B Informatics

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Data-driven Generation of Virtual
City Layouts

DIPLOMARBEIT

zur Erlangung des akademischen Grades
Diplom-Ingenieur
im Rahmen des Studiums
Media and Human-Centered Computing
eingereicht von

Felix Hochgruber, BSc
Matrikelnummer 01226656

an der Fakultat fir Informatik
der Technischen Universitat Wien

Betreuung: Priv.Doz. Mag. Dr. Hannes Kaufmann
Mitwirkung: Mag. Dr. Peter Kan

Wien, 28. Februar 2020

Felix Hochgruber Hannes Kaufmann

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 = www.tuwien.at

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

B Informatics

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Data-driven Generation of Virtual
City Layouts

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of
Diplom-Ingenieur
in
Media and Human-Centered Computing
by

Felix Hochgruber, BSc
Registration Number 01226656

to the Faculty of Informatics
at the TU Wien

Advisor: Priv.Doz. Mag. Dr. Hannes Kaufmann
Assistance: Mag. Dr. Peter Kan

Vienna, 28" February, 2020

Felix Hochgruber Hannes Kaufmann

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 = www.tuwien.at

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Erklarung zur Verfassung der
Arbeit

Felix Hochgruber, BSc

Hiermit erklére ich, dass ich diese Arbeit selbstédndig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollstdndig angegeben habe und dass ich die Stellen der
Arbeit — einschliefSlich Tabellen, Karten und Abbildungen —, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 28. Februar 2020

Felix Hochgruber

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Acknowledgements

I would like to express my gratitude to Peter Kan, who provided invaluable assistance
and support throughout the whole process that resulted in this work. I also wish to
thank Hannes Kaufmann for his supervision of the thesis.

Furthermore, I am grateful to all my friends for their continued support throughout my
studies. In particular, I would like to thank my girlfriend for the comfort and moral
support she provided.

I would also like to thank all the participants of the user study for their time and the
input they provided. Lastly, I wish to thank my parents for making it possible for me to
pursue my studies. Their unconditional help and encouragement enabled me to follow
my interests.

vii

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

Kurzfassung

Der Bereich der prozeduralen Generierung ist ein wachsendes Fachgebiet in der Informatik,
das zunehmend Aufmerksamkeit erlangt. Durch die automatische oder teilautomatische
Erstellung von digitalen Inhalten kann die Kreativitit gefordert, neue Erfahrungen ange-
boten, und Entwicklungskosten reduziert werden. Auflerdem kénnen dadurch Szenen und
Landschaften von theoretisch unendlichen Ausmafien erzeugt werden. Die Generierung
von virtuellen Umgebungen, speziell Stadten und urbanen Gegenden, kann fiir Desi-
gner und Entwickler erheblichen Nutzen bringen. Dieser Prozess hat in verschiedensten
Anwendungsbereichen Einsatz gefunden, unter anderem in Videospielen, in der Filmpro-
duktion, und in Simulationen. Die meisten bestehenden Herangehensweisen behandeln
die kiinstliche Synthese von Stadtlayouts und setzen nur bedingt reale Daten ein.

In dieser Diplomarbeit untersuchen wir die direkte Integration von existierenden Stadt-
layouts in den prozeduralen Generierungsprozess. Eine Filterfunktion wird bereitgestellt
mit der die benétigten Daten im richtigen Format bezogen werden kénnen. Die vor-
geschlagene Methode fiir die Generierung von Stadtlayouts simuliert die Anziehung
von zwei oder mehreren Straflennetzwerken zueinander. Dadurch wird ein kombiniertes
Stadtlayout erzeugt, das interpolierte Eigenschaften der gewéhlten Eingabedaten hat.
Fir die Implementierung wurde Unity verwendet, da fiir bestimmte Operationen auf die
integrierte Physik-Engine zuriickgegriffen wird. Wahrend des Generierungsprozesses ist
die Interaktion durch die Benutzerin oder den Benutzer moglich, wodurch Strukturen nach
Wunsch angepasst werden kénnen. Die Performance der Applikation ist vergleichbar mit
existierenden simulations- und agentenbasierten Herangehensweisen, wenn mittelgrofie
Gebiete verwendet werden. Eine Nutzerstudie hat bestatigt, dass die generierten Layouts
erkennbare Charakteristika der Ausgangsdaten aufweisen.

ix

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Abstract

Procedural Content Generation (PCG) is a growing field in computer science that is
progressively gaining attention. Through the automated or semi-automated creation
of digital content, creativity can be increased, new experiences can be offered, and
development costs can be reduced. Furthermore, it makes the fabrication of scenes and
landscapes with theoretically infinite dimensions possible. The generation of virtual
environments, particularly cities and urban areas, can provide numerous advantages to
designers and developers. It has seen adoption in various domains, including, but not
limited to, video games, movie production, and social simulations. Most existing city
generation approaches investigate the artificial generation of new layouts, making only
limited use of real-life data.

In this thesis, we explore the direct integration of existing city layout information into the
generation process. A filter function is provided to obtain the required data in the correct
format. The proposed method for city layout generation simulates the attraction and
adaptation of two or more urban road networks to each other. As a result, a combined
layout containing interpolated features of the selected input files is generated. The
implementation was done in Unity, as we rely on the internal physics engine for certain
operations. User interaction is possible during the generation process, allowing structures
to be modified as desired. The performance is comparable to existing simulation- and
agent-based approaches for medium-sized areas. A user study confirms that the generated
layouts include recognizable characteristics of the input data.

Xi

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Contents

Kurzfassung ix
Abstract xi
Contents xiii

1 Introduction 1
1.1 Motivation e 1

1.2 Problem Statement 2
1.2.1 Key Research Questions 3

1.3 Approach 3

2 Related Work 5
2.1 Urban Layouts 5
2.1.1 Street Patterns 5

2.1.2 Data Representation L. 7

2.2 Procedural Content Generation 8

2.2.1 Overview e 9

222 Methods 10
2.2.3 Procedural City Generation 14
2.2.4 Data-driven Procedural Generation 19

3 Data-driven Generation of City Layouts 25
3.1 Theoretical Approach 25
3.2 Source Data 28
3.2.1 OpenStreetMap Data 30
3.22 Obtaining Data o 31
3.23 PossibleIssues o 32

3.3 Implementation Concept 33
3.3.1 Scope Constraints 34
3.3.2 Functional Requirements 34
3.3.3 Non-functional Requirements 35
3.3.4 Software Design and Architecture. 35

3.4 Implementation of the CityMerge System 37
xiii

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

3.4.1 Unity Game Engine

3.4.2 Frameworks and Libraries
3.4.3 Project Setup
3.4.4 Main Controller
3.45 MapImport
3.4.6 Data Structure L L
3.4.7 Simulation Loop
3.4.8 Post-Processing oo
3.4.9 User Interaction L.
3.4.10 Components and Prefabs
3.4.11 Performance Tuning
4 Results
4.1 Generated Layouts Lo

4.1.1 Example

1: Vienna and Paris

4.1.2 Example 2: Barcelona and Lisbon

4.1.3 Prefiltered Input Data 0oL
4.2 Performance
4.3 Subjective Evaluation o000

4.3.1 Method
4.3.2 Structure
4.3.3 Outcome

5 Discussion

5.1 User Study Analysis
5.2 Performance Analysis
5.3 Limitations and Future Work
5.3.1 Result Plausibility
5.3.2 Mixing Ratios. o
5.3.3 Performance and Scalability
5.3.4 Input Data and Preprocessing

5.3.5 Buildings
6 Conclusion
List of Figures
Acronyms

Bibliography

38
39
40
41
42
43
44
49
52
52
54

57
o7
57
o8
60
61
63
63
64
70

75
75
76
7
7
7
7
78
78

79

81

85

87

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Introduction

1.1 Motivation

The adoption of Procedural Content Generation (PCG) is becoming increasingly com-
mon in computer graphics. Thanks to more powerful processors and advances in 3D
development, applications are now able to integrate 3D scenes of almost infinitely large
sizes. Manual creation of content on this scale has thus become unfeasible, which is
why automated and semi-automated methods are becoming increasingly important. Pro-
cedural systems can provide designers with starting points for content creation, which
reduce the time spent on potentially repetitive tasks. In certain instances, they can even
replace human creative professionals altogether. Consequently, the adoption of PCG is
often motivated by possible cost savings [TYSB11]. Furthermore, procedurally generated
content can supply creative assistance [Smil5]. Through the use of algorithmic methods,
novel ideas may be sparked in designers. New approaches to creative tasks may arise,
which are unexpected and fundamentally different from what a human would come up
with.

Procedural generation methods can be applied both during the design phase, as well as
during live operation. It is possible for applications to create new content as it is required.
This approach can be utilized, for example, to generate seemingly infinite environments
[GPSL03, HMVDVI13] or to adapt to a user’s preferences and needs [HYWL18§].

Procedural systems can be used to create a multitude of content types. Examples for
data types that can be generated using PCG methods range from 2D visualizations
and textures [Per85, KK96] to three-dimensional plant models [PLI0, LYC*10] and
landscapes [MKMS89, DP10]. In the context of video games, quests and scenarios have
been generated [Dorl0], as well as complete environments [Kaz09]. Furthermore, building
models have also been created procedurally [WWSR03, MWH*06, MZWVGO07].

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

1.

INTRODUCTION

This work focuses on the procedural generation of city layouts. Cities are complex con-
structs of form and function, often resulting from long periods of growth and development.
As such, they are frequently studied from several different perspectives. For instance, the
location and size of urban areas have been investigated from a geographical point-of-view
[Joh72], whereas social sciences have studied the behavior of the population [Ley83].

Procedural city modeling is an especially important field of research, due to the many
application areas including game design, urban planning, movie production, and simu-
lation applications. The entertainment industry, in particular, has a high demand for
automated city generation. In many video games, cities are required as environments for
players to explore. With consumers demanding increasingly large areas, developers have
to spend more resources on level design. Similarly, the interest in virtual environments
for movie production is rising as well. Due to advances in rendering and special effects,
the use of 3D models has become a more and more feasible alternative to expensive
on-site shooting. In simulation applications, procedurally generated cities can be used as
virtual testbeds. Novel environments can provide challenges for emerging technologies
such as self-driving cars [KKC18].

1.2 Problem Statement

Many different factors influence the development of cities, such as geology, vegetation,
culture, and neighborhood [Joh72, Lyn60]. To generate a completely realistic city, all of
these have to be considered. In reality, however, it is extremely difficult, if not impossible,
to integrate all real-world factors into a procedural generation system. Therefore, most
researchers focus on the creation of plausible cities, which means that the generated
features should be within certain limits of the properties of real cities [KKC18]. Through
the inclusion of existing city data in a procedural generation system, some of the
influencing factors that led to a city’s development can be considered and incorporated
in the result.

Many procedural modeling techniques are based on grammars and parameters, that
are either specified by hand or generated automatically [MWH*06, WWSR03, PMO1].
Grammar-based methods generally consist of a set of rules, according to which a city is
generated. While these approaches can produce plausible results, they do not provide
the possibility to easily integrate existing city layout information. Therefore, to generate
a layout that has properties similar to a specific city, a manual adaptation of a rule- or
parameter set is necessary. This often results in a significant amount of work for the user.
When the goal is to generate a city layout that has properties of multiple existing cities,
defining those rules will get increasingly difficult, and may not always be possible.

While some approaches exist that focus on the integration of existing data, these mostly
employ parametric approaches [AVB08, NGDA16]. When city layout information is
consolidated into a reduced set of parameters, loss of data is inevitable. Therefore, such
approaches may be able to produce city layouts that apply the overall road network

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

1.3. Approach

pattern (grid, radial, etc.) of the underlying source data, but don’t contain any existing
structures.

1.2.1 Key Research Questions

Based on the above problem definition, the following research questions can be defined:

How can existing city layouts be used in procedural city generation?

The aim of the thesis is to implement a novel method for generating city layouts based on
existing information. This data-driven approach uses publicly available layout information
of real cities and combines it to generate a derived city layout. Since methods for
generating urban 3D geometry for a given street layout already exist [MWHT06, Mael7],
this work focuses primarily on the generation of road networks. An application is
developed as a proof-of-concept for the devised algorithm.

How does data-driven procedural city generation compare to other
approaches, based on subjective perception?

The devised algorithm is evaluated by performing comparisons with more established
techniques for procedural city generation. Furthermore, the quality of the result is judged
by performing subjective assessments of the output data generated by the algorithm.

1.3 Approach

An exemplary algorithm has been devised to generate city layouts using existing layout
information. The algorithm employs a non-parametric approach. No explicit consolidation
of layout and pattern information is performed, so as to preserve as much data as possible.
This information is provided in the form of publicly available road network data of real
cities. Structures that exist in these cities are combined in a sensible manner to produce
a resulting layout. Particular focus has been put on the recognizability of city features:
The resulting layout contains identifiable properties from the input maps.

Two or more city layouts are used as input for the algorithm, along with a set of
parameters that specify a mixing ratio for each input data set. Based on these ratios,
information from the respective source maps is integrated into the result. A high value
causes more of the specific city layout to be preserved, while a low value causes structures
to be discarded more readily. This gives the user a certain level of control over the layout
generation process. Furthermore, it allows different output layouts to be produced for
the same input data sets.

The resulting road networks contain structures that are present in the input data sets,
but they are adapted and interpolated to produce a new layout. Apart from the mixing
ratios, this adaption process also incorporates the importance of road segments. Large

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

1.

INTRODUCTION

roads, such as highways or streets with multiple lanes, are considered to be of higher
priority. Thus, these structures are generally preserved in the resulting layout.

The presented algorithm is non-deterministic. At certain points, pseudo-random values
are integrated that affect the behavior. As a result, different outputs are likely to be
generated by consecutive runs, even if the input parameters remain unchanged. The
algorithm can further be classified as simulation-based. Attractive forces are simulated
in the different input layouts, causing the road networks to adapt to each other and
eventually fuse into one. Ultimately, this process should produce a valid and plausible
city layout that is a combination of the provided data sets. During the simulation, it is
possible for users to interact with the individual components. A user can provide input
to directly influence the positions of roads. These manipulations are incorporated into
the behavior.

To present the proposed algorithm, a prototypical application was developed. It serves as
a framework for controlling user input, visualization, and interaction. The output data
produced by the application is evaluated through a user study with a focus on subjective
preference. The plausibility of the result data is further compared with more established
methods for procedural city generation.

The utilization of existing layouts is motivated by the complexity of city development. A
multitude of circumstances has taken influence on each city’s evolution, which caused the
structures to form its present shape. By incorporating the complete layout of cities, these
factors are considered implicitly, to a certain extent. The proposed algorithm should,
therefore, present a viable method for creating a new city layout based on the structures
that have formed in others.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Related Work

2.1 Urban Layouts

In order to develop methods for procedurally generating city street maps, it is first
necessary to understand how urban layouts are composed. The rules by which settlements
form and expand are many, though one of the most important factors is the natural
environment around them. It consists of the geology, the landform, water features,
and plant and animal communities [Krol17]. These properties enable and restrict urban
development in specific areas.

An especially important factor is the availability of water. It not only serves as necessary
nourishment for the population but also enables trade through shipping. This encourages
settlements to form directly at, or in close vicinity to rivers, large lakes, or oceans.
Additionally, the climate also has a considerable impact on the types of structures that
are built.

Technology is another important factor in the development of urban areas. The location
of older cities from periods before the invention of the automobile and other long-distance
transportation methods was heavily influenced by the location of other settlements in
their vicinity [Joh72]. Furthermore, the maximum size of a city was also limited by the
time it took individuals to travel from their homes to the center. Transport methods
like streetcars and automobiles, but also rapid-transport systems like subways in more
recent times, expedited inner-city travel. This allowed people to comfortably travel longer
distances inside a city, thus making residences in outer regions more attractive.

2.1.1 Street Patterns

There are typically a number of different layout types that can be found in urban areas.
Categorization has been attempted by several researchers [Lyn84, SO93, Mar04]. However,
due to different classification systems and inaccuracy in descriptions, the terminology

5

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M 3ibliothek,
Your knowledge hu

2.

RELATED WORK

is often vague [Mar04]. For example, a radial-type street layout may be interpreted
differently by different individuals, as there is no exact specification. This, in turn, can
lead to divergent classifications. An example of an attempt to organize street layouts can
be seen in Figure 2.1.

X

-

Common Systems A

Less Common Systems=>»

Streef Systems

Figure 2.1: Different patterns found in urban road networks. [Mun13]

Some of the more commonly-found categories in research include grid, radial, and organic
or irregular patterns [Mar04]. Nevertheless, further breakdowns of these are common, in
attempts to differentiate more subtle distinctions. Grid-like patterns typically consist
of two sets of parallel streets forming right angles between them. The roads follow a
checkerboard pattern, forming four-way intersections at the crossing points. More relaxed
versions of grids are also commonly found, featuring less-strict angles and possibly curved
streets. Examples of grid patterns can be found in many American cities, most notably
New York City.

In a radial layout, streets radiate outwards from points-of-interest, such as markets,
churches, or palaces. These points are often encircled by multiple rings of roads acting
as interconnections. The pattern is usually kept strictly geometric to further highlight
the importance of its center. As such, appearances can be found in many European
cities with structures resembling authority and power. An example of a city laid out
according to a radial grid is Versailles, France, where the palace is a center point for

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.1. Urban Layouts

multiple avenues spanning across the city. However, with increasing distance from the
palace, the pattern quickly gives way to a loose grid layout.

In contrast to the planned nature of radial and grid patterns, organic layouts are very
irregular, following no apparent rules. Streets can cross or branch at random positions,
and curve sporadically. They are frequently encountered in historic centers of cities that
have grown organically, but also in slums with fast-paced development [Mun13]. Instead
of following a large-scale blueprint, organic layouts are typically planned on a per-building
or per-parcel basis, giving a seemingly unplanned appearance [Kos91]. Planned suburban
areas, as they are often found close to large cities in the United States of America, often
try to mimic organic patterns by placing streets on tree-like structures with random
curves.

In reality, cities do not only feature a single street pattern across the whole area they
cover. Layouts frequently differ in areas based on factors such as age, zoning, population
density, distance to the center, planning regulations, or cultural influences. In transition
zones, patterns often mix, creating layouts that feature characteristics of both bordering
sections. For example, a loose grid layout might be found between a historic city center
laid out irregularly, and a planned commercial district with a gridiron structure.

On a smaller level, 27 individual street patterns have been observed to make up many

metropolitan areas worldwide [Whel5]. Wheeler argues that the presented landscape

types can be used globally as a typology for urban regions. Nevertheless, many of the 27

landscape types can be split up into subtypes with slightly different features. The most

frequently occurring patterns, in descending order, are “loops & lollipops”, “degenerate
bR 14

grids”, “rural sprawl”, and “workplace boxes”. Visual examples of these can be found in
Figure 2.2.

2.1.2 Data Representation

To be able to work with city layout information, the data needs to be available in a
digital format. It allows the data to be stored, processed, and shared easily.

A simple representation of a road network can be achieved with a link/node approach
[Goo00]. Links describe the streets themselves. They are made up of a start- and
endpoint and possibly carry other attributes. Nodes are junctions between streets. Due
to their interconnectivity, streets and roads form a network [LB14].

To store this information digitally, a data structure representing a planar graph can be
used. This makes path-finding algorithms efficient and straightforward to implement. If
required, the lengths of street segments can easily be implemented as weights on the edges
to make distance calculations possible. However, this simple approach does not support
curved roads explicitly. By splitting streets into multiple segments connected through
nodes, curves can easily be approximated. Furthermore, Louf and Barthelemy argue that
in addition to the adjacency matrix, important geometry information is encoded in the
spatial distribution of nodes [LB14]|. To accurately represent a city layout, this data,
therefore, needs to be stored as well.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w 3ibliothek,
Your knowledge hu

2.

RELATED WORK

erate grid

(¢) Rural sprawl (d) Workplace boxes

Figure 2.2: Examples of the most commonly found landscape types as identified by
Wheeler (in descending order). [Whel5]

In more complex scenarios, however, other solutions or extensions to a planar-graph data
structure are required. For applications such as real-time navigation, information about
lanes, possible transitions, and places like parking lots are necessary [Goo00]. Solutions
for these scenarios have been presented [Wat99], but are out of the scope for this work.

2.2 Procedural Content Generation

The term Procedural Content Generation (PCG) describes the more or less automated
creation of content using algorithms. As the exact boundaries of this concept are
somewhat fuzzy, Togelius et al. have defined it as “the algorithmical creation of game
content with limited or indirect user input” [TKSY11]. It makes it possible to create
different kinds of data, that would otherwise be produced manually, in an automated or
semi-automated manner. In general, at least a minimal amount of user input is necessary
for PCG [TKSY11]. In some cases, the only required action may be triggering the start of
the procedural generation system. In others, the system may depend on more elaborate
user input. Therefore, PCG allows the process of creating content to be fully or partially
automated, facilitating the task for humans and increasing the amount of data that can
be produced. As procedural generation techniques enable the creation of lots of content
quickly, less time and resources are often required. For this reason, it can potentially
result in reduced development costs [TYSB11].

In most cases, a certain degree of randomness is included in the generation process. This

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.2. Procedural Content Generation

allows procedural generation methods to produce variations in the results. However,
deterministic techniques also exist that create the same content each time.

Even though the definition by Togelius et al. specifically mentions game content, PCG is
not limited to this domain. Content that was produced by procedural generation methods
can be used in a variety of different applications, such as computer games, simulations,
visualizations, etc. Moreover, the type of content that can be created is also very diverse.
In computer games, this may include maps, characters, or quests, while in visualization
applications it could include patterns or style transfers.

2.2.1 Overview

The origins of procedural generation can be traced back to analog board games in the
18th and 19th centuries [BS20]. Movable terrain tiles could be used to configure war
game boards differently for each new game. One of the first widespread appearances of
digital PCG can be found in the video games Rogue and Elite. Both of these integrated
procedurally generated worlds for players to explore: Rogue featured procedurally-
generated dungeons, resulting in theoretically infinite unexplored environments. FElite
relied on PCG to generate vast galaxies that would otherwise not have been possible due
to the limited amount of memory available at the time.

Since then, many other games have integrated PCG as a more or less central gameplay
element. It is used to create different types of game content, including terrain, maps,
quests, and characters [TYSB11]. Games like Minecraft and Civilization rely on procedu-
rally generated maps and territories, while Diablo II or Left]Dead utilize PCG to create
random scenarios for the player [HMVDVI13].

A common type of content that is often generated procedurally is vegetation. Modeling
individual plants and trees is a very time-intensive process, which is why many game
studios and movie productions rely on procedural systems to create them. A widely-used
commercial tool for this task is Speed Tree!.

Strictly speaking, Artificial Intelligence (AI) in video games can also be seen as procedural
content. The behavior of the agents follows a predefined procedure, depending on the
current goals and environmental conditions. However, their actions and animations often
contain some kind of randomness. For example, Non-Player Characters (NPCs) in the
life simulation video game series The Sims show a randomly-selected reaction from a
predefined set when a particular event occurs.

Video games are still the most common application of PCG to date. Nevertheless,
procedural generation has seen adoption in many other fields of research as well [KKC18].
For instance, application areas include the movie industry, urban planning, social and
environmental simulations, or machine learning. Another common use case for PCG
is the generation of cities and urban environments for different domains, which will be
covered in more detail in section 2.2.3.

'nttps://store.speedtree.com (Accessed: 17.02.2020)

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

2.

RELATED WORK

10

There are many different reasons for utilizing procedural generation methods in games.
Some of the more practical motivations include circumventing hardware limitations,
as it was done for FElite, and saving time and resources on design- and development
processes. Another motive is increased replayability of games with procedurally generated
environments. These can ensure that the player is faced with different conditions,
challenges, and opportunities for each playthrough. Similarly, PCG can produce adaptive
content that is tailored to a player’s current or overall status or skill. Procedural systems
can also assist designers creatively in their work, by providing inspiration and alternative
viewpoints in content creation. [TYSB11, STN16]

2.2.2 Methods

Many different forms of procedural generation have been presented over the last decades,
and differentiating between their underlying methods can be difficult. Shaker et al.
characterize them by drawing the following distinctions [STN16]:

e Online vs. offline

Necessary vs. optional content

Degree and dimensions of control
e Generic vs. adaptive

Stochastic vs. deterministic

Constructive vs. generate-and-test

Automatic generation vs. mixed authorship

This taxonomy is not meant to categorize procedural generation methods by strictly
placing them in one of the extreme points. Instead, for each dimension, they generally
lie somewhere in between.

From a methodical perspective, a few approaches have been widely adopted. The most
common of these will be presented in this section.

Fractals and Noise

Fractals are some of the most basic forms of procedural generation and are often used as
a basis for terrain generation. Many physical processes found in nature show some form
of self-similarity, that can be described using fractals [Pen84]. Mandelbrot has shown
that when enlarging smaller natural phenomena, the same kinds of variations can be
observed as on a larger scale [Man83]. This is especially visible in terrain: Mountain
ranges and plains show variation in the elevation at the largest scale, but when zooming
in, individual mountains and valleys show similar properties. Zooming in even more,

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

2.2. Procedural Content Generation

there are often many smaller peaks on a single mountain. Fractal terrain intends to
mimic this behavior to generate natural-looking landscapes. Figure 2.3 shows an example
of how a landscape generated using fractal methods could look like.

Several different technical methods exist that make use of fractals in procedural generation
[MKMS89]. The diamond-square algorithm is one of the most widely used techniques, due
to its computational efficiency and simple implementation [STN16].

Figure 2.3: Generation of a procedural landscape using a fractal-based approach, in
different detail levels. [dC11]

Noise is another common method for procedural generation and is frequently used to
create synthesized textures and landscapes. It is often related to fractal-based methods,
in that noise functions with different frequencies can be layered to produce a similar effect
as fractals. One of the most commonly used techniques is Perlin noise, which is a type of
gradient noise originally developed for image synthesis [Per85|. Instead of generating the
height values for each point directly, only the slopes are generated. The height values
are then inferred from those gradients, resulting in very smooth transitions. Another
important noise function for PCG is Simplex noise. It is based on the same principles
as Perlin noise, but has lower computational complexity and produces less directional
artifacts [Per01].

Search-based Approaches

Search-based methods for PCG make use of evolutionary algorithms and other search/
optimization techniques to generate content. Similar to genetic programming, the idea
behind search-based content generation is that several possible results are randomly
created in the beginning, and evaluated in each iteration. By dropping the worst

11

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.

RELATED WORK

12

candidates and adding random mutations to copies of the best candidates, a good enough
solution should eventually be reached [TYSBI11].

When creating a search-based content generation method, various challenges have to
be overcome. One of these is the definition of a data format to represent the content
that should be generated, as this defines and limits the content that can be produced
[STN16]. Another is crafting an evaluation function that reliably and accurately maps
generated content to a scalar that reflects its suitability. A common obstacle with that
is that the designer first needs to formalize what is actually desired, which can be very
difficult depending on the properties that are expected from the content [TYSB11].

Grammar-based Approaches

In formal language theory, a grammar is a set of rules for rewriting strings. These
production rules specify exactly how strings are transformed, and which symbols get
replaced. Beginning from a start symbol, the rules are applied repeatedly, until the
resulting string contains no occurrence of the start symbol and no nonterminal symbol.

L-systems are a special class of grammars frequently used for procedural generation. They
were introduced by the biologist Aristid Lindenmayer as a means to simulate the growth
of different plants and other organisms [Lin68]. The distinctive feature of L-systems is
parallel rewriting, meaning the parallel application of rules, as opposed to sequential
rewriting, where rules are applied to the string from left to right. L-systems in their
simplest form are deterministic, so the result is always the same for each generation
process. However, variations also exist where multiple rules can match a given symbol,
and one is chosen based on probability. The system is then referred to as a stochastic
L-system [PL90].

Rules can easily be defined to create 2D and 3D visualizations by utilizing turtle graphics.
Each symbol in the string is interpreted as a command (draw or turn) that is applied
to a drawing area. This allows the generation of simple graphics, but also complex 3D
models. A more elaborate example of a tree model generated using an L-system is shown
in Figure 2.4.

Apart from procedurally generating vegetation, grammar-based approaches are also used
for other types of content. Wonka et al. [WWSRO03], as well as Miiller et al. [MWHT06],
have presented methods for generating complex 3-dimensional building models using
novel types of grammars. Other procedural generation techniques use grammar-based
approaches for animation [IFPW10], park layouts [Vasl8], or quests in video games
[Dor10]. A common difficulty when following a grammar-based approach for procedural
generation is the definition of the rules. In general, these have to be created and adjusted
manually by the developer. To achieve the desired outcome, a trial-and-error approach is
often necessary, requiring a large amount of work.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

2.2. Procedural Content Generation

Figure 2.4: A tree model generated using an L-system. [Wik18]

Agent-based Approaches

Agent-based approaches to PCG make use of software agents to generate content. This
technique is mostly used to generate environments. One or more agents move through a
map and modify different properties according to their programmed behavior. In addition
to this predefined heuristic, agents often include randomness in their behavior as well,
making them useful for stochastic PCG. Doran and Parberry [DP10] have presented
a method to procedurally generate terrain based on this approach. They make use of

different types of agents, with many instances running concurrently on the same map.

The agent’s behaviors vary between types, but their only possible actions are reading
height values and changing the heights. This enables the agents to define the coastline,
form the land, and erode the terrain. The game Spelunky employs a similar technique
to procedurally place obstacles and enemies in its levels [Kaz09, STN16]. The maps are
based on a two-dimensional grid of rooms, with possible interconnections. After the basic
layout is created, a software agent moves through the rooms and places different kinds of
traps and monsters.

13

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.

RELATED WORK

14

Other Approaches

Many other approaches to PCG exist, including variations of the methods described in
this chapter. To organize the information, surveys have been published on this topic by
Togelius et al. [TYSB11], Hendrikx et al. [HMVDVI13], and Smelik et al. [STBB14].

2.2.3 Procedural City Generation

The generation of cities, urban areas, and road networks is a common use case of PCG.
Due to the complexity of these structures, the difference in resource requirements between
models created by a human and those created by employing procedural generation
techniques is especially high. This section will provide an overview of the current
state-of-the-art in procedural city generation.

Many applications exist that integrate procedurally-generated cities. The entertainment
industry, in particular, makes much use of them. In video games, generated cities can
be used as environments for players to explore. In movie production, cities can be
generated to match the desired style, and then used to fill backgrounds or define the
setting in individual scenes. Apart from these, urban areas created procedurally are
also used for simulations. They are valuable for research focusing on both social and
urban-planning aspects. Emerging new technologies such as self-driving cars can make
use of them as virtual testbeds, allowing the systems to be trained and evaluated in
synthetic environments [KKC18].

Complete cities are typically generated in different stages [KMO06]. The first stage usually
consists of the road network generation. It provides a characteristic basis for the whole
city and defines its general structure. Based on that, lots and parcels are created by
filling in the space between roads. Buildings are then placed inside the parcels, which
also includes the generation of their structures as well as their facades.

Because each of these stages is expected to produce a different kind of result, they are
often viewed as individual problems. Consequently, the techniques that are employed are
also different. Since the focus of this work lies in city layout generation, the creation of
procedural buildings and facades will be kept short.

Road Networks

To generate road networks for cities, Parish and Miiller have presented an approach based
on L-systems [PMO1]. The presented method includes two extensions to L-systems: global
goals and local constraints. Global goals define large-scale targets for road connectivity,
such as population density and conformity to the desired road pattern. Local constraints,
in turn, verify that generated road sections are valid within the environment and try to
adjust them otherwise. An example of such a constraint is a check for the underlying
terrain, e.g., to test if the road does not end in water. With this extended system, the
rise in complexity in production rules when generating detailed city layouts becomes

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.2. Procedural Content Generation

more manageable compared to a strictly L-system-based method. Furthermore, new
goals and constraints can easily be added without requiring a change in the rules.

Another grammar-based method has been presented by Sun et al. [SYBGO4]. Their
approach is template-based, allowing the user to select one of several templates as input
for the system: a raster or radial template, a mixed template, or a population-based
template visualized as a Voronoi diagram. Utilizing a set of rules and parameters from
the selected template, an initial highway network is generated that roughly follows
the same pattern. The generated roads are then validated and adjusted according to
elevation- and population density maps. The regions between these larger roads are filled
with smaller streets, which are created along a grid. While these approaches feature
substantial improvements to standard L-systems, they still require the manual creation
of complicated rules if specific outcomes are desired.

Kelly and McCabe have presented an interactive system to generate cities, called Citygen
[KMO7]. It allows the user to place and manipulate nodes directly on the terrain, which
form the basis for the primary road network. These nodes are then connected via
a sampling algorithm that adapts the roads to the environment and enforces various
constraints. The cells formed by primary roads are filled with secondary roads that are
generated by an algorithm based on L-systems. The production rules are predefined to
generate one of three different road patterns: Raster, a relatively regular grid; Industrial,
a less regular grid with dead ends; and Organic, a more random and natural-looking
pattern.

Lechner et al. have introduced an agent-based system to create artificial city layouts
[LWWFO03]. Two different types of agents are employed to generate the road network.
Extender agents wander around the terrain and search for land that is not yet connected
to the road network. If such a piece of land is found, the agent then tries to connect
it by laying a road to the existing network. Connector agents operate on the already
generated parts of the city, creating interconnections between existing roads. This system
was later extended by a type of agent that is in charge of creating large primary roads
and another that generates different types of parcels [LWW07]. In addition, the user
can adjust different parameters as well as provide direct input by drawing different types
of development zones on the city map. The results generated by the presented system
are reasonably realistic, though the running time is quite long.

A simulation-based method has been presented by Vanegas et al. [VABW09]. The system
requires user-drawn sketches of highways, population density, and employment areas
as input, according to which urban areas are generated. The growth of smaller streets
is governed by a clustering algorithm to generate seeds, combined with a breadth-first
expansion method to place new road segments. Any changes in the input data are
immediately taken into account and the corresponding structures are created, making
it an interactive process. However, user control is limited to altering the sketches, as
modifications to individual details are not possible. The approach presented by Weber
et al. uses a similar technique to simulate the growth of cities over time [WMWGO09].
Using an existing urban layout as input, the city expands into the surrounding land,

15

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.

RELATED WORK

16

taking environmental parameters such as terrain and land type into account. During
the simulation, the user can still control different parameters to alter the city’s growth.
Another simulation-based approach has been presented by Benes et al. [BWK14]. From
individual settlements, new major roads grow to eventually form a combined city. A
simple traffic simulation is applied that controls this growth by taking the neighborhoods
into account.

While these approaches focus on generating more or less artificial road networks, research
has also been conducted on how existing city layouts can be modified procedurally. With
the goal to render an animation of a city’s development over time, Krecklau et al. have
proposed a method for temporal interpolation of city maps [KMK12]. The interpolation
is based on a graph that defines interdependencies between events (e.g., starting the
construction process of a building), which serve as preconditions.

A PCG system presented by Aliaga et al. employs an example-based approach to generate
road networks [AVBO0S8|. Utilizing existing data from public Geographic Information
Systems (GISs), a parameterized model of a city is created. This model can then be
interactively reconfigured by performing operations such as moving tiles, copy-pasting
buildings, or stretching parts of the layout. Furthermore, it is possible to blend two
datasets from different cities at defined intersection points. An example of this merging
process can be found in Figure 2.5. These changes are also applied to a satellite image
representation of the city model. However, the goals pursued by Aliaga et al. are very
different from the results that we are looking to achieve with our system. Firstly, their
method makes it possible to blend the styles of two cities, but not their complete street
networks. Only a set of parameters extracted from the source datasets is used to create a
combination. This means that information will inevitably get lost (see Section 2.2.4), and
existing structures in either city will not be preserved. Secondly, the system implements
blending mostly to generate transitions between two different styles of urban areas. It
can create a road network with a spatially varying style, exhibiting properties of both
source layouts mixed to form a smooth gradient. The blending operation is thus not
performed over the whole city area, but only between user-defined intersection points.
In contrast, our system employs a non-parametric method to include the source data
directly in the generation process. Structures and patterns from the input datasets are
therefore still included in the output. Furthermore, our system blends two different cities
over their whole area, with little to no user interaction required.

Other works specifically focus on integrating user input into the generation process.
Nishida et al. have presented an example-based method for creating road networks that
uses a simple user-drawn sketch as input [NGDA16]. Along with that, a few sections
are selected on a map, from which road patches are extracted. These serve as example
shapes and are used to generate a road network using example-based and procedural
growing algorithms.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

2.2. Procedural Content Generation

juuuuuuuuti

C
T

(a) The first input fragment
S
%@E

Ju

Y

N | =

—
aagmite

HY S g
TTDGDEDDE
%@E{'\Dﬂ ;
@@/ < Q\gj @
L UDD&Q %

N L

BN

gerrran
N2

W

ke

o

Y

L
==

KL INTY
Az

J
T
)
~p
QD/\\ -

s

(b) The second input fragment

R

L

o

A

]

|\
e
Sawu

7

/

N

]

KA

r |

-

=

(¢) The resulting network, obtained by merging the two input fragments

Figure 2.5: An example produced by the system presented by Aliaga et al.: Two street
networks with different styles (a, b) get merged into a combined network (c). [AVBOS]

Buildings and other Geometry

A large number of methods to generate procedural buildings make use of grammar-based
approaches, such as L-systems, split grammars, or shape grammars [STBB14]. While
these techniques usually require much initial effort to create the rules, they can produce
realistic-looking results with a relatively low computational cost. A common shortcoming
of grammar-based methods, however, is the lack of support for the spatial constraints
that buildings have to follow. The concept of split grammars, as presented by Wonka

17

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M 3ibliothek,
Your knowledge hu

2.

RELATED WORK

18

et al., tries to mitigate this issue by explicitly including support for such restrictions
into the generation process [WWSR03]. Furthermore, it also supports the addition
of geometric details to facades. An extension to this was presented by Miiller et al.,
which allows the creation of more complex building shapes [MWH™06]. Figure 2.6 shows
building models generated using this method. As noted by the authors, 190 CGA shape
rules had to be manually created to achieve this result. To reduce the work required to
define grammar rules, Wu et al. have presented an inverse procedural modeling system
[WYD*14]. Taking an image of a facade as input, it derives a split grammar representing
the given layout.

Figure 2.6: Procedurally generated buildings modeled after real footprints of Pompeii.
[MWHT06]

Several of the systems mentioned in Section 2.2.3 also support the generation of buildings.
Parish and Miiller have adopted their layout-generation method to also generate buildings
using L-systems [PMO01]. Weber et al. include procedurally generated buildings as an
integral part of their system, as they are used to visualize the change in population
density over time [WMWG09]. Based on envelopes calculated from a lot’s monetary
value, shape grammars are used to generate building models. However, since their work
does not focus on the creation of visually complex buildings, the generated architecture
is relatively simple. Similarly, the Citygen system by Kelly and McCabe also includes
basic building generation mainly for visualization purposes [KMO07].

Another piece of research focuses on procedurally generating cities in real-time [GPSLO03].
While the road layout consists of a simple 2D grid, the buildings feature more complexity.
Floor plans are generated by iteratively placing and extruding regular polygons. After

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.2. Procedural Content Generation

each extrusion step, a new polygon is added and merged with the existing geometry.
This process is repeated until the building is finished. While this method provides a
good trade-off between visual complexity and efficiency, it is limited to the creation of
high-rise buildings. To achieve interactive frame rates, the researchers make use of view
frustum filling and caching techniques for the generated geometry. New buildings are
created as soon as the user encounters them, resulting in a pseudo-infinite city.

To model the interiors of buildings, several methods have been developed [HBWOG,
MSK10]. Research has also been presented to create other city features, such as traffic
signs [TB16] or parks [Vasl18].

2.2.4 Data-driven Procedural Generation

The main concept behind data-driven PCG is the utilization of preexisting data to create
new content. The type of data used can vary widely, and consist of templates, patterns,
or real examples [KKC18]. The technique is applicable to many different types of content,
and data can be used in various ways. Loose classification can be made based on how
the data is integrated into the generation process:

e Constraints: The data takes the form of affirmations and limitations, such as
distribution maps or sets of rules that the generated object should follow.

e Example: The data is used as an example for different characteristics. It can take
the form of real data, patterns, sketches, etc.

e Training Data: The data is used to train a generation system (e.g., a system making
use of machine learning) to improve or adjust its output data.

e Sparse Data: Existing data that might be incomplete or in a different format.

Examples for this include data points obtained from measurements that shall be
used for object reconstruction or high-level requirements.

In reality, data-driven systems for PCG can make use of its input data in multiple ways,
and can also include different types of data. These categories shall therefore not be
viewed as strict, but rather as general guidance.

Furthermore, example-based methods can be divided into two categories: parametric
methods and non-parametric methods [NGDA16]. In parametric methods, the data
is reverse-engineered to obtain parameters and properties that characterize it. These
extracted values are then used to generate new content. Especially highly-structured
types of data can benefit from this approach, as a reduced parametric representation is

often more easily possible. A side effect of this extraction process is the loss of information.

This may sometimes be desired, so as to integrate implicit variation in the output data by
constructing it from lower-dimensional inputs. However, it can also lead to an unwanted
loss of interesting features.

19

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.

RELATED WORK

20

In contrast, non-parametric methods incorporate the data directly. This approach
mitigates the possible loss of information by explicitly including the complete example
into the generation process. As a result, it is also applicable to more complex types of
data.

Closely related to parametric example-based PCG is the concept of inverse procedural
generation. It typically pursues the objective of generating a specific object from existing
information. In its simplest form, this approach can be used to reconstruct objects from
sparse data. However, it can also be used to create new objects that have a similar
structure or follow the same rules as the input data. Due to the similarities between
inverse procedural generation and parametric methods, and the lack of exact definitions,
significant overlaps in terminology can be expected.

In city generation methods based on data-driven techniques, input data often takes
the form of environmental information, such as natural or statistical distributions. For
example, geographical circumstances largely influence the development of cities. To
generate plausible output data, procedural methods have to respect these constraints. If
existing data is available, population density maps can further control the generation
process [SYBG04, VABW09].

An innovative use case for a data-based procedural generation method has been presented
by Hooshyar et al. [HYWL18]. The authors have developed an educational game
that focuses on improving reading skills of children. By utilizing data collected during
gameplay, content that is tailored to address the player’s strengths and weaknesses is
generated using a genetic algorithm. It is then directly integrated into the game. As
a result, higher performance improvements could be achieved in children through the
customization of game content.

Data-driven approaches to PCG have also been employed to generate terrain. In research
presented by Zhou et al., existing elevation models can be combined with a user-drawn
sketch to create synthesized landscapes [ZSTRO07]. Features such as valleys and ridges
are extracted from the input height field and stored as a tree. Following the user’s sketch,
a pattern matching algorithm then looks for suitable patches in the source model and
places them in the output model. Figure 2.7 shows a synthesized terrain along with
its respective input data. While the method can generate plausible terrain models, the
input data that can be used is limited. As the feature extraction algorithm requires the
presence of either ridges or valleys, an input map with low height variation will result in
poor output data.

Nishida et al. make use of a similar technique to generate road networks [NGDA16].
The system extracts individual patches from user-selected source maps that act as
examples. Additionally, a set of statistical parameters such as road length, orientation,
and curvature, is computed from the input data. The road network is then generated
using a growth-based algorithm, starting from a user-defined source point and iterating
over all unconnected vertices. By combining the extracted patches based on a probability
scale, a new road network featuring a similar style to the examples is created. If no

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M 3ibliothek,
Your knowledge hu

2.2. Procedural Content Generation

Figure 2.7: Synthesized terrain created using a data-driven method by Zhou et al. (a)
Input user sketch. (b) Base elevation map. (c) Resulting synthesized elevation map. (d)
Rendered result. [ZSTRO7]

suitable patch can be found at a particular growing stage, the previously extracted
features are used to generate a new patch procedurally. A shortcoming of this method is

that for example-based growth, only patches that exist in the source data can be used.

The fallback to procedural-based growth provides some mitigation, but many interesting
features get lost using this technique, as noted by the authors.

Research has also been presented that employs procedural modeling techniques to
reconstruct real-life objects from sparse data. Livny et al. have presented a method to
generate tree models from point cloud data as it can be obtained from a Light Detection
and Ranging (LIDAR) mapping system [LYCT10]. Individual points from the input data
are used to build a graph representing the tree skeleton. By integrating optimizations
and refinements, such as assumptions on tree properties, a close approximation of the
structural tree geometry can be constructed. Subsequently, fine branches and leaves are
generated using L-systems since the source data resolution is typically too low to extract
information about such small details with adequate precision.

A different approach to integrating data-driven PCG has been presented by Merrell
et al. [MSK10]. Out of a list of high-level requirements, the presented system is able

21

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.

RELATED WORK

22

to generate a complete layout for a residential building. A Bayesian network trained
on real-world data is the basis for the generation algorithm. It first generates a full
architectural program for a building, consisting of a list of rooms including their desired
area and general shape, as well as relationships between rooms. To obtain a complete
and cohesive set of floor plans, further optimizations on possible layouts are performed.
A 3D model of the building can then be created. The motivation to integrate data-driven
techniques stems from the difficulty to formalize the factors influencing human comfort
in architecture. Additionally, adjacency relationships between rooms are often part of a
larger semantic structure that cannot be taken into account easily in simple rule-based
systems.

An algorithm presented by Miiller et al. uses inverse procedural generation to reconstruct
building fagades from single textures [MZWVGO07]. Image processing techniques are
applied to the source texture to detect floors and individual facade tiles. By matching
the tiles to their respective 3D models from a library of common architectural elements,
a complete facade model can be created. The system makes use of shape grammars to
encode the resulting information as a set of rules. To generate new facades from this
data, the rules would have to be extended by probabilistic parameters that allow for
variation of the architectural properties.

A system that supports the generation of similar objects has been presented by Stava
et al. [SPK*14]. Taking an existing three-dimensional model of a tree as input, a tree
graph is created from it to facilitate processing. A set of 24 parameters that represent
the structure are then estimated using an iterative approach based on optimization and
similarity measures. Monte Carlo Markov Chains are used to tune the parameters until
a satisfactory level of similarity is achieved. The resulting attributes describe a tree that
is stochastically similar to the one that was provided as an example. However, it is not
possible to exactly recreate the input tree using this approach.

Similarly, the system presented by Aliaga et al. employs a parametric approach to the
data-driven generation of urban layouts [AVBO08]. From a road network that acts as an
example for the synthesis of a new layout, a set of parameters is extracted. For each
street, these include the hierarchy level, the mean and variance of the distances between
points, and the mean and variance of the angles between segments. New streets are
generated using a random walk that takes these parameters into account. A number of
constraints control the creation of streets, such as limiting crossings with existing streets
to intersection points. Additionally, a tortuosity attribute calculated from the source
data is used to create a poly-line that more accurately represents the curvature of the
streets. As noted above, this reduction of a complete road network to a set of parameters
results in a loss of individual details. An example given by the authors shows that two
cities with different road styles can still lead to very similar statistical properties.

A common difficulty for data-driven PCG techniques is the dependency on the source
data. By design, such methods rely heavily on the input data to synthesize new content.
However, depending on the origin and the type of data, it can be noisy, incomplete, or
wrong. This can result in undesirable outputs from the procedural generation system,

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w Sibliothek,
Your knowledge hub

2.2. Procedural Content Generation

but may also completely prevent successful content creation. Consequently, it is vital for
these data errors to be handled appropriately if they are likely to occur within a given
context. This can either be done by cleaning up the data beforehand [KMK12] or by
simply omitting undesirable input data from the generation procedure [LYC'10]. To
improve the quality of the output data, post-processing techniques can also be used to
remove potential artifacts or unwanted features [NGDA16].

23

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Data-driven Generation of City
Layouts

3.1 Theoretical Approach

During our research, it became clear that a considerable amount of work has been done
in the field of procedural city generation. However, not much work has been presented
that focuses on data-driven city generation using layout information from multiple cities.
The algorithm we present is focusing on exactly this problem. It uses a simulation-based
approach to combine two or more city layouts in a sensible manner. A custom mixing
ratio for the input maps can be defined. This influences the blending process and makes
it possible to prioritize one city layout over others.

Data loaded from input files are preprocessed to remove artifacts and reduce the resolution
if necessary. Afterward, the data is transformed into an internal node/link data structure.
Links are represented as edges. Each edge corresponds to a single road segment, connected
to exactly two nodes. Nodes are split into two types, based on the number of links that
are connected. Waypoint nodes are always part of exactly two links, as they are used
to split a long road into multiple parts (e.g., to approximate curves). Junction nodes
either have one (in the case of a dead-end) or more than two links connected to them
and usually form a junction at the intersection point.

The initial positioning of the input city layouts is based on the individual section
boundaries. Each node is considered to find the largest extents of the respective input
map. Using this information, the center point of the layout is calculated and the map is
placed in the center of the virtual environment.

The presented algorithm uses a physics-based approach to merge road networks. Nodes
and edges are both represented as objects in a physical environment. In this context,
they behave according to properties assigned to them. The physical environment is used

25

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w 3ibliothek,
Your knowledge hu

3.

DATA-DRIVEN GENERATION OF CITY LAYOUTS

26

to combine street networks by simulating attraction between nodes of different input
data sets. To achieve this, forces are applied to nodes that cause them to move closer
together, and eventually merge into one.

Nodes originating from different city layouts are initially placed on different layers. Each
junction node exerts an attraction force on nodes from other layers, pulling them towards
it. The force is calculated using Newton’s law of universal gravitation [OR13]:

F= Gmlmz

72

Here, F is the gravitational force, G is the gravitational constant (G = 6.67430(15) x
107" m3.kg=1-572), m; and ms are the masses of the respective objects, and r is the
distance between the objects. The force is therefore directly proportional to the masses
of the objects, and indirectly proportional to the square of the distance between them.
For our use case, this means that the forces exerted on two nodes that are close together
will be higher, and they are more likely to collide. On more distant objects, on the other
hand, the impact will be much lower. Only junction nodes are affected by the attraction
force. The mass of a node is interpolated between two predefined values, based on the
mixing ratio of the respective layout and a dynamic priority parameter (explained further
below). This range needs to be defined based on the implementation, as very low values
may cause too erratic movements, while excessively high values will result in extremely
slow simulations.

If two nodes collide, they are merged into one. The properties of both nodes are combined
either by blending or by selecting one over the other. In the latter case, the respective
properties with a higher priority are applied to the merged node. The edges connected
to both nodes are combined in the merged node, though some limitations are applied to
reduce the number of redundant edges in the output data. For example, if both nodes
are connected to a third node, only one edge is kept. Similarly, if the angle between two
of the edges is too low, one of them is removed. Figure 3.1 shows a step-by-step depiction
of the attraction and merging process.

(a)t=0 (b) t=1 (c) t=2) t=3

Figure 3.1: A step-by-step depiction of node attraction and merging caused by gravita-
tional forces. (a)-(c) The two nodes exert attraction forces on each other. (d) Nodes
have collided and were merged into one. One of the two top edges has been removed.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w 3ibliothek,
Your knowledge hu

3.1. Theoretical Approach

To prevent a collapse of the road network due to the gravitational forces, a counter-force is
necessary. This is implemented as a spring force. Each edge acts as an elastic spring that

tries to keep its connected nodes in the same orientation and distance from each other.

The springs are configured with certain stiffness and damping parameters that apply
to both extension and compression. These allow roads to be stretched and compressed
within certain limits. Due to the interconnectivity of road networks, the effects are
relayed to other nodes and edges as well. The deformation caused by moving a single
node is therefore distributed across multiple edges in the vicinity. This allows a layout to
be transformed, while still keeping the overall shape intact. Figure 3.2 illustrates this
behavior.

(a) t =0 (b)t=1 (c) t =2

Figure 3.2: An illustration of the impact that the springs have on the rest of the road
network. The gravitational force exerted on a single node is distributed across the local
network.

The frequency of the springs, as well as the attractive forces exerted by the nodes, are
scaled in direct proportion with the mixing ratio of the respective input map. Predefined
value ranges serve as base for the interpolation:

f = fmm + mixRatiol(fmax - fmzn)

Here, mix Ratio; is the mixing ratio of the respective layer, and [fnin, fmaz) is the interval
that specifies the frequency range. Overall, this results in a more stable network if the
mixing value is high for a specific input data set. On the other hand, a lower value causes
the layout to transform more easily. As the gravitational forces exerted by nodes on
other layers have a greater impact, it will adjust to these more readily. Furthermore, the
priority of each node is calculated based on the edges that connect to it. Larger roads

are considered to be more important, as they represent the arterial connections in cities.

To protect these structures from too much distortion, nodes with a higher priority exert
greater attraction forces. Figure 3.3 shows a visualization of the forces present during
the attraction process.

The above processes are executed in a loop with a configured number of iterations. It can

be broken down into individual steps, the first of which performs the force calculations.

27

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w 3ibliothek,
Your knowledge hu

3.

DATA-DRIVEN GENERATION OF CITY LAYOUTS

28

Figure 3.3: An illustration of the forces at play during attraction. The actual attraction
forces are shown in red, the spring forces in black and white.

Attractive forces are calculated and temporarily stored for each node. Next, they are
converted into actual movement through the physics simulation. This is performed with
consideration of the physical properties assigned to nodes, as well as any spring forces
that take influence. Through these movements, compression and extension of edges occur,
which in turn cause spring forces to be applied to nodes. Nodes that have collided in
the previous step are then merged if the conditions are met. After a certain number of
iterations, the resulting layout is cleaned up in a post-processing phase. Invalid structures
are corrected and the result is improved. For instance, roads might cross over each other
without being connected via a node that acts as a junction. These situations can occur
because road networks are simply placed on top of each other in the beginning. In such
cases, a junction is created between the crossing roads.

The proposed algorithm employs a non-parametric approach to data-driven procedural
generation. The complete road networks from the input data sets are included in the
processing phase, resulting in no explicit loss of information.

3.2 Source Data

For applications relying on real-world geographical data, several sources are available.
Previous works have frequently been seen to use GIS data [ABVA0S8, AVB08, MWH™06,
WMV T08]. In fact, any kind of information bound to spatial coordinates can be regarded
as a GIS. The inclusion of spatial information makes it possible to map individual data
points to specific locations. It can take the form of latitude and longitude values, but also
more complex positional information. As the definition of GIS is very imprecise, many
different formats exist to digitally represent geographical data. Due to its complexity,
special kinds of databases are often necessary to store the information. These factors can

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

3.2. Source Data

make it difficult to work with location-bound data. To combat this, institutions like the
Open Geospatial Consortium have developed standards for GIS data to facilitate the
integration in applications [OGC20].

One of the first modern, publicly available GISs was Google Maps [Law15]. Before its
release in 2005, geospatial data was difficult to obtain and process. The web-based
application allowed consumers to freely browse and search global GIS data. An open-
source alternative is OpenStreetMap [HWO08]. The community-driven project relies
heavily on user contributions to create and maintain its map data. In turn, all of its data
is available free of charge via APIs and web applications.

Many countries and cities nowadays also make their geographical information available
online. Thanks to open-data initiatives, the public can generally access this data freely.
Apart from easier data sharing, the drivers for governments to open their data include
better transparency and accountability, the possibility for citizens to participate in
governance, and increased innovation and economic growth [Jan12]. However, there are
also considerable costs associated with open data for governmental bodies [JSST17].

To obtain input data for our presented system, multiple sources have been evaluated.
The data source for this work had to fulfill several criteria:

e Accessibility: The data had to be freely accessible.

e Correctness: The data had to be reasonably correct. Small issues do not cause any
problems, though there should not be any major inaccuracies.

e Data format: The data had to be in a well-described format that is easy to parse
algorithmically.

e License: The data had to be licensed as permissive as possible and permit the
publishing of modified data.

Google Maps presents a relatively high data quality [CJMW10]. However, even though
it is one of the most popular mapping services, the data cannot easily be exported and
downloaded. API access is possible, but not in a way that would be suitable for our use
case. Geospatial open data provided by cities themselves would most likely be the most
correct data source, as they generally include all new developments as soon as they are
constructed. Due to the fact that cities typically provide this data on their respective
websites, the accessibility aspect is affected. Furthermore, the data formats that are used
by different sources can vary, making it difficult to parse the data.

Data from OpenStreetMap, on the other hand, is easy to obtain and process. Public APIs
exist that are free to access, and the resulting data follows a well-defined structure. The
licensing model is very permissive, allowing the usage, modification, and redistribution of
their provided data, as long as OpenStreetMap and its contributors are credited [Opel8§].
Since the content is generally created by the community, the quality is not guaranteed.

29

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

3.

DATA-DRIVEN GENERATION OF CITY LAYOUTS

30

In fact, research has found that the reliability of OpenStreetMap data is still lacking
[BJAT16]. Especially the heterogeneity of the data, often caused by different production
processes, could cause difficulties for applications [GT10]. Despite these drawbacks, it
was decided to base our application on data provided by OpenStreetMap. The ease of
access, open licensing model, and well-defined data structure have a high priority for this
use case. As the city map generated by our application does not include any geospatial
coordinates, slight inaccuracies in the input data don’t cause any issues.

3.2.1 OpenStreetMap Data

OpenStreetMap data is organized based on a specified structure. The data model contains
three basic elements [HWO08, Opel4]:

e Nodes, which are points in space
e Ways, which define lines and boundaries

e Relations, which define relationships between other elements

Additionally, each element may have one or more tags associated with it. In general, the
data structure follows an extended link/node model as it was described in Section 2.1.2.
Links in the OpenStreetMap data format are represented by way elements. However,
ways do not always just cover a single line segment but may cover many. An ordered
array of up to 2000 nodes can be part of a way [Opeld]|. Therefore, a way defines a
polygonal chain. Direct connections between two nodes inside a way are always straight.
To represent curves and more complex shapes, additional nodes can be created. By
adding these at their respective positions in a way, irregular shapes can be sampled and
approximated.

Among others, ways are used to represent roads. Other uses of ways include rivers,
railway lines, or areas such as parks, but these are not relevant for the presented system.
The start- and endpoints of a road are determined by the first and last nodes that are
part of the way, respectively. A very simple, straight road in the OpenStreetMap data
format thus consists of two nodes and one way element, which references these two nodes.

To identify a way as a road, OpenStreetMap uses the tag highway. Contrary to the
meaning of the word in American and Australian English, it is used for “any road, route,
way, or thoroughfare on land which connects one location to another and has been paved
or otherwise improved to allow travel by some conveyance, including motorised vehicles,
cyclists, pedestrians, horse riders, and others (...)” [Opel4]. Different kinds of roads
can be distinguished by the value that is given to the tag. The most notable ones are
motorway, trunk, primary, secondary, tertiary, unclassified, and residential. However, the
tag is also used for other road features, such as crosswalks, elevators, or platforms at bus
stops. To obtain a correct and cohesive data set of a city’s road network, these features
have to be filtered. This could generally be performed either as part of our application
or at the API level.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

3.2. Source Data

3.2.2 Obtaining Data
Data can be obtained directly from the OpenStreetMap website in an XML format. A

global osm element contains all elements representing nodes, ways, relations, and tags.

XML tags are used to add more information to elements, such as a unique id, location
data, or a timestamp of the last modification. An example of an OpenStreetMap data
file can be seen in Listing 3.1.

Listing 3.1: An example of an OpenStreetMap data file

<?xml version="1.0" encoding="UTF-8"?>

<osm version="0.6" generator="Overpass_API_0.7.55.9 abd4lfeatc">

<note>The data included in this document is from www.openstreetmap.org. The
data is made available under ODbL.</note>

<meta osm_base="2020-02-02T15:04:022"/>

<bounds minlat="48.1950352" minlon="16.3685828" maxlat="48.1954375" maxlon=
"16.3690683"/>

<node 1d="35479449" 1at="48.1952970" lon="16.3693475"/>
<node 1d="35479550" 1at="48.1951977" lon="16.3684291"/>
<way 1id="5132481">

<nd ref="35479449"/>

<nd ref="35479550"/>

<tag k="highway" v="living_street"/>

<tag k="1lit" v="yes"/>

<tag k="maxspeed" v="7"/>

<tag k="name" v="Mozartgasse"/>

<tag k="oneway" v="yes"/>

<tag k="source:maxspeed" v="AT:walk"/>

<tag k="surface" v="asphalt"/>
</way>

</osm>

The export function on the OpenStreetMap website is limited to a maximum number
of 50000 nodes. As there is no option for filtering the data, apart from a bounding box
selection, this limit is quickly reached. This makes it unusable for obtaining city-scale
datasets.

Other sources and mirrors exist that allow the download of larger amounts of data. For
example, the project Planet OSM' provides regularly updated copies of the complete
OpenStreetMap data. However, the compressed size of such a file is 85 GB at the time
of writing, making it unsuitable for our use case. Another available data source is the
Overpass API?. Contrary to the main OpenStreetMap API, it is optimized for reading
and filtering data. Therefore, it also supports the use of search criteria to limit the

number of results. To implement these filters, a special query language needs to be used.

The Overpass Query Language (Overpass QL) allows the user to specify the desired

'nttps://planet.openstreetmap.org (Accessed: 11.02.2020)
2http://overpass—api.de (Accessed: 11.02.2020)

31

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

3.

DATA-DRIVEN GENERATION OF CITY LAYOUTS

32

elements, perform filtering by bounding box, area, tag, or other property, find relations,
and more. Besides, the Overpass Turbo® tool makes it possible to easily develop and test
queries using a Graphical User Interface (GUI).

Thanks to the filtering capabilities of the Overpass API and Overpass QL, less work
needs to be invested in preprocessing data to remove undesired road features. To identify
which elements shall be included in the filter query, the OpenStreetMap data from several
cities in different countries have been inspected. The goal was to find the criteria which
would permit a general application of the filter, without being too restrictive (i.e., missing
roads) or too permissive (i.e., undesirable data points). As all roads carry a highway tag,
this was used as a starting point to define a white-list filter for possible values. Using
Overpass QL, the filter function shown in Listing 3.2 has been developed to obtain the
desired data.

Listing 3.2: A filter function for all roads using Overpass QL

[out:xml] [timeout:25] [bbox:{{bbox}}];

way ["highway"~"motorway|trunk|primary|secondary|tertiary|unclassified]
residential |motorway_link|trunk_link|primary_link|secondary_link|
tertiary_link|living_street|service|pedestrian|road"]
[llareall !=llyesll]
({{bbox}1});

// recurse down: add all nodes that are part of these ways
(._i>i)

out;

The filter function is intended to be used on Overpass Turbo, as this allows easy selection
of the desired bounding box. First, the request settings are declared. Those specify the
output data format and a timeout that should be long enough for city-scale bounding
boxes. Secondly, a query statement for ways is performed inside the bounding box. Only
ways that have a highway tag with one of the specified values are included. As ways can
also be used to represent areas, those are removed from the result set. Next, recursion is
performed to grab the remaining data. This step makes sure that all nodes that are part
of the queried ways are also part of the output. Finally, the data is output.

3.2.3 Possible Issues

The heterogeneity of OpenStreetMap data, as described above, can lead to difficulties
in the city generation process. This is often due to different sampling resolutions. For
example, a long, straight road without any intersections can be represented in multiple
ways. The simplest, as described above, only uses two nodes. However, it is also possible
to subdivide it into smaller segments, by adding more nodes along the way. For a
visualization application, this does not make a big difference, since the result would be

%nttp://overpass-turbo.eu (Accessed: 11.02.2020)

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

3.3. Implementation Concept

the same. An application that relies on these waypoint nodes to find possible intersection
points, such as ours, will produce a different output.

Difficulties can further arise from parallel ways defined in OpenStreetMap. When lanes
are divided by a barrier, such as a wall or vegetation, the road is modeled as two
individual way elements. As the presented application uses a data format that only
allows a single connection between two nodes, such situations have to be considered and
handled appropriately. This is explained in more detail in Section 3.4.6.

Another possible issue is the inconsistent classification of roads. While a number of
examples and best-practices for road classification exist [Opeld], these can hardly be
enforced. As a result, additions or modifications from different sources may use other
categories for the same road types. For example, alleys in the historic center of Rome
(Italy) that are accessible to cars are mostly classified as highway=service. Similar streets
in Vienna (Austria) are tagged as highway=living__street or highway=residential. In turn,
the tag highway=service is mostly used for parking aisles. This difference can be seen in
Figure 3.4. As a result of this varied classification, the tags cannot be used effectively as
a measure for street priority for our application.

||| oteaco
o voniecioro

o Palazzo
PP Baldassin

b
Seonanapog (s

Palazzo

Jadama Gan

S5 uonn et

£ aare
b fase

B

o
&

o

Figure 3.4: Difference in street labeling in OpenStreetMap. Streets of type service have
been highlighted in the historic centers of Rome (left) and Vienna (right).

3.3 Implementation Concept

To showcase the devised algorithm, an application was developed that implements it.
Several requirements have been composed, which the software should fulfill. These can be
divided into scope constraints, functional requirements, and non-functional requirements.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

3.

DATA-DRIVEN GENERATION OF CITY LAYOUTS

34

3.3.1 Scope Constraints

The application is of prototypical nature. It serves mainly as a means to present and
evaluate the algorithm described in Section 3.1. Therefore, the scope can be limited by
the following constraints:

e The software does not need to run as a standalone application. It is sufficient to
run it in the context of a game engine.

e The input data is provided by the user as files in the correct format. The bounding
box is limited beforehand.

e The application operates on a two-dimensional plane. Height values from the input
data sets (if present) are disregarded by the generation process and are not exported
as part of the output data. In future work, it might be interesting to include height.

e The output does not contain any location information. Geographical coordinates
are not processed by the algorithm, and no direct relations to geospatial locations
are present in the output.

e The output is not represented in a GIS-compatible data format. As the prototype
focuses on displaying the results, the preparation of the data for subsequent use is
not part of the scope.

3.3.2 Functional Requirements

To accurately represent the devised algorithm, several requirements have to be met. The
following enumeration lists the properties that are necessary for the system.

e The application allows the user to select multiple road layouts as input, along with
their respective mixing ratios.

e The user-defined mixing ratios influence the procedural generation process. Higher
values result in less modification of the source data. Lower values cause more
distortion of the input.

e The user can influence the generation process indirectly. Default parameters can
be modified before starting the algorithm to change the behavior of the system.

e The user can influence the generation process directly during runtime. By moving
individual nodes and triggering merges, it is possible to modify the result.

e The application produces an output file that depicts the result of the generation
process.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

3.3. Implementation Concept

3.3.3 Non-functional Requirements

In addition to the functional requirements listed above, a number of non-functional
requirements should be met by the software.

e The hardware requirements can be met by up-to-date consumer hardware. The
demands for CPU and RAM for ideal operation are not higher than what can be
provided with current gaming hardware.

e The running time of the software is acceptable. On up-to-date hardware, the time
required for processing two large cities is no longer than 12 hours.

e Adequate frame rates of rendering are achieved for interactive use during iterations.

e The application is reusable for future projects. It is packaged in a way that allows
other developers to make use of it.

e The source code is extensible. If new features are required in the future, they can
easily be added to the application.

3.3.4 Software Design and Architecture

To support the efficient development of the prototype application, a game engine with
support for physics simulations is used as a base. This reduces the amount of work
considerably because many functionalities are already provided. Similarly, the availability
of a physics engine removes the need to implement physical processes and interactions.

The application is intended to run on a single desktop PC. The actual algorithm is
contained as an integral part of the application. As a result, no external interfaces are
required.

Internally, the application logic is divided into several modules. From a high-level
perspective, the following components can be identified in the system:

e The main controller which manages the program flow.

e The physics engine responsible for updating node and edge positions based on the
exerted forces.

e Multiple Nodes, which operate independently in conjunction with the physics
engine.

e Multiple Edges, for which the same applies.

A schematic view of these is shown in Figure 3.5. All of the components operate inside
the game engine environment. The CityMerge controller is the main interaction point for

the user, as it is in charge of handling the input data and setting up the environment.

35

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

3.

DATA-DRIVEN GENERATION OF CITY LAYOUTS

36

As the devised algorithm follows an iterative approach, the main controller also counts
the iterations and advances the physics simulation. Furthermore, it is responsible for
switching between stages and triggering the output.

Nodes and edges are created based on the information extracted from the input data
sets provided by the user. During the simulation phase, there is no global control over
their behavior. All elements perform local operations on their own, acting as individual
agents. They operate independently, based on preprogrammed rules and their physical
properties. Modifications to shape and position are controlled by the physics engine.
Implicit feedback is provided through extensions and compression of edges. Thus, each
junction node is in charge of applying attraction forces to nodes in its vicinity. The actual
translation of objects is performed by the physics engine, based on the applied forces.

Game Engine

2]

N CityMerge ~ Physics

jg - Controller o~ Engine
Simulation

Input
i Parameters Control
User
O— Nodes O
Ositioning Positioning
E I x and

T i Feedback

2]

N Game Engine
jg Interface

B 4
Visualization, |
Interactive Contro E -
O— Edges ‘o)

Positioning Positioning
and
I Feedback

Figure 3.5: A schematic view of the individual components and their interconnectivity
from a high-level perspective.

On a coarse level of detail, the program flow can be divided into different stages:

1. Initialization
2. Main content generation

3. Post-processing

This flow is managed by the main controller. In the initialization phase, the input data
provided by the user is read and parsed. Nodes and edges are created to represent the road

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

3.4. Implementation of the CityMerge System

networks. They are initialized with appropriate parameters that control their behavior.

The actual merging of road networks to a combined layout occurs in the main loop. This
procedural generation process is run in a decentralized manner, distributed across all
individual node and edge objects. The first step is the calculation of attractive forces in

each junction. The forces are applied to the affected nodes, but no movement occurs yet.

This is important so that the effect radius of other junctions is not influenced. Next, the
physics simulation is performed. It uses the applied forces in combination with physical
properties to execute the movement of the nodes. The physics engine also calculates
and incorporates the springs at this point. Lastly, overlaps that have occurred due to
node movements are resolved by merging the affected nodes. After the desired number of
iterations have passed, this process is stopped. In the post-processing stage, the result is
improved by fixing invalid data points and cleaning up the network, to achieve a more
plausible result. Algorithm 3.1 shows the application flow in high-level pseudocode. A
more detailed description of the implementation is described in Section 3.4.

Algorithm 3.1: The high-level application flow in pseudocode.

Data: A list of input data sets maps

=

nodes, edges < Initialize(maps);

while ¢ < 4,4, do
CalculateForces(nodes, edges);

w N

4 SimulatePhysics();
5 MergeCollidedNodes();

6 141+ 1;

7 end

o]

Postprocess(nodes, edges);

3.4 Implementation of the CityMerge System

In this section, a detailed description of the implementation will be given. Firstly, the

selected development platform and the motivation for its selection will be presented.

Details about extensions and libraries that are integrated into the application are also
found below. Next, the different stages, as well as the individual components of the
application, will be described. Lastly, several measures that were taken to improve the
performance will be explained.

37

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

3.

DATA-DRIVEN GENERATION OF CITY LAYOUTS

38

3.4.1 Unity Game Engine

The game engine selected for the implementation of this application is Unity*. A number
of factors influenced this decision. Unity is a development platform available for Windows,
macOS, and (in a preview version) Linux. This makes it usable on different platforms,
though applications can be created to target a number of different devices. Several
licensing models are available, though the basic version is completely free and royalty-free
for personal use. For our use case, the functionality provided by this version is sufficient.

The Unity engine can be used to create applications in both 2D and 3D. Its adoption
is not limited to video games. In fact, it is targeted towards many other industries as
well, such as manufacturing, animation, or architecture [Unia]. It was also applied for
simulation applications [Jarl4]. In general, Unity is a very popular environment for
2D and 3D applications. A large number of resources in the form of documentation,
online tutorials, and books are therefore available. For our application, this means that
inexperienced users can get used to the environment quickly if they are not already
familiar with it. Furthermore, it will not be difficult for developers to extend our system
with new functionality. Another consequence of Unity’s high popularity is the availability
of libraries. In addition to packages distributed via the Unity Asset Store®, many open-
source projects are available for Unity. Further motivation to select Unity came from the
fact that knowledge acquired in previous projects could be applied here.

Unity uses GameObjects to represent entities inside its environment. The behavior of
these objects can be controlled by adding Components. These can be preprogrammed
behaviors provided by Unity, such as colliders, or components developed by users. Custom
scripts, called MonoBehaviours, can also be added to GameObjects. As a programming
language, Unity uses C# based on .NET.

The main loop in Unity is controlled via event functions. These are called at specific
points in time, depending on their purpose. For example, an Update function is available
in all MonoBehaviours. It gets called once for each frame and is intended to contain
game logic that requires continuous processing. These event functions are further used to
manage the life cycle of objects. Figure 3.6 shows the game loop in Unity as a flow chart.
The main loop in Unity thus consists of a physics update, processing inputs, running
the game logic, and rendering. However, the physics update may be executed more than
once per frame, or not at all [Unib]. This may happen because physics calculations are
executed on a fixed time interval, as opposed to the constant dynamic calls used for the
game logic. If this time interval is lower than the actual duration of the frame, another
update is triggered. As the time elapsed between two FizedUpdate calls is constant, it
allows video games and other applications to compute physics independent of the frame
rate. For our use case, however, this behavior is not necessarily desired. Instead, control
of the physics update is given to the main controller.

‘https://unity.com (Accessed: 11.02.2020)
"https://assetstore.unity.com (Accessed: 11.02.2020)

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

3.4. Implementation of the CityMerge System

Initialization

r 2
s

A 4

0

FixedUpdate

A

Internal Physics

Update Physics

Collision Handling
~——

N J
A

Input Events

Y

—

Update

T

Internal Animation
Update

Game Logic

LateUpdate

Rendering

e _
\ 4

Decommissioning

Figure 3.6: A visualization of the program flow in Unity [Unib]. For better visibility,
some parts have been combined or omitted.

3.4.2 Frameworks and Libraries

To facilitate the development of the CityMerge application, external functionality has
been integrated. This was done through the use of existing libraries at well-chosen points
in our system, such as for physics simulation or data structures.

Unity comes prepackaged with a physics engine that enables the simulation of object
interactions in real-time. For our presented system, this has a high priority as most of

39

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

3.

DATA-DRIVEN GENERATION OF CITY LAYOUTS

40

the recurring calculations are based on game physics. The engine simulates the motion
of objects based on the laws of classical mechanics, which allows us to specify graspable
parameters for nodes and edges. Furthermore, it supports joints and collision detection.
Joints can be configured in various ways, such as to allow stretching and compression
within certain constraints. Collision detection allows us to quickly check if two nodes
have collided, and merge them into one as a result.

To work with the data from the input street layouts, the files need to be parsed. Data
exported from OpenStreetMap via the Overpass API is typically stored in an XML
format, making it relatively easy to process. The open-source project real-world-map-
data® implements such a parser. The goal of this project is to visualize data from
OpenStreetMap in Unity. As such, it provided a great starting point for our data parsing
component. However, as we require much more complex handling of the data apart from
visual representation, the code had to be heavily modified to suit our needs.

The data extracted from the input maps are stored in a graph data structure. For this
purpose, an adaptation of the QuickGraph library” is used. It provides multiple types
of graphs, though only the bidirectional graph is used in our application. Functions to
perform different kinds of calculations on graphs are available in the library.

3.4.3 Project Setup

Development was done using version 2019.2.11f1 of Unity. This version was chosen over
more stable Long Term Support (LTS) releases to maintain forward-compatibility as
much as possible. To that end, care was also taken to not use any deprecated APIs that
may be removed in future versions.

The project was created using the template aimed at 2D applications. As our system oper-
ates purely on a two-dimensional plane, this provided a useful default setup. Furthermore,
the camera was set to use an orthographic projection method for rendering.

A few project settings were modified to better suit our needs. First of all, the API
compatibility level was set to “NET 4.x”. By default, Unity uses “NET Standard
2.0”. However, external libraries used by our application require functionality that is
not available in that profile. Secondly, the physics configuration was updated to reuse
collision callbacks. When a collision occurs, Unity calls an event function implemented
by the user, which can then act accordingly. This function receives an object containing
information about the collision, such as the position, the two affected objects, or the
velocity. To reduce memory allocation, Unity was instructed to reuse these objects,
instead of destroying and re-creating them for each collision. Lastly, the fixed timestamp
for physics calculation was raised from 0.02 to 0.05. Even though this results in slightly
longer overall computation times, it makes the system more responsive to user input.
Depending on the hardware, it may be advantageous to raise this value further or even

Shttps://github.com/codehoose/real-world-map-data (Accessed: 11.02.2020)
"https://github.com/davidgutierrezpalma/quickgraphdunity (Accessed: 11.02.2020)

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

3.4. Implementation of the CityMerge System

reduce it. As a rule of thumb, a higher value will probably work better for less powerful
systems, while lower values will result in a faster simulation if the hardware is strong
enough.

3.4.4 Main Controller

The main controller is the principal interaction point for the user. It is implemented as a
MonoBehaviour, which is assigned to a GameObject. Before starting the simulation, the
user assigns the input maps and specifies the mixing ratios. Aside from that, the number
of iterations to be performed is specified via this component, as well as further settings
used mainly for debugging purposes. The same GameObject also has other components
attached. Builder methods implemented as MonoBehaviours are assigned to it as well,
which allows the selection of the respective prefabs. Furthermore, a PostProcessor script
that handles the post-processing is attached.

The main controller is in charge of controlling the program flow. To simplify this, it
is split into different phases which are run sequentially. Possible transitions are also
handled by this component, which performs the necessary operations. Furthermore, the
controller keeps track of the execution time for each phase. A timer is started before
each phase is started, and stopped after it has finished. This allows simple statistics to
be printed out for the user.

When the application is started, the provided input data is verified. The mixing ratios
are further validated, as they are required to add up to a total of 1, or 100%. Afterward,
the import of the data is started. This process is explained in detail in Section 3.4.5.

When the import is finished, the simulation loop is started. During this phase, the main
controller is responsible for triggering the physics simulation. For each iteration, it calls
the appropriate function to advance the generation process. As the automatic physics
execution is disabled, the internal physics update needs to be called explicitly. This is
done in the FizedUpdate function. As this event function is called on a fixed time interval,
the behavior closely relates to the normal Unity event flow illustrated in Figure 3.6. The
simulation loop is handled in Section 3.4.7. When the maximum number of iterations is
reached, the controller switches to the post-processing phase.

The cleanup stage is the first of two post-processing stages. Here, the generated road
network is validated by fixing any coherency issues. This is done through the use of an
asynchronous function. After the cleanup is finished, a callback event is emitted that
notifies the main controller. During the second post-processing stage, possible artifacts
are removed from the resulting road network. This will be explained in more detail in
Section 3.4.8.

When processing is finished, the main controller triggers the output. The road network is
exported as an image file in the PNG format. The alpha channel is used for transparency,
which facilitates further use. The output can also be manually triggered by the user. By
pressing the F'9 key at any time during processing, the current node and edge positions
are exported.

41

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

3.

DATA-DRIVEN GENERATION OF CITY LAYOUTS

42

3.4.5 Map Import

The data import is triggered by the controller, with the source file paths provided by the
user. Information about nodes and edges is extracted from each of the XML files. The
XML library provided by .NET allows the use of XPath expressions [CD99]. This query
language can be used to address nodes in an XML document using path-like expressions.
It is assumed that the data has already been filtered using the recommendations provided
in Section 3.2.2. Therefore, no more refinement is necessary at this stage. A list of nodes is
obtained using the expression /osm/node, whereas edges are obtained with /osm/way.
The data obtained this way is then transformed into an internal data structure.

In addition to that, the boundaries of the selection are obtained from the data. The
bounding box is necessary to convert the location information from geographic coordinates
into Cartesian coordinates. This is achieved using the Mercator projection [Sny87]. A
static class implements functions to convert latitude and longitude values into x- and
y-coordinates on a plane. Furthermore, the relative positions of each node are calculated
by subtracting the center point of the bounding box. As a result, the imported map can
be placed at the origin of Unity’s coordinate system.

In the OpenStreetMap data format, nodes are only linked to edges by tags containing
their respective identifiers. This allocation is made explicit by assigning references to
node objects to edge instances. As an intermediate step, a bidirectional graph is created
out of the nodes and edges extracted from the source data. The motivation to store the
objects in this data structure is the facilitated preprocessing. The QuickGraph library
provides useful functionality, such as the calculation of a node’s degree.

The generated graph is then used to create the actual node and edge objects used for the
simulation. On initialization, the type of a node needs to be determined. A project titled
OSMnz has addressed a similar issue in the past [Boel7]|. The authors have developed a
method to automatically plot city maps based on data from OpenStreetMap. For this
purpose, they intended to simplify the road network by removing all OpenStreetMap
nodes which did not represent vertices from a graph-theoretical point-of-view. This
method has been adapted to our use case. We determine the classification of a node as
follows: A node is considered a junction node if any of these conditions apply:

1. The node is an endpoint, i.e., the end of a dead-end street
2. A change from a one-way to a two-way street occurs at the node

3. More than two streets intersect at the node

Otherwise, the node is considered a waypoint. Figure 3.7 illustrates the classification
of nodes. It can easily be seen that the number of waypoint nodes is relatively high in
comparison with the number of junctions. Especially at roundabouts, it is common that
many nodes are created to approximate the curvature of the roads.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w 3ibliothek,
Your knowledge hu

3.4. Implementation of the CityMerge System

Figure 3.7: A visualization of the different node types. Junction nodes are highlighted in
red, waypoint nodes are shown in blue.

3.4.6 Data Structure

The data structure used to store the road network information represents a directed
graph. Node objects make up the vertices of the graph, while edge objects represent the
links. Every edge connects exactly two nodes in a specified direction. For this reason,
each edge carries references to its source and target nodes.

Similarly, nodes keep references to the edges they are a part of. The number of edges
that start or end at a given node is not limited. However, duplicated edges between

the same two nodes are not permitted, as this would make processing more complex.

This also applies to road segments connecting the same nodes in opposite directions. If
such a situation presents itself, only the edge that was first encountered is retained. The
direction of roads is recorded, but only used for internal processing. To differentiate
between incoming and outgoing edges, two distinct collections are maintained for each
node. Furthermore, each node is of a specific type. In most cases where object-oriented

programming methods are applied, such a classification can be modeled using inheritance.

For our application, however, this would result in several difficulties. Waypoint nodes
can be merged with other nodes during the simulation, which might result in a junction
node. In such a case, the node type needs to change at runtime. If inheritance were to
be used, this would require deletion and re-creation of the affected component. Likewise,
the same would apply if a junction node were to change into a waypoint node when an

43

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

3.

DATA-DRIVEN GENERATION OF CITY LAYOUTS

44

edge gets removed. This would not be impossible, though it is generally advantageous to
keep object initialization and destruction at runtime to a minimum, so as to reduce the
performance impact caused by garbage collection. Therefore, a simple flag that specifies
the node type is used. This is controlled by the node object itself, along with other
properties that change together with the type.

In our application, nodes and edges are GameObjects with specific components attached.
The attached components are in charge of different functionality and are decoupled from
each other wherever possible. As such, they can easily be extended or replaced. The
addition of new MonoBehaviours for added functionality can also be easily achieved.
For nodes, the most notable component is NodeBehaviour. It holds the aforementioned
references to the connected edges, as well as logic to change the node type. To determine
the rank of a node during simulation, a priority field is used. This value is calculated
internally, but it is made accessible via a public property. Similarly to nodes, edges hold
an EdgeBehaviour component that contains references to the source and target nodes. It
further holds the number of lanes of the represented road segment.

Figure 3.8 illustrates the relation between nodes and edges as a Unified Modeling Language
(UML) class diagram. There is no complete collection of the whole network graph. Instead,
the data structure is distributed across individual instances of nodes and edges. As a
result, bidirectional references are necessary. The direction of edges does not represent
the actual direction of travel in the real world. Therefore, the differentiation between
incoming and outgoing edges would not strictly be necessary in most cases. However,
this distinction is important for the presented system. This is caused by the use of spring
joints, which will be detailed below.

Nodes and edges are generated by builder methods. In general, the builder design pattern
is used to separate the construction of an object from its representation [GHJV95]. This
separation has the goal of allowing the same instantiation process to be used for different
representations. In our application, the motivation stems from the initialization process
in Unity. Template objects are available for both nodes and edges, according to which new
objects are created. These can be modified or replaced, if different properties are desired
by the user. By providing builder components as a single point of contact, this replacement
is very easy. The available prefabs are detailed in Section 3.4.10. Furthermore, the use of
builders encapsulates the logic for instantiating new node and edge objects. This results
in a looser coupling of the system, as changes can easily be made to the creation process
by only changing a single script.

3.4.7 Simulation Loop

During this phase, the central algorithm is run. As the game logic is distributed across
multiple components, several parts need to be considered. The Update and FixedUpdate
methods provided by Unity are used as entry points. In general, the order in which
these functions are executed in different scripts is arbitrary, as it solely depends on the
order in which they are loaded. However, a strict order is necessary for our application.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

3.4. Implementation of the CityMerge System

MonoBehaviour

NodeBehaviour EdgeBehaviour

+ type: NodeType + numLanes: int
sourceNode inEdges

1 *

- priority: float

<<property>> + Priority: float {readOnly}
targetNode outEdges

1 *

<<enumeration>>
NodeType

Junction

Waypoint

Figure 3.8: The relations between nodes and edges in UML notation.

Unity allows the specification of a custom execution order in the project settings. This is
configured in the following way:

1. Attractor
2. Default
3. NodeMerge
First, the attraction calculation is run. The “default” entry includes all scripts that are

not explicitly configured. This applies to the main controller, which triggers the physics
simulation. Both attractive forces and spring forces are handled by the physics engine

at this point. The script responsible for merging nodes if they overlap is executed last.

This ensures that all other operations have finished at that point.

The Attractor script is responsible for calculating and applying the attraction forces to

nodes. The component is applied to all nodes, but it is only enabled in junction nodes.

45

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

3.

DATA-DRIVEN GENERATION OF CITY LAYOUTS

46

As the node type can change, it may get enabled or disabled for a given node after each
iteration. The script uses a method provided by the Physics2D library to find nodes
in its vicinity. This function returns all colliders within a given radius. Using a layer
mask, the result can further be narrowed to only contain nodes on a different layer. For
each node, an attraction force is then computed based on its physical properties. These
are obtained from the Rigidbody component attached to each node. The most notable
ones are mass and drag. The mass of both the attracting and the attracted nodes are
directly integrated into the force calculation. The drag values, on the other hand, are
solely used by the physics engine. These influence the amount of motion resulting from
the application of a given force.

The calculation of the force is based on the equation for universal gravity. In theory, the
gravitational constant is defined as G = 6.67430(15) x 10~!* m3.kg=t.s72 [TMNT20].
Consequently, gravitational forces only have an impact when the masses are high and are
negligible for small values. Unity generally uses a single-precision floating-point format
to represent decimal values, which can lead to inaccuracies when very large or very small
numbers are used [WFfl11]. To work around this issue, the gravitational constant used
in our application has been scaled up by a factor of 10'3. Furthermore, an additional
moveSpeed factor has been introduced for more detailed adjustments of the force. This
allows us to use smaller values for the masses of objects, while still keeping the same
expected behavior. The function used to calculate the force is presented in Listing 3.3.

Listing 3.3: Implementation of the attraction force calculation

private void Attract (Rigidbody2D rbToAttract) {

Vector2 direction = thisRigidbody.position - rbToAttract.position;
float sgrDistance = direction.sqgrMagnitude;

// Prevent division by 0
if (Mathf.Approximately (sgrDistance, 0f))
return;

// Newton’s gravity with scalable gravity constant
float forceMagnitude = (G » moveSpeed) x (thisRigidbody.mass =
rbToAttract.mass) / sqrDistance;

// Clamp force magnitude
if (forceMagnitude > MaxForce) {

forceMagnitude = MaxForce;

}
Vector2 force = direction.normalized » forceMagnitude;

rbToAttract .AddForce (force, ForceMode2D.Impulse);

Gravitational forces, in theory, are not limited by distance. If implemented according to
this notion, it would mean that all junction nodes would impact all other nodes in our

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

3.4. Implementation of the CityMerge System

application. This would result in a computational complexity of O(n?) for the attraction
algorithm. As the number of nodes is relatively high (around 25000 for medium-sized
city portions), a considerable amount of calculations would have to be done for each step.
In practice, gravitational forces become negligible when the distance between the objects
is substantial. This characteristic is used by our application to limit the radius in which
gravitational forces are applied to r = 200. As a result, the strain on the physics engine
is reduced considerably.

In certain cases, the calculated force can reach extremely high values. This can occur
when two nodes are very close to each other, but their colliders don’t intersect. If such
a large force were to be applied to a node, the next physics simulation would cause it
to move over its target. As discrete collision detection is used in our application, the
physics engine would not detect any contact in such a case. To prevent this, the force is
limited to a maximum value of Fi,q; = 500.

For 2D physics, Unity supports two types of forces®: Force and Impulse. The former
adds a continuous force to the object, while the latter applies an instant force impulse.
Both modes take mass and drag into account. As the forces are recalculated in each
iteration, there is no need to apply a continuous force. Instead, an impulse is applied.

The NodeMerge script detects collisions between nodes and combines them into one. It is

attached to each node. Each node also has a collider attached to it that acts as a trigger.

Consequently, the OnTriggerEnter2D event function is used to detect overlaps. This
method is called each time there is a collision between its collider and another object. As
a parameter, it provides information about the collided object.

When a collision between two triggers occurs, this function is executed for both objects.

This could cause issues for the presented application, as merging can not be performed
twice. To overcome this, collisions between nodes are cached. Each node holds a list of
objects with which it has collided. On collision, this list is checked in the other object to
verify that merging has not already been done. For example, assume two nodes A and B
collide. First, the event function in node A is executed. Node A checks if it is contained
in the list of collided nodes in node B, but no occurrence is found. Thus, it adds node B
to its list and processes the collision. Then, the event function is called in node B. Node
B checks node A’s list and finds that it is present. Therefore, no more processing is done,
as the nodes can already be assumed to be merged.

When nodes are merged, one of them is used as a base. The edges of the other node are
then attached to it. The selection of the base node depends on the priority. The node
with the higher priority stays in place, while the edges of the lower-priority node are
detached and reattached to the base node. The other node is then destroyed. During
this procedure, the layer of the base node may change based on the selection of a random
process. The probability of selection for all considered layers is directly proportional
to their respective mixing ratios. Thus, the node will have a higher chance of being

8https://docs.unity3d.com/ScriptReference/ForceMode2D.html (Accessed:
09.02.2020)

47

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

3.

DATA-DRIVEN GENERATION OF CITY LAYOUTS

48

placed on the layer with a higher mixing ratio. This inclusion of randomness makes it a
non-deterministic process.

To retain plausibility of the road network as much as possible, some edges may get deleted
during merging. Duplicated edges are always removed. Assume that node A and node B
collide, and both have an edge to node C. The merging process then only retains one edge
between the combined node AB and node C. Furthermore, the angle between edges is an
influencing factor. In the real world, it is uncommon to encounter junctions with extremely
steep angles between roads. Similar to other approaches [VGDAT12, WMWG09], the
allowed angle between two road segments is limited. For each edge to be attached to
the base node, the angles to all other edges ¢ ... ¢, are calculated. If the lowest value
Omin 18 below a certain threshold, the edge is deleted. By default, the limit is set to
duimit = 10° as this was found to produce satisfactory results. As a further benefit, this
implicitly reduces the number of edges connected to a single node, which lowers the
overall complexity.

The procedure of reattaching edges is performed by replacing the source or target node.
During this process, the physical link needs to be updated. Due to the way that joints
are implemented in Unity, the respective component is actually attached to the source
node, not the edge itself. Therefore, the joint first needs to be deleted from the edge’s
source node, regardless of which node is replaced. It is then recreated to point from the
current source node to the current target node. This causes the joint’s properties to be
reset and adjusted to the actual distance between the two nodes.

During the internal physics update, node positions are changed based on the forces
exerted on them, as well as their physical properties. To calculate the counter-forces
produced by the edges, the presented application relies on components available in Unity.
This is achieved using instances of theSpringJoint2D class. Joints are generally used
to physically connect two Rigidbodies. A spring joint, in particular, does not enforce a
tight connection but allows both objects to move independently for a certain amount.
However, it tries to maintain a constant distance between them. Forces are applied to
both objects if they move further apart or closer together than the configured range. As
the spring force is adjustable, the joint can be used to simulate stretching and compressing.
Furthermore, the joint behavior is implemented to oscillate, which is not desired for this
application. Through the configuration of a damping ratio, this effect can be reduced.

In theory, the spring joint should be attached to the edge GameObject. In Unity,
however, one of the connected Rigidbodies is always the one attached to the same
GameObject as the joint. The other object is freely configurable. For this reason, the
spring joint cannot be placed on the edge but has to be added as a component to the
source node’s GameObject. Control over the joint is still maintained by the edge. It
carries a reference to the component and handles initial creation and deletion. Even
though strict encapsulation at this point is not possible in practice, this still keeps the
responsibilities consistent with the original concept.

The forces exerted by the Attractor component as well as the spring joints are processed

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

3.4. Implementation of the CityMerge System

by the physics engine. In combination with individual physical properties, this results
in the movement of nodes and extension or compression of edges. The mass property
of a node influences the impact of forces. A node with a high mass is less affected by
attraction and spring forces. On the other hand, a node with a lower mass will experience
more movement for the same forces. Similarly, the drag property also regulates the
resulting position changes. Drag is the tendency of an object to slow its movement and
is generally caused by a fluid surrounding it [Falll]. A higher drag value causes a node
to be more stable in the given environment. Thus, forces need to be exerted on it for a
longer time before movement occurs. Both of these properties are linearly interpolated
for each node. The values are calculated based on the priority of a node, as well as the
mixing ratio of the respective layer. The following formula is used to determine the
interpolation percentage t; for a specific node:

o numLanes;
nodePriority; = ——
mazxLanes

t; = nodePriority; x mixRatio;

Here, numLanes; is the highest number of lanes found in any connected edge, max Lanes
is the predefined maximum number of lanes to be considered, and mixzRatio; is the
mixing ratio of the layer which the node is on. The maximum number of lanes is defined
as maxLanes = 10, as roads with more than 10 lanes are rarely encountered. The

calculated percentage is then used to determine the interpolated values for mass and drag.

The respective value ranges are [1,100] for mass and [1,50] for drag, as these intervals
have been found to produce satisfactory results. As a result of this interpolation, the
priority of an individual node, as well as the mixing ratio of its layer, heavily influences
its stability. The same value is also used to control the attraction force exerted by a
node. Similarly, it is interpolated on a linear scale between two values. As a result,
higher-priority nodes are more likely to cause other nodes to move towards them.

The edges of a node may change during the simulation due to merging, which would
possibly make the physical properties invalid. Furthermore, the type of a node may
change between junction and waypoint. Therefore, these values need to be recalculated
each time an edge is added to or removed from a node. This is achieved through the
use of event functions. A function OnFEdgesModified is available in nodes and is called
every time such a change occurs. This method not only recalculates mass, drag, and
attraction force but also verifies if the node type is still valid. If that is not the case, the
appropriate measures are taken to change it. These include disabling of the Attractor
component and changing the rendering.

3.4.8 Post-Processing

After the simulation loop is finished, the resulting road network might contain undesired
structures, such as invalid crossings between roads. These issues are handled by a
PostProcessor component attached to the main controller’s GameObject.

49

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w 3ibliothek,
Your knowledge hu

3.

DATA-DRIVEN GENERATION OF CITY LAYOUTS

50

Post-processing is done in two stages. In the first stage, the aforementioned crossing
issues are resolved. This is done using logic based on ray casting, a technique commonly
used for 3D rendering. In general, rays are cast into a data set from an origin position
[RPSC99]. The intersection point with the data is recorded, and measurements are taken.
This technique is applied by our application to find crossings between roads, as illustrated
in Figure 3.9. For each edge, a ray gets cast from its source node to its target. If another
road intersects it, a hit is registered. It returns details about the overlapping object, as
well as the location. To fix this issue, two resolution options are available.

() (d)

Figure 3.9: An illustration of the post-processing procedure. (a) A ray is cast from
node A to node B. The ray hits another edge. (b) A new node C is added in between.
New edges are created accordingly. (c)(d) Ray casts are performed for all added edges,
sequentially.

In the first method, a new node is inserted at the intersection. Both edges are split into
two new edges, respectively. As ray casts only return the first hit, multiple iterations
may be necessary to resolve all issues. Therefore, all edges are first added to a stack.
Validation is then done sequentially for all items on the stack. In each iteration, the first
item is removed and ray casting is performed. If an issue is found and the edge is split,

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

3.4. Implementation of the CityMerge System

all new resulting edges get added to the stack. This procedure is repeated until the stack
is empty.

The second mode simply deletes one of the two edges. This can be advantageous in areas
with a high number of nodes and edges, so as to reduce the number of objects. This
method has been found to produce more plausible results in such sections, and decrease
the overall complexity of the road network. Our application supports the usage of both
methods in parallel. The selection for how an intersection should be resolved is made
based on the local density. To calculate this value, the number of objects within a given
radius is checked. It is determined as follows:

numObjects(r)

density = 5
T2

If the density is below a certain threshold, a new node is added at the intersection. If
it is higher than the threshold, one of the two edges is deleted. This density limit is
configurable and should generally fall within the range of 0.001 to 0.01. The selection of
the edge to be removed is based on the number of lanes. Wider roads are considered
more important, so the edge with more lanes is preserved, while the other one is removed.
If both edges have the same width, the decision is made randomly based on the mixing
ratios.

It is also possible for rays to hit nodes that lay on top of an edge but are not connected.
In such a case, the edge is split in two at the node. The edge’s source node connects to
the intersecting node, and a new edge is created from there to the original edge’s target.
Because node colliders have a certain radius to it, this may result in a slight bend in the
road if the node does not lay perfectly in the center of the edge.

The motivation to perform ray casts instead of other collision checks comes from the
ease of use and the performance advantages. Collision callback methods require the
physics update to run, as can be seen in Figure 3.6. As this would result in further
node movement, it is not desired at this point. Another option would be to use static
overlap checks using, for instance, Physics2D.OverlapBoz. However, the performance
is much worse than for ray casts. Individual overlap checks also exist, in the form of
Collider2D. Overlap Collider. This function returns an array of all collider overlaps for
the current object, but does not include the overlap positions. As those are required to
create new nodes, this method is not suitable for the proposed application.

During the algorithm run, but especially during the first post-processing stage, artifacts
may present themselves in the road network. Through the connection of crossing edges via
a node, triangle-shaped structures can appear. These are made up of two junctions that
are connected directly, but also via a waypoint node. The patterns represented by these
do not frequently appear in real cities, as they provide somewhat redundant connectivity.
Furthermore, the removal of individual nodes decreases the overall complexity of the
result. In the second post-processing stage, these artifacts are removed. For each node, a
check is performed to determine if it is connected to exactly two other nodes, both of

51

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w Sibliothek,
Your knowledge hub

3.

DATA-DRIVEN GENERATION OF CITY LAYOUTS

52

these are edges, and they are also connected. If this is the case, the node gets removed.
This process is illustrated in Figure 3.10.

(a) (b) (c)

Figure 3.10: An example of the artifact removal process. (a) An edge crosses over other
edges. (b) Nodes were added during post-processing to connect the respective edges. A
triangle shape is formed. (c) The waypoint node was removed.

3.4.9 User Interaction

During the procedural generation process, the user can provide direct input to the system.
As the application runs in the Unity Editor, he or she may manipulate objects using
native tools. These changes are applied directly to the internal representation. Attraction
and spring forces still have the expected effects. If the user moves a node, connected
edges get stretched. As this results in forces being applied to affected nodes, the road
network will adjust itself to the change.

By moving a node close to another node, the user can cause a collision event, which in
turn will cause the nodes to be merged. Thus, the road network can be shaped extensively
by the user. As edges are defined solely by their source- and target nodes, they cannot
be modified directly.

3.4.10 Components and Prefabs

The application logic is distributed across multiple components, classes, and MonoBe-
haviours. These were created according to the component architecture shown in Figure 3.5,
Section 3.3.4. The individual entities will be described below. Table 3.1 provides an
overview of the created components. All of these inherit from Unity’s MonoBehaviour
class and are attached to GameObjects. An overview of all GameObjects with their
attached components is shown in Figure 3.11.

Furthermore, a few classes were created to provide the required functionality. These are
shown in Table 3.2. It includes classes originally defined by the real-world-map-data®
project described in Section 3.4.2, which were modified for this project.

9https://github.com/codehoose/real-world-map-data (Accessed: 11.02.2020)

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

Y 3ibliothek,
Your knowledge hu

3.4. Implementation of the CityMerge System

Component Description

CityMergeController Receive user input and configuration, control program flow

NodeBuilder Create new nodes, apply properties from prefabs
FEdgeBuilder Create new edges

Attractor Apply attraction forces to nodes in vicinity
NodeMerge Combine two nodes on collision

PostProcessor Perform post-processing and artifact removal
OutputController Produce output file

Table 3.1: Components created for the CityMerge application.

Legend Internal Component Custom Script Optional Component

CityMerge Render Camera Node Edge

CityMerge Controller Sprite Renderer
Node Builder Output Controller Rigidbody 2D Edge Behaviour

Edge Builder Circle Collider 2D

Post Processor Node Behaviour

Attractor
Node Merge

Spring Joint 2D

Figure 3.11: An overview of the types of GameObjects used in the application, with their
respective components.

To facilitate the initialization of new GameObjects, Unity provides the Prefab system. It
allows the creation and storage of GameObjects with all their attached components as
reusable assets. Prefabs can be used to instantiate preconfigured objects at runtime, as
well as to easily set up a scene in the editor. The supplied prefabs mostly correspond to
the different object types shown in Figure 3.11.

The CityMerge prefab is provided for convenience. It includes all required components to

53

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

3.

DATA-DRIVEN GENERATION OF CITY LAYOUTS

54

Class Description

MapReader Read input files, generate initial road networks
MercatorProjection Transform geographical positions into Unity coordinates
GraphOperations Provide static functions to modify the road network graph
Density Provide functionality to calculate the area density
InterpolationValues Hold value ranges and interpolate properties
LayerMaskUtils Compute layer masks

Log Provide extended logging functionality

ListExtensions Extend the List class

StackEztensions Extend the Stack class

DebugDraw Visualize ray casts and hits

BaseOsm Base for OpenStreetMap data, based on real-world-map-data
OsmBounds Map boundaries, based on real-world-map-data

OsmNode Node representation, based on real-world-map-data

Osm Way Way representation, based on real-world-map-data

Table 3.2: Custom classes created for the CityMerge application.

control the application. This prefab is intended to be used to set up a new scene in which
to run CityMerge. A RenderCamera child object with a Camera and an QutputController
script is also part of this prefab.

The NodePrefab and EdgePrefab assets are used as templates by the application. They
include all the necessary behavior components for nodes and edges, respectively. In the
NodeBuilder component, the prefab used to generate new nodes can be changed. It is
thus possible to create a custom template for nodes, as long as the required components
are applied. For example, the desire for more elaborate rendering might motivate a
switch to another prefab with a modified rendering component. The same applies to
edges, for which the template can be changed in the EdgeBuilder component.

3.4.11 Performance Tuning

Several measures have been taken to reach and surpass the performance requirements
defined in Section 3.3.3. One of these is the usage of a two-dimensional scene setup.
This makes it possible to rely on a 2D physics engine instead of Unity’s 3D engine, as
it generally performs better. The computational complexity of collider checks in two
dimensions is lower than in 3D.

Inside the main loop, the Attractor component runs for all junctions in each iteration.
Therefore, it was optimized as much as possible. To find nodes in the vicinity, the
function Physics2D.OverlapCircleNonAlloc'® is used.

Oyttps://docs.unity3d.com/2019.2/Documentation/ScriptReference/Physics2D.
OverlapCircleNonAlloc.html (Accessed: 11.02.2020)

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

3.4. Implementation of the CityMerge System

Compared to the default circle-overlap method, an array has to be provided as a parameter,
which will then be filled with the results. Thus, no memory is allocated, which significantly
improves garbage collection performance. Furthermore, the force calculation is optimized.
Vector magnitude calculation performs a square-root calculation, which is computationally
intensive. This is prevented by directly using the squared magnitude of the direction
vector, as can be seen in Listing 3.3.

To improve rendering performance, custom material assets are used. These use an unlit
shader, which does not include any light and reflection calculations. This results in faster
drawing times, without any noticeable drawbacks. Since the focus of our application is
not visualization, this does not impact the operation and may even be beneficial for users
due to the reduced visual complexity.

As the application is based on Unity, the application design was limited by some charac-
teristics in regards to performance. One of these factors is the single-threaded nature of
Unity. While some functionality is executed on worker processes, most operations run on
a single main thread. Additional CPU cores thus provide little performance advantage.
To reduce this limitation, a new tech stack has been introduced for Unity, which explicitly
supports multi-threading [Meil9]. In combination with the Unity Entity Component
System (ECS)'! and C# Job System '2, it promises to deliver higher performance through
parallelization. At the time of implementation, these features were not yet finalized and
therefore not recommended to be used for final products. Therefore, these concepts have
not been used in the presented application.

HUyttps://docs.unity3d.com/Packages/com.unity.entities@0.5/manual/index.
html (Accessed: 11.02.2020)

P2pttps://docs.unity3d.com/2019.2/Documentation/Manual/JobSystem.html (Ac-
cessed: 11.02.2020)

55

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Results

4.1 Generated Layouts

The output of the CityMerge application is a city layout that contains features and
properties of both input maps. To assess the results, the program was run with different
data sets, obtained according to the method described in Section 3.2.2. A few of these
are highlighted below. Although the processing of large data sets is possible, it is very
demanding in terms of resources. For this reason, and for improved visibility, only sections
of cities are used for these visualizations.

4.1.1 Example 1: Vienna and Paris

The application was run with a section of Vienna (Austria) that contains its recognizable
Ring road and a section of Paris (France), centered around the Arc de Triomphe. Both
cities contain easily identifiable features, as can be seen in Figure 4.1. The presented
section in Paris shows a radial pattern, with roads stretching outwards from the center.
Apart from that, smaller, star-shaped structures can be identified. In Vienna, on the
other hand, the city center shows a relatively irregular pattern. However, a large road
circling the inner city is present. Both cities feature a high road density in the selected
areas.

Figure 4.2 shows the result of a procedural generation process using the aforementioned
layouts as input. Many distinct features originating from both cities can be identified.
For example, the large diagonal road is still present, as well as the general shape of the
circular road around the center. However, some structures have been lost, such as certain
long diagonal roads. The general road density is relatively high in the result.

The same input data was used to run the procedural generation process with a different
number of iterations. As can be seen in Figure 4.3, this affects the result. By performing
more iterations, the layout gets more distorted. For example, the roundabout in the

o7

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4.

REsuULTS

o8

N

A Ik
(a) Input map for Vienna (b) Input map for Paris
Figure 4.1: Input data sets for Vienna and Paris, provided for reference.

Ly e

& AT AEONET S SR ¢
Q N A\ VR 9 b %
AR TSNS

Figure 4.2: The result of a CityMerge application run using input maps from Vienna
and Paris. Mixing ratios mix = 0.5 : 0.5, number of iterations n = 200

center is barely recognizable after 1000 iterations. As a result, fewer features from the
input maps are present in the output.

4.1.2 Example 2: Barcelona and Lisbon

Further examples are presented that use the layouts of Barcelona (Spain) and Lisbon
(Portugal) as a base. The extracted section of Barcelona is laid out according to a strict

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4.1. Generated Layouts

NVs),Swan

S

S
)ﬂ‘}?“ﬁN

//

85

ey b
A ¥ N I

27
/

o

Tt
7/ K]
V!

=K
==
4'1

ONLT\ “,il

(a) Result for n =100

Figure 4.3: Results for Vienna/Paris, using different iteration counts with mixz = 0.5 : 0.5.

gridiron pattern, as can be seen in Figure 4.4. Several major roads can be identified,
with one of them crossing diagonally. In turn, the layout of Lisbon is very irregular, but
a large coastal road can be recognized.

AN
L TPRKS R
USSR,

(a) Input map for Barcelona (b) Input map for Lisbon

Figure 4.4: Input data sets for Barcelona and Lisbon, provided for reference.

The result, shown in Figure 4.5, has retained most of the large roads present in the
Barcelona data set. Similarly, the organic pattern found in Lisbon can also be seen. The
diagonal coastal road has shifted further to the middle, which was caused by the relative
positioning of the two layouts.

Figure 4.6 shows the result of procedural generation processes performed with different
mixing ratios. A higher mixing value for Barcelona results in a layout with most of the
grid structure still intact. On the other hand, a high ratio for Lisbon shows a more
distorted road network.

59

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4.

REsuULTS

60

Figure 4.5: The result of a procedural generation process using input maps from Barcelona
and Lisbon. mix = 0.5 : 0.5, n = 300

(a) Result for miz = 0.8: 0.2 (b) Result for miz =0.2: 0.8

Figure 4.6: Results for Barcelona/Lisbon, using different mixing ratios with n = 300.

4.1.3 Pre-filtered Input Data

The above examples have shown results for procedural generation processes where
complete layout portions of cities have been used as input. In this sense, “complete”
refers to the inclusion of all relevant roads. However, it is also possible to explicitly
perform filtering on the data, before using it as input for the CityMerge application. An
example of this is shown in Figure 4.7. The layouts of Vienna and Paris have been used

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w 3ibliothek,
Your knowledge hu

4.2. Performance

as source maps. The road network of Vienna is unchanged to the depiction in Figure 4.1a.
However, only the major roads are utilized from the Paris layout. This has been achieved
through a modified Overpass QL query. The filter function shown in Listing 3.2 has been
adapted to only include roads classified with a priority of secondary or higher.

Figure 4.7: The result of a procedural generation process using the layout of Vienna and
a pre-filtered map of Paris. mix = 0.5 : 0.5, n = 100

The result shows the road network of Vienna combined with the arterial roads found
in Paris. Individual road segments originating from the different data sets have been
connected by the algorithm. However, some details have been lost, such as parts of the
roundabout in the center.

4.2 Performance

The performance of the proposed algorithm was evaluated by taking time measurements
of generation processes. The duration of individual stages is timed and printed directly
by the CityMerge application. As a test system, a PC with the specifications listed in
Table 4.1 is used. The system is comparable with a current mid-level device.

Time measurements were taken for the example introduced in Section 4.1.1, which used
Vienna and Paris as input cities. The presented maps each cover an area of about 10
km?. In total, the layouts used as input contain 15764 nodes and 17717 edges. For
n = 200 iterations, the process has been run 10 times. The average total processing time
is = 119.6 seconds, with a standard deviation of s = 8.1s. Most of this time is spent
on the simulation, which was measured as u = 91.4s with s = 6.5.

61

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

4. RESULTS

Operating System Microsoft Windows 10 Home
Software Environment Unity 2019.2.11f1 Personal

CPU Intel Core i7-6700HQ @ 2.60 GHz
RAM 16 GB

Graphics Adapter NVIDIA GeForce GTX 960M

Table 4.1: Components used for performance evaluation.

To determine the correlation between the number of iterations and the resulting processing
time, more measurements have been taken. These are shown in Table 4.2. Figure 4.8
shows that the duration rises linearly with an increased number of iterations. However,
the first few iterations have been found to take considerably longer. This is most likely
owed to the high number of collisions occurring as a result of the city overlay.

Iterations Processing Time [s]

10 57.8
50 70.8
100 86.8
200 119.6
400 167.8
600 228.7

Table 4.2: Simulation time measurements taken with different iteration counts.

250

200

=
9]
o

Total processing time [s]
=
Ul -
] o

0 100 200 300 400 500 600
Iterations

Figure 4.8: The correlation between the number of iterations and the resulting simulation
time.

62

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

4.3. Subjective Evaluation

To discover the effect of the number of nodes on the simulation time, measurements have
been taken for larger city portions. Two sections of approximately 38 km? have been used
as input, which contain 55508 nodes and 62 351 edges in total. The complete process,
using 200 iterations, was finished after less than 9 minutes. The same has been done
for very large city portions with a size of approximately 150 km?. The combined node
count was 184 166, and the layouts contained 204 656 edges. At just over an hour for
200 iterations, the process takes considerably longer if such a high number of objects is
involved. Figure 4.9 shows a visual representation of this correlation.

80

Total processing time [min]
=) w i w o) ~
[=] (=] [e=] [e=] & & (=]

o

0 50 100 150 200 250 300 350 400 450
Number of total objects (in thousands)

Figure 4.9: The correlation between the total number of objects (nodes and edges) and
the resulting simulation time.

4.3 Subjective Evaluation

To assess the quality of the results produced by the presented algorithm, an evaluation
is performed by conducting a user study. As no objective measures are available to our
knowledge, we rely on subjective judgments of user preference. The goal is to determine
if the generated layouts are plausible and to discover how the results compare to more
established techniques. Furthermore, we aim to verify the influence of different patterns
present in input maps on the result. The recognizability of features from the origin
layouts is also evaluated.

4.3.1 Method

A survey was performed with 53 participants. It was specifically targeted towards
nonprofessionals in urban planning or similar domains. A questionnaire was created on

63

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

4.

REsuULTS

64

the online platform Google Forms', and the link was sent out to interested individuals. No
explicit preselection of participants was performed, as no previous knowledge is required.
At the start of the survey, a short description explains the process, the aim, and the
estimated duration.

4.3.2 Structure

The survey was divided into three distinct parts, each of which was designed to answer a
specific question:

1. Comparison: How do the results of this algorithm compare to other approaches?
2. Plausibility: How plausible are the generated results?

3. Recognizability: How well can existing structures be recognized?

The sections are sorted according to this specified order. No shuffling is performed, as
the questions presented in the plausibility section might influence a participant’s answer
in the comparison section.

Comparison

The participants are shown visual representations of city layouts that were produced by
different algorithms. These were preselected to cover a wide spectrum of approaches.
For each generation method, a representative algorithm was chosen. The image sources
were hidden from the participants, to prevent any external factors from influencing the
result. Instead, each image was assigned a letter (“Layout A” through “Layout D”) to
be able to link it to the answers. Furthermore, all images were converted to the same
black-and-white color scheme. The following approaches were selected:

Parish and Miiller (2001) [PMO01]: Grammar-based approach

Lechner et al. (2007) [LWW™07]: Agent-based approach

Benes et al. (2014) [BWK14]: Simulation-based approach

e Ours

The selected layout created by Parish and Miiller was produced specifically to represent
an imaginary city [PMO01]. Neither Lechner et al. nor Bene$ et al. mention any specific
real-life city that should be mimicked by their respective layouts, so the same can be
assumed for these [LWW107, BWK14]. However, the road network generated by Lechner
et al. was created with the intent to showcase a combination of grid- and organic patterns.

'nttps://www.google.com/int1l/en_us/forms/about/ (Accessed: 18.02.2020)

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M 3ibliothek,
Your knowledge hu

4.3. Subjective Evaluation

To represent our algorithm, a layout was generated using parts of Barcelona (Spain) and
Prague (Czech Republic). Figure 4.10 shows the images used for comparison after the

color changes were made.

gl
Y
il i W\
R
it
"\“u H

)

P I
Ao W= <3 Uy, {40

=ite

& LR, g > oy G 3 = g 3 =
NS = AR T T e PTG & =

(a) Layout A: Parish and Miiller (2001) [PM01] (b) Layout B: Lechner et al. (2007) [LWW*07]

N
XS

3

%

.,
B
S

0,
2o
3

o,
O

(c) Layout C: Benes et al. (2014) [BWK14]

‘v"/"' \/ O P\
P LS g
BN

A 4 ""0“;" NP
SRR
5

NS
A \&'Q 2N
IO
K '}:’%ﬁl"

N
L

AN
U2¥s

(d) Layout D: Ours

Figure 4.10: The images used for the comparison section of the user study. The images
have been processed to achieve a uniform appearance.

The participants were asked to rate the layouts, based on how realistic they look to
them. Answers were recorded through a five-point scale. Numbers ranging from 1 to 5
were presented as possible answers, with 1 labeled as “very unrealistic” and 5 as “very

realistic”.

65

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

REsuULTS

4.

Plausibility

In this section, the participants were shown three different images produced by the
presented algorithm. The images were selected specifically to cover different combinations

of road patterns. Thus, city layouts with the required patterns were used as input. Figure

4.11 shows the presented road networks.

FET AN
| -r »@»\W&\\A ‘_ DY
NS = W/ /
SO A
SRR

SN e\ g

e N .%«»%l.‘;s.

< WO -
AN i
Ssves e al

(b) Layout 2: Budapest/Lisbon

(¢) Layout 3: Rome/New York City

7
PRSI A
AN SN YR

Figure 4.11: The images used for the plausibility section of the user study.

(a) Layout 1: Stockholm/Amsterdam

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay
“JeqBnyan 3auloljqig usipn N1 Jap ue isi iagrewoldiq Jasalp uoisiaAfeulBuO apjonipalb ausiqoidde aiqg

Layout 1 was generated using parts of Stockholm (Sweden) and Amsterdam (Netherlands).

Nej
NeJ

qny a8pajmoud| INoA

Saylolqie

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

4.3. Subjective Evaluation

An irregular grid pattern can be found in Stockholm, while the selected section of
Amsterdam contains a more organic layout. Layout 2 was created from the road networks
of Budapest (Hungary) and Lisbon (Portugal). Both of these cities feature an organic
pattern. For Layout 3, sections of Rome (Italy) and New York City (USA), namely
Manhattan, were used. The former is laid out in a very organic pattern, while the latter
is built strictly along to a grid.

The names of these cities were not shown to the participants, as independent judgments
were desired. To enable proper differentiation, layouts were named using numbers
(“Layout 1” through “Layout 3”). Each layout was intended to be rated individually,
based on the perceived realism. The same task definition and answer range as for the
comparison section were applied.

Recognizability

Participants were shown two sets of images, depicting the input and output of the
presented application. Each set consisted of three individual city layouts: Two source
layouts and a combined layout, which was the result of a generation process using the
source maps as input.

The first image set is shown in Figure 4.12. Layout portions from Vienna and Paris were
used as input. These cities have been selected because they contain very distinct features.
Vienna’s circular road, as well as the radial roads in Paris, are both easily visible.

Figure 4.13 shows the images used for the second question. As input layouts for the pro-
cedural generation system, parts of Copenhagen (Denmark) and Barcelona (Spain) were
used. Barcelona is made up of a grid structure with straight arterial roads. Copenhagen,
on the other hand, features more curved roads.

For the second image set, custom mixing ratios have been selected. Copenhagen was
assigned a value of 0.85, while 0.15 was used for Barcelona. This should allow the impact
of mixing ratios on the recognizability aspect to be measurable.

The questions presented to the participants were structured as follows: How well have
the characteristics of <city> been preserved in the result? For each of the four input city
layouts, one such question was asked. As for the other sections, answers were given on a
scale. However, a different configuration was used, as a five-point scale does not provide
the required resolution to determine the impact of mixing ratios. Therefore, a ten-point
scale was used, with the respective extremes defined as “very poorly” and “excellently”.

67

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M 3ibliothek,
Your knowledge hu

4. RESULTS

T LLHH S
A

iy

%

(a) Input layout 1: Vienna (b) Input layout 2: Paris

iy, 2200 ~"V§} 7
,.-‘ﬁ‘%»\v.’n% e

& 2N o iy
S o Y VAT g Ty
IN YOI VeV i Al
St Say i

/| (2
VA

‘: SN LAY ﬁﬁ%
» Y, /}§AKQR? A:;;,_"l!\‘ ;4“ .ﬁ A ‘ A
R N, Sy = 2N

(¢) Result layout produced using mixing ratios
of 0.5:0.5

Figure 4.12: The images used for the recognizability section, part 1.

68

U=

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

4.3. Subjective Evaluation

SRS
S X
;Q}}’Q&:«fo,
X KA KAL

045 %"
SEREERIES

(¢) Result layout produced using mixing ratios
of 0.85:0.15

Figure 4.13: The images used for the recognizability section, part 2.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

69

M 3ibliothek,
Your knowledge hu

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M 3ibliothek,
Your knowledge hu

4.

REsuULTS

70

4.3.3 Outcome

Responses provided by participants have been recorded and analyzed using statistical
methods. The resulting data is highlighted in this section, whereas the analysis of the
results is presented in Section 5.1.

The first section of the survey aimed to compare the results of the presented algorithm
to other procedural city generation systems. The results are outlined in Figure 4.14 in
the form of a histogram. The highest number of “5” ratings was received by the layout
generated by Lechner et al. However, perhaps somewhat surprisingly, this layout was also
given a rating of “2” on many accounts. The layout generated by our application received
the most ratings of “1”, though it was also rated as very realistic by some participants.

25
38%
20 36%
34% 34% 34%
15 26% 26%
25%
21% 21%
19%
10 17%
15%
13%
11% 11%
5 8% 8%
2% 2%
. 1|
1 2 3 4 5

M Parish & Miiller (2001) M Lechner et al. (2007) ™ Benes et al. (2014) Ours

Figure 4.14: User ratings for the perceived realism of layouts generated by different
systems. Participants were given the following task: “Please rate [the layouts] based on
how realistic they look to you.” The value “1” was defined as “very unrealistic” and “5”

as “very realistic”.

In an effort to make the values comparable, the mean and standard error for each question
was calculated. These values are listed in Table 4.3. The bar chart shown in Figure 4.15
displays the average response for each layout within a 95% confidence interval. The
highest average rating was given to the layout generated by Benes et al., followed by
Lechner et al., Parish and Miiller, and our application.

In the plausibility section, participants were asked to rate the perceived realism of
generated layouts. Individual measurements were obtained, as shown in Figure 4.16. The

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

Y 3ibliothek,
Your knowledge hu

4.3. Subjective Evaluation

System Mean Standard Deviation
Parish & Miller (2001) 3.08 1.24
Lechner et al. (2007) 3.34 1.27
Benes et al. (2014) 3.53 1.08
Ours 2.13 1.23

Table 4.3: Mean and standard deviation of ratings for layouts produced by different

systems.

Benes et al. (2014) Lechner et al. (2007) Parish & Mdiller (2001) Ours

w

N

[

Figure 4.15: Average perceived realism, compared between different approaches (95%
confidence)

data shows a more uniform distribution of ratings for Layout 1 and Layout 2. Layout 3,
on the other hand, was mostly rated with values “1” and “2”. On average, the highest
ratings were received for Layout 1, as shown in Table 4.4.

Layout Mean Standard Deviation
Layout 1: Stockholm/Amsterdam 2.94 1.27
Layout 2: Budapest/Lisbon 2.69 1.23
Layout 3: Rome/New York City 2.11 1.11

Table 4.4: Mean and standard deviation of ratings for different examples produced by
the presented system.

The measurement of subjective recognizability was performed through two generated
layouts. Figure 4.17 shows the answer histogram for the first example. For both Vienna

71

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4.

REsuULTS

72

25 25
20 20

15

10 10
5 . . 5 I
: ; []
i | 2 3 4 5 il 2 5 - 5

(a) Layout 1: Stockholm/Amsterdam. p; =2.94 (b) Layout 2: Budapest/Lisbon. ps = 2.69

25

20

15

10

5

o -
i 2 3 4 5

(c) Layout 3: Rome/New York City. uz = 2.11

Figure 4.16: Subjective plausibility ratings provided by participants. A value of “1”
corresponds to “very unrealistic” and “5” to “very realistic”.

and Paris, high ratings have been received, with the highest number of participants
having selected the value “8”.

A different distribution of answers was received for the second example, which contained
parts of Copenhagen and Barcelona. Figure 4.18 shows overall higher ratings for the
recognizability of Barcelona, compared to Copenhagen. These results are in contrast to
our initial expectations, as Copenhagen was assigned a higher mixing ratio. An overview
of the average measurements for the recognizability section of the survey is shown in
Table 4.5.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

Y 3ibliothek,
Your knowledge hu

4.3. Subjective Evaluation

10

8

6

: I

| [l I

. T [il
2 3 4 5 6 7 8 9 10

m Vienna mParis

Figure 4.17: Recognizability of features from Vienna and Paris in the result. py;e = 6.79,
MUPar = 7.06

8
6
—_— NIRRT
. | n] [
2 3 4 5 6 7 8 9 10

1

W Copenhagen ™ Barcelona

Figure 4.18: Recognizability of features from Copenhagen and Barcelona in the result.
HCop = 5~58a KBar = 7.11

73

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w 3ibliothek,
Your knowledge hu

4. RESULTS
Input Layout Mean Standard Deviation
Vienna 6.79 1.84
Paris 7.06 1.67
Copenhagen 5.58 2.09
Barcelona 7.11 1.67
Table 4.5: Mean and standard deviation of ratings for the recognizability of individual
cities’ features.
74

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Discussion

5.1 User Study Analysis

The user study performed as part of this work provides helpful insight into the subjective
perception of the results. A comparison with other research on procedural city generation
shows lower overall values for the example created by our algorithm, as can be seen in
Figure 4.15. Therefore, it can be assumed that the realism of the selected layout is not
on par with the results of other algorithms. However, this does not necessarily apply to
all results produced by the proposed system, as it is heavily dependent on the input data.

The general plausibility shows different result distributions for the three examples. Ratings
for Layout 1 and Layout 2 exhibit a more even distribution across the range, whereas
Layout 3 was perceived as rather unrealistic by the participants. All three examples have
been generated using city layouts featuring different road patterns. Thus, a correlation
between the shapes of the input networks and the plausibility of the result can be assumed.
It is estimated that a combination of organic layouts delivers the most satisfactory outputs
if realism is desired. On the other hand, the merging of an organic map section with
a gridiron pattern results in a relatively unrealistic layout. This characteristic is likely
caused by the irregularity produced by the CityMerge algorithm. The deformation of
a road is much more noticeable if it is straight than if it is already curved and warped.
Such discrepancies are more easily visible if the overall pattern is very strict.

In some cases, the results produced by our system were considered as realistic by the
participants. We therefore conclude that the presented algorithm can achieve plausible
results under suitable conditions. However, the realistic appearance of the output data is
not always guaranteed.

The recognizability of characteristics from input cities was generally regarded as very
high by the participants. In the first example, the preservation of features from the
Vienna layout was rated approximately the same as the Paris layout. This coincides with

75

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.

DiscussioN

76

the configured mixing ratio of 0.5 : 0.5. For the second image, a different mixing ratio
was used, with a value of 0.85 for Copenhagen, and 0.15 for Barcelona. In theory, this
should result in higher values given for Copenhagen. However, this is not reflected in
the answers, as the recognizability was, overall, rated higher for Barcelona (upq, = 7.11,
pcop = 5.58). A possible explanation for this phenomenon is the presence of larger roads
in the selected layout of Barcelona. These are assigned a higher priority and are thus
more likely to be retained.

Most participants have selected a value of 8, on a scale from 1 to 10, for the recognizability
of features from Vienna, Paris, and Barcelona. In general, it can thus be concluded
that the features and characteristics of input cities are integrated into the result of the
procedural generation process.

The first two sections of the user study focus strictly on the perceived realism of the
generated results. However, other characteristics may be of more interest in certain
applications. For example, for a city layout to be used in a video game, realism may
not be required. Depending on the genre and setting (such as on a different planet or in
the future) it could even be undesirable. Therefore, additional measures of the overall
quality produced by the proposed algorithm can be applied, based on the target use case.

Other characteristics of the result data have not been investigated as part of this study.
For instance, manual adjustments could improve the plausibility. Individual undesirable
structures could easily be removed by a user, to increase the realism of the result.
Furthermore, the use of pre-filtered data was not tested. We estimate that a higher
plausibility could be achieved if the secondary road network is only present in one input
layout.

5.2 Performance Analysis

The performance of the application is within acceptable limits, and running times
even surpass the goal set by the requirements. Existing approaches to data-driven city
generation such as presented by Aliaga et al. [AVB08] and Nishida et al. [NGDA16]
produce results within minutes, though no exact numbers are available. Similarly, the
simulation-based system presented by Benes et al. generates city layouts within running
times of 2.5 to 4.5 minutes [BWK14]. To achieve such a performance, they rely heavily
on parallel computation using CUDA GPUs. As expected, grammar-based approaches
feature better performance. The system presented by Parish and Miiller is able to
generate a road network in less than ten seconds [PMO1]. The agent-based approach
presented by Lechner et al., on the other hand, requires about 15 minutes to half an hour
to generate a city layout [LWWF03]. However, their system heavily focuses on land use,
which is also included in the result.

Depending on the selected input data, our method can deliver similar performance.
Even though the number of iterations heavily influences the running time, it is assumed
that satisfactory results can be achieved with 200-300 simulation cycles. For small city

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.3. Limitations and Future Work

portions, processing takes about two minutes, which rises to less than 9 minutes for
medium-sized sections. Based on these numbers, it can be concluded that our application
delivers comparable performance to similar approaches, given that no extremely large
city sizes are desired.

5.3 Limitations and Future Work

The presented algorithm provides a viable approach to generate city layouts. However,
some restrictions still apply. As the system is implemented with extendability in mind,
future adjustments are possible.

5.3.1 Result Plausibility

The perceived realism of results generated by our algorithm, in its current configuration,
does not reach the levels of the state-of-the-art. The approach is based on many individual
components, most of which are configurable. Considerable time has been spent on the
tuning of these parameters to produce satisfactory results. However, a better configuration
may be possible. It might also be an option to expose certain parameters to the user, to
provide more control over the generation process.

5.3.2 Mixing Ratios

The mixing ratios of input cities influence the generation process. The algorithm is
designed in such a way that a higher mixing value causes a layout to have a higher
priority, within certain limits. This affects how nodes are merged, and which roads are
favored during post-processing. To preserve as much recognizable structure as possible,
road priorities for attraction are mainly obtained from the number of lanes. This may
cause unexpected behaviors. Tighter integration of the mixing ratios could increase the
effect, but may also result in reduced preservation of features from input maps. Another
option is the normalization of road priorities across all input data sets, which could
prevent cities with many wide roads from predominating the result.

5.3.3 Performance and Scalability

The algorithm is implemented in such a way that each node acts as an individual agent.

For large numbers of nodes, however, this can produce a bottleneck. Especially when the
input maps are very large, reduced responsiveness can be experienced. The overhead for
that many objects, in terms of memory as well as processing, is considerable.

The performance is further impacted by the single-threaded nature of Unity. By design,
event functions in MonoBehaviour instances are called sequentially. Thus, the presented
application is only able to make limited use of multi-core processors. In the future,
the Unity ECS, as mentioned in Section 3.4.11, may provide a viable alternative to the
current implementation as MonoBehaviours.

7

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

5.

DiscussioN

78

5.3.4 Input Data and Preprocessing

While the algorithm is designed to support more than two cities as input, it is not the
main focus of this work. It is possible to generate layouts using three or more input
maps, but the results feature a relatively high density of nodes and edges which may be
perceived as unnatural. As a mitigation, the pre-filtering of one or two of the source
layouts, as described in Section 4.1.3, may be an option.

In future work, such functionality could be integrated directly into the application. This
could facilitate certain scenarios, such as the combination of a city’s arterial roads with
another city’s secondary road network.

5.3.5 Buildings

Though it was not part of the scope for this work, the addition of building models to
generated layouts could provide an interesting topic for future work. The combination of
building types, as well as individual building models, are areas of research that have seen
little exploration. Extensive adaptations to the current system would be necessary for
such a purpose.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Conclusion

In this work, we present a novel approach to the procedural generation of city layouts
based on existing data. It allows the use of multiple real city maps to create new road
networks. We provide a filter query for exporting data from OpenStreetMap, which is
then directly usable as input for the proposed system. The presented algorithm employs
a non-parametric data-driven approach to city generation. Through the direct inclusion
of road networks in the generation process, no information is lost through consolidation
or extraction operations, as they are employed by other works [AVB08, NGDA16]. The
simulation-based nature of the algorithm allows direct user interaction throughout the
generation process.

An application has been developed in the Unity game engine to showcase the devised
algorithm. It is implemented with reliance on the internal physics engine, which is
responsible for parts of the operations performed for road network adaptation. The
required user input is minimal, though parameters can be changed if desired.

We have shown that the characteristics of input cities are successfully transformed and
included in the result. Compared to the work presented by Nishida et al. [NGDA16], our
approach produces existing and recognizable structures from the input data sets in the
result, without the need for manual selection. Furthermore, road networks are combined
across the whole area, as opposed to only in specific sections. In terms of subjective
realism, the presented approach could not outperform the current state-of-the-art in
city generation. The system functions as a proof-of-concept that can be extended and
improved, such as through the addition of more elaborate post-processing heuristics.
Further extensions are possible through the addition of building models to generated
layouts.

79

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

2.1
2.2

2.3

24

2.5

2.6

2.7

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

List of Figures

Different patterns found in urban road networks. [Munl3]
Examples of the most commonly found landscape types as identified by
Wheeler (in descending order). [Whelb]
Generation of a procedural landscape using a fractal-based approach, in
different detail levels. [dC11]
A tree model generated using an L-system. [Wik18]
An example produced by the system presented by Aliaga et al.: Two street
networks with different styles (a, b) get merged into a combined network (c).
[AVBO8] . . . o
Procedurally generated buildings modeled after real footprints of Pompeii.
IMWHTO06]
Synthesized terrain created using a data-driven method by Zhou et al. (a)
Input user sketch. (b) Base elevation map. (c) Resulting synthesized elevation
map. (d) Rendered result. [ZSTRO7]

A step-by-step depiction of node attraction and merging caused by gravita-
tional forces. (a)-(c) The two nodes exert attraction forces on each other. (d)
Nodes have collided and were merged into one. One of the two top edges has
been removed.
An illustration of the impact that the springs have on the rest of the road
network. The gravitational force exerted on a single node is distributed across
the local network. L L L
An illustration of the forces at play during attraction. The actual attraction
forces are shown in red, the spring forces in black and white.
Difference in street labeling in OpenStreetMap. Streets of type service have
been highlighted in the historic centers of Rome (left) and Vienna (right).
A schematic view of the individual components and their interconnectivity
from a high-level perspective. L.
A visualization of the program flow in Unity [Unib]. For better visibility, some
parts have been combined or omitted.
A visualization of the different node types. Junction nodes are highlighted in
red, waypoint nodes are shown in blue.
The relations between nodes and edges in UML notation.

11

13

17

18

21

26

27

28

33

36

39

43
45

81

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

3.9

3.10

3.11

4.1
4.2

4.3
4.4
4.5

4.6
4.7

4.8
4.9
4.10
4.11
4.12

4.13
4.14

4.15

4.16

4.17

4.18

82

An illustration of the post-processing procedure. (a) A ray is cast from node A
to node B. The ray hits another edge. (b) A new node C is added in between.
New edges are created accordingly. (c)(d) Ray casts are performed for all
added edges, sequentially. oL
An example of the artifact removal process. (a) An edge crosses over other
edges. (b) Nodes were added during post-processing to connect the respective
edges. A triangle shape is formed. (¢) The waypoint node was removed. .
An overview of the types of GameObjects used in the application, with their
respective components. L Lo

Input data sets for Vienna and Paris, provided for reference.
The result of a CityMerge application run using input maps from Vienna and
Paris. Mixing ratios miz = 0.5 : 0.5, number of iterations n = 200

Results for Vienna/Paris, using different iteration counts with mix = 0.5 : 0.5.
Input data sets for Barcelona and Lisbon, provided for reference.
The result of a procedural generation process using input maps from Barcelona
and Lisbon. miz =0.5:05,7n=300
Results for Barcelona/Lisbon, using different mixing ratios with n = 300.
The result of a procedural generation process using the layout of Vienna and
a pre-filtered map of Paris. mix =0.5:0.5,n =100
The correlation between the number of iterations and the resulting simulation

The correlation between the total number of objects (nodes and edges) and
the resulting simulation time. o000,
The images used for the comparison section of the user study. The images
have been processed to achieve a uniform appearance.
The images used for the plausibility section of the user study.
The images used for the recognizability section, part 1..
The images used for the recognizability section, part 2..
User ratings for the perceived realism of layouts generated by different systems.
Participants were given the following task: “Please rate [the layouts] based on
how realistic they look to you.” The value “1” was defined as “very unrealistic’
and “5” as “very realistic”.o oL
Average perceived realism, compared between different approaches (95%
confidence)
Subjective plausibility ratings provided by participants. A value of “1” corre-
sponds to “very unrealistic” and “5” to “very realistic”..
Recognizability of features from Vienna and Paris in the result. py;e = 6.79,
Lpar =T7.06 . L o
Recognizability of features from Copenhagen and Barcelona in the result.

HCop = D08, fhBar =T 11 . . . L L

Y

50

52

593

58
o8
99
99

60
60

61
62
63
65
66

68
69

70

71

72

73

73

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

83

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Acronyms

AT Artificial Intelligence. 9
ECS Entity Component System. 55, 77

GIS Geographic Information System. 16, 28, 29, 34

GUI Graphical User Interface. 32

LIDAR Light Detection and Ranging. 21

LTS Long Term Support. 40

NPC Non-Player Character. 9

Overpass QL Overpass Query Language. 31, 32, 61

PCG Procedural Content Generation. xi, 1, 811, 13, 14, 16, 19-22

UML Unified Modeling Language. 44

85

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

[ABVAOS]

[AVBOS]

[BJAT16]

[BoelT]

[BS20]

[BWK14]

[CD99)

[CIMW10]

[dC11]

Bibliography

Daniel G. Aliaga, Bedrich Benés, Carlos A. Vanegas, and Nathan Andrysco.
Interactive reconfiguration of urban layouts. IEEE Computer Graphics
and Applications, 28(3):38-47, 5 2008.

Daniel G. Aliaga, Carlos A. Vanegas, and Bedfich Beneds. Interactive
example-based urban layout synthesis. In ACM SIGGRAPH Asia 2008
Papers, SIGGRAPH Asia’08, 2008.

Anahid Basiri, Mike Jackson, Pouria Amirian, Amir Pourabdollah, Monika
Sester, Adam Winstanley, Terry Moore, and Lijuan Zhang. Quality
assessment of OpenStreetMap data using trajectory mining. Geo-Spatial
Information Science, 19(1):56-68, 1 2016.

Geoff Boeing. OSMnx: New methods for acquiring, constructing, analyzing,
and visualizing complex street networks. Computers, Environment and
Urban Systems, 65:126-139, 9 2017.

Joseph Alexander Brown and Marco Scirea. Procedural Generation for
Tabletop Games: User Driven Approaches with Restrictions on Compu-
tational Resources. In Advances in Intelligent Systems and Computing,
volume 925, pages 44-54. Springer Verlag, 2020.

Jan Benes, Alexander Wilkie, and Jaroslav Kiivanek. Procedural modelling
of urban road networks. Computer Graphics Forum, 33(6):132-142, 9 2014.

James Clark and Steve DeRose. XML Path Language (XPath). W3C
Recommendation, 1999.

Btazej Cieptuch, Ricky Jacob, Peter Mooney, and Adam C Winstanley.
Comparison of the accuracy of OpenStreetMap for Ireland with Google
Maps and Bing Maps. In Proceedings of the Ninth International Symposium
on Spatial Accuracy Assessment in Natural Resuorces and Enviromental
Sciences 20-23rd July 2010, page 337. University of Leicester, 2010.

Anténio Miguel de Campos. Animated fractal moun-
tain - Wikimedia Commons. [Online; accessed 03.12.2019]
87

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

[Dor10]

[DP10]

[Falll]

[GHJV95]

[Goo00]

[GPSL03]

[GT10]

[HBWO6]

[HMVDVI13|

[HWOS]

[HYWL18]

88

https://commons.wikimedia.org/wiki/File:Animated_ fractal mountain.gif,
2011.

Joris Dormans. Adventures in level design: Generating missions and spaces
for action adventure games. In Workshop on Procedural Content Gener-
ation in Games, PC Games 2010, Co-located with the 5th International
Conference on the Foundations of Digital Games, 2010.

Jonathon Doran and Ian Parberry. Controlled procedural terrain generation
using software agents. IEEE Transactions on Computational Intelligence
and Al in Games, 2(2):111-119, 6 2010.

Gregory Falkovich. Fluid mechanics: A short course for physicists. Cam-
bridge University Press, 2011.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley
Longman Publishing Co., Inc., 1995.

M. F. Goodchild. GIS and transportation: Status and challenges. Geoln-
formatica, 4(2):127-139, 2000.

Stefan Greuter, Jeremy Parker, Nigel Stewart, and Geoff Leach. Real-time
procedural generation of ’pseudo infinite’ cities. In Proceedings of the 1st
International Conference on Computer Graphics and Interactive Techniques
in Australasia and South Fast Asia, GRAPHITFE 03, GRAPHITE ’03,
page 87—f, New York, NY, USA, 2003. ACM.

Jean Francois Girres and Guillaume Touya. Quality Assessment of the
French OpenStreetMap Dataset. Transactions in GIS, 14(4):435-459, 8
2010.

Evan Hahn, Prosenjit Bose, and Anthony Whitehead. Persistent realtime
building interior generation. In Proceedings - Sandbox Symposium 2006:
ACM SIGGRAPH Video Game Symposium, Sandbox ’06, pages 179-186,
2006.

Mark Hendrikx, Sebastiaan Meijer, Joeri Van Der Velden, and Alexan-
dru Iosup. Procedural content generation for games: A survey. ACM

Transactions on Multimedia Computing, Communications and Applications,
9(1):1-22, 2013.

Mordechai Haklay and Patrick Weber. OpenStreet map: User-generated
street maps. IEEE Pervasive Computing, 7(4):12-18, 10 2008.

D. Hooshyar, M. Yousefi, M. Wang, and H. Lim. A data-driven procedural-
content-generation approach for educational games. Journal of Computer
Assisted Learning, 34(6):731-739, 2018.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

[IFPW10]

[Jan12]

[Jarl4]

[JohT2]

[JSS*17]

[Kaz09)]

[KK96]

[KKC18]

[KMO6]

[KMO7]

[KMK12]

[Kos91]

[Krol7]

Martin Il¢ik, Stefan Fiedler, Werner Purgathofer, and Michael Wimmer.
Procedural Skeletons: Kinematic Extensions to CGA-Shape Grammars. In
Proceedings of the Spring Conference on Computer Graphics 2010, pages
177-184. Comenius University, Bratislava, 5 2010.

Katleen Janssen. Open government data and the right to information:
Opportunities and obstacles. The Journal of Community Informatics, 8(2),
2012.

Michael Jaros. Crowd Simulation for Virtual Environments in Unity. Wien,
Techn. Univ., Dipl.-Arb., 2015, Vienna, 2014.

James H. Johnson. Urban Geography: An Introductory Analysis. Pergamon,
2nd edition, 1972.

Peter A. Johnson, Renee Sieber, Teresa Scassa, Monica Stephens, and
Pamela Robinson. The Cost(s) of Geospatial Open Data. Transactions in
GIS, 21(3):434-445, 6 2017.

Darius Kazemi. Spelunky’s Procedural Space. [Online; accessed 05.12.2019]
http://tinysubversions.com/2009/09/spelunkys-procedural-space/, 2009.

Lance M. Kaplan and C. C.Jay Kuo. An improved method for 2-D
self-similar image synthesis. IFEE Transactions on Image Processing,
5(5):754-761, 1996.

Joon-Seok Kim, Hamdi Kavak, and Andrew Crooks. Procedural city
generation beyond game development. SIGSPATIAL Special, 10(2):34-41,
2018.

George Kelly and Hugh McCabe. A survey of procedural techniques for
city generation. ITB Journal, 7(2):87-130, 5 2006.

George Kelly and Hugh McCabe. Citygen: An interactive system for
procedural city generation. In Fifth International Conference on Game
Design and Technology, pages 8-16, 2007.

Lars Krecklau, Christopher Manthei, and Leif Kobbelt. Procedural Inter-
polation of Historical City Maps. Computer Graphics Forum, 31(2pt3):691—
700, 2012.

Spiro Kostof. The City Shaped: Urban Patterns and Meanings Through
History. Thames and Hudson, London, 1991.

Karl Kropf. The Handbook Of Urban Morphology. John Wiley & Sons,
Ltd, Chichester, UK, 10 2017.

89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

[Law15]

[LB14]

[Ley83]

[Lin68]

[LWW+07]

[LWWF03]

[LYCH10]

[Lyn60]
[Lyn84]
[Mael7]
[Mang3]
[Mar04]

[Meil9]

[MKMS9]

90

Joel Lawhead. Learning Geospatial Analysis with Python, 2nd Edition.
Packt Publishing Ltd, 2015.

Rémi Louf and Marc Barthelemy. A typology of street patterns. Journal
of the Royal Society Interface, 11(101), 12 2014.

David Ley. A social geography of the city. Harper & Row New York, New
York, NY, USA, 1983.

Aristid Lindenmayer. Mathematical models for cellular interactions in
development I. Filaments with one-sided inputs. Journal of Theoretical
Biology, 18(3):280-299, 1968.

Tom Lechner, Benjamin Watson, Uri Wilensky, Seth Tisue, Martin Felsen,
Andy Moddrell, Pin Ren, and Craig Brozefsky. Procedural modeling of
urban land use. Technical report, North Carolina State University. Dept.
of Computer Science, 2007.

Thomas Lechner, Ben Watson, Uri Wilensky, and Martin Felsen. Proce-
dural city modeling. In 1st Midwestern Graphics Conference, pages 1-6,
2003.

Yotam Livny, Feilong Yan, Baoquan Chen, Matt Olson, Hao Zhang, and
Jihad El-Sana. Automatic Reconstruction of Tree Skeletal Structures from
Point Clouds. ACM Transactions on Graphics, 29(6):1-8, 2010.

Kevin Lynch. The image of the city, volume 11. The MIT Press, 1960.

Kevin Lynch. A Theory of Good City Form. MIT Press, Cambridge, MA,
1984.

Luca Maestri. Visualization of Computer-Generated 3D Cities using GIS
Data. Technische Universitdt Wien, Vienna, 2017.

Benoit B. Mandelbrot. The Fractal Geometry of Nature, volume 173. WH
Freeman New York, New York, NY, 1983.

Stephen Marshall. Streets and Patterns. Spon Press, 2004.

Lucas Meijer. On DOTS: Entity Component System. [Online; ac-
cessed 11.02.2020] https://blogs.unity3d.com/2019/03/08/on-dots-entity-
component-system/, 3 2019.

F. Kenton Musgrave, Craig E. Kolb, and Robert S. Mace. The synthesis
and rendering of eroded fractal terrains. In Proceedings of the 16th Annual
Conference on Computer Graphics and Interactive Techniques, SIGGRAPH
1989, pages 41-50. Association for Computing Machinery, Inc, 7 1989.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

[MSK10]

[Mun13]

[MWH™06]

[MZWVGO07]

INGDA16]

[0GC20]

[Opeld]

[Opel§]

[OR13]

[Pen84]

[Per85]

[Per01]

Paul Merrell, Eric Schkufza, and Vladlen Koltun. Computer-Generated
Residential Building Layouts. ACM Transactions on Graphics, 29(6):1-12,
2010.

Dave Munson. Which street pattern represents your con-
tinent? | Munson’s City. [Online; accessed 16.01.2020]
https://munsonscity.wordpress.com/2013/10/09/which-street-pattern-
represents-your-continent /, 2013.

Pascal Miiller, Peter Wonka, Simon Haegler, Andreas Ulmer, and Luc
Van Gool. Procedural modeling of buildings. In ACM SIGGRAPH 2006
Papers, SIGGRAPH 06, pages 614-623, 2006.

Pascal Miiller, Gang Zeng, Peter Wonka, and Luc Van Gool. Image-based
procedural modeling of facades. ACM Transactions on Graphics, 26(3), 7
2007.

G. Nishida, I. Garcia-Dorado, and D. G. Aliaga. Example-Driven Proce-
dural Urban Roads. Computer Graphics Forum, 35(6):5-17, 2016.

OGC. Welcome to The Open Geospatial Consortium | OGC. [Online;
accessed 30.01.2020] https://www.opengeospatial.org/, 2020.

OpenStreetMap Wiki contributors. Open-
StreetMap Wiki. [Online; accessed 02.02.2020]
https://wiki.openstreetmap.org/w/index.php?title=Main_ Page
&01did=1060762, 2014.

Open Knowledge Foundation. Open Data Commons Open
Database License (ODbDL). [Online; accessed 31.01.2020]
https://opendatacommons.org/licenses/odbl/1.0/, 2018.

Hans C. Ohanian and Remo Ruffini. Newton’s gravitational theory. In
Gravitation and Spacetime, pages 1-46. Cambridge University Press, 3
edition, 4 2013.

Alex P. Pentland. Fractal-Based Description of Natural Scenes. IEEFE
Transactions on Pattern Analysis and Machine Intelligence, PAMI-6(6):661—
674, 1984.

Ken Perlin. An Image Synthesizer. SIGGRAPH Comput. Graph.,
19(3):287-296, 7 1985.

Ken Perlin. Noise hardware. Real-Time Shading SIGGRAPH Course
Notes, 2001.

91

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
10
edge

b

now!

i
r

[PLY0]

[PMO1]

[RPSC99]

[Smil5]

[Sny87]

[S093]

[SPK*14]

[STBB14]

[STN16]

[SYBGO04]

[TB16]

[TKSY11]

92

Przemyslaw Prusinkiewicz and Aristid Lindenmayer. The Algorithmic
Beauty of Plants. The Virtual Laboratory. Springer New York, New York,
NY, 1990.

Yoav 1. H. Parish and Pascal Miiller. Procedural modeling of cities. In
Proceedings of the 28th annual conference on Computer graphics and
interactive techniques - SIGGRAPH 01, pages 301-308, 2001.

Harvey Ray, Hanspeter Pfister, Deborah Silver, and Todd A. Cook. Ray
casting architectures for volume visualization. IEEE Transactions on
Visualization and Computer Graphics, 5(3):210-223, 1999.

Gillian Smith. An Analog History of Procedural Content Generation.
Foundations of Digital Games, pages 0-5, 2015.

John Parr Snyder. Map projections - a working manual. US Geological
Survey Professional Paper, 1987.

Michael Southworth and Peter M. Owens. The Evolving Metropolis:
Studies of Community, Neighborhood, and Street Form at the Urban Edge.
Journal of the American Planning Association, 59(3):271-287, 1993.

0. Stava, S. Pirk, J. Kratt, B. Chen, R. Méch, O. Deussen, and B. Benes. In-
verse procedural modelling of trees. Computer Graphics Forum, 33(6):118-
131, 9 2014.

Ruben M. Smelik, Tim Tutenel, Rafael Bidarra, and Bedrich Benes. A
survey on procedural modelling for virtual worlds. Computer Graphics
Forum, 33(6):31-50, 9 2014.

Noor Shaker, Julian Togelius, and Mark J. Nelson. Procedural Content
Generation in Games. Computational Synthesis and Creative Systems.
Springer International Publishing, Cham, 2016.

Jing Sun, Xiaobo Yu, George Baciu, and Mark Green. Template-based
generation of road networks for virtual city modeling. In Proceedings of
the ACM symposium on Virtual reality software and technology - VRST
02, page 33, New York, New York, USA, 2004. ACM Press.

Fieke C Taal and Rafael Bidarra. Procedural Generation of Traffic Signs.
In Vincent Tourre and Filip Biljecki, editors, Eurographics Workshop on
Urban Data Modelling and Visualisation. The Eurographics Association,
2016.

Julian Togelius, Emil Kastbjerg, David Schedl, and Georgios N. Yannakakis.
What is procedural content generation? Mario on the borderline. In ACM
International Conference Proceeding Series, 2011.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

[TMNT?20]

[TYSB11]

[Unia)

[Unib)]

[VABW09]

[Vas18]

[VGDA*12]

[Wat99]

[WFf11]

[Whel5]

[Wik18]

[WMV+08]

Eite Tiesinga, Peter J Mohr, David B Newell, and Barry N Taylor. The 2018
CODATA Recommended Values of the Fundamental Physical Constants.
Web Version, 8.1, 2020.

Julian Togelius, Georgios N. Yannakakis, Kenneth O. Stanley, and
Cameron Browne. Search-based procedural content generation: A taxon-
omy and survey. In IEEFE Transactions on Computational Intelligence and
Al in Games, volume 3, pages 172-186, 9 2011.

Unity Technologies. Solutions | Unity. [Online; accessed 11.02.2020]
https://unity.com/solutions.

Unity Technologies. Unity - Manual: Order of Execu-
tion for Event Functions. [Online; accessed 06.02.2020]
https://docs.unity3d.com/Manual/ExecutionOrder.html.

Carlos A. Vanegas, Daniel G. Aliaga, Bedfich Benes, and Paul A. Waddell.
Interactive Design of Urban Spaces using Geometrical and Behavioral
Modeling. In ACM Transactions on Graphics, volume 28, pages 1-10.
ACM, 2009.

Michael Vasiljevs. Procedural modeling of park layouts. Technische Univer-
sitdt Wien, Wien, 2018.

Carlos A. Vanegas, Ignacio Garcia-Dorado, Daniel G. Aliaga, Bedrich
Benes, and Paul Waddell. Inverse design of urban procedural models.
ACM Transactions on Graphics, 31(6):1, 2012.

Nigel Waters. Transportation GIS: GIS-T. Geographical Information
Systems, pages 827-844, 1999.

Nathan Whitehead and Alex Fit-florea. Precision & Performance : Floating
Point and IEEE 754 Compliance for NVIDIA GPUs. NVIDIA white paper,
21(10):767-75, 2011.

Stephen M Wheeler. Built Landscapes of Metropolitan Regions: An
International Typology. Journal of the American Planning Association,
81(3):167-190, 2015.

Wikimedia Commons. Fractal tree - Wikime-
dia Commons. [Online; accessed 05.12.2019]
https://commons.wikimedia.org/w/index.php?title=File:Fractal tree__
(Plate_b_-_2).jpg&oldid=325669560, 2018.

Benjamin Watson, Pascal Miiller, Oleg Veryovka, Andy Fuller, Peter
Wonka, and Chris Sexton. Procedural urban modeling in practice. IEEE
Computer Graphics and Applications, 28(3):18-26, 5 2008.

93

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

[WMWGO09]

[WWSR03]

[WYD*14]

[ZSTRO7]

94

Basil Weber, Pascal Miiller, Peter Wonka, and Markus Gross. Interactive
geometric simulation of 4D cities. Computer Graphics Forum, 28(2):481—
492, 4 2009.

Peter Wonka, Michael Wimmer, Frangois Sillion, and William Ribarsky.
Instant architecture. In ACM SIGGRAPH 2008 Papers, SIGGRAPH 03,
pages 669-677, New York, New York, USA, 2003. ACM Press.

Fuzhang Wu, Dong-Ming Yan, Weiming Dong, Xiaopeng Zhang, and Peter
Wonka. Inverse procedural modeling of facade layouts. ACM Transactions
on Graphics, 33(4):1-10, 2014.

Howard Zhou, Jie Sun, Greg Turk, and James M. Rehg. Terrain synthesis
from digital elevation models. IEEE Transactions on Visualization and
Computer Graphics, 13(4):834-848, 7 2007.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Problem Statement
	Key Research Questions

	Approach

	Related Work
	Urban Layouts
	Street Patterns
	Data Representation

	Procedural Content Generation
	Overview
	Methods
	Procedural City Generation
	Data-driven Procedural Generation

	Data-driven Generation of City Layouts
	Theoretical Approach
	Source Data
	OpenStreetMap Data
	Obtaining Data
	Possible Issues

	Implementation Concept
	Scope Constraints
	Functional Requirements
	Non-functional Requirements
	Software Design and Architecture

	Implementation of the CityMerge System
	Unity Game Engine
	Frameworks and Libraries
	Project Setup
	Main Controller
	Map Import
	Data Structure
	Simulation Loop
	Post-Processing
	User Interaction
	Components and Prefabs
	Performance Tuning

	Results
	Generated Layouts
	Example 1: Vienna and Paris
	Example 2: Barcelona and Lisbon
	Pre-filtered Input Data

	Performance
	Subjective Evaluation
	Method
	Structure
	Outcome

	Discussion
	User Study Analysis
	Performance Analysis
	Limitations and Future Work
	Result Plausibility
	Mixing Ratios
	Performance and Scalability
	Input Data and Preprocessing
	Buildings

	Conclusion
	List of Figures
	Acronyms
	Bibliography

