
.. 

DISSERTATION 

Application of Filter Methods to the 
Reconstruction of Tracks and Vertices in 

Events of Experimental High Energy Physics 

ausgefuhrt zum Zwecke der Erlangung des akademischen Grades 

eines Doktors der technischen Wissenschaften 

eingereicht an der Technischen Universitat Wien 

Technisch-N aturwissenschaftliche Fakultiit 

1040 Wien 

SchonburgstraBe 50/20 

Wien, im Oktober 1988 

von 

Dipl.Ing. Rudolf Friihwirth 

geb. am 16.4.1952 in Wien 

Die approbierte Originalversion dieser 
Dissertation ist in der Hauptbibliothek der 
Technischen Universität Wien  aufgestellt und 
zugänglich. 
http://www.ub.tuwien.ac.at 

 

 
The approved original version of this thesis is 
available at the main library of the Vienna 
University of Technology.  
 

http://www.ub.tuwien.ac.at/eng 
 



Kurzfassung 

Die rasante Entwicklung der experimentellen Hochenergiephysik in den letzten Jahren, die 

besonders auf dem Gebiet der Beschleuniger- und der Detektortechnik zu verzeichnen war, 

verlangt auch neue Methoden der Datenanalyse. Die vorliegende Arbeit befaBt sich rnit zwei 

genau umgrenzten Teilaspekten der Analyse von experimentellen Oaten: mit der Rekonstruk

tion von Spuren geladener Teilchen und mit der Rekonstruktion von Wechselwirkungs

vertizes. Nach einer kurzen Einfi.ihrung (Kapitel 1) werden in Kapitel 2 das experimentelle 

Umfeld, die wichtigsten Typen von Spurdetektoren und die Grundzi.ige der Analyse von 

Oaten erlautert, die von diesen Detektoren produziert werden. In Kapitel 3 wird ein kurzer 

Uberblick i.iber herkommliche Methoden der Spur- und Vertexrekonstruktion gegeben, und 

die Gri.inde fi.ir die Suche nach neuen Methoden werden erkllirt. In Kapitel 4 wird gezeigt, 

daB Filteralgorithmen die Forderungen erfi.illen, die von modernen GroBexperimenten an die 

Spur- und Vertexrekonstruktion gestellt werden. Der Kalman-Filter, kombiniert mit dem 

Smoother nach Rauch, Tung und Striebel, ermoglicht die optimale Schatzung der Spur

parameter in alien MeBpunkten auf zeitsparende Weise, auch fi.ir Spuren mit starker Viel

fachstreuung. Dies eroffnet neue Moglichkeiten zur Behandlung von Ausreillern und zum 

Erkennen von Zerfallen, wie etwa der myonischen Zerfiille von 7t- und K-Mesonen. Ferner 

wird gezeigt, daB auch das herkommliche Schatzverfahren zur Vertexrekonstruktion als 

Kalman-Filter interpretiert werden kann. Daraus ergibt sich die Moglichkeit, <lurch die Be

trachtung von Sekundlirspuren als Ausreiller Methoden zur Auffindung von Sekundlirvertizes 

zu entwickeln. AuBerdem werden robuste Varianten des Kalman-Filters zur Spur- und 

Vertexrekonstruktion vorgeschlagen, die den nach dem Pronzip der kleinsten Fehlerquadrate 

arbeitenden Kalman-Filter erganzen konnen. 

Die Anwendung der in Kapitel 4 entwickelten Filtermethoden in einem GroBexperiment wer

den in Kapitel 5 prasentiert. Es handelt sich um das Experiment DELPHI am LEP-Speicher

ring im CERN (Genf), das Mitte nachsten Jahres in Betrieb gehen wird. Zunachst wird der 

Filteralgorithmus mit der klassischen Schatzmethode zur Spurrekonstruktion verglichen, und 

der Gewinn an Genauigkeit, der durch die Anwendung des Smoothers erzielt wird, de

monstriert. Dann werden die vorgeschlagenen Methoden zur Behandlung von Ausreillern an 

Hand von simulierten Daten im zentralen Spurdetektor von DELPHI i.iberpri.ift und ver

glichen. Die Verfahren zur Erkennung von Zerfallen werden im zentralen Spurdetektor unter

sucht, und zwar ohne und mit Zuhilfenahme der i.ibrigen Spurdetektoren im Zentralbereich 

von DELPIIl. SchlieBlich werden auch die zur Erkennung von sekundliren Zerfallsvertizes 

entwickelten Algorithmen an Hand von simulierten Ereignissen i.iberpri.ift und verglichen. 
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CHAPTER 1 

INTRODUCTION 

High energy physics is a fascinating subject. Researchers in this field set out to explain the 

fundamental structure of our universe. To this end it is necessary to study the smallest con

stituents of matter, the so-called elementary particles, the ultimate goal being a unified math

ematical description of all particles and of the forces acting between them [l]. 

As in every branch of natural sciences, research is a continuous interaction between theory 

and experiment. In fact, experiments are frequently carried out in order to refute or to confirm 

certain theoretical predictions, but they also stimulate theoretical development by the discov

ery of unexpected and unexplained effects. In order to achieve the ambitious goal of a unified 

description of matter, highly sophisticated experimental techniques have to be applied. But a 

well-designed and well-working experimental apparatus is not enough. Equally important is 

the proper choice of methods of data analysis which extract the largest possible amount of in

formation from the data recorded by the experiment. In view of the fact that a large high 

energy physics experiment costs tens of millions of dollars and involves several hundred re

searchers, engineers, technicians and programmers for several years, it cannot be justified if 

information is lost due to insufficient algorithms or sloppy analysis. 

On the other hand, the huge amount of data collected by modern experiments imposes serious 

constraints on the data analysis programs, as far as computing time is concerned. With mil

lions of events to be processed, and at least an equal number of events to be simulated, only a 

few seconds of computing time on a large mainframe computer can be spent per event. This 

inevitably restricts the choice of algorithms to fast and relatively simple procedures. 

Other constraints are imposed by the social and psychological environment. The data analysis 

code has to be accepted, read, run and possibly modified by a large number of people, most 

of them non-specialists in the field of statistical data analysis. Therefore the methods em

ployed have to be flexible, transparent and easily understandable to an experimental physicist. 

The last few years have brought a remarkable increase of capability, but also of complexity of 

the detector systems used in high energy physics experiments. In addition, due to progress in 

accelerator techniques, the energy scale of the processes under study has undergone a dra

matic rise by at least a factor of ten during the last 8 years. As a consequence, events are far 

more complex and much more difficult to analyse than they used to be. 
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Considering these developments, one should not be surprised if some of the traditional meth

ods of data analysis turn out to be insufficient for the new generation of experiments to be 

carried out at the new Large Electron-Positron accelerator (LEP). This huge circular acceler

ator, at present the largest among electron-positron machines, is currently under construction 

at the European Laboratory for Particle Physics (CERN) in Geneva. It is scheduled to be 

operational in summer of 1989. In order to keep pace with the development of the hardware, 

new algorithms have therefore to be developed. It is the aim of this work to present a new 

approach to two well-defined topics of data analysis: reconstruction of charged tracks and re

construction of interaction vertices. We will show that filter techniques are particularly well 

adapted to fast, efficient and nevertheless robust estimation of track and vertex parameters, in 

the context of large modular detectors and complex multitrack events. In fact, one of the large 

experiments at LEP, DELPHI, will use this kind of methods in its data analysis programs. 

The layout of the thesis is the following: In Chapter 2 first the experimental environment and 

the most important types of tracking detectors are described. Then the problems to be solved 

in data analysis and the basic requirements to the algorithms employed are formulated. 

Chapter 3 is a brief survey of commonly used methods of track and vertex fitting. The rea

sons for the search of new methods are explained. Chapter 4 shows how filter techniques can 

be applied to the estimation of track and vertex parameters. This approach also opens a new 

road towards the solution of problems which frequently arise in this context: the treatment of 

outliers, the recognition of kinks (charged 1-prong decays) and the detection of secondary 

vertices. In Chapter 5 we shall discuss the implementation of filter techniques in the data ana

lysis program of DELPHI and investigate the performance of the proposed algorithms with 

simulated data. In Chapter 6 we will draw the conclusions and give some hints on possible 

future lines of research. 
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CHAPTER 2 

DATA ANALYSIS OF HIGH ENERGY 

PHYSICS EXPERIMENTS 

2 .1 The aims of high energy physics 

As stated in the introduction, the ultimate goal of high energy physics is the explanation of the 

fundamental structure of matter, and hence of our universe. Of course, at present one is still 

very far from a complete, unified description of the basic constituents of matter and of the 

forces acting between them; it is not even clear whether this goal can ever be reached at all. In 

order to understand the behaviour of the elementary particles one needs not only physical 

theories but also experiments which both serve as tests of the existing theories and at the 

same time try to find novel effects, thus provoking the development of new theories. 

In the experiment the structure of matter is studied on the smallest possible scale. Due to the 

laws of quantum physics, in particular due to Heisenberg's uncertainty principle, probing 

matter at small distances requires small wavelengths or, equivalently, high energies. This can 

be understood by analogy to the optical microscope in which the resolution is limited by the 

wavelength of visible light, which is in the order of 500 nm. In an electron microscope the 

quanta of visible light (photons) are replaced by electrons accelerated to an energy of a few 

ke V, about a factor 1000 larger than the energy of visible photons. According to the basic law 

that the energy is proportional to the frequency, E = hv, the electrons can be attributed wave

lengths smaller by a factor 1000 than those of visible light. Therefore the electron microscope 

can be used to probe the strucnire of a crystal. If one compares the distance of two atoms in 

the lattice of a crystal (::::: 10- 10 m) with the size of an atomic nucleus (:::::10-15 m) one sees that 

particles with an energy of at least a few 100 MeV have to be used to study the nuclear struc

ture. Since the aim of high energy physics is the understanding of the constituents of protons 

and neutrons (the quarks) and of the leptons (electrons, muons, neutrinos) the probing parti

cles must have an energy of at least tens of Ge V. 

These highly energetic particles are obtained from particle accelerators. In such a machine, 

strong electric fields act on charged particles (in practice electrons or protons) to accelerate 

them to the required energy. Since in a linear accelerator the energy is limited by the length of 

the machine, the more widespread type is the circular accelerator in which the particles cross 

the accelerating field many times. Such machines are called synchrotrons [2]. 
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A synchrotron can be operated in one of two different modes: In the first mode, the acceler

ated particles are extracted from the machine as soon as they have attained the required energy 

and are steered to the target, a block of matter, in which they undergo interaction with the 

material composing the target. This is called fixed target operation. Due to a kinematic ef

fect not all of the total energy, but only a fraction proportional to its square root is available 

for the interaction itself; the remainder is consumed for boosting the center of mass of the 

beam-target system in the forward direction. 

Therefore a second mode of operation has been invented, which uses the energy more effi

ciently: Two beams of particles, circulating inside a vacuum tube in opposite directions, are 

accelerated and kept in orbit during some hours. The beams are concentrated in a couple of 

bunches which collide at certain well-defined points along the machine. Now all of the total 

energy, which is the sum of the beam energies, is available for the interaction. Such a ma

chine is called a storage ring or a collider. 

As an example, the SPS (Super Proton Synchrotron) at CERN delivers protons with an 

energy of up to 450 Ge V to fixed targets, but can also be operated as a proton-antiproton col

lider with an energy of 315 Ge V per beam. The future large electron-positron collider LEP at 

CERN will initially have an energy of 50 Ge V per beam, just enough to produce the recently 

discovered zo vector boson [3] in large numbers. In a later stage, after an upgrade, the en

ergy will be 100 Ge V per beam. In electron-positron colliders the energy is, however, limited 

by the losses due to synchrotron radiation. Therefore the latest trend is towards very long 

linear colliders. 

In any experiment, the basic idea is to let an accelerated particle collide with a second particle, 

which is either at rest or itself accelerated, and to watch the outcome of the collision with a 

· suitable apparatus, the detector. Such a collision is called an event; the event is the basic 

unit of data collection. Due to the statistical character of quantum mechanics the outcome of 

an individual event cannot be predicted; also, two events are independent in the stochastic 

sense. The possible outcome of an event varies over a large number of cases. In the simplest 

case the event may show elastic scattering of the two colliding particles (Fig. 2.1) with only 

two emerging particles. But, as we are in the domain of relativistic physics, the energy of the 

collision may also flow into the creation of new particles (Fig. 2.2). Many of these newly 

created particles are unstable and decay inside the detector, thereby creating another set of 

particles. 

In order to describe completely the reaction of the two primary particles, it is necessary to de

termine direction, momentum, charge and type of all particles produced at the primary 

interaction vertex or at secondary decay vertices, as well as the location of all secondary 

decay vertices. If the reaction is sufficiently complicated it is nearly always impossible - and 
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frequently also unnecessary - to extract all of this information from the data recorded by the 

detector. The art of the experimenter consists to a large extent in designing the detector in 

such a way that the physically relevant information can be obtained with high probability and 

high precision. 

2. 2 The experimental environment 

2.2.1 Detector systems 

As indicated above, the main tasks of the experimental apparatus are: 

• The measurement of the momenta of charged particles; 

• The measurement of the energy (and possibly the direction) of neutral particles; 

• The determination of the particle type or particle identification. 

Due to the complexity of high energy collisions the apparatus consists of many detectors 

carrying out different types of measurements, so that it may be appropriately called a detec

tor system. 

The momentum of a charged particle is determined from a measurement of the curvature of 

the trajectory of the particle (its track) under the influence of a known stationary magnetic 

field. Therefore a detector system usually contains a magnet, sometimes superconducting, 

which is capable of supplying a field of sufficient strength. The trajectory of the charged par

ticle can be determined from the trail it leaves in devices designed specially to this purpose, 

so-called tracking detectors. These are capable of detecting a charged track by means of 

secondary processes (mainly.ionization) in the sensitive volume of the detector, which is 

filled with an appropriate gas. Iii order to compute the curvature, the position of the trajectory 

in space has to be measured in several points along the track. Thus a detector systems con

tains in most cases several tracking detectors. It has to be kept in mind, however, that a 

charged particle necessarily interacts with the material the detectors are made of. The resulting 

disturbance of the track has to be kept as small as possible by designing the innermost detec

tors, in particular the central tracking detectors, as light and "transparent" as their required 

mechanical strength permits. The basic types of tracking detectors will be discussed in Sub

section 2.2.2. The combination of a deflecting magnet with one or several tracking detectors 

is sometimes called a magnetic spectrometer [4, 5]. 

As neutral particles, e.g. neutrons or photons, do not ionize matter significantly, they are de

tected in a destructive way by being absorbed in a block of dense matter, which is of suffi-
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cient thickness, so that the incident particle deposits all its energy inside the detector volume 

in a cascade or shower of low-energy secondary particles. Such a device is called a 

calorimeter, although the heat produced by the absorption of a single particle is too small to 

be measured. Instead, one looks for another detectable signal, which should be a linear func

tion of the energy of the incident particle. A frequently used calorimeter design consists of 

many layers of a dense material, such as iron, lead or uranium. Sandwiched between these 

are layers of sensing devices, usually scintillators or proportional chambers, which sample 

the energy deposited by the shower produced by the incident particle. Of course, the 

calorimeter is also sensitive to charged particles. Thus calorimeter information is frequently a 

useful complement to the information obtained from tracking detectors. A survey of 

calorimeter techniques is given in ref. [6, 7]. 

The layout of a calorimeter has to be optimized with respect to its purpose. So-called electro

magnetic calorimeters are designed for the energy and position measurement of showers pro

duced by electrons and photons, while the layout of hadron calorimeters takes into account 

the different characteristics of the showers produced by hadrons, e.g. protons, neutrons, 7t

or K-mesons. 

Particles can be identified in several ways. The most important one is the measurement of the 

velocity of the particle. If the momentum is known in addition, the mass of the particle can be 

computed and the type can be inferred with a certain probability depending on the precision of 

the mass determination. 

The velocity of a particle can be computed directly from a measurement of the time of flight 

between two counters with good time resolution; these are usually scintillation counters. It 

can also be determined from electromagnetic effects which depend on the velocity. Amongst 

these are [8] : 

• Cherenkov radiation; 

• Transition radiation; 

• Energy loss due to the ionization of a medium. 

Cherenkov and transition radiation are detected by devices specially designed to this purpose. 

Energy loss due to ionization can be measured by a tracking detector, provided it works in 

proportional mode and is equipped with the necessary electronics. As indicated above, infor

mation about the particle type can also be drawn from the properties of a shower in a 

calorimeter. If the particle is unstable and decays inside the detector, its type can also be in

ferred from an analysis of its decay products. 

A special position, as far as particle identification is concerned, is occupied by muons. They 

distinguish themselves from all other kinds of charged particles by the fact that they are capa-
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ble of penetrating several meters of a dense material, e.g. iron or lead. Hence the common 

technique of muon identification is the following one: A set of tracking detectors (muon 

chambers) is put behind an absorber of sufficient thickness (muon filter), so that only 

muons penetrate the absorber and are registered by the muon chambers. In a collider experi

ment the hadron calorimeter is normally used as the muon filter. Since in this case the muon 

chambers have to cover a large area of several hundred square meters, they are usually de

signed as drift chambers (see Subsection 2.2.2). 

There are two basic types of detector systems, corresponding to the two possible modes of 

operation of the accelerator: 

• Fixed target experiments, facing a host of energetic particles in the forward direction, re

quire long magnetic spectrometers with high-precision tracking detectors and good two

particle resolution (Fig. 2.3). A fixed target spectrometer which employs many different 

techniques of particle detection is described in ref. [9]. 

• In collider experiments no particular direction is privileged by kinematics. Therefore a 

compact detector, covering the full solid angle is needed (Fig. 2.4). As the detector can

not be very large, due to limited space and money, a high magnetic field and precise 

tracking detectors are required. Again good two-particle resolution is a crucial feature, 

because of the high multiplicities produced in high energy collisions. 

One of the most impressive aspects of modern detector systems is their sheer size. Let us 

consider for a moment the detector of the DELPHI collaboration [10] which will operate at 

LEP (Fig. 2.5). It has the shape of a cylinder about lOm wide and 1 Om long and weighs 

more than 3000 tons. It includes the largest superconducting coil built so far. The number of 

electronic channels required to read out all parts of the detector exceeds 105. The total cost of 

the detector is in the order of 50 million dollars. A more detailed description of the detector 

system will be given in Subsection 2.2.3. 

The design and construction of such a detector system is thus a major project. An important 

aspect of the design process is the optimization of the layout within the given limits of cost 

and space. The designing team has to make sure that the detector is capable of adequately de

tecting and recording the data arising from the events. Also, the layout and characteristics of 

magnets and tracking detectors will largely determine the momentum resolution which can be 

achieved and should be optimized accordingly. 

It should be kept in mind that a detector not only provides information about a track, but that 

the track is also disturbed by the interactions with the material of the detector and of its 

infrastructure (supports, frames, vacuum vessels, etc.). Thus a massive detector in the wrong 

place can actually do more harm than good. 
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Another aspect of detector optimization is the interplay between hardware and software [11]. 

A detector designer should work in close contact with the people who choose the algorithms 

to be employed in the reconstruction of the events, and should even be ready to change his 

design accordingly. Otherwise the detector will be a continuous source of trouble during the 

analysis of the data. 

These exceedingly complex optimization problems are solved by Monte Carlo methods_. First 

events are generated randomly, resembling as closely as possible the processes likely to occur 

in the experiment. In a second step the response of the detector system is simulated in all de

tails. In the third step, the event is reconstructed and the estimated quantities, like momenta 

and energies, are compared with the true values. This allows the designer to asses the per

formance of the hypothetical detector. 

There exist specialized and standardized programs which perform the random generation of 

physics events [12] as well as the simulation of the detector response to a variable level of 

sophistication [13, 14]. With a large number of events the simulation may become quite 

lengthy, although in many cases the detailed simulation of a physical process can be replaced 

by a simple model giving statistically equivalent results [15] (see also Subsection 5.1.1). 

Therefore approximate formulae have been worked out for simplified layouts which give the 

designer a first idea of the resolution that may be expected from the detector [16]. 

2. 2. 2 Tracking detectors 

Only the most basic types of tracking detectors can be described here. For more details and 

references, see for instance refs. [17, 18]. 

The multi-wire proportional chamber (MWPC) 

The invention of the MWPC was one of the milestones in the history of particle detectors 

[19]. The MWPC is based on the same principles as the well-known Geiger-Muller counter, 

invented already in 1928 [20], and is a clever development of this "single-wire chamber". In 

its simplest form a MWPC consists of a thin gas volume confined between two cathode 

planes. Midway between the cathode planes is an array of parallel signal wires which form 

the anode (Fig. 2.6) . The chamber is put in such a position that most of the tracks cross it 

more or less perpendicularly. 

A track passing the chamber ioniz.es the molecules of the gas and sets free electrons which are 

attracted by the nearest anode wire. In the vicinity of the thin wire the electric field is suffi

ciently high to accelerate the electrons to such energies that they in turn produce ionization 
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electrons. Finally an electron avalanche develops and produces a detectable electric signal in 

the wire. This signal is then amplified and registered by the electronics attached to the wire. 

Under the assumption that only the nearest sense wire gives a signal, the uncertainty of the 

measured position of the track is distributed unifonnly between -d/2 and d/2, where dis the 

wire spacing, in practice between 0.5 mm and 3 mm. This uncertainty is in principle a de

terministic function of the tru~ track position, which, however, is itself random. Therefore 

the uncertainty of the measured coordinate may be regarded as a random variable. The stan

dard deviation of the measurement error of a single coordinate measurement is then given by 

O' = d/fil. 

Thus the MWPC features reasonably good spatial resolution, and also good two-track sepa

ration and good multi-track efficiency. It allows high event rates and, although permanently at 

high voltage, is sufficiently fast to be used in a fast decision trigger [21] (see Subsection 

2.3.1). Since a single MWPC measures only a single coordinate, nearly always several (at 

least three) MWPCs with different wire orientation are combined into a dense stack of cham

bers [22, 23, 24]. By a suitable linear combination of coordinates it is then possible to com

pute space points (and possibly directions). The error distribution of these approaches rapidly 

a normal distribution with increasing number of chambers (see also the Central Limit 

Theorem). The approximation is already quite good for only four chambers (Fig. 2. 7). 

The restriction that a single MWPC measures only a single coordinate can be overcome by 

picking up the signals which are induced in the cathode by the motion of the positive ions. By 

a suitable subdivision of the cathode into strips orthogonal to the wires or into small pads, 

two coordinates of the crossing point can be measured, the third one being given by the posi

tion of the chamber plane. 

The drift chamber 

In MWPCs the attainable precision is limited by the wire spacing. Therefore a large MWPC 

which is to achieve good accuracy has a very large number of wires, each of which is 

equipped with its amplifier and other electronic devices. This leads to an unacceptably high 

power dissipation and also to tremendous costs. In order to overcome these constraints, the 

chamber is modified in the following way: The wire spacing is increased to a few centime

ters, and the time lapse between the impact time of the particle and the arrival of the electron 

avalanche at the sense wire is measured to a precision of a few nanoseconds. Such a chamber 

is called a drift chamber [17, 25, 26] (Fig. 2.8). 

Since in a suitable gas mixture the electron cloud drifts towards the anode wire at a constant 

speed of some 0.05 mm/nsec, the measured drift time is directly proportional to the distance 
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of the impact point from the wire. There is, however, an intrinsic ambiguity, since there is no 

information as to on which side of the wire the track has passed the chamber. The impact time 

is normally determined by independent scintillation counters or by the beam crossing in 

bunched colliders. Drift chambers do not stand as high particle rates as do MWPCs. Due to 

the relatively long drift times (in the microsecond range) they cannot be used easily in the fast 

decision trigger. 

There are many possible arrangements of the signal wires and of the cathode, which may it

self consist of wires. Typical for fixed target experiments is the fl.at drift chamber, whereas in 

collider experiments cylindrical drift chambers have been widely used as central tracking de

tectors (Fig. 2.9). 

The measurement emor of a drift chamber is generated by several effects. The most impor

tant of these are the following ones [16]: 

• The random character of the primary ionization electrons, as far as their number and their 

spatial distribution is concerned. 

• Diffusion along the path of the drifting electrons. 

• Different path lengths of different primary electrons due to the inclination of the track and 

an inhomogeneity of the electric field 

• Variation of the drift velocity due to changes in temperature and pressure. 

• Locally non-saturated drift velocity. 

• The discretization error of the time-to-digital converter. 

• Mechanical tolerances of the chamber. 

• Gravitational sagging or electrostatic deflection of the sense wires. 

The superposition of these independent effects leads to a measurement error which is nor

mally distributed to a good approximation (Fig. 2.10). The actual variance of the measure

ment error may depend on the point of impact in the chamber. It has to be determined in a 

calibration experiment and constantly checked during data taking with real tracks. Standard 

deviations of 0.05 mm have been achieved for small drift distances; typical values are in the 

order of 0.1-0.2 mm. 

The time projection chamber (TPC) 

A TPC in some sense is a special type of drift chamber, or rather of a dense stack of drift 

chambers [27] (Fig. 2.11 ). The main differences to a conventional drift chamber are the fol

lowing: 
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• The drift space extends only to one side of the sense wire plane. Thus there is no left

right ambiguity. 

• A magnetic field parallel to the drift direction leads to an additional confinement of the 

drifting electron cloud, preventing excessive diffusion. This allows drift lengths in the 

order of 1 m and above. 

• Opposite the sense wire plane there is a two-dimensional array of small pads. These pads 

receive pulses induced by the pulses in the sense wires. The properly weighted bary

center of the charges distributed over the pads gives the position of the electron aval

anche along the wire. 

Thus the TPC delivers genuine space points (wire position, barycenter of charges in the pads, 

drift distance) without ambiguities. The measurement errors are again normally distributed to 

a good approximation. 

2.2.3 The DELPHI detector 

There will be four experiments at the future electron-positron collider LEP. One of them is the 

detector of the DELPHI project. DELPHI is an international collaboration of some 40 groups 

from all over Europe, including one from the Institute of High Energy Physics of the Austri

an Academy of Sciences in Vienna [10]. The huge detector system consists of two main 

parts: the central pan or "barrel", an assembly of several detectors, more or less in the shape 

of concentric cylinders placed around the beam tube; and two symmetric endcaps which close 

the cylinder on both ends (Figs. 2.12, 2.13). 

The heart of the detector system is a TPC (see Subsection 2.2.2). It is about 3m long, with a 

diameter of nearly 2.5m. The ionization electrons produced in the chamber volume by 

charged particles drift towards the end-plates. On both ends there is a plane of sense wires, 

and the cathode is interspersed With 16 rows of pads arranged in concentric circles around the 

origin. The TPC is capable of providing up to 16 space points (R, R<l>, z) per track. (Rand <l> 

are the cylindrical coordinates of the space point in the x-y-plane, and z is the drift direction, 

which is parallel to the beams and orthogonal to x and y.) The standard deviation of the z 

measurement varies with the drift distance, the average being in the order of .5 mm. The 

standard deviation of the R<l> measurement is about 0.2 mm [28]. For each space point, R is 

the radius of one of the sixteen pad rows and can be assumed to be known exactly, after a 

deterministic alignment correction computed from the data. 

Towards the bean1 vacuum tube the TPC is complemented by the so-called Inner Detector 

(ID), a cylindrical high-resolution drift chamber. The inner part of the chamber ("jet part") 
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consists of 16 sectors with 24 sense wires each. A special feature of this chamber is the fol

lowing: The electric field and the gas mixture are adjusted in such a way that the ionization 

electrons produced by a straight track coming from the origin arrive at all 24 wires of a sector 

at about the same time. This makes pattern recognition in this chamber a lot easier. The outer 

part ("trigger part") is less accurate and measures only z and the polar angle 9 of the track. 

The beam tube will be surrounded by the Microvertex Detector, a device which uses state-of

the-art silicon technology with the extremely high resolution of about 5 µmin R<l>. 

An outstanding feature of the DELPHI detector is its capability of identifying charged parti

cles and photons in a large energy range almost everywhere in solid angle. Apart from a 

measurement of energy loss due to ionization in the TPC and the analysis of shower profiles 

in the calorimeters, this is mainly achieved by Ring Imaging Cherenkov Counters 

("RICH"es). A RICH measures the angle between the particle direction and the radiated 

Cherenkov light by determining the radius of the ring which is produced by the intersection 

of the Cherenkov light cone with a plane detector sensitive to photons [29]. The finding of 

the rings is a difficult problem of pattern recognition. But in view of the small number of 

Cherenkov photons which are produced at higher energies in gases this is the only solution, a 

ring being defined well enough by its center and a few photons along its circumference. The 

rings can obviously be found much easier if the intersection point of the particle with the 

photon sensitive detector in the RICH is known. In order to improve the matching of the 

tracks found in the TPC with the rings in the RICH covering the TPC, there is another track

ing detector outside the RICH. It is a drift chamber, the so-called Outer Detector (OD). The 

OD is in turn enclosed by the central electromagnetic calorimeter, the HPC (High Density 

Projection Chamber). 

All these central detectors are still inside the huge superconducting coil, which produces the 

field of 1.2 Tesla. The axis of symmetry of the field coincides with the beams. The field is 

constant in almost the whole of the central region. Outside the coil, still in the central region, 

is the return yoke of the magnet, which serves at the same time as a hadron calorimeter. It is 

supposed to absorb all particles with the exception of invisible neutrinos and not strongly in

teracting muons. The latter are detected by the muon chambers sitting on top of the yoke. 

In the forward region we find a similar layout: Two wire chambers (FCA, an array of drift 

tubes operating in the streamer mode, and FCB, a set of drift chambers) behind the end-plate 

of the TPC, which improve the momentum resolution of forward tracks, and, sandwiched 

between them, a RICH. Immediately behind FCB are an electromagnetic calorimeter, a 

hadron calorimeter acting as the return yoke, and finally again the muon chambers. 
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2. 3 The stepwise analysis of experimental data 

In the context of high energy physics experiments, data analysis is a long and complex 

procedure. The input data consist of the response of the various detector components, i.e. of 

electric signals~ these are either analog and carry information about physical quantities, or 

they are digital in which case they represent the outcome of a yes/no decision. The output is a 

collection of momenta and masses of the particles in the event. ready for physical interpreta

tion. 

Like any other complex task, data analysis is broken up into a number of steps. The input to 

each step is the output of the preceding one, and each step involves usually some data re

duction. In a very complicated situation it may be required that some of the steps have to be 

repeated in the light of the results of later steps. Today all of these steps are performed either 

by hardwired processors or programmable computers. In fact, computers are omni-present in 

modem experiments [30]. They are used in all stages of the experiment: in experimental de

sign, detector operation and monitoring, collection and analysis of data, bookkeeping, docu

mentation, communication and publication of the results. 

Breaking up data analysis into several independent sub-tasks has numerous advantages. The 

most important of them are the following ones: 

• The software modules needed in each step can be developed independently, provided 

that the interfaces are well defined. 

• In fact, one is forced to define clear interfaces between subsequent steps. This implies 

the design of a clear and efficient data structure, which helps in turn again in designing 

the software modules and in understanding the code. 

• Every module can be debugged, modified and improved independently, without harmful 

side effects on other modules. 

• Intermediate data can be stored and exchanged in a well defined format. 

• In case a serious bug is found in one of the modules the data do not have to be repro

cessed from scratch, but one can start from intermediate data. This may save a lot of 

computing time. 

We shall now briefly describe the way of the data from the electric signal to the final data 

summary tape. An important distinction is the one between on-line and off-line processing 

of data, the borderline being the recording of data on mass storage (today still mostly mag

netic tape). It has to be kept in mind that data rejected on-line are irretrievably lost. Therefore 

elaborate monitoring procedures are required to make sure that no valid data are inadvertently 
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discarded, because this would create an unrecognized and therefore dangerous bias in the 

recorded data sample. 

2.3 .1 Triggering, digitization and on-line selection 

We have seen that a large LEP experiment like DELPHI has more than 100,000 electronic 

channels. In every event a large fraction of these channels may generate an electric signal 

which has to be processed. As the bunches of the beams in LEP cross at a rate of 50kHz, an 

amount of data in the order of 100 kbytes has to dealt with in only 20 microseconds, so that 

the detector is ready for the next bunch crossing. Data are therefore generated at a rate in the 

order of 100 Mbyte/s up to 1 Gbyte/s, but have to be recorded on a mass storage medium 

which can be written to at a rate of less than lMbyte/s. Obviously some sort of selection and 

data reduction must take place before the event is recorded. This is done by passing the data 

at high speed through various levels of so-called triggers, each one more refined, more se

lective, and inevitably slower than the previous one [31]. First background events are filtered 

out, i.e. events arising not from the interaction of two beam particles, but from the interaction 

of a beam particle with residual gas in the beam tube or from reactions induced by syn

chrotron radiation. In the higher trigger levels some preliminary pattern recognition may be 

done, like track finding or shower finding in the calorimeters. In the highest level events may 

be tagged or selected according to physical relevance. 

The lower level triggers are realized by dedicated hardware processors, whereas the high 

level trigger is a programmable computing device, e.g. a microprocessor, a micro- or a mini

computer or an emulator. The low level trigger works usually only on a subset of the data 

which can be read out fast, and while it is running the bulk of the signals is converted to 

numbers by analog-to-digital converters. If the event is accepted by the low level trigger these 

number are then fed into the high level trigger. 

If the event is accepted by all trigger levels, it is written to mass storage by the central on-line 

computer. 

2.3.2 Pre-processing, pattern recognition and track search 

In the first step of off-line processing (or sometimes in the last step of on-line processing) the 

numbers recorded on tape are converted to physically meaningful quantities like pulse 

heights, drift time, spatial coordinates etc. This is known as pre-processing and requires 

as an additional input the calibration constants of the particular detector component. The 

data are now ready for the next stage, pattern recognition. The objective of pattern recog-
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nition is the classification of all detector signal according to the criterion, that all signals in a 

class should be caused by the same particle. Of course there is one additional class containing 

all signals which cannot be matched to any particle. 

There is a large variety of algorithms and heuristic methods which are used to this end; the 

choice of a particular method is also very much detector dependent. A review of widely used 

pattern recognition methods can be found in ref. [32]. 

In calorimeters the main goal of pattern recognition is to group the detector signals to show

ers, to analyze the properties of the showers, and to compute the energy and the position of 

the incident particles [32]. Difficulties can arise from overlapping showers or from showers 

not wholly contained in the detector and similar anomalies in the data 

Pattern recognition in the tracking detectors is called track search and tries to associate the 

coordinate values measured by all tracking detectors to track candidates. This may or may not 

be preceded by an intermediate step in which one tries to reconstruct space points indepen

dently in all detectors where it is possible. There is again a variety of methods in common use 

[32, 33]. The output of the track search is a number of track candidates which have to be 

confirmed or rejected by the following step. Of course track candidates may share an arbitrary 

number of coordinate values or space points and may contain ambiguous information, e.g. 

from drift chambers. 

2.3.3 Track reconstruction 

Track reconstruction serves a two-fold purpose: First, the parameters describing the 

track geometrically, i.e. position, direction and curvature, are estimated by a procedure, 

which should be optimal in the statistical sense; this is called track fit. Secondly, the results 

of the track search have to be confirmed or rejected, and ambiguities have to be solved. This 

requires statistical test quantities which describe the quality of the track candidate, i.e. 

whether it has high or low probability to correspond to a real physical track. 

In addition to the estimated track parameters their covariance matrix should be available, 

so that the estimate can be fed into the next step of analysis with the proper weights. A short 

review of track fitting methods will be given in Section 3.2. An extensive survey of current 

techniques is available in ref. [16]. 

A track candidate may be rejected by the track fit for various reasons, among them the fol

lowing ones: 

• The track candidate apparently is a random combination of coordinate values and does 

not correspond at all to a real physical track. This is called a ghost track and should 

15 



occur fairly rarely if the pattern recognition is efficient. Ghost tracks may simply be re

jected as junk. 

• The track candidate exactly corresponds to a track, with the exception of one (or very 

few) coordinate value(s). In this case the track fit should not simply reject the track can

didate, but try to locate the wrong coordinate value(s), which may be ambiguities or 

outliers, and to provide a remedy in order to save the track. The treatment of outliers 

will be discussed in Section 4.3. 

• The track candidate consists of two segments which belong to two different physical 

tracks. This may arise if two tracks cross or if a particle decays with only one charged 

decay product ("kink"). The track fit should be able to recognize such cases and to split 

the track candidate properly. This problem is discussed in more detail in Section 4.4. 

It is possible that after the track fit there are still incompatible tracks, i.e. tracks sharing a 

number of measurements. It is unlikely that all of these represent real tracks. On this level 

graph theoretical methods can be used to find the largest subset of compatible tracks [34]. 

2. 3. 4 Vertex reconstruction 

After the track reconstruction one tries to associate each track with the interaction vertex at 

which it originates. Strictly speaking this is another step of pattern recognition; it is, how

ever, closely linked to the vertex fit itself, i.e. the estimation of the vertex position and of 

the momentum vectors of the tracks attached to it [35]. 

Usually there is a fairly accurate prior knowledge of the position of the primary interaction 

vertex: the target size in fixed target experiments, the size of the interaction region in collider 

experiments. This information should be sufficient to find immediately decay products of 

longlived particles, e.g. of K-mesons, since they do not point to the primary vertex. 

All other tracks have to be assumed to come from the primary vertex, for the time being. It is, 

however, of paramount physical importance to detect shortlived particles like heavy-flavoured 

hadrons and to detennine their decay products. In order to be able to detect such shortlived 

particles with decay lengths in the order of a mm, one has to estimate the position of the pri

mary vertex with utmost precision. In the vertex fit the decay products of the (invisible) short 

lived particle play the roles of outliers. Therefore the detection of decay vertices may be 

regarded as a multiple outlier problem. Due to the high track multiplicities (up to 50 tracks) a 

purely combinatorial procedure is ruled out; more feasible approaches will be discussed in 

Section 4.6. An additional benefit of the vertex fit is an improvement of the estimated mo-
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menta of the particles participating in the fit, which is due to the additional constraint of a 

common vertex. 

2. 3. 5 Kinematic fit and particle identification 

Further information concerning a vertex (primary or secondary) _can be obtained from the 

physical constraints of momentum and energy conservation. Normally only secondary or 

simple primary vertices will be subjected to a kinematic fit, in which the constraints are im

posed on the 4-momentum vectors, usually via Lagrangian multipliers (36]. The purpose is 

in both cases the verification or the rejection of a certain kinematic hypothesis. Whether all 

outgoing particles have been found can be seen from an inspection of the momentum vectors. 

If a certain amount of momentum is missing one has to look for neutral particles in order to 

satisfy momentum conservation. If none can be found, then either the missing momentum 

has been carried away by an invisible neutrino, or it has disappeared in a hole in the detector, 

or one has to reconsider the association of tracks to the vertex. 

If also energy conservation is to be taken into account, a mass has to be assigned to each 

particle participating in the kinematic fit. The mass of a particle can be detennined by com

bining the information from the relevant detectors like the TPC, Cherenkov counters, 

RICHes, calorimeters etc. Of course these may give ambiguous or contradictory information, 

in which case the kinematic fit can be used to decide between the mass hypotheses, at least 

for low momentum tracks. 

2.3.6 Event viewing 

By now it should be obvious that in the many steps leading from the raw data to the final data 

summary tape many decisions have to be made by the data analysis programs. However well 

these programs are tuned, it is inevitable that sometimes wrong decisions are made. Therefore 

in doubtful cases human intervention is required. It has proved useful to represent important 

or difficult events graphically on a high-resolution screen and to let the operator, usually a 

physicist, take the final decisions. For instance, in the Nobel prize winning experiment UAl 

[3] all events which were candidates for a vector boson decay were scanned on a high per

formance graphic device. For a systematic presentation of such techniques, see ref. [37] . 
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2.3. 7 Data analysis software 

Today software is a major and indispensible part of every experiment. In the large experi

ments at LEP, 100 people or more are involved in writing the programs needed for the design 

of the experiment, the operation of the detector, the collection and the analysis of the data. 

The coordination of software development is thus a formidable task and special techniques 

have to be developed to ensure the coherence of data and programs (38, 39, 40, 41]. 

There are marked differences between on-line and off-line software as far as development and 

running is concerned. On-line software or, more specifically, data acquisition software runs 

in a single computer or in a number of strongly coupled processors, although the trend is 

clearly towards more distribution of intelligence and computing power around the experi

ment. Development of on-line software is usually confined to the laboratory where the ex

periment is carried out. An exception is the software monitoring the various pieces of the de

tector system, because nowadays it is supplied by the group bulding the particular detector 

component. 

Off-line software, on the other hand, has to run on all large computers available to the groups 

participating in the experiment, i.e. on many different types of computers scattered all over 

Europe. One of the main requirements is therefore the portability of all programs, implying 

a strict adherence to the rules of standard FORTRAN 77. Also data have to be exchanged be
tween different types of computing equipment, requiring a computer independent data format 

on mass storage (at present magnetic tape) [39]. 

Since most parts of the detector system are continuously improved or even replaced by better 

ones, the flexibility of the software is of paramount importance. This means that the pro

grams must be designed in such a way that a piece of code may be changed easily without 

interfering with other pieces. Briefly, the design must be modular. This is also necessitated 

by the distributed developmen.t of the code, which is common practice in high energy 

physics. Finally, there is all too often a fast turnaround of people in the experiment. 

Therefore the software should be well documented, it should be easy to read and easy to un

derstand, so that it can be upgraded by people other than the author, without unforeseen and 

dangerous side effects [42] . 

2. 4 Required properties of analysis methods 

If we assume that a big LEP experiment writes events onto tape at a rate of lHz, then in a 

data taking period of 2 months, with an availability of the accelerator of 50%, about 2.5 mil-
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lion events are recorded. If we assume that the collaboration has 5 mainframe computers at its 

disposal, and that the data shall be analyzed within half a year, then the processing time of an 

event cannot be much larger than 20 seconds, particularly if we take into account that at the 

same time also extensive simulations have to be done. Considering the many steps of analysis 

to be performed and the complexity of the events to be analyzed, one realizes immediately that 

all algorithms employed have to be very fast. On the other hand, in view of the enormous 

costs of an experiment, it cannot be justified if the information contained in the data is not 

fully used. What is needed therefore are fast algorithms, which nevertheless are, in some sta

tistical sense, optimal. This applies particularly to the estimation of track and vertex param

eters, to a less degree to pattern recognition procedures, the performance of which can hardly 

be assessed in mathematical terms. In addition, one must not forget that the data can be af

fected by various sorts of defects. Therefore the estimation procedures should be robust to a 

certain degree. This is to say that they should be insensitive to data behaving in an unexpected 

way. This point has not found much attention up to now. We shall discuss some of the issues 

in Chapters 3 and 4. In any case a balance has to be found between precision, robustness and 

speed. This is a difficult subject, and one can hardly expect to get general results. However, 

one can learn quite a lot by analyzing simulated data and by comparing different algorithms. 

Results of such studies will be presented in Chapter 5. 
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Fig. 2.1: Elastic scattering of two particles. Apart from a change in direction, 

the particles emerge essentially unchanged from the interaction. 
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Fig. 2.2: Picture of a pp-collision in the central drift chamber of the UAl experiment 

The energy in the center-of-mass is 540 GeV. A large part of the energy flows into the 

creation of new particles. The arrows point to the decay products of a zo vector boson. 
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Fig. 2.3: A fixed target spectrometer (experiment WA6). 

(From: G. Fidecaro et al., Phys. Lett. 105B (1981) 309) 

D .. 

~ 
~ 

I~, 
. . . . . . . . ....... ... . ... . 
··········· ·· ········· ········· ···· ········· ······· ······· ········· ······ ··· ········ ······ ············· ·· ············ ···· ···· ···· ····· ··· ·· ···· ·· ·· ··········· ······················· ·· ··········· ·· ······ ··· ··· ···· ············· ·.·.·.·.-.·.·.·.·.·.·.·.·.··.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.··.·.·.·.·.·.·.·.·.·.·.·.·.· 
······· ············ ····· ····· ·· ···· ··· ······ ············· ····· · ... ····· · ···· ········· 

Central track detector • Hadron calorimeter: detectors 
sandwiched with the magnet yoke 

Electro-magnetic calorimeter 881 Muon chambers 

Magnet coil ~ Wire chambers 

Fig. 2.4: A typical collider experiment. 
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Fig. 2.6: Schematic view of a multi-wire proportional chamber (MWPC). 
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Fig. 2.7: Distribution of the measurement error of a stack of four MWPCs. 

a) x-coordinate; b) y-coordinate (from simulated data). 

The superimposed curve is a standard normal p.d.f. 
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Fig. 2.9: The cylindrical drift chamber of the JADE experiment. 

(From: W. Farr et al., Nucl. Instr. and Meth. 156 (1978) 283) 
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The tail on the left hand side is due to long-range delta-rays. 
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The DELPHI detector. View in the z-y-plane. 

- -~ --------~~--==== 
iH,: FoRwARD 
1: MUON 

1 
SCINTILLA TORS 

:.=- _ ___ ---===== ===L-==~j:;---:/,;I ~7 1 CHAMBERS\\ / 

• • .. • • ., I ' I 
.. ======= ===========;:l .. iz:=;f ~ J' 
•================:.IL,~ 1-=:J ' I ' " ·1 I" 

. ' :::::T! ! I' I: I : ' . ' 
~ l\11 1 i i111 :1 •1:!' 1 ! t llll l 

~~§§§~§§§§§§§~§§~~~~3~ I' .I: :. ' : 11 · 

~~~~iiiii~~BA~R~R:Eli~H~A:DR~O~N~CA~:L~. iiiiiiiiiliiiili~~ll i !: i[! k !, .: ii,, : ·: C . ! I •I:. : I I ! : - I I ;! ;.,, ,! ·; : 
.. . I : I:: : ii: :1 I 

" I I Ii i I : t' ij : =================~====£'==::\ I I I' I' . I . 

~~~~::~s~C~IN~T~IL~L~A T~O~REH~O~O~O~S~CO~P~Ejii!!-~~~~~· i ·1 ! 1
1
1'11,· ; ii 1.1 

n: ~ A JJ, J .~ a!; ::8 Y ; ~ 1 ·j 1 !I! , I ii 
·~p~S~UP~E~R~CO~N~O;;U;;CT~IN;;G~CO~IL~gp~~,.,~~,.,~~...,~~9f=31~:::::::::::::!.J I ., ·1 Ii,;. I ;I!: i1

1 

I 
' I . ' I' 1, ' 

"'0 • :Y L- I :, : '. .t :, '1 · I 

~ - ,,.-;-;; ----#"·~m- 11 ,... ,. :i, ·": ;: : j,;., I 
HP( - ~ ~ -t:,,--;',,<-/ ~ I ' I ' ! .I : : ,. .; :! !I 

;O ID ~ ! l ~~f /" ! Ii ii ' '.: : ' I I 
·~ I QU T..E.R ]IETE:ITOR -~ t i::i1 FORW. ~ ·11 ii I I :1 I '. ; I ! 

~ ~ ~~:-~._J~Lf ~ ... ~ (~ML ~: · '1 l1 I 1111·1 :1 .. i'i" ",I!,: I BARREL RICH . . \\ ,-.... . I I I I !· I : . ; I ·: I, 

: ,· !~~. '/,1 ~ 7! / . ;" ~ I F1191RW. HI 1A10'~:0~, :, ~~~ . ··1· :: ! 
""'·_:!.!!· ""~~~~~~..r~~t- FORW. \!~32 ::~,I !I , !;,1.:1 .:: · 1 ii : 

------ -·-·------ -- - --1 --~ 'Y RICH ,,--· \ !I~'-· '11 ! I I I i h :::: 
,.. ' ~\\ I I . , 'I' ' 'ii " . 
~ , ~ \, \ P-l ·: 1 "•I .; ! : ,· ! I' i . 

; ~ ~'. - ---\:1 CH~ !! ' ii Iii ij J .11: ] !l !l J 
·; ~H , l -- \ a' i~; JLY. ~ J . ~ JC-.J..ld,L· 
• A ...._ ... j - .· ~ 

.. , ... ~,7--:-:-:=:~J=-=-==--:.--=-==---=-=- ~1~4- SAT. I - ~ ;r-~' ~~.~· ---------
'' ·' , _ __! . 1 - ~!' , . liJJ; · _ LJ__7• - · .l 1 .i; l l~: l.m S.C O:OAD 5 >........._.: _.....:.._i ----- ¥. 1 __E I ' ~ .J. _ _ --·+-J:'lJ:l,.Jlfr_, ___ -·- -·- ___ ___ - ___ _ m 

•, ~ - ---..... --1.L"' , • • . ~....-j.-.J- -~- ,~~. I ' 

=+==::+Jil:r ·---1:~~· q ti .I c ~- ;_ 
'I - -

' \.INNER DETECTOR ·- ' ··----- - ---· 
I FORWARD 

T.P.C. 

VERTEX DETECTOR CHAMBERS 

Fig. 2.12: The DELPHI detector. Cross section in the z-y-plane, parallel to the beam. 
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CHAPTER 3 

TRADITIONAL METHODS OF TRACK 

AND VERTEX RECONSTRUCTION 

In this chapter we shall describe the most commonly used methods of track and vertex fitting. 

An extensive review can be found in ref. [16]. 

A striking fact is the prominence of least-squares methods in the estimation of track and ver

tex parameters. The reasons for this are manifold; a few of them, which are the most impor

tant ones in our opinion, will be listed in Section 3.1. 

Sections 3.2 and 3.3 deal with the application of least-squares estimators to track and vertex 

fitting. In Section 3.4 it will be demonstrated that least-squares methods have in fact yielded 

satisfactory results. With increasing complexity of detectors and events, however, the limits 

of conventional least-squares methcxis have become more and more obvious. This point will 

be discussed in Section 3.5. 

3 .1 Why least-squares? 

With a few notable exceptions, e.g. ref. [43], the overwhelming majority of experiments 

have relied on least-squares estimators for the fitting of tracks and vertices. There are various 

reasons for this: 

• In a linear mcxiel a least-squares estimator is a linear function of the vector of measure

ments; therefore an estimation algorithm is easy to code and its properties are easy to un

derstand. 

• If the measurement errors and other noise contributions (see Subsection 3.2.2) follow a 

normal distribution, the least-squares estimator in the linear model is the minimum vari

ance bound estimator, if the correct weight matrix is used [44]. This is also true asym

ptotically in a non-linear model. Nevertheless the model should be made as closely linear 

as possible by the proper choice of the parameters. The assumption of normally dis

tributed noise is frequently valid in very close approximation (see Subsections 2.2.2 and 

3.2.2). 
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• Decision criteria, e.g. the x2-statistic, are readily available and have well-known distri

butions. This permits an exact computation of the losses, e .g. in a x2-test, without an 

excessive amount of simulation. 

• Mean-squared quantities, like the expectation of the x2-statistic or the variance of the 

residuals, remain the same also in the case of non-normal noise. 

• The covariance matrix of the estimate emerges as a by-product in the calculation of the 

estimate and is therefore readily available for error propagation into the next stage of 

analysis. 

• The computation of a least-squares estimate is very fast, provided the measurements are 

uncorrelated or there are only few correlated ones. 

• Least-squares methods are familiar to most experimenters and have been applied with 

undubitable success in the analysis of many experiments. An example will be shown in 

Section 3.4. 

On the other hand it cannot be denied that least-squares methods suffer from severe short

comings. A discussion of these is deferred to Section 3.5. Also, the development of acceler

ators and detectors has made the usual estimation algorithms more and more unsuitable. This 

fact will also be explained in more detail in Section 3.5. 

3. 2 Least-squares estimation of track parameters 

A track is uniquely described in each point by 6 parameters: 3 spatial coordinates, 2 directions 

(angles, cosines or tangents) and the curvature (or absolute value of the momentum with the 

proper sign). If the track is in vacuum, it is sufficient to know these parameters in a single 

point; the trajectory is then the solution of the equation of motion with these particular 

initial values. 

The equation of motion of a charged particle in a stationary magnetic field can be derived 

from Maxwell's equations. It is a second order differential equation: 

d2x/ds2 = (kq/P) · dx/ds ® B(x(s)), 

with: 

s . .. .. . . . .... path length, 

k .. .. .. . .. . . constant of proportionality, 

q . .... . ..... charge of the particle (signed), 

P .. .. .. .. .. . absolute value of the momentum, 

B ( x ) . . . . . .. stationary magnetic field. 
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In practice it is often sufficient to estimate the track parameters only on a single fixed surface, 

the so-called reference surface, which is usually close to the vertex, but can in principle be 

chosen arbitrarily. In this case one of the three spatial coordinates can be regarded as fixed, 

and in vacuum the trajectory is determined by five initial values or parameters p. p con

sists of two space coordinates, two directions (angles, cosines or tangents), and momentum 

or curvature (inverse momentum). 

As soon as the particle interacts with matter, however, the trajectory is no longer an exact 

solution of the equation of motion and the track is not fully determined by the initial values 

p. This is due to the fact that the interaction of the particle with matter is a random process. 

The main task of the track fit is thus the estimation of the track parameters p at a reference 

surface from the vector m of measurements associated to a track candidate by the track 

search. We assume for the time being that all elements of m do really belong to the same 

track. 

If the detectors were perfect devices with no measurement errors at all, and if the particle did 

not interact with matter, m would be a deterministic function of the initial values p: 

m=f(p). 

The function f is called the track model. 

In reality charged particles do interact with matter along their path. The detector system itself 

consists of all sorts of materials, hence the trajectory is disturbed by the interactions of the 

particle with the detector itself. The resulting deviation from the exact track mooel is a random 

process and can therefore be described by a random vector y. The measurement vector m can 

duly be regarded as a realization of a random vector c, defined by 

c = f (p) + 'Y· 

c describes the actual physical ~jectory. 

If measurement errors are taken into account, a further random vector E has to be added to c: 

c' = f (p) + "( + E. 

It should be noted that y and E are stochastically independent 

Two questions arise immediately: How is the function f determined? What is the distribution 

of y and e? These questions will be discussed in Subsections 3.2.1and3.2.2, respectively. 
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3. 2 .1 The track model 

We recall that the track model represents the set of exact solutions of the equation of motion. 

It is therefore uniquely determined by the magnetic field B and by the arrangement of the 

tracking detectors. 

If B is equal to zero everywhere, the trajectory is a straight line and f is a linear function, at 

least for plane detectors. If Bis constant (homogeneous) in a certain region, the trajectory is a 

helix and f is obtained by the intersection of the helix with the detectors. Note that f may still 

be a linear function, if the measurements and the track parameters are expressed in a suitable 

coordinate system. 

If B is inhomogeneous, i.e. if it depends on x, it is normally not possible to find an analytic 

solution of the equation of motion, except in cases where the field is highly symmetric [ 45]. 

Therefore an algorithm has to be chosen which permits to compute the track model numeri

cally. Such a procedure is called track following, since it follows the track from the initial 

values through the different detectors. The standard way of track following is a numerical in

tegration of the equation of motion, usually by a Runge-Kutta method [46]. Depending on 

the step size and on the numerical representation of the magnetic field, track following may 

consume quite a lot of computing time. Therefore one may try to approximate the function 

f by an analytic function, for example multidimensional polynomials or trigonometric 

polynomials. This is also known as a "parametrization" off. If f is to be parametrized, one 

has to generate a training sample of tracks and to compute f for all tracks in the training 

sample, e.g. by numerical integration. From the values off the coefficients of the approxi

mation can be computed. Of course one has to take care that the training sample covers all 

values of p which are likely to arise during subsequent data analysis. Finally it is advisable to 

check the quality of the approximation with an independent test sample of tracks. If no sat

isfactory approximation can be found it may help to divide the region of variation of p, the 

phase space, into several cells. 

Closely linked to the problem of track following is the question of a suitable numerical repre

sentation of the magnetic field. The parameters to be optimized are speed of computation and 

the size of the field map in computer memory. For a case study, see ref. [47]. 

3. 2. 2 Description of noise terms 

We recall that two types of noise have to be considered: 

• Measurement errors, i.e. the difference between the true value of the measured physical 

or geometrical quantity and the value registered by the detector. 
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• A random perturbation of the track due to interactions of the particle with material, i.e. 

the difference between the actual trajectory and the exact solution of the equation of mo

tion. 

As far as measurement errors are concerned, we note first that measurement errors arising in 

different detectors are stochastically independent, except for rare cases , in which two detec

tors are so close to each other that correlations can be observed. This occurs only in detectors 

with inherent discretization, e.g. in MWPCs (discretization of space) or drift chambers 

(discretization of time). 

Generally speaking, the distribution of the measurement error can be described by a condi

tional probability density function (p.d.f.) g, the so-called resolution function: 

t t t 
gk = gk ( Ek I Ck ) = gk ( Ck - Ck I Ck ), 

with: 

Ck . ......... vector of quantities measured by detector k, 
t 
Ck ... ....... true values of ck, 

Ek . . . .. . .... vector of measurement errors of detector k. 

This includes the possibility that the distribution of the measurement error depends on the 

impact point of the track on the detector. An eventual dependence should be sufficiently 

weak, so that the measurement itself or an approximate impact point obtained from the track 

search can be substituted for the true impact point without ill effects. 

We recall that for most tracking detectors in use today gk can be approximated very well by a 

normal p.d.f .. As a normal p.d.f. is uniquely described by mean vector and covariance ma

trix, the problem of finding gk is reduced in practice to the problem of determining the mean 

and the covariance matrix of the measurement error Ek. For very simple detectors this can be 

done by theoretical considerations. In all other cases mean and covariance matrix have to be 

estimated from real data. Frequently a calibration experiment is carried out, in which the de

tector is exposed to a particle beam, a radioactive source, cosmic radiation or a laser beam. 

Once a sufficient number of tracks has been registered, standard techniques for the estimation 

of location and variance components can be applied (see e.g. ref. [ 48]). 

The main source of random perturbations of a track is multiple Coulomb scattering 

(m.s.), i.e. elastic scattering of the particle off the electrons or nuclei of material. If a particle 

traverses a layer of material it suffers a random deflection 0 and a random off set y, with the 

exception of very thin layers for which the offset is negligible (Fig. 3.1). 
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Since these random effects can be ascribed to a superposition of a very large number of inde

pendent scattering processes, the derivative of the scattering angle can be represented mathe

matically as white noise [49]: 

t>(s) = d9/ds, 

'E { t>(s1) · t>(s2)} ds1 ds2 = c · b(s1 - s2) ds1 ds2, 

with: 

8( s) ... .... projected scattering angle at s. 

c is the variance of the projected scattering angle per unit length. It depends on the mass and 

the momentum of the particle, and on the kind of material traversed: 

k m2 + p2 
c =Lr p4 

with: 

m . . .. .. ... . . mass, 

p . .. ..... .. . momentum, 

Lr .......... radiation length of the material (material constant), 

k .. .. .. . . .. . constant of proportionality (independent of the material). 

We are now able to compute the covariance matrix of ')'(L) and 8(L): 

'E { 8(L)2 } = c L, 

'E { 8(L) · y(L)} = c L2/2, 

'E { ')'(L)2 } = c L3/3. 

Since y and 9 are due to the superposition of many independent scattering events, we may 

expect that they are normally disuibuted in good approximation. 

Let us now consider again the original formula of the noise terms: 

c = f (p) + y + €, 

where y describes the perturbation of the trajectory due to multiple scattering. Then the co

variance matrix of y is given by 

min(sj, Sj) 

~( ar- ar ar ar ) cov { Yi· Yj } = c · - 1
- ~ + - 1

- ~ ds, 
a01 a01 a02 a02 

0 

where 8 1 and 8 2 are two independent (orthogonal) projected scattering angles [49]. The in

tegral can be computed analytically only in special cases, e.g. for a straight track. In all other 
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cases it is evaluated numerically. A simple trapezoidal rule is sufficiently accurate in most 

cases. 

It should be noted that the covariance matrix of y is non-diagonal. 

3. 2 .3 The global method of estimation of track parameters 

We are now able to specify fully the estimation problem: 

c = f (p) + 0, 

0 = 'Y + E, 

cov ( 0 } = V = cov ( 'Y} + cov ( E} . 

cov {'Y} in general is non-diagonal, whereas cov ( E} is a block-diagonal matrix, with 

one block per detector. The vector of measurements, m, is a realization of the random vector 

c. The least-squares estimate of pis obtained by minimizing the following objective function: 

Q(p) = 5T G 0 = [ m- f (p) ]T G [ m -f (p) ], G = v-1. 

Differentiation of Q with respect to p yields 

aQ/ap = - 2 [ m - f (p) ]T G ar;ap. 

In order to find a zero 9f aQ1ap, we apply Newton's method and obtain the following recur

s10n: 

with: 

The derivatives are evaluated at ~-l· This procedure is equivalent to fitting a parabola to Q(p) 

at ~-1 and computing the venex of the parabola. 

The starting point of the recursion, Po. must be sufficiently close to the true minimum of Q, 

in particular closer than the nearest inflection point; otherwise the iteration diverges. Since the 

track search yields usually a fairly good gess of the track parameters, this is rarely a problem. 

The derivative matrix A can be calculated in various ways. In common use are [16]: 

• Numerical differentiation off by small variations of p. This increases the time spent in 

track following sixfold, because the original track and five variations have to be fol

lowed. 
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• The partial derivatives off can be integrated in parallel to f itself, by a modified Runge

Kutta algorithm [50]. For an exact treatment the derivatives of the magnetic field are re

quired. 

• The partial derivatives are approximated by analytical functions (see Subsection 3.2.1). 

The covariance matrix of multiple scattering is computed in parallel to the track following (see 

Subsection 3.2.2). It depends normally only weakly on the initial conditions p and thus 

doesn't need to be recomputed in every iteration. The covariance matrix of the measurement 

errors can be assumed to be known in this stage of the analysis. 

If the track model is not known explicitly, the calculation of the tensor of second derivatives 

becomes prohibitively time consuming. In this case the term containing a2r/ap2 is neglected. 

The matrix in the Newton formula remains positive definite, but the curvature of Q is clearly 

no longer approximated correctly. The resulting formula is the same as the one which is ob

tained by approximating f by a linear function: 

Then the standard linear least-squares estimate is given by 

Pi= Pi-1 + ( Ai- lT G Ai- 1 t 1 Ai-lT G [ m - f(Pi-1) ]. 

Practice shows that rarely more than 3 iterations are required until the minimum is sufficiently 

approached, i.e. until 

IQ(i>;.) - Q(Pi- 1)1 < €. 

A choice of€ = 0.01 is adequate. 

It should be noted that the convergence may be slowed down by neglecting the second 

derivatives. Therefore care should be taken that f does not deviate too far from a linear func

tion. This can be facilitated by the proper choice of the coordinate system in which the mea

surements and the track parameters are expressed. The right choice depends of course on the 

configuration of the magnetic field and of the tracking detectors. As an example, let us con

sider the frequently used setup of cylindrical detectors in a homogeneous magnetic field, 

which is parallel to z (Fig. 3.2). On each cylinder, two coordinates are measured: (R<I>)i and 

Zi. The track parameters are estimated on a cylindrical reference surface. Then the following 

choice of track parameters will give a track model which is close to linear [16]: 

Pl = (R<l>)ref, P2 = Zref, P3 = (tan A)ref, P4 = <?ref- <I>ref, PS = (1/r)ref, 

where A. is the inclination angle of the helix with respect to the x-y-plane, and r is the radius 

of the helix which is the exact solution of the equation of motion. The choice of 1/r allows a 

change of sign of r without discontinuity. 
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3.2.4 Test statistics 

The most important test statistic is the value of the objective function at the minimum. For a 

linear least-squares estimation with Gaussian noise this value is exactly x2-distributed with 

n- m degrees of freedom, where n is the number of (functionally independent) measurements 

and mis the number of estimated parameters. We call it briefly the" chi-square of the fit". In 

track (and also in vertex) fitting it is in fact x2-distributed to a very good approximation. Its 

importance as a test statistic lies in the fact that it tells us whether the hypothesis that all mea

surements belong to the same track (that all tracks belong to the same vertex) is justified. 

Since its distribution is known, the losses caused by a x2-cut can readily be computed. 

Moreover it has the nice property that it is independent of the estimated parameters, so that a 

x2-cut does not introduce a bias into the accepted portion of the sample, which is therefore 

representative. It has to be stressed, however, that a precise understanding of multiple scat

tering and detector resolution is a necessary prerequisite to a good performance of the x2-cut 

In addition, the distribution of the chi-square of the fit can be used in first place to check 

whether the fit program is correct. A more demanding test in this respect is provided by the 

studentized residuals ("pulls") which ought to be distributed according to a standard normal 

p .d.f.: 

They can be computed for simulated as well as for real data and thus provide a continuous 

check of the quality of the data 

3. 3 Estimation of vertex parameters 

The estimation of vertex parameters follows much the same lines as the estimation of track 

parameters. In the vertex fit the track parameters Pi estimated on a reference surface are 

considered as computed (virtual) measurements; their covariance matrix is also known from 

the track fit The vertex parameters to be estimated are 

• the vertex position v (a point in 3-dimensional space), 

• and the 3-momentum vectors Qi of the n tracks belonging to the vertex. 

If the reference surface of the track fit is chosen such that no multiple scattering occurs be

tween the vertex and the reference surface, the estimation problem can be written down in the 

following way (with Pi instead of 'Pi): 
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Pi is the 5-dimensional vector of the estimated track parameters of track i with its covariance 

matrix Vi. Note that the Ei are stochastically independent random vectors. (The components 

of a single Ei in general are correlated.) 

Least-squares estimation of the parameters requires the objective function 
n 

Q(v,Q1, . .. ,Qn) = L [Pi- hi(v, Qi) ]T G i [Pi- hi(V, Qi)] 
i=l 

to be minimized. 

If all tracks are exact helices, this non-linear least-squares problem can be solved by an itera

tive method proposed in [51]. We prefer to give a general algorithm which is based on a lin

ear expansion of the functions hi [35]: 

hi(v , Qi)=== hi(vo, Qi,o) +Ai ( v - vo) +Bi (Qi - Qi,O) =Ci+ Ai v +Bi Qi. 

with: 

dhi dhi 
Ai= dv (vo, Qi,o), Bi= aQi (vo, Qi,o), 

Ci = hi(vo, Qi,o) - Aivo - BiQi,O· 

The linearized objective function is 
n 

Qlin = L ( p i - c i - A i v - B i Q i ) T G i ( p i - c i - A i v - B i Q i ) . 
i=l 

This linear least-squares problem can be solved by the standard procedure: 

.... 
v 

with: 

So S1 

S1T Ti 0 0 

M = 0 T2 

SnT 0 

n 

So= L AiT Gi Ai , Si= AiT Gi Bi, Ti = B? Gi Bi (l~i~n), 
i= l 
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and with: 

0 

N = 

0 

The straight inversion of M would require about (3n+3)3/2 operations. It can be speeded up 

considerably by taking advantage of the internal block structure of M [35]. If we write M-1 

in the form: 

Coo Con 

M-1 = 

the submatrices Cij can be computed explicitly: 

with: 

Coo = ( So - L Si W i SiT ) -l, 

Coj = - Coo Sj Wj (j>O), 

Cij = oijwj - wi s? Coj (i,j>O), 

The final estimate then reads: 

with: 

GBi = Gi - Gi Bi Wi BiT Gi. 

Obviously the covariance matrix of the estimate is M-1. 

The total x2-statistic of the fit is given by 
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If necessary, the fit has to be iterated by re-expanding hi at the estimate v, qi. Convergence is 

usually fast; more than two iterations are hardly ever needed. Note that the full covariance 

matrix does not have to be computed until the final iteration! 

3. 4 Some experimental results 

In this section an example of the successful application of least-squares methods shall be pre

sented. The experiment in question, called WA6 (Fig. 2.3), was carried out at CERN about 

10 years ago [52). Its aim was the measurement of the polarization parameter in elastic scat

tering of protons on free polarized protons. The success of the experiment depended on the 

clear separation of elastic events from quasi-elastic events (scattering on bound protons) and 

inelastic events. The final decision on the event type was taken on the basis of the kinematic 

fit of the elastic hypothesis. By a careful tuning of the measurements errors in the spec

trometer, and by precise treatment of multiple scattering - particularly important for the slow 

recoil proton - it was possible to keep the losses of elastic events in the final x2-cut of the 

kinematic fit at a level of only 6%. (In previous similar experiments losses of up to 30% had 

to be tolerated.) The x2-probability distribution of the kinematic fit is shown in Fig. 3.3a. 

The inelastic events accumulate at very low probabilities. The same distribution after a 6%-cut 

is shown in Fig. 3.3.b. It is remarkably flat. It can be concluded that the measurement errors 

and the multiple scattering have been correctly understood, and that the information contained 

in the measurements has been optimally used on all levels of the analysis. 

3. 5 Limits of traditional methods 

With the advent of more powerful accelerators and more complex detectors some shortcom

ings of the traditional methods of track and vertex fitting have made themselves felt. Even if 

one accepts least-squares estimators as an appropriate tool, there still remains the question 

whether the traditional implementation described in Sections 3.2 and 3.3 is really best suited 

to the latest requirements. In fact, closer inspection reveals some marked drawbacks: 

• With the global method described in Subsection 3.2.3 the track parameters are estimated 

in a single point on the reference surface. As in the presence of multiple scattering the 

trajectory is not an exact solution of the equation of motion, the actual physical track may 

stray quite far from the "ideal" track, i.e. the extrapolation of the estimated parameters. 

But in the large modular detectors at LEP extrapolations from the far end of the track are 

needed in order to link together the pieces of information provided by different detectors, 
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e.g. central tracking detectors and muon chambers. In addition, the points of intersection 

of a track with certain detectors need to be computed, for instance with the Ring Imaging 

Cherenkov counters (see Subsection 2.2.3). Thus it is desirable that estimates of the pa

rameters containing the whole information are available anywhere along the track. 

• So far we have assumed that the track candidates produced by the track search algorithm 

are entirely correct. But this cannot be expected to be true in reality. The track candidate 

may contain wrong solutions of ambiguous measurements or measurements which are 

picked up from other tracks or are just noise signals. It is the duty of the track fit not to 

simply reject such a track candidate, but to find out which measurements might be 

anomalous. Attempts have been made to handle single outliers by rejecting the measure

ments with the largest residual whenever the latter exceeds a certain bound, and to re

compute the estimate with an updated weight matrix. But in general the global method is 

not very well adapted to cope with multiple outliers, kinks or long tails in the distribution 

of the measurement errors. 

• For tracks with many measurements and multiple scattering the inversion of the covari

ance matrix consumes too much time, and a faster track fit algorithm is needed. 

• For the physics to be studied at LEP the detection of shortlived particles will be of crucial 

importance [53]. This means that secondary decay vertices very close to the primary in

teraction vertex wi11 have to be found. Therefore all tracks emerging from the vertex 

region should be associated either with the primary vertex or with a secondary vertex. A 

correct association of all tracks is possible only if the primary vertex itself is computed 

with the utmost precision. The decision about which tracks are possibly secondary tracks 

is not easy. Due to the high primary multiplicities combinatorial procedures are ruled out: 

It is not feasible to recompute the vertex fit with different subsets of tracks removed. 

What is needed instead is an algorithm the computing time of which is essentially pro

portional to the total number of tracks. 

The next chapter will show how these problems can be solved by the introduction of filter 

techniques, in particular the Kalman filter, without leaving the realm of least-squares estima

tion. 

A more profound negative aspect of least-squares estimators in general is their lack of ro

bustness. Robustness is a rather broad notion which embodies several mathematical con

cepts [54]. Loosely speaking, a robust estimator is one whose performance remains good if 

the actual distribution of the data deviates somehow from the assumed one. In particular, an 

estimator should not be excessively biased by the influence of one or a few outliers, i.e. 

measurements which do not follow the general pattern, either due to tails in the distribution of 

the measurement errors or because they are background (see Section 4.3). Robustness of 
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estimators has not found much, if any, attention up to now in track and vertex fitting. 

Therefore a first step towards the application of robust algorithms will be suggested in the 

next chapter. 
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Fig. 3.1: Effect of multiple scattering on a track. 

Fig. 3.2: Cylindrical detectors in a homogeneous magnetic field. 
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Fig. 3.3: Experiment W A6: Probability distribution of the x2 of the kinematic fit. 

a) The inelastic events accumulate in the high peak at low probabilities. 

b) The same distribution after a cut at 6% shows the expected flat shape. 

(From: G . Fidecaro et al. , Nucl. Phys. B173 (1980) 513) 
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CHAPTER 4 

APPLICATION OF FILTER TECHNIQUES TO 

TRACK AND VERTEX FITTING 

The idea of using filter methods in track fitting is not entirely new. P. Laurikainen mentioned 

already in 1971 the possibility of using stepwise estimation for the automatic measuring of 

bubble chamber tracks, but came to the conclusion that the method was too sophisticated for 

this purpose [55]. In 1984, P. Billoir proposed a recursive method of track fitting which is 

effectively equivalent to the Kalman filter, without recognizing this fact [56]. This method 

was called later"progressive method" [16, 35] . In 1987 the progressive method was put into 

the proper mathematical perspective by the author [57]. This opened up the possibility of 

complementing the progressive track fit by the elegant smoother algorithm. First we will 

show that the problems listed in Section 3.5 can be solved by the combination of the filter and 

the smoother. The full power of the combined filter/smoother algorithm is exploited in the 

methods proposed below for handling of outliers and detection of kinks (charged I-prong 

decays). We also will take advantage of the fact that the Kalman filter can be robustified with 

little additional computational effort 

In this chapter we shall first review the basic properties of the Kalman filter (Section 4.1). In 

Section 4.2 we show that a track can be interpreted as a non-linear discrete dynamic system 

and write down the system and the measurement equations. We also discuss briefly the 

merging of track segments. In Section 4.3 we discuss various possibilities of treating outliers 

and investigate a robustified filter which can readily be applied to track fitting. Section 4.4 

deals with the important topic of the recognition of kinks in charged tracks. An algorithm 

based on the Kalman filter will be presented. 

The rest of the chapter is dedicated to vertex fitting. In Section 4.5 we show that an interac

tion vertex can be regarded as a non-linear discrete dynamic system and write down the sys

tem and the measurement equations. Finally, in Section 4.6 we investigate the detection of 

secondary vertices. By interpreting it as an outlier problem we arrive at various procedures 

which are based on the Kalman filter and on a robust modification of the filter. 
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4 .1 Properties of the Kalman filter 

The Kalman filter is a method of analyzing a linear discrete dynamic system. The theo

ry of the Kalman filter is described in many textbooks [58, 59, 60], and only a short review 

will be given here. A discrete dynamic system is in each point of (discrete) time, say tk, 

characterized by a state vector Xk. The evolution of the state vector in time is described by a 

time-dependent transformation, the system equation: 

where f k is a deterministic function and wk is a random disturbance of the system, the so

called process noise. 

The state vector does not need to be observed directly. In most cases a function of the state 

vector is observed, corrupted by measurement noise: 

where mk is the vector of observations at time tk. We shall assume in the following that all 

Wk and Ek are independent random vectors and have mean 0 and a finite covariance matrix. 

In the simplest case both f k and bk are linear functions for all k: 

fk(Xk-1) = Fk Xk-1 + ak, 

bk(Xk) = Hk Xk + bk. 

In the following all constants ak and bk are assumed to be 0, without loss of generality. 

There are three types of operations to be performed in the analysis of a dynamic system (here 

described in terms of "time"): 

• Filtering is the estimation of the "present" state vector, based upon all "past" measure

ments. 

• Prediction is the estimation of the state vector at a "future" time. 

• Smoothing is the improved estimation of the state vector at some time in the "past" 

based on all measurements taken up to the "present" time. 

The Kalman filter is the optimum solution of these three problems in the sense that it mini

mizes the mean square estimation error. If the system is linear, and if wk and Ek are Gaussian 

random variables for all k, the Kalman filter is efficient, i.e. it is the optimal filter; no non

linear filter can do better. In other cases it is simply the optimal linear filter. 

We give now the formulae for prediction, filtering and smoothing in a linear dynamic system, 

with the following notations and assumptions: 
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System equation: 

t t 
X1c = F1c Xk-1 + W1c, 

'E { Wk } = 0, cov { Wk } = Q1c (1~~). 

Measurement equation: 

t 
m1c = H1c xk + Ek, 

'E { Ek } = 0, cov { Ek } = V k = Gk-l (1~~), 

Notations: 

t • 
Xk = true value of the state vector at a.me 11c. 

i\ = estimate of ik , using measurements up to time j, 

Q<k: prediction, j=k: filtered estimate, j>k: smoothed estimate; x~ = i1c)' 
. ~· t 

CJk = COV { xJk - Xk } , 

rjk =residual m1c - Hk ijk• 

Rj1c = cov ( rjk }. 

In the predicted state vector, j is usually equal to k-1; in the smoothed state vector, j is usu

ally equal ton. 

Prediction: 

Extrapolation of the state vector: 

?-lk = F1c i1c-1 

Extrapolation of the covariance matrix: 

Ck- lk = F1c C1c-1 F1cT + Q1c 

Predicted residuals: 

rk- lk = mk - Hk ik- lk 

Covariance matrix of the predicted residuals: 

Rk- lk = V1c + H1c Ck- lk ffkT 

Filter (Gain matrix formalism): 

Filtered state vector: 

Xk = ik-lk + K1c ( m1c - Hk ik-lk ) 
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Kalman gain matrix: 

Kk = ck-lk HkT ( vk + Hk ck-lk HkT) -l = ck HkT Gk 

Covariance matrix of the filtered state vector: 

ck= (I- Kk Hk) ck-lk 

Filtered residuals: 
.... k 1 rk = mk - Hk xk = ( I - Hk Kk ) r - k 

Covariance matrix of the filtered residuals: 

Rk = (I- Hk Kk) vk = vk - Hk ck HkT 

Chi-square increment: 

x2ic.F = rkT Rk-l rk 

Chi-square update: 

X2k = X2k-1 + X2k.F 

Filter (Weighted means formalism): 

Filtered state vector: 

Xk =ck [ (Ck- lk)-1 ik-lk + HkT Gk mk] 

Covariance matrix of the filtered state vector: 

Chi-square increment: 

x2ic.F = rkT Gk rk + ( ik - ik- \ )T (Ck-\)- 1 ( Xk - ik-lk) 

Smoother: 

Smoothed state vector: 

X'\ = Xk + Ak ( ink+l - xkk+l ) 

Smoother gain matrix: 

Ak =Ck Fk+lT (C11c+1)-1 

Covariance matrix of the smoothed state vector: 

cnk = Ck+ Ak ( cnk+l - C11c+1) AkT 
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Smoothed residuals: 

r1\ = m1c - H1c x1\ = r1c - H1c ( x1\ - i1c ) 

Covariance matrix of the smoothed residuals: 

R1\ = R1c- H1c A1c ( C1\+1 -C~+l) A1cT ff1cT = V1c- Hk C1\ H1cT 

An inspection of the formulae reveals the following facts: 

• The gain matrix formalism and the weighted means formalism of the filter are equivalent. 

The choice between the two depends on the dimensions of the state vector and the mea

surement vector. If the dimension of the state vector is small, the computation by 

weighted means is usually faster. 

• The filtered estimate of the state vector is unbiased and has minimum variance among all 

linear estimates using the same set of measurements. For Gaussian process noise and 

measurement errors it is efficient. The same is true for the smoothed estimates. Therefore 

the Kalman filter with a subsequent smoothing is equivalent to a global linear least 

squares fit which takes into account all correlations arising from the process noise. 

• The computation time of the filter is basically proportional to the number of detectors and 

depends (in the weighted means formalism) very little on the number of measurements 

per detector. 

If the intermediate results of the filter are retained the smoother consists only of a few 

matrix multiplications and is thus very fast, as long as the dimension of the state vector is 

small. 

• C1c may also be expressed by the formula 

C1c = (I- Kk Hk) Ck-lk (I - Kk H1c )T + K1c V1c KL?. 

One can show that this foim is computationally superior to the form given above, al

though it consumes more computer time [58, p.305]. 

• If there is no process noise, i.e. <1c = 0 for all k, smoothing is equivalent to back extra

polation, as can be verified directly from the smoother equations. In this situation a 

global fit is to be preferred. 

• Inspection of the covariance matrix update equations gives the following results, which 

are intuitively obvious: 

The variance of the filtered state vector is smaller than the variance of the predicted state 

vector (information from the measurement m1c); the mean squared filtered residual is 

smaller than the mean squared predicted residual (the state vector is pulled towards the 
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measurement); the variance of the smoothed state vector is smaller than the variance of 

the filtered state vector (infonnation from all measurements); the mean squared smoothed 

residual is larger than the mean squared filtered residual (the state vector is pulled to

wards the true value by the additional constraints). 

• The filtered residual vectors (also called innovations) are uncorrelated, in the Gaussian 

case even independent. This is a characteristic property of the Kalman filter. It also 

proves the chi-square update formula. 

If bk is a non-linear function, the filter is computed by approximating bk by a linear function: 

The update of the state vector now reads 

ik = ?-\ + Kk [ mk - bk (ik-lk) ]. 

If necessary, the filter is iterated by reexpanding the function bk in the point xk, which is a 

better estimate of ik than ik-1k. This is called an iterated Kalman filter. The decision whether 

an iteration is required is made on the basis of the second derivatives of bk: No further itera

tion is required if the influence of the second order term in the expansion of bk on the esti

mate is small as compared with the standard deviation of the estimate: 

1 "" ""'· 1 T a2hk "" ""k 1 ~-{ Kk [ 2 ( Xk - x"- k) axkaxk ( Xk - x - k) ] }i << '1 (Ck)ii . 

Note that hk is a vector of functions, and that the expression in square brackets is a vector of 

the dimension of hk. The decision does not need to be made for each track, but is made once 

for all on the basis of a representative sample of tracks. 

If fk is non-linear, the predicted covariance matrix Ck-lk is computed from the approximation 

off 1c by a linear function: 

rk(xk- d == rkcik-1) + Fk < xk-1 - ik-1 ), Fk = cark1axk-1)(ik-1). 

Ck-lk = Fk Ck- 1 FkT + Qk. 

The natural choice of the expansion point is the filtered estimate xk- 1 · 

Apart from the state vector extrapolation which now reads 

the prediction, filter and smoother equations remain the same. This is called an extended 

Kalman filter. If both bk and fk are non-linear functions, the extended and the iterated filter 

have to be combined. If'iic-1 is far away from ~k-1 · the prediction ? -1k may be heavily bi

ased. In this case a special trick has to be applied (see Subsection 4.2.3). 
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4. 2 Estimation of track parameters with the 
Kalman filter 

4. 2 .1 The track as a discrete dynamic system 

If we want to apply the Kalman filter to track fitting we have to interpret the trajectory in 

space as a dynamic system. This can be done quite naturally by identifying the state vector 

of the dynamic system with the vector x of the five parameters which describe the track 

uniquely at any given surface. We have seen earlier that the space points (and possibly direc

tions) measured by a tracking detectors can be considered as lying on a fixed smface defined 

by the shape of the detector, which is usually either a plane or a cylinder. Consequently only 

two coordinates (and the directions) are affected by measurement errors, whereas the third 

one is known precisely. For the purpose of track fitting it is sufficient to consider the state 

vector in a discrete set of points, namely in the intersection points of the trajectory with those 

surfaces where measurements are available. Let us write xk for the state vector of the track on 

the detector surface with the number k. 

4.2.2 The system and the measurement equation 

If the state vector, i.e. the vector of track parameters, is known on surface k-1, the trajectory 

can be extrapolated to surface k by means of the track model discussed in Subsection 3.2.1. 

But in the presence of multiple scattering the extrapolated track does not coincide with the 

actual physical track. If the perturbation of the track by multiple scattering is interpreted 

as a process noise, we can write down the following system equation: 

fk is the track propagator from surface k- 1 to surface k; we recall that it is computed either 

analytically or by numerical integration of the equation of motion, or else by an ap

proximating analytical function. The random vector wk describes the random deviation of the 

actual track from the extrapolated one due to multiple scattering between surface k-1 and sur

face k. We recall that wk is in good approximation normally distributed and that 

'E { Wk } = 0, COV { Wk } = Qk (l~~n). 

Qk is computed as indicated in Subsection 3.2.2, by integrating over an infinite number of 

infinitesimal scattering processes. 
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The quantities measured by detector k depend in some way on the state vector of the track in 

detector k. This dependence yields the measurement equation, which in general is non-linear: 

t 
mk = hk(Xk) +Ck, 'E {Ck } = 0, WV {Ck } = vk = Gk-l (l~n). 

The expectation of the measurement errors is in fact equal to 0 in virtually all tracking detec

tors, with the possible exception of boundary effects. If it is not equal to 0, the bias can be 

removed by a suitable modification of the function hk. The covariance matrix Vk should only 

depend weakly on the track parameters Xk. 

The measurement equation can in principle always be made linear by the appropriate choice of 

the coordinate system in which the state vector is expressed. It is, however, more important 

that the track propagator fk is linear or nearly linear, so that ?-1k is (nearly) unbiased for all 

k. 

The covariance matrix of the measurement errors is known from theoretical considerations or 

from a calibration experiment (see Subsection 3.2.2). If the tracks are sufficiently well 

defined by other detectors, it can also be determined from the experimental data. We note that 

all ck and all wk are actually stochastically independent. 

4.2.3 The estimation procedure 

The track parameters are estimated by an extended Kalman filter which proceeds from one 

end of the track to the other one. At the end of the filter the information from all detectors is 

included in the estimate, with the exception of measurements which obviously do not belong 

to the track (see Section 4.3). After a subsequent smoothing estimates of the track 

parameters using the full information are available on all detector surfaces. 

This procedure has the following advantages as compared with the global fit: 

• Extrapolations from both ends of the track as well as intersections of the trajectory with 

other detectors can be computed using the full information. 

• The computation time of the filter is always proportional to the number of detectors in the 

track fit, independently of whether there is multiple scattering or not. 

• The filter can be used for track finding and track fitting at the same time, provided that 

the track density is not too high. If the track density is high, track finding with the filter 

runs into combinatorial difficulties, since at any point several measurements may be 

compatible with the predicted state vectors. This is particularly serious in the first few 

steps of the track fit, when the state vector is only poorly defined. 
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• The linear approximation of the track model does not need to be valid along the entire 

trajectory, but only from one detector to the next one. 

The time spent in the calculation of the track model, of its derivatives and of the covariance 

matrix of multiple scattering is the same with the Kalman filter as with a global fit; what is 

saved is the inversion of the global covariance matrix. 

In order to be able to start the filter we need an initial value xo with its covariance matrix Co, 
except in the case that x1 can be uniquely determined from m1 alone. In all other cases we 

may take as xo a rough estimate of the track parameters which is usually supplied by the track 

search. In order not to bias the exact filter, xo should be given an "infinite" covariance ma

trix. In practice, Co is a matrix with sufficiently large diagonal elements and zeroes oth

erwise. 

In specific cases it may occur that the state vector is only poorly defined by the first measure

ment(s), and the extrapolation may go astray, although the track is in principle well defined 

by the subsequent measurements. Consider, for example, a track in the forward region of 

DELPHI (Fig. 5.9). The track fit starts in FCB and proceeds towards the vertex. The 

momentum measurement of FCB is rather poor, so that the prediction into FCA may be quite 

far from the measurement in FCA. In extreme cases the extrapolated track may even fail to 

intersect with the next detector. These problems are due to the fact that for a non-linear track 

model the prediction is not unbiased. If the estimated state vector is far away from the true 

value, the bias of the subsequent prediction may become arbitrarily large. In such a case the 

following trick can be applied [61]: 

Instead of the state vector itself the difference between the state vector and some fixed 

reference track is filtered and smoothed, by a linear expansion of the track model around 

the reference track. If the reference track is close to the real track, the bias of the prediction is 

much reduced this way. The reference track is either supplied by the track search or is com

puted from a measurement which defines the track sufficiently well. In our example the 

reference track is taken from the results of the track search, which combines the information 

from all detectors in the forward region of DELPHI, although not in a statistically optimal 

way. 

Another kind of problem may arise if the distance between two subsequent detectors is very 

large: The correlation between the track position and the track direction can get very close to 1 

in the predicted covariance matrix. As a consequence, the latter becomes numerically sin

gular. In this case the error propagation and the inversion have to be computed in double pre

cision arithmetic. 
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4.2.4 Merging of track segments 

In a large modular detector like DELPHI it is frequently the case that a track is reconstructed 

not as a whole, but in several pieces which have then to be put together. We show now that 

this can be done efficiently with the Kalman filter/smoother algorithm. For the sake of sim

plicity we will restrict ourselves to the case of two track segments; the generalization to sev

eral segments is obvious. 

Let us assume that two track segments have been fitted individually in two separate detector 

modules (Fig. 4.1) with state vectors iij and ?I. respectively. In order to merge the infor

mation from the two track segments we proceed as follows: 

• Take the smoothed estimate 'Y111 at the start of track segment 2. 

• Extrapolate Y"11 to the end of track segment 1, i.e the surface of Xn, including error 

propagation and multiple scattering. The extrapolation is called y 1 ' . 

• Compute the weighted mean ofy1' and Xn and store it in Xn'. 

• (Re)compute the smoother in track segment 1, starting with in' in place of Xn. 

Note that only the smoother has to be (re)computed in all track segments, plus n-1 extrapo

lation steps between adjacent segments. It is essential, however, that all segments are filtered 

along the same direction, and that the intermediate results of the filter are retained in all seg

ments. This has to be taken into consideration during the design of the data structures of the 

track fitting program. 

4.2.5 Removal of measurements 

Sometimes the necessity arises to remove a measurement from a track, for instance, if 

it is recognized as an outlier (se~ next section). In additi.on, it may be useful to compute an 

estimate x1
\ * which contains the full information with the exception of detector k, 

e.g. for a check of the detector alignment and resolution with real tracks. ink* can be cal

culated by an "inverse Kalman filter" in the following way [57). Since~* is obtained from 

the smoothed state vector~ by removing mk, xi\ is obtained from ink* by adding mk: 

ink= cnk · [ (Cnk *)-1 ink*+ HkT Gk mk ], 

cnk = [ (C~*)-1 + HkT Gk Hk J-1. 

We solve for xi\* and Cl\*: 

- * * 1- T xnk = cnk · [ (Cnk )- xnk - Hk Gk mk ], 

Cl\*= [(Cl\ )-1 - HkT Gk Hk J-1, 
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or, in gain matrix notation: 

x'\* = x'\ + Knk* ( mk-Hk ink), 

K'\* = C'\ H1? · (- Vk + Hk C'\ ffkT )-1, 

cnk * = ( I - K'\ * H k ) C'\. 

Thus the inverse filter is a step of the Kalman filter with the covariance (or weight) matrix of 

mk taken negative. 

The estimates'?\* can be computed for all k in one single pass of the smoother. If mk has to 

be removed permanently from the track, the smoother has to be (re)computed with~* and 

cnk * in place of x'\ and C'\. However, this does not update the smoothed estimates inj 

with j>k. If these are important the filter has to be recomputed, starting from ?-1k and with

out using mk, followed by a pass of the smoother over the entire track. 

4. 3 Treatment of outliers in track reconstruction 

4.3.1 Origin and modelling of outliers 

In the context of track reconstruction an outlier is defined as a measurement which does not 

follow the expected behaviour. This may be put into statistical terms by saying that a 

measurement is considered as an outlier whenever its distance from the true track position is 

large under the assumption of normal measurement errors, the distance being expressed in 

terms of the covariance matrix attached to the measurement. 

Outliers in track reconstruction may arise in different contexts. The simplest, but fairly fre

quent case is the presence of ambiguities in the track candidate. As we have seen in 

Subsection 2.2.2, some tracking detectors, in particular drift chambers, give rise to ambigu

ous information. The track search, being less restrictive than a rigorous track fit, is not al

ways able to decide which of the two possible solutions is the correct one, and the decision 

must be deferred to the track fit. In the track fit the wrong solution is regarded as an outlier 

which has to be spotted. 

This is an example of an outlier which is track correlated: It is a measurement generated by 

the particle the track of which is to be fitted, but it looks incompatible with the rest of the 

track. Another example of a track correlated outlier is the following one: In a gaseous tracking 

detector, e.g. a MWPC or a drift chamber, it happens occasionally that an electron knocked 

out from the gas molecule by the ionizing traversing particle has an energy which is so large 
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that it produces itself a long tail of secondary ionization along its path in the detector. These 

energetic electrons are called delta-rays. As a result, the signal produced by the incident par

ticle is distorted by the additional ionization, the effect of which is a shift in the measured co

ordinate (see Fig. 2.10). Finally, it might be the case that the distribution of the measurement 

errors is far from being normal. Although the bulk of the data follows a normal distribution in 

most tracking detectors, there is nearly always a small fraction of the data which deviate from 

the normal law. These data show up as long tails in the error distribution and should be 

regarded as outliers. This does not necessarily imply that they should be discarded. 

A second class comprises outliers which are uncorrelated with the track, i.e. signals 

which are not caused by the track, but are nevertheless picked up by the track search. They 

may be signals from adjacent tracks or genuine noise, either in the detector or in the elec

tronics. 

The distribution of track correlated outliers around the true track position depends first of all 

on the properties of the detector, and also, in the case of delta-rays, on the physics of the 

underlying secondary process. The distribution of track uncorrelated outliers is in principle 

uniform in the whole detector volume; in practice their distribution is imposed by the selection 

mechanism of the track search. 

It is therefore very difficult, if not impossible, to specify the distribution of possible outliers a 

priori, only from theoretical considerations. The only practicable approach is the determi

nation of the outlier distribution either from a detailed simulation or from the real data, i.e. 

from tracks which are well reconstructed in the adjacent tracking detectors. 

There are two basic ways of modelling outliers in a regression problem [62]. The first one is 

the mean-shift model. It describes an outlier by the fact that its expectation is shifted by a 

certain amount with respect to the true track position: 

The mean-shift model describes well outliers picked up from adjacent tracks, outliers caused 

by delta-rays and wrong solutions of ambiguous measurements. The offset dk, however, is 

variable, so that the mean-shift model is not a very practical way to describe a large number 

of outliers. 

A more useful description is obtained by considering the p.d.f. of outlying measurements. 

Since outlying measurements are farther away from the true track position than is indicated by 

their covariance matrix, their empirical distribution has longer tails and consequently larg

er variance than the distribution of "good" measurements. This is to say that the p.d.f. of a 

measurement has a larger variance than usual, if the measurement is an outlier: 
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gk( mk - Hk ik I mk is outlier)= gk(O, Vk<2>), Vk<2) > Vk(l)· 

where Vk(l) is the covariance matrix of good measurements in detector k. It is also assumed 

that the outliers are not biased, i.e. do not prefer a particular direction. This is called a vari

ance-inflation model of outliers. 

If the frequency of outliers is known, the unconditional p.d.f. of all measurements can be 

written down: 

gk = ak(l). 9((0, vk<1>) + ak<2). gk<2) (0, vk<2>), ak(l) + ak<2) = 1, vk<2) > yk(l), 

where gk<2) is some p.d.f. with mean 0 and covariance matrix vk<2>, and ak<2) is the pro

bability of an outlier occuring in detector k. Due to lack of information one is usually forced 

to assume that gk<2) is also a normal p.d.f. This is called a mixture model of outliers. 

Being a least-squares method, the Kalman filter is rather sensitive to outliers, which may bias 

the final estimate unduly. If we consider a large sample of tracks, such a bias results in an 

inflated standard error of the estimate, which is not accounted for in the corresponding co

variance matrix. One way of avoiding this is to try to identify outliers and to remove them 

from the track. An algorithm which accomplishes this for single and multiple outliers is pre

sented in Subsection 4.3.2. Another solution consists in accommodating the outlier(s) in 

the estimate by giving them a smaller weight. This may be called a "robustification" of the 

Kalman filter and is discussed in Subsection 4.3.3, for the case of a mixture model. 

Obviously outliers which are uncorrelated with the track should always be removed since 

they bear no information pertaining to the track. Of course, one can never be sure to which 

type an outlier belongs, so that downweighting of outliers is a somewhat dangerous proce

dure - except in the case of truly non-Gaussian measurement errors, where also outlying ob

servations carry useful information (see Subsection 4.3.3). 

4.3.2 Identification of outliers by chi-square tests 

It is well known that least-squares estimators are sensitive to outliers. In the global method of 

track fitting, the total chi-square of the fit and the studentized residuals of the measurements 

(called "pulls" by particle physicists) can be used to check whether there are outliers present. 

Although the total chi-square is a powerful test against ghost tracks (see Subsection 2.3.3), it 

loses its power against single outliers with increasing number of measurements. The inspec

tion of the largest studentized residual is a valid criterion for single outliers, but only if there 

is no or only little multiple scattering. If there is strong multiple scattering, the studentized 

residuals lose their power as test criteria, since the outliers are masked by the multiple 

scattering. An example showing this effect will be given in Chapter 5. Furthermore removal 
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of an outlier requires the weight matrix of all remaining measurements to be recomputed. We 

may conclude that it seems difficult to handle outliers with the global method in the presence 

of multiple scattering. 

With the Kalman filter the situation is much better as ways can be found to recognize outliers 

and to remove them from the track with little additional computational effort 

Since an outlier in track fitting is defined as a measurement which is in some sense "too far 

away" from the true track position (and direction), it is natural to take as a decision criterion 

the distance of the measurement from the estimated track position. By using the 

predicted track position we obtain the following test statistic: 

X2k.P = (rk-\)T (Rk-lk)-1 rk-lk· 

It can easily be shown that the "predicted chi-square" x2k,P is equal to the "filtered chi

square" x21c,p: 

X2k.P = X2k.F = rk T Rk -l rk. 

If there is no outlier at j<lc, the filtered state vector is unbiased and normally distributed. If 

mk is not an outlier then X2k,F is x2-distributed with mk=dim(miJ degrees of freedom. If mk 

is a mean-shift outlier with off set dk with respect to the true state vector: 

t 
mk = Hk xk + dk + Ek, 

then x21c,F follows a non-central x2-distribution with mk degrees of freedom and non-central 

parameter q1c,p: 

~.F = dkT Gk Rk Gk dk. 

If x2k,F is larger than a given bound c, mk is rejected as an outlier. If c is chosen as the 

(1--a)-quantile of the x2-distribution with mk degrees of freedom, the size of the test is equal 

to a. The probability of rejecting an outlier, i.e. the power of the test, depends on a , mk and 

qk,F (57]: 

00 
I 

~~~ cj 
p (mk, q1c,p, a)= a+ exp (-<Ik.F/2) exp (-c/2) L..J 2 i i! L..J 2j j ! · 

i= 1 j= 1 

If there is an (unrecognized) outlier at j<lc, then ik is biased and x21c,F is no longer exactly 

x2-distributed. Note, however, that a bias of the prediction ? -1k is damped by the filter: 

A second test can be constructed by using the distance of the measurement from the smoothed 

track positions as a test statistic: 
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X2k.S = rnkT (R~tl r~. 

If mk is an outlier as above, and if it is the only outlier, x2k.s is again non-centrally x2-dis

tributed, but this time with a different non-central parameter Clk.s [57]: 

qk,S = dk T Gk Rnk Gk dk. 

Since the smoothed track position is better defined than the filtered one, this test should be 

more powerful than the previous one. Indeed we have: 

since it can easily be shown by induction that ck - ~is positive semidefinite. 

If there is an outlier at j:;t:k, Xi\ is biased and x21c,s is not exactly x2-distributed. This implies 

that the size of the test cannot be controlled precisely and has to be tuned with simulated data. 

The problem is aggravated if there are several outliers. The results of a related study will be 

presented in Chapter 5. 

We conclude that a rough selection of measurements should take place during 

filtering, whereas the final search for possible outliers should be carried out 

during smoothing. If an outlier is found it can be removed from the track by means of the 

algorithm given in Subsection 4.2.5. If necessary, the filter has to be recomputed without the 

outliers. 

Finally a few words about the choice of a. should be said. If a. is chosen too large, the vari

ance of the final estimated track parameters will increase, because many "good" measure

ments are rejected as outliers. If a. is too small, outliers will remain unidentified, and the es

timated track parameters will be biased. It is impossible to say in general which of the two 

effects is more harmful, because that depends on the number of measurements in the track, 

on the probability of an outlier occuring, and on the distribution of the outliers. Therefore the 

optimum value of a. can only be found by simulation studies, which try to mimic all pro

cesses leading to outliers as closely as possible. This requires feedback from detector experts 

and from real data. 

The number of outliers that can be removed from a track is also restricted by the demand that 

the track is uniquely defined by the remaining measurements. Thus in some cases it may be 

better to keep an outlier instead of losing the whole track. As a rule, the track should not 

contain less than seven independent measurements. 
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4.3.3 A robustified Kalman filter 

If the behaviour of outliers can be described by a mixture model, a robustified Kalman filter 

which takes into account the specific distribution of outliers can be constructed via a Bayesian 

approach [63]. It is almost as fast as the standard Kalman filter and is very easy to im

plement. 

We start from a mixture model in which the distribution of measurements and outliers is de

scribed by a mixture of two normals: 

mk = Hk xk + Ek, 

Ek - ak(l) 9£(0, vkO)) + ak<2) 9£(0, vk<2)), 

ak(l) + ak<2) = 1, v k<2) > v k<l), akO) >> ak<2), 

where ak<2) is the probability of an outlier occuring in detector k. This model is a reasonable 

assumption for measurements of positions and derived quantities, like directions or curva

ture. It is inadequate for measurements of energy loss which involve long-tailed distributions 

of a quite different type. It should be noted that the outliers lying within the range of the dis

tribution of "good" measurements will appear as such and cannot be recognized. 

The distribution of xk-lk is assumed to be normal: 

where ?-1k is the predicted estimate obtained with the robust filter. For large values of k this 

assumption is not unreasonable because of the Central Limit Theorem. 

By means of Bayes's theorem one obtains the following posterior distribution of xk [63]: 
2 

f (xk I m(k)) = L bk(i). cp(xk; xk(i)· Ck(i)), 
i=l 

with: 

m(k) = {m1 , ... , m k}, 

Xk(i) = ik-lk + Ck- lk u kT W k(i) rk-lk, 

Wk(i) = ( Vk(i) + Hk c k-lk u kT )-1, 

Ck(i) = [ (Ck-lk)-1 + HkT Gk(i) Hk ] - 1, 

cp ( x; µ, C ) =normal p.d.f. with meanµ and covariance matrix C. 

The coefficients bic(2) and bk(l) can be interpreted as the posterior probabilities of mk being an 

outlier or not: 
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ak<2> I W <2> I 1 
~(l) = [ 1 + ak(l ) I W :(1) I exp (2 .-k-lkT Dk .-k-lk)] -1, 

bk(2) = 1 - bk(l), 

with: 

rk-lk = mk - Hk ik- l k• 

Dk= Wk<1> - Wk<2>. 

The final estimate~ and its covariance matrix Ck are obtained as the mean and the covari

ance matrix of the posterior distribution of Xk. The update of the state vector turns out to be a 

weighted sum of two Kalman filters, the weights being bk(l) and bk<2> : 

ik = ?-1k + ck-lk HkT < bk<1) wk<1) + bk<2) wk<2)) rk-1k. 

ck= ck-lk - ck-ik H kT < bko) wk<1> + bk<2) wk<2) - sk) Hk ck-1k. 

Sk = bk(l) bk<2> Dk rk-lk rk- lkT Dk. 

The posterior distribution of xk, being a mixture of two normals with different means, is 

asymmetric; therefore ik is not the maximum-likelihood estimate! For bk(2) = 0 or, a for

tiori, ak<2> = 0, the robust filter reduces to the standard Kalman filter. 

The prior p.d.f. of the residual rk-1k is a mixture of two normals with mean zero: 

2 
f (rk-lk) = L ak(i) ·q>(rk-lk; 0, Vk(i) + Hk ck-lk HkT). 

i=l 

Therefore Rk-lk is given by 

Rk-lk = akO) yk(l) + ak(2) Vk(2) + Hk Ck-lk HkT· 

The filtered residual rk is given by 

rk = mk - Hk xk = [I- Hk Ck-lk HkT ( bk(l) WkO> + ~<2> Wk<2>)] rk-lk· 

We may also compute the derivative of rk w.r.t. rk-1k: 

ark I ark-lk = I - Hk Jk, 

Jk = ck-lk HkT < bk<1> wko> + bk<2) wk<2> - sk ). 

Jk may be regarded as a modified gain matrix, which reduces to the Kalman gain matrix Kie if 

bk<2> = 0. 

Unfortunately rk-1k cannot be expressed explicitly as a function of r k; otherwise the p.d.f. of 

rk could be computed by using the transformation theorem for probability density functions . 

We can, however, compute Rk by linear error propagation: 
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Rk = (I - Hk Jk) Rk-tk (I- J1.? H1? ). 

We look now for a generalized x2-statistic of the filter step. We observe that the x2-increment 

can be computed as in the standard case: 

The weight matrix Gk = V k -l can be computed either with the prior or with the posterior 

probabilities, yielding two different statistics. Their statistical properties will be investigated 

in more detail in Chapter 5. 

We have seen that in case the distribution of xk-tk is normal, the posterior distribution of Xk 

is a mixture of two normals. An exact prediction to the next step would result in a posterior of 

Xk+l which would be a mixture of four normals, and continuing this way would yield an 

exponentially increasing number of terms. In order to keep the filter simple, the posterior 

distribution of xk is approximated in each step by a single normal with covariance matrix 

Ck. It has been shown that this approximation is optimal in the sense that it minimizes the 

Kullback-Liebler distance between the two density functions [64]. However, it should be 

kept in mind that the filtered estimate, the residuals and the x.2-statistics do not follow an ex

act normal and x2-distribution, respectively. The statistical properties of these quantities will 

be investigated in Chapter 5 by large samples of simulated tracks. 

The smoother is not affected by the robustification of the filter and remains the same. 

Since the robustified filter takes into account the specific distribution of the outliers, it may be 

expected to yield better results than a standard filter, in which the mixture of measurement 

and outlier distributions is approximated by a single normal with the same covariance matrix: 

t 
mk = Hk xk +Ek> 

Ek - ~(0, akO)yk(l) + ak(2)yk<2>). 

A detailed comparison of the performance of the standard filter and of the robust filter will be 

presented in Chapter 5. Note that the standard filter is the optimal linear filter and yields exact 

mean-squared quantities, like the average chi-square or the variance of the state vector and of 

the residuals. The distribution of these quantities, however, is distorted with respect to a chi

square or normal distribution. 

Finally, it should be repeated that the robust filter is equally useful if the distribution of the 

measurement erros is not normal, but can be approximated reasonably well by a mixture of 

two normals. 

The robust filter accommodates outliers by giving them a smaller weight than to "good" mea

surements; this property should render a x2-cut on the measurements unnecessary. If these-
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lection criteria of the track search, however, are too weak, the generalized chi-square must be 

used to reject measurements which are incompatible with the state vector even with the long

tailed error distribution. This is a nuisance, since its exact distribution is not known. Note 

that the x2-statistic using the prior probablities must be employed to reject measurements or to 

resolve ambiguous measurements. 

Another situation in which the robust filter may come in useful, is an eventual non-normal 

behaviour of the process noise. We have seen that multiple Coulomb scattering leads to a 

nearly normal process noise. But there are also other processes which contribute to the in

teraction of a particle with matter, like nuclear scattering and hard electromagnetic scattering. 

These occur rarely, but with large scattering angles. Hard electromagnetic scattering is partic

ularly serious for electrons, because of their low mass. Hadrons may undergo nuclear scat

tering in the beam tube or in other massive walls in the detector. 

One can try to take these rare processes into account by a mixture model of the process noise: 

wk - akO) ~(0, Qk(l)) + ak<2) ~(0, Qk<2) ), 

ak(l) + ak<2) = 1, Qk(2) > Qk(l)• ak(l) >> ak<2). 

Then the distribution of xk- lk is a mixture of two normals: 

2 

f (xk-lk I m(k- 1)) = L ak(i) <p(xk; ik-lk, ck-lk(i)), 
i=l 

with: 

If the distribution of IIlk is assumed to be normal with covariance matrix Vk, one obtains the 

following posterior p.d.f. of Xk: 

2 

f (xk I m(k)) =I bk (~) <p(xk; xk<i), Ck(i)), 
i=l 

with: 

ik(i) = ik- \ + Kk(i) rk-\, 

Kk(i) = ck-lk(i) Hk T ( v k + Hk ck- \ (i) Hk T )-1, 

Ck(i) = (I - Kk(i) Hk) Ck- lk(i)· 

a <2) I W <2) I 1 
~(l) = [ 1 + _k_ k exp (-rk-lkT Dk rk-lk)] - 1 

ak(l) I W k(l ) I 2 ' 

bk(2) = 1 - bk(l), 
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wk<i> = < vk + uk ck-1k<i> ukT t 1, 

Dk= Wk<1> - Wk<2>. 

The filter is again a weighted sum of two Kalman filters: 

ik = bk(l) ik(l) + bk<2> ik<2> = ik- lk + ( bk(l ) Kk(l) + bk<2> Kk<2> ) rk-lk, 

ck = bk<1> cko> + bk<2> ck<2> + 

+ bk(l ) bk(2) ( Kk(l) - Kk(2)) rk- lk rk-lkT ( Kk(l) - Kk(2) )T. 

It seems that the question whether a mixture of two normals is an adequate model for the 

superposition of multiple Coulomb scattering with nuclear and hard electromagnetic scattering 

has not yet been investigated until now. Nor are values of ak<2> or Qk(2) available in the liter

ature. A study of these points would be an interesting research topic and could yield con

siderable improvements in the reconstruction of electron tracks. 

4. 4 Recognition of decays (kinks) 

4.4.1 Physical motivation 

We have seen that many of the particles produced in an event are unstable and decay with an 

exponentially distributed lifetime. Due to the basic law of conservation of electric charge a 

charged particle decays into an odd number of charged particles, plus a certain number of 

neutral particles (Fig. 4.2). Of course the total number of decay products is limited by the law 

of energy conservation. If one of the charged decay products is emitted at a small angle, its 

track and the track of the decaying particle may be misinterpreted by the track search as a sin

gle track, particularly if there is only one charged decay product (Fig. 4.3). For obvious rea

sons this configuration is called a kink. The most frequent sources of kinks are the muonic 

decays of charged 1t- and K-mesons: 

7t ~ µ v, K ~ µ v . 

If such kinks are not recognized, the muons produced by the decay may be misinterpreted as 

prompt muons, i.e. as coming from the primary vertex. In addition, the kink may fake a high 

momentum of the presumed prompt muon, particularly if the muon is emitted in the forward 

direction, so that the muon momentum is high and the kink angle is small (see below). High

momentum prompt muons are often the signature of an interesting event, e.g. the decay of a 
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W or a Z vector boson or the semileptonic decay of a heavy quark. Therefore unrecognized 

kinks are a potential source of background. 

The recognition of kinks relies on two effects: first, on the angle formed between the tracks 

of the decaying meson and of the emerging muon; secondly, on the momentum difference 

between the meson and the muon. (The latter has nearly always a smaller momentum.) Both 

the kink angle and the momentum difference are random variables; their distribu~ons depend 

on the meson mass, on the muon mass and and on the momentum of the meson. For a two

body decay like the 7t- and K-decay under consideration, there is a rather simple and illustra

tive graphical method of determining the kink angle and the momentum of a decay product, in 

this case a muon. We first consider the decay in the rest system of the meson. In this refer

ence frame the decay is isotropic, which means that there is no privileged direction for ei

ther of the decay products. (We assume that the meson is in ground state and has no angular 

momentum.) We now write down the momentum vector p of the muon in the following way: 

p=[ :~]. 
where PL. the longitudinal momentum, is the component of p parallel to the momentum 

vector P of the meson, and PT· the transverse momentum, is the component orthogonal to 

P. It follows that 

PT= p sin0, 

PL= p cose, 

with: 

P = lpl = -../pT2 +PL 2 · 

Hence plies on a circle of radius p (Fig. 4.4). The momentum vector of the neutrino is equal 

to -p, because of momentum conservation. p can be determined from the law of energy con

servation: 

M2-m2 
p = 2M 

where M is the meson mass and m is the muon mass. The neutrino can be assumed to be 

massless. 

We now transform the decay into the reference frame of the observer. The Lorentz transfor

mation is particularly simple in the coordinate system of PL and PT [ 65]: 

Pr'= PT = p sin8, 

PL' = 'YPL + ~yE = 'YP cose + ~yE, 
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with: 

..jp2 + M2 
"f= M 

p M2 + m2 
~ = '1P2 + M2 ' E = 2M 

We recall that Pis the momentum of the decaying meson. It is obvious that the circle is trans

formed into an ellipse, its center being at ~yE, and its half-axes being equal to p and yp, re

spectively. The momentum vector p' and the kink angle 0' of the muon in the observer frame 

can be read directly from the ellipse (Fig. 4.4). Since the decay is isotropic, cos0 is uni

formly distributed in the interval [-1,1], and the distribution of 0' can be computed in a 

straightfmward manner from the Lorentz transformation. 

In order to give an idea of the kink angle and momentum difference to be expected from the 

decay of a K-meson, Fig. 4.5 shows the kink angle 0' and the momentum p' of the muon as 

a function of cos0, for two values of the momentum of the K: 2 Ge V /c (Fig. 4.5 a,b) and 40 

GeV/c (Fig. 4.5 c,d). In the region around cos0=1 (0=0°) the chances of detecting the decay 

are rather small, as both the kink angle and the momentum difference are close to zero. The 

kink angle then rises with 0 and attains the maximum at cos0=-0.95 (0=::155°); then it drops 

sharply to 0 at cos0=-l (0=180°). But at 0=180° the momentum of the muon attains it mini

mum value close to zero, so that the decay is very likely to be recognized there. 

For 1t-decays (Fig. 4.6) the situation is less favourable: first, the kink angle is much smaller 

due to the small mass difference between the 1t and the muon; secondly, also the momentum 

difference between the 1t and the muon is less pronounced. The simulation results in 

Chapter 5 will confirm this. 

4. 4.2 A kink finding algorithm 

We now show that the information provided by the filter and smoother is sufficient to allow 

the construction of a fast and relatively efficient kink finding algorithm. Normally a track will 

be subjected to the kink finding procedure only if it is identified as a muon track and if it is in 

some way suspicious, e.g. if it has an unusually large chi-square. Only in some rare event 

types all tracks may be passed through the kink finder. 

If the track is regarded as a discrete dynamic system a kink is nothing else but a sudden 

change of the state vector (Fig. 4.7), a change both in direction and in momentum (or 

curvature). 

If the kink occurs somewhere between detectors k and k+ 1, we may expect that the state 

vector~ obtained from the first track segment {m1, . .. , m k} is significantly different from 

the back extrapolation ik+ 1k (b) from the second track segment { mk+ i. . .. , mn} . The back 
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extrapolation is either computed from an actual backward filter, i.e. a filter starting at mn 

and proceeding towards mi, or from the smoother by "removing" ik from x1\ (the super

script (b) denotes the backward filter): 

ik+lk(b) = ck+lk(b) ( C1\-1 X1\ -ck-I Xk ), 

Ck+\Cb) = ( C1\-1 - ck-1 t1. 

In order to decide whether a kink has occured between detectors k and k+ 1, we can test 

whether the difference 

6k = ik+lk(b> - ik 

is significantly different from 0, by means of the x2-statistic X2k.6: 

X2k,6 = 6kT · (cov { 6k } )-1 6k = 
= 6kT <ck+ ck+lk(b> t 1 6k = 

= 6kT ck-l (Ck- C1\) ck-l 6k. 

If there is no kink, x2u is x2-distributed with 5 degrees of freedom for all k. Therefore a cut 

at the (1--0)-quantile will yield a test of size a . 

This test, however, is not robust against an outlier somewhere along the track. In fact, an 

outlier leads to a distortion of X2k.6 which as a consequence exceeds the cut more often than 

expected, thus faking kinks where there are actually none. In addition, the test on x2k.6 does 

not tell us where the kink is situated, as it is by no means obvious that the largest x.2k,6 

corresponds to the position of the kink. 

These considerations lead us to propose the following modified test We demand that 

• both track segments {mi. ... , mk} and {mk+l• ... , mn} have small total chi-squares 

• and that X2k.6 is large. 

These conditions could be checked independently, but it is more convinient to combine them 

into a single test-statistic: 

Fk = ( X2
k,6 I 5 ) 

[ ( X2k + X.2k+1<b>) Ink J' 

where X2k is the total chi-square of the first track segment, x2k+l(b) is the total chi-square of 

the second track segment, and nk is the sum of the respective numbers of degrees of freedom. 

X2k+l(b) is either computed during the backward filter or from the following relation: 

X2
n = X2k + X2k+1 (b) + X2k,6· 
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Let us consider first the case that the track contains no outliers. If there is no kink, F1c is F

distributed with 5 and n1c degrees of freedom for all k. Note that F1c is also robust against an 

overall scale error of the measurement variances. 

If there is a kink between k and k+ 1, the numerator of F1c will be large and the denominator 

will be small, resulting in a large value of F1c. F1c has slightly less power than x.21c.~ though, 

as will be sh?wn in Chapter 5. If there is a kink atj:;tk, one of the chi-squares in the denomi

nator will be large, thereby preventing Fk from getting too large. Therefore we propose to lo

cate the kink by looking for the largest F1c. 

If there is an outlier somewhere along the track, the situation is more complicated If there is 

no kink, but an outlier at j, x.2~ will be distorted, particularly if k is close to j. But also one 

of the chi-squares in the denominator will be large, so that a kink will be faked with much 

less probability than is the case with the test on x21c.~· If there is a kink between k and k+ 1 

and an outlier somewhere, both the numerator and one of the chi-squares in the denominator 

of Fk will be large, so that the kink may be partially masked by the outlier. Therefore the de

tection of kinks has to be preceded by or combined with the removal or accommodation of 

outliers. The results of a study of these issues with simulated tracks will be presented in 

Chapter 5. 

It may of course happen in practice that two track segments which do not form a kink have 

been combined into a track candidate, e.g. if two tracks cross in a region of high track densi

ty. If there is reason to doubt that an actual kink has been found, for instance from a visual 

inspection of the track on a graphic screen, an additional test can be imposed on the closest 

distance in space of the two track segments. 

4. 5 Estimation of vertex parameters with the Kalman 
filter 

4.5.1 The interaction vertex as a discrete dynamic system 

Throughout this section we assume that n tracks are to be fitted to a common vertex. For each 

track participating in the vertex fit, the five estimated track parameters Pk are given on a re

ference surface, together with their covariance matrix Vk (Fig. 4.8). The vector Pk is con

sidered as a (virtual) measurement in the vertex fit. If required, contributions of multiple 

scattering between the vertex and the reference surface are added to the matrix V k· The para

meters to be estimated are the vertex position v and the 3-momentum vectors QJc of all tracks. 
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We now show that the fast vertex fit described in Section 3.3 can also be derived as a Kalman 

filter [ 57]. 

Initially, the vertex is described by the prior knowledge of the vertex position, vo and Co = 
wv (vo} . vo may be a very crude estimate, and Co accordingly very large. Now one track 

after the other is added to the vertex. In each step of the filter the vertex position is updated, 

and the state vector is augmented by the 3-momentum vector qk of the track at the vertex. 

Thus after k steps the state vector consists of vk, q1, ... , ~· The corresponding covariance 

matrices are 

ck = wv ( vk L 

Di= cov ( Qi } (l:s;i~). 

Ei = cov ( Clio vi } (19~). 

The system equation is particularly simple: 

t t 
Vk = Vk-1· 

Note the absence of any process noise. 

The measurement equation is non-linear: 

Note that the estimated track parameters are stochastically independent from each other. 

4.5.2 The estimation procedure 

Since the measurement equation is non-linear, the state vector is estimated by an iterated 

Kalman filter. In each step the function bk is expanded into a linear function at some point 

( Vk (O), qk (O)): 

hk(v, qiJ = hk(vk<0>, qk(O)) + Ak ( v - Vk(O) ) + Bk ( qk - qk(O) ) = 
= Ck(O) + Ak v + Bk qk. 

with: 

Ak = cahJav)(vk<0>, qk<0>), Bk = cahJaqk)(vk<0>, qk<0>) , 

Ck(O) = hk(vk<0>, qk(O)) - Ak vk(O) - Bk Qk(O). 

vk(O) is conveniently taken equal to vk-1· while qk(O) is obtained by tracking back from the 

estimated track parameters Pk towards the approximate vertex position vk<0>. Since there is no 

prior information about qk a zero weight matrix is assigned to the "predicted" vector qk- lk, 
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which as a consequence drops out of the filter equations. Then the prediction equations look 

as follows: 

and we have the following filter equations in the weighted means formulation: 

l[ 
with 

ck-1-1 V'k-1 + AkT Gk< Pk - ck<0>) 

BkT Gk (Pk - Ck(O)) 
]. 

After some matrix algebra (see e .g. ref. [66]) we obtain the following results which are 

identical to the ones in Section 3.3: 

vk =ck [ ck-1-1 vk- 1 + AkT G 8k <Pk - ck<0>) J, 

~=wk BkT Gk< Pk- ck<0>- Ak vk ), 

ck=< ck-1-1 + AkT G8 k Ak )-1, 

Dk= wk+ wk BkTGk Ak ck AkT Gk Bk Wk, 

Ek= - Wk BkT Gk Ak Ck, 

with: 

Wk= ( BkTGk Bk )- 1,· 

G 8 k =Gk - Gk Bk Wk BkT Gk, 

cov ( vk } = Ck, cov ( ~ } = Dk, cov { vk, Qk } = Ek. 

The chi-square statistic of the filter step is given by 

X2k,F = ( Pk- Ck(O) _ Ak Vk- Bk~ )T Gk (Pk - Ck(O) _ Ak Vk - Bk Qk) + 

+ < vk - vk-1 ? ck-1-1 < vk - vk-1 ) , 

X2
k = X2k-1 + X2

k,F· 

If necessary, the linear expansion can now be repeated in the new point 
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and the filter can be recomputed, until there is no significant change either in the chi-square or 

in the estimate. 

If the association of tracks with the vertex is known to be correct, the intermediate results of 

the filter do not need to be computed, and all n steps can be combined into a single one (see 

also Section 3.3 and ref. (35]): 

n 

Vn = Cn · I AkT G 8k (Pk - Ck,O ), 
k=l 

Cn = [ t AkT G 8 k AkJ-l. 
k=l 

Since there is no process noise, the smoother is extremely simple: 

q~ =wk BkT Gk (Pk - Ck(O) - Ak Vn ), 

C~ = Cn, 

D~ =Wk+ Wk BkT Gk Ak Cn AkT Gk Bk Wk, 

E~ = - Wk Bk T Gk Ak Cn. 

If there is a significant change in the smoothed vertex position, it may be worthwile to 

recompute the derivative matrices Ak and Bk. 

The residuals and their covariance matrices have the following form: 

rk =Pk - ck(O) - Ak vk - Bk Qk, 

Rk = vk < G 8k - G8k Ak ck Akr G8k) vk, 

rnk = Pk - Ck(O) - Ak Vn - Bk Qnk, 

Rnk = vk ( G8k - G8k Ak Cn AkT G8k) vk. 

4. 6 Detection of secondary vertices 

A secondary vertex is created by the decay of an unstable particle. Two types of decays have 

to be distinguished, because they bear completely different features: 

• The particle is longlived (typically a KO or a A) and decays in the active volume of the 

detector. Since the tracks of the decay products do not point to the primary vertex, they 

are easily identified as secondary tracks. The combination of such tracks to secondary 

vertices is a problem of global pattern recognition and will not be treated in this section. 
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• The particle is shortlived (typically a meson or baryon carrying charm or beauty) and de

cays before it reaches a detector, e.g. inside the beam tube in a collider experiment The 

tracks of the decay products point roughly to the primary venex. The association of such 

tracks to secondary vertices requires a fit of the primary venex with the utmost precision. 

Since certain shortlived particles are currently the focus of considerable attention, it is of great 

physical interest to separate their secondary decay vertices from the primary interaction ver

tex. The shonlived particles in question have average decay lengths between a few hundred 

micrometer and a few millimeter. Therefore the task is not a trivial one. 

The smallest decay length which can be resolved depends mainly on two factors, one of them 

connected with the detector, the other one with the accelerator. The first one is the quality of 

the track reconstruction, including effects from detector alignment; the second one is the ex

tension of the interaction region, i.e. the size of the beam spot (in colliders) or of the target (in 

fixed target experiments). 

In the reconstruction of secondary vertices two main problems have to be solved: 

• First, the tracks which do not originate at the primary venex have to be identified. This 

can be regarded as an outlier problem, in fact a multiple outlier problem, since there 

are normally several tracks emerging from each decay vertex, and there may be several 

decay vertices. Given the high multiplicities (up to 50) and the fact that the number of 

"outlying" tracks is not known a priori, it is not possible - for reasons of computing time 

- to work through all subsets of tracks for several values of k, say 2~8. What is 

needed is a sequential procedure, the computing time of which is basically propor

tional ton, the total number of tracks. 

• Secondly, the secondary tracks found in the previous step have to be associated to 

physically possible decay vertices. Thereby it is essential that the secondary venex is not 

contaminated by wrongly associated primary or secondary tracks which happen to pass 

close to the secondary venex. Such a track would inevitably spoil the kinematic fit of the 

decay or lead to a wrong charge and mass being assigned to the decaying particle. 

Therefore outliers have to be detected and removed also in the geometrical fit of the sec

ondary vertex. 

It should be noted that these two outlier problems exhibit fairly different features . In the case 

of the primary venex, there is usually a high multiplicity and possibly a very precise prior 

knowledge of the beam position; in the case of a secondary vertex, the multiplicity is small 

and there is no prior information on the venex position. Therefore the latter case is certainly 

the more difficult one. The final strategy of venex reconstruction depends on the properties of 

the beam, on the availability of a micro-vertex detector and on the quality of track reconstruc-
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tion and particle identification in general. It can only be arrived at by detailed simulation 

studies for a particular detector at a particular accelerator. 

4.6.1 Detection of outlying tracks by chi-square tests 

We propose three different approaches. Their respective merits and performance will be in

vestigated in Chapter 5, where the results of a Monte-Carlo study will be presented. The first 

two have already been used in a study on vertex evaluation in the DELPHI experiment [67]. 

Sequential test against a reliable subset 

This test is only useful for the primary vertex. It is based on the fact that some tracks are un

likely to come from a secondary vertex, i.e. that it may be possible to select tracks very likely 

produced at the primary vertex according to physical criteria, e.g. high momentum or a cer

tain angular region. If this can be done, a preliminary vertex can be fitted from those tracks. 

The remaining tracks are then subjected to a x2-test. As a test statistic the chi-square incre

ment of the filter, x21c,F, is used. If the track is accepted, the vertex may or may not be up

dated. 

The prior information on the beam position plays a crucial role in the construction of the pre

liminary vertex. For instance, in the linear collider SLC at SLAC the transverse size of the 

beam is in the order of only 0.01 mm. If the beam position is monitored to a similar preci

sion, it provides a preliminary vertex position which is much more accurate than the position 

obtained from the track information of a single event. (The position of the beam is monitored 

by taking the average vertex position of the events sampled in an interval which is long 

enough to provide a sufficient number of events, but not so long that beam conditions change 

by an appreciable amount.) Unfortunately, the situation is less favourable at LEP: The size of 

the beam is in the order of a few· hundred micrometer, and also the estimated vertex position 

is less accurate, because of the larger beam tube (R=8 cm at LEP versus R=2.5 cm at SLC). 

Sequential test of the entire sample 

In this procedure first all tracks are fitted to a common vertex. Then for each track k (l~n) 

an updated vertex is computed, which results from the omission of track k from the entire 

sample. This is done by the inverse Kalman filter: 

cnk* = ( Cn-l -AkT G8 k Ak )-1, 

vnk * = cnk * [ Cn- 1 Vn - AkT GBk (Pk - Ck,O) ] . 
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The distance of the track from the new vertex is expressed by the "smoothed chi-square": 

X2k,S = r'\T Gk r'\ + ( Vn - vnk * )T (C'\ *) -l ( Vn - v'\ *) 

x21c,s is used as the test statistic. If it exceeds the (1--a)-quantile of the x2-distribution with 

two degrees of freedom, the track is considered as an outlier and rejected from the vertex. It 

is also useful to label doubtful tracks with a chi-square between the (1--a)-quantile and the 

(!-~)-quantile (a<~<<l). 

This procedure works properly only if the vertex estimated from the entire sample is not 

noticeably biased by the outlying tracks. This is very likely to be true in the case of the 

primary vertex, since there are usually only few outliers relative to the total multiplicity. It is 

less likely to be true in the case of a secondary vertex. (It is assumed that obvious outliers 

have been rejected already during filtering.) 

If there is a serious possibility that the estimated vertex is biased by outliers, we propose two 

solutions: Either the filter is robustified (see next subsection) or the sequential test is refined 

in the following way: 

• Set i=l. 

• Step 1: Look for the track with the largest x21c,s; suppose it is track ki. 

• Step 2: If X2kios s; c, stop. If X2k;,S > c, go to Step 3. 

• Step 3: Remove track ki from the vertex and update the momenta of all remaining tracks. 

Set i ~ i+ 1 and go to Step 1. 

Note that the number of operations is no longer proportional ton, but rather to m·n, where m 

is the number of outliers found. 

4.6.2 A robust vertex fit 

It is obvious that outlying tracks can be detected more frequently if the estimated position of 

the vertex is not biased by the outliers, particularly if the multiplicity is not very large, as in 

the case of a secondary vertex. Therefore we propose to study the application of a robust es

timation procedure to the vertex fit. Such a procedure should suppress or at least reduce the 

influence of outlying tracks. The robust estimator which is most easily adapted to the problem 

of vertex fitting is in our opinion the M-estimator (68]. An M-estimator may be regarded as a 

generalization of the least-squares estimator. 

We consider a linear model of the following form: 

The residuals are denoted by ri: 
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m 
ri =Yi - L aij Xj (l~Sn). 

j=l 

Then the least-squares estimator of xis defined by 

or 

n I L (ri /cri)2 =min, 
i=l 

n 

L (rj /<Jj) % /<Jj = 0 (lSj~). 
i=l 

An M-estimator of x is defined by 

or 

n I L p(ri /cri) = min, 
i=l 

n 

L '\jl(ri /cri) % /cri = 0 (l~jSm), 
i=l 

where p is a function devised in such a way that the influence of large residuals ri on the esti

mate is reduced, and \jl(t) = dp(t)/dt. (We note that by setting 'lf(t) = t we recover the least

squares estimator.) We will restrict our investigations to Huber's monotone psi-function: 

{

t, ltl s c, 
'lfH(t) = 

c·sgn(t), ltl > c. 

c is called the robustness constant. The choice of c determines the "degree of robustness" of 

the M-estimator. For c~oo the M-estimator approaches the ordinary LS-estimate, for c~O 

we obtain the L 1-estimator. c is commonly set to a value between 1 and 2. 

The definition of the M-estimator can be rewritten as follows: 

Thus an M-estimator may be expressed as a weighted least-squares estimator with 

weights 

The introduction of the weights wi is equivalent to the replacement of all residuals which are 

larger than c·cri by c·cri, i .e. a "winsorization" of the residuals. Unfortunately the weights 
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depend on the residuals, so that the M-estimate of x cannot be defined explicitly. Algorithms 

based on iterative procedures are given in [54, 69]. The iterated weighted least squares 

(IWLS) algorithm described in ref. [54] can easily be adapted to the robust estimation of the 

vertex. First we note that correlations between measurements cannot be accommodated in the 

definition of the M-estimator. In the case of the vertex fit, this implies that the 5-dimensional 

vector Pk of each track has to be transformed to a vector of uncorrelated random variables 

before the iteration starts. The first step of the iteration is an ordinary least-squares estimation 

of the vertex position and of the momentum vectors, as described in Section 4.5, including 

the computation of the smoothed residuals r1\. These are used to calculate the weights for 

each track: 

with: 

where Vk is the (diagonalized) covariance matrix of the estimated parameters Pk of track k. 

The least-squares fit is repeated with the modified weight matrices: 

The new estimate is used in turn to determine new weights, and so on, until the objective 

function is close to its minimum. 

Once an estimate has been obtained, the statistic x2k,s (see Subsection 4.6.1) is used to test 

on outlying tracks. The final fit of the primary and of eventual secondary vertices is done 

with the standard Kalman filter and smoother. 

The performance of the robust vertex estimator will be compared to the ordinary least-squares 

estimator in Chapter 5. 
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Fig. 4.1: Merging of two track segments by successive filtering and smoothing. 
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Fig. 4.2: The decay of a charged particle. 

Because of charge conservation, the number of charged decay products is always odd . 
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Fig. 4.3: A 1-prong decay (kink). 
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Fig. 4.4: Lorentz transformation of the muon momentum in K- and 7t-decays. 

a) K~µv, P = 2 GeV/c; b) 7t~µv, P = 0.5 GeV/c. 
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Kinematics of K-decay 
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Fig. 4.5: Kink angle and momentum of muon as a function of cos8 for the decay K---7µ\I. 

a,b) P = 2 GeV/c; c,d) P = 40 GeV/c. 
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Fig. 4.6: Kink angle and momentum of muon as a function of cosO for the decay 1t~µv. 

a,b) P = 0.5 GeV/c; c,d) P = 10 GeV/c. 
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Fig. 4.7: A kink as a sudden change of the state vector. 
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Fig. 4.8: Measurements and estimated parameters of the vertex fit. 
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CHAPTER 5 

RESULTS OF FILTER TECHNIQUES IN THE 

DATA ANALYSIS OF DELPHI 

5 .1 The DELPHI program chain for data analysis 

In this section we will give a brief survey of the software which is available now in DELPHI 

for simulation and track reconstruction. Of course the software will not cease to evolve dur

ing the next few years, therefore the status is the one of autumn 1988. 

5.1.1 Simulation 

There are two mainstreams of event simulation programs in DELPHI: Full simulation 

(DELSIM, [14]) and fast simulation (FASTSIM, [70]). Both programs consist of two main 

parts: generation of events and simulation of detector response. 

The generation of events is not of our concern here; suffice it to say that there are various 

types of programs available which simulate interactions of elementary particles according to 

different physical theories and models. The output of an event generator consists of a list of 

the particles produced in the interaction. For each particle the type and the 3-momentum vec

tor at the production vertex is given, for secondary particles also the decay vertex of its 

mother particle. 

In the second part of the simula~on program, each particle is followed through the detector 

system, until it either decays, leaves the detector or interacts in one of the detector compo

nents. In each detector component crossed by the particle the response of the particular de

tector is simulated and stored 

As it is, the response of a detector is by no means uniquely defined. The detector can be sim

ulated to various levels of detail, and the simulation may in fact anticipate the first steps of the 

data analysis. As an example we consider the simulation of the response of a drift chamber 

(see Subsection 2.2.2). A fully detailed simulation of the chamber starts with the generation 

of the primary ionizations electrons in the gas, tracks the electrons to the anode (sense) wire, 

simulates the formation of the avalanche, computes the shape of the electric signal in the wire, 

passes the signal through the amplifier and the digitizer, and finally generates a drift time. 
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Although such a detailed simulation - or parts of it - may be required during the design and 

optimization phase of the detector and of the electronics, it is obviously much too slow to be 

used for the production of a large number of events. Therefore it is common practice to re

place the detailed simulation of a physical process or a sequence of such processes by a sta

tistically equivalent model. In our example, the drift time is simply computed from the 

shortest distance of the track from the sense wire, and all effects occuring between the prima

ry ionization and the digitizer are absorbed by two random numbers. One of them is added to 

the computed drift time as the "measurement error"; the other one is the "efficiency", i.e. the 

probability of the detector response. Of course one has to make sure that the distribution of 

these random numbers is sufficiently close to the distribution arising from a fully detailed 

simulation. 

The concept of the statistically equivalent model can be carried further up in the simulation of 

the detector response. Thus not only drift times, but also drift distances, space points, track 

elements and even whole tracks can be simulated by a model which is roughly equivalent to 

the respective stage of data analysis. For some problems, e.g. the checking of the data analy

sis code, a simplified model of the detector response is absolutely necessary. 

After this digression into the technique of event simulation we can state briefly the main dif

ferences between DELSIM and FASTSIM: 

• DELSIM simulates events down to the level of raw data, i.e. of electronic signals 

(mostly drift times and electric charges). It uses a very detailed geometrical and 

functional description of the detector. It takes a few minutes on a large mainframe com

puter to simulate a typical event with DELSIM. 

• F ASTSIM simulates events down to the level of track elements. For example, in a 

tracking detector a space point and the track direction is simulated, possibly also a mo

mentum measurement FAS TS IM uses a very much simplified geometrical description of 

the detector. It is at least 50 ·times faster than DELSIM. 

5 .1. 2 Data analysis 

We will now give a brief review of the present status of DELANA, DELPHI's data analysis 

program. 

The first stage of data analysis is local pattern recognition in all detector components. 

For a tracking detector, the aim of local pattern recognition is the production of track ele

ments from the raw data. A track element is either a space point, or a space point plus direc

tions, or a complete 5-dimensional vector of track parameters. (A single coordinate value is 
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accepted only in some special cases.) The methods involved do not concern us here. The in

terested reader can find them in ref. [71]. The track elements are stored in so-called TE 

banks, which are manipulated by DELPHI's data management system TANAGRA [40]. 

In the next stage, the track search, track elements are put together to track candidates, 

which are stored in TS (track string) banks. This is done separately in the central ("barrel") 

and in the forward region of DELPHI. 

In the third stage, each track candidate is submitted to the track fit, which computes an esti

mate of the track parameters, its covariance matrix and a chi-square. The results of the track 

fit are stored in TK banks. There are two track fit modules, one for the barrel and one for the 

forward region. Both use filter techniques for track fitting. In the forward fit, which is being 

developed in the Institute of High Energy Physics in Vienna, the full filter/smoother is opera

tional [72]. The performance of the forward track fit will be presented in more detail in the 

next section. In the barrel fit which is being developed at College de France in Paris, 

smoothing is implemented by the combination of a forward and a backward filter [73]. 

After the track fit, a second pass of local pattern recognition is done. It is supposed to clear 

up any remaining ambiguities with the help of the information gained by the track fit. This is 

still under development. 

Finally, tracks are associated with a vertex, either the primary interaction vertex or a sec

ondary decay vertex. All vertices that have been found are fined, the results being stored in 

TV banks. The programs for track association and vertex fitting are developed in the Vienna 

institute, along the lines proposed in sections 4.5 and 4.6 [74]. 

5. 2 Performance studies of filter algorithms 

In this section we present the results obtained from the application of the filter algorithms 

proposed in Chapter 4 to problems of track and vertex reconstruction in the DELPHI detec

tor. Since real data are not yet available, we are forced to resort to simulated data. Clearly, 

simulated data never show precisely the same behaviour as real data, but we trust that the 

simulation is sufficiently close to reality, so that the conclusions drawn from simulated data 

will essentially remain valid for real data. 

5.2.1 Results of track reconstruction algorithms 

This subsection is mainly devoted to a comparison between the global method of track fitting 

(see Subsection 3.2.3) and the Kalman filter/smoother algorithm. 
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An important characteristic of an algorithm is its speed. In order to compare the execution 

times of global fit and filter methods, we have simulated tracks in an idealized detector, which 

consists of 16 measurement planes. Each plane supplies a measurement vector which consists 

either of two spatial coordinates or of two coordinates plus two directions. The track model is 

an exact helix. Fig. 5.1 shows the execution time per track as a function of the number of 

planes, with and without"multiple scattering in the detector volume. The execution time in

cludes the computation of the x2-statistic and of the "pulls". Without multiple scattering, the 

computation times of both the filter and the global fit rise linearly. The filter is slower, be

cause the estimated state vector is computed in every measurement plane. The smoother 

amounts to a simple back extrapolation and is redundant without multiple scattering. With 

multiple scattering, the picture changes considerably. The filter still rises linearly, and so does 

the smoother. The global fit, however, exhibits a third order rise, which is due to the inver

sion of the full covariance matrix of the measurements, and ceases quickly to be competitive, 

particularly if there are 4 measurements per plane. 

Our next investigation is concerned with the behaviour of global and filter methcxis in a non

linear mcxiel. In a linear model, the global estimate, the filtered estimate and the smoothed es

timate are strictly the same. In a non-linear model, differences can arise between the three es

timates. Also, residuals and chi-square statistics do no longer obey their exact (normal or chi

square) distributions. 

For the study of non-linear track mcxiels, we pass to a more realistic detector, which we will 

call a "simplified TPC (STPC)" (see Subsection 2.2.3 and Fig. 5.2). STPC consists of six

teen cylinders concentric with the z-axis. Each cylinder provides a measured space point <Ri. 
Ri<I>i> aj in cylindrical coordinates. The measurement error is normally distributed with a s.d. 

of .2 mm in R<I> and .6 mm in z. The radii Ri are assumed to be known exactly. The sixteen 

cylinders are equally spaced between 36.5cm and 106.625cm, with a pitch of 4.675 cm. The 

reference surface is the innermost measurement cylinder. The magnetic field of 1.2 Tesla is 

homogeneous and parallel to z. Hence the track model is an exact helix. 

The non-linearity of the model depends on the choice of the state vector. We choose the state 

vector such that the model is not too far from linear (see Subsection 3.2.3): 

X = ( <l>, Z, 0 , ~. 1/r ), 

with: 

<I> . ••..•..... polar angle of space point, 

z .... . ... .. .. z of space point, 

e ........... polar angle of track direction, 
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~ . . . . . .. . .. . = q> - <I>, where cp is the azimutal angle of the track direction, 

r. ........... radius of the helix. 

The curvature is chosen rather than the radius because it enters directly into the equation of 

motion. 

In this detector 5000 tracks were simulated with the following initial conditions: 

x=y=z=O, 7t/4 ~ e ~ 37t/4, 0 ~ cp ~ 27t, 0.5 ~ p ~ 1. 

The initial values of both the global fit and the filter/smoother were chosen at a distance of 

five standard deviations from the true values. 

Figs. 5.3 a)-c) show the distributions of three estimates of 1/r, centered around the true value 

of 1/r, at the reference surface: the global estimate (a), the filtered estimate (filtered from 16 to 

1, b), and the filtered/smoothed estimate (filtered from 1to16, c). The difference of the esti

mate and the true value is divided by the respective standard deviation. Also shown are stan

dard normal probability density functions. The agreement between the experimental and the 

theoretical distribution is remarkably gocxi, which means that the track model is indeed close 

to a linear one. Figs. 5.3 d)-f) show the pairwise differences of the three estimates, again di

vided by the standard deviation of the estimate. The r.m.s. of the normalized difference is in 

all cases below 3%. Figs. 5.4 a)-c) show the probability transform of the x2-statistics of the 

three estimates, and Figs. 5.4 d)-f) show the pairwise differences of the x2-statistics. The 

distributions of the probability tansforms are perfectly flat. It can be concluded that no itera

tions are required in order to approach the minimum of the objective function sufficiently 

closely. The x2-statistics agree very well. 

In order to check the influence of a strong process noise (multiple scattering) on the be

haviour of the estimates, a second sample of 5000 tracks was generated. In this sample, 

STPC was assumed to be filled with a material with a radiation length of 200cm, so that each 

track crosses about 50% of a radiation length. The resulting distributions are shown in Figs. 

5.5 and 5.6. We observe that the filtered and the smoothed estimates of the curvature agree 

perfectly, whereas the global estimate is slightly biased (by about 4% of the standard devia

tion). The x2-statistics agree very well on average; the differences exhibit a larger spread than 

without multiple scattering. We conclude that the non-linear model is handled very well by all 

three fitting methods; it has, however, to be stressed that this is due to the proper choice of 

the track parameters and to the simple homogeneous field. 

As stated in Chapter 4, one of the assets of the combined filter/smoother algorithm is the fact 

that optimal estimates are available anywhere along the track. We have checked the gain in 

precision due to smoothing both in the barrel and in the forward region of DELPHI. 
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In the barrel region a stripped down version of FASTSIM was used to simulate tracks in ID, 

TPC and OD. The arrangement of the detectors and the scattering surfaces is summarized in 

Fig. 5. 7 and Table 5.1. In this quite realistic setup tracks were simulated with the following 

initial conditions: 

R=0.1, 7r./2 $ <I> $ 3x/2, z=O, x/4 $ 0 $ 3x/4, q>=<l>, 1 $ p $ 25. 

We compare two sets of estimates of the track parameters in OD: the estimate obtained by ex

trapolation of the filtered estimate in ID to OD, and the estimate obtained by smoothing back 

from ID to OD, which contains the full information. Fig. 5.8 shows the standard error of the 

difference of both estimates and the true value, as a function of the momentum p. The 

smoothed estimates of R<I> (Fig. 5.8 a) and cp (Fig. 5.8 d) are clearly much better than the ex

trapolation from ID. Closer inspection reveals that the s.d. of the smoothed estimates of R<I> 

and cp are virtually equal to the s.d. of the corresponding measurements in OD. This can be 

explained by the fact that there is a long lever arm and a lot of multiple scattering between 

TPC and OD, so that the smoothed estimate is dominated by the precise measurement of R<I> 

and cp in OD. On the other hand, z (Fig. 5.8 b) is measured very poorly, and 0 (Fig. 5.8 c) is 

not measured at all in OD, so that the smoothed estimate is not better than the extrapolated 

one. For larger momenta, the effect of multiple scattering disappears, and the two estimates 

coincide. 

A similar behaviour is found in the forward region. Standard FASTSIM was used to simulate 

tracks in the forward tracking detectors ID, TPC, FCA and FCB (Fig. 5.9). The measure

ment errors in ID and TPC depend strongly on the polar angle 0 of the track below a value of 

0 ""'30°. In order to get a transparent behaviour, tracks were simulated at constant 0=25°, 

again with 1 $ p $ 25 Ge V /c and isotropic in <p. All tracks come from the origin. 

The estimates to be compared are the smoothed estimate in FCB and the extrapolation from 

the filtered estimate in ID. The results are shown in Fig. 5.10. The precision of the smoothed 

estimate of position in FCB is dominated by the one of the measurement in FCB; the track 

direction in FCB is very much improved by the smoother. Therefore the smoother is 

particularly important for extrapolation into the forward RICH, next to FCB, which 

needs a very precise prediction of the track position. This result was obtained with the stan

dard forward track fit in DELANA. 
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5.2.2 Results of outlier studies 

In Section 4.3 various algorithms for the detection, removal or accommodation of outliers 

were proposed. In this subsection we will study the performance of these algorithms and 

compare their respective merits. 

We start with a relatively simple case, namely the simplified TPC (STPC) introduced in the 

preceding subsection. We recall that STPC has 16 cylindrical measurement surfaces, each of 

which provides a measurement of R<l> and z. Again we assume normally distributed mea

surement errors with a standard deviation of .2mm and .6mm, respectively. The basis of our 

investigation is formed by three samples of 5000 tracks each, which were simulated in STPC 

by a dedicated simulation program. In order to investigate the effect of multiple scattering on 

the performance of our algorithms, the amount of material crossed by a track is different in 

the three samples: In sample I, there is no material; in sample II (III) about 10% (50%) of a 

radiation length of material is spread evenly across the detector volume. The precise charac

teristics of the three samples are summarized in Table 5.2. 

A) Finding outliers with the filter 

In Subsection 4.3.2 we saw that the "chi-square of the filter", x21c,p, can be used as an outlier 

test. This test will be called briefly "CF-test". We start the investigation of the CF-test with 

the simple case of a single variance-inflation outlier (see Subsection 4.3.1). To this end a new 

sample la of tracks was created, by contaminating each track of sample I with a single vari

ance-inflation outlier with threefold standard deviation, i.e.: 

The probability of the outlier occuring at position k is the same for all k. The size of the test 

was chosen to be 1 %. We cann~t expect to find outliers in the initial track segment of the first 

three measurements, so testing for outliers starts at k=l3. 

There are now two possible ways of proceeding if an outlier is found. Either it can be re

moved immediately, or it is only marked as an outlier and removed in a second pass of the 

filter, or by the smoother (see Subsection 4.2.5). It turns out that slightly more outliers are 

found in sample Ia, if they are removed immediately (30.4% vs. 29.9%), but that the losses 

of good measurements are nearly three times as high (7.6% vs. 2.7%). The reason for this is 

the fact that an outlier in the initial track segment of the first three points, in a certain number 

of cases, leads to the loss of the whole track, since all subsequent points are rejected as out

liers, and the track has no chance to recover from the bad initial segment. 
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This situation can be improved in the following way: Before the outlier test is performed, the 

quality of the track segment filtered so far is checked by another x2-test. If the track segment 

fails, it is considered as unreliable, and the CF-test is skipped. This brings down the losses to 

6.4% and 1.8%, respectively, the number of found outliers being virtually the same. Theim

provement is smaller than one would expect. The reason is that a track segment of three 

points is not constrained at all in the plane of curvature; therefore the curvature, being just 

defined by three points, may be totally wrong due to an outlier in R<l>. 

A further improvement can be achieved by increasing the initial track segment by one point, 

i.e. to start testing for outliers only at k=l2. This brings again down the losses, to 4.5% and 

1.6%, respectively, but reduces also the power of the test a bit, namely to 29% and 28.6%. 

We conclude that the optimal strategy for finding outliers with the filter requires a check on 

the quality of the current track segment and a second pass for removing the outliers. This 

makes the procedure rather unattractive as compared to finding outliers with a combined filter 

and smoother, which is much more powerful. 

B) Finding outliers with the smoother 

We have seen in Subsection 4.3.2 that there is a test which has larger power than the CF-test: 

the test on the "chi-square of the smoother", x21c,s, henceforth to be called "CS-test". This is 

borne out by the results of the CS-test applied to sample Ia. Fig. 5.11 a shows the probability 

of detecting an outlier with the CS-test (blank) and with the CF-test (shaded), as a function of 

d, where d is, roughly speaking, the distance of the outlier from the true track parameters: 

d=~(mk - Hkik)T Gk (mk - Hk ik). 

The power of the CF-test is well below the power of the CS-test. Fig. 5.1 lb shows the same 

probabilities, as a function of the position k of the outlier along the track. The power of the 

CS-test is largest in the center of the track, dropping slightly towards both ends. The CF-test 

doesn't of course find any outliers in the initial segment; the rise of the power towards the 

other end of the track reflects the increasing amount of information contained in the filtered 

estimate. 

Fig. 5.12 shows the distribution of the x2-probability transform of the total x2, in (a) without 

removal of outliers, in (b) with outliers removed by the CF-test, in (c) with outliers removed 

by the CS-test A subsequent x2-cut would reject a large number of otherwise good tracks in 

cases (a) and (b), whereas the p.d.f. in (c) is nearly fiat, showing even a slight depletion at 

large values of x2. The loss of good measurements with the CS-test is 1.3%, only slightly 

more than the nominal value of 1 %, the excess being due to a bias of the smoothed estimate 

caused by unrecognized outliers. No tracks were lost at all. 
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C) Finding outliers with the global fit 

Also the global estimate can be used to look for outliers, in the same way as the filtered and 

the smoothed estimate. It suffices to define an analogous x2-statistic x21c.a by 

X2k,G = (r0 kl (RGJJ -l rGk, 

with: 

rGk = mk - f(k)(p), 

RGk = cov {rGk}, 

where f(k) is the projection of the track model vector f on the subspace corrsponding to mea

surement k, and RGk is the projection of the global covariance matrix of residuals 

RG = V - A (AT G At1 AT, 

on the same subspace. The test based on the statistic x2k,G will henceforth be called "CG-

test". 

If there is no multiple scattering, the extrapolation from the global estimate carries the full in

formation, and x21c,a is equal to x21c.s· With multiple scattering, however, x2k,G is a less 

powerful test statistic than x21c,s. This was checked by comtarninating also samples II and III 

by a single variance-inflation outlier with threefold standard deviation. The contaminated 

samples are called Ila and ma. 

Fig. 5.13a shows the power of the CS-test (blank), of the CG-test (shaded) and of the CF

test (doubly shaded) as a function of the distanced (see above), for sample Ila. Fig. 5.13b 

shows the respective powers as a function of the outlier position k. The effect of multiple 

scattering is still rather small, although the power function of the CG-test is clearly below the 

power function of the CS-test for values of k above 8. Fig. 5.14 shows the same power 

functions for sample Illa. Here the effect of multiple scattering is obvious - the outliers in the 

rear end of the track are to a large extent masked by multiple scattering for the CG-test, 

whereas the CS-test (and also the CF-test) is hardly affected. 

D) Finding multiple outliers 

Until now only single outliers have been considered. Now we want to see how well multiple 

outliers are handled by the filter/smoother on the one side and by the global fit on the other 

side. Therefore sample I and III were contaminated with 2 and also with 3 variance-inflation 

outliers. Again the outliers were spread uniformly along the track. The results are summa

rized in Table 5.3 and in Figs. 5.15- 5.18. 
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Table 5.3 shows the power of the various tests and the losses of good measurements, for 

samples I and III, with 0, 1,2 and 3 outliers. The power drops slightly with increasing num

ber of outliers, and the losses of good measurements become larger. This is due to distortions 

of the estimate by the outliers. The power of the CG-test is well below the power of the CS

test in sample III, and also the losses are higher. Fig. 5.15 (5.16) shows the probability 

transforms of the different x2-statistics after removal of outliers, for sample I (III) with 0 (a), 

1 (b) , 2 (c) and 3 (d) outliers. The peaks at low probabilities which can be observed with the 

CG-test are due to unrecognized outliers masked by multiple scattering. 

Finally, Fig. 5.17 (5.18) gives an idea of how much the removal of outliers affects the qual

ity of the estimated track parameters for sample I (ill). For each of the parameters the esti

mated standard error w.r.t. to the true value is plotted as a function of the number of outliers 

in the track. In sample I (no multiple scattering) all parameters are about equally affected by 

outliers: 3 outliers result in an increase of about 60% of the standard error. As expected, the 

CS-test and the CG-test perform about equally well, while the CF-test is obviously worse. In 

sample Ill (strong multiple scattering) the track position is more affected by outliers than the 

track direction, and the curvature is hardly affected at all. The CS-test does somewhat better 

than the CG-test, though not much. This can be explained by the fact that the outliers missed 

by the CG-test are mainly in the rear end of the track (see Fig. 5.14b) and have little influence 

on the global estimate, as they get smaller weights due to the multiple scattering. Again the 

CF-test is worst. 

E) Accommodation of outliers with the robust filter 

In order to study the statistical properties of the robust filter described in Subsection 4.3.3 

with tracks simulated in the simplified TPC, sample I was contaminated with outliers 

generated according to a mixture model (see Subsection 4.3.1): 

Ek - ak<1> 9£ (0, V k(l)) ·+ ak<2> 9£ (0, V k<2>), 

akO> + ak<2> = 1, Vk<2> > Vk<l), ak<1> >> ak<2>. 

We chose vk<2> = 9 · Vk(l ) for all k, and ak<2> varied between 1/ 16 and 1/4. For each value of 

ak<2> the number of outliers follows a binomial distribution. The average number of outliers is 

equal to nak<2> (n=16). 

First, we check the quality of the estimated track parameters by plotting the normalized dif

ferences of estimated and true track parameters. This is shown in Fig. 5.19 for the maximum 

contamination (ak<2> = 1/4). Even here the agreement with a normal p.d.f. is fairly close, al

though the tails are somewhat heavier. We can also check how close the distribution of the 
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estimated parameters is to a normal distribution with mean 0 and covariance matrix Ci. by 

plotting the probability transform of the following x2-lik:e statistic: 

X2E = (x1 -i1 )T C1-1 (x1 -i1 ). 

The distributions are shown in Fig. 5.20 for different values of ak<2): 1/16 (a), l/g (b), 3/16 (c) 

and 1/4 (d). One sees nicely an increasing deviation from a flat distribution with increasing 

outlier content. 

Finally, we look at the distribution of the generalized x2k.F of the filter step and of the total 

generalized chi-square. As mentioned in Subsection 4.3.3, X2k.F can be generalized in two 

ways: 

with: 

Gk(l) = ( akO) Vk(l) + ak<2) vk<2)) - 1, 

Gk<2) = ( bk(l) Vk(l) + bk<2) Vk<2) )-1. 

Fig. 5.21 shows the x2-probability transforms of x2k.F(l) and X2k.p<2) for all k, as well as of 

the two corresponding total x2-statistics, for an average number of outliers of 2. Neither of 

them is really satisfactory. 

We have compared the performance of the robust filter with two other filter methods: first, 

with the standard filter/smoother with removal of outliers by the CS-test; secondly, with the 

linear filter which is optimal in the mixture model, i.e. a Kalman filter with the following co

variance matrix of the measurements: 

Fig. 5.22 shows the standard errors of the estimated track parameters, as a function of the 

average number of outliers, for the three filters. The optimal linear filter performs worst, and 

the robust filter does better than the smoother with removal of outliers. If, however, the 

average number of outliers per track is only 1 or 2, the difference between the two is very 

small. In this case the smoother has the advantage that its total x2-statistic is more closely x2-

distributed than the one of the robust filter. 

F) Detection of outliers in FCA 

The last example in this subsection is concerned with the detection of outliers in the chamber 

FCA, which is part of the forward spectrometer of the DELPHI detector. The detection of 

outliers is particularly important in FCA, because pattern recognition in FCA is made difficult 
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by the large number of secondary tracks which are expected to be produced in the massive 

endplate of the TPC. The track fit in the forward region of DELPHI proceeds from FCB to

wards the vertex (see Fig. 5.9). Since the momentum is measured very poorly in FCB, the 

predicted track parameters in FCA have rather large errors, so that there is very little chance to 

detect outliers during filtering. Consequently, the smoother is crucial for the detection of out

liers in FCA. In our study, 20000 tracks were simulated with FASTSIM, at 8=25° and 

l~p~5 GeV/c. Then outliers were generated in FCA, according to a variance-inflation 

model, with 

The tracks were then passed through the forward track search and the forward track fit (see 

Subsection 5.1.2). More than 99.9% of the tracks were found by the track search, in spite of 

the outlier. In the track fit, the outlier was looked for with the CS-test at the 1 % level. The 

power of this test is shown in Fig. 5.23, as a function of the distanced of the outlier from the 

true track position. (There are no outliers beyond d=l6.) The CS-test is fully efficient at 

d=13, which is roughly the 1 %-cut of a x2-distribution with four degrees of freedom. Since 

FCA measures four quantities, we conclude that the chi-square of the smoother is dominated 

by the measurement errors of FCA. 

5.2.3 Results of kink finding studies 

We now turn to the detections of kinks in the DELPHI detector. We investigate first 1t- and 

K-decays in the TPC, and then show how the efficiency of kink finding can be improved by 

including the other two tracking detectors in the barrel region, ID and OD. 

As mentioned in Subsection 4.4.1, the most frequent sources of kinks are the decay of a 

charged 1t-meson or a charged K-meson into a muon and a neutrino. In the case of the 7t this 

type of decay is virtually the only one; for the Kits branching ratio is about 63.5%. The sec

ond most frequent decay type of the charged K-meson is also a two-body decay, namely the 

decay into a charged 1t and a 1to. This type, however, is less interesting in this context, be

cause it is not a potentially dangerous source of background muons, as is the other one. Also, 

the 1to is detected much more easily than the neutrino which is virtually invisible in a typical 

storage ring detector. 

In order to test the kink finders proposed in Subsection 4.4.2, three samples of 5000 tracks 

each were simulated in STPC: a sample of 1t-decays into muon plus neutrino (il), a sample of 

K-decays into muon plus neutrino (K), and a sample of tracks without decays for cross

checking (N). The precise characteristics of the three samples are listed in Table 5.4. It 
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should be noted that the decay radius, i.e. the radial distance of the decay vertex from the ori

gin, was simulated unphysically, namely uniformly in a certain region of STPC, not accord

ing to the exponential life time distribution of the decaying particle. This was done in order to 

achieve a uniform population of the volume of STPC with decays. The decays were simulat

ed with a standard decay routine (75]. The dependence of the simulated kink angle on the 

momentum of the 7t (K) is shown in Fig. 5.24a (b) (see also Fig. 4.4). 

We recall that two tests for the detection of kinks were proposed in Subsection 4.4.2: a test 

based on the statistic x2k,ti. and a test based on the statistic Fk. The actual test statistics used 

were the following: 

CK= max X2k.ti (3~~;14), 

FK =max Fk (3~14). 

Obviously a kink can be detected only if the track segments in front of and behind the decay 

are sufficiently well determined, i.e. if both of them contain at least three measurements in 

STPC. Because of this k ranges from 3 to 14. Both the X2kA and the Fk are not independent 

random variables; hence the exact distributions of CK and FK are difficult to compute. 

Therefore the 99%-quantile used in the test was determined empirically from sample N (no 

kinks). 

If we want to specify the performance of the tests, the following questions arise: 

• How many kinks are detected? 

• How well can the location of the kink be determined? 

• How well can the kink angle be determined? 

• How does the efficiency of the kink finder depend on the momentum of the 7t (K), on 

the decay radius, and on the kink angle? 

• How does the efficiency conware to that of a simple 1 %-cut on the total chi-square? 

• How many kinks are faked by outliers? 

The answers to these questions can be gathered from Table 5.5 and Figs. 5.25-5.28. Table 

5.5 shows in column 3 the percentage of kinks found, i.e. the efficiency, for both tests and 

both decay samples. Also shown is the fraction of tracks rejected by a 1 %-cut on the total x2-

statistic. These numbers are meant only for comparison; their absolute size depends of course 

very much on the range of momentum of the decaying meson. We see immediately, that the 

FK-test is indeed less powerful then the CK-test; also the total x2 is a nearly as good indica-

tor of a kink. Of course it doesn't tell us where the kink might be. 

Next we consider the difference between the found position of the kink, i.e. the value of k 

where the maximum X2k,ti or Fk occurs, and the actual position (if the kink is between k and 
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k+l, the position is k). This is shown in Fig. 5.25 for the CK-test (a,c) and the FK-test 

(b,d), for both the 1t-sample (a,b) and the K-sample (c,d). If the found position differs from 

the true position by not more than 1, we define that the kink has been found in the "correct 

position". The fraction of tracks where the kink was found in the correct (wrong) position is 

given in the 4th (5th) column of Table 5.5. In brackets is the number of kinks found in the 

correct (wrong) position as a fraction of all found kinks. 

The next two figures show the dependence of the kink finding efficiency on the momentum 

(a), on the position of the decay (b), and on the kink angle (c), for the 1t-sample (Fig.5.26) 

and for the K-sample (Fig. 5.27). The blank area corresponds to the CK-test, the shaded area 

to the FK-test. For 1t-decays the efficiency drops sharply with increasing momentum, and 

approaches zero at 10 GeV/c. For K-decays, it is still in the order of 50% at 40 GeV/c. The 

dependence on the position of the decay is rather weak in all cases; a slight loss of efficiency, 

however, can be observed towards both ends of the detector. As far as the dependence on the 

kink angle is concerned, the picture is more or less the same in all 4 cases: The efficiency 

rises steeply from zero and attains 100% at a value of about 30 mrad. 

If a kink is found at k, the kink angle can be reconstructed from the state vectors of the two 

track segments in front of and behind the kink (see Subsection 4.4.2). Fig. 5.28 shows the 

difference between the reconstructed and the true kink angle, for the CK-test (a,c) and the 

PK-test (b,d), for both the 1t-sample (a,b) and the K-sample (c,d). In all cases there is a clear 

central peak which reflects the uncertainty of the track parameters of both track segments, and 

long tails which are due to kinks found in the wrong position. The tails are less pronounced 

in the case of the FK-test. 

So far it has been assumed that all tracks were measured perfectly, without disturbance by 

outliers. We investigate now the influence of outliers on the kink finding algorithms. To this 

end the three samples IT, Kand N (see Table 5.4) were contaminated with a single variance

inflation outlier (with threefold. standard deviation both in R<l> and z). The position of the 

outlier was distributed uniformly over all measurements. The contaminated samples are called 

Ill , Kl and NL 

The kink finding algorithms were then applied to the contaminated samples. The results are 

summarized in Table 5.6. We see immediately that with the CK-test a single outlier fakes a 

kink in no less than a quarter of the tracks in sample Nl ! As expected, the FK-test does much 

better: It fakes a kink in only about 8% of the tracks. For the samples with 1t- and K-decays 

there is an apparent increase in efficiency. Closer inspection, however, reveals that the in

crease is due to a much larger number of kinks found in the wrong position; the number of 

kinks found in the correct position actually drops in all but one cases, so that the additional 

kinks can be said to be faked by the outlier. As expected, the FK-test is much more robust 
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against the outlier. The price to be paid is a greater loss of efficiency than with the CK-test. 

The close correlation between the position of a faked kink and and the position of the outlier 

can be seen in Fig. 5.29, where the difference of the position of the outlier and the found po

sition of the kink is histogrammed for all tracks where a kink was found, but in the wrong 

position (a: Sample Nl, b: Sample Ill, c: Sample Kl). 

The obvious idea would be to remove the outlier before looking for a kink. There is, how

ever, a fundamental problem here: If the procedure of removing outliers as decribed in sub

section 5.2.2 is applied to a track with a kink, usually a large number of outliers is found. 

This is so because the estimated track does not fit very well the two tracks forming the kink -

particularly, if the kink angle is large. The crucial point is therefore that outliers may only be 

removed if very few of them are found, preferably only one! Actually the problem is less se

rious than it may seem by now, because large kinks are already recognized by the pattern 

recognition and are not passed through the kink finder. 

Consequently, the contaminated tracks were subject to the following procedure: 

• Outliers were looked for with the x2k,s-test (see Subsection 5.2.2). 

• If only one outlier was found it was removed. 

• The track was passed through the kink finder. 

The 1 %-cuts on CK and FK were readjusted with sample N. The results of the foregoing 

procedure are summarized in Table 5.7, both for the original and the contaminated samples. 

A comparison with Table 5.5 shows that on the original samples the loss of efficiency is 

fairly small. For the contaminated samples an important reduction of faked kinks can be seen, 

but at the price of a somewhat lower efficiency. 

We conclude that single outliers can be handled reasonably well with this procedure; in the 

presence of more than one outlier, however, the kink finder generates a lot of faked kinks 

which are difficult to get rid of without a serious loss of efficiency. 

Our final investigation is concerned with finding kinks in the barrel region of DELPIIl, by 

using not only information from the TPC, but from ID and OD as well (Fig. 5.7). We con

sider first decays inside the volume of TPC. 

A sample TI' of 5000 7t-decays and a sample K' of 5000 K-decays were simulated in ID, 

TPC and OD, with the same characteristics as samples TI and K, with the exception of the 

decay radius being uniformly distributed in the entire volume of the TPC: 

36.5 cm~ fDecay ~ 106.625 cm. 
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Due to the additional information provided by ID and OD, we expect a higher efficiency of 

kink finding than with the TPC alone. This is confirmed by the results obtained from the 

simulated tracks. 

Table 5.8 shows the efficiency of the kink finder for samples IT and K', as well as the per

centage of kinks found in the correct position. A direct comparison with the kink finder in 

TPC alone can be found in Fig. 5.30. Fig. 5.30 a (c) shows the efficiency of the CK-test for 

7t-decays (K-decays), with all detectors (blank) and with only TPC (shaded), plotted as a 

function of the momentum of the 7t (K). The same function is shown in Figs. 5.30 b,d for 

the FK-test. Finally, Fig. 5.31 shows the efficiency with all detectors (blank) and with only 

TPC (shaded) as a function of the decay position, with the CK-test (a,c) and with the FK-test 

(b,d), for both the 7t-sample (a,b) and the K-sample (c,d). In the 7t-sample, there is a clear 

"plateau" of efficiency between the 3rd and the 10th measurement surface; towards OD the 

efficiency drops more than towards ID. The effect is less visible in the K-sample, due to the 

high overall efficiency. The detection of 7t-decays is clearly very much improved by the addi

tional information provided by ID and OD. 

As far as kinks outside the volume of the TPC are concerned, the situation is more difficult. 

First we note that the statistic x2kA at OD is basically the same as the chi-square of the filter, 

x2k.F• and thus only has three degrees of freedoms. Therefore it is in principle not possible to 

distinguish between an outlier in OD and a kink somewhere between TPC and OD. If X2k.F 

exceeds the cut, it can only be stated that the prediction from TPC and the measurement in OD 

are not compatible. The track segment in OD is not defined well enough to allow kinks to be 

recognized unambiguously. 

5. 2. 4 Results of secondary vertex detection studies 

The results of a comparative study of the _algorithms proposed in Section 4.6 will be pre

sented here. Before this is done, however, a word of warning is required. It was not 

attempted to simulate and reconstruct real physical events in a real detector; therefore one 

should not attribute significance to the absolute performance of the algorithms with respect to 

a particular reaction. The aim of the study was solely to compare the performance under 

conditions which are hopefully not entirely different from the ones in real life. It should be 

kept in mind, however, that for the sake of convenience the simulation of events is very much 

simplified. 

We start with the description of the 6 test samples used in the study, each of them containing 

5000 events. The reference surface of the vertex fit is a cylinder of radius R = 10 cm. The 

track parameters simulated on this reference surface are <I>, z, tan A. and <p (Fig. 5.32). It is 
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assumed that there is no magnetic field, hence the momentum measurement is not simulated. 

The measurement errors of the simulated track parameters correspond roughly to what can be 

expected in the DELPHI barrel region: 

o(<t>) = 0.2 mrad, o(z) = 0.2 mm, cr(tan A.)= 0.001, o(cp) = 0.0003 rad. 

No correlations were taken into account. The vertex parameters to be estimated are the posi

tion (x,y,z) and the directions (tan A.,cp) for each track. 

At the primary vertex tracks were simulated with a uniform distribution of A. and cp: 

A. - U[-1t/4,7t/4], 

cp - U[0,21t]. 

The secondary vertex was simulated according to the decay 

which accounts for about 11 % of all n+-decays. The momentum of the D-meson was chosen 

to be 1 and 5 Ge V /c. The decay length was not simulated according to the true exponential 

life-time distribution, but uniformly between 0 and 0.5 cm. The average decay length of a 

particle grows with the momentum due to the relativistic time dilatation, and is equal to about 

0.6 mm (1.5 mm) for a D with 1 (5) Ge V /c. 

The first two samples were simulated with a primary multiplicity of 12 and a single secondary 

vertex, the momentum of the D being 1 GeV/c (sample Al) and 5 GeV/c (sample A5), re

spectively. The next two samples (Bl and B5) differ from the first two only by the primary 

multiplicity, which is equal to 6. In the last two samples (Cl and C5) there is no primary 

vertex, but two secondary vertices generated by two back-to-back D-mesons with a mo

mentum of 1 (5) GeV/c each. The distance between the two decay vertices is again uniformly 

distributed between 0 and 0.5 cm. 

The search for outlying tracks was performed with three different algorithms: 

• Algorithm CS. This is a straightforward 1 %-cut on the statistics x21c,s ("chi-square of the 

smoother") as defined in Subsection 4.6.1. All tracks exceeding the cut are considered as 

outliers (secondary tracks). 

• Algorithm CR. This is the refined sequential test of Subsection 4.6.1. It first looks for 

the track with the largest x21c,s. If this exceeds a 1 %-cut, the track is flagged as a sec

ondary track and removed immediately from the fitted vertex, i.e. the smoother is 

recomputed without the track. This-procedure is repeated until no x;2k.s exceeds the 1 %

cut. 
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• Algorithm CM. The vertex position is estimated by the M-estimator described in 

Subsection 4.6.2. The robustness constant was chosen to be equal to 1.5. The average 

number of iterations required until convergence is between 3 and 5, depending on the 

sample. Then the standard smoother is computed and the statistics x2k,S are subjected to 

a 1 %-cut. All tracks exceeding the cut are considered as secondary tracks. 

In all cases the vertex was fitted without any prior information on the vertex position. All 

three algorithms were checked with a sample of events with a primary multiplicity of six and 

without secondary vertices. The losses of primary tracks were at the expected 1 %-level. The 

probability transform of the total chi-squares are shown in Fig. 5.33, for the CS-algorithm 

after removal of outliers (a) and for the CM-algorithm (b). Both show a slight depletion at 

small probabilities (large chi-squares). 

We first consider the results of the secondary vertex search on the high multiplicity samples 

Al and A5, which are summarized in Table 5.9. It shows the average number of secondary 

tracks found per event, the average and the maximum number of primary tracks lost per 

event, the fraction of events where all secondary tracks were found, and the fraction of 

events where all secondary tracks were found without loss of primary tracks. (In 

brackets is the last fraction relative to the last but one.) The following facts can be observed: 

• The momentum of the D has a strong influence on the results. Because of kinematic ef

fects, the decay products point more closely to the primary vertex if the D has a higher 

momentum. Therefore in sample Al the "outlyingness" of the secondary tracks is much 

more pronounced than in sample A5. This is fortunate, as it compensates for the shorter 

decay lengths of the low momentum D. 

• The CS-test is completely unsuitable to this type of outlier problem. The primary vertex 

is distorted to such an extent that in sample A 1 no or only one track survives the 

1 %-cut in more than 40% of the events. The situation is somewhat better in 

sample A5, but there are still heavy losses of primary tracks. 

• The CR-test does remarkably well in both sample Al and A5. The losses of primary 

tracks never exceed two tracks per event. In sample A5, the CM-test does even better, 

although the losses are slightly higher. A complete picture of the losses of primary tracks 

is given in Fig. 5.34. In sample Al, the CM-test is slightly worse than the CR-test, and 

the losses are still somewhat higher. In one event out of 5000, all tracks are above the 

cut. This indicates that this particular M-estimator is still not robust enough, i.e. that still 

too much weight is given to far outlying tracks. 

A similar behaviour, even more pronounced, is shown by samples Bl and B5, with a much 

lower primary multiplicity (fable 5 .10). The failure of the CS-test is even more spectacular in 
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sample B 1: In more than 50% of the events all tracks are above the 1 %-cut on x2k,S· In 

sample B5 the CM-test is again slightly better than the CR-test; in sample Bl, however, the 

losses of the CM-test are quite serious. The efficiency of secondary vertex detection shows 

the expected drop when passing from 12 primary tracks to 6 primary tracks; the drop is how

ever surprisingly small. 

An important point is the dependence of the efficiency of secondary vert~x detection on the 

decay length. Fig. 5.35 shows the fraction of secondary vertices found with the CR-test (a) 

and with the CM-test (b) as a function of the decay length, for samples Al and A5 (shaded). 

Fig. 5.36 a(b) shows the efficiency of the CR-test for samples Al (A5) and Bl (B5) 

(samples B 1 and B5 shaded). 

If we turn to samples Cl and C5 which contain events with two back-to-back decays, the 

question to be asked is now: How well can two decay vertices be separated, provided that all 

tracks belonging to them have been identified? The answer is given in Table 5.11, which 

shows the fraction of perfectly separated decay vertices for samples Cl and C5. (The separa

tion is called perfect if all tracks are assigned to the correct vertex.) Both the CS- and the CM

algorithm fail completely in this symmetric configuration; the reason is that in both cases the 

estimated vertex is somewhere between the two actual decay vertices, and all tracks appear 

more or less to be outliers. The CR-algorithm, however, is different: Once a track has been 

removed from vertex 1, the new estimate moves towards vertex 2, so that there is a fair 

probability that the next track will also be removed from vertex 1, and so on, until the esti

mate settles on one of the two vertices. The efficiency of the CR-test as a function of the dis

tance between the vertices is shown in Fig. 5.37, for samples Cl and C5 (shaded). 

We conclude that the CR-algorithm is very well suited to the fast and efficient detection of 

outlying tracks. If there are no outlying tracks, there is no additional computation to be done. 

The M-estimator with Huber's '!'-function is slightly better in some cases, but not robust 

enough in other ones. It fails completely in the symmetric case of two decay vertices with 

similar characteristics. Clearly other types of robust estimators are needed to handle this case, 

e.g. those with high break-down points. This is, however, beyond the scope of the present 

work. 
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Surface Radius Rad. length cr(R<l>) a(z) cr(S) cr(cp) cr(l/p-r) 

[cm] [%] [cm] [cm] [rad] [rad] [c/GeV] 

IDl 17. 0 . 0 .002 0.022 0.015 0.0007 0.1375 

ID2 22.3 2.8 -- - - -- - - --
TP4 30.75 2.5 -- -- -- -- --
TPCl 36.5 0. 0.02 0.06 -- -- --
. . . 

TPC16 106.625 0. 0.02 0.06 -- - - --

TP5 127.1 22.3 -- -- -- -- --

Rll 147.3 6.6 -- -- -- -- --

RI2 188. 9.3 -- -- -- -- --
OD 200. 0 . 0.012 2. -- 0.006 --

Table 5.1 

Detectors and scatterers in the barrel region of DELPHI. 

Sample Nr. of tracks Rad. length Initial conditions 

I 5000 -- R=36.5, 0$~27t, 

II 5000 1000. z=O., 1t/4$8$31t/4, 

m 5000 200. cp = <l>, 0.5$p$5. 

Table 5.2 

Characteristics of the three samples of tracks used in the outlier studies in STPC. 

Sample Outliers CS-test CG-test CF-test 

Power[%] Losses[%] Power[%] Losses[%] Power[%] Losses[%] 

I 0 -- 1.0 -- 1.0 -- 1.0 

I 1 53.7 1.3 54.2 1.6 29.5 1.8 

I 2 54.4 1.7 55.5 2.2 25.6 2.4 

I 3 52.6 2.0 53.9 2.7 20.2 2.8 

m 0 -- 1.0 -- 1.0 -- 1.0 

m 1 50.6 1.3 36.1 1.9 27.3 1.9 

m 2 51.5 1.8 39.2 3.2 22.6 2.5 

m 3 49.6 2.2 39.0 4 .3 19.3 2.9 

Table 5.3 

Power of CS-, CG- and CF-test for samples I and ID. 
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Sample Nr. of tracks Decay type Decay radius [cm] Momentum range [GeV/c] 

N 5000 0.5 $ p $ 10.0 

n 5000 7t---) µv 45.85 $ r $ 97.275 0.5 $ p $ 10.0 

K 5000 K-)µ\I 45.84 $ r $ 97.275 2.0 $ p $ 40.0 

Table 5.4 

Characteristics of the three samples used in the kink finding studies in STPC. 

Sample 

n 
n 
n 
K 

K 

K 

Sample 

Nl 

N l 

Til 

Til 

Kl 

Kl 

Test Found[%] Found correctly [%] Found wrongly[%] Not found[%] 

CK 38.8 25.2 (65.8) 13.2 (34.2) 61.2 

FK 32. l 22.3 (69.4) 9.8 (30.6) 67.9 

total x2 29.9 70.l 

CK 80.9 68.5 (84.7) 12.4 (15.3) 19.1 

FK 75.4 65.9 (87.4) 9.5 (12.6) 24.6 

total x2 74.6 25.4 

Table 5.5 

Efficiency of CK-test, FK-test and total x2. 

Test Found[%] Found correctly [%] Found wrongly[%] Not found[%] 

CK 24.9* 24.9 (100.) 

FK 8.2* 8.2 (100.) 

CK 57.3 27.2 (47.5) 30.1 (52.5) 42.7 

FK 32.6 19.2 (59.1) 13.3 (40.9) 67.4 

CK 87. 1 65.l (74.8) 21.9 (25.2) 12.9 

FK 73.0 59.7 (81.7) 13.3 (18.3) 27.0 

Table 5.6 

Efficiency of CK-test and FK-test in the presence of a single outlier. 

(* Faked by the outlier) · 
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Sample Test Found[%] Found correctly [%] Found wrongly[%] Not found [%] 

N CK 1.0 1.0 (100.) 

N FK 1.0 1.0 (100.) 

TI CK 35.0 23.2 (66.4) 11.8 (33.6) 65.0 

I1 FK 29.8 21.1 (70.6) 8.8 (29.4) 70.2 

K CK 77.8 66.6 (85.0) 11.7 (15.0) 22. 1 

K FK 73.5 64.2 (87.3) 9.3 (12.7) 26.5 

Nl CK 11.3 11.3 (100.) 

Nl FK 3.6 3.6 (100.) 

Til CK 45.9 23.6 (51.4) 22.3 (48.6) 54.1 

Til FK 30.1 18.2 (60.4) 11.9 (39.6) 69.9 

Kl CK 83.0 63.2 (76.1) 19.8 (23.9) 17.0 

Kl FK 71.6 58.7 (82.0) 12.9 (18.0) 28.4 

Table 5.7 

Efiiciency of CK-test and FK-test with removal of outliers. 

Sample Test Found[%] Found correctly [%] Found wrongly[%] Not found [%] 

TI' CK 81.4 47.8 (58.8) 33.5 (41.2) 18.6 

TI' FK 78.l 46.4 (59.4) 31.7 (40.6) 21.9 

TI' total x2 74.6 25.4 

K' CK 93.8 81.5 (86.8) 12.3 (13.2) 6.2 

K' FK 92.5 81.2 (87.7) 11.3 (12.3) 7.5 
K' total x2 90.8 9.2 

Table 5.8 

Efficiency of kink finding in TPC with information from ID, TPC and OD. 

102 



Sample Al Al Al A5 A5 A5 

Test cs CR ™ cs CR ™ 
Average # of secondary 2.76 2.78 2.78 2.48 2.41 2.44 

tracks found 

Average #of primary 8.64 0.13 0.43 4.90 0.13 0.18 

tracks lost 

Maximum#of 12 2 12 12 2 4 

primary tracks lost 

Fraction of secondary 85.1 86.9 86.3 66.2 61.8 63.5 

vertices found [ % ] 

Fraction of sec. vertices 0.94 76.l 56.2 8.54 54.0 51.9 

found without losses[%] (1. 1) (87.6) (65.2) (12.9) (87.4) (81.7) 

A vera_g_e # of iterations 4.6 3.2 

Table 5.9 

Efficiency of secondary vertex detection with CS-, CR- and CM-test for samples Al and A5. 

Sample Bl Bl Bl B5 B5 B5 

Test cs CR ™ cs CR CM 

Average # of secondary 2.71 2.67 2.72 2.49 2.36 2.42 

tracks found 

Average # of primary 4.90 0.28 2.49 3.12 0.10 0.41 

tracks lost 

Maximum#of 6 6 6 6 4 6 
primary tracks lost 

Fraction of secondary 81.5 82.0 81.4 67.2 58.l 61.6 

vertices found[%] 

Fraction of sec. vertices 0.16 75.6 8.5 5.2 54.0 36.l 

found without losses [%] (0.2) (92.1) (10.4) (7.7) (93.0) (58.6) 

A vera_g_e # of iterations 4.7 3.4 

Table 5.10 

Efficiency of secondary vertex detection with CS-, CR- and CM-test for samples Bl and B5. 
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Sample Cl Cl Cl C5 C5 

Test cs CR CM cs CR 

Fraction of perfectly sepa- 0 .12 66.1 1.04 0.18 39.5 

rated dec'!.Y_ vertices [%] 

Table 5.11 

Efficiency of secondary vertex separation with CS-, CR- and CM-test 

for samples Cl and C5. 
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Execution times of global fit, filter and smoother 
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Fig. 5 .1: Execution times of global fit, filter and smoother (µVAX II). 

a) Helix tracks, 2 measurements/step, no multiple scattering; 

b) Helix tracks, 4 measurements/step, no multiple scattering; 

c) Helix tracks, 2 measurements/step, with multiple scattering; 

d) Helix tracks, 4 measurements/step, with multiple scattering. 
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Fig. 5.2: View of the simplified TPC (STPC). 

a) Cross section perpendicular to the beam; b) Cross section parallel to the beam. 
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Comparison of filter, smoother and global fit (no multiple scattering) 
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Fig. 5.3: Comparison of filter, smoother and global fit (no m.s.). 

a) - c) Normalized difference of estimated l/r and true l/r at R = 36.5; standard normal p.d.f. 

d) - f) Pairwise differences of estimates of 1/r, normalized by the standard deviation. 
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Comparison of filter, smoother and global fit (no multiple scattering) 

Meon=0.50E+OO Rms=0.29E+OO 
>. 1.4 .------------------, 
0 
c 
~ 1.2 
tr 

it 
ti 0.8 
ct: 

0.6 

0.4 

0.2 

0 .____ _ __._ __ _.__ _ ____., __ _._ _ __. 

ti 0.8 
ct: 

0.6 

0.4 

0.2 

0 0.2 0.4 0.6 0.8 1 

Chi-squ. prob. 

a) Prob. of gl. fit 

Meon= 0.50E+OO Rms=0.29E+OO 

0 ....._ _ _._ __ _.____ _ ____. __ __.__ _ _____. 

0 0.2 0.4 0.6 0.8 1 

Chi-squ. prob. 

c) Prob. of smoother 

Mean=0.23E- 01 Rms=0.55E-01 
O') 3600 .--------- ---- - - ---. 
4> :s 3200 
c 
w 2800 

2400 

2000 

1600 

1200 

800 

400 
0 ....____._ _ _._____.L.c=_.___._.____. _ _.___. 

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1 

Chi-square 

e) Smoother-gl. fit 

Qi 0.8 
ct: 

0.6 

0.4 

0.2 

Meon=0.50E+OO Rms=0.29E+OO 

0 ....__ _ _._ __ ...._ _ ____. _ _ _._ _ _____. 

0 0.2 0.4 0.6 0.8 

Chi-squ. prob. 

b) Prob. of filter 

Meon=O.SSE-01 Rms= 0.11 E+OO 
U) 3200 .-----------------, 
4> :s 2800 
c w 

2400 

2000 

1600 

1200 

800 

0 .....__._ _ _._________.~_.____,=~--'-------' 

- 1 - 0.75 - 0.5 -0.25 0 0.25 0.5 0.75 1 

Chi-square 

d) Filter- gl. fit 

Mean=-.35E-01 Rms= 0.12E+00 
O') 2400 ...-----------------, 
Q) 

·;:: 

c 2000 w 

1600 

1200 

800 

0 .____.__...____. _ __,___:=-..---1.- ->---1 

-1 - 0.75 -0.5 -0.25 0 0.25 0.5 0.75 1 

Chi-square 

f) Smoother- filter 

Fig. 5.4: Comparison of filter, smoother and global fit (no m.s.). 

a) - c) Probability transforms of total chi-squares; 

d) - e) Pairwise differences of total chi-squares. 
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Comparison of filter, smoother and global fit (strong multiple scattering) 
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Fig. 5.5: Comparison of filter, smoother and global fit (strong m.s.). 

a) - c) Normalized difference of estimated l/r and true 1/r at R = 36.5; standard normal p.d.f. 

d) - f) Pairwise differences of estimates of 1/r, normalized by the standard deviation. 
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Comparison of filter, smoother and global fit (strong multiple scattering) 
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Fig. 5.6: Comparison of filter, smoother and global fit (strong m.s.). 

a) - c) Probability transforms of total chi-squares; 

d) - e) Pairwise differences of total chi-squares. 
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Fig. 5.7: The detector configuration in the barrel region of DELPIIl (see also Table 5.1). 
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The forward region of the DELPHI experiment 
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Fig. 5.9: The detector configuration in the forward region of DELPHI as used by FASTSIM. 

View in the y-z-plane. 
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Fig. 5.10: Standard errors of the smoothed track parameters in FCB 

and of the filtered track parameters in ID, extrapolated to FCB. 
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Single variance-inflation outlier, no multiple scattering 

Fig. 5.11: Power of CS-test (blank) and CF-test (shaded) for sample la. 

a) As a function of the distance d of the outlier from the true track position; 

b) As a function of the position k of the outlier. 
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Single variance-inflation outlier, no multiple scattering 
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Fig. 5. 12: Probability transform of total chi-square (Sample Ia). 

a) Outliers not removed; b) Outliers removed with CF-test; c) Outliers removed with CS-test. 
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Single variance-inflation outlier, little multiple scattering 
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Fig. 5.13: Power of CS-test (blank) , of CG-test (shaded) 

and of CF-test (doubly shaded) for sample Ila. 

a) As a function of the distanced of the outlier from the true track position; 

b) As a function of the position k of the outlier. 
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Fig. 5.14: Power of CS-test (blank), of CG-test (shaded) 

and of CF-test (doubly shaded) for sample Illa. 

a) As a function of the distanced of the outlier from the true track position; 

b) As a function of the position k of the outlier. 
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0-3 variance-inflation outliers, no multiple scattering 
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Fig. 5.15: Probability transforms of the total chi-square of the smoother (blank) and 

of the global fit (shaded) after removal of outliers (Sample n. 
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Mixture-model outliers, robust filter 

• Mean=-.1 2E-01 Rms=0.11 E+01 Mean=-.64E-02 Rms=0.11 E+01 

~ 
0.5 

lJ' 0.5 

c c 
Q) Q) 
:J 0.4 CT 

:J 0.4 CT 
4) 
..... u... 

ill .... u... 

0 
0.3 

4l 
0.3 

Ct: Ct: 

0.2 0.2 

0.1 0.1 

0 0 
-4 -2 0 2 4 -4 -2 0 2 4 

Estimate - true value Estimate - true value 

a) Estimat e of ¢ b) Estimate of z 

Mean=0.16E-01 Rms=0.11 E+01 Mean=0.88E-03 Rms=0.11E+01 

~ 
0.5 

~ 
0.5 

c c 
Q) Q) 
:J 0.4 CT 

:J 0.4 CT 
Q) 
..... u... 

ill .... u... 

1i 
0.3 

Ct: 
Qi 

0.3 

Ct: 

0.2 0.2 

0.1 0.1 

0 0 
-4 -2 0 2 4 -4 -2 0 2 4 

Estimate - true value Est imate - true value 

c) Estimate of e d) Estimate of f3 

Mean=0.30E-02 Rms=0.11 E+01 
>. 
0 

0.5 

c 
Q) 
:J 0.4 CT 
4) ..... u... 

1i 
0.3 

Ct: 

0.2 

0.1 

0 
-4 -2 0 2 4 

Estimate - true value 

e) Estimate of 1 / r 
Fig. 5.19: Normalized residuals of track parameters estimated with the robust filter. 

Sample I with mixture-model outliers. The average number of outliers is 4. 

The superimposed curve is a standard normal p.d.f. 
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Mixture-model outliers, robust filter 
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Mixture-model outliers, robust filter 
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(for a definition see text). 

a) x21c.F<1> for all k; b) x21c.p<2> for all k; c) total x2c1); d) total x2(2)· 

125 



• • Influence of mixture-model outliers on estimates of track parameters 
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Fig. 5.22: Standard errors of estimated track parameters 

as a function of the average number of outliers. Sample I with mixture model outliers. 
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• Single variance-inflation outlier in FCA 
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Fig. 5.23: Power of the CS-test in FCA as a function of the distanced. 

Tracks were simulated with FASTSIM, with a variance-inflation outlier in FCA. 

There are no outliers beyond d=l6. 
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Kink angle versus momentum of 1t (K) 
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Fig. 5.24: Momentum of decaying meson versus simulated kink angle. 
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Performance of kink finder in TPC 
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Fig. 5.25: Difference of the found position and the true position of the kink in STPC. 
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Performance of kink finder in TPC (1t-decays) 
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Fig. 5.26: Efficiency of CK-test (blank) and FK-test (shaded) in sample II 

as a function of a) momentum; b) position of the decay; c) kink angle. 
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Fig. 5.27: Efficiency of CK-test (blank) and FK-test (shaded) in sample K 

as a function of a) momentum; b) position of the decay; c) kink angle. 
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Performance of kink finder in TPC 
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Fig. 5.28: Difference of the reconstructed and the true kink angle. 
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Performance of kink finder in TPC 
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Fig. 5.29: Difference of the position of the outlier and the found position of the kink, 

for kinks found in the wrong position. 
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Fig. 5.30: Efficiency of kink finder with ID, TPC and OD (blank) and with 

TPC only (shaded), as a function of the momentum. The kink is inside the TPC. 
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Fig. 5.31: Efficiency of kink finder with ID, TPC and OD (blank) and with 

TPC only (shaded), as a function of the decay position. The kink is inside the TPC. 
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Coordinate system used in secondary vertex study 
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Fig. 5.32: Coordinate system used in the study of secondary vertex detection. 

a) View in the x-y-plane; b) View in the z-R-plane. 
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Fig. 5.33: Probablity transforms of total chi-squares. No secondary vertex. 

a) CS-algorithm, after removal of outlying tracks; b) CM-algorithm. 
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Losses of primary tracks in secondary vertex detection 
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Fig. S.34: Number of primary tracks lost in the detection of secondary vertices. 

a) Sample Al, CS-test; b) Sample AS, CS-test; c) Sample Al, CR-test; 

d) Sample AS, CR-test; e) Sample A l , CM-test; f) Sample AS, CM-test. 
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Fig. 5.35: Fraction of secondary vertices found as a function of the decay length. 

a) CR-test, sample Al (blank) and sample A5 (shaded); 

b) CM-test, sample Al (blank) and sample A5 (shaded). 
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• 

CHAPTER 6 

CONCLUSIONS 

We have shown that filter methods meet virtually all requirements to track and vertex fitting 

which have arosen during the last years due to the rapid developments of accelerators and 

detectors. 

• With the combined Kalman filter/smoother algorithm it is possible to compute optimal 

estimates of the track parameters anywhere along a track. Hence optimal extrapolations 

from both ends of a track as well as optimal interpolations can be computed efficiently. 

This is important for the task of linking track segments in complex modular detectors. 

• Outlying measurements can be found and removed with little additional computation. 

• Kinks (I-prong decays) can be detected and located with good efficiency. 

• The filter can be robustified in order to handle non-normal measurement errors or non

norrnal models of multiple scattering. 

• The computing time of the track fit with the filter is a linear function of the number of 

measurements, both with and without multiple scattering. 

• The application of the Kalman filter/smoother to vertex fitting yields a procedure the 

computing time of which is proportional to the number of tracks involved. This allows 

precise estimation of vertex parameters also for high multiplicities. 

• This procedure of vertex fitting is a very flexible tool which allows sequential testing for 

outlying (secondary) tracks and fast removal of found secondaries. It can also be ro

bustified by the introduction-of M-estimates. 

We see two main research topics of further interest: 

• First, the application of the robust filter to the reconstruction of electron tracks. This 

would require a mixture model of the process noise, i.e. a model of multiple Coulomb 

scattering, hard electromagnetic scattering, bremsstrahlung etc. which can be approxi

mated sufficiently well by a mixture of two normals. 

• Secondly, the application of robust estimators to vertex fitting. In particular, robust es

timators with high break-down point could be a powerful tool for the separation of two 

(or more) vertices with low multiplicities, e.g. in bb-decays. 
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Effect of multiple scattering on a track. 
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Standard errors of estimated track parameters as a function of the number of 

outliers (Sample I). 

a) <l>; b) z; c) e; d) p = cp-<l>; e) l/r 

o Outliers not removed 

a Outliers removed by CF-test 

A Outliers removed by CS-test 

O Outliers removed by CG-test 
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Standard errors of estimated track parameters as a function of the number of 

outliers (Sample III). 

a)<l>; b)z; c)0 ; d)P=cp - <l>; e)l/r. 

o Outliers not removed 

a Outliers removed by CF-test 

6 Outliers removed by CS-test 

<) Outliers removed by CG-test 

Fig. 5.19 .............. .. .... .. ... . ........... . .... ......... . .... . ..................................... 123 

Normalized residual~ of track parameters estimated with the robust filter. Sample 

I with mixture model outliers. The average number of outliers is 4. The super

imposed curve is a standard normal p.d.f. 

a) <l>; b) z; c) 0; d) p = cp - <l>; e) 1/r. 
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Probability transform of x2
E of the robust filter (for the definition of x2E see text). 

a) average number of outliers = 0; 

b) average number of outliers= 1; 

c) average number of outliers= 2; 

d) average number of outliers = 3. 
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Probability transforms of variou~ generalized x.2-statistics of the robust filter (for 

the definition see text). 

a) X2k,F(l) for all k; 

b) X21c.p<2) for all k; 

c) total x2
0 ); 

d) total x2(2)· 
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Standard errors of estimated track parameters as a function of the average number 

of outliers. Sample I with rnixture-mcxiel outliers. 

a) <I>; b) z; c) e; d) ~ = cp - <I>; e) 1/r. 

0 Optimal linear filter 

CJ Filter/smoother with removal of outliers by CS-test 

6 Robust filter 
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Power of the CS-test in FCA as a function of the distance d of the outlier from the 

true track position. Tracks were simulated with FASTSIM in the forward region 

of DELPHI. A variance-inflation outlier with threefold standard deviations was 

simulated in FCA. There are no outliers beyond d= 16. 
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Momentum of decaying meson versus simulated kink angle. 

a) Decay of 7t-meson (Sample m; 
b) Decay of K-meson (Sample K). 
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Difference of the found position and the true position of the kink in STPC. 

a) Sample TI, CK-tes_t; 

b) Sample TI, FK-test; 

c) Sample K, CK-test; 

d) Sample K, FK-test. 
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Efficiency of CK-test (blank) and FK-test (shaded) in sample TI: 

a) as a function of the momentum of the 7t; 

b) as a function of the position of the decay; 

c) as a function of the kink angle. 
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Efficiency of CK-test (blank) and FK-test (shaded) in sample K: 

a) as a function of the momentum of the K; 

b) as a function of the position of the decay; 

c) as a function of the kink angle. 
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Difference of the reconstructed and the true kink angle. 

a) Sample TI, CK-test; 

b) Sample TI, FK-test; 

c) Sample K, CK-test; 

d) Sample K, FK-test. 
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Difference of the position of the outlier and the found position of the kink, for 

kinks found in the wrong position. 

a) Sample Nl, CK-test; 

b) Sample Nl, FK-test; 

c) Sample Ill, CK-test; 

d) Sample Ill, FK-test; 

e) Sample Kl, CK-test; 

f) Sample Kl, FK-test. 

Fig. 5.30 .. ... ...... . .. .... . . .. .. .. . .. ....... .... .... ... . .. ... . ..... ... ... . .. . .. ..... ... . .... . . . .. .... . 134 

Efficiency of kink finder with ID, TPC and OD (blank) and with TPC only 

(shaded), as a function of the momentum. The kink is inside the TPC. 

a) Samples TI,TI', CK-test; 

b) Samples TI,TI', FK-test; 

c) Samples K,K', C:((-test; 

d) Samples K,K', FK-test. 
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Efficiency of kink finder with ID, TPC and OD (blank) and with TPC only 

(shaded), as a function of the decay position. The kink is inside the TPC. 

a) Samples Il,TI', CK-test; 

b) Samples TI,TI', FK-test; 

c) Samples K,K', CK-test; 

d) Samples K,K', FK-test. 
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Coordinate system used in the study of secondary vertex detection. 

a) View in the x-y-plane; 

b) View in the z-R-plane. 
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Probability transforms of total chi-squares. No secondary vertex. 

a) CS-algorithm, after removal of outlying tracks; 

b) CM-algorithm. 
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Number of primary tracks lost in the detection of secondary vertices. 

a) Sample Al, CS-test; 

b) Sample A5, CS-test; 

c) Sample Al, CR-test; 

d) Sample A5, CR-test; 

e) Sample Al, CM-test; 

f) Sample A5, CM-test. 
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Fraction of secondary vertices found as a function of the decay length. 

a) CR-test, sample Al (blank) and sample A5 (shaded); 

b) CM-test, sample Al (blank) and sample A5 (shaded). 
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Fraction of secondary vertices found as a function of the decay length. 

a) CR-test, sample A 1 (blank) and sample B 1 (shaded); 

b) CR-test, sample A5 (blank) and sample B5 (shaded). 
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Fraction of perfectly separated decay vertices as a function of their distance. 

CR-test, sample Cl (blank) and sample C5 (shaded). 
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