
Diplomarbeit

Implementation of native threads and locks
in the CACAO Java Virtual Machine

ausgeführt am

Institut für Computersprachen
Arbeitsbereich für Programmiersprachen und Übersetzerbau

der Technischen Universität Wien

unter der Anleitung von

Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Andreas Krall

durch

Stefan Ring
Bachackergasse 35
2380 Perchtoldsdorf

25. November 2008

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

ii

Abstract

One of Java’s most prominent features, the ability to create and synchronize
multiple threads of execution, requires quite elaborate support from a Java
Virtual Machine (JVM) implementation. This work describes the major
steps in making the CACAO JVM provide full support of this fundamen-
tal feature. First, it discusses steps needed to implement Java’s memory
model. Next, the choice of an algorithm for Java monitors and possible fu-
ture improvements are presented. A few experimental variants are evaluated
across a selection of hardware architectures. Additionally, CACAO’s type
checking algorithm is replaced by a method better suited for use in parallel
Java programs. The implications regarding performance as well as memory
requirements are assessed.

iii

Kurzfassung

Eines der wichtigsten Leistungsmerkmale von Java, die Fähigkeit zur Aus-
führung und Synchronisation paralleler Threads, benötigt recht umfangrei-
che Unterstützung durch die Implementierung einer Java Virtual Machine
(JVM). Diese Arbeit beschreibt die wesentlichen Schritte, die benötigt wer-
den, um die CACAO JVM um diese Fähigkeit zu erweitern. Zunächst wer-
den die notwendigen Schritte für die Umsetzung des Java Memory Model
erörtert. Weiters wird die Wahl eines Algorithmus für Java Monitore so-
wie mögliche zukünftige Erweiterungsmöglichkeiten präsentiert. Außerdem
werden einige experimentelle Varianten auf verschiedenen Hardwarearchi-
tekturen verglichen. Zusätzlich wird der von CACAO zur Typüberprüfung
verwendete Algorithmus durch eine Methode ersetzt, die besser zur Verwen-
dung in parallelen Javaprogrammen geeignet ist, sowie deren Auswirkungen
auf Laufzeit und Speicheranforderungen überprüft.

iv

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Java platform features . 1
1.3 CACAO . 2

2 Fundamentals 3
2.1 Mutual Exclusion . 3
2.2 Synchronization Primitives . 3

2.2.1 Compare-and-swap . 4
2.2.2 Load-Locked/Store-Conditional 4
2.2.3 Spin-lock . 5
2.2.4 The ABA Problem . 5

2.3 POSIX facilities . 7
2.4 Memory Models . 9

2.4.1 Introduction . 9
2.4.2 Hardware memory models 10
2.4.3 Sequential consistency 13
2.4.4 JSR 133 . 13
2.4.5 The Java Memory Model 14
2.4.6 Surprising effects of the JMM 15

2.5 The Bytecode Verifier . 18

3 Java Locks 19
3.1 Introduction . 19
3.2 Thread models . 20
3.3 Related Work . 21

3.3.1 Locking algorithms for native threads 21

4 Implementation in CACAO 27
4.1 Java Locks . 27

4.1.1 Overview . 27
4.1.2 Supporting data structures 29
4.1.3 monitorenter/monitorexit 30

v

vi CONTENTS

4.1.4 wait/notify . 31
4.1.5 Implementation of the SableVM modification 35
4.1.6 KKO Lock . 40
4.1.7 Performance . 40

4.2 Internal CACAO Synchronization 47
4.2.1 Freedom from deadlock 48
4.2.2 Statistic counters . 49

5 Subtype checking 51
5.1 Tree numbering . 52

5.1.1 Unsafe regions . 53
5.1.2 Signal handler limitations 54
5.1.3 Improved renumbering algorithm 55
5.1.4 Another approach at improving the renumbering . . . 56
5.1.5 Embedded generation count 56
5.1.6 Performance . 56

5.2 Hotspot’s fast subtype checking method 56
5.2.1 Code and data size . 58
5.2.2 Performance . 60
5.2.3 Conclusion . 60

Chapter 1

Introduction

1.1 Motivation

The Java platform was one of the first mainstream programming environ-
ments offering thread support in the standard run-time library as well as
a well-defined memory model and synchronization primitives built directly
into the core language.

This work describes the implementation of native thread support for CA-
CAO. While setting up the parallel execution of threads is quite straight
forward and well supported on all modern platforms via POSIX threads or
Win32 threads, providing efficient locking primitives poses one of the most
challenging implementation problems.

1.2 Java platform features

Java supports the notion of a monitor [15]—every object can act as a monitor
to all its synchronized methods. In addition, synchronized code blocks can
be defined which act like “anonymous” methods of a monitor object. Java
monitors also have a wait/notify mechanism which can be used to implement
all sorts of cooperation patterns among threads such as the well-known pro-
ducer/consumer pattern.

Aiming for wide cross-platform portability, Java also offers a well-defined
memory model. Although the C and C++ languages are available across an
impressive range of platforms, they don’t offer any guarantees regarding the
temporal behavior of memory in parallel programs. This can lead to very
different results on different underlying hardware architectures.

1

2 CHAPTER 1. INTRODUCTION

1.3 CACAO

The CACAO Java Virtual Machine (JVM) was first created as as fast Just-
In-Time compiler for Java bytecode on the 64-bit Alpha architecture in 1996.
In the beginning, there was just enough run-time support to run simple con-
sole applications. The JVM was limited in all regards, running only on a
single CPU architecture on a single operating system (Linux), and including
minimal green threads support. Since then it has been greatly expanded both
in terms of feature completeness in order to move closer to the JVM Speci-
fication [22] as well as support of multiple CPU architectures and operating
systems—CACAO has been running on Linux, Tru64, IRIX and Mac OS X
on widely varying CPU architectures like Alpha, MIPS (32 and 64-bit), Pow-
erPC (32-bit and 64-bit), ARM (32-bit), SPARC (64-bit) and S390 as well
as Intel x86 and x86_64. Recently, it has become possible to use CACAO as
the JVM inside Sun’s OpenJDK.

Chapter 2

Fundamentals

2.1 Mutual Exclusion

The mutual exclusion problem is best described in [9]:

The mutual exclusion problem arises in a domain wherein each
participating process executes, in strict cyclic order, program re-
gions labeled remainder, acquire, critical section, and release.
A solution to the mutual exclusion problem consists of code
for the acquire() and release() operations. These operations
are required to guarantee that once a process successfully com-
pletes an acquire() operation, no other process will complete an
acquire() operation before the first process invokes a release()
operation. Solutions to the mutual exclusion problem are often
referred to as locks.

Essentially, a lock ensures that at most one thread can execute a critical
section at any given time.

2.2 Synchronization Primitives

The problem of mutual exclusion has been studied for decades, and many so-
lutions have been developed. In early solutions [19], it was considered impor-
tant that only read and write operations be used to make the implementation
independent of the availability of atomic hardware instructions. The appear-
ance of multiprocessor machines fostered specialized hardware support in
the form of atomic instructions. Popular variants are the compare-and-swap
instruction or the Load-Locked/Store-Conditional (LL/SC) pair of instruc-
tions. All major processor architectures of today provide at least one of these

3

4 CHAPTER 2. FUNDAMENTALS

choices.

2.2.1 Compare-and-swap

The compare-and-swap operation implemented by some architectures (x86,
SPARC) can be described by pseudo-code like that in Figure 2.1. It takes
a memory address, an old value and a new value. First, it compares the
value at the memory address against the old value. If they match, the new
value is written into the memory location. Otherwise, it remains untouched.
Critically, an indication is returned if the memory location has been changed.
All this happens atomically.

bool compare_and_swap(size_t *ptr, size_t old, size_t new)
{

<atomically> {
if (*ptr == old) {

*ptr = new;
return true;

} else
return false;

}
}

Figure 2.1: Compare-and-swap

2.2.2 Load-Locked/Store-Conditional

On architectures which do not provide compare-and-swap as a single machine
instruction, it can be synthesized using the load-locked and store-conditional
instruction pair. The former loads the contents from a memory location and
sets a reservation flag in the processor. The latter behaves like a normal
store if this flag is still set. Otherwise, it does nothing. The reservation flag
is guaranteed to be cleared when any processor does a store to the reserved
memory location. By running load-locked followed by store-conditional in a
tight loop until the store succeeds, as shown in figure 2.2, the semantics of
compare-and-swap can be established.

It is important to make sure that this loop will not run forever, causing an
unpleasant live-lock. It will eventually terminate because the loop will only
repeat if the reservation flag has been cleared by some other processor issuing
a store. But among a set of processors competing against each other for the
same memory location, the only way for this to happen would be a successful
store-conditional by another processor, thus terminating its respective loop.
Therefore, no processor will go on indefinitely. This works only because the

2.2. SYNCHRONIZATION PRIMITIVES 5

conditional store is the only store instruction inside the loop. Any additional
store could potentially disrupt the reservation flag and hence lead to a live-
lock.

bool compare_and_swap(size_t *ptr, size_t old, size_t new)
{

do {
val = LL(ptr);
if (val != old)

return false;
if (SC(ptr, new))

return true;
} while (1);

}

Figure 2.2: Compare-and-swap synthesized using LL/SC

2.2.3 Spin-lock

The compare-and-swap operation can readily be used for the implementation
of a simple spin-lock protecting some critical section. Such an implementa-
tion requires one memory word with the semantics that if it is zero, the lock
is currently free and the next inclined thread may enter. A thread which does
not observe the value zero has to wait and retry until it does. Listing 2.3
illustrates the exact sequence of operations a thread has to execute in or-
der to ensure that at most one thread can execute code inside the critical
section.

Obviously, this simple spin-lock algorithm is not suitable as a general solution
to the mutual exclusion problem. Unbounded spinning is a tremendous waste
of energy; a spinning process should be able to suspend itself until the spin-
lock variable becomes available again, thus freeing up valuable processor
resources. A hybrid approach composed of a spin-lock with a limited number
of spin iterations and a suspend lock can be a very useful combination in
many cases [28].

2.2.4 The ABA Problem

The compare-and-swap operation is very powerful and can be used in a wide
variety of ways to build synchronization algorithms. Alas, there are some
cases where a simple CAS is not enough and allows erratical behavior. One
very common source of error is called the ABA problem. It is frequently
encountered in the construction of lock-free data structures such as linked
lists [24] or stacks.

6 CHAPTER 2. FUNDAMENTALS

void spin_enter(spin_t *s)
{

/* Continuously try to lock s by setting it to 1. */
while (!compare_and_swap(s, 0, 1))

/* do nothing */;
}

void spin_leave(spin_t *s)
{

/* Just set s to 0 to denote that the lock is now free. */
*s = 0;

}

<...>
spin_enter(critical);
<critical section>
spin_leave(critical);
<...>

Figure 2.3: Spin-lock implementation

When applying compare-and-swap to construct an algorithm, it is easy to
fall into the trap of mentally equating the successful execution of a compare-
and-swap with the fact that the underlying value has not changed. In the
majority of cases, the compare-and-swap will indeed only succeed if the value
has not been touched. When a thread tries to execute CAS(&x, A, Y), the
CAS will usually succeed only if x “still” contains the value A at the time the
CAS operation is executed. It is very well possible, however, that another
thread changes the value of x to B and then back to A before the execution
of CAS. If x is a pointer, the values referenced by it might have changed,
from the first thread’s point of view, without the thread having any chance
of detecting this circumstance.

The ABA problem often arises in situations where heap-allocated nodes
are linked together using pointers which are changed by compare-and-swap.
Deleted nodes may be subsequently reused, leading to the problem. Specif-
ically, the problem arises when the semantic value of the variable to be
changed depends on other memory locations and is used as an operand in
the comparison. In the spin-lock algorithm in listing 2.3, the only value which
is used as a comparison operand is 0. Its meaning is always “the lock is free”,
independent of any other memory locations. Therefore, the spin-lock algo-
rithm does not suffer from the ABA problem.

Possible solutions to the ABA problem include pointers tagged with a counter
(leading to problems with wrap-around) or hardware instructions which
perform atomic compare-and-swap on two values simultaneously (such as

2.3. POSIX FACILITIES 7

cmpxchg16b on x86_64 processors1). Another possibility would be to use
hazard pointers [25], where each thread is required to maintain a (usually
short) list of pointers which it assumes to be valid. The easiest solution would
often be the use of a garbage collector.

2.3 POSIX facilities

The POSIX standard for threads[30] describes several mechanisms for thread
synchronization—semaphores, mutexes and condition variables.

A semaphore is one of the oldest synchronization primitives and used ex-
tensively in classic synchronization algorithms. In Unix, semaphores are of
interest primarily because they can be used inside of signal handlers.

A mutex can provide a thread with exclusive access to shared data. If a thread
tries to acquire a mutex while it is held by another thread, its execution will
be suspended until the mutex becomes available. Mutexes are usually quite
cheap—the dominant cost being one compare-and-swap operation for lock
and unlock respectively.

If additional flexibility is needed, a mutex can be paired with a condition
variable. One ore more shared state variables are usually associated with this
conglomerate for communication between different threads. Condition vari-
ables are very versatile and can be used to construct other synchronization
mechanisms, such as a semaphore or a Java monitor.

As an example showing the expressiveness of condition variables, the imple-
mentation of a semaphore is shown in figure 2.4. Both P and V operations
lock the mutex upon entering and unlock it when leaving. The P operation
then waits until the value becomes positive and decrements it by one. This
does not necessarily set it back to 0 because many other threads may have
incremented the value before the thread blocked in the P operation has had
a chance to reacquire the mutex. The V operation increments the value and
potentially signals a waiting thread if the value has become positive as a
result.

The same can be implemented in Java, following almost the same design
(figure 2.5).

1On some processors which support the LL/SC instruction pair, such a double-compare-
and-swap operation could be synthesized, but because of granularity issues the two operand
addresses would need to be severely restricted, just as they are in cmpxchg16b: the
operands must be adjacent and the pair must be properly aligned on a 16 byte boundary.

8 CHAPTER 2. FUNDAMENTALS

1 typedef struct {
2 pthread_mutex_t m;
3 pthread_cond_t c;
4 int val;
5 } semaphore;
6
7 void sem_P(semaphore *s)
8 {
9 pthread_mutex_lock(&s->m);

10 while (s->val == 0)
11 pthread_cond_wait(&s->c, &s->m);
12 s->val--;
13 pthread_mutex_unlock(&s->m);
14 }
15
16 void sem_V(semaphore *s)
17 {
18 pthread_mutex_lock(&s->m);
19 if (s->val++ == 0)
20 pthread_cond_signal(&s->c);
21 pthread_mutex_unlock(&s->m);
22 }

Figure 2.4: Semaphore implementation

1 class semaphore {
2 private int val;
3 public synchronized void P() {
4 while (v == 0)
5 try {
6 wait();
7 } catch (InterruptedException e) { }
8 v--;
9 }

10 public synchronized void V() {
11 if (v == 0)
12 notify();
13 v++;
14 }
15 }

Figure 2.5: Semaphore implementation in Java

2.4. MEMORY MODELS 9

2.4 Memory Models

2.4.1 Introduction

Any system which can run multiple processes in parallel, allowing those pro-
cesses access to the same memory variables, needs to assert some properties
regarding temporal memory behavior which those parallel processes can rely
on. The Java Memory Model (JMM) defines a set of such properties.

In Java, the term “variable” can be any of an instance field, a static field
or an array element. Local (stack) variables can never be accessed by any
other thread than the one owning the stack. The Java memory model is not
concerned with local accesses, consequently. Also, the JMM does not apply
to any memory accesses a JVM has to perform internally, such as finding
the address of a virtual function or determining the result of a CHECKCAST
instruction.

Memory models affect different layers of a system. The nomenclature tends
to differ somewhat between these levels. I will stick with the names “thread”
and “variable”. The individual layers are:

CPU Processors usually interact with memory through various caches and
write buffers. From the CPU’s point of view, the memory model is
concerned with physical memory locations.

OS The operating system must make sure that a thread’s view of (virtual)
memory stays consistent when it is migrated between CPUs or when
memory mappings are changed.

C compiler The C compiler does not care about multiple threads and can
manipulate the code freely as long as reads and writes from one thread
appear to the thread itself to happen in program order.

Garbage collector When the GC moves objects around in memory, this
has to be completely transparent to the Java program. A relaxed hard-
ware model could lead to variables transiently changing values. The GC
must prevent such effects.

JIT compiler The JIT compiler is similar to the C compiler and can per-
form a wide variety of optimizations. It has to care about the rules of
the JMM when it comes to MONITORENTER, MONITOREXIT and access to
volatile and final variables.

Java compiler The Java-to-bytecode compiler does not perform a lot of
optimization typically. It must carefully conserve ordering constraints
imposed by synchronized blocks and accesses to volatile variables.

10 CHAPTER 2. FUNDAMENTALS

The semantics dictated by the Java Memory Model (JMM) have to be pre-
served across all these levels. A JVM does not have to care about the Java
compiler level because it never deals with Java source code and operates
only on pre-built class files. So CACAO only has to ensure that the byte-
code it executes can only observe memory behavior consistent with the JMM
rules.

Memory models deal with the general problem of variables written by one
set of threads and read by another set. In many cases, these sets will consist
of only one thread each. The memory model is concerned with the question
what possible outcomes a particular read can produce, given an overview
over all threads running on a system.

For single-threaded programs, the answer to this question is simple; a read
from a variable should always see the value that was last written to that
particular variable. If there has not been such a write, Java requires that the
variable’s initial value be read. All variables must have an initial value in
Java.

When two or more threads operate on the same variable, the definition of
“the last value written” becomes blurry. In general, because of a great variety
of contributing factors, like caches, write buffers, various latencies, compiler
reorderings and so on, it cannot always be decided if a particular write hap-
pens before or after another.

It should be noted that implementations are free to perform the actual mem-
ory accesses, at the hardware level, in any order as long as this fact cannot
be observed by the program. Such reorderings are in fact very commonly
performed by both processors and compilers. In the single-thread case, there
is ample room for such reorderings to occur. A large amount of outstanding
reads is likely to better utilize the underlying caching system. Reads can be
executed far in advance, as long as they respect dependencies imposed by
possibly conflicting writes. Similarly, writes can be deferred for a long time;
they usually spend some time in a write buffer before they finally reach their
physical memory destination.

Similarly, the JMM is not concerned with the actual sequence of writes
reaching physical memory. Only behavior detectable by the Java program
is regulated.

2.4.2 Hardware memory models

Similar to the single-threaded program, a system with only one CPU (core)
can perform memory operations in any order as long as they appear to
the program to be in the correct order. As soon as more processors are

2.4. MEMORY MODELS 11

involved, the processor manufacturer has to specify what memory behavior
can be expected. The processor memory model affects the individual read
and write machine instructions in the same way the JMM affects bytecode
instructions.

Modern CPUs often support various types of memory. For example, uncached
and cached memory or write-combining memory for the graphics framebuffer.
For Java, only cached memory is of interest; a machine’s RAM is usually
represented by this type of memory. In general, processors communicate with
one or more caches private to each processor. These caches are constantly
synchronized with one another and with main memory, so a write performed
by one CPU will eventually be seen by every CPU in the system. The order
in which this happens, is not necessarily always very intuitive.

The prevalence of x86 and x86_64 architectures in today’s computing land-
scape may lead one to the conclusion that most current CPUs do not reorder
memory accesses extensively. The memory model of these architectures is
quite strict and does not allow many reorderings commonly found in other,
arguably rarer architectures. When a program developed for such a strict
memory model is ported to an architecture with a more relaxed model, sub-
tle and very hard to find concurrency problems are likely to appear. The
example shown in figure 2.6 will behave in the intuitively expected way on
x86 and x86_64 but not on most other architectures.

In the following examples, x and y denote shared memory variables while a,
b and p are local variables visible to the respective thread only. The shared
variables always start out with the initial values 0 or null.

Thread 1 Thread 2
a = y;
b = x;

x = 1;
y = 1;

a = 1 and b = 0 is not possible on x86 CPUs.

Figure 2.6: No surprising behavior on x86 processors

If thread 1 can see the value 1 written to y, it will also see the previously
written value 1 in x. On x86 processors, reads are never scheduled ahead of
earlier reads, and writes are never scheduled ahead of earlier writes.

Thread 1 Thread 2
y = 1;
a = x;

x = 1;
b = y;

a = b = 0 is possible.

Figure 2.7: Common result on current CPUs

However, the result shown in figure 2.7 is very common across almost all

12 CHAPTER 2. FUNDAMENTALS

processors. On most processors, writes go to a write buffer, and reads can be
scheduled ahead of them. Thus, the reads in both threads may still see the
previous values of x and y. In a strictly sequential model, at least one thread
would have to see the value written by the other thread. If this is required2,
the processor’s ordering must be explicitly restricted by a memory barrier
instruction, as shown in figure 2.8. Note that the barrier is necessary on both
sides because reordering on either side can result in a = b = 0.

Thread 1 Thread 2
y = 1;
<MEMORY BARRIER>
a = x;

x = 1;
<MEMORY BARRIER>
b = y;

a = b = 0 is not possible.

Figure 2.8: Use of a memory barrier

The most aggressive form of memory reordering is presently performed by
the Alpha processor on which the behavior shown in figure 2.9 might be
observed.

Initially, p.z = 0.

Thread 1 Thread 2
b = -1;
a = x;
if (a)

b = a.z;

p.z = 1;
<MEMORY BARRIER>
x = p;

b can be 0.

Figure 2.9: Surprising result on an Alpha processor

Thread 2 writes to the variable p.z and subsequently publishes a reference
to this variable in the shared variable x. The memory barrier is supposed to
make sure that the object referenced by x has been fully initialized before
another thread can see the reference. Thread 1 dereferences the pointer to
read the value supposedly written by thread 2. Even with the enforced write
ordering dictated by the memory barrier, thread 1 can still see the previous
value 0, even if it seems obvious that it needs to determine the value of p
first.

Because the hardware memory models differ significantly across the CPU ar-
chitectures supported by CACAO, a different set of memory barriers needs
to be developed for each architecture. The rules governing access to shared
memory locations with mixed word sizes also differ significantly across ar-

2It is often desirable to require this property in algorithms for mutual exclusion, as will
be seen in the description of tasuki lock and KKO lock in section 3.3.1.

2.4. MEMORY MODELS 13

chitectures. Fortunately, such mixed-size accesses can not be expressed in
Java.

2.4.3 Sequential consistency

There is a model which disallows many memory reorderings and exhibits
very intuitive behavior. It is called sequential consistency [20, 1].

Definition: [A multiprocessor system is sequentially consistent
if] the result of any execution is the same as if the operations of
all the processors were executed in some sequential order, and the
operations of each individual processor appear in this sequence
in the order specified by its program.

Informally, in a sequentially consistent system, it appears as if only one
memory operation (read or write of a shared variable) can be executing at any
one time. The results of a write becomes visible to all threads immediately.
Instructions in each specific thread are executed in program order.

While sequential consistency is a convenient model, it disallows lots of useful
performance optimizations. Typical multiprocessor machines implement at
least some relaxations in order to improve performance. These relaxations
can be disabled selectively by the use of barrier instructions in appropri-
ate places. However, sequential consistency can not always be achieved this
way[5].

2.4.4 JSR 133

The specification of a memory model for the Java programming language
has proved to be a more complicated undertaking than initially anticipated.
As a result, the original specification was difficult to understand and had
undesirable consequences. Popular implementations of the JVM violated the
rules of the JMM mostly because of its difficult interpretation as well as
run-time penalties that strict adherence would have caused. Because of the
unclear specification, JVM implementations have always employed all sorts
of optimizations that did not respect the specification. This led to a revised
specification, aiming for better optimization potential and improved clarity
and intuitivity.

Improved areas of the new specification include

• More intuitive semantics of programs.

• More efficient implementation on popular hardware.

• final fields cannot appear to change.

14 CHAPTER 2. FUNDAMENTALS

• New semantics of volatile variables.

• A concise set of formal rules.

2.4.5 The Java Memory Model

The Java memory model[23, 13] describes a very relaxed memory model.
This choice was made to give compiler and hardware enough freedom to
achieve good performance.

The JMM also describes a happens-before relation that forms a partial order
over a program’s synchronization actions (lock, unlock, Thread.join, . . .).
It then goes on to call a program properly synchronized if all its conflicting
memory actions are ordered by the happens-before relation (or program or-
der). A memory action is a read or write to a shared variable; two memory
actions are conflicting if at least one of them is a write. A pair of conflict-
ing memory actions is called a data race if there is no ordering imposed by
happens-before (or program order). The execution of a properly synchronized
program will appear to be sequentially consistent.

So in order to be able to efficiently reason about the temporal behavior of
a program, programmers should strive to make them properly synchronized.
But even in the presence of data races—that is, not properly synchronized—,
Java programs must not produce values “out of thin air”. This property is
established in the JMM through a voluminous body of theoretical constructs.
In a reasonable JVM implementation on real hardware, “out of thin air”
values will not occur as long as the appropriate memory barriers are used for
synchronization actions. On the other hand, a heavily optimizing compiler
might be restricted by this rule.

Areas affected by the JMM

synchronized The Java language allows a program to enter an object’s
monitor with the synchronized keyword. A MONITORENTER operation is per-
formed upon entering a synchronized code block while a matching MONITOR-
EXIT is performed upon leaving. synchronized blocks can be established im-
plicitly, by attaching the synchronized attribute to a method’s definition,
or explicitly, by enclosing a sequence of statements inside a synchronized
block. In the latter case, the object to lock is specified explicitly, in the for-
mer it is always the this reference or, in the case of static methods, the class
object. An unlock action happens-before all subsequent lock actions on the
same object.

2.4. MEMORY MODELS 15

volatile Access to volatile variables is guarded by its own set of special
rules in the JMM. The intent of volatile is similar to the C language.
It provides much stronger visibility guarantees, however. volatile writes
behave very similar to memory barriers; in fact the semantics are even a bit
stronger.

All volatile reads and writes need to observe behavior consistent with se-
quential consistency. Because of this, there is a total order over all volatile
actions (reads and writes). A write to a volatile variable happens-before all
subsequent reads of the same variable, according to this total order.

final The semantics of final variables are easily understood—they can
never change3. Yet, under the old memory model, it has been possible for
threads to observe different values over the lifetime of final variables.

The problem with final reference fields is that the referenced object must
be observed as fully constructed. While this is clearly the case from the
initializing thread’s viewpoint, it is possible for another thread to observe
the reference in the final field before the memory contents it references
have become completely visible to this thread.

The revised JMM demands that final variables can not appear to change,
as long as the objects containing them are properly constructed. That means
that object’s constructors cannot leak their this reference to other threads.

java.lang.String The Java class java.lang.String class implements im-
mutable strings. To ensure that they actually appear to be immutable, the
JVM implementation must not allow any Java code to see uninitialized con-
tents through references to newly created strings. This is very similar to the
final field problem. However, since string creation is an operation inter-
nal to the JVM, there is no way for Java code (or bytecode) to thwart this
behavior.

2.4.6 Surprising effects of the JMM

The following examples show some effects of the Java memory model that
may be surprising to an unaware programmer.

In the sequential consistency model, the combinations (0, 0), (1, 1) and (0, 1)
for (a, b) can be expected as a result of the operations in figure 2.10—if both
instructions in thread 1 execute before the instructions in thread 2, the result

3It is possible to change a final variable through the reflection API, although such
changes need not always have the desired effect because of compiler optimizations.

16 CHAPTER 2. FUNDAMENTALS

Thread 1 Thread 2
a = y;
b = x;

x = 1;
y = 1;

Any combination of 0 and 1 is allowed for a and b.

Figure 2.10: Effects of reordering reads or writes

will be (0, 0). Conversely, if both instructions in thread 2 execute before the
instructions in thread 1, the result will be (1, 1). With interleaved execution,
(0, 1) may occur if the two reads in thread 1 are scheduled between the two
writes.

The result (1, 0) is also allowed in the JMM, however. An implementation
is free to execute both reads in any order—just reversing the two read in-
structions in thread 1 could easily produce this result. Similarly, the writes
in thread 2 can be reordered freely.

int x;

Thread 1 Thread 2
a = x; x = 1;

x = 2;

a may be 0, 1 or 2.

Figure 2.11: Atomic values

In example 2.11, it might seem obvious that only 0, 1 or 2 can show up
in a. Specifically, a must not contain anything else, like 42. The JMM does
not allow such creation of values “out of thin air”, mostly for security rea-
sons.

long x;

Thread 1 Thread 2
a = x; x = 1;

x = -1;

a may take on surprising values.

Figure 2.12: 64 bit values

One exception to this rule is the non-atomic treatments of 64 bit values. For
performance reasons, a JVM is allowed to split up the reads and writes to
such a value. On 32 bit implementations, common outcomes for a in 2.12,
apart from the expected 0, 1 and −1, would be 4294967295 (0xffffffff) or
−4294967296 (0xffffffff00000000).

So far, the executed statements were just plain, unconditional read or write

2.4. MEMORY MODELS 17

instructions. The following example shows how compiler optimizations might
produce surprising results.

Thread 1 Thread 2
a = x;
if (a == 1)

y = 1;

b = y;
if (b == 1)

x = 1;
else

x = 1;

a = b = 1 is legal.

Figure 2.13: Compiler optimizations

In example 2.13, the compiler might detect that x = 1 is always executed
and can therefore be scheduled before any other instruction. The JMM allows
such optimizations.

Implementation consequences

A JVM implementation unaware of the JMM would allow the Java pro-
gram to observe memory behavior consistent with the memory model of the
hardware that the JVM is running on. This is acceptable only as long as
the hardware memory model is more restrictive than the JMM. Fortunately,
this is often the case, at least in the absence of synchronized, volatile
and final.

These synchronization features often need to be supported by memory bar-
riers in generated code or in C code. Doug Lea’s JSR-133 cookbook[21] lays
out in detail which kinds of barriers are needed on various architectures.
The amount of barriers can appear a bit overwhelming, though, as on many
architectures, most of them are unnecessary. The types of barriers are also
described in the cookbook. In short, the JVM can use barriers like described
in the following to implement the individual language features.

synchronized A LoadLoad and a LoadStore barrier is required after a
MONITORENTER. On many platforms, this is achieved only by issuing a full
barrier (StoreLoad). The x86 does not need a barrier because the CAS used
for entering the monitor acts as a full barrier. Additionally, LoadLoad and
StoreStore are always no-ops on x86.

Before MONITOREXIT, StoreLoad and StoreStore barriers are needed. On most
platforms, this is a full barrier. In tasuki lock, there is a full barrier in the
unlock path anyway, so only the StoreStore is necessary.

18 CHAPTER 2. FUNDAMENTALS

volatile A StoreStore barrier is needed before each volatile store and a
StoreLoad thereafter. A volatile load needs exactly the same barriers as a
MONITORENTER.

32 bit architectures need to make sure that volatile 64 bit values (longs
and doubles) are treated atomically.

final If a class has any final fields, then its constructor must issue a
StoreStore barrier before returning. On architectures where data dependency
does not order loads (only Alpha), a LoadLoad is required before each load
of a final field.

The simplest and most conservative sufficient approach would be to place a
full barrier after each MONITORENTER and before and after each MONITOREXIT
and volatile access.

Additionally, the Alpha requires LoadLoad barriers before accessing internal
fields of strings or arrays (like the length) and StoreStore barriers when
creating such objects.

2.5 The Bytecode Verifier

The Java bytecode verifier needs to be able to statically prove, among other
tasks, that all bytecode instructions are properly typed for their arguments,
otherwise it rejects the code in question. In a very similar way, it could also
be used to prove the pairing of MONITORENTER and MONITOREXIT instructions
but this is not required. In fact, Java bytecode may issue these monitor
instructions quite arbitrarily. However, because most existing Java classes
have been produced by Java compilers, such arbitrary locking sequences are
rare. Hotspot is optimized to take advantage of proper pairing and allocates
lock records on the stack if proper pairing can be proved statically. In fact,
it does not even compile methods which lack proper nesting but executes
them in interpreter mode instead[31].

One restriction to the arbitrary execution of monitor instructions applies:
when a stack frame becomes deactivated (“is left”), possibly because of an
exception, the JVM is free to leave (release) all monitors acquired in that
stack frame. In bytecode compiled from Java source code, there are always
MONITOREXIT instructions to this effect anyway; many exception handlers
exist just for this reason. In the absence of such measures, the JVM can
make use of this freedom granted by the JVM specification. This is what the
Hotspot interpreter does.

Chapter 3

Java Locks

3.1 Introduction

Java’s multi-threaded nature requires that the language provide a mecha-
nism for synchronization among threads. The Java platform provides such
a mechanism based on the monitor concept [15]. Any Java object can serve
as a monitor at any time. Because the JVM cannot know in advance which
objects will be used as monitors—and most objects never will [4]—it should
not impose an undue space overhead for objects which never take part in syn-
chronization operations. The exact amount of overhead considered undue has
varied in different contexts, but for use in CACAO, a locking algorithm may
allocate a full word in the object header. This overhead is generally accepted
as tolerable, and the lockword can often be shared with the garbage collector
in order to mitigate the memory waste.

Primarily because Java has had built-in support for multi-threading from the
beginning, most Java libraries are written with multi-thread safety in mind
and therefore need to make use of the synchronization features. This results
in very frequent execution of locking operations, demanding a time-efficient
implementation.

This chapter presents various locking algorithms which have been considered
for CACAO. The “Related Work” section will describe them briefly. Full de-
tails can be found in the respective referenced papers. The “Implementation”
section describes only those implementation details which cannot be found
in these papers. In particular, recursive locking and the implementation of
wait/notify are often omitted.

In the following two chapters, threads will often be said to “lock an object”,
“take a lock”, “lock a monitor” or “enter a monitor”. These are all considered

19

20 CHAPTER 3. JAVA LOCKS

the same, namely a Java thread performing a MONITORENTER operation on a
Java object.

3.2 Thread models

There are two flavors of multi-threading: “green” and native threading. With
“green” threads, all of a program’s threads executes in a single OS-level
thread. Switching from thread A to B is done by storing all of A’s regis-
ters, including its stack pointer and return address, in A’s thread structure
and restoring the same set of registers from B’s thread structure, returning
to the just-restored return address. Caller-saved (temporary) registers can
be omitted if the switching is done by calling a C function. Blocking system
calls need to be emulated with non-blocking equivalents because they would
block the whole program instead of just a single thread. Thread switches
are triggered by blocking operations, including entering or waiting on Java
monitors, or by some sort of periodic real-time interrupt. Because everything
is controlled by the program itself, interruptions from the periodic timer—
the only source of non-deterministic thread switching—can be temporarily
suppressed and handled at convenient moments. While this ability does not
come for free, it might allow other, more expensive, provisions to be omit-
ted. Because everything runs in a single thread (and more importantly, on
a single processor), expensive atomic instructions and memory barriers are
not necessary.

The “green” model was very popular among early implementations of the
Java virtual machine because both OS-level synchronization and atomic
hardware instructions were very expensive and because SMP machines were
the exception rather than the norm. On single CPU systems, better perfor-
mance could be obtained by handling the threads in the JVM itself, bypassing
many expensive mode transitions between user mode and kernel mode, that
would have been required in a kernel-based approach.

In the native model, each program thread runs in its own OS thread. Today,
the most important consequence of this for Java is that it enables Java code
to run on more than one processor simultaneously. It is also much cleaner
than the “green” model which has always been more somewhat of a kludge
with lots of OS- and architecture specific parts. As a downside, however, pre-
emptive thread scheduling and simultaneous execution on multiple processors
mandates the use of expensive mechanisms like atomic instructions.

Today, with Moore’s law applying more to the number of cores than to
processor clock speeds, the native model clearly needs to be utilized in order
to make current processors’ full power available to Java programs.

3.3. RELATED WORK 21

OS provided locking primitives were very slow on most platforms because
they involved switching to kernel mode. The Java lock optimizations dis-
cussed in this chapter work around this by implementing the fast path in
user space, resorting to kernel support only when a thread has to be stopped
(because of lock contention). The same technique has been used later to
speed up OS-provided mutexes on Linux[11].

3.3 Related Work

The topic of locking for Java has been studied long and deeply. As a re-
sult, locking implementations for Java have improved considerably over the
last few years. Early implementations of the Java virtual machine allocated
monitors for objects on demand and set up an association between the ob-
ject and its monitor by means of a global hash table called the monitor
cache [18]. This kind of implementation was quite inefficient but acceptable
when using “green” threads. It was found to be completely unsuitable for
native threads, though, because access to the monitor cache itself had to be
synchronized.

3.3.1 Locking algorithms for native threads

The following algorithms all rely on the observation that for the majority
of lock operations in Java, there is no contention. Most locks are either
only ever acquired by a single thread or by one thread at a time. Recursive
locking is considered but only to a limited depth. While recursive locking
happens frequently in Java, large recursion counts are rarely encountered.
All algorithms make use of atomic instructions which are available on every
major general purpose CPU architecture or can be synthesized by a short
instruction sequence. Since these are relatively expensive, it is customary to
use them as a basis for performance characterization.

Thin Lock

The thin lock algorithm was developed by Bacon et al. It requires an un-
derlying general Java lock implementation as a fall-back scenario for when
the optimized fast path cannot cope with a specific usage pattern (like very
deeply nested locking or heavy lock contention). It was argued that using a
full word in the object header would be an unacceptable space-time trade-off.
The thin lock algorithm needs 24 bits which the authors could salvage by
changing the encoding of other header fields without increasing the size of
the object header.

22 CHAPTER 3. JAVA LOCKS

The 24 bits in the header, which will subsequently be called the “lockword”,
have two different modes: flat mode and inflated mode. A single bit, the
shape bit, that is also part of the lockword, indicates the current mode
of the lockword. In flat mode, the shape bit is 0 and the remaining bits
contain a recursion counter and a thread id. In inflated mode, the shape
bit is 1, and the rest contains a monitor id that points to a larger memory
structure containing the full monitor object as required by the underlying
locking algorithm. When the lock is free, all bits are zero. Threads trying to
acquire the lock can therefore use CAS(&lockword, 0, <tid>|1) to declare
themselves owner of the lock. Because the most common operation is locking
an unlocked object, this operation will succeed in the majority of cases.
Only if it fails, further processing is necessary. In this case, the thread will
enter a spin-loop called the inflation loop and try to install a lockword with
the shape bit set. This inflated mode lockword points to a (possibly newly
allocated) monitor that the thread enters just before installing it. When a
thread releases the lock in flat mode, it just stores 0 in the lockword and is
done. The cost in the common case without contention is therefore one atomic
instruction for locking and zero—just a simple store—for unlocking.

There are two problems, however, with this approach. First, once an object
is inflated, it can never go back to flat mode. Second, it can potentially
cause a thread to spin forever, when another thread holds a lock on a non-
inflated object. These problems were justified with ease of implementation
and locality of contention which states that if there is contention for a specific
object, most subsequent locking operations performed on this object will also
experience contention. For the single-threaded programs used for evaluation,
these were reasonable assumptions but the authors never verified them.

Meta-Lock

Agesen et al. developed another algorithm called the meta-lock [3]. It does
not require an additional full word in the object header but only two available
bits. They are used to encode one of four possible states: neutral, busy, locked,
waiters. If these two bits can be made available without increasing the object
size, it is very space-efficient. The downside is that it requires at least two
atomic instructions for locking and two for unlocking in the base algorithm,
and one for each in an optimized variant with an additional third bit in the
header.

The lock algorithm works by first storing a pointer to a thread-local data
structure called the execution environment in the lockword. The state for
the lockword is set to busy. This happens with an atomic swap operation
so that the state of the previous lockword can be inspected. In the author’s
implementation, the rest of the lockword contains the object’s hash value.

3.3. RELATED WORK 23

Threads which want to read the hash value of an object will thus also have to
execute the expensive locking protocol. The execution environment contains
a number of auxiliary fields and, most importantly, an OS lock on which
contending threads can block. After the execution environment is installed,
the locking thread can freely update any number of fields because other
threads will detect the busy state and will block on the locking thread’s
execution environment. The locking thread will transition to locked state and
install a pointer to a lock record, concluding the locking sequence. When a
lock is released, the first action is again marking the lockword as busy and
installing a pointer to the execution environment. After that, all remaining
necessary actions, like waking other threads and recycling the lock record,
are performed. In essence, the algorithm uses a “lock for the lock”, hence the
name meta-lock.

Because of the high cost of atomic instructions, this algorithm is not very
interesting with regard to inclusion in CACAO where a less space-efficient
algorithm is considered a better choice.

Relaxed-Lock

The relaxed-lock[8] algorithm by Dice is well rounded in terms of performance
and space requirements. It requires a full word in the header which can be
shared with a hash code, so the object size needs not be expanded. The
atomic instruction count is comparable to thin lock. For uncontended locking,
it performs one atomic instruction and for unlocking a simple store followed
by a memory barrier.

Unfortunately, the algorithm is rather complicated in terms of code com-
plexity and subtlety as well as required infrastructure. Each thread manages
a pool of available lock records from which it obtains one when it wishes to
enter a monitor. It then tries to insert a pointer to the lock record into the
lockword via CAS. If this succeeds, the monitor is locked. In terms of thin-
lock, the locked object is always inflated as soon as it is locked. There is no
“thin” locked state. The advantage is that no spinning is needed. In contrast
to spin-lock, inflated objects don’t have to stay this way. The relaxed-lock
algorithm uses eager deflation where it tries to restore a locked object’s orig-
inal state as soon as possible (during unlocking). Lock records can change
their owner if a thread tries to lock an object while it is being deflated by
another thread. This could lead to an undue lock record hoarding by one
thread and needs to be counteracted. Another problem is that lock records
might be leaked. Because of this, a list of potentially leaked lock records
needs to be maintained and periodically checked and cleared, preferably at
garbage collection time.

24 CHAPTER 3. JAVA LOCKS

Because of these necessary maintenance actions at times other than lock-
ing or unlocking, it cannot be included as cleanly in CACAO as would be
desirable. A variation of the algorithm has been attempted which does not
migrate lock records between threads but it suffered from the ABA problem
and grew more complicated than originally expected. It has been replaced
with tasuki lock.

Tasuki Lock

Onodera proposed an extension of the thin-lock algorithm, called tasuki
lock [26] (“tasuki” is not the name of any involved person). It addresses
two shortcomings of the thin-lock: spinning and inability to deflate. To make
this work, the algorithm has two additional requirements. First, tasuki lock
needs an external facility like a hash table to maintain associations between
Java objects and lock records. Second, it needs an additional bit in the object
header, called the FLC (fat lock contention) bit. Critically, this bit cannot
be part of the lockword.

As soon as the initial CAS fails, the object’s associated lock record is looked
up (or allocated). The failing thread then blocks itself on this lock record.
This modification removes the spinning from the thin-lock algorithm. Before
a thread blocks itself, it sets the FLC bit so that the thread holding the lock
will eventually become aware of the blocked thread and unblock it. Because
everything is protected by the associated lock record and because inflating
is relatively cheap, the lock can be deflated any time it is held (thereby
releasing it) by just writing the initial value 0 into the lockword.

The SableVM modification

The problem with the FLC bit is that it must be allocated in a word
separate from the lockword. Such a word is not always easily available.
Gagnon and Hendren encountered this problem during the implementation
of SableVM[12]. They modified the algorithm so that the FLC bit can be
allocated in the thread structure where the allocation of an extra word does
not raise space concerns.

KKO Lock

In [17], Kawachiya, Koseki and Onodera observed that most Java objects,
are only ever locked by a single thread over their entire lifetime, if they are
locked at all. In the absence of other threads, it should not be necessary to use
expensive atomic instructions for repeated locking and unlocking of an object

3.3. RELATED WORK 25

by the same thread. Their proposed solution is an algorithm that reserves
an object’s lock to the first thread which accesses it. If another thread tries
to lock the same object, it has to cancel the reservation first. This happens
by sending a signal to the owner thread, thus stopping its execution, and
examining the stopped thread’s instruction pointer. In most cases, the lock
can simply be unreserved while the owner thread is stopped. Occasionally,
though, the thread is in an unsafe region where the instruction pointer must
be adjusted so that the unsafe region is restarted when the thread continues
execution.

Reservation cancellation is a very expensive operation in this algorithm,
which led the authors to reconsider the problem. In [27], they devised a new
locking algorithm, called KKO lock, after the author’s initials. It combines
a Dekker-style lock[10] and the tasuki lock algorithm.

Dekker’s algorithm can ensure mutual exclusion for an arbitrary but fixed
number of participating threads. It does not require combined atomic instruc-
tions like compare-and-swap. In KKO lock, only 2 participants are allowed.
For this size, Dekker’s algorithm is very simple. It requires 2 boolean flags,
one for each thread, which are both initially 0. A thread trying to enter
the critical section first sets its own flag to 1, then verifies that the other
thread’s flag is (still) 0. If this is the case, the thread has successfully entered
the critical section. Otherwise, it has to reset its own flag and try again. The
thread leaves the critical section by just resetting its flag to 0. On multipro-
cessor systems, a memory barrier must be inserted between setting a flag
and reading the other one.

KKO lock needs to make sure that only 2 threads perform Dekker’s algo-
rithm. The thread which has reserved a lock is always one of the two partici-
pants. The other thread is decided by use of a compare-and-swap instruction.
The cost of KKO lock for the thread holding a reservation is thus 1 memory
barrier at entry and 1 memory barrier at exit (because of the FLC bit). For
a thread without a reservation, it is 1 CAS at entry, just like in the tasuki
lock.

Quickly Reacquirable Locks

In [9], Dice et al. discuss a strategy for completely getting rid of expensive
hardware synchronization instructions in the “reserved” path. They specif-
ically exploit the SPARC TSO memory model[33] to prevent a read from
being reordered before a write by using mixed word sizes to access the same
memory word. The same technique is also applicable to the x86 and x86_64
architectures.

26 CHAPTER 3. JAVA LOCKS

Biased Locking

Unfortunately, this “soft” memory barrier is just as expensive as a real bar-
rier on many machines. It seems that the only way to really speed up locks
is the elimination of all synchronization in the reserved path. Hotspot uses
a scheme described in [31] which is very similar to Kawachiya’s “Lock reser-
vation”. However, instead of signals, they can use safepointing[2] for lock
revocation which is already built into Hotspot. Additionally, because the
cost of revocation is very large, Hotspot keeps track of the number of revo-
cations for each class and disables reservation for classes with large counts.
When this happens, it also revokes all class instances at once. Because lock
records are allocated on the stack in Hotspot, lock revocation also entails
walking and manipulating the stacks of all threads.

Chapter 4

Implementation in CACAO

4.1 Java Locks

4.1.1 Overview

For a fully functional implementation of Java locks, the first step is to im-
plement all the functionality based on platform functionality, specifically the
pthreads functions for mutexes and condition variables. All existing incarna-
tions of thin locks can only operate on top of an underlying implementation
of Java monitors, absorbing common fast-path calls but passing through
calls when the full functionality cannot be provided by the thin-lock algo-
rithm. Simple uses of MONITORENTER and MONITOREXIT can be handled by the
thin-lock code but calls to wait() will require a more sophisticated mecha-
nism.

In the following list, I will use Java notation only for better readability.
Some terms have to be translated to pthreads nomenclature if it is to be
understood in terms of pthreads functionality.

Java pthreads
monitor mutex
notify() pthread_cond_signal()
notifyAll() pthread_cond_broadcast()
wait() pthread_cond_wait()

The Java model is quite similar to the basic usage pattern of pthreads mu-
texes and condition variables in the following ways.

• Before a thread can suspend itself, it has to enter the monitor.

• Calling wait() will release the monitor and atomically add the thread
to the waiting set for this object.

27

28 CHAPTER 4. IMPLEMENTATION IN CACAO

• Before the wait() call can return, the monitor will be reacquired. The
returning thread will have to contend for it just like it would in an
ordinary call to monitorenter. This means that other unrelated threads
may be able to acquire the monitor between its release by the notifying
thread and the lock by the woken-up thread. This also means, that
the woken-up thread can continue only after the notifying thread has
released the monitor.

• notify() wakes up one thread waiting on the monitor, and there is
no way to influence which thread it will be. There is also a function,
notifyAll(), waking up all threads.

• The wait()method may return spuriously—that is without any thread
having called notify() on the monitor. Therefore, in almost all cases,
a loop has to be used to repeatedly check if the program is in a state
that allows the waiting thread to continue.

• Calls to notify() must not be lost. If thread t enters a monitor and,
while inside the monitor, issues n notify() calls, and there are N
threads waiting on the monitor, then the number of threads woken up
will be at least n if n ≤ N or N otherwise. That is, at least one thread
will wake up in response to each notify() call as long as the monitor’s
waiting set is non-empty.

This is an important property that could easily be overlooked, leading
to difficult-to-explain program hangs. Because there is no guarantee
as to when threads waking up from a wait() will be scheduled, they
may not yet have removed themselves from the waiting set, leading to
the situation that a subsequent notify() call would try to notify an
already-notified thread.

• In order to send a notify() call, a thread needs to first enter the mon-
itor. This is not strictly required by pthreads but is recommended for
predictable scheduling. Application logic will, in most cases, automat-
ically lead to a program structure which follows this recommendation.
In Java, it is mandatory, and not adhering to the rule will result in an
IllegalMonitorStateException.

Considering that these two APIs are so similar, it would seem practical
to implement Java monitors in a straightforward way as just a pair of a
mutex and a condition variable. Things are a bit more complicated than
this, however. Thread.interrupt() can wake up any thread waiting on a
monitor, yet it is not possible to wake up a specific thread blocked on a
condition variable. The only way to implement this would be to wake up all
threads, but the overhead caused by this strategy, especially in situations
with many threads waiting on a monitor, would not be justifiable. This
situation calls for the use of separate condition variables for each waiting

4.1. JAVA LOCKS 29

thread. Such an approach has to track threads waiting on a given monitor by
using a list or some similar data structure. This gives the algorithm freedom
of choice when it comes to notifying a single thread—naturally, threads with
the highest priority should be chosen first. However, since thread priorities
in general are very poorly implemented on CACAO’s main platform, Linux,
thread priorities are currently ignored in CACAO.

4.1.2 Supporting data structures

In CACAO, a threadobject structure is allocated for every run-time thread.
Listing x shows parts of this structure. Only fields relevant to the Java lock
implementation are shown.

1 struct threadobject {
2 uintptr_t thinlock; /* pre-computed thin lock value */
3 s4 index; /* thread index, starting at 1 */
4
5 /* these are used for the wait/notify implementation */
6 mutex_t waitmutex;
7 pthread_cond_t waitcond;
8 bool interrupted;
9 bool signaled;

10
11 /* for the sable tasuki lock extension */
12 bool flc_bit;
13 struct threadobject *flc_list; /* FLC list head for this thread*/
14 struct threadobject *flc_next; /* next pointer for FLC list */
15 java_object_t *flc_object;
16 mutex_t flc_lock;
17 pthread_cond_t flc_cond;
18
19 <...>
20 };

thinlock contains the value that this thread will try to enter into an object’s
lockword initially. It is a bit field consisting of three sub-fields—recursion
count, thread index and shape bit. Because a zero value for the recursion
field means a nested locking level of 1, and because this is a thin lock—the
shape bit is not set—the thinlock value is formed by just shifting the thread
id left by the size of the recursion field plus one, the size of the shape bit
field. index is a short identifier for the thread as the thread id provided by
the OS would be too large for the bit field in the thin lock. waitmutex and
waitcond are used for the wait/notify implementation, as are the 2 remaining
flags. interrupted is set by Thread.interrupt(), while signaled is set by
Object.notify().

30 CHAPTER 4. IMPLEMENTATION IN CACAO

The other data structure of central importance is lock_record_t. It is shown
in its entirety in listing y. Lock records are associated with Java objects on
demand, during inflation.

1 struct lock_record_t {
2 java_object_t *object; /* object protected by this monitor*/
3 struct threadobject *owner; /* current owner of this monitor */
4 int count; /* recursive lock count */
5 mutex_t mutex; /* heavy OS lock */
6 list_t *waiters /* list of threads waiting */
7 };

object points to the Java object that is currently protected by the lock
record. Its value is only set at initialization time; it can only change when a
lock record is recycled. It’s mostly needed for hash table management and
cleanup. owner denotes the thread that is currently holding the lock record.
This means that it has locked the associated object or that it is waiting on
it. count is the number of nested locks by the thread currently owning the
lock record. mutex is a OS-level mutex used for blocking on the lock record
itself. waiters is a linked list of threads waiting on the object.

None of these fields may be changed by any other thread than the one holding
the lock record’s mutex. In fact, object and owner never change. They are
initialized when the lock record is first associated with an object. The lock
record will stay in memory until after its associated object has been reclaimed
by the garbage collector.

4.1.3 monitorenter/monitorexit

With these structures in place, the monitorenter and monitorexit operations
can be implemented almost trivially. These operations are only invoked for
objects which have already been inflated. The fast paths and inflation itself
are handled by the tasuki lock algorithm described in [26].

1 void slow_monitor_enter(java_object_t *o)
2 uintptr_t lockword = o->lockword;
3 lock_record_t *lr = GET_FAT_LOCK(lockword);
4
5 /* Check for recursive locking */
6 if (lr->owner == t) {
7 lr->count++;
8 return;
9 }

10
11 mutex_lock(&lr->mutex);
12 lr->owner = t;
13 }

4.1. JAVA LOCKS 31

slow_monitor_enter only needs to handle the special case of recursive lock-
ing by the same thread. For this case, incrementing the recursion counter
is the only thing to do. If the lock record is owned by another thread, the
pthreads implementation is used to lock its mutex member. When this call
succeeds, the only thing left is to set the owner of the lock record. This
will be used later for distinguishing the recursive locking case and also for
deciding if IllegalMonitorStateException needs to be thrown.

1 void slow_monitor_exit(java_object_t *o)
2 {
3 uintptr_t lockword = o->lockword;
4 lock_record_t *lr = GET_FAT_LOCK(lockword);
5
6 if (lr->owner != t) {
7 throw_illegalmonitorstateexception();
8 return;
9 }

10
11 if (lr->count != 0) {
12 /* Recursive lock. Just decrement the counter, it will
13 still be locked. */
14 lr->count--;
15 return;
16 }
17
18 /* unlock this lock record */
19 mutex_unlock(&(lr->mutex));
20 }

First, slow_monitor_exit needs to check if the lock record is actually owned
by the current thread. If not, IllegalMonitorStateException is thrown.
Next, like in the locking function, the recursive locking case needs to be
handled separately. Only the recursion counter needs to be decremented. In
the non-recursive case (the outermost monitorexit), the lock record’s mutex
is unlocked by the pthreads implementation.

4.1.4 wait/notify

wait

The wait/notify mechanism is quite independent from the fast locking algo-
rithm but it needs access to some of the same data fields. Slightly condensed
versions of the wait and notify implementations in CACAO are shown in
listings 4.1 and z2 respectively.

The function lock_monitor_wait() takes 4 arguments. In addition to the
ones provided by the Java method notify() (millis and nanos), it needs

32 CHAPTER 4. IMPLEMENTATION IN CACAO

1 void lock_monitor_wait(threadobject *t, java_object_t *o,
2 s8 millis, s4 nanos) {
3 uintptr_t lockword = o->lockword;
4 lock_record_t *lr;
5 int lockcount;
6
7 if (IS_FAT_LOCK(lockword)) {
8 lr = GET_FAT_LOCK(lockword);
9 if (!check_illegalmonitorstate(t, lr)) return;

10 }
11 else {
12 if (LOCK_WORD_WITHOUT_COUNT(lockword) != t->thinlock) {
13 throw_illegalmonitorstateexception();
14 return;
15 }
16 /* inflate lock */
17 lr = lock_hashtable_get(t, o);
18 lock_record_enter(t, lr);
19 lock_inflate(t, o, lr);
20 notify_flc_waiters(t, o);
21 }
22
23 /* add a new entry to the waiters list */
24 lock_record_add_waiter(lr, t);
25
26 /* remember the old lock count */
27 lockcount = lr->count;
28
29 /* unlock this lock record */
30 lr->count = 0;
31 mutex_unlock(&lr->mutex);
32
33 /* sleep until notified/interrupted/timed out */
34 threads_wait_with_timeout_relative(t, millis, nanos);
35
36 /* re-enter the monitor */
37 mutex_lock(&lr->mutex);
38 lr->owner = t;
39
40 /* remove entry from the waiters list */
41 lock_record_remove_waiter(lr, t);
42
43 /* restore the previous lock count */
44 lr->count = lockcount;
45
46 if (t->signaled)
47 t->signaled = false;
48 else check_interrupted_state(t);
49 }

Figure 4.1: wait

4.1. JAVA LOCKS 33

pointers to the threadobject of the currently executing thread (t) and the
Java object which wait is called on (o). First, the lock needs to be inflated
if it is not in fat lock mode already. The sequence of operations for inflation
is defined by the tasuki lock algorithm. After the inflation, the threads on
the FLC waiting list need to be woken up so that they can migrate from the
per-thread lock to the newly installed lock record. When the lock record is
unlocked as part of the wait operation, one of them will become eligible for
acquiring it while the current thread is sleeping.

After that, the current thread enters itself into the lock record’s list of wait-
ers, resets its recursion count, preserving the current value, and unlocks the
lock record. All these operations can be done safely without any further syn-
chronization because only threads holding the lock may access the involved
fields. After unlocking the lock record, the thread blocks itself on its own
waitcond condition variable.

It returns from this blocked state only when another thread notifies this
object (via notify()) or interrupts it (via Thread.interrupt()) or when
the timeout has elapsed. After waking up, first the lock record needs to be
reacquired. After that, the lock record is returned to the state it was in
before by restoring the recursion count and owner and removing the current
thread from the list of waiters. Finally, if the wake-up was caused by a
notify() call, indicated by a set signaled field, it is reset and the wait
operation returns normally. Otherwise, it might have been interrupted. The
helper function check_interrupted_state inspects the interruption state,
resets it and throws an exception if necessary. The thread might also have
been signaled and interrupted; in this case, the interruption flag remains set
for subsequent inspection.

notify

The notify implementation is pretty straightforward. Because it is used for
both notify and notifyAll, it takes an additional argument one specifying
whether to notify all waiters or just one. Like wait, the notify implementation
has to check if the monitor is actually owned by the calling thread. The
lockword may be in thin-locked state. In this case, there can be no list of
waiters because the first thread calling wait() would have inflated it.

After that, the list of waiters is traversed. Waiting threads remove themselves
from the list after they have been signaled, but before that, they have to
reacquire both the waitmutex and the lock record. Because they may not
yet have had a chance to do so, some threads in the waiters list may have
their signaled flag set already. These threads must be skipped; otherwise
the notify would get lost.

34 CHAPTER 4. IMPLEMENTATION IN CACAO

1 void lock_monitor_notify(threadobject *t, java_object_t *o,
2 bool one)
3 {
4 uintptr_t lockword = o->lockword;
5 lock_record_t *lr;
6 list_t *l;
7 lock_waiter_t *w;
8 threadobject *waitingthread;
9

10 if (IS_FAT_LOCK(lockword)) {
11 lr = GET_FAT_LOCK(lockword);
12 if (!check_illegalmonitorstate(t, lr)) return;
13 } else {
14 if (LOCK_WORD_WITHOUT_COUNT(lockword) != t->thinlock)
15 throw_illegalmonitorstateexception();
16 /* No thread can wait on a thin lock, so there’s nothing
17 to do. */
18 return;
19 }
20
21 l = lr->waiters;
22 for (w = list_first(l); w != NULL; w = list_next(l, w)) {
23 waitingthread = w->thread;
24
25 /* Skip threads which have already been notified.
26 They will remove themselves from the list. */
27 if (waitingthread->signaled) continue;
28
29 mutex_lock(&(waitingthread->waitmutex));
30 pthread_cond_signal(&(waitingthread->waitcond));
31 waitingthread->signaled = true;
32 mutex_unlock(&(waitingthread->waitmutex));
33
34 if (one) break;
35 }
36 }

Figure 4.2: notify

4.1. JAVA LOCKS 35

4.1.5 Implementation of the SableVM modification

For the initial implementation of tasuki lock in CACAO, an additional word
had to be added to the object header just for the FLC bit. This rather waste-
ful use of object header estate has since been remedied with the SableVM
modification which allows the FLC bit to be moved to the threadobject
structure.

The SableVM modification removes the inflation loop from the lock algo-
rithm. In thin lock and tasuki lock, all threads contending for a thin-locked
object try to inflate it. The modified lock algorithm just enters the thread in
the FLC waiting list and waits until the unlocking thread inflates the lock.
The unlock algorithm inflates all locks in its FLC waiting list at once when
it observes a set FLC bit. The list contains tuples (t, o) where t is a thread
and o is the object it is trying to lock. Every thread necessarily holds all the
locks on objects in its FLC list. This fact makes inflation a simple matter
of storing a pointer to a lock record into the lockword. Additionally, a hash
table is no longer required as in tasuki lock.

sable_flc_waiting (figure 4.3) is called when a thread has tried to thin-lock
an object but has not succeeded. Its main purpose is avoiding busy waiting
by blocking the thread on a condition variable. It takes as parameters the
lockword observed when thin-locking failed and the already known param-
eters t and o, containing the current thread’s threadobject and the object
which is to be locked.

First, the index of the thread holding the lock is extracted from the lockword
and looked up in the global thread list (lines 7–8). It might not be found
in rare cases, when the other thread has already ended. In this case, the
function just returns. The algorithms correctness does not depend on any
amount of blocking. In fact, the function could be removed entirely, turning
the whole locking mechanism into an implementation of thin-lock.

When the thread is found, its flc_mutex is locked with the intention of
modifying its flc_list. Then the FLC bit is set, retaining its previous value.
After setting the FLC bit, the lockword is inspected again to see if it is
still thin-locked by the same thread. Because this needs to happen after
setting the FLC bit, a memory barrier is inserted between those two actions
(line 13). It might seem strange that a memory barrier is needed inside a
region protected by a mutex. It is necessary, though, because the FLC is read
without acquiring the mutex, as exemplified by tasuki lock. If the lockword
is not in the expected state, the FLC bit is restored and the mutex left.
Otherwise, the thread can enter itself into the FLC waiting list. As shown
in lines 18–21, a tuple is inserted. Then the thread blocks itself on its own
condition variable. After being woken up, it traverses the list to check if it has

36 CHAPTER 4. IMPLEMENTATION IN CACAO

1 static void sable_flc_waiting(uintptr_t lockword, threadobject *t,
2 java_object_t *o) {
3 int index, old_flc;
4 threadobject *t_other, *current;
5
6 index = GET_THREAD_INDEX(lockword);
7 if (!(t_other = threads_lookup_thread_id(index))) return;
8
9 mutex_lock(&t_other->flc_lock);

10 old_flc = t_other->flc_bit;
11 t_other->flc_bit = true;
12 MEMORY_BARRIER();
13 lockword = o->lockword;
14
15 if (IS_THIN_LOCK(lockword)
16 && (GET_THREAD_INDEX(lockword) == index)) {
17 /* Add tuple (t, o) to the other thread’s FLC list */
18 t->flc_object = o;
19 t->flc_next = t_other->flc_list;
20 t_other->flc_list = t;
21 for (;;) {
22 /* Wait until another thread sees the flc bit and
23 notifies us of unlocking. */
24 pthread_cond_wait(&t->flc_cond, &t_other->flc_lock);
25
26 /* Traverse FLC list to check if we’re still there */
27 current = t_other->flc_list;
28 while (current && current != t)
29 current = current->flc_next;
30 if (!current) break;
31 }
32 t->flc_object = NULL;
33 t->flc_next = NULL;
34 } else
35 t_other->flc_bit = old_flc;
36 mutex_unlock(&t_other->flc_lock);
37 }

Figure 4.3: SableVM modification

4.1. JAVA LOCKS 37

been removed from the list, immediately blocking again in case it has not.
This is the usual loop around waiting on condition variables (or monitors in
Java), protecting against spurious wake-ups. When the thread detects that
it is no longer in the waiting list, it clears the list linkage fields (lines 35–36),
leaves the mutex and returns. The FLC bit does not have to be reset in this
case—in fact, it would be fatal to do so. The thread which has cleared the
FLC list has also taken care of the FLC bit.

1 static void notify_flc_waiters(threadobject *t, java_object_t *o)
2 {
3 threadobject *current;
4
5 mutex_lock(&t->flc_lock);
6 current = t->flc_list;
7 for (; current; current=current->flc_next) {
8 if (current->flc_object != o) {
9 /* Only if not already inflated */

10 uintptr_t lockword = current->flc_object->lockword;
11 if (IS_THIN_LOCK(lockword)) {
12 lock_record_t *lr;
13 lr = lock_record_new(t, current->flc_object);
14 lock_record_enter(t, lr);
15 lock_inflate(t, current->flc_object, lr);
16 }
17 }
18 pthread_cond_broadcast(¤t->flc_cond);
19 }
20
21 t->flc_list = NULL;
22 t->flc_bit = false;
23 mutex_unlock(&t->flc_lock);
24 }

Figure 4.4: SableVM modification

sable_flc_waiting’s counterpart is notify_flc_waiters (figure 4.4). It is
invoked when a thread observes a set FLC bit during monitor unlocking. It
essentially iterates over its list of FLC waiters, waking up every thread on
this list (line 17) and inflating all involved objects (lines 12–15). Inflation
consists of allocating a new lock record, entering its mutex and then storing
a reference to it in the object’s lockword. The inflation is safe because the
thread is guaranteed to hold all object’s monitors on the list.

There are two important points to note about this code. First, the object
which has just been unlocked (passed in parameter o), is skipped in line 8. It
is the only exception to the previous statement—it is not locked by the cur-
rent thread anymore—and cannot be inflated because another thread might
have already acquired it. Second, all other objects on the list are inflated.

38 CHAPTER 4. IMPLEMENTATION IN CACAO

This is sensible to do because otherwise no object would ever get inflated.
Also, inflating all locks and waking all threads on the list allows it to be dis-
carded entirely, so it doesn’t need to be traversed repeatedly. Importantly, it
allows the FLC bit to be cleared, causing subsequent unlocking operations
to take the fast path. Discarding the entire list is a very efficient operation:
just setting the list head to NULL has the desired effect, while every thread
in the list clears its linkage fields by itself.

Figure 4.5 illustrates the process of inflation. In the upper part of the picture,
thread TA holds thin locks on objects O1 and O2, as indicated by the zero
shape bit in those objects’ lockwords. In its FLC list, several other threads
trying to lock those objects have accumulated. When an inflation happens,
objects O1 and O2 are inflated—they are associated with lock records, and
their shape bits are set to 1. All threads on the list are awoken, and the
list is discarded. It is still shown in the lower part of the picture because
the awakened threads may not be scheduled right away. The list eventually
dissolves, while the threads TB, TC and TD migrate to the objects’ lock
records. It is well possible that a new FLC list has formed in the meantime,
shown here containing thread TE waiting on O3. This is the reason why
awakened threads need to traverse the list and check if they are in it. A simple
check for an empty list would not be sufficient and would cause threads to
be blocked forever.

In practice, this traversal is irrelevant, performance-wise, because the list
will be empty in the majority of cases. However, a pathological case has
been constructed using hundreds of threads and an equal number objects.
It was possible to force list traversals of lengths equaling about a fifth the
number of involved objects and threads. This very rare case can be avoided
by keeping track of the list tail at line 20 of sable_flc_waiting and skipping
the list traversal if the tail has changed while the thread has been sleeping.
This improvement will be included in CACAO.

Type-stable memory

The modifications to the lock algorithm make a thread which tries to lock an
already thin-locked object acquire the contention mutex flc_mutex in the
owning thread’s threadobject. This change makes it necessary to allocate
threadobjects in type-stable memory[14]. In practice this just means that
they cannot be deallocated, or at least that deallocation has to be deferred to
a safe point where no thread can possibly see a reference to the threadobject
in question anymore. In CACAO, threadobjects are added to a free list when
their owning threads end; the free list is consumed before allocating new
threadobjects.

4.1. JAVA LOCKS 39

0TA

O1

TA

O2

0

flc_list

TA

TB O1 TC O2 TD O1

is locked byis locked by

is waiting for

1

O1 O2

1

flc_list

TA

TB O1 TC O2 TD O1

is locked byis locked by

is waiting for

TE O3

Lock record Lock record

TCTD

Figure 4.5: The inflation process with the SableVM modification

40 CHAPTER 4. IMPLEMENTATION IN CACAO

Similarly, lock records have to be type-stable but this is automatically guar-
anteed in CACAO because lock records are only removed after all references
to their associated objects have disappeared. The same technique cannot be
applied to threadobject cleanup, however, because references to threadob-
jects are stored as integer identifiers in the lockword, not as pointers.

4.1.6 KKO Lock

Only a draft implementation of the KKO locking algorithm has been at-
tempted in CACAO, allowing a rough measurement of its performance char-
acteristics. In their paper, the authors do not mention how they implemented
the recursion count. Judging from the description in [16], they used only
10 bits for both owner and other.

Because the CACAO implementation has been done on an x86_64 machine,
there was plenty of room for the recursion count in the 64 bit lockword
(figure 4.6). The cnt field is allocated on a 16 bit boundary which allows
direct access as a 16 bit word. The reservation flag has been moved to the
most significant byte which is always zero for heap addresses on current Linux
implementations. This allows storing unmodified pointers to lock records in
the lockword.

RF unused cnt u other owner shape
1 7 8 16 1 15 15 1

Figure 4.6: Bit allocation for KKO lock

Because this algorithm does not exhibit a convincing performance benefit
(shown in the next section) and because of portability concerns, KKO lock
has not be implemented in the official version of CACAO.

4.1.7 Performance

It is quite ironic that the performance of a locking implementation—a build-
ing block for the implementation of parallel programs—is best measured
in single-threaded programs. The locking algorithm’s influence on the per-
formance of multi-threaded programs does not differ from its influence on
single-threaded programs. This is not very surprising, though, given the sim-
ilar nature of all algorithms considered in this chapter. They all strive to
make the common path fast, and the common path does not involve con-
tention. Therefore, as mentioned before, the number of atomic instructions
an algorithm uses in its fast path is the most important performance indica-
tor.

4.1. JAVA LOCKS 41

0
500

1000
1500
2000
2500
3000
3500
4000

singlelock bounce2 bottle2 bottle3 bottle100

normal
flc_in_lockword
fastpath
flc_trick
kko_membar
kko_fast
flc_no_atomic
no_atomic

(a) Xeon

0

500

1000

1500

2000

2500

3000

singlelock bounce2 bottle2 bottle3 bottle100

normal
flc_in_lockword
fastpath
flc_trick
kko_membar
kko_fast
flc_no_atomic
no_atomic

(b) Opteron

I have set out to compare several variants of the tasuki lock algorithm cur-
rently implemented in CACAO. First, the machines participating in the
benchmark, the variants and the benchmark programs are described.

Name Cores CPU Clock Arch. OS/Linux kernel
Xeon 4 Xeon E5320 1.86GHz x86_64 Fedora 5 / 2.6.20
Opteron 2x2 Opteron 270 2.0GHz x86_64 Debian / 2.6.24
Pentium D 2 Pentium D 3.2GHz x86_64 Fedora 9 / 2.6.25
Pentium 4 HT Pentium 4 3.0GHz i386 Fedora 9 / 2.6.25
VMWare 11 Opteron 252 2.6GHz x86_64 VMWare ESX / 2.6.25
Alpha 1 Alpha 21264 800MHz alpha Debian / 2.6.18

1The host machine has 2 CPUs but only one is allocated to the guest.

42 CHAPTER 4. IMPLEMENTATION IN CACAO

0

1000

2000

3000

4000

5000

6000

7000

singlelock bounce2 bottle2 bottle3 bottle100

normal
flc_in_lockword
fastpath
flc_trick
kko_membar
kko_fast
flc_no_atomic
no_atomic

(c) Pentium D

0
1000
2000
3000
4000
5000
6000
7000
8000

singlelock bounce2 bottle2 bottle3 bottle100

normal
flc_in_lockword
fastpath
flc_trick
flc_no_atomic
no_atomic

(d) Pentium 4

0
1000
2000
3000
4000
5000
6000
7000
8000

singlelock bounce2 bottle2 bottle3 bottle100

normal
flc_in_lockword
fastpath
flc_trick
kko_membar
kko_fast
flc_no_atomic
no_atomic

(e) VMWare

4.1. JAVA LOCKS 43

0
2000
4000
6000
8000

10000
12000
14000
16000
18000

singlelock bounce2 bottle2 bottle3 bottle100

normal
flc_in_lockword
fastpath
kko_membar
flc_no_atomic
no_atomic

(f) Alpha

Figure 4.7: Lock performance on various CPUs

The variants:

normal This is the baseline implementation of tasuki lock with SableVM
extension.

flc_in_lockword The original tasuki lock in CACAO used a separate word
in the object header just for storing the FLC bit. In an attempt to
remove this space overhead, the first experimental step was to move
the FLC bit into the lockword. This requires that the lock be released
with an atomic compare-and-swap. In this particular implementation,
a tight loop was used to retry the compare-and-swap until success.

fastpath The functions lock_monitor_enter and lock_monitor_exit con-
tain quite a bit of code that is rarely executed. Unfortunately, this code
increases the whole functions’ register usage considerably, resulting in
enlarged function prologues and epilogues which contribute a measur-
able performance penalty. In the fastpath variant, the common fast
path has been duplicated in a separate function which uses the com-
plete function only as a fallback when the fast path fails. The resulting
machine code is quite dense and possibly optimal, leaving almost noth-
ing to gain from an inlined variant. All variants except normal use this
optimization.

flc_trick Inspired by [9] (see also “Quickly Reacquirable Locks” on page 25),
this variant uses the same word tearing technique to avoid the memory
barrier before reading the FLC bit in the release path.

kko_membar This variant is an implementation of the KKO lock de-
scribed in [17] (“KKO Lock” on page 24). It uses a memory barrier
between the write and the read of the Dekker algorithm.

44 CHAPTER 4. IMPLEMENTATION IN CACAO

0

10000

20000

30000

40000

50000

60000

70000

bloat pmd jython lusearch xalan _202_jess _209_db

normal
flc_in_lockword
fastpath
flc_trick
kko_membar
kko_fast
flc_no_atomic
no_atomic

Figure 4.8: Performance of dacapo and SpecJVM98 benchmark programs

kko_fast The same as kko_membar but without the memory barrier. It
is the same technique as described in [9] and works only on certain
hardware memory models. Both KKO variants have only been imple-
mented on 64 bit architectures.

flc_no_atomic In an attempt to measure the cost of the memory barrier
before reading the FLC bit, it has been removed entirely in this variant.
The algorithm does not work reliably this way but error occurrence is
infrequent enough to allow the benchmark programs run correctly most
of the time.

no_atomic This variant does not use atomic instructions or memory bar-
riers at all2 and as such acts as a “speed of light” case—it is the fastest
an implementation can get3. Because synchronization among multiple
processors cannot reliably work this way, this variant also binds the
entire CACAO process to a single processor.

The benchmark programs:

singlelock A single-threaded program that acquires and releases a single
lock repeatedly and does nothing else.

bounce2 Two threads work on the same lock and hand it over to one another
as soon as they have acquired it. This is done by repeatedly calling wait
and notify.

bottle2 An integer counter variable is protected by a lock and two threads
2On x86 and x86_64, the cmpxchg instruction can be used without a lock prefix. In

a single processor scenario, it can still be considered atomic—a context switch cannot
happen in the middle of an instruction.

3Of course there is plenty of opportunity for advanced optimizations like lock coarsening
or lock elimination.

4.1. JAVA LOCKS 45

continually increment it in a synchronized fashion.

bottle3 The same with 3 threads.

bottle100 The same with 100 threads.

Execution

All programs have been run 50 times, and the average runtime reported by
the test harness was used as the result. The machines were, for the most part,
only lightly loaded. The different variants have been run in a round-robin
fashion so a background job of a few minutes would not skew the results
significantly.

Interpretation

The results discussed here are shown in figures 4.7(a)–4.7(f).

singlelock The singlelock results bear no surprises on the Xeon. With the
exception of flc_in_lockword, the variants are expected to perform increas-
ingly better from left to right. flc_in_lockword is supposed to be slower
because it executes compare-and-swap twice as often. The no_atomic vari-
ant is noticeably faster, indicating that synchronization mechanisms are still
very costly on this platform.

The Opteron behaves quite differently. Interestingly, flc_in_lockword (with
2 CAS instead of 1) is just as fast as the tasuki lock algorithm (fastpath) with
a memory barrier. The KKO “optimization” is not an improvement at all on
this machine. The gap between the synchronized variants and no_atomic is
a lot smaller than on the Xeon.

The Pentium D results look interesting. The 2-CAS variant is a lot faster
than the one with one CAS and one memory barrier. It appears as if the
memory barrier instruction was particularly expensive on this processor.
However, the kko_fast variant—which contains no memory barriers at all—
does not support this impression. The Pentium 4, which is also based on
the Netburst architecture, exhibits the same behavior, except that the ex-
perimental KKO implementation could not be tested because it does not
work on this 32 bit architecture. It is also interesting to note that both the
Pentium D and the Pentium 4 can be run in either uni-processor or SMP
mode (Hyperthreading on the Pentium 4). There is absolutely no difference
between the two modes, performance-wise.

46 CHAPTER 4. IMPLEMENTATION IN CACAO

I have also run the benchmarks on a virtual machine inside VMWare ESX on
an Opteron, and the performance is exactly the same as on the raw machine
itself.

Finally, I tested the performance on an Alpha processor. There is not much
difference between the individual variants. Again, KKO is not a win on this
machine, and the no_atomic variant is only moderately faster. The variants
with “soft” memory barriers have been omitted because they make no sense
on the Alpha with its extremely relaxed memory model.

bounce2 This benchmark measures mostly the context-switching time.
The no_atomic variant does so well in this benchmark because it only needs
to do an intra-processor context switch. On the VMWare and Alpha, the
two uni-processor machines, this does not make a difference. The VMWare
benchmark shows that the virtualization layer makes context switching much
more expensive than it already is.

bottlen The bottleneck benchmarks don’t reveal particularly interesting
insights. The no_atomic performance is again very good because there is
only one processor involved. It is interesting to note that the number of
competing threads does not make any difference to the overall throughput4.
Again, most of the variants perform equally well with the notable exception of
flc_in_lockword, especially on the Alpha5. The cause for the serious slowness
seems to be an unfortunate live-lock-like situation. The Alpha already needs
to use a LL/SC loop to perform the compare-and-swap, and the outer loop
of the flc_in_lockword variant seems to interfere badly with this.

In order not to give too much importance to the results of micro-benchmarks,
I have also run some dacapo and SpecJVM98 benchmarks on one machine
(the quad-core Xeon). The benchmarks used have a relatively high number of
monitor operations. Figure 4.8 shows that the overall picture is not different
from the micro-benchmark runs. The bad performance of no_atomic in the
lusearch and xalan benchmarks comes from the fact that they profit from
multiple cores but this variant can only utilize one. The bad lusearch per-
formance also shows that the loop-around-compare-and-swap is not a good
idea in programs with heavy contention.

4.2. INTERNAL CACAO SYNCHRONIZATION 47

0

100

200

300

400

500

600

700

800

0 100000 200000 300000 400000
Thread switches

Ti
m
e

Figure 4.9: Throughput vs. context switches

Throughput vs. granularity

Measuring the performance of an algorithm for mutual exclusion is tricky and
not very meaningful if there is a high degree of contention. For example, the
bottle2 benchmark would show the highest performance if only one thread
ever acquired the lock. An algorithm which accomplishes this would just not
be very useful. The other extreme is represented by the bounce2 benchmark,
where every thread is allowed to run only for a tiny amount of time before
it has to give up the lock for its peer. Figure 4.9 shows the relationship
between throughput and the number of context switches. Opaque scheduler
decisions introduce a great amount of variability here. Although a higher
number of context switches shows in lower performance, this relationship is
less pronounced than I had expected. There are also extreme outliers which
happen occasionally for no apparent reason.

4.2 Internal CACAO Synchronization

CACAO needs to manage several internal data structures which are poten-
tially accessed by multiple threads. These are mainly a few hash tables, lists
and trees. Obviously, they have to be protected against destructive concur-
rent access. No fancy mechanisms are at work in these areas. A thread which
needs access to such a structure (both read and write access) locks it before

4Except on the Opteron where other programs were keeping 3 out of the 4 cores busy
for the duration of the benchmark.

5The bottle100 result is actually scaled so as not to distort the diagram. The actual
performance was much worse.

48 CHAPTER 4. IMPLEMENTATION IN CACAO

the access and releases the lock when it is done. These locks are only held
for very brief periods of time, and there is no instance of nested locking.
CACAO uses the same locking mechanism for those internal locks as it uses
for Java locks. Additionally, some internal threads, like the finalizer thread,
make use of the wait/notify capability.

4.2.1 Freedom from deadlock

Figure 4.10 is the result of a tracing run which shows the nesting of locks
taken by CACAO itself6. In terms of deadlock safety, leaf nodes, shown
in gray color, are not interesting; they can never cause a deadlock. After
removing the leaf nodes, the picture becomes much clearer, as shown in
figure 4.11.

initialize_class

link_class

patchershash_global_ref

hash_utf8hash_classcache

hash_string

methodinfo

avl_tree

code_memory

hash_classloader

Figure 4.10: All locks taken by the CACAO JVM

initialize_class

link_class

patchers methodinfo

Figure 4.11: Lock graph with leaf nodes removed

Cycles in the lock dependency graph bear a potential for deadlock. A closer

6Because of layout problems, two additional leaf nodes have been omitted from the
graph. They are used for native library loading and insubstantial to this discussion.

4.2. INTERNAL CACAO SYNCHRONIZATION 49

examination of the remaining cases shall show that no deadlock can hap-
pen.

link_class This lock is taken when a class is linked. It is actually not a
single lock but one for each class. The cycle exists because link_class
recursively links all superclasses before the class itself can be linked.
Because the superclass relation is acyclic, this node is safe and can be
treated like a leaf node. This, in turn, makes methodinfo a leaf node
and leaves just two nodes.

initialize_class This lock is similar to the link_class case. Again, su-
perclasses are initialized before the class itself. That’s where the cycle
with itself comes from.

patchers This is a global lock which protects a list of items to be patched
on demand. The code generator adds entries to this list for a variety
of reasons; in the case of interest here, a trap is added to code that
accesses not-yet-initialized classes. At runtime, the trap will cause a
signal handler invocation which will then traverse the list of patchers
and initialize the class. Before the list traversal, the patchers lock is
taken. Initializing the class entails locking initialize_class.

The only edge left to explain is the one from initialize_class to patchers.
When a class is initialized, the class constructor needs to be called. This class
constructor consists of Java bytecode which needs to be compiled. During
code generation, patchers might need to be added. That is why the patchers
lock is taken. The cycle cannot be dismissed yet, because one thread (inside a
trap handler) might take the patchers lock first and then initialize_class
while another thread might do it exactly the other way round. This can not
happen, though, because initialize_class is again not a single lock but
one for each class. But a single class will never be initialized twice. Thus, only
one thread will try to acquire the patchers lock, and no deadlock can arise.
Therefore, the internal lock structure in CACAO is free from deadlock.

4.2.2 Statistic counters

CACAO also features a fairly large number of internal counters for purpose
of statistics only. These are stored in global variables for historical reasons.
Incrementing such a counter is not done in a thread-safe way, so occasionally
some increments might be lost. As the numbers gained from these counters
rarely need to be exact, this has not yet become a problem. It would be fairly
easy to use atomic increment instructions for updating those counters or to
convert them into thread-local variables and accumulate them in the main
thread when a thread exits.

50 CHAPTER 4. IMPLEMENTATION IN CACAO

Chapter 5

Subtype checking

The JVM provides the two bytecode instructions CHECKCAST and INSTANCEOF
for determining if an object instance is a sybtype of a particular class or sup-
ports a given interface. Both bytecodes basically provide the same function-
ality. The difference is that CHECKCAST throws an exception if the subtype
relation is not met while INSTANCEOF produces a boolean result. CHECKCAST
operations happen quite often, so it is important to make them fast.

CHECKCAST and INSTANCEOF work not only on Java classes but also on in-
terfaces and arrays. Because these types have always been handled in a
thread-safe way in CACAO, this chapter only deals with checks against nor-
mal classes. Figure 5.1 lists execution counts for various forms of those in-
structions in the programs from the dacapo and the SpecJVM98 benchmark
suites. The two columns labeled with “classes” contain the number of checks
against normal classes, separately counting CHECKCAST and INSTANCEOF. The
next two columns contain checks against interfaces. This chapter does not
describe how these are handled in CACAO. Because of layout restrictions,
numbers larger than 1 million have been shortened, using factor k = 1000.
The last two columns contain the overall percentage of CHECKCAST instruc-
tions and of subtype checks against normal classes respectively. If we name
the four number columns c0, c1, c2 and c3 and s =

∑
c0...3, then the penulti-

mate column results from c0+c2
s , while the last one contains c0+c1

s . For most
programs, the percentage of class checks constitutes the vast majority of sub-
type checking operations. The “bloat” benchmark is a notable outlier in this
regard, performing a huge number of interface checks. Programs with lots of
class check operations, like “jess” and “db” will be particularly interesting for
performance measurements in this chapter.

51

52 CHAPTER 5. SUBTYPE CHECKING

classes interfaces

Program
︷ ︸︸ ︷
CHECKC. INST.OF

︷ ︸︸ ︷
CHECKC. INST.OF %CHECKC. % class

compress 1,947 1,376 48 2 59.1% 98.5%
jess 16,888 k 9,129 k 701,405 18 65.8% 97.4%
db 56,125 k 2,915 k 48 2 95.1% 100.0%
mpegaudio 50,947 1,387 48 2 97.3% 99.9%
jack 5,201 k 1,066 k 48 2 83.0% 100.0%
antlr 1,982 k 841,404 221,341 220,488 67.5% 86.5%
bloat 5,418 k 4,188 k 140,777 k 521,062 96.9% 6.4%
fop 4,036 k 1,653 k 72,711 17,745 71.1% 98.4%
hsqldb 26,523 k 350,444 20,046 19,829 98.6% 99.9%
jython 30,516 k 24,031 k 180,999 20,671 56.1% 99.6%
luindex 16,996 k 3,195 k 515,946 541,796 82.4% 95.0%
lusearch 13,832 k 1,380 k 148,698 148,550 90.1% 98.1%
pmd 10,789 k 5,832 k 13,139 k 4,029 k 70.8% 49.2%
xalan 33,983 k 10,497 k 3,092 k 303,769 77.4% 92.9%

Figure 5.1: Execution counts for subtype testing instructions

5.1 Tree numbering

CACAO enters all classes into a type tree when they are loaded [32]. In this
tree, the nodes are numbered according to pre-order traversal. By storing the
sequence number and the number of sub-nodes in each node, the result for
CHECKCAST can be easily determined. The simple predicate is_subtype_of
is true if and only if class S is a subtype of class T .

is_subtype_of(S, T) := (S.baseval - T.baseval) ≤ T.diffval

Every time a class is loaded or unloaded, the whole type tree needs to be tra-
versed and renumbered. This interferes badly with multi-threaded programs
because the 3 numbers required for the subtype test need to be read atom-
ically. In a conservative approach, this atomicity could easily be obtained
by using a monitor. Alas, the frequency of CHECKCAST is prohibitive for this
kind of usage; monitor operations incur too great an overhead. Not only do
they require at least one atomic instruction but they get translated into calls
into VM code which degrades register allocator performance.

Surprisingly, the second claim turns out to be not true with CACAO’s current
simplistic register allocator. A modified allocator that treats MONITORENTER
and MONITOREXIT instructions like function invocations, making unavailable
temporary and (for leaf methods) argument registers, causes no measurable
slowdown. Because this surprising effect might be attributed to the x86_64
architecture’s general register paucity, it has also been reproduced on an

5.1. TREE NUMBERING 53

Alpha processor which sports a larger number of available registers. A bet-
ter register allocator would very likely expose the performance degradation,
however.

In contrast, the first claim is true and measurable. Figure 5.2 shows how the
addition of a single compare-and-swap instruction at every CHECKCAST and
INSTANCEOF instruction causes a noticeable slowdown, especially in programs
with many CHECKCAST instructions like “db”.

Program normal with CAS % Slowdown
compress 5.11 s 5.15 s 0.93%
jess 5.75 s 6.27 s 9.06%
db 14.48 s 16.35 s 12.87%
mpegaudio 5.30 s 5.34 s 0.61%
jack 6.75 s 6.99 s 3.58%
antlr 5.59 s 5.74 s 2.53%
bloat 29.03 s 29.23 s 0.71%
fop 4.14 s 4.21 s 1.73%
luindex 17.52 s 18.10 s 3.32%
pmd 23.73 s 24.05 s 1.39%

Figure 5.2: CHECKCAST and INSTANCEOF with atomic instructions

5.1.1 Unsafe regions

This problem can be solved by using a technique similar to the one described
in [17]. The machine code for CHECKCAST does not have to do any synchro-
nization operations, the burden instead lies entirely on the thread doing the
tree numbering. It has to stop all other threads and inspect their program
counters. If a thread is interrupted just inside an unsafe region, its program
counter is reset to a restart point. That way, the entire operation can be
retried (and likely succeed) after the renumbering is done.

This requires the CHECKCAST machine code to be carefully prepared for this
kind of start-over usage. In particular, it cannot touch anything apart from
the temporary registers. This is not too difficult to achieve in CACAO be-
cause each bytecode is translated to machine code more-or-less independently
of all others. Thus, the restarting point can be placed right at the beginning
of the code for the CHECKCAST ICMD, while the unsafe region needs to sur-
round only the three loads.

The practical implementation is quite problematic, however. The Boehm
garbage collector currently used by CACAO has the required functionality
built in. It can stop all threads for its own purposes but it is not helpful in ex-
posing this mechanism to the outside. The garbage collector’s stop-the-world

54 CHAPTER 5. SUBTYPE CHECKING

code needs to be patched for this kind of usage. Because of the maintenance
burden, this approach is not favored in the CACAO implementation.

5.1.2 Signal handler limitations

Another serious problem is introduced with this approach. Signal handlers in
POSIX are severely limited in what they are allowed to do. This restriction
is necessary because of the asynchronous nature of signals. They can occur
at any time, most notably during the execution of system library functions.
Because of this, and because it is impractical for some functions to allow reen-
trancy, asynchronous signal handlers may only call functions from a list of
explicitly allowed functions. This list does not include pthread_mutex_lock,
for good reason.

The signal handler for checking unsafe regions needs to resort to some global
data structure containing all currently registered unsafe regions. This data
structure can be accessed by any thread and is therefore protected by a lock.
In order to access the list of unsafe regions, the signal handler would need
to acquire the lock. Which is precisely what a signal handler is not allowed
to do.

Let’s recall that the reason for this restriction is that the signal handler might
be interrupting a system function that is not marked as safe for asynchronous
reentrant invocation. So, if the signal handler can determine whether it has
been called from JIT code or from native code, the problem is solved because
if called from native code, which does not contain unsafe regions, the signal
handler need not do any further processing at all, and if called from JIT code,
it cannot be interrupting a system function and may therefore safely call the
lock function to access the list of unsafe regions. Alas, this information is
currently not available in CACAO.

This can be worked around by carefully recording the lower and upper
bounds of memory regions containing JIT code and checking the instruction
pointer against these but this does not work reliably on 32 bit architectures.
It works on Linux x86_64 but the method’s reliability is questionable at
best since there are no guarantees as to which addresses mmap-ed memory
regions might happen to fall on.

Because the signal handler needs only read access to the data structure, the
problem could also be solved by using a structure safe for reading in the
presence of writes. In (purely) functional programming languages, such con-
structs are rather common, and a purely functional tree could be built in C
with some help from the garbage collector. This would be a quite compli-
cated undertaking, though, and might not be worth the effort. Also, porta-
bility would need to be taken into consideration; on some processors memory

5.1. TREE NUMBERING 55

barriers would be required.

5.1.3 Improved renumbering algorithm

Palacz and Vitek [29] use a renumbering algorithm designed so that the tree
is consistent at all times. The algorithm assigns a low and a high value to
each type in the tree and allows for not-yet-numbered types, such as recently
loaded classes, which have their high value set to 0. Low and high values
for class C will be called C.low and C.high, respectively, while C.low’ and
C.high’ denote values from a later generation (after one or more renumbering
passes).

Unfortunately, the consistency provided by their algorithm does not help,
because, while snapshots of the tree are in fact consistent, there is no practical
way to observe such a snapshot without the use of locking constructs. The
subtype test requires three distinct values1 to operate on, and they cannot
all be read at the same time. Because of this, the thread doing the test might
see some values from before an update and some others from after the update
or even from a much later generation.

A 〈1, 3〉

B 〈1, 0〉

D 〈1, 0〉

C 〈2, 3〉

E 〈2, 0〉

A 〈1, 5〉

B 〈2,3〉

D 〈2, 0〉

C 〈4, 5〉

E 〈4, 0〉

Figure 5.3: Type tree before and after renumbering

This can easily lead to a situation where the subtype test produces a wrong
result. Figure 5.3 shows a simple type tree to which D has been added re-
cently. The numbers in angle brackets denote the low and high values respec-
tively. The left tree shows the assigned ranges before D’s promotion, while
the right tree shows the situation after a renumbering pass. If, during the
renumbering, a thread were to find out if C is a subtype of B, it might see
the value C.low = 2 (from the old generation) and the values B.low’ = 2 and
B.high’ = 3 (from the new generation) and conclude accordingly that C is a
subtype of B even though this is clearly not the case.

1In the paper, the authors seem to hint at a representation where two values are
packed into a single word. But even then, two reads from two distinct memory addresses
are required.

56 CHAPTER 5. SUBTYPE CHECKING

The same could have happened with a naïve renumbering of the tree, so
Palacz’s algorithm is not an improvement at all.

5.1.4 Another approach at improving the renumbering

Another approach has been discussed for CACAO. It would aim at minimiz-
ing the number of times needing a renumbering of the class tree by choosing
a better distribution of the class values. However, it would still not solve the
original problem of having to read three values atomically. The real prob-
lem is stopping an unsynchronized thread from producing bad results, and
while it would have to be done less frequently, it would still be necessary
nonetheless.

5.1.5 Embedded generation count

CACAO’s original algorithm can be preserved by embedding a generation
count in each baseval and diffval. The JIT code then has to verify that
all three values are from the same generation. This leads to quite a bit of
computational overhead, and this method’s only right to exist may be that
it can be implemented without any portability concerns.

5.1.6 Performance

In terms of run-time cost in the absence of class loading, the subtype test
based on tree numbering needs to perform 3 loads and 2 arithmetic instruc-
tions. Notably, it does not require a branch instruction for the INSTANCEOF
instruction. In real code, the benefit of this property is questionable, though,
because in almost all cases, the INSTANCEOF test is followed by a conditional
branch bytecode instruction anyway. Also, the more frequent CHECKCAST in-
struction does not share this advantage.

5.2 Hotspot’s fast subtype checking method

Hotspot uses a different method[6] for subtype checks which does not have to
deal with any kind of synchronization. Once the supporting data structures
associated with a particular class are in place, they remain constant over the
entire lifetime of that class. This comes at the cost of some additional pointers
in the class structure and slightly enlarged machine code. The average run-
time cost is reduced, though, as the common path consists, in addition to a

5.2. HOTSPOT’S FAST SUBTYPE CHECKING METHOD 57

compare and branch, of only a single load instruction in contrast to the three
loads and one subtraction the tree numbering method weighs in at.

Hotspot uses Cohen’s algorithm[7] and its supporting data structure, the
so-called display. The display for a particular class is an ordered list of all its
superclasses. It is sorted in a way so that the least specialized classes appear
first or that for every class, all its superclasses appear prior to the class itself.
This automatically places java.lang.Object in the first position of every
display.

In Hotspot, the fast subtype check is used for checking all Java objects,
including arrays and interfaces. Historically, these have been handled differ-
ently in CACAO in a way that does not suffer from synchronization issues
to begin with. The new subtype implementation in CACAO consequently
replaces only the tree numbering method and leaves all array and interface
checking in place.

 0

 100

 200

 300

 400

 500

 600

compress jess db mpegaudio jack antlr bloat

 0

 100

 200

 300

 400

 500

 600

fop hsqldb jython luindex lusearch pmd xalan

Figure 5.4: Display depth distributions

The type checking is implemented as described in [6]. In particular, the dis-
play for a class is stored in an array of fixed size inside the class run-time
structure. If the display does not fit in this fixed-size array, it is stored in
an overflow array allocated separately on the heap. The method’s high per-
formance depends on the fact that most displays are relatively short, so the
overflow array is rarely needed. Figure 5.4 shows display length distributions
for various benchmark programs. Many programs have a spike at depth 2

58 CHAPTER 5. SUBTYPE CHECKING

and use almost no classes with a depth larger than 6.

The choice of a suitable array length for storing the restricted display proves
to be less straightforward than expected. Larger numbers lead to larger class
metadata and smaller code. The increase in class metadata should be self-
explanatory, while the decrease in code size is caused by more frequent omis-
sions of the array scanning loop. Array scanning is only required for classes
with a display depth larger than the length of the restricted display array.
It is also needed for unresolved classes, but the relative frequency of those
cases is not affected by max depth choice.

It should be expected that larger values would result in higher performance.
In most cases, though, this effect could not be measured with any statistical
significance. The reason for this is a surprisingly large number of checks
against types types of depth 2. Figure 5.5 shows the relative frequencies
of class checks against each display depths 2–4. Most benchmark programs
tested show a significant peak at depth 2. The “jython” benchmark stands out
in that it is the only one with a measurable performance increase as the max
display depth is increased from 2 to 3. Other programs with a high relative
frequency of checks against larger depths, like “mpegaudio” and “bloat”, do
quite few class checks in general, so they do not exhibit this behavior.

Program Depth 2 Depth 3 Depth 4 Depth 5+
compress 98.9% 0.9% 0.1% 0.1%
jess 88.0% 12.0% 0.0% 0.0%
db 100.0% 0.0% 0.0% 0.0%
mpegaudio 6.2% 39.4% 54.4% 0.0%
jack 86.6% 12.3% 1.1% 0.0%
antlr 75.0% 15.8% 3.7% 5.5%
bloat 59.0% 17.0% 16.6% 7.4%
fop 92.0% 0.5% 7.1% 0.4%
hsqldb 99.7% 0.3% 0.0% 0.0%
jython 31.7% 55.4% 0.3% 12.7%
luindex 88.0% 11.9% 0.1% 0.0%
lusearch 93.9% 6.1% 0.0% 0.0%
pmd 88.8% 10.6% 0.5% 0.0%
xalan 76.4% 3.9% 17.3% 2.5%

Figure 5.5: Display depth distribution of checked supertypes

5.2.1 Code and data size

The machine code for display-based subtype checking is slightly larger than
its tree numbering equivalent. Unlike the latter, it can vary in size, though. In

5.2. HOTSPOT’S FAST SUBTYPE CHECKING METHOD 59

Java bytecode, CHECKCAST and INSTANCEOF instructions take two arguments,
S and T , where S is taken from the run-time stack while T is a constant
stored in the class file. Therefore, at compile time, T is always a known
type. However, it is quite possible that class T has not been loaded at that
point; hence, it is not always known if type T denotes a class or an interface
type.

In those cases when it is not known, the compiler generates code for both
scenarios and prepends a run-time check and appropriate branching instruc-
tions. The display-based code leaves all this in place but it derives an addi-
tional benefit from a known type T . As mentioned earlier, a known T allows
the array scanning code to be omitted in most cases. Furthermore, because
the reference to T is really just a constant pointer, it can be embedded di-
rectly in the instruction stream as an immediate value on x86 and x86_64
architectures.

Program code size (KB) data size (KB) instructions % known
compress 1.3 (0.36%) 20.6 (21.15%) 76 57.9%
jess 1.5 (0.31%) 28.1 (16.97%) 155 63.9%
db 1.3 (0.35%) 19.7 (19.78%) 94 62.8%
mpegaudio 1.3 (0.20%) 24.1 (21.61%) 81 60.5%
jack -0.3 (-0.07%) 13.9 (11.46%) 267 79.4%
all jvm98 -0.2 (-0.02%) 26.9 (12.61%) 370 77.6%
antlr 0.8 (0.09%) 40.3 (13.72%) 890 86.7%
bloat 11.4 (0.87%) 5.6 (1.27%) 1528 81.0%
fop 2.7 (0.20%) 81.9 (14.41%) 620 71.6%
hsqldb -2.4 (-0.21%) 38.8 (11.25%) 673 80.8%
jython 5.1 (0.35%) 54.4 (4.38%) 1272 75.1%
luindex 1.2 (0.15%) 54.0 (19.37%) 312 69.9%
lusearch 1.5 (0.20%) 54.9 (19.82%) 274 66.1%
pmd 8.4 (0.71%) 57.9 (7.45%) 1031 58.3%
xalan 2.7 (0.23%) 58.7 (8.36%) 662 69.8%
all dacapo 13.7 (0.27%) 48.4 (1.17%) 5337 78.8%

Figure 5.6: Code and data size measurements

Figure 5.6 shows how the new subtype checking method affects code and
data sizes. The code size column shows the increase of code size in kilobytes
and the percentage of all generated code. The data size column shows the
increase in class metadata, including the data used for tracking unsafe re-
gions. The column “instructions” contains the number of times a CHECKCAST
or INSTANCEOF instruction has been generated. The last column shows the
percentage of checks against known classes. These are the cases which allow
array scanning omission if the depth is not too large. These known classes of
sufficiently short display depth are also the ones responsible for the negative

60 CHAPTER 5. SUBTYPE CHECKING

numbers in the code size column. The new code is shorter in those cases,
comprising only one load and one compare instruction.

Code size can vary slightly in multi-threaded programs due to slight timing
differences. Different threads can load/resolve classes and compile method
code simultaneously, causing the number of known classes to be slightly
different between identical invocations.

It might be possible to reduce the data size a bit further. Some fields in
the class data occupy more space than strictly needed, due to alignment.
Also, some architecture specific changes are still possible. For example, on
x86_64, where a byte value can be loaded from memory and expanded into
a full register value in a single instruction, the offset field could be reduced
to a single byte. On a similar note, the machine code is not at its minimum,
either. With the current infrastructure, it is difficult to emit branch instruc-
tions with one-byte displacement, so most of the branch instructions use four
bytes. Again, this is an optimization specific to x86_64 (and x86). Other
architectures may open up similar opportunities for optimization.

5.2.2 Performance

Figure 5.7 shows the run-time performance of several benchmark programs.
The code for unsafe region checking was not enabled in the tree numbering
run. The display length has been set at 4. Performance has been tested on
two x86_64 machines. On the older Pentium D, the new code performs
significantly better. On the newer Xeon, the improvement is less marked.
The measured times display considerable fluctuations—for some runs, not all
benchmarks show a consistent improvement; on average, the display-based
code performs slightly better though.

5.2.3 Conclusion

The display based method for subtype checking used in Hotspot uses data
structures which have to be built only once per class and stay constant
as long as the particular class is loaded, i.e. as long as they might be in
use. It is therefore inherently thread-safe. Run-time performance is slightly
but measurably increased in popular benchmark programs at the expense of
an almost negligible increase in code size and a moderate increase in class
metadata size. It does not rely on fragile, CPU-specific tricks and is thus
easily portable.

5.2. HOTSPOT’S FAST SUBTYPE CHECKING METHOD 61

CPU: Intel Pentium D 3.2GHz x86_64 UP
Program Tree Numbering Display-based % Improvement
compress 5.15 s 5.11 s 0.79%
jess 6.60 s 6.30 s 4.55%
db 16.37 s 16.15 s 1.32%
mpegaudio 5.04 s 4.99 s 0.87%
jack 9.19 s 8.39 s 8.64%
antlr 6.02 s 5.77 s 4.28%
bloat 33.12 s 32.01 s 3.37%
fop 4.80 s 4.63 s 3.67%
hsqldb 9.62 s 8.43 s 12.39%
jython 45.11 s 40.46 s 10.30%
luindex 20.13 s 19.55 s 2.87%
lusearch 42.83 s 42.43 s 0.95%
pmd 27.56 s 25.21 s 8.51%
xalan 78.94 s 74.68 s 5.39%

CPU: Intel Xeon E5320 1.86GHz x86_64 quad-core
Program Tree Numbering Display-based % Improvement
compress 5.13 s 5.12 s 0.09%
jess 5.82 s 5.59 s 3.81%
db 14.63 s 14.56 s 0.45%
mpegaudio 5.45 s 5.28 s 3.03%
jack 6.80 s 6.71 s 1.34%
antlr 5.70 s 5.64 s 1.20%
bloat 29.30 s 29.10 s 0.69%
fop 4.09 s 4.02 s 1.73%
hsqldb 7.04 s 6.31 s 10.39%
jython 36.40 s 34.56 s 5.04%
luindex 16.93 s 16.53 s 2.37%
lusearch 24.92 s 24.96 s -0.17%
pmd 23.59 s 23.03 s 2.37%
xalan 57.51 s 56.73 s 1.37%

Figure 5.7: Performance of display-based subtype checking

62 CHAPTER 5. SUBTYPE CHECKING

Bibliography

[1] Sarita V. Adve and Kourosh Gharachorloo. Shared memory consistency
models: A tutorial. Computer, 29(12):66–76, 1996.

[2] Ole Agesen. GC points in a threaded environment. Technical report,
SMLI TR-98-70. Sun Microsystems, Mountain View, CA, USA, 1998.

[3] Ole Agesen, David Detlefs, Alex Garthwaite, Ross Knippel, Y. S. Ra-
makrishna, and Derek White. An efficient meta-lock for implementing
ubiquitous synchronization. ACM SIGPLAN Notices, 34(10):207–222,
1999.

[4] David F. Bacon, Ravi B. Konuru, Chet Murthy, and Mauricio J. Serrano.
Thin locks: Featherweight synchronization for Java. In SIGPLAN Con-
ference on Programming Language Design and Implementation, pages
258–268, 1998.

[5] Hans Boehm. Getting C++ threads right .
http://www.hpl.hp.com/personal/Hans_Boehm/misc_slides/c++threads.pdf.

[6] Cliff Click and John Rose. Fast subtype checking in the Hotspot JVM.
In JGI ’02: Proceedings of the 2002 joint ACM-ISCOPE conference on
Java Grande, pages 96–107, New York, NY, USA, 2002. ACM.

[7] Norman H. Cohen. Type-extension type test can be performed in con-
stant time. ACM Trans. Program. Lang. Syst., 13(4):626–629, 1991.

[8] David Dice. Implementing fast java monitors with relaxed-locks. In
JVM’01: Proceedings of the JavaTM Virtual Machine Research and
Technology Symposium on JavaTM Virtual Machine Research and Tech-
nology Symposium, pages 13–13, Berkeley, CA, USA, 2001. USENIX
Association.

[9] David Dice, Mark Moir, and Bill Scherer. Quickly reacquirable locks.
http://home.comcast.net/∼pjbishop/Dave/QRL-OpLocks-BiasedLocking.pdf.

63

64 BIBLIOGRAPHY

[10] Edsger W. Dijkstra. Co-operating sequential processes. In F. Genuys,
editor, Programming Languages, pages 43–112. Academic Press, New
York, 1968.

[11] Hubertus Franke, Rusty Russell, and Matthew Kirkwood. Fuss, futexes
and furwocks: Fast userlevel locking in Linux. In Proceedings of the 2002
Ottawa Linux Summit, pages 479–495, 2002.

[12] Etienne Gagnon. A portable research framework for the execution of
Java bytecode. PhD thesis, McGill University, Montreal, Que., Canada,
Canada, 2003. Adviser-Laurie J. Hendren.

[13] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Lan-
guage Specification. Addison-Wesley Professional, 2005.

[14] Michael Greenwald and David R. Cheriton. The synergy between non-
blocking synchronization and operating system structure. In Operating
Systems Design and Implementation, pages 123–136, 1996.

[15] C. A. R. Hoare. Monitors: an operating system structuring concept.
Commun. ACM, 17(10):549–557, 1974.

[16] Kiyokuni Kawachiya. Java Locks: Analysis and Acceleration. PhD the-
sis, Keio University, 2005.

[17] Kiyokuni Kawachiya, Akira Koseki, and Tamiya Onodera. Lock reser-
vation: Java locks can mostly do without atomic operations. SIGPLAN
Not., 37(11):130–141, 2002.

[18] Andreas Krall and Mark Probst. Monitors and exceptions: how to im-
plement Java efficiently. Concurrency: Practice and Experience, 10(11–
13):837–850, 1998.

[19] Leslie Lamport. A fast mutual exclusion algorithm. ACM Transactions
on Computer Systems, 5(1):1–11, 1987.

[20] Leslie Lamport. How to make a correct multiprocess program exe-
cute correctly on a multiprocessor. IEEE Transactions on Computers,
46(7):779–782, 1997.

[21] Doug Lea. The JSR-133 cookbook for compiler writers .
http://gee.cs.oswego.edu/dl/jmm/cookbook.html.

[22] Tim Lindholm and Frank Yellin. Java Virtual Machine Specification.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[23] Jeremy Manson, William Pugh, and Sarita Adve. Java Specification
Request 133: Java memory model and thread specification.

[24] Maged M. Michael. High performance dynamic lock-free hash tables
and list-based sets. In SPAA ’02: Proceedings of the fourteenth annual

BIBLIOGRAPHY 65

ACM symposium on Parallel algorithms and architectures, pages 73–82,
New York, NY, USA, 2002. ACM.

[25] Maged M. Michael. Hazard pointers: Safe memory reclamation for lock-
free objects. IEEE Trans. Parallel Distrib. Syst., 15(6):491–504, 2004.

[26] Tamiya Onodera and Kiyokuni Kawachiya. A study of locking objects
with bimodal fields. SIGPLAN Not., 34(10):223–237, 1999.

[27] Tamiya Onodera, Kiyokuni Kawachiya, and Akira Koseki. Lock reser-
vation for Java reconsidered. In ECOOP, pages 559–583, 2004.

[28] John K. Ousterhout. Scheduling techniques for concurrent systems. In
Proceedings of the 3rd International Conference on Distributed Comput-
ing Systems (ICDCS ’82), pages 22–30, 1982.

[29] Krzysztof Palacz and Jan Vitek. Java subtype tests in real-time. In
ECOOP, pages 378–404, 2003.

[30] Standard for threads interface to POSIX. IEEE, P1003.1c, 1996.

[31] Kenneth Russell and David Detlefs. Eliminating synchronization-related
atomic operations with biased locking and bulk rebiasing. SIGPLAN
Not., 41(10):263–272, 2006.

[32] Jan Vitek, Nigel Horspool, and Andreas Krall. Efficient type inclusion
tests. In Toby Bloom, editor, Conference on Object Oriented Program-
ming Systems, Languages & Applications (OOPSLA’97), pages 142–157,
Atlanta, 1997.

[33] D. Weaver and T. Germond. The SPARC architecture manual (version
9). PTR Prentice Hall, Englewood Cliffs, NJ 07632, USA, 1994.

