78 | 0.80 | 0.92

write 1.51 1 0.87 | 0.93 [0.92|0.94 | 1.04
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