
Energy-efficient Persistence for
Extensible Virtual Shared Memory
on the Android Operating System

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Jan Zarnikov
Matrikelnummer 0426379

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: A.o. Univ. Prof. Dr. Dipl.-Ing. eva Kühn
Mitwirkung: Projektass. Dipl.-Ing. Tobias Dönz

Wien, 30. April 2012
(Unterschrift Verfasserin) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Energy-efficient Persistence for
Extensible Virtual Shared Memory
on the Android Operating System

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Software Engineering & Internet Computing

by

Jan Zarnikov
Registration Number 0426379

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: A.o. Univ. Prof. Dr. Dipl.-Ing. eva Kühn
Assistance: Projektass. Dipl.-Ing. Tobias Dönz

Vienna, 30. April 2012
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Jan Zarnikov
Baumgasse 29-31/66/9, 1030 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die ver-
wendeten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen
der Arbeit - einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken
oder dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall un-
ter Angabe der Quelle als Entlehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasserin)

i

Danksagung

Diese Diplomarbeit und mein Informatikstudium an der Technischen Universität Wien
wären ohne Unterstützung durch gewisse Personen nicht möglich gewesen.

In erster Linie möchte ich mich bei meinen Eltern bedanken, die mich mit viel
Geduld während des gesamten Studiums unterstützt haben. Ich möchte mich auch bei
allen bedanken, die mein Auslandssemester in Schweden möglich gemacht haben. Es
war ohne Zweifel das Highlight meines Studiums.

Und nicht zuletzt möchte ich mich auch bei eva Kühn und Tobias Dönz bedanken,
die mich beim Schreiben dieser Arbeit betreut haben.

ii

Abstract

The result of the rapid growth of the Internet is that most computers in developed coun-
tries are always online. This always-connected state is now also spreading to mobile
devices. This allows us to develop a new generation of distributed and mobile applica-
tions. However coordination of processes within a distributed application is a difficult
task. Space based computing solves the coordination problem by writing information
into a virtual shared medium called the space. The space (sometimes also called black-
board) decouples the processes and eliminates explicit communication between them.

eXtensible Virtual Shared Memory (XVSM) is a specification of a space based mid-
dleware. Until now MozartSpaces (the reference implementation of XVSM) did not
support persistence which means that all data was lost when the space was shut down
or crashed. Previously it was attempted to solve this problem by either implement-
ing persistence as orthogonal functionality with aspects or by replacing the core of
MozartSpaces with a database. Unfortunately both approaches have serious drawbacks:
the incompatibility with the XVSM transactions and in the case of the aspect-base so-
lution the problematic management of entry IDs. Therefore a new approach has to be
found. Also to our knowledge there is currently no space based middleware that can run
and store data on a mobile platform without the need for a server.

The solution proposed in this thesis is a new persistence layer which is tightly inte-
grated into the core of MozartSpaces. The persistence layer hides the database-specific
details and can use different database engines. Currently supported databases are Berke-
ley DB and SQLite but it is possible to add support for further databases.

A benchmark suite was developed to evaluate the performance of the persistence.
The results show that both Berkeley DB and SQLite are very fast. A nice side effect
of using a database to store data is a significantly reduced memory footprint at runtime.
An important requirement was also the energy-efficiency of the persistence on mobile
devices running the Android operating system. This goal was reached only partially
because there are no energy profilers that can measure the energy consumption of all
relevant components on a scale small enough to be usable for code optimization.

Overall the new persistence implementation works very well. The new extended ver-
sion of MozartSpaces offers good performance and remains compliant with the XVSM
specification.

iii

Kurzfassung

Das Ergebnis des rapiden Wachstums des Internets ist, dass die meisten Computer in
entwickelten Ländern immer online sind. Dieser Zustand des Immer-verbunden-seins
breitet sich jetzt auch auf mobile Geräte aus. Das ermöglicht uns eine neue Generation
von verteilten mobilen Anwendungen zu entwickeln. Die Koordination der Prozesse ei-
ner verteilten Anwendung ist eine schwierige Aufgabe. Space Based Computing löst das
Problem der Koordination indem Informationen in ein gemeinsames virtuelles Medium
namens Space geschrieben werden. Der Space (manchmal auch Blackboard genannt)
entkoppelt die Prozesse und eliminiert explizite Kommunikation zwischen ihnen.

eXtensible Virtual Shared Memory (XVSM) ist eine Spezifikation einer Space-
Based-Middleware. Bis jetzt hat MozartSpaces (eine Implementierung von XVSM) kei-
ne Persistenz unterstützt, was bedeutet, dass alle Daten verloren gingen, wenn der Space
abgeschaltet wurde oder abgestürzt ist. Es wurde bereits versucht dieses Problem zu lö-
sen, indem die Persistenz als orthogonale Funktionalität mit Aspekten implementiert
wurde oder indem der Kern von MozartSpaces durch eine Datenbank ersetzt wurde.
Es hat sich leider gezeigt dass beide Ansätze Nachteile mit sich bringen, nämlich die
Inkompatibilität zu den XVSM-Transaktionen und im Falle der aspektbasierten Lösung
das problematische Management der IDs der Einträge. Weiters gibt es derzeit nach unse-
rer Kenntnis keine Space-Based-Middleware, die auf mobilen Geräten laufen und Daten
speichern könnte ohne dabei einen Server zu benötigen.

Die in dieser Diplomarbeit vorgeschlagene Lösung ist eine neue Persistenzschicht,
die in den Kern von MozartSpaces integriert ist. Die Persistenzschicht versteckt die
datenbank-spezifischen Details und kann unterschiedliche Datenbanken verwenden. Der-
zeit werden Berkeley DB und SQLite unterstützt aber die Unterstützung weiterer Da-
tenbanken kann einfach hinzugefügt werden.

Eine Reihe von Benchmarks wurde entwickelt um die Leistung der Persistenz zu
evaluieren. Die Ergebnisse zeigen, dass sowohl Berkeley DB als auch SQLite sehr
schnell sind. Eine schöner Nebeneffekt bei der Verwendung einer Datenbank ist, dass
der Speicherverbrauch zur Laufzeit gesenkt werden konnte. Eine wichtige Anforderung
war auch, dass die Persistenz auf mobilen Geräten mit dem Android-Betriebssystem
stromsparend ist. Dieses Ziel wurde nur teilweise erreicht, da die verfügbaren Energie-

iv

Profiler nicht den Stromverbrauch aller relevanten Komponenten messen können. Wei-
ters ist die Granularität der Messungen für Code-Optimierungen nicht fein genug.

Insgesamt funktioniert die neue Implementierung der Persistenz sehr gut. Die neue
erweiterte Version von MozartSpaces bietet eine gut Performance ohne dabei die XVSM-
Spezifikation zu verletzen.

Contents

1 Introduction 1
1.1 Space Based Computing . 2
1.2 Motivation and goals . 2
1.3 Thesis Structure . 4

2 Background 5
2.1 XVSM . 5
2.2 Persistence . 11
2.3 Mobile energy-efficient computing . 13
2.4 Data storage on mobile devices . 14

3 Related work 17
3.1 Persistence in space based computing 17

4 Requirements 24
4.1 Requirements of the formal model of XVSM 24
4.2 Persistence models . 25
4.3 Constraints of the MozartSpaces implementation of XVSM 26
4.4 Constraints of the Android operating system 27

5 Implementation 30
5.1 Architecture overview . 31
5.2 Storage backend . 35
5.3 Abstraction of the storage engine . 39
5.4 Transactions . 45
5.5 Caching . 47
5.6 Configuration . 49
5.7 Persistence profiles . 51
5.8 Changes in existing parts of MozartSpaces 54
5.9 Initialization of the space and the persistence 58
5.10 Restoring the state of a space from persistent storage 59

vi

5.11 Optimization of performance and energy efficiency 60

6 Evaluation 64
6.1 Benchmark environment . 64
6.2 Performance benchmarks . 64
6.3 Memory usage . 70
6.4 Energy efficiency . 72
6.5 Summary . 74

7 Future work 75
7.1 Possible improvements of the persistence layer 75
7.2 Other open issues of XVSM and MozartSpaces 77

8 Conclusion 78

Bibliography 80

Web references 85

A Performance benchmarks I

vii

List of Figures

2.1 Architectural overview of XVSM . 6

3.1 Architecture of XVSM implementation based on a database 19

5.1 Components of MozartSpaces relevant to the Persistence 31
5.2 Class diagram with the most important classes of the persistence layer . . . 33
5.3 Class diagram showing the StoredMap and related classes 34
5.4 Performance evaluation of SQLite and Berkeley DB on Android 38
5.5 Sequence diagramm of BufferedStoredMap 47
5.6 Sequence diagramm of TransactionalStoredMap 48
5.7 Doubly linked list in a StoredMap . 58
5.8 PowerTutor . 62
5.9 Trepn Profiler . 63

6.1 Performance of MozartSpaces persistence on J2SE 67
6.2 Performance of MozartSpaces persistence with different JVMs 69
6.3 Performance of MozartSpaces persistence on Android OS 71
6.4 Memory usage of MozartSpaces . 72

viii

List of Tables

3.1 Interception points used by XVSM persistence implementation using aspects 18
3.2 Overview of persistence in different space based middlewares 23

5.1 The StoredMap interface . 40
5.2 The PersistenceContext class . 41
5.3 The PersistenceKey interface . 42
5.4 The PersistenceKeyFactory interface 43
5.5 The BaseDBAdapter interface . 44
5.6 The DBAdapter interface . 44
5.7 The TransactionalDBAdapter interface 45
5.8 The PersistenceCache interface . 49
5.9 The persistence configuration properties 50
5.10 Overview of persistence profiles . 53
5.11 The PersistentCoordinator interface 56

6.1 Performance of different performance profiles - J2SE 68
6.2 Results of the energy efficiency benchmarks using Trepn Profiler 73
6.3 Results of the energy efficiency benchmarks using PowerTutor 74

ix

List of Abbreviations

ACID Atomicity, Consistency, Isolation and Durability
CAPI Core API
FIFO First In, First Out
HDD Hard Disk Drive
J2SE Java 2 Standard Edition
JVM Java Virtual Machine
LIFO Last In, First Out
NoSQL Not Only SQL
ORM Object Relational Mapping
P2P Peer-to-peer
POJO Plain Old Java Object
SBC Space based computing
SQL Structured Query Language
SSD Solid State Drive
SXQ Simple XVSM Query
XQ XVSM Query
XVSM eXtensible Virtual Shared Memory
XVSMP XVSM Protocol

x

CHAPTER 1
Introduction

The internet has become ubiquitous medium. It connects not only desktop comput-
ers and servers but also more and more mobile devices. Smartphones are becoming
the norm and even the internet-enabled refrigerator, once a futuristic anecdote, is now
reality.

This new generation of devices is accompanied by new programming paradigms.
Current distributed applications are based on the client-server model. The communi-
cation between the server and the clients is usually realized with remote method calls
or some form of asynchronous message passing. The drawback of this approach is the
scalability of the server. Increasing number of clients can easily bring the server to its
limits. Another problem is the reliability of such solution. If the server becomes un-
available (e.g. because of a hardware failure) the whole distributed application stops
working. Furthermore the client is degraded to a simple consumer of the work done by
the server although the hardware is often capable of so much more.

Peer-to-peer (P2P) architectures divide the problem at hand to several tasks which
are processed by several more or less equally important nodes. In an ideal P2P archi-
tecture there is no central server and therefore no single point of failure. This approach
leads to a more effective use of resources because the work can be split among the
nodes. There is no busy server and idly waiting clients.

The drawback if P2P is that the communication and coordination gets very complex.
Without any central coordinator the decision which node should do what becomes diffi-
cult. The communication and sharing of data between the nodes is also complicated.

1

1.1 Space Based Computing
Space based computing is an interesting approach that contributes to the problem of
coordination and communication in distributed applications. It can be seen as an alter-
native to the classical client-server approach and P2P architecture. It was introduced by
David Gelernter in [Gel85] as the Linda programming language. The principle is quite
simple yet very powerful. The data in form of tuples (a vector of fields) is stored in a
so called tuple space. Several processes (local or remote) can access the space at the
same time. Tuples reside in the space and are not bound to any particular process of the
distributed application. Space based computing decouples the data from the process.
Gelernter defined three basic operations on a space:

• Out - writes a new tuple into the space, sometimes also referred to as the “insert”
operation.

• In - searches for a tuple that matches the search criteria which are specified using a
template. A template is a sample tuple where the fields have the same values as the
searched tuple or null if the field and its value are not relevant for the search. If a
matching tuple is found then it is returned and removed from the space. Otherwise
the process blocks until a matching tuple is available. If the template matches
several tuples in the space then one of them is returned indeterministically. This
operation is sometimes also called “take”.

• Rd - similar to the take operation except the tuple is not removed from the space,
sometimes also called “read”.

All three operations are atomic. This is especially important in the case of the take
operation (sometimes also called consuming read). Also note that there is no update
operation. Tuples are immutable and once they are written into the space they cannot be
changed.

The space based computing paradigm and how it can be applied to complex dis-
tributed applications is described in more detail in [Mor10]. Several implementations
of the tuple space concept exist coming both from academia and commercial software
vendors. A good overview of the different implementations can be found in [WCC04].

eXtensible Virtual Shared Memory (XVSM) takes the concept of Linda as described
in [Gel85] and other tuple space based systems and extends it by adding some new
features.

1.2 Motivation and goals
Hardware of mobile and handheld devices has made great progress in recent years.
Modern mobile phones have the same computing power like normal desktop computers

2

had just few years ago. The speed of various wireless technologies they use to connect
to the internet is constantly increasing. This allows us to run complex and often dis-
tributed applications on a device that can fit into you pocket. Of course development
of distributed mobile applications is not really possible without proper tool support. A
space based middleware that can run on both mobile devices and “normal” computers
is a tool that significantly reduces the complexity of distributed applications.

XVSM (and space based middlewares in general) is not intended to be a database
replacement. It is not designed to hold and manage large quantities of data. It is not
supposed to evaluate complex queries. The main goal of space based computing is
coordination of distributed processes by sharing data.

Currently the reference implementation of XVSM does not support persistent data
storage. Previous attempts to solve this problem by implementing persistence as orthog-
onal functionality with aspects [Mei11] and by replacing parts of the middleware with a
database [Bar10] have shown that these two approaches have some serious drawbacks.
The goal of this thesis is to find a new solution for this problem. The main requirements
are:

• Extend the reference implementation of XVSM by providing a new persistence
layer that can be used to store the state of the space.

• It must be possible to completely restore the last consistent state of the space after
the space was shut down or crashed.

• The persistence layer should be based on a well tested and well documented
database engine.

• The persistence must not be tied to one particular database engine. It must be
flexible and extensible. It should be possible to use different databases depending
on the application scenario and it should be easy to add support for new databases
if needed.

• It is important that the persistence is compatible with both the Java and the An-
droid version of the XVSM implementation.

• The persistence implementation should be fast. A set of performance benchmarks
has to be developed to evaluate the speed of XVSM with persistence and compare
it to previous versions.

• When run on a battery powered mobile device the persistence must not consume
too much energy. The energy efficiency must be evaluated using suitable tools
and benchmarks.

3

1.3 Thesis Structure
This thesis is organized as follows: Chapter 2 describes XVSM, its formal specification
and the current status of the implementation. It presents the basics of data persistence
and energy efficient computing in general. Chapter 3 covers related work on the field
of persistence in space based computing. Chapter 4 discusses the requirements on the
data persistence for the Android and the Java 2 Standard Edition (J2SE) version of
XVSM while Chapter 5 explains how these requirements have been realized as well as
the technical details of the implementation. Evaluation of the performance and energy
efficiency of the solution can be found in Chapter 6. Chapter 7 lists several open issues
with persistence in XVSM. Finally, Chapter 8 summarizes and closes this thesis.

4

CHAPTER 2
Background

This chapter covers several topics that are important for the understanding of the prob-
lem statement and the solution presented in this thesis. First the space based middleware
XVSM is described followed by a brief introduction into persistent data storage. Further
this chapter covers the basics of energy efficient computing on mobile devices and data
storage on mobile devices, especially devices running the Android operating system.

2.1 XVSM

Description of XVSM
eXtensible Virtual Shared Memory (XVSM) is developed by the Space Based Comput-
ing Group of the Institute of Computer Languages at the Vienna University of Technol-
ogy.

Formal specification
The complete formal specification of XVSM can be found in [KMS08, CKS09, Cra10].
Here is a brief overview.

The general architecture of XVSM is shown in Figure 2.1. The XVSM algebra
defines the basic data-structures and operations on them. The functionality is divided
into four layers CAPI-1 to CAPI-4 where each layer uses only the services of the layer
bellow. Applications access the space using a language independent protocol (XVSMP).

XVSM algebra XVSM operates on a hierarchical data-structure called xtree that con-
tains collections and unstructured objects such as numbers and strings. There are two

5

Figure 2.1: Architectural overview of XVSM [Cra10]

types of collections: ordered lists and unordered multisets. A collection can contain
unstructured objects such as numbers or strings or another collection. Each object or
collection has an optional label if it needs to be accessed directly. Substructures of an
xtree can be accessed using the labels (or alternatively indices in case of ordered lists) of
the path from the root of the xtree to the desired substructure. The labels do not have to
be distinct, however using identical labels for several elements within a collection leads
to indeterministic behavior.

An entry consists of one or more properties which are label-value pairs. The value
of a property can be either an unstructured object or an xtree. A container is a multisets
xtree that holds entries. An XVSM space is an xtree that contains all local containers
with each container having a unique label.

XVSM Query Language XVSMQL allows more advanced selection of substructures
of an xtree than just by labels or indices. An XVSM Query (XQ) consists of one or more
Simple XVSM Queries (SXQ) that are combined using the pipe operator. It is a filter
chain where the results of a SXQ are used as input for the next SXQ. A SXQ can filter
or reorder the data before passing it to the next SXQ in the chain. SXQ cannot introduce
new data.

XVSM offers several predefined SXQ, some of which can be parameterized:

• cnt(n) for selecting n entries.

6

• Sorting the entries according to a specific property value.

• Reversing the ordering of the entries.

• Eliminating duplicate entries based on a specific property value.

• Selecting one/all entries having a property value within/outside a certain range
expression.

CAPI-1: Basic operations The lowest CAPI (Core API) layer offers simple storage
facilities. It provides a write operation as well as read and take operations using a
XVSMQL query. This storage is used both for the user entries and the metadata required
by the runtime itself.

When writing an entry the label can be either explicitly defined or automatically
assigned in which case it is returned as the result of the write operation. CAPI-1 also
defines a bulk write operation for convenience reasons. If the query of a read or take
operation does not match anything a special status code is returned indicating that the
operation should be retried later.

CAPI-2: Transactions The second layer adds transaction support for executing sev-
eral CAPI-1 operations as a single atomic action. XVSM uses pessimistic locking to
achieve ACID properties (atomicity, consistency, isolation and durability) as defined
in [Gra81]. A transaction can span across several requests and the processing of each
request is encapsulated in a separate sub-transaction.

CAPI-3: Coordination Operations of CAPI-3 are synchronous, non-blocking and
always return one of the following return codes:

• OK indicates that the operation was executed successfully.

• DELAYABLE means that the operation cannot be executed right now and should
be retried later.

• LOCKED is returned when the resources needed to finish this operation are locked
by another transaction.

• NOTOK is returned when the execution of the operation failed.

The third layer adds features that distinguish XVSM from a simple tuple space,
namely the concept of coordinators. A coordinator decides how entries are stored and
retrieved from a container. Different applications require different data management
styles. XVSM allows user defined coordinators but many use cases can be covered with
the predefined coordinators:

7

• QueryCoordinator which can be used to issue direct queries in XVSMQL.

• FiFoCoordinator makes sure that queries are read in the exact same order in
which they were written by attaching a sequence number to each entry.

• LiFoCoordiantor is similar to the FiFoCoordinator but uses first-in-last-out or-
dering.

• KeyCoordinator turns the container into a key-value store. The keys (not to
be confused with labels) have to be unique. Writing an entry with a key that is
already present in the container or reading an entry with a key that is not present
will cause a DELAYABLE result status.

• LabelCoordinator is similar to the KeyCoordinator except that labels unlike keys
do not have to be unique.

• LindaCoordinator implements the template matching of entries described in
[Gel85]. Additionally it supports retrieving more entries that match the given
template.

• VectorCoordinator organizes the entries as an ordered list. New entries can be
appended to the list or inserted at a specified position shifting all subsequent en-
tries to the right. Entries can be selected using their index. Removing an entry
causes all subsequent entries to shift to the left in order to avoid an empty gap.

A coordinator can store its own metadata for internal bookkeeping in a special xtree
separate from user data or it can attach the metadata to the entries. A coordinator can
define its own constraints on the entries it handles.

CAPI-3 also provides methods for creating and destroying containers. When a new
container is created a list of coordinators and an optional size limit are specified. Ad-
ditionally each container has a SystemCoordinator that is responsible for checking that
the number of entries does not exceed the size limit of the container.

CAPI-B If a CAPI-3 operation cannot be executed immediately (e.g. a take operation
on an empty container) it returns with an appropriate status code. CAPI-B provides an
alternative behavior - operations can block until they can be carried out. CAPI-B is only
used for metadata of XVSM and it is not visible to the user.

CAPI-4: Runtime with timeouts and aspects CAPI-4 defines the XVSM runtime
which can accept local or remote operation requests. CAPI-4 is responsible for schedul-
ing incoming requests and generating the responses.

8

CAPI-3 operations are non-blocking and always return immediately. CAPI-4 adds
blocking behavior with timeouts. A response is sent immediately if the result of a CAPI-
3 operation is OK or NOTOK. If the result is DELAYABLE or LOCKED then the request
is queued. There are two ways how the request can be removed from the queue. Either
the state of the space changes (e.g. the conflicting lock is released) and the request can
be processed or the specified timeout is reached.

The runtime also adds aspects which provide a way how to extend the functionality.
XVSM offers several interception points before and after the execution of the following
space operations where user-defined code can be inserted:

• Writing, reading, deleting and taking of entries from a container.

• Creating, looking up, locking and deleting of a container.

• Start, commit and rollback of a transaction.

• Adding and removing of aspects.

• Shutdown of the space.

Aspects can be used to implement vertical functionality such as custom logging or
security [KLM+97].

XVSMP XVSMP is a protocol that allows invocation of the CAPI-3 methods on a
remote space. It is designed to be language independent. XVSMP uses asynchronous
messages. Each request contains information about a response container where the
result will be stored once the request has been processed.

Language bindings The language bindings make it possible to create XVSMP re-
quests and read the responses. This is done by transforming calls from a language
specific API to the language independent XVSMP.

Current status of implementation
The formal specification of XVSM is freely available and can be implemented by any-
one without any licensing costs. It is language neutral and not bound to any specific
hardware platform.

Haskell prototype

To evaluate the formal specification a prototype was implemented in Haskell [Cra10].
It is intended as reference for future implementations by defining exact semantics. It is
generally slower than other implementations in imperative languages.

9

MozartSpaces

The reference implementation of XVSM for Java Standard Edition (J2SE) called Mo-
zartSpaces is available under GNU Affero General Public License (AGPL) Version 3
at [15]. The development started in 2006 later followed by version 2 (currently active)
which is a complete rewrite solving many functional and non-functional issues of the
first version. Technical details of MozartSpaces version 2 can be found in [Dö11] and
[Bar10].

Unlike most tuple space implementations MozartSpaces allows objects of arbitrary
classes to be stored as tuples as long as they are serializable. This allows much cleaner
application design because it eliminates the need for conversion between tuples and
objects from the domain model.

Android

The code of MozartSpaces is the basis for the Android implementation of XVSM [Luk].
Most of the code base remains the same since Android applications are also written in
Java. Because of limitations of the Android OS (see Section 4.4) some changes have to
be made while retaining full compatibility with the J2SE version.

.Net

An alternative implementation in .Net is currently being developed [19]. The goal is
to have a complete implementation of the specification and not just language bindings.
The result should be fully compatible and interoperable with MozartSpaces.

TinySpaces - .Net Micro Framework

TinySpaces is an alternative Implementation of the XVSM Specification. It uses the
.Net Micro Framework is targeted at embedded devices. Unlike other mobile space
based middlewares such as MobiSpace [FT05] or MobileSpaces [RD05] TinySpaces
does not require a server. The space runs completely on the embedded device. In order
to achieve reasonable performance some parts of the specification had to be omitted or
simplified [Mar10].

iOS and other platforms

Devices running the iOS are currently very popular. Having an interoperable implemen-
tation of the XVSM specification that runs on this platform would be desirable. There
is already an (incomplete) prototype implementation of the CAPI-3 interface.

10

There are many other popular software platforms but with current resources of Space
Based Computing Group and volunteering contributors it is not feasible to provide an
XVSM implementation for each platform.

2.2 Persistence
For performance reasons the state and data of a running application is held in RAM
during execution. The content of RAM is lost when its power supply is interrupted
or it is destroyed by the operating system when the application execution has stopped.
Therefore applications have to make sure that their state and data are stored on some
form of persistent medium.

Databases
Developing your own system for storing structured data from scratch is neither feasible
nor necessary unless there are some really unique requirements. Most applications make
use of an existing database component. A database is a system that allows storing and
retrieving structured data. Depending on the type of the database there are constraints
on how the data is structured and which storage and retrieval functions are available.

Besides simple storage some databases offer additional features such as complex
data queries, transactions which guarantee that a set of operations will be executed as
one atomic action or replication across several machines to increase performance and
reliability.

Relational databases
The probably most common form of databases are relational databases. The concept
goes back to 1970 when it was introduced by Codd in [Cod70]. Relational databases
store data in the form of rows and columns in one or more tables. The definition of the
tables and their columns is called schema of the database and defines the domain model
of the data. Each table represents one entity of the model and each row in the database
table is an instance of the entity. The columns and their types represent the attributes
of the entity. The values in the table cells are either of primitive type or a reference to
another row which is called relation (thus the name relational database). The schema
helps to ensure data integrity.

The data manipulation is done through four basic operations on the data rows which
are often referred to as CRUD: create, read, update and delete.

Relational databases can be queried using expressions in relational algebra. Most re-
lational databases use the standardized Structured Query Language (SQL) for queries.

11

SQL is based on relational algebra but adds aggregation, grouping and arithmetic oper-
ations to extend its expressive power [Lib03].

NoSQL
An interesting alternative to relational databases which has become very popular in
recent years are so called NoSQL databases. NoSQL stands for Not Only SQL.

In NoSQL databases the data does not have a predefined schema. The level of con-
sistency and transactional security varies greatly. While some implementations offer
ACID (Atomicity, Consistency, Isolation and Durability) properties others use the con-
cept of eventual consistency. There are several basic types of NoSQL databases [Cat11]:

• Key-value stores which store a structured or unstructured value which can be
retrieved using a key. Key-value stores are usually implemented as distributed
hash-tables for better performance and scalability.

• Document stores which are similar to key-value stores but can persist more com-
plex documents and support secondary indexes.

• Extensible record stores use rows and columns as datamodel. For better scal-
ability the data can be partitioned not only horizontally but also vertically and
distributed across several nodes.

The biggest advantage of the NoSQL approach is performance. Unlike relational
databases which have to deal with all possible data models and different usage pattern
the NoSQL databases are tailored for one particular application type. Because of this
NoSQL can outperform classical relational databases in certain scenarios by a factor
two [SMA+07]. On the other hand some sacrifices have to be made to achieve this
performance. Depending on the particular NoSQL database the requirements on ACID
properties, query language expressiveness or implicit data integrity using a schema have
to be relaxed.

Persistence patterns
There is a mismatch between how data is represented in memory during application
execution and the form in which it is stored in a relational database. Most applications
are developed using object oriented programming. At runtime entities are represented
as objects which consist of member variables of primitive datatype (integers, floating
point number, strings etc.) or references to other objects. These objects, their member
variables and references to other objects need to be converted to a form compatible with
the database.

12

Object serialization
Serialization writes the state of an object to a data stream so that it can be stored in the
file system or sent over the network to a different process. This means storing the values
of all member variables of the object. When the object should be deserialized the pro-
cess is simply reversed. The serialized object state can have a custom (usually binary)
format or a more universal data formal such as XML. Modern software development
environments such as Java or .Net provide object serialization as part of their standard
libraries. One disadvantage of object serialization is that depending on the format stored
objects cannot be queried as easily as for example relational databases.

Serialization of objects that consist only of primitive datatypes such as numbers or
strings are quite simple. References to other objects make serialization more complex.
There are several possibilities how to handle object references during serialization:

• Serialize the whole object graph. The result can be very large and possibly contain
objects that are not required.

• Ignore object references and only serialize variables of primitive type. In this case
the relationships between objects are lost upon deserialization.

• Let the developer choose which references should be serialized and restored upon
deserialization.

Object relational mapping
Object Relational Mapping (ORM) allows developers to access entities stored in a
database as if they were normal objects [O’N08]. The conversion between runtime
objects and database representation is automatic and significantly reduces the need to
write database-specific code. The most commonly used ORM frameworks map ob-
jects to SQL tables. Each member variable of an object is stored in one table column
and references to other objects are mapped to foreign keys in the database. The ORM
framework can also handle semantic incompatibilities, for example object oriented lan-
guages allow inheritance while SQL does not. Modern development environments such
as Java and .Net provide feature-rich ORM frameworks.

2.3 Mobile energy-efficient computing
Energy-efficient computing has recently become a very popular research topic. There
are two major reasons why energy-efficiency is important. For desktop computers and
servers low energy consumption means saving money and simultaneously reducing the
carbon footprint. On mobile devices however the motivation is increasing battery life.

13

One way how we can improve battery life is by improving the hardware. On the
one hand battery capacity increases while the power consumption of the components
is reduced. In case of mobile phones these advances have been mostly consumed by
improving features. This means that new models are able to do more than the previous
generation while the battery life remains more or less the same [Pen10].

The software architecture and programming style can also have an effect on the
power consumption. Not only the operating system and device drive can improve energy
efficiency but also user space application. In [Gar07] Garret argues that information
polling in short cycles significantly increases the power consumption of the CPU and
should be replaces by interrupt driven approach.

Another approach how to reduce power consumption presented in [KL10] is to off-
load complex computations to the cloud. Unfortunately this solution has two major
drawbacks. First it creates communication overhead because all data necessary for the
computation and sometimes even the computation algorithm itself as well as the re-
sult need to be transported over the network. Depending on the location and available
wireless networks the bandwidth might be limited which increases time required for the
computation. The other disadvantage is that sending and receiving data over wireless
network consumes a lot of energy, often more than a mobile CPU [CH10].

2.4 Data storage on mobile devices
Mobile devices need to persistently store data just like any other computer. There are
two basic ways how this can be accomplished. Either data is stored locally on a persis-
tent medium such as a hard drive or a flash-based memory or it is stored remotely on a
server and accessed through the network. Hybrid solutions that store data on a server
and cache parts of the data locally are also an option [SLLP+10].

Local storage has the advantage that it is always available. Remotely stored data
might become inaccessible if there is no network connection. The performance of re-
mote storage depends on the performance of the network connection which can be a
problem for mobile devices that often use slow and unreliable wireless networks. Mod-
ern wireless network technologies might offer sufficient throughput but the latency is
still too high for effectively using remote resources [SBCD09]. Furthermore fast wire-
less networks are only available in densely populated urban areas.

On the other hand remote storage can offer unlimited capacity because it is not
constrained by the size of the device. It is also cheaper (in terms of price per GB)
because it does not have to be small and energy-efficient. Remote storage has also the
advantage that it cannot be physically stolen as it is unfortunately sometimes the case
with mobile phones.

There are many commercial providers of remote storage for mobile devices with
Dropbox [9] and Amazon S3 [1] being probably the most popular ones.

14

Unlike desktop computers and servers which usually use spinning hard disk drives
(HDD) most mobile devices rely on solid state flash based memory for local storage.
There are several reasons for this. First of all the mechanical nature of HDDs and
their size are not well suited for devices that are often moved. Depending on the type
solid state drives (SSD) can offer higher throughput and lower latency compared to
HDDs [RC10]. Flash memory also consumes significantly less power both under load
and while idle [SHH10]. The only reason why many desktop computers and servers
computers still use classic HDDs is much lower price per GB [LCKW].

The most common technology used for embedded devices is NAND flash memory.
The main disadvantage of this memory type is that it does not allow bit-wise random
write access. Data can be only written in block mode. Furthermore the number of times
each block can be rewritten is limited. This means that access strategies typically used
for HDDs have to be modified. These modifications need to be done on several levels
– from the hardware controller to adapted databases and applications that are using
them [STG10].

Local storage in Android OS
Most Android powered devices offer two local storage possibilities. Either applications
can persist their data in the internal flash-based memory or they can access a removable
external storage (usually a removable SD memory card). The internal storage uses ei-
ther the YAFFS2 or the ext4 file system depending on the device model and Android
version [2]. The external storage is usually formatted with the FAT32 file system for
compatibility reasons.

Local storage on mobile phones running the Android OS was extensively analyzed
in [KAU12]. The findings in this paper can be summarized as follows:

• The performance of the storage hardware can have huge implications on the speed
of the application execution even in scenarios where one would not expect it such
as a web browser.

• In most benchmarks the internal storage is just as fast as the best SD cards or
slightly faster.

• There are huge differences between the performance of the various brands and
models of SD cards. These differences have a noticeable impact on the user ex-
perience. The advertised speed class of the card is only loosely correlated to the
actual speed.

• Slow storage can negatively influence the power consumption.

The paper also presents several possibilities how user experience can be improved by
speeding up storage system. The most obvious improvement would be using faster flash

15

memory. Changes to the software stack on all levels (OS, the file system, the SQLite
database and applications) would also improve the performance of the storage [KAU12].

AndroBench [18] is a tool for measuring the performance of the storage of a par-
ticular Android device. It measures sequential and random file access as well as the
performance of the built-in SQLite database and then uploads the results to a central
server. In [KK12] the authors of AndroBench present the performance data collected
from various devices collected using the tool. Their results show that there is no clear
winner and the performance depends on the concrete memory chip model used in the
device. The choice of file system can also heavily influence the performance. The log-
based YAFFS2 has faster random access while ext4 is faster during sequential access.

The information about the used memory chip model and file system is generally
hidden from the application developer behind the public API. This can make it diffi-
cult to optimize the performance of the application. In [NK07] a specialized database
for devices with flash storage is proposed which dynamically adapts its storage access
strategy at runtime to achieve optimal performance for the given memory type.

16

CHAPTER 3
Related work

3.1 Persistence in space based computing
In the original Linda concept the tuples do not have an explicit well defined structure like
a scheme in SQL databases. This makes efficient and flexible implementation of per-
sistent tuple space difficult. This chapter gives an overview how different tuple spaces
middlewares solved this problem.

Persistence in XVSM
The current version of MozartSpaces does not offer any persistence. However two older
implementations of the XVSM specification did provide persistence.

Persistence implementation using space aspects

Aspects are one possibility how to implement persistence in XVSM. This is a very non-
intrusive way because existing code does not need to be modified. An implementation
of persistence using aspects in the first version of MozartSpaces is described in [Mei11].

In [Mei11] Meindl defines four persistence models in XVSM but only the first model
is implemented:

A) The contents of the entire space is persisted.

B) Only selected containers are persisted.

C) Only the effects of operations in selected transactions are persisted

D) Only the effects of selected operations are persisted.

17

The persistence implementation defines a set of aspects that intercept the request
processing and stores the data. Table 3.1 gives an overview of the aspect interception
points and how they are used to persist data. XVSM transactions are mapped to database
transactions. The persistence works with HSQL DB [16] and DB4o but is designed to
be extensible and support for other database engines can be added easily.

Interception point Description
post transaction create creates a new database connection that correlates to

the just created XVSM transaction
post transaction commit looks up and commits the corresponding database

transaction
post transaction rollback looks up and rolls back the corresponding database

transaction
post write persists the entry that has just been written to the

space
post take deletes the entry that has just been taken from the

space
post destroy deletes the entry that has just been destroyed in the

space
post container create persists information about the container that has just

been created in the space
post container destroy deletes information about the container that has just

been destroyed in the space
pre core shutdown flushes the database if the space is flushed too

Table 3.1: Overview of interception points used by XVSM persistence implementation
using aspects [Mei11]

During the development of the persistence several shortcomings of the first version
of MozartSpaces were discovered, most notably:

• Some required interception points were not available (e.g. pre-shutdown, post-
launch, aspects for adding and removing aspects)

• Because of the way how IDs were assigned to objects in the space (containers and
entries) the IDs could not be consistently restored.

• Committing the database transaction in post-transaction-commit aspect violates
the atomicity requirement because the space can crash after the MozartSpaces
transaction has been committed but before the aspect invocation is completed.

18

Figure 3.1: Architecture of XVSM implementation based on a database [Bar10]

XVSM implementation based on a database

An alternative way how to implement persistence in XVSM is to use a database engine
as the lower CAPI layers [Bar10]. Figure 3.1 illustrates this approach. The basic idea is
to reuse the functionality of the database because databases provide the same function-
ality as CAPI-1 and CAPI-2, namely simple storage facilities and transactions. Several
database engines were evaluated and a prototype was build with the H2 Database en-
gine [7].

Unfortunately the prototype has shown that this approach has some serious issues.
First of all most databases have incompatible transaction semantics. XVSM ensures
isolation by locking entries or if needed entire containers. The H2 Database can only
lock whole tables. Furthermore it does not support subtransactions as described in the
XVSM specification. In the end the prototype reimplemented huge parts of the transac-
tional system instead of leveraging the existing functionality of the database.

Coordinators and XVSM queries posed another problem. The prototype stored co-
ordination data (such as the labels of the LabelCoordinator or the ordering of FifoCoor-
dinator) also in the database. Selecting an entry meant transforming the XVSM query
into a SQL SELECT query and then running it against the database. This worked rea-
sonably well for some coordinators and simple queries but more complex coordinators
(such as LindaCoordinator) and XVSM queries with chained selectors led to extremely
complex (and therefore slow) SQL queries which had to be combined with extra Java
code [Bar10].

Conclusion of persistence implementations in XVSM

Experience has shown that neither aspects nor CAPI-3 built on a database are a good
solution how to implement persistence in XVSM. Aspect-based persistence cannot be
integrated very well into the space because aspects by design provide only loose cou-
pling and hide the implementation of the space operations which is important for effec-
tive and efficient persistence implementation. A CAPI-3 built on top of a database is

19

also not a good solution because relational databases have different transaction seman-
tics and XVSM queries cannot be converted into efficient SQL queries. Therefore a new
approach has to be found.

Persistence in other space based middlewares
This section gives an overview of general purpose space based middlewares with goals
and features comparable to MozartSpaces and how they implement data persistence. A
more detailed comparison of different implementations can be found in [Mei11].

This overview does not contain GigaSpaces [33] because the primary focus of Gi-
gaSpaces is the development of scalable enterprise applications and the integration with
various software frameworks. An analysis of this product and its persistence architec-
ture would exceed the scope of this thesis.

Also not included in this overview are space based middlewares that run only on
mobile devices such as MobiSpace [FT05] and MobileSpaces [RD05].

Persistent Linda

The original Linda programming language does not provide persistence or transactions.
These were added as extensions in [AS92]. It also adds the possibility to update existing
tuples in place. Otherwise the simplicity (and therefore its power to express parallel
applications in an elegant way) remains the same.

JavaSpaces - Apache River

JavaSpaces was developed by Sun Microsystems (now Oracle Corporation) as part of
the Jini project. Despite being technologically advanced Jini was not commercially suc-
cessful. Therefore Sun decided to abandon it and release its source code under the open
Apache Software License. Jini is now maintained by the Apache Software Founda-
tion as Apache River [10]. A brief introduction into JavaSpaces is given in [20] and a
complete documentation of JavaSpaces can be found in [FHA99].

In JavaSpaces tuples are represented by Java objects and their fields are automati-
cally constructed from their public member variables. The operations read and take can
specify for how long the process should block if no matching tuple was found using a
timeout. JavaSpaces also allows to register notifications (a callback method) of future
write operations of tuples matching a certain template.

Apache River can be run either in a transient mode where the content of the space is
lost between executions or in a persistent mode where each space operation is serialized
and written into a log in the file system. It is also possible to provide custom persistence
implementation.

20

JavaSpaces - Blitz

Blitz is an alternative implementation of the JavaSpaces specification [6] which is avail-
able under a BSD license. Internally Blitz uses Berkeley DB to store data. There is no
API for adding support for alternative database backends. Blitz can be configured to use
on of the following three storage profiles:

• The transient profile uses the database to hold data at runtime but the contents
is removed after restart which basically means that the space is not persistent.
The reasons why it uses database nevertheless (instead of purely in-memory data
structures) are reducing memory consumption at runtime by swapping the data
between the memory and a database and code reuse with the next two profiles.

• The persistent profile persists the effects of all operations immediately.

• The time barrier profile guarantees that effects of space operations will be made
persistent after a configured period of time. This can lead to data loss and incon-
sistent state after a crash. On the other hand it should provide better performance
than the persistent profile.

The persistence profile is configured globally and it is not possible to use different
profiles within one space. Blitz creates a new Berkeley DB container for each class
used as entry type. Entries are transformed into a byte array using the standard Java
serialization before they are written into the database. Blitz uses secondary indexes for
faster template matching.

TSpaces

TSpaces were developed and later abandoned by IBM [LCX+01]. TSpaces is another
tuple space implementation in Java. Compared with the original concept of Linda it of-
fers several additional features. It supports timeouts and notifications similar to JavaS-
paces. Furthermore the read and take operations can return all matched tuples and not
just an indeterministically chosen one.

According to [28] TSpaces uses “a main memory database, and keeps it persistent
with logging of DB writes/deletes”. Checkpoins of the data are made regularly to keep
the log size small. IBM planned to add JDBC support to TSpaces. This feature was
probably never implemented because the TSpaces project was abandoned by IBM.

Unfortunately TSpaces and its source code are no longer available on the project’s
website and thus cannot be analyzed in more detail.

21

SQLSpaces

As the name suggests SQLSpaces [35] stores its data in a relational database. It consists
of two parts - a server and a client. Both are written in Java but the client is also available
for Prolog, C#, Ruby, PHP and Android operating system.

Tuples in SQLSpaces use a predefined class. They are basically a set of fields which
must be of primitive type (integer, boolean, string etc.) or a binary blob or an XML
document. Tuples are assigned an ID which can be used for updating the data stored in
the fields. SQLSpaces support notifications on future write and delete operations and
transactions which are based on transactions of the underlying database.

The default configuration uses an embedded HSQL database but also supports Post-
greSQL and MySQL. SQLSpaces automatically creates a new database table for each
new tuple signature (the types of the fields of the tuple). This is basically a form of
ORM except that references to other objects are not allowed. The biggest advantage of
this approach is that template matching can be implemented using an SQL query with
a WHERE clause. On the other hand this is also the reason why entries must have the
form of tuple of primitive fields.

TuCSoN

Tuple Centres Spread over the Network (TuCSoN) is a research project at the University
of Bologna [21]. It is a coordination framework for distributed processes and mobile
agents with focus on semantic data [NVP10].

As the name suggests an application using TuSCoN can be distributed across sev-
eral nodes. TuSCoN offers some basic persistence which can be configured on a per-
container basis. If enabled all operations of the given node are written into a logfile a
custom serialization mechanism.

Other space based middlewares

An extensive complete analysis of persistence in various space based middlewares in-
cluding additional products such as the commercial solution GigaSpaces can be found
in [Mei11].

Summary

The persistence implementations of Apache River, Blitz SQLSpaces and TuCSoN are
compared in Table 3.2. The table shows which persistence models (as defined in Section
3.1) are supported, whether different database engines are supported, how the data is
converted into a persistable form and whether the middleware can store data on mobile
devices.

22

TSpaces is not included in the table because the source code is no longer available.
Persistent Linda was also omitted because there is currently no actively maintained im-
plementation.

Swapping
Persistence model Different

DBs
Data
conversion

Mobile
devicesA B C D

SQLSpaces Yes Yes No No No Yes Simple
ORM

Only
client

Apache
River

No Yes No No No No Java seri-
alization

No

Blitz Yes Yes No No No No Java seri-
alization

No

TuCSoN No Yes Yes No No No Custom
serializa-
tion

Only
client

Table 3.2: Overview of persistence in different space based middlewares

As you can see the space based middlewares examined in this section use different
approaches for data persistence. Only SQLSpaces support different databases and it
is also the only examined space based middleware that uses object relational mapping
rather than object serialization. While SQLSpaces offers an Android remote client none
of the examined middlewares can actually run and store data on a mobile device.

23

CHAPTER 4
Requirements

This chapter summarizes both the functional and non-functional requirements on the
persistence layer. The formal model of XVSM, its reference implementation Mozart-
Spaces and the target platforms create many constraints that need to be considered dur-
ing design and development of the persistence layer.

4.1 Requirements of the formal model of XVSM
XVSM is formally specified in [Cra10] and a brief overview of the specification was
given in Section 2.1. This section focuses on the details of data persistence in XVSM.

The CAPI-1 layer provides a simple space for storing data. It offers three atomic
operations: read, write and take. It does not support transactions. There are no further
details on how this storage should be implemented. The persistence implementation
must provide functionality to store individual entries.

The CAPI-2 layer provides transactions with ACID properties:

• Atomic – all operations within one transaction are executed as one action or not
at all.

• Consistent – the data must be in consistent state when the transaction is commit-
ted.

• Isolated – concurrent not yet committed transactions must not interfere with each
other. MozartSpaces supports the isolation levels read committed and repeatable
read as defined in [ISO92].

• Durable – the effects of the operations are permanent.

24

Atomicity, consistency and isolation are achieved by pessimistic locking. Without
persistent storage the durability requirement is not fulfilled. But atomicity and consis-
tency are also important requirements for the persistence layer. Only data of commit-
ted transactions must be persisted. Changes made by yet uncommitted transactions or
transactions that have been rolled back must not be stored. Persisting the changes of a
committed transaction must happen as one atomic action, regardless of how many oper-
ations were encapsulated in the transaction. When the space is restored its state must be
consistent. The implementation must ensure this even if the space crashes in the middle
of a running transaction or in the process of committing a transaction.

The CAPI-3 layer adds coordination and container management. This means that
not only individual entries need to be stored but also:

• Container meta-data – each container has a name, maximum capacity and a list
of obligatory and optional coordinators. This information must also be persisted
otherwise it would not be possible to restore the state of the space.

• Coordination data – most coordinators have some internal state that has to be
persisted. This state can have different forms. Some coordinators store infor-
mation on per-entry basis (e.g. KeyCoordinator, LabelCoordinator) while others
have a global stage (e.g. the ordering of entries in VectorCoordinator).

To summarize the requirements of the formal model of XVSM the persistence layer
must be flexible enough to store all kinds of data (entries, coordinator state and container
meta-data) and it must be compatible with the transactional model of XVSM.

4.2 Persistence models
The four different persistence models have been described in [Mei11] and summarized
in Section 3.1. The persistence implementation described in this thesis only needs to
support the first two models. Unless stated otherwise the entire space should be persisted
but it should be possible to declare selected containers as in-memory only.

The persistence models C (only effects of operations within selected transactions are
persisted) and D (only effects of selected operations are persisted) have been omitted for
two reasons. First it is difficult to find practical use cases for these models and second
the behavior becomes difficult to understand for the user as illustrated by the following
example. Imagine process A writes an entry using a persistent transaction and later
process B deletes the entry using a non-persistent transaction. Should the entry now
be visible to both processes or not? Should this even be possible? How can process B
know that an entry written by another process is persistent or not? And what happens
if the space is restarted? As you can see the persistence models C and D cannot be
implemented until clear and intuitive semantics for such cases are defined.

25

4.3 Constraints of the MozartSpaces implementation
of XVSM

MozartSpaces is currently considered as the reference implementation of the XVSM
specification. For performance reasons MozartSpaces implements the layers CAPI-1 to
CAPI-3 in a monolithic code structure. This means that MozartSpaces offers a XVSM-
compliant CAPI-3 interface but internally there is no CAPI-2 or CAPI-1.

MozartSpaces is being actively developed by several contributors. To keep conflicts
at a minimum the implementation of the persistence should change the architecture of
MozartSpaces as little as possible. Of course some changes to the API are unavoidable.
These changes must be discussed with the XVSM Technical Board [14] as they arise.

Support for large containers
Until now all data in the space was held in memory at all times using the Java Collections
Framework. While this approach provides very good performance it does limit the
scalability. Having all data in memory makes containers with many entries or spaces
with many containers impossible. The persistence layer should move large portions of
the data to persistent storage and only keep the necessary control structures in memory.

Platform requirements
MozartSpaces is written in pure Java and can run on any recent J2SE runtime. A slightly
modified version of MozartSpaces was created for the Android operating system. Both
versions are actively being developed and are interoperable. It is important that the per-
sistence layer is compatible with both versions of MozartSpaces and offers reasonable
performance on both platforms. Having some platform-specific code is unavoidable but
it should be kept at a minimum.

The persistence of the J2SE version of MozartSpaces must remain pure Java or use
a programming language that can be compiled into Java bytecode. Native libraries that
require a specific hardware platform or operating system should be avoided.

Flexibility
There is no one-size-fits-all persistence solution. Different application scenarios have
different requirements. The persistence layer must be flexible and configurable to suite
different needs. Some applications require a high throughput, some applications use
very large entries, some applications have many entries or containers and the size of
transactions (the number of operations within a transaction) can vary as well. Clearly
it is not possible to achieve excellent performance under all possible circumstances.

26

But it should be possible to configure different parts of the system to achieve optimal
performance for a particular use case.

In-memory mode
Despite the introduction of persistence it should still be possible to run MozartSpaces
in an in-memory mode. This mode should have the same behavior and performance as
the last version of MozartSpaces without the persistence layer.

It should also be possible to create in-memory-only containers while other contain-
ers within the same space use persistent storage.

Modularity and future extensibility
MozartSpaces is divided into several modules some of which are optional (depending on
application scenario). The architecture of the persistence should follow this approach.
Functionality should be split into separate modules with clear boundaries and interfaces.
It should be possible to extend the functionality (for example add support for data repli-
cation) with additional optional modules (plugins) without having to change the existing
code.

Code quality and maintenance
MozartSpaces already employs both unit and integration tests. These can be used to
ensure that the necessary code changes made will not change the behavior in an unex-
pected way. New tests must be developed to verify the functionality of the persistence
layer.

MozartSpaces also uses Checkstyle [27] to ensure that the source code follows cod-
ing standards. These standards ensure that all developers of the project use the same
style when writing code. This leads to better readability which makes maintenance
easier. Checkstyle is also used to ensure that all classes and methods are properly doc-
umented in JavaDoc.

4.4 Constraints of the Android operating system
The Android operating system as target platform introduces additional constraints on
the implementation. The Android OS is designed for embedded and handheld mobile
devices with limited hardware resources. Compared with normal computers these de-
vices often:

• have just one CPU core. Although dual-core Android phones started to show up
on the market in the recent months they are still very expensive and rather an

27

exception. Furthermore ca. 67% of users use Android 2.2 or older [13] which
does not support multiple cores.

Having only one core reduces performance gains of multithreading which in re-
turn has negative effects on scalability.

• have generally a much slower CPU. On mobile devices size, energy consump-
tion and heat production of the CPU are much more important than on desktop
computers. To satisfy these requirement manufactures build mobile devices with
smaller, more efficient but generally slower CPUs based on the ARM-architecture.

• have less and slower operating memory. Just like with the CPU sacrifices have to
be made with the operating memory in order to make devices truly mobile.

• have less memory for permanent storage.

• are connected using various wireless technologies such as Wi-Fi, Bluetooth or
cellular network that offer limited speeds and poor reliability.

• are battery powered. On one hand consumers want mobile handheld devices to be
as small and light as possible while on the other hand the device should be usable
for as long as possible without recharging. These two requirements are clearly
contradictory and manufactures have to make a compromise between battery life
and battery size (and thus the size of the device). On a typical smartphone there
are four components that are responsible for most of the power consumption:

1. Wireless connectivity - most Android devices offer various wireless tech-
nologies such as Bluetooth, WI-FI or GSM/UMTS mobile network. Al-
though these technologies offer different speeds, latency and reliability they
have one thing in common - they consume energy when receiving and espe-
cially when sending data.

2. Display - modern displays on smartphones and tablets offer high resolution
and bright colors. Despite major improvements the display is still draining
a lot of energy when turned on.

3. Computing resources - heavy load on the CPU and RAM over longer periods
of time can seriously drain the battery of most mobile devices. Fighting this
kind of energy consumption is complicated because it is usually a “death
by thousand cuts”. Often there is no single line of code causing the energy
drain, it is the overall designing and programming style that affects the en-
ergy efficiency.

4. Storage - usually there is some internal flash memory for persistent storage
of data. Some devices also offer additional storage options such as remov-
able memory cards or external USB drives.

28

The significance of the four points described above varies across devices and de-
pends on the usage patterns and applications that run on the device [CH10].

The limitations described above come from the hardware of the devices that Android
OS was developed for. The operating system itself, the development tools and the API
have further limitations:

Android development tools use Java as programming language. Because of licensing
issues the source code is not compiled to Java Virual Machine (JVM) bytecode but
to a different format called Dalvik executables. Dalvik is a virtual machine specially
designed for devices with limited hardware resources. JVM bytecode cannot be run on
the DalvikVM . Static conversion of JVM bytecode to Dalvik executables is possible.
This means that tools and libraries that use bytecode generation and manipulation at
runtime such as ASM or CGLib cannot be used on Android.

The Android API has some limitations. It does not offer the full class library of Java
2 Standard Edition. Instead a subset of Apache Harmony (an alternative implementation
of the J2SE class library with open-source license) is used. Compared to the full class
library of J2SE the following parts are missing: AWT and Swing GUI libraries, JAXB,
RMI, JNDI, ImageIO, XA-Transactions, JavaBeans, MXBeans, Corba, Printing and
parts of Security [3]. This can be an issue when porting existing Java applications to
Android.

Writing native applications in C or C++ is also possible but it makes distribution and
deployment of applications more complex because a separate build has to be created for
each processor type (e.g. not all devices have a FPU).

29

CHAPTER 5
Implementation

This chapter describes how the persistence layer of MozartSpaces was implemented.
The general architecture of MozartSpaces remains the same. The description of the
implementation of the lower layers (CAPI-1 to CAPI-3 of the XVSM specification) can
be found in [Bar10] and the upper layers (CAPI-4 and XVSMP) are described in [Dö11].

The persistence uses a local embedded database. The reason for this decision is
the high latency and low reliability of network connections on mobile devices. Local
storage offers much lower latency and is always available regardless of the network
status. The latest generation of smartphones offers several GB of space which means
that the storage capacity should not be an issue.

It was decided that the transactional isolation of MozartSpaces will remain un-
changed. This means that isolation is accomplished by pessimistic locking of entries
and containers as described in [Bar10]. Transactional isolation of the database (if it
offers any) is not used. While this might look like a missed code-reuse oportunity pre-
vious experience has shown that reusing the isolation offered by the database does not
yield the desired results [Bar10, Mei11].

In [Mei11] the persistence is implemented as orthogonal functionality using aspects.
The advantage of this approach is loose coupling between the persistence and the core
of MozartSpaces. Unfortunately it has some limitations because in some cases a tighter
integration of the persistence in MozartSpaces is necessary. Because of this it was
decided to implement the persistence inside the core of MozartSpaces and integrate
it with the CAPI-1 to CAPI-3 layers. While this means a tight coupling between the
persistence and the core of MozartSpaces it allows a clean implementation that does not
violate the XVSM specification.

30

capi3-javanative

capi3-apicapi3-integration-tests

core-api

capi3-persistence-test

capi3-berkeleydb

core-runtime core-integration-tests

core-cache

Figure 5.1: Components of MozartSpaces relevant to the persistence and dependencies
between them. Blue components are always deployed and used at runtime, gray com-
ponents contain only test cases and are never used at runtime and white components can
be optionally used at runtime if their functionality is required.

5.1 Architecture overview
MozartSpaces is built using Maven and consists of several modules. Figure 5.1 shows
the dependencies between modules. Some modules have been omitted from the diagram
(such as the examples module, XVSMP, network communication module and a shared
module with utility classes) because they are not relevant for the persistence.

core-api contains the public API of MozartSpaces core that can be used by client
applications that use the space in embedded mode.

core-runtime contains the implementation of the CAPI-4 layer of the XVSM specifi-
cation.

core-integration-tests contains integration tests for the whole MozartSpaces core.

capi3-api contains the public API of the CAPI-3 layer of the XVSM specification.

capi3-javanative contains the Javanative implementation of the capi3-api. This is the
component where the most changes have been done by the persistence layer. It contains
code of the persistence layer that does not depend on any particular persistence backend.

31

capi3-berkeleydb contains the code of the persistence backend based on Berkeley
DB (see Section 5.2)

capi3-persistence-tests contains tests for the implementation of the persistence layer.
These tests verify the functionality of the persistence in different configurations on a
low level.

capi3-integration-tests contains integration tests for capi3-javanative implementa-
tion.

core-cache contains optional configurable caches for different parts of the system (see
Section 5.5).

The class diagram in Figure 5.2 shows how the persistence is integrated with the
rest of the Java native implementation. Figure 5.3 shows a class diagram focusing on
the implementation of the persistence. The purpose and implementation of the most
important classes will be explained throughout this chapter.

32

Figure 5.2: Class diagram with the most important classes and interfaces of the persistence layer. Classes that already
existed in previous versions of MozartSpaces are white, new classes are blue and classes specific to the Android version are
green.

33

Figure 5.3: Class diagram showing the StoredMap, its implementations and related classes and interfaces. Classes that
already existed in previous versions of MozartSpaces are white, new classes are blue and classes specific to the Android
version are green.34

5.2 Storage backend
The goal of the persistence layer is to replace the existing Java collections with some-
thing that a) offers persistent storage of data, b) does not keep all data in memory and
c) offers a similar API in order to keep changes to existing code base at a minimum.

Choosing a storage engine
Developing a completely new persistence layer from scratch is neither feasible nor rea-
sonable. It was decided to use an existing storage engine and integrate it into Mozart-
Spaces. Several options were evaluated based on these requirements:

• The storage engine does not have to provide isolation of transactions because this
is already handled by MozartSpaces. In fact it must be possible to read uncom-
mitted data written by concurrent transactions. Most databases have their own
semantics of transactional isolation which are not compatible with the specifica-
tion of CAPI-3.

• The storage engine does not have to manage the conversion of Java objects to a
persistent data format (such as SQL rows and columns) and vice versa. All objects
managed by the space are already serializable because they have to transfered over
the network. MozartSpaces offers several different serialization mechanisms that
can be reused for the persistent storage.

• The storage engine does not have to handle relationships between objects. The
entries and coordination data stored in the space do not have references to each
other.

• The storage engine should provide atomicity. This means that it should be possi-
ble to group several write operations into a single atomic action.

• The storage engine must run on the J2SE platform and must not use any native
code which would limit the usage of MozartSpaces to a specific hardware or op-
erating system.

• The storage engine must run on the Android operating system.

• using the same storage engine in both the Java version and the Android version of
MozartSpaces is desirable but is not really necessary.

• The storage engine should have a small memory footprint and it should not require
too many transient dependencies (ideally none). This is especially important for
the Android version in order to keep the application small.

35

• The license of the storage engine must be compatible with the license of Mozart-
Spaces (AGPL) and it’s distribution channels.

Several storage engines have been evaluated and two matched the criteria described
above:

Berkeley DB Java Edition

Berkeley DB perfectly matches the requirements described above. It is written in pure
Java and runs both on J2SE and Android OS. In fact there are two versions: one for
J2SE and one for Android OS but they use the same API and the differences between
those two are not visible to the application developer. The Android version of Berkeley
DB stores the data in the external storage (such as SD memory card). Berkeley DB is
a NoSQL database. It is basically a simple key-value store. Both keys and values are
untyped and can be accessed as byte arrays. The currently latest version of Berkeley
DB (5.0.34) was used during development and evaluation of the persistence layer.

Android SQLite

The Android OS comes with a built-in SQLite database support. It is part of the standard
Android Java API and does not require any additional libraries. Depending on the ver-
sion of Android OS different version of SQLite is included: 3.5.9 (Android 1.5+), 3.6.22
(Android 2.2+) or 3.7.4 (Android 3.0+). As the name suggests SQLite is a lightweight
database. It implements most of the SQL92 standard. The parts of SQL92 that have been
omitted [31] are not necessary for the implementation of the persistence. It is written in
C and runs natively on the Android OS. SQLite stores its data in the device’s internal
memory and not in the external storage. This has two advantages: it does not require
any permissions and the data is protected and cannot be accessed by other potentially
malicious third party applications.

Alternatives

Few other storage engines that run on the Android OS have been considered but have
not met at least one of the requirements, most notably:

Couchbase and Couchbase Mobile Couchbase is supposed to be a “simple, fast,
elastic” NoSQL Database [5]. It also offers an Android version called Couchbase Mo-
bile. Unfortunately Couchbase cannot be run in embedded mode, a separate server
component has to be deployed and started. The communication between the application
and the database server is done via HTTP. This communication overhead is simply too
big for a mobile application.

36

HSQL DB HSQL is a database written in pure Java that supports the SQL92 standard
[16]. Unfortunately HSQL does officially not support the Android OS. Application
can access the Database through JDBC which creates some overhead. This biggest
issue with JDBC are concurrent transactions. JDBC allows only one transaction per
opened connection. Also connections are not thread-safe and must be synchronized
when shared between different threads. The synchronization and connection pooling
that would be required in order to support many concurrent transactions would add
unnecessary complexity.

H2 Database H2 Database [7] is similar to HSQL. It is written in pure Java and is
SQL92 compliant. H2 runs on both J2SE and (since recently) also on Android OS. Just
like HSQL, H2 is based on JDBC with all its disadvantages described above.

Performance evaluation of Berkeley DB Java Edition and Android SQLite

In order to decide between SQLite and Berkeley DB a small performance benchmark
was developed. It consisted of reading and writing key-value pairs. Keys were of type
long while values were byte[] with a random length between 100 and 5000 and
random content. The benchmark was run on a HTC Legend with Android 2.3.3 and the
results were measured with the Traceview profiler [11]. The benchmark consisted of
several parts:

• Writing 100 values with sequential keys into an empty container (SQL table in
case of SQLite and a database container in case of Berkeley DB).

• Writing 100 values with random (but unique) keys into an empty container.

• Reading 25 values with random keys from a container which stored 100 values.

• Reading all values from a container from a container which stored 100 values.

• Inserting 10 values into a container which already stored 100 values.

• Removing all entries from a container which stored 100 values.

Figure 6.3 shows the results. All operations were carried out in a single thread. The
Android built-in SQLite database was clearly faster than Berkeley DB.

SQLite on J2SE

Unfortunately it is not possible to use SQLite in both the Android and J2SE versions of
MozartSpaces for two reasons:

37

0 200 400 600 800 1,000 1,200 1,400 1,600

write-seq.

write-rnd.

read-rnd.

read-all

insert

clear

476

488

44

89

85

43

1,468

1,509

196

461

120

108

time [ms]

SQLite Berkeley DB

Figure 5.4: Performance evaluation of SQLite and Berkeley DB on Android

• First of all SQLite is written in C and compiled to native binaries. This means
that a different precompiled binary has to be redistributed for each operating sys-
tem and hardware architecture. This is not an issue on the Android version of
MozartSpaces because SQLite is already present a part of the Android operat-
ing system. However with J2SE this is not the case which means that a OS- and
hardware-specific version of SQLite would have to be redistributed with the J2SE
version of MozartSpaces. This would make the build process and distribution of
MozartSpaces more complicated and it would violate the requirements specified
in previous section.

• The Android OS provides special Java language bindings for the SQLite (see
package android.database.sqlite of the Android API). There are also
Java language bindings for J2SE but with different API. This means that Java code
which uses SQLite on Android cannot be compiled with J2SE because the API is
different.

Conclusion

In the end it was decided to use Android SQLite database for the Android version of
MozartSpaces mainly because of its performance and because it is available on all An-

38

droid devices and does not require any additional libraries.
Berkeley DB Java Edition was chosen as the default storage engine for the J2SE

version of MozartSpaces. It is also be possible to use Berkeley DB on Android as well
but that would mean additional 2MB of libraries and require external storage (e.g. SD
card) as well as permissions to access it.

Support for other databases can be added by simply implementing an interface and
configuring the MozartSpaces core. H2 Database might be supported in the future as an
alternative to Berkeley DB.

5.3 Abstraction of the storage engine
The two selected storage engines use different database models. Berkeley DB is a key-
value store that supports concurrent transactions. SQLite on the other hand is an SQL
database and the version used on the Android operating system only supports one ex-
clusive transaction at a time. The persistent layer must provide an abstraction of the
two storage engines. It also must provide a way to implement a fast but not persistent
in-memory mode which stores the data in Java collections.

The StoredMap interface
The StoredMap is generic key-value store that supports transactions and one of the
central parts of the persistence. Table 5.1 shows all methods of the interface and their de-
scription. The names of the methods were chosen to be similar to the java.util.Map
interface because it was intended to replace of ConcurrentHashMaps used by pre-
vious versions of MozartSpaces. By design the StoredMap does not provide trans-
actional isolation. All read operations (get(key), containsKey(key), size(),
keySet()) can read data written by both committed and uncommitted transactions.
There are two types of write operations: with explicit transactions (put(key, value,
tx) and remove(key, tx)) and with implicit transactions (put(key, value)
and remove(key)). Effects of write operations with implicit transactions are per-
sisted immediately. Effects of write operations with explicit transactions are persisted
once the specified transaction is committed. See Section 5.4 for more details.

There are five classes that implement this interface:

• InMemoryStoredMap which is backed by a ConcurrentHashMap. This
implementation keeps the data in memory only.

• CachedKeySetStoredMapWrapper is a wrapper for an arbitrary Stored-
Map that caches the set of keys stored in the map (see Section 5.5).

39

Method Description
get(key) returns the (possibly uncommitted) value associated

with key
put(key, value, tx) stores the new value associated with the given key

in the map. The effects of operation will be made
persistent once the transaction tx is committed.

put(key, value) same as put(key, value, tx) except an im-
plicit transaction is used which means that the effects
of the operations are made persistent immediately.

remove(key, tx) removes the given key and the value associated with
it. The effects of the operation will be made persistent
once the transaction tx is committed.

remove(key) same as remove(key) except an implicit transac-
tion is used which means that the effects of the oper-
ations are made persistent immediately.

containsKey(key) returns true if the map contains the given key
size() returns the number of key-value pairs stored in the

map including uncommitted data
keySet() returns an immutable set that contains all the keys cur-

rently stored in the map
clear() removes all key-value pairs
close() closes the map and releases all resources attached to

it
destroy() closes the map, deletes all contents and the map itself

and releases all resources attached to it

Table 5.1: The StoredMap interface

• AbstractStoredMap is an abstract class that implements parts of the Stored-
Map interface. It converts the keys (which can be of arbitrary type) to Persis-
tenceKeys and vice versa (see next section).

• BufferedStoredMap is backed by backends that do not support concurrent
transactions. Because of this all write operations have to be first written to a
buffer and executed later when the transaction is committed (see Section 5.4).

• TransactionalStoredMap is backed by backends that support concurrent
transactions. This is done by mapping CAPI-transactions to the transactions of
the backend (see Section 5.4).

40

The PersistenceContext class
The PersistenceContext class encapsulates a configured environment that can
be used to persistently store data. It provides methods for managing StoredMaps and
creating new persistent transactions. A persistence context is always using one profile
(see Section 5.7) which uses one backend. Table 5.2 shows the public methods of the
class.

Method Description
createStoredMap
(name,
persistentKeyFactory)

creates a new StoredMap

createPersistentTx
(tx)

creates a new LogItem that represents the persis-
tent transaction and can be attached to the CAPI
transaction.

close() closes the PersistenceContext and releases
all resources attached to it

createOrderedLongSet
(name)

creates a new OrderedLongSet (see Section
5.8)

makeEntryLazy
(nativeEntry)

returns a new NativeEntry that uses lazy load-
ing of the actual entry value (see Section 5.8)

Table 5.2: The PersistenceContext class

The PersistenceContext is initialized at the startup of the space. The con-
structor takes the name of the persistence profile as parameter and based on this name
resolves the appropriate backend and initializes it. The PersistenceContext is
closed when the space is shut down to safely release all resources used by the backend.

The method createStoredMap(name, persistentKeyFactory) returns
an instance of the StoredMap interface. The actual implementation class depends on
the backend. In case of Berkeley DB or Android SQLite the returned map already con-
tains the key-value pairs written in it during the previous sessions.

The PersistenceKey interface and the
PersistenceKeyFactory interface
The StoredMap interface allows keys of arbitrary type just like all the implementa-
tions of the Map interface from the Java collections backend. This is important to keep
changes in existing codebase of MozartSpaces at a minimum. The backends on the other
hand pose some constraints on the keys. Berkeley DB stores and manages the keys in
form of a byte[] while SQLite requires that the keys are one of the allowed SQLite

41

datatypes: INTEGER, REAL, TEXT, BLOB [30]. Any of these types can be used as
a primary key but the access is about twice as fast if an INTEGER is used as primary
key [32].

The PersistenceKey interface is an abstraction of the key type and wraps the
actual key objects used by the StoredMap. It is used to convert the key to a form
compatible with the database. It has a type parameter which specifies the actual type of
the key. Table 5.3 shows the methods of the interface.

Method Description
isConvertibleToLong() returns true if the key can be converted to long

value
isConvertibleToString() returns true if the key can be converted to

String value
asString() returns the String representation of the key
asLong() returns the long representation of the key
asByteArray() returns the key as byte[]
getKey() returns the key itself

Table 5.3: The PersistenceKey interface

The backend implementation decides which form of the key is used for storage. If
Berkeley DB is used then the keys are always converted to byte[]. In case of Android
SQLite the key is converted to long if possible (determined by the isConverti-
bleToLong() method), otherwise the String representation is used.

The reverse conversion (from a database value into a key of a particular type) is done
with a PersistenceKeyFactory. This interface is also parametrized by the type
of the actual keys. Table 5.4 shows the methods of the interface.

There are four different implementations of the PersistenceKey interface (along
with the four matching PersistenceKeyFactorys):

• LongPersistenceKey which wraps a long value

• NativeEntryPersistenceKeywhich uses the ID of a NativeEntry (which
is a long) as a value

• StringPersistenceKey which wraps a String. Naturally it is not con-
vertible to long which can lead to slightly reduced performance in SQLite.
Fortunately there are no performance-critical parts that use StoredMaps with
Strings as a key type.

• ClassPersistenceKeywhich wraps the name of the class (String). These
keys are also not convertible to long.

42

Method Description
canConvertFromString() returns true if the factory can create a

PersistenceKey from a String value
canConvertFromLong() returns true if the factory can create a persistence

key from a long value
createPK(key) creates a new PersistenceKey from an arbi-

trary object
createPKFromByteArray
(data)

creates a new PersistenceKey from a
byte[]

createPKFromLong
(long)

creates a new PersistenceKey from a long

createPKFromString
(string)

creates a new PersistenceKey from a
String

Table 5.4: The PersistenceKeyFactory interface

This means that currently only longs, NativeEntrys, Strings and Classes
can be used as keys in a StoredMap. Currently only LongPersistenceKey and
NativeEntryPersistenceKey are being actively used in MozartSpaces. Support
for other types can be added by implementing the PersistenceKey and Persis-
tenceKeyFactory interfaces.

The BaseDBAdapter interface
Compared to a StoredMap database adapters provide a more low-level abstraction of
a database container (e.g. an SQL table). A database adapter has database-specific code.
Just like a StoredMap it is basically a key-value store but it processes the data on a
lower level. Values written and retrieved by a database adapter are already in serialized
form (byte[]).

The common functionality of all database adapters is represented with the Base-
DBAdapter interface which is described in Table 5.5.

The BaseDBAdapter interface does not have any method for actually storing and
retrieving any values. It only has general methods for initialization and data manage-
ment. There are two interfaces that extend the interface.

The DBAdapter interface

The DBAdapter interface extends the BaseDBAdapter interface. Its methods are
described in Table 5.6. It is intended for databases that do not support concurrent long
running transactions. Effects of methods that modify the content (put(key, data)

43

Method Description
init(properties) initializes the adapter with the configuration provided

in the properties
destroy() closes the database adapter, removes all key-value

pairs and the database container itself
close() closes the database adapter and releases all resources
clear() removes all key-value pairs
count() returns number key-value pairs stored in the container

managed by this adapter
keySet() returns a set of PersistenceKeys stored in the

container managed by this adapter

Table 5.5: The BaseDBAdapter interface

and delete(key)) are persisted immediately. The BufferedStoredMap (see
Section) internally uses this adapter.

Method Description
get(key) returns the value (as byte[]) associated with the

key
put(key, data) store a new key-value pair and make it persistent im-

mediately
delete(key) delete a key-value pair with the given key and persist

the change immediately

Table 5.6: The DBAdapter interface

The AndroidSQLiteDBAdapter is an implementation of this interface which
stores the key-value pairs in an SQL table of the SQLite database on the Android oper-
ating system.

The TransactionalDBAdapter interface

The TransactionalDBAdapter interface as described in Table 5.7 is intended for
database containers that support concurrent long running transactions. The Transac-
tionalStoredMap (see Section 5.4) internally uses this adapter. The methods that
modify the content of the database (put(key, data, tx) and delete(key,
tx) have a parameter to specify the transaction in which the operation should be carried
out. The effects of the operation are persisted when the transaction is committed.

The BerkeleyDBAdapter implements this interface by storing the key-value
pairs in a Berkeley DB container.

44

Method Description
get(key) returns the value (as byte[]) associated with the

key
put(key, data, tx) store a new key-value pair and make it persistent

when tx is committed
delete(key, tx) delete a key-value pair with the given key and persist

the change when tx is committed

Table 5.7: The TransactionalDBAdapter interface

5.4 Transactions
Integrating the persistence with the transactions of MozartSpaces was probably the most
complex task. The main reason for this is the transactional model of the XVSM specifi-
cation. XVSM supports concurrent long running transactions and unlike most databases
uses pessimistic locking for transactional isolation. Two different persistent transaction
implementations were created one of which is used depending on whether the persis-
tence backend supports concurrent long running transactions or not. In the former case
the so called buffered transactions (named after their internal buffers) are used and in
the latter case the so called mapped transactions (since it is basically a 1-to-1 mapping
between CAPI transactions and database transactions) are used.

Buffered transactions
The persistence layer uses buffered transactions if the database does not support con-
current long running transactions. In this case the transactional behavior has to be im-
plemented by the persistence layer (and not the backend) which creates some overhead.
The sequence diagram in Figure 5.5 shows a sample transaction that is started, executes
three operations (put, get, remove) and is finally committed.

When a new buffered transaction is started a new PersistentTransaction is
instantiated. It implements the LogItem interface and thus can be added to the trans-
action log of the CAPI transaction. PersistentTransaction acts as a container
of write operations (put and remove). It is also added to the DeferredDB which is
basically a container (a set) of PersistentTransactions.

The BufferedStoredMap has two internal buffers that are important for the
read-uncommitted functionality of the StoredMap. The write-buffer contains key-
value pairs that have been written but not yet committed. The delete-buffer is similar
and contains deleted key-value pairs. Both buffers are shared by all transactions and
access to them must be synchronized.

Calling the put method of a StoredMap (in this case the BufferedStoredMap
implementation to be precise) causes three things to happen. First the new key-value

45

pair is written into a write-buffer and second the write operation is added to the Per-
sistentTransaction. Finally the new key-value pair is added to the database
cache (see Section 5.5). If the key is already stored in the map then the old value is
overwritten. Also the key is removed from the delete-buffer if present.

Reading from a BufferedStoredMap is done by first checking the write-buffer
and the delete-buffer which contain data written/deleted by running (uncommitted) trans-
actions. If the key is present in the delete-buffer then null is returned. If the key is
present in the write-buffer then the value from the write-buffer is returned, otherwise the
database cache is searched. Finally if the cache does not store the key then the database
backend itself is queried.

Deleting a key-value pair from a BufferedStoredMap is similar to writing one.
The key is written into the delete-buffer and deleted from the write-buffer if present.

When the CAPI transaction is committed all its LogItems are committed and
among them also the PersistentTransaction. The operations stored in the
buffers of that particular transaction are executed. Key-value pairs in the write-buffer are
written into the database and keys in the delete-buffer are removed from the database.
In case of SQLite this means running the INSERT and DELETE queries.

The transaction rollback is very simple. The key-value pairs in the write-buffer and
the keys in the delete buffer of the particular transaction are simply removed from those
buffers. The database itself remains unchanged.

Mapped transactions
Mapped transactions are used when the backend supports transactions with compatible
semantics. This is the same approach as used in [Mei11]. The backend must allow
concurrent long running transactions without isolation (read-uncommitted). Berkeley
DB is currently the only supported backend that uses mapped transaction but there are
also other databases that offer compatible transactions such as the H2 database.

The implementation is simpler than the buffered transactions. Figure 5.6 shows a
transaction that contains several operation.

When a new CAPI transaction is created the backend also starts a new transaction
that is attached to the CAPI transaction. There is a one-to-one relationship between
CAPI transactions and backend transactions. The backend manages the mapping be-
tween the two groups of transactions. This is implemented with a Map where CAPI
transactions are the keys and the backend transactions are the values.

When a CAPI transaction wants to write (or delete) some data the mapped backend
transaction is used to execute the database operations. Since there is no isolation no
backend transaction is needed for reading.

The backend is responsible for atomicity. The backend transaction is committed
right before the CAPI transaction is committed and the same goes for rollback.

46

Figure 5.5: Sequence diagramm of BufferedStoredMap

5.5 Caching
Initial performance tests have shown that some parts of the database and some opera-
tions need caching. There are four important caches in the persistence layer.

Database cache
This is the cache for the values of the StoredMap and is represented by the Persis-
tenceCache interface which is described in Table 5.8. There are two implementations
of this interface. The default is EmptyCache which, as the name suggests, is empty
and always returns null. This is used when no caching of database values is necessary.
The other implementation is called GuavaCache and resides in the core-cache module
that can be deployed optionally. It is based on the Guava library [12] and has a config-
urable size. Internally it uses a map of weak keys and weak values so the key-value
pairs are automatically evicted by the garbage collector if there are no other references
to them [25].

47

Figure 5.6: Sequence diagramm of TransactionalStoredMap

Key cache
During the processing of the request the value of an entry is often not important. Many
coordinators operate only with the IDs of the entries. As a result the values from a
StoredMap are not accessed very often. The keys on the other hand are needed very
often. The set of keys that contains the IDs of all entries stored in a particular container
is usually iterated several times during a request. Retrieving the keys from the database
every time takes too much time, especially on Berkeley DB. Because of this and because
the keys are usually very small (mostly just longs) it was decided to cache the set of
keys in memory.

The caching of keys is done by the CachedKeySetStoredMapWrapper which
implements the StoredMap interface. It is a wrapper that delegates all operations
to the StoredMap it wraps. Additionally it keeps all keys of the StoredMap in a
ConcurrentHashMap.

48

Serializer cache
All values need to be serialized before they are stored in the database. Depending on the
data this can become a performance problem. The CachingSerializerWrapper
offers a cache for serialization of objects. It uses the Guava library [12] and has a
configurable size. As the name suggests it is a wrapper for the Serializer interface.
The actual serialization process is delegated to the wrapped serializer. Additionally the
object and the result (a byte[]) are stored in the cache. If the same object (according
to the equals method) is to be serialized again the cached byte[]-value is returned.

Internal Berkeley DB cache
Berkeley DB uses an internal database to cache values. The size of the cache is config-
urable and when the limit is reached the values are evicted using the least recently used
strategy.

Method Description
get(key) get a value from the cache associated with key or

null if no cached value is found
put(key, value) put a new key-value pair into the cache. It will remain

there util it is evicted (by implementation-specific de-
cision process) or until it is explicitly removed

remove(key) explicitly remove the value associated with key

Table 5.8: The PersistenceCache interface

5.6 Configuration
The persistence layer uses the same configuration tools as the rest of MozartSpaces.
In most cases the configuration is done via a configuration file in XML format. The
structure of this file was extended and can now also contain configuration values for
the persistence. Listing 5.1 shows a sample XML configuration file. Alternatively
MozartSpaces can be configured programmatically using the Configuration class.

The configuration consists of the following parts:

• Persistence profile is a string which determines which persistence profile should
be used. Currently available are “in-memory”, “lazy-berkeley”, “transactional-
berkeley”, “transactional-sync-berkeley” and “android-sqlite”. It is also possible
to specify a custom profile by providing the name of a class that implements the
PersistenceBackend interface. The default is “in-memory”.

49

< m o z a r t s p a c e s C o r e C o n f i g >
< !−− . . . normal Mozar tSpaces c o n f i g i s here . . . −−>
< p e r s i s t e n c e >

< p r o f i l e > t r a n s a c t i o n a l −b e r k e l e y < / p r o f i l e >
< s e r i a l i z e r > xs t ream−xml< / s e r i a l i z e r >
< s e r i a l i z e r C a c h e S i z e >5000< / s e r i a l i z e r C a c h e S i z e >
< p r o p e r t i e s >

< p r o p e r t y key=" b e r k e l e y− l o c a t i o n "> / tmp / < / p r o p e r t y >
< / p r o p e r t i e s >

< p e r s i s t e n c e >
< / m o z a r t s p a c e s C o r e C o n f i g >

Listing 5.1: Sample persistence configuration

• Serializer - The name of the serializer that should be used to convert the objects
into byte[] before they are stored in the database. Possible values are “jav-
abuiltin”, “jaxb”, “xstream-xml”, “xstream-json”, “kryo” or a name of a class
that implements the Serializer interface. The default is “javabuiltin”.

• Serializer cache - The number of objects cached by the CachingSeriali-
zerWrapper together with their byte[]-value. The default is 0 which means
that no serialization cache is used.

• Properties - A list of key-value pairs that can be used to specify implementation-
specific configuration details. Table 5.9 shows possible keys and their descrip-
tions. The default is empty.

Persistence
profile

Property key Description Default value

android-sqlite sqlite-db-name The name of the SQLite
database

“mozart-spaces”

all *-berkeley
profiles

berkeley-
location

Path to the directory
where database stores its
data

<temp-directory>
+ “/xvsm”

all *-berkeley
profiles

berkeley-cache-
size

Size of the internal cache
of Berkeley DB in bytes

10.000.000

Table 5.9: The persistence configuration properties

50

5.7 Persistence profiles
The persistence layer offers five different persistence profiles. Each profile has its ad-
vantages and disadvantages and is intended for a different application scenario. A brief
overview of the five profiles is given in Table 5.10.

Berkeley DB profiles
The persistence profiles based on the Berkeley DB are available on both the J2SE ver-
sion and the Android version of MozartSpaces.

Berkeley DB writes all operations into a database log in the file-system. This log
can be used later to restore the state of the database. The location of the log can be con-
figured. The sync-policy defines exactly how and when the log is written [22]. All three
profiles are identical except for the sync-policy. This leads to different performance and
semantics of the persistence.

All three profiles use the cache provided and managed automatically by Berkeley
DB. The size of the cache can be configured.

Lazy profile

In this profile the database log is written asynchronously at some point in the future.
Berkeley DB writes the operations into an in-memory log buffer and flushes them to a
file when the buffer is full. This means that data of committed transactions can be lost
if the system crashes after the transaction commit but before the log is flushed. The
advantage of this profile is its good performance because it avoids many small write
operations on the file system.

Transactional profile

In this profile the database log is written synchronously when the transaction is commit-
ted. However this does not mean that data is persistent because most file systems use
some sort of buffer before actually writing the data to the hard drive. Data can be lost if
a transaction has been committed, the database log was written but the file was not yet
flushed to the hard drive.

This profile should provide a reasonable compromise between performance and data
recoverability in case of a crash.

Transactional with fsync profile

In this profile the database log is written synchronously when the transaction is com-
mitted and the file which holds the database log is flushed to the hard drive. Of course
there is a performance penalty associated with flushing the log on every commit. On the

51

other hand this provides true ACID properties. After a transaction has been committed
it is guaranteed that the data is persistently stored.

Android SQLite profile
This profile is only available in the Android version of MozartSpaces. All data is stored
in the embedded SQLite database provided by the Android OS. The system takes care
of actually writing the SQL tables to a persistent storage.

In-memory profile
This is the default profile when persistence is not configured. It is available in both the
J2SE and the Android version of MozartSpaces. All data is stored in-memory using
the Java Collections Framework. The behavior of MozartSpaces with this profile is
the same as it was before the persistence was implemented. This means that there is
no persistence and all data is lost when the space is shut down or the JVM/DalvikVM
terminates. The number of entries and containers that can be stored in the space is
limited by the memory available to the JVM/DalvikVM. This profile provides the best
performance because there is no need to write/read data from/to the persistent storage.

52

Name Lazy Transactional Transactional with
fsync

Android SQLite In-memory

Storage
engine

Berkeley DB Berkeley DB Berkeley DB Android SQLite Java Collections

Available
on plat-
form

J2SE and Android
OS

J2SE and Android
OS

J2SE and Android
OS

Android OS J2SE and Android
OS

Intended
for

High performance
with non-critical
database

Reasonable compro-
mise between data
security and perfor-
mance

Critical data Android applica-
tions with small data
sets

When no persistence
required and all data
can fit into memory

ACID No Depends on file-
system

Yes Yes No

All data in
memory

No No No No Yes

Data writ-
ten

Asynchronously at
some point in future

Synchronously on
commit

Synchronously on
commit

Synchronously on
commit

No

Loss
of data
possible

On application or
system crash

On system crash No No On application shut-
down

Cache Configurable size,
managed by Berke-
ley DB

Configurable size,
managed by Berke-
ley DB

Configurable size,
managed by Berke-
ley DB

No No

Table 5.10: Overview of persistence profiles

53

5.8 Changes in existing parts of MozartSpaces
This section describes the changes that had to be made to existing parts of MozartSpaces.
Most of the changes are in the Java native implementation of CAPI-3. Only minor
changes had to be made to the runtime and the XVSMP.

Changes to the runtime
Changes to the MozartSpaces Runtime were minimal. Some minor changes have been
made to the initialization process. The DefaultMzsCoreFactory which is respon-
sible for initialization of CAPI-3 has to read the configuration of the persistence and
initialize the PersistenceContext accordingly. This is the so called “configured”
PersistenceContext. Additionally there is a second PersistenceContext
which always uses the “in-memory” profile.

An additional parameter was introduced in the createContainer method in
Capi and AsyncCapi interfaces which are used by clients that want to access the
space. This parameter specifies whether the newly created container should use the de-
fault persistence profile (as defined in the space configuration) or whether the container
should be in-memory only without any persistence. Depending on the value of this pa-
rameter the “configured” or the “in-memory” PersistenceContext is used during
the creation of the container. This new parameter made minor changes in the request
and task classes necessary. The platform-independent XVSMP was also adapted.

Changes to containers
The NativeContainer interface and its implementation class DefaultContai-
ner represent a single container at runtime. Several changes had to be made to support
persistence. First of all the ConcurrentHashMap that used to hold all entries was
replaced by a StoredMap with the entry IDs as keys and NativeEntrys as values.

The DefaultContainer is responsible for restoring the entries from the persis-
tent storage and reregistering them with the coordinators (see Section 5.10).

Changes to the container manager
As the name suggests the DefaultContainerManager is responsible for manag-
ing containers. It is used to create, delete and look up containers. At runtime there is
only one instance of this class that is initialized at the startup of the space.

The container manager now has a StoredMap that uses container IDs as keys and
PersistentContainerDescriptors as values. A PersistentContainer-
Descriptor contains all information required to recreate a container, namely:

54

• the container ID and name

• the container size (the maximal number of entries allowed in the container)

• two lists containing obligatory and optional coordinators

The descriptor does not store the contents of the container (the entries). Neither does
it contain the internal state of the coordinators.

Changes to coordinators
The predefined coordinators in MozartSpaces are all based on the same principle. They
all use one or more Java collections to store their state and manage the entries. When an
entry is written into a container it gets registered with the associated coordinators. This
means that the entry is added to the collections of entries managed by the coordinator
together with the coordination data that was supplied as part of the write request (e.g.
label in case of the Label coordinator). When the container is queried the coordinator
searches its collections of entries for any matching results. When the entry is deleted it
is also deleted from the collections used by the coordinator.

For performance reasons there is often a lot of redundant information kept by the
coordinators. For example the Label coordinator, which allows to assign each entry a
string label and then later retrieve it using that particular label, uses two different maps:
one that stores the label for each entry and another one that stores a list of entries for a
given label. This is necessary because sometimes entries are looked up by a label and
sometimes the other way around. But it is not necessary to persist both maps since one
can be reconstructed from the other.

All predefined coordinators were adapted to use the persistent storage. Only infor-
mation that is needed to restore the last consistent state of a coordinator is persisted.
The stored information is usually not used during the runtime since the Java collections
offer better performance for writing, selecting and deleting of data.

Coordinators that use the persistence layer have to implement the Persistent-
Coordinator interface which are depicted in Table 5.11. This interface is important
for the restoration process described in Section 5.10.

Each PersistentCoordinator must provide a CoordinatorRestore-
Task which is a serializable object that can create a new empty instance of the given
PersistentCoordinator. This is important because most coordinators do not
provide a default constructor. These CoordinatorRestoreTasks are then stored
in the PersistentContainerDescriptor of the enclosing container.

55

Method Description
preRestoreContent
(persistenceContext)

called during the restoration process after instantia-
tion and before restoring the entries

postRestoreContent
(persistenceContext,
nativeContainer)

called during the restoration process after the con-
tainer and its data are restored

init
(persistenceContext,
nativeContainer)

initialize the coordinator, called after a new container
with the given coordinator is created

close() close the coordinator and release all resources used by
the persistence.

destroy() delete all contents and release all resources used by
the persistence. Called when the container is deleted.

getRestoreTask() get the serializable task object to recreate coordinator
in its empty state

Table 5.11: The PersistentCoordinator interface

Lazy entries

Often the coordinators do not really need the data stored in the entries. Many coordi-
nators care only about the ordering of the entries (FIFO/LIFO, Vector) or the additional
coordination data attached to the entries (Key/Label). Coordinators keep references to
objects they manage in collections (maps, lists or sets). This means that entries and their
data would never get garbage collected and reside in memory at all times.

To counter this coordinators operate on lazy entries. Until now an entry (imple-
mented by the class DefaultEntry) contained an id, a reference to the container in
which it was stored and a reference to the actual data of the entry (a serializable value).
A lazy entry acts as a proxy [GHJV95] to the actual data. It holds only the id and the
reference to the container. If the actual entry data is required it is loaded from the per-
sistent storage and then cached in a weak reference [25]. This approach saves memory
because the entry data is only loaded when really needed.

Label coordinator

The modified Label coordinator uses a StoredMap to store the label for each entry.
This map is updated as new entries are written and old entries are deleted. During
normal operations the reverse mapping (lookup of entries with a particular label) is
more useful. This reversed mapping is implemented with java.util.Map because
it needs to be fast.

When the space is shut down the mapping of labels to entries is lost since it is kept

56

only in memory. When the space is restored it is reconstructed using the data from the
StoredMap.

Key coordinator

The Key coordinator works just like the Label coordinator. The only difference is that
it uses keys which unlike labels have to be unique. This constraint has no effects in the
persistence. A StoredMap is used to store the key for each entry.

FIFO coordinator

The FIFO coordinator uses a StoredMap to store the position of each entry in the
queue. A counter is increased with each write operation. When an entry is added
to the coordinator the current value of the counter and the entry are written into the
StoredMap. When an entry is deleted it is also deleted form the StoredMap.

When coordinator is restored from the persistent state it iterates over the map and
uses the positions to restore the queue (implemented with a java.util.Deque).

LIFO coordinator

The LIFO coordinator uses the persistence in the same way as the FIFO coordinator.

Vector coordinator

The vector coordinator posed a special challenge. Just like the FIFO and LIFO coordi-
nator it uses the ordering of the entries. The coordinator uses a java.util.Vector
to manage the entries. Storing the position of each entry in a StoredMap would be
possible but not very fast. Vector coordinator allows entries to be written not only at
the beginning or the end of the vector but also in the middle. If an entry is inserted
or deleted in the middle of the vector the positions of all subsequent entries have to be
shifted to the right or to the left. That would result in O(n) write operations every time
an entry is written or deleted. Since both Berkeley DB and SQLite use a binary tree to
store the keys which requires O(log(n)) operations the resulting complexity would be
O(n ∗ log(n)) for every new or deleted entry.

To make inserting and deleting of entries fast the ordering is stored in a double
linked list which is implemented on top of a StoredMap. Figure 5.7 illustrates the
data structure. The IDs of the entries are used as keys of the map and the links to the
previous and next entries as values. Accessing a certain index in such a list is expensive
(O(n)) but accessing a certain key is cheap. Suppose you want to insert a new entry
with the ID 15 in the middle (index=2). Using the in-memory vector you can see that
the current entry at that index has ID 4 and the previous is 11. Inserting a new entry at

57

Figure 5.7: Doubly linked list in a StoredMap

the position means creating a new key value pair (15, (11, 4)) and updating the values
for the entries 11 and 4 to (4, 15) and (15, 2).

Linda coordinator

The Linda Coordinator allows template-based queries as described in [Gel85]. In Mo-
zartSpaces the template matching is done with LindaMatchers which are class spe-
cific. This means that there is a matcher for each class that is used as the value of an
entry. Given an instance a matcher can decide whether it matches the template or not
by looking at instance variables. The matchers are held in memory only and have to be
recreated when the space is restored. One way to do this would be to load and deserial-
ize all entries from the persistent storage, look at the class of the value and then create
the appropriate matcher. Of course this process would take very long. To speed it up
the Linda coordinator uses a StoredMap to store the name of the class of each entry
value because loading a class name (a String) from the storage engine is significantly
faster than loading the value, deserializing it and then looking its class.

Query coordinator, Any coordinator and Random coordinator

These three coordinators do not require any additional data or ordering of the entries.
The only information they store is the list of entries they manage. This is done by putting
the entries into a StoredMap.

5.9 Initialization of the space and the persistence
This section describes how the is initialized at startup while focusing on the steps that
are relevant for the persistence implementation. The startup of an embedded space is ini-
tialized by creating a new MozartSpaces core with the DefaultMzsCoreFactory
and creating a new Capi instance which represents the CAPI-4 layer.

58

1. First the DefaultMzsCoreFactory loads the configuration – either from the
supplied Configuration object or from the mozartspaces.xml file. The
configuration contains information about the selected profile (Section 5.7), the
caches (Section 5.5) and the backend-specific configuration properties.

2. Based on the configuration the Serializer used by the persistence is resolved
and initialized. If a serialization cache is configured and the cache module is
present then the Serializer is additionally wrapped with the CachingSe-
rializerWrapper.

3. The persistence profile defined in the configuration is used to initialized the Per-
sistenceContext. This is the so called “configured” PersistenceCon-
text. Based on the profile the correct PersistenceBackend is resolved and
initialized.

4. After the PersistenceContext is initialized the DefaultCapi3Native
can be created. This is the implementation of the CAPI-1 to CAPI-3 layers.

5. The DefaultCapi3Native has two instances of PersistenceContext.
The first is the “configured” one. Additionally a second “in-memory” Persis-
tenceContext is created which is used for containers that do not require per-
sistence.

6. Finally the DefaultContainerManager is created.

After these six steps the space and its persistence implementation are completely
initialized but empty. Now the space is ready to restore all data that was saved by the
persistence layer during previous execution.

5.10 Restoring the state of a space from persistent
storage

At runtime MozartSpaces has a complex in-memory state which can now be stored per-
sistently. When the space is shut down (or when it crashes) the persisted information
should be sufficient to restore the state. The restoration process happens at the startup of
the space after PersistenceContext has been initialized and the container man-
ager was created.

This process has several steps:

1. First a new CAPI transaction is started in which the whole restoration process
runs.

59

2. Then the containers have to be restored. This is done by the DefaultContai-
nerManager. It iterates over the PersistentContainerDescriptors
and processes one container at a time.

3. In order to restore the container the constructor of DefaultContainer has
to be called. This constructor requires the container name, ID, size and list of
obligatory and optional coordinators. This means that the coordinators already
have to be instantiated when the container in constructed.

Coordinators that implement the PersistentCoordinator interface can be
constructed by the previously described CoordinatorRestoreTask. The
remaining coordinators are built using the default constructor.

4. Once the coordinators are instantiated the preRestoreContent() method
of all PersistentCoordinators is called. This allows coordinator-specific
initialization before the coordinator is re-filled with the restored entries.

5. When the coordinators are instantiated and initialized the constructor of the con-
tainer can be called.

6. Once the container is instantiated it loads all its entries and restores the value of
the ID counter (an AtomicLong) that assigns IDs to new entries.

7. Then the locks of all the entries are recreated in the IsolationManager.

8. Now the postRestoreContent() method of all PersistentCoordi-
nators can be called. At this point the coordinators can access the restored
entries and recreate their last state based on the information saved in their private
StoredMaps.

9. Finally the transaction of the restoration process is committed and the space is
now up and running.

The runtime will not accept any requests until the restoration process is completed.

5.11 Optimization of performance and energy
efficiency

The initial version of the persistence layer was neither fast not energy efficient. The ini-
tial runs of the benchmarks (see Chapter 6) had very disappointing results. The solution
described in this chapter is the result of an optimization process.

60

Optimization of performance
The original design of the persistence layer did not provide the desired performance.
Different profilers were used to identify the performance bottlenecks.

There are several profilers for J2SE applications available on the market. VisualVM
[24] was used because it offers both CPU and memory profiling and because of its
license.

J2SE profilers cannot be used for Android applications because of the differences
in the architecture of the virtual machine. Android SDK comes with its own profiler
called Traceview [11]. This profiler can be controlled from within the application code
by using the Android debugging API. This is useful if only parts of the code need to be
measured. In general code sections that created performance bottlenecks in J2SE were
also problematic on the Android OS.

Optimization of energy efficiency
Optimizing energy efficiency turned out to be much more difficult than the optimization
of performance. Unfortunately Android OS and its SDK do not offer any tools for direct
measurement of how much power is consumed by a particular application. There are
not many third party tools either.

PowerTutor [34] is a tool developed at the University of Michigan. It collects infor-
mation about power consumed by different components of a mobile device, currently
supported are CPU, various wireless network interfaces, screen, GPS sensor and audio
system on mobile phones. The information about power consumption can be shown on
a per-application basis. PowerTutor uses a model to estimate the power consumption of
the hardware components [ZTQ+10]. This model was calibrated for the the HTC G1,
HTC G2 and Nexus one mobile phones but it also works with reasonable precision for
other devices [34]. Figure 5.8 shows PowerTutor running the XVSM energy efficiency
benchmark.

Another tool that turned out to be very helpful is TrepnTMProfiler [17] which is pro-
vided by Qualcomm, the manufacturer of CPUs that are used in many mobile devices
including the Android mobile phone that was used during the development of the persis-
tence (HTC Legend). Depending on the device compatibility Trepn Profiler can collect
various information about the state of the CPU and the memory. Unfortunately Trepn
Profiler was very unstable on the tested device and only provided information about the
current drawn by the CPU and the overall electric charge usage of the CPU in mAh.
Assuming that the voltage of the CPU remains constant over time the current in mA can
be seen as power and the charge in mAh as energy consumed by the CPU.

As you can see in Figure 5.9 the energy usage of the CPU nicely copies the CPU
load. Unfortunately neither PowerTutor nor Trepn Profiler was able to measure energy
consumption of RAM and storage (internal flash memory and removable memory card)

61

Figure 5.8: PowerTutor showing current energy usage per application (left) and per
hardware component (right)

but according to [CH10] the CPU consumes significantly more energy than RAM and
storage devices. Other hardware components such as the display and wireless connectiv-
ity are not directly used by MozartSpaces (at least not by the persistence) and therefore
their energy usage needs not to be analyzed and optimized.

Developing energy efficient applications on Android OS turned out to be quite chal-
lenging because the developer has no direct control of the power consumption. The
operating system provides an abstraction layer for the hardware components and the
DalvikVM on top of it creates an abstraction of the whole hardware architecture. This
allows development of portable application. On the other hand application developers
have no direct control of the hardware resources and the energy they consume.

62

Figure 5.9: On the left: Trepn Profiler showing the CPU load (green), CPU frequency
(red) and CPU current (blue), on the right Trepn Profiler showing total and average
power consumption

63

CHAPTER 6
Evaluation

A series of benchmarks was created to measure the performance and energy efficiency
of the implemented persistence layer. These benchmarks use the CAPI3 layer directly
without the runtime and XVSMP. This eliminates the overhead created by the serializa-
tion and deserialization of requests, network transport etc. and measures directly the
Java native implementation of CAPI3.

6.1 Benchmark environment

J2SE version
The performance of the J2SE version was measured on a notebook with an Intel Core 2
Duo running at 2.6GHz (P8600) with 4GB of RAM running the 64bit version of Ubuntu
Linux 11.04 operating system. Java HotSpotTM64-Bit Server VM version 1.7.0_02-b13
from Oracle was used as JVM.

Android OS version
The evaluation of the performance of the Android version was done on the European
version of HTC Legend mobile phone with an Qualcomm CPU at 600MHz (ARM ar-
chitecture) and 384MB of RAM running CyanogenMod 7.1 (Android 2.3.3).

6.2 Performance benchmarks
The performance benchmarks measured different parts of the implementation under dif-
ferent circumstances. Each of the benchmarks was executed with different number of

64

threads to measure the parallel scalability. The benchmarks were run with one, two, five
and ten concurrent threads. Unless stated otherwise all results in this chapter are from
runs with five concurrent threads.

In order to avoid performance impacts of the Java just-in-time compiler each bench-
mark was run 12 times and the fastest and the slowest times were discarded in order
to eliminate outliers which can be caused by the just-in-time compiler or the garbage
collector. The arithmetic mean of the remaining ten values was used as result.

Where applicable the benchmarks were run in different transactional settings:

• All operations were capsuled in one transaction per thread (named “single Tx” in
the results).

• Each operation was run in a new separate transaction (“separate Tx”)

• A new transaction was started after running 50 operations (“multiple Tx”)

The benchmarks covered different operations listed bellow:

• writing 20,000 entries into a container with the AnyCoordinator

• reading all entries 1,000 times1 and reading 50,000 entries each in a single oper-
ation from a container prefilled with 2,000 entries with the AnyCoordinator

• taking one, several or all entries at a time from a container prefilled with 10,000
entries with the AnyCoordinator

• writing 10,000 entries, reading entries (all in one step and 10,000 entries one at a
time) as well as taking entries (10,000 - one at a time and 2,000 in one operation)
from a container prefilled with 100,000 entries with the FIFO coordinator

• writing 10,000 entries, reading and taking entries from a container prefilled with
100,000 entries with the Key coordinator

• writing – appending 1,000 entries to the end of the vector and inserting 2,000
entries at index=2 (thus shifting all subsequent entries), reading and taking all
entries from a container prefilled with 10,000 entries with the Vector coordinator.

• writing 1,000 entries, reading and taking all entries from a container prefilled with
10,000 entries with the Linda coordinator

Benchmarks on the Android OS used numbers 200 times smaller to compensate the
slower hardware. The other coordinators were omitted from the benchmarks because
their implementation is practically identical to one of the four coordinators above. A
detailed description of each benchmark can be found in Appendix A.

110 times on Android

65

Performance of the J2SE version
The performance of the J2SE version of MozartSpaces was measured in five different
configurations:

1. a version of MozartSpaces without the persistence layer – 2.1-SNAPSHOT build
11418 from 02/07/2012 which from now on will be referred to as the “old” version
of MozartSpaces. The performance of this version was used as base value, the
performance values of the other four configurations in Table 6.1 are relative to
this one.

2. the version of MozartSpaces with persistence as presented in this thesis (from
now on referred to as the “new” version) with the in-memory persistence profile.

3. the new version of MozartSpaces with the lazy persistence profile based on Berke-
ley DB which was configured with 50MB of cache.

4. the new version of MozartSpaces with the transactional persistence profile based
on Berkeley DB which was configured with 50MB of cache.

5. the new version of MozartSpaces with the transactional with fsync persistence
profile based on Berkeley DB which was configured with 50MB of cache.

Figure 6.1 and Table 6.1 show the results of the performance benchmarks with five
parallel threads.

The changes made to the architecture of MozartSpaces have some consequences for
the performance. The in-memory profile is generally slower than the original version
of MozartSpaces. The difference is not big but it is measurable. This is caused by the
additional overhead created by the abstraction layer that is necessary for the persistence.
In most cases the write operations need 20-50% more time and the performance of
reading operations is more or less unchanged.

As expected the profiles that use Berkeley DB to store data persistently are signif-
icantly slower. This is the price for having persistent data. On the other hand these
profiles use less memory since the data is not always stored in memory. Surprisingly
there is little difference between the lazy and the transactional profiles. In general the
write operations are 10-20 times slower. The performance of the read operations de-
pends on the transactional setting. Reading many entries within one transaction is only
slightly slower than the in-memory profile. Reading many entries each in its separate
transaction is very slow (about ten times slower) because of the overhead caused by
starting and committing many transactions.

In case of the Linda coordinator the overhead created by the persistence is barely
measurable because most of the time is spent with the template matching.

The benchmarks have also shown that the persistence profile transactional with fsync
is not usable for applications that require high transactional throughput. The price of

66

0 200 400 600 800 1,000 1,200

Write - multiple Tx

Write - single Tx

Write - separate Tx

Read all

Read - separate Tx

Take all

Take many - single Tx

Take - single Tx

Take - separate Tx

37.6

38.8

42.5

12.5

18.5

18.2

10.1

8.3

288.3

55.2

51.1

63.7

14.6

24.8

26.1

14.3

8.9

297.7

1,000.1

979.9

1,176.3

15.7

231.4

285.7

212.8

91.4

1,045.7

time [ms]

old MozartSpaces
new MozartSpaces – In-memory profile

new MozartSpaces – Transactional Berkeley DB

Figure 6.1: Performance evaluation MozartSpaces persistence with the AnyCoordina-
tor with different profiles on J2SE

67

Bechmark In-memory Lazy Transactional Transactional
with fsync

Any write - multiple Tx 147% 2603% 2660% 15860%
Any write - single Tx 132% 2488% 2526% 2647%
Any write - separate Tx 150% 2561% 2768% 386265%
Any read all 110% 186% 177% 155%
Any read - separate Tx 139% 1099% 691% 1153%
Any take all 138% 1686% 1514% 1831%
Any take many - single Tx 145% 2717% 2602% 3083%
Any take - single Tx 111% 186% 178% 171%
Any take - separate Tx 105% 382% 393% 18152%
Fifo add - single Tx 115% 1610% 1607% 2104%
Fifo read all 109% 232% 218% 205%
Fifo read - single Tx 96% 99% 97% 95%
Fifo take many - single Tx 132% 420% 516% 495%
Fifo take - single Tx 110% 177% 165% 297%
Key add - single Tx 115% 1387% 1396% 1771%
Key read - single Tx 118% 115% 109% 139%
Key take - single Tx 97% 110% 96% 113%
Vector add - single Tx 107% 813% 1012% 165114%
Vector append - single Tx 98% 522% 727% 147419%
Vector read - single Tx 111% 161% 139% 894%
Vector take - single Tx 88% 714% 899% 209904%
Linda write - single Tx 104% 120% 114% 117%
Linda read - single Tx 101% 105% 104% 103%
Linda take - single Tx 100% 110% 104% 106%

Table 6.1: Results of the performance benchmarks run with 5 parallel threads - J2SE
version (relative to previous MozartSpaces version)

file system sync after each transaction commit is simply too high. This overhead is
visible especially in benchmarks that use many transactions with just one operation.
On the other hand effects on benchmarks that use one big transaction were relatively
small. A fast storage device such a solid state drive could improve the performance but
unfortunately no suitable hardware was available during the evaluation.

Performance of the J2SE version under different JVMs
The benchmarks were also reused to measure the influence of the JVM itself on the
performance. The Oracle Java HotSpotTM64-Bit Server VM version 1.7.0_02-b13 was

68

0 50 100 150 200 250 300

Write - multiple Tx

Write - single Tx

Write - separate Tx

Read all

Read - separate Tx

Take all

Take many - single Tx

Take - single Tx

Take - separate Tx

55.2

51.1

63.7

14.6

24.8

26.1

14.3

8.9

297.7

58

98.5

83.2

19

34.7

27.6

17.5

12.9

53.1

time [ms]

HotSpot 1.7.0_02-b13 HotSpot 1.6.0_26-b03

Figure 6.2: Performance evaluation MozartSpaces persistence with the AnyCoordina-
tor with the in-memory profile with different versions of the Oracle HotSpot JVM

compared to version 1.6.0_26-b03.
The results are shown in the Figure 6.2. The version of the JVM had a significant

impact on the performance. The newer version of the JVM caused MozartSpaces with
in-memory profile to run 10-15% faster with one exception (take operations each in
a separate transaction) which run four times slower. This was caused by the changes
made in the virtual machine and the standard libraries that come with it [4]. The same
comparison was also made with Berkeley DB profiles but the difference between the
two JVM versions was barely measurable.

Parallel performance of the J2SE version
In most cases the performance of the Berkeley DB based profiles remained the same
or got better when the number of entries writen/read/taken by the benchmark was di-
vided across several threads. Especially I/O-intesive operations such as writing into a

69

container with a VectorCooridnator or taking entries got up to 50% faster with ten con-
current threads when compared to a single thread. This can be explained by better CPU
utilization – while one thread is waiting for the I/O to finish another concurrent thread
can use the CPU.

The only situation where the benchmarks got significantly slower with increasing
number of threads was reading entries from a container with a FifoCoordinator.

Performance of the Android OS version
The performance evaluation of the Android OS version of MozartSpaces compared the
in-memory profile, the SQLite profile and the transactional Berkeley DB profile. As
you can see in Figure 6.3 both SQLite and Berkeley DB perform very well. In most
cases both reading and writing takes about ten times as much time. The benchmarks
in Section 5.2 suggested that SQLite is faster than Berkeley DB but now the opposite
seems to be the case. Berkeley DB was faster in all Benchmarks except the first two.
This is probably caused by better handling of concurrent transactions by Berkeley DB
which was not tested in the benchmarks in Section 5.2.

Berkeley DB is not part of the standard distribution of MozartSpaces for Android
but it can be deployed optionally.

6.3 Memory usage
Storing the data in the database also helped to reduce the memory usage of MozartSpaces
at runtime. A simple benchmark was developed to evaluate the memory usage. Entries
with random binary content were written into a container with a FiFoCoordinator and
the heap size of the JVM was measured. The benchmark was carried out twice: with
small entries (byte[100]) and with larger entries (byte[10000]). The same envi-
ronment was used as in the J2SE performance benchmarks described above.

Figure 6.4 shows the results of the memory usage benchmark. There seems to be
only a small difference between the in-memory profile and Berkeley DB when the en-
tries are small. In fact if the entries are small then the in-memory profile uses less mem-
ory because the database creates some overhead with its internal bookkeeping. However
the benchmark with the larger entries clearly shows the advantage of having a database.
After an initial steep increase (caused by the 10MB internal database cache) the mem-
ory usage of Berkeley DB remains very flat while the memory usage of the in-memory
profile grows rapidly.

70

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800

Write - multiple Tx

Write - single Tx

Write - separate Tx

Read all

Read - separate Tx

Take all

Take many - single Tx

Take - single Tx

Take - separate Tx

79.4

76.5

224.9

54.2

162

39

27.8

119.8

190.1

464.9

782.6

1,640.8

511.5

616.5

483.1

425.8

949.3

1,323.3

875

960.8

1,120.1

288.3

201.1

283.1

304.8

375.5

526.4

time [ms]

In-memory profile SQLite Transactional Berkeley DB

Figure 6.3: Performance evaluation MozartSpaces persistence with the AnyCoordina-
tor with different profiles on Android OS

71

0 2,000 4,000 6,000 8,000 10,000
0

20,000,000

40,000,000

60,000,000

80,000,000

100,000,000

Entries

H
ea

p
si

ze
[B

]

100B – Berkeley DB 100B – In-memory
10kB – Berkeley DB 10kB – In-memory

Figure 6.4: Memory usage of MozartSpaces with the In-memory profile and with the
Transactional Berkeley DB profile

6.4 Energy efficiency
The goal of the energy efficiency benchmark is to evalute the costs of persistence in
terms of electric power. Android OS is designed for mobile devices that often rely on
battery power where energy efficiency is an important requirement.

Environment
The energy efficiency benchmark was run on the same device as the performance bench-
mark. Before each start the device was fully charged. In order to avoid side effects of
network connections the SIM card was removed and the phone was put into airplane
mode which disables all wireless radios (Wi-Fi, Bluetooth and cell network). The screen
was switched off for the entire duration of the benchmark.

72

In-Memory SQLite SQLite (relative)
Charge Time Charge Time Charge Time

1st run 0.64mAh 33087ms 3.52mAh 215592ms 550% 652%
2nd run 0.64mAh 32128ms 3mAh 189055ms 469% 588%
3rd run 0.71mAh 34340ms 3.67mAh 201008ms 517% 585%
Average 0.663mAh 33185ms 3.397mAh 201885ms 512% 608%

Table 6.2: Results of the energy efficiency benchmarks using Trepn Profiler. The charge
can be used as a measure of energy assuming that the CPU uses a constant voltage.

Design of the benchmark
The enery efficiency benchmark reused the code of the performance benchmark. Unfor-
tunately it is not possible to observe the power consumption on a small scale to measure
each benchmark separately. The numbers presented in this section were obtained by
running the entire benchmark suite. This simulates heavy load caused by various space
operations and transactions.

Results of the energy efficiency benchmark
The energy efficiency was measured with PowerTutor [34] and TrepnTMProfiler [17]
(see Section 5.11). PowerTutor provides data about energy usage of the CPU in Joule
while Trepn Profiler the CPU power usage in mAh.

Tables 6.2 and 6.2 show the results of the energy efficiency benchmark. The tables
also show the time it took to execute the benchmarks. The execution of the benchmark
with SQLite took about six times longer and consumed about five to six times (depend-
ing on the profiler) more energy by the CPU.

The values measured by PowerTutor indicate that the benchmark causes the CPU to
consume about 140-150mW on average. This goes for both the in-memory profile as
well as the SQLite profile. To put these numbers into perspective the OLED display of
the smartphone used for the benchmarks draws 300-500mW depending on the bright-
ness, 3G mobile network draws 400-900mW, WiFi draws around 400mW and the sound
chip 100mW (all values measured by PowerTutor). These numbers are similar to those
published in [CH10].

Unfortunately it was not possible to measure the energy used by RAM and the in-
ternal flash memory where the SQLite database stores the data.

It is important to note that both profilers created a certain performance overhead.
In case of the in-memory profile PowerTutor the benchmark execution took about 10%
longer and Trepn Profiler slowed the benchmark down by ca. 50%. The overhead was
about half as big (both profilers) when the SQLite profile was used.

73

In-Memory SQLite SQLite (relative)
Energy Time Energy Time Energy Time

1st run 3.5J 26827ms 21.5J 161730ms 614% 603%
2nd run 3.4J 22755ms 21.3J 158827ms 626% 698%
3rd run 3.4J 21340ms 21.9J 146488ms 644% 686%
Average 3.433J 23641ms 21.567J 155682ms 628% 659%

Table 6.3: Results of the energy efficiency benchmarks using PowerTutor

6.5 Summary
In general the performance of the persistence is very good. Naturally the persistence
cannot be as fast as s purely in-memory solution. The decision to use Berkeley DB
and SQLite as database engines turned out to be correct. Berkeley DB is fast on both
platforms except for the Transactional with fsync profile but it is hardly surprising that
flushing file system buffers after each transaction commit would cause performance
degradation. SQLite might not be as fast as Berkeley DB but it is nicely integrated into
the Android operating system.

Lowering the memory usage is also an important achievement. Applications that
use large entries will benefit greatly from using a database.

It is unfortunate that the power profilers did not allow any optimizations but in gen-
eral the energy usage caused by the persistence is quite small when compared to other
hardware components even when under heavy load.

74

CHAPTER 7
Future work

XVSM and its reference implementation offer a unique set of features. The addition of a
fast persistence layer is an important milestone for the project. However some problems
still remain unsolved.

7.1 Possible improvements of the persistence layer
The performance, scalability and reliability of the persistence layer could be improved
by using alternative database backends. The support for new backends can be added
easily as plugins without any changes to the existing code.

Berkeley DB can be replicated across several nodes to improve availability and scal-
ability [26]. This feature currently cannot be used by MozartSpaces because of the way
how the database is configured and started. An alternative persistence backend could be
implemented to provide a high level of availability. Of course this can be also achieved
with other databases.

There are countless database systems available on the market each of them having its
own unique set of advantages and disadvantages. The current architecture of the persis-
tence layer requires a new backend binding for each database. The number of supported
databases could be significantly increased by providing a more generic binding such as
JDBC [23].

Storing entries by serializing them and writing them into database is very generic
and allows entries of arbitrary type (as long as they are serializable). But this approach
has some performance drawbacks because entries cannot be queried if they have the
form of a byte[]. Selecting entries with the XVSM Query Language is very slow
because the matcher needs to retrieve each entry value from the database and deserialize
it before evaluating the query. This is the price for not having all entry values in memory

75

at all times. Increasing the cache size improves the performance but in also requires
more memory at runtime. There are two options how this performance issue could be
addressed:

• One possibility would be to implement more advanced caching. Right now the
persistence layer caches the values using the last-recently-used strategy and treat-
ing all values equally. However entries that are accessed with XVSM Queries
benefit from caching much more than for example entries managed by a KeyCo-
ordinator. Allowing container-specific or coordinator-specific cache configuration
could increase the performance of XVSM Queries without significantly increas-
ing memory consumption.

• Another possibility would be to create indices for certain fields of entries that a
queried. Usually not all fields are queried so not all data of an entry would have
to be indexed. An in-memory index would make evaluation of queries possible
without having to retrieve the entire entry value from database.

It is important to note that the second approach would be much more complicated
because it would require a major rewrite of the query evaluation algorithm. It would
however be more effective than simply caching many potentially large entries in mem-
ory as described in the first approach.

Another issue of the persistence layer that needs to be addressed are aspects. Cur-
rently there is no way for a client to get a reference to the instance of the Persistence-
Context class during the execution of the aspect code. This means that aspects cur-
rently cannot use the persistence. Furthermore the persistence layer has no public API
which could be used by the clients because it is part of the Java native implementation
of CAPI-3.

Currently the decision whether a container will use persistence or whether it will be
held in memory has to be done at the moment of the creation of the container. It is not
possible to move an in-memory container to persistent storage once it has been initial-
ized but sometimes this would be desirable. The biggest disadvantage of in-memory
container is that they consume too much operating memory. In case of MozartSpaces
this can lead to a java.lang.OutOfMemoryError because the JVM heap-space
will become too big. A nice feature would be automatic swapping of in-memory con-
tainers. If an in-memory container becomes too big it would be automatically moved to
persistent storage.

Also the persistence currently lacks maintenance and administration tools. For ex-
ample is not possible to monitor how much storage each container is using. A tool for
modifying, renaming, cloning, deleting of containers could also be very useful for large
production deployments.

76

7.2 Other open issues of XVSM and MozartSpaces
The probably biggest issue that MozartSpaces currently faces is network connectivity.
Most clients (e.g. mobile devices) do not allow or are not able to listen to incoming con-
nections. This is normally caused by the network configuration (e.g. firewalls, network
address translation). This makes asynchronous communication problematic. The mat-
ter is even worse with mobile devices because they usually do not have a fixed address.
A mobile phone can change its address several times during a single day as it moves
from one wireless/cellular network to another. MozartSpaces currently uses sockets for
remote communication which is a very low-level approach. An alternative transport
protocol based on technology that can handle different network configurations transpar-
ently would make deployment of truly distributed and decentralized applications based
on MozartSpaces possible.

One of the possibilities being currently discussed by the XVSM technical board is
using the Extensible Messaging and Presence Protocol (XMPP) [29]. It is very flexi-
ble and extensible. XMPP does require a server but there are many XMPP providers
available and setting up an own XMPP server is very easy.

IPv6 [8] might also solve some aspects of the networking problem because it elim-
inates the need for network address translation (NAT). Unfortunately the adoption rate
of IPv6 among network and internet providers is still very low.

77

CHAPTER 8
Conclusion

The goal of this thesis was to provide persistence for the space based middleware
MozartSpaces, an implementation of the XVSM specification. Previous attempts to
do this had some drawbacks and a new approach had to be found.

This goal was achieved by implementing a new persistence layer that replaces the
Java collections where data was stored in previous versions of MozartSpaces. The per-
sistence layer is integrated into the core of MozartSpaces and its transaction infrastruc-
ture in order to ensure compliance with the XVSM specification.

The persistence is configurable and it offers several persistence profiles. The in-
memory profile emulates the transient nature of the previous MozartSpaces version with
only a small performance overhead caused by the new abstraction layer – CAPI-3 op-
erations became ca. 10–30% slower. Three profiles are based on Berkeley DB and are
intended for scenarios which require fast persistence (at the cost of potential data loss in
case of a crash) and those that require extreme data safety (at the cost of performance)
as well as a reasonable compromise in between. Additionally the Android version of
MozartSpaces can leverage the functionality of the SQLite database which is part of the
operating system. Its performance is comparable to the Berkeley DB. The persistence
is extensible and it is possible to add support for further database systems.

A benchmark suite was developed to evaluate the performance of the persistence.
The results have shown that depending on the selected profile the persistence can be very
fast and the performance overhead is an acceptable price for not losing all data when
the execution terminates. The performance can be further optimized with configurable
caches for various parts of the system. Storing the data of the space in a database also
eliminated the need to constantly hold it in memory which has significantly reduced the
memory consumption of MozartSpaces.

The goal of providing an energy-efficient persistence for the Android version of
XVSM was reached only partially. This was caused by unsatisfactory tool support for

78

evaluation and optimization of energy-efficiency. Not surprisingly the benchmarks have
shown that persistence increased power drawn by the CPU but unfortunately other hard-
ware components like RAM and flash storage could not be measured. In general effect
of the persistence on the energy efficiency was minimal when compared to to other
hardware components such as the screen and wireless networks.

79

Bibliography

[AS92] B. Anderson and D. Shasha. Persistent linda: Linda+ transactions+ query
processing. Reasearch Directions in High-Level Parallel Programming
Languages, pages 93–109, 1992.

[Bar10] Martin-Stefan Barisits. Design and Implementation of the next Generation
XVSM Framework - Operations, Coordination and Transactions. Master’s
thesis, Vienna University of Technology, 2010.

[Cat11] Rick Cattell. Scalable SQL and NoSQL data stores. SIGMOD Rec., 39:12–
27, May 2011.

[CH10] Aaron Carroll and Gernot Heiser. An analysis of power consumption in a
smartphone. In Proceedings of the 2010 USENIX conference on USENIX
annual technical conference, USENIXATC’10, pages 21–21, Berkeley,
CA, USA, 2010. USENIX Association.

[CKS09] Stefan Craß, Eva Kühn, and Gernot Salzer. Algebraic foundation of a data
model for an extensible space-based collaboration protocol. In IDEAS ’09:
Proceedings of the 2009 International Database Engineering & Applica-
tions Symposium, pages 301–306, New York, NY, USA, 2009. ACM.

[Cod70] Edgar Frank Codd. A relational model of data for large shared data banks.
Communications of the ACM, 13:377–387, June 1970.

[Cra10] Stefan Craß. A Formal Model of the Extensible Virtual Shared Memory
(XVSM) and its Implementation in Haskell. Master’s thesis, Vienna Uni-
versity of Technology, 2010.

[Dö11] Tobias Dönz. Design and Implementation of the next Generation XVSM
Framework - Runtime, Protocol and API. Master’s thesis, Vienna Univer-
sity of Technology, 2011.

[FHA99] E. Freeman, S. Hupfer, and K. Arnold. JavaSpaces principles, patterns,
and practice. Addison-Wesley Professional, 1999.

80

[FT05] Andreas Fongen and Simon J. E. Taylor. MobiSpace: A Distributed Tu-
plespace for J2ME Environments. In 17th IASTED International Confer-
ence on Parallel and Distributed Computing and Systems, pages 202–207,
2005.

[Gar07] Matthew Garrett. Powering down. Queue, 5(7):16–21, November 2007.

[Gel85] David Gelernter. Generative communication in Linda. ACM Transactions
on Programming Languages and Systems, 7:80–112, January 1985.

[GHJV95] Erich Gamma, Richard Helm, Ralph E. Johnson, and John Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented Software. Addison-
Wesley, 1995.

[Gra81] Jim Gray. The transaction concept: Virtues and limitations. In Proceed-
ings of the seventh international conference on Very Large Data Bases,
volume 7 of VLDB ’81, 1981.

[ISO92] ISO. ISO/IEC 9075:1992, Database Language SQL. International Organi-
zation for Standardization, 1992.

[KAU12] Hyojun Kim, Nitin Agrawal, and Cristian Ungureanu. Revisiting Storage
for Smartphones. In The 10th USENIX Conference on File and Storage
Technologies, FAST2012, February 2012.

[KK12] Je-Min Kim and Jin-Soo Kim. Androbench: Benchmarking the storage
performance of android-based mobile devices. In Sabo Sambath and Egui
Zhu, editors, Frontiers in Computer Education, volume 133 of Advances in
Intelligent and Soft Computing, pages 667–674. Springer Berlin / Heidel-
berg, 2012.

[KL10] Karthik Kumar and Yung-Hsiang Lu. Cloud computing for mobile users:
Can offloading computation save energy? Computer, 43(4):51 –56, April
2010.

[KLM+97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented pro-
gramming. In ECOOP’97 — Object-Oriented Programming, volume 1241
of Lecture Notes in Computer Science, pages 220–242. Springer, 1997.

[KMS08] Eva Kühn, Richard Mordinyi, and Christian Schreiber. An Extensible
Space-based Coordination Approach for Modeling Complex Patterns in
Large Systems. 3rd Int. Symposium on Leveraging Applications of Formal
Methods, Verification and Validation, Special Track on Formal Methods for
Analysing and Verifying Very Large Systems (ISoLA 2008), 2008.

81

[LCKW] Seongjin Lee, Seokhui Cho, Haesung Kim, and Youjip Won. Performance
analysis of SSD/HDD hybrid storage manager. In Nano, Information Tech-
nology and Reliability (NASNIT), 2011 15th North-East Asia Symposium
on.

[LCX+01] Tobin J. Lehman, Alex Cozzi, Yuhong Xiong, Jonathan Gottschalk, Venu
Vasudevan, Sean Landis, Pace Davis, Bruce Khavar, and Paul Bowman.
Hitting the distributed computing sweet spot with TSpaces. Computer Net-
works, 35:457–472, March 2001.

[Lib03] Leonid Libkin. Expressive power of SQL. Theoretical Computer Science,
296(3):379 – 404, 2003.

[Luk] Florian Lukschander. Thesis on eXtensible Virtual Shared Memory on the
Android Operating System. Master’s thesis, Vienna University of Technol-
ogy. In preparation.

[Mar10] Alexander Marek. Design and Implementation of TinySpaces - The .NET
Micro Framework based Implementation of XVSM for Embedded Sys-
tems. Master’s thesis, Vienna University of Technology, 2010.

[Mei11] Thomas Meindl. XVSM Persistence - Developing an orthogonal functional
profile for the eXtensible Virtual Shared Memory. Master’s thesis, Vienna
University of Technology, 2011.

[Mor10] Richard Mordinyi. Managing Complex and Dynamic Software Systems
with Space-Based Computing. PhD thesis, Vienna University of Technol-
ogy, 2010.

[NK07] Suman Nath and Aman Kansal. Flashdb: dynamic self-tuning database for
nand flash. In Proceedings of the 6th international conference on Infor-
mation processing in sensor networks, IPSN ’07, pages 410–419. ACM,
2007.

[NVP10] Elena Nardini, Mirko Viroli, and Emanuele Panzavolta. Coordination in
open and dynamic environments with tucson semantic tuple centres. In
Proceedings of the 2010 ACM Symposium on Applied Computing, SAC
’10, pages 2037–2044, New York, NY, USA, 2010. ACM.

[O’N08] Elizabeth J. O’Neil. Object/Relational Mapping 2008: Hibernate and the
Entity Data Model (EDM). In Proceedings of the 2008 ACM SIGMOD
international conference on Management of data, SIGMOD ’08, pages
1351–1356, 2008.

82

[Pen10] Kostas Pentikousis. In Search of Energy-Efficient Mobile Networking.
Communications Magazine, IEEE, 48(1):95 –103, January 2010.

[RC10] Sanam Shahla Rizvi and Tae-Sun Chung. Flash SSD vs HDD: High Perfor-
mance Oriented Modern Embedded and Multimedia Storage Systems. In
Computer Engineering and Technology (ICCET), 2010 2nd International
Conference on, volume 7, pages 297–299, April 2010.

[RD05] Tomasz Rybicki and Jarosław Domaszewicz. MobileSpaces - JavaSpaces
for Mobile Devices. In Computer as a Tool, 2005. EUROCON 2005.
The International Conference on, volume 2, pages 1076–1079, November
2005.

[SBCD09] Mahadev Satyanarayanan, Paramvir Bahl, Ramón Cáceres, and Nigel
Davies. The Case for VM-Based Cloudlets in Mobile Computing. Per-
vasive Computing, IEEE, 8(4):14–23, October-December 2009.

[SHH10] Daniel Schall, Volker Hudlet, and Theo Härder. Enhancing energy effi-
ciency of database applications using ssds. In Proceedings of the Third C*
Conference on Computer Science and Software Engineering, C3S2E ’10,
pages 1–9, New York, NY, USA, 2010. ACM.

[SLLP+10] Jacob Strauss, Chris Lesniewski-Laas, Justin Mazzola Paluska, Bryan
Ford, Robert Morris, and Frans Kaashoek. Device transparency: a new
model for mobile storage. SIGOPS Oper. Syst. Rev., 44(1):5–9, March
2010.

[SMA+07] Michael Stonebraker, Samuel Madden, Daniel J. Abadi, Stavros Hari-
zopoulos, Nabil Hachem, and Pat Helland. The End of an Architectural
Era: (It’s Time for a Complete Rewrite). In Proceedings of the 33rd in-
ternational conference on Very large data bases, VLDB ’07, pages 1150–
1160. VLDB Endowment, 2007.

[STG10] Weiqi Song, Tao Tao, and Tiegang Gao. Performance optimization for flash
memory database in mobile embedded system. In Education Technology
and Computer Science (ETCS), 2010 Second International Workshop on,
volume 3, pages 35–39, March 2010.

[WCC04] George Clifford Wells, Alan G. Chalmers, and Peter G. Clayton. Linda
implementations in Java for concurrent systems. Concurrency and Com-
putation: Practice and Experience, 16(10):1005–1022, 2004.

83

[ZTQ+10] Lide Zhang, Birjodh Tiwana, Zhiyun Qian, Zhaoguang Wang, Robert P.
Dick, Zhuoqing Morley Mao, and Lei Yang. Accurate online power es-
timation and automatic battery behavior based power model generation
for smartphones. In Proceedings of the eighth IEEE/ACM/IFIP interna-
tional conference on Hardware/software codesign and system synthesis,
CODES/ISSS ’10, pages 105–114, New York, NY, USA, 2010. ACM.

84

Web references

[1] Amazon. Amazon Simple Storage Service. http://aws.amazon.com/s3/.
Accessed: 2012-03-26.

[2] Tim Bray. Saving Data Safely. http://android-developers.
blogspot.com/2010/12/saving-data-safely.html. Accessed:
2012-03-27.

[3] Ed Burnette. Java vs. Android APIs. http://www.zdnet.com/blog/
burnette/java-vs-android-apis/504, January 2008. Accessed: 2011-
10-12.

[4] Oracle Corporation. Java SE 7 Features and Enhancements.
http://www.oracle.com/technetwork/java/javase/
jdk7-relnotes-418459.html. Accessed: 2012-04-30.

[5] Couchbase. Couchbase. http://www.couchbase.com/. Accessed: 2012-
02-01.

[6] Dan Creswell and other project contributors. The Blitz Project. http://www.
dancres.org/blitz/. Accessed: 2012-03-16.

[7] H2 Database. H2 Database. http://www.h2database.com/html/main.
html. Accessed: 2012-02-01.

[8] Stephen Deering and Robert Hinden. Internet Protocol, Version 6 (IPv6) Specifica-
tion. http://www.ietf.org/rfc/rfc2460.txt, 1998. Accessed: 2012-
03-26.

[9] Dropbox. Dropbox Anywhere. https://www.dropbox.com/anywhere.
Accessed: 2012-03-26.

[10] Apache Software Foundation and its contributors. Apache River. http://
river.apache.org/. Accessed: 2012-03-16.

85

http://aws.amazon.com/s3/
http://android-developers.blogspot.com/2010/12/saving-data-safely.html
http://android-developers.blogspot.com/2010/12/saving-data-safely.html
http://www.zdnet.com/blog/burnette/java-vs-android-apis/504
http://www.zdnet.com/blog/burnette/java-vs-android-apis/504
http://www.oracle.com/technetwork/java/javase/jdk7-relnotes-418459.html
http://www.oracle.com/technetwork/java/javase/jdk7-relnotes-418459.html
http://www.couchbase.com/
http://www.dancres.org/blitz/
http://www.dancres.org/blitz/
http://www.h2database.com/html/main.html
http://www.h2database.com/html/main.html
http://www.ietf.org/rfc/rfc2460.txt
https://www.dropbox.com/anywhere
http://river.apache.org/
http://river.apache.org/

[11] Google. Traceview. http://developer.android.com/guide/
developing/debugging/debugging-tracing.html. Accessed: 2012-
02-13.

[12] Google and guava project contributors. guava-libraries. http://code.
google.com/p/guava-libraries/. Accessed: 2012-02-15.

[13] Android Developers (Google). Android platform version statistics.
http://developer.android.com/resources/dashboard/
platform-versions.html, September 2011. Accessed: 2011-09-25.

[14] Space Based Computing Group. SBC-Group. http://www.complang.
tuwien.ac.at/eva/SBC-Group/sbcGroupIndex.html. Accessed:
2012-01-31.

[15] Space Based Computing Group. Mozartspaces. http://www.
mozartspaces.org, 2011. Accessed: 2011-10-14.

[16] The hsql Development Group. HyperSQL. http://hsqldb.org/. Accessed:
2012-02-01.

[17] Qualcomm Incorporated. TrepnTMProfile. https://
developer.qualcomm.com/develop/development-devices/
trepn-profiler. Accessed: 2012-02-12.

[18] Je-Min Kim. Androbench. http://www.androbench.org/. Accessed:
2012-03-28.

[19] eva Kühn, Geri Joskowicz, and Ralf Westphal. Xcoordination Application Space.
http://xcoordination.org/. Accessed: 2012-04-24.

[20] Qusay H. Mamoud. Getting Started With JavaSpaces Technology: Beyond
Conventional Distributed Programming Paradigms. http://java.sun.com/
developer/technicalArticles/tools/JavaSpaces/, July 2005.
Accessed: 2012-03-16.

[21] University of Bologna. http://alice.unibo.it/xwiki/bin/view/
TuCSoN/, 2011. Accessed: 2012-04-26.

[22] Oracle. Berkeley DB Java Edition documentation. http://docs.oracle.
com/cd/E17277_02/html/java/com/sleepycat/je/Durability.
SyncPolicy.html. Accessed: 2012-02-01.

[23] Oracle. JDBC Documentation. http://www.oracle.com/
technetwork/java/javase/jdbc/index.html. Accessed: 2012-
03-01.

86

http://developer.android.com/guide/developing/debugging/debugging-tracing.html
http://developer.android.com/guide/developing/debugging/debugging-tracing.html
http://code.google.com/p/guava-libraries/
http://code.google.com/p/guava-libraries/
http://developer.android.com/resources/dashboard/platform-versions.html
http://developer.android.com/resources/dashboard/platform-versions.html
http://www.complang.tuwien.ac.at/eva/SBC-Group/sbcGroupIndex.html
http://www.complang.tuwien.ac.at/eva/SBC-Group/sbcGroupIndex.html
http://www.mozartspaces.org
http://www.mozartspaces.org
http://hsqldb.org/
https://developer.qualcomm.com/develop/development-devices/trepn-profiler
https://developer.qualcomm.com/develop/development-devices/trepn-profiler
https://developer.qualcomm.com/develop/development-devices/trepn-profiler
http://www.androbench.org/
http://xcoordination.org/
http://java.sun.com/developer/technicalArticles/tools/JavaSpaces/
http://java.sun.com/developer/technicalArticles/tools/JavaSpaces/
http://alice.unibo.it/xwiki/bin/view/TuCSoN/
http://alice.unibo.it/xwiki/bin/view/TuCSoN/
http://docs.oracle.com/cd/E17277_02/html/java/com/sleepycat/je/Durability.SyncPolicy.html
http://docs.oracle.com/cd/E17277_02/html/java/com/sleepycat/je/Durability.SyncPolicy.html
http://docs.oracle.com/cd/E17277_02/html/java/com/sleepycat/je/Durability.SyncPolicy.html
http://www.oracle.com/technetwork/java/javase/jdbc/index.html
http://www.oracle.com/technetwork/java/javase/jdbc/index.html

[24] Oracle. VisualVM. http://visualvm.java.net/. Accessed: 2012-02-13.

[25] Oracle. WeakReference. http://docs.oracle.com/javase/6/docs/
api/java/lang/ref/WeakReference.html. Accessed: 2012-02-03.

[26] Oracle. Oracle Berkeley DB Java Edition High Availability. http:
//www.oracle.com/technetwork/database/berkeleydb/
berkeleydb-je-ha-whitepaper-132079.pdf, March 2010. Ac-
cessed: 2012-03-26.

[27] Checkstyle project contributors. Checkstyle. http://checkstyle.
sourceforge.net/. Accessed: 2012-02-20.

[28] IBM Almaden Research. TSpaces FAQ. http://ftp.almaden.ibm.com/
cs/TSpaces/faq.html#general. Accessed: 2011-10-16.

[29] P. Saint-Andre. Extensible Messaging and Presence Protocol (XMPP): Core. RFC
6120 (Proposed Standard), March 2011. Accessed: 2012-03-26.

[30] SQLite. Datatypes In SQLite Version 3. http://www.sqlite.org/
datatype3.html. Accessed: 2012-02-17.

[31] SQLite. SQLite documentation. http://www.sqlite.org/omitted.
html. Accessed: 2012-02-01.

[32] SQLite. SQLite Query Language: CREATE TABLE. http://www.sqlite.
org/lang_createtable.html. Accessed: 2012-02-20.

[33] GigaSpaces Technologies. GigaSpaces. http://www.gigaspaces.com/.
Accessed: 2012-04-29.

[34] University of Michigan. PowerTutor. http://powertutor.org/. Accessed:
2012-02-12.

[35] Stefan Weinbrenner and Adam Giemza. SQLSpaces. http://sqlspaces.
collide.info/.

87

http://visualvm.java.net/
http://docs.oracle.com/javase/6/docs/api/java/lang/ref/WeakReference.html
http://docs.oracle.com/javase/6/docs/api/java/lang/ref/WeakReference.html
http://www.oracle.com/technetwork/database/berkeleydb/berkeleydb-je-ha-whitepaper-132079.pdf
http://www.oracle.com/technetwork/database/berkeleydb/berkeleydb-je-ha-whitepaper-132079.pdf
http://www.oracle.com/technetwork/database/berkeleydb/berkeleydb-je-ha-whitepaper-132079.pdf
http://checkstyle.sourceforge.net/
http://checkstyle.sourceforge.net/
http://ftp.almaden.ibm.com/cs/TSpaces/faq.html#general
http://ftp.almaden.ibm.com/cs/TSpaces/faq.html#general
http://www.sqlite.org/datatype3.html
http://www.sqlite.org/datatype3.html
http://www.sqlite.org/omitted.html
http://www.sqlite.org/omitted.html
http://www.sqlite.org/lang_createtable.html
http://www.sqlite.org/lang_createtable.html
http://www.gigaspaces.com/
http://powertutor.org/
http://sqlspaces.collide.info/
http://sqlspaces.collide.info/

APPENDIX A
Performance benchmarks

This appendix describes the benchmarks that were used to measure the performance of
the persistence layer in MozartSpaces.

The number of entries used in the benchmarks are for the J2SE version. During the
execution of the benchmarks on the Android operating system the number of entries
was 200 times smaller to compensate for the significantly slower hardware in order to
make the execution time more practical.

Unless stated otherwise the benchmarks always use a single short String as entry
value.

Write benchmarks always start with an empty container with the AnyCoordinator.

• Write - multiple TX: each thread writes 100000/threads entries in a batch of 50
entries per transaction.

• Write - single TX: each thread writes 100000/threads entries in a single trans-
action.

• Write - separate TX: each thread writes 100000/threads entries each in its sep-
arate transaction.

Read benchmarks prefill a container with an AnyCoordinator with 2000 entries.

• Read all: each thread retrieves all entries 1000/threads times.

• Read - separate Tx each executes 50000/treads read operations each in a sepa-
rate transaction.

I

Take benchmarks prefill a container with AnyCoordinator with 10000 entries.

• Take all: each thread tries to take as many entries as possible.

• Take many - single Tx: each thread takes 10000/threads entries.

• Take - single Tx: each thread takes one entry at a time until the container is
empty.

• Take - separate Tx: like previous benchmark but each take operation has its own
transaction.

FifoBenchmarks evaluate the performance of a container with the FifoCoordinator.

• Fifo add - single Tx: each thread writes 10000/threads entries.

• Fifo read all: each thread reads all entries from a container with 100000 entries.

• Fifo read - single Tx: each thread executes 100000/threads read operations
from a container with 100000 entries.

• Fifo take - single Tx: each thread executes 10000/threads take operations from
a container with 100000 entries.

• Fifo take many - single Tx: each thread takes 20000/threads entries from a
container with 100000 entries.

KeyBenchmarks evaluate the performance of a container with the KeyCoordinator.

• Key add - single Tx: each thread writes 10000/threads entries.

• Key read - single Tx: each thread executes 100000/threads read operations
from a container with 100000 entries.

• Key take - single Tx: each thread executes 100000/threads take operations from
a container with 100000 entries.

VectorBenchmarks evaluate the performance of a container with the VectorCoordi-
nator.

• Vector add - single Tx: initially the vector is prefilled with two entries and then
2000/threads entries are added always at the second position always shifting all
subsequent entries in the vector to the right.

II

• Vector append - single Tx: append 1000/threads entries to an initially empty
vector.

• Vector read - single Tx: read 10000/threads entries from a container prefilled
with 10000 entries.

• Vector take - single Tx: take 10000/threads entries from a container prefilled
with 10000 entries.

LindaBenchmarks evaluate the performance of a container with the LindaCoordina-
tor. Unlike the previous benchmarks the LindaCoordinator also has to analyze the actual
entry value. In this case the entries are simple POJOs with that contain one String
and one long which is used for template matching.

• Linda add - single Tx: each thread writes 1000/threads entries.

• Linda read - single Tx: each thread executes 10000/threads read operations
from a container with 10000 entries.

• Linda take - single Tx: each thread executes 10000/threads take operations
from a container with 10000 entries.

III

	Introduction
	Space Based Computing
	Motivation and goals
	Thesis Structure

	Background
	XVSM
	Persistence
	Mobile energy-efficient computing
	Data storage on mobile devices

	Related work
	Persistence in space based computing

	Requirements
	Requirements of the formal model of XVSM
	Persistence models
	Constraints of the MozartSpaces implementation of XVSM
	Constraints of the Android operating system

	Implementation
	Architecture overview
	Storage backend
	Abstraction of the storage engine
	Transactions
	Caching
	Configuration
	Persistence profiles
	Changes in existing parts of MozartSpaces
	Initialization of the space and the persistence
	Restoring the state of a space from persistent storage
	Optimization of performance and energy efficiency

	Evaluation
	Benchmark environment
	Performance benchmarks
	Memory usage
	Energy efficiency
	Summary

	Future work
	Possible improvements of the persistence layer
	Other open issues of XVSM and MozartSpaces

	Conclusion
	Bibliography
	Web references
	Performance benchmarks

