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Abstract

Languages with programmer-visible stacks (stack-based languages) are
used widely, as intermediate languages (e.g., JavaVM, FCode), and as lan-
guages for human programmers (e.g., Forth, PostScript). However, the preva-
lent computer architecture is the register machine. This poses the problem
of efficiently implementing stack-based languages on register machines. A
straight-forward implementation of the stack consists of a memory area that
contains the stack items, and a pointer to the top-of-stack item.

The basic optimizations explored in this thesis are: Caching the frequently-
accessed top-of-stack items in registers reduces stack access overhead, and
combining stack-pointer updates eliminates most of them.

This thesis examines these optimizations in the context of three basic
implementation techniques:

e For (virtual machine) interpreters, I regard the stack cache in the reg-
isters as finite state machine, where the execution of a virtual machine
instruction performs a state transition; there are specialized implemen-
tations of the virtual machine instructions for each state.

¢ My native-code compilation technique transforms the programs into
standard compiler data structures; then state-of-the-art compiler tech-
nology can be applied for optimization and code generation. In par-
ticular, stack items are represented by pseudo-registers, which register
allocation will (usually) put into machine registers; stack pointer up-
dates are executed symbolically, i.e., at compile time.

e For translation to C, I emphasize simplicity; the optimizer of the C
compiler takes care of the complex problems. The translator just has
to represent stack items as local C variables, and the C compiler will
keep them in registers. As with native-code compilers, (usually) no
stack pointer updates at run-time are necessary.

For interpreters, the optimizations eliminate about two real machine in-
structions per virtual machine instruction, resulting in speedups of 17%-31%
(for Forth on a DecStation 3100). The techniques presented here for native-
code compilation and translation to C achieve a speedup factor of 1.3-3 over
traditional native code compilers and more than 3 over a straight-forward
translator to C (for Forth on a 486DX2/66).
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Chapter 1

Introduction

Languages with programmer-visible stacks (stack-based languages) are used
widely, often as intermediate languages (e.g., JavaVM, Smalltalk byte-code,
PostScript, FCode), but also as languages for human programmers (e.g.,
Forth, PostScript, Pop, the BIBTEX style language).

The prevalent processor architecture in high-performance computers (from
supercomputers down to PCs) is the register machine, i.e., an architecture
that provides several (8-32) general-purpose registers.

Clearly, the efficient implementation of stack-based languages on register
machines is an important task. This thesis explores this topic for several
implementation techniques: interpreters (Section 2), compilers producing
native machine code (Section 3), and translation to C code (Section 4).

A straight-forward implementation of the stack consists of a memory area
that contains the stack items, and a pointer to the top-of-stack item (see
Fig. 1.1). Each operation loads the operands from memory with an indexed
access through the stack pointer, stores the results to the stack in the same
way, and changes the stack pointer, so that it points to the new top-of-stack
item.

My main contribution is the application of the following ideas in the
context of the different implementation techniques: frequently-accessed top-
of-stack items are kept in registers, eliminating memory accesses; and stack
pointer updates are combined, eliminating most of them. A more detailed

sP Top of stack (TOS)| sp[0]
Second sp[1]

Figure 1.1: A straight-forward implementation of a stack and how to access it in C
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account of my contributions can be found in each chapter.

The rest of this chapter examines the possibility of employing a stack ar-
chitecture (Section 1.1), compares the implementation techniques discussed
in this thesis (Section 1.2), takes a closer look at stack-based languages (Sec-
tion 1.3) and shows that (most) register architectures offer enough registers
to make the techniques explored in this thesis worthwhile (Section 1.4); fi-
nally, it gives a short overview of the assembly languages used in this thesis
(Section 1.5).

1.1 Processor architecture

Stack architectures have been proposed for executing stack-based (and other)
languages efficiently [Bla77, HFWZ87, HL.89, Koo89]. Unfortunately, it is of-
ten not possible to choose the architecture. Even if you are allowed to choose
the processor, there may be no stack architecture in the market segment you
are interested in. In particular, the high-performance market (PCs and up)
is monopolized by register architectures.

As a last resort, you might try to build a stack architecture processor
yourself; however, research in architectures and compilers for other uncon-
ventional languages [Ung87, CU89, KB92] has shown that such languages can
be implemented efficiently on mainstream hardware using aggressive com-
piler techniques and that the gains of specialized architectures are usually
offset by the better manufacturing technology available to widely-used reg-
ister architectures. This thesis shows that this is also valid for stack-based
languages.

Stack architectures (and other non-register-architectures, e.g., accumula-
tor architectures) still have a niche in special applications and in the em-
bedded control market; however, in the long run the improved fabrication
technology will lead to a situation where the advantages of such architec-
tures (smaller processor core, smaller code) are no longer significant. The
market share of register architectures (and the application domain of the
techniques presented here) will increase.

1.2 Implementation techniques

Why do I explore three different implementation techniques? Is there not
one true way of implementing programming languages? Unfortunately, the
answer is no; each technique has its advantages and disadvantages (some are
listed in Fig. 1.2). For example, an interactive language like Forth, that can
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native code translator
interpreter ~ compiler to C
execution speed low high high
compilation speed high high? low
retargetability cheap expensive cheap
interactivity yes yes no

Figure 1.2: Advantages and disadvantages of various language implementation techniques

compile new code at run-time, cannot be translated completely into C, which
enforces a strict separation between compilation and run-time.!

1.3 Stack-Based Languages

1.3.1 Overview

Languages with programmer-visible stacks are used as general and special-
purpose programming languages, they are popular as intermediate languages
for compilers and they are very popular as machine-independent executable
program representations.

A language has a programmer-visible stack, if it is hard or impossible to
describe its semantics without describing a stack. With regard to implemen-
tations this means that a straight-forward implementation would incorporate
a stack implementation like the one shown in Fig. 1.1. Here are some exam-
ples:

Programming languages

Forth is used in many fields; it is especially popular in embedded
control applications.

PostScript is used primarily in typesetting and other display pur-
poses; its versatility is shown by an application in a debugger
[RH92]. Because the majority of PostScript code is written by
programs, it can also be regarded as intermediate language.

Pop is primarily used by the British AI community; it offers infix no-
tation for the benefit of those who are uncomfortable with postfix.

!'Dynamic linking allows hacking around this separation, but the result is not very
portable (dynamic linking is not universally supported) and does not feel interactive.
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RPL (reverse polish LISP) is the language of the HP-48 calculator.
It is a run-time type-checked language with many mathematical
data types and Forth-like syntax.

The BIBTEX style language is a special-purpose language for pro-
cessing BIBTRX databases.

Intermediate languages for compilers

UCSD p-code is used in the UCSD system, an operating system best
known for its Pascal compiler. P-code was either interpreted or
compiled to native code.

EM is the intermediate language of the Amsterdam Compiler Kit
(ACK) [TvSKS83]. It is usually translated to native code.

Elisp byte-code is a code for Emacs Lisp programs, that can be in-
terpreted more quickly than the list representation, and can be
exchanged between machines without recompilation.

Smalltalk-80 byte-code [GR83, Kra83] is the intermediate language
of the Smalltalk-80 system.

Machine-independent executable program representations

JavaVM [Sun95] is a byte-code for transmitting WWW applets. De-
signed for the Java language, but not limited to it.

Fcode is a machine-independent binary representation of Forth. The
firmware in SBus and PCI cards (Open Firmware) is represented
as Fcode for CPU independence.

These categories overlap somewhat. E.g., PostScript and Elisp byte-
code could be just as well regarded as belonging to the category “machine-
independent executable program representations”.

Stack-based languages are used as programming languages, because

e they are conceptually simple. There is no need to deal with many differ-
ent concepts such as statements, r-expressions, l-expressions, sequence
points?, with syntax definitions, that even in BNF notation need several
pages, etc.

2These terms come from C terminology; other languages in the Algol family use different
terms.



CHAPTER 1. INTRODUCTION 7

e they make metaprogramming (programs that deal with programs) easy.
This is another consequence of their conceptual simplicity. In many
stack-based languages it is possible to build programs at run-time and
execute them immediately.

e they offer a higher quality of extensibility. There is no syntactical (and,
in many cases, no internal) difference between a built-in and a user-
defined operation. In contrast, in the languages in the Algol family
built-in operators differ syntactically from user-defined functions.

However, their popularity as programming languages is limited, because

e the syntax is unusual. Everybody learns infix syntax for arithmetic in
school. Learning postfix requires extra effort.

e parameters are passed implicitly. This can make programs harder to
read, if they are not written in good programming style. In particu-
lar, programmers coming from an Algol language tend to write longer
definitions (procedures) than is good style in stack-based languages.

e ‘“everybody programs in C (C++)”.
Some of the reasons for their popularity as intermediate languages are:

e It is easy to generate code for them from most languages.
e They can be implemented efficiently as interpreters (see Section 2.2.1).
e They impose fewer arbitrary limits (e.g., a limited number of registers)

e Programs in these languages can be represented compactly as byte code
(for permanent storage or transfer over a network).

One important property of a language with regard to its implementation
is, whether is is type-checked at run time or not®. About half of the lan-
guages mentioned above (PostScript, Pop, RPL, the BIBTEX style language,
Elisp byte-code, and Smalltalk-80 byte-code) are dynamically type-checked,
the others are not. This work does not deal with run-time type-checking, be-
cause run-time typechecking is neither universal in nor specific to stack-based
languages. The techniques developed for implementing it in other languages
(e.g., SELF [CU89]) should work for stack-based languages, too.

3For the present work, it does not matter whether the language is type-checked at
compile-time or not at all; compile-time type-checking belongs to the duty of compiler
front-ends, which are not in the scope of the present work.
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1.3.2 Forth

I will use Forth [ANS94, RCM93] as a representative for stack-based lan-
guages in this thesis. Forth offers several advantages:

e It is simple. Those of its properties that are specific to Forth, do not
pose hard implementation problems.

e It offers direct access to the stack-based language (in contrast to sys-
tems that use the stack-based language only as intermediate code).

e It is interactive, further facilitating experimentation.
Other properties important for the present work are:

e Forth is usually* not type-checked.® In this respect Forth is similar to
many intermediate languages and assembler.

e It operates on machine words (cells in Forth terminology). The items
on the stacks are cell-sized; only things that fit into a cell are treated
first-class. Again, Forth is similar in this respect to many intermediate
languages, assemblers, and languages such as Pascal.

Syntactically, a Forth program consists of a sequence of words®, i.e., se-
quences of non-whitespace characters separated by white space. A Forth
colon definition corresponds to a C function. E.g.,

squared
dup * ;

defines the word squared with the stack effect nl -- n2. When squared is
executed, it executes first dup, i.e., it pushes another copy of the top-of-stack
on the stack; then it executes *, i.e., it multiplies the two copies of the input
parameter and produces the square; then it returns.

4[ANS94] specifies type rules, and there has been some work on compile-time type
checking in Forth [SK93].

®Some people call languages without type-checking (and sometimes even languages
with run-time type-checking) untyped. This term is inappropriate: Forth works on data,
and each datum has a type (an interpretation). Applying the wrong operation to a datum
is a type error, even if neither the compiler nor the run-time system will catch it; the
programmer is responsible for writing type correct programs.

6The use of word to denote a program element makes it necessary to use a different
term for the basic data element, namely cell.
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1.3.3 Stack effect notation

Stack-based languages use a (semi-)formal notation for specifying the stack
contents and the stack effect of operations.

The stack contents are specified as a sequence of stack items, with the
top-of stack rightmost. E.g., a b ¢ specifies that c is the top-of-stack item,
b is the second stack item, and a is the third item. The rest of the stack
(and the stack depth) is not specified. The order of the stack items in the
specification corresponds to the order, in which you type them in if you want
to produce these stack contents.

The stack effect of a word is specified by specifying the stack contents
before the word is executed and the stack contents afterwards, separated by
- (in Forth; the PostScript convention differs in this respect by using the
operator name as separator). Those parts of the stack that are not specified
stay the same during the execution of the word. E.g., the stack effect for
swap isab --b a.

The stack effect of two words can be combined in the intuitive way to
compute the combined stack effect. Formally:

X1 X == Yi--¥1 X Y1..Y1 - Z1..Zp, = Y1...Yi—1X1. X - Z1...Z,
X1.. X = Y1-..¥1 X YioY1 - 212y, = X1 X - Y1...Yi—1Z1.-.Zp

E.g., in the squared example, dup has the stack effect x -- x x, * has the
stack effect n1 n2 -- n3, so the combined stack effect (i.e., the stack effect of
squared) is nl -- n2.

Stack effects, augmented with typing rules, form an algebra that can
be seen as specifying a syntax [P6i94]. This formalism is better suited for
describing the syntax of stack-based languages than context-free grammars.

1.3.4 Specific Forth properties

Forth has some properties that are relevant for the present work, where Forth
differs from some of the other stack-based languages:

e Forth has a separate return stack for holding return addresses; return
addresses do not get in the way when the parameters are accessed. In
Forth the return stack is also programmer-visible, and is sometimes
used by programmers for holding temporary data. The stack normally
used for data is called data stack.

e ANS Forth specifies (state-less) control flow with seven words that com-
municate (at compile-time) through a control-flow stack (see Fig. 1.3).
All (state-less) control structures can be specified with these words
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Word Stack effect Meaning

IF -- orig  conditional forward branch
AHEAD -- orig  unconditional forward branch
THEN” orig - target of forward branch

BEGIN -- dest  target of backward branch
UNTIL dest -- conditional backward branch
AGAIN dest -- unconditional backward branch
CS-ROLL ... n - .. control-flow stack manipulation

Figure 1.3: Forth’s basic control structure words. A dest item on the control-flow stack
represents the target of a backward branch, an orig item represents the source of a forward
branch.

[Bad90]. In other words, these words have the same expressive power
as the combination of unconditional and conditional branches present
in many intermediate and assembly languages. The advantage of this
form of expressing control-flow is that it is easier to implement (no label
table necessary), that structured (i.e., goto-less) control flow is easier
to translate to these primitives, that there are no name clash problems
(e.g., on macro expansion), and that it facilitates control flow analysis.

I will discuss the consequences of these properties in this thesis, but I will
also point out what is Forth-specific, and how the results for other languages
would differ from the results for Forth.

1.3.5 Program characteristics

The following characteristics of typical programs are important for the im-
plementation:

e Forth code written by human programmers has an extremely high call
frequency. In these programs every third or fourth dynamically exe-
cuted word performs a call or a return (see Fig. 2.22). This is probably

"In structured code THEN terminates an IF-structure. According to Merriam- Webster’s
School Dictionary, then (adv.) has the following meanings:

... 2b: following next after in order ... 3d: as a necessary consequence (if you
were there, then you saw them).

Forth’s THEN has the meaning 2b, whereas THEN in Algol and its offspring has the mean-
ing 3d. Many Forth programmers use ENDIF® instead of THEN to terminate IF-structures.
SENDIF is easy to define: : ENDIF ( orig —-- ) POSTPONE THEN ; immediate
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also the case for programs written by humans for other stack-based
languages, but compiler-generated code probably exhibits a lower call
frequency.

e The stack depth for each point in the definition (relative to the stack
depth at the beginning of the definition) can usually be determined
at compile-time. An unknown stack depth can arise at control-flow
joins, if the stack depths of joining control-flow edges differ. Inten-
tional unknown stack depths are so rare that [Tev89] has proposed
that the compiler should produce a warning on detecting an unknown
stack depth, because it probably is due to a programming error. This
is probably also true for other stack-based languages, both for code
written by humans, and especially for compiler-generated code.

1.4 Stack usage characteristics

We want to improve the performance of implementations of stack-based lan-
guages by keeping stack items in registers and by reducing stack pointer
updates. Will this actually have a significant effect? How many registers do
we need, and how much improvement will we see?

1.4.1 Theoretical work

A mathematical model for the stack behaviour would be very useful: It could
be used to predict the performance of various implementations without re-
quiring tedious (and, possibly, non-representative) empirical measurements;
and, more importantly, it would allow the application of analytical methods
to derive an optimal implementation instead of using trial and error.

In [HS85], Hasegawa and Shigei propose the random walk model of stack
behaviour and they use this model to design a hardware stack caching al-
gorithm. The random walk model assumes that, at every point in program
execution, the probability of performing a push and a pop are the same, irre-
spective of previous events. In other words, if you have a coin that says push
on one side and pop on the other, throwing the coin repeatedly would pro-
duce a random walk model sequence. Hasegawa and Shigei did not evaluate
the random walk model empirically.

[Hay89, Ert95] present some empirical data and draw the conclusion that
the random walk model does not match the observed behaviour. Let us look
at some of the predictions of the random walk model. It assumes a stack
cache that can cache the first s stack items. It predicts
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e that, if the cache is half-full, the probability of cache overflow and cache
underflow (as next event requiring external access) is equal, irrespective
of previous events. I observed the behaviour of four real-world programs
(see Fig. 2.22) after an overflow, with the overflow resetting the cache
to half-full. T found that only one of the programs (gray) performed
another overflow in this situation, and then only 10 out of 279 times
(the random walk model predicts 139.5).

e that, resetting the cache to half-full after an overflow minimizes the
number of overflows, and (if all ways of handling overflows cost the
same) the total cost. I observed that it is optimal to keep the stack
rather full after an overflow (see Fig. 2.24).

Hayes [Hay89] explains this by taking a close look at loops: In a loop the
stack depth returns at the end to the depth it had at the beginning (unless
the loop produces an unknown stack depth, which is rare (see Section 1.3.5)).
Because most of the time is spent in some loop or other, we should see that
the stack depth oscillates around some average.

Moreover, definitions usually have a stack effect that does not change the
stack depth much. So, at the end of the definition the stack depth has to
come back close to the entry depth. Maybe one day we can find a better
model based on these observations.

1.4.2 Empirical work

Hardware stack machines have successfully used small register files for keep-
ing some of the top-of-stack caches. The most radical approach is the Trans-
puter: It provides only a stack of depth three, all of them in registers. The
HP3000 performed well with 4 top-of-stack registers [Bla77], the Tandem
Nonstop architecture used eight registers [AS92]. The FRISC group elimi-
nated almost all memory accesses with stack caches of 16 registers (with the
additional restriction that the top 4 items always must reside in registers)
[HFWZ87, Hay89, HL89].

My measurements show that a few registers are sufficient to capture the
majority of data stack accesses in Forth. Each additional register approxi-
mately halves the number of memory accesses (up to 14 registers, then the
decrease slows down). I expect similar benefits for keeping return stack items
in registers.
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1.5 Assembly languages

Some examples in this thesis are written in assembly languages for the MIPS
and Intel 386 architectures. These architectures are representative of the
RISC and CISC factions of the register architectures, respectively.

The MIPS architecture is a load/store architecture. Operations (like
addu) have three operands; all of them must be registers. In MIPS [KH92] as-
sembly language syntax register n is denoted by $n, the destination operand
of an instruction is usually the leftmost register, and comments start with #.

The Intel 386 (and its offspring) has a 2-address architecture (one of the
operands can reside in memory). I use the AT&T syntax used by gas and
other UNIX assemblers: The destination operand (which usually also serves
as a source operand) is on the right, register names start with %.



Chapter 2

Interpretation

The major advantages of interpreters over compilation to native code are
simplicity and portability. Their major advantages over the generation of
C code are compilation speed and flexibility (e.g., to generate additional code
at run-time). Interpreters are still the dominant implementation method of
general-purpose languages like Prolog, Forth and APL, probably the majority
of special-purpose language implementations are interpreters, and they are
even used in special implementations of traditionally compiled languages like
C.

In recent years many questions about interpreters have been asked in the
Usenet newsgroup comp . compilers. Efficiency was a major concern; another
frequent question is whether to use a stack or a register architecture for the
virtual machine.

This chapter first discusses interpreter construction and general efficiency
issues (Section 2.1). In Section 2.2, I answer the question, which virtual
machine architecture should be used. Then I present several methods for
caching stack items in real machine registers: Either there is only one cache
state (Section 2.3.1), or the interpreter (Section 2.4) or the compiler (Sec-
tion 2.5) keeps track of the cache state. Finally, I show some empirical results
(Section 2.6).

My main original contributions are the compiler-based static stack caching
technique, the discussion of different stack cache organizations, the empirical
evaluation, and the analysis of one-state stack caching. The material in this
chapter first appeared in [Ert94b, Ert95], and a little bit in [Ert93].

A note on terminology: unless otherwise noted, the terms instruction and
primitive refer to virtual machine instructions, cache refers to the stack cache
implemented in software, and the compiler is the program that generates the
virtual machine code.

In this chapter, I often refer to machine language concepts: registers,

14
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typedef void (* Inst)();

void add(Inst *ip, int *sp /* other regs */)
{

spl1] = sp[0]+sp[1];

(*ip) (ip+1, sp+l /* other registers */);
}

Inst program[] = { add /* ... %/ };

Figure 2.1: Direct threading in C using tail calls

(memory-to-register) loads, (register-to-memory) stores and (register-to-regi-
ster) moves. However, for portability reasons interpreters are usually written
in portable languages like C. Good C compilers allocate (scalar) local vari-
ables into registers (if there are enough). Moves correspond to assignments
between local variables, stores correspond to assignments to anything but lo-
cal variables (e.g., an assignment to an array element), and loads correspond
to (r-value) accesses to anything but local variables. For a more detailed
discussion of the correspondence of C and machine code, read Section 4.

2.1 Interpreter efficiency

Since we are interested in efficiency, we limit the discussion to virtual ma-
chine interpreters, and will not discuss, e.g., syntax tree interpreters. The
interpretation of a virtual machine instruction consists of three parts:

e accessing arguments of the instruction
e performing the function of the instruction
e dispatching (fetching, decoding and starting) the next instruction

The first and third part constitute the interpreter overhead.

2.1.1 Instruction dispatch

The most efficient method for fetching, decoding, and starting the next primi-
tive is direct threading [Bel73]: Instructions are represented by the addresses
of the routine that implements them, and instruction dispatch consists of
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typedef enum {
add /* ... *x/
} Inst;

void engine()
{
static Inst program[] = { add /

*

.ox/ };

Inst *ip;
int *sp;

for (;;)
switch (xip++) {
case add:
spl[1]=sp[0]+sp[1];
spt+;
break;

}

Figure 2.2: Instruction dispatch using switch

fetching that address and jumping to the routine.! Unfortunately, direct

threading cannot be implemented in ANSI C and other languages that do
not have first-class labels and do not guarantee tail-call optimization (Fig. 2.1
shows how direct threading would be implemented in C using tail-calls).
Two methods are usually used in C: a giant switch (Fig. 2.2) or calls
(Fig. 2.3). In the first method instructions are represented by arbitrary inte-
ger tokens, and the switch uses the token to select the right routine; in this
method the whole interpreter, including the implementations of all instruc-
tions, must be in one function. In the second method every instruction is a
separate function; this method is actually quite similar to direct threading (it
just uses calls instead of jumps), so I call it direct call threading. Figure 2.4,
2.5 and 2.6 show MIPS assembly code for the three techniques (direct call
threading needed a little source code twisting to get reasonable scheduling).
Fig. 2.7 shows the overhead of these techniques in cycles on two processors,

IForth has been traditionally implemented using indirect threading [Dew75, Kog82],
which performs an additional indirection. I.e., an instruction is represented by an address
of a cell that contains the address of the routine. This is used for eliminating inline argu-
ments; e.g., instead of having a call instruction with an inline argument, the instruction
points to a cell in front of the called word and that cell points to the call routine; direct
threaded Forth implementations usually emulate this structure.
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typedef void (* Inst)();

Inst *ip;
int *sp;

void add()

{
sp[1]1=sp[0]+sp[1];
spt+;

}
Inst program[] = { add /* ... */ };

void engine()

{
for (;3;)
(kip++) O ;

Figure 2.3: Direct call threading

lw  $2,0($4) #get next instruction, $4=inst.ptr.
addu $4,$4,4 #advance instruction pointer

J $2 #execute next instruction

#nop #branch delay slot

Figure 2.4: Direct threading in MIPS assembly

the R3000, and the more deeply pipelined R4000. The overhead varies de-
pending on how many delay slots can be filled; usually it will be at the lower
bound.

The execution time penalty of the switch method is caused by a range
check, by a table lookup, and by the jump to the dispatch routine generated
by most compilers. The call method does not look so slow, but it is usually
even slower than the switch method: Every virtual machine register, e.g.,
instruction and stack pointer, has to be kept in global or static variables.
Most C compilers keep such variables in memory, causing at least a load
and/or store for every virtual machine register accessed in a primitive. In
the switch method virtual machine registers can be kept in local variables,
which are translated into real machine registers by good compilers.

Fortunately, there is a widely-available language with first-class labels:
GNU C (version 2.x); so, direct threading can be implemented portably (see
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$L2: #for (;)

1w $3,0($6) #$6=instruction pointer
#nop

sltu $2,$8,$3 #check upper bound

bne $2,$0,$L2

addu $6,$6,4 #branch delay slot

s11  $2,$3,2 #multiply by 4

addu $2,$2,$7 #add switch table base ($L13)
1w $2,0($2)

#nop

] $2

#nop

$L13: #switch target table
.word  $L12
$L12: #add:

j  $L2
#nop

Figure 2.5: Switch dispatch in assembly

add:

j $31 #return
engine:
$L3:

lw  $2,ip #instruction pointer
#nop

v $4,0($2)

addu $3,%$2,4

jal $31,$4 #call $4

sw $3,ip #delay slot
J $L3

#nop

Figure 2.6: Direct call threading in assembly
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| R3000  R4000

direct | 34 57
switch | 12-13  18-19
call | 9-10 17-18

Figure 2.7: Cycles needed for instruction dispatch. Other costs vary with the dispatch
method (see text).

typedef void *Inst;

void engine()

{
static Inst program[] = { &kadd /* ... */ };
Inst *ip;
int *sp;

goto *ip++;

add:
sp[1]=sp[0]+sp[1];
spt+;
goto *xip++;

}

Figure 2.8: Direct threading using GNU C’s “labels as values”

Fig. 2.8). If portability to machines without gcc is a concern, it is easy to
switch between direct threading and ANSI C conforming methods by using
conditional compilation.

If the instructions are of constant length, dispatching the next instruction
can be performed in parallel with the processing of the current instruction.
This is very useful for filling delay slots of both the instruction dispatch
routine and the rest of the instruction. When coding in C, care must be taken
to avoid potential dependences due to aliasing (e.g., between instruction
and stack pointer) that would prevent the compiler from performing good
scheduling. In other words, in the C code the load of the next instruction
must come before any stores of instruction results (e.g., into the stack). If an
even higher amount of instruction-level parallelism is desired, a part of the
dispatch routine (e.g., instruction fetch) can be shifted to earlier instructions.
However, this work is wasted if the virtual machine control flow changes
(unless there are delayed branches in the virtual machine).
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2.1.2 Semantic content

The interpreter overhead can also be reduced by reducing the number of
primitives executed, i.e., by increasing the semantic content of each instruc-
tion. Combining often-used instruction sequences into one instruction is a
popular technique, as well as specializing an instruction for a frequent con-
stant argument (eliminating the argument fetch and enabling optimizations
in the native code for the instruction). Care has to be taken that the result-
ing code expansion with its higher real machine instruction cache miss-rate
does not cancel out the benefits. Also, often the compiler must be made more
complex to make use of these instructions. On the other hand, optimizing
compilers can make instructions with high semantic content useless (part of
the RISC lesson).

[Pro95] used tree pattern matching to find and combine the most fre-
quently used tree patterns in lec’s intermediate language [FH91a, FH95.
He then compiled the intermediate code into a stack-based byte-code. He
achieved speedups of 2-3 by adding 10-20 instructions (superoperators). This
high speedup is probably due to the fact that lcc’s intermediate language was
not designed for being interpreted.

Linear peephole optimization of Forth code can reduce the number of
instruction dispatches by (a very conservative) 22% by adding 100 instruc-
tions (see http://www.complang.tuwien.ac.at/forth/peep/). Peephole opti-
mization of small benchmarks has produced speedups of about 50% (see
Section 4.5).

2.2 Accessing arguments

2.2.1 Virtual machine architecture

In the hardware area, the contest between stack and register architectures
has been decided for register machines.? However, for interpretive implemen-
tations the picture looks different:

From the view of the compiler writer, many languages can be easily com-
piled for stack machine code. To achieve better performance with a register
machine, the compiler must perform optimizations, e.g., global register al-
location (which needs data flow analysis). This would eliminate one of the
advantages of using an interpreter, namely simplicity.

Moreover, in an interpreter the spill> and move instructions necessary in
register architectures are much more time consuming than in hardware, since

2For a dissenting opinion, read [Koo89).
3If there are more values than the compiler can keep in registers, some values have to
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lw  $3,0($6) #get register numbers,

lw  $2,4($6) #$6=instruction pointer
lw  $4,8($6)

addu $3,$7,$3 #add reg. array base ($7)
addu $2,$7,$2

lw  $2,0($2) #load arguments

lw  $3,0(83)

addu $4,$7,%$4

addu $2,$2,$3 #perform operation

sw $2,0($4) #store result

Figure 2.9: Add in a register architecture (without instruction dispatch)

addu $5,%$4,%$6 #$5=r3 $4=r1 $6=r2

Figure 2.10: Unfolded add (r1 and r2 into r3)

each instruction also has to execute an instruction dispatch. This is not bal-
anced by the fact that the other instructions also have to perform instruction
dispatches, since the other instructions usually have higher semantic content.
L.e., the proportion of spill code is higher for virtual register machines than
for real register machines.

In hardware, the instruction and the register numbers are decoded in par-
allel. A simple software implementation of a register machine has to fetch
and/or decode the register numbers using separate instructions. Even with
the amount of instruction-level parallelism that superpipelined and super-
scalar processors offer today and in the near future, this still costs much
time. Since hardware registers cannot be accessed in an indexed way, the
virtual machines registers have to be kept and accessed in memory, costing
even more time. Fig. 2.9 shows a three register add (without instruction
dispatch) on the MIPS architecture (10 cycles on the R3000).

There is an alternative implementation of a register machine: The reg-
isters accessed can be encoded into the instruction by unfolding it, i.e., by
creating a version of the instruction for every combination of registers. The
instruction can access the registers directly, and therefore the registers can
reside in real machine registers, if there are enough*. Fig. 2.10 shows one

be stored into memory and loaded back later. This is called spilling.

4However, the availability of registers should not be taken for granted even on register-
rich RISCs. E.g., when I tried to keep the top of stack (of Forth’s stack-oriented virtual
machine) in a register on the MIPS architecture, gcc (versions 2.3.3 and 2.4.5) spilled the
return stack pointer to memory, an important internal register of the virtual machine.
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lw  $2,0($5) #get arguments

lw  $3,4($5) #$5=stack pointer
addu $5,$5,4 #update stack pointer
addu $2,$2,$3 #perform operation

sw $2,0($5) #store result

Figure 2.11: Add in a simple stack implementation

version of the add instruction. However, this strategy causes code explo-
sion, and will probably suffer a severe performance hit on machines with
small first-level caches: E.g., there would be 288-512 versions of every three-
register instruction in a virtual machine with 8 registers (the lower bound is
for commutative operations); the add instruction alone would need 4.5 KB
in a direct threaded implementation on the MIPS architecture. The size of
the first-level (real machine) instruction cache on the R4000 is just 8 KB.

A simple stack machine does better than a simple register machine (see
Fig. 2.11). It has the same number of operand fetches and stores; in ad-
dition, many instructions update the stack pointer. But there is no fetch-
ing/decoding to learn where the operands are.

A simple method to improve stack machine interpreter performance is to
keep the top-of-stack in a register (see Fig. 2.13, Section 2.3.1).

2.3 Stack caching

If there are enough registers, the number of operand fetches and stores can
be reduced by keeping stack items in registers. I call this stack caching, in
analogy to other methods to reduce access overhead by keeping frequently-
accessed data in high-speed storage.

2.3.1 Omne-state stack caches

The simplest approach keeps a fixed number of stack items in registers (see
Fig. 2.12 and 2.13). In contrast to the approaches that I will discuss later,
here the stack cache has only one state, so there is no need to keep track of
the state; consequently, there is no need to change the interpreter dispatch
method or the compiler to use this method.

How many loads and stores does this method eliminate? How many
registers are useful for keeping stack items? Can it hurt to keep more stack
items in registers?
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regs. mem.

$6 [TOS

$5 sp—

Sec

Figure 2.12: A stack implementation, where the TOS is in a register

lw  $2,4($5) #get other argument, $5=sp
addu $5,$5,4 #update stack pointer
addu $6,$6,$2 #perform operation, $6=tos

Figure 2.13: Add, the top of stack is kept in a register

Let us assume that n items are kept in a register. Now, consider an
instruction that takes z items from the stack and stores y items to the stack
(i.e., it has the stack effect vi...v, - wy...w,)°. We have to consider a few
cases:

x =y The instruction loads and stores only x — n items. So, the larger n,
the better (until n > x).

x >n Ay >n The instruction loads x — n and stores y — n items. Again,
the larger n, the better.

x >n Ay <n The instruction loads x — n items as operands and n — y
items to keep the cache full. If we assume that all loads cost the same,
changing n has no effect as long as it does not change the precondition.
However, loading operands may be more expensive, due to pipeline
stalls; in that case, a larger n would be better.

r<nAy>n Symmetrictox >nAy <n.

r#yANx<nAy<n The instruction loads or stores |x — y| stack items to
keep the cache full; it moves n — max(z,y) otherwise unaffected stack
items between registers within the cache. So, the smaller n, the better.

5Some stack manipulation instructions do not use the stack items they consume, so
there is no need to load the stack item; others put items that they fetch back in the same
place one the stack, so there is no need for the store. In the present discussion we ignore
these special cases and assume that all vs have to be loaded and all ws have to be stored.
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So the answer to the questions posed above depends on how often the
different kinds of instructions are used and, to some degree, on the charac-
teristics of the real machine. If we assume that all loads cost the same no
matter where they appear (and likewise with stores), then we get the follow-
ing rules, that hold if loads, stores, and moves cost more than zero cycles.
Keeping the top n items in registers

e is better than keeping just n — 1 items, if z > n A y > n, due to fewer
loads from and stores to the stack.

e is usually slower than keeping n — 1 items, if t Zy A x <n A y <mn,
due to additional moves between registers.

e is as fast as keeping n — 1 items in the other cases.

Keeping one item in a register is never a disadvantage (if there are enough
registers). Whether keeping two items is a good idea, depends on the vir-
tual machine and how it is used. E.g., for Forth it is not a good idea (see
Section 2.6).

If we take instruction-level parallelism (i.e., nonuniform costs for loads
and stores) into account, the optimum number of registers according to the
rules above is the lower bound. I.e., machines that can exploit a high amount
of instruction-level parallelism may profit from the prefetching effect of keep-
ing more items in registers. On a related note, keeping one item in a register is
especially useful for floating-point and other long-latency instructions, where
the store back to the stack would expose the latency.

2.3.2 Multi-state stack caches

Keeping a constant number of items in registers is simple, but causes unnec-
essary operand loads and stores. E.g., an instruction taking one item from
the stack and producing no item (e.g., a conditional branch) has to load an
item from the stack, that will not be used if the next instruction pushes
a value on the stack (e.g., a literal). It would be better to keep a varying
number of items in registers, on an on-demand basis, like a hardware cache.

This means that the cache can be in several states. Every allowed map-
ping of stack items to machine registers constitutes a cache state. This re-
quires different implementations of an instruction for different cache states.

There are several sensible options on the set of states allowed. Basically,
we would like the set to be finite, so we can use finite state machines to
describe the effect of executing or compiling instructions. The relations of
the states should minimize the amount of work necessary for getting from
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W regs. mem.
A
W -- W W
$8 [TOS
stack[0]: $8 $9 |Sec
stack[1]: $9 sp—>
sp offset: 3rd
$9 [TOS
-~ Ww stack[0]: $9
W W -- >
W--WWwW sp offset: 1 sp Sec
sp offset: 0 sp =TOS

W --
W W --

Figure 2.14: A simple cache state machine. Transitions are marked with stack effects;
all instructions with the same stack effect perform the same transitions. The three states
of the stack cache are also shown in a style similar to earlier figures.

one state to another. Fig. 2.14 shows a three-state machine for stack caching
in two registers. Transitions are shown for words with various stack effects
(due to space limitations not for all stack effects).

In general, the selection of a set of states and transitions for a given
number of states and registers is an optimization problem that we leave for
future work. Here we present just a few insights.

Stack pointer updates

In addition to stack accesses, many stack pointer updates can be optimized
away, too: The cache state can also contain the information how much the
contents of the stack pointer register differ from the actual value of the stack
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addu $9,%$8,%9

Figure 2.15: Add in stack caching (starting in the full state of the three-state machine)

pointer. A good strategy that does not introduce additional states is to let
the difference correspond to the number of stack items in the cache (see
Fig. 2.14). This means that the stack pointer need not be updated in in-
struction implementations that can access all stack items in registers, i.e.,
hopefully most of the time.

Stack caching with stack pointer update minimization leads to code that
is as good as that of the unfolded register machine (see Fig. 2.15).

Minimal organization

As a minimum, there should be one state for every number of stack items in
registers (as in Fig. 2.14). To minimize the amount of work, the bottom of
the cached stack items should be in the same register in all states; the other
stack items should be allocated likewise. This arrangement of states avoids
the need to move stack items around on the bottom of the cache whenever
something on the top changes.

Overflows and underflows

There is a movement cost, however: If something has to be pushed when the
cache is full, all stack items in the cache have to be moved to other registers.
Fortunately, overflows are very rare if the cache is sufficiently large (if the
cache is small, there are not many moves). It can be made rarer by choosing
an appropriate followup state for overflowing instructions:

Choosing the full state as overflow followup state minimizes the traffic
between the stack cache and memory, but not the number of moves and stack
pointer updates. In particular, on processors where a move costs the same
as a store, the transition to any state costs the same. So it can be better to
choose a non-full state as the overflow follow-up state (see Fig. 2.16), in order
to reduce the number of overflows (even though this increases the number of
underflows a bit). Which state is the best, should be determined empirically
(see also Section 1.4.1).

In the same way an optimal followup state for underflow can be selected.
It is probably useful to put at least the values in registers that the under-
flowing instruction produces, i.e., the underflow followup state depends on
the executed instruction.
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cached: 0
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Figure 2.16: Overflow transition in a minimal organization (the top-of-stack is rightmost,
$9 contains the deepest cached item)

Note that the optimal followup states for overflow and underflow depend
on each other. ILe., if a suboptimal behaviour for underflows is selected, the
corresponding overflow followup state will tend to be fuller than for the opti-
mal underflow behaviour, in order to reduce the number of costly underflows.

Another solution to the movement problem on overflows is to introduce
more states: instead of moving all stack items, just the bottom cached stack
item is stored to memory and the register where it resided is reused to keep
the top of stack. Of course, this new mapping of stack items to registers has
to be represented in a new state. The moves would have to be performed
when the new state is left. To avoid this, appropriate neighbours for this new
state should be introduced. If this approach is performed consequently, all
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Figure 2.17: Avoiding moves with additional states

such moves can be eliminated, but the number of states is nearly multiplied
by the number of cache registers. Combinations of both solutions to this

problem are possible (see Fig. 2.17).

Stack manipulation instructions

Stack manipulation instructions also cause moves in the minimal state ma-
chine. As before, these moves can be optimized away by introducing more
states. For stack shuffling instructions (e.g., swap and rot), the extreme
form of this approach creates all assignments of cached stack items to cache
registers where no register occurs twice. To optimize duplicating instruc-
tions (e.g., dup and over), we can introduce states where one register holds
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Figure 2.18: A cache organization where one duplication is allowed (dup (x -- x x) du-
plicates the top of stack, over (x y -- x y x) duplicates the second item, swap (x y -- y x)
swaps the two top items, rot (x y z -- y z x) rotates the third item to the top, drop (x -- )
pops the top item)

several stack items (that have the same value). In extreme form, this re-
sults in an infinite number of cache states, because an unlimited number of
such instructions causes an equally unlimited number of stack items to reside
in the cache, and an infinite number of states is needed to record all these
possibilities. If the number of cache states is to be limited, the number of
duplications represented in the states has to be limited. E.g., the number of
stack items in the cache could be limited, the number of duplicates of each
item, or the total number of duplications. Figure 2.18 shows a two register
cache organization where one duplication is allowed.

Multiple stacks

If there are several stacks, the simple solution is to treat them separately,
with separate caches (and separate state machines). They can also be treated
in a unified manner, sharing the same set of registers. Moves between the
stacks can be optimized away by introducing additional states.

In Forth, return stack caching would be profitable, given the high fre-
quency of calls and returns. A nice optimization is possible here: The (vir-
tual machine) instruction pointer (IP) need not be moved to the top of return
stack register during the call, instead the register containing the old IP can be
treated as the top of return stack register and the new IP resides in another
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registers 1 2 3 4 5 6 n
“minimal” 2 3 4 5 6 7 n+1
overflow move opt. [ 2 5 10 17 26 37 n?+1
arbitrary shuffles |2 5 16 65 326 1,957 Yo nl/il
n + 1 stack items |3 15 121 1,356 19,531 335,923 erol n’
one duplication 3 7 14 25 41 63 nn+1)(n+2)/6+n+1
two stacks 3 6 9 12 15 18 3n
Figure 2.19: The number of cache states
register.

Reducing the number of states

In practice finiteness is not enough, there are also other limits to the number
of states. Figure 2.19 gives an idea of the number of states of various cache
organizations with a varying number of registers. The “minimal” organi-
zation has only one state for a certain number of stack items in registers;
“overflow move optimization” removes the moves on overflow by introducing
more states while overflowing to a full state; “arbitrary shuffles” has states
that allow the elimination of the moves of shuffle instructions; “n + 1 stack
items” supports keeping up to n + 1 stack items in n registers, in any order
and with any kind of duplication; these two cases show that the number
of states can grow explosively. “One duplication” is the “minimal” orga-
nization, extended with states that represent one (arbitrary) duplication of
a stack item. “Two stacks” is the “minimal” organization, combined with
caching up to two items of another stack in the same registers, also in a
“minimal” organization.

For organizations with many states, nearly all states will be rarely used. If
a smaller number of states is desired, many of these states can be eliminated.
Transitions to such states have to be rerouted, possibly incurring higher
transition costs. However, these costs have to be payed rarely, only when the
state would have been used.

This brings up the question of what transitions there should be in the
first place. The simplest criterion is the cost of the transition itself. However,
there are often several transitions costing the same (e.g., consider the over-
flow case in the “minimal” organization). In such cases a transition should
be chosen to the node that has the smallest average transition cost (e.g., the
state in the above-mentioned overflow case, that minimizes the costly over-
flows and underflows). Indeed, the cost of the transition should be considered



CHAPTER 2. INTERPRETATION 31

to include the average transition cost of the successor node.® Or, even better,
if the future is known (as in static stack caching, see Section 2.5), the actual
future cost can be used to select the transition.

The choice of transitions also influences the usage counts of the states. It
is desirable to have a strongly biased distribution of usage counts, in order
to be able to eliminate many states, but also to achieve high real machine
instruction cache hit rates. This biasing can be achieved by selecting a spe-
cific state and choosing transitions that get closer to this canonical state if
there is a choice.

Prefetching

If stack item prefetching is desired, states with too few stack items in reg-
isters should be forbidden. This will cause slightly higher memory traffic:
the prefetches will be useless if a number of pushes follows that causes the
stack cache to overflow. In addition, on overflow the prefetched values have
to be stored into memory, unless the cache state also contains information
about the prefetched values (corresponding to dirty bits in hardware caches).
Prefetching more than one value can also introduce moves (an underflow vari-
ant of the overflow problem). If it is used, prefetching should overcompensate
these costs by reducing the number of delay slots.

2.4 Dynamic stack caching

In dynamic stack caching the interpreter maintains the state of the cache and
the compiler need not even be aware of the existence of a stack cache. This
means that there is a copy of the whole interpreter for every cache state. The
execution of an instruction can change the state of the cache, and the next
instruction has to be executed in the copy of the interpreter corresponding
to the new state.

This implies a change of the instruction dispatch routine. In a switch-
based implementation, the instruction just has to jump to the appropriate
copy of the switch. For direct threading the changes are not so simple: The
easy solution performs a table lookup (see Fig. 2.20). This costs a (real
machine) load instruction on current RISC processors; to make bad news
worse, this load instruction may cost more than one cycle, since it increases
the data dependence path length of the instruction dispatch sequence, which
will often become the critical path of an instruction, especially if much of the

6This infinitely recursive definition would result in infinite costs, but it is possible to
shift the scale into a finite range.
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$L2: #add in state 0: cache empty

lw  $4,0($6) #get arguments,

lw  $3,4($6) #$6=stack pointer

lw  $2,0($5) #get next instruction, $5=instp
addu $6,$6,8 #stack pointer update

lw  $2,4($2) #table lookup, next state: 1
addu $5,$5,4 #advance instruction pointer

J $2 #jump to next instruction

addu $4,%$4,$3 #operation

$L3: #add in state 1: tos in $4

lw $2,0($6) #get other argument
lw  $3,0($5)

addu $6,$6,4 #stack pointer update
1w  $3,4($3) #next state: 1

addu $5,%$5,4

] $3

addu $4,%$4,$2 #operation

$L4: #add in state 2: tos in $7, second in $4
lw  $2,0($5)

#nop

1w $2,4($2) #next state: 1

addu $4,$4,$7 #operation

J $2

addu $5,$5,4

Figure 2.20: Add in dynamic stack caching with table lookup

rest has been optimized away (as in the add in state 2 in Fig. 2.20). On CISCs
the lookup may come for free (i486) or at little cost. The other solution is
to store the instructions for a state at a fixed offset from the corresponding
routines in the other states. Then the address of the routine for an instruction
can be computed by adding the base address of the instruction and the offset
of the state. This costs a (real machine) add instruction on many processors,
but may come for free on others (SPARC). The problem with this approach is
that no portable language I know supports placing routines at specific points
in memory; what’s worse, even some assemblers do not support it (e.g., the
MIPS/Ultrix assembler).

If instruction dispatch becomes more expensive, dynamic stack caching
is probably not worth the trouble. E.g., none of the add implementations in
Fig. 2.20 is faster (on both the R3000 and R4000) than the add in Fig. 2.13
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input code dup 1+
cache state $9 — $9 %9 — $9 $8
generated code 1+g9_¢8

Figure 2.21: Compilation of dup 1+ for static stack caching with the cache organization
of Fig. 2.18. 1+ (nl -- n2) increments the top-of-stack.

with direct threading.

Since the whole interpreter has to be replicated for every state, only state
machines with a few dozen states or less are practicable (depending on the
size of the interpreter and the (real machine) instruction cache). In other
words, the stack cache should have the minimal organization, maybe with
a few frills like a bit of return stack caching, or, if there are few registers
for caching, one duplication, to make better use of them. In many cases
eliminating the moves of stack manipulation instructions does not pay: The
instruction dispatch has to be performed anyway, and the moves can often
be done in parallel, i.e., in the delay slots.

Since the state of the cache is represented in only one value, i.e., the
program counter of the processor, it is not possible to treat two caches (e.g.,
for an integer and a floating-point stack) with separate state machines in
dynamic caching. The states of both caches have to be represented in a
single state machine. This multiplies their number and makes big caches for
more than one stack impractical.

2.5 Static stack caching

In static stack caching the compiler keeps track of the state of the cache
and generates the code accordingly (see Fig. 2.21). Of course, we now have
to distinguish between the stack-based virtual machine code that the higher
level of the compiler sees, and the code that is generated and interpreted,
where the stack cache is visible.

Static stack caching offers several big advantages over dynamic stack
caching:

e There is no need for a special instruction dispatch routine and its pos-
sible performance disadvantages; we can use direct threading.

e Stack manipulation instructions can be optimized away completely, i.e.,
not even an instruction dispatch is executed. The compiler just notes
the state transition (see Fig. 2.21).
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e There is no need to replicate the whole interpreter for every state: The
implementation of the same instruction in many states can be the same,
e.g., when the arguments of the instruction are accessed in the same
registers, but some other stack items reside in different registers (in
dynamic stack caching they would have different instruction dispatch
routines for continuing in different states). Moreover, implementations
of rarely used instructions for rarely used states can be left out. The
compiler will then insert code for a transition into a state for which the
instruction is implemented.

Caches with several thousand states are feasible, and probably even
more with table compression techniques.

e The compiler knows the future instruction stream and can generate
optimal code for it.

Of course, there is also a disadvantage: It is not possible to execute the
same code in different states. The compiler has to reconcile the states of
different control flows at control flow joins. Apart from this fundamental
problem there are also the practical problems of insufficient knowledge in
the compiler and avoiding compiler complexity. In particular, the compiler
usually knows nothing about the states of callers and callees.

The traditional solution for the call problem is to have a calling conven-
tion. In the case of stack caching this means that all procedures start in a
specific state and return in a specific (possibly different) state. The transi-
tion into these states can be performed by the call and return instructions
respectively.

A simple solution for the control flow join problem is to have a “control
flow convention”: at every basic block boundary (i.e., at every branch and
branch target) the code is in a canonical state. The transition into this
state can be performed by the branch instructions. For branch targets the
transitions have to be performed by the instruction before the target. A
slightly more complex, but faster solution is to have the branch perform the
transition to the state at the branch target without causing a reset to a
canonical state before the branch target.

Due to the need for a calling convention, a return stack cache cannot
be used as effectively as in dynamic stack caching. However, a one-register
return stack cache can be used to good effect: at the start of a procedure
the register is filled with the return address. This is equivalent to the leaf
procedure optimization on RISCs.

Generating optimal code using knowledge of the next instructions in the
basic block is possible in linear time using a two-pass algorithm, as a spe-
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Prog. Instr. loads updates rloads rupdates calls CPI
compile | 1,562,172 0.76 0.55 0.17 0.32 0.13

gray 1,588,545 0.69 0.43 0.21 0.39 0.17
prims2x | 5,766,854  0.75 0.43 0.18 0.34 0.16 10

cross | 4,914,610 0.74 0.51 0.19 0.33 0.14 14

Figure 2.22: The measured programs and some of their characteristics: instructions,
loads from (=stores to) the stack, stack pointer updates, return stack loads/stores, return

stack pointer updates, calls per instruction and cycles per instruction (on a DecStation
3100).

cialization of the approach taken in tree pattern matching [PLG88, FHPI1].
The first pass just determines which of the possible code sequences is opti-
mal, the second pass then generates the code. Both passes use finite state
machines and are therefore fast. The usefulness of this technique depends
on the organization of the cache state machine. It is only useful if there is
more than one transition possible for an instruction from a given state and
if choosing the right one requires foresight.

From a certain point of view there is not much difference between static
stack caching and using a register architecture for the virtual machine. In-
deed, it can be seen as a framework to make virtual register machines more
usable: It provides automatic register allocation and spilling without lots
of overhead instructions. It also provides principles for keeping the number
of different implementations of an instruction small, if necessary. And it
provides a simple, stack-based interface to the higher levels of the compiler.
And the low level of the compiler does not have to handle the complexities of
register allocation, it is just a simple and fast state machine. However, there
is quite a bit of complexity in the generator that generates the instructions
and the tables for the compiler.

2.6 Empirical results

I instrumented a Forth system to collect data about the behaviour of various
stack caching organizations.” Several real-world applications were used as
benchmarks: interpreting/compiling a 1800-line program (compile), running
a parser generator on an Oberon grammar (gray), a text filter for generat-
ing C code from a specification of Forth primitives (prims2z), and a cross-
compiler generating a Forth image for a computer with different byte-order

"The raw data is available at ftp://ftp.complang.tuwien.ac.at/pub/misc/stack-caching-
data.
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Figure 2.23: Keeping a constant number of items in registers: Memory accesses, moves,
and stack pointer updates per instruction vs. number of items kept in registers

(cross). Figure 2.22 shows the number of loads from the stack (same as the
number of stores to the stack), stack pointer updates and executed (virtual)
instructions for these programs on an implementation without any kind of
stack caching. It also gives the number of return stack loads/stores and stack
pointer updates. The return stack is not considered in the rest of the mea-
surements. Applying return stack caching should have similar effects as for
the data stack, with one exception: Most return stack accesses are simple
pushes (on calls, -- w) or pops (on returns, w -- ); therefore, always keeping
one return stack item in a register has hardly an effect (see Section 2.3.1).

To compare the total argument access overhead of various organizations,
the components have to be weighed and added. We used the following
weights: loads, stores, moves and stack pointer updates cost one cycle, in-
struction dispatches cost four cycles. Since the number of loads from and
stores to the stack in memory is equal, we will only display their sum in the
figures. The figures display the total sums for all programs.

First, we measured the effect of keeping a constant number of stack
items in registers (see Fig. 2.23). It is easy to see that keeping one item in
a register is best (see also Fig. 2.28): It significantly reduces the number of
loads and stores. Keeping more items in registers reduces loads and stores,
but introduces too many moves to be useful. Of course, the number of stack
pointer updates cannot be reduced with this technique. On a DecStation
3100 (16MHz MIPS R2000%) keeping one item in a register causes a speedup
of 11% for prims2z and 7% for cross.® This is a little better than what I ex-

8The R2000 has the same instruction timings as the R3000.
9The other programs run too fast to produce exact timings. Explicit register declara-
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Figure 2.24: Dynamic Stack Caching: Argument access overhead in cycles/instruction
of minimal organizations with different numbers of registers vs. overflow followup state

pected based on the reductions in loads and stores (8% and 5%, respectively);
apparently these loads and stores cost more than one cycle.

Next, we measured dynamic stack caching on minimal organizations
with a varying number of registers and varying overflow followup states. We
did not optimize the underflow followup state; instead, we used the state
that has those items in registers that the underflowing instruction produces.
In Fig. 2.24 the lines represent the performance of cache organizations that
use a specific number of registers, while varying the overflow followup state.
E.g., the line labelled with “4” represents the organizations that use four
registers; the lowest (optimal) point on this line is for the organization that
uses state 3 as the overflow followup state, i.e., the state where the registers
contain the top three stack items and one register is free. The argument
access overhead is approximately halved for every register that is added.”

Figure 2.25 shows how the components of the argument access overhead
vary for different overflow followup states of organizations with six registers.
The fuller the overflow followup state, the more overflows there are, increasing
the number of moves. At the same time, the memory traffic decreases, since
less data, that would have fit into the cache, is stored and later loaded again.

tions were used to keep gcc from spilling important registers.
10This holds up to about 14 registers, then the decrease slows down.
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Figure 2.25: Dynamic Stack Caching: Memory accesses, moves, and stack pointer up-
dates per instruction of organizations with 6 registers for varying overflow followup states

Although the number of overflows increases, the number of stack pointer
updates decreases, because the increase in overflows is outweighed by the
decrease in underflows. My explanation for this observation: There is a
strong tendency to return to an earlier stack depth without going any deeper
in the meantime (see Section 1.4.1) and underflows are usually one item at a
time, while overflows to-non-full states spill several items at a time (for higher
number of registers the number of stack pointer updates is not minimal when
overflowing to the full state).

For static stack caching I looked at organizations based on minimal
organizations, that also contained states that represent the application of one
stack manipulation word to a state of the minimal organization (but only if
the arguments of the stack manipulation word are already in registers). These
organizations were combined with the control flow convention approach; I
tried all the states of the minimal organization as canonical state (which
also served as overflow followup state). In Fig. 2.26 the lines represent the
performance of cache organizations that use a specific number of registers,
while varying the canonical state. l.e., the line labelled “4” represents the
organizations that use four registers. The lowest point on this line is for
using state 2 as the canonical state, i.e., the state where two stack items are
cached in two of the registers.

Due to the high frequency of cache resets to the canonical state, the
best canonical state (for organizations with more than three registers) is the
two-register state. It decreases the number of underflows fairly well without
introducing too many moves on cache reset (see Fig. 2.27). Increasing the
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Figure 2.26: Static Stack Caching: Argument access overhead in cycles per (original)
instruction of various organizations vs. canonical state

number of registers beyond five has hardly any effect, because the cache is
usually reset before it overflows five registers. So the number of loads, stores,
moves, and updates stays at a certain level (about 0.1 loads and stores and
0.2 moves and stack pointer updates per instruction), whereas it approaches
0 in dynamic caching. However, static caching also reduces the number of
executed instructions. Note that Fig. 2.26 displays the overhead per original
instruction; since instruction dispatch is not counted in the other figures,
here the dispatches that are optimized away are subtracted from the other
overhead.

The majority of cache resets in the programs I measured is caused by
calls and returns. Indeed, in these programs every third or fourth instruc-
tion is a call or return. So, the best way to reduce the number of cache resets
and to increase static stack caching performance in these programs would
be procedure inlining. Note that a lower number of cache resets will in-
crease the number of useful registers and change the optimal canonical state,
asymptotically approaching the behaviour of dynamic stack caching.

I did not evaluate the effect of reducing the number of instances of the
instructions. However, the distribution of the execution frequency of the
instructions (10% account for 90% of the executed instructions) suggests
that vast reductions are possible without causing a significant amount of
additional state transition code.

Comparison. Figure 2.28 compares the three approaches. For dynamic
and static stack caching the best of the evaluated organizations for a specific
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Figure 2.27: Static Stack Caching: Memory accesses, moves, stack pointer updates and
instruction dispatches per (original) instruction of organizations with 6 registers for varying
canonical states

number of registers was chosen. Note that the coincidence of the lines for
dynamic and static stack caching is partly an artifact of the weights I have
chosen for the various overheads, in particular, the weight of instruction dis-
patch. E.g., if instruction dispatch costs five cycles, static stack caching
rivals dynamic stack caching also for higher numbers of registers; if instruc-
tion dispatch costs even more, static stack caching is better than dynamic
stack caching everywhere, and its line would be partly below 0 (i.e., the dis-
patches optimized away outweigh the remaining argument access overhead).
Note that this comparison does not consider the effects of the possibly higher
instruction dispatch cost of dynamic stack-caching.

How much speedup can we expect from these improvements? That de-
pends on how much time an instruction takes, on average. For cross and
prims2z on a DecStation 3100, we can expect 17% and 25% speedup from
static stack caching with 5 registers over a version that does not perform any
stack caching (if we assume one cycle per real machine instruction, which
has proven conservative). If we assume furthermore that half of the memory
accesses and stack pointer updates for the return stack can be eliminated
by having a one-register return-stack cache (i.e., bye performing leaf routine
optimization), the speedup increases to 20% and 31%. Take these projec-
tions with a grain of salt. There are many issues involved that can influence
the results, so a definite conclusion should only be drawn after timing a full
implementation.
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Figure 2.28: Comparison of the approaches: argument access overhead in cy-
cles/instruction vs. number of registers used

2.7 Related work

Much of the knowledge about interpreters is folklore. The discussions in
the Usenet newsgroup comp.compilers [c.c]| contain much folk wisdom and
personal experience reports.

Probably the most complete current treatment on interpreters is [DV90].
It also contains an extensive bibliography. Another book that contains several
articles on interpreter efficiency is [Kra83]. Most of the published literature
on interpreters concentrates on decoding speed [Bel73, Kli81], semantic con-
tent [Pro95], virtual machine design and time/space tradeoffs [K1i81, Pit87].

Stack caching has been used first in hardware stack machines [Bla77,
HS85, HFWZ87, HL89, Koo89] and for speeding up procedure calls in pro-
cessors designed at Bell Labs [DM82] and UC Berkeley (register windows)
[HP90]. For interpreters, [DV90] proposed dynamic stack caching with a
minimal cache organization without stack pointer update minimization and
with the full state as followup state. They do not discuss other possible
organizations and apparently they used only the Sieve benchmark for their
empirical evaluation. They report speedups (probably over an implementa-
tion that does not keep any part of the stack in registers) of 16% for Forth
on an 8086 with a two-register cache and 17% for M-Code (a virtual machine
for Modula-2) on an 68020 with a three-register cache.



Chapter 3

Native-Code Compilation

Native code compilers offer flexibility and high execution speed, but they
are also the most expensive implementation option (apart from special hard-
ware), in particular, if the compiler should target several architectures.

Aggressive native code compilers can compile unconventional languages
efficiently for mainstream (i.e., register architecture) hardware [Ung87, CUS89,
KB92]. Combined with the better manufacturing technology available to
mainstream hardware this means that such compilers usually are the fastest
(in terms of execution speed) implementations of the language.

This chapter discusses RAFTS, a framework for applying state of the
art compiler technology to the compilation of stack-based languages, namely
interprocedural register allocation (Section 3.2.4), inlining, tail call optimiza-
tion (Section 3.2.3), instruction selection and scheduling (Section 3.2.1). Sev-
eral new techniques are introduced that address the special needs of stack-
based languages: methods for transforming programs into data flow graph
(Section 3.2.1) and static single assignment form (Section 3.2.2), and treat-
ment of unknown stack effects (Section 3.2.5) and dynamic stack manipula-
tions (Section 3.2.7). Section 3.3 discusses a prototype implementation and
Section 3.4 presents empirical results obtained with this implementation.

This chapter is a revised version of [Ert92]; Section 3.4 is based on [Pir95].

3.1 Related Work

BNF-based parsers can be used to transform postfix code into trees, i.e.,
data flow graphs. But parsers cannot process stack manipulation words and
multiple stacks, they cannot produce DAGs and the method of Section 3.2.1
is simpler than parsing.

Stack-based languages have been used as intermediate code for compil-

42
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ers, e.g., [TvSKS83]. During code generation, these compilers face prob-
lems similar to Forth native code generation. However, they do not have
to handle multiple stacks or stack manipulation words like SWAP and they
do not use the stacks across basic block boundaries. Instead, they put a
much higher emphasis on local and global variables. The code generator of
the Amsterdam Compiler Kit (ACK) resembles the method of Section 3.2.1
in its use of the stack, but it performs all tasks of code generation at the
same time [TvSKS83]. Everything else in ACK is different: In contrast to
RAFTS, which does not do anything at the Forth level, ACK optimizes as
much as possible at the postfix code level, because its main goal is machine-
independence.

The minimization of stack pointer updates has already been discussed in
[KKR65]: this paper describes an Algol 60 compiler that employs “simulation
at compile time of the use of a conventional run-time stack” to reduce stack
pointer updates. The run-time stack pointer is only updated at control-flow
joins.

HP and Tandem have used binary translators to move legacy code base
from stack architectures to (RISC) register architectures. [AS92] describes
Tandem’s binary translator, but gives few details about the stack-to-register
conversion and is somewhat machine-specific in these details..

There are several Forth compilers that produce machine code [Ros86,
Alm86, Pay91]. Usually they start by generating subroutine-threaded code,
then they inline small subroutines, and peephole-optimize the resulting code
to remove redundant pushes and pops. One nice property of such systems
is that they can be easy to retarget. The retargetter just has to replace the
native code for the primitives and the tables of the peephole optimizer; the
compiler proper remains untouched. On these systems, much stack manip-
ulation overhead remains. Rose [Ros86| reports that “the resulting machine
code is a factor of two or three slower than the equivalent code written in
machine language, due mainly to the use of the stack rather than registers”;
our measurements confirm this (see Section 4.5).

However, some compilers are pretty sophisticated at reducing stack ma-
nipulation overhead. JForth V3.0 can keep up to five values in registers
and optimizes words like SWAP and ROT completely away. This optimization
is only performed on sequences of certain primitives. In contrast, RAFTS
usually keeps stack items always in registers. Almy’s non-interactive (i.e.,
batch) CFORTH compiler keeps up to two values in registers and reduces
stack pointer manipulations [Alm86]. It keeps values in registers across basic
block boundaries. However, the lack of global register allocation in his com-
piler would result in a lot of register shuffling at basic block boundaries, if the
compiler used more than two registers. [Sto88, Kna93] show how a compiler
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using such techniques could be implemented: there is a compilation word
for each word to be compiled that performs a case analysis of the preceding
code; apart from being error prone, this method is hard to extend to global
optimizations (e.g., global register allocation).

Koopman did similar research in the opposite direction: His C compiler
keeps variables on the stack in order to execute C efficiently on stack machines
[K0092].

3.2 Compilation

I will start out with a very simplified Forth. Then I will add the features
that complicate the compilation.

3.2.1 Basic Blocks

At the Forth level, basic blocks consist only of primitives like + and ! (store),
of literals, constants and variables, and of stack manipulation words like SWAP
and R@. Words that change the control flow (e.g., IF or calls of high-level
words) or are targets of control-flow changes (BEGIN, THEN) delimit basic
blocks.

Data flow graphs

The data flow graph is the basic data structure of several state-of-the-art
compiler algorithms®, and it can be extended and converted to data struc-
tures for other algorithms with standard methods.

The compiler builds the data flow graph by symbolically executing the
Forth words in the basic block: It maintains the stacks just as an interpreter
would during execution. Stack manipulation words are compiled by simply
executing them. When one of the other words is compiled, the compiler pops
and pushes as many items as the word would during execution. But the word
is not executed. Instead, the compiler builds a data flow graph node, which
contains a token for the word (to indicate the kind of node) and the operands
taken from the stack. A pointer to this data structure is pushed on the stack
instead of the result. In this way, the compiler builds a data flow graph for
the basic block (see Fig. 3.1).

There are a few complications:

IFor basic blocks the graph is a directed acyclic graph (DAG); the data flow graph is
so important that [ASU86] refers to it simply as DAG. Many compiler textbooks draw it
up-side-down (just like they draw trees), with the data flowing upwards.
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Figure 3.1: Building the data flow graph (three snapshots)

e Some words (e.g., !) push nothing on the stack, but they cannot be
optimized away, because they have side effects in memory. So, these
nodes cannot be found by performing a bottom-up graph-walk. The
compiler has to keep track of these nodes in a separate list.

e The compiler must not use the regular data or floating-point stack
for the symbolic execution, because the programmer may use them
at compile time; the Forth standard specifies that words with normal
compile-time semantics (like the words constituting basic blocks) have

the compile-time stack effect -- (i.e., no change). So the compiler
must maintain separate stacks and perform the symbolic execution on
them.

Code generation

The other three steps of the conversion of a basic block from Forth to native
code are instruction selection, instruction scheduling and register allocation.
They have been described extensively in the literature, so here they will not
be explained in-depth.

Instruction selection combines the operators in the data flow graph
into legal instructions of the target machine, transforming the operator DAG
into an instruction DAG (see Fig. 3.2).

All referenced stack items now reside in pseudo-registers (pz in Fig. 3.2),
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Figure 3.2: Instruction selection and scheduling (for the MIPS architecture)

of which an unlimited number can be used?; all stack accesses within a ba-
sic block have been eliminated. Register allocation replaces the pseudo-
registers with real registers and spills excess pseudo-registers to memory.
RAFTS uses interprocedural register allocation, which will be discussed in
Section 3.2.4. In the meantime, the important thing to keep in mind is: Edges
in the instruction DAG correspond directly to pseudo-registers; specifically,
at basic block boundaries the pointers on the stacks correspond to pseudo-
registers (already before instruction selection).

Instruction scheduling orders the instructions, i.e., it transforms the
instruction DAG into a list (see Fig. 3.2). The data flow graph (as con-
structed above) contains only data flow dependences through the stack, it
does not contain data dependences through memory; in other words, it is
not a full data dependence graph. Therefore the compiler also keeps track of
memory accesses during the symbolic execution: It remembers the last store
and introduces dependences from the store to subsequent fetches and the
next store; it also keeps a list of fetches since the last store and introduces
dependences from the fetches to the next store.®> Any topological ordering of
the data dependence graph constitutes a valid schedule.

On RISCs the goal of instruction scheduling is to avoid pipeline stalls.
The standard algorithm for RISC instruction scheduling is list scheduling

’Indeed, in order to make conversion to static single assignment form trivial, it is
essential that no pseudo-register is reused.

3This method assumes that all memory accesses are aliased, which is safe, but may
cost performance.
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Figure 3.3: SSA form of “IF SWAP ENDIF” and conversion of ¢-functions into moves

[LDSM80]. On CISCs instructions are scheduled to minimize register pres-
sure. This is usually performed during local register allocation [ASUSG,
KPRO1]. Instruction scheduling is usually performed before register alloca-
tion. Often, the instructions are reordered after register allocation to schedule
the spill code (this requires building a new data dependence graph).

3.2.2 Control structures

Control structures connect basic blocks. This poses the problem of making
adjacent basic blocks match.

Control flow splits (IF, and UNTIL) are easy: The values can stay in
the registers they were in. Control flow joins (THEN and BEGIN) are a little
harder?: The corresponding stack items of the joining basic blocks often do
not reside in the same pseudo-register.

The compiler now inserts ¢-functions after the join (see Fig. 3.3). The
¢-functions do not correspond to real code (indeed, they are removed later);
they indicate which values reach the join. The program is now in static
single assignment (SSA) form [CFR*91], which is an excellent representation
for analysis and optimization purposes. Optimizations have been treated
extensively in the literature and will not be discussed here.

After performing the optimizations, the SSA form can be converted into
a more executable form easily: Every ¢-function is replaced by moves in
the parent basic blocks (see Fig. 3.3). If one of the joining basic blocks has

4 Alternatively, we could choose to make joins easy and splits harder by stating that
values stay in the same registers during joins.
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several successors (i.e., it ends with a control flow split), the moves have to
be inserted into a new, empty basic block. Many of the inserted moves will
be removed by register allocation.

3.2.3 Calls

Words and their calls are treated like other control structures: A word’s entry
point is a control flow join, so a consistent state has to be reached. This is
again represented by ¢-functions at the entry point, this time with as many
arguments as there are call sites. Later they will be converted into moves
at the call sites. Like other control flow splits, the EXITs pose no problem,
unless there are several of them. If a word has several EXITs, they have to
be treated like a control flow join just before exiting.

Inlining has been the starting point of most Forth native code compilers.
In the framework of RAFTS, it can eliminate the call and return overhead, it
can improve register allocation and reveal opportunities for further optimiza-
tion. The important decision in inlining is what to inline [CMCH92, DC94].

If the last useful (i.e., non-stack-manipulation) word is a call, tail call
optimization can be applied: The call is converted into a jump and the
called word returns directly to its callers caller. Of course, this optimization
must not be performed if the called word does nasty things to its return
address (like throwing it away).

3.2.4 Register allocation

Given the high frequency of calls in Forth, interprocedural register allocation
is necessary to make effective use of the register set. Otherwise most of the
time would be spent saving and restoring registers at procedure entries and
exits, and around calls.

There are a number of good register allocation algorithms, but it is not
clear which one is the most appropriate: It should perform good global and
interprocedural allocation, but, in order to preserve the interactive feeling, it
must not take a long time.

Graph coloring register allocation [Cha82, CH90, Bri92], currently the
standard approach, needs a lot of time and space. Hierarchical graph coloring
[CK91] looks better and good experiences with it have been reported [Bra95].
Other alternatives are coagulation [Mor91], the Fat Cover algorithm based on
hierarchical cyclic interval graphs [HGAM92| and interprocedural allocators
[Cho88|.
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3.2.5 Unknown stack depth

Until now there has been no need for a stack in memory and its stack pointer.
All stack items reside in pseudo-registers and the compiler keeps track of the
stacks.

Unfortunately, there are definitions that are not as well-behaved as as-
sumed above. They have control flow joins with unequal stack depths, result-
ing in an unknown stack depth, and, for the whole definition, an unknown
stack effect. These definitions are rare, but many applications contain one
or two of them. A complete Forth compiler must deal with them.

Some usage patterns that produce an unknown stack depth can be han-
dled automatically without introducing memory stacks and stack pointers,
but this is not possible in general. Therefore, we finally have to introduce
stacks in memory.

Let us assume that the stack pointer points to the (memory position of
the) top-of-stack at the beginning of the definition. Since we do not update
the stack pointer, at every point in the definition the stack pointer has a
certain, known offset from the ideal stack pointer that always points to the
(memory position of the) top-of-stack. At a control-flow join which produces
an unknown stack depth, the offsets on the joining control-flow edges differ.

The compiler deals with this situation by

e inserting a stack pointer update into one of the joining basic blocks, to
make the offsets equal.

e inserting one or more stores of the deepest stack items in registers into
that branch, to reduce the depth of the part of the stack in registers
to its counterpart; or by inserting instructions that load items from
memory, to increase the depth.

Fig. 3.4 shows an example.

In loops, the back edge(s) must be adjusted. In the other cases, the
compiler has a free hand. In Forth, a simple, conservative, and (for normal
programs) accurate method to handle loops right is to adjust the control-flow
edges represented by dest control-flow stack items (see Fig. 1.3).

For the remaining cases, a bad selection of the edge to adjust will cause
another mismatch on a different control-flow join. So, it is important to
select the right edge. An adjustment often entails many moves that cannot
be eliminated. If the adjustment is inside a loop, it may be advantageous to
store all items before the loop that are not needed in the loop, and to reload
them afterwards, to reduce the number of moves in each iteration.

An unknown stack depth inside a definition means an unknown stack
effect for the whole definition. A caller of such a definition has to store all
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Figure 3.4: Control flow joins with unequal stack depths are handled by adjusting one
of the joining basic blocks to match the other. The stack grows downwards in memory.

stack items to the stack that are not passed as parameters, it has to adjust
the stack pointer to the offset expected by the callee, and afterwards it has
to load the stack items from the stack that it needs, and adjust the stack
pointer back. Moreover, it becomes a definition with an unknown stack effect
itself. So, a definition with unknown stack effect poisons all its direct and
indirect callers.

The only frequent unknown stack effect word in Forth is ?DUP in contexts
like ?DUP 0= IF, where the IF ... ENDIF has an unknown stack effect, too.
However, the combined stack effect is usually known. The compiler should
recognize and handle this situation with ad-hoc logic to avoid the costs of
treating this as an unknown stack effect.

3.2.6 Indirect calls

When compiling EXECUTE (i.e., an indirect call), the compiler does not know
what word will be called and therefore cannot perform interprocedural regis-
ter allocation. Even worse, the stack effect of the executed word is unknown.

Therefore, when compiling EXECUTE, a conventional calling convention is
used: A number of items from each stack have to reside in certain registers.
The rest is stored in the appropriate places on the stacks; the physical stack
pointers have to be updated to reflect their logical values. The storing and
loading code and the stack pointer updates can be hoisted to infrequently
executed parts using standard techniques [Dha90]. It will have to be deter-
mined empirically, how many items of each stack should reside in registers.

When the execution token® of a word is produced, a special version of the
word is generated that conforms to the calling convention. The address of
the entry point of this version is the execution token.

5An abstract data type that represents the execution semantics of the word.
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3.2.7 Dynamic Stack Manipulation (PICK and ROLL)

Compiling PICK and ROLL with constant top-of-stack (e.g., 4 PICK) poses no
problem. They can be executed during compilation like other stack manipu-
lation words. But if the top-of-stack value cannot be determined at compile
time, this is not possible. There are two solutions:

e The registers are dumped on the stack and the operation is performed
in the classical way. In case of ROLL, the compiler also has to invalidate
the registers and reload the stack items on demand.

e They are translated into something like

CASE
0 OF 0 PICK ENDOF \ performed at compile time
1 OF 1 PICK ENDOF

DUP PICK SWAP \ default: use memory PICK
ENDCASE

with one OF for every stack item that resides in a register.

3.2.8 How it fits together

During the processing of the input text, the compiler builds the data flow
graphs for the basic blocks and control flow graphs for words. Only the
words lower in the call graph have been built yet; therefore, not enough
interprocedural information is available and the compiler leaves the rest of
the work for a later stage.

The rest of compilation is started by the first call to an uncompiled word.
Then this word and all words that it calls are compiled: Unknown stack
depths, EXECUTE, PICK and ROLL are resolved, stack pointer updates are in-
serted, and the code is converted to SSA form. After the optimizations,
the code is converted back from SSA form. Then instruction selection, in-
struction scheduling and register allocation are performed. Finally, the code
represented by the data structures of the compiler is translated into machine
code and the word is executed.

3.3 Implementation

For his Diplomarbeit [Pir95], Christian Pirker has implemented the basic
block part of RAFTS (for the MIPS architecture), with very simple instruc-
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producing
running in ‘ threaded code native code
threaded code 1.00 4.98
native code 3.20

Figure 3.5: Relative compile times of different compilers running in different execution
techniques

tion selection and instruction scheduling. Register allocation is also per-
formed only at the basic block level, and the stack items reside in memory
at the basic block boundaries. The resulting code is not very fast, but that
was not the primary goal of that work.

The goal was to make the compiler work, not only for small benchmarks,
but good enough to compile itself. This goal has been achieved. The com-
piler is also very well integrated with the Gforth interpreter on which it is
based; native code can transparently call interpreted words and vice versa.
The integration is done so well, that it is actually a problem to find out
how much interpreted code is executed (which is important in performance
measurements).

Christian Pirker is continuing the development of the compiler to produce
faster code, supported by the FWF (Austrian science foundation) research
project P11231.

3.4 Empirical Results

To get an idea what a complete compiler based on RAFTS can achieve, read
Section 4.5 (it should do at least as well as f2c¢ opt). Here I just report the
results of the simple version described above. The times were taken on a
DecStation 2100 (12.5MHz R2000) under Ultrix.

The compiler (running in native code) compiles 3.2 times slower than
the compiler of the Gforth system that produces threaded code (compilation
speed was not a primary goal). The native-code compiler in native code com-
piles itself 1.56 times faster than when it is being interpreted (see Fig. 3.5).

We also measured the run-time of the benchmarks used in Section 4.5 (the
benchmarks are described in more detail there). The code produced by the
RAFTS prototype is a factor of 2 slower than f2¢ opt on most benchmarks.
The bad performance of RAFTS on the bubble benchmark is due to the
fact that the inner loop contains some interpreted words. The speedup over
Gforth is 2-3, except for bubble. Gforth does a little better with respect to
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relative time

0.5-- -
f2c opt | Gforth |
RAFTS f2c noopt

Figure 3.6: The RAFTS prototype in comparison with some other systems on a DecSta-
tion 2100

f2c opt than on the 486-66, f2c noopt does a little worse.



Chapter 4

Translation to C

Due to C’s popularity, there are many sophisticated optimizing compilers
for C. Many language implementations (e.g., Eiffel, Modula-3, the first C++
compiler cfront, and the SUIF system) have taken advantage of this fact and
use C as intermediate language in their compilation process, i.e., they use C

as “portable assembler”.

In the same way, C can be used as intermediate language for Forth native
code compilation (see Fig. 4.1). While this approach requires sacrificing some
of Forth’s features (mainly interactivity), and is therefore unlikely to become
the dominant Forth implementation method, it is useful in the following

contexts:

e The customer may require C.

e [t can serve as a replacement for the practice of recoding time-critical
words in assembly language. The advantages of this approach are that
the translation is automatic and the result is machine-independent.
However, it requires the ability to call C functions from Forth.

e [t can be used for evaluating native code compilers, by comparing their
code with the code produced by going through C.

e [t can be used for evaluating the usefulness of certain optimization
methods (e.g., strength reduction) with respect to existing Forth source

f2¢c

Forth rce—
orth source translator

—C code—

opt. C
compiler

—native code

Figure 4.1: Translating Forth to native code via C

o4
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:max ( nl n2 -- n )
2dup < if
swap drop
else
drop
endif ;

Figure 4.2: max in Forth

code, by comparing the speed of the code resulting from compiles with
and without the optimization.

In the context of the native code compilation project, I am interested
primarily in the last two applications.

The emphasis in this chapter is on simplicity. The translation strategy
utilizes the optimization capabilities of optimizing C compilers to produce
efficient native code. This chapter is a revised version of [EM95].

The contribution of this chapter is a simple translation method that pro-
duces efficient native code when combined with an optimizing C compiler.

4.1 Related Work

Several interpretive Forth implementations have been written in C (Cforth,
TILE, PFE, ThisForth) and its relatives (Gforth in GNU C [Ert93], UNTIL
in C++ [Smi92]). There are also many native code implementations, and
several papers about them [Ros86, Alm86, Pay91]. However, to the best of
my knowledge, the combination of these ideas, i.e., using C as intermediate
language in native code generation for a stack-based language has not been
published (before [EM95]), and there has been only one implementation: it
comes with Rob Chapman’s Timbre/botForth system®.

Timbre’s Forth-to-C translator creates code similar in spirit to the output
of a subroutine threaded Forth system that inlines selected primitives, except
that it creates C source code, not machine code. It also employs a kind of
peephole optimization, but not on the output, but on the Forth input: Like
ThisForth, it has a mechanism for recognizing certain Forth sequences, and
it has special C code generation rules for these sequences.

Figure 4.2 shows a definition of max in Forth. Figure 4.3 shows the C code
that the Forth-to-C translator of Timbre V.4 produces for this definition.
Unfortunately, current C compilers produce pretty slow assembly code from

! Available at http://www.taygeta.com/pub/Forth/Reviewed/timbre.zip
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void MAX() /% N1 N2 -- N =/
{
--sp,spl0]=sp[2]; /* OVER */
--sp,spl0]=sp[2]; /* OVER */
if ((Integer)sp[1]1<(Integer)spl0])
*x++sp=-1; else *++sp=0; /* < x/
if (ksp++) /*x IF =%/

{
sp[1]=sp[0],sp++; /* SWAP DROP */
}
else /x ELSE */
{
sp++; /* DROP x/
}

3

Figure 4.3: max translated to C by Timbre

this C code; e.g., Fig. 4.4 contains the code produced with gcc-2.6.3 -03
-fomit-frame-pointer for the Intel architecture. Several features of the C
code cause the slow machine code; they all have to do with the inability of
C compilers to disambiguate memory references (even if they try, they have
little success).

The biggest problem in the code above is that the stack pointer is a global
variable. In the absence of analysis of the whole program, the compiler has
to assume that the address of this variable has been taken and that every
store to memory through a pointer can be a store into the stack pointer, and
every read from memory through a pointer could be a read from the stack
pointer. So it has to keep the stack pointer in memory up-to-date nearly
at all times, and it has to load it from memory after every store through a
pointer. A simple way of helping the C compiler would be to use a local
stack pointer variable that is initialized from the global stack pointer at the
start of the function and after calls and from which the global stack pointer
is updated upon leaving the function and before function calls. Then the C
compiler could keep the stack pointer in a register at least some of the time.

The next problem is that stack items are accessed through pointers.
Again, the C compiler often cannot determine that the stack item stored
to memory has not been changed there in the meantime. So, instead of keep-
ing the item in a register, the compiler loads it from memory again. Even if
it can determine that the load is unnecessary, it can hardly ever determine
that the store of the stack item is unnecessary. So, accessing stack items
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addl $-4,_sp
movl _sp,%edx
movl 8(%edx) ,%eax
movl Y%eax, (Yedx)
addl $-4,_sp
movl _sp,%edx
movl 8(%edx) ,%eax
movl Y%eax, (Yedx)
movl _sp,%edx
movl 4(%edx) ,%eax
cmpl Y%eax, (%edx)
jle L7
addl $4,_sp
movl _sp,%eax
movl $-1, (%eax)
jmp L8

L7:
addl $4,_sp
movl _sp,%eax
movl $0, (%eax)

L8:
movl _sp,%eax
addl $4,_sp
cmpl $0, (%eax)
je L1l

movl _sp,%edx

movl (%edx),%eax

movl Y%eax,4(%edx)
L11:

addl $4,_sp

ret

Figure 4.4: Timbre’s C code for max compiled to Intel assembly

through pointers results in a lot of memory traffic with current C compilers.

Exacerbating these problems are the stack pointer changes in the C code.
First of all, with the global stack pointer they result in expensive read-modify-
write sequences; second, some C compilers can determine that two accesses
through the same pointer access (or do not access) the same item, but they
give up if the pointer is changed between the accesses.
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4.2 Translation

4.2.1 Efficient C

First of all, there is no such thing as efficient C code per se. How efficient a
piece of code is depends on the compiler that is used. E.g., the code that our
translation method (described later) produces gives disastrous results with
non-optimizing compilers like PCC?, lcc [FH91b], or the GNU C compiler
with optimization turned off. On the other hand, maybe one day (but not
in the foreseeable future) there will be compilers that compile the C code
produced by Timbre into perfect machine code.

So, what we mean with efficient C code in this paper is C code that is
compiled to efficient machine code by a class of compilers commonly known
as globally optimizing compilers, e.g., gcc -0.

We make extensive use of several features of these compilers: global reg-
ister allocation [Cha82] tries to put as many local variables into registers
as possible®. Live range analysis [ASUS6] allows the compiler to put sev-
eral variables into the same register, if they do not contain subsequently
used (live) data at the same time (i.e., their live ranges do not overlap);
conversely, it allows putting different live ranges of one variable in differ-
ent registers. Copy propagation [ASU86| optimizes away simple assignments
between variables (copies) by assigning the variables to the same register.
These optimizations allow us to introduce unnecessary copies and additional
variables for free (but the number of simultaneously live variables is limited),
but it is not necessary to use additional variables for register allocation pur-
poses. Another optimization, dead code elimination [ASU86|, removes all
code whose results are not used; this optimization is useful for Forth code
containing drop, in particular frequent sequences like r> drop.

Current C compilers are not good at keeping global variables or values
accessed through pointers in registers.

4.2.2 Stack representation

Given the limitations of the available C compilers, we have to represent
stack items with C’s local variables, so they will end up in registers. The
correspondence between stack items and local variables is shown in Fig. 4.5:

2PCC was the C compiler distributed with most Unix systems 15 years ago.

3In optimization terminology local means “within a basic block”, global means “within a
procedure”, and everything beyond is called interprocedural. By contrast, in programming
language terminology local means “within the procedure” and global means “in the whole
program”.
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f2c Timbre f2c Timbre
x2 [TOS| sp[0]

x1 sp[1] x1 [TOS sp[0]
x0 sp[2] x0 sp[1]
pO spl8] —(—— pO sp[2]

dro

pl P pl sp[3]
p2 p2

Figure 4.5: Correspondence between the Forth stack and C entities in our translator
(f2c) and in Timbre.

a local variable represents a stack item with a certain offset from the stack
bottom during the whole C function.* E.g., the stack item on the top-of-
stack upon function entry is called p0, the item below it p1l etc.; the stack
item above pO is called x0, the next one x1 etc. This scheme ensures that
stack items that are not affected by an operation do not have to be copied
around between local variables (although these copies would not hurt, given
a good copy propagator).

4.2.3 Primitives

Let us assume that the top of stack resides in x3. Then the translation of +
might look like this:

{
Cell n1=x2;
Cell n2=x3;
Cell n;
n = nl+n2;
X2 = n;
}
/* top of stack now: x2 x/

This sequence looks quite bulky, but a good optimizing C compiler com-
piles it to one instruction, and sometimes it can even compile the C sequence
for several primitives into one instruction (e.g., 20 + @ on most processors).

4In [EM95], T advocated not reusing locals, i.e., introducing a new local every time
a stack item is written. The reason I gave was that the reuse might restrict register
allocation and copy propagation on some compilers. However, a translator that does not
reuse locals is significantly more complex, and the C compilers we have used (gcc and the
MIPS/Ultrix cc) work well on code that does reuse locals.
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I propose this translator output because it is simple to generate from
specifications of primitives. In fact, we can reuse the specifications used for
generating the Gforth interpreter [Ert93|. E.g., the specification for + is

+ nl n2 -- n core plus
n = nl+n2;

The first line contains useful information, most notably, the name of the
primitive and its stack effect (including the names and types® of the stack
items), while the other lines (in the present case the second line) contain the
C code for the primitive.

The translation works like this: First, the names in the stack effect are
declared as C variables; the input variables are initialized with the top stack
items. Next comes a verbatim copy of the C code for the primitive. The
translator adjusts its (translation-time) stack depth counter. Finally, the
result variables are copied to stack item variables.

4.2.4 Sequences

A sequence of primitives can be translated simply into a sequence of transla-
tions. E.g., if we want to compile another +, we simply append the following
code to the code above:

{
Cell ni1=x1,;
Cell n2=x2;
Cell n;
n = nl+n2;
x1 = n;
}
/* top of stack now: x1 x/

4.2.5 Definitions

A Forth colon definition is translated into a C function. In this section we
consider only colon definitions with fixed stack effects.

The translator determines the stack effect of the whole definition by keep-
ing track of the deepest stack item accessed, in combination with the stack
depth count: If the deepest accessed item is pn, and the top of stack item at
the EXIT(s) is z, then the stack effect is pn...p0 -- pn...z. If there are several

SFor specifying the types, I use the good old FORTRAN convention of deriving it from
the first letter(s) of the name. E.g., names starting with n specify signed integer cells
(corresponding to the C type Cell).
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result values, they are bundled into a C struct (small structs are returned in
registers by some C compilers, e.g., gcc). E.g., the C function for the word
foo ( n1 n2 n3 -- n4 nb ) is:

Two_cells foo(Cell p0O, Cell pl, Cell p2)
{

Two_cells result;

Cell x0, x1, ....;

/* top of stack now: p0 */

... /* C code for the definition */
/* top of stack now: pl */
result.celll=pil;

result.cell2=p2;

return result;

}
A call of foo would look like this:

/* top of stack now: x3 */
{
Two_cells d=foo(x3,x2,x1);
x2=d.celll;
x1=d.cell?2;
}
/* top of stack now: x2 */

The parameter order is more or less arbitrary. Having the top-of-stack first
ensures that in cases like
: foo
bar
the parameters need not be moved to new registers before calling bar on
machines that pass parameters through registers. However, one can also
construct cases, where having the top-of-stack last is better. It has to be
determined empirically which convention is better for real-world Forth code.
Turning definitions into C functions is simple, but makes tricks like r>
drop exit almost impossible to translate (but they do not conform to ANS
Forth anyway). It also has a performance impact, because most C compilers
are not as optimized for reducing call overhead as much as you would like for
a Forth compiler. A C compiler with automatic inlining and interprocedural
register allocation should perform well, however. Alternatively, we could
build a certain amount of inlining into the Forth-to-C translator.
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4.2.6 Control Structures

ANS Forth allows the creation of arbitrary control structures (see Fig. 1.3).
Because it is hard and, in the context of sophisticated C compilers, unre-
warding®, to translate arbitrary control structures into structured C, we
translate the control structure words into gotos and labels:

Forth ‘ C
THEN, BEGIN | label:
AHEAD, AGAIN | goto label;
IF, UNTIL if (z==0) goto label;

Control-flow stack items contain a label number and a stack depth count.
At control-flow joins (THEN, BEGIN) the stack depths of both joining control
flow edges have to be equal (otherwise the stack depth at the join is un-
known, see Section 4.2.11). The consumers of control-flow stack items check
this. Because the respective stack items of both joining control-flow paths
are already in the same variables, there is no need to reconcile the stack
state at control flow joins (in contrast to direct native code generation, see
Section 3.2.2)7.

4.2.7 Return Stack

The return stack is handled like (a restricted version of) the data stack: Its
items are kept in C variables, and the translator keeps track of the stack
depth. In contrast to the data stack, a definition may only access return
stack items that it pushed on the return stack itself (on the data stack, such
items are represented by the xn variables).

E.g., a translation of >r looks like this:

/* stack: ... x0, return-stack: ... r0 */
{
Cell n=x0;
ril=n;
}
/* stack: ... pO, return-stack: ... rl */

The floating-point stack is managed like the data stack.

6Optimizing C compilers usually use the same intermediate representation for control
structures built with structured programming constructs and for equivalent control struc-
tures built with gotos. While there are simpler optimization methods for structured code,
they apparently only pay off if the compiler does not have to deal with gotos at all.

"This simple handling of control flow is the main advantage of the stack representation
described in Section 4.2.2 over one that does not reuse locals.



CHAPTER 4. TRANSLATION TO C 63

4.2.8 Names

Forth has a different, more complex and more powerful name space structure
than C. Moreover, Forth allows names that are not legal C identifiers. There-
fore, we cannot use the Forth names directly in the C code. A simple way
out is to derive the C name from a pointer to a data structure representing
the word in the translator (e.g., by printing it in base 36).

However, in practice we prefer a name that is as close to the original as
possible. This can be achieved by converting special characters in names into
letter sequences and by appending some digits if that is necessary to avoid
conflicts.

4.2.9 Locals

Forth local variables can be translated simply into C locals. If sophisticated
scoping behaviour as in, e.g., [Ert94al, is desired, it is probably easiest to
define the locals on the C level for the whole function and to avoid name
clashes by renaming.

4.2.10 Other Word Types

Variables and CREATEd words are translated into global (or static) C vari-
ables of appropriate size. E.g., 5 variable flip translates into:

Cell flip[]={5};

When used in a definition, they are translated like primitives with similar
stack effect, e.g., an occurence of f1ip is translated into

{
Cell n;
n= (Cell)flip;
X2=n;
}
/* top of stack now: x2 x/

DOES>-parts are translated into C functions like colon definitions—their
top-of-stack parameter is the address of the word. Accordingly, using a word
defined with a CREATE. .DOES>-word translated into a call of the C function
for the DOES>-part, with the address of the C variable produced by the CREATE
as top-of-stack parameter.
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4.2.11 Unknown stack depth

The methods presented until now cannot handle unknown stack depths. An
unknown stack depth shows up at control-flow joins as unequal stack depth
of the joining control-flow edges.

Given that the translation to C cannot cover the whole Forth language
in a satisfying way, it probably does not pay off to translate definitions with
unknown stack depths. If, however, such a translation is desired, the methods
discussed in Section 3.2.5 can be applied.

4.2.12 Recursive Definitions, indirect calls, etc.

Computing the stack effect of a recursive word is a little different from other
words: With the normal method we would need the stack effect of the word
for computing it. However, if we assume that the recursive word has a known
stack effect, the stack effect is the same as the stack effect of the non-recursing
path(s) through the word. Using this stack effect, the translator can check
the validity of the assumption in another pass through the definition. If the
definition turns out to have an unknown stack effect, it can be translated like
any other such definition.

EXECUTE and deferred words pose a similar, but harder problem: While all
words executed by a specific EXECUTE usually have the same stack effect, the
translator does not know that stack effect. One solution for this problem is to
treat EXECUTE and deferred words like words with unknown stack effect, the
other solution is to use annotations provided by the programmer to specify
a stack effect.

Execution tokens are represented by C function pointers, and EXECUTE
just performs a call to the pointed-to function. This representation of ex-
ecution tokens implies that the translator has to create a C function for
each CREATEd word, variable, or constant for which an execution token is
produced.

4.2.13 Cross-compilation problems

One of the more remarkable features of Forth is the removal of the strict
division between compile-time and run-time. While typical Forth-to-C trans-
lators will have similar restrictions in this respect as some Forth cross-
compilers, with some effort these restrictions can be circumvented: Mod-
ern operating systems offer dynamic linking of object code. A Forth system
based on a Forth-to-C translator could produce C code, then, at the end
of the definition, it would invoke the C compiler, and dynamically link the
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resulting object module. This approach would require an unhealthy amount
of patience from the users, but otherwise it would be a full Forth system.

Many implementors of Forth-to-C translators will not want to go to such
lengths and will implement the translator in the context of an existing Forth
system. In such a setting, compilation and execution can be mixed during
the translation stage (i.e., while running on the normal Forth system), while
only execution is possible during the execution of the translated and compiled
program.

In such cross-translation systems, there is also the problem that addresses
cannot be compiled as literals or stored into variables and data structures at
compile time, because the addresses are different at run-time. One solution
to this problem is to require using typed words (ALITERAL, A!, A, etc.) for
these operations, and using the type information for the relocation. A more
convenient, but less portable (i.e., OS-dependent) solution is to load the
whole image of the translating Forth system to the same address as during
the translation. In such a system, variables etc. are not represented as C
variables, they behave just like literals.

4.3 Example

A Forth definition of max ( nl n2 -- n ) (Fig. 4.2) is translated into C
(Fig. 4.6), then gcc-2.6.3 -03 -fomit-frame-pointer compiles the C code
into Intel assembly (Fig. 4.7). Note that three of the six instructions here
are due to calling overhead and can be eliminated with inlining.

4.4 Implementation

Martin Maierhofer has implemented a proof-of-concept Forth-to-C transla-
tor in about one man-month, with no prior knowledge of Forth. The trans-
lator is based on the Gforth system. The source can be found at http:
//www.complang.tuwien.ac.at /forth /forth2c.tar.gz (if you only have ftp: ftp.
complang.tuwien.ac.at/pub/forth /forth2c.tar.gz).

Basically, the translator hooks itself into some words central to compi-
lation: COMPILE,, LITERAL, the basic control structure words, :, ;, CREATE
and friends. It also hooks into words that compile in-line data, like S".

A program is translated by loading it into Gforth. If the translator is
turned on, Gforth will not only compile the program into threaded code,
but, as a side effect, it will also produce a file containing the C code. In this
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Cell max(Cell pO, Cell pl)
{

Cell _c_result;

Cell x0;

Cell x1;

/* stack now: ... pl pO */
{ /* 2dup */

Cell nl1, n2;

nl = p0;

n2 = pil;

pl = n2;

pO = ni;

x0 = n2;

x1 = nil;

/* stack now: ... pl p0 x0 x1 */
{ /* less-than */
Cell nl1, n2, n;
nl = x1;
n2 = x0;
n = FLAG(n2 < nl1); /* #define FLAG - x/
x0 = n;

/* stack now: ... pl p0 x0 */
if (!x0) goto labelO;
/* stack now: ... pl pO */
{ /*x swap */

Cell nl1, n2;

nl = p0;

n2 = pil;

pl = ni;

pO = n2;
}
/* stack now: ... pl pO */
{ /*x drop */
}
/* stack now: ... pl */
goto labell;
labelO:
/* stack now: ... pl pO */
{ /*x drop */
}
/* stack now: ... pl */
labell:
/* stack now: ... pl */
{  /*x exit */

_c_result = pil;

return (_c_result);

Figure 4.6: max translated to C
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movl 4(%esp),%edx
movl 8(%esp),%eax
cmpl %edx,%heax

jge L5

movl %edx,%eax
L5:

ret

Figure 4.7: max in Intel assembly

way, the full power of Gforth can be used during the translation process.®

Since the Forth compiler makes only one pass through a definition, every-
thing must be done in that pass. There is just one problem: The translator
must make a pass through the whole definition to compute the stack effect,
and it needs to know the stack effect to create the C function header, so it
can only start outputting C code at the end of the definition. The solution
is to generate the text of the body of the function into a buffer in memory,
and write it to the output file as soon as the stack effect is known (at the
end of the definition).

The translator must remember the stack effect of a definition somewhere.
The best place would be in the header of the definition. Unfortunately,
this would require some surgery in the internals of Gforth. Therefore, the
translator keeps these informations in a separate wordlist under the same
name as the definition. This means, of course, that every definition name
must be used only once. But then this is also enforced by the mapping from
Forth names to C names employed by the prototype translator.

In addition to the normal control flow information, each control-flow stack
item stores the label number and the stack depths at the point where the
control flow item was generated.” Our translator stores this extended control
flow information on a separate, user-defined stack (Gforth stores its informa-
tion on the data stack).

While it would have been nice to generate the translation of primitives
automatically from Gforth’s primitive specifications, as suggested in Sec-
tion 4.2.3, the translator does not employ this approach, but uses hand-
written primitives translation routines.

The most important limitations of this prototype translator are that
it cannot translate words defined with DOES>, initialized CREATEd words,
EXECUTE, many recursive definitions, definitions with variable stack effects or

8Well, at least in theory; in practice, the translator has a few restrictions described in
the file BUGS.F2C.
90ur translator is somewhat buggy in this area, it does not handle THEN correctly.



CHAPTER 4. TRANSLATION TO C 68

definitions that use the floating-point stack or locals. Some of these restric-
tions would be easy to remove, some of them would take more effort.

4.5 Empirical Results

Due to the restrictions of our translator we could not use it on realistically
sized benchmarks, only on small ones. On the other hand, this restriction
to small benchmarks means that it is easier to compare with other Forth
systems.

The benchmarks we used were the ubiquitous Sieve (counting the primes
< 16384 a thousand times); bubble-sorting (6000 integers) and matrix mul-
tiplication (200 x 200 matrices) come from the Stanford integer benchmarks
(originally in Pascal, but available in C'°) and have been translated into Forth
by Martin Fraeman and included in the TILE Forth package. These three
benchmarks share one disadvantage: They have an unusually low amount of
calls. To benchmark calling performance, we computed the 34 Fibonacci
number using a recursive algorithm with exponential run-time complexity.

The measured systems fall into several classes:

C-based native code

f2c opt the output of our prototype translator compiled with gcc-
2.6.3 -03 -fomit-frame-pointer.

Timbre the output of the Forth-to-C translator included in the Tim-
bre V.4 distribution, also compiled with gcc-2.6.3 -03 -fomit-
frame-pointer.

f2¢ noopt the output of our prototype translator compiled with gcc-
2.6.3 without optimization.

C hand-coded C programs (the original C versions in case of the Stan-
ford benchmarks) compiled with gcc-2.6.3 -03 -fomit-frame-
pointer.

Native code compilers, typically employing the traditional technique of
combining subroutine threading with inlining and peephole optimiza-
tion.
bigForth bigForth 386 (v1.203) by Bernd Paysan [Pay91].
iForth iForth 1.06 by Marcel Hendrix.

10The C version and Martin Fraeman’s original translations to Forth can be found at
ftp.complang.tuwien.ac.at/pub/forth/stanford-benchmarks.tar.gz
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NT NCC LMI's NT Forth NCC (written by Tom Almy).
Interpreters written in assembly language

Win32F Win32Forth 1.2093 by Andrew McKewan and Tom Zimmer.
NT Forth LMI’'s NT Forth (beta, May 1994).
eforth Marcel Hendrix” port of eforth to Linux.

eforth opt Marcel Hendrix added peephole optimization of interme-
diate code [Bad95, Sch92] to his port of eforth.

Interpreters written in portable languages

Gforth Gforth 0.1beta, written in GNU C [Ert93] (compiled with
gce-2.6.3, default flags and ~-DFORCE_REG -DDIRECT_THREADED).

PFE pfe-0.9.14 by Dirk Zoller, written in ANSI C (compiled with
gcec-2.6.3 with the default configuration)

thisForth ThisForth Beta written in C by Wil Baden (compiled with
gcc-2.6.3 -03 -fomit-frame-pointer); it employs peephole op-
timization of intermediate code.

TILE TILE Release 2.1, written in C by Mikael Patel (compiled with
gcc-2.6.3 -03 -fomit-frame-pointer).

Win32Forth, NT Forth and its NCC were benchmarked under Windows
NT, bigForth and iForth under DOS/GO32, all other systems under Linux.
The results for Win32Forth, NT Forth and its NCC were provided by Ken-
neth O’Heskin, those for iForth and eForth (with and without peephole op-
timization of intermediate code) by Marcel Hendrix. All measurements were
performed on PCs with an Intel 486DX2/66 CPU with 256K secondary cache
with similar memory performance. The times given are the median of three
measurements of the user time (the system time is negligible anyway).

Figure 4.8 shows the time that the systems need for the benchmarks,
relative to the time of f2c¢ opt (or, in other words, the speedup factor that
our translator (and GCC) achieves over the other systems). Empty entries
indicate that I did not succeed in running the benchmark on the system.

The result of Timbre’s Forth-to-C translator is slow, as expected (since
Timbre does not have DO..LOOP and friends, I could only measure fib, but
I think this result is representative). Combining our translator with a non-
optimizing GCC results in code that is even slower than the interpretive
Gforth system, confirming the points I make about efficient C code in Sec-
tion 4.2.1. Hand-coded C is between 14% faster and 10% slower than the
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relative time

321

161

0.5—% - . , ,
f2c opt |f20 noopt| bigForth | NT NCC INT Forth |eforth opt| PFE | TILE
Timbre C iForth  Win32F eforth Gforth thisForth

Figure 4.8: Time needed by various systems for several benchmarks, relative to the
output of our prototype Forth-to-C translator (f2c opt.); lower means faster.
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output of the Forth translator. I was a little surprised by the matrix mul-
tiplication result, where the code translated to Forth and back was faster
than the original. Closer inspection showed that, in translating from C to
Forth, an optimization had been performed, which the C compiler does not
perform (it is an interprocedural optimization that requires interprocedural
alias analysis) and which reduced the amount of memory accesses; this is
probably responsible for the speedup, maybe combined with vagaries such as
instruction cache alignment.

BigForth and iForth achieve a speedup of about 3 over the fastest inter-
preters, but there is still a lot of room for improvement (at least a factor
of 1.3-3). Even on the fib Benchmark, which should be the strong point of
Forth compilers, f2c opt was better. The results of NT Forth NCC are a
bit worse on average and have a big variance (a speedup of 1-5 over Gforth,
1.2-7.2 times slower than f2c opt.). These results show that researching bet-
ter native code generation techniques is not just a waste of time and that
there is still a lot to be gained in this area. These results also show that the
following statement has not become outdated yet: “The resulting machine
code is a factor of two or three slower than the equivalent code written in
machine language, due mainly to the use of the stack rather than registers.”
[Ros86]

The interpretive systems written in assembly language (except eforth
opt) are, surprisingly, slower than Gforth, although the code produced by
gcc-2.6.3 for Gforth is less than optimal, in particular with respect to reg-
ister allocation. One important reason for the disappointing performance of
these systems is probably that they are not written optimally for the 486
(e.g., they use the lods instruction). eforth opt demonstrates that peep-
hole optimization of intermediate code offers substantial gains. eforth opt is
3.5-6.5 times slower than f2c opt. We can expect even better results if the
baseline interpreter is more efficient (e.g., Gforth).

Gforth is 4-7.5 times slower than f2c opt, PFE 7.5-11 times. The slow-
down of PFE with respect to Gforth can be explained with the self-imposed
restriction to standard C (although the measured configuration of PFE uses a
GNU C extension: global register variables), which makes efficient threading
impossible (PFE uses indirect call threading, see Fig. 2.3). ThisForth and
TILE were obviously written with a certain negligence towards efficiency
issues and the limited optimization abilities of state-of-the-art C compilers,
resulting in a slowdown factor of more than 49 for TILE on the Sieve.

[ not only measured run-time, but also code size and compile time (see
Fig. 4.9). For threaded code (interp. size), I measured the space alloted in
the Gforth system during compilation of the program and subtracted the
alloted data; i.e., the interpreted code size includes the space needed for
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interp. .0 | size | compile | source C

size size | ratio time lines lines

sieve 418 272 | 1.54 1.10s 25 482
bubble 1020 748 | 1.36 1.60s 72 1100
matmul 784 412 | 1.90 1.40s 55 793
fib 140 140 | 1.00 0.90s 10 169

Figure 4.9: Code size and compile time

headers. Gforth uses one cell (32 bits in the measured system) per compiled
word, two cells for the code field and it pads the header such that the body is
maximally (i.e., 8-byte-) aligned. For the size of the machine code produced
by the translator/compiler combination (.o size), I used the sum of the text
and data sizes produced by the Unix size command, as applied to the object
(.0) file. This does not include the size of the symbol table information
included in the object file (which is easy to strip away after linking). The
data size in the object file does not include the alloted space, as that is
allocated later at run-time.

The code size measurements dispell another popular myth, that of the
inherent size advantage of stack architecture code and of the bloat produced
by optimizing C compilers. While a comparison of a header-stripping 16-bit
Forth with a RISC (~50% bigger code than CISCs) would give a somewhat
different result, the reported size differences of more than an order of mag-
nitude need a different explanation: differences in the functionality of the
software and different software engineering practices come to mind.

For the compile time measurements, Fig. 4.9 only displays the user time
needed by GCC to compile and link the program. The system time was
constant at 0.6s. The compilation to Gforth’s interpreted code needed a neg-
ligible amount of time; the translation to C also vanished in the measurement
noise, although it was not written for speed and although the present imple-
mentation should be much slower than normal Forth compilation. The com-
pile time data indicate that, after a startup time of about 1.4s (user+system),
GCC compiles about 90 lines of Forth code (1500 lines of translator output)
per second. Interestingly, less than one byte of machine code is generated
per line of C code.
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Conclusion

Stack-based languages can be implemented efficiently on register architec-
tures by caching top-of-stack items in registers and by combining stack
pointer updates. Although register sets are small compared to data caches,
they are big enough to capture almost all stack accesses. Such a stack cache
has to be managed by software.

For virtual machine interpreters, the cache can be managed by viewing it
as finite state machine. There is a large variety of stack cache organizations.
Stack caching can be employed in two ways: In dynamic stack caching the
interpreter keeps track of the state of the cache. A copy of the complete
interpreter has to be kept for every state of the cache, making only cache
organization with few states feasible. Moreover, on many processors dynamic
stack caching increases instruction dispatch time, eliminating the speed ad-
vantage of stack caching. In static caching, the compiler keeps track of the
cache state. This allows using organizations with more states, it allows fast
direct threading, and stack manipulation operations can often be optimized
away completely. But there is a bit of overhead for making the state conform
to calling conventions and reconciling the cache states on control flow joins.

My native code compilation technique transforms the stack-based code
into data flow graphs and static single assignment form. Then it can apply
standard code generation and optimization techniques. In particular, it puts
stack items in pseudo-registers, and global (or interprocedural) register allo-
cation puts them into machine registers. After the transformation, most of
the code does not even need the usual memory stacks and their stack point-
ers, and therefore it does not need stack-pointer updates. For the remaining
code, there is at most one stack pointer update and a few memory accesses
per control flow join.

Translation to C is similar to native code compilation. However, the
translator takes advantage of the optimizer of the C compiler to make the job

73
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simple. Optimizing C compilers translate C’s local variables into registers.
So, the translator represents stack items with local variables. Definitions
(procedures) are translated into C functions, and parameters passed over the
stack are translated into C function arguments. This translation method is
so simple that someone new to Forth has implemented it (in a Forth system)
in one person-month.

Caching the data stack in Forth interpreters can eliminate about two real
machine instructions per (original) virtual machine instruction. I expect sim-
ilar savings for other stack-based languages. With the assumption that half
of the return stack overhead can be eliminated, I expect 20%-31% speedup
on a DecStation 3100 using static stack caching. Dynamic stack caching does
not pay off on this machine, due to the increased instruction dispatch cost.

A native code compiler based on the techniques described here is in de-
velopment. Based on experiments with the prototype Forth-to-C translator
I expect the final native-code compiler to produce code that is at least 1.3
3 times faster on a 486-66 than native code produced by Forth compilers
that employ traditional techniques (subroutine threading with inlining and
peephole optimization).

Our prototype Forth-to-C translator, combined with GCC (with opti-
mization) produces code that is more than three times faster (on a 486-66)
than a translator that produces straight-forward C code, combined with the
same compiler. The effectiveness of the translation method becomes partic-
ularly obvious in comparison with handwritten C code (compiled with the
same C compiler), which is between 15% faster and 9%slower the translated
code. Moreover, the resulting code is smaller than the intermediate code of
a 32-bit Forth interpreter.
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