
Dissertation

The Time-Triggered
System-on-Chip Architecture

ausgeführt zum Zwecke der Erlangung des

akademischen Grades eines

Doktors der technischen Wissenschaften

unter der Leitung von

o. Univ. - Prof. Dr. Hermann Kopetz
Institut für Technische Informatik 182/1

eingereicht an der

Technischen Universität Wien,
Fakultät für Informatik

durch

Dipl. - Ing. Christian Peter Paukovits, Bakk. techn.

Matr. - Nr. 0127145

Linzer Straße 429 / 5 / 5204, A–1140 Wien

Wien, im Dezember 2008 .

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

ii

Markenzeichen und ähnliche geschützte Begriffe sind teilweise nicht speziell gekennze-
ichnet, und es liegt daher in der Verantwortung des Lesers, diese im Zweifelsfalle zu
überprüfen. Ich sehe es nicht als meine Aufgabe als Wissenschaftler, Markennamen
zu recherchieren.

Trademarks and similar terms protected by law are partially not particularly denoted
in this thesis. If in doubt, it is in the responsibility of the reader to verify the terms
used. It is not my task as a scientist to investigate trademarks.

iii

iv

The Time-Triggered
System-on-Chip Architecture

The Time-Triggered System-on-Chip (TTSoC) architecture provides a
component-based design methodology, which addresses complexity management of
System-on-Chip designs equipped with billions of transistors. Abstraction, determin-
ism, and encapsulation are the means to achieve a consequent decoupling of com-
putational components from the communication infrastructure, which entails error
containment and promotes composability.

This thesis presents a real implementation of the TTSoC architecture based on
FPGA technology. Intellectual Property (IP)-cores contain the processing units, in
which jobs of application subsystems are executed. Each IP-core has one Trusted
Interface Subsystem (TISS) attached, which realizes the major part of the TTSoC
architecture’s core services such as the time-triggered communication service. The
TISS offers these core services to the IP-cores through the Uniform Network Interface
(UNI). Each pair of IP-core and attached TISS forms a micro component, which is
regarded as architectural unit. Micro components are interconnected through the
Time-Triggered Network-on-Chip (TTNoC).

Micro components communicate with each other by means of encapsulated com-
munication channels. Their endpoints – the ports – contain application-level mes-
sages, which are exchanged between micro components. The real communication
within encapsulated communication channels is abstracted from the IP-core. Com-
munication is synchronized by means of a notion of a global time base, which entails
a periodic control system in order to temporally align communication. The TISS
harnesses the global time base in order to determine the instants, when a communi-
cation activity takes place. Additionally, it controls the flow of messages from send
port to receive port of an encapsulated communication channel.

On-the-fly reconfiguration allows the TTSoC architecture to change system pa-
rameters during live operation, which is used to adapt the system to changing re-
source demands or environmental conditions.

To let a given IP-core take part in the TTSoC architecture, a TISS causes a
hardware overhead of 10 % and below on FPGA technology. The monetary costs on
ASIC technology can be estimated in the magnitude of fractions of one-digit dollar
cent.

v

vi

Die Time-Triggered
System-on-Chip Architektur

Die Time-Triggered System-on-Chip (TTSoC) Architektur ermöglicht eine
komponentenbasierte Designmethodologie, welche Komplexitätsmanagement von
System-on-Chip Designs mit Milliarden von Transistoren anspricht. Abstraktion,
Determinismus und Kapselung sind die Mittel zur konsequenten Entkoppelung von
Rechnerkomponenten und Kommunikationsinfrastruktur, wodurch Fehlerisolation
und Kompositionalität erzielt wird.

Diese Dissertation präsentiert eine auf FPGA Technologie basierende, reale Im-
plementierung der TTSoC Architektur. Intellectual Property (IP)-cores enthalten
die Rechnereinheiten, in denen Jobs von Applikationssubsystemen exekutiert wer-
den. Jeder IP-core hat ein Trusted Interface Subsystem (TISS) angeschlossen, das
den Großteil der Systemdienste wie den zeitgesteuerten Kommunikationsdienst der
TTSoC Architektur realisiert. Das TISS bietet diese Systemdienste über das Uni-
form Network Interface (UNI) den IP-cores an. Jedes Paar von IP-core und TISS
formt eine Mikrokomponente, die als Architektureinheit betrachtet wird. Mikrokom-
ponenten sind durch das Time-Triggered Network-on-Chip (TTNoC) verbunden.

Mikrokomponenten kommunizieren miteinander mittels gekapselter Kommunika-
tionskanäle. Deren Enden – die Ports – enthalten Nachrichten auf Applikationsebene,
die zwischen Mikrokomponenten ausgetauscht werden. Die tatsächliche Kommu-
nikation innerhalb der gekapselten Kommunikationskanäle wird für die IP-cores ab-
strahiert. Kommunikation wird anhand einer globalen Zeitbasis synchronisiert, die
ein periodisches Kontrollsystem mitbringt, um Kommunikation zeitlich auszurichten.
Das TISS nutzt die globale Zeitbasis zur Bestimmung der Zeitpunkte, wann Kommu-
nikationsaktivitäten stattfinden. Zusätzlich kontrolliert es den Fluss von Nachrichten
zwischen Sende- und Empfangsports eines gekapselten Kommunikationskanals.

Fliegende Rekonfiguration erlaubt der TTSoC Architektur, Systemparameter
im laufenden Betrieb zu ändern, was zur Anpassung des Systems an wechselnde
Ressourcenanforderungen oder Umweltbedingungen benutzt wird.

Zur Befähigung zur Teilnahme an der TTSoC Architektur für einen IP-core verur-
sacht ein TISS einen Hardwareaufschlag von höchstens 10 % in FPGA Technologie.
Die Kosten in ASIC Technologie können in die Größenordnung von Bruchteilen ein-
stelliger Dollarcent Beträge geschätzt werden.

vii

viii

Acknowledgments

This work was conducted during my affiliation as a research assistant with the
Institut für Technische Informatik, Technische Universität Wien.

I address my gratitude to the advisor of this thesis, Prof. Dr. Hermann Kopetz,
who has enabled this affiliation. He has been supporting me with valuable suggestions
and formed my academic career. In this context, I would like to mention Dr. Wilfried
Elmenreich for his engagement as consultor for this work.

Furthermore, I would like to thank the fellows at the Institut für Technische
Informatik, Technische Universität Wien for the countless exhilarating discussions
on all kinds of topics. In this context, I would like to mention1 Sven Bünte, Bernhard
Frömel, Albrecht Kadlec, and Michael Zolda.

Special thanks to Christian El Salloum for lots of constructive discussions about
the design and implementation of the Time-Triggered System-on-Chip architecture.

Finally, I give my appreciation to Maria Ochsenreiter for her engagement in
organisation and her support to come to grips with my affiliation at the Institut für
Technische Informatik. Thanks to Leo Mayerhofer for his technical aid during the
past two years.

— Christian Paukovits
December 2008

1in alphabetical order

ix

x

Danksagung

Diese Arbeit entstand im Rahmen meiner Forschungstätigkeit am Institut für
Technische Informatik, Abteilung Echtzeitsystem, an der Technischen Universität
Wien.

Besonderen Dank richte ich an den Betreuer dieser Dissertation, Prof. Dr. Her-
mann Kopetz, der mir die Forschungstätigkeit am Institut für Technische Informatik
ermöglicht hat. Er hat mich stets durch wertvolle Anregungen unterstützt und so
meinen wissenschaftlichen Werdegang geprägt. In diesem Sinne möchte ich Dr. Wil-
fried Elmenreich für sein Engagement als Berater für diese Arbeit erwähnen.

Außerdem bedanke ich mich bei den Kollegen des Instituts für Technische In-
formatik, Technische Universität Wien für die zahllosen anregenden Diskussionen
zu verschiedensten Themen. In diesem Sinne möchte ich erwähnen2: Sven Bünte,
Bernhard Frömel, Albrecht Kadlec und Michael Zolda.

Mein besonderer Dank geht an Christian El Salloum für die Vielzahl an konstruk-
tiven Diskussionen zu Design und Implementierung der Time-Triggered System-on-
Chip Architektur.

Schließlich drücke ich meine Anerkennung für Maria Ochsenreiter für ihr Engage-
ment in organisatorischen Belangen und ihre Hilfestellung, um mich am Institut für
Technische Informatik zurecht zu finden, aus. Danke auch an Leo Mayerhofer für die
technische Unterstützung während der letzten zwei Jahre.

— Christian Paukovits
Dezember 2008

2in alphabetischer Reihenfolge

xi

xii

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Contribution . 3

1.3 Structure of this Thesis . 4

2 Concepts of the TTSoC Architecture 7

2.1 Features and Key Properties . 7

2.1.1 Elevation of the Level of Design Abstractions 7

2.1.2 Determinism & Predictability 8

2.1.3 Error Containment through Encapsulation 8

2.1.4 Global Time Base & Clock Domains 9

2.1.5 Integrated Resource Management 10

2.2 Core Services . 11

2.3 Architecture Overview . 12

2.3.1 Entities . 12

2.3.2 Micro Component . 13

2.3.3 Requirements for the TSS . 14

2.3.4 Elements of Resource Management 17

2.3.5 Gateways . 18

2.3.6 Support for Diagnosis . 19

2.4 Implementation Overview . 20

2.4.1 The Five Layers . 21

2.4.2 System Operation Frequency 22

xiii

3 Related Work 23

3.1 The AMBA Family . 23

3.1.1 Advanced High-Performance Bus 24

3.1.2 Multi-Layer AHB . 26

3.1.3 AXI . 28

3.2 Open Core Protocol . 30

3.3 Æthereal . 31

3.3.1 Connections in Æthereal . 31

3.3.2 Structure of NIs . 33

3.3.3 Reconfiguration in Æthereal . 34

3.4 Nostrum . 35

3.4.1 Topology Decision . 36

3.4.2 Theory of Operation . 37

3.4.3 Power Management in Nostrum 39

3.5 MANGO . 40

3.5.1 Network Adapter . 40

3.5.2 Routers in MANGO . 41

3.6 ×pipes . 42

3.7 Comparison . 43

4 Communication Service 49

4.1 Encapsulated Communication Channels 49

4.1.1 Establishing Encapsulation . 50

4.1.2 Topology . 50

4.2 Interface to the Communication Service 51

4.2.1 State Ports . 51

4.2.2 Event Ports . 52

4.3 Pulsed Data Streams . 52

4.3.1 Periodic Control System . 53

4.3.2 Handling Collisions of Pulses 58

4.4 Realization of Pulsed Data Streams . 58

4.5 Pulse Interleaving . 59

4.6 Allocation of Bandwidth . 60

4.7 Message Ordering . 62

4.7.1 Total Temporal Ordering . 62

4.7.2 Consistent Delivery Order . 63

xiv

5 The UNI 65

5.1 Port Interface . 65

5.1.1 Signal Specification . 66

5.1.2 Memory Layout of State and Event Ports 68

5.2 Control Interface . 69

5.2.1 Signal Specification . 70

5.2.2 Port Configuration Memory . 75

5.2.3 Port Synchronization Memory 77

5.2.4 Register File . 79

5.3 Synchronizing Access to Ports . 83

5.3.1 Synchronizing State Ports . 83

5.3.2 Synchronizing Event Ports . 86

5.4 Special Services . 87

5.4.1 Time Stamping . 87

5.4.2 The Watchdog Service . 88

5.4.3 The Generic Timer Service . 89

5.4.4 The Dissemination Service . 90

6 The TTNoC 93

6.1 Basics of the TTNoC . 93

6.1.1 Topological Considerations . 93

6.1.2 Lanes . 94

6.1.3 Operation of Fragment Switches 94

6.1.4 Hops . 95

6.2 Switching in the TTNoC . 96

6.2.1 Switching opcodes . 96

6.2.2 Routing Modes . 98

6.3 Simultaneous Routes . 98

6.4 Multi-casting . 99

xv

7 The TISS 103

7.1 Structure of the TISS . 103

7.2 Memories in the TISS . 105

7.2.1 The Time-Triggered Communication Schedule 106

7.2.2 The Burst Configuration Memory 111

7.2.3 The Routing Information Memory 113

7.3 Dispatching Bursts . 113

7.3.1 Structure of the Burst Dispatcher 114

7.3.2 Timing of Dispatching . 118

7.3.3 Activating and Deactivating Periods 120

7.4 The Port Manager . 121

7.4.1 The State Machine of the Port Manager 121

7.4.2 The Routing Processor . 125

7.4.3 Establishing Receive Windows 127

7.4.4 Address Calculation . 130

7.4.5 Digging Application Data . 133

7.4.6 Realizing Time Stamping . 137

7.4.7 Managing Port Synchronization 138

7.5 Latencies of Operations . 140

7.5.1 Receive Operations . 140

7.5.2 Send Operations . 142

7.5.3 Example of Transmission . 144

7.6 Initialization of the TISS . 144

7.6.1 What must be initialized? . 146

7.6.2 Initialization of Period Controllers 146

7.6.3 Scenarios of Start-up . 147

8 Integrated Resource Management 151

8.1 Scope . 151

8.2 Resource Management Strategies . 153

8.2.1 Static Resource Management 154

8.2.2 Dynamic Resource Management 154

8.3 Sequence of Interaction . 155

8.4 On-the-fly Reconfiguration . 156

8.4.1 Configuration Bursts . 157

8.4.2 Protocol of Reconfiguration . 159

8.4.3 The Configurator . 162

xvi

9 Prototypes & Results 167

9.1 FPGA-based Prototypes . 167

9.1.1 Supported FPGAs . 168

9.1.2 Resource Usage . 168

9.2 Prototype Hardware . 173

9.3 Design Example . 177

9.3.1 Structure of the Design Example 177

9.3.2 The Need for Serialization . 177

9.3.3 Drawbacks of the MPSoC Development Kit 179

10 Conclusion 181

10.1 Power Awareness . 181

10.2 Growth of the TISS . 183

10.3 Timing Issues . 185

10.3.1 About Latency . 185

10.3.2 Justification for Bursts . 186

10.4 Feasibility of the TTSoC Architecture 187

10.5 Outlook . 188

List of Acronyms 193

Bibliography 195

Index 205

Curriculum Vitae 209

xvii

xviii

List of Figures

2.1 Structure of the TTSoC architecture 13

2.2 Time format used in the TSS . 15

2.3 Temporal Alignment in Control Loops 16

2.4 Schematics of the TTSoC prototype implementation 20

3.1 Example of an AHB-based microcontroller design 24

3.2 Interconnection scheme of AHB . 25

3.3 Structure of Multi-Layer AHB . 26

3.4 Internal view on the Multi-Layer AHB interconnect matrix 26

3.5 Possible groupings in Multi-Layer AHB 27

3.6 Transactions in AHB AXI . 29

3.7 Arrangement of OCP connections . 30

3.8 Connection types in Æthereal . 32

3.9 Æthereal credit-based flow control . 32

3.10 Æthereal NI kernel and shells . 34

3.11 Temporally Disjoint Network . 37

3.12 Looped Container . 39

3.13 Overview of MANGO . 40

3.14 Types of NAs . 41

4.1 Example topology of encapsulated communication channels 51

4.2 The time format with period bits and phase slices for 16 periods (δ = 1) 54

4.3 The time format with period bits and phase slices for 32 periods (δ = 1) 55

4.4 Example of an pulsed data stream . 59

4.5 Two conflicting pulses . 60

4.6 Pulse Interleaving . 61

xix

5.1 Memory layout of an output state port with explicit synchronization . 68

5.2 Memory layout of an input state port with time stamps 69

5.3 Memory layout of an event port with time stamps 70

5.4 Layout of a data word in the Port Configuration Memory 75

5.5 Layout of a data word in the Port Synchronization Memory with its
interpretations . 77

5.6 Layout of the TISS’s Register File . 80

5.7 Layout of the Error Status Register . 82

6.1 Structure of a lane . 94

6.2 Consuming a switching opcode . 96

6.3 Example of a switching opcode . 97

6.4 Scenarios of simultaneous routes . 99

6.5 Multi-casting the in the TTNoC . 100

7.1 Structure of the TISS . 104

7.2 Layout of an entry in the Time-Triggered Communication Schedule . . 106

7.3 Layout of the Time-Triggered Communication Schedule with two fic-
titious applications. 109

7.4 Layout of a data word in the Burst Configuration Memory 111

7.5 Structure of the Burst Dispatcher . 114

7.6 Timing of activities in the Burst Dispatcher 118

7.7 State machine of the Port Manager . 122

7.8 State machine of the Routing Processor 126

7.9 State machine of the Receive Window Detector 128

7.10 State machine of the Memory Digger 133

7.11 Minimum latency of receive operations 141

7.12 Latency of send operations . 143

7.13 Example topology . 144

7.14 Example of latency at sending and receiving TISSs 145

8.1 Schematic representation of integrated resource management 155

8.2 Incoming configuration bursts at micro components 158

8.3 Protocol of reconfiguration in a configuration burst 160

8.4 Layout of the control flit . 160

xx

8.5 Layout of the terminal flit . 162

8.6 Entities of name space 11 visible to the TNA 163

8.7 State machine of the Configurator . 164

9.1 Stacking add-on boards on the MPSoC Development Kit 174

9.2 Partitioning of the prototype design on the MPSoC Development Kit . 178

9.3 Serializing the UNI . 179

xxi

xxii

List of Tables

3.1 Comparison of characteristics . 44

5.1 Open Core Protocol (OCP) signals of the Port Interface 66

5.2 Currently supported Open Core Protocol (OCP) commands at the
Port Interface . 67

5.3 Open Core Protocol (OCP) signals of the Control Interface 71

5.4 Encoding of the name spaces of the Control Interface 72

5.5 Currently supported Open Core Protocol (OCP) commands at the
Control Interface . 72

5.6 Status codes at the OCPS SResp handshaking signal 73

5.7 Signals in OCPS SFlag and their associated interrupt events 74

5.8 Calculating new values of TISS Addr 78

5.9 Determining status of event queues . 86

7.1 Input signals for the address calculation 131

7.2 Events and actions for the Port Synchronization Controller 139

8.1 Mapping of name spaces to physical memories in the TISS 160

9.1 FPGA families and devices running the TTSoC architecture 168

9.2 Parameters of current implementation and realistic variation 169

9.3 Resource usage of entities of the TTSoC architecture (current imple-
mentation) . 170

9.4 Resource usage of entities of the TTSoC architecture (realistic variation)171

9.5 Results of the synthesis with a 45 nm library 173

10.1 Comparing resource usage of exemplary designs (Stratix III) 187

xxiii

xxiv

Chapter 1

Introduction

During the past forty years, the semiconductor industry has developed chips of enor-
mous complexity. The number of transistors per chip has increased so much that we
are beyond a billion. This has enabled designers to pack several functional units onto
one silicon die. The inherent miniaturization has led to better yield of wafers, thus
reducing costs in production. Inspired by these improvements, embedded computing
has taken the role of the most important segment of the computer industry.

Nevertheless, the increased complexity has pointed out cognitive limits of human
designers. Nowadays, chip designs are so vast that they can hardly be understood.
According to the 2005 semiconductor industry roadmap [Wil05], designers will face
system design complexity and designer’s productivity as key challenges on the way
to the giga-scale System-on-Chip (SoC). This challenge can only be tackled if we lift
the design process to a higher level of abstraction [Kop08a].

Even though the semiconductor industry has made considerable progress, the
basic computational model has not changed significantly during this time. Pollack’s
rule [Gel01] says that the increase in performance of a sequential computer is only
about the square root compared to the increase in the number of transistors. This
implies that doubling the transistor count leads to a performance gain of about 40%.

Fortunately, the inherent concurrency in a typical embedded application (such as
automotive electronics, avionics) offers the possibility to circumvent Pollack’s rule.
If an application can be partitioned into a set of nearly autonomous concurrent
functions, then a nearly linear performance improvement can be achieved. The trick
is to assign a dedicated processing element to each of these concurrent functions.
Additionally, each dedicated processing element interacts via an Network-on-Chip
(NoC) [Wol04] with its communication partners. This architectural approach is
followed in numerous SoC architectures [BM06].

To address these challenges we introduce a novel system architecture: the Time-
Triggered System-on-Chip architecture. This architecture offers a component-based
design methodology, which is intended to take on the complexity of SoCs equipped
with billions of transistors. The means to achieve this goal is the consequent decou-
pling of the computational components from the communication infrastructure.

1

1.1 Motivation 1 Introduction

The Time-Triggered System-on-Chip (TTSoC) architecture provides an architec-
tural framework that supports composability [KO02, Sif05]. Composability denotes
the side-effect-free composition of component services – solely based on interface
specifications – to form larger systems-of-systems. For this purpose, the computa-
tional components are interconnected through a predictable and deterministic NoC
with inherent error containment.

1.1 Motivation

The Time-Triggered Architecture (TTA) [KB03] has established a platform for dis-
tributed embedded (hard) real-time system [TS06]. It provides deterministic com-
munication based on a notion of global time with synchronized clocks, endorses
composability in application design, and contributes to fault tolerance.

In recent years the TTA has spawned industrially applied products that are based
on its concepts.

TTP/C is a time-triggered communication protocol that focuses on safety-critical
distributed real-time systems. Its intended domain of application are automo-
tive control systems, aircraft control systems, industrial and power plants, or
air traffic control.

TTP/A is a field bus targeted at low-cost distributed embedded systems. Its main
usage is in the field of micro controllers, where it is intended to connect sensors
and actuators.

Time-Triggered Ethernet (TTE) aims at the same application domains like
TTP/C, however it uses the widely spread communication technology Eth-
ernet [Gro05] for transmission. Time-Triggered Ethernet (TTE) integrates the
time-triggered critical traffic and non-critical, event-driven legacy traffic, so
that it is backwards compatible to Ethernet.

With the advent of Deep Submicron (DSM) technology in consumer mass mar-
kets, the idea of the SoC has gained vast popularity. Nowadays, we have the tech-
nological foundation to miniaturize the main concept of TTA to a ”microscopic”
dimension. In short, this is what the TTSoC architecture does. It is the fourth
member of the TTA family, which consequently follows the time-triggered paradigm.

Certainly, the TTSoC architecture reflects the continuous evolution of the TTA.
Even though the TTSoC architecture possesses the same basic capabilities as the
original descendants of the TTA, it adds new concepts that give more mightiness to
design applications in several domains.

One of the main objectives of the TTSoC architecture is abstraction between ap-
plication design and underlying communication issues. Such abstraction is the means

2

1 Introduction 1.2 Contribution

to promote composability on an architectural level. In addition to this, encapsula-
tion of communication channels is introduced to provide error containment. Error
containment is a strong assumption and required to uphold composability. Finally,
the TTSoC architecture is one of the first SoC architectures to include an integrated
resource management, so that the system is able to adapt to changing conditions or
application requirements in the field during live operation.

Another motivation is a cost argumentation. According to the 2007 semicon-
ductor roadmap [Wil07a], the costs of designing ASICs, e.g., costs of lithographic
masks, costs of verification of designs etc., will further increase in the near future.
Consequently, it would be desirable to reuse a given design for multiple applications
in different target domains. Hence, we need a ”generic” system architecture, which
fits the requirements of several target domains.

The TTSoC architecture is designed to satisfy the requirements of a batch of
target domains from the field of distributed embedded (hard) real-time systems.
Moreover, it allows to integrate subsystems of mixed criticality levels, such as control
application with tough temporal constraints, or multimedia applications with vast
bandwidth and performance requirements.

1.2 Contribution

This thesis concerns the implementation of the TTSoC architecture. It answers the
research questions:

• Is it feasible to build such a generic architecture that goes with the requirements
of several target applications?

• If so, how would an implementation look like, how would its components work
together?

• Finally, what does it cost to equip a given system design with that generic
architecture?

Earlier work on the TTSoC architecture has explained the fundamental concepts,
design choices, and interface specifications from the theoretical point of view. Con-
trary, this thesis presents a real implementation of the TTSoC architecture.

The first contribution is that this thesis includes a comprehensive description of
the architecture-level interface, through which the core services are available. This
is the interface, where the abstraction of communication issues takes place.

In this context, the concept of communication in the TTSoC architecture is cov-
ered. The thesis describes how we can leverage the mechanisms of the communication
subsystem to establish high-level concepts such as determinism, error containment,
message ordering, and temporal alignment of communication.

3

1.3 Structure of this Thesis 1 Introduction

Also, this thesis introduces the design of a NoC, which interconnects participants
of communication. This NoC yields characteristics of communication in the TTSoC
architecture, thus the realization of that NoC is efficient with respect to area and
power. The thesis presents the basics of switching and advanced capabilities such as
support for native multi-casting in that NoC.

A major contribution is the answer to the second research question. The thesis
explains, how communication is established, which architectural components are in
charge of controlling communication, and how these components are implemented. In
this context, we find the documentation concerning the implementation of the core
services and auxiliary services (e.g., watchdog service, dissemination of diagnosis
information) of the TTSoC architecture.

Furthermore, this thesis demonstrates how the TTSoC architecture handles in-
tegrated resource management, and how a reconfiguration of system parameters is
achieved during live operation.

Finally, this thesis comprises results of working prototypes of the implementa-
tion, which allow to draw conclusions about the feasibility and costs of the TTSoC
architecture. We state quantitative values about resource usage of the implemen-
tation on FPGA technology, and compare these values with other system designs.
Also, this thesis includes a cost estimation for production of the implementation on
ASIC technology.

1.3 Structure of this Thesis

Chapter 2 gives background information about the TTSoC architecture. It explains
the architectural concepts and fundamental properties. Further, it introduces the
terminology used by the TTSoC architecture. Additionally, this introduction chap-
ter sketches the tasks of architectural entities and illustrates an overview of the
implementation of the TTSoC architecture.

Chapter 3 compares the TTSoC architecture with other approaches that have
gained relevance in the research community.

The following chapter 4 is dedicated to the communication service of the TTSoC
architecture. It mentions communication primitives and demonstrates, how the no-
tion of a global time is exploited in the TTSoC architecture.

The architectural interface to the core services is covered in chapter 5, while the
NoC of the TTSoC architecture is outlined in chapter 6.

Chapter 7 deals with the most important architectural component of the TTSoC
architecture. It explains its structure, memories and subcomponents, and how these
entities work together to realize the biggest part of the core services.

The integrated resource management and the reconfiguration during live opera-
tion are subject of chapter 8.

4

1 Introduction 1.3 Structure of this Thesis

In chapter 9 the results of the prototypic implementation of the TTSoC architec-
ture are listed. Moreover, this chapter features the hardware set-up, on which the
prototypes have been built. Also, a design example of what the TTSoC architecture
could look like in a real application scenario is presented.

The last chapter 10 discusses properties of the implementation of the TTSoC ar-
chitecture, and draws conclusions based on these insights. In this context, it justifies
design choices and outlines their optimality. Also, it gives an outlook of future work
on the TTSoC architecture.

5

1.3 Structure of this Thesis 1 Introduction

6

Chapter 2

Basic Concepts of the TTSoC
Architecture

This chapter reveals the contributions and novelties of the TTSoC architecture. Also
we show, how these features are organized in conceptual entities, and how these
entities realize the TTSoC architecture in a prototypic implementation.

2.1 Features and Key Properties

The TTSoC architecture is equipped with a batch of features and key properties.
From these features we can derive a set of core services. Such core services provide
an interface to applications built around the TTSoC architecture, which abstracts
from the real implementation beneath that interface.

2.1.1 Elevation of the Level of Design Abstractions

We promote the idea that complexity of an evolving design must be managed at a
higher level of abstraction [Kop08a]. For this purpose, the aggregate properties of a
component must be outlined into an interface specification. We must be able to stick
components together by simply examining their interface specifications. Thus, the
internal structure and the operations within the component can be neglected. Fur-
thermore, it is possible to change or enhance the implementation of the components,
for instance in response to technological improvements. As the implementation issues
of the components are hidden behind the interface, no redesign of the overall system
is necessary.

For this reason, we introduce the entity of a micro component in the TTSoC
architecture. By definition, such a micro component is a unit of abstraction. A
well-defined message-based interface informs about its functionality [GIJ+03]. The
clear distinction of processing within a micro component and the interactions with

7

2.1 Features and Key Properties 2 Concepts of the TTSoC Architecture

its surrounding results into a communication-centric model [BM02,WG02], which is
appropriate for many applications.

2.1.2 Determinism & Predictability

The TTSoC architecture entails determinism [Hoe04] with respect to the communica-
tion subsystem. Determinism denotes the property of a system (respectively its sys-
tem model) to reason about the future behaviour (i.e., outputs) and the state [MT89]
of the overall system based on the knowledge of an initial state and future inputs.
We use the following (revised) definition of determinism:

A model of a distributed computer system (...) is said to behave
deterministically if and only if, given a sparse time-base with an infinite
sequence of intervals tj, the state of the system Σ(t0) at t0 (now), and
a set of future Input Messages IM1(ti1), IM2(ti2), . . . , IMn(tin), then the
set of future Output Messages OM1(to1), OM2(to1), . . . , OMn(ton) and the
state of System Σ(tx) at all future intervals tx is entailed. [Kop08b]

The TTSoC architecture supports a priori defined on-chip communication ex-
pressed in a Time-Triggered Communication Schedule [KB03]. The existence of such
a Time-Triggered Communication Schedule fulfils the requirements of determinism,
as all future instants, senders and receivers, as well as content of communication
activities are known at any time. From a given initial state Σ(t0) we can derive
the state and future behaviour of the system at some later instant t′ owing to the
knowledge contained in the Time-Triggered Communication Schedule.

Such deterministic behaviour makes communication between micro components
predictable. Besides this, a deterministic behaviour of components is required
for the transparent masking of hardware errors by Triple Modular Redundancy
(TMR) [Pol94]. Finally, Schütz argues in [Sch93] that determinism improves the
testability of a system.

2.1.3 Error Containment through Encapsulation

The TTSoC architecture introduces a strong assumption of encapsulation of com-
munication. That is, the communication of each micro component is protected from
the communication of other micro components. As a result, communication activ-
ities are free of interference and collisions, in general. So, with the non-existence
of any conflicts in mind, no micro component will ever disrupt the communication
and computation of an opponent. Therefore, we say that communication of micro
components is ”encapsulated”.

One effect of encapsulation is error containment [OKSH07]. The communication
activities of each micro component are ”invisible” to other micro components among
the communication subsystem. A misbehaviour of a given micro component, e.g., a

8

2 Concepts of the TTSoC Architecture 2.1 Features and Key Properties

babbling idiot [BB01], will not harm the operation of other micro components. Thus,
error containment aids to uphold the composability of a system and increases the
robustness against design flaws in subsystems.

Another effect of encapsulation is complexity reduction. With the concept of
encapsulation (and error containment) we avoid dealing with the behaviour of in-
terfering subsystems. In general, such an unpleasant scenario is more difficult to
understand than to reason about the behaviour of clearly encapsulated subsystems.
It is essential to avoid all system mechanisms that increase the cognitive load for
understanding, if we mean to reduce the cognitive complexity of a design [FCS01].
Also, the test and validation effort for an encapsulated subsystem is smaller than the
test effort for interfering subsystems [Owe04].

The TTSoC architecture obtains encapsulation by means of the concept of encap-
sulated communication channels. Firstly, encapsulated communication channels add
bandwidth guarantees and bounded latency to the property of encapsulation. Sec-
ondly, they entail two guarantees with respect to message ordering : total temporal
ordering and consistent delivery order . Particularly the latter is a vital prerequi-
site to establish system properties such as replica determinism [Pol93] or to apply
distributed consensus and agreement algorithms [Lyn97].

2.1.4 Global Time Base & Clock Domains

In general, we can not assume that a state-of-the-art SoC comes up with a sin-
gle clock signal for the entire chip. The reasons why designers introduce multiple
clock domains embrace the handling of clock skew, the clocking down of individ-
ual Intellectual Property (IP)-blocks as part of power management, or the support
for heterogeneous IP-blocks with different speeds (e.g., high-clocked special purpose
hardware and a slower general purpose CPU).

The TTSoC architecture extends the approach of multiple clock domains. It does
not solely bring in multiple clock domains on behalf of these technological issues, but
also establishes a system-wide global time base. This global time base is a sparse time
base [Kop92] and is generated through internal clock synchronization (i.e., within the
SoC) and external clock synchronization (with respect to an external reference time).

The global time base yields in the temporal coordination of actions, e.g., commu-
nication activities, within the TTSoC architecture on each distributed micro com-
ponent. Consequently, time stamps that have been noticed at different micro com-
ponents can be related to each other. Additionally, time stamps are also meaningful
outside the micro component where the event has been observed.

So, the TTSoC architecture features different clock domains by design:

• The global time base embodies an independent clock domain. The frequency
associated with this clock domain determines the global granularity, to which
actions in the system, e.g., communication activities, are synchronized.

9

2.1 Features and Key Properties 2 Concepts of the TTSoC Architecture

• The communication subsystem itself is not driven by the global time base.
Even though, the communication activities are synchronized by the global time
base, the TTSoC architecture can harness two distinct arrangements of clock
domains:

1. The real communication (i.e., transport of data between micro compo-
nents) can take place at a frequency with a granularity that is finer than
the global granularity of the global time base. As a consequence, there
is another system-wide clock domain present, which is independent from
the global time base.

2. Real communication involves different clock domains at each participant,
which might also possess finer granularity than the global time base. In
this case, the communication subsystem would employ an asynchronous
handshake protocol across clock domain boundaries. Even though, there
are several local clock domains involved, the communication activities are
still synchronized by means of the common global time base.

• Micro components can include an arbitrary number of local clock domains,
which are not visible outside the micro component’s architectural borders. For
instance, a micro component can be assembled by processor cores, memories,
and IP-blocks, which run their own frequencies.

The existence of multiple clock domains, particularly of a global time base, entails
the decoupling of synchronization of actions within the system and the operation of
local entities. The global time base is allowed to maintain a relative slow clock domain
compared to the remainder of the system. While the remainder of the system is driven
by higher, local clock domains, there is only one slow clock domain that spans the
whole system. This design feature helps designer to deal with clock skew and driver
capacity issues of clock distribution networks in state-of-the-art chip designs, as the
slow, system-wide clock domain is easy to handle, and the higher clock domains are
local and independent from each other.

From the conceptual point of view, the decoupling owing to the global time
base supports a further reduction of complexity. Application design focuses solely
on communication activities, which are specified in the notion of the global time
base. Therefore, application design and communication activities are decoupled from
the implementation of the TTSoC architecture. Local modifications, for instance
tuning frequencies in micro components and the communication subsystem, do not
impose changes to the application design, as they are specified with respect to the
independent global time base. Conversely, adapting the global time base has impact
on the application design of course, but does not impair the implementation of the
micro components.

2.1.5 Integrated Resource Management

The TTSoC architecture supports integrated resource management. Integrated re-
source management addresses requirements with respect to communication resources

10

2 Concepts of the TTSoC Architecture 2.2 Core Services

(e.g., bandwidth, latency, latency jitter), computational resources (e.g., dynamic al-
location of micro components to application subsystems), and power (e.g., power
limiter).

Integrated resource management facilitates an efficient utilization of mutually
exclusive resource demands, if it is a priori known that the worst-case resource
consumption in different subsystems cannot occur simultaneously.

Furthermore, in case of a permanent fault affecting only individual micro com-
ponents, integrated resource management can relocate the application functionality
to spare micro components in order to preserve the specified service of the SoC.
Additionally, it builds an important cornerstone for the realization of power-aware
systems [UK03]. Power management is identified as one of the great challenges in
the SIA’s semiconductor road map [Wil05].

2.2 Core Services

With reference to the features and key properties mentioned in the section above,
we define core services of the TTSoC architecture. The core services are:

communication service The TTSoC architecture inherits a time-triggered com-
munication service from the TTA. All participants of communication follow
a global, a priori defined communication schedule, which synchronizes com-
munication activities by means of a common synchronized global time base.
Therefore, the time-triggered communication service entails predictability of
communication, and allows to impose bandwidth guarantees and bounded la-
tency.

clock synchronization Communication is initiated by the progression of real time.
Therefore, the TTSoC architecture establishes a global time base, which is
replicated in each participant of communication. To achieve synchronous com-
munication, this global time base must be kept within a given precision among
all participants.

integrated resource management The TTSoC architecture realizes the proper-
ties of integrated resource management introduced in section 2.1.5.

diagnostic service The diagnostic service allows to monitor the wealth state of a
system, i.e., a TTSoC system. In case of a deviation compared to specified
behaviour, the diagnostic service is able to undertake measures to restore a
defined operating condition. For this purpose, it takes usage of the communi-
cation service (plus clock synchronization service) and the integrated resource
management.

The communication service and the clock synchronization service are intrinsically
tied to each other. The communication service solely relies on the clock synchro-
nization, while the clock synchronization solely serves the communication service.

11

2.3 Architecture Overview 2 Concepts of the TTSoC Architecture

Nevertheless, when we talk about the communication service, we implicitly also refer
to the clock synchronization service.

The integrated resource management uses the communication service to coordi-
nate the resources of the overall system and to achieve an on-the-fly reconfiguration,
that is, the reconfiguration of parts of the overall system during run-time. In general,
it is an additional feature of the TTSoC architecture. It could also exist on other
architectures after adaption. Therefore, we regard it as stand-alone core service.

Note that the diagnostic service1 is no core service directly, as it requires ”real”
core services to be realized.

2.3 Architecture Overview

This section introduces the conceptual entities, which make up the TTSoC architec-
ture. Moreover, we sketch their functionality and their contribution to the overall
TTSoC architecture.

2.3.1 Entities

Figure 2.1 gives the structure of the TTSoC architecture and illustrates, how the
single conceptual entities form an overall system.

The central element of the TTSoC architecture is the Time-Triggered Network-on-
Chip (TTNoC) [PK08]. It interconnects multiple, possibly heterogeneous IP-blocks
called micro components.

The TTSoC architecture also introduces a Trusted Subsystem. On the one hand,
its tasks is to ensure that a fault (e.g., a software fault) within the host of a micro
component cannot lead to a violation of the micro component’s temporal interface
specification. Otherwise, the communication between other micro components could
be disrupted. For this reason, the Trusted Subsystem (TSS) prevents a faulty mi-
cro component from sending messages during the sending slots of any other micro
component. On the other hand, the TSS realizes the core services of the TTSoC
architecture.

Due to the support of integrated resource management, the TTSoC architecture
establishes two special entities: the Trusted Network Authority and the Resource
Management Authority . The objective of their interaction is to accept resource
allocation requests from the micro components and reconfigure the SoC. For instance,
they could initiate a dynamic update of the Time-Triggered Communication Schedule
of the TSS, or switching between power modes (see section 2.3.4).

1Yet, the diagnostic service is not covered in this thesis.

12

2 Concepts of the TTSoC Architecture 2.3 Architecture Overview

Time-Triggered Network-on-Chip

TISS

Host

TISS

TTP

Host

TISS

Local
I/O

TTE

TISS

Host

Local I/O

TISS TISS TISS

Host

Local I/O

Host

Local I/O

Host

Local I/O

Trusted
Network
Authority

(TNA)

Resource
Managem.
Authority

(RMA)

μC

Host

TISS

Local
I/O

CAN

TISS

Host

Local I/O

Local
I/O

μC μC μC

μC μC μC μCμC

Application
Subsystem 0

Application
Subsystem 1

Application
Subsystem 2

micro component
(μC)

Figure 2.1: Structure of the TTSoC architecture

2.3.2 Micro Component

A TTSoC system can host multiple Distributed Application Subsystems (DASs)
[OPHS06] (possibly of different criticality levels), which provide a part of the ser-
vice of the overall system each. An example of a Distributed Application Subsystem
(DAS) in the automotive domain is a braking subsystem. We call a nearly au-
tonomous and possibly heterogeneous IP-block, which is used by a particular DAS,
a micro component . A micro component is a self-contained computing element. For
example, it can be implemented as a general purpose processor or as special purpose
hardware. A DAS can be realized on a single micro component or by using a group of
possibly heterogeneous micro components (either on one or multiple interconnected
SoCs).

The interaction between the micro components of a DAS manifests solely in the
exchange of messages through the Time-Triggered Network-on-Chip (TTNoC). Each
micro component is encapsulated, i.e., the behaviour of a micro component can
neither disrupt the computations nor the communication performed by other micro
components. By design, encapsulation prevents temporal interference (e.g., delaying
messages or computations in another micro component) and spatial interference (e.g.,
overwriting a message produced by another micro component). The only chance,
when a faulty micro component can affect other micro components, is when a micro
component gives faulty input (in the value domain) to other micro components via
the sent messages.

With encapsulation we have the appropriate means to install TMR. TMR aids the
detection and masking of failure of a micro component. Encapsulation is necessary
to guarantee the independence of replicas. Otherwise, a faulty micro component

13

2.3 Architecture Overview 2 Concepts of the TTSoC Architecture

could disrupt communication or communication of the replicas. This would end in
common mode failures.

Moreover, we use encapsulation to achieve the property of composability [Sif05].
Composability denotes the capability of a system to incrementally add new micro
components, without overriding prior services of the already existing micro com-
ponents. This is the requirement, if we want to seamlessly integrate independently
developed DASs and micro components in the TTSoC architecture. The same applies
to SoCs that encompass the application of subsystems of different criticality levels.
In such a mixed criticality system, a failure of micro components of a non safety-
critical application subsystem must not cause the failure of application subsystems
of higher criticality.

We also pay tribute to encapsulation with the structure of a micro component.
It comprises two parts: a host and a so-called Trusted Interface Subsystem, which is
part of the TSS. The host implements the application services. By introducing the
Trusted Interface Subsystem (TISS), the TTSoC architecture provides a dedicated
architectural element that protects the access to the TTNoC. Each TISS contains
a data structure, which stores a priori knowledge concerning the global instants in
time of all message receptions and transmissions of the respective micro components
– the Time-Triggered Communication Schedule. Since this Time-Triggered Commu-
nication Schedule cannot be modified by the host, a design fault or a hardware fault
in the host cannot affect the exchange of messages in the TSS.

2.3.3 Requirements for the Trusted Subsystem

The TTNoC, which is a part of the TSS, interconnects the micro components of a
TTSoC. Moreover, the scope of the TSS encompasses clock synchronization for the
establishment of a global time base, as well as the predictable transport of periodic
and sporadic messages.

Clock Synchronization

The TSS performs clock synchronization. The goal of clock synchronization is to
provide a global time base for all micro components, even though there might be
multiple clock domains in a TTSoC. The global time base is based on a uniform time
format, which has been standardized by the OMG in the smart transducer interface
standard [AC03].

A digital time format can be characterized by the three parameters: granularity,
horizon and epoch. The granularity determines the minimum interval between two
adjacent ticks of a clock. In other words, this is the smallest interval that can be
measured with this time format. The reasonable granularity can be derived from the
achieved precision of the clock synchronization [KO87]. The horizon determines the
instant when the time is going to wrap around. The epoch denotes the instant when
the measuring of the time begins.

14

2 Concepts of the TTSoC Architecture 2.3 Architecture Overview

1 sec 2-31 sec232 sec

Time granularity
about 465 ps

Time horizon
about 136 years

0313263

Figure 2.2: Time format used in the TSS

The time format of the global time base in the TSS (see Figure 2.2) is a binary
time format that is based on the physical second. Fractions of a second are repre-
sented as 32 negative powers of two (down to about 465 picoseconds), and full seconds
are presented in 32 positive powers of two (up to about 136 years). This time format
is closely related to the time format of the GPS (General Positioning System) time
and takes the epoch from GPS. In case there is no external synchronization [KO87],
the epoch starts with the power-up instant.

Predictable Transport of Messages

In the TTSoC architecture we divide the available bandwidth of the TTNoC into peri-
odic, conflict-free sending slots by means of Time Division Multiple Access (TDMA).
Such a TDMA slot can be used in two different ways. Either it transports data of pe-
riodic messages, or sporadic transmission of messages. In the latter case, the sender
issues a messages, whenever it intends to notify a receiver about a new event.

In addition to TDMA slots, we introduce the communication primitive of pulsed
data stream [Kop06]. The purpose of a pulsed data stream is to model the allocation
of TDMA slots. A pulsed data stream is a time-triggered, periodic, uni-directional
data stream. It transports data in pulses, which possess a defined length and a
defined topology. The pulsed data stream originates and exactly one sender and
propagates to at least one receiver, which are identified a priori. Also, the period
and phase in a periodic control system are given a priori.

Such pulsed behaviour is predestined for efficient transmission of large data in
applications, which demand a temporal alignment of sender and receiver. This is
particularly the case for those applications, which require a short latency between
sender and receiver, for instance most real-time systems. For example, consider a
fictitious control loop realized by three micro components. Micro component (A) per-
forms sensor data acquisition, micro component (C) processes the control algorithm
(C), and micro component (E) operates the actuator, as it is depicted in Figure 2.32.
In this application temporal alignment is vital to reduce the end-to-end latency of
the control loop, which is an important quality characteristics. For instance, this
requirement applies to the transmission of the control value (D) and the start of

2In this cyclic model of time, the perimeter represents the period of the control application.

15

2.3 Architecture Overview 2 Concepts of the TTSoC Architecture

A

B

C

D

E

A

period

1 Start of control cycle
A Observation of sensor input

2 Start of transmission of
sensor data

B Transmission of input data

3 Start of processing of
control algorithm

C Processing of control
algorithm

4 Termination of processing
D Transmission of control

value

5 Start of output to actuators
E Output operation at the

actuator

6 Termination of output
operation

1
2

3

4

5
4

3

2

6

5

Figure 2.3: Temporal Alignment in Control Loops

actuator output (see instant 5 in Figure 2.3), as well as the sensor data transmission
(B) and the start of the processing of the control algorithm (see instant 3 in Fig-
ure 2.3). With pulsed data streams we can achieve an efficient, temporal alignment
of data transmissions, which refer to (B) and (D) in Figure 2.3.

Contrary to the communication service of the TTSoC architecture, many existing
NoCs only provide the feature of guaranteed bandwidth to individual senders. The
lack of temporal alignment results in the following consequences [SOHK08]:

• either the short latency can not be guaranteed,

• a high bandwidth has to be granted to the sender throughout the entire period
of the control cycle, although it is only required for a short interval, or

• the communication system has to be periodically reconfigured in order to free
and re-allocate the non-used communication resources.

Similarly, in a fault-tolerant system that masks failures by TMR, a high band-
width communication service is required for short intervals to exchange and vote on
the state data of the replicated channels.

To sum up, a real-time communication network should consider these pulsed com-
munication requirements and provide appropriate services. The TTSoC architecture
addresses this issue, eventually.

16

2 Concepts of the TTSoC Architecture 2.3 Architecture Overview

2.3.4 Architectural Elements of Resource Management

Integrated resource management in the TTSoC architecture serves the purpose to
dynamically assign computational resources (i.e., micro components) to application
subsystems and to grant communication resources and power to the individual micro
components.

We distinguish between two fundamentally different types of application subsys-
tems [SOHK08].

Safety-critical application subsystems need to be certified to the highest criti-
cality classes (e.g., class A according to DO-178B).

Non safety-critical applications subsystems do not require certification to the
highest criticality classes.

In general, these two types of application subsystems desire fundamentally dif-
ferent (also conflicting) design paradigms. Safety-critical applications focus on sim-
plicity and determinism. Therefore, it is straightforward to facilitate thorough verifi-
cation and validation. In contrast, non safety-critical applications can provide more
complex application services, whereas we do not have sufficient a priori knowledge
about the environment. Moreover, the dynamics to handle evolving application sce-
narios and changing environments can be challenging.

In the TTSoC architecture, two distinct architectural elements deal with inte-
grated resource management, namely the Trusted Network Authority (TNA) and
the Resource Management Authority (RMA). The RMA computes new resource al-
locations for the non safety-critical application subsystems, while the TNA ensures
that the new resource allocations have no adverse effect on the behaviour of the
safety-critical application subsystems. As depicted in Figure 2.1, the TNA is part
of the TSS of the TTSoC, whereas the RMA is not. A consequence of splitting the
entire resource management into two distinct parts (whereas only one is part of the
TSS) the certification of the TTSoC is significantly simplified. We explain this with
the fact that checking the correctness of a resource allocation through the TNA is
significantly simpler than its generation through the RMA.

Resource Management Authority

The RMA is in charge of scheduling of available resources, which are allocated among
the micro components. For this purpose the RMA leverages application-specific (e.g.,
communication topology) and system knowledge (e.g., temporal properties of the
TTNoC). Nevertheless, the RMA is not allowed to change the configuration of the
TSS directly, i.e., to update the affected TISSs.

17

2.3 Architecture Overview 2 Concepts of the TTSoC Architecture

Trusted Network Authority

The TNA is some kind of guardian for the reconfiguration activities performed by
the RMA. Therefore, the TNA goes through the resource reservations from the RMA
and looks out for potential collisions on the TTNoC or any violations of resource
reservations.

If an erroneous resource schedule is detected, the TNA turns away this new
resource reservations from the RMA. Then, the current configuration remains un-
changed.

In case of the TNA regards the reservations as correct, it updates the configu-
ration of the micro components. Since the TNA is part of the TSS it possesses the
privilege to reconfigure the micro components via the TISS.

2.3.5 Gateways

In ultra-dependable systems, a maximum failure rate of 10−9 critical failures per
hour is demanded [SWH95]. Today’s technology does not support the manufacturing
of chips with failure rates, which are low enough to meet these reliability require-
ments. Actually, component failure rates are usually in the magnitude of 10−5 to
10−6 [PMH98]. Unfortunately, ultra-dependable applications require the system as
a whole to be more reliable than any one of its components. With this technological
limits in mind, we can only achieve the required reliability by means of fault-tolerant
strategies. Such strategies aim at a continuous operation despite the presence of
component failures.

The TTSoC architecture supports gateways for accessing chip-external networks
(e.g., TTP [KG94], TTE [KAGS05] and CAN [Bos91]). With such a gateway we
can realize interoperability with public networks, for example the Internet, and the
ability to interconnect multiple SoCs to a distributed system. As a result, we can
build distributed systems that house applications for ultra-dependable systems based
on the TTSoC architecture.

If the chip-external network is also time-triggered (e.g., TTP, TTE), we can
leverage the TDMA schemes of both (the internal and the chip-external network) to
synchronize communication across device borders. Consequently, a message that is
sent on the chip-external network arrives at the micro components within a bounded
delay with minimum jitter (solely depending on the granularity of the global time
base). The alignment between messages on time-triggered networks ensures that
replicated TTSoCs perceive a message at the same time, i.e., within the same inac-
tivity interval of the global (sparse) time base [Kop92]. This property is significant
for achieving replica determinism [Pol94] as required for active redundancy based on
exact voting. Without synchronization between the TTNoC and the chip-external
network, there could always occur a scenario in which one TTSoC forwards the mes-
sage to the micro components in one period of the pulsed data stream, while another
TTSoC would forward the message in the next period.

18

2 Concepts of the TTSoC Architecture 2.3 Architecture Overview

Furthermore, the introduced gateways can provide the TTSoC with an externally
synchronized time base. For example, the global time base of the TTSoC can be
synchronized to GPS. As a consequence, a time stamp assigned to an event is also
meaningful outside the TTSoC. Last but not least, the global time base enables a
global coordination of activities spanning multiple TTSoCs (e.g., output to actuators
at the same global point in time).

2.3.6 Support for Diagnosis

The TTSoC architecture incorporates a dedicated architectural element for the pur-
pose of diagnosis – the so-called Diagnostic Unit [SOH+07, POS+07]. Diagnosis is
executed in three phases:

1. failure detection

2. dissemination

3. analysis

Failure Detection

Most architectural elements in the TTSoC architecture, for instance the TISSs, the
TNA etc., perform failure detection in order to indicate faulty and abnormal be-
haviour of micro components.

The TISS is equipped with mechanisms to observe the behaviour of the attached
host. For instance, a watchdog monitors the host, whether it has crashed or it is still
alive. Other mechanisms recognize violations of message arrivals. The host performs
an application-specific failure detection. These are not defined by the TTSoC ar-
chitecture. The RMA checks the resource requests of the micro components against
predefined constraints. Each invalid request is recorded since it might indicate a
failure in the requesting component. The Diagnostic Unit (DU) uses message clas-
sification to detect failures in the overall system. For this purpose, the messages of
all micro components are routed to the DU , which controls syntactic, temporal, and
semantic correctness [POS+07].

Dissemination

Detected failures in the single entities are reported to the DU via the dissemina-
tion service. This special service produces failure indication messages. A failure
indication message includes information concerning type of the occurred failure (e.g.,
crash failure of a host, invalid resource requests), the instant of detection, and the
location within the TTSoC (i.e., the micro component). The dissemination service is
associated with a dedicated time-triggered message for each micro component that
is capable of delivering failure indication messages.

19

2.4 Implementation Overview 2 Concepts of the TTSoC Architecture

Fragment Switch

TTNoC
Interface

Port ManagerTransport Layer

Network Layer

Data Link Layer

Host

Uniform Network Interface

Application
Computer

Front-End

Port Configuration

Port Sync.

Register File

Burst Configuration

Routing Processor

Network Layer Interface

Routing Information

Burst Dispatcher

Data Link Layer Interface

TT comm. schedule

Global Time Base

Pulse
Manager

TTNoC Layer

TS
S

Fragment Switch

TTNoC
Interface

Port Manager

Host

Uniform Network Interface

Application
Computer

Front- End

Port Configuration

Port Sync.

Register File

Burst Configuration

Routing Processor

Network Layer Interface

Routing Information

Burst Dispatcher

Data Link Layer Interface

TT Comm. schedule

Global Time Base

TI
SS

Interconnect
(2 lanes)

m
ic

ro
 c

om
po

ne
nt

Application Layer

Figure 2.4: Schematics of the TTSoC prototype implementation

Analysis

Based on the collected failure indication messages, the DU establishes a holistic view
onto the system. Furthermore, the DU monitors the repeated occurrence of failure
indications in order to distinguish between permanent and transient failures.

2.4 Implementation Overview

This section sketches the prototypic implementation of the TTSoC architecture. It
introduces conceptual layers and the modules, which reside at these layers. Each
module fulfils a functions that has been introduced earlier in this chapters.

20

2 Concepts of the TTSoC Architecture 2.4 Implementation Overview

Figure 2.4 shows a vertical schematics of the implementation of the TTSoC archi-
tecture. We introduce 5 layers, which relate to the layers of the TCP/IP stack [Car96]
or the ISO OSI reference model [Ros90] in naming and purpose.

2.4.1 The Five Layers

At the bottom the TTSoC architecture defines the TTNoC layer. This is the concep-
tual layer, where the realization of the TTNoC resides. Figure 2.4 mentions Fragment
Switches that build the TTNoC. We dedicate chapter 6 to the implementation of the
TTNoC.

The interface between the bottom TTNoC layer and the Data Link layer is the
TTNoC interface. It is the physical connection between the Fragment Switch, which
is closest to the TISS of a micro component and the bottom interface of the TISS.

The TISS spans over 3 layers with an own entity at each layer. Details about the
TISS can be found in chapter 7.

At the bottom at the Data Link layer there resides the Burst Dispatcher. Its
purpose is to handle the arbitration of the TTNoC. Therefore, the Burst Dispatcher
includes the global time base, which synchronizes communication activities among
micro components. The Time-Triggered Communication Schedule gives the neces-
sary information, how this arbitration is managed.

Then, the Network Layer is in charge of building up communication channels
between micro components. The routing information, which is used in the Routing
Processor, determines the route of a communication channel along the TTNoC.

In the Transport Layer there resides the Port Manager. It relies on the services
of the lower layers to realize major part of the communication service. It cares for
access and synchronization of ”ports”, which are the end-points of communication
channels. It controls the flow of fragments of messages for send and receive oper-
ations. Moreover, the Port Manager includes the Register File of the TISS, which
houses status information and user settings. To provide its service the Port Manager
is equipped with several memory entities: the Burst Configuration Memory, the Port
Synchronization Memory, and the Port Configuration Memory.

The Uniform Network Interface (UNI) is the interface on top of the TISS. Phys-
ically, it is the interface between the TISS and the host. Logically, it provides access
to the architectural core services implemented by the TSS. Chapter 5 contains a
detailed description of the UNI.

The UNI is intended to be a generic interface to the Application Layer, where
application-specific hosts can be attached. A host is made up of the Front-End and
an application computer, which can be an own IP-block, a soft-core CPU such as the
Altera Nios IITM Embedded Processor3, or an off-chip micro controller. To provide
maximum portability, a Front-End is introduced to wrap the characteristics of the

3http://www.altera.com/products/ip/processors/nios2/ni2-index.html

21

2.4 Implementation Overview 2 Concepts of the TTSoC Architecture

UNI to match the actual application computer. Besides this, the Front-End contains
the Port Memory .

The Port Memory is a (true) dual-ported memory that is shared between the
application computer of the host and the TISS. It houses the ”ports”, that is, ”ports”
contain the application data associated with messages of communication channels.
The role of the Port Memory can take any kind of (true) dual-ported memory outside
the TISS that is attached to the Port Interface (see section 5.1). Another possible
implementation is a scratch pad or L1 cache of a microprocessor [HP06], whereas the
CPU is attached at one side and the Port Interface at the other. Apparently, the
implementation of the Port Memory is subject of the target hardware, in which the
TTSoC architecture is hosted. The layout of the ports residing in the Port Memory
is covered within the scope of the UNI, and therefore explained in chapter 5.

Figure 2.4 also illustrates the scope of each layer, that is, to which architectural
component a layer belongs to as introduced in chapter 2.3. The TTNoC layer em-
bodies an own architectural component, obviously this is the TTNoC. Everything
else is part of the micro component. However, we also learn from Figure 2.4 that
each micro component contains parts of the TSS, i.e., the TISS. By definition the
TTNoC is also part of the TSS.

2.4.2 System Operation Frequency

Note that the prototypic implementation uses the first arrangement of clock domains
for the communication subsystem. That is, the TSS is equipped with a single, syn-
chronous clock domain. Like the global time base, it spans across the whole system,
and drives each Fragment Switch of the TTNoC as well as all TISSs. This partic-
ular clock domain is named the system operation frequency . This system operation
frequency is a multiple of the frequency associated with the global time base.

22

Chapter 3

Related Work

This chapter examines related work. Even though, the research area of SoC designs
has plenty of contributions, we focus on those alternatives, which reveal some rele-
vance for the TTSoC architecture. We also compare the characteristics of the related
work with the TTSoC architecture.

In general, we can distinguish between two distinct approaches:

interconnect fabrics concern the ”local” scope of an IP-core. The abstraction
level of interconnect fabrics focuses the linkage of peripheral components such
as memory controllers, Ethernet controllers, or DMA controllers with one or
more CPU cores. In terms of the TTSoC architecture, an interconnect fabric
addresses the realization of a micro component.

system architectures aim at the connection of several IP-cores. Usually, they
include an NoC architecture. System architectures define interfaces to IP-
cores, but their realization is not covered. In terms of the TTSoC architecture,
a system architecture deals with the connection of several micro components.

In the following we introduce prominent examples of interconnect fabrics as well
as system architectures.

3.1 The AMBA Family

The Advanced Microcontroller Bus Architecture (AMBA) gathers a series of stan-
dards intended for on-chip communication in high-performance microcontrollers. Ac-
cording to the definition above, it can be regarded as an interconnect fabric. AMBA
has established as de-facto standard in the field of microcontroller design. During
the past decade, it has undergone several evolutionary steps, whereas each version
extended the feature set and increased performance.

23

3.1 The AMBA Family 3 Related Work

3.1.1 Advanced High-Performance Bus

Advanced High-Performance Bus (AHB) [ARM99] is the most long-lasting version
of the AMBA family. It serves as a high-performance system backbone bus. It
has been designed to interconnect high clocked system modules like CPU cores and
on-chip memories, whereas performance and throughput are of utmost importance.
Figure 3.1 shows an example of a microcontroller design that is equipped with a
typical set of modules, e.g., the AHB Backbone, a CPU, a memory controller, a
Direct Memory Access (DMA) controller.

High-performance
CPU

High-performance
On-chip RAM

DMA bus master

High-performance
Memory Controller

B
R

ID
G

E

UART

Timer

Keypad

PIO

AHB APB

Figure 3.1: Example of an AHB-based microcontroller design

Moreover, we see in Figure 3.1 that a bridge builds the link to an Advanced
Peripheral Bus (APB), which mainly interconnects low-power, low-performance pe-
ripherals like I/O modules and timers. Other than the AHB, which features high
throughput, high performance by means of pipelined operation, burst transfers, as
well as multiple bus masters, the APB provides a reduced functionality. Instead of
maximum performance, APB focuses on minimal power consumption.

AHB defines four different roles, whereas each participant of AMBA communi-
cation takes one role.

AHB Master is the initiator of read and write operations. AHB is enabled to
contain multiple masters, however only one is allowed to occupy the backbone
at a given instant of time.

AHB Slave responds to requests from AHB Masters. Each slave defines a specific
address range, where it offers its services or data to the masters. AHB Slaves
also indicate the status of the previous transfer (e.g., ”success” of ”failure”) to
the active master.

AHB Arbiter ensures that exactly one AHB Master occupies the backbone at any
time. In other words, the AHB Arbiter grants access to the shared bus. AMBA
supports different arbitration protocols (e.g., priority-based arbitration), which
can be chosen according to the target application’s requirements.

AHB Decoder operates as an address decoder. According to the address, which
the currently active master requests, the AHB Decoder selects the proper AHB

24

3 Related Work 3.1 The AMBA Family

Master
1

Master
2

Master
3

Slave
1

Slave
2

Slave
3

Slave
4

Arbiter

Decoder

HADDR

HWDATA

HRDATA

HADDR

HWDATA

HRDATA

HADDR

HWDATA

HRDATA

HWDATA

HRDATA

HADDR

HWDATA

HRDATA

HADDR

HWDATA

HRDATA

HADDR

HWDATA

HRDATA

address and
control mux

write data mux

read data mux

HADDR

Figure 3.2: Interconnection scheme of AHB

Slave, which has the requested address in its address range. The AHB Decoder
is a single, centralized module in the AMBA interconnect fabric.

According to its specification, AMBA AHB is based on the master/slave
paradigm. The backbone is realized as a central multiplexer. When an AHB Mas-
ter begins a read or write transfer, it issues some address, which refers to a given
AHB Slave. The AHB Arbiter selects the address, control, and write data signals
from the currently active AHB Master by means of multiplexers. The multiplexed
signals are routed to each slave, then. Contrary, the AHB Decoder multiplexes all
read data signals in order to select the output signals of that slave, which services
the previous request by a AHB Master. The multiplexed read data vector is shared
among all masters, whereas the most recent active master fetches the response from
the according slave. Figure 3.2 illustrates this pattern of interconnects of AHB.

An AHB Master must be granted access to the backbone before it starts a transfer.
For this purpose, it asserts a request signal (HBUSREQx for master no. x) to the
AHB Arbiter. The master is stalled, until the arbiter has granted access to the
master (HGRANTx for master no. x). Afterwards, the AHB Master starts the transfer
by driving the control and address signals, which transport information concerning
address, read / write, and length of the operation. AHB provides different types of
operations such as basic transfer that concern single data words as well as sequential
burst operations beginning at a given start address.

25

3.1 The AMBA Family 3 Related Work

Figure 3.3: Structure of Multi-Layer AHB

3.1.2 Multi-Layer AHB

AHB in its earliest version suffers from the restriction that there is only one AHB
Master allowed to occupy the backbone. Multi-Layer AHB [ARM01], which is back-
ward compatible to AHB, has been ratified to circumvent this architectural limit.
An interconnect matrix provides parallel access paths between multiple masters and
slaves at the same time. The interconnect matrix illustrated in Figure 3.3 connects
each AHB Master with each AHB Slave. The connection from each master to every
slave is called an AHB layer.

Within the interconnect matrix, each layer has a dedicated AHB Decoder that
serves the request for read and write transfers of one AHB Master, as shown in
Figure 3.4. If two or more layers demand for access to the same slave, arbitration
must be executed. Each slave is equipped with dedicated arbitration logic (i.e., an
AHB Arbiter), therefore an individual arbitration scheme (e.g., round robin or fixed
priority) can be applied for each slave.

Interconnect Matrix

Layer 1

Layer 2

Figure 3.4: Internal view on the Multi-Layer AHB interconnect matrix

26

3 Related Work 3.1 The AMBA Family

Multi-Layer AHB allows to reduce the complexity of the interconnect matrix. It
is possible to share ports of the interconnect matrix by multiple masters or slaves
so that not every master and slave demand for own ports. Three different scenarios
depicted in Figure 3.5 exist in the standard, which can be combined.

Interconnect
Matrix

Layer 1

Layer 2

(a) Local slaves

Master 1

Interconnect
Matrix

Slave 1Layer 1

Master 2

Slave 2

Layer 2

Slave 3

Master 3

Master 4

(b) Multiple masters on a single layer

Master 1

Interconnect
Matrix

Slave 1

Layer 1

Master 2

Slave 2

Layer 2 Slave 3

Slave 4

Slave 5

(c) Multiple slaves on a single port

Figure 3.5: Possible groupings in Multi-Layer AHB

local slaves An AHB Master can keep a subset of AHB Slaves ”private” so that
these slaves are only attached to its own layer and are positioned before the
interconnect matrix (see Figure 3.5a). Thus, the interconnect matrix becomes
slimmer.

multiple slaves on a single slave port Multiple slaves can be grouped together
and be accessible at a single port of the interconnect matrix (see Figure 3.5b).
In this case, the bandwidth of that layer is shared among the slaves. Such a
scenario might be convenient for debugging, when a set of slaves needs to be
accessed by more than one master.

27

3.1 The AMBA Family 3 Related Work

multiple masters on a single layer Like AHB Slaves, AHB Masters can be
grouped to share a single port of the interconnect matrix (see Figure 3.5c).
It is reasonable to organize masters with low bandwidth requirements and no
need for parallel channels in such a way.

3.1.3 AXI

AMBA AXI [ARM04] – also called ”AMBA 3.0” – is the most recent and most
advanced member of the AMBA family. It facilitates maximum resource efficiency
and throughput, as it introduces additional features like multiple outstanding trans-
actions, out-of-order transaction completion, and efficient burst transactions (with
solely the start address issued).

In traditional AHB, each transfer is structured into an address and a subsequent
data phase. This organisation inherently entails pipelining. While the (i + 1)th

address is issued, the ith transaction is processed. However, the restriction that
the data phase must immediately follow the address phase of the same transaction
prevents multiple outstanding transactions.

In contrast to AHB, AXI introduces ID tags to transactions. All transactions
that belong to the same ID tag have to be completed in order, while transactions
with different ID tags can be interleaved and completed out of order. This property
enables multiple outstanding transactions and out-of-order transaction completion.
The latter contributes to better performance, as it allows to complete fast-responding
slaves ahead of slower slaves, although the transaction towards the slower slaves
has been initiated first. In other words, fast transactions may ”overtake” slower
transactions.

AMBA AXI introduces the notion of channels. Each of five independent channels
fulfils one specific functions for communication.

Read address channel carries address and control information for all read trans-
actions.

Write address channel is similar to the read address channel, but it transport
address and control information for all write transactions.

Read data channel transports the read data and additional response information
(e.g., the completion status) from the slave to the master, which has initiated
the transaction.

Write data channel conveys write data to a slave. Data spread through the write
data channel is buffered, so that the master need not wait for commitment and
acknowledgement of previous write transactions.

Write response channel provides feedback like completion signals from the slave
to masters. Completion signals occur only once for each burst, but not for each
transfer within a burst.

28

3 Related Work 3.1 The AMBA Family

Read Address Channel

Read Data Channel

M
as

te
r

In
te

rf
ac

e S
lave Interfa

ce

(a) read transaction

Write Address Channel

Write Data Channel

M
a

st
er

 In
te

rf
ac

e S
lave Inte

rfa
ce

Write Response Channel

(b) write transaction
Address and Control

Read Data

Write Data

Write Response

Figure 3.6: Transactions in AHB AXI

Figure 3.6a depicts how the read address channel and the read data channels
are operated during a read transactions. Figure 3.6b illustrates the usage of write
address, write data, and write response channel for write transactions.

Each channel executes a two-way handshake mechanism. The signal VALID in-
dicates that new data or control information is available on that channel, while the
destination signals via READY to acknowledge the receipt of that information. The
read and write data channels include an additional signal LAST to pinpoint the very
last data item of a transaction. This two-way handshake mechanism enables the
master as well as the slave to control the rate at which data or control information
is transferred. Hence, it includes a flow control mechanism.

AMBA AXI support a flexible arrangement of channels between masters and
slaves. We can identify three different approaches.

Shared Address and Single Data buses (SASD) Only a single master can be
active per channel. This concept equals the capabilities of AHB.

Shared Address and Multiple Data buses (SAMD) A single master can be
active per channel, but several channels can be driven by distinct masters.

Multiple Address and Multiple Data buses (MAMD) For each channel sev-
eral masters are allowed to use that channel. This is the most performant and
also the most complex scenario, as the verification of the system has to consider
access conflict by subsets of master at a given channel.

29

3.2 Open Core Protocol 3 Related Work

3.2 Open Core Protocol

The Open Core Protocol (OCP) [Ass05] specifies a non-bus, point-to-point interface
between pairs of communication IP-cores. IP-cores comprise simple peripheral com-
ponents (e.g., UART, timer modules), on-chip subsystems, or whole microprocessor
cores. OCP follows the master / slave paradigm, that is, for each point-to-point
connection one IP-core takes the role of the master, while the opposite core plays the
slave. The master has exclusive control in the point-to-point connection. It initiates
all transfers, while the slave responds to the commands, either by accepting data
from the master or by presenting requested data to the master. So, a point-to-point
connection is uni-directional. The design decision, which IP-core takes what role is
dependent on the targeted communication pattern between the two IP-cores.

In order to set up a peer-to-peer communication, two instances of point-to-point
OCP connections must be installed: one connection, where the first core is the master
and the second core the slave, and another connection, where the roles of first and
second core are reverse. Figure 3.7 visualizes the arrangement of OCP connections
to peer-to-peer communication channels between IP-cores.

CoreCore

Core Core Core

Master SlaveMaster Slave

Slave MasterSlave Master

ReplyRequest

OCP

Figure 3.7: Arrangement of OCP connections

OCP supports simple write and read transactions, which enable the master to
write or read specific data words at a given address to or from the slave. Addition-
ally, master and slave can exchange side-band information via dedicated signals. For
example, such additional information are interrupts, error indications, or reset re-
quests. Side-band signals can also be used to establish a flow control between master
and slave. Moreover, OCP involves a basic mechanism of burst transactions.

OCP defines a strictly synchronous interface, whereas all signals across a point-
to-point connection are driven by a single clock, i.e., belong to a single clock domain.
Besides this, each signal is uni-directional, while the driver is either the master or
the slave.

OCP does not incorporate interconnections between multiple masters and slaves.
Each topology must be reduced to uni-directional point-to-point connections. As
a consequence, there is no need to consider arbitration or address decoding. From
the architectural point of view, a designer can regard two IP-cores as they would

30

3 Related Work 3.3 Æthereal

be directly connected, and OCP dictates a naming convention and semantics of the
interconnecting signals.

3.3 Æthereal

The Æthereal [GDR05] architecture serves as a NoC for SoC designs. It provides
two distinct traffic classes of communication [GvMPW02]:

guaranteed services For guaranteed services, Æthereal assures a specific amount
of bandwidth that can be used by a given communication channel. Additionally,
the latency of transmission is bounded for guaranteed services.

best effort services A best effort service occupies the bandwidth, which has been
left over by the communication channels of guaranteed services.

The purpose of guaranteed services is to aid a compositional design of robust SoCs,
while best effort services increase the resource efficiency, as they claim the NoCs
capacity that is unused by guaranteed services. Both service classes provide data
integrity, lossless data delivery and in-order data delivery [RGR+08].

An Æthereal NoC is constructed of Network Interfaces (NIs) [RDP+05] and
routers [RGR+08], which are interconnected by links. There exists a specific type of
router for each service class: Guaranteed Throughput (GT) routers and Best Effort
(BE) routers.

Within the NoC, Æthereal establishes a packet-based protocol. Generally, IP-
cores that are attached to a Network Interface (NI) each can be free to realize any
protocol. Therefore, the NI has to translate the local protocol of the IP-core to
the internal packet-based protocol. The routers transport such packets – so-called
messages – among the NoC, while NIs are the source and termination points of
transmissions.

Æthereal presents a shared-memory abstraction [RDG+04] to IP-cores. The pro-
tocol employed at the NIs is a transaction based master/slave model, which has been
chosen to ensure backward compatibility to existing on-chip interconnect fabrics like
AXI [ARM04] or OCP [Ass05].

The signals of an IP-core towards an NI are designed according to a given specifi-
cation, e.g., AXI or OCP. The signals are wrapped into request messages and response
messages. Then, these messages are transported by the Æthereal NoC contained in
packets.

3.3.1 Connections in Æthereal

The communication service introduces the concept of so-called connections, which in
turn are composed of several uni-directional peer-to-peer channels [RDP+05]. With

31

3.3 Æthereal 3 Related Work

these entities, Æthereal models, e.g., OCP peer-to-peer connections, which consist
of a (uni-directional) request channel and a corresponding (uni-directional) response
channel (see Figure 3.8a). Another example, a multi-cast (see Figure 3.8b) or narrow-
cast (see Figure 3.8c) connection could be implemented by a collection of channels,
whereas each channel flows from a master to a given slave.

Master Slave
request

response

(a) peer-to-peer connection

Master

Slave 1

Slave 2

request

request

(b) multi-cast

Master

Slave 1

Slave 2

response

request

response’

(c) narrow-cast (transaction processed by slave 2)

Figure 3.8: Connection types in Æthereal

Each channel involves two queues, whereas one queue resides in the NI of the
sender, and the other queue is situated in the NI of the receiver. Figure 3.9 illus-
trates both queues and their position in the Æthereal architecture. The queues are
protected by an end-to-end credit-based flow control mechanism [MB06], which pre-
vents queue overflows in the NIs. With this mechanism it is possible to guarantee
message delivery and avoid message losses due to overflow.

Master

REQ

RESP

Slave

REQ

RESP

Request Channel

Response Channel

NI NoC NI

remote
buffer space

credits
to report

remote
buffer space

credits
to report

Figure 3.9: Æthereal credit-based flow control

At the sender side, a channel incorporates a counter, which keeps track of the
available buffer space at the remote destination queue [RDG+04]. The initial value
of this counter is the queue size of the remote destination queue. The counter is
decremented, whenever data is sent from the source queue to the remote destination
queue. When the receiver, i.e., the IP-core attached at the NI, consumes data from its
local destination queue of that channel, credits are generated. Such credits indicate
that there is more space available in the destination queue now. The credits are

32

3 Related Work 3.3 Æthereal

delivered to the sender of the channel, and the credits are added to the counter,
which keeps track of the buffer space in the remote destination queue.

Credits can be transmitted in dedicated credit packets, or they are ”piggybacked”
in the header of packets of the channel into reverse direction, which improves the
bandwidth efficiency of that credit-flow-control protocol.

Considering the service classes mentioned above, channels offer two types of trans-
mission [RGR+08]: GT is associated with the ”guaranteed services”, whereas BE
correlates to ”best effort services”.

The first, GT channels, which are routed through GT routers only, assure a
minimum bandwidth and a maximum latency. The means to realize such guarantees
is a TDMA scheme combined with pipelined virtual circuit switching. The TDMA
scheme manifests in a table. The size S of that table is pre-defined, for instance
S = 128 slots. It lists, which operation is executed by which NI during a given
TDMA slot. The global table is split up into local replicas for each NI, which contain
the local view on communication. The granularity of bandwidth that can be reserved
equals 1

S of a channel’s maximum bandwidth. In each slot, a NI is allowed either to
read or write (respectively send and receive) at most one block of data. Depending
on the duration of a slot and the size of a block processed during a slot, we can
determine the bandwidth B for one slot. Consequently, if a channel is assigned N
slots for transmission, it possess a bandwidth of N ·B.

In contrast to GT, BE channels are solely transported by BE routers. They offer
different routing modes or (also called) network flow control such as packet switching,
virtual cut-through or wormhole routing. The queues in BE channels can be operated
according to input queuing or virtual-output queuing techniques.

A single channel has the ability to guarantee a temporal ordering of messages.
That is, all messages appear in the same order at a receiver as they have been
sent at the sender. However, the NI manages different channels independently. As
a consequence, in the Æthereal architecture we can not reason about the ordering
of messages across several channels. Furthermore, a reordering of message (across
several channels) is possible to happen.

3.3.2 Structure of NIs

Figure 3.10 depicts the internal structure of an Æthereal NI. The NI consists of one
kernel and some optional shells. The shells are those components, which translate
the semantics of a given protocol, e.g., AXI or OCP, that is applied at the interface
to the IP-core into generic messages. NI ports provide the physical access from the
IP-core to the NI, for example ports implementing AXI or the Device Transaction
Level (DTL) [Phi02].

The kernel wraps the generic messages into GT or BE packets, dispatches them
according to the TDMA slot scheme, and realizes the end-to-end credit-based flow
control. From the point of view of the NI kernel, the semantics as well as structure
of the internal generic messages is irrelevant, as the NI kernel solely handles packets.

33

3.3 Æthereal 3 Related Work

NI kernel

narrow-cast
multi-cast

DTL adapter AXI adapter

ne
tw

or
k

us
er

router

DTL port DTL port AXI port AXI port

Network Interface (NI)

NI port

Figure 3.10: Æthereal NI kernel and shells

As the shells realize a higher abstraction than the packets of the NI kernel, several
shells can be cascaded or combined in order to implement more advanced protocols.
As shown in Figure 3.10, an NI can be assembled with shells that control multi-
casting or narrow-casting connections.

3.3.3 Reconfiguration in Æthereal

Æthereal includes a concept of (static) run-time reconfiguration [HCG07]. A sys-
tem contains pre-defined configurations, which describe channels and connections
between IP-cores, that are associated with a given ”user mode”. A user mode re-
flects the communication requirements of the current functionality of the system,
e.g., an active phone call, MP3 playback in a cell phone, as it is operated by a
user. These configurations are deployed with the system, and can be loaded from a
separate memory and distributed to NIs at run-time.

The design flow of reconfiguration begins with the specification of the application
requirements of user modes [GDG+05]. Æthereal’s concept of reconfiguration defines
a high-level description of communication between IP (cores). A second specification
lists the connections between IP, which are attached to the logical ports of IPs (core
ports). With tool support, the specifications are verified off-line and prepared to
run a mapping and routing algorithm [HGR07]. The purpose of this graph-based
heuristic is to determine routes of channels and connections through the NoC, to
arrange bandwidth by calculating the TDMA slot schemes, and to map core ports to
ports of NIs according to the application requirements. The result of the algorithm
is converted into a memory image that can be deployed with the system.

The process of reconfiguration [HG07] in Æthereal incorporates the NIs, for which
the configuration data is intended and at least one dedicated architectural component
– the configuration master – that is in charge of distributing new configuration data

34

3 Related Work 3.4 Nostrum

to NIs. The operation of the configuration master is hidden from the application
programmer, thus, reconfiguration is an autonomous subsystem of Æthereal.

The configuration data is carried over the same wiring of the NoC like the ap-
plication data, whereas no additional control network is necessary. Therefore, the
existing infrastructure is reused, and the distribution of configuration data can be
modelled as connections and channels just like user-generated traffic.

The configuration master sets up a configuration connection to those NIs, which
communication pattern deviates in the new configuration compared to the current
configuration. The configuration master supports the following operations in order
to manipulate channels and connections between pairs of masters and slaves:

• open a new connection between NIs

• modify an existing connection

• close an existing connection

During reconfiguration the configuration master iterates through the description
image of the new configuration and identifies connections, which must be installed,
altered, or destroyed. Depending on the type of operation, the configuration master
opens a configuration request channel to each NI, which is affected by the operation.
Open and destroy operations involve the NIs of a master and a corresponding slave,
while for modify operations a single NI might be sufficient. After the configuration
request channel is established, that NI gives back a configuration response channel.
Finally, the configuration master ships the configuration data for that NI, whereas
configuration registers accessible through the logical configuration port in the NI (i.e.,
kernel and shells) are read and written. There exist registers that hold configuration
of paths, queue, channel type (GT, BE), space, credits etc.

Æthereal supports parallelism in the reconfiguration infrastructure. First, it is
feasible to have several configuration masters in the system, which might build a
hierarchy, whereas each level in the hierarchy is in charge of a given subsystem or set
of subsystems. Secondly, the configuration master might handle several configuration
connections to multiple NIs. Currently, Æthereal remains with a single configuration
master with a single port for configuration connections.

3.4 Nostrum

The Nostrum [MNT02] architecture aims at the provision of different Quality of Ser-
vice (QoS) guarantees. In fact, Nostrum supports Guaranteed Bandwidth (GB) as
well as Best Effort (BE) services. Both service classes offer packet switched commu-
nication.

For BE, Nostrum proposes a load distribution algorithm called Proximity Conges-
tion Awareness (PCA) [NMÖJ03], whereas switches in the NoC use load information

35

3.4 Nostrum 3 Related Work

of neighbouring switches (called stress values) for their own switching decisions. This
helps to avoid congestions.

For Guaranteed Bandwidth (GB) services, Nostrum introduces Virtual Circuits,
which are implemented by a combination of two concepts [MNTJ04]: Temporally
Disjoint Networks (TDNs) and Looped Containers (LCs). Guaranteed bandwidth is
achieved by transporting stream oriented data in special packets, so-called containers,
which are routed by means of deflective routing1 [FR92]. This routing strategy
in combination with PCA allows to diminish — also to nullify depending on the
communication patterns of the target application — the need for packet buffers in
Nostrum switches, thus, increasing the tolerance against network disturbances, e.g.,
congestions, and contributing to energy efficiency.

The Nostrum backbone [MNT+04] defines a layered protocol stack, which enables
reliable communication to the application level. The basis of the layering is the NoC
with its switches. A Network Interface (NI) above the NoC offers a basic set of
services, such as BE and GB. A Resource Network Interface (RNI) acts as glue logic
between IP-core at application level and the NI.

3.4.1 Topology Decision

Generally, Nostrum is able to arrange its switches in any topology such as folded
torus, fat-trees [Lei85] etc. However, Kumar et al. argue in [KJS+02], why they
prefer mesh topologies for Nostrum.

Firstly, a bus topology has shown to suffer from limited scalability and poor
performance for larger systems [GG00].

Secondly, higher order dimensional topologies are hard to implement. Culler and
Singh analyse in [CSG98] that low dimensional topologies (i.e., two dimensional)
are superior, when wiring and interconnects carry significant costs, high bandwidth
occurs between switches, and delay in switches is in the magnitude of propagation
delays along wiring. In this context, the torus topology was rejected for Nostrum, as
a folded torus has twice as long inter-switch connections than a mesh.

Additionally, Kumar et al. are convinced that there is no need for higher dimen-
sional topologies, since two dimensional meshes are quite efficient in a large number
of target applications in the field of signal and multimedia processing. Besides this,
a mesh topology entails some convenient properties, such as a simple addressing
scheme, and efficient realization of multiple routes.

Finally, we see in the next section that Nostrum heavily relies on the geometry and
implementation of mesh topologies to find efficient solutions to realize the concepts
of the Temporally Disjoint Network (TDN) and the Looped Container (LC).

1also called hot-potato routing

36

3 Related Work 3.4 Nostrum

3.4.2 Theory of Operation

The deflective routing in Nostrum implies that there are no buffer queues involved,
which could reorder packets in a switch, i.e., packets leave a switch in the same order
as they have entered. The packet duration is one clock cycle, in other words, the
length of a packet is one flit. Packets entering a switch at the same clock cycle are
exposed to the same processing delay through the switch, and therefore also leave
simultaneously. However, due to different possible routes and corresponding path
lengths for each packet, a reordering across the overall NoC is possible. The reason
for packets taking different routes is that switching decision are made locally on a
dynamic basis (i.e., PCA).

Temporally Disjoint Networks

Considering deflective routing, the property of non-reordering of packets (at a given
switch) creates an implicit TDMA schema in the NoC. This is called TDN. A TDN
results from the geometric layout of the NoC, whereas two factors are the topology
and the number of buffer stages in the switches.

1,1

4,4

(a) colouring of switches

bi bowi wo

(c) collapsed graph (with buffer stages)

1,1 1,2

2,2

3,4

2,1

2,3

1,3

2,4

3,1

3,3

1,4

4,3

3,2

4,2

4,4

4,1

(b) bipartite graph

Figure 3.11: Temporally Disjoint Network

Topology Packets that are emitted on the same clock cycle can only collide — say,
”will only be on the same net” — if they are on a multiple distance of the smallest
round-trip delay.

For an explanation, Millberg et al. [MNTJ04] apply a colouring of the switches in
the mesh topology, as shown in Figure 3.11a. Since white nodes are only connected

37

3.4 Nostrum 3 Related Work

to black ones, and black nodes are only linked to white ones, every packet passes by
a white and black node alternatingly along its path through the NoC.

Figure 3.11b restructures the mesh topology into a bipartite graph (with bidi-
rectional edges) to point out this characteristics. As a result, at any point in time,
two packets residing in nodes of different colour will never meet at a given switch.
Consequently, any two packets can not affect each others switching decisions. If
we collapse the bipartite graph into one virtual node for white and one for black,
and further split up the bidirectional edges, we obtain an arrangement as shown in
Figure 3.11c.

The colours of the nodes embody neighbouring time/space slots. A packet cur-
rently sitting on a given node could be seen in another network (i.e., a TDN) than its
neighbour on the opposite node, therefore, any movement of two packets, which hap-
pens synchronously, involves a hop into another virtual network without the chance
of collisions.

The contribution to the number of TDNs that stems from the topology is called
the topology factor.

Number of Buffer Stages Buffers within the switches also create a set of TDNs.
Figure 3.11c shows the collapsed topology graph with a stage for input (xi) and
output (xo) buffers for white (wy) and black (by) nodes. Each packet travelling
trough the NoC visits buffers in the following cyclic order: wi → wo → bi → bo.

Total Number As we have a set of colours (i.e., white and black) and buffer stages
(i.e., input and output buffer), we can conclude the total number of TDNs in the
following formula:

TDN = topology factor× number of buffer stages

So, in the example above we have a total number of 2 × 2 = 4 TDNs, which also
embodies the smallest round-trip delay (measured in clock cycles).

It is a clever policy to utilize each TDN for a specific type of communication, for
instance different priority classes, traffic types, load conditions etc.

Looped Containers

In Nostrum, the LC is this concept that transports a Virtual Circuit (VC) and brings
in bandwidth guarantees and latency bounds. The idea is that GB is achieved by
having data loaded into container packets, which are looped between source and
destination of communication. The principle is illustrated in Figure 3.12.

Figure 3.12 shows a round-trip delay of four clock cycles, whereas the switch
attached to the source, an intermediate switch, and the switch attached to the des-
tination are involved. In the first clock cycle, the container that is intended to

38

3 Related Work 3.4 Nostrum

21 3

4

NI NI NI

Figure 3.12: Looped Container

transport data arrives at the source switch. The source packs information into the
container packet via its NI. In the second clock cycle, this container has moved on
to the intermediate switch. Then, at cycle number three the container arrives at the
destination switch, where the data is discharged. The container is not consumed at
the destination, but passed on via the intermediate switch at clock cycle number four.
Finally, the container completes the loop in the next clock cycle, which is regarded
as ”first” cycle again.

Combining TDNs and LCs

Nostrum combines LCs and TDNs to establish multiple VCs on a given switch. Each
container of a LC occupies one TDN. Due to the movement of containers in each
clock cycle, a given container always remains in the same TDN. Conversely, on each
clock cycle, a container belonging to another TDN passes by at a given link of a
switch.

A switch is able to process as many VCs at the same time as the number of
TDNs, whereas each VC’s containers reserve an own TDN. The TDN, which a VC
is assigned to, remains constant during the routing through the NoC.

The route of a VC, i.e., LC and the TDN involved, is decided at design time,
however the number of containers used by a VC is variable at run-time. There exists
a possibility to increase or decrease the bandwidth of a VC by creating or destroying
new containers in the LCs.

Multi-casting of VCs can easily be realized, if multiple destinations along the
route of the VC grab the containers associated with that VC.

3.4.3 Power Management in Nostrum

Nostrum’s main contribution to power management is the application of deflective
routing, which enables the absence of internal buffer queues throughout the NoC.
As switches do not include buffer memory, their power consumption is in the same
magnitude as the power consumption of links between switches [PJ06].

Besides this, Nostrum features an adaptive power management [LJ06]. This
mechanism is able to adjust frequency within a discrete range of frequency and volt-
age for the Nostrum system during live operation. This control mechanism, which is
an autonomous subsystem of Nostrum, considers the difference between prediction

39

3.5 MANGO 3 Related Work

of network load and the saturation point (maximum load). If the network seems
to become idle, frequency is scaled down immediately. If the network load seems
to increase beyond a predefined threshold, the frequency is increased accordingly.
Contrary, if the network load is predicted to drop beneath a predefined threshold,
frequency is reduced in discrete steps. As a result, the network load justifies the
current frequency, thus yielding into an optimal energy efficiency for all traffic pat-
terns.

3.5 MANGO

The MANGO2 [Bje05] architecture realizes a clockless NoC. It follows the Globally-
Asynchronous Locally Synchronous (GALS) [MVK+99] approach, whereas IP-cores
are locally synchronous (i.e., belong to some clock domain), but communication takes
place asynchronously. Figure 3.13 illustrates a conceptual view on MANGO.

IP-core

Network
Adapter

IP-core

Network
Adapter

Clockless
NoC

OCP
interfaces

Independently
clocked IP-cores

Network
Adapter

Network
Adapter

Router

Link

Figure 3.13: Overview of MANGO

As we can see in Figure 3.13, the entities defined in MANGO comprise the Net-
work Adapter (NA), the router, and the link.

3.5.1 Network Adapter

The NA [BMOS05] implements synchronization between the clocked IP-core and
the asynchronous, clockless MANGO NoC. Furthermore, the NA offers a primitive
message-passing functionality, which is realized in the NoC, by means of OCP trans-
actions. That is, on the IP-core’s side, the NA establishes a socket-based OCP
interface, i.e., the Core Interface (CI), while at the NoC-side it realizes the Network

2Message-passing Asynchronous Network-on-Chip providing Guaranteed services through OCP
interfaces

40

3 Related Work 3.5 MANGO

Interface (NI). The IP-core utilizes transaction handshaking according to OCP. The
NI conducts packetization of the OCP transactions [BS06b] into packets that are
switched through the NoC.

O
C

P

OCP Inititator:
Request

Handshaking

OCP Inititator:
Respone

Handshaking

Encap

Decap

sync
sync

Request
Transmit

Response
Receive

O
C

P
 M

aster

Initiator NA clocked clockless

M
A

N
G

O
 clockless N

oC

(a) Master-side Initiator

O
C

P

OCP Target:
Response

Handshaking

OCP Target:
Request

Handshaking

Encap

Decap

syn
c

sync

Response
Transmit

Request
Receive O

C
P

 S
lave

Target NAclockedclockless

M
A

N
G

O
 clockless N

oC

(b) Slave-side Target

Figure 3.14: Types of NAs

As OCP follows the master/slave paradigm, the NAs and IP-cores must be de-
sign according to these roles. An IP-core operating as an OCP Master serves as
an initiator for communication, while the OCP Slave IP-core is the target. Conse-
quently, the NA of the initiator and the target include different modules. As shown
in Figure 3.14, the request/response OCP channels are directly mapped to request
and response paths through the NoC. The Handshaking and Encap/Decap modules
in Figure 3.14a and Figure 3.14b convert the OCP transactions into packets and vice
versa. Transmit/Receive modules handle the uni-directional, asynchronous com-
munication channel through the NoC, after the sync modules have bridged the data
between clocked and clockless zone.

3.5.2 Routers in MANGO

The routers [BS05a] in MANGO feature connection-oriented Guaranteed Service
(GS) [BS06a] as well as connection-less Best Effort (BE) communication. So, there
exists a dedicated GS router and BE router type.

The basic concept of communication is the Virtual Channel (Vc) [Dal92]. A Vc
allows to maintain logically independent channels sharing one physical link. For GS,
the Vcs apply share-based Vc control [BS04], whereas for BE a credit-based flow
control is used.

MANGO routers provide P input and P output ports. Each output port includes
a buffer for each Vc, hence each router is equipped with P × V buffers of length L,
whereas V denotes the number of Vcs and L the length of each buffer. Usually,
L has the length of exactly one flit, thus enabling to buffer exactly one flit before
forwarding.

For GS, switching decisions are made on behalf of steering bits, which are locally
pre-programmed for each Vc of each output port. The steering bits are distributed

41

3.6 ×pipes 3 Related Work

via BE packets. A Vc can be understood as a segment of the overall route of a com-
munication channel between NAs. The concatenation of Vcs, which is controlled by
appropriate assignment of steering bits, manifests in the route of the communication
channel. Contrary to pre-programmed steering bits, BE uses source routing.

In order to prevent that flits in the Vc buffers of a given output port collide, or
stall and block each other, a Vc control mechanism must be applied. This ensures
that a flit is only transmitted on the link attached to the output port, if and only if
there is a free buffer space in the target Vc buffer in the next router. Therefore, the
Vc control mechanism introduces control channel bits back to the previous router
for each Vc buffer. When a flit is admitted to occupy the link towards the next
router, the control channel bits indicate to lock a sharebox at the output port so
that flits in other Vc buffers can not be forwarded. After the flit has passed by an
unsharebox at the neighbouring router, that unsharebox triggers an ”unlock” signal,
which also belongs to the control channel bits. Consequently, the sharebox at the
sending router is released, and the link is regarded as free. This mechanism not only
results in collision avoidance between different Vc buffers of an output port, but also
entails a back pressure flow control.

A link arbiter assigns the physical links of each output port to Vc buffers so that
the total bandwidth is fairly shared between Vcs. For that purpose, the link arbiter
implements the Asynchronous Latency Guarantee (ALG) algorithm [BS05b], which
provides per-connection latency as well as bandwidth guarantees.

3.6 ×pipes

×pipes [BB04] [SAC+05] [MB06, section 6.10, pages 271 – 281] is a System C3

library of parameterizable, synthesizable NoC components – so-called soft macros –
optimized for low-latency and high-frequency operation. A soft macro is a template
in the ×pipes architecture. Such a template can take a particular role in an ×pipes
design. ×pipes features 3 different types of templates: switches, Network Interfaces
(NIs), and links. Each of these entities is configurable and tunable at design time.
Furthermore, templates can be arranged in arbitrary order, thus enabling a wide
design space of possible topologies. Generally, ×pipes allows to apply configuration
on a global scope, which are ”network-specific”, i.e., valid for the whole design, as well
as on a local scope, which are ”block-specific”, i.e., valid for one or more templates
from the library.

The basic communication protocol of ×pipes’s NIs is OCP, which entails point-to-
point communication. One of the main purposes of NIs is to adapt the semantics of
the OCP interfaces to network level (internal) protocols. This network level protocol
focuses on packets, which convey the data of OCP transactions. Therefore, NIs handle
the packetization of OCP transactions. Also, a NI distinguishes between header and
payload. Similar to MANGO, ×pipes takes the master/slave paradigm of OCP into

3http://www.systemc.org

42

3 Related Work 3.7 Comparison

account. That is, there exist NIs operating as initiators, and other NIs playing the
role of targets, depending whether the attached IP-core is an OCP Master or OCP
Slave.

×pipes applies source routing as the basic routing mechanism. Routes are stati-
cally stored in look-up tables. Routing information is included in the header before
user data in the payload of a packet. The routing information consists of bits that
indicate the direction, to which output port some incoming data at a given switch
has to be forwarded.

Another aspect of ×pipes is its focus on communication reliability. An error
detection mechanism, which is distributed among entities of the NoC, is performed
to monitor the correctness of transmissions in the value domain. In case of errors,
an error recovery technique becomes active. ×pipes uses a link level retransmission
protocol such as GO-BACK-N to initiate retries of the faulty transmission. The dis-
tributed error detection has been preferred, as it allows to restrain the effects of error
propagation. For instance, it would be possible to prevent a packet with corrupted
header to be directed the wrong way in the NoC. On the one hand, such distributed
error detection imposes penalty with respect to area overhead. On the other hand,
error detection with retransmission is more convenient with respect to energy-per-
bit efficiency than on-the-fly recovery. In the latter case, the error recovery circuitry
must be active even during correct operation and therefore consumes energy all the
time, while error detection with retransmission claims additional energy in case of
errors.

The links between switches in ×pipes are pipelined. The links are subdivided
into basic segments, whose length can be tailored to the system parameters such as
desired clock frequency or driver strength. As a consequence, the input rate of data
at links is no longer limited due to long propagation delays. In this context, the
throughput of links is also increased owing to pipelining.

3.7 Comparison

In this section we compare the characteristics of the system architectures, which
have been introduced above, to our best knowledge. The essence is summarized in
Table 3.1. The interconnection fabrics, i.e., AMBA and OCP, possess a different
scope than system architectures, and therefore can not fairly be compared with
Æthereal, Nostrum, MANGO, ×pipes, and the TTSoC architecture. In the following
we examine some characteristics with reference to the TTSoC architecture.

Multi-casting All system architectures except MANGO have identified the need
for multi-casting. In fact, Æthereal does not support multi-casting natively. The
shells in the NIs embody extensions to the basic services of the kernel, whereas a
multi-casting shell groups several channels into one logical multi-cast channel. Nos-
trum benefits from the characteristics of LCs to route LCs to all receivers. ×pipes

43

3.7 Comparison 3 Related Work
C

haracteristic
Æ

thereal
N

ostrum
M

A
N

G
O

×
pipes

T
T

SoC
architecture

service
classes

G
T

+
B

E
G

B
+

B
E

G
S

+
B

E
n/a

periodic
and

sporadic
transportation

abstraction
level

transactions
packets

O
C

P
transactions

application
m

essages
com

m
unication

paradigm
shared

m
em

ory
m

essage
passing

shared
m

em
ory

m
essage

passing

guarantees
bandw

idth
+

latency
(for

G
T

,
G

B
,

G
S)

none
bandw

idth
+

latency
(for

all
service

classes)
determ

inism
partially

(w
ith

respect
to

G
T

,
G

B
,

G
S)

n/a
by

design
predictability

for
G

T
for

G
B

for
G

S
n/a

due
to

determ
inism

encapsulation
not

explicitly
by

design
by

design
error

containm
ent

not
explicitly

by
design

due
to

encapsulation
m

essage
ordering:

•
single

channel
tem

poral
order

reordering
tem

poral
order

tem
poral

order
•

m
ultiple

ch.
none

consistent
delivery

order
clock

dom
ains

one
(highly

synchronous)
clockless

N
oC

one
m

ultiple
+

global
tim

e
base

reconfigurability
static

res.
m

an.
+

/-
containers

program
m

ing
V

cs
at

design
tim

e
integrated

resource
m

an-
agem

ent
reconfiguration

”soft
cut”

unknow
n

by
B

E
n/a

”hard
cut”

pow
er

m
anage-

m
ent

unknow
n

adaptive
no

dynam
ic

pow
er

n/a
aspect

of
resource

m
an-

agem
ent

buffers
required

avoided
required

required
conceptually

none
transm

ission
strategy

packet
sw

itching
L

C
packet

sw
itching

packet
sw

itching
bursts

of
fragm

ents
of

m
essages

arbitration
m

ech-
anism

T
D

M
A

T
D

N
A

L
G

n/a
tim

e-triggered,
periodic

control
system

flow
control

credit-based
im

plicit
back

pressure
G

O
-B

A
C

K
-N

cooperating
participants

routing
strategy

selectable
deflective

routing
steering

bits
(G

S)
source

routing
source

routing
source

routing
(B

E
)

topology
any

any
m

esh
preferred

any
any

m
ulti-casting

as
extension

arrangem
ent

of
L

C
n/a

supported
split-point

m
ulti-casting

T
able

3.1:
C

om
parison

of
characteristics

44

3 Related Work 3.7 Comparison

supports multi-casting be means of source routing. The TTSoC architecture also
provides native multi-casting, as introduced in chapter 6, which is called split point
multi-casting .

Arbitration Mechanism Considering the TDMA slot scheme and its a priori al-
location, the Æthereal architecture is close to the TTSoC architecture, while Nostrum
and MANGO facilitate more advanced arbitration mechanisms. While Æthereal in-
corporates a single global period with a fixed number of TDMA slots, the TTSoC
architecture entails a periodic control system that features several concurrent periods
with phase alignment within each period. The supported periods are in the range
from a few nanoseconds up to seconds and can be adapted to special needs of a target
application. Thus, the TTSoC architecture enables the temporal alignment of com-
munication activities of periodic application jobs in order to reduce the end-to-end
latency of the overall application. Such a feature is vital for many types of real-time
systems. Additionally, the periodic control system is based on physical time, there-
fore periodicity of communication activities can be expressed in an intuitive way.
This contributes to complexity reduction.

Buffers Nostrum and the TTSoC architecture are system architectures that do
without buffers in switches, routers, i.e., in the whole NoC. Nostrum yields the
properties of deflective routing, and the remarkably smart concepts of TDN and LC.
By design, the TTSoC architecture relies on its a priori knowledge of communication
patterns, which is leveraged to avoid congestions, and therefore relinquishes buffers.

Power Management With its clockless, asynchronous NoC, MANGO could be
the most effective system architecture with respect to power management, as it cuts
down on dynamic power consumption. However, the buffers in MANGO waste this
conceptual advantage. Besides MANGO, Nostrum has presented many effective con-
tributions to power management, as it includes voltage and frequency scaling in an
autonomous subsystem of the NoC. Nevertheless, such adaptive power management
is highly problematic, when it comes to predictability. Higher frequencies let commu-
nication arrive earlier at destinations, while slower frequencies increase the latency
with respect to a reference time.

The TTSoC architecture features (active) power management as an aspect of
the integrated resource management. Therefore, power management is an issue at
architectural level. That is, power management can be established regarding the
global view on the system, and is not solely restricted to components of the NoC. In
this context, it also considers to uphold predictability and determinism of the sys-
tem. Besides active power management, the most entities of the TTSoC architecture
have been designed with power efficiency of realization in mind, as summarized in
section 10.1.

45

3.7 Comparison 3 Related Work

Reconfigurability & Reconfiguration All system architecture address reconfig-
urability to a different extend. ×pipes is configurable and tunable at design time,
however (to our knowledge) it does not deal with reconfiguration during live opera-
tion. The reprogramming of Vcs in MANGO as well as the creation or destruction
of containers for LCs in Nostrum can be considered as reconfigurability. From the
architectural point of view, Æthereal proposes a mechanism of on-the-fly reconfigu-
ration of pre-defined channel configurations. We call the on-the-fly distribution of
pre-defined configurations a ”static resource management”.

Channels can be installed, closed or existing channels can be modified during live
operation. We call this a ”soft cut”, as the switch from one configuration to another
is executed simultaneously, while the previous configuration is still operating. As
a consequence, for some time there are two configuration coexisting in the system,
which leaves an inconsistent system state during the process of reconfiguration. For
instance, there might by application subsystem with a subset of communication chan-
nels already established, while the remainder of required communication channels is
to be installed, yet. Consequently, that application subsystem is in an intermediate
state, which has to be considered in the application design.

Contrary to Æthereal, the TTSoC architecture enforces ”hard cuts” for the switch
from one configuration to another one. As explained in chapter 8, a new configu-
ration is first loaded into participants of communication, but it does not become
active immediately. The switch happens synchronously among the whole system,
i.e., synchronized by means of the Time-Triggered Communication Schedule. As a
result, parts of different configurations do not coexist in the system during the re-
configuration process, and the system state remains consistent. We are convinced
that the approach of ”hard cuts” contributes to complexity reduction and minimizes
the probability of design errors considering the reconfiguration.

Finally, in addition to static resource management the TTSoC architecture fea-
tures a dynamic resource management, which is able to calculate new configurations
at run-time, while it still upholds the consistency of the system state as well as
predictability and determinism.

Clock Domains Unlike the TTSoC architecture, Æthereal and Nostrum support
one single clock domain to dispatch and transmit data. As a consequence, all partic-
ipants of communications (the NIs) must be synchronized to the same clock domain,
which tends to by quite high to achieve throughput and performance. In contrast
to this approach, the TTSoC architecture manages several clock domains by design.
The global time base embodies an own clock domain, which is used to synchronize
communication activities. The real communication takes place at another local sys-
tem operation frequency. Thus, dispatching and communication are decoupled with
respect to clock domains. There is no need to maintain one global clock signal of
relatively high frequency in order to drive the whole system. Instead of this, the
clock domain of the global time base that spans across the whole system design can
be lower. This relaxes the requirements of synchronization within the system, and
also aids to cope with capacity and driver strength issues.

46

3 Related Work 3.7 Comparison

A result of the introduction of multiple clock domains is the independence of
communication from application design. We specify communication activities in a
slower clock domain, which is easier to handle, while the participants of communica-
tion (i.e., the TISSs) are allowed to run at higher frequencies. As a result, tuning the
communication subsystem, e.g., increasing the frequency associated with the clock
domain of the global time base, does not produce any feedback to the application
design. Conversely, if an application requires a lower granularity for the synchroniza-
tion of communication activities, the global time base is modified, but application
design is not affected.

Message Ordering All system architectures are able to handle temporal ordering
of messages within a single communication channel. Nostrum might violate temporal
ordering in case of packets taking different routes, as switching decision are made
locally and (for BE) are affected by the current load distribution in the NoC. In
fact, the TTSoC architecture might also reorder fragments of whole messages due to
different routes. However, the TTSoC architecture abstracts from the realization of
communication and solely presents completed messages to IP-cores, thus making the
fact of reordering of fragments irrelevant.

The TTSoC architecture is the only one (to our best knowledge), which can
handle a consistent delivery ordering of messages across different communication
channels (see section 4.7).

Determinism & Predictability Æthereal, Nostrum, and MANGO provide guar-
anteed bandwidth and bounded latency, thus allowing a sense of predictability for
this service class. However, none of them addresses determinism — according to the
definition given in section 2.1.2 — like the TTSoC architecture. The TTSoC archi-
tecture derives predictability not from a special service class, but from the explicit
support for determinism in its design.

Abstraction Level One aspect, where the TTSoC architecture definitely outper-
forms the other system architectures, is the level of design abstraction. While Æthe-
real, MANGO, and ×pipes deal with low-level packets and transactions, the TTSoC
architecture abstracts from such communication issues and presents application-level
messages to hosts. Nostrum also includes a notion of ”messages” in the NoC, but
these messages embody packetized chunks of application messages, and not com-
pleted application messages.

The high abstraction levels entails practical assumptions such as encapsulation,
error containment, and message ordering. These features allow a system designer to
focus on the application design and rely on the TTSoC’s core services.

Service Classes The TTSoC architecture is a system architecture that does not
include a notion of GT/GB/GS and BE. Instead of these service classes, it considers

47

3.7 Comparison 3 Related Work

periodic and sporadic application-level messages, which are transported via encap-
sulated communication channel. Each encapsulated communication channel always
possesses quasi full bandwidth and exclusive access to the NoC, whereas the latency
of transmission is also predictable. Consequently, for the application designer there
is no need to care how to achieve a given bandwidth and latency, because this has
already been guaranteed by the TTSoC architecture’s core services. On the one
hand, this relieves the application designer, as he/she has not to cope with such
communication issues any longer. On the other hand, this is a totally novel design
style to model on-chip communication in system architectures. While other system
architectures establish evolution of well-known design styles, the TTSoC architecture
facilitates a revolution in SoC design.

Other Features At its current state of development, the TTSoC architecture does
not include error detection and retransmission like ×pipes. However, a service of re-
liable communication can be realized at a different level. Combining the diagnostic
service and the on-the-fly reconfiguration, the TTSoC architecture is able to deter-
mine broken links or faulty switches in the TTNoC, and then compensates for an
error by altering the routes and avoiding faulty switches. We thing that elevating
such a service to a higher level than handling it in the NoC is more efficient and
more flexible.

48

Chapter 4

Communication Service

We have learned from the previous sections that the TTSoC architecture provides a
set of architectural core services. These are:

• an encapsulated, time-triggered communication service

• a diagnostic service

• integrated resource management with on-the-fly reconfiguration of system pa-
rameters, e.g., the Time-Triggered Communication Schedule

• clock synchronization to establish a consistent global time base that synchro-
nizes communication activities

This chapter is dedicated to the core service of the encapsulated, time-triggered
communication service. We introduce the architectural concepts that are used in the
TTSoC architecture to model the communication between micro components.

4.1 Encapsulated Communication Channels

The basic architectural concept that is associated with the communication service is
the encapsulated communication channel . The term ”encapsulated communication
channel” denotes an uni-directional connection. It transports messages at predefined
points in time. Additionally, it supports exactly one source (sender) and at least one
destination (receiver).

The endpoints of an encapsulated communication channel are called ports. We
distinguish between output ports, which are located at the source (where the mes-
sages are produced), and input ports located at the destinations (where the messages
are consumed).

49

4.1 Encapsulated Communication Channels 4 Communication Service

4.1.1 Establishing Encapsulation

Encapsulated communication channels introduce encapsulation among micro compo-
nents. Such encapsulation prevents interferences between communication activities
of different micro components in two distinct domains:

temporal domain e.g., delaying a message or computation in another micro com-
ponent

spatial domain e.g., overwriting a message produced by another micro component

However, encapsulation does not cover the value domain, for instance faulty input
to other micro components via the sent messages.

In order to prevent any unintended interference between subsystems, the TTSoC
architecture ensures such a temporal and spatial partitioning with respect to en-
capsulated communication channels. That is, communication activities in a given
encapsulated communication channel are neither visible nor have any effect (e.g.,
performance penalty) on the exchange of messages in any other encapsulated com-
munication channel. It is guaranteed that the micro component that is permitted
to send messages over a given encapsulated communication channel is the only mi-
cro component, which is defined as the source of that encapsulated communication
channel (i.e., the micro component where the output port of the encapsulated com-
munication channel is located).

The TISS, which is located between the host of a micro component and the
TTNoC, establishes encapsulated communication channels. Firstly, it enforces the
temporal and spatial partitioning. Secondly, the TISS acts as a guardian for the
shared TTNoC, where the encapsulated communication channels run through, by
accessing the TTNoC exclusively at a priori known points in time according to the
TDMA scheme. The allocation of TDMA slots manifests in the Time-Triggered
Communication Schedule distributed among the TISSs. This allocation is explained
in section 4.6.

In order to guarantee that the encapsulation properties of the communication
service are not violated during the presence of a design fault or a hardware fault
within the host, the implementation of the TISS ensures that the host cannot alter
the Time-Triggered Communication Schedule in the TISS. As already mentioned in
section 2.3.2, the TISS itself is a part of the TSS and is considered to by free of
design faults.

4.1.2 Topology

A single micro component can be attached to several different encapsulated commu-
nication channels. But it is exactly once connected to a given encapsulated commu-
nication channel either in the role of the source or any destination. Consequently,
a micro component might possess multiple input and output ports. However, by

50

4 Communication Service 4.2 Interface to the Communication Service

Micro Component 1 Micro Component 2 Micro Component 3
Output Port

channel b
channel c

channel a

Input Port

Figure 4.1: Example topology of encapsulated communication channels

design restriction, it is allowed to receive from or send to at most one encapsulated
communication channel at a given instant of time.

The arrangement of destinations (among micro components) and the assignment
of the source define the topology of an encapsulated communication channel. Since
the number of destinations of an encapsulated communication channel is variable,
single-cast ,multi-cast and broad-cast modes are supported. Figure 4.1 illustrates
encapsulated communication channels that spread across micro components.

4.2 Interface to the Communication Service

From the point of view of the hosts, communication is transparent, because the
TTNoC is not directly accessible to the hosts in each micro component. Instead
of this, the TISS provides an interface to hosts that includes this architectural core
service – the UNI (see chapter 5). A host accesses the communication service via
the ports of the encapsulated communication channels, which are visible within the
scope of the UNI.

As mentioned above, we distinguish between input and output ports. In addition
to their direction, we classify ports with respect to their access paradigm, which
defines the way, how a host interacts with the corresponding encapsulated communi-
cation channel. In order to satisfy the need of a wide range of application domains,
two basic types of ports are provided: state ports and event ports.

4.2.1 State Ports

State ports are used for the periodic transmission of messages with state semantics.
A state port holds only a single state message at a time. Since state messages always
contain the current state of a variable they are inherently idempotent. Old messages
can be simply overwritten by new messages and – in contrast to event semantics of
messages – exactly-once processing of the message is not required. In order to ensure
that only consistent data are transmitted and received over the TTNoC, explicit
synchronization mechanisms are provided for both (input state ports and output
state ports) that coordinate update operations by the host and the TISS.

51

4.3 Pulsed Data Streams 4 Communication Service

For input state ports, we apply the Non-Blocking Write (NBW) protocol [Kop97].
The Non-Blocking Write (NBW) protocol facilitates to detect any inconsistent read
access by the host. It detects situations, where an input state port was updated by
the TISS (due to the reception of a message), while the host was performing a read
access on that port. In such a case, the host knows that it has acquired inconsistent
data and retries the read access.

Hosts that are synchronized to the global time can use implicit synchronization
to access input state ports as an alternative to the NBW protocol. Based on the
a priori known points in time when the input state port is updated by the TISS, the
host can temporally interleave its read accesses with the updates of the host in such
a way that conflicts are avoided.

The NBW protocol can not be used for output state ports, since the TISS has to
transmit messages over the TTNoC with minimal jitter. As a consequence, the TISS
can not afford to retry a read access to a state output port, when the read access
has resulted in inconsistent data due to a concurrent update by the host. Therefore,
output state ports are synchronized by the use of a double buffer, where the host
alternately updates one of the buffers, while the TISS accesses the other buffer.

4.2.2 Event Ports

Event ports are used for the sporadic transmission of messages with event seman-
tics. Contrary to state ports, event ports have to support exactly-once semantics —
each event message that has been sent to a set of receivers has to be received and
processed exactly once by each receiver. In order to support exactly-once semantics,
event ports are realized as queues that can hold multiple event messages at a time.
The length of a queue is variable.

Event ports are synchronized by means of pointers for the write position and the
read position of a given port. This is an explicit synchronization, implicit synchro-
nization does not exist in this case.

The TISS indicates the presence of a new event message in an input event port
by increasing the write position of the port after it has written the message into the
corresponding position of the port. The host indicates the consumption of a message
by increasing the read position of the port after it has consumed the message from
the port. The reverse principle is used for output event ports.

4.3 Pulsed Data Streams

Encapsulated communication channels present a high-level abstraction of commu-
nication activities at a well-specified interface (the UNI) between host and TISS.
Nevertheless, the real communication activity corresponds to the concept of pulsed
data streams [Kop06]. The concept of pulsed data streams enables the temporal
alignment of computation and communication (see section 2.3.3). Furthermore, it

52

4 Communication Service 4.3 Pulsed Data Streams

established bandwidth guarantees for communication and deterministic end-to-end
latencies.

A pulsed data stream is a time-triggered, periodic, uni-directional data stream
that transports data in pulses. A pulse possesses a defined length (the so-called
duration) and goes from exactly 1 sender to n according to a priori identified receivers
at a specified phase of every cycle of a periodic control system.

The existence of a pulsed data stream as the communication primitive within
encapsulated communication channels is abstracted, hence not visible to a host. In
other words, an encapsulated communication channel houses exactly one pulsed data
stream. Additionally, the topology of the encapsulated communication channel man-
ifests in the arrangement of sender and receiver of the pulsed data stream. Besides
this, the message of an encapsulated communication channel matches the pulse of
an pulsed data stream. The length of the message conforms with the duration of the
pulse.

4.3.1 Periodic Control System

In the TTSoC architecture the time format of the global time base is derived from the
physical second. As illustrated in Figure 2.2, we implement the time format of the
global time base as a binary counter with a fixed vector width of 64 bit. The upper
32 bit concern full seconds, while the lower 32 bit measure fractions of a second. As
a result, the global time base has a horizon of about 232 sec ≈ 136 years, whereas
the maximum granularity goes down to 2−31 sec ≈ 465 ps.

From this time format we derive the periodic control system, which
defines periods and phases of the pulses in a pulsed data stream. As the
pulses in pulsed data streams realize the message of encapsulated communication
channels, all communication activities within encapsulated communication channels
are also aligned according to this particular interpretation of the time format.

Periods

The time format is used to measure the pulse periods and pulse phases of a pulsed
data stream. For this purpose, we choose a specific bit in the counter vector of the
time format, and consider its toggle rate as a period. This specific bit is called
the period bit of the associated period. As the counter vector is binary, this leads to
periods based on a power of two, i.e., a period can be 1 second, 1

2 second, 1
4 second,

and so forth. This restriction leads to the establishment of harmonic periods, and
entails a significant reduction of complexity of the scheduling in the TSS.

Figure 4.2 and Figure 4.3 show the distribution of period bits in the time format
of the global time base for 16 and 32 periods. Note that the lower the period number
the shorter is the period. In Figure 4.2 the period bit of the highest period #15
is placed at index 32, which conforms to a toogle rate or period of 21 = 2 seconds.
Then, period #14 has its period bit one bit to the right at index 31, which makes
up a period of 20 = 1 second, and so forth.

53

4.3 Pulsed Data Streams 4 Communication Service

m
acro tick bit

period bit of highest period

relevant bits

dead bits

63
34

33
32

31
30

29
28

27
26

25
24

23
22

21
20

19
18

17
16

15
14

13
12

11
10

9
8

7
6

5
4

3
2

1
0

15
P

eriod B
it

14
13

12
11

10
9

8
7

6
5

4
3

2
1

0

2
-26

2
-25

2
-24

2
-23

2
-22

2
-21

2
-20

2
-19

2
-18

2
-17

2
-16

2
-15

2
-14

2
-13

2
-12

2
-11

2
-10

2
-9

2
-8

2
-7

2
-6

2
-5

2
-4

2
-3

2
-2

2
-1

2
0

2
-31

2
-30

2
-29

2
-28

2
-27

2
2

2
1

2
3

2
32

15
14

13
12

11
10

9
8

7
6

5
4

3
2

0
1

P
hase S

lice

2
-26

2
-25

2
-24

2
-23

2
-22

2
-21

2
-20

2
-19

2
-18

2
-17

2
-16

2
-15

2
-14

2
-13

2
-12

2
-11

2
-10

2
-9

2
-8

2
-7

2
-6

2
-5

2
-4

2
-3

2
-2

2
-1

2
0

2
-31

2
-30

2
-29

2
-28

2
-27

2
2

2
1

2
3

2
32

524,29 kHz

1,04 MHz

2,10 MHz

4,19 MHz

8,39 MHz

16,78 MHz

33,55 MHz

67,11 MHz

134,22 MHz

268,44 MHz

536,87 MHz

1073,74 MHz

2147,48 MHz

262,14 kHz

131,07 kHz

65,54 kHz

32,77 kHz

16384 Hz

8192 Hz

4096 Hz

2048 Hz

1024 Hz

512 Hz

256 Hz

128 Hz

64 Hz

32 Hz

16 Hz

8 Hz

4 Hz

2 Hz

1 Hz

0,5 Hz

0,25 Hz

0,125 Hz

1,91 μs

953,67 ns

476,84 ns

238,42 ns

119,21 ns

59,60 ns

29,80 ns

14,90 ns

7,45 ns

3,73 ns

1,86 ns

931,32 ps

465,66 ps

3,81 μs

7,63 μs

15,26 μs

30,52 μs

61,04 μs

122,07 μs

244,14 μs

488,28 μs

976,56 μs

1,95 ms

3,91 ms

7,81 ms

15,63 ms

31,25 ms

62,5 ms

125 ms

250 ms

500 ms

1 s

2 s

4 s

8 s

F
igure

4.2:
T

he
tim

e
form

at
w

ith
period

bits
and

phase
slices

for
16

periods
(δ

=
1)

54

4 Communication Service 4.3 Pulsed Data Streams

m
ac

ro
 ti

ck
 b

it

pe
rio

d
bi

t
of

 h
ig

he
st

 p
er

io
d

re
le

va
nt

 b
its

de
ad

 b
its

63
34

33
32

31
30

2
9

28
27

26
25

24
23

22
21

2
0

19
18

17
16

15
14

1
3

12
1

1
10

9
8

7
6

5
4

3
2

1
0

31
P

er
io

d
B

it
30

29
28

27
26

25
24

23
22

21
20

19
18

17
16

2
-2

6
2-2

5
2

-2
4

2-2
3

2
-2

2
2

-2
1

2-2
0

2
-1

9
2-1

8
2

-1
7

2-1
6

2
-1

5
2-1

4
2

-1
3

2
-1

2
2-1

1
2

-1
0

2
-9

2-8
2

-7
2-6

2
-5

2-4
2

-3
2

-2
2

-1
2

0
2

-3
1

2
-3

0
2

-2
9

2
-2

8
2-2

7
22

2
1

2
3

2
32

3
1

3
0

2
9

28
2

7
26

2
5

24
2

3
2

2
21

2
0

19
1

8

1
6

17

P
ha

se
 S

lic
e

2
-2

6
2-2

5
2

-2
4

2-2
3

2
-2

2
2

-2
1

2-2
0

2
-1

9
2-1

8
2

-1
7

2-1
6

2
-1

5
2-1

4
2

-1
3

2
-1

2
2-1

1
2

-1
0

2
-9

2-8
2

-7
2-6

2
-5

2-4
2

-3
2

-2
2

-1
2

0
2

-3
1

2
-3

0
2

-2
9

2
-2

8
2-2

7
22

2
1

2
3

2
32

524,29 kHz

1,04 MHz

2,10 MHz

4,19 MHz

8,39 MHz

16,78 MHz

33,55 MHz

67,11 MHz

134,22 MHz

268,44 MHz

536,87 MHz

1073,74 MHz

2147,48 MHz

262,14 kHz

131,07 kHz

65,54 kHz

32,77 kHz

16384 Hz

8192 Hz

4096 Hz

2048 Hz

1024 Hz

512 Hz

256 Hz

128 Hz

64 Hz

32 Hz

16 Hz

8 Hz

4 Hz

2 Hz

1 Hz

0,5 Hz

0,25 Hz

0,125 Hz

1,91 µs

953,67 ns

476,84 ns

238,42 ns

119,21 ns

59,60 ns

29,80 ns

14,90 ns

7,45 ns

3,73 ns

1,86 ns

931,32 ps

465,66 ps

3,81 µs

7,63 µs

15,26 µs

30,52 µs

61,04 µs

122,07 µs

244,14 µs

488,28 µs

976,56 µs

1,95 ms

3,91 ms

7,81 ms

15,63 ms

31,25 ms

62,5 ms

125 ms

250 ms

500 ms

1 s

2 s

4 s

8 s

15
1

4
13

1
2

1
1

1
0

9
8

7
6

5
4

3
2

1
0

15
14

13
12

11
10

9
8

7
6

5
4

3
2

1
0

F
ig

ur
e

4.
3:

T
he

ti
m

e
fo

rm
at

w
it

h
pe

ri
od

bi
ts

an
d

ph
as

e
sl

ic
es

fo
r

32
pe

ri
od

s
(δ

=
1)

55

4.3 Pulsed Data Streams 4 Communication Service

Period Delta

We introduce the distance between two period bits as the period delta δ. In Figure 4.2
and Figure 4.3 δ = 1, which is the default configuration.

The ratio Rp states, how many lower periods fit into a higher period. It is
determined by the distance of the period bits, which can be extended by increasing
period deltas. Generally, the ratio Rp between two periods A and B is expressed in
equation 4.1.

Rp(A,B) = 2δ·|A−B| (4.1)

For instance, with a period delta δ = 2, which states that the period bits of
two successive periods are 2 bits apart, period #15 would contain 4 periods #14
(22·|15−14| = 4), 16 periods #13 (22·|15−13| = 16) etc.

Phases

In general, the alignment of pulses to periods is too coarse. This inherently provokes
collisions of pulses. Additionally, it does not allow to specify a sequence of pulses
that belong to the same period. Therefore, the pulse phase further subdivides a
period.

A phase defines the temporal offset of a pulse with respect to the start of an
associated period. In the TTSoC architecture we implement a phase as a slice in
the counter vector of the time format. Such a slice in the counter vector is named
the phase slice. The phase slice is located one bit to the right of the period bit of
that period. The width of the phase slice is configurable.

We define the start of a period as the periodic instant when all bits of the phase
slice are 0.

Figure 4.2 and Figure 4.3 also illustrate phase slices with a width of 12 bit for 16
and 32 periods according to the time format.

Macro Tick and Granularity

It is not always reasonable to run the TSS at the finest granularity of the time format,
which is the toggle rate of 465, 66 ps of the least significant bit in the counter vector
of the time format (this matches a frequency of 2.147, 48 MHz). For such a situation
we introduce the macro tick . The macro tick denotes the real granularity of the TSS,
to which all communication activities are synchronized.

For the bits right of the bit associated with the macro tick (the ”macro tick bit”),
the time cannot be measured any more, because the duration of a level change of
that bit is shorter than the real granularity of the TSS. For instance in Figure 4.2
the macro tick bit is located at index 6 (2−25 sec ≈ 29, 80 ns ⇔ 33, 55 MHz). Con-
sequently, these ”dead bits” remain 0 all the time. However, they are still included

56

4 Communication Service 4.3 Pulsed Data Streams

in the time format. In case of better target technology that achieves better system
clock frequencies, the macro tick bit moves to the right and activates bits of the time
format that have been regarded as dead just before.

The macro tick determines the frequency fmt, with which the counter vector of
the time format of the global time base is incremented. On each ”tick”, i.e., the
rising edge of the macro tick signal, we add ’1’ to the counter vector at the macro
tick bit.

Furthermore, the macro tick also limits the local granularity of phases of periods.
If the phase slice crosses the macro tick bit, the bits right of the macro tick bit are
made up of dead bits. So, they are stuck at zero. Consequently, this fact constrains
the local granularity of the phase for that period. Additionally, the phase is also
cut off in case of the phase slice reaching the lower bound (least significant bit of
the counter vector) of the time format. As a result, there might occur periods with
phases, which are so much limited that these periods are not useful any more. Such
periods should automatically be disabled by the TNA (see section 7.3.3).

In general, the local granularity of a phase associated with a given period is de-
termined by the least significant bit of its phase slice. For instance in Figure 4.2, for
period #15 this is bit 20, which corresponds to a toggle rate, hence local granularity,
of 2−11 sec ≈ 488 µs. For a given phase slice width, i.e., in the current implementa-
tion this width is 12 bit, we can define 212 = 4096 different offsets from the beginning
of the period, which for period #15 are 488 µs apart.

Obviously, the finest local granularity of any period complies with the macro tick,
if its phase slice exceeds the macro tick bit.

Tuning the Periodic Control System

In the TTSoC architecture the periodic control system can be tuned by means of
parameters concerning the time format, which are configurable at design time. Each
instance of the TTSoC architecture is able to modify

• the number of supported periods

• the index of the most significant bit of the highest period

• the period delta

• the width of phase slices

• the macro tick bit

at design time. On-the-fly configurations (at run-time) of the time format are
not supported.

The ”window” of period bits and phase slices can be moved or stretched and
squeezed along the time format by configuring its parameters. As a consequence,

57

4.4 Realization of Pulsed Data Streams 4 Communication Service

this adds a certain degree of flexibility, so that the time format can be adapted to
the requirements of a specific application, for which the TTSoC is intended. For the
current implementation as illustrated in Figure 4.2 and Figure 4.3, we expect that
the highest useful period for applications is 2 seconds. So, the MSB of the highest
period is assigned at bit 32, which corresponds to 21 seconds.

4.3.2 Handling Collisions of Pulses

When defining pulses in different periods, a scenario might occur when a pulse of
a lower period interferes with a pulse of a higher period, even though their phases
apparently do not coincide. With respect to repetition of pulses due to the periodicity,
the pulse of the lower period occurs Rp - times in the higher period. Consequently,
it is possible that a repetition of the pulse of the lower period collides with the pulse
of the higher period.

However, the TTSoC architecture enforces the restriction that the specification
of pulses (with their periods and phases) is free of collisions.

To avoid conflicts with periods and phases of pulsed data streams in the TTSoC
architecture, communication is determined a priori before deployment (see sec-
tion 2.3.3).

Not all periods need to be active. For this purpose, the TTSoC architecture pro-
vides a feature to selectively disable periods in order to save energy (see section 7.3.3).

4.4 Realization of Pulsed Data Streams

As illustrated in Figure 4.4, a pulse of a pulsed data stream consists of at least
one fragment of variable size. Successive fragments of one pulse are not required
to be transmitted in a dense sequence on the TTNoC. This enables the interleaving
of fragments of different pulses, and thus supports the concurrent transmission of
multiple pulses, i.e., of different pulsed data streams, over a shared resource such
as single physical link. The duration of a pulse assigns the time between the start
of the transmission of the first fragment and the end of the transmission of the last
fragment.

Figure 4.4 also depicts the allocation of TDMA slots for a pulsed data stream,
which consists of three fragments. The free TDMA slots between the last two frag-
ments could be used by fragments of other pulsed data streams.

The fragmentation of pulses into fragments is not visible for the hosts, i.e., outside
the TSS. Thus, the DASs in the hosts only deal with completed application-level
messages of encapsulated communication channels, and need not concern about the
realization by pulsed data streams.

While fragments are not visible to the hosts, from the point of view of the TSS
a fragment is further decomposed into a set of atomic, fix-sized flits. A flit is the

58

4 Communication Service 4.5 Pulse Interleaving

fragment 2

pulse period

pulse duration

activity inactivity activity...

pulse phase

epoch of
global time

inactivity

fragm. 1 fragment 3

TDMA slot containing flits
of fragment 2
TDMA slot containing flits
of fragment 3

unused TDMA slot

TDMA slot containing flits
of fragment 1

Figure 4.4: Example of an pulsed data stream

basic entity that can be transmitted over the TTNoC within one clock cycle of the
system operation frequency fsys, which drives the TSS. A TDMA slot can contain
several flits, depending on the ratioRf between the frequency fmt associated with the
macro tick, which determines the length of a TDMA slot, and the system operation
frequency fsys of the TSS. Equation 4.2 expresses this relation between the two
frequencies:

Rf =
fsys
fmt
≥ 1 (4.2)

The constraint Rf ≥ 1 follows from the fact that (usually) the global granularity
of the global time base is coarser than the granularity associated with the system
operation frequency, as first mentioned in section 2.1.4.

Each pulse originates in the TISS of the sending micro component and terminates
in the TISS of the receiving micro components. Considering the fragmentation of
pulses into fragments, a sending TISS generates a sequence of fragments that make up
the pulse, which are reassembled at the receiving TISSs. This process is transparent
for the host. The transmission instant as well as the receiving instant of each fragment
is determined a priori according to the Time-Triggered Communication Schedule.
The basic mode of operation of the TISS is a burst . That is, the TISS transmits
or receives a complete fragment of a message flit-by-flit, processing one flit in each
clock cycle of the system operation frequency without interruption.

4.5 Pulse Interleaving

The sequence of fragments that make up a pulse need not necessarily be dense.
There can be an interval of idle TDMA slots. Besides this, fragments of other pulses

59

4.6 Allocation of Bandwidth 4 Communication Service

are allowed to interleave the sequence of a specific pulse. This feature named pulse
interleaving enables the coexistence of several pulses and conflict resolution
among shared resources of the TTNoC at the same instant of time. Again, this
is abstracted from the host, hence a special feature of the TSS.

B B B B

A

Time

Figure 4.5: Two conflicting pulses

An example for such a scenario is a DAS at one host that produces two pulsed
data streams, as illustrated in Figure 4.5. Pulse A has a longer period, but each pulse
conveys a large message. Pulse B has a shorter period, but it just transports a small
message. In addition to this we assume that shorter periods have the higher priority,
as deadlines are not to be missed at all. Because both pulses share the same physical
resources, i.e., the same TISS and its TTNoC interface, they are conflicting. So,
pulse interleaving offers the mechanism to split pulse A into smaller sized fragments
(see Figure 4.6a), and interleave the fragments of pulse A and B so that no conflict
arises any more.

Note that the pulse interleaving extends the duration of the split-up pulse.
As Figure 4.6b demonstrates, pulse A has longer duration A′ than before the inter-
leaving. However, this is the only means to handle the conflicting situation between
both pulses. Considering the long period of pulse A, the longer duration A′ of the
pulse does not impose any penalty. Conversely, it is important that the pulsed data
stream, where pulse B belongs to, obtains the bandwidth for its short periodic pulses.

4.6 Allocation of Bandwidth

The TTSoC architecture uses a time format for the global time base that is based
on the physical second, as depicted in Fig. 2.2. Fractions of a second are represented
as 32 negative powers of two (down to about 465 picoseconds), and the full seconds
are presented in 32 positive powers of two (up to about 136 years). The periods and
phases of pulsed data streams directly match to this time format, which is closely
related to the time format of the GPS time, and takes the epoch from GPS.

60

4 Communication Service 4.6 Allocation of Bandwidth

B

A1 A2 A3

B B B

Time

(a) Splitting pulse A into smaller fragments

A’

B

A1 A2 A3

B B B

Time

(b) Interleaved pulses

Figure 4.6: Pulse Interleaving

Section 4.3.1 has introduced the macro tick and its associated bit (the ”macro
tick bit”) in the time format. The macro tick defines the granularity, with which
communication activities are synchronized. The interval between two consec-
utive macro ticks corresponds to the duration of a TDMA slot. TDMA
slots might contain several flits, depending on the ratio Rf between duration of the
TDMA slot (i.e., macro tick) and the TSS’s system operation frequency. In each
clock cycle of the system operation frequency1, one flit is processed.

TDMA slots are allocated a priori to the micro component that sends the pulsed
data stream, respectively is the source of the associated encapsulated communication
channel. This allocation manifests in the Time-Triggered Communication Schedule
contained in each TISS. This schedule indicates the instants, when a fragment of
a pulse is to be sent or received in a burst. All communication activities listed in

1sometimes also referred to as micro tick [Kop97]

61

4.7 Message Ordering 4 Communication Service

the Time-Triggered Communication Schedule are aligned to the macro tick. In this
context, the TISSs are synchronized by means of the macro tick.

A TDMA slot entails a specific bandwidth depending on the number of flits
contained in a slot times the size of a flit. The sum of bandwidths of the TDMA slots
reserved for an encapsulated communication channel devotes the total guaranteed
bandwidth for that encapsulated communication channel.

The usage of reserved TDMA slots is not mandatory. For instance, an encapsu-
lated communication channel with event semantics might not have a new message
pending for transmission. Then, the TDMA slots are reserved for the sending TISS,
however this TISS does not inject data into the TTNoC. In any case, a dynamic re-
allocation of the unused TDMA slots to other encapsulated communication channels
is not supported. This relaxation of requirements, which best suits to the charac-
teristics of event semantics, allows sporadic messages besides the periodic messages,
which is usually associated with state semantics.

Note that the TTNoC as well as the whole TSS is able to run at an system
operation frequency that is a multiple (not necessarily a power of two) of the corre-
sponding frequency of the macro tick. Additionally, the synchronization of commu-
nication activities at the TISSs is decoupled from the transmission over the TTNoC
by design. As a consequence, the specification of communication activities (in the
Time-Triggered Communication Schedule), which is an integral part of application
design, and the operation of the TSS reside in different clock domains.

4.7 Message Ordering

For a given encapsulated communication channel, due to different distances from a
sender to different receivers it is inevitable that data probably arrives at different
instants of time at each receiver. For instance, such multi-path propagation delays
are a natural consequence of multi-casting in a non-bus topology of the underlying
TTNoC.

It is a part of the communication core service of the TTSoC architecture to
provide two types of guarantees with respect to message ordering [Sal08].

4.7.1 Total Temporal Ordering

Within a single encapsulated communication channel message ordering is inherent.
The sending TISS might partition a message into fragments, which are allowed to
take different routes each. However, a specific fragment belonging to this message
periodically takes the same route. Due to different lengths of routes it is possi-
ble for the ordering of receiving fragments to deviate from the ordering of sending.
Nevertheless, such an inconsistent reception order of fragments is not visible to the
micro component, since it reads only completely received messages, which have been
reassembled into proper order within the TISS.

62

4 Communication Service 4.7 Message Ordering

Note, that the property of temporal ordering is essential to interpret serial data,
i.e., a sequence of messages in a single encapsulated communication channel.

4.7.2 Consistent Delivery Order

A consistent delivery order among several encapsulated communication channels is
mandatory in order to establish replica determinism [Pol93] for micro components,
which is a requirement to transparently mask hardware errors. Consistent delivery
order denotes the property that any two micro components see the same sequence of
message receptions among a set of encapsulated communication channels.

Multi-path propagation delays, particularly with multi-casting, can cause the
following situation. At two encapsulated communication channels α and β with
multiple receivers a given micro component A receives the last fragments fα and fβ
of the corresponding encapsulated communication channels within a short interval of
time. Micro component B is also attached to α and β as a receiver. The route of α is
longer than β for A, but from the point of view of B the route of α is shorter than β.
As a result, A notices the instant of arrivals t(fα) > t(fβ) for the fragments, whereas
B records t(fα) < t(fβ). The arrival of the last fragment derives the completion of
the message. Consequently, A has α > β, but B has α < β. This inconsistency is
unacceptable.

Dealing with Multi-path Propagation Delays

The TTSoC architecture inherently supports a mechanism in order to avoid the
violation of the property of consistent delivery order. If consistent delivery order
is required for a set of encapsulated communication channels the reception of the
last fragment fl of a message can virtually be delayed at each TISS to a common
instant tc ≥ max t(fl). After the last fragment has been completely received by all
micro components, all TISSs dispatch a virtual fragment at that common instant that
causes the associated message to be declared as complete at all TISSs simultaneously.
This virtual fragment does not contain any data, it is just a place holder to trigger a
receive instant at receiving TISSs. There are no flits transmitted over the TTNoC.

The instant of the virtual fragment is synchronized by means of the global time
base. Additionally, this instant is a priori known and is therefore included in the
Time-Triggered Communication Schedule among the TISSs of all participating micro
components.

Note that the mechanism of the virtual fragment is transparent to the TTNoC.
Furthermore, it seamlessly integrates into the concept of time-triggered communica-
tion within the TISS. Consequently, its realization does not require any additional
semantics and control logic neither in the TISS nor in the TTNoC.

63

4.7 Message Ordering 4 Communication Service

64

Chapter 5

The Uniform Network Interface

This chapter presents the specification of the Uniform Network Interface (UNI),
which resides on top of the TISS in the conceptual structure of the implementa-
tion, as introduced in Figure 2.4. The purpose of the UNI is to abstract from the
implementation of the TSS, so that from the point of view of the host the architec-
tural core services of the TTSoC architecture are accessible via a memory-mapped
interface.

The UNI consists of two parts:

Port Interface The Port Interface offers access for the TISS to the physical mem-
ory, where all application data of ports that are sent or received by the DASs
is stored – the Port Memory.

Control Interface The Control Interface is used by the host for configuration and
synchronization of architectural core services.

Physically, both interfaces conform to the low-level signal specification as defined
by the OCP standard. The choice for OCP shall encourage the industry to widely
accept the TTSoC architecture.

In the following we comprehensively describe the Port Interface and Control In-
terface as memory-mapped interfaces.

5.1 Port Interface

The purpose of the Port Interface is to grant access for the TISS to the ports resid-
ing in the physical memory, which hosts the application data transported through
encapsulated communication channels – the Port Memory. Transactions over the
Port Interface are solely initiated by the TISS itself according to the Time-Triggered
Communication Schedule. Therefore, the Port Interface is realized as an OCP Mas-
ter on the TISS-side. Symmetrically, at the host-side (i.e., at the bottom-end of the
Front-End) it is an OCP Slave.

65

5.1 Port Interface 5 The UNI

Moreover, by design the Port Interface is required to convey a data word
in every clock cycle of the system operation frequency. Note that this is
not a special feature to increase the performance, but mandatory to keep pace with
the basic operation of Fragment Switches and TISSs, which is a burst. As a result,
it is possible to fetch and store the data words of a port without discontinuation,
and further send to and receive from the TTNoC interface without interruption.
Otherwise, it would be necessary to stall the burst of Fragment Switches and TISSs
and introduce buffers.

5.1.1 Signal Specification

Table 5.1 covers the physical signals that make up the Port Interface. The first col-
umn contains the name of the signal as it appears in the source code. Note that
for the Port Interface all signals have the prefix OCPM (”OCP Master”), whereas
the remaining part of the name refers to the convention defined in the OCP stan-
dard. The second column of that table gives the width of the signal in the current
implementation. The column ”Driver” informs, which entity sets the level of the cor-
responding signal. For instance, if the driver is ”TISS”, this means that the signal
is set at the TISS-side of the Port Interface. On the other (host-) side, the signal is
just read. For ”host”, the signal is driven by the host-side, i.e., the Front-End, of the
Port Interface, whereas the TISS consumes the signal value. The last column gives
a short description of the signal.

Name Width Driver Function
OCPM MAddr 16 bit TISS address of the data word in

the Port Memory
OCPM MCmd 3 bit TISS command code of the current

operation
OCPM MData 32 bit TISS write data; from TISS to Port

Memory
OCPM SData 32 bit host read data; from Port Memory

to the TISS
OCPM SError 1 bit host error status

Table 5.1: OCP signals of the Port Interface

In the following we give more detailed information about the function of each
signal.

OCPM MAddr This signal, which is actually a vector of 16 bit in the current implemen-
tation, specifies the address of the current read or write transfer. This address
refers to a memory location in the Port Memory. Note that the OCP specifica-
tion requires addresses to be word aligned. With a width of 32 bit at the data
buses (OCPM MData as well as OCPM SData), we have to add 2 additional bits to

66

5 The UNI 5.1 Port Interface

the vector OCPM MAddr. Consequently, the 2 least significant bits are hard-wired
to 0, and actually 16−2 = 14 bits of this vector address distinct data words (of
32 bit width) in the Port Memory. In the current implementation, this gives
as a maximum size of the Port Memory of 214 · 32 bit = 512 Kbit = 64 KB.

OCPM MCmd According to the OCP standard, this signal indicates the type of trans-
fer that currently runs through the Port Interface. The standard dictates a
width of 3 bit, even though the current implementation supports only 3 out
of all possible OCP commands. The supported OCP commands are listed in
Table 5.2.

OCPM MCmd[2:0] Command
000 idle
001 write
010 read

Table 5.2: Currently supported OCP commands at the Port Interface

OCPM MData This signal carries the actual application data, which is to be written
into the Port Memory. The width of this signal, i.e., this vector, by design
equals the width of the data bus of a lane in the TTNoC, which is 32
bit in the current implementation. Thus, application data flits can be collected
from the TTNoC interface and directly forwarded through the Port Interface
to the Port Memory without any wrapping or processing.

OCPM SData Like OCPM MData, but inverse direction. This signal conveys read data
from the Port Memory. Due to its width that equals the width of the data bus
of a lane in the TTNoC, again we can directly forward the application data to
the TTNoC interface without any wrapping or processing.

OCPM SError Over this signal the Port Memory respectively the Front-End is allowed
to report error conditions to the TISS. This signal is processed by the error
status logic of the TISS, and its state is accessible through the Control Inter-
face. For instance, an error condition arises, when the address at OCPM MAddr
exceeds the address range of the real Port Memory1. Furthermore, note that
the addresses of ports are outside the TSS, as the Port Memory residing in
the Front-End does not belong to the TSS. Consequently, it is possible that
addresses can be erroneous. Nevertheless, this does not violate the tempo-
ral behaviour of the TSS, nor it breaks up the encapsulation of encapsulated
communication channels.

1assuming that the physical memory of the Port Memory is smaller than the maximum address-
able space of the Port Interface

67

5.1 Port Interface 5 The UNI

5.1.2 Memory Layout of State and Event Ports

This section explains the memory layout of state and event ports, which reside in the
Port Memory. For details about the synchronization protocol established for ports
refer to section 5.3.

As mentioned before, the width of data words in the Port Memory and the width
of the data bus of the lane in the TTNoC are the same. As a result, the TISS is
enabled to store into or fetch from the Port Memory in each clock cycle of the system
operation frequency without any wrapping or further processing.

State Ports

Generally, the memory layout of a state port depends on the message size in num-
ber of data words / flits, the synchronization method (explicit or implicit),
and the optional activation of the time stamping service (see section 5.4.1) for
that port.

Figure 5.1 shows the memory layout for an output state port of size N data
words. Apparently, this port uses the explicit synchronization. Namely, the reserved
memory area is doubled, hence, it requires 2 · N data words in the Port Memory.
The double buffer is the means of explicit synchronization. It allows to establish a
shadow buffer . For details about synchronization of state ports refer to section 5.3.1.

0 Flit 0

1 Flit 1

. . .

N − 1 Flit N − 1



active
buffer

N Flit 0

N + 1 Flit 1

. . .

2 · N − 1 Flit N − 1



shadow
buffer

Figure 5.1: Memory layout of an output state port with explicit synchronization

In contrast, an output state port with implicit synchronization consumes only
N data words, as it does not include shadow buffers. However, input state ports
support the time stamping service. If the time stamping service is activated for a
given port, the memory layout increases to N + 2 data words due to the additional
64 bits required for storing the time stamp. As we can see in Figure 5.2, the time
stamp is placed in front of application data of the port.

68

5 The UNI 5.2 Control Interface

0 Time Stamp (Low Word)

1 Time Stamp (High Word)

2 Flit 0

. . .

N + 1 Flit N − 1

Figure 5.2: Memory layout of an input state port with time stamps

Event Ports

Figure 5.3 depicts an event port in the Port Memory. The size of a single (event)
message is given as N , the number of messages in the event queue is denoted as L.
Moreover, Figure 5.3 shows the usage of the time stamping service.

The amount of allocated memory is determined by the message size in number
of data words / flits, the maximum number of messages in the queue, and
the optional activation of the time stamping service for input event ports only. As
a result, an event port consumes L · (N + 2) data words in the Port Memory in case
of an activated time stamping service. Otherwise, without time stamping service the
event port reserves just L ·N data words.

For details about the synchronization of event ports refer to section 5.3.2.

5.2 Control Interface

The second part of the UNI is the Control Interface. It is used for configuration
of individual ports and synchronization of the access to messages in ports between
TISS and host. Unlike the Port Interface, the Control Interface is realized as an OCP
Slave from the point of view of the TISS. Symmetrically, at the host-side it is made
up of the according OCP Master.

Consequently, the sphere of control at the Control Interface remains with the host.
That is, the host determines the access to the Control Interface. As a result, the
access at the Control Interface is not time-triggered. Indeed, the Control Interface
is not time-critical. Additionally, it is not required to convey a data word in every
clock cycle of the system operation frequency. In other words, the Control Interface
is also not performance critical, as it does not need to go with a burst.

Furthermore, the Control Interface has a fixed width of data words, which is 32 bit
in the current implementation. In comparison, the Port Interface always possesses
the same width of data words as the width of the data bus of a lane in the TTNoC. In
the current implementation, the data width of Control Interface and Port Interface
are the same by coincidence.

69

5.2 Control Interface 5 The UNI

0 Time Stamp (Low Word)

1 Time Stamp (High Word)

2 Flit 0

. . .

N + 1 Flit N − 1



Queue
Position 0

N + 2 Time Stamp (Low Word)

N + 3 Time Stamp (High Word)

N + 4 Flit 0

. . .

2 · (N + 2) Flit N − 1



Queue
Position 1

(L − 1) · (N + 2) Time Stamp (Low Word)

(L − 1) · (N + 2) + 1 Time Stamp (High Word)

(L − 1) · (N + 2) + 2 Flit 0

. . .

L · (N + 2) − 1 Flit N − 1



Queue
Position L − 1

Figure 5.3: Memory layout of an event port with time stamps

5.2.1 Signal Specification

Table 5.3 covers the physical signals that make up the Control Interface. The first
column contains the name of the signal as it appears in the source code. Note that
for the Control Interface all signals have the prefix OCPS (”OCP Slave”), whereas
the remaining part of the name refers to the convention defined in the OCP standard.
The second column of that table gives the width of the signal. The column ”Driver”
informs, which entity sets the level of the corresponding signal. For instance, if the
driver is ”TISS”, this means that the signal is set at the TISS-side of the Control
Interface. On the other (host-) side, the signal is just read. For ”host”, the signal
is driven by the host-side, i.e., the Front-End, of the Control Interface, whereas the
TISS consumes the signal value. The last column gives a short description of the
signal.

In the following we give more detailed information about the function of each
signal.

OCPS MAddr This signal, which is actually a vector of 9 bit in the current implemen-
tation, specifies the address of the current read or write transfer. This address
refers to a memory location in the name space given by OCPS MAddrSpace. Like
OCPM MAddr of the Port Interface, OCPS MAddr has to append 2 surplus address

70

5 The UNI 5.2 Control Interface

Name Width Driver Function
OCPS MAddr 9 bit host address of the data word in

the current name space
OCPS MAddrSpace 2 bit host current name space

OCPS MCmd 3 bit host command code of the current
operation

OCPS MData 32 bit host write data; from host
to the memory given by
OCPS MAddrSpace

OCPS MByteEn 4 bit host byte enable mask for write
data

OCPS MRespAccept 1 bit host handshake signal; host ac-
cepts current response

OCPS SCmdAccept 1 bit TISS handshake signal; TISS ac-
cepts current command

OCPS SData 32 bit TISS read data; from the memory
given by OCPS MAddrSpace to
the host

OCPS SResp 1 bit TISS handshake signal; status code
of the response

OCPS SError 1 bit TISS error status
OCPS SFlag 10 bit TISS additional status information,

e.g, interrupt flags
OCPS SReset n 1 bit TISS force the host’s CPU to per-

form a reset

Table 5.3: OCP signals of the Control Interface

wires (due to the fixed data with of 32 bit) in order to conform to the OCP
standard (with respect to word alignment of addresses). As a result, at the
Control Interface just 9− 2 = 7 bits are available to address data words in the
memory of a given name space. Hence, 27 = 128 different data words can be
addressed in each name space.

OCPS MAddrSpace The Control Interface contains a concept of name spaces. On the
one hand, these name spaces extend the maximum address range. On the other
hand, name spaces logically separate different entities of the Control Interface.
Each name space is associated with one entity, which is accessible from the host
via the Control Interface. These entities are the Port Configuration Memory
(see section 5.2.2), the Port Synchronization Memory (see section 5.2.3), and
the TISS’s Register File (see section 5.2.4). Table 5.4 gives the encodings of
each entity. In the current implementation, the Control Interface provides 3
name spaces over a 2 bit vector, which leaves one bit pattern reserved.

71

5.2 Control Interface 5 The UNI

OCPS MAddrSpace[1:0] Name Space
00 reserved
01 Port Configuration Memory
10 Port Synchronization Memory
11 Register File

Table 5.4: Encoding of the name spaces of the Control Interface

OCPS MCmd According to the OCP specification this signal indicates the type of trans-
fer that currently runs through the Control Interface. The standard dictates
a width of 3 bit, even though the current implementation supports only 3 out
of all possible OCP commands. The supported OCP commands are listed in
Table 5.5.

OCPS MCmd[2:0] Command
000 idle
001 write
010 read

Table 5.5: Currently supported OCP commands at the Control Interface

OCPS MData This signal carries the actual configuration or synchronization data,
which is to be written into the memory of the name space given by
OCPS MAddrSpace. Unlike the corresponding signal in the Port Interface, which
width equals the width of the data bus in the lane of the TTNoC, the realiza-
tion in the Control Interface has a fixed width, which is 32 bit in the current
implementation.

OCPS MByteEn Each byte in the data word transported via OCPS MData as well
as OCPS SData can be masked so that the value carried in the corre-
sponding byte is not processed. If bit i in OCPS MByteEn is 0, then
the bits OCPS MData[8i+7:8i] (in case of a write operation) respectively
OCPS SData[8i+7:8i] (in case of a read operation) are set to 0. Otherwise,
if i is 1 the corresponding byte in the memory of the given name space is up-
dated (for write operations), respectively is present in the response to a read
operation.

OCPS MRespAccept With this signal the host indicates that it is ready to accept
current read data from the Control Interface by setting this signal to 1. As
long as this signal remains 0, the TISS postpones the delivery of the current
read data. The host has to drive this signal to 1 for exactly one clock cycle
of the system operation frequency, after the Control Interface has indicated
some code other than the ”idle state” at OCPS SResp. Such handshake may be
necessary in case of slower hosts that cannot process the response data within
a single clock cycle of the system operation frequency.

72

5 The UNI 5.2 Control Interface

OCPS SCmdAccept The TISS signals that it accepts the current command given by
OCPS MCmd by setting this signal to 1 for the very first clock cycle of the system
operation frequency, after the new command has been issued at OCPS MCmd.
This signal also belongs to the set of handshake signals present at the Control
Interface.

OCPS SData Like OCPS MData, but inverse direction. Furthermore, it transports read
data from the memory location in the name space, which has been requested
during the last command issued at OCPS MCmd and addressed via OCPS MAddr.
Like OCPS MData it supports byte masking.

OCPS SResp The Control Interface provides another OCP handshaking signal named
OCPS SResp. It indicates the status of the response to a prior issued read oper-
ation. According to the OCP standard, the following codes are implemented,
as shown in Table 5.6.

OCPS SResp[1:0] Command
00 no response, idle
01 data valid
10 request failed
11 response error

Table 5.6: Status codes at the OCPS SResp handshaking signal

As long as OCPS SResp shows the code 00, the Control Interface is idle, or no
response to a prior issued read operation is available, yet. For instance, this
happens after the read operation has been initiated and the TISS currently
fetches the data for the response from one of the memories accessible through
the Control Interface.

Finally, when the data for the response is visible at OCPS SData, OCPS SResp
indicates the validity of data with the code 01.

If the TISS has discovered an invalid address in combination with a read or
write operation, the Control Interface shows the invalidity of the most recent
operation with the code 10. In this case, no read or write operation has taken
place.

However, if the address is valid, but the host tries a write operation at a read-
only (write-protected) memory location of some name space, the TISS rejects
this write operation, and the Control Interface indicates this rejection by setting
a code of 11 at OCPS SResp.

OCPS SError Usually, this signal is used as an interrupt signal that indicates the
occurrence of an error. In this case, OCPS SError is driven to 1 for exactly one
clock cycle of the system operation frequency. The errors covered here do not
consider operational errors of the OCP interfaces, but errors within the core
services provided at the UNI. The sources of errors can be queried by the host

73

5.2 Control Interface 5 The UNI

via the Control Interface by reading the Error Status Register, as introduced
in section 5.2.4.

OCPS SFlag This signal vector with a width of 10 bit also indicates interrupt events
and additional status information. In contrast to OCPS SError, these interrupt
events are not associated with errors, but with correct operation of the core
services. The mapping of the individual bits respectively subset of bits of
OCPS SFlag to interrupt events is mentioned in Table 5.7.

Signal Interrupt / additional information
OCPS SFlag[6:0] Port Number
OCPS SFlag[7] Port Operation Complete
OCPS SFlag[8] Global Reconfiguration Instant
OCPS SFlag[9] Generic Timer Service Interrupt

Table 5.7: Signals in OCPS SFlag and their associated interrupt events

In the following we explain the interrupt events and additional information of
OCPS SFlag in more detail.

Port Number This field always correlates to Port Operation Complete. It
states that a message has been completed to be sent or received at a given
port, and therefore contains the numeric identifier of that port. Note that
this is no interrupt event itself, but additional information to an interrupt
event. Once the TISS has set the value of the field, it remains stable until
the next event.

Port Operation Complete When a message has completely been processed
at a port – after the last flit of the last fragment – this interrupt can be
triggered to inform the host. Whereas Port Operation Complete just
indicates the occurrence of the interrupt event, the numeric identifier of
the port that has been completed is given by Port Number. Other than
Port Number, which value remains stable until the next ”port operation
complete” event, Port Operation Complete is just driven to 1 for exactly
one clock cycle of the system operation frequency. This interrupt can be
activated or deactivated for each port individually. This setting is part of
the Port Configuration Memory, as described in section 5.2.2.

Global Reconfiguration Instant This is the interrupt signal, which indi-
cates the occurrence of the reconfiguration instant . For details about the
reconfiguration instant and the reconfiguration procedure in general refer
to section 8.4.

Generic Timer Service Interrupt This is the interrupt signal associated
with the generic timer service, which is introduced in section 5.4.3.

Note that the TISS does not include an interrupt handling logic. It
just signals each interrupt for exactly one clock cycle of the system

74

5 The UNI 5.2 Control Interface

operation frequency. The Front-End has to assure that interrupts
are recorded and processed properly.

OCPS SReset n As its name indicates, this signal is low-active. Its purpose is to force
the host’s application computer to a reset. This signal is associated with the
watchdog service of the TSS. Whenever the host fails to update the watchdog
life-sign register in the Register File, the TISS pulls this signal to 0 (low-active!)
for one clock cycle of the system operation frequency. For details about the
watchdog service refer to section 5.4.2.

5.2.2 Port Configuration Memory

The Port Configuration Memory is a dual-ported memory inside the TISS, which
is accessed through the Control Interface at name space 01. The purpose of the
Port Configuration Memory is to store the set-up of each port individually. As the
set-up is in the sphere of control of the host, it is read- and writable for the host.
In contrast, the TISS itself just performs read operations to the Port Configuration
Memory.

The Port Configuration Memory is organized in consecutive data words, whereas
each data word refers to exactly one port. The width of such a data word equals
the width of the Control Interface, which is 32 bit in the current implementation.
The address of the data word in the Port Configuration Memory corresponds to the
identifier of that port. Thus, there is no explicit mapping between port identifier
and address in the Port Configuration Memory.

The current implementation supports 128 ports, which are addressable by the 7
useful bits2 of the address bus of the Control Interface (OCPS MAddr). However, 3
ports are reserved for special operations, as introduced in section 7.4.1.

0 1 2 3 4 5 18 19 31

P
E

P
T

P
S

I
E

T
S Port Base Address QLength

Figure 5.4: Layout of a data word in the Port Configuration Memory

Figure 5.4 shows the layout of a data word in the Port Configuration Memory.
The fields within a data word are described in the following.

Port Enable (PE) As it name suggests, this binary field activates or deactivates a
port. That is, when the port is deactivated, no communication takes place when
a fragment of this port is dispatched. The TISS just skips any communication
activity of a deactivated port, event though its fragments are still dispatched.
As a result, no transfer at the Port Interface is triggered, as well as the Port
Synchronization Memory of that port is not affected.

A value of 0 indicates a disabled port, whereas 1 shows that the port is enabled.
2excluding the 2 least significant of the total 9 bits of the vector due to word alignment

75

5.2 Control Interface 5 The UNI

Port Type (PT) The host itself is allowed to determine the semantics of a port.
While the TSS just provides the infrastructure (i.e., encapsulated communica-
tion channel) for a given port, the host decides whether it uses the bandwidth
for the port with an event or state semantics.

If this bit field is 0, the port is used as a state port. Otherwise, a 1 means that
this port is an event port.

Port Sync (PS) As first mentioned in section 5.1.2, a port can be synchronized
either in an explicit or implicit way. While synchronization is actually discussed
in section 5.3, here we find the field to configure, whether a given port should
use explicit or implicit synchronization.

If this field is 0, explicit synchronization is chosen, whereas 1 corresponds to
implicit synchronization.

Interrupt Enable (IE) As introduced in section 5.2.1, a completed operation of
a port is allowed to trigger an interrupt, which is indicated in the signal
OCPS SFlag. This field actually controls, whether a port triggers an interrupt
or not.

This ”port operation complete” interrupt is deactivated in case of a value of 0,
and activated on 1.

Time Stamp Enable (TS) The time stamping service is activated for a given port
with this field set to 1. In contrast, 0 turns time stamping off.

Port Base Address The host itself has to care about the layout of the Port Memory
in the Front-End. With this field, the host specifies the base address of a port
measured in data words in the Port Memory. Note that in this field, word
alignment has not to be considered. In other words, the host need not care to
append surplus bits for word alignment. The least significant bit of this field
already corresponds to a word address in the Port Memory. Thus, this field
comprises just 14 bits, and not 16 like the address bus of the Port Interface
(OCPM MAddr).

Queue Length (QLength) This field is only meaningful for event ports. Namely,
this denotes the maximum length of the queue of an event port. In fact, this
maximum length is given in number of data words in the Port Memory that
the event port consumes. This number is derived from the intended maximum
number of event messages and the size of each event message. The formula is
obvious:

QLength = number of(msg) · size of(msg)

Keep in mind that the size of messages also has to consider, whether the time
stamping service is currently used for the event port. If so, the message size
increases by 2, as a time stamp requires 2 data words in the Port Memory in
the current implementation.

In the current implementation, a data word in the Port Configuration Memory
reserves 13 bits for this field.

76

5 The UNI 5.2 Control Interface

5.2.3 Port Synchronization Memory

The Port Synchronization Memory is some kind of ”shared memory” to inform the
participants of the port synchronization protocol (the TISS and the host) of the
status of access of its opponent. In general, it is a dual-ported memory that is
read and written by the TISS as well as the host. In fact, it is the most frequent
accessed entity via the Control Interface. It is assigned the name space 10 according
to Table 5.4.

While the real protocol of port synchronization is introduced in section 5.3, this
section illustrates the layout of the Port Synchronization Memory. Like the Port
Configuration Memory, for each port there exists a distinct data word in the Port
Synchronization Memory. Consequently, it is made up of 128 data words of width
32 bit each.

The first and most important property of the Port Synchronization Memory is
the fact that a given data word is reused for all combinations of port directions (i.e.,
input or output port) and port semantics (state or event port) of the same port.
This approach considerably saves memory size for port synchronization. As a result,
a given data word can be interpreted in 3 different ways, as depicted in Figure 5.5.

0 1 15 16 17 31

V U

(a) Output State Port

0 15 16 23 24 31

NBW

(b) Input State Port

0 12 13 14 15 16 28 29 30 31

Host Addr H
T TISS Addr T
T

(c) Event Port (Output and Input)

Figure 5.5: Layout of a data word in the Port Synchronization Memory with its
interpretations

To sum up, depending on the settings in the corresponding data word in the
Port Configuration Memory, the bits in the data word of the Port Synchronization
Memory have different meaning. There is a different interpretation for output state
ports, input state ports, and event ports (both input event ports and output event
ports). In the following we describe the meaning of bits and subsets of bits of a data
word of the Port Synchronization Memory.

TISS Addr This field is only relevant for event ports. For an input event port it
specifies the write position in the event queue, otherwise (i.e., for an output
event port) it marks the read position from the point of view of the TISS. Read
and write positions are interpreted as offsets from the port base address, which
is configured in the Port Configuration Memory. TISS Addr is incremented

77

5.2 Control Interface 5 The UNI

according to the formulae in Table 5.8, after an event message has completely
been processed.

Time Stamping calculation
disabled TISS Addrnew = (TISS Addrold +N) mod QLength
enabled TISS Addrnew = (TISS Addrold +N + 2) mod QLength

Table 5.8: Calculating new values of TISS Addr

N denotes the net message size in the Port Memory’s data words, and QLength
is the same as the field in the Port Configuration Memory. Also note that the
time stamping service has to be considered, which affects the size of an event
message. The additional 2 for enabled time stamping embodies the data words
required for a time stamp according to the current implementation.

As read and write positions in an event queue can reach the value of the queue
length, this field possesses the same width as the field holding the queue length
(QLength) in the Port Configuration Memory, which is 13 bit in the current
implementation.

TISS ToOF (TT) (Toggle on Overflow of TISS Addr) Like TISS Addr this field is
only present for event ports. This single bit field is toggled, whenever TISS
Addr has overflown, i.e., has become 0 after a calculation. As we learn from
section 5.3, this information is vital to distinguish between full and empty event
queues.

Host Addr This field has the same semantics as TISS Addr, but it considers an
event queue from the host’s point of view. For input event ports it is the
read position, whereas for output event ports it is the write position. Also,
new values of read/write positions are calculated like TISS Addr according to
Table 5.8.

Host ToOF (HT) (Toggle on Overflow of Host Addr) This is the equivalent of TISS
ToOF. Obviously, it deals with the overflow of Host Addr.

NBW Input state ports apply the NBW protocol in order to let the host synchronize
to this field, which operates as the NBW sequencer. Note that this field is
exclusively written by the TISS, but also read by the host. In the current
implementation, a data word of the Port Synchronization Memory assigns 8
bits for this field. For details concerning the synchronization protocol of each
port type refer to section 5.3.1.

Using (U) This single bit field is used for the synchronization of output state ports.
It is one part of the synchronization protocol for output state ports, namely
the TISS-side part. For details concerning the synchronization protocol of each
port type refer to section 5.3.1.

78

5 The UNI 5.2 Control Interface

Valid (V) This single bit field is used for the synchronization of output state ports.
It is one part of the synchronization protocol for output state ports, namely
the host-side part. For details concerning the synchronization protocol of each
port type refer to section 5.3.1.

Note that all fields that are exclusively written by the TISS are located in the
upper two bytes of the data word. In contrast, the two lower bytes are intended
to be exclusively written by the host. This way, the efficiency of write accesses to
the Port Synchronization Memory is increased. It also allows for an efficient write
protection mechanism by means of hard-coded byte masking. For instance, the fields
belonging to the TISS are protected from the host, if the upper two byte mask signals
are hard-wired to 0 at the host-side port of the dual-ported Port Synchronization
Memory.

The whole data word of the Port Synchronization Memory is auto-
matically reset (i.e., set to 0), when the host updates the set-up of the
corresponding port in the Port Configuration Memory. Nevertheless, the
host never has (write) direct access to these parts of the data word, which are exclu-
sively written by the TISS.

5.2.4 Register File

The Register File offers additional information and control facilities to the host via
the Control Interface. For example, this information includes a copy of the current
value of the global time base, and the Error Status Register that contains the status
of error conditions. Additionally, it realizes the control mechanism of the special
services provided by the TISS. This includes the watchdog service (see section 5.4.2)
as well as the generic timer service (see section 5.4.3).

Figure 5.6 gives the layout of the Register File. Note that this is the Register
File of the TISS. Besides this, the Front-End is also allowed to supply register files
to provide control mechanisms and information to the host. As a consequence, the
TISS’s Register File3 is distinguished from other entities such as Port Configuration
Memory or Port Synchronization Memory by the name space 11 at the Control
Interface.

We learn from Figure 5.6 that the Register File is made up of 8 data words. The
width of these data words is aligned to the width of the data buses of the Control
Interface, which is 32 bit in the current implementation. If a data word of the
Register File does not fill up the whole width, then the data word is stuffed with
zeros.

In the following we describe each entity in the Register File.

Global Time This field embodies ”virtual” registers. That is, actually there exists
no real two data words in the Register File, which hold the upper and lower

3In the following we simply call the TISS-side Register File ”register file”.

79

5.2 Control Interface 5 The UNI

0 13 16 20 23 24 25 31

0 Global Time (Lower Word)

1 Global Time (Higher Word)

2 Watchdog Lifesign

3 Error Status Register
Watchdog

Period H
M

T
E

C
D

4 Timer Interrupt Pattern (Lower Word)

5 Timer Interrupt Pattern (Higher Word)

6 Timer Interrupt Mask (Lower Word)

7 Timer Interrupt Mask (Higher Word)

Figure 5.6: Layout of the TISS’s Register File

half of the global time base. Whenever the host accesses these addresses via
the Control Interface, the TISS extracts a copy of the current value from the
counter vector of the time format of the global time base. As the time format
used in the TTSoC architecture comprises 64 bit, this copy has to be split into
an upper and lower half to be transported through the Control Interface. By
design, when the host intends to read the current time (i.e., the current value
of the counter vector), first it must read the lower half (at offset 0) and
afterwards the upper half (at offset 1). A partial access to any of the
halves is not allowed. The reason for this is, that the TISS buffers the whole
copy into a shadow register. So, when the upper half is read after the lower
one, the TISS supplies the appropriate value from the shadow register. As a
result, reading the global time base is always consistent, even though there
might elapse some time between the accesses of lower and upper half.

Note that both ”virtual” data words are read-only. The host could try to
write to them, however this would not have any effect to the global time base.
However, the Control Interface would indicate the violation of write protection
via OCPS SResp with code 11. As a consequence, the host is not able to set the
global time base itself. Setting the global time base is in the sphere of control
of the TNA, which is explained in section 8.4.

Watchdog Life Sign This is the register, where the host must write periodically
in order to avoid triggering the watchdog miss error. This register is named
watchdog life-sign register , because the host has to write the life-sign there,
which is a fixed 32 bit string of 0x55555555. For details about the watchdog
service refer to section 5.4.2.

Communication Disable (CD) The host is enabled to turn off all communication
activities of its TISS via this field. Other than the field Port Enable in the
Port Configuration Memory, which just affects a single port, Communication

80

5 The UNI 5.2 Control Interface

Disable simultaneously disables the communication at all ports. Be aware
that the semantics of this field is tricky. Namely, a value of 0 keeps the com-
munication enabled, whereas 1 disables the communication. Also note that in
the current implementation, at start-up respectively reset of the TISS this field
is set to 1. Thus, communication is disabled by default, and has to be
explicitly enabled by the host.

Even though no sending or receiving operation at the Port Interface as well as
TTNoC interface takes place, disabling communication does not turn off the
dispatching within the TISS, i.e., the Burst Dispatcher. The instants, when a
burst associated with a fragment of a message in a given port is to be processed,
are still determined by the Burst Dispatcher, although the operation is skipped
in the Port Manager afterwards, in case of disabled communication. The reason
for this is that dispatching communication activities is in the sphere of control
of the TSS, which operates autonomously from the hosts. Disabling dispatching
when disabling communication would interfere with the autonomy of the TSS,
and would therefore violate this fundamental design assumption.

Furthermore, there is one communication activity that can never be deactivated
– the port associated with the reconfiguration of the TISS by the TNA. For
details about the on-the-fly reconfiguration have a look at section 8.4.

Timer Interrupt Enable (TE) This is the field that enables and disables the
generic timer service, introduced in section 5.4.3. The semantics is straight-
forward: 0 disables the service, 1 enables it.

Host Mode (HM) This is additional information included in the TISS’s Register File,
which has been set by the TNA during the reconfiguration. This information
serves to let the host know, whether its application services are wanted or not.
A value of 0 indicates that the application services realized in the attached host
are not required at the moment, and therefore the host should rather suspend
in order to save energy. Apparently, the opposite situation applies for a value
of 1. However, the host is not forced to fulfil the recommendation expressed in
the Host Mode. It is in its own sphere of control, whether to suspend or not.

Watchdog Period The watchdog period is another piece of information that has been
set by the TNA during the most recent reconfiguration. Like Host Mode, this
field is just read-only to the host. The purpose of this field is to inform the host
about the period that is associated with the watchdog service. Anyway, the
watchdog period has been arranged by being included in the Time-Triggered
Communication Schedule. So, with this information the host is enabled to react
properly to the current watchdog period, i.e., to know when to update the life-
sign register. For details about the watchdog service refer to section 5.4.2.

Timer Interrupt Pattern and Timer Interrupt Mask These two entities control
the behaviour of the generic timer service. As both are are related to the time
format of the global time base, which is a 64 bit, each has to be split into two

81

5.2 Control Interface 5 The UNI

halves, resulting into a total of four data words in the Register File. The usage
and meaning of these entities is covered in section 5.4.3, which comprehensively
introduces the generic timer service.

Error Status Register Any error, which is detected by the TISS and concerns
some of the core services of the TSS, is recorded and reported via the Error
Status Register. Figure 5.7 illustrates the layout of the Error Status Register
in detail. The following explains the meaning of each field in the Error Status
Register.

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Overflow Port Number

O
v
f

M
E

C
f
g

C
E

W
D

R
e
p

Figure 5.7: Layout of the Error Status Register

Overflow Port Number An overflow of the queue of an event port might occur
in two different situations. Firstly, for output event ports, when the host
produces event messages faster than they are sent by the communication
service, the event queue will finally run full, and no further event message
can be appended to the queue. Secondly, for input event ports, if the host
consumes event messages slower than they are delivered by the communi-
cation service, the event queue will also overflow. Note that this situation
is not caused by the communication service of the TTSoC architecture,
but by a host, which does not put the proper effort into handling that
event port.
If such a situation arises, this field holds the identifier of the port, which
has caused the overflow. After it has been set, the value remains stable.

Queue Overflow Error (Ovf) This field indicates the actual occurrence of
an overflow at some event port. It is set, when the TISS first discovers
an overflow of some event port. It is a single bit, therefore it can not
closer specify, which port has triggered the Queue Overflow Error. This
additional information is kept in the field Overflow Port Number. In
contrast, Queue Overflow
Error can just signal that an erroneous condition has been met.

Port Memory Error (ME) As introduced in section 5.1.1, the Port Interface
propagates a feedback signal, which concerns errors at the Port Memory.
This error signal is wired across the TISS and is recorded in the Error
Status Register in the field under consideration (Port Memory Error).

Port Configuration Error (Cfg) This error arises, whenever a burst is dis-
patched by the Burst Dispatcher, which belongs to a port that has been
disabled by the host by means of Port Enable in the Port Configuration
Memory.

Communication Error (CE) This error is related to Port Configuration
Error, though, it is more generic. It does not consider a single port,

82

5 The UNI 5.3 Synchronizing Access to Ports

but all ports in general. The Communication Error is triggered, when
the Burst Dispatcher dispatches a burst of any port, however, the com-
munication service has been deactivated by the host by means of the field
Communication Disable in the Register File.

Watchdog Miss (WD) This field records the incident, when the host fails to
update the watchdog life-sign register in time. This is called a watchdog
miss. For details about the watchdog service refer to section 5.4.2.

Repeated Error (Rep) The intention of this field is to point out a repeated
occurrence of any of the error conditions introduced above. This field is
set to 1, if another field in the Error Status Register has been set to 1
before, and the same error arises again. However, this feature does not
specify, which of the other errors has occurred more than once. Usually,
only one source of error is expected for a given interval of time.

The host has no means to delete any field in the Error Status Register. The
whole Error Status Register is automatically reset, when the dissemination
service sends a copy of the current value of the Error Status Register to the
diagnosis unit. As a result, the Error Status Register records all error conditions
during the interval between two consecutive occurrence of dissemination. For
details about the dissemination service, which is a special service of the TISS,
refer to section 5.4.4.

5.3 Synchronizing Access to Ports

In earlier sections we have learned that ports are the end points of encapsulated
communication channels, which physically reside in the Port Memory, which in turn
is part of the Front-End. The Port Memory is realized as an dual-ported memory,
thus, it must be regarded as a shared memory. As the TISS and the host are allowed
to arbitrarily access and modify data words that belong to ports in the Port Memory,
we identify the need for synchronization mechanisms.

The TTSoC architecture entails synchronization protocols for accessing ports,
which are examined in this section. We present the synchronization protocol for
input and output state ports as well as event ports in any direction.

5.3.1 Synchronizing State Ports

State ports are used for periodic transmission of messages with state semantics, so-
called state messages. These are instances of state variables, which contain the state
of an observation of an object under consideration [Kop97].

State messages apply state semantics, whereas a new arriving version completely
overwrites the old version of the state variable. Consequently, an exactly-once seman-
tics is not required, which is in sharp contrast to an at-least-once semantics usually
applied to event messages.

83

5.3 Synchronizing Access to Ports 5 The UNI

Due to this strategy, a state ports only holds one single state message at a time.
In order to ensure that only consistent data is sent and received through the TSS,
the TTSoC architecture defines the following synchronization protocols for input and
output state ports.

Synchronization Protocol for Input State Ports

For the purpose of synchronization, an input state port employs the Non-Blocking
Write (NBW) [Kop97] protocol. The purpose of NBW is to detect a situation, when
the TISS updates an input state port owing to a reception of parts of a state message,
while the host conducts a read access from that port. The NBW protocol is realized
by means of a sequencer that is exclusively written by the TISS and read by the
host. As we have learned from section 5.2.3, this sequencer for each input state port
resides in the corresponding data word of the Port Synchronization Memory.

At the beginning of the protocol the sequencer is 0. Whenever the TISS starts an
update of the port, it increments the sequencer by 1. After completion of the update
(i.e., the completion of a whole message), the TISS again increments the sequencer.
By design of the protocol, the host has to combine a read from an input state port
with a look-up from the NBW sequencer in the Port Synchronization Memory.

If the value is odd, the host retries the access immediately, because an update is
currently in progress. If the value is even, an update has been completed and the
data of the port is consistent. Consequently, the host is allowed to perform the read
operation.

At the end of the host’s read operation the host has to check the value of the
sequencer once more, whether the even value has turned into odd in the meantime.
In such a case, this means that the TISS has begun to update the input state port,
while the host has been reading. Then, the host has to abort its previously fetched
data and retry the read access in order to not retrieve inconsistent or corrupted data.

This synchronization protocol for input state ports is known as explicit synchro-
nization, as it takes usage of auxiliary facilities for synchronization. In contrast
to explicit synchronization, input state ports also support implicit synchronization.
In this case, the synchronization protocol disregards auxiliary facilities such as the
NBW sequencer.

However, implicit synchronization of input state ports can only be applied with
system operation frequencies at the TISS as well as the host, which are closely
synchronized. Based on the a priori known points in time (in the Time-Triggered
Communication Schedule), when the input state port is updated by the TISS, the
host can temporally interleave its read accesses with the updates by the TISS so that
no conflict arises.

84

5 The UNI 5.3 Synchronizing Access to Ports

Synchronization Protocol for Output State Ports

In order to ensure the consistency of data, output state ports reserve a double buffer
(a shadow buffer) in the Port Memory, which is explained in section 5.1.2 and illus-
trated in Figure 5.1. As a shadow buffer can be regarded as auxiliary facility, coping
with shadow buffers embodies explicit synchronization of output state ports.

The shadow buffer is of the same size as the real state message. As a consequence,
it is possible to place two complete state messages into the memory area reserved for
the output state port. While one half of the reserved memory area holds a consistent
state messages, which is not updated again and is allowed to be sent by the TISS, the
other half can be written by the host to place a state message (with a new version of
the state variable) into the Port Memory. Generally, each half of the total reserved
memory of the output state port toggles its role in the synchronization protocol.
Once it holds the consistent state messages, which is to be sent by the TISS, then it
is regarded as the active buffer. After the send operation has been completed, the
same half becomes the shadow buffer to pick up another state message from the host.

The synchronization between TISS and host incorporates the corresponding data
word in the Port Synchronization Memory. In the interpretation of output state
ports, the data word includes a field Valid and Using, as introduced in section 5.2.3.
The Valid field is written by the host. It indicates, which of the two buffers (the two
halves of the total reserved memory area in the Port Memory) is currently containing
valid data. In other words, it tells which one of the two buffers currently is the active
buffer. In contrast, the Using field is written by the TISS. It states, which of the
two buffers the TISS is going to use for the next send operation of that port. The
host is only allowed to update the content of the shadow buffer, if both
Valid and Using point to the active buffer.

At the beginning of the protocol both Valid and Using are initialized to 0. This
claims that the first half of the total memory area of this port (let’s call it buffer
1) is currently the active one. At this time, the host would write to the second half
(let’s call it buffer 2) that is the shadow buffer at the moment. After an update by
the host to buffer 2 it sets the Valid field in the corresponding data word of the
Port Synchronization Memory to 1. As long as the TISS has not completed the send
operation with buffer 1, the host can not execute another write access to that port,
because the synchronization protocol requires both fields to have the same value in
order to update the complementary buffer. When the TISS has finished the send
operation of the data of buffer 1, it sets the Using field to 1. Now, buffer 1 has
become the shadow buffer and buffer 2 is the active buffer. For the next update the
host would use buffer 1, and the TISS would fetch the send data from buffer 2 in the
meantime. This alternating procedure takes place infinitely often.

Output state ports support implicit synchronization like input state ports. In
this case no double buffer is required. With the a priori knowledge of the instants of
send operations of the TISS, the host is enabled to temporally interleave the write
access to the port, which consists of a single buffer here. Consequently, inconsistent
send data is avoided by means of synchronized system clocks of TISS and host.

85

5.3 Synchronizing Access to Ports 5 The UNI

5.3.2 Synchronizing Event Ports

Event messages communicate the difference between an old state and a new state of
an entity under observation [Kop97]. This difference is also called the event informa-
tion. Event messages have to be processed in an exactly-once semantics. Therefore,
messages have to be consumed on reading, and unread messages have to be queued
instead of an update-in-place strategy like for state messages.

The TTSoC architecture offers event ports for the sporadic transmission of mes-
sages with event semantics. The queue is realized as a ring buffer that can hold
multiple event messages simultaneously, as illustrated in Figure 5.3 and described
in section 5.1.2. The queue length is variable as well as configurable by the host at
run-time via the Control Interface by assigning the proper value to the field QLength
in the Port Configuration Memory.

For output event ports, the host of a sending micro component is blocked, if it
tries to append a new message while the queue is full. Contrary for input event
ports, the TISS of a receiving micro component discards arriving messages, if the
host has not consumed the messages quickly enough so that there is no space left for
at least one event message, i.e., the receiving queue is full. Such a scenario is called
on overflow. As introduced in section 5.2.4, the Error Status Register facilitates the
indication of full queues respectively overflows by means of the fields Overflow Port
Number and Port Overflow Error.

The status of an event queue can be derived from the fields TISS Addr, TISS
ToOF, Host Addr, and Host ToOF, which are part of the data word of the Port
Synchronization Memory. The relevant information is, whether an event queue is
currently full or empty. Table 5.9 summarizes how this information about the status
of an event queue is derived from the fields in the Port Synchronization Memory. In
section 5.2.3 it is also given, how this fields are processed, which is also relevant in
the following.

queue status condition
full TISS ToOF 6= Host ToOF ∧ TISS Addr = Host Addr

empty TISS ToOF = Host ToOF ∧ TISS Addr = Host Addr

Table 5.9: Determining status of event queues

An empty queue is given, when read and write positions (i.e., TISS Addr and
Host Addr) – no matter which field takes the role of the read and write position, as
this fact symmetrically applies to input and output event ports – are equal. This
means that all event messages in the queue have been consumed, as the read position
has been incremented (compare Table 5.8) so that the read position has caught up
to the write position. Additionally, the ToOF fields have to possess the same value,
because this takes the cyclic overflow of the ring buffer into account.

Similarly to an empty queue, the full queue manifests in equal read and write
positions, but deviating ToOF fields. The inequality of the ToOF fields results from

86

5 The UNI 5.4 Special Services

the cycling ring buffer, too. If read and write positions are the same, but the ToOF
fields are not, then write position has slipped forward and completed a cycle in the
ring buffer compared to the read position. As a consequence, the appropriate ToOF
field must have toggled so that both ToOF fields are deviating now, because circling
through the ring buffer obviously causes an cyclic overflow of the ring buffer and
therefore a toggling of the corresponding ToOF field.

5.4 Special Services

This section introduces special services that are locally implemented by the TISS.
They provide additional utility to the host, and therefore supplement the core services
of the TSS.

5.4.1 Time Stamping

The purpose of time stamping is to append the value of the counter vector of the
time format of the global time base — a time stamp — in front of the data words of
the real message of a port. This time stamp is written into the Port Memory by the
TISS, when a message of that port has been completed – after the last flit of the last
fragment. Thus, time stamping is a useful means to inform the host application about
the real instant of complete arrival of a message. This feature might particularly be
useful for event ports, where the arrival of messages is sporadic. As the global time
base in the TTSoC architecture is 64 bit wide, in the current implementation (with
a data word width of 32 bit in the Port Memory) a time stamp requires two data
words in the Port Memory.

Note that time stamping is only meaningful for input ports, no matter whether
the port has state semantics or event semantics. If the host application activates
time stamping for an output port, though, this setting is ignored and has no effect.
Besides this, it can be activated and deactivated for each port individually via the
Control Interface, as described in section 5.2.3.

Time stamping is in the sphere of control of the DAS that is executed in the
micro component’s host. Furthermore, activation and deactivation of the service
might occur arbitrarily. When receiving messages for an input port, the TISS always
has to check, whether time stamping is on or off at the moment, and then either
appends the time stamp in front of the message or places the message from the
beginning of its intended memory location.

As a consequence, the memory requirements in the Port Memory for a given port
might also increase or decrease according to the current set-up of a port. While this
has no effect on the TISS’s operation, the user application in the host has to assure
that the memory location of ports do not overlap due to activation and deactivation
of time stamping at any time. Otherwise, the TISS would overwrite parts of messages
of other ports.

87

5.4 Special Services 5 The UNI

5.4.2 The Watchdog Service

The health of a micro component’s host can be monitored by means of a watchdog
service that is integrated in the TISS. Therefore, the watchdog forces the host to
update a dedicated memory location within a defined period at latest. If the host fails
to write the life-sign to that memory location, the TISS resets the host automatically,
and a failure is recorded to the diagnostic dissemination service.

The control of the watchdog service is realized through the Control Interface of the
UNI. As introduced in section 5.2.4, the Register File includes the registers Watchdog
Period and Watchdog Life Sign. The watchdog life-sign register resides at offset
2 in the Register File, which is illustrated in Figure 5.6. The host has to perform
a write access to this location with a defined 32-bit string, which is 0x55555555, to
prevent the watchdog service to trigger a watchdog miss.

The maximum interval between two updates of the watchdog life-sign register is
expressed by the 5 bit wide field Watchdog Period, which is embedded in the Register
File at offset 3 (see Figure 5.6). The watchdog period conforms to periods of the
periodic control system, as introduced in section 4.3.1. The field Watchdog Period
holds the number of the period that drives the watchdog service. For example, with
16 supported periods, whereas the highest period number 15 has an interval of 2
seconds, a Watchdog Period of 01111 configures the watchdog service to check every
2 seconds, whether the host has already updated the watchdog life-sign register or
not. Note that the watchdog service does not use phases of periods.

The watchdog service supports up to 31 periods (from values 00000 to 11110)
that comply with the periods of the periodic control system. Consequently, there
is one period reserved to indicate that the watchdog service is turned off. In the
current implementation, if Watchdog Period is 11111 (all bits in this field set 1),
the watchdog service is turned off.

The host should regularly (for instance, after the reconfiguration instant) check
the setting of the field Watchdog Period so that it knows, how frequently it has to
write to the watchdog life-sign register.

Setting the field Watchdog Period is in the sphere of control of the TNA, and
is therefore configured during the process of reconfiguration, which is explained in
section 8.4. Note that it is not sufficient to set the field Watchdog Period by the
TNA in order to configure the watchdog period. Actually, the watchdog service uses
the infrastructure of burst dispatching of the TISS. That is, checking a watchdog miss
is initiated by a special treatment of a ”virtual fragment” that belongs to a special
purpose port (i.e., port 125, see section 7.4.1), but does not cause any transfer of
application data. Consequently, checking a watchdog miss manifests as a burst of a
”virtual fragment” in the Time-Triggered Communication Schedule, and is therefore
configured together with bursts that deal with the transfer of real application data.
So, the concept of ”virtual fragments”, which has been introduced to cope with
consistent delivery order in encapsulated communication channels, is reused to realize
the watchdog service.

88

5 The UNI 5.4 Special Services

As a host has no direct read access to the Time-Triggered Communication Sched-
ule by design, the field Watchdog Period is the only means to inform the host about
the current configuration of the watchdog service. Therefore, during reconfiguration
it has to be configured in combination with that burst of a ”virtual fragment”, which
is integrated in the Time-Triggered Communication Schedule.

If the host fails to update the watchdog life-sign register for any reason, the
watchdog service triggers the watchdog miss error. This error is propagated to the
Error Status Register in the Register File and recorded in the corresponding field
Watchdog Miss. Consequently, the host notices the occurrence of the watchdog miss
when reading the Error Status Register. Additionally, the dissemination service also
informs the diagnostic unit (see section 5.4.4) about the watchdog miss.

Besides this, the incident of a watchdog miss is linked to the actual feature of the
watchdog: to reset the host, i.e., the host’s CPU, when it has failed to update the
watchdog life-sign register. For this purpose, the TISS drives the low-active signal
OCPS SReset n of the Control Interface to 0 for exactly one clock cycle of the system
operation frequency. Usually, this signal is connected to a reset signal like ”cpu reset”
and causes the host’s application computer to reset in order to be relieved from a
possible deadlock, software hang-up, or some other malfunctioning state.

5.4.3 The Generic Timer Service

The generic timer service is a convenient additional service that allows the host’s
application software to take arbitrary usage of the global time base used in the TTSoC
architecture. The generic timer service harnesses the concept of periods and phases
of the periodic control system to provide interrupt events aligned to real-time, which
in fact are not linked to any other events of core services such as ”port operation
complete” interrupts. For instance, the application software could have a piece of
software triggered by the generic timer service, which execution is independent from
any communication activity.

The generic timer service is configured by two registers in the Register File, which
has been introduced in section 5.2.4:

• Timer Interrupt Pattern

• Timer Interrupt Mask

As both registers hold values of the counter vector of the time format of the global
time base, which is 64 bit, and the data width of the Control Interface as well as the
Register File is bound to 32 bit in the current implementation, they have to be split
into two 32 bit data words in the Register File each. Consequently, as illustrated
in Figure 5.6, the lower halves of Timer Interrupt Patter and Timer Interrupt
Mask are available at offsets 4 respectively 6, while the upper halves are located at
offsets 5 and 7.

89

5.4 Special Services 5 The UNI

Timer Interrupt Pattern gives the bit pattern with respect to the time format
of the TTSoC architecture. If this bit pattern equals the bit pattern that is present
in the internal register of the global time base, a match occurs. This match triggers
the interrupt of the generic timer service. To relax the complexity of the bit pattern
to be set, the register Timer Interrupt Mask also contains a bit pattern that marks
the bits in the time format that are relevant for the match. So, the generic timer first
performs a bit-wise AND between Timer Interrupt Mask and the current value of
the internal register of the global time base. After that, it compares this intermediate
result with the bit pattern residing in Timer Interrupt Pattern.

match← interrupt pattern = (global time⊗ interrupt mask)

This mechanism of pattern register and mask register is powerful enough that
the generic timer service supports the full range of periods and phases of the pe-
riodic control system. Timer interrupts of the generic timer service are enabled to
occur periodical (with respect to a given period) and phase aligned by appropriately
specifying the registers Timer Interrupt Pattern and Timer Interrupt Mask.

These registers should be set by the host, while the generic timer service is turned
off. Section 5.2.4 introduced the bit field Timer Interrupt Enable in the Register
File, which is in charge of enabling and disabling the generic timer service. So, after
the host has set the configuration registers, it sets Timer Interrupt Enable to 1,
and the generic timer service is armed.

Eventually, when a match occurs and the timer interrupt is triggered, this event
is visible at the Control Interface as a special field in the signal OCPS SFlag, as
listed in Table 5.7 in section 5.2.1. Then, the corresponding signal is driven to 1 for
exactly one clock cycle of the system operation frequency so the host is notified via
the interrupt mechanism.

5.4.4 The Dissemination Service

The TISS includes a mechanism to record error conditions associated with core ser-
vices – the Error Status Register of the Register File introduced in section 5.2.4. On
the one hand, such error conditions are useful to be read by the host. On the other
hand, the information contained in the Error Status Register is employed to execute
diagnostic analysis algorithms that draw conclusions about the health state of the
TTSoC. The dissemination service is the auxiliary service of the TTSoC architec-
ture that is in charge of distributing the contents of the Error Status Register to a
dedicated diagnosis unit in the TTSoC.

Like the watchdog service, the dissemination service uses the dispatching facil-
ities of the TISS and the concept of ”virtual fragments” to perform its periodic
dissemination of diagnosis information such as the Error Status Register. As men-
tioned in section 7.4.1, the dissemination service is associated with the reserved port
number 126. The Time-Triggered Communication Schedule contains a burst of a
”virtual fragment” referring to this special port. Whenever this burst of the ”virtual

90

5 The UNI 5.4 Special Services

fragment” is dispatched, the TISS executes a special treatment that handles the dis-
semination service. That is, the TISS fetches the Error Status Register and injects
to the TTNoC via the TTNoC interface in a single flit (as the Error Status Register
can be contained one flit of 32 bit in the current implementation). Before that it
has preceded the proper routing information so that the dissemination data finds its
way to the diagnosis unit. Note that there is no real transfer at the Port Interface
involved.

After the dissemination the Error Status Register is reset. Until the next occur-
rence of the burst of the ”virtual fragment” that triggers the dissemination service,
the TISS records all error conditions in the Error Status Register again. As a result,
the dissemination service distributes diagnosis data that has been collected in the
interval between two disseminations.

In fact, the host is unaware of the existence of the dissemination service. This
auxiliary service is under the sphere of control of the TNA. As it harnesses the dis-
patching infrastructure of the TISS by integration in the Time-Triggered Commu-
nication Schedule, the dissemination service is also configured during the on-the-fly
reconfiguration, which also handles the Time-Triggered Communication Schedule, as
explained in section 8.4.

91

5.4 Special Services 5 The UNI

92

Chapter 6

The Time-Triggered
Network-on-Chip

The Time-Triggered Network-on-Chip (TTNoC) is the architectural component,
which physically connects the micro components of a TTSoC. It conveys data that
is transported through encapsulated communication channels. These encapsulated
communication channels are managed by the TISS of a micro component. Each TISS
accesses the TTNoC via its local TTNoC interface. The TTNoC does not incorporate
any control or management functions, but it is the medium to carry encapsulated
communication channels.

6.1 Basics of the TTNoC

The TTNoC is composed of Fragment Switches. Fragment Switches are stand-alone
components that transport fragments, i.e., the flits that make up a fragment of a pulse
in a pulsed data stream, of data along an encapsulated communication channel. Each
micro component, i.e., the TISS of each micro component, is connected to exactly
one Fragment Switch via the TTNoC interface.

6.1.1 Topological Considerations

Fragment Switches are physically connected by means of separate, uni-directional
buses, so-called lanes. An interconnect consist of a pair of one outgoing and one
incoming lane. Each interconnect links one pair of Fragment Switches. Thus, the
link between two Fragment Switches is bi-directional. This gives an additional degree
of freedom to the routing in the TTNoC. Furthermore, we learn in section 6.1.3 that
this also entails performance improvements for transmissions.

A TTNoC interface has the same physical structure as an interconnect. Each
TTNoC interface is the terminal point of transmission in an encapsulated commu-
nication channel. In other words, any Fragment Switch that is just a switching

93

6.1 Basics of the TTNoC 6 The TTNoC

node never takes the role of the termination node, but the role of a forwarder. This
conforms to the definition of an ”indirect network” [DT03].

The arrangement of Fragment Switches and their interconnections construct the
topology of the TTNoC. Conceptually, the design of the TTNoC does not dictate a
specific topology in order to not restrict the design space. Instead of this, the TTNoC
provides a set of templates for Fragment Switches with different parameters, e.g.,
the number of interconnects and the width of lanes, in a design repository. Hence, a
Fragment Switch is used as a generic building block in the topology.

6.1.2 Lanes

In Figure 6.1 we find the structure of a lane. At first, a lane is composed of a data
bus, which width can be configured at design time, for instance 32 bit. Additionally,
two wires (valid and header) make up the only control signals of a lane.

configurable

valid headerdata

1 1

Figure 6.1: Structure of a lane

The valid signal indicates the arrival of a flit. Unless valid has been driven to
1, the Fragment Switch remains in a power-saving idle state. The valid signal is also
propagated through the Fragment Switch to the neighbouring switch or a TTNoC
interface. Initially, it is driven by the sending TISS on the TTNoC interface and
accompanies a given flit along the whole route.

The header signal set to 1 specifies that a flit contains switching information.
Otherwise, when it is 0, the current flit is interpreted as data. This is the one and
only semantics of Fragment Switches. In section 6.2.1 we learn about the purpose of
switching information.

6.1.3 Operation of Fragment Switches

Fragment Switches do not possess any knowledge concerning the Time-Triggered
Communication Schedule, but they simply handle flits. They do not even include a
notion of global time themselves. Instead of this, all operations are initiated by TISSs,
which follow a Time-Triggered Communication Schedule and include the global time
base.

94

6 The TTNoC 6.1 Basics of the TTNoC

Like the TISS, the basic mode of operation of a Fragment Switch is a burst . That
is, a Fragment Switch is able to accept (respectively forward) one flit for each lane at
each interconnect in each clock cycle of the system operation frequency. Thus, the
TTNoC supports full-duplex transmissions among all interconnects of each Fragment
Switch.

Fragment Switches are also unaware of the fragmentation of pulses of a pulsed
data stream. The fragment is split in the sender’s TISS and assembled in the re-
ceiver’s TISS. In short, the Fragment Switches do not contain any knowledge of the
semantics, neither in value nor in temporal domain of the data conveyed.

6.1.4 Hops

The processing of a given flit entering a Fragment Switch at one interconnect and
leaving at another one within the same Fragment Switch is called a hop. Concep-
tually, no buffering of data flits takes place, which could extend the propagation
delay and lead into a discontinuation in the TTNoC. On the one hand, the lack of
buffering contributes to the predictability and determinism of the TTNoC. On the
other hand, this enables an efficient realization of Fragment Switches. However, the
hop is pipelined. A Fragment Switch includes a 4-stage pipeline. These stages are:

1. flit entering A flit arrives at an interconnect and is placed in its input register.
The Fragment Switch awakes from the idle state.

2. decoding and forwarding In case of a flit containing switching information
(and it is the first of such flits in the current fragment), the multiplexer settings
are decoded according to the information in that flit, and forwarded afterwards.
In case of a data flit, just forwarding takes place and the multiplex decoder
remains idle.

3. multiplexing The flit passes through the multiplexer of the output lane of the
appropriate interconnect.

4. flit leaving The flit is kept in the output register of the output interconnect,
until it is replaced by the consecutive flit.

In the current prototype implementation, the pipeline stages are operated within
one clock cycle of the system operation frequency. Thus, there is no need for output
registers. The output signals of a multiplexer are directly connected to the input
register of the incoming lane of the neighbouring Fragment Switch.

Obviously, Fragment Switches are multiplexer-based . That is, the internal struc-
ture focuses an outgoing lane and tracks the incoming lanes that feed that outgoing
lane. Note, that the settings of these multiplexer are derived from switching infor-
mation that has been transported over the same physical wires as the data.

95

6.2 Switching in the TTNoC 6 The TTNoC

6.2 Switching in the TTNoC

This section comprehensively deals with the switching in the TTNoC. We present
the basic concepts of switching, and investigate the frequently used scenario of multi-
casting, as it is realized in the TTNoC.

Actually, Fragment Switches are unaware of the switching of encapsulated com-
munication channels through the TTNoC. Each Fragment Switch has to be fed locally
with the information, how flits entering a particular interconnect have to be passed on
to which interconnects – the so-called switching information. Each chunk of switch-
ing information concerns a particular hop, the sequence of switching information
directly maps to a sequence of hops. The complete sequence of switching infor-
mation from the sending TISS’s TTNoC interface to the receiving TISS’s TTNoC
interface is called routing information, and defines the route of an encapsulated com-
munication channel. Considering hops, it is obvious that routes are segmented by
Fragment Switches.

6.2.1 Switching opcodes

A particular flit, the routing flit , contains the switching information for a given
Fragment Switch. The routing flit is conveyed over the data bus of a lane and is
identified by the header signal set to 1. Even though the routing flit is passed on
to the neighbour, the Fragment Switch processes parts of that flit. This part of the
routing flit, which is aligned at the least significant bit of the data bus, contains
the switching information for the current Fragment Switch – the so-called switching
opcode. The switching opcode is consumed at the current Fragment Switch. The
remaining routing flit is forwarded to the neighbour with the switching opcode for
the next Fragment Switch again aligned at the least significant bit, as depicted in
Figure 6.2. If all opcodes in a routing flit have been consumed, the first Fragment
Switch that discovers the empty flit deletes that flit and processes the consecutive
flits.

opcode 0opcode 1opcode 2...opcode N

opcode 1opcode 2...opcode N0

LSBMSB
Routing Flit entering the
Fragment Switch

Routing Flit leaving the
Fragment Switch with one
switching opcode
consumedMSB LSB

Figure 6.2: Consuming a switching opcode

Usually, the route of an encapsulated communication channel manifests in a con-
catenation of switching opcodes that are wrapped among at least one flit. Note, that

96

6 The TTNoC 6.2 Switching in the TTNoC

this concatenation is the most efficient approach, because it allows to place several
switching opcodes into one routing flit. In contrast, the TTNoC also supports the
inclusion of exactly one switching opcode for each hop in a distinct routing flit. Then,
we have as many routing flits as the number of hops.

0011
W S E N

North

South

E
astW

es
t

Figure 6.3: Example of a switching opcode

Figure 6.3 gives an example of a switching operation at an exemplary Fragment
Switch with 4 interconnects, i.e., 8 lanes. The interconnects are named after direc-
tions: North, East, South, West. In general, a Fragment Switch with n interconnects
uses an n-tuple as its switching opcode. Each bit in this n-tuple maps to exactly one
interconnect. If a given bit in the opcode is set to 1, the associated interconnect is
switched through from that interconnect, where that switching opcode (resp. routing
flit) has arrived. Referring to the example in Figure 6.3, the switching opcode (resp.
routing flit) enters at the North interconnect. With the bits of South and West set in
the opcode, the Fragment Switch forwards the current routing flit and all consecutive
flits to the South and West interconnects simultaneously.

If the routing information of an encapsulated communication channel has to be
spread among several routing flits, the Fragment Switch considers the very first rout-
ing flit arriving at an interconnect. Thus, it extracts its switching opcode from that
very first routing flit and decodes the multiplexer settings, while simply forwarding
the other routing as well as data flits. The setting of a single multiplexer A in the
Fragment Switch remains until the first routing flit of later routing information enter-
ing at interconnect B causes a further decoding and a new setting of the multiplexer
A, so that multiplexer A switches through interconnect B. If the switching opcode
at interconnect B had not set bit A to 1, then the setting of multiplexer A would
not have been affected and would have remained in its previous state.

97

6.3 Simultaneous Routes 6 The TTNoC

6.2.2 Routing Modes

The TTNoC supports two modes for a route to be set up.

• The routing information is placed into a continuous series of at least one routing
flits preceding the data flits of a fragment. Thus, we have the notion of a header
with routing information and a payload containing application data. We call
this mode the header-payload mode1.

• The routing information can also be proclaimed by a stand-alone continuous
series of routing flits (without payload). As the multiplexer settings in the
Fragment Switches remain stable unless reconfigured, the route is constructed
quasi persistently. Afterwards, several fragments containing application data
may follow over that route without explicit set-up. We call this mode the
circuit-switching mode.

Except for the state of the multiplexer settings, routing information is never
stored locally, but originates at the sender’s TISS. Both modes of route set-up are
supported and can even coexist. From the point of view of the TTNoC interface the
sender’s TISS combines the routing information with the application data. Hence, the
sender affects the route, which will be taken. This is source routing [DT03]. Besides
the Time-Triggered Communication Schedule a TISS houses the routing information
for all encapsulated communication channels, which the TISS sends to. Moreover,
routing information is pre-defined and trusted. This means that it is arranged in
a way throughout the entire TTNoC that no collision of simultaneous routes ever
happens.

6.3 Simultaneous Routes

The TTNoC supports the coexistence of several encapsulated communication chan-
nels at the same instant of time among the network. Figure 6.4 shows three
scenarios with valid realizations of simultaneous routes and one malfunctioning. For
these examples we choose an 3× 3 mesh topology for easier demonstration.

Figure 6.4a considers the trivial case, whereas the routes are physically displaced,
and no interference occurs at all. In Figure 6.4b the crossing of two routes at the same
Fragment Switch is depicted. Here, the crossing is orthogonal, while in Figure 6.4c
the routes meet at the same Fragment Switch and run in parallel over the same
interconnect, but in reverse directions. This example demonstrates the full-duplex
capabilities of interconnects. However, the last scenario in Figure 6.4d illustrates the
conceptual limits of simultaneous routes. Here we find two routes that collide at the
same interconnect, because both routes head into the same direction. Such a conflict
must be resolved either by avoiding this situation at all or by means of interleaving of
fragments (pulse interleaving), as mentioned in section 4.5. This constraint ensures
that the TTNoC is free of contentions.

1Usually, this is called worm-hole routing.

98

6 The TTNoC 6.4 Multi-casting

(0,0) (0,1) (0,2)

(1,0) (1,1) (1,2)

(2,0) (2,1) (2,2)

(a) distinct routes

(0,0) (0,1) (0,2)

(1,0) (1,1) (1,2)

(2,0) (2,1) (2,2)

(b) crossing routes

(0,0) (0,1) (0,2)

(1,0) (1,1) (1,2)

(2,0) (2,1) (2,2)

(c) bi-directional routes

(0,0) (0,1) (0,2)

(1,0) (1,1) (1,2)

(2,0) (2,1) (2,2)

(d) colliding routes

Figure 6.4: Scenarios of simultaneous routes

6.4 Multi-casting

While multi-casting in a bus topology is trivial, in all other topologies this operation
suffers from the problem, how to specify branched routes and multiple receivers. The
TTNoC also faces this problem as illustrated in Figure 6.5a.

We learn from Figure 6.5a that after the splitting of the exemplary route, the
switching opcodes are not identical for each branch anymore. For instance, after

99

6.4 Multi-casting 6 The TTNoC

(0,0) (0,1) (0,2)

(1,0) (1,1) (1,2)

(2,0) (2,1) (2,2)

0100

1010

0100

0010 0010

(a) The multi-cast problem

(0,0) (0,1) (0,2)

(1,0) (1,1) (1,2)

(2,0) (2,1) (2,2)

0100

1100

0110 0010

0010

0001

(b) Example of the solution concept

Figure 6.5: Multi-casting in the TTNoC

splitting at Fragment Switch (1, 0) we have switching information 0010|0010 6= 0100.
The mismatch appears in the number of switching opcodes as well as in the values
of each switching opcode. Up to Fragment Switch (1, 0) the mismatch of switching
information is irrelevant. Afterwards, it is not possible to provide the following
Fragment Switches (1, 1), (1, 2), and (2, 0) with the correct switching opcodes.

We give an example of a solution to this problem in Figure 6.5b. Here the
branched route is modified in a way that the same destinations are reached sequen-
tially by means of a non-split, linear route. Compared to Figure 6.5a from Fragment
Switch (1, 0) the route continues via Fragment Switches (2, 0), (2, 1), (2, 2), (1, 2).
Still, there are branches included, for example at Fragment Switch (1, 0) and (2, 0).
However, these branches do not fork other routes that would demand distinct routing
information. In contrast, they are necessary in order to reach the destinations. Nev-
ertheless, the West interconnect at Fragment Switch (1, 0) or the South interconnect
of Fragment Switch (2, 0), which must be a TTNoC interface each, would receive
routing flits that are going to be ignored at this terminal TTNoC interface. The
relevant fact is that the same data flits arrive, but we accept the arrival of possible
surplus routing flits at a given TTNoC interface. We call this approach the split
point multi-casting of the TTNoC.

The split point multi-casting solves the multi-cast problem in a contra-intuitive
way, though. However, we strongly emphasize that this approach works without
introducing new concepts to the switching in the TTNoC. So, the semantics imple-
mented in the Fragment Switches remains valid, which does not require additional
control logic in the Fragment Switches. The reduction of branched routes to linear
routes is always applicable, because Time-Triggered Communication Schedule and
routing information of encapsulated communication channels are determined a priori

100

6 The TTNoC 6.4 Multi-casting

in the TTSoC architecture. Consequently, we recognize multi-casts in advance, and
can therefore transform branched routes into linear routes.

101

6.4 Multi-casting 6 The TTNoC

102

Chapter 7

The Trusted Interface
Subsystem

The Trusted Interface Subsystem (TISS) is this part of a micro component that be-
longs to the Trusted Subsystem (TSS). The TISS realizes major parts of the TTSoC’s
core services, particularly the communication service. The services the TISS provides
are available at the UNI for the hosts.

This chapter covers the implementation and the mode of operation of the TISS.

7.1 Structure of the TISS

This section introduces the structure of the TISS in the current implementation.
Figure 7.1 shows the modules that make up a TISS. With reference to their realization
in hardware (in VHDL), the TISS ’s modules can be counted to 3 categories.

component A component is realized by a VHDL design. In terms of VHDL, it is a
VHDL component that has been instantiated within the TISS, while the TISS
is the top-level VHDL entity.

memory A memory incorporates a VHDL code stub to be instantiated within the
TISS. The realization of the memory can either be generic VHDL code descrip-
tions, or technology- or vendor-specific memory blocks, which are synthesized
into the TISS.

interface The interface at the conceptual level of the TISS corresponds to a ”port”
of a VHDL entity. In this case, the TISS is implemented as VHDL design itself,
and such an interface directly maps to some signal specifications in the VHDL
entity definition, i.e., VHDL ports.

Each of these components and memories can be associated with an architectural
layer, as introduced in chapter 2.4 and depicted in Figure 2.4, or other features of

103

7.1 Structure of the TISS 7 The TISS

R
egister
File

Port
C

onfig.
M

em
ory

TT
C

om
m

.
Sch.

R
I

M
em

ory

Port
Sync.

M
em

ory

B
C

FG
M

em
ory

C
onfigurator

Port Sync.
C

ontroller

C
lock

A
ddress

C
alculator

O
C

P Slave W
rapper

C
ontrol Interface

(O
C

P)

B
urst D

ispatcher

Macro Tick Input

R
outing

Processor

R
X

D
et.

TTN
oC

 Interface

M
em

ory D
igger

O
C

P M
aster W

rapper

Port Interface
(O

C
P)

Tim
e Stam

per

Transport Layer

N
etw

ork Layer

W
rapper

D
ata Link Layer

R
econfiguration

G
lobal Tim

e B
ase

C
om

ponent

M
em

ory

Interface

Legend: S
copes

Legend: C
ategories

F
igure

7.1:
Structure

of
the

T
ISS

104

7 The TISS 7.2 Memories in the TISS

the TTSoC architecture. We call such associations the ”scopes” of the respective
component or memory. Besides the 3 architectural layers (Transport Layer, Network
Layer, Data Link Layer) the implementation of the TISS entails 3 more scopes, which
are described in the following.

Wrapper A wrapper adapts the internal signals that are used during coding to
the physical specification of interfaces. As introduced in chapter 5, the TISS
provides two OCP interfaces for physical connections to hosts. Each interface
requires an own wrapper to match the signal specification as well as naming
convention of the OCP standard.

Reconfiguration Actually, the scope of reconfiguration logically belongs to the ap-
plication layer. The only component of the TISS that refers to this scope is
the special control-logic, which is necessary to realize the on-the-fly reconfig-
uration feature of the TTSoC architecture. The on-the-fly reconfiguration is
comprehensively explained in section 8.4.

Global Time Base Generally, the global time base is used for arbitration of the
TTNoC and dispatching of communication activities. Therefore, it would log-
ically belong to the layer Data Link Layer. However, the global time base
is accessible to components of other layers, too. Consequently, we define an
own scope for the global time base. There is only one component that can
be counted to this scope: the clock component . The clock component is the
local replication of the global time base, which is contained in each TISS. It
maintains the 64 bit counter vector, which is incremented on each rising edge
of the macro tick, as introduced in section 4.3.1.

Note that the names for components and memories in Figure 7.1 are abbreviations
sometimes. In the later text these abbreviations will be replaced by their full names.

7.2 Memories in the TISS

This section describes the role and the structure of some memories, which are housed
in the TISS. All of these memories are implemented as simple dual-ported RAM,
that is, they possess one read and one write port. The read port is attached to a
component, which uses the information stored in the memory for processing. The
write port of each memory is occupied by the Configurator (see section 8.4.3). As a
result, these memories are exclusively accessible by the TISS.

In contrast, other memories reside physically in the TISS (Port Configuration
Memory, Port Synchronization Memory, Register File). However, they are accessible
to the host via the UNI. Also, these other memories are realized as true dual-ported
RAM, whereas the host from the outside as well as TISS from the inside can perform
read and write operations on each side simultaneously.

105

7.2 Memories in the TISS 7 The TISS

This section only deals with those memories, which are exclusively accessible by
the TISS. The remaining memories (by definition) belong to the scope of the UNI,
therefore they are comprehensively covered in chapter 5.

7.2.1 The Time-Triggered Communication Schedule

The Time-Triggered Communication Schedule plays the vital role in the TISS. It
contains the information, when communication activities are initiated. To be more
precise, the Time-Triggered Communication Schedule describes the instants with re-
spect to the periodic control system, when the burst of a fragment of a pulse of
a pulsed data stream, which transports a message within an encapsulated commu-
nication channel, is to be launched. Therefore, all further operation of the TISS is
triggered according to the information in the Time-Triggered Communication Sched-
ule.

Entries in the Time-Triggered Communication Schedule

Conceptually, the Time-Triggered Communication Schedule is made up of circular
linked lists. Each list is associated with a period of a pulsed data stream. The entries
in the lists are unique and belong to exactly one list. The information included in an
entry refers to the burst of exactly one fragment of a pulse in a pulsed data stream, as
introduced in section 4.4. As a result, each entry in each circular linked list contains
a description of exactly one burst within a given period. Figure 7.2 illustrates the
layout of such an entry.
0 8 9 2021 2930 3637 4344 46474849

Next Instant BurstRef PortRef RIRef RILen D F L

Figure 7.2: Layout of an entry in the Time-Triggered Communication Schedule

In the following we describe each field in an entry of the Time-Triggered Com-
munication Schedule.

Next This field is the ”next pointer”. It points to the next entry of the circular
linked list. In case of a single entry in the whole list, it points to itself. If
the entry is the last in the list, it points to the very first entry, thus closes the
circle.

The width of this field is dependent on the size of the Time-Triggered Commu-
nication Schedule. It must be able to address each data word of the memory
of the Time-Triggered Communication Schedule.

In the current implementation this memory is made up of 512 data words in
total. Consequently, Next has a width of 9 bit.

106

7 The TISS 7.2 Memories in the TISS

Instant This field denotes the phase of the fragment of the current pulse (of the
pulsed data stream).

In the current implementation this field has a width of 12 bit.

BurstRef This field refers to a data word of the Burst Configuration Memory (see
section 7.2.2). It is an address in that memory. The reference identifies a
record, which contains additional information about the current burst.

In the current implementation the Burst Configuration Memory contains 512
data words in total. As a result, BurstRef has a width of 9 bit.

PortRef Like BurstRef, this is a reference to a record of another memory. In this
case, it is an address in the Port Configuration Memory. This field links the
current burst with the port (i.e., encapsulated communication channel), to
which the message of the current fragment is mapped.

According to section 5.2.2, the current implementation supports 128 ports.
Therefore, this field is 7 bit wide.

RIRef This field is a reference to routing information (see section 6.2). So, it is
an address in the Routing Information Memory (see section 7.2.3). For send
operations this field gives information, how to build the encapsulated communi-
cation channel, through which the current fragment has to be sent. For receive
operations the value of this field has no meaning.

As the Routing Information Memory provides 128 routing flits, whereas a rout-
ing flit is an entry of the Routing Information Memory, RIRef has a width of
7 bit.

RILen Each encapsulated communication channel possesses its own routing informa-
tion. While RIRef refers to the location of the routing information, this field
states, how many routing flits the routing information is made of. Also, it is
just relevant for send operations.

The width of this field is fixed to 3 bit.

Direction (D) This single bit field informs about the direction of the encapsulated
communication channel, whether it is an input (receive operation) or an output
(send operation) channel. A value of 0 indicates an input channel, in contrast
a value of 1 corresponds to and output channel.

IsFirst (F) If the current fragment to be processed is the very first of the message
associated with the current port, this single bit field is 1, otherwise 0. However,
if the message solely consists of one fragment, this field also carries 1.

IsLast (L) In contrast to IsFirst, this single bit field indicates that the current
fragment is the last of the message associated with the current port. However,
if the message solely consists of one fragment, this field also carries 1.

107

7.2 Memories in the TISS 7 The TISS

If the message of a port must be split into more than one fragments, IsFirst
and IsLast serve to identify the very first and the very last of those fragments. We
learn from section 7.4.7 that this information is vital for the TISS to realize the port
synchronization protocol, as introduced in section 5.3. The existence of IsFirst and
IsLast implies an ordering of fragments, which belong to the message of the same
port.

In this context, we impose the restriction that all fragments of a message must
belong to the same period, i.e., must be linked within the same circular, linked list.
This conforms to a characteristics of pulsed data stream that a pulse (which carries
the message) is completely transmitted exactly once within its associated period.

Layout of the Time-Triggered Communication Schedule

While the previous section has introduced the layout of entries of the circular linked
lists, this section explains, how these lists reside physically in the memory of the
Time-Triggered Communication Schedule.

Each entry of any circular linked list resides in exactly one data word of the phys-
ical memory of the Time-Triggered Communication Schedule. Figure 7.3 depicts the
memory map of the Time-Triggered Communication Schedule for a fictitious appli-
cation. (Note that the grouping into rows and columns of the memory is arbitrary.
Generally, the memory is sequential, and that grouping contributes to better illus-
tration.)

The memory of the Time-Triggered Communication Schedule in Figure 7.3 com-
prises 3 sections.

1. Initialization Vector

2. Application α

3. Application β

Application Sections The Time-Triggered Communication Schedule is allowed
to embed different configurations in an application section. Such a configuration
corresponds to communication activities for a given primary mode or its degrada-
tion level (see section 8.2) of the TTSoC. For a given instant of time, exactly one
application section is active, that is, the entries in its lists are traversed and the cor-
responding communication activities operated. The existence of several application
sections supports the on-the-fly reconfiguration. The TISS is able to continue the
processing of communication activities of the current application section, while the
on-the-fly reconfiguration installs a new application section. As a consequence, no
interruption of the communication service is required during reconfiguration.

The number of data words, which can be occupied by an application section,
as well as their location in the Time-Triggered Communication Schedule is not de-
fined. It can take as many data words as necessary. However, the location of the

108

7 The TISS 7.2 Memories in the TISS

A
3

B
3

C
3

D
3

A
1

B
1

C
1

A
0

un
us

ed
un

us
ed

un
us

ed
un

us
ed

A
pp

lic
at

io
n

A
0

B
1

un
us

ed
D

3

In
iti

al
iz

at
io

n
V

ec
to

r –
A

pp
lic

at
io

n
 w

ill
be

 s
et

 u
p

0x
00

h

0x
04

h

0x
08

h

0x
0C

h

A
3'

B
3'

C
3'

B
2'

un
us

ed
un

us
ed

un
us

ed
un

us
ed

A
pp

lic
at

io
n

0x
10

h

0x
14

h

0x
18

h

A
2'

un
us

ed

A
1'

B
1'

(a
)

T
h
e

in
it

ia
li
za

ti
o
n

v
ec

to
r

p
o
in

ts
to

a
p
p
li
ca

ti
o
n
α

.

A
3

B
3

C
3

D
3

A
1

B
1

C
1

A
0

un
us

ed
un

us
ed

un
us

ed
un

us
ed

A
pp

lic
at

io
n

A
2'

A
1'

un
us

ed
C

3'

In
iti

al
iz

at
io

n
V

ec
to

r –
A

pp
lic

at
io

n
 w

ill
 b

e
se

t u
p

0x
00

h

0x
04

h

0x
08

h

0x
0C

h

A
3'

B
3'

C
3'

B
2'

un
us

ed
un

us
ed

un
us

ed
un

us
ed

A
pp

lic
at

io
n

0x
10

h

0x
14

h

0x
18

h

A
2'

un
us

ed

A
1'

B
1'

(b
)

T
h
e

in
it

ia
li
za

ti
o
n

v
ec

to
r

p
o
in

ts
to

a
p
p
li
ca

ti
o
n
β

.

F
ig

ur
e

7.
3:

L
ay

ou
t

of
th

e
T

im
e-

T
ri

gg
er

ed
C

om
m

un
ic

at
io

n
Sc

he
du

le
w

it
h

tw
o

fic
ti

ti
ou

s
ap

pl
ic

at
io

ns
.

109

7.2 Memories in the TISS 7 The TISS

initialization vector is reserved, and therefore can not be overlapped by application
sections.

Each application section contains at most as many circular linked lists as the
number of supported periods of the periodic control system. Conversely, for a given
configuration within an application sections some linked lists, which correspond to
a specific period, can be omitted. For instance, in Figure 7.3 application α uses the
periods {3, 1, 0}, but leaves out period 2. Similarly, application β omits period 0,
but includes lists for all other periods {3, 2, 1}.

We also learn from figure Figure 7.3 that within an application section the ar-
rangement of data words of list entries need not necessarily be dense. While appli-
cation α organizes the data words in a sequential order, application β skips data
words between lists. This arrangement has no impact on the operation of the TISS,
even though it might lead to a fragmentation of the Time-Triggered Communication
Schedule memory. The organisation of the Time-Triggered Communication Schedule
is beyond the scope of the TISS, but in the sphere of control of the TNA during
on-the-fly reconfiguration.

Each linked list is circular and closed within its application section. No entry’s
Next field points to entries of other lists (i.e., periods), nor to entries outside its own
application section. Entries within a given list are numerically ordered in an ascen-
dending way by the value of the Instant, which denotes the phase of the associated
fragment. So, the numeric ordering equals temporal ordering. In Figure 7.3 we ex-
press the ordering by alphabetic letters. For instance, in application α the list of
period 3 begins at address 0x04h with entry A3. As Ax < Bx < Cx . . . for any period
x, the entry B3 is semantically the next entry of the list associated with period 3.

The numeric (as well as temporal) ordering manifests in the setting of the Next
pointers. In Figure 7.3 the numeric ordering of entries matches the physical ordering
in the memory. Generally, it is not necessary to have entries physically ordered in
the memory, as the linking by the Next pointer always creates the proper numeric
(as well as temporal) ordering.

The Initialization Vector The size and location of the initialization vector is
defined in the Time-Triggered Communication Schedule. The initialization vector is
relevant for initialization of the TISS (see section 7.6). In case of initialization, the
initialization vector presents the entry point of traversal for each period. The lists
associated with these periods must belong to exactly the same application section.

The initialization vector contains a copy of the first entry to be processed of each
period. For period x this copy resides at address x of the memory. If a period is
not present in the application sections, which the initialization vector refers to, the
corresponding data word in the initialization vector is also unused. For instance, in
Figure 7.3a the initialization vector points to application α, which omits period 2.
Consequently, the data word at address 0x02h is unused. Similarly, in Figure 7.3b,
where the initialization vector refers to application β, period 0 is not present, and
therefore the data word at address 0x00h remains unused.

110

7 The TISS 7.2 Memories in the TISS

The initialization vector always consumes as many data words as the number
of supported periods of the periodic control system. For example, in Figure 7.3 we
support 4 periods, hence an application section can possess at most 4 circular linked
lists. Consequently, the initialization vector takes the very first 4 data words in the
memory of the Time-Triggered Communication Schedule, even though there might
be unused data words in the initialization vector on behalf of omitted periods in any
application section.

An entry of the initialization vector marks the entry point, where a given period
should be started to be processed. This need not necessarily be the ”first” entry A
with the lowest Instant field. For instance, in the initialization vector of Figure 7.3a
at address 1 lays a copy of B1. Consequently, period 1 will not be started at A1, but
at B1. According to its ordering in the list, after the processing of B1 the next entry
to be handled will be C1. As a result, at initialization of the TISS we can begin to
execute a period at any communication activity associated with that entry.

7.2.2 The Burst Configuration Memory

The Burst Configuration Memory is an auxiliary memory in the current implementa-
tion of the TISS. It contains additional information about bursts of fragments, which
has not been included in the memory of the Time-Triggered Communication Sched-
ule on behalf of implementation issues. Semantically, the information contained
in the Burst Configuration Memory belongs to the context of the Time-Triggered
Communication Schedule. The main purpose of the Burst Configuration Memory
is to cut down on the size of the multiplexers in the Burst Dispatcher. As we see
in section 7.3.1, most parts of a data word of the Time-Triggered Communication
Schedule flow through a multiplexer. When we outsource parts of the information in
the context of the Time-Triggered Communication Schedule to an own memory, the
outsourced information need not be multiplexed any more.

Figure 7.4 depicts the layout of a data word in the Burst Configuration Memory.
Actually, the data word consumes 30 bit. The 2 additional bit that make up a com-
plete 32 bit word are reserved for future purpose. In total, the Burst Configuration
Memory provides 512 data words.

0 9 10 19 20 29 31

Start Offset End Offset Size

Figure 7.4: Layout of a data word in the Burst Configuration Memory

In the following, we explain the fields in a data word of the Burst Configuration
Memory.

Start Offset A burst corresponds to a fragment of a message, which is accessible at
the port of an encapsulated communication channel. Physically, the messages
of a port reside in the Port Memory outside the TISS. This field denotes the

111

7.2 Memories in the TISS 7 The TISS

start offset of the current fragment within the Port Memory with respect to
the port base address1.

End Offset Contrary to Start Offset, this field is the end offset of the current
fragment within the Port Memory with respect to the port base address.

Size This field has different interpretations according to the type of ports.

• For event ports, Size gives the size of an event message in number of
continuous data words in the Port Memory.

• In the other case, Size stands for the number of continuous data words
in the Port Memory, which the corresponding state message occupies.

• When explicit synchronization is chosen for output state ports, then this
field denotes the number of continuous data words in the Port Memory,
which one shadow buffer for a complete message takes. For implicit syn-
chronization, Size states the number of continuous data words in the Port
Memory for the complete message.

This field does not care about the increase of memory, when the time stamping
service for the a given port is activated, nor does it concern possible shadow
buffers. In other words, Size means the net size of a complete message of a
port.

The offsets (Start Offset and End Offset) mark the beginning and the end of
the burst. Taking the port base address into account, the offsets comprise a con-
tinuous chunk, which equals the current fragment of the message of the associated
port, of data words in the Port Memory. According to the fragmentation of mes-
sages, there is one entry in the Burst Configuration Memory for each fragment. The
conjunction of start and end offsets must span over the whole message, so that all
chunks make up the complete message. Note that the order of chunks is not relevant
according to the property of total temporal ordering of encapsulated communica-
tion channels. However, an intersection between any chunks built by the offsets is
not allowed. Otherwise, there would be data words in the Port Memory, which are
processed more than once.

All fields in the data word of the Burst Configuration Memory are input for the
address calculation (see section 7.4.4), which determines the physical address of the
data words in the Port Memory for the current fragment. All of them have a width
of 10 bit, thus each field can address 210 = 1024 offsets, which refer to a data word
in the Port Memory.

Like the Time-Triggered Communication Schedule, the Burst Configuration
Memory is in the authority of the TNA. Therefore, the set-up information of bursts
in the data words of the Burst Configuration Memory are also determined a pri-
ori and regarded as fault-free, i.e., no chunks embraced by start and end offsets do
overlap.

1See the corresponding field in the Port Configuration Memory in section 5.2.2

112

7 The TISS 7.3 Dispatching Bursts

7.2.3 The Routing Information Memory

The Routing Information Memory belongs to the Network Layer. It stores the infor-
mation, how encapsulated communication channels are routed through the TTNoC:
the routing information, as introduced in section 6.2. The Routing Processor reads
the data of the Routing Information Memory, and inserts the routing information
into the TTNoC, so that the route of the encapsulated communication channel is
established due to the switching of the Fragment Switches according to the routing
information.

The Routing Information Memory contains 128 data words of 32 bit width in
the current implementation, which is the same as the width of the data bus of lanes
in the TTNoC. The data words do not possess any particular layout. Instead of
a predefined structure, each data word holds a routing flit, which is composed of
switching opcodes for Fragment Switches. The routing information that describes
the route of an encapsulated communication channel is spread across at least one
routing flit respectively data word of the Routing Information Memory.

The Routing Information Memory provides the input to the Routing Processor
only for send operations, when the TISS takes the role of the source (sender) of the
encapsulated communication channel, and consequently is in charge of setting up the
route. In this case, two fields in the entries of the Time-Triggered Communication
Schedule are relevant to refer to the proper routing information in the Routing Infor-
mation Memory. As the field RILen in the Time-Triggered Communication Schedule
has a width of 3 bit (and the value 000 is reserved), the routing information of an
encapsulated communication channel can consist up to 7 routing flits, which occupy
7 continuous data words in the Routing Information Memory. The field RIRef in the
Time-Triggered Communication Schedule points at the very first data word of this
sequence.

7.3 Dispatching Bursts

This sections explains, how the instant, when a burst is to be processed with respect
to the global time base, is determined in the TISS. We call this function the dis-
patching of bursts. The component in the TISS, which is in charge of dispatching, is
the Burst Dispatcher .

The Burst Dispatcher retrieves the information about instants of bursts from
the Time-Triggered Communication Schedule. Therefore, the Burst Dispatcher is
directly attached to the read port of the memory of the Time-Triggered Commu-
nication Schedule. Moreover, the operation of the Burst Dispatcher harnesses the
organisation of the Time-Triggered Communication Schedule in circular, linked lists
and their entries. In the following sections we introduce the components, which
the Burst Dispatcher is built of, and explain, how these components use the Time-
Triggered Communication Schedule.

113

7.3 Dispatching Bursts 7 The TISS

7.3.1 Structure of the Burst Dispatcher

The main components of the Burst Dispatcher are the phase comparators and the
period controllers. One pair of phase comparator and period controller is assigned
to exactly one period in order to process the bursts of that period. While the phase
comparator checks the arrival of the instant of the current burst, the period controller
traverses the circular, linked list in the Time-Triggered Communication Schedule,
which goes with the corresponding period. The cooperation of these two kinds of
components is the key mechanism of dispatching in the TISS.

Phase
Comparator

0

Period
Controller

0

Phase
Comparator

1

Period
Controller

1

Phase
Comparator

N - 1

Period
Controller

N - 1

compare match

instant setup

2 Multiplexer

address bus

payload
output

Vector Coder
MUX settings

TT C
om

m
.

Schedule

address bus

payload output

Interface to
remaining

TISS

compare match signals

read
address

shared data
bus

Time Base
input

Figure 7.5: Structure of the Burst Dispatcher

We see in Figure 7.5 that the Burst Dispatcher contains as many pairs of phase
comparator and period controller as the number of supported periods N of the pe-
riodic control system. Other than the Time-Triggered Communication Schedule,
which is realized in a memory and can omit periods, these components exist in hard-
ware. Even though a period might not be active in the current application section
(of the Time-Triggered Communication Schedule), the associated phase comparator
and period controller are still present, but remain in an idle mode.

In the following we examine the operation of a phase comparator and period
controller.

The Phase Comparator

The task of the phase comparator is to indicate the instant, when a burst has to be
processed by the TISS. The required information about instants is kept in the entries
of the Time-Triggered Communication Schedule. The Instant field holds the value
of the phase slice of a given period that is associated with a burst’s phase in that
period. Whenever the phase slice (in the time format of the global time base) of

114

7 The TISS 7.3 Dispatching Bursts

that period equals the value of Instant, the instant for processing of the burst has
arrived. So, a phase comparator is attached to the phase slice of the corresponding
period. Moreover, it contains a register with a local copy of the value of Instant of
the next burst to be dispatched.

In this context, the phase comparator performs a bit-wise comparison between
the value of the local copy of Instant and the phase slice it is attached to. When this
comparison evaluates to equality, the phase comparator indicates a compare match
for exactly one clock cycle of the system operation frequency. This internal control
signal triggers the further processing of the burst within the Burst Dispatcher as well
as the TISS.

The Period Controller

The period controller serves two purposes for dispatching.

1. The period controller traverses the circular, linked list in the Time-Triggered
Communication Schedule, which is associated with the same period, to which
its paired phase comparator and itself are assigned to. In this context, it con-
tinuously fetches the entry corresponding with the next burst to be processed
from the list, and makes a local copy in a register.

2. The period controller maintains a register in its paired phase comparator, which
stores the local copy of the Instant field for the next burst to be processed. As
a result, its paired phase comparator indicates the compare match according
to this local Instant value, which has been set by the period controller.

These two tasks are executed sequentially, after a compare match has been sig-
naled by the paired phase comparator. In this case, the period controller fetches the
next entry in the circular, linked list, which corresponds to the burst to be dispatched
next. It stores a local copy of that next entry and extracts the field Instant in order
to set up a copy in the phase comparator. When the instant of the next burst occurs,
this procedure starts all over again. Consequently, the period controller traverses the
circular, linked list, whereas it hops from one entry to the successor in the list after
each compare match.

A period controller provides four connections to other components of the Burst
Dispatcher:

1. the link to its paired phase comparator, through which it supplies the register
in the phase comparator with copies of the Instant field of the next burst
(”instant setup” in Figure 7.5).

2. an ”address bus” to the memory of the Time-Triggered Communication Sched-
ule in order to issue the address of the next entry to be fetched.

115

7.3 Dispatching Bursts 7 The TISS

3. a corresponding input ”data bus”, on which the next entry is carried from
the memory of the Time-Triggered Communication Schedule to all period con-
trollers.

4. a ”payload output”, on which it provides relevant information about the current
burst to be further processed by the TISS.

The period controller achieves the traversal of the list by evaluating the Next
field in the current entry. According to the layout of entries in the Time-Triggered
Communication Schedule, a Next field is a pointer to the next entry in the circular,
linked list. In this context, the Next field denotes an address in the memory of the
Time-Triggered Communication Schedule. In fact, the period controller fetches the
entry of the next burst to be dispatched by assigning the Next field of its local copy
of the current entry at its address bus.

Besides setting the address bus after the compare match to fetch the next en-
try, the period controller simultaneously dumps the relevant information for further
processing of the current burst on its payload output. The Burst Dispatcher fur-
ther maintains the payload output (as we will see in the following section) in order
to establish an internal (unnamed) interface to the remaining TISS. This interface
provides the relevant information about the current burst to the other processing
components of the TISS.

This internal (unnamed) interface to the remaining TISS comprises the following
fields of an entry of the Time-Triggered Communication Schedule:

• BurstRef

• PortRef

• RIRef

• RILen

• Direction

• IsFirst

• IsLast

• an additional signal InfoValid, which indicates that the information in the
other fields at the interface are valid. InfoValid carries a level of 1 for the
very first clock cycle of the system operation frequency, when the payload
output of the period controller, which paired phase comparator most recently
has fired, has arrived at the Burst Dispatcher’s interface.

Note that Next and Instant are not part of the Burst Dispatcher’s interface to
the TISS, because these fields have no utility outside the Burst Dispatcher. Next only
concerns the fetching of the next entries from the Time-Triggered Communication
Schedule, and therefore is only used on the address bus of period controllers. Instant
is only relevant between a period controller and its paired phase comparator.

116

7 The TISS 7.3 Dispatching Bursts

Multiplexing in the Burst Dispatcher

As there is one pair of phase comparator and period controller replicated for each
supported period, the dispatching of the current burst of each period is performed
simultaneously throughout the parallel hardware. In fact, only one phase comparator
will fire at a given instant of time. The reason for this is that all pairs of phase
comparator and period controller strictly follow the Time-Triggered Communication
Schedule, and communication activities among all periods never collide according to
the requirement of section 2.3.3.

The Burst Dispatcher provides information of the current burst at an internal
(unnamed) interface to the remaining TISS. This information comprises a subset of
the fields of an entry in the Time-Triggered Communication Schedule, which are rel-
evant for further processing. However, we have several period controllers in parallel,
and each of them frequently supplies such information at its payload output, when-
ever a burst occurs in its dedicated period. As a consequence, the payload output of
all period controllers must be multiplexed, so that the information from the period
controller with the most recent burst is available at the Burst Dispatcher’s interface.
Figure 7.5 also illustrates, how the payload output of each period controller flows
through a multiplexer. The output of that multiplexer is forwarded to the interface
of the Burst Dispatcher.

The address buses of the period controllers are in a similar situation like the
payload outputs. There is only one memory of the Time-Triggered Communication
Schedule, but every period controller needs to assign addresses to the address port of
that memory. Hence, a driver conflict among the wires of all address buses from the
period controllers is inevitable. To circumvent this situation, the Burst Dispatcher
includes a second multiplexer, which directs the address bus of the period controller,
which paired phase comparator most recently has fired, to the read port of the
memory. Note that the data bus of the memory, which carries the next entries to be
fetched by the period controllers, need not be multiplexed. The reason is that period
controllers just read the data bus of the memory, while there is only the memory
itself as single driver.

The setting of the multiplexers is derived from the collection of all compare
match wires, which originate at phase comparators. Note that both multiplexers
simultaneously select the address bus and payload output of that period controller,
which paired phase comparator most recently has triggered the compare match. So,
there need only be one setting, which is applied at both multiplexers.

The collection of all compare match wires forms a signal vector, whereas signal
with index i corresponds to the compare match wire of the phase comparator asso-
ciated with period i. As there can only fire at most one phase comparator at a given
instant of time, this vector either has all signals to 0, or at most one signal carries
level 1. Let us denote the index of the signal, which carries 1 at the moment, as m,
while the numeric value of m corresponds to period m. As a consequence, we want
the multiplexers to select the address bus and payload output of period controller m.
For this purpose, the multiplexer setting must take the numeric value of m. In other

117

7.3 Dispatching Bursts 7 The TISS

words, the Burst Dispatcher has to implement a function fc, which transforms the bit
pattern of the signal vector (where the m-th bit is 1) into the numeric value of index
m. For example we assume 16 periods, and the 8-th phase comparator has most
recently fired (m = 8). The signal vector looks like this: ~s = 0000000100000000.
The function fc, which transforms ~s into m, calculates: 0000000100000000 → 1000.
In other words, fc determines the logarithm dualis of the signal vector, which then
is used as the setting of the multiplexers.

The Burst Dispatcher includes an own component named vector coder, which
implements fc. The input of the vector coder are all compare match wires, and the
output is the proper setting of the multiplexers.

7.3.2 Timing of Dispatching

This section explains the timing in the Burst Dispatcher. It shows, which activity
that has been described in the previous section happens where at which time after
the arrival of the instant of a burst. Figure 7.6 gives the latency of each activity in
cycles of the system operation frequency.

Phase
Comparator

0

Period
Controller

0

Phase
Comparator

1

Period
Controller

1

Phase
Comparator

N - 1

Period
Controller

N - 1

compare match

instant setup

2 Multiplexer

address bus

payload
output

Vector Coder
MUX settings

TT C
om

m
.

Schedule

address bus

payload output

Interface to
remaining

TISS

compare match signals

read
address

shared data
bus

Time Base
input

1

2

3
4

5

6 2

3

0

n The nth cycle (of the system operation frequency) of latency after the arrival of
the instant of a burst to be processed.

1

Figure 7.6: Timing of activities in the Burst Dispatcher

Even though Figure 7.6 shows an example scenario, where a burst is dispatched
for period 1, the dispatching of burst among the phase comparators and period
controllers of all periods is deterministic and takes the same time.

In the following we describe the sequence of activities with respect to their timing.

0. This is the initial state in the phase comparator, when the bit-wise comparison
between attached phase slice and the local copy of the Instant value evaluates

118

7 The TISS 7.3 Dispatching Bursts

to equality. It takes 1 clock cycle for the phase comparator to process its
internal state machine and to produce the compare match signal.

1. The compare match signal travels to the period controller. The period con-
troller responds to this input by issuing the payload output and placing the
address (Next ”pointer”) hold in the local copy of the current entry on the ad-
dress bus. This causes the next entry in the circular, linked list of the associated
period in the Time-Triggered Communication Schedule to be fetched from the
memory. Afterwards the period controller enters wait states, until that next
entry arrives at the data bus, which is shared among all period controllers.

At the same time the compare match signal also enters the vector coder, which
generates the proper multiplexer setting.

2. The payload data and the address of the next entry from the period controller
are on its way to their corresponding multiplexers. The vector coder has al-
ready calculated the setting of both multiplexers, therefore the multiplexers
are prepared to select the correct payload output respectively address bus. In
the example of Figure 7.6 this is the payload output and address bus of period
controller 1.

3. The payload output and address bus leave the multiplexers. The payload data
directly flows into the internal (unnamed) interface to the remaining TISS. The
additional control signal at the Burst Dispatcher’s interface named InfoValid
goes to 1 during this clock cycle. As a result, the TISS is notified and can
proceed with the processing of the burst after these 3 cycles.

On the other side the read port of the memory of the Time-Triggered Commu-
nication Schedule is assigned with the address of the next entry in the circular,
linked list of the corresponding period.

4. This is a wait state for the period controller, as the memory of the Time-
Triggered Communication Schedule requires one clock cycle to process the ad-
dress, which has been set up in the previous clock cycle.

5. The next entry is available on the shared data bus from the memory of the
Time-Triggered Communication Schedule. According to its internal state, the
period controller, which phase comparator has most recently fired (in this ex-
ample period controller 1), fetches that data into a local register. Additionally,
it extracts the Instant field in order to copy its value to the phase comparator.

6. The period controller sets the value in the local register for the Instant field
in its paired phase comparator. As a result, the phase comparator is ready to
indicate the arrival of the next burst in the period.

We learn from Figure 7.6 that the relevant information about the burst, which is
used for further processing by the TISS, arrives at the Burst Dispatcher’s interface
to the remaining TISS before the period controller has completed the set-up of the

119

7.3 Dispatching Bursts 7 The TISS

next burst to be dispatched. Consequently, that set-up procedure overlaps the further
processing of the burst in the remaining TISS. We define this interval between arrival
of the instant of the associated burst till the availability of relevant information at
the Burst Dispatcher’s interface as ∆disp = 3.

The total duration of that set-up procedure determines the lower bound, how
often a burst can be dispatched for a given period, i.e., by the same pair of phase
comparator and period controller. In the current implementation this total duration
is 6 cycles of system operation frequency. Thus, a given pair of phase comparator
and period controller can dispatch two consecutive bursts every 7 cycles of system
operation frequency.

Theoretically, it is possible to have a different phase comparator firing every
clock cycle, so that the single activities among all active period controllers and phase
comparators are pipelined. In this context, the essential condition is that exactly
one phase comparator indicates the arrival of a burst at a specific clock cycle, thus,
no collisions in the vector coder as well as the multiplexers ever occur afterwards.

7.3.3 Activating and Deactivating Periods

As introduced in section 7.2.1, the Time-Triggered Communication Schedule can
omit circular, linked lists in its layout, if the corresponding period is not used in
the current application section. This flexibility is possible due the realization of the
Time-Triggered Communication Schedule as a memory.

The Burst Dispatcher can not provide such a flexibility. Its internal components
such as the phase comparators and period controllers are realized in hardware, there-
fore they are always present at run-time and can not simply ”disappear”.

However, the Burst Dispatcher offers a mechanism to activate and deactivate
pairs of phase comparator and period controller independently of each other. The
deactivation is only reasonable, if the corresponding period is not available in the
current application section of the Time-Triggered Communication Schedule. On the
contrary, such a pair of components should be activated in case of a circular, linked
list present in the current application section. Otherwise, the Burst Dispatcher would
fail to dispatch the bursts of that period.

The activation and deactivation is not automatically executed depending on
the layout of the current application section in the Time-Triggered Communication
Schedule. This must explicitly be done by the TNA, which is able to activate and
deactivate pairs of phase comparators and period controllers for the Burst Dispatcher
of all TISSs independently.

For this purpose, each TISS contains a vector of control signals named PeriodEna,
which is wired through to the phase comparators in its Burst Dispatcher. The width
of that vector is the number of supported periods of the periodic control system,
which is the same as the number of pairs of phase comparator and period controller

120

7 The TISS 7.4 The Port Manager

in the Burst Dispatcher. So, the task of the TNA is to maintain the vector PeriodEna
in each TISS2.

If PeriodEna(i) = 1 for the phase comparator associated with period i, then
the phase comparator and period controller for period i are active, and the bursts
of period i can be dispatched. Otherwise if PeriodEna(i) = 0, phase comparator i
suppresses the generation of a compare match signal. As a consequence, no compare
match signal ever arrives at the paired period controller, therefore no circular, linked
list in the Time-Triggered Communication Schedule is traversed any more.

7.4 The Port Manager

In this section we discover, how the TISS manages the data flow of bursts and
reassembles this burst to complete messages in the Port Memory. It explains, which
calculations and internal states are processed in the single components of the TISS,
and which interactions among these components of the TISS are involved. With
reference to the schematics of Figure 2.4, this set of functions logically belongs to
the Port Manager in the TISS.

7.4.1 The State Machine of the Port Manager

In general, the operation of the Port Manager is driven by a state machine, as
illustrated in Figure 7.7. The state machine includes 5 states (excluding the Reset
state), which are processed in a cyclic way. The begin of such a cycle of processing
corresponds to the dispatching of a burst. Even though the operation of the Port
Manager is driven by a state machine, the sequence of states is triggered by the
dispatching of bursts according to the Time-Triggered Communication Schedule.

The Reset State

The very first state (as well as starting state) in the state machine is the Reset
state. This only covers the reset condition concerning the hardware, which houses
the TTSoC. During this state all internal registers are initialized to their start-up
values. Additionally, the Reset state keeps the state machine of the Port Manager
in a controlled condition so that no unintended behaviour of the TISS can occur.
Usually, the Reset state lasts as long as a dedicated reset wire implemented in
hardware drives a level of 0, thus the corresponding reset signal is low-active. This
level of the reset signal can be caused by user input, for instance the user pushes
a reset button. As a consequence, the state machine, i.e., the processing of the
Port Manager, can be interrupted at any time by user interaction with the target
hardware. In such a case, the Reset state is engaged, and all pending operation is
aborted.

2This is subject of section 8.4.3.

121

7.4 The Port Manager 7 The TISS

Reset

Idle

Fetch

Dig Time
Stamp

Operation
Complete

reset wire is
released

InfoValid = 1 and
no watchdog or

configuration port

current port is
dissemination

service

after 1 cycle all data
processed: current

port uses time
stamping

all data
processed: current
port does not use

time stamping

after time
stamping

after 1 cycle

Figure 7.7: State machine of the Port Manager

The Reset is present in all state machines throughout all components of the TISS
and serves the same purpose. Therefore, we will not further mention the activities
during the Reset state in each component.

The Idle State

After the Reset state, when the TTSoC has completely reached its start-up condition,
the state machine enters the Idle state. As its name suggests, then the Port Manager
is idle and waits for the start of a new processing cycle of the state machine. In fact,
this start event is derived from the Time-Triggered Communication Schedule in the
TISS. As the Port Manager handles the data flow of bursts, the state machine begins
its cyclic processing whenever the Burst Dispatcher indicates the arrival of an instant
associated with a burst. As we have seen in section 7.3, this start event corresponds
to that clock cycle of the system operation frequency, when the Burst Dispatcher
issues a level of 1 at the signal InfoValid of its internal (unnamed) interface to the
remaining TISS. In case of the Port Manager, InfoValid is the input notification
signal, which causes the state machine to awake from the Idle state. Note that
InfoValid not always causes the Idle state to be left.

122

7 The TISS 7.4 The Port Manager

In the current implementation, the TISS includes a special handling for specific
operations. The state machine of the Port Manager recognizes the special handling
by monitoring the associated port of the current burst (given in the field PortRef of
the Burst Dispatcher’s interface). If InfoValid indicates a burst for a port belonging
to this special set, then the operation of the state machine is skipped, and dedicated
components in the TISS take the control to fulfil that special operation. Currently,
the state machine of the Port Manager recognizes the following 3 port identifiers as
specially treated ports:

port 125 This is the ”virtual” port associated with the watchdog service.

port 126 This is the port for the diagnostic dissemination service.

port 127 The reconfiguration, as explained in section 8.4, uses port 127 to execute
the reconfiguration procedure.

If PortRef holds a value of 125 or 127, then no transition from the Idle state
to its successor in the state machine takes place, because in this case a dedicated
module in the TISS processes the special operation. Also, port 126 causes the state
machine to abort, but as we can see in Figure 7.7 from the state Fetch.

The InfoValid signal not exclusively triggers progress in the state machine of
the Port Manager. In combination with the Idle state, a level of 1 at InfoValid
activates further modules of the Port Manager, which are in charge of one specific
function that contributes to the overall function of the TISS, i.e., the Port Manager.
Depending on the direction of the burst, i.e., send or receive operation, the following
components take up their operation, which have been first mentioned in Figure 7.1:

Routing Processor is only relevant for send operations. It injects routing flits
before the application data of a fragment so that the route of the encapsu-
lated communication channel, where the current burst belongs to, is built (see
section 7.4.2).

Receive Window Detector (RX Det.) is active during receive operations.
When a burst is dispatched, it observes the TTNoC interface until the very
first data flit of the burst to be received arrives (see section 7.4.3).

Memory Digger keeps track of the number of data words from or to the Port
Memory. The Memory Digger handles the burst of send as well as receive
operations (see section 7.4.5).

The Fetch State

Some fields of the Burst Dispatcher’s interface drive the address bus of memories in
the TISS. When the Port Manager is in the Idle state and InfoValid goes 1 for
exactly one clock cycle of system operation frequency, all of these fields have already

123

7.4 The Port Manager 7 The TISS

reached a stable value. As a result, each memory processes its address bus and puts
the appropriate data word onto its data output bus. Each memory takes one clock
cycle of system operation frequency to provide the corresponding output, starting
with the clock cycle, when InfoValid becomes 1. After that, it also takes one clock
cycle for the Port Manager’s state machine to reach the Fetch state. At the same
time, the output data at each memory is ready to use.

The following fields of the Burst Dispatcher’ s interface flow to the respective
memory:

• PortRef is attached to the address bus of the Port Configuration Memory as
well as Port Synchronization Memory.

• BurstRef goes to the address bus of the Burst Configuration Memory.

• RIRef is used in the Routing Processor, and indirectly used to drive the address
bus of the Routing Information Memory.

In the Fetch state, the Port Manager makes a copy into local registers of the
data words of the Port Configuration Memory and Port Synchronization Memory,
which has become available at the data output of the corresponding memory. The
information contained in the data words, and further in the local register, is used
throughout the further operation of the Port Manager. The data word of the Routing
Information Memory is managed within the Routing Processor.

The Dig State

During the Dig state, the operation in the Port Manager is executed by dedicated
modules. The Port Manager completely hands over control to these entities, and
just waits for the completion of their operation in order to proceed with the state
machine. The central role during the Dig state plays the Memory Digger. It is
active for send as well as receive operations, i.e., bursts that process the fragments
of outgoing or incoming messages of a given encapsulated communication channel.

The Time Stamp State

The state machine of the Port Manager only reaches this state, if the host has
enabled the time stamping service for the port, where the current burst belongs
to. Furthermore, the current burst must correspond the the last fragment (i.e.,
IsLast = 1) so that the message will be completed after that burst. During this
state, the Time Stamper component of the Port Manager appends a copy of the
current value of the global time base to the data of the message.

124

7 The TISS 7.4 The Port Manager

The Operation Complete State

The state machine occupies this state after the complete processing of the current
burst. At this time, the Memory Digger and probably the Time Stamper have
completed their operation, and now the control is released back to the Port Manager.
The state Operation Complete is the last state, before the state machine in the Port
Manager finishes a clock cycle and gets back to the Idle state.

This state Operation Complete is used for some housekeeping in the Port Man-
ager. Firstly, it triggers the updating of port synchronization flags. Secondly, if
”port operation complete” interrupts are activated for the current burst, and the
current burst corresponds to the last fragment of the message of the current port
(IsLast = 1), then the Port Manager indicates a ”port operation complete” in-
terrupt at the control interface of the UNI. Finally, this state causes some internal
registers to be reset in order to be prepared to process the next burst.

7.4.2 The Routing Processor

The Routing Processor manages the insertion of routing flits from the Routing In-
formation Memory to the TTNoC interface in order to set-up the route of an encap-
sulated communication channel. For this purpose, the Routing Processor maintains
two counters:

• an address counter, which drives the address of the Routing Information Mem-
ory

• a flit counter, which counts the number of routing flits that are injected into
the TTNoC via the TTNoC interface

Actually, the Routing Processor is driven by an own state machine, which is
illustrated in Figure 7.8. The operation of the Routing Processor is initiated by the
signal InfoValid (driven to 1) of the Burst Dispatcher’s interface, if and only if
Direction is also 1, hence, the current burst belongs to an output port. Then, the
state machine leaves the Idle state and enters the Setup state.

During the Setup state, the Routing Processor captures the field RIRef of the
Burst Dispatcher’s interface into the local address counter, and resets the flit counter
to 0. Besides this, the Routing Processor controls, whether its operation is really
required. The Routing Processor skips some states in the state machine or goes back
to the Idle state, if the following conditions are fulfilled:

• Port Enable in the Port Configuration Memory is 0. In other words, the port
to which the current burst belongs to is deactivated, and no communication
activities referring to this port should take place at all. The state machine
aborts operation and goes back to the Idle state.

125

7.4 The Port Manager 7 The TISS

Reset

Idle

Setup Processing

Done

reset wire is
released

In
fo

V
al

id
 =

 1
 a

nd

D
ire

ct
io

n
=

1

P
or

t i
s

di
sa

bl
ed

after 1 cycle

all routing flits
processed

release
handshake

RILen = 0

Figure 7.8: State machine of the Routing Processor

• RILen equals a null vector, which tells the Routing Processor that no routing
flits are associated with the current burst. For instance, this is the case for the
circuit-switched routing mode of the TTNoC, or for ”virtual fragments” that
are used to ensure the consistent delivery order of messages. Then, the state
machine continues in the state Done.

If the state machine has not been aborted so far, the Routing Processor continues
in the Processing state. In this state the Routing Processor increments the address
counter and the flit counter in each clock cycle of the system operation frequency.
As the address counter is attached to the address port of the Routing Information
Memory, the increment of the address counter simultaneously causes the next data
word (and therefore the next routing flit) to be fetched from the Routing Information
Memory. As a result, the Routing Processor traverses the sequence of routing flits
that make up the route of the encapsulated communication channel, to which the
fragment of the current burst belongs to. The state machines leaves the Processing
state, when the address of all routing flits for the current burst have been issued.
This is the case, when flit counter = RILen.

Afterwards the Routing Processor remains in the Done state. The Routing Pro-
cessor signals that the TISS has just completed to insert routing flits at the TTNoC
interface, and that application data of the burst can be transmitted. This signal
named RIDone is one part of a handshake between modules of the Port Manager,
which postpone their operation until the arrival of this notification from the Routing
Processor. For instance, for send operation the Memory Digger waits until this hand-
shake signal arrives from the Routing Processor and then takes up its own operation.
In this case, the Memory Digger responds with another handshake signal named

126

7 The TISS 7.4 The Port Manager

RelDone (see section 7.4.5), which tells the state machine of the Routing Processor
to go back to the Idle state.

In fact, the data words of the Routing Information Memory never flow through the
Routing Processor. That is, the Routing Processor never captures the data words
of the Routing Information Memory in local registers. Instead of this, the data
port of the Routing Information Memory is a direct input to the TTNoC interface,
whereas the Routing Processor only monitors the wire-through of the sequence of
data words from the data port of the Routing Information Memory to the TTNoC
interface. Moreover, the Routing Processor controls the valid and header signals of
the outgoing lane of the TTNoC interface. The Routing Processor drives both signal
to 1, when the state machine is in the state Processing as well as Setup. Note that
in the Setup state the very first data word in the sequence of data words has already
become available at the data port of the Routing Information Memory, and therefore
it is issued at the TTNoC interface to avoid further delays.

The Fragment Switch, which is attached to the TTNoC interface of the TISS, in-
terprets that data from the Routing Information Memory as routing flit that contains
switching opcodes, i.e., routing information. As a result, the procedure of switching
in the TTNoC, as described in section 6.2, begins due to the operation of the Routing
Processor.

7.4.3 Establishing Receive Windows

For receive operations, i.e., the port to which the current burst belongs to embodies
the sink of an encapsulated communication channel, the Port Manager has to wait,
until the real application data arrives at the incoming lane of the TTNoC interface.
Even though communication activities are synchronized to each other by means of
the macro tick, the real communication among TISSs runs at the system operation
frequency. So, the arrival of data at the TTNoC interface belongs to a finer scope
than it could be expressed with a macro tick. Furthermore, the TISSs as well as
the TTNoC entail processing delays and propagation delays. As a consequence, the
application-level data of a burst does not leave the sending TISS exactly at the rising
edge of the macro tick, but a deterministic number of cycles of the system operation
frequency later. Same applies to receiving TISSs, whereas the application-level data
arrives a deterministic number of cycles of the system operation frequency after the
rising edge of the macro tick.

Due to this circumstances, for receive operations the Port Manager has to span
a receive window in order to postpone the processing of an incoming burst until
the very first data flit arrives at the TTNoC interface. The module in the TISS,
which is in charge of this task, is the Receive Window Detector . After an incoming
burst has been dispatched, the Receive Window Detector senses the incoming lane
of the TTNoC interface. It indicates the arrival of the very first data flit by issuing
a notification signal to all the modules in the TISS, which have been waiting for this
particular event, for instance the Memory Digger.

127

7.4 The Port Manager 7 The TISS

Reset

Idle

Setup Sense

Valid

reset wire is
released

after 1 cycle

data flit arrived
release

handshake

Config
Wait

Config
Valid

Miss Late

waiting for
configuration

burst

da
ta

 fl
it

ar
riv

ed

after 1 cycle

InfoValid = 1 and
Direction = 0

Memory Digger
too late

no data flit
arrived

release
handshake

release
handshake

Figure 7.9: State machine of the Receive Window Detector

In the current implementation, we define a receive window as the macro tick that
corresponds to the instant of the current incoming burst (i.e., the value of the Instant
field in the associated entry of the Time-Triggered Communication Schedule) up to
the consecutive macro tick. In other words, the receive window spans over an interval
of one macro tick.

The State Machine of the Receive Window Detector

Obviously, the Receive Window Detector is driven by a state machine, which is
depicted in Figure 7.9.

The operation of the state machine begins in the state Idle with the dispatching
of an incoming burst, whereas InfoValid = 1 and the field Direction = 0 (input
port) of the Burst Dispatcher’s interface. The next state is Setup, where the Receive
Window Detector differentiates between a ”normal operation”, whereas the port
associated with the current burst is not the reserved port 127, and ”special operation”
of the on-the-fly reconfiguration (see section 8.4). In case of normal operation the
following state is Sense, while in the other case it is Config Wait. Actually, the

128

7 The TISS 7.4 The Port Manager

Receive Window Detector performs the same functions in these both states. The
only difference is that from Sense the state machine can reach two error states, i.e.,
Miss and Late, while Config Wait can only be followed by one error state, i.e.,
Miss.

In either state (Config Wait or Sense) the Receive Window Detector captures
the current level of the macro tick bit in the global time base into a local single-bit
register. The associated macro tick denotes the beginning of the receive window.
Then, the Receive Window Detector compares the current level of the macro tick
with the stored value. As long as they are the same, the receive window is still
present. If they deviate and no data flit has arrived so far, the receive window has
passed by, and an error condition is met.

The Receive Window Detector monitors the signals header and valid of the
incoming lane of the TTNoC interface during the states Sense and Config Wait.
According to the semantics of lanes in the TTNoC, data flits can be recognized by
header = 0 ∧ valid = 1. If the levels of these signal take this combination during
the state Config Wait respectively Sense, then a data flit that corresponds to the
application-level data of the current incoming burst has arrived in time within the
receive window. So, the following state in the state machine embodies a successful
arrival of data.

The successor state (in case of a successful detection within the receive window)
of Config Wait is Config Valid, and for Sense it is Valid. In this states, the
notification signal named RXValid is driven to one. For normal operation the Re-
ceive Window Detector applies a handshake protocol with the Memory Digger like
the Routing Processor. As a consequence, Sense is kept until the Memory Digger
responds via the signal DigBusy (see section 7.4.5). On the contrary, the state ma-
chine remains in Config Valid for exactly one clock cycle of the system operation
frequency, as the Memory Digger is not involved with the special operation of port
127.

Finally, the Receive Window Detector enters the Idle state, while the modules
that have been waiting for the notification from the Receive Window Detector con-
tinue to process the current (incoming) burst.

The Receive Window Detector applies a handshaking protocol for the error states,
too. For this purpose, the Receive Window Detector maintains two notification
signals, which are input for the modules that are waiting for arrival of data:

• The notification signal RXMiss is associated with the error state Miss.

• The error state Late is indicated by the notification signal RXLate.

Again, if the state machine dwells in any error state, it waits for a response from
the modules that have been waiting for the arrival of data in order to unlock the
state machine and get back to the Idle state (see section 7.4.5). In fact, it waits for
the notification signal DigErr from the Memory Digger.

129

7.4 The Port Manager 7 The TISS

The following section gives background information about the two error states of
the Receive Window Detector.

About Error States

Considering the error states, the first one is Miss. Literally this means, that an in-
coming burst has missed to arrive at the receiving TISS’s TTNoC interface within the
given receive window. Certainly, for a time-triggered communication service, whereas
all communication is determined a priori and synchronized towards a common global
time base, this is not possible. However, the TTSoC architecture distinguishes be-
tween periodic and sporadic messages, as introduced in section 2.3.3. While a ”miss”
will never occur for bursts belonging to periodic messages, which are always trans-
mitted, a sporadic message can be omitted, if the sender decides to not transmit a
message. Usually, this behaviour correlates to messages based on an event seman-
tics. In short, the Miss state in the Receive Window Detector has been introduced
to handle such a situation caused by sporadic messages, so that the Port Manager
as well as the overall TISS can cope with such a situation.

The second error state addresses the situation, when a data flit arrives at the
TTNoC interface, but the modules that process the incoming data, for instance the
Memory Digger, are not ready yet. This scenario can occur, when there is so much
propagation delay on the TTNoC that the incoming burst arrives at the receiver
at a later macro tick than the macro tick, when the burst has been sent. In such
a case, the receive would have dispatched the burst at the later macro tick to be
synchronous with the arrival time of the data flits at the receiver’s TTNoC interface.
However, a TISS takes some cycles of the system operation frequency to be ready for
processing of a burst, for instance section 7.3.2 explains that the Burst Dispatcher
needs 3 cycles until the instant of a burst to be processed is visible to the remaining
TISS. If the incoming burst happens to arrive at such an instant, when the TISS is
still busy to prepare its modules for the further processing of the current burst, then
this error condition is met. The Receive Window Detector covers this scenario by
introducing the state Late. Literally it says that the TISS has been too ”late” to
capture all data flits of the incoming burst.

In practice such a situation should never occur. As all communication is deter-
mined a priori and all propagation delays and set-up delays are also a priori known
and deterministic, we can design the Time-Triggered Communication Schedule or
the routing in the TTNoC this way that the error condition Late will never arise.

7.4.4 Address Calculation

Address calculation serves the purpose to determine the start and end address of the
continuous data chunk in the Port Memory, which corresponds to the fragment of the
message to be processed during the current burst. The module Address Calculator
performs this address calculation.

130

7 The TISS 7.4 The Port Manager

For this purpose, the Address Calculator needs several input signals from the
other modules of the Port Manager and TISS, which have been introduced in earlier
section. We list these input signals in the following Table 7.1:

Signal Name Origin
Port Base Address

Port Configuration Memory
Port Type
Port Sync
Time Stamp Enable
Direction Time-Triggered Communication Schedule
Start Offset

Burst Configuration MemoryEnd Offset
Size
Using

Port Synchronization Memory
TISS Addr

Table 7.1: Input signals for the address calculation

With these inputs the Address Calculator produces 3 output signals, which will
be used by the Memory Digger and Time Stamper during the further processing of
the current burst. The output signals are:

StartTrans This signal denotes the start address of the continuous data chunk in the
Port Memory, which corresponds with the fragment of the current burst. This
represents a real physical address in the Port Memory, which is word aligned.
Therefore, this signal vector has the same width as OCPM MAddr of the port
interface excluding the additional bits in the vector due to word alignment. In
fact, StartTrans has a width of 14 bit in the current implementation.

Moreover, StartTrans concerns, whether time stamping is activated for the
current port or not. In case of time stamping, StartTrans is increased by an
additional offset of 2, so that a time stamp (which consumes 2 data word in
the Port Memory in the current implementation) has enough (memory) space
to be placed in front of the application-level message in the current port.

EndTrans Similar to StartTrans, but this signal means the (real physical) end ad-
dress of the continuous data chunk in the Port Memory. It also takes care of
time stamping and is 14 bit wide in the current implementation.

RealStartAddr This signal refers to the real physical start address of the complete
message in the Port Memory, but not to the start address of the continuous data
chunk of the fragment of the current burst. As a time stamp is always placed
in front of the application-level message in a port, RealStartAddr equals the
physical address where the lower half of a time stamp is put, in case of an active
time stamping for the current port. Consequently, the upper half of the time
stamp resides at RealStartAddr+1, and the beginning of the application-level

131

7.4 The Port Manager 7 The TISS

messages is located at RealStartAddr+ 2. If no time stamping is activated for
the current burst, RealStartAddr automatically points at the beginning of the
application-level message. The signal also has a width of 14 bit in the current
implementation.

Address calculation has to consider the layout of state and event ports. For
instance, it has to be aware of the fact that state ports can contain shadow buffers,
while event ports can contain several complete messages within the memory space
of a port. As a consequence, the address calculation has to incorporate information
about the current state of port synchronization. Algorithm 7.1 describes the address
calculation, which is realized within the Address Calculator.

Algorithm 7.1 Algorithm of address calculation
1: if Time Stamp Enable = 1 ∧ Direction = 0 then
2: ts← 2
3: else
4: ts← 0
5: end if
6: if Port Type = 1 then {This is an event port.}
7: align← TISS Addr
8: else {This is a state port.}
9: if Direction = 0 then {This is an incoming state port.}

10: align← 0
11: else {This is an outgoing state port . . . }
12: if Port Sync = 1 then {. . . with implicit synchronization}
13: align← 0
14: else {. . . with explicit synchronization}
15: if Using = 1 then {The upper half of the port is active . . . }
16: align← 0 {. . . use the lower half as shadow.}
17: else {The lower half of the port is active . . . }
18: align← Size{. . . use the upper half as shadow.}
19: end if
20: end if
21: end if
22: end if
23: StartTrans← Port Base Address + Start Offset + align+ ts
24: EndTrans← Port Base Address + End Offset + align+ ts
25: RealStartAddr← Port Base Address + align

The Port Manager begins to process the current burst after InfoValid = 1 at the
Burst Dispatcher’s interface. At the same time the fields of the Burst Dispatcher’s
interface, which drive the address ports of the relevant memories inside the TISS
(i.e., Port Configuration Memory, Port Synchronization Memory, Burst Configura-
tion Memory), are visible. As we know from section 7.4.1, it takes another clock
cycle of the system operation frequency, until the current data words are available

132

7 The TISS 7.4 The Port Manager

after 1 cycle

Reset

Idle

RI_Wait Error

RX_Wait
re

se
t w

ire
 is

re

le
as

ed

Done Busy

af
te

r 1
 c

yc
le

S
iz

e
=

0

trigger receive
operation

tri
gg

er
 s

en
d

op
er

at
io

n

abort
condition

abort
condition

RIDone = 1

R
X

V
alid = 1

all data flits
processed

Figure 7.10: State machine of the Memory Digger

at the memories and can be fetched during the Fetch state of the Port Manager.
Even though in the realization of the address calculation in hardware the counters,
adders, and other basic register-level constructs are always active, the proper result
of the output signals of the Address Calculator are available at the end of the Port
Manager’s state Fetch, i.e., at the beginning of the state Dig. In other words, the
real address calculation takes place during the Fetch state, because the input values
for the current burst have arrived from the memories by the Fetch state.

7.4.5 Digging Application Data

The central role of the Port Manager is to manage the data flow of bursts from the
Port Memory to the TTNoC interface (in case of send operations) respectively from
the TTNoC interface into the Port Memory (in case of receive operations). The
state Dig in the Port Manager is dedicated to this task. However, the Port Manager
delegates this task to a special module, the Memory Digger, which entails its own
state machine, as depicted in Figure 7.10.

133

7.4 The Port Manager 7 The TISS

The State Machine of the Memory Digger

The state machine of the Memory Digger dwells in the Idle state, until the super-
ordinate Port Manager indicates a trigger signal. This trigger corresponds to the
Fetch state of the Port Manager’s state machine. Then, the following state in the
Memory Digger depends on the direction of the current burst, whether it is a send
or receive operation. In the first case, the next state is RI Wait, in the latter case it
is RX Wait.

As mentioned in earlier sections, for send operation the Port Manager has to inject
routing flits to the TTNoC via the TTNoC interface in order to set up the route of
the encapsulated communication channel, to which the fragment of the current burst
belongs to. As we have learned in section 7.4.2, this is the responsibility of the
Routing Processor. While the Routing Processor is busy, the Memory Digger has to
wait for the completion of the Routing Processor. RI Wait embodies this wait state.
The Memory Digger leaves this state, when the notification signal RIDone from the
Routing Processor drives a level of 1, which indicates that the Routing Processor
has just completed its operation. Afterwards the Memory Digger’s state machine
continues in the Busy state.

Note that for send operations the Memory Digger might skip the Busy state and
directly go on with Done state. This happens, whenever the field Size = 0 (from
the Burst Configuration Memory), which indicates that the current burst does not
transmit any data words from the Port Memory. Particularly, such a scenario occurs
in case of ”virtual fragments” that are used to ensure the consistent delivery order of
messages, as such ”virtual fragments” need not convey any data. Also note that the
value of Size is only checked in the state RI Wait (referring to send operations) in the
Memory Digger’s state machine. As a consequence, a burst of a ”virtual fragment”
must be configured as a send operation, even though the prior burst, which have
really processed data, might belong to an incoming port (receive operation).

The second wait state of the Memory Digger’s state machine concerns receive
operations. As we know from section 7.4.3, receiving a burst requires to observe the
incoming lane of the TTNoC interface, when the very first data flit arrives. As long
as the Receive Window Detector monitors the incoming lane of the TTNoC interface,
the Memory Digger’s state machine remains in the state RX Wait and waits for the
notification signal RXValid = 1 in order to enter the state Busy.

During the Busy state the real transportation of data flits / data words from
the TTNoC interface into the Port Memory (for receive operations) or from the
Port Memory to the TTNoC interface (for send operations) takes place. Similar to
the Routing Processor, the Memory Digger never captures data words itself, but it
just monitors the flow of data words through the TISS. Actually, the port interface
of the UNI and the TTNoC interface are directly connected. To be more precise,
OCPM MData is mapped to the data bus of the incoming lane of the TTNoC interface.
In the reverse direction, OCPM SData has a direct connection to the data bus of the
outgoing lane of the TTNoC interface. The role of the Memory Digger in this process
is twofold:

134

7 The TISS 7.4 The Port Manager

• For send operations it drives the valid signal of the outgoing lane of the
TTNoC interface.

• For all operations it keeps track of the progress of the data flow passing through
the TISS. In other words, the Memory Digger counts the data words that are
transmitted respectively received.

Considering the counting of data words during the Busy state, the Memory Digger
maintains an address counter. This counter contains the real physical address of
the data words of the continuous data chunk in the Port Memory, which makes
up the fragment of the current burst. As the Memory Digger does not count flits
from the base 0, but the real physical addresses, the Memory Digger can directly
drive the signal OCPM MAddr of the port interface. The initial value of the address
counter is given by StartTrans, which is a result of the address calculation and
used as an input for the Memory Digger. The Memory Digger captures the value
of StartTrans into its local address counter, as soon as the state machine leaves
the Idle state. When the Memory Digger reaches the Busy state, it increments this
address counter every clock cycle of the system operation frequency. As a result,
the Memory Digger issues the addresses of all data words, which belong to the
continuous data chunk of the fragment associated with the current burst in the
Port Memory, via OCPM Maddr. The Memory Digger proceeds with this operation,
until address counter = EndTrans, whereas EndTrans is also a result of the address
calculation. Then, the whole continuous data chunk that corresponds to the current
burst, has been traversed by the Memory Digger. The operation of the Memory
Digger can be regarded as complete for the current burst, therefore the next state is
Done.

Besides controlling the signal OCPM MAddr, the Memory Digger affects the com-
mand code according to the OCP signal specification that is assigned to the signal
OCPM MCmd. Table 5.2 shows, which OCP commands are supported by the current
implementation. The command code at OCPM MCmd and the value of OCPM MAddr have
to correlate. As long as the Memory Digger’s state machine is not in the Busy state,
OCPM MCmd says ”idle” (000). When the Memory Digger reaches the Busy state, the
command depends on Direction of the current burst. In case of a receive operation,
the received data has to be written into the Port Memory, thus the appropriate com-
mand for OCPM MCmd is ”write” (001). In case of send operation, the transmitted data
has to be read from the Port Memory, therefore OCPM MCmd shows a ”read” command
(010).

For the handshake with other modules of the Port Manager, the Memory Digger
exports the state Busy. That is, in Busy state it drives the notification signal DigBusy
to 1. The purpose of this signal is described in later section 7.4.5.

The last state of the Memory Digger’s state machine (before it completes its
circle of processing) is Done. This state causes the internal registers of the Memory
Digger to be reset in order to be prepared for the next burst. It lasts for one clock
cycle of the system operation frequency. Moreover, the Memory Digger notifies the

135

7.4 The Port Manager 7 The TISS

superordinate Port Manager that it has just completed its operation. Therefore, the
Memory Digger drives a notification signal DigDone to 1 during the Done state. As
a result, the Port Manager can continue to process its own state machine.

Aborting A Burst

The state machine of the Memory Digger also includes a state Error, which covers
all conditions that force the Memory Digger (and further the superordinate Port
Manager) to abort the processing of the current burst. The causes of this abort
conditions are listed in the following:

• For receive operations, the Receive Window Detector reports that a receive
window has passed by, and no data flit has arrived at the incoming lane of
the TTNoC interface, or the Memory Digger has been too late to capture all
incoming data flits from the beginning. According to section 7.4.3, the Receive
Window Detector controls two notification signals RXMiss and RXLate, which
model these error conditions.

• For receive operations of event ports, the Port Manager has discovered that
the queue of that event port is full. Table 5.9 in section 5.3.2 explains, how the
TISS, i.e., the Port Manager, recognizes a full queue.

• For send operations of event ports, the Port Manager has found out that the
queue of that event port is empty. The TISS, i.e., the Port Manager, determines
an empty queue as described in Table 5.9 in section 5.3.2.

• The host has disabled the port,to which the fragment of the current burst
belongs to, via the control interface of the UNI. Then, the field Port Enable =
0 in its associated entry of the Port Configuration Memory.

• The communication service of the TISS has been deactivated by the host via the
control interface of the UNI. In this case, the field Communi- cation Disable
equals 1 in the Register File.

If any of these conditions evaluates to true while the Memory Digger dwells in
one of its wait states (RI Wait and RX Wait), the Memory Digger issues the signal
AbortBurst.

On the one hand, state machine of the Memory Digger uses AbortBurst = 1 to
leave its wait states and enter the the Error state. In the error state the Memory
Digger drives a signal DigErr to 1, which is used as the response from the Memory
Digger to the Receive Window Detector in their handshake protocol. The Memory
Digger leaves the Error state after one clock cycle of the system operation frequency
and returns into the Idle state.

On the other hand, AbortBurst is directly relevant for the handshaking protocol
between Memory Digger and the Routing Processor. In fact, it play a vital role to
unlock the state machines other modules of the Port Manager such as the Routing
Processor, which is explained in the following section.

136

7 The TISS 7.4 The Port Manager

Unlocking Other State Machines

The Memory Digger’s state machine contains two wait states (RX Wait and RI Wait).
In these states, the Memory Digger postpones its operation, until other modules of
the Port Manager provide notifications about special events. In fact, the Receive
Window Detector reports the arrival of data within a receive window, or the Routing
Processor signals the completion of its own operation. Afterwards, each of these
modules keeps on driving the notification signal. Furthermore, they remain in a
specific state of their state machines, until the Memory Digger acknowledges the
receipt of the notification signal. As a result, the Receive Window Detector as well
as the Routing Processor employ a handshake protocol with the Memory Digger.

The Receive Window Detector controls 3 different signal towards the Memory
Digger, whereas 1 indicates success (RXValid) and the other 2 refer to error conditions
(RXMiss and RXLate). If the Receive Window Detector is tied down to the state that
signals RXValid = 1, the signal to release it from this state is DigBusy from the
Memory Digger. In case of the error states the Receive Window Detector’s state
machine is unlocked, when the Memory Digger acknowledges that error condition by
issuing DigErr.

The Routing Processor is released from its Done state that drives RIDone = 1 by
a signal RelDone. This handshake signal is a composition of two internal signals of
the Memory Digger.

RelDone = DigBusy ∨ AbortBurst

The Routing Processor shall release RIDone when either the Memory Digger has
taken up operation, i.e., has reached the Busy state (therefore DigBusy = 1), or a
condition to abort the burst has been satisfied, i.e., AbortBurst has triggered.

7.4.6 Realizing Time Stamping

The module Time Stamper of the Port Manager controls the time stamping, which is
only reasonable for input ports (state ports as well as event ports). The Time Stam-
per follows a simple state machine, which includes an idle state, and two ”stamping”
states. The first stamping state produces the lower half of the time stamp, which
are the lower 32 bit of the counter vector of the time format of the global time base.
Logically, the second stamping state deals with the upper half (the higher 32 bit) of
that counter vector.

The Port Manager triggers the operation of the Time Stamper by means of an
internal trigger signal if both of the following conditions hold:

• The Memory Digger has successfully completed its operation. It indicates this
event by driving DigDone = 1 for one clock cycle of the system operation
frequency. If the Memory Digger has aborted the current burst, no time stamp
is produced.

137

7.4 The Port Manager 7 The TISS

• The port, to which the fragment of the current burst belongs to, has the time
stamping service enabled. That is, Time Stamp Enable = 1 in the associated
entry of the Port Configuration Memory.

Like the Memory Digger, the Time Stamper has to write data, i.e., two data
words for the time stamp, into the Port Memory. Consequently, it requires access
to the port interface. During its activity, the Time Stamper manages the signals
OCPM MAddr, OCPM MCmd, and OCPM MData.

Obviously, the Time Stamper issues the values of the two data words, which
correspond to the time stamp, via OCPM MData. As time stamping is only supported
for input ports, it just indicates a ”write” command (001) at OCPM MCmd. According
to the memory layout of state and event ports, the time stamp has to be placed
in front of the application-level message in the port. This implies that the Time
Stamper must maintain the address, where to place the two data words of the time
stamp in the Port Memory. For this purpose, the Time Stamper uses RealStartAddr,
which is a result of the address calculation and points at the beginning of the current
message (including time stamp plus application-level data) in the port. For the first
data word (lower half of the time stamp) the Time Stamper sets OCPM MAddr =
RealStartAddr+ 1, whereas the proper address of the second data word (upper half
of the time stamp) is given by OCPM MAddr = RealStartAddr + 2.

After writing these two data words to the Port Memory via the port interface,
the Time Stamper reports its completion to the superordinate Port Manager by an
internal notification signal . The Time Stamper returns into the idle state, while the
Port Manager is unlocked from its state Time Stamp and continues to execute its
own state machine.

7.4.7 Managing Port Synchronization

As the Port Memory is a (true) dual-ported RAM, the host as well as the TISS,
i.e., Port Manager, are allowed to modify data words in this memory at any time.
In order to assure the consistency of data, a synchronization protocol (according
to section 5.3) for the ports must be applied. The TISS, i.e., Port Manager, and
the host use the Port Synchronization Memory to exchange information about the
progress of access towards a port and the consistency of data within the port.

From the point of view of the TISS, the Port Manager is responsible to implement
this synchronization protocol and handle the Port Synchronization Memory. For
this purpose, the Port Manager includes a component named Port Synchronization
Controller , which is in charge of realizing the synchronization protocol from the
TISS-side.

The Port Synchronization Controller is attached to the Port Synchronization
Memory at its TISS-side (internal) write port. So, the Port Synchronization Con-
troller is the only module in the TISS, which is able to manipulate entries in the
Port Synchronization Memory. Contrary, the read port is mainly used to provide the

138

7 The TISS 7.4 The Port Manager

required information for the address calculation in the Address Calculator. As the
host also requires access to the Port Synchronization Memory in order to keep up
its part of the synchronization mechanism, the host-side of this (true) dual-ported
RAM is accessible via the control interface of the UNI. Therefore, there exist a wire-
through from the host-side read/write port of the Port Synchronization Memory to
the control interface, i.e., the OCP Slave Wrapper that converts the internal signals
to OCP-compatible naming schemes.

According to the synchronization mechanism, from the TISS-side the Port Syn-
chronization Controller has to update the entry of the Port Synchronization Memory,
which is associated with the port to which the fragment of the current burst belongs
to. Depending on the direction as well as the port type (state or event port), there
are particular events during the processing of the current burst, when such an update
must take place. Table 7.2 lists these update events and sketches the actions on the
proper entry of the Port Synchronization Memory.

Port Type Direction Update Event Action

state
output IsFirst = 1 ∧ DigBusy = 1 toggle Using

input
IsFirst = 1 ∧ DigBusy = 1

increment NBW
IsLast = 1 ∧ DigDone = 1

event any IsLast = 1 ∧ DigDone = 1 determine TISS
Addr and TISS ToOF

Table 7.2: Events and actions for the Port Synchronization Controller

The fields IsFirst and IsLast originate from the entry of the Time-Triggered
Communication Schedule that corresponds to the current burst. They are visible
at the Burst Dispatcher’s interface and propagated into the Port Synchronization
Controller. DigBusy and DigDone are the notification signals from the Memory
Digger to the Port Manager, which are reused in the Port Synchronization Controller.

Actually, the Port Synchronization Controller modifies data words in the Port
Synchronization Memory on two distinct events. IsFirst = 1∧DigBusy = 1 denotes
the start of processing of the current burst, which covers the very first fragment of
the current message. By contrast, IsLast = 1 ∧ DigDone = 1 refers the the end of
processing (after the last data word) of the very last fragment of the current message.

For output state ports, the Port Synchronization Controller simply toggles the
field Using of the entry corresponding with the current port, and then writes this new
value into the Port Synchronization Memory. According to section 5.3.1, input state
ports maintain an NBW sequencer. This sequencer is incremented at the beginning
of the processing of the burst of the very first fragment as well as the end of processing
of the burst of the very last fragment of the message.

For event ports, the direction of the port is not relevant, the Port Synchronization
Controller always calculates new values for TISS Addr and TISS ToOF at the end of
the burst of the last fragment of the messages, which equals the completion of the

139

7.5 Latencies of Operations 7 The TISS

whole message. The calculation of the new values for these two fields conforms to
their definition in section 5.3.2.

7.5 Latencies of Operations

In this section we deal with the timing of receive and send operations within the
TISS. We investigate, how long it takes to set-up the modules in the TISS involved
in the data transfer. Moreover, we give the latency of the availability of the first
data flit at the Port Interface (for receive operations) and TTNoC interface (for send
operations) after the arrival of the instant associated with the current burst. In
this context, we introduce the variables ∆+ and ∆− for receive respectively send
operations. Additionally, we construct the theoretical minimum latency for ∆+ and
∆−.

For receive operations, the minimum latency ∆+
min denotes the number of clock

cycles of the system operation frequency that it takes to dispatch a burst, to set-up
all modules of the TISS involved in the receive operation, and to issue the very first
received data flit at the Port Interface.

Contrary for send operations, the minimum latency ∆−min is the number of clock
cycles of the system operation frequency, until the first data flit is available at the
outgoing lane of the TTNoC interface after the dispatching of the burst.

Besides this, we have to consider the time, until the Burst Dispatcher has issued
the relevant information about the current burst at its interface to the remaining
TISS (i.e., Port Manager) after the arrival of the instant of the current burst. As
mentioned in section 7.3.2, ∆disp models this latency. Therefore, the progress by the
Port Manager during receive as well as send operations must be added to ∆disp.

7.5.1 Receive Operations

For receive operations, the minimum latency ∆+
min means the best case, whereas the

Receive Window Detector recognizes the data flit of the incoming fragment during
its very first clock cycle of wait state (i.e., Sense state).

Figure 7.11 shows that the minimum latency is ∆+
min = 7 clock cycles of the

system operation frequency, starting at t = ∆disp = 3. Actually, it takes 2 additional
clock cycles until the Port Manager is prepared to receive data flits from the incoming
lane of the TTNoC interface. In fact, at this time the Receive Window Detector has
reached the state Sense, so that incoming data can be recognized. Figure 7.11 shows
such a best case, when the very first data flit arrives exactly at the same clock cycle,
after the Receive Window Detector has become ready. We also learn from Figure 7.11
that it takes additional 2 clock cycles for a given data flit to pass through the TISS
and appear at the Port Interface. The sum of all this single latencies makes up the
minimum latency for receive operations.

∆+
min = ∆disp + 2 + 2 = 7 (7.1)

140

7 The TISS 7.5 Latencies of Operations

t 3 4 5 6 7 8

fsys HH�L�H�L�H�L�H�L�H�L�H�LL

InfoValid HHHHH�LLLLLLLLLLLLLLLLLLLLLLLLLLLLL

Port Manager VVVVV�VVVV�VVVVVVVVVVVVVVVVVVVVVVVIdle Fetch Dig

RX Det. VVVVV�VVVV�VVVV�VVVVVVVVVV�VVVVVIdle Setup Sense Valid Idle

Memory Dig. VVVVVVVVVVV�VVVVVVVVVV�VVVVVVVVVVVIdle RX Wait Busy

incoming
TTNoC If. UUUUU�VVVV�VVVV�VVVV�VVVV�VVVVV

Routing

Flit
Data 1 Data 2 Data 3 Data 4

Port Interface UUUUUUUUUUUUUUUUUUUUUUU�VVVV�VVVVVData 1 Data 2

∆disp ∆+
min

Figure 7.11: Minimum latency of receive operations

In the general case, such a best case can not be achieved. The assumption that
the first data flit arrives during the very first clock cycle of the Sense state is too
optimistic. ∆+ refers to this general case of receive operations. In this case, the
Receive Window Detector dwells in its wait state Sense, and therefore delays the
receive operation. We define the number of clock cycles caused by the wait state as
∆Sense.

Nevertheless, we can derive two fixed latencies from Figure 7.11. In fact, it always
takes 2 additional clock cycles of the system operation frequency after InfoValid = 1
at t = ∆disp = 3, until the Receive Window Detector is ready to monitor the incoming
lane of the TTNoC interface. If data has eventually arrived, it takes another 2 clock
cycles to forward the data flits to the Port Interface. So, we can define ∆+ as follows:

∆+ = ∆disp + 2 + ∆Sense + 2 (7.2)

If we generalize ∆+
min by ∆Sense = 0, equation 7.2 holds for the minimum latency

with its best case scenario as well as for the general case.

Note that ∆Sense refers to a wait state. Apparently, this imposes a sense of local
uncertainty on the calculation of ∆+. From the point of view of the receiver, we
can not reason about ∆Sense, as we can not locally decide when data flits arrive.
However, the latency of receive operations is deterministic, indeed.

If we consider communication from the global point of view, we are aware of
the fact that a receive operation is always combined with a send operation. If we

141

7.5 Latencies of Operations 7 The TISS

track the route of data through the TTNoC, whereas each Fragment Switch causes
a deterministic propagation delay, and incorporate the (deterministic) latency of the
sender, we can exactly calculate the clock cycle of the system operation frequency,
when the data arrives at the receiver’s TTNoC interface. As all necessary information
is known a priori, we can predict ∆Sense for each receive operation.

7.5.2 Send Operations

For send operations, we can distinguish between two cases. According to the routing
modes introduced in section 6.2.2, we can have a send operation without preceding
routing information (circuit-switched mode), and the more frequently used header-
payload mode that involves routing flits sent before the data flits of the current
fragment.

In the first case, the Routing Processor does not postpones the operation of
the Memory Digger, as the Routing Processor has no operation to perform. This
embodies the best case for send operations, which is modelled by ∆−min.

Figure 7.12a illustrates that ∆−min = 7 clock cycles of the system operation fre-
quency elapse after the arrival of the instant associated with the current burst, until
the very first data flit is available at the outgoing lane of the TTNoC interface. It
takes 3 clock cycles for the Memory Digger to set the proper address of the first data
flit at the Port Interface. Moreover, the Port Memory needs 1 clock cycle to respond.
Keeping ∆disp in mind, we can explain ∆−min by the following equation:

∆−min = ∆disp + 3 + 1 = 7 (7.3)

In the latter case, the injection of routing flits by the Routing Processor causes a
delay, which equals the number of routing flits r. Hence, we can say that the latency
of send operations ∆− is a function in r: ∆−(r). Based on the best case expressed
by ∆−min, we can derive the latency for send operations as follows:

∆−(r) = ∆disp + r + 3 + 1 (7.4)

As we have one routing flit (hence, r = 1) in Figure 7.12b, the latency is given
by ∆−(r) = 7 + r = 7 + 1 = 8 clock cycles of the system operation frequency. If we
generalize the best case case of send operations with r = 0, the equation 7.4 holds
for the best case as well as the general case of send operations.

Although in the latency of send operation in the general case is dependent on the
number of routing flits, we can still draw deterministic conclusions about ∆−(r). The
reason for this is that the number of routing flits r is known a priori for each send
operation. Unlike receive operations, we can predict the latency of a send operation
from information that solely resides within the sender’s TISS.

142

7 The TISS 7.5 Latencies of Operations

t 3 4 5 6 7 8

fsys HH�L�H�L�H�L�H�L�H�L�H�LL

InfoValid HHHHH�LLLLLLLLLLLLLLLLLLLLLLLLLLLLL

Port Manager VVVVV�VVVV�VVVVVVVVVVVVVVVVVVVVVVVIdle Fetch Dig

Routing Proc. VVVVV�VVVV�VVVVVVVVVV�VVVVVVVVVVVIdle Setup Done Idle

Memory Dig. VVVVVVVVVVV�VVVV�VVVVVVVVVVVVVVVVVIdle RI Wait Busy

Port Interface UUUUUUUUUUUUUUUUU�VVVV�VVVV�VVVVVData 1 Data 2 Data 3

outgoing
TTNoC If. UUUUUUUUUUUUUUUUUUUUUUU�VVVV�VVVVVData 1 Data 2

∆disp ∆−
min(a) best case

t 3 4 5 6 7 8 9

fsys HH�L�H�L�H�L�H�L�H�L�H�L�H�LL

InfoValid HHHHH�LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL

Port Manager VVVVV�VVVV�VVVVVVVVVVVVVVVVVVVVVVVVVVVVVIdle Fetch Dig

Routing Proc. VVVVV�VVVV�VVVV�VVVVVVVVVV�VVVVVVVVVVVIdle Setup Proc. Done Idle

Memory Dig. VVVVVVVVVVV�VVVVVVVVVV�VVVVVVVVVVVVVVVVVIdle RI Wait Busy

Port Interface UUUUUUUUUUUUUUUUUUUUUUU�VVVV�VVVV�VVVVVData 1 Data 2 Data 3

outgoing
TTNoC If. UUUUUUUUUUUUUUUUU�VVVV�UUUU�VVVV�VVVVV

Routing

Flit
Data 1 Data 2

∆disp

r = 1
∆−(r)

(b) general case

Figure 7.12: Latency of send operations

143

7.6 Initialization of the TISS 7 The TISS

Fragment
Switch 1

Fragment
Switch 2

TISS A

TTNoC If.

TISS B

TTNoC If.

Port If. Port If.

a

b

c

d

g

f

e

Figure 7.13: Example topology

7.5.3 Example of Transmission

Figure 7.14 illustrates the data flow from a sending TISS A to a receiving TISS B
and the latencies of transmission. The topology, on which this example is based, is
shown in Figure 7.13.

The corresponding encapsulated communication channel has its source at TISS
A and is then routed over Fragment Switches 1 and 2 to the TTNoC interface of
TISS B. The interconnects, which are traversed on this route, are a → b → e. The
burst consists of 4 flits. Moreover, there are r = 2 routing flits involved. Note
that each routing flit contains exactly one switching opcode. Consequently, when
that switching opcode is consumed at a Fragment Switch, the routing flit becomes
empty and is therefore discarded by the Fragment Switch. This explains the absence
of routing flit 1 on interconnect e in Figure 7.14, respectively the absence of both
routing flits on the TTNoC interface of TISS B.

We see in Figure 7.14 that ∆−(r) = 9, which conforms to the definition in equa-
tion 7.4. Contrary, ∆+ = 14 so that it takes additional 5 clock cycles of the system
operation frequency compared to ∆+

min. The receiving TISS B has to wait for the
arrival of the very first data flit due to the propagation delay on the TTNoC, which
is modelled by ∆Sense = 5 according to equation 7.2. That 5 clock cycles result from
the sum of the number of routing flits r = 2, which postpone the transmission of
real data flits, and the number of interconnects a → b → e ⇒ 3 each flit has to go
through.

7.6 Initialization of the TISS

Usually, the start-up of a system is a problematic matter. While its quite convenient
to have a system running in a stable and defined state, its much more sophisticated
to get the system up from an inactive state, for instance from the power-up. The
TTSoC architecture is no exception of this fact.

144

7 The TISS 7.6 Initialization of the TISS

t
0

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

f s
y
s

HH
�
..
HH
�
L�
H�
L�
H�
L�
H�
L�
H�
L�
H�
L�
H�
L�
H�
L�
H�
L�
H�
L�
H�
L�
H�
LL

A
:

P
or

t
In

te
rf

ac
e

UU
UU
..
UU
UU
UU
UU
UU
UU
UU
UU
UU
UU
UU
UU
UU
UU
U�
VV
VV
�
VV
VV
�
VV
VV
�
VV
VV
�
UU
UU
UU
UU
UU
UU
UU
UU
U

D
a
ta

1
D

a
ta

2
D

a
ta

3
D

a
ta

4

A
:

ou
tg

oi
ng

T
T

N
oC

If
.

UU
UU
..
UU
UU
UU
UU
UU
UU
UU
UU
U�
VV
VV
�
VV
VV
�
UU
UU
�
VV
VV
�
VV
VV
�
VV
VV
�
VV
VV
�
UU
UU
UU
UU
UU
U

R
o
u
ti
n
g

F
li
t

1

R
o
u
ti
n
g

F
li
t

2
D

a
ta

1
D

a
ta

2
D

a
ta

3
D

a
ta

4

In
te

rc
on

ne
ct

b
UU
UU
..
UU
UU
UU
UU
UU
UU
UU
UU
UU
UU
UU
U�
VV
VV
�
VV
VV
�
UU
UU
�
VV
VV
�
VV
VV
�
VV
VV
�
VV
VV
�
UU
UU
U

R
o
u
ti
n
g

F
li
t

1

R
o
u
ti
n
g

F
li
t

2
D

a
ta

1
D

a
ta

2
D

a
ta

3
D

a
ta

4

In
te

rc
on

ne
ct

e
UU
UU
..
UU
UU
UU
UU
UU
UU
UU
UU
UU
UU
UU
UU
UU
UU
UU
UU
UU
U�
VV
VV
�
UU
UU
�
VV
VV
�
VV
VV
�
VV
VV
�
VV
VV
V

R
o
u
ti
n
g

F
li
t

2
D

a
ta

1
D

a
ta

2
D

a
ta

3
D

a
ta

4

B
:

in
co

m
in

g
T

T
N

oC
If

.
UU
UU
..
UU
UU
UU
UU
UU
UU
UU
UU
UU
UU
UU
UU
UU
UU
UU
UU
UU
UU
UU
UU
UU
UU
UU
UU
UU
UU
U�
VV
VV
�
VV
VV
�
VV
VV
V

D
a
ta

1
D

a
ta

2
D

a
ta

3

B
:

P
or

t
In

te
rf

ac
e

UU
UU
..
UU
UU
UU
UU
UU
UU
UU
UU
UU
UU
UU
UU
UU
UU
UU
UU
UU
UU
UU
UU
UU
UU
UU
UU
UU
UU
UU
UU
UU
UU
UU
UU
U�
VV
VV
V

D
a
ta

1

t I
n
s
t
a
n
t

∆
d
is

p
∆
−

(r
)

∆
+

F
ig

ur
e

7.
14

:
E

xa
m

pl
e

of
la

te
nc

y
at

se
nd

in
g

an
d

re
ce

iv
in

g
T

IS
Ss

145

7.6 Initialization of the TISS 7 The TISS

In addition to a start-up, the TTSoC architecture entails an additional degree
of complexity. Actually, the integrated resource management allows a reassignment
of resources and communication activities during run-time, which is the on-the-fly
reconfiguration (see section 8.4). So, this requires the TTSoC architecture to cope
with a scenario, when it must not only handle the start-up, but switch from one
running state into another one immediately after the on-the-fly reconfiguration –
this event is associated with the reconfiguration instant . Fortunately (due to the
current implementation of the TTSoC architecture), the start-up and the activities
caused by the reconfiguration instant can be reduced to the same problem. We call
the procedures necessary during start-up as well as after the reconfiguration instant
the initialization.

7.6.1 What must be initialized?

Not all entities in the TTSoC architecture require an initialization. For instance,
the TTNoC does not decide, when a burst must be processed, nor does it determine
the route of an encapsulated communication channel. Hence, it strictly obeys the
directives of the TISSs, which handle the dispatching of bursts and contain the
routing information for encapsulated communication channels. Consequently, there
are no conditions or states that must be restored after start-up or reconfiguration in
the TTNoC. Therefore, the TTNoC does not require an initialization.

The TISS demands for a partial initialization, that is, some components in the
TISS need to take care of initialization and others do not. The Port Manager and (all
of its components) is driven by a state machine, which begins a cyclic execution on
behalf of the dispatching of a burst. That cyclic execution of the state machine is a
closed loop, which always starts at the beginning, i.e., the Idle state. Consequently,
its simple to establish an operational condition in the Port Manager, as the triggering
event comes from the ”outside”, i.e., the dispatching of a burst that is covered by
the Burst Dispatcher.

The Burst Dispatcher includes period controllers and phase comparators. As
we have seen in section 7.3, the phase comparator in turn is controlled by a paired
period controller. Each period controller traverses an associated cyclic, linked list
in the Time-Triggered Communication Schedule. Eventually, we have pinpointed
the entity, which requires initialization. It are the period controllers in the Burst
Dispatcher, which have to catch up with the traversal of the cyclic, linked lists in the
Time-Triggered Communication Schedule.

7.6.2 Initialization of Period Controllers

During initialization each period controller has to load the proper entry from the
Time-Triggered Communication Schedule, where the traversal of the cyclic, linked list
should begin. The initialization vector, which has been introduced in section 7.2.1,
contains a copy of the first entry (in the cyclic, linked list) to be processed for each

146

7 The TISS 7.6 Initialization of the TISS

period. So, during the initialization each period controller has to grab the entry in
the initialization vector, which is dedicated to the same period of the periodic control
system.

As there is only one read port at the memory of the Time-Triggered Communi-
cation Schedule (and as many period controllers as the number of supported periods
in the periodic control system), a collision at the Time-Triggered Communication
Schedule is obvious, if each period controller tries to grab its entry from the initial-
ization vector immediately after the launch of the initialization. As a consequence,
the period controllers have to agree on an access pattern to avoid driver conflicts. For
this purpose, each period controller i is aware of the period number i it is assigned
to. After the initialization is launched, each period controller waits for i cycles of
the system operation frequency until it issues the address of the corresponding en-
try in the initialization vector via its address bus. As there is an exact mapping
of period number between entry in the initialization vector and period controller,
for instance period controller 4 waits 4 cycles after the beginning of the initializa-
tion procedure, and then assigns 4 to its address bus. According to the timing in
the Burst Dispatcher, the period controller fetches the entry from the data bus, ex-
tracts the Instant field, copies the payload information, and sets up its paired phase
comparator like in the ordinary operational case, which is described in section 7.3.1.

As each period controller has to fetch one entry from the Time-Triggered Com-
munication Schedule, the initialization takes as many clock cycles as the number of
supported periods plus a constant delay of 4 clock cycles of the system operation
frequency. In the current implementation, (for 16 and 32 periods) the whole ini-
tialization takes 20 respectively 36 clock cycles of the system operation frequency,
then.

During this time, the Burst Dispatcher masks the signal vector PeriodEna, so
that no phase comparator is able to accidentally trigger the dispatching of a burst.
Thus, during the initialization no communication activity can take place in a given
TISS. Moreover, as the start-up as well as the reconfiguration instant occurs among
all TISSs simultaneously, the communication activities of each TISS are postponed.
As a result, it can not happen that some TISSs continue their operation while others
do not. Hence, the state of the communication service in the overall system is
consistent all the time.

7.6.3 Scenarios of Start-up

The whole procedure of initialization relies on the condition that the initialization
vector is present in the Time-Triggered Communication Schedule. In the current
implementation, which is based on FPGA target technology, the RAM blocks in
the FPGA can be equipped with values after start-up, i.e., power-up. As a result,
the initialization vector in the Time-Triggered Communication Schedule can be pre-
loaded at start-up. This feature is immanent in this target technology, as we have to
load a design that embodies a circuit at power-up. So, FPGA technology leverages
this mechanism to set initial values into RAM blocks, while it configures the design.

147

7.6 Initialization of the TISS 7 The TISS

However, we pursue the vision that the TTSoC architecture will run on ASIC
technology in the near future. Although ASIC technology supports RAM blocks
on its silicon die, it is more sophisticated to achieve a pre-load of these RAM. For
instance, it would require a dedicated boot loader to extract the required RAM data
from a permanent memory, e.g., a flash memory device, and write the initial values
into the RAM. Nevertheless, such a mechanism causes an overhead to realize this
boot loading mechanism for ASIC technology, which manifests in additional die area
plus the permanent memory device and therefore causes additional costs and energy
consumption.

Actually, there is no need for a dedicated boot loading mechanism in the TTSoC
architecture even for ASIC technology. We can yield the concepts of on-the-fly recon-
figuration (see section 8.4) to fill the RAM memory of the Time-Triggered Commu-
nication Schedule with pre-defined values, as it would be done by an ordinary boot
loading mechanism for ASIC technology. As a result, there is no need for additional
circuitry, and no further costs and energy consumption arise.

For this purpose, the TISS supports two distinct modes of start-up.

boot strapping The memory of the Time-Triggered Communication Schedule as
well as other memories such as the Burst Configuration Memory and Routing
Information Memory are equipped with pre-loaded values. In particular, there
already exist application sections and a suitable initialization vector in the
Time-Triggered Communication Schedule, and the other memories are also
initialized with appropriate values. The configuration of this initial setting is
called the boot strapping application – thus, ”boot strapping mode”.

Usually, the boot strapping application provides a minimalistic set of encapsu-
lated communication channels. These channels enable a subsequent on-the-fly
reconfiguration, which installs the configuration of an intended, full-scale ap-
plication. Note that this requires a specific period, which must be enabled at
start-up time, i.e., the corresponding signal of PeriodEna must be set, so that
the messages of these encapsulated communication channels can be transported
from the very beginning.

The boot strapping mode is predestined for FPGA technology.

start-up configuration In the mode of start-up configuration all memories in the
TISS are blank. Consequently, the TISS must be supplied with proper con-
figurations for its memories. For this purpose, all components involved in the
on-the-fly reconfiguration are triggered and await the configuration data for the
memories. Eventually, if the data of an intended, full-scale application arrives,
it is written in the memories and an initialization is triggered. The proce-
dure is the same as the on-the-fly reconfiguration of the integrated resource
management, which is described in section 8.4.

The start-up configuration mode is the best choice for ASIC technology. Cer-
tainly, it can also be applied for FPGA technology.

148

7 The TISS 7.6 Initialization of the TISS

Both modes of start-up are exclusive. We can have the TISS support either the
boot strapping mode or the start-up configuration mode. The reason for this is that
each mode must be ”hard-wired” in the TISS, that is, written in the VHDL source
code. For instance, for boot strapping mode a period must be enabled by setting
a signal of PeriodEna. Another example, for the start-up configuration mode all
components involved in on-the-fly reconfiguration must be active at start-up, which
requires adaptions of their state machines.

To summarize, there is no chance to switch between start-up modes. If once
branded into the design of the TISS, the support for a start-up mode is permanent
and can not be revoked.

149

7.6 Initialization of the TISS 7 The TISS

150

Chapter 8

Integrated Resource
Management

Integrated resource management is the ability of a system to dynamically (i.e., at
run-time) modify the allocation of the system’s resources to its hosted application
subsystems1. The purpose is to react to changing resource demand or resource avail-
ability, which fluctuates during run-time. Integrated resource management yields
better utilization of the available resources, improved dependability, and the enabling
of power-aware system behaviour.

In this chapter we sketch how the TTSoC architecture incorporates the generic
concept of integrated resource management, whereas a full specification of integrated
resource management in the TTSoC architecture can be found in [Hub08]. Section 8.4
comprehensively elaborates the details of the process of on-the-fly reconfiguration.

8.1 Scope of Resource Management

Generally, integrated resource management is made up of three orthogonal spheres
of influence on the operation of any SoC architecture:

• allocation of computational resources, i.e., (in the context of the TTSoC archi-
tecture) micro components

• assignment of communication resources

• assignment of power to particular micro components

Computational Resources In any SoC architecture, management of computa-
tional resources addresses the assignment of sets of processing components to partic-
ular application subsystems. Typically, e.g., for safety-critical applications, these as-
signments are static and performed before the deployment of the system. In contrast

1In the context of the TTSoC architecture also called Distributed Application Subsystem (DAS).

151

8.1 Scope 8 Integrated Resource Management

to this inflexibility, integrated resource management allows to perform the alloca-
tion of computational resources. For instance, this could be applied during start-up
in order to achieve an initial configuration of the SoC, or during run-time initiated
by changing requirements of given application subsystems. Furthermore, if an SoC
contains multiple components, which are realized by general purpose CPUs, compo-
nents could load application software at run-time and execute the code. In case of
components of identical hardware the physical mapping of application subsystems to
processing components can be reconfigured, which is useful if components are stuck
at a permanent fault.

Relaxing the requirement of 100 % correctness for devices and interconnects may
dramatically reduce the costs of manufacturing, verification and testing of SoCs, as
the integrated resource management entails some sort of robustness. Moreover, it
contributes to an efficent usage of the available physical resources in the SoC.

The TTSoC architecture is designed to support the adaption of computational re-
sources. Each micro component contains different application software modules. For
each configuration selected by the mechanisms of integrated resource management,
the micro component redirects the execution to the corresponding software module
so that all micro components fulfil the services specified for a given configuration.

Communication Resources In the TTSoC architecture we consider communi-
cation as a shared resource that is distributed among the participants of commu-
nication, hence the micro components. On the one hand, the strong encapsulation
mechanism of encapsulated communication channels let us draw this conclusion. On
the other hand, it is the modularization of the entire TTSoC into nearly independent
micro components that let us regard communication as a shared resource.

Since the access to the TTNoC is mediated by the use of an a priori TDMA slot
scheme, the coordination of this shared resource is performed via the construction
of the Time-Triggered Communication Schedule that is contained within the TISSs.
Integrated management of this resource means to dynamically adapt the allocation of
(TDMA) send slots to micro components in order to fulfil the temporal requirements
(e.g., bandwidth or latency) of the pulsed data streams utilized in encapsulated
communication channels, which traverse a particular micro component.

Power We also regard power as a shared resource from two points of view:

• the maximum power dissipation that is permitted to occur without physically
harming the TTSoC

• the available energy that is provided by the power supply, for instance the
capacity of a battery of mobile devices

For both, integrated resource management has to control the dissipated power
for each micro component. In addition to the control within micro components,

152

8 Integrated Resource Management 8.2 Resource Management Strategies

the TISSs of the individual micro components can be put into fine-grained, power-
efficient degraded modes of operation by selectively deactivating the dispatching logic
(i.e., phase comparators and period controllers in the Burst Dispatcher) of a subset
of the supported periods of the periodic control system.

Particularly in the TTSoC architecture, integrated resource management sup-
ports ”power-aware routing” of encapsulated communication channels through the
TTNoC. It is possible to circumvent specific switching components, i.e., Fragment
Switches, so that traffic is concentrated at a subset of switching components in the
TTNoC. Consequently, idle switching components remain in a power-saving idle
state, while we increase the energy efficiency of switching components with increased
traffic. Additionally, each Fragment Switch can be totally powered down, i.e., put
into a sleep state, to further increase power saving if no traffic passes by that given
Fragment Switch.

In addition to ”power-aware routing”, the activation and deactivation of pairs of
period controllers and phase comparators in the Burst Dispatcher of a TISS entails
another potential to cut down on power consumption.

8.2 Resource Management Strategies

An application subsystem provides a well specified service, which might change over
time. Consider, for example, the multimedia subsystem of a car. The user is allowed
to activate different audio or video streams, e.g., incoming video phone call, naviga-
tion, jam information. Besides these major service classes, which are provided by the
multimedia subsystem, the QoS parameters can vary due to the available resources,
e.g. depletion of battery. We call these major service classes the primary modes of
an application subsystem. Each primary mode possesses a set of degradation levels
with respect to QoS parameters.

On the one hand, the change between primary modes is initiated by the applica-
tion subsystem (i.e., the micro component that realizes the application subsystem)
itself and not by the integrated resource management of the TTSoC architecture.
A switch between primary modes represents a substantial change in the service of
an application subsystem. It may change the communication pattern between coop-
erating micro components or (in-)activates a subset of the micro components of an
application subsystem.

On the other hand, different degradation levels represent the same primary mode
but with a different QoS level. Continuing the example from above, degradation levels
of the primary mode ”video phone call” can be considered as different frame sizes
and rates of the audio/video stream in the multimedia system. Also, the inactivation
of the video stream can be considered as a degraded mode. Each degradation level is
characterized by resource demands (i.e., computation, communication, and power)
of the individual micro components realizing the application subsystem.

Primary modes and their degradation levels manifest in different configurations
for the memories of TISSs. For instance, communication activities of a primary

153

8.2 Resource Management Strategies 8 Integrated Resource Management

mode (or one of its degradation levels) are described within an application section
of the Time-Triggered Communication Schedule. Also, a primary mode might use
other routes for its encapsulated communication channels, thus this primary mode
requires an update of the routing information in the Routing Information Memory.

The process, how the configuration of the TISSs’ memories is distributed for
the purpose of integrated resource management, is the on-the-fly reconfiguration.
The calculation of the configurations, i.e., to derive values for data words in the
memories from the semantics of integrated resource management, can be carried out
in two different strategies.

8.2.1 Static Resource Management

The subject of the first resource management strategy is to maintain a set of degra-
dation levels of all application subsystems in a specific primary mode, for which the
sum of the demanded resources is available. Since the specification of the primary
modes and their degradation levels is done at design time of the application subsys-
tems, it can be verified off-line that all possibly simultaneously occurring primary
modes do not exceed the overall available resources.

We call such a preparation of primary modes and degradation levels at design
time a static resource management . The current implementation of the TTSoC
architecture supports this mode of integrated resource management, yet.

8.2.2 Dynamic Resource Management

The more advanced resource management strategy is dynamic resource management .
Here, primary modes and their degradation levels dictate upper and lower bounds of
a given resource, which is allowed to be assigned to a given application subsystem.

A resource request by a micro component states the amount of a given resource the
requesting micro component itself intends to reserve or release. For instance, a micro
component request to increase the bandwidth for an encapsulated communication
channel, or it wants to establish a new encapsulated communication channel with
some other micro component. Another example, the micro component is currently
idle and does not require that much power, therefore it requests that the integrated
resource management withdraws power.

As a result, micro components execute a negotation protocol with the integrated
resource management in order to communicate resource requests from the local point
of view. It is the responsibility of the integrated resource management to assure
that the resource request does not exceed any bound of the current primary mode
respectively degradation level.

Besides resource requests, micro components explicitly select the current primary
mode and degradation level for their application subsystems.

154

8 Integrated Resource Management 8.3 Sequence of Interaction

Micro
Component 1

TISS

Host

Resource
Management Authority

1

2

3

4

5

6
5

Micro
Component 2

TISS

Host

Micro
Component N

TISS

Host

Trusted
Subsystem

TTNOC

Trusted Network
Authority

Figure 8.1: Schematic representation of integrated resource management

8.3 Sequence of Interaction

Figure 8.1 illustrates the communication activities, which belong to the process of in-
tegrated resource management, between entities of the TTSoC architecture involved
in the integrated resource management. This communication is divided into 6 phases:

1. In the TTSoC architecture, integrated resource management starts with a re-
configuration request from any micro component. This reconfiguration request
could have been triggered, for instance, by a user input that leads to a switch of
the primary mode of the application subsystem the micro component belongs
to.

2. The RMA processes the reconfiguration request and performs a reallocation of
the available resources, e.g., generate a new Time-Triggered Communication
Schedule. According to the resource management strategy, a reconfiguration
request indicates either directly the aimed primary mode to which the appli-
cation subsystem should switch (static resource management), or it contains
a resource request to modify the amount of some allocated resource, e.g., an
increase in bandwidth for a particular encapsulated communication channel
(dynamic resource management). In the latter case, the RMA has to evalu-
ate, whether that resource request does not exceed the available amount of the
affected resource in the particular primary mode of the application subsystem.

3. At the current stage of development, primary modes and degradation levels
of all application subsystems are determined off-line. Thus, the RMA should
always be able to find a feasible configuration for the memories in the TISSs.

155

8.4 On-the-fly Reconfiguration 8 Integrated Resource Management

This generated proposal for configurations is disseminated by the RMA to the
TNA in order to perform correctness checks.

4. In this phase of the integrated resource management the TNA acts as a ”guard”
for the reconfiguration activity of the RMA. Primary, the TNA checks the pro-
posed Time-Triggered Communication Schedule, routing information for en-
capsulated communication channels etc. for all TISSs . The TNA assures
that no conflicts and congestion of encapsulated communication channels oc-
cur in the proposed configurations from the RMA. Besides this, additional
constraints of the proposed configurations, e.g., resource allocations with re-
spect to bandwidth for individual application subsystems, phase alignment of
individual pulsed data streams and so forth, are evaluated. The TNA does not
distinguish between resource management strategies, but it always performs
the same generic validation algorithm on the proposed configurations.

5. Based on the results of the prior examination, the TNA carries out two actions.
Firstly, it informs the RMA, whether the proposed configurations have been
accepted. Secondly, if the TNA considers the proposed configurations as cor-
rect, the TISSs of all micro components (involved in the affected application
subsystems) are updated. Otherwise, those TISSs remain unchanged.

6. In case of accepted configurations, in the last phase the TNA disseminates the
configuration for the memories in the TISSs of affected micro components. This
last phase corresponds to the process of on-the-fly reconfiguration.

Besides reconfiguration requests from micro components, the RMA is enabled to
initiate a reconfiguration on its own. For instance, the RMA reacts on a thermal
sensor, which indicates that the overall power dissipation of the TTSoC is too high.
However, we impose the restriction that the RMA can only affect the degradation
levels of any application subsystem, but not its primary modes.

8.4 On-the-fly Reconfiguration

The integrated resource management relies on the communication service of the
TTSoC architecture to establish the communication required during the 6 phases of
interaction. The messages exchanged via the associated encapsulated communication
channels include the necessary information, e.g., reconfiguration request, notifications
etc. As a result, integrated resource management operates with messages2 and can
therefore be counted to the application-layer in the TTSoC architecture. In other
words, the TISSs and the TTNoC (i.e., the TSS) are not aware of the semantics of
the integrated resource management.

However, there is a special treatment necessary in a TISS in order to redirect
configuration data, which has been sent by the TNA to be set into the Time-Triggered

2Note that the layout of these messages is beyond the scope of this thesis.

156

8 Integrated Resource Management 8.4 On-the-fly Reconfiguration

Communication Schedule, Burst Configuration Memory, etc. of the corresponding
physical memories. This special treatment embodies the on-the-fly reconfiguration
that takes place during phase 6.

The semantics of on-the-fly reconfiguration in the TISS must be hard-wired. That
is, the TISS contains special control logic to achieve on-the-fly reconfiguration. Due
to the existence of special purpose circuitry in the TISS the information exchanged
between TNA and TISS during the on-the-fly reconfiguration must obey a specific
protocol. The component in the TISS, which redirects configuration data into the
physical memories and realizes this specific protocol of on-the-fly reconfiguration, is
the Configurator , as illustrated in Figure 7.1.

This section explains the protocol of the on-the-fly reconfiguration and informs
about its semantics.

8.4.1 Configuration Bursts

The on-the-fly reconfiguration takes usage of the communication service of the
TTSoC architecture. There is one encapsulated communication channel established
between the TNA and each micro component. Through each encapsulated commu-
nication channel the TNA distributes configuration data for the physical memories
in the receiving TISS. Hence, the TNA is the source of each encapsulated communi-
cation channel and each TISS is the sink of the given encapsulated communication
channel.

As usual, the encapsulated communication channels convey messages, which are
made up of fragments, which in turn are processed by bursts. The same applies
to all encapsulated communication channels that are associated with the on-the-fly
reconfiguration. The configuration data for the physical memories of the TISS are
transported within bursts – the so-called configuration bursts. As communication
activity within an encapsulated communication channel is aligned to the periodic
control system, these bursts are also periodic and repeat according to a given period
of the periodic control system.

Moreover, the configuration bursts also manifest in the Time-Triggered Commu-
nication Schedule. From the point of view of the TNA, they are ordinary bursts
that correspond to a fragment of a message in an output port. From the point of
view of the TISS, the bursts are associated with the special port 127 in the cur-
rent implementation. As the configuration bursts are linked to this special purpose
port, the dispatching of configuration burst triggers the special treatment realized by
the Configurator. Figure 8.2 gives an example of a sequence of configuration bursts
arriving at different micro components.

Figure 8.2 illustrates, how the configuration data that is to be moved into the
physical memories of the TISS of a given micro component is spread across different
configuration bursts. As configuration bursts are dispatched like ordinary bursts of
application messages, the feature of pulse interleaving (see section 4.5) is also avail-
able. For instance, micro component A receives two distinct configuration bursts,

157

8.4 On-the-fly Reconfiguration 8 Integrated Resource Management

App

App App

App

1 2

1

31 2

N Configuration Burst no. N from TNA

Burst of some other application
message

common reconfiguration instant

micro component A

micro component B

micro component C

Time

Figure 8.2: Incoming configuration bursts at micro components

because the first one has been aborted and interleaved with a burst of some appli-
cation message of another encapsulated communication channel. On the contrary,
the configuration data of micro component B can be transported within a single
configuration bursts, as the burst of an application message does not interfere with
that configuration burst.

Like bursts of application messages, configuration bursts are operated within one
period. That is, the configuration bursts that refer to a given on-the-fly reconfigu-
ration never span over more than one period. This is a necessary condition in order
to establish the reconfiguration instant . The reconfiguration instant marks the in-
stant across each TISS, when the actual reconfiguration is launched. According to
section 7.6, reconfiguration causes an initialization of the TISS. The reconfiguration
instant is realized as a burst that does not transmit data. In fact, the reconfigu-
ration instants manifests as a ”virtual fragment” for the special purpose port 127
in the Time-Triggered Communication Schedule, which has been introduced in the
context of consistent delivery order in section 4.7.2. Like the watchdog and dissemina-
tion service, the reconfiguration instant leverages the concept of ”virtual fragments”.
Therefore, the associated burst is dispatched like ordinary bursts, and therefore is
synchronized to the global time base. As a result, it is possible to assign a common
instant for the reconfiguration instant at each TISS, so the initialization of the TISSs
is triggered simultaneously among the whole system.

Note that configuration bursts are sporadic, i.e., messages with event semantics.
The reason is that the system might remain in a given primary mode for some time.
In such a case no micro component issues an reconfiguration request, therefore the se-

158

8 Integrated Resource Management 8.4 On-the-fly Reconfiguration

quence of interactions of integrated resource management is not executed. Hence, no
on-the-fly reconfiguration takes place, and the TNA does not transmit configuration
bursts.

8.4.2 Protocol of Reconfiguration

The configuration bursts convey configuration data from the TNA to the physical
memories of a TISS. The Configurator of each TISS grabs the incoming data flits of a
configuration burst and moves the configuration data into a given physical memory.
The information, which configuration data has to be put to which physical mem-
ory at which address, must be included in the configuration burst itself. In fact,
configuration bursts contain two entities:

1. Some meta-information that tells the Configurator how to process the incoming
configuration data.

2. The payload data, which contains the real configuration data that is to be
moved (according to the meta-information) into the physical memory of the
Time-Triggered Communication Schedule, Burst Configuration Memory, Rout-
ing Information Memory, etc.

The combination of meta-information and payload data results in the protocol of
the on-the-fly reconfiguration. This protocol is applied between the TNA and the
Configurator of each TISS. All configuration bursts are structured according to this
protocol.

Figure 8.3 shows, how this protocol determines a structure in a configuration
burst. Thereafter, a configuration burst is organized into several blocks. Each block
begins with a control flit, which contains meta-information. Then, the control flit
is followed by a sequence of data flits carrying payload data. For a given block,
the control flit instructs the Configurator, where to place the configuration data
contained in the payload. After the last data flit of the payload of the last block,
the configuration burst ends with a terminal flit. When the Configurator indentifies
a terminal flit, it is aware of the end of the configuration burst.

The protocol of reconfiguration defines that a configuration burst must contain
at least one block with an introducing control flit followed by payload data, which
in turn must include at least one data flit of configuration data, and must end with
exactly one terminal flit.

In the following we examine the layout of control and terminal flits.

Layout of the Control Flit

A control flit is embedded into a data flit, which is transported over the data bus of
lanes in the TTNoC. Figure 8.4 shows that a control flit does not occupy the whole

159

8.4 On-the-fly Reconfiguration 8 Integrated Resource Management

A A B B T

Control Flit of
Block A

Payload Data
of Block A

Terminal Flit

Time

Figure 8.3: Protocol of reconfiguration in a configuration burst

width of the data lane, which is 32 bit in the current implementation. Thus, there
are some bits left as ”reserved” bits for future purpose. Besides this, the control flit
contains 3 fields plus 1 particular control bit at index 20. For the control flit, the
control bit at index 20 must be fixed at a value of 0. According to the protocol of
on-the-fly reconfiguration, this indicates that the current flit, which contains meta-
information, is a control flit. In the following we describe the 3 fields of the control
flit.

0 8 9 17 18 19 20 21 31

Start Address End Address NS 0 reserved

Figure 8.4: Layout of the control flit

Name Space (NS) As the TISS includes several physical memories that house con-
figuration data, the control flit contains this field to specify, for which physical
memory the configuration data in the payload of the current block is indented.
Name Space is similar to OCPS MAddrSpace of the Control Interface of the UNI,
which introduces a notion of name spaces. However, Name Space refers to mem-
ories that can not be accessed through the Control Interface. As this field is 2
bit wide, it identifies 4 memories in the TISS. Table 8.1 lists the mapping of
values of Name Space to the physical memory in the TISS.

Name Space Physical Memory
00 Time-Triggered Communication Schedule
01 Routing Information Memory
10 Burst Configuration Memory
11 Register File and others

Table 8.1: Mapping of name spaces to physical memories in the TISS

Start Address This field specifies the start address in the physical memory identi-
fied by Name Space. According to the name spaces visible in the protocol of

160

8 Integrated Resource Management 8.4 On-the-fly Reconfiguration

on-the-fly reconfiguration, Start Address must be dimensioned in such a way
that it can address the whole address space of all memories. In other words, its
width equals the width of the address bus of the largest physical memory. In
the current implementation, this are the memories of Time-Triggered Commu-
nication Schedule and Burst Configuration Memorywith 512 data words each,
and therefore 9 bit width of the address bus . Consequently, Start Address
has a width of 9 bit.

End Address Similar to Start Address, but this field denotes the end address in
the physical memory identified by Name Space.

Start Address and End Address cover a continuous address space in the physi-
cal memory given by Name Space. Actually, Start Address corresponds to a phys-
ical address, where the very first data flit of configuration data of the subsequent
payload has to be placed. Obviously, the data flits of the payload are written to
consecutive addresses. As a consequence, a given block (in a configuration burst)
conveys a continuous data chunk for a given physical memory in the TISS. If we
want to update several regions in the same memory, we simple install an additional
block in the configuration burst, which goes with the same Name Space, but with
the appropriate Start Address and End Address.

The combination of Start Address and End Address determines, how many
data flits of configuration data the payload of the current block in the configuration
burst must possess. It is essential that the payload is made up an exact amount of
data flits, given in equation 8.1.

flits = End Address− Start Address + 1 (8.1)

The reason is that the protocol of on-the-fly reconfiguration does not define error
conditions, e.g., the number of flits specified by the corresponding fields mismatches
the real number of data flits in the payload. Otherwise, the protocol of on-the-fly
reconfiguration would be messed up, and the Configurator would get irritated. In
the end, this would leave the Configurator as well as the TISS in an undefined state.

Furthermore, we follow from equation 8.1 that the payload in a block in the config-
uration burst must span over at least one data flit, particularly when Start Address
= End Address. Also we imply the reasonable condition that End Address >=
Start Address.

However, as the configuration bursts originate from the TNA, we can rely on
the fact that the configuration bursts are designed properly with reference to the
protocol of reconfiguration with its constraints, and no violations of that protocol
ever occur.

Layout of the Terminal Flit

The terminal flit marks the end of a configuration burst. As we learn from Figure 8.5,
the terminal flit contains only one special field that is relevant for the protocol of

161

8.4 On-the-fly Reconfiguration 8 Integrated Resource Management

on-the-fly reconfiguration. For the terminal flit, the special control bit at index 20
must be fixed to a value of 1.

0 8 9 17 18 19 20 21 31

unused 1 reserved

Figure 8.5: Layout of the terminal flit

Actually, the Configurator, which implements the protocol of on-the-fly reconfig-
uration in the TISS, is not aware of the number of blocks and their length in the
current configuration burst. Therefore, the terminal flit serves to purpose to notify
the Configurator that there will not follow any blocks of configuration data in the
current configuration burst. As we see in section 8.4.3, this information coded in the
terminal flit is required in order to let the Configurator finish its operation and go
back to an idle state. In this context, it is essential that the configuration bursts
and their blocks are properly designed according to the constraint of equation 8.1.
The Configurator keeps track of the number of data flits in each payload. Thus,
the proper number of data flits is required so that the Configurator can distinguish
between configuration data and flits that contain meta-information.

8.4.3 The Configurator

The Configurator is the component in the TISS that redirects the configuration data
in the payloads of configuration bursts from the TTNoC interface to the respective
physical memories. It consumes the incoming data flits at the TTNoC interface, so
that they are not written into the Port Memory through the Port Interface. So, the
usual operation of processing bursts by the Port Manager is circumvented, and a
special treatment is applied.

Connections of the Configurator

As illustrated in Figure 7.1, the Configurator occupies the write port of the dual-
ported RAMs in the TISS, which are not accessible to the host through the Control
Interface. Table 8.1 lists the mapping of name spaces in control flits. This implies
that the Configurator is attached to the write ports of these physical memories. Each
write port comprises an address bus, data bus, and a ”write enable” signal. There is
no byte masking involved, consequently the Configurator only writes complete data
words into the memories, which equal the width of lanes of the TTNoC.

Moreover, the Configurator has special signals linked to some fields of the TISS-
side Register File, so that the TNA has a means to assign values to these fields.

• The Configurator possesses direct access to Host Mode (HM) in the Register
File (see section 5.2.4).

• The Watchdog Period also resides in the Register File and is controlled by the
TNA via the Configurator.

162

8 Integrated Resource Management 8.4 On-the-fly Reconfiguration

Additionally, the Configurator sets particular control signals within the TISS:

• PeriodEna, which is relevant in the Burst Dispatcher. It activates and deacti-
vates single periods for the dispatching (see section 7.3.3). Note that the value
for PeriodEna in the associated data flit must be aligned to the most signifi-
cant bit, if the number of supported periods of the periodic control system is
less than the width of data flits. For instance, in the current implementation
we can choose between 16 and 32 supported periods. In case of 16 periods,
PeriodEna(15) resides at index 31 and goes down to PeriodEna(0) at index
16, while the bits 15 down to 0 of the data flit are not interpreted by the
Configurator.

• override values for the value of the counter vector in the clock component, which
embodies the global time base in the TISS. Hence, the Configurator has access
to the clock component, therefore it is able to set a given value to the counter
vector, whereas it bypasses the increment on each macro tick of that counter
vector. As a result, the TNA has the proper means to control the (locally
replicated) global time base in each TISS via the on-the-fly reconfiguration.
Such a mechanism is essential to realize an external clock synchronization with
a clock outside the TTSoC architecture.

As the time format of the global time base is 64 bit and the width of the data
bus of lanes in the TTNoC is configured as 32 bit, the new value for the global
time base must be split into two data flits. The Configurator assembles these
data flits and sets the value to the counter vector in the clock component in an
atomic write operation.

0 16 20 23 31

0 Global Time (override Lower Word)

1 Global Time (override Higher Word)

2 PeriodEna (aligned to MSB)

3
Watchdog

Period H
M

Figure 8.6: Entities of name space 11 visible to the TNA

Figure 8.6 shows, at which addresses in the name space 11 the specific entities are
visible to the TNA. The Configurator decodes these addresses in that name space,
selects the corresponding signal towards that entity, and sets the value as given in
the associated data flit of the configuration burst.

State Machine of the Configurator

Like most components in the TISS, the Configurator is driven by a state machine,
which is depicted in Figure 8.7.

163

8.4 On-the-fly Reconfiguration 8 Integrated Resource Management

The state machine of the Configurator includes a Reset state in order to handle
the reset of the target hardware. Upon inactivity, the state machine remains in the
Idle state. The cyclic processing of the state machine is triggered, when the Burst
Dispatcher indicates a burst that refers to the reserved port 127. Afterwards the
state machine enters the RX Wait state.

The Configurator processes incoming data that is associated with a receive op-
eration. Like the Memory Digger, the Configurator is dependent on the notification
from the Receive Window Detector, which informs about the arrival of data at the
incoming lane of the TTNoC interface. During the RX Wait state, the Configura-
tor waits for the notification signals from the Receive Window Detector (RXValid,
RXMiss, RXLate). If there is no reconfiguration request in progress and no configura-
tion data arrives, the Receive Window Detector will discover the Miss of the receive
window. In this case, the Configurator aborts operation and goes back to the Idle
state. Otherwise (if configuration data arrives), the Receive Window Detector drives
RXValid = 1 and the state machine continues in the Setup state.

Reset

Idle

RX_Wait Setup

Done

re
se

t w
ire

 is

re
le

as
ed

dispatch
port 127

data
incoming

after 1 cycle

Busy

Last

is Control
Flit

is C
ontrol
Flit

is Terminal
Flit

P
ay

lo
ad

co
m

pl
et

e

no
 d

at
a

ar
riv

ed

Figure 8.7: State machine of the Configurator

According to the protocol of reconfiguration, the very first data flit arriving at
the TTNoC interface must be a control flit. This very first control flit is processed
in the Setup state. The Configurator extracts all the fields in the control flit (Start
Address, End Address, Name Space) and stores them in internal registers. After-
wards (after one clock cycle of system operation frequency), the state machine pro-
ceeds in the Busy state.

During the Busy state the Configurator redirects the configuration data from
the TTNoC interface to this memory that has been identified by Name Space right
before. Therefore, it drives the ”write enable” signal to 1 and maintains the address
bus as well the data bus of the memory associated with Name Space. The data

164

8 Integrated Resource Management 8.4 On-the-fly Reconfiguration

issued at the data bus is the same as the data bus of the incoming lane of the
TTNoC interface, where the data flits of the current payload are available. The
internal address register, which has been assigned with Start Address, drives the
corresponding address bus. Additionally, it is incremented by one on each cycle of
the system operation frequency, as long as the state machine is in the Busy state. If
that internal address register equals End Address, all data flits of the payload of the
current block in the configuration burst have been processed. So, the state machine
enters the Last state.

According to the protocol of reconfiguration, in this state there must arrive an-
other data flit with meta-information. If the ”last flit” is a terminal flit, the next
state is Done. Otherwise, if the configuration burst contains more than one block,
this ”last flit” is a control flit. Consequently, the Configurator has to continue to
process another block in the configuration burst. It performs the same initialization
of internal registers like in the Setup state and goes back to the Busy state. The
state machine loops between Busy and Last state, until all blocks in the configura-
tion burst have been processed, i.e., when the terminal flit has arrived during the
Last state.

The Done state is the last state before the state machine completes one cycle of
operation. This state is solely used for ”housekeeping”, for instance reset the internal
registers. Moreover, the Configurator ”remembers” the current configuration burst.
The Configurator sets an internal register named Pending, which indicates that
a configuration burst has just been processed and the memories of the TISS are
equipped with new configuration data. As a consequence, Pending indicates the
necessity for a reconfiguration instant to be indicated.

As introduced in section 8.4.1, the reconfiguration instant is realized as a burst
of a ”virtual fragment” that is synchronized among all TISSs. As the TNA can
only supply one configuration burst for one TISS at a time, the Configurator has to
postpone the triggering of the reconfiguration instant until all TISSs are equipped
with new configuration data. This event correlates with the ”virtual fragment”,
which is simultaneously dispatched among all TISSs. Therefore, if Pending = 1
and a subsequent burst referring to port 127 is dispatched, the Configurator triggers
the reconfiguration instant and resets Pending. As a result, the reconfiguration
instant occurs at each TISS simultaneously, and each TISS performs the procedure
of initialization, as introduced in section 7.6.

165

8.4 On-the-fly Reconfiguration 8 Integrated Resource Management

166

Chapter 9

Prototypes & Results

In this chapter we present the results of working prototypes of the TTSoC architec-
ture. We show the design of the prototypes and inform, how such an instance of the
TTSoC architecture is mapped onto prototype hardware. Furthermore, we include
statistics, which kind and how many resources the entities of the TTSoC architecture
(e.g., a Fragment Switch, a TISS) occupy on the prototype hardware.

9.1 FPGA-based Prototypes

In the near future, we envision that the TTSoC architecture will incorporate ASIC
technology. Then, the implementation of the TTSoC architecture will exist in litho-
graphic masks in order to manifest in a silicon die. However, developing lithographic
masks involves infrastructure and is expensive. Also, it is riskier, because design bugs
can not that easily be corrected, once the production of silicon has been launched.

For this reason, the development and prototyping of the TTSoC architecture
focuses on FPGAs. FPGAs are particularly convenient, as they are far more in-
expensive to purchase and do not demand for infrastructure such as vacuum-clean
laboratories. Due to their technology based on SRAM cells, they are flexible, and
it is easier to alter designs and restart test series than on ASIC technology. More-
over, FPGA vendors provide complete development kits off-the-shelf, which entails
professional support from the vendor as well as a user community.

Nevertheless, it must be mentioned that FPGAs have some drawbacks compared
to ASICs. Generally, a given circuitry implemented in LUTs of an FPGA demands
for up to 35 times more area, and is between 3 - 5 times slower than an ASIC
implementation. Moreover, an FPGA consumes about 14 times more dynamic power
than an equivalent ASIC on average [KR07].

167

9.1 FPGA-based Prototypes 9 Prototypes & Results

9.1.1 Supported FPGAs

So far, the TTSoC architecture has successfully been ported to 3 different families
of FPGAs. The following Table 9.1 shows the families of FPGAs and the specific
devices of each family, which run instances of the TTSoC architecture.

FPGA Family Device Vendor Information

Altera Cyclone IITM Series
EP2C35

http://www.altera.com/

products/devices/

EP2C70
Altera Stratix IITM Series EP2S60
Altera Stratix IIITM Series EP3SL150

Table 9.1: FPGA families and devices running the TTSoC architecture

9.1.2 Resource Usage

As a result of the porting to different FPGA families, we present a summary in
Table 9.3 and Table 9.4 about which kind of resources and how many of each resource
in the FPGA are occupied by specific entities in the TTSoC architecture. These
tables list the following resources that FPGAs provide:

logic elements (LE) These are the basic cells in the FPGA, which are used to
embody circuitry. For instance, logic elements realize a comparator or a mul-
tiplexer. In general, logic elements are regarded as asynchronous, i.e., they are
not driven by a clock signal.

logic registers (Reg.) A logic register is a basic cell in the FPGA, which holds
the level of a signal. It is common practice that in synchronous designs such
logic registers store the results of circuitry implemented in logic elements. This
implies that a logic register is driven by a clock.

on-chip memory (Mem.) Even though, logic elements and logic registers are
based on SRAM technology, state-of-the-art FPGAs are equipped with ded-
icated SRAM cells. This special purpose cells are intended to instantiate a
RAM component in the design that is loaded into the FPGA. While the tech-
nological foundation of SRAM technology is transparent for logic elements and
logic registers, the designer deliberately assigns on-chip memory to a RAM
component in his/her hardware design.

Tuning the Current Implementation

The current implementation is dimensioned in such a way that it is unlikely that a
target application built upon the TTSoC architecture will ever exceed the supported
features, for instance the number of supported ports, or the size of the memories in

168

9 Prototypes & Results 9.1 FPGA-based Prototypes

the TISS. Consequently, the current implementation is fit for various dimensions of
target applications. Moreover, the current implementation denotes an upper bound
of resource usage. Such an upper bound is helpful when we come about to draw
conclusions about the feasibility of the TTSoC architecture (see section 10.4), as an
instance of the TTSoC architecture to be deployed in the field will be smaller.

In fact, the current implementation can be stripped down. Like the parameters
of the periodic control system, the TISS is configurable. It is possible to reduce the
number of supported ports and cut down on data words in physical memories of the
TISS. While the current implementation is a maximum configuration, we present
the resource usage of a stripped down variation, which reflects a more ”realistic”1 of
an instance of the TTSoC architecture. Table 9.2 compares the parameters of the
current implementation and the realistic variation.

Parameter current realistic
Number of supported Ports 128 32
Data words in the Port Configuration Memory 128 32
Data words in the Port Synchronization Memory 128 32
Data words in the Time-Triggered Communication Schedule 512 128
Data words in the Burst Configuration Memory 512 128
Data words in the Routing Information Memory 128 32

Table 9.2: Parameters of current implementation and realistic variation

Interpretation of Resource Usage

Table 9.3 shows the resource usage of the entities of the TTSoC architecture, which
have been introduced in the previous chapters. This is for the current implemen-
tation, and considers 16 and 32 supported periods in the periodic control system.
Similarly, Table 9.4 deals with the realistic variation. The tables state the resource
usage for all FPGA families, to which the TTSoC architecture has been ported. The
synthesis and placement & routing tool used for these evaluations is Altera Quar-
tus IITM version 8.0 SP12. We can make a series of observations from the resource
usage listed in Table 9.3 and Table 9.4.

Firstly, we can compare the resource demand among the different families of
FPGAs. While the amount of reserved registers and on-chip memories remains ap-
proximately constant for all FPGA families, the number of logic elements deviates
considerably. The main factor is the size of a Look-Up Table (LUT) in the specific
FPGA. This parameter affects the number of logic elements it takes to realize a given
basic function. For instance, the Cyclone II has LUTs with 4 input signals and 1
output, whereas the Stratix II features LUTs with 6 inputs and 1 output. If we
want to build the basic function of a 4-to-1 multiplexer, this will take 1 LUT on

1At least what we expect to be a realistic dimensioning for deployment in industrial applications.
2http://www.altera.com/products/software/sfw-index.jsp

169

9.1 FPGA-based Prototypes 9 Prototypes & Results

C
yclone

II
Stratix

II
Stratix

III
L

E
R

eg.
M

em
.

L
E

R
eg.

M
em

.
L

E
R

eg.
M

em
.

Fragm
ent

Sw
itch

(4
interconnects)

582
160

0
302

160
0

236
181

0
T

rusted
Interface

Subsystem
2704

†
2271

†
53248

1348
†

2281
†

53248
1482

†
2342

†
53248

4213
‡

3546
‡

1901
‡

3579
‡

2175
‡

3656
‡

B
urst

D
ispatcher

1410
†

1290
†

0
585
†

1306
†

0
697
†

1324
†

0
2883

‡
2556

‡
1151

‡
2588

‡
1397

‡
2622

‡

P
hase

C
om

parator
18

15
0

9
16

0
11

16
0

P
eriod

C
ontroller

66
61

0
10

54
0

15
62

0
V

ector
C

oder
17
†

0
0

14
†

0
0

10
†

0
0

29
‡

29
‡

29
‡

M
ultiplexers

381
†

39
0

211
†

39
0

214
†

39
0

799
‡

453
‡

463
‡

C
lock

C
om

ponent
67

66
0

56
66

0
57

67
0

C
onfigurator

313
290

0
53

290
0

58
291

0
P

ort
M

anager
284

118
0

237
116

0
270

122
0

R
outing

P
rocessor

27
15

0
23

15
0

27
16

0
R

eceive
W

indow
D

etector
31

10
0

22
9

0
30

10
0

A
ddress

C
alculator

53
0

0
79

0
0

80
0

0
M

em
ory

D
igger

79
48

0
40

48
0

48
49

0
T

im
e

Stam
per

34
20

0
17

19
0

24
21

0
P

ort
Synchronization

C
ontroller

60
25

0
56

25
0

61
26

0
R

egister
F

ile
297

225
0

191
223

0
212

225
0

T
im

e-T
riggered

C
om

m
unication

Schedule
0

0
25600

0
0

25600
0

0
25600

B
urst

C
onfiguration

M
em

ory
0

0
15360

0
0

15360
0

0
15360

P
ort

C
onfiguration

M
em

ory
0

0
4096

0
0

4096
0

0
4096

P
ort

Synchronization
M

em
ory

0
0

4096
0

0
4096

0
0

4096
R

outing
Inform

ation
M

em
ory

0
0

4096
0

0
4096

0
0

4096
†16

periods,
‡32

periods

T
able

9.3:
R

esource
usage

of
entities

of
the

T
T

SoC
architecture

(current
im

plem
entation)

170

9 Prototypes & Results 9.1 FPGA-based Prototypes
C

yc
lo

ne
II

St
ra

ti
x

II
St

ra
ti

x
II

I
L

E
R

eg
.

M
em

.
L

E
R

eg
.

M
em

.
L

E
R

eg
.

M
em

.

Fr
ag

m
en

t
Sw

it
ch

(4
in

te
rc

on
ne

ct
s)

58
2

16
0

0
30

2
16

0
0

23
6

18
1

0
T

ru
st

ed
In

te
rf

ac
e

Su
bs

ys
te

m
25

23
†

21
07
†

12
28

8
12

88
†

21
17
†

12
28

8
14

23
†

21
79
†

12
28

8
38

64
‡

32
61
‡

18
23
‡

32
86
‡

20
72
‡

33
65
‡

B
ur

st
D

is
pa

tc
he

r
12

64
†

11
54
†

0
54

1†
11

70
†

0
64

9†
11

88
†

0
25

85
‡

22
92
‡

10
71
‡

23
24
‡

13
01
‡

23
58
‡

P
ha

se
C

om
pa

ra
to

r
18

15
0

11
16

0
13

16
0

P
er

io
d

C
on

tr
ol

le
r

54
53

0
10

53
0

15
54

0
V

ec
to

r
C

od
er

17
†

0
0

13
†

0
0

11
†

0
0

29
‡

30
‡

25
‡

M
ul

ti
pl

ex
er

s
30

1†
31

0
16

8†
31

0
17

1†
31

0
63

1‡
37

4‡
36

7‡

C
lo

ck
C

om
po

ne
nt

67
66

0
56

67
0

57
68

0
C

on
fig

ur
at

or
29

4
27

2
0

47
27

2
0

56
27

3
0

P
or

t
M

an
ag

er
27

1
11

5
0

23
3

11
3

0
26

8
12

0
0

R
ou

ti
ng

P
ro

ce
ss

or
15

13
0

22
13

0
25

14
0

R
ec

ei
ve

W
in

do
w

D
et

ec
to

r
30

9
0

23
9

0
31

10
0

A
dd

re
ss

C
al

cu
la

to
r

53
0

0
78

0
0

80
0

0
M

em
or

y
D

ig
ge

r
79

48
0

38
48

0
47

49
0

T
im

e
St

am
pe

r
34

20
0

16
18

0
24

21
0

P
or

t
Sy

nc
hr

on
iz

at
io

n
C

on
tr

ol
le

r
60

25
0

56
25

0
61

26
0

R
eg

is
te

r
F

ile
29

0
20

5
0

18
7

20
5

0
21

2
20

6
0

T
im

e-
T

ri
gg

er
ed

C
om

m
un

ic
at

io
n

Sc
he

du
le

0
0

53
76

0
0

53
76

0
0

53
76

B
ur

st
C

on
fig

ur
at

io
n

M
em

or
y

0
0

38
40

0
0

38
40

0
0

38
40

P
or

t
C

on
fig

ur
at

io
n

M
em

or
y

0
0

10
24

0
0

10
24

0
0

10
24

P
or

t
Sy

nc
hr

on
iz

at
io

n
M

em
or

y
0

0
10

24
0

0
10

24
0

0
10

24
R

ou
ti

ng
In

fo
rm

at
io

n
M

em
or

y
0

0
10

24
0

0
10

24
0

0
10

24
† 1

6
pe

ri
od

s,
‡ 3

2
pe

ri
od

s

T
ab

le
9.

4:
R

es
ou

rc
e

us
ag

e
of

en
ti

ti
es

of
th

e
T

T
So

C
ar

ch
it

ec
tu

re
(r

ea
lis

ti
c

va
ri

at
io

n)

171

9.1 FPGA-based Prototypes 9 Prototypes & Results

the Stratix II: 4 of the input signals are occupied by the multiplexer’s data input
signals, and the remaining 2 inputs can be used for the selectors of the multiplexer.
The Cyclone II has to cascade 2 LUTs, as 2 of the 4 input signals have already been
taken by the multiplexer selectors, and only 2 other input signals are left for the
multiplexer’s data input. To sum up, the internal structure of the FPGA affects the
number of used logic elements. However, this is no result from the implementation
of the TTSoC architecture, but a technological issue.

Secondly, if we focus on a given FPGA family, we notice a ratio of resource usage
among the different entities of the TTSoC architecture. It is evident from Table 9.3
and Table 9.4 that the Burst Dispatcher imputes the major part of resource usage
on the TISS. Depending on the number of supported periods in the periodic control
system, the Burst Dispatcher claims about 50 % (16 periods) up to about 70 % (32
periods) of logic elements and registers for all FPGA families.

In comparison, the Configurator and the Port Manager each consume resources
in the magnitude around 10 %. Apparently, the resource usage of entities
does not reflect the architectural complexity and mightiness of features
of the TTSoC architecture, which those entities realize. For instance, the
Port Manager is in charge of handling multiple encapsulated communication chan-
nels, it realizes the port synchronization and deals with different semantics of ports.
Also, the Configurator implements an application-level protocol, which entails some
complexity. Though, Port Manager and Configurator make up a fraction of the total
resource usage of the TISS. Actually, the task of dispatching in the Burst Dispatcher
with its phase comparators and period controllers, which seems to be so primitive,
is crucial when it comes to the number of logic elements and registers.

In this context, we can say that the support for multiple encapsulated commu-
nication channels with all their port synchronization and semantics approximately
causes the same usage of logic elements and registers as the ability of on-the-fly
reconfiguration.

Within the Burst Dispatcher, the multiplexers for the address bus and the pay-
load output from the period controllers represents the biggest single component,
i.e., nearly a third of the Burst Dispatcher. While a pair of period controller and
phase comparator is relatively tiny, the quantity of pairs leads to the biggest part of
resource usage.

Resource Estimation for ASIC

Even though the current implementation of the TTSoC architecture focuses on FPGA
technology, we have conducted experiments to find out, how many resources (e.g.,
area, power) the current implementation would require for ASIC technology, and
which timing constraints (i.e., maximum frequency of the system operation fre-
quency) are feasible.

172

9 Prototypes & Results 9.2 Prototype Hardware

We investigate a Fragment Switch and a TISS like in the previous section. We
use the Synopsis Design Compiler (version Y-2006.06) to synthesize3 both entities
with the Oklahoma State University’s FreePDK 45 nm open source standard cell
library4 as target library.

Table 9.5 gives information about the maximum frequency, estimated area (tran-
sistor number), and estimated power consumption (dynamic plus static power at the
given maximum frequency) of Fragment Switch and TISS. Note that the Fragment
Switch is the default configuration with 4 interconnects at 32 bit data bus width in
lane of the TTNoC, whereas the TISS has been synthesized with 16 periods in the
current implementation (not the realistic variation).

Parameter Fragment Switch TISS
maximum fsys 1, 5 GHz 1 GHz
estimated power consumption ≈ 10, 5 mW ≈ 62, 2 mW
area consumption (cell units) 6206, 02 56644, 51
estimated transistor number ≈ 25 k ≈ 225− 230 k

Table 9.5: Results of the synthesis with a 45 nm library

The results of these experiments are rough estimations, so that we can draw con-
clusion about the costs of the TTSoC architecture when brought to silicon. Actually,
the values for the TISS do not incorporate memory cells, but just logic cells. Fur-
thermore, the value for area are not the number of transistors, but ”cell units” or
”gates” based on the smallest cell in this library. If we want to estimate the transistor
number of Fragment Switch and TISS, we have to guess to number of transistors for
that smallest, basic cell and multiply by the number given in Table 9.5. Usually, the
basic cell is the NAND and NOR gate, which can be implemented by 4 transistors
in CMOS technology. According to this estimation, a Fragment Switch would take
about 25.000 transistors, whereas a TISS reserves about 225.000−230.000 transistors
in ASIC technology.

9.2 Prototype Hardware

For each FPGA family we use specific prototype hardware. The following section
introduces prototype hardware used for the current implementation.

3We can just present the result of synthesis, as a placement & routing tool for ASIC has not been
available.

4http://avatar.ecen.okstate.edu/projects/scells/

173

9.2 Prototype Hardware 9 Prototypes & Results

TTTech MPSoC Development Kit

The MPSoC Development Kit is customized hardware, which has been manufactured
by TTTech5. It is the primary prototype hardware for the current implementation
of the TTSoC architecture.

The MPSoC Development Kit consists of several PCB devices equipped with
FPGAs of the Altera Cyclone IITM series and different CPUs.

Mainboard The basis of this prototype set-up is a Mainboard that provides 9
PowerlinkTM [TTT06] extension slots, on which the other PCB devices can
be mounted as add-on boards. Furthermore, the PCB devices can be stacked
vertically beginning at the PowerlinkTM extension slots on the Mainboard, as
illustrated in Figure 9.1. Besides the PowerlinkTM extension slots, the Main-
board posseses one Cyclone II EP2C70 FPGA.

MPSoC motherboard

PL FPGA module

I/O add-on board PL CPU module

PL FPGA module

multim. add-on board
FP

G
A

: E
P

2C
70

Figure 9.1: Stacking add-on boards on the MPSoC Development Kit

CPU Board A CPU Board is exclusively used to realize the application computer
of a host in the TTSoC architecture. As its name suggest, these add-on boards
contain CPUs in a stand-alone package. The MPSoC Development Kit entails
different variations of CPU Boards with a specific processor each. The following
assembly of CPU Boards is available:

• Freescale MPC555, 4 MByte Flash memory, 512 kByte SRAM

• Freescale MC9S12XDP512, 2 MByte Flash memory, 512 kByte SRAM

• Infineon TriCore TC1796, 4 MByte external Flash memory, 4 MByte in-
ternal Flash memory, 1 MByte SRAM

• Infineon C167, 1 MByte Flash memory, 512 kByte SRAM

FPGA Board An FPGA Board is assembled with an Altera Cyclone IITM EP2C35.
This FPGA is free to take particular entities of the TTSoC architecture. On
the one hand, an FPGA Board can be used to hold a Front-End in order to
wrap the physical signals of the UNI to an interface of a CPU in a CPU Board.

5TTTech Computer Technik AG, http://www.tttech.com

174

9 Prototypes & Results 9.2 Prototype Hardware

On the other hand, an FPGA Board can also contain a Front-End plus a ”soft-
core” CPU (e.g., a LEON3 SPARC V8 Processor core6, an Altera Nios IITM

Embedded Processor7). In the latter case, the FPGA Board embodies a com-
plete host in the TTSoC architecture.

Basic I/O Board The Basic I/O Board provides interfaces to the external envi-
ronment of a TTSoC design. Usually, a Basic I/O Board will be stacked upon
an FPGA Board, so that the host in the FPGA Board can operate the phys-
ical interfaces of the Basic I/O Board. It features a serial RS232, CAN, LIN,
TTP/A, Ethernet, and GPIO.

Multimedia Board Similar to the Basic I/O Board, but the interfaces can be
regarded as multimedia devices. For instance, a Multimedia Board is equipped
with an AC97 compatible audio device. Also, a colour touch screen LCD
display can be driven by the Basic I/O Board. Moreover, the Multimedia
Board contains an USB controller that can function as an USB host as well as
an USB device.

Note that the MPSoC Development Kit does not provide a single FPGA to
hold a whole design of the TTSoC architecture. Instead of this, all entities are
spread across several FPGAs of FPGA Boards or CPUs of CPU Boards. Thus, the
MPSoC Development Kit emulates an SoC. The reason for this hardware partitioning
is that no single FPGA, which would have been big enough to house a complete
TTSoC design, had been available at that time, when the development of the TTSoC
architecture had been started.

Section 9.3 describes a design example of the TTSoC architecture, which has
been built around the MPSoC Development Kit.

Altera Nios IITM Development Kit

The Altera Nios IITM Development Kit8 is an commercial off-the-self product, which
is intended for designing and prototyping of a wide range of embedded applications.
Altera supplies the soft-core Nios II Embedded Processor, a library of IP-components
that drive the on-board hardware devices, software drivers, the light-weight embed-
ded real-time operating system µC/OS-II9, and a comprehensive tool chain with this
development kit. The Nios IITM Development Kit is assembled with a Stratix IITM

EP2S60 FPGA, 16 MByte DDR SDRAM, 1 MByte SSRAM, 16 MByte Flash mem-
ory, 1 serial RS-232 interface, a 10/100 Ethernet device, and a character LCD display.
For details about this developer kit have a look at the vendor documentation.

6http://www.gaisler.com/cms/index.php?option=com_content&task=section&id=4&Itemid=

33
7http://www.altera.com/products/ip/processors/nios2/ni2-index.html
8http://www.altera.com/products/devkits/altera/kit-niosii-2S60.html
9http://www.micrium.com/products/uc-products.html#ucosii

175

9.2 Prototype Hardware 9 Prototypes & Results

We use the Nios IITM Development Kit to surplus the MPSoC Development
Kit. As the MPSoC Development Kit features physically displaces FPGAs and
just emulates a physical SoC, we have had the desire to experiment with prototype
hardware that is equipped with a single FPGA. In this single FPGA we set up an
instance of the TTSoC architecture. Certainly, this instance must be smaller than
it would be possible on the MPSoC Development Kit to fit into the EP2S60 FPGA.
Anyhow, this experiment gives as indications, how the TTSoC architecture behaves
as a ”real” SoC. The main interest is to have evidence about the performance (i.e.,
maximum system operation frequency) of the TTSoC architecture.

We have built an instance of the TTSoC architecture with 4 micro components,
which each consists of Nios II CPUs, a Front-End, Port Memory, some peripherals
(e.g., JTAG UART for debugging, memory controllers for DDR SDRAM and Flash
memory), and a TISS. One single Fragment Switch (with 4 interconnects) embodies
a minimal TTNoC that connects all micro components. The micro components take
the roles of the TNA, RMA, and 2 general purpose micro components.

The frequency of the macro tick fmt is fixed at 2−20 sec ≈ 1, 04 MHz. The
Stratix II FPGAs provides a maximum frequency for the system operation frequency
fsys that drives the TSS of about 133 MHz, but we use 100 MHz to achieve a stable
design.

Altera Stratix IIITM Development Kit

The Altera Stratix IIITM Development Kit10 is another commercial off-the-self prod-
uct. It serves the same purpose as the Nios IITM Development Kit. The vendor
includes the same set of software / soft-core components. However, the hardware
assembly of the board is more advanced. The basis of the Stratix IIITM Develop-
ment Kit is a Stratix III EP3SL150 FPGA. Besides this, the development kit features
a GBit Ethernet device, several DDR2 SDRAM chips and an UDIMM slot, Flash
memory, and other peripherals like an OLED graphics display, and USB interfaces.
For details look up the data sheet at the vendor’s website.

With the EP3SL150 FPGA we possess a hardware platform, which offers enough
resources to come close to the scale of the MPSoC Development Kit. As the MPSoC
Development Kit has been our main prototype hardware, we use the Stratix IIITM

Development Kit to gain results on a state-of-the-art FPGA series. Actually, we run
the same instance of the TTSoC architecture like on the Nios IITM Development
Kit. However, the performance estimation are more impressive. While we fix the
frequency of the macro tick fmt at 2−20 sec ≈ 1, 04 MHz, the TSS achieves a maxi-
mum frequency for the system operation frequency fsys of about 220 MHz. We have
the design operating at 200 MHz to assure the stability of the FPGA design.

10http://www.altera.com/products/devkits/altera/kit-siii-host.html

176

9 Prototypes & Results 9.3 Design Example

9.3 Design Example

The MPSoC Development Kit is the main prototype hardware. We run the design
example, which is introduced in this section, on this hardware. The design example is
the instance of the TTSoC architecture, which we use to construct an demonstration
application [OFSH08]. Figure 9.2 graphically describes the essence of this design
example.

9.3.1 Structure of the Design Example

The design example on the MPSoC Development Kit features 9 hosts. The RMA as
well as the Gateway occupy one host each. The DU reserves another one (at slot 0).
The 6 remaining hosts are free for the DASs of the demonstration application. The
TNA is a stand-alone unit and is not realized on a host.

In total, the design example features 10 TISSs, which are connected by a TTNoC
consisting of 6 Fragment Switches. The Fragment Switches are arranged into an 2×3
mesh topology in this design example.

Moreover, we learn from Figure 9.2 that the TSS (the 6 Fragment Switches, the
10 TISSs, and the TNA) resides in the EP2C70 FPGA of the Mainboard. The 9
hosts are implemented in the EP2C35 FPGAs of the FPGA Boards mounted on the
PowerlinkTM extension slots of the Mainboard. Basic I/O Boards and Multimedia
Boards, which are required by the demonstration application, are not mentioned in
this section.

Each host utilizes one Nios II Embedded Processors as its application computer.
Besides this, a host possess memory controllers to operate the memory chips of
the FPGA Boards, and other peripherals such as a JTAG UART for debugging.
All peripherals are interconnected by the Altera Avalon Memory-Mapped Interface
[Cor08]. Considering the entities of the TTSoC architecture, a host must be equipped
with a Port Memory (16 KByte on-chip memory) and a Front-End suitable for the
Avalon Memory-Mapped Interface. Besides this, the Gateway is a host that features
an additional Time-Triggered Ethernet (TTE) Controller [KAGS05].

In fact, the design of the TNA is similar to a host, except for the number of
memory controllers, as there a not as many memory chips available on the Mainboard
as on an FPGA Board.

9.3.2 The Need for Serialization

The design example physically separates hosts from the TSS. As illustrated in Fig-
ure 9.2, the cut line of this physical separation is the UNI. We know from section 5.1.1
and section 5.2.1 that the Port Interface and Control Interface demand for 181 phys-
ical wires. Even though PowerlinkTM provides about 140 pins, only 61 pins are
available per slot on the Mainboard. Unfortunately, this design restriction entailed

177

9.3 Design Example 9 Prototypes & Results

F
ragm

ent
S

w
itch

(0,0)

F
ragm

ent
S

w
itch

(0,1)

F
ragm

ent
S

w
itch

(0,2)

F
ragm

ent
S

w
itch

(1,0)

F
ragm

ent
S

w
itch

(1,1)

F
ragm

ent
S

w
itch

(1,2)

T
IS

S
 o

f
T

N
A

T
IS

S
0

T
IS

S
1

T
IS

S
6

T
IS

S
5

T
IS

S
4

TISS
2

TISS
3

TISS
8

TISS
7

TN
A

Legend

In
te

rc
o

n
n

e
ct

(2
 la

n
es

)

H
o

s
t-s

id
e

S

erialize
r

T
IS

S
-s

id
e

S
erialize

r

u
n

se
ria

lize
d

U
N

I

H
ost at

S
lot 0

H
ost at

S
lot 1

Host at
Slot 2

Host at
Slot 3

RMA at
Slot 8

G
at

ew
ay

at

 S
lo

t 4
H

os
t a

t
S

lo
t 5

H
os

t a
t

S
lo

t 6

Host at
Slot 7

T
T

N
o

C

E
P

2
C

3
5

 o
n

a

n
 F

P
G

A

B
o

a
rd

E
P

2
C

7
0

 o
n

th

e
M

a
in

b
o

a
rd

F
igure

9.2:
P

artitioning
of

the
prototype

design
on

the
M

P
SoC

D
evelopm

ent
K

it

178

9 Prototypes & Results 9.3 Design Example

fsys HHHHHHH�LLLLLL�HHHHHH�LLLLLL�HHHHHH�LLLLLLL

2 · fsys HHH�LL�HH�LL�HH�LL�HH�LL�HH�LL�HH�LLL

UNI data VVVVVVVVVVVVVVV�VVVVVVVVVVVVVV�VVVVVVVVVVVVVVVA B C

serialized
VVVVVVV�VVVVVV�VVVVVV�VVVVVV�VVVVVV�VVVVVVVUNI data

A1 A2 B1 B2 C1 C2

Figure 9.3: Serializing the UNI

by the MPSoC Development Kit leads to the necessity to serialize the physical signals
of the UNI over the usable PowerlinkTM wires.

For the purpose of serialization, all buses like the address buses OCPM MAddr and
OCPS MAddr are split into two halves. Moreover, data buses of the Port Interface as
well as the Control Interface are combined into a tri-stated bus. In fact, OCPM MData
and OCMP SData share the same wires, respectively OCPS MData and OCPS SData.
The serialized wires of the PowerlinkTM extension slots operate at the double system
operation frequency. Thus, during one clock cycle of the system operation frequency
the accelerated serialization clock makes two clock cycles. This allows to transport
the first and the second half of the serialized UNI signals within one clock cycle of
the system operation frequency. Figure 9.3 visualizes the concept of serialization for
the MPSoC Development Kit.

Note that for the TTSoC architecture serialization is transparent. The TISSs
nor the hosts are aware of the fact that all data exchanged via the UNI is serialized.
However, serialization extends the latency ∆+ by one clock cycle, as the data flit to be
written into the Port Memory takes that clock cycle to pass through the serialization.
For send operation, the request of a given data word from the Port Memory imposes
one clock cycle like for read operations. Additionally, the response from the Port
Memory also travels one clock cycle longer due to serialization. As a consequence,
∆− increases by 2 clock cycles.

9.3.3 Drawbacks of the MPSoC Development Kit

Even though (from the aspect of implementation), serialization is transparent, it
impairs the achievable maximum frequency of the TSS. The reason is the long wiring
from the Mainboard’s EP2C70 FPGA to the EP2C35 FPGA of the FPGA Boards
via the PowerlinkTM extension slots. The capacities of the wires and the signal run-
times on these wires restricts the maximum frequency. We are forced to operate the
serialized clock at about 32 MHz in order to have reliable off-chip communication.

179

9.3 Design Example 9 Prototypes & Results

This value has been determined by experiments. As the system operation frequency
is the half of the serialized clock, this implies a maximum frequency of the system
operation frequency of fsys ≈ 16 MHz.

To achieve better performance estimations about the current implementation of
the TTSoC architecture, we call on the Nios IITM Development Kit and Stratix IIITM

Development Kit, which allow to have a single FPGA solution. Actually, as described
in section 9.2 and section 9.2, these alternative prototype hardware configurations
outperform the MPSoC Development Kit by a multiple.

180

Chapter 10

Conclusion

In this last chapter, we present the conclusions of the implementation of the TTSoC
architecture. Each section deals with one specific aspect of the ”lessons learned”.

10.1 Power Awareness

We have learned from earlier chapters that the TTSoC architecture incorporates
several mechanisms in its design in order to address issues of power saving and
energy efficiency. Let us summarize these power-aware features:

• Fragment Switches automatically remain in a power saving idle mode in case
of inactivity. Additionally, the integrated resource management can explicitly
powered down each Fragment Switch.

• The integrated resource management can harness these properties of Fragment
Switches to establish ”power-aware routing”, whereas encapsulated communi-
cation channel are concentrated on a given subset of Fragment Switches, while
the Fragment Switches excluded from traffic can idle or be power down.

• The TNA has the ability to activate and deactivate pairs of period controllers
and phase comparators in the Burst Dispatcher of each TISS, if there are no
communication activities involved in the associated periods.

• The field HostMode in the Register File of a TISS let the host know, whether
the services realized in that host are currently needed by some application
subsystem, or not. If not, it is in the sphere of control of the host to enter any
power saving mode.

• The TTNoC allows native multi-casting without the need of additional control
logic and further semantics. So, we obtain multi-casting at no additional costs
with respect to area (i.e., logic elements and registers in FPGA technology)
and power consumption.

181

10.1 Power Awareness 10 Conclusion

• We can regard the non-existence of buffers during the transportation of data
as a power-aware design choice. No buffers mean no further registers or RAM
cells, which would consume power. Additionally, the absence of explicit buffers
avoids accessing these elements by means of power consuming read and write
operations. So, the omission of buffers contributes to lower power consumptions
from the structural, i.e., absence of buffers, as well as the dynamic, i.e., read /
write operations, point of view.

• The implementation of the TTSoC architecture shows that specific circuitry is
reused for other functions than originally intended.

For instance, we harness the circuitry of dispatching (in the Burst Dispatcher)
to realize ”virtual fragments”, reconfiguration instants, and to realize the
watchdog and dissemination service. So, we leverage the control logic of dis-
patching of communication activities for message ordering, on-the-fly reconfig-
uration, and supplemental services. Another example for re-usage of circuitry is
the fact that the TTNoC conveys application data, reconfiguration data (i.e.,
configuration bursts) as well as routing information over the same physical
wiring.

Such re-usage not only demonstrates the elegance of design and implementation
of the TTSoC architecture, but it yields in further savings of power consump-
tion, as there is no distinct circuitry for each of these functions necessary.

The features listed above concern an architectural scope. They illustrate, how
the TTSoC architecture is able to address power issues from a high-level respectively
architectural point of view. In fact, the concrete method (of power saving) that is
combined with any of the architectural concepts depends on the capabilities of target
technology.

For example, state-of-the-art FPGAs do not well support advanced low power
methods like power gating or voltage and frequency scaling [KFA+07,RSG03]. FPGA
technology is able to implement clock gating to reduce the amount of dynamic power
consumption. But it can not totally turn off the power supply towards parts of the
design loaded on the FPGA (e.g., entities of the TTSoC architecture like a Fragment
Switch), thus also diminishing static power consumption, which would be possible
by means of power gating. Moreover, it is hardly possible1 to spontaneously drop or
lift the supply voltage among power distribution networks within the FPGA, or to
steadily tune the frequency of clock distribution networks.

Nevertheless, such lower power methods have been proven to work on ASIC
technology, whereas prominent examples are SpeedStepTM by Intel or Power Now!TM

and Cool’n’QuietTM by AMD. Even though, we are momentarily tied down to clock
gating as the only means of power saving on our FPGA based prototype hardware,
due to its power-aware features the TTSoC architecture is prepared to harness the
full repertoire of low power methods once ported to ASIC technology.

1considering the state-of-the-art of mainstream FPGAs by the time of writing this thesis

182

10 Conclusion 10.2 Growth of the TISS

10.2 Growth of the TISS

It is evident from Table 9.3 and Table 9.4 that the TISS grows into two distinct
dimensions:

1. logic elements and registers

2. on-chip memory

Each of these dimensions is influenced by one parameter of the TTSoC architecture.

number of supported periods in the periodic control system directly affects the
first dimension (logic elements and registers)

number of ports is the single factor that controls the demand for on-chip mem-
ory. Actually, the 5 memories (i.e., Time-Triggered Communication Schedule,
Burst Configuration Memory, Port Configuration Memory, Port Synchroniza-
tion Memory, and Routing Information Memory) are the only components in
the TISS, which claim on-chip memory.

We can identify a slight interdependency between number of ports (number of
supported encapsulated communication channels) and logic elements. If we compare
the current implementation and the realistic variation, we learn that the less ports
we have, the smaller the Burst Dispatcher becomes. Apparently, a reduction of
ports not only cuts down on records in the respective memories. Additionally, some
fields in the entries of the Time-Triggered Communication Schedule, which refer to
records of other memories (e.g., RIRef, PortRef, or BurstRef), tend to shrink, if
there are fewer records that can be addressed. As a consequence, the multiplexers in
the Burst Dispatcher become smaller, because the affected fields also belong to the
payload output of period controllers and therefore flow through the multiplexers. We
can explains the deviations in other components such as the Port Manager owing to
smaller reference fields, however the fluctuations in logic elements and registers are
of minor scale in those components.

From the other side, modifying the number of supported periods in the periodic
control system solely affects the Burst Dispatcher. The memories do not change their
demand for on-chip memory, as well as the other components in the TISS, e.g., Port
Manager, Configurator, show now fluctuations in logic elements and registers that
would be worth mentioning.

All in all, we trivially identify a linear growth of the resource usage of
the TISS in both dimensions. The more ports and encapsulated communication
channels we have, the more on-chip memory we have to spend on the respective
memories. The more periods we want to utilize in the periodic control system, the
more logic elements and registers we have to spend on pairs of period controllers and
phase comparators in the Burst Dispatcher.

183

10.2 Growth of the TISS 10 Conclusion

Actually, that parallel hardware in the Burst Dispatcher causes the major part
of resource usage in the TISS, and therefore bears the main responsibility for the
resource usage of a TISS. Each period of the control system gets dedicated hardware
(i.e., a pair of period controller and phase comparator) assigned, which operates
simultaneously. Anyhow, due to design constraints it is not possible for the TISS
to dispatch more than one communication activity at a given instant of time. As
a consequence, let us question the design choice of parallel hardware in the Burst
Dispatcher, whether it is necessary to supply parallel hardware as long as we can not
harness the immanent parallelism.

The alternative to parallel dispatching is a serialized determination of instants
of communication activities. Assume one mighty, fictitious Burst Dispatcher with
one pair of a phase comparator and period controller. This single pair is able to
indicate the arrival of instant of bursts, which belong to messages of all supported
periods. The entries in the Time-Triggered Communication Schedule still reflect the
(temporal) sequence of communication activities. As we just have one comparator
unit in this Burst Dispatcher, we just have one global period pG left. In order to
model the periodicity of periods, which are shorter than this global period, the Time-
Triggered Communication Schedule must include a given communication activity (of
the shorter period) multiple times. According to the ratio between periods Rp (see
equation 4.1), a burst bP in period pP must occur

Rp(G,P) = 2δ·|G−P |

times in the Time-Triggered Communication Schedule. For instance, if we fix pG to
period #15 like in Figure 4.2 (period delta δ = 1) and assign period #4 to pP , the
burst bP would be present 211 = 2048 times in the Time-Triggered Communication
Schedule. In comparison to this alternative design, in the ordinary way with par-
allel hardware we would need an additional pair of phase comparators and period
controller for period pP besides other periods, however just one single entry in the
Time-Triggered Communication Schedule, which corresponding circular, linked list
is dedicated to period pP .

The approach of serialized dispatching brings in a ”simple” Burst Dispatcher,
which size remains constant despite the support of several periods. Thus, it has an
order of O(1). However, the ”unrolling” of periodicity leads to exponential growth
of the Time-Triggered Communication Schedule, as O(Rp) = O(en). In contrast
to such an exponential growth, the approach of parallel dispatching entails a linear
growth O(n) of pairs of period controllers and phase comparators as well as memory
of the Time-Triggered Communication Schedule.

To sum up, parallel hardware embodies the best practice to achieve dispatching
of communication activities in multiple periods due to the argumentation in terms
of complexity theory.

184

10 Conclusion 10.3 Timing Issues

10.3 Timing Issues

Dispatching of communication activities not only causes costs with respect to re-
sources of a given target technology. We learn from section 7.5 that it also imposes
a temporal latency on the operation of the communication subsystem. The vari-
ables ∆+ and ∆− model this latency for receive and send operations of bursts. Even
though, this latency is predictable and deterministic, we should reflect the conse-
quences of that latency.

10.3.1 About Latency

The amount of ∆+ and ∆− has two causes that originate from features of the TTSoC
architecture.

1. The support for multiple periods in the periodic control system requires parallel
hardware, which operation is concurrent. However, the parallelism must be
resolved to a single entity. To be more precise, the Burst Dispatcher maintains
several dispatching units, however it has to multiplex information concerning
the current burst and give a single chunk of information to the remaining
TISS, because the TISS can only operate one burst at a time. As we see in
section 7.3.2, this single process takes 3 clock cycles of the system operation
frequency.

2. We allow a certain degree of freedom to the host. For instance, the host man-
ages the layout of the Port Memory on its own. Additionally, the host decides
the semantics of messages (i.e., state or event semantics), implicit or explicit
synchronization and so forth. Consequently, we need a Port Configuration
Memory, where host exchanges information about its decisions with the TISS.

The TISS must incorporate such information for each burst. This is the reason,
why the TISS (i.e., the Port Manager) has to load information corresponding
to the port (to which the fragment of the current burst belong to) for each
execution of a burst. Then, the TISS processes the information during ad-
dress calculation in the Address Calculator, port synchronization in the Port
Synchronization Controller etc.

Certainly, this degree of freedom and the periodic control system demand for
additional time to be realized. However, we do not understand such latency as a
penalty, but as a necessary expense of an intended feature of the TTSoC architec-
ture. In fact, such a mighty periodic control system aids an application designer, as
it easily allows to model periodic behaviour. Furthermore, keeping some aspects of
application subsystems local to the architectural units, where the application sub-
system is realized, contributes to encapsulation and therefore complexity reduction.

We are the opinion that it is more valuable for a system architecture (such as
the TTSoC architecture) to assist the application designer to cope with architectural

185

10.3 Timing Issues 10 Conclusion

complexity than to insist on implementation characteristics like latency. Considering
the vast benefits of complexity reduction on an application-level scale, the aspect that
it takes a few clock cycles before send or receive operations take place is neglectable.

10.3.2 Justification for Bursts

We have a latency of at least 7 clock cycles of the system operation frequency
for receive as well as send operations. In this context, we question the efficiency of
dispatching and setting-up of communication activities.

As the TTSoC architecture is intended for several fields of target applications, let
us investigate some scenarios. For instance, in control applications it is common to
exchange state information between sensors and actuators. Usually, such information
consists of a relatively small data word. In the TTSoC architecture we could transmit
such data in one single data flit.

If we understand the latency as overhead that is necessary to send and receive
data, the efficiency E for send as well as receive operations is as follows:

E =
1

∆+,− ≤
1
7
≈ 14%

Hence, in order to transmit a single data flit in the TTSoC architecture, we just
achieve an efficiency of about 14 % and below. Honestly, this is disillusioning.

During the development of the TTSoC architecture we have foreseen such un-
pleasant results considering efficiency and overhead of transactions. In fact, ∆+ and
∆− embody ”lower bounds”, which can not be further reduced. There is only one
means to overcome such concerns: to introduce bursts. Bursts feature the transmis-
sion of data in each clock cycle of the system operation frequency. As result, they
demand for one single dispatching and set-up, then this single overhead is better
utilized. So, the efficiency E is modified to incorporate the number of data flits,
which is given by the fields End Offset− Start Offset in the Burst Configuration
Memory, processed during a burst:

E =
End Offset− Start Offset

∆+,−

Thus, the application of bursts particularly pays off for End Offset −
Start Offset � ∆+,−. For instance, this is the case for multimedia application
with high bandwidth demands, so that the bursts are dimensioned to convey large
quantities of data flits.

To sum up, latency embodies overhead that impairs the efficiency of send and
receive operations in the TTSoC architecture. For very small burst, we can not fade
out this overhead. However, for large burst the overhead becomes negligible.

186

10 Conclusion 10.4 Feasibility of the TTSoC Architecture

LE Reg. Mem.
Nios II/s factory design 6.312 5.104 1.647.744
Nios II/f factory design 7.843 6.472 1.686.336
Nios II/s CPU 1.131 893 575.488
Nios II/f CPU 2.349 2286 614.080
Altera DDR2 Controller IP-core 1.708 1.282 1.152
Fragment Switch (4 interconnects) 236 181 0
TISS (16 periods) 1.423 2.179 12.288
LEON III factory design 11.483 4.895 291.840
LEON III CPU 5.739 1.944 250.368
GR Ethernet MAC IP-core 2.331 1.104 20.992
AMBA AHB Controller 393 30 0
AMBA APB Controller 195 89 0

Table 10.1: Comparing resource usage of exemplary designs (Stratix III)

10.4 Feasibility of the TTSoC Architecture

So far, we have seen how to build the TTSoC architecture. Also, we have learned
which resources of target technology such as FPGA or ASIC it takes. In fact, several
features of the TTSoC architecture like support for multiple periods in the periodic
control system, or the existence of multiple encapsulated communication channels
demand for some costs with respect to these resources.

From the local point of view, it seems to be alarming that, e.g., the Burst Dis-
patcher occupies the half of a TISS. However, we have to take under consideration,
how the TTSoC architecture puts up from the point of view of a whole system. To be
more precise, we are interested in the answer of the questions, whether it is feasible
to realize the TTSoC architecture in a competitive way.

In order to compare the TTSoC architecture we present the results of some ex-
periments. We have investigated the resource usage of exemplary micro controller
designs, which could be used to implement a host of the TTSoC architecture. The
results are listed in Table 10.1. These experiments have been conducted on an Altera
Stratix IIITM FPGA of the Stratix IIITM Development Kit.

The Nios II designs are factory design examples, which are distributed as part of
the Stratix IIITM Development Kit’s tutorials and developer documentation. Same
applies to the SPARC LEON III design, which is a factory design example supplied
by the GRLIB IP Library2. Both designs represent minimal designs of hosts with
some extend of potential and performance. However, we expect ”real” hosts to be
even more capable and powerful, for instance hosts with multiple CPU cores, AES
encryption IP-cores, TMR-voting engines etc.

2http://www.gaisler.com/cms/index.php?option=com_content&task=section&id=

13&Itemid=125

187

10.5 Outlook 10 Conclusion

When we incorporate the numbers of Table 9.4 of the realistic variation of the
TTSoC architecture, we find that a TISS’s resource demands are in the magnitude of
an Ethernet Controller (i.e., the GR Ethernet MAC IP-component), or approximately
of an DDR2 Controller, or even a light-weight embedded soft-core processor like the
Nios II. A Fragment Switch is competitive with the AMBA AHP Controller.

Actually, even in such minimal design examples for hosts like the LEON III design
example, a TISS would occupy about 12 % of logic elements, 44 % of registers,
and 4 % of on-chip memory. The bigger and more powerful a host becomes, the
better this ratio gets in favour of the TTSoC architecture. Taking this expectation
into account, the TTSoC architecture will produce an overhead of resource usage
of target technology in the magnitude of 10 % and below on FPGA technology.
Thus, to provide a given system design with the ability to take part in the TTSoC
architecture, the costs (with respect to resource usage on FPGAs) are manageable.

If it comes to absolute number in ”real money”’ about the costs of the TTSoC
architecture, we refer to the estimations of number of basic cells in section 9.1.2.
According to the 2007 semiconductor roadmap [Wil07b], in the year 2008 a basic
cell (i.e., ”gate”) including SRAM cells entailes costs of 9, 4 µcent in production on
CMOS technology. By the time of the year 2013, the costs will have dropped to
1.7 µcent. So, the TISS of the current implementation with its ≈ 56k gates would
cost about 0, 005 $, while a Fragment Switch can be estimated up to 0, 0005 $. If we
consider several TISSs and include Fragment Switches like in the design example of
section 9.3, based on the estimation above, a complete TSS would cost about 0, 05 $.
Note that within the next 5 years, this value can be expected to drop by a factor
> 5, so that a TSS produces costs of about 0, 01 $ then.

To conclude, the low overhead of resource usage on a given target technology
is more than compensated by all the mighty features of the TTSoC architecture
(e.g., encapsulation and error containment, periodicity of application-level messages,
complexity reduction, flexibility by means of integrated resource management with
on-the-fly reconfiguration, predictability and determinism). Consequently, we have
shown that the TTSoC architecture is feasible, indeed, and that its monetary costs
are so low that it is promising to equip system designs in the field of mixed-criticality
distributed embedded (hard) real-time systems with the TTSoC architecture in order
to benefit from its features and architectural concepts.

10.5 Outlook

Even though, the current implementation embodies a working prototype, the TTSoC
architecture is still in its infancy. During the implementation we have revealed much
potential for future work to be undertaken. This future work ranges from minor
implementation optimizations up to integration of mighty high-level services.

Optimizations There is some margin left in the layout of the Time-Triggered
Communication Schedule and Burst Configuration Memory. If we move most fields

188

10 Conclusion 10.5 Outlook

in the entry of the Time-Triggered Communication Schedule into the Burst Con-
figuration Memory so that only Next, Instant, and BurstRef remain, the size of
the multiplexers in the Burst Dispatcher is considerably reduced. We estimate that
this optimization would save about 40 % of logic elements and registers in the Burst
Dispatcher. However, this measure imposes a penalty on the latencies ∆+ and ∆−.
The processing of the Port Manager has to be stalled until all information, which
(usually) is simultaneously available at the Burst Dispatcher’s interface, has been
fetched from the Burst Configuration Memory after the indication of the burst by
means of InfoValid = 1. This is the reason, why this optimization has not been
included in the current implementation. If we have had such a layout of entries in
the respective memories, the latencies would have become too critical considering
Rf on the MPSoC Development Kit, which is the main prototype hardware of the
current implementation. Therefore, we have decided to postpone this optimization
until we replace the MPSoC Development Kit with more performant hardware, which
provides better values of Rf so that increased latencies can be neglected.

Dynamic resource management Another example of future work is the dy-
namic resource management. Although dynamic resource management is fully spec-
ified and parts like the on-the-fly reconfiguration are completely implemented, the
current version of the RMA’s and TNA’s embedded software just provides static
resource management. The features currently included of the predefined primary
modes and degradation levels are sufficient to validate the core services, but they
do not harness the full mightiness of integrated resource management in the TTSoC
architecture. For example, there is no implementation of a distributed consensus
algorithm between micro components and RMA, which negotiates resource alloca-
tions. The TNA has the ability to selectively power down Fragment Switches and
disable phase comparators and period controllers in the Burst Dispatcher, but there
is currently no algorithm implemented, which establishes a reasonable and compre-
hensive power management. So, the dynamic resource management lies idle, and the
implementation of such mighty features is subject of further development.

Dynamic macro tick scaling We conceive dynamic macro tick scaling to be
implemented in future revisions of the TTSoC architecture. By now, the macro tick
is hard-wired at design time, and their is no mechanism to increase or decrease the
macro tick during live operation. In contrast to the current implementation, dynamic
macro tick scaling introduces a supplemental feature to the TTSoC architecture,
which enables to alter the macro tick at run-time.

There are two modification necessary to achieve that dynamic macro tick scaling.
Firstly, in the clock component of each TISS we have to replace the constant bit
pattern, which is added to the counter vector of the time format of the global time
base on each rising edge of the macro tick, with a register. Then, this ”increment”
register contains a variable bit pattern, which corresponds to the increment of the
counter vector on each rising edge. For instance, the default bit pattern is all bits 0

189

10.5 Outlook 10 Conclusion

except the bit at index 10, which denotes the macro tick of 2−20 sec ⇔ 1, 04 MHz.
With dynamic macro tick scaling some authorized entity, e.g., the TNA, can change
the bit pattern in the ”increment” register to some other value, say, all bits 0 except
the bit at index 7. Then, on each increment of the counter vector we measure the
time elapsed according to a macro tick of 2−23 sec⇔ 8, 39 MHz.

Secondly, the frequency associated with the macro tick must be adapted at run-
time, so that the counter vector is incremented at intervals that match the setting
of the ”increment” register. For this purpose, we consider a single ”macro tick
generator”. Unlike the current implementation, which obtains the macro tick from
an external clock source, the ”macro tick generator” produces the proper frequency
from a reference clock. The same authorized entity, e.g., the TNA , which is also in
charge of maintaining the ”increment” registers in each TISS, configures that ”macro
tick generator” internally for the system in order to match the produced macro tick
frequency with the settings of the ”increment” registers.

Dynamic macro tick scaling adds another degree of flexibility to the periodic con-
trol system in the TTSoC architecture. We can combine dynamic macro tick scaling
with the integrated resource management to change the macro tick dynamically with
changing resource demands of the system. This contributes to a better energy effi-
ciency, if the macro tick reflects the timeliness of the current primary modes (and
degradation levels) of the application subsystems. Moreover, dynamic macro tick
scaling facilitates the generality of a given instance of the TTSoC architecture. For
example, it is possible to deploy a given instance of the TTSoC architecture in large
quantities without regarding details of the intended target application. Anyway, dy-
namic macro tick scaling supports the adaption of the overall system to the actual
requirements of the target domain in the field. Thus, the costs of designing instances
of the TTSoC architecture are reduced, as we re-use a given design several times.

Transaction-level debugging The TTSoC architecture currently includes the
concept of diagnosis. This feature resides at architectural level. However, system in-
tegrators, who build applications upon the TTSoC architecture, might be grateful, if
they had a mechanism to visualize communication activities below the architectural
scope. That is, ”transaction-level” in the TTSoC architecture means to transporta-
tion of fragments in bursts. For instance, it would be useful to monitor the traffic on
a given interconnect or TTNoC interface for the purpose of debugging. Therefore,
transaction-level debugging contributes to manageability of the TTSoC architecture
during development, and is worth to be considering as ”feature request” for the
TTSoC architecture.

Robustness Finally, we could increase the robustness of the TTSoC architecture
against environmental distortions. In fact, the TTSoC architecture is designed to
be composable and to tolerate faulty micro components due to error containment
and encapsulation. However, these architectural concepts do not consider the un-
predictability of operational conditions that originate from the real physical world.

190

10 Conclusion 10.5 Outlook

For instance, cosmic radiation particles might cause bit flips on signals of the data
bus of a lane in the TTNoC. If there is routing information transported over that
lane, the bit flip causes a misinterpretation of a switching opcode so that a Fragment
Switch decides to forward flits to the wrong interconnects. As a consequence, the
route of an encapsulated communication channel is not set up properly. By design,
we assume that the TSS is free of failures. However, if failures due to unforeseen
external stimuli occur, the TTSoC architecture does not possess the ability to cope
with unspecified error states. A possible solution of this problem, which establishes
robustness against radiation induced bit flips, is a signal coding with multiple rails.
The feature of robustness is necessary to harden the TTSoC architecture against
environmental distortions. So, it is possible to recover from erroneous states that
have not been covered in the fault hypothesis of the TTSoC architecture.

191

10.5 Outlook 10 Conclusion

192

List of Acronyms

AHB . . . Advanced High-Performance Bus
ALG . . . Asynchronous Latency Guarantee
AMBA . . . Advanced Microcontroller Bus Architecture
APB . . . Advanced Peripheral Bus

BE . . . Best Effort

DAS . . . Distributed Application Subsystem
DMA . . . Direct Memory Access
DSM . . . Deep Submicron
DTL . . . Device Transaction Level
DU . . . Diagnostic Unit

GALS . . . Globally-Asynchronous Locally Synchronous
GB . . . Guaranteed Bandwidth
GS . . . Guaranteed Service
GT . . . Guaranteed Throughput

IP . . . Intellectual Property

LC . . . Looped Container
LUT . . . Look-Up Table

NA . . . Network Adapter
NBW . . . Non-Blocking Write
NI . . . Network Interface
NoC . . . Network-on-Chip

OCP . . . Open Core Protocol

PCA . . . Proximity Congestion Awareness

QoS . . . Quality of Service

RMA . . . Resource Management Authority
RNI . . . Resource Network Interface

193

SoC . . . System-on-Chip

TDMA . . . Time Division Multiple Access
TDN . . . Temporally Disjoint Network
TISS . . . Trusted Interface Subsystem
TMR . . . Triple Modular Redundancy
TNA . . . Trusted Network Authority
TSS . . . Trusted Subsystem
TTA . . . Time-Triggered Architecture
TTE . . . Time-Triggered Ethernet
TTNoC . . . Time-Triggered Network-on-Chip
TTSoC . . . Time-Triggered System-on-Chip

UNI . . . Uniform Network Interface

VC . . . Virtual Circuit
Vc . . . Virtual Channel

194

Bibliography

[AC03] TTTech Computertechnik AG and VERTEL Corp. Smart Trans-
ducers Interface. Specification formal/03-01-01, Object Management
Group (OMG), January 2003. Available at http://www.omg.org/
technology/documents/formal/smarttrans.htm.

[ARM99] ARM Limited. AMBA 2 AHB Specification. ARM Limited, Cambridge,
England, UK, 1.0 edition, 1999. Available at http://www.arm.com/
products/solutions/amba2overview.html.

[ARM01] ARM Limited. AMBA 2 Multi-Layer AHB Specification. ARM
Limited, Cambridge, England, UK, 1.0 edition, 2001. Available at
http://www.arm.com/products/solutions/amba2overview.html.

[ARM04] ARM Limited. AMBA 3 AXI Specification. ARM Limited, Cambridge,
England, UK, 1.0 edition, 2004. Available at http://www.arm.com/
products/solutions/AMBA3AXI.html.

[Ass05] OCP International Partnership Association. Open Core Protocol Spec-
ification 2.1, 2005. Available at http://www.ocpip.org.

[BB01] Ian Broster and Alan Burns. The Babbling Idiot in Event-triggered
Real-time Systems. In Proceedings of the Work-In-Progress Session,
22nd IEEE Real-Time Systems Symposium (RTSS), YCS 337, pages
25 – 28. Department of Computer Science, University of York, 2001.

[BB04] Davide Bertozzi and Luca Benini. Xpipes: a network-on-chip architec-
ture for gigascale systems-on-chip. IEEE Circuits and Systems Maga-
zine, 4(2):18 – 31, April/June 2004.

[Bje05] Tobias Bjerregaard. The MANGO clockless network-on-chip: Con-
cepts and implementation. PhD thesis, Informatics and Mathematical
Modelling, Technical University of Denmark, Kgs. Lyngby, Denkmark,
2005.

[BM02] Luca Benini and Giovanni De Micheli. Networks on chips: a new SoC
paradigm. Computer, 38(1):70 – 78, January 2002.

195

[BM06] Tobias Bjerregaard and Shankar Mahadevan. A Survey of Research
and Practices of Network-on-chip. ACM Computing Surveys (CSUR),
38(1), March 2006. Article no. 1.

[BMOS05] Tobias Bjerregaard, Shankar Mahadevan, Rasmus Grøndahl Olsen, and
Jens Sparsø. An OCP Compliant Network Adapter for GALS-based
SoC Design Using the MANGO Network-on-Chip. In Proceedings of the
International Symposium on System-on-Chip, pages 171 – 174, Novem-
ber 2005.

[Bos91] Robert Bosch Gmbh, Stuttgart, Germany. CAN Specification, 2.0 edi-
tion, 1991. Available at http://www.can-cia.de/index.php?id=164.

[BS04] Tobias Bjerregaard and Jens Sparsø. Virtual channel designs for guar-
anteeing bandwidth in asynchronous network-on-chip. In Proceedings
of the Norchip Conference, pages 269 – 272, November 2004.

[BS05a] Tobias Bjerregaard and Jens Sparsø. A Router Architecture for
Connection-Oriented Service Guarantees in the MANGO Clockless
Network-on-Chip. In Proceedings of the Design, Automation and Test
in Europe Conference and Exhibition (DATE), pages 1226 – 1231,
March 2005.

[BS05b] Tobias Bjerregaard and Jens Sparsø. A Scheduling Discipline for La-
tency and Bandwidth Guarantees in Asynchronous Network-on-Chip.
In Proceedings of the 11th IEEE International Symposium on Asyn-
chronous Circuits and Systems, pages 34 – 43, March 2005.

[BS06a] Tobias Bjerregaard and Jens Sparsø. Implementation of guaranteed
services in the MANGO clockless network-on-chip. IEE Proceedings in
Computers and digital techniques, 153(4):217 – 229, July 2006.

[BS06b] Tobias Bjerregaard and Jens Sparsø. Packetizing OCP Transactions in
the MANGO Network-on-Chip. In Proceedings of the 9th EUROMI-
CRO Conference on Digital System Design, pages 657 – 664, August
2006.

[Car96] B. Carpenter. Architectural Principles of the Internet. Request for
Comments RFC 1958, Network Working Group, Internet Engineering
Task Force (IETF), June 1996. Available at http://www.ietf.org/
rfc/rfc1958.txt.

[Cor08] Altera Corporation. Avalon Interface Specification, chapter Avalon
Memory-Mapped Interfaces. Altera Corporation, San Jose, CA, USA,
1.1 edition, October 2008. Available at http://www.altera.com/
literature/manual/mnl_avalon_spec.pdf.

196

[CSG98] David E. Culler, Jaswinder Pal Singh, and Anoop Gupta. Parallel
Computer Architecture: A Hardware/Software Approach. Series in
Computer Architecture and Design. Morgan Kaufmann Publishers, San
Francisco, CA, USA, 1st edition, August 1998.

[Dal92] William Dally. Virtual-channel flow control. IEEE Transactions on
Parallel and Distributed Systems, 36(8):194 – 205, 1992.

[DT03] William Dally and Brian Towles. Principles and Practices of Intercon-
nection Networks. Morgan Kaufmann Publishers, San Francisco, CA,
USA, 2003.

[FCS01] Paul Feltovich, Richard Coulson, and Rand Spiro. Learners’ Misun-
derstanding of Important and Difficult Concepts. Smart Machines in
Education, pages 354 – 380, 2001. AAAI Press.

[FR92] Uriel Feige and Prabhakar Raghavan. Exact analysis of hot-potato
routing. In Proceedings of the 33rd Annual Symposium on Foundations
of Computer Science, pages 553 – 562, October 1992.

[GDG+05] Kees Goossens, John Dielissen, Om Prakash Gangwal, Santi-
ago González Pestana, Andrei Rădulescu, and Edwin Rijpkema. A
Design Flow for Application-Specific Networks on Chip with Guar-
anteed Performance to Accelerate SOC Design and Verification. In
Proceedings of the Design, Automation and Test in Europe Conference
and Exhibition (DATE), pages 1182 – 1187, Washington, DC, USA,
March 2005. IEEE Computer Society.

[GDR05] Kees Goossens, John Dielissen, and Andrei Rădulescu. The Æthe-
real Network on Chip: Concepts, Architectures, and Implementations.
IEEE Design and Test of Computers, 22(5):414 – 421, Sept./Oct. 2005.

[Gel01] Patrick P. Gelsinger. Microprocessors for the New Millenium, Chal-
lenges, Opportunities, and New Frontiers. In Proceedings of the Solid
State Circuit Conference (ISSCC), pages 22 – 25. IEEE Press, May
2001.

[GG00] Pierre Guerrier and Alain Greiner. A Generic Architecture for On-
Chip Packet-Switched Interconnections. In Proceedings of the Design,
Automation and Test in Europe Conference and Exhibition (DATE),
pages 250 – 256, March 2000.

[GIJ+03] Marie-Claude Gaudel, Valérie Issarny, Cliff Jones, Hermann Kopetz,
Eric Marsden, Nick Moffat, Michael Paulitsch, David Powell, Brian
Randell, Alexander Romanovsky, Robert Stroud, and François Taiani.
Final Version of DSoS Conceptual Model. Technical Report CS-TR-
782, University of Newcastle, Newcastle, UK, April 2003. Available at
http://www.cs.ncl.ac.uk/research/pubs/trs/papers/782.pdf.

197

[Gro05] IEEE Ethernet Working Group. Carrier sense multiple access with col-
lision detection (CSMA/CD) access method and pyhsical layer specifi-
cations. Standard IEEE 802.3-2005, IEEE, December 2005. Available
at http://grouper.ieee.org/groups/802/3/index.html.

[GvMPW02] Kees Goossens, Jef van Meerbergen, Ad Peeters, and Paul Wielage.
Networks on Silicon: Combining Best-Effort and Guaranteed Services.
In Proceedings of the Design, Automation and Test in Europe Confer-
ence and Exhibition (DATE), pages 423 – 425, March 2002.

[HCG07] Andreas Hansson, Martijn Coenen, and Kees Goossens. Undisrupted
Quality-Of-Service during Reconfiguration of Multiple Applications in
Networks on Chip. In Proceedings of the Design, Automation and Test
in Europe Conference and Exhibition (DATE), pages 954–959, April
2007.

[HG07] Andreas Hansson and Kees Goossens. Trade-offs in the Configuration
of a Network on Chip for Multiple Use-Cases. In Proceedings of the
International Symposium on Networks on Chip (NOCS), pages 233 –
242, May 2007.

[HGR07] Andreas Hansson, Kees Goossens, and Andrei Rădulescu. A Unified
Approach to Mapping and Routing on a Network on Chip for both
Best-Effort and Guaranteed Service Traffic. VLSI Design, 2007, May
2007. Article ID 68432, 16 pages.

[Hoe04] Carl Hoefer. Causality and Determinism: Tension, or Outright Con-
flict? Revista de filosof́ıa, 29(2):99 – 115, November 2004.

[HP06] John Hennessy and David Patterson. Computer Architecture: A Quan-
titative Approach. The Morgan Kaufmann Series in Computer Archi-
tecture and Design. Morgan Kaufmann Publishers, 4th edition, 2006.

[Hub08] Bernhard Huber. Resource Management in an Integrated Time-
Triggered Architecture. PhD thesis, Technische Universität Wien, In-
stitut für Technische Informatik, Vienna, Austria, 2008.

[KAGS05] Hermann Kopetz, Astrit Ademaj, Petr Grillinger, and Klaus Stein-
hammer. The Time-Triggered Ethernet (TTE) Design. In Proceedings
of 8th IEEE International Symposium on Object-oriented Real-time
distributed Computing (ISORC), pages 22 – 33, Seattle, Washington,
USA, May 2005.

[KB03] Hermann Kopetz and Günther Bauer. The Time-Triggered Architec-
ture. Proceedings of the IEEE, 91(1):112 – 126, January 2003.

[KFA+07] Michael Keating, David Flynn, Rob Aitken, Alan Gibbons, and Kai-
jian Shi. Low Power Methodology Manual For System-on-Chip Design.

198

Series on Integrated Circuits and Systems. Springer Verlag, New York,
NY, USA, 1st edition, July 2007.

[KG94] Hermann Kopetz and Günter Grünsteidl. TTP – A protocol for fault-
tolerant real-time systems. Computer, 27(1):14 – 23, January 1994.

[KJS+02] Shashi Kumar, Axel Jantsch, Juha-Pekka Soininen, Martti Forsell,
Mikael Millberg, Johnny Öberg, Kari Tiensyrjä, and Ahmed Hemani.
A Network on Chip Architecture and Design Methodology. In Pro-
ceedings of the IEEE Computer Society Annual Symposium on VLSI,
pages 105 – 112, April 2002.

[KO87] Hermann Kopetz and Wilhelm Ochsenreiter. Clock synchronization
in distributed real-time systems. IEEE Transactions on Computers,
36(8):933 – 940, 1987.

[KO02] Hermann Kopetz and Roman Obermaisser. Temporal Composability.
Computing & Control Engineering Journal, 13(4):156 – 162, August
2002.

[Kop92] Hermann Kopetz. Sparse time versus dense time in distributed real-
time systems. In Proceedings of the 12th International Conference on
Distributed Computing Systems, pages 460 – 467, Yokohama, Japan,
June 1992.

[Kop97] Hermann Kopetz. Real-Time Systems Design Principles for Distributed
Embedded Applications. Kluwer Academic Publishers, Bosten, MA,
USA, 1st edition, April 1997.

[Kop06] Hermann Kopetz. Pulsed Data Streams. In IFIP TC 10 Working
Conference on Distributed and Parallel Embedded Systems (DIPES),
pages 105 – 124, Braga, Portugal, October 2006. Springer.

[Kop08a] Hermann Kopetz. The Complexity Challenge in Embedded Sys-
tem Design. In The 11th IEEE International Symposium on
Object/component/service-oriented Real-time distributed Computing
(ISORC), pages 3 – 12, Orlando, Florida, USA, May 2008.

[Kop08b] Hermann Kopetz. The Rationale for Time-Triggered Ethernet. In The
29th IEEE Real-time System Symposium (RTSS), Barcelona, Spain,
December 2008.

[KR07] Ian Kuon and Jonathan Rose. Measuring the Gap Between FPGAs and
ASICs. In IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, pages 203 – 215. IEEE Circuits and Systems
Society, February 2007.

199

[Lei85] Charles E. Leiserson. Fat-trees: universal networks for hardware-
efficient supercomputing. IEEE Transactions on Computers,
34(10):892 – 901, October 1985.

[LJ06] Guang Liang and Axel Jantsch. Adaptive Power Management for the
On-Chip Communication Network. In Proceedings of 9th EUROMI-
CRO Conference on Digital System Design, pages 649 – 656, August
2006.

[Lyn97] Nancy A. Lynch. Distributed Algorithms. The Morgan Kaufmann Se-
ries in Data Management Systems. Morgan Kaufmann Publishers, 1st
edition, April 1997.

[MB06] Giovanni De Micheli and Luca Benini. Networks on Chips: Technology
and Tools. Morgan Kaufmann Series in Systems on Silicon. Morgan
Kaufmann Publishers, August 2006.

[MNT02] Mikael Millberg, Erland Nilsson, and Rikard Thid. The Nostrum Pro-
tocol Stack and Suggested Services Provided by the Nostrum Back-
bone. Technical Report TRITA-IMIT-LECSR02:01, LECS, IMIT,
KTH, Stockholm, Sweden, November 2002. Available at http://www.
imit.kth.se/info/FOFU/NOC/docs1/Reports-2002/millberg.pdf.

[MNT+04] Mikael Millberg, Erland Nilsson, Rikard Thid, Shashi Kumar, and Axel
Jantsch. The Nostrum Backbone – a Communication Protocol Stack for
Networks on Chip. In Proceedings of the 17th International Conference
on VLSI Design, pages 693 – 696, January 2004.

[MNTJ04] Mikael Millberg, Erland Nilsson, Rikard Thid, and Axel Jantsch. Guar-
anteed Bandwidth using Looped Containers in Temporally Disjoint
Networks within the Nostrum Network on Chip. In Proceedings of
the Design, Automation and Test in Europe Conference and Exhibition
(DATE), pages 890 – 895, February 2004.

[MT89] Mihajlo D. Mesarovic and Yasuhiko Takahara. Abstract system theory.
Lecture Notes in Computer Science. Springer Verlag, Berlin, Germany,
January 1989.

[MVK+99] Jens Muttersbach, Thomas Villinger, Hubert Kaeslin, Norbert Felber,
and Wolfgang Fichtner. Globally-Asynchronous Locally-Synchronous
Architectures to Simplify the Design of On-CHIP Systems. In Proceed-
ings of the 12th Annual IEEE International ASIC/SOC Conference,
pages 317 – 321, September 1999.

[NMÖJ03] Erland Nilsson, Mikael Millberg, Johnny Öberg, and Axel Jantsch.
Load distribution with the Proximity Congestion Awareness in a Net-
work on Chip. In Proceedings of the Design, Automation and Test in
Europe Conference and Exhibition (DATE), pages 1126 – 1127, March
2003.

200

[OFSH08] Roman Obermaisser, Bernhard Frömel, Christian El Salloum, and
Bernhard Huber. Integrating Safety and Multimedia Subsystems on
a Time-Triggered System-on-a-Chip. In Proceedings of the 6th IEEE
International Conference on Industrial Informatics (INDIN), pages 270
– 275, Daejeon, Korea, July 2008.

[OKSH07] Roman Obermaisser, Hermann Kopetz, Christian El Salloum, and
Bernhard Huber. Error Containment in the Time-Triggered System-
On-a-Chip Architecture. In Proceedings of the International Embedded
Systems Symposium (IESS), San Diego, CA, USA, June 2007.

[OPHS06] Roman Obermaisser, Philipp Peti, Bernhard Huber, and Christian El
Salloum. DECOS: An Integrated Time-Triggered Architecture. E & I
Journal, 3:83 – 95, March 2006. (Journal of the Austrian professional
institution for electrical and information engineering).

[Owe04] John Owens. GPUs: Engines for Future High-Performance Comput-
ing. Technical Report A551334, Lincoln Labs, University of California,
Davis, CA, USA, September 2004.

[Phi02] Philips Semiconductors. Device Transaction Level (DTL) Protocol
Specification. Philips Semiconductors, Eindhoven, The Netherlands,
2.2 edition, July 2002. Available at http://www.nxp.com.

[PJ06] Sandro Penolazzi and Axel Jantsch. A High Level Power Model for
the Nostrum NoC. In Proceedings of 9th EUROMICRO Conference on
Digital System Design, pages 673 – 676, August 2006.

[PK08] Christian Paukovits and Hermann Kopetz. Concepts of Switching in
the Time-Triggered Network-on-Chip. In The 14th IEEE International
Conference on Embedded and Real-Time Computing Systems and Ap-
plications (RTCSA), pages 120 – 129, Kaohsiung, Taiwan, August 2008.

[PMH98] B. Pauli, A. Meyna, and P. Heitmann. Reliability of Electronic Com-
ponents and Control Units in Motor Vehicle Applications. In VDI
Bericht 1415, Electronic Systems for Vehicles, pages 1009 – 1024.
Verein Deutscher Ingenieure, 1998.

[Pol93] Stefan Poledna. Replica Determinism in Distributed Real-Time Sys-
tems: A Brief Survey. Research Report 6/1993, Technische Universität
Wien, Institut für Technische Informatik, Vienna, Austria, 1993.

[Pol94] Stefan Poledna. Replica Determinism in Distributed Real-Time Sys-
tems: A Brief Survey. Real-Time Systems, 6:289 – 316, 1994.

[POS+07] Harald Paulitsch, Roman Obermaisser, Christian El Salloum, Bern-
hard Huber, and Hermann Kopetz. A Diagnostic Unit for the Time-
Triggered System-on-a-Chip Architecture. DATE07 Workshop on Di-

201

agnostic Services in Network-on-Chips – Test, Debug, and On-Line
Monitoring, April 2007.

[RDG+04] Andrei Rădulescu, John Dielissen, Kees Goossens, Edwin Rijpkema,
and Paul Wielage. An Efficient On-Chip Network Interface Offering
Guaranteed Services, Shared-Memory Abstraction, and Flexible Net-
work Programming. In Proceedings of the Design, Automation and Test
in Europe Conference and Exhibition (DATE), volume 2, pages 878 –
883, Washington, DC, USA, February 2004. IEEE Computer Society.

[RDP+05] Andrei Rădulescu, John Dielissen, Santiago González Pestana,
Om Prakash Gangwal, Edwin Rijpkema, Paul Wielage, and Kees
Goossens. An Efficient On-Chip Network Interface Offering Guar-
anteed Services, Shared-Memory Abstraction, and Flexible Network
Programming. IEEE Transactions on CAD of Integrated Circuits and
Systems, 24(1):4 – 17, January 2005.

[RGR+08] Edwin Rijpkema, Kees Goossens, Andrei Rădulescu, John Dielissen, Jef
van Meerbergen, Paul Wielage, and Erwin Waterlander. Trade Offs in
the Design of a Router with Both Guaranteed and Best-Effort Services
for Networks on Chip. In Rudy Lauwereins and Jan Madsen, editors,
Design Automation, and Test in Europe DATE. The Most Influential
Papers of 10 Years, Circuits & Systems, chapter 2 (Networks on Chip).
Springer, January 2008.

[Ros90] Marshall T. Rose. The Open Book: A Practical Perspective on OSI.
Prentice Hall, January 1990.

[RSG03] Vijay Raghunathan, Mani B. Srivastava, and Rajesh K. Gupta. A
survey of techniques for energy efficient on-chip communication. In
Proceedings of the Design, Automation and Test in Europe Conference
and Exhibition (DATE), pages 900 – 905, June 2003.

[SAC+05] Stergios Stergiou, Federico Angiolini, Salvatore Carta, Luigi Raffo, Da-
vide Bertozzi, and Giovanni De Micheli. ×pipes lite: A Synthsis Ori-
ented Design Library For Networks on Chips. In Proceedings of the
Design, Automation and Test in Europe Conference and Exhibition
(DATE), pages 1188 – 1193, March 2005.

[Sal08] Christian El Salloum. Interface Design in the Time-Triggered System-
on-Chip Architecture. PhD thesis, Technische Universität Wien, Insti-
tut für Technische Informatik, Vienna, Austria, 2008.

[Sch93] Werner Schütz. The Testability of Distributed Real-Time Systems, vol-
ume 245 of The Springer International Series in Engineering and Com-
puter Science. Springer Verlag, 1st edition, August 1993.

202

[Sif05] Joseph Sifakis. A Framework for Component-based Construction. In
Proceedings of 3rd IEEE International Conference on Software Engi-
neering and Formal Methods (SEFM05), pages 293 – 300, September
2005.

[SOH+07] Christian El Salloum, Roman Obermaisser, Bernhard Huber, Harald
Paulitsch, and Hermann Kopetz. A Time-Triggered System-on-a-Chip
Architecture with integrated support for diagnosis. DATE07 Workshop
on Diagnostic Services in Network-on-Chips – Test, Debug, and On-
Line Monitoring, April 2007.

[SOHK08] Christian El Salloum, Roman Obermaisser, Bernhard Huber, and Her-
mann Kopetz. The Time-Triggered System-on-a-Chip Architecture. In
Proceedings of the IEEE International Symposium on Industrial Elec-
tronics, Cambridge, UK, June 2008.

[SWH95] Neeraj Suri, Chris J. Walter, and Michelle M. Hugue. Advances In
Ultra-Dependable Distributed Systems, chapter 1. IEEE Computer So-
ciety Press, Los Alamitos, CA, USA, January 1995.

[TS06] Andrew Tanenbaum and Maarten Van Steen. Distributed Systems:
Principles and Paradigms. Prentice Hall, 2nd edition, 2006.

[TTT06] TTTech Computer Technik AG. PLCB1 bus specification. TTTech
Computer Technik AG, Vienna, Austria, 1.0.02 edition, May 2006.
Available at http://www.tttech.com.

[UK03] Osman S. Unsal and Israel Koren. System-level power-aware design
techniques in real-time systems. Proceedings of the IEEE, 91(7):1055 –
1069, 2003.

[WG02] Paul Wielage and Kees Goossens. Networks on silicon: blessing or
nightmare? In Proceedings of the Euromicro Symposium on Digital
System Design, pages 196 – 200, September 2002.

[Wil05] Linda Wilson. International Technology Roadmap for Semiconductors
(ITRS) — Executive Summary. Technical report, Semiconductor In-
dustry Association, 2005. Available at http://www.itrs.net/Links/
2005ITRS/Home2005.htm.

[Wil07a] Linda Wilson. International Technology Roadmap for Semiconductors
(ITRS) — Design. Technical report, Semiconductor Industry Asso-
ciation, 2007. Available at http://www.itrs.net/Links/2007ITRS/
Home2007.htm.

[Wil07b] Linda Wilson. International Technology Roadmap for Semiconductors
(ITRS) — Executive Summary. Technical report, Semiconductor In-
dustry Association, 2007. Available at http://www.itrs.net/Links/
2007ITRS/Home2007.htm.

203

[Wol04] Wayne Wolf. The Future of Multiprocessors Systems on Chips. In
Proceedings of the 41st annual conference on Design Automation, pages
681 – 685, San Francisco, CA, USA, 2004. IEEE Press.

204

Index

AMBA, 23
AHB, 24
AXI, 28
Multi-Layer AHB, 26

Altera Nios II Embedded Processor, 21,
175

at-least-once semantics, 83
Avalon Memory-Mapped Interface, 177

burst, 59, 66, 95, 106, 107
Burst Configuration Memory, 21
Burst Dispatcher, 113

compare match, 115
period controller, 114, 115
phase comparator, 114
timing, 118

complexity reduction, 9
Configurator, 105, 157
core services, 3, 11, 21, 49

clock synchronization, 9, 11
communication service, 11
diagnostic service, 11
resource management, 11

determinism, 8, 95
diagnosis, 19

analysis, 19, 90
dissemination, 19, 90
dissemination service, 19, 90
failure detection, 19
failure indication message, 19

Diagnostic Unit, 19
Distributed Application Subsystem, 13

encapsulated communication channel, 9,
49

encapsulation, 8, 13, 50

error containment, 8
event message, 86
exactly-once semantics, 83, 86

flit, 58
fmt, 57
fragment, 58
Fragment Switch, 93, 94
Front-End, 65
fsys, 59

generic timer service, 81, 89
match, 90

global time base, 9, 14, 60
clock component, 105
clock synchronization, 14
dead bits, 56
granularity, 56
local granularity, 57
macro tick, 56, 61
macro tick bit, 56, 61
micro tick, 61
time format, 15, 56, 60

period bit, 53
period delta, 56
phase slice, 56

header, 98
header, 94, 96
hop, 95
host, 12, 14

indirect network, 94
interconnect, 93

lane, 93, 94

memory-mapped interface, 65

205

message ordering, 9, 62
consistent delivery order, 9, 63
total temporal ordering, 9, 62

messages, 49
micro component, 7, 12, 13
multi-casting, 51, 62, 63, 99

broad-cast, 51
multi-cast, 51
single-cast, 51
split point multi-casting, 45, 100

multiplexer-based, 95

Non-Blocking Write protocol, 78, 84, 139

on-the-fly reconfiguration, 12, 154, 156
protocol, 157
reconfiguration instant, 74, 88, 146,

158
OCP, 30, 65

payload, 98
periodic messages, 15
pipeline, 95
port, 49, 107

event port, 51, 52, 68, 76, 83, 86
input port, 49, 51, 83
output port, 49, 51, 83
state port, 51, 68, 76, 83
synchronization, 68, 69, 83

explicit, 68, 84, 85
implicit, 84, 85
shadow buffer, 68

Port Memory, 22, 65
power management, 11
predictability, 8, 11, 95
propagation delay, 95

multi-path propagation delay, 62, 63
pulse fragmentation, 62, 95, 107
pulsed data stream, 15, 52, 107

duration, 53
periodic control system, 53
phase, 53, 107
pulse, 53, 107
pulse interleaving, 58, 60, 157

QoS, 153

receive window, 127
replica determinism, 9, 63
resource management, 10, 12, 17, 151

dynamic resource management, 154
negotiation protocol, 154
primary mode, 108, 153
reconfiguration request, 155
resource request, 154
static resource management, 154

Resource Management Authority, 12, 17
robustness, 9
route, 96
routing flit, 96
routing information, 96
routing modes, 98

circuit-switching mode, 98
header-payload mode, 98

scratch pad, 22
segmented route, 96
serialization, 177
simultaneous routes, 98
sparse time base, 9
sporadic messages, 15
state message, 83, 86
state semantics, 83
state variable, 83
switching information, 94, 96
switching opcode, 96
system operation frequency, 22

time stamp, 9
time stamping service, 68
Time-Triggered Communication Sched-

ule, 12, 14, 21, 49, 50, 59, 61,
88

application section, 108, 154
initialization vector, 108, 110

Time-Triggered Network-on-Chip, 12
Triple Modular Redundancy, 13
Trusted Interface Subsystem, 14

Port Manager, 21, 121
Address Calculator, 130
Memory Digger, 133

206

Port Synchronization Controller,
138

Routing Processor, 125
Receive Window Detector, 127
Time Stamper, 137

category, 103
dispatching, 113
initialization, 146
scope, 105

Trusted Network Authority, 12, 17
Trusted Subsystem, 12, 17
TTNoC interface, 60, 93

Uniform Network Interface, 51
Control Interface, 65, 69

name space, 71
Port Configuration Memory, 21, 71,

75, 107
Port Synchronization Memory, 21,

71, 77
Port Interface, 22, 65
Register File, 21, 71, 79, 88

Error Status Register, 74, 82, 90
update-in-place, 86
Using, 85

Valid, 85
valid, 94
virtual fragment, 63, 88, 90, 91, 126, 134,

158, 165

watchdog, 19, 75, 79, 88
life-sign, 80, 88
life-sign register, 80
period, 81
register, 75, 80
watchdog miss, 80, 83, 88
watchdog period, 88

207

208

Curriculum Vitae

Christian Peter Paukovits

June 15th , 1982 Born in Oberwart (Austria)

September 1988 – Primary School in
June 1992 Stadtschlaining (Austria)

September 1992 – Secondary School in
June 1996 Stadtschlaining (Austria)

September 1996 – Secondary Technical School for Information
June 2001 Technology and Management in Pinkafeld (Austria)

July 2001 – Military Service in
February 2002 Baden (Austria)

March 2002 – Bachelor Studies of Computer Science at the
September 2004 Vienna University of Technology with distinction

October 2004 – Master Studies of Computer Science at the
September 2006 Vienna University of Technology with distinction

since October 2006 PhD Studies at the
Vienna University of Technology

since January 2007 Research Assistant at the Institute of Computer
Engineering, Vienna University of Technology

