Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universitét Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/)

DISSERTATION

Architectures of Web Applications

Design and Implementation of Database backed Information Systems

ausgefiihrt zum Zwecke der Erlangung des akademischen Grades eines
Doktors der technischen Wissenschaften unter der Leitung von

0.Univ.Prof. Dipl.-Ing. Dr.techn. Richard Eier
Institut fiir Computertechnik

und

0.Univ.Prof. Dipl.-Ing. Dr.techn. Mehdi Jazayeri
Institut fiir Informationssysteme

eingereicht an der Technischen Universitdt Wien
Fakultét fiir Elektrotechnik
von

Dipl.-Ing. Karl M. Géschka
Matrikelnummer: 8625510
Karl-Meillstrafie 7/17, 1200 Wien

Wien, August 1998

Abstract

Information processing is the key issue of the 20th Century. Databases are designed to store
information and the World Wide Web has turned out to be the place for the gathering and
distribution of information. Some scientists even consider the Web itself to be a huge world-
wide distributed database. While these two seem to be made for each other, there are inherent
difficulties in linking them together due to almost 35 years of separate development resulting
in quite different technologies. Nevertheless, good Web sites are database backed Web sites —
it turned out that most real-life Web applications need an underlying database to be stable,
flexible and scalable. Appropriate design methodologies are hence needed to implement complex
functionality. Moreover, there are already many databases and legacy systems in existence which
people want to connect to the Web with similar functionality as in classic implementations.
Most of them rely on the proven technology of relational databases or on their object relational
SUCCesSOrs.

Consequently the main aim of this thesis is the integration of databases and the Web. Based on
a short explanation of the differences between databases and the Web, a new design methodol-
ogy is presented. The finite state machine model well known from static hypertext documents
is remodelled to be suitable for dynamically generated hypertext. Groups of links are mainly
used instead of forms to interact with the database. The key idea is to use an object-based
client-server model to design the user interface layout, the middleware functionality and the
database transactions in a homogenous way. Thereafter, the actual implementation of such a
system is composed of several parts with potentially different techniques. For example, either
a pure HTML interface with full functionality on the server side or a Java applet with greater
functionality on the client side. A toolset has been implemented to automatically generate the
different applications from a design language. The toolset itself is a Web application fostering
unlimited Web collaboration. Using this technique, complete information systems can be built,
including logical page flow and bidirectional crosslinks, multi lingual support and frames with
different window modes. The design methodology further guarantees stable and robust appli-
cations with sophisticated user interactions, compatibility with almost any browser and flexible
layout design separated from the application functionality.

The usability of Java is compared with the pure HTML approach, investigating different client-
server tradeoffs and persistence frameworks. Object oriented design and implementation has
some drawbacks with typical Web—based information systems. It is, however, shown how Java
can supplement the HTML approach but not supplant it.

In addition to the differences in design and implementation, relational databases and the Web
also differ considerably in the ways they can be searched. Universal relations and natural
language interfaces known from database theory are combined with keyword searches known
from the Web to define a metadata model for searching a database backed Web application.
The key idea here is the separation of structural and contextual meaning of words. Based on
this idea, generic interfaces for both Intelligent Software Agents and robots from search engines
have been implemented.

Evaluation of the proposed methods has been carried out with two real-life applications imple-
mented successfully with both pure HTML and Java. A quantitative analysis of these appli-
cations helps to decide between pure HTML and Java: For less than 200-300 user interactions
pure HTML typically outperforms Java in terms of network traffic. A qualitative analysis of
these two applications resulted in the first users’ feedback being encouragingly positive. The
techniques described in this thesis will help to continue to produce such positive results and to
make the design of database backed Web applications faster, easier and less prone to error.

Kurzfassung

Die Beherrschung der Informationstechnologie ist eine der wichtigsten Herausforderungen des
20. Jahrhunderts. Datenbanken dienen der Speicherung von Information und das Web hat sich
als das Medium fiir Suche und Verteilung von Information herauskristallisiert. In manchen
Publikationen wird sogar das Web selbst als gewaltige, weltweit verteilte Datenbank angesehen.
Obgleich Datenbanken und Web fiireinander bestimmt zu sein scheinen, sind in fast 35 Jahren
getrennter Entwicklung sehr unterschiedliche Technologien herangereift, die nicht so einfach
kombiniert werden kénnen. Dennoch sind nur Datenbank-basierte Web-Applikationen auch gute
Web-Applikationen: Es hat sich im Laufe der Zeit herausgestellt, dafl reale Anwendungen eine
Datenbank benotigen, um stabil, flexibel und skalierbar zu sein. Daher werden angepafite Design-
Methoden bendétigt, um komplexe Funktionalitat implementieren zu kénnen. Zusétzlich besteht
die Forderung, auch alte Datenbanksysteme an das Web anzubinden, mdglichst mit der bisher
gewohnten Funktionalitiat. Die meisten dieser Systeme sind relational oder objektrelational.

Die vorliegende Dissertation hat sich daher die Integration von Datenbanken und Web zum
Ziel gesetzt. Aufbauend auf einer kurzen Beschreibung der Unterschiede zwischen Datenbank-
und Web-Technologie wird eine neue Design-Methodik vorgestellt. Dazu wird das Modell des
Zustandsautomaten, welches aus dem Forschungsbereich statischer Hypertext-Dokumente wohl-
bekannt ist, an dynamisch generierten Hypertext angepafit. Dabei werden Gruppen von Hyper-
Links anstelle der sonst oft vorgeschlagenen Formulare verwendet. Dem liegt der Gedanke zu-
grunde, im Zuge des Designs ein homogenes, objektbasiertes Client-Server-Modell zu verwen-
den, um das User-Interface, die Funktionalitdt und die Datenbank-Transaktionen zu definieren.
Die Implementierung eines solchen Systems wird dann aus verschiedenen Teilen zusammenge-
setzt, welche durchaus unterschiedliche Techniken verwenden kénnen, etwa eine reine HTML—
Oberflache ohne Funktionalitdt im Vergleich zu einem Java-Applet mit mehr Funktionalitit.
Verschiedene Software-Werkzeuge wurden implementiert, um die verschiedenen Applikationen
aus einer gemeinsamen Design-Sprache generieren zu kénnen. Diese Software-Werkzeuge sind
zudem selbst Web-Applikationen und ermoéglichen somit unbegrenzte Zusammenarbeit tiber
das Web selbst. Mit dieser Technik kénnen komplette Informationssysteme inklusive logischer
Hyper-Text-Strukturen, bidirektionaler Hyper-Links, Mehrsprachigkeit sowie Frame-Technik
entworfen und implementiert werden. Die spezielle Design-Methodik garantiert zudem stabile
und robuste Applikationen mit fortgeschrittenen User-Interaktionen, Kompatibilitit zu nahezu
jedem Browser und ein von der Funktionalitdt unabhéngiges, flexibles Layout-Design.

Im Rahmen der Untersuchung verschiedener Client-Server—Strukturen und unterschiedlicher
Persistenz-Frameworks werden die Verwendung von Java und reinem HTML miteinander ver-
glichen. Objektorientierte Methoden zeigen einige Nachteile bei Design und Implementierung
typischer Web—basierter Informationssysteme. Es wird gezeigt, wie Java die HTML-Lésung zwar
unterstiitzen, aber derzeit nicht génzlich ersetzen kann.

So verschieden Datenbanken und das Web in bezug auf Design und Implementierung sind, so
unterschiedlich sind auch die Méglichkeiten der Informationssuche fiir diese beiden Plattformen.
Universalrelationen und natiirlichsprachliche Schnittstellen der Datenbank-Technik werden mit
der fiir das Web typischen Schliisselwortsuche kombiniert. Daraus wird ein Meta-Datenmodell
fir die Suche in Datenbank-basierten Web-Applikationen hergeleitet, wobei die strukturelle von
der inhaltlichen Bedeutung der Suchbegriffe getrennt wird. Basierend auf dieser Idee wurden
Schnittstellen fiir Software-Agenten und Roboter von Suchmaschinen implementiert.

Die Bewertung der vorgeschlagenen Methoden erfolgte im Rahmen zweier realer Implementie-
rungen, beide sowohl mit HTML als auch mit Java. Ein quantitativer Vergleich dieser Appli-
kationen zeigt: Fur durchschnittlich weniger als 200-300 User-Interaktionen verursacht HTML
weniger Netzwerkauslastung als Java. Eine qualitative Analyse der beiden Applikationen brachte
ermutigend positive Riickmeldungen der Benutzer der Prototypen. Ahnlich positive Ergebnisse
werden auch fiir die Zukunft erwartet, wenn die vorgestellten Techniken das Design Datenbank-
basierter Web-Applikationen schneller, einfacher und weniger fehleranfillig werden lassen.

Preface

Wie wird es sein, wenn wir mit der Schnelligkeit des Blitzes Nachrichten idiber die
ganze Erde werden verbreiten konnen, wenn wir selber mut grofier Geschwindigkert
und in kurzer Zeit an die verschiedensten Stellen der Erde werden gelangen und wenn
wir mat gleicher Schnelligkeit grofie Lasten werden beférdern konnen? Werden die
Giiter der Erde da nicht durch die Méglichkeit des leichten Austausches gemeinsam
werden, daf$ allen alles zugdnglich ist? Jetzt kann sich eine kleine Landstadt und ihre
Umgebung mit dem, was sie hat, was sie 1st und was sie weifs, absperren: bald wird
es aber nicht mehr so sein, sie wird i den allgemeinen Verkehr gerissen werden.
Dann wird, um der Allberiihrung geniigen zu kénnen, das, was der Geringste wissen
und konnen muf, um vieles grofier sein als jetzt. Die Staaten, die durch Entwicklung
des Verstandes und durch Bildung sich dieses Wissen zuerst erwerben, werden an
Reichtum, an Macht und Glanz vorausschreiten und die anderen sogar in Frage
stellen kénnen. Welche Umgestaltungen wird aber erst auch der Geist in seinem
ganzen Wesen erlangen?

Adalbert Stifter, ‘Der Nachsommer’, 1857 [Wal81].

Although the novel ‘Der Nachsommer’ was written in 1857, the above quotation from the
Austrian poet Adalbert Stifter is of immediate interest. It shows the dangers but also
the new opportunities of globalization caused by the world-wide distributed information
networks [Z6197]. While some people fear the demand for higher qualification, the final
question of Stifter gives us an idea of the new potentials of globalization: Even smaller
countries and companies can stride ahead of larger countries or companies — provided they
can retrieve the necessary information and acquire the needed knowledge at first. This
was one main motivation for dealing with information technology in my thesis. Besides,
playing with Web information systems and Web technology in general can be a lot of fun,
too.

Acknowledgements

First of all I would like to thank my thesis advisor Professor Richard Eier for his support
and for always providing the right mixture of flexibility and encouragement. I will always
remember his “How’s your thesis going?”. T am also grateful to Professor Mehdi Jazayeri,
my second thesis advisor, for his assistance despite the very tight time schedule during the
final phase. I owe further thanks to Professor Heinz Zemanek for his interesting historic
insights and valuable discussions about the holistic view of things.

il

Preface

Many of my students have contributed to my thesis through prototype implementations
during practical work and diploma theses. I would like to thank them all, especially
Jiirgen Falb, Wolfgang Radinger, Christian Halter, and Wolfgang Kampichler for their
diligence and also for their patience with my constant changes to the design. Thanks
also go to my colleagues Bernd Petrovitsch for his system administrative support, and
Konrad Kratochwil for his hints and suggestions for submitting papers for publication.
Further thanks go to my colleagues Thilo Sauter, Martin Manninger and Michael Kunes
for countless valuable discussions.

Most of all I would like to thank my family: My parents for ‘always knowing’ that [would
get there some day and Caroline for her constant support and understanding.

Finally T would like to thank the whole Internet community — all the people who make
their work available to anybody who wants it. This great idea of sharing knowledge helps
to promote new ideas quickly and helped me to improve my work. Many of them I do
not even know — but thanks to all of them anyway.

v

Contents

1 Information Systems

2

1.1
1.2
1.3
1.4
1.5

Historic Overview e
User Interface: HTML, JavaScript and Java
State Maintenance: HTTP and JDBC
Database Connection: CGI, FastCGl and API
Wide Area Distribution 0oL

Relational Databases and pure HTML

2.1
2.2
2.3
2.4
2.5

2.6

2.7

State Machine Model oo
Abstraction: Passive HTML Controls
Design Language e
Layout Language and Interface
Building a Complete Information System
Logical Page Flow and Crosslinks
Frames and Window Modes
Multilingual Support oL
Security and User Rights
Implementation
Different Implementation Methods
Interpreter and Design Repository
Generator and Runtime Repository
Look-Ahead Link Generation
Library Concept and Reusability

Limits and Improvements

S O Ot

Qo

Contents

3 Object Oriented Approaches

3.1 Client-Server and Persistence

3.2 Object Serialization
3.3 PHCsgoJava

3.4 Encapsulated Database Access L.

3.5 Persistence Frameworks

3.6 Orthogonal Persistence

3.7 Comparison e e e e

4 Searching

4.1 Web versus Relational Databases

4.2 Natural Language Interface

4.3 Agent Interface

4.4 Robots and Search Engines

4.5 Future Work

5 Results and Conclusion

5.1 DEMENET - The DEMETER Project

5.2 Web Database Training

5.3 Quantitative Analysis
5.4 Related Work

5.0 Summary .o.o.o. L. e e e e e

5.6 Future Work

Appendix

A More PHC Examples

B PHC Language Syntax Definition

B.1 Design Language

B.2 Layout Language

List of Figures

vi

46
46
49
ol
54
57
58
59

64
64
66
69
73
75

76
76
78
79
85
86
87

89

100
100
114

118

Contents

Bibliography 120
Publications 130

Curriculum Vitae 132

Vil

Abbreviations

Al
ANSI
API
ARPA
ASCII
CAD
CBUI
CGI
CIM
COM
CORBA
CSS

DB
DBMS
DCOM
DHTML
DNA
DOM
DSSSL
ECMA

ER
FSM
FTP
GIF
GIS
GUI
HTML

Artificial Intelligence

American National Standards Institute

Application Programming Interface

Advanced Research Projects Agency

American Standard Code for Information Interchange
Computer Aided Design

Character Based User Interface

Common Gateway Interface

Computer Integrated Manufacturing

Component Object Model

Common Object Request Broker Architecture
Cascading Style Sheets

DataBase

DataBase Management System

Distributed Component Object Model

Dynamic HTML

Distributed interNet Applications

Document Object Model

Document Style Semantics and Specification Language

European association for standardizing information and communication sys-
tems (formerly European Computer Manufacturers Association)

Entity Relationship

Finite State Machine

File Transfer Protocol

Graphic Interchange Format
Geographic Information System
Graphical User Interface
HyperText Markup Language

viil

Abbreviations

HTTP HyperText Transfer Protocol
HTTPS HyperText Transfer Protocol Secure

IDL Interface Definition Language

IETF Internet Engineering Task Force

110P Internet Inter ORB Protocol

IP Internet Protocol

JDBC only a trademark — but often thought of as standing for Java DataBase
Connectivity

JDK Java Development Kit

JFC Java Foundation Classes

JPEG Joint Photographic Experts Group

JRE Java Runtime Environment

JVM Java Virtual Machine

KBMS Knowledge Base Management System
KQML Knowledge Query and Manipulation Language

LAN Local Area Network

MAC Medium Access Control

MB MegaByte

MIME Multipurpose Internet Mail Extensions
NC Network Computer

NLI Natural Language Interface

NNTP Network News Transfer Protocol
ODL Open and Distance Learning

ODBC Open DataBase Connectivity
OoODMG Object Data Management Group

OoOMG Object Management Group

OODBMS Object Oriented DataBase Management System
OoQL Object Query Language

ORB Object Request Broker

OS Operating System

PC Personal Computer

PDF Portable Document Format

PGP Pretty Good Privacy

PHC Passive HTML Controls

PHC/DL PHC/Design Language
PHC/LL PHC/Layout Language

1X

Abbreviations

PHCI PHC Interface
PL/SQL Procedural Language with embedded SQL

PNG Portable Network Graphic

POP Post Office Protocol

PTN PeTri Net

QBE Query By Example

RDF Resource Description Framework

RFC Request For Comments

RMI Remote Method Invocation

RSA Algorithm by R. Rivest, A. Shamir and L. Adleman

SGML Standard Generalized Markup Language
SMTP Simple Mail Transfer Protocol
SNMP Simple Network Management Protocol

SQL Structured Query Language
SSL Secure Sockets Layer

TCP Transmission Control Protocol
Ul User Interface

UML Unified Modeling Language
URI Uniform Resource Identifier
URL Uniform Resource Locator

VRML Virtual Reality Modeling Language
WAIS Wide Area Information Server

WAN Wide Area Network

WIS Web-based Information System
WWW World Wide Web

XLL eXtensible Linking Language
XML eXtensible Markup Language
XSL eXtensible Style Language

Chapter 1

Information Systems

During the 20th Century, the key technology has been

information gathering, processing, and distribution.
Andrew S. Tanenbaum [Tan96]

This statement concisely motivates the integration of databases and the World Wide Web,
which is the aim of this thesis: Databases are designed to process and store information
and the Web has turned out to be the place for gathering and distributing of informa-
tion. Some scientists even consider the Web itself to be a huge world-wide distributed
database [AM98]. Although these two seem to be made for each other, a short historic
overview explains why they are in fact so different and why this makes integrating them

so difficult.

1.1 Historic Overview

Since the commercial usage of computers started in about 1950 [SW74], databases and
the Web have had completely different histories: The historic overview of databases is
cited from [UlI8S]:

“The earliest true DBMS’s (Database Management Systems) appeared in
the 1960s, and they were based on either the network or the hierarchical data
models. [...] The 1970s saw the advent of relational systems [Cod70]. [...] A
decade of development was needed, with much of the research devoted to the
techniques of query optimization needed to execute the declarative languages
that are an essential part of the relational idea. [...] We see the 1980s as
the decade of object-oriented DBMS’s (OODBMS) in the true sense of the
term; i.e., they support both object identity and abstract data types. These
are the first systems to provide well-integrated data manipulation and host
languages. However, in one sense, they represent a retrograde step: they are
not declarative, the way relational systems are.”

Information Systems 1.1 Historic Overview

Jeffrey D. Ullman further predicted that in the 1990s true Knowledge Base Management
Systems (KBMS’s) would supplant the OODBMS’s. However, this has not taken place
up until now. KBMS’s are mainly used for expert systems, while even OODBMS’s are
not yet widely used. Furthermore it has turned out that there is currently no system
which can replace the others and each of them has its own application area [HeuS97]:

Relational Databases: These are still the best choice if huge amounts of simply struc-
tured data have to be stored and processed with medium complex short transac-
tions. Difficulties arise from the integration of object oriented applications and
relational databases, hence object relational successors to the relational database
products have currently become popular.

Object Oriented Databases: These offer the easy integration of object oriented pro-
gramming languages and are well suited for medium amounts of highly complex
structured data and long-lasting complex transactions.

Knowledge Base Systems: These are used in expert systems together with deductive
programming languages, e.g. Prolog.

Engineering Databases: Successful in the areas of CAD (Computer Aided Design)
and CIM (Computer Integrated Manufacturing) with very heterogenous and highly
complex structured data but usually just a few entities of one type. The number
of types in such a system is almost always as large as the number of entities.

Workflow Management Systems: Support group collaboration and communication.
Need active database concepts and high sophisticated transaction control: the trans-
action model is enhanced to allow cooperation instead of the previously required
isolation of transactions.

Spatial Databases: For example for Geographic Information Systems (GIS). Geometric
structures and a geometric search are supported. Special data structures support
geometric queries.

Document Databases: Office information systems allow collaborative work on docu-
ments. Special features are a full-text search and check-in/check-out procedures for
documents.

Multimedia Databases: Single entities are very large and unstructured, functions for
the manipulation of multi media data are required. Real time requirements become
important with video servers.

Temporal Databases: Enhance the relational model to a temporal relational algebra.
Temporal transactions, temporal queries and different aspects of time are some of
the features of this type of databases. They are typically required to store historic
data in repository systems.

Ideally we would like to access all of them with one single easy-to-use tool to retrieve the
desired information. Could the Web browser be this interface?

Information Systems 1.1 Historic Overview

The history of the Web has its early roots in the birth of the Internet and can also be
roughly measured in decades: In the 1960s scientists started to connect some standalone
computers over telephone lines. These early experiments were sponsored by the U.S.
Department of Defense under the management of the Advanced Research Projects Agency
(ARPA) with the aim of finding a flexible network which would survive the ‘big bang’ of an
atomic war. In the 1970s different networks were connected with standardized protocols
(TCP!'/TP?) resulting in the birth of the Internet. In the 1980s TCP/IP was integrated
into the Berkeley UNIX operating system. Many universities, research institutes of large
companies and government authorities joined the Internet. Information was gathered
using FTP (File Transfer Protocol) and Telnet which proved to be a user unfriendly way
of searching information. However, since the majority of people on the net were computer
literate, this did not prove to be too great a problem.

Things became quite different with the Web: Tim Berners-Lee proposed the first version
of HTML (Hypertext Markup Language) in 19893, the first server and browser prototypes
came into being between 1990 and 1992 [Con98]. From then on, the Web caused an
exponential growth of the Internet [Rut98, =RIPE, ==NW]*: In June 1991 about 500.000
nodes were recorded world-wide, 63.000 of them in Europe and 1728 of them in Austria.
As of June 1998 there were about 35 millions nodes recorded world-wide, 6.65 millions
nodes in Europe and 133.000 of them in Austria. The monthly growth rate is currently
about 1 million world-wide, over 200.000 for Europe and over 2500 for Austria. Hence
today’s monthly growth rate far exceeds the total number of nodes only 7 years ago.

The main reasons for the exponential growth rate the Web causes were the easy to use
point-and-click graphical user interface and the integration of all relevant services (Ftp,
gopher) into one tool — the Web browser. As more and more Web servers appeared all
over the world, the number of users accessing them also grew. At this point in time
electronic commerce started to take the Web by storm and companies today are making
and saving money by going online - up to two million U.S. dollars per day. Internet
commerce in goods and services between companies was estimated at US$ 8 billion in
1997, according to Forrester Research in Boston. The International Data Corporation
estimates that business-to-business sales over the Internet will represent US$ 81.2 billion
by 2000 [Cla97].

While all this was happening, surfers were very much still taking the back seat in a
sophisticated slide show. The user was being driven through a site, as opposed to driving
the session. This is why information retrieval and user-friendly interactivity have been key
issues in Web design [Cat97, MP97] since the beginnings of the Web. Using some scripts
(e.g. Perl) behind the CGI (Common Gateway Interface), the first results were rather
poor. It soon turned out that most real-life applications need an underlying database on
the server side to deal with large amounts of data and a design methodology to implement
complex functionality. Moreover, there are already many databases and legacy systems

! Transmission Control Protocol

2Internet Protocol

3Although the term hypertext was initially coined in the 1960’s, its popularity first grew when the
Web was invented.

4(Citations containing an arrow “=" mark a reference to the Web.

Information Systems 1.2 User Interface: HTML, JavaScript and Java

in existence which people want to connect to the Web with similar functionality as in
classic implementations [Adi97¢]:

“Good Web sites are database backed Web sites. [...] To have a site that
is stable, flexible and scalable, you really need the database advantage.”

Unfortunately almost 35 years of separated development have provided quite different
technologies. The next sections explain why relational databases and the Web are two
different worlds, before the following chapters present solutions to this problem. However,
no comprehensive overview of all Web technologies is provided - it would be outdated
within three months. Instead the mainstreams are categorized with respect to their
usability for database backed Web applications.

1.2 User Interface: HTML, JavaScript and Java

If the standard user interface of the applications has to work with nearly any browser and
platform and should not depend on proprietary non-standard extensions like Plug—Ins or
Active—X, then the user interface is restricted to the possibilities of pure HTML. This
concerns the representation, but the user interaction even more so — the only functional
elements are following a link, pressing a submit button of a form or clicking on an image
or imagemap. They always result in an HTTP (Hypertext Transfer Protocol) connection.
Hence, any functionality resides on the server side.

Of all the different approaches to make the browser more powerful and interactive,
JavaScript [Fla97, =JS] is a way of doing almost anything within a browser. JavaScript
is emerging as the client-side scripting language of the Web, at least since version 1.2,
when a serious security model was implemented. Currently JavaScript is moving to-
wards the formal acceptance of it as an international standard. The European stan-
dards body [=ECMA] has approved ECMA-262, the language specification derived from
Netscape JavaScript and submitted it to ISO/TEC JTC 1 for adoption under the fast—
track procedure.

However, the programming language of the Web is Java from Sun [=Java]. It can be
used on both the client (applets) and the server side (servlets). It provides very promising
concepts for the design and implementation of object oriented distributed applications
of nearly unlimited complexity and with few restrictions on the user interface. Despite
its indisputable benefits, there are some drawbacks: to implement servlets efficiently,
the virtual machine must be integrated with the database kernel. Only a few database
companies have announced this so far. Even more importantly, an applet must be down-
loaded to the client first. This is no problem for intranets. However the internet has a
smaller bandwidth, especially in Europe. For typical Internet applications consisting of
just a few client—server interactions, the long download—time at the beginning is often
not worthwhile.

On the other hand, more ‘intelligence’ on the client side can take some load off the server
and the network, thus making Java applets more efficient for long lasting transactions.

4

Information Systems 1.3 State Maintenance: HT'TP and JDBC

Moreover, there is additional functionality, especially for the user interface. This is why
this approach makes use of Java as an alternative implementation technique, but still
keeps the pure HTML interface available. A quantitative analysis will help to compare
the Java and pure HTML approach with each other based on the use of typical end user
profiles observed during the pilot phase of the real-life applications. Nevertheless, what
can be done with pure HTML without incurring a disadvantage, will be done with pure

HTML.

1.3 State Maintenance: HTTP and JDBC

Another problem arises due to the different nature of databases and the Web: In a
standard client-server application, both sides have their session state (e.g. the current
state of a database transaction on the server side and the current state of the user interface
on the client side) with a connection oriented protocol connecting them. The Web, on the
other hand, was never designed for client-server applications but rather for a quick and
simple delivery of linked hypertext documents. Hence the HTTP (Hypertext Transfer
Protocol) is stateless [Iye97] and the browser does not store its user interface state® but
connection orientation is inevitable for real-life database transactions.

To overcome this deficiency, two approaches are possible:

Long URL encoding: The complete session state information is passed back and forth
between client and server. This can be achieved by encoding this information into
each single URL (Uniform Resource Locator) of all the anchors within the page and
into an INPUT field of the type hidden into every form respectively. The advantage
is: The server does not have to keep the session state information in its memory
because it gets it back from the client with each new HTTP request. This technique
is feasible for simple and short state information especially if no database is available
on the server side.

Short URL encoding: Only a short session identifier, called a handle, is passed back
and forth between client and server with every HT'TP connection using the same
techniques as above. In this case the complete session state information (database
transaction state and user interface state) of all open sessions is kept on the server
side, usually in a database. This causes more load on the server but takes some
load off the network, especially if we use pages with lots of links.

The second approach scales better to complex state information and it even has one
further advantage: If we use frames, the first method would not work, because if one
frame is reloaded and the session state has changed during this HT'TP connection, then
the session state information encoded in all the other pages of a frameset is outdated.

5In fact, it does, otherwise the back button would not work. However, without JavaScript it is not
possible to make use of this information.

Information Systems 1.4 Database Connection: CGI, FastCGI and API

Alternatively Netscape’s Cookies ([KM97] and RFC 2109 [=RFC], Requests For Com-
ments) can be used both as long and short Cookies to implement the same two possibilities
of state maintenance. In this approach, short URL encoding is used for state mainte-
nance. This technique allows even more than one concurrent session stemming from the
same client.

JDBC [=-Java] — which is a trademark, but often thought of as standing for ‘Java
Database Connectivity’ — is a Java API (Application Programming Interface) for exe-
cuting SQL (Structured Query Language) statements. It provides a connection-oriented
alternative for database connectivity with Java applets. Hence with JDBC all the possibil-
ities of standard client-server applications become thereby available: The applet contains
its user interface state as object states of the GUI (Graphical User Interface) objects. As
mentioned above, both approaches will be compared.

1.4 Database Connection: CGI, FastCGI and API

In general, a pure CGI compliant interface between Web server and database server is
sufficient. For a sequence of HT'TP connections, however, CGI is rather ineffective. This
is due to the overhead of spawning a new process each time which, in turn, opens and
closes the connection to the database. This performance loss is normally overcome by two
approaches [Adi97a]. A proprietary approach not used here links server programs directly
with the Web server [NSAPI [=NSAPI|, ISAPI [=ISAPI]]. Another approach involves
preforking multiple processes, which communicate with the Web server and which stay
connected to the database. This is done with FastCGI [Adi97, =FCGI| by Open Market
and the Web Request Broker (WRB) of the Web Application Server by Oracle [Gre97a,
=Oracle]. Both approaches improve server performance, but only FastCGI is a non—
proprietary standard with easy migration from CGI. The Oracle WRB is at least CGI
compatible.

1.5 Wide Area Distribution

The decentralized structure of many systems causes additional problems. New informa-
tion nodes should be able to join the system but user queries involving more than one
node should also be possible. Everything is thus put into the database, even informa-
tional pages without any control element. No single static HITML page therefore exists;
each page is generated from the database dynamically. This allows usage of the various
replication concepts for distributed databases already available.

Another problem of wide area distribution is the latency of the net itself. This restriction
tells us to use small images, small pages and as few HT'TP connections as possible. The
simple solution is to use structures which are not too deep, in order that the user only
has to follow a few links to receive the desired information. An optional frame structure
is also provided to group the information into logical units where less information has to
be transferred with each HT'TP connection.

Information Systems 1.5 Wide Area Distribution

The next chapter introduces a new approach for the design and implementation of Web
applications based on relational databases with only pure HTML on the client side. Chap-
ter 3 evaluates alternative implementations with Java using object oriented techniques.
Chapter 4 investigates possibilities for searching in database backed Web applications —
from search engines to Software Agents. Chapter 5 finally presents real-life examples used
for the evaluation of the proposed design and implementation methods. After a quanti-
tative analysis the thesis concludes with references to related work, a short summary and
proposed future work.

Chapter 2

Relational Databases and pure

HTML

This chapter introduces a new approach of how to design and implement Web applica-
tions based on relational databases with only pure HTML on the client side and explains
the key ideas. The aim is to create a design language to describe the user interface layout,
the functionality and the database transactions in a homogenous way following a virtual
client-server model. The actual implementation of such a system is then composed of
several parts with potentially differing techniques. For example, either a pure HTML in-
terface with full functionality on the server side or a Java applet with greater functionality
on the client side. A toolset has been implemented to generate the different applications
automatically from the design language, thus implementing complex user interactions on
database information nodes distributed over the Web.

The first section introduces the theoretical state machine model used for design and
implementation. Based on this model, a design language is presented and it is shown
how an application is generated from this description using a set of tools and how this
application can be integrated into a complete information system. A short summary
evaluates the approach, some limits are revealed and further improvements are suggested.

2.1 State Machine Model

Being limited to an HTML-only user interface, we are confronted with a disadvantage
with HTML forms: no functional dependencies between different input fields of a form
can be implemented. Therefore input into one field cannot cause a restriction on the
possible inputs for another input field. An HTTP session has to be performed before
functional dependencies or restrictions can affect other inputs. To achieve this HTTP
session, a submit button has to be explicitly pressed. It is not usually enough to fill in
an input field or make a selection.

The key idea of this approach therefore is to use links to solicit user input. Control
elements are thus constructed of sets of links grouped together and called Passive HTML

Relational Databases and pure HTML 2.1 State Machine Model

Controls (PHC). The links of a PHC are called elements. Each element has two parts:
The anchor tag defining the link of the element and the content of the tag defining the
output string of the element. This approach is reasonable for a typical Web application
where most user interactions consist of browsing, selecting and collecting information
from the database. The possible values for user input are predefined in these cases. Form
input is only used where user input has to be gathered (e.g. name and address for an
online order).

The linked structures and functionality of hypertext documents are usually modelled with
Finite State Machines (FSM), Petri Nets (PTN) or colored Petri Nets. This approach
uses FSMs instead of PTNs because the advantages of petri nets' do not justify the
greater complexity in this specific case. However, the general idea of modelling hypertext
documents as automata is well proven, one recent work is [SFC98]%:

“What is required is a particular view of thinking about a document, i.e.
one must view a document as an abstract automaton that specifies the process
of browsing within it. Such a view is easily obtained for the hypertext systems
in use today. In fact [...] the linked structure of a document can usually be
thought of as the state transition diagram of a FSM.”

Hence each document defines a state (i. e. the state that this document is displayed in with
only one document being displayed at a time) and the state transitions are provided by
the hyperlinks. Clearly this describes a FSM with a finite set of pages (states) and a finite
set of links per page. Before this idea is adopted to database backed Web applications,
here is a short recall of some classic definitions of FSMs [HU96].

Definition 1 (Finite State Machine) A non-deterministic Finite State Machine is a
quintuple F = (Z,0,S8, R, F):

e 7 is a finite set of input symbols.

e O s a finite set of output symbols.

S is a finite set of states.
e R C S is the set of initial states.
e FCTIxSxS8x O is the transition relation.
Definition 2 (completely specified) F' is completely specified, if for all I € Z,S € S

there exists at least one S' € S,0 € O such that (I,S,S',0) € F, i.e. if the FSM has

at least one choice of next state/output for each input/present state combination.

!The Petri Net remains manageable in size compared to the growth rates of state machines for the
representation of parallel and composite systems [JH98].

2With many references to other work about using formal automata to define and verify hypertext
systems.

Relational Databases and pure HTML 2.1 State Machine Model

Definition 3 (deterministic) F' is deterministic if R is a singleton and F is a function
F:(ZxS8)— (Sx0), e if the FSM has at most one choice of next state/output for
each input/present state combination.

In this approach deterministic FSMs are used, but they are not always completely spec-
ified. The most important difference between a database backed Web application and
a static document tree is the number of pages: In the latter case this number is well
defined, whereas in the first case the number of dynamically generated pages is infinite
due to the arbitrary nature of the Turing machine which is formed by the database ap-
plication. Even so, in order to exploit this model a large number — which might even be
infinite — of states can be grouped together for purposes of easier analysis, design and
implementation?®:

Each PHC has its own state machine. When the user clicks on the link of an element,
a state transition can occur causing different output to be dynamically generated. The
complete state of a PHC consists of all the values required for the presentation of the
HTML page. These states can be grouped together to form a small number of explicitly
defined states. Each state now defines a class of dynamically generated pages with a
very similar appearance. Hence the complete state of a PHC consists of one state value
and a set of parameters P which define the slightly different output for all the pages
from the same class (i.e. state). The parameters are mostly filled with values from the
static database DB during state transitions. This separation of the database-dependent
appearance of the page from the state value makes the state machine independent of the
arbitrary contents of the database. Definition 4 defines a PHC as a deterministic FSM:

Definition 4 (PHC State Machine) A PHC State Machine is a quintuple
F=(Z,H,S,R,F):
e 7 is a finite set of links.

e M is a finite set of output functions H(P,DB) defining the HTML output in each

state.

S is a finite set of states.

R € S is the wnitial state.

o F:(IxS8)—(SxH)isthe transition function.

Figure 2.1 shows the complete transition graph of an example PHC implementing a
hierarchical selection, figure 2.2 shows the respective browser view during state S1. The
PHC consists of six elements Overview, OneUp, Province, Region, District and SellList, the
edges of the arrows are labeled with the name of the clicked element: Provinces consist of
regions which in turn consist of districts. Overview always leads to selection at the highest
level (province), while extend region level enhances the actual selection by one level.

3A method well known, for example, with protocol machines [Tan96].

10

Relational Databases and pure HTML 2.1 State Machine Model

Overview

Overview

OneUp,
Overview

OneUp,
Province

OneUp,
Region
SelList —p»

SelList —p» SelList —p»

OneUp,
Overview

Province Region

Province

Figure 2.1: State machine model.

Region selection
OVEIVIEW

extend region level
Miederésterreich

Donauregion
Industriewnerte]

Mostnertel
Waldwertel
T ettiertel

Figure 2.2: Browser view of the PHC.

Above the horizontal rule, the actual selection is shown: the province Niederdsterreich.
The SelList element finally provides a list of the regions of Niederdsterreich from
which to select. The selection of Mostviertel for instance causes a transition to state
S2 setting the parameter Region to a value which identifies the region Mostviertel in
the database.

The HTML output function H € H of a PHC is only determined by the PHC’s actual
state S € S, the contents of the parameter set P and the underlying database DB. It is
not influenced by the last input (‘click’):

S = H(P,DB)
(S, 1) = 5. (2.1)

Hence the output H of the state machine is not determined by & x Z but only by S,

11

Relational Databases and pure HTML 2.1 State Machine Model

splitting the function F from definition 4 into two functions Fr : (Z x S) — S and
Fo : & — H. This strict separation between state transition and output generation is a
key feature of this model to achieve stable and robust Web applications: It is necessary
to guarantee a deterministic generation of the dynamic HT'ML pages independently from
the last user interaction. Hence, as long as the affiliated state information is not changed,
a dynamically generated Web page will always look the same, regardless of which user
interactions have taken place in the meantime. Web applications which ignore this rule
can easily produce unpredictable results and a corrupted output. Again, the two reasons
for this are the stateless nature of the HT'TP protocol and the inability of the browser
to store user interface state information. Hence, if a user interaction has to produce a
different output, it first has to change the session state information, making it possible
to generate the new output from the changed session state information afterwards.

One special property of the PCH state machine is the relation between input and out-
put provided by the two parts of the elements: A click on the link of an element is
the input and each output function H(P,DB) is the composite of a set of functions
Or(P,DB) VYE € &, one for each element, because the HTML output of a PHC is
apparently the composition of the output of the elements of the PHC.

With this different point of view a click on one of the output elements E from the element
set £ can be seen as input to the state machine and can set a new state. The output O
of each element F € & is still determined by the PHC’s actual state S € S, the contents
of the parameter set P and the underlying database DB,

S = Og(P,DB) VE €&
(S,FE) =S (2.2)
This modifies the output function Fp to (S x £) — O while the input function has
become F : (S x £) — S replacing Z by £ as the new input set of the state machine.

Both functions now have equal left sides and can hence be combined again. The following
is the final definition of the ‘delayed output’ state machine:

Definition 5 (Delayed Output State Machine) A Delayed Output State Machine is
a quintuple F = (€,0,S8,R, F):

e £ is a finite set elements, a click on an element is an input to the state machine.

e O is a finite set of output functions O(P,DB) defining the HTML output for a

particular element in a particular state.

S is a finite set of states.

R € S is the wnitial state.

e F:(ExS)— (S x O) is the transition function.

12

Relational Databases and pure HTML 2.1 State Machine Model

The delayed output state machine from definition 5 looks quite similar to the PHC state
machine from definition 4 but the transition function F has a quite different semantic
meaning: For each state S of the PHC, the transition function F defines the output and
the link for each element E € £ in that particular state S. The output is called delayed,
because for each state transition E/O from one state S to another state S’, O defines
the output of E for the old state S and not for the new state S’. In other words, the
element E is presented with O in state S and a click on E causes a state transition to S’
(designer’s point of view). This model is also the basis for the design language described
in section 2.3 on page 19. This is later used in the opposite way for look-ahead link
generation (see section 2.6 on page 40): To generate the HTML output for a PHC in a
particular state S, all state transitions F/O leaving state S have to be combined: Each
E /O defines output O and link destination S’ of one element F in state S. This allows
it to encode all possible state transitions from that page into the links of the elements in
the generated HTML output in advance (implementation’s point of view).

Finally, the parameter settings are introduced into the model: A click on an element F €
€ in state S can set a new state S’ and eventually set some parameters P, € P,k € K(E)
to their new values py(F):

S = Op(P,DB) VE €&
(S,E)= S, P,:=p, VkeK(E). (2.3)

Since HTML is used to implement the state transitions, every possible state transition
has to be translated into the hyperreferences of the output elements. Thus, the actual
state S, the parameter set P and the database DB determine the element set £, where
each E € & consists of an output function Og(P,DB), a potential new state S’(F) and
eventually some parameters P, € P,k € K(E) and their new values py(E):

(S,P,DB) = Og(P,DB), S'(E), {Ps,pr(E)|k € K(E)} VE €E&. (2.4)

While notation (2.3) is the basis for the theoretical client-server model and the design
language, the equivalent notation (2.4) is the basis for the actual implementation of this
model with dynamically generated HTML anchor tags, where S'(F), Py and pi(F) are
encoded in the hyperreference URL and where O (P, DB) is the content of the tag (2.5).
Notation (2.6) shows the final HTML statement for the element Mostviertel in the
browser view figure 2.2.

< a href =" phc?handle =h&state =S'(E)

&Py=py(E)">0g(P,DB)< /a > (2.5)
< a href =" S_Geo?handle = 17&state = 2
&pRegion = 17" > Mostviertel < /a > (2.6)

To demonstrate this, let us trace an example of a possible user input as in figure 2.3. The
triangle marks the click while the circles at the bottom show the state transitions with
respect to the state machine in Figure 2.1. The edges of the arrows contain the name of
the clicked element and possibly the name and value of a parameter which is set during

13

Relational Databases and pure HTML

2.2 Abstraction: Passive HTML Controls

Region selection Region selection Region selection Regjon selection Regjon selection Region selection
Overview OVENTEW OVEITEW OVENTEW OVEITIEW OVEITIEW
OneUp extend region level extend region level extend regon level extend regon level extend regon level
w—— Miederésterreich Miederssterreich Miederésterreich Niederssterreich
mogion Mostviertel Mostnertel
— Artstetten
District
—
Burgenland Donauregion Aipelshach Donauregion
Central-Finland Tndustriemertel Amstetten Thdustriemertel
Eiirnten I>Mostmerte Artstetten Mostviertel
SelList FEuopio Waldwertel Blindenmarlt Waldviertel
m Weinwiertel Eschenan Weinviertel
Lappt Euratsfeld
MJld{eh Frankenfels
I>N1ederosterre1ch Furth
Worth-Carelia Gresten

=47
=17
=8

SelList

Province:
SelList
SelList

District:

Province

Region:

OO

Figure 2.3: Geographic Selection.

the state transition. At the beginning the province Niederdsterreich is selected. The
next state shows Niederdsterreich in the element Province, while the element SelList
now shows the regions of Niederdsterreich. During the next two state transitions, a
region and a district are selected and a click on Niederésterreich in state 3 brings up
the regions of Niederésterreich again. Figure 2.1 shows the complete transition graph
of this PHC. The edges of the arrows are labeled with the names of the elements which
fire the transition. The value to which each parameter is set during the state transition
is also marked.

2.2 Abstraction: Passive HTML Controls

The last section defined a PHC as a set of links grouped together to fulfill a common
control task and showed the state machine functionality of a PHC from the user’s point
of view. Figure 2.4 shows an object based approach to the complete functionality of a
PHC from the application designer’s point of view:

e A PHC has an internal data structure containing the session state information
including the session parameter set. This state is private but parts of it can be
made public to other PHCs.

In this model, the
Each

e A PHC consists of a set of interactive user interface elements.
only way a user can interact with a PHC is by ‘clicking’ on an element?.

4This reflects the situation on the Web where the only possibility for a user interaction is by clicking
on a link, if forms are not used.

14

Relational Databases and pure HTML 2.2 Abstraction: Passive HTTML Controls

-

messages

PHC Passive HTML Control

) methods
state machine

interactive
Ul elements

element partial ER internal
from session
database state and security:

parameters

Figure 2.4: Object based approach to Passive HTML Controls.

granted
user
rights

element contains the following rules:

— A rule for a string and/or an image representation within the user interface.
— A rule indicating what to do if the user selects this element (e.g. by clicking
on it).

These rules usually use the database contents and the session state information.

e The behaviour of a PHC is modelled with a delayed output state machine (see
definition 5 on page 12).

e A PHC is associated with a particular part of the underlying database. This part
can easily be described as a part of the complete ER (Entity Relationship) diagram
of the database.

e A PHC may contain additional methods to be called via messages from other PHCs
or from the user interface (click on a link). These methods implement more complex
functionality and can also cause state transitions.

e To the user a PHC presents itself as a set of links grouped together to implement
a particular control task.

15

Relational Databases and pure HTML 2.2 Abstraction: Passive HTTML Controls

A PHC does not contain any information about layout or HTML representation. This
information is completely separated into layout elements (see section 2.4 on page 25).

Figure 2.5 shows how these PHCs interact with the user interface and with each other to
produce dynamic HTML pages. A PHC can be ‘called’ in two different ways:

1. The functional part (state machine and additional methods) of a PHC is called
from the user interface when the user selects a particular element (‘clicks’ on it) or
from another PHC’s functional part.

2. The output part (rules for the presentation of the elements and rules for the action
caused by the selection of each of these elements) is called from an HTML page
containing this PHC. This sort of call is made via the PHCI (PHC interface) from
a layout description. Each PHC can have more than one layout (section 2.4).

These two calls reflect the strict separation between state transition and output generation
mentioned earlier: A user interaction may result in a changed session state information,
but the output of a PHC is only dependent on the new session state information but
not on the last user interaction. This is the key feature to achieve stable and robust
Web applications: As long as the affiliated state information is not changed, a dynam-
ically generated Web page will always look the same, regardless what user interactions
have taken place in the meantime. It is easy for Web applications ignoring this rule to
often produce unpredictable results. The two reasons for this are, again, the stateless
nature of the HI'TP protocol and the inability of the browser to store user interface state
information.

To be callable in these two ways, two methods are mandatory for each PHC: A method
for state manipulation and a method to generate the output of the PHC. Further methods
are optional. In figure 2.5 the user selection of element E of PHC 0 causes funcl of the
PHC 1 to be called, eventually a method or a state machine action. This method can
now call another method of any PHC or cause a page output. The selected page then
calls the output part of the contained PHCs, thus producing the final HTML page. In
the special case of the PHC Geo in figure 2.6 a click on the element Mostviertel of
the list SelList causes the state transition from SO to S1 of the same PHC Geo and
also sets the parameter Region to the identifier belonging to Mostviertel. The same
page is then regenerated and all the PHCs contained within this page are called with the
output-method to produce the appropriate HTML code finally delivered to the client, as
shown in figure 2.6. From the user’s point of view the click on Mostviertel has simply
provided him with a list of all the districts located in the region Mostviertel.

So far the inherently parallel nature of the distributed system [CDK94] ‘Web’ has been
ignored: Many almost concurrent requests can make parallel use of one PHC and the
underlying database. With modern relational database products parallelity is no problem
at all, nor is it a problem with PHCs: From the designer’s point of view, each session has
its own PHCs with their own session state information. Hence the designer can design the
application as if only one user is connected at a time. He does not have to worry about
concurrency. As described later, the state management mechanism holds the session state

16

2.2 Abstraction: Passive HTML Controls

Relational Databases and pure HTML

Buo(] Juawnoog| | &=
Frenmspung
Zpsqq] Y meer TR
PHEIUEPSRNT - EEE R
- FEECHE
Zsqa §, “FEH weger
SOBUDSUSUNT |
Appea ayp o Funiano Aq 1onpead i asoosy e e
01204218043 P3 [\ TOTB2] 21 UT uorib17 Jof salnua 8T YATEEISE BPITN]
73]
HSQHDO l/ A 20S TOTEAT PSS
SAYIETA] K SUEUIOD SSRqRIED AT, AAITATANG
121421015047 WOTRT 1) W1 JOHBIT uondAfAs
10] SUNDIRSS I8 NO X w05
€ JHd BT PRSI
PerEnag
sdATUYIS | g onpord pusTES [EEEEEES
A HEAET] | mEsenc Fddayg
= g UOT)II[ASJINPOLT
a4 e (o eag] (o] [FeeneeT)] [evgemope) [y [evpory] [Fwom] ey [PRYRyms)
m wm@ﬁ_ OYIIBACIFT UTPTIISTIIP - UPHOIBSY] PHITTPUDT ATL] SIBN] SD(T - SPAI[T [IMIRF 40 720T PILL Q
e)
¢ OHd B T B Tl T B]
adeasiay - | INIWIA 3

|=piB=.ds, / g=12|puUeyd,; ARG T RO ASRADNNG IS

Zsqq, TERE WL
PUEIqUE ISR

T vueyo
= Al
3 INJN3T3
Apped ay ue Sumana Lq 3npoad oy asoon
1012457804202 /] UOIESI o) UL 4oMBIT I0) salnua g

g abed
(a'x)zouny

FRES SR

q abed -] B

AU.Q..@V.—”UC_‘: TS} AOT[E | ToTFAT pUaTEs
SAET] {1 sUmeIed Iseqeep Y, SAITATAAD
401944219042 P8 0] UOTSRT 1) WL 40MBIT | uonaafas
JoJ Fumjareas aTe no x 0 OHd | uoiEayy
5

Torr T
TRy
SATEUIS | Bl janperd puate | FEEEE
WIEF] | matiane FHAOYS]

mt.q&m W0T)I3[ASJINPOILT

-

dRaL] [Fpowr padzy] [WaoT] [F9endue]| [Uomenouy] [Wetne T] [fanpoig] [Fwo] Feuama] §
OXfPACIPY URPHZSURIY - HPHOIDSY PYIIPUI] w1l T18)\ S - SUBIE [IMIY 10f 127l P [Q
v abed —— ;

def JoEaunwweT of wmald pI 3

adeasja - | INIWIA S

Figure 2.5: How PHCs interact with the user interface and with each other.
17

2.2 Abstraction: Passive HTML Controls

Relational Databases and pure HTML

Insay OHd

uonoajas
OHd

<« indino

indino

\

indino

pold OHd

19Npo.id abed

OHd

indino
abed

039 OHd

indino

<

10npoid abed

Bu0(quawnoag| |
PR
psqqy [FEH tueyor EEEETY
PURIQUAOSIaN, -l T EEEE e
245997, TFEH toegel
SABUISUSUNY —ll |
Appe 2y uo Sumona £q 3anpord a 2500y [ErE e
Yo 1244215045210 UOTSAL 2T} W o717 JOf satnua 8T CEEE SR
[EEE
AT MAOUS TaTEaT puara
SAYIPER] B SUMIUOD asEqRIRp AT, MILIARG
{2342 1AISOFT BOTRAT oT) Wk JonbIT UONIA[AS
10] SUmaIRaS OIR NO X uoSayy
TonbrT FEE-EE STy
SPemnag
SIS | praganpoid puatEa [Fea
WRAOBFT | mEmgene Fmddogg
SIS UOTII[AS-INPOLT
TAPEr] [Fpom e (o] [Seertsne] [opemeqey] [eero] [(rnpord] ooy ey Epoppeme)
CYFIPAOIPI] URPTIASUTT - HPUOIBSY PYITIPUR] 4T3 TIZN] SW(] - SPAL AT 40f TPN] 21T Q
Wi e e |

19npoid 39vd
uoibay AVYvd L3S
ZS 0109

dsf oEsunwwo¥ of waR WpF &g

adeasiap - | INIHIA 3

|=piba.ds tg=ie|pueyd; Aeud TS o WS 006 R

599, FRH oL
PURIqUEAIsIRA,

TOTE3 MBS (]

1ses IN3aW313

Appea 31 uo Fumjaa g onpoTT ST TSIy
121244278042 B5 i1 TOLSOT 2) W 4o¥H1T I0] sainus g

-

1onpoid abed

2] [apow Dadzy] [tido)] [F9endue]| [Gonetroguy] [Whenno]] [S19nporg] [FWor]] [F9uamac]]

OYIPACIPT UNPTPSIUN] - HPUOIBEY DYITPUR] AT $127] ST(] - SUDIY [IMITY 40F 127] P4 L

PRGN
s
AT MOTE ToTEa] PUalEa
SR g SWRINOD ASEqEREp AT, || s
140124427504 2P 1] OIS AN} UL LorbiT | uonyIA[As
J0] SUMDIRIS 208 NO X 0399 OHd | uoiay
e
JonBrT I reas A
FFeIana Y
ST | ey senpedd pueEe Janseqg
TWEEF] | MEATac Fmadeng

Eﬁ&m uonaa[as-3anp oLy

deF ioEaunuwe oF wali gpT g

adeasyaN - | INIWIA 5

Figure 2.6: How the PHC Geo interacts with the user interface, with itself and with the

generated HTML pages.

18

Relational Databases and pure HTML 2.3 Design Language

information for each state in a special data structure within the database, making the
database itself responsible, in addition, for the concurrency management of the PHCs.

2.3 Design Language

In classic database design [HeuS97, GR95], following the requirements’ analysis, further
development steps are strictly separated into information design and functionality de-
sign. The functionality design starts with the functionality analysis and ends with the
procedural implementation of the application functionality using standard methods of
structured-analysis oriented Software Engineering. The information design starts with
information analysis, followed by methods of semantic data design such as Entity Re-
lationship [Che76] and after normalization [UlI88] of the relational design ends with an
SQL implementation of a relational database. Though highly dependent on each other,
these two separate paths were often followed by different teams of developers with dif-
ferent knowledge. Only strong organizational efforts or mature toolsets can bring these
two completely different design methods together, resulting in one final product. Despite
these inherent difficulties, which object orientation tries to overcome (see next chap-
ter), a large number of large-scale software systems have been successfully implemented
in this way and many mature design and implementation tools are available from the
major database vendors. Hence in the area of relational databases the PHC approach
belongs to the functionality design and it is assumed that a relational database is either
already available (legacy systems), or is designed and implemented at the same time with
standard database design tools for semantic data design.

A design language — PHC/DL — has been developed to describe PHCs on an abstract level
(functionality, database operations, state machine, element representation and action).
In addition, a layout language - PHC/LL — has been developed to describe how the PHCs’
output is integrated into HTML pages. Using these two languages, the structural part is
separated from the layout. An interface (PHCI) is defined between them to make them as
independent from each other as possible. Hence the abstract description of a PHC follows
a virtual client-server model, whereas with pure HTML the complete implementation is
finally located on the server side. The developer of an application can thus focus on the
design, while the otherwise error-prone implementation is generated automatically (see
section 2.6).

The PHC/DL is a domain specific language designed to describe all aspects of PHCs as
shown in figure 2.4 on page 15. The main structure of a PHC consists of three parts as
shown in figure 2.7:

Interface The interface definition contains the forward declaration of the PHC’s content
(mandatory) and the declaration of the session state information parameter set. It
also defines the default state of a PHC as the first state in the forward declaration.

Implementation The implementation of the functional methods (optional).

19

Relational Databases and pure HTML 2.3 Design Language

PHC Geo

INTERFACE

// interface definition of the PHC

IMPLEMENTATION

// optional methods

BEGIN

// state machine model including mandatory methods:
// 1. ouput method of the PHC

// 2. state manipulation method of the PHC

END

Figure 2.7: Overall structure of a PHC/DL description.

Body The very core of the PHC: The state machine model and the element definitions
implicitly defining the two mandatory methods for state manipulation and output
generation.

Both parts — implementation and body — can contain database transactions.

The complete PHC/DL syntax and semantics fall outside the scope of this thesis, but
the key ideas will be illustrated by examples. Details can be found in [Fal98], where the
implementation of this language is described in detail. Figure 2.8 shows the PHC/DL
description belonging to the example in figures 2.3 and 2.1.

The most important language elements are:

ELEMENT Elements are the base of the body of a PHC/DL description and provide the only

PARAM

possibility of user interaction with a PHC. Depending on the current state, they
may or may not be ‘clickable’ and have a well-defined presentation string and/or
image. In notation (2.4) these are named E € £. Every F has a PRINT clause
and/or an IMAGE clause to define the output O (P, DB) of the element and a
GOTO clause to define the state transition S'(E), { Py, pr(E)|k € K(E)}VE € &,
which a click on this element would trigger. The clauses STATE, ELEMENT, GOTO
and PRINT together define the delayed output state machine of definition 5 on
page 12. The special clause NULL in combination with GOTO means that no link
is generated (no state transition is possible from this element). In combination
with PRINT, it defines an element as invisible (and thus not clickable) in the
corresponding state. All the PRINT (and IMAGE) clauses of all the elements of
a PHC together implicitly form the output method of the PHC. All the GOTO
clauses of all the elements of a PHC combined form the state machine and the
state manipulation method of this PHC implicitly.

A parameter is a data structure belonging to the internal session state infor-
mation of a specific PHC and hence persists for a whole series of HTTP con-
nections. The type ROWID defines a parameter to hold the identifier for a tuple

20

Relational Databases and pure HTML 2.3 Design Language

PHC Geo

// geographical selection
// version 1

INTERFACE

PARAM
Province PUBLIC ROWID PRINT tProvinz.aBezeichnung[aProvId];
Region PUBLIC ROWID PRINT tRegion.aBezeichnung[aRegId];
District PUBLIC ROWID PRINT {SELECT aBezeichnung FROM tGemeinde WHERE aGemeinId = PARAM;};
ELEMENT
Overview, OneUp, Province, Region, District;
LIST
SellList;
STATE
S0, //nothing selected, the first state is the start state
S1, //province selected
S2, //region selected
S3; //district selected

IMPLEMENTATION
BEGIN

ELEMENT Overview (
ALWAYS { PRINT ’'overview’; GOTO SO; }
)

ELEMENT OneUp (
ALWAYS { PRINT ’'higher region level’; }
STATE S0,S1 { GOTO SO; }
STATE S2 { GOTO S1; }
STATE S3 { GOTO S2; }
)

ELEMENT Province (

ALWAYS { GOTO S1; }

STATE SO { PRINT NULL; }

STATE OTHER { PRINT PARAM Province; }
)

ELEMENT Region (

ALWAYS { GOTO S2; }

STATE S0,S1 { PRINT NULL; }

STATE OTHER { PRINT PARAM Region; }
)

ELEMENT District (

ALWAYS { GOTO NULL; }

STATE S0,S1,S2 { PRINT NULL; }

STATE OTHER { PRINT PARAM District; }
)

LIST SellList (// very concise inline definitions and implicit assumptions
STATE S0 QUERY IS
SELECT aBezeichnung { PRINT; }, aProvId { GOTO S1 SET PARAM Province; }
FROM tProvinz;
STATE S1 QUERY IS
SELECT aBezeichnung { PRINT; }, aRegId { GOTO S2 SET PARAM Region; }
FROM tRegion
WHERE tRegion.aProvId = PARAM Province;
STATE S2 QUERY IS
SELECT aBezeichnung { PRINT; }, aGemeinId { GOTO S3 SET PARAM District;}
FROM tGemeinde
WHERE tGemeinde.aRegId = PARAM Region;
STATE S3 { NULL; };
)

END //Geo

Figure 2.8: PHC/DL description.

21

Relational Databases and pure HTML 2.3 Design Language

VAR

STATE

LIST

QUERY

of a database table. The optional PRINT clause defines the output of the pa-
rameter which is printed instead of the parameter value if the parameter is
used directly as part of the generated Web page®. Other possible datatypes are
CHAR, VARCHAR, INT, FLOAT, STRUCT (a structure of other data types) or BAG (a
relation of other datatypes). A parameter is implicitly defined as private. If a
parameter is to be visible for other PHCs, it must be declared as PUBLIC. In
addition, a default value can be defined as the start value of the parameter until
it is otherwise set.

A variable holds transient local information which is valid during the method
execution within only one single HT'TP connection but not the whole session.
It can be of the same datatypes as the parameters.

The state clause is used to define which branch is valid in which state. Special
states are ALWAYS which is valid in all states and OTHER which is the default,
if no explicitly named state is set. The possible combinations of all states and
elements form a two dimensional table Each table cell contains the rules to be
followed for PRINT and GOTO clauses for the respective combination. Thus in
PHC/DL it is possible to define either different states nested within an element
or different elements nested within one state. The first method has proven to
be more convenient in many cases because different states can more often be
combined to one rule (e.g. STATE S0,51,5S2) than different elements can. This
results in a shorter and clearer overall description.

A list can contain one or more elements. It defines a series of tuples, where each
tupel contains an iteration of the element(s) of the list. The elements have the
same functionality as a standalone element but an element in a list requires rules
for its presentation and functionality within each tupel of the list. Hence a list
definition always contains a QUERY clause, used as a cursor loop, to define the
values used in the rules of each element for each tupel iteration. The parameter
setting is more important for differentiating between the element iterations in
the list; It is, however, not mandatory.

An SQL (Structured Query Language) query [Mis95] operation is needed to
define a cursor for the values used in the ELEMENT and STATE clauses within a
list. There are three possibilities for nesting queries, states and elements within
a list: State — query — element if different queries are necessary in different
states. Query — state — element or Query — element — state if only one query is
used within the list, again with the two possibilities — either nesting states in
elements or elements in states. The inline definitions of the PRINT and the SET
PARAM clauses are used as a convenient abbreviation in many cases. The long
form of the definition would include the declaration of a cursor name (directly
after the keyword QUERY) and the explicit usage of the cursor variables within
the cursor loop. An example of this is given later. If a query contains only inline
definitions, the query need not be named. If a list contains just one element,
this elements need not be named: It inherits the name of the list implicitly.

5This is essentially an abbreviation for a common case. The parameter can always be used within a
PRINT expression to produce a different output.

22

Relational Databases and pure HTML 2.3 Design Language

PRINT The PRINT clause can only be used within an element as described above. It
can have the following attributes:

A parameter with the type ROWID: The output has to be defined with the
parameter declaration.

A parameter or variable of the type CHAR, VARCHAR, INT, FLOAT: The con-
tent is implicitly converted to a string.

An SQL query which has a single result (one attribute, one tupel). This can
be thought of as an abbreviation of having first a query of the type SELECT

INTO var FROM ..., which fills a variable with the result and then
a PRINT var statement to use the variable as output of the element.

°

GOTO The GOTO statement is used within elements to define the state manipulation
that a user ‘click’ on this element would trigger and the new page delivered to
the client afterwards. It has the following attributes:

Directly after the keyword GOTO, the new state is set explicitly. If no state
is named, the default state is taken instead.

The optional IN attribute is used to set the state and parameter of another
PHC instead of the current. The current PHC can be explicitly referred
to as SELF or THIS, all other PHCs are referred to by their names.

An optional list of parameter settings with the SET attribute determines
which parameter will be set to which expression during the state manip-
ulation method. If some parameters of another PHC have to be set, they
have to be declared as public within this other PHC. The expression usu-
ally contains cursor attributes from the surrounding query.

The PAGE attribute determines the logical name of the new active page
and is a means of user guidance. This attribute is optional, the default
causes the same page to be reloaded, which can also be explicitly named
with THIS or SELF. In a single window mode without frames this simply
means the next page to be delivered to the Web browser. If frames are
used, the active page has to be displayed in the appropriate frame. If it
has already been displayed, it has to be refreshed.

The REFRESH attribute finally can be used to determine, which pages will
change due to the change of the session state information. This clause is
only necessary with frames and causes the named pages to be reloaded, if
they are currently being displayed. Hence — with frames — the PAGE and
REFRESH attribute together determine which page is (re-)loaded into which
frame. This is described in more detail in 2.5 on page 29.

Instead of the PAGE attribute an URL can be declared to be loaded into
the current frame after completion of the state manipulation or functional
method. This allows external pages to be displayed.

The TARGET attribute can be used to define a target frame for the page or
URL to be loaded. It is especially useful for URLs but it can also be used
with pages. In the latter case this overrides the default frame of the page.

23

Relational Databases and pure HTML 2.3 Design Language

MESSAGE

METHOD

Embedded into procedural blocks, the GOTO clause may look like a jump state-
ment from the old BASIC days. It is emphasized therefore that the GOTO clause
defines the state transition, caused by a click on the actual element, and the
new page(s) delivered to the client. It is not a means of control flow within the

PHC/DL blocks.

A message poses an alternative to the GOTO statement: It defines a message
with parameters® to be sent to a PHC upon user interaction (i.e. ‘click’) on this
element, instead of the built-in method for state manipulation” defined by the
GOTO clause. The MESSAGE statement can also have a PAGE or an URL, a TARGET
and one or more REFRESH attributes. Furthermore, the method implementation
itself can also contain a GOTO statement with some of these clauses: PAGE and
URL would override the respective clauses from the MESSAGE call, but REFRESH
pages are not possible. In contrast to the standard state manipulation method,
a functional method implementation can also send another message to the same
or another PHC.

To enable a PHC to accept a message, a method has to be defined within the
implementation part of the PHC with the METHOD clause. There is a tradeoff
between state manipulation and functional methods resulting from the question
of what to store in the local session state information parameters of a PHC:
Either the user’s selection or the result based on a query using these selections.
The answer is: If there are not too many different user selections, it is easier
to use the parameters to store these selections and to use the state manipula-
tion methods to change them. If there are many different user selections (and
especially if their number cannot be determined in advance, for instance as is
the case with a shopping basket), then it is easier to use a functional method
to incorporate the actual user selection into a new result and store the result
within the session parameters.

CONDITION With this clause, conditions needed for layout purposes can be defined within

PHC/DL and later used within PHC/LL. Conditions are named and set within
the branch of an IF statement. They can be used within the PHC/LL to define
variations of the user interface layout depending on the condition. Especially
useful if defined in PHC /DL within a list definition, they can be used in PHC/LL
only in combination with an iterator defined from the same list.

More sophisticated examples of the usage of all these clauses are given in appendix A on

page 89.

SParameters are handed over by name, not by position.

"The state manipulation method can be thought of as a special form of message. However, the implicit
definition with all the GOTO clauses of all the elements of a PHC has to be proven to be more efficient
and convenient than an explicit definition of a state manipulation method.

24

Relational Databases and pure HTML 2.4 Layout Language and Interface

2.4 Layout Language and Interface

Whereas the PHC/DL describes the PHC itself (functionality and output generation for
each element), the PHC/LL is a procedural language embedded into HTML and describes
how the PHCs’ elements’ output is integrated into the surrounding HTML code. The
PHCI separates the PHC from the layout as far as possible® by allowing the PHC/LL to
make use of the following parts of the PHC/DL only:

e The elements’ PRINT and IMAGE methods can be used.
e The lists can be used for loop definitions.

e Predefined conditions can be questioned.

e The PHC’s states are available.

It is emphasized that PHC/LL just defines the layout of the surrounding HTML page,
whereas the structure, the string and image representation of the PHCs are already

defined within the PHC/DL. This separation provides some advantages over the direct
integration with HTML:

e [t makes the PHC independent from the layout and thus from future changes to
HTML.

e One PHC can be used a multiple number of times within different pages with
different layouts, e.g. to satisfy user’s needs. An example will show this later.

e The PHC/DL can be developed by application programmers and database experts,
whereas the PHC/LL can be implemented by graphical designers and multimedia
experts (often a more artistic than technical task). These two groups, with very
different skills, only have to share a common PHCI instead of working together on
one code.

e Even other frontends instead of HTML (VRML — Virtual Reality Modeling Lan-

guage — or Java) are possible because of this strict separation.

Figure 2.9 shows the PHC/LL description belonging to the PHC/DL in figure 2.8. The
generated browser view, depending on the actual state of the PHC, is shown in figure 2.3
on page 14. In state S2 we receive the generated HT'ML code as shown in figure 2.10
resulting in a browser view as shown in figure 2.11.

The language example is simple and self-explanatory: the embedding of the PHC/LL into
the HTML code is done via SGML (Standard Generalized Markup Language) comments.

80f course there are some relations between PHC/DL and PHC/LL: On the one hand PHC/LL is
tailored towards the functional structure of the PHC/DL and on the other hand a difficult layout may
require additional PHC/DL code. However, the key feature is that this mutual dependency is well defined
to a very small amount of information - the PHCI.

25

Relational Databases and pure HTML 2.4 Layout Language and Interface

<TABLE ALIGN="right" WIDTH=115 BORDER=0>
<TR><TD ALIGN="center" VALIGN=top>Region selection</TD></TR>
<TR><TD>
<1 --$PHC PRINT (Geo.Overview) ; --><DUMMY>Geo.Overview</DUMMY>
</TD></TR><TR><TD>
<!--$PHC PRINT (Geo.OneUp); --><DUMMY>Geo.OneUp</DUMMY >
</TD></TR>
<TR><TD>
<!--$PHC PRINT (Geo.Province); --><DUMMY>Geo.Province</DUMMY>
</TD></TR><TR><TD>
<!--$PHC PRINT (Geo.Region); --><DUMMY>Geo.Region</DUMMY>
</TD></TR><TR><TD>
<!--$PHC PRINT (Geo.District); --><DUMMY>Geo.District</DUMMY>
</TD></TR><TR><TD ALIGN=center><HR></TD></TR>
<!--$PHC FOR item IN Geo.SelList LOOP -->
<TR><TD ALIGN="right">
<!--$PHC PRINT (item); --><DUMMY>Geo.Overview</DUMMY>

</TD></TR>
<!--$PHC END LOOP; -->
</TABLE>

Figure 2.9: PHC/LL description.

<TABLE ALIGN="right" WIDTH=115 BORDER=0>

<TR><TD ALIGN="center" VALIGN=top>Region selection</TD></TR>

<TR><TD>overview</TD></TR>
<TR><TD>extend region
level</TD></TR>

<TR><TD>Niederösterreich</TD></TR>
<TR><TD>Mostviertel</TD></TR>
<TR><TD></TD></TR>

<TR><TD ALIGN=center><HR></TD></TR>

<TR><TD ALIGN="right">Aigelsbach</TD></TR>
<TR><TD ALIGN="right">Amstetten</TD></TR>
<TR><TD ALIGN="right">Artstetten</TD></TR>
<TR><TD ALIGN="right">Blindenmarkt</TD></TR>
<TR><TD ALIGN="right">Eschenau</TD></TR>
<TR><TD ALIGN="right">Euratsfeld</TD></TR>

</TABLE>

Figure 2.10: Generated HTML code of PHC Geo in state S2.

26

Relational Databases and pure HTML 2.5 Building a Complete Information System

Region selection
OVEIVIEW
extend region level
Hiederésterreich
Mostwertel

Aigelsbach

Amstetten
Artstetten
Blindenmarlct
Ezchenau
Euratsfeld
Frankenfels
Furth
Gresten

Figure 2.11: Browser view of PHC Geo in state S2.

Thus, any HTML editor can be used to design the surrounding layout without being
confused by the embedded language. The disadvantage is that a standard HTML editor
or browser would display nothing instead of the elements’ output, ending up with an
ugly and unrepresentative layout in most cases. To solve this problem, the dummy tag
is introduced: A standard HTML browser or editor would ignore this tag and treat
the contents of it as normal text. The tools on the other hand remove the dummy-tag
including the content. With this ‘trick’ similar to the NOFRAMES tag for frame-incapable
browsers a representative layout can be achieved with the PHC/LL source code.

The most important language elements of PHC/LL are the PRINT and the IMAGE state-
ments, which include the textual or image output of an element into the HTML code.
The FOR loop defines an iterator (item in figure 2.9) for a list. Within this loop all the
element(s) of the list can be named using the iterator and the name of the element. If the
list contains just one element, the iterator alone is enough. The naming of the iterator
also allows nested loops.

2.5 Building a Complete Information System

To build a complete, pure HTML based Web application one has to tackle the following
tasks:

e Design of the functional elements (PHCs and forms).

e Description of the pages, either static pages or pages containing functional control
elements embedded into HTML.

e Logical arrangement of the pages and overall structure.

27

Relational Databases and pure HTML 2.5 Building a Complete Information System

e Crosslinks from one page to another (internal or external).

e Design of the frame layout of the pages, i.e. which page has to appear in which
frame.

e Multilingual support. Although the Web ‘speaks’ mainly English, multilingual
support is necessary as a convenience and courtesy to the end user, especially in
Europe.

e Security and user rights

With the PHC framework these design tasks are solved as follows: Functional Elements
and Database transactions are defined with PHC/DL as shown in the previous sec-
tions. The pages are pure HTML and control elements are embedded via PHC/LL.
Each page has a unique logical name under which it is stored in the database. Even
static pages without any control element are stored in the database. This makes the
Web-Management [Beh98| easier, too.

Logical Page Flow and Crosslinks

Links have to be bidirectional to enable maintenance of the complete system. Within
the PHC framework every anchor tag is either generated dynamically from a PHC func-
tion, from a logical page arrangement or from the crosslink database. The logical page
arrangements include:

hierarchical document collections

linear document collections

nested structures

table of contents, index pages, full text search, menues

predefined logical page flows (e.g. one or more guided tours)

Crosslinks, on the other hand, are defined within the HTML pages with the PHC/LL
clause GOTO (e.g. GOTO PAGE Result). Each time a static page in the database is in-
serted, modified or deleted, a trigger will cause a parsing of this page and update the
bidirectional logical link database from the GOTO-statements contained in this page. Hence
it is impossible that internal links can fail. If a page should be removed but links are
pointing to that page, a warning is generated. Ignoring this warning results in the re-
moval of all the links pointing towards this page. External links are also defined by the
GOTO clause (e.g. GOTO URL "http://some.where.org/page.html”) and the links are
also stored in the database. In this case, a Web robot has to check periodically if the
remote links are still valid and sends an email to the webmaster if at least one link fails.

28

Relational Databases and pure HTML 2.5 Building a Complete Information System

Frames and Window Modes

PHC/LL is used to define the different framesets and pages: Each page and frameset is
defined with PHC/LL as shown in figure 2.12 and each page or frameset has its place in
one (or more) framesets, depending on the actual mode. Figure 2.13 shows an example of
the overall frame structure of an application. A window repository is extracted from the
PHC/LL definition of the framesets and stored in the database. Each time a dynamic
HTML page is generated, the anchor tags within that page are provided with the appro-
priate target attributes. Also the REFRESH and the PAGE clauses of the GOTO clause are
resolved at that time: The page from the PAGE clause has to be displayed in the appro-
priate frame and may therefore determine which new frameset is to be displayed. If the
page is already displayed, it has to be refreshed. All the pages from the REFRESH clause —
but only if displayed in the actual frameset — have to be refreshed (reloaded). To reload
more than one frame without JavaScript, the special HTML target values ”_parent” and
" top” are used. Hence, when generating a page, the window repository is used to au-
tomatically generate the correct target values from the PAGE and REFRESH definitions of
the respective elements, computing in advance which pages will have to be reloaded into
which frame if the respective element is ‘clicked’.

The generated button bars for navigating the document collection structure and all inter-
nal links are also adapted to the current frame structure: If a page is already displayed
in a frame of the actual frameset, the navigation buttons and links pointing to that page
disappear. The reason for this is that a user would get no reaction from clicking on such
a link unless named tags are used to jump to a particular position within a page (in this
case the appearance of the links is not suppressed).

Another nice and useful feature has been implemented into the PHC framework: A page

can be configured to have a full-screen button E which enables the user to display
the page in a predefined parent frameset as shown in figure 2.12 with the page named
“navigation”:

<!--$PHC PAGE navigation MODE Expert IN nav FULLSCREEN main -->

When the page appears in full-screen mode, another button ﬂ allows the user to switch
back into framed mode. Both buttons are simply implemented as images with anchors.

Multilingual Support

Multilingual support is ‘built-in’ in the PHC framework. Everything printed with the
PRINT clause in the PHC/LL description, either user interface strings or element output,
is multilingual from the start. One language has to be selected as the default language. In
addition a set of database attributes is usually defined to be multilingual thus replacing
the attribute by a foreign key to the dictionary, which contains the attribute in all the

29

Relational Databases and pure HTML 2.5 Building a Complete Information System

<!--$PHC

ROOT Demenet;

LANGUAGES English DEFAULT, Deutsch, Suomi;
MODES Beginner, Expert;

-=>

<!--$PHC FRAMESET f overview MODE Beginner, Expert IN ROOT; -->
<HTML>

<TITLE>DEMENET</TITLE>

<FRAMESET ROWS="65,*" border=1>

<FRAME NAME="title" SRC=<!--$PHC FRAME title; --> scrolling="no" marginheight=1
marginwidth=1 noresize>

<FRAME NAME="main" SRC=<!--$PHC FRAME main; --> marginheight=1 marginwidth=1 >
</FRAMESET>

</HTML>

<!--$PHC FRAMESET f product MODE Expert IN main AS DEFAULT; -->

<HTML>

<TITLE>DEMENET - Farmer Products</TITLE>
<FRAMESET cols="380,*" border=1>

<FRAME name="nav" src=<!--$PHC FRAME nav; --> marginheight=1 marginwidth=1>
<FRAME name="output" src=<!--$PHC FRAME output; --> marginheight=1 marginwidth=1>
</FRAMESET>

</HTML>

<!--$PHC FRAMESET f results MODE Expert IN output AS DEFAULT; -->

<HTML>

<TITLE>DEMENET - Results</TITLE>
<FRAMESET rows="50%,50%" border=1>

<FRAME name="out" src=<!--$PHC FRAME out; --> marginheight=1 marginwidth=1>
<FRAME name="caddy" src=<!--$PHC FRAME caddy; --> marginheight=1 marginwidth=1>
</FRAMESET>

</HTML>

<!--$PHC FRAMESET f admin MODE Expert IN main; -->

<HTML>

<TITLE>DEMENET</TITLE>
<FRAMESET cols="320,*" border=1>

<FRAME name="menu" src=<!--$PHC FRAME menu; --> marginheight=1 marginwidth=1>
<FRAME name="edit" src=<!--$PHC FRAME edit; --> marginheight=1 marginwidth=1>
</FRAMESET>

</HTML>

<!--$PHC PAGE welcome IN ROOT AS DEFAULT; -->

<HTML>

</HTML>

<!--$SPHC PAGE menu MODE Beginner, Expert IN title; -->

<HTML>. . .</HTML>

<!--$PHC PAGE home MODE Beginner IN main MODE Expert IN out, output; -->
<HTML>. . .</HTML>

<!--$PHC PAGE product MODE Beginner IN main AS DEFAULT -->
<HTML>. . .</HTML>

<!--$SPHC PAGE navigation MODE Expert IN nav FULLSCREEN main -->
<HTML>. . .</HTML>

Figure 2.12: PHC/LL definition of the various framesets and pages.

30

Relational Databases and pure HTML 2.6 Implementation

page menu

frameset f_overview frameset f_product frameset f_results

frame tile ¥
frame main frame frame frame ou
oot E—f—| hav | output +
<« |
frame page caddy
A /’ 4 A caddy

page order
| I
R2gC anguage page navigation

age welcome
ng_' page Iogin

[page tourism_selection ||
__

frameset f_admin frame frame -
menu edit page tourism_result
[page admin_menu1 i —
= page dictionary . .
sample final browser view
menu
[page admin_menuz i

nav

= / page user_dic I result

caddy

|page vendor_menu I |page person_form I
_— _—

Figure 2.13: Overview of frameset and page definitions in the mode ‘Expert’.

required languages. For administration purposes a Web interface is provided to edit the
various languages in the dictionary. This enables Web collaboration for administrative
purposes on the final application. Interpreters from different countries can translate the
dictionary entries into the different languages. The advantage of that structure is: In
order to add a new language, nothing has to be recompiled. It is only necessary to make
one single entry indicating that the new language is available. The dictionary has then
to be filled in for that language by interpreters from all over the Web.

Security and User Rights

First users and groups of users have to be defined. Rights can then be granted to users
or groups. Rights include system privileges (e.g. to edit the dictionary) and object
privileges. Object privileges can be the right to see a page or frameset or to use a form
or a PHC. With PHCs the rights can further be distinguished between:

e the right to use the state manipulation method of a PHC
e the right to use a particular functional method of a PHC

e the right to see the output of a PHC

2.6 Implementation

Whereas the advantages of a client-server model are exploited for design, in the case of
pure HTML the final implementation of a PHC is done on the server side. No functional

31

Relational Databases and pure HTML 2.6 Implementation

elements are needed on the client side. All ‘intelligence’ is thus located on the server
making the control element passive in this sense. Every Web page, including all links, is
dynamically generated from the database and the session state of all PHCs within this
page. The hyperreference URL of every link contains parameters for the global session
handle and state transition and parameter information of the appropriate PHC.

In this current pilot implementation these parameters are passed in clear text, which is
especially useful during development. For the final release, all parameters will be encoded
together into one string including a randomly generated authentication identifier to avoid
the possibility of misuse. The lifetime—problem of state information is overcome by a
timeout mechanism. It purges old state information from the database if the session
was not closed properly, which is typical on the Internet. The problem with the browser
cache that every URL-based state maintenance mechanism has to face can be overcome
by setting the HTTP response header field ‘Expires’ to a date in the past [Gra96].

Different Implementation Methods

Considering the way an abstract description of a Web application is finally implement-
ed we can differentiate the following approaches: Generation and interpretation. As
with general purpose programming languages, interpretation results in a more flexible
development environment at the cost of a slower runtime system: Modifications can be
incorporated into the running system without the need for recompilation. On the other
hand generation (or compilation) results in a faster final version at the cost of a more
complex development environment: Each modification demands a recompilation of at
least parts of the system, but finally the compiled code is faster. Hence a design decision
has to be made primarily as a tradeoff between performance and flexibility.

A straight-forward approach is to generate a static HTML document tree from the ab-
stract description of the structure of the logical pages. This results in the fastest possible
Web interaction — but only as long as no database interaction is required during run-
time. However, this approach is reasonable for information systems whose content does
not often change and where seeing ‘old’ content until a new tree is generated from the
continously changing database is not a hindrance. Equally importantly, the Web service
causes almost no additional load to the database as the database is only required during
generation.

If database interaction is required during runtime (e.g. either because user input into the
database or up-to-date information is required) the generation of a static document tree is
no longer possible. Hence, with Web applications consisting of static? and dynamic pages
we can further differentiate between the following possibilities concerning the runtime
environment of the PHCs, the static pages and the dynamic pages respectively:

PHCs Two possibilities exist for the runtime environment of PHCs:

9Tn this context ‘static’ means that no database interaction is included within this page. It does not
mean that the page is a pure HTML page within a file system.

32

Relational Databases and pure HTML 2.6 Implementation

e After lexical analysis and parsing, the PHC/DL and PHC/LL descriptions are
stored in a design repository within the database. If a message for a state
manipulation method or a functional method or an output method is received,
the interpreter manipulates the database and constructs the output according
to the appropriate PHC information stored in the design repository.

e Alternatively, a generator generates PL/SQL (Procedural Language with em-
bedded SQL) procedures directly implementing the methods for state manip-
ulation, functionality and output generation. In this case, if a message is
received, a compiled procedure is called with the appropriate parameters.

static pages Furthermore, these same two possibilities exist for static pages: Either an
output procedure is generated for each page doing nothing else other than print-
ing out static HTML code or the templates are stored in the database containing
meta-information for the logical structure. During runtime and before a page is
delivered to the client, the meta-information is interpreted and replaced by anchors
for navigation and crosslinks dynamically generated from the meta-tags. The first
approach is moderately faster of course, but it is rather inflexible: Even a simple
change to a static page requires the recompilation of at least some parts of the
system.

dynamic pages Dynamic pages can also either be stored as templates with meta-
information marking where to insert the PHCs’ output, or they can be directly
implemented as compiled PL/SQL procedures printing ‘calculated” HTML code.

All but the first approaches have one point in common — a database is required for the
runtime environment. Hence it is reasonable to put everything into the database, even
static templates. The database tools for distribution, replication and backup can then
be used in a homogenous way for the whole system. The following subsections describe
both approaches and further details can be found in [Fal98].

Interpreter and Design Repository

Interpretation and generation can efficiently be combined to form one approach shown in
figure 2.14: The interpreter is used as a design tool and the generator finally compiles the
design repository into procedures, runtime repository and the schema for the dynamic
session state information (see next section) thus building the final application.

The PHC/DL and PHC/LL source files are firstly lexically analyzed and parsed and a
symbol tree consisting of tokens and their attribute values is built. This symbol tree is
then stored in the database as relational data structure and called ‘design repository’.
During interpretation, the current session state information (states and parameter values
of all PHCs of all active sessions) is also stored in the design repository!®. With the
runtime interpreter, this design can now be immediately tested. Although this works
more slowly than the final implementation, interactive design tools provide direct access

10Hence the design repository is also used as runtime repository with the interpreter.

33

2.6 Implementation

Relational Databases and pure HTML

(INLH aind)
J19SMOoIq

w0

- JaAI9S

19AIBS g9\

awnuny

JusWwiuoliAuD
awinunu

(10s1d))

Aionsodal
awnunl

uoneoldde

puaoeq

uoiesauan
uoirejuasaidal
\ aleIpawlaiul
) A
aseqere lelS
qerep uoissas
| — J01e19U8b
1
(10s1d) Kiousodai Jopeo|
Ja1a1diaul ubisap Jasred

aseqerep

S|00) ubisap
aAnoeIauL

~

— 1d/0Hd —

TNLH
T1/OHd

loyoedixa

wJoy _mo_cocme

ubis

o/

Figure 2.14: Design and two different implementation methods: interpretation and gene-

ration.

34

Relational Databases and pure HTML 2.6 Implementation

to the design repository via a graphical user interface: This allows direct manipulation
of the design within the repository and immediate testing of the changes with the in-
terpreter. One of the design tools is an extractor rebuilding canonical PHC/DL and
PHC/LL descriptions of the changed design repository.

It should be mentioned that the design tools themselves are also implemented as a
database backed Web application. Hence some design teams distributed all over the
world can collaboratively work on the same application by simply using a Web browser
with pure HTML on the client side!

The scenario for a runtime client-server interaction using the interpreter is shown in fig-
ure 2.15: Initially a message is received from the user interface. The interpreter reads the
appropriate PHC /DL method definition (either state manipulation or functional method)
from the GOTO definition of the ‘clicked’ element in the repository and starts to interpret it.
In the case of a state manipulation method, a simple lookup into the state machine table
— stored explicitly as relation in the design repository as old_state X element = new _state
—is all that is needed. This may result in state manipulation and database transactions
and the new state and parameter values are stored in the session state information.

The next output page is then determined and its PHC/LL is interpreted. This causes
the interpreter to read the PHC/DL output method definitions of all the contained PHCs
with respect to the current session state. Each SQL statement is first parsed and the
placeholders for the parameters and variables are replaced by the actual values. The
SQL statement is then executed with dynamically embedded SQL and the result set is
included in the HTML skeleton. As a result the complete HTML page has finally been
constructed.

This is the most complex and most time consuming part of the interpretation. One
main reason for the lacking performance of the interpreter approach is the heavy use
of dynamically embedded SQL instead of statically embedded SQL as is the case with
generation.

Generator and Runtime Repository

The generator leaves the final choice of what to generate and what to interpret to the
designer:

e For a set of static pages defined solely with PHC/LL a static document tree can be
generated.

e [f there is a large number of static and dynamic HTML pages, it is reasonable to
store these pages as templates within the runtime repository with meta-information
for navigation. Procedures are only generated for the methods of the PHCs (state
manipulation, functional and output). This scenario is shown in figure 2.16: A
page interpreter reads the template and then calls the output procedures (O-—
procedures) of the contained PHCs. These O-procedures have been generated from
the PHC/DL description alone, while the PHC/LL descriptions are converted into
the page templates.

35

2.6 Implementation

Relational Databases and pure HTML

uonosas
1d/OHd

Insay
10/0Hd

poid
1a/oHd

1onpold abed
T17/OHd

Ja1aidiau)

099
1d/OHd

5 F I auoq Juawnaog| | 5
FrEumspg
(&) = =
PURIUEARSRAY - TapaEury
I - EEEREERD
& . "
SARUISUANT el |
Appred s uo Fumqana Aq 1onpord A aso0ys e E e
012,00 215043P3 [N UOTE2 21} UT 4omb17 10 satnua g FEESHIERE N
[EEET
[2eng] ToTEal pusEa
SAYMEPN] B SURIUOD AsRRIER AT, AIIATIND
12342 1AJS0F] BOIRAL 3T} WT JOMBIT uonIAas
10] SUR[2IEDS 2I8 N0 X uorsay
JonbrT PEECEESEEE 2
E-EERery
EECE PIPF 1np oId puaEa [aseg
WIOEF] | mameae Fddeyg
SAg WOT}IA[IS-JIMPOILT

dieH] [Fpow padeayg] [wae] [Ssensue] [vonetaroqur] [wenmo] [sonpeid] [Fwor] [euam=

dononma (7,

CYYIBACIZT] UNPHSSOO(- HPHUOIBEY SYSPUR] HT] 335\ SD(] - SDAIL [y 40 18] 2L

1onpoid abed

e

deH lopaunuwoT of welk wp3 oig
adeasjaN - | INIWIA 5

|=pibudy } g=13pueyd; ARud T Mo WSE AON06 I8

| Moo,

Z5qq] TRH WL
PUeIqUEA ISR

S PR CETE O
1IsIIes IN3IW3T13

Appea ety uo Suniana Ag (0N TUTT ST ST
0124427804 2P21] BOTGAL 21]) WL sombiT T0f sawqua g1

YT 03P

19Npoid I9Vd i
uolbey WvHvd 13S | | |

¢S 0109

10npo.d abed

SAET R SUMRUOD 3seqeiep AT,

2184427804 202 I VOIS o1y Wl 07T | uonIAAS
10] SumjoIeas 28 NO % 099 DHd | uorSayy

FAATAIZAD

TR T
By
SATEUIE | Doy jonpord pUeEs |FEEEEE
TETOT] | mEimac FmaAeE]

ﬂt&m UOTIB[IS-JINPOIT

-

daf] [Fpowm padzg] [WaoT] [Feenaue]| [Gonetmioqur] [Meuno L] [Sanporg] [Fwer] [1etawa]]

CIIPA0IPE] HNPUSSTUL] - HOUOIBEY PYIHPUDT 1] 278\ V(] - SUBL AT £0] 227] 24T

deH oEaunwwe of wali wpJ 9T
adeasiaN - | INIWID 3K

Figure 2.15: Interpreter and repository.

36

Relational Databases and pure HTML 2.6 Implementation

e [f there are lots of static pages but only a few dynamic pages, the dynamic pages are
also implemented as compiled procedures instead of templates. These procedures
are generated from the the PHC/LL descriptions of the dynamic pages and incorpo-
rate the output methods (PHC/DL) of the contained PHCs resulting in the fastest
possible generation of the dynamic pages. This scenario is presented in figure 2.17
and is used for the prototype implementations described later.

e [f there are only a few static pages and performance is crucial on the server side
but flexibility in changing the pages’ contents is less so, then the static pages can
also be implemented as compiled PL/SQL procedures.

The generator takes the design repository as input and compiles it into an intermediate
representation. Different backends finally produce the sourcecode of the methods for
different database systems and different programming languages'!. A runtime repository,
which contains HTML templates for static and dynamic logical pages, images, window
mode and frame definitions, dictionary, user management, rights and security is also
generated. Finally, the schema for the dynamic session state information has to be
created in the database dictionary.

As mentioned previously, a PHC can be ‘called’ in two different ways: These two abstract
ways now find their concrete equivalence in two different kinds of procedures used to
implement the PHC functionality:

e The S—procedures implement the structural methods — either the state manipulation
or the functional methods of a particular PHC. A state manipulating S—procedure
typically takes an element and eventually some parameters as input and then calcu-
lates the new state and the new parameter set. Functional S—procedures typically
take some parameters and perform some database transactions. At the end of the
S—procedure, the ouput page is determined. When the page was generated from
which the current message came, the next output page has usually been calculated
from the active page, the refresh pages and the window mode in advance. This page
has been encoded into the anchor and was hence sent to the current S—procedure as
a parameter. However, a functional S—procedure can also calculate its own output-
page thereby overriding the predefined page. This mechanism has been described
by the MESSAGE clause on page 24. Finally, the S—procedure calls the appropriate
O-procedure.

e The function of the O-procedures depends on the implementation method used for
dynamic pages: If the dynamic pages are stored as templates, each PHC has its own
O-procedure which prepares the output strings of all elements of the PHC. If dy-
namic pages are implemented as stored procedures, one O—procedure for each page
prepares the output strings of all PHCs within this particular page and combines
them with the surrounding HTML code to generate the complete Web page. In

"Only PL/SQL for an Oracle database is currently considered, but the separation into generator and
backend allows for future cartridges e.g. Informix, Sybase, MS SQL server or even a generic backend
to generate Perl code for a FastCGI interface connected to an ANSI (American National Standards
Institute) SQL database.

37

2.6 Implementation

Relational Databases and pure HTML

10npoid

SENEYNENT]]
abed

are|ldwa]

A

(1onpoud) abed

TNLH =

19npo.d abed

q=E] [Fpow Jader] [ao]] [Feensue]] [Toneniou]] [Wsuno] [51anporg] [Swor] [9uatmalg] N§
CYIBACIFT UNPTBSDUL - ROROTBY FHITTPHD] L] TIZN] S - VAL JIMITY 10] 1207 25T Q

= T auoq auawnang | I
Bremmspung
& e =
PURIQUAISENG, -l T FEnEiE
- - DECEFEE:
Iﬁ sqq 7 TFen veeqor
SORUDSUAUNT —f |
Apped 2 uo Furiand Aq 1onpord Ay 2500y e
101244215032 1A UOTEAT oY) UF Jomb17 J0] salnua g PEIEE S EE N
T223]
W 201G TOIEaT puaEa
SAYIPERP] B SUMIUOD ISRGRIED Ay T AAITATING
{2142 1AIS0FT TOTSAT oT]) Wl JoMBIT uonIa[as
10] SuUMjaIeas I8 No X woisey
Jotbr] PREASEAnT
FFeranay
ddETRg Pag 10np o Id puaEs FER. Gt
EE i ey Fmddoqg
SIS WonIa[as-Janposy

|=piB=idy, / g=lalpueyd,; Aeud s a0/ Wap/ 000G e

0599 FRH weyer
PURIqUA[ISIon; -l T

msqq, @mm

540124427904 2 P2 O3 2 o) W1 4owb1] J0] salua 9T PR EEgEE

1nNpoid 39vd
uoifay Nvdvd L3S
¢S 0109

-

T3] 0TS TOIE5I pusiEa
SRR g1 SURUOD aseqelep YT | e

012442780422 I BOLSAL 91]) UL Jowb1T | uonIA[As
10] SUTYAIBS 28 NO L 099 JHd | uoSayy

T T
SFerETy
RIS | peg anpeid puaEs T1ayseg
TETRT] MILIIAG Fmddeng]

Sﬂ&m WOTLIB[AS-JINPOLT

10npoid abed

o] [epow Hadeyg] [Uige]] [Seenste]] [Uonetmo]] [Weimno] | [Sonpoid] [FWor] [Feuata] §
OYNPACIPIE UNPHISURTY - UPHOIBEY PYITPUTT L15 S12)] SU(] - SV [IMITY 10§ 127] 2L Q

dgf JoweownwwsT of wmeli 3pg A
adeasiaN - | INIHI 5

Figure 2.16: Generator and runtime repository with pages implemented as templates.

38

2.6 Implementation

1PNpoid O

A

indino
abed

099 S

auo(ju=wnaog| | o5
S i et
Zsqq L ‘B E wuege TR
PUBIQUASIsIan, -l T GEEIE
- FEEGEE T
2psqa L, ‘FEHE oo
FAEUGOSGAUNY . |
Apped s uo o £q 1onposd s asoory [EnETEgT
1012442104 3P I WOTFaT o1y Ul 4oribiT J0J Satnua | AT IEIS0 AP AT
Taa3]
TSt A0S ToTEaI pUara
sayapef] R] SURIUOD ASEqEIEpR AT, ATIIRD
J2142 1AIS0F TOTBAL 1) W1 JoribiT UOnIATAS
TNLH —» 10J SUM[DIEAS JIB 110 % uoiSay
FTFT A
E-EIErery
SATENPS | ey onpord pUsES [EEeg
AT | mamieae Tonddoyg
- mEg w0 a[as-1INpoL]
[=H] [Fpow paduyg] [oiFo] [Feensue] [Gonewaoguy] [Wsuno]] [Sionpoad] [FWo] [320amaq]. §
CYIZACTAT] UHPTOSIIN - HPUOIBEY FYITIPUD] A7T] TI50] SP(] - SDAL [IMIIN] 20 72T P4 [
10npoud abed
e

daH oEounwwel of walk IpT A9

adeosiaN - | INIWIA 33

| =pibauds, / gelzjpueyd Aud TS /e AP NN0GIE

IERIR)

Zsqf, TEA o[

TOTEA BTG (]

Relational Databases and pure HTML

|
|
e T |
PURIUIs]aMs

|

|
ZpeTL [0 UUEo | |
|

|
ISI8S ININ3T T3 I

HODUOhﬁ_ mo<n_ Appea g uo Surjana Lq JonerT s I
yo1244219042p2] TOIE2] o1} I sombrT 0] sauua g1 | | GoemEEeIapan] |
uoibey Wvdvd L3S] _
WA} Moy oA puaEa |
‘\ ¢S 0109 SAYIERT J[SURUCD aseqeep AT, || FammEs I

40124218042 P21 UOLERI 01 W 2oMbIT | uoyaafas
Joj SUNMOIBIS 218 NO X 099 DHd | woSayy |
|
= = = —4
Joabr] DR as AL
aeranag
SIqRUIT | prag jonpodd puaEd Tiamseg
TRDT] | mEatanc Fmddoyg]
SRS uonIafEs-InpoIy

-

[H] [Fpom paaeg] (o] [(Foensue] [vomermer] [wemmor] [Frmpora] [Fmer] [Roanad]

OYIPADIPT UIPTIOSINY - HPHOIBEY PHIPUIT <1t SI2[\ SD(] - SHALY [IMIRT 40F 120 BT

1oNpoid abed

def oEounwwed o mad T apd

adeasiay - | INIWIA S

Figure 2.17: Generator and runtime repository with pages implemented as procedures.

39

Relational Databases and pure HTML 2.6 Implementation

both cases the most important task of the O-procedures is to generate the anchor
tags for all elements of all the PHCs within this page. From the GOTO clause of an
element, especially from the PAGE and REFRESH attributes, the next output page —
i.e. the page to be loaded after a click on this element — is computed in advance and
encoded into the hyperreference of this element as an additional parameter. If the
page has to be loaded into another frame or more than one page has to be reloaded,
then the appropriate target value also has to be determined and the output page
may be a whole frameset instead of a single page.

Hence the separation into S— and O-procedures reflects the strict separation into state
transition and output generation mentioned earlier — the S—procedures produce no output
and the O—procedures cannot change the session state. Among other advantages it allows
a more stable and robust pure HTML interface. Figure 2.17 shows the implementation
model belonging to the design model from figure 2.6 on page 18.

Look-Ahead Link Generation

Both

approaches, interpreter and generator, dynamically generate a sequence of HTML

pages. In both cases the most important task of the O—procedures is to generate the
anchor tags for all elements of all the PHCs within this page. There are two possibilities
for generation of the hyperreference URLs of the page:

1.

The first possibility is quite straightforward: The link of an element contains the
session handle (for state maintenance), the name of the element and the name of
the PHC the element belongs to'?, and the name and value of the parameters to be
set:

Mostviertel

This information is always sent to the same function fsm implementing the state
machine for the whole system. From the GOTQ or CALL clauses of the PHC/DL
declarations of the appropriate element on the one hand and from the current state
of the corresponding PHC (stored in the current session state information) on the
other hand it can then be determined which function has to be called or which new
state has to be set. Afterwards, the next output page can be determined from the
PAGE attribute and finally be generated completing one circle.

. The other possibility is to compute in advance, what has to be done when an

element is clicked on — and to generate this information into the hyperreferences of
the elements’ anchor tags (see definition 5 on page 12): Which functional or state
manipulation method has to be called, possibly which new state to be set, some
parameters with their values and the name of the next output page.

12Element names are local within a PHC and need not be unique throughout the whole application.

40

Relational Databases and pure HTML 2.6 Implementation

Mostviertel

Now when an element is clicked, the appropriate functional or state manipulation
method is directly called with the parameters already encoded into the URL. One
of these parameters is the next output page, explicitly defining which page to be
generated next, completing one circle. This is in accordance with notation 2.6 on
page 13. Figure 2.18 shows one circle. In this case, the O—procedure is enhanced
by some parts of the S—procedure in order to compute the possible new states in
advance. The S—procedure only takes the parameters and sets the new state.

At a quick glance the first method seems to be very intuitive for the interpreter
implementation'® because it is easier to resolve only one action after a particular ele-
ment has been clicked rather than to compute all possible actions for all elements within
one page in advance and to encode them into the URLs. The second method, on the
other hand, seems to be more convenient for generation because the appropriate functions
are called directly with their parameters. Moreover, with generation the time consuming
look-ahead takes place during compile time and hence needs no additional computing
power during runtime.

However, both statements are true as long as we do not use frames. If we do, the first
method causes problems: From the GOTO clause of an element, especially from the PAGE
and REFRESH attributes, the next output pages —i.e. the pages to be loaded after a click
on this element — have to be computed in advance and encoded into the hyperreference
of this element as an additional parameter. This is required if the page has to be loaded
into another frame or more than one page has to be reloaded. The reason for this is that
the appropriate target value also has to be determined and the output page may then be
a whole frameset instead of a single page.

Hence the interpreter has to at least compute in advance which page or frameset to load
into which target frame in order to generate the appropriate target values. The other
information, such as which action to call or which new state to set can still be determined
after the element has been clicked on, taking some computing load off the interpreter.
The resulting anchor might then look like this:

Library Concept and Reusability

Though working with PHCs is very efficient compared to direct PL/SQL implementation,
it is still a method of database programming and needs programming skills. A library of

I3This method has in fact been used on page 33 to explain the interpreter because it is the more
intuitive approach. The interpreter can of course also use the other method of link generation.

41

2.6 Implementation

Relational Databases and pure HTML

indino
abed
abed 1xau

Npold 39Vd
uolboy NvHvd 13S

099 S <

—

2S 0109 R E TSR re= Jol 4B TS /EmO /ISP 05 28 URIMNT IR REp 7 T _
' — ——
_ - 2sqq, “FAE BwEge[_
PUEIQUAISIAMT -l T i) Em:ﬁ a _
I S |

E zsqq, AR weep | A |

A

Is1es INIWI13| ! N!

CO_“—OOCCOU n_n_uuh_l_ “—XQC O_Q_WWOQ Appra a) uo FUR{Id Aq JanpoTT T T |
012442150433 i UOIRT 1) W1 LoMBIT 0] saLnua 1 | | TEnTEeBpanT ,_/
3] |
[ty o] GOTIaT pUED \
Co_HowC:oo &I_II_II ch._.h:o mmﬂuwﬁz m—v m_H.Eu—HOD Dmﬁﬁmu—ﬁmv D—L—.H _ MMINIIND " /
4018442150423 I OIS o1} W 4o1b1] | uonages \
10] SUlaIeas 208 no § 099 DOHd | uoiSay | \
b = — | \
ey TeIEEANT \
g ey \
TANLH SIS | “plag 1anpoid puaa g /
TIEOV] || mamianc Fmddeyg]
HU—._ UO‘_n_|o = SRS UoT)IA[ES-}INPOL] \
\
A} [F=H] [Bpem pad=g] [WeoT] [3EearteT] [Uoneuuoy] [smo | [Fanpord] [FweH] [1RUama(] § \
\ OYIPAOIOT WHPHESDUL] - HAUOIBEY PYITPUT] A1 SI50] ST (] - SOOI FIMIT 20 180T DHL Q \
def oEounwwol of wal 1p3 81 \
ndino \ \ adeos)ap - 1 INIWI0 35 \
\
sFed \ 1onpo.d abed \
N \
\ \
\ \
\ \
> \ abed snoinaid \
/A \

ﬂAm\VkuMwﬂ>umoZA=uoﬁﬁoymnmmmmmdhHucoﬂmmmgwNnoumumwbHHMH@GmsmOmwlmznmeQ e>l

21SI718S Ul ,[SLIBIAISOA, JUBW|3 10) TN doualajalladAy parelauab

Figure 2.18: Look-ahead link generation.

42

Relational Databases and pure HTML 2.7 Limits and Improvements

PHC/DL modules can overcome this problem by providing a rich set of ready-to-use PHCs
for many purposes. This requires the PHCs to abstract from the ER part of the concrete
underlying database to an ER structure with some minimum structural requirements.
The PHC can then later be used with any database — if the structural requirements are
fulfilled — by simply assigning the appropriate database entity and attribute names to
the parameters. Applications can hence be built easily by putting together some PHCs
from the library. This introduces a method of reusability [GIM91] of PHCs.

2.7 Limits and Improvements

Firstly this section summarizes the main features and advantages of the PHC approach.
A critical view on PHCs then leads to possible future works:

e Strict separation between the layout and the structure of PHCs. The functionality,
internal state information and the database transactions are completely indepen-
dent from the user interface representation of a PHC. A PHC is neither assigned
to a single HTML page nor is it limited to HTML as client side user interface
representation. This is one main difference between PHC and other approach-
es [BS98, =heitml]. It allows PHCs to be used in more than one page, in different
HTML layouts or even with different client side implementations (Java, VRML).

e Compact integration of functionality, database transaction and session state hand-
ling.

e PHCs use links instead of form elements to implement user interaction in most
cases. Forms are only necessary to solicit user data'?.

e The sound theoretical model of a state machine is useful for later theoretical and
practical work on design tool support and on automated testing and verification
(correctness proof) of the implemented applications.

e Web applications designed with PHCs are robust and stable despite the stateless
nature of the HT'TP protocol and the inability of the browser to store user interface
state information. This is achieved through the strict separation of state transition
and output generation mentioned earlier: A user interaction may result in a changed
session state information — the output of a PHC is, however, only dependent on the
new session state information but not on the last user interaction. As long as the
affiliated state information is not changed, a dynamically generated Web page will
always look the same, regardless of the user interactions which have taken place in
the meantime.

e The pure HTML approach guarantees compatibility with almost every browser on
the Web without getting involved in the competition between Netscape [=NS] and

140Of course one could implement a HTML keyboard consisting of links making forms completely
obsolete. However, this would definitely not result in a more comfortable user interface.

43

Relational Databases and pure HTML 2.7 Limits and Improvements

Microsoft [=MS], while the World Wide Web Consortium [=W3C] tries to find

a consensus on the standards [RCK98]. A citation from Tim Berners-Lee — the
inventor of the Web himself — says it all [=Any]:

“Anyone who slaps a ‘this page is best viewed with Browser X’ label
on a Web page appears to be yearning for the bad old days, before the
Web, when you had very little chance of reading a document written on
another computer, another word processor, or another network.”

The following improvements are planned in future work:

e A graphic version of the design language PHC/DL including tool support. Methods
used for structured hypermedia design [ISB95] seem to be a good starting point for
further development in this area.

e Enhancement of the generator tools to provide Java (see section 3.3) and VRML
[BW9S] as alternative user interface implementations. Especially the integration of
Java and VRML provides new possibilities [Bru98].

e Enhancement of the pure HTML interface with a scripting language as soon as it
becomes clear which one!® will be the major client side scripting language.

e Complete object oriented PHC/DL instead of the current object based approach,
e.g. a subset of Java could be used as PHC/DL. When Java replaces the current
procedural database programming languages and the Java virtual machine is inte-
grated with the object relational database kernels [Ros98], this approach starts to
become interesting.

e Object oriented integration of information design and functionality design, ideas
can be found in [BBB+95].

e Object oriented notation also for the PHC/LL — e.g. <PHC:Geo.OneUp.PRINT> —
by possibly using the Extensible Markup Language XML [Hol98] or a user defined
SGML [Jel98, Bra9d7] subset. Object oriented approaches like [BS98, =heitml] will
be evaluated with respect to their usability as a PHC/LL replacement.

e In discussing the Internet we have subsequently to talk about security: A security
framework must therefore be integrated into the PHC approach:

— To avoid misuse of the session handle, encoded handles are used. Differently
encoded Cookies'® can be used in addition to URLs - forming a handle con-
sisting of a Cookie and an URL - to further reduce the possibility of misuse.

15 Currently Netscape’s JavaScript and Microsoft’s VBscript have to be taken into account.

6URLs and Cookies can both be modified by a malign user and therefore do not provide full security.
However, the combination of both at least reduces the possibility of erronous user behaviour and makes
it very unlikely that a malign user could guess a correct combination of Cookie and URL.

44

Relational Databases and pure HTML 2.7 Limits and Improvements

— Sequence numbers (i.e. a new encoded session handle for each HTTP connec-
tion) would provide even better security, but this method is not compatible
with frames. However, with frames a pool of URL-Cookie pairs can be used
and each page contains a randomly selected handle from this pool.

— Where user authentication is necessary for database updates, Netscape’s SSL
(Secure Sockets Layer [Smi98], possibly using RSA [BSW98]) is used for better
security.

— Integrated SmartCard solutions will be tested as they become available [MS98|.

— For authentication purposes a combined method of database authentication
(process based), Web listener authentication (URL based) and application
authentication (user based) provides the maximum possible security.

e More sophisticated versions of the HTTP (Currently version 1.2 is under develop-
ment [=W3C] though 1.1 is not yet used in all servers and browsers) promise better
support of connection orientation. In fact this would avoid the need for a session
handle to be passed back and forth between client and server. With pure HT'ML on
the client side, the user interface state would still have to be stored in the database
however. The look-ahead link generation would also remain unchanged.

45

Chapter 3

Object Oriented Approaches

This chapter compares different object oriented approaches with the previous pure HTML
approach and with each other. After defining some criteria to differentiate between these
approaches some of them are discussed in more detail with practical results from prototype
implementations. Finally, a short comparison concludes this chapter. Java is the object
oriented implementation language of choice on the Web, therefore this chapter focuses
on Java implementations for the Web. Whereas some of the tradeoffs described here are
wellknown e.g. from C+4 implementations, Java changes the boundary conditions and
as a result new possibilities arise.

3.1 Client-Server and Persistence

The first rough criteria to separate the different approaches is the decision whether to
use

e no Java at all. The possibilities of pure HTML combined with relational databases
have been described in detail in the previous chapter.

e Java with a relational database. Different client-server models and different persis-
tence approaches will be discussed.

e Java with orthogonal persistence in an object oriented database.

The first two approaches use relational databases. The motivation to enable relational
databases for the Web is based on the following reasons:

1

e Large number of existing legacy database systems" — organizations want to leverage

their investments in relational technology.

ISome of them not even relational: Many network and hierarchical databases are still in use. Nowhere
else it is so important to deal with legacy systems than with the large old database dinosaurs.

46

Object Oriented Approaches 3.1 Client-Server and Persistence

- = = -= dumb terminal

______________ thin client

R e - — partitioned system

______________ thick client

database
management

database

Figure 3.1: Client-server model.

e Relational database products have needed a long time to become mature, whereas
object oriented databases still suffer from some childhood-illnesses.

e There are tasks which can best be solved with relational databases; Typically, large
amounts of simple structured data.

e Sophisticated design tools are available to overcome the inherent deficiencies of the
design method (see page 19).

Java makes it possible to implement functionality not only on the server side but also
on the client side. We therefore have to face the classic client-server tradeoffs, but with
different boundary conditions introduced by the Web and Java. Figure 3.1 first recalls
some possibilities for distributing an application between client and server:

Dumb terminals: Software control remains with a mainframe host, dumb terminals
use a Character Based User Interface (CBUI). Whereas this is a very traditional
architecture, a pure HTML interface is not very different?: Some of the presentation
is done by the standard client (Web browser) but most of the presentation logic
lies on the server side, where the HTML page is dynamically generated. This
architecture is very reliable and easy to upgrade but uses host and network resources
extensively.

Thin clients: The client is now responsible for the presentation logic: It generates re-
quests to the server and presents, and eventually stores, the results. This architec-
ture takes some load off the server and the network but introduces more complexity
due to usual heterogenous environments: Many layers and components have to be
compatible with each other on the network.

2The main difference is the rich graphic user interface provided by HTML instead of the CBUI.

47

Object Oriented Approaches 3.1 Client-Server and Persistence

Partitioned client-server system: Application functionality (or middleware) is dis-
tributed between client and server with the aim of achieving optimal performance
(throughput and latency) by minimal resource usage on the client, the server and
the network.

Thick client: The server is reduced to the database management system, the complete
application functionality resides on the client side. This option becomes reasonable,
if much computing power is available on the client side: Modern PCs allow easily
for thick client software. In fact it often costs less to put together a system of much
smaller computers which has the equivalent power of a single powerful machine.

Java has changed the boundary conditions of client-server architectures: Java applets
bring the advantages of dumb terminals to even thick clients with rich graphical user
interfaces: A Java applet is platform independent?® and located on the server side but is
finally executed on the client side, taking some load off the server and the network. As
a result, in order to upgrade such an application, the server only has to be upgraded for
one single platform: The upgraded applet is then downloaded to the client. To sum this
up, a Java client-server application has all the ease of maintenance and upgrade of a basic
dumb terminal environment but also has the previously mentioned advantages of a much
thicker client-server environment [WM97]. This is also the key idea for the concept of
network computing®. What looks like the comeback of dumb terminals on the first glance
is in fact a new way of exploiting the advantages of client-server applications without the
disadvantages formerly experienced.

If we consider the combination of Java and relational databases in addition to the client-
server considerations, we also find ourselves confronted with some well-known persistence
tradeoffs. [=ODI] recalls a short definition of persistence:

“The lifetime of a persistent object exceeds the life of the application
process that created it. Persistent object management is the mechanism for
storing the state of objects in a non-volatile place so that when the application
shuts down, the objects continue to exist”

Since object orientation has started to be widely used to implement software, the question
of how to deal with the design discontinuity between object oriented design and semantic
data design has always been present. We therefore have to differentiate between different
persistence approaches. Figure 3.2 gives a short overview of the different persistence
approaches with respect to the usual object layers: user interface objects, controller
objects, business objects, database access objects and the relational database itself (the
broken line marks the design break between the object oriented world and the relational
database world):

1. Object serialization (section 3.2).

3as long as a Java capable browser is used on the client side.
4Currently, the question “PC or NC?” is dominated by marketing considerations rather than technical
requirements [Bor98].

48

Object Oriented Approaches 3.2 Object Serialization

GUI objects GUI objects GUI objects GUI objects GUI objects
Y

\ 4 \ 4 \ 4 \ 4

)\)\
controller _ | controller B _
objects objects
_ | _business B _ | _business | _ business business
objects objects objects objects

—\
controller
objects

controller
objects

controller
objects

4
serialization _ | database j = _ . _
controller
Y) 4) 4
1 2a 2b 3 4

Figure 3.2: Different persistence approaches.

2. Each business object connects directly to the database for its own purposes (sec-
tion 3.3). A special case (2b) is typical for an informational system with almost no
middleware.

3. A better approach is to encapsulate the database access within some database access
controller objects (section 3.4).

4. For very large and complex projects a persistence framework is the best solution
(section 3.5).

The greatest problem common to all these approaches is the structural discontinuity
between the objects’ relations in the class diagram and the entities’ relations in the
ER diagram. Moreover, for more efficiency it might even be necessary to implement
some parts with procedural SQL on the server side, introducing a further design break.
At least this deficiency will be overcome, when the Java virtual machine is integrated
into the database kernels of the object relational successors of the relational databases
currently available.

The different persistence approaches are described in more detail in the following sections,
including reasonable client-server architectures for each model.

3.2 Object Serialization

One of the easiest ways to achieve a basic form of object persistence is already ‘built-in’
with Java — object serialization [=Javal:

49

Object Oriented Approaches 3.2 Object Serialization

“Object Serialization supports the encoding of objects, and the objects
reachable from them, into a stream of bytes; and it supports the comple-
mentary reconstruction of the object graph from the stream. Serialization is
used for lightweight persistence and for communication via sockets or Remote
Method Invocation (RMI). [...] A class may implement its own external en-
coding and is then solely responsible for the external format. [...] The key
to storing and retrieving objects in a serialized form is representing the state
of objects sufficient to reconstruct the object(s). Objects to be saved in the
stream may support either the Serializable or the Externalizable interface.
For Java(tm) objects, the serialized form must be able to identify and verify
the Java(tm) class from which the contents of the object were saved and to
restore the contents to a new instance. For serializable objects, the stream in-
cludes sufficient information to restore the fields in the stream to a compatible
version of the class. For Externalizable objects, the class is solely responsible
for the external format of its contents.

Objects to be stored and retrieved frequently refer to other objects. Those
other objects must be stored and retrieved at the same time to maintain the
relationships between the objects. When an object is stored, all of the objects
that are reachable from that object are stored as well.”

Designed to transfer objects as streams over the network or to store them in the file
system, it can also be used to store them in a database. The database has no structure
in this case and simply serves as a repository for serialized objects. The disadvantage is
that if we want to search a particular object by a key, we first have to re-instantiate all
the objects from the database. Moreover, when an object is serialized or instantiated, all
the objects it refers to are too. Serialization has to read or write entire graphs of objects
at a time. This is known as the ‘banana-gorilla’ problem: The instantiation of the small
banana causes the instantiation of the large gorilla directly or indirectly referenced by
the banana. Serialization can be sufficient for applications that operate on small amounts
of data, are not frequently updating these objects and where reliable storage is not an
absolute requirement.

However, serialization is not optimal ([=-ODI]) for applications that
e manage hundreds of megabytes® of persistent objects: storing and retrieving the

entire graph will be too slow.

e are frequently updating those objects: Again, always the entire graph has to be
written, even if just one attribute of one single object has changed.

e have to ensure that the changes are reliably saved: If the system crashes during
serialization, the contents of the file are lost.

5For relational databases this would still be considered a small amount of data. The world’s largest
databases today already exceed some tens of terabytes of information [ES97]. For object oriented databas-
es, however, 100MB are already considered medium or even large.

50

Object Oriented Approaches 3.3 PHCs go Java

In contrast to serializable objects, in the case of externalizable objects the class is solely
responsible for the external format of its contents. This allows us, however, to implement
our own method of serialization. A reasonable approach is to use the implementation of
the externalizable interface to generate a SQL insert or select statement, which is then
forwarded to an open JDBC stream. With this method one object can be stored as one
entity in the database, key and persistent information can be stored in table attributes
instead of just one character stream and the restoring of the objects can make use of
these keys. Moreover, object references can be emulated in the database with foreign
keys to other serialized objects. Secrecy is violated because the object has to know that
it is persistent and has to implement this on its own. At least reasonable encapsulation
is possible.

3.3 PHCs go Java

The easiest possibility for dealing with the design discontinuity between object orientation
and semantic data design is to simply ignore it. This means that each object directly
connects to the database for its own purposes but not just to store or retrieve its own
state. This approach may still be useful for smaller projects but it introduces a strong
mutual dependency between the whole database and all classes, making maintenance
difficult and enhancements prone to error.

This method can be used successfully, however, if the object oriented part is almost re-
duced to the user interface (thin client). This is true for information systems, whose
main task is retrieving, presenting and eventually updating relational database informa-
tion with simple application functionality (middleware).

In this area PHCs implemented as Java objects provide a promising alternative to the
pure HTML interface. Figure 3.3 shows a comparison between object oriented design and
implementation, PHC design and PHC implementation. Whereas PHC implementation
is finally done procedurally on the server side, the PHC design layers are related to the
object oriented layers (marked with dotted lines). This similarity encourages the Java
implementation of PHCs®.

To integrate a Java GUI (Graphical User Interface) instead of a pure HTML interface
with the same PHC/DL description, a runtime environment library provides a framework
with controller classes implementing the connectivity between the user interface classes
and the generated PHC classes, the manipulation of the runtime repository and the
database connection via JDBC (figure 3.4). All the functional constructions of PHC/DL
can easily be translated into Java source code, including the functional methods and
the user elements with the methods ‘print’, ‘image’ and ‘click’. Instead of a PHC/LL
description the Java applet implementing the GUI is directly programmed using Java
source code. A runtime repository — much smaller as in the case of pure HTML — is also
generated, containing images, dictionary, user management, rights and security.

5The name ‘pure HTML control’ looses its context in this case but it is still used for convenience. If
PHCs are mentioned in combination with Java, functionality and structure are meant rather than the
pure HTML characteristic.

o1

Object Oriented Approaches 3.3 PHCs go Java

. HTML l

GUI objects PHC/LL pure HTML
h 4 A 4 -
— —, -
controller B PHC/DL -
objects state machine

Y Y

—) .
business) PHC/DL L ..
objects | functionality I
_.| database =\ _ PL/SQL
access ' l

Y Y

Y

object oriented design PHC design PHC implementation
and implementation

Figure 3.3: Similarities between object oriented design and PHC design.

At the beginning of a new session the applet first has to be loaded from the Web server via
HTTP. The applet then opens a direct JDBC connection to the database and downloads
the Java runtime repository. The session state information is implicitly stored as the
PHC objects’ internal states. During the session the GUI objects send messages to the
PHC objects via controller objects. The PHC objects eventually change their internal
state, call a method or execute a predefined SQL statement and finally send a message
back to the controller.

The drawback is that the Java objects are reduced to the limitations of PHCs. However,
the advantage is that they can be derived from the same design and hence implement the
same functionality as the pure HT'ML interface.

In principle, there are three different approaches to a Java user interface with PHCs:

1. One Java GUI applet for the complete application.
2. Small Java GUI applets embedded into HTML, one for each PHC.

3. Java GUI applets and HTML PHCs mixed, even on the same page’. PHC applets
can be used for recurrent tasks, whereas e. g. the results of the queries are displayed

with HTML.

Despite the longer download time at the beginning, the first approach has proven to
be the most convenient, especially from design and implementation but also from user
acceptance: The mixed approaches tend to be confusing to the end user.

"In this case some JavaScript is needed to establish interaction between HTML and Java.

52

3.3 PHCs go Java

Object Oriented Approaches

Alonsodal
awnunl

arels
uoissas

(ener) Jasmolq

I
I
i
i
i
I
i
. i
: i
: i \
T
i

(INLH 8ind)
Jasmouq

wsio

. awnuny
ISEINEIS

7

peojumop
odgar

~—~—

oadar

19MIBS 0O

Aioysodal
ener

aenel

JuswiuoJinue
swinuni

(10sNd)

Aioysodai
awnuny

N A

— 92IN0S eAel

(uswuoaAua
awnunJ)

Areiqr ener

A

uoneoldde

aseqerep
< =

aels
uoissas
< =

{

puayoeq

uoljelaus9

uonejuasaidal
ajeIpawiaUI

A

J01R19U30

~.

(10s/1d)
Jajaudidiul

aseqerep

Aionsodai

ubisap

R Bw:/

lapeo|
lasied 10} sse|o ener
A

s|00] ubisap
aAnoRIBuI

TNLH
1d/oHd — T1/OHd

101081%3

wioy _mu_cocm&

cm_mw&

Figure 3.4: Design and implementation with alternative Java applet interface.
53

Object Oriented Approaches 3.4 Encapsulated Database Access

As with pure HTML there are two possibilities for the runtime environment: generation
and interpretation. With interpretation a generic class from the framework has to inter-
pret the runtime repository now containing the state machine and the output definitions.
This makes the applet smaller but the repository larger. However, interpreting a repos-
itory with an interpreted language gives the impression of intentionally slowing things
down.

3.4 Encapsulated Database Access

Another approach, which is better for applications with a thicker middleware, is to en-
capsulate the database access within some controller objects thus focusing the mutual
dependency between classes and database tables on these few objects. Each of these
objects is now responsible for a well-defined part of the database and set of classes.
These controller objects access the database and instantiate objects with data from the
database. On the other hand, these controllers have the responsibility of reading the
objects’ data and writing it back to the database. The other objects then know nothing
about persistence and can hence be designed with a pure object oriented design method.
However, the database design still has to be done concurrently using classic semantic
methods and transaction control has to be handled by the controller objects.

This approach has been used to implement a prototype variation of the pure HTML
application. Java frames (appearing as windows on the user interface) are used instead
of the HTML frames as shown in figure 3.5. Whereas the appearance is very similar to
the pure HI'ML solution, this implementation is different to the Java implementation of
PHCs described in the previous section because the application functionality has been

designed using object oriented design methods and UML [=OMG] instead of PHC/DL.

Figure 3.6 shows the roadmap through the object oriented design process as described
in [Ove97] originating from “The Rational Objectory Process” [=Rational]. Firstly the
goals and actors were identified. As is typical for information systems, most of the goals
were searching, retrieving or manipulating information from the database. Afterwards
the use cases have been defined and a first class diagram. The sequence diagrams where
used to refine the use cases, resulting in some modifications and refinement of the class
diagram. A specification was derived from the final version of the class diagram and
the sequence diagrams. Some more complex objects were further specified with state
diagrams. Finally the database access controllers were added before the implementation
with Java took place. The detailed design cycle and the implementation are described in
more detail in [Rad98].

The following practical experiences could be derived from this implementation:

e Asis usual with object orientation, the modelling was very time consuming but the
final implementation was easy and straight-forward.

e It turned out that container objects [Boo94| holding search structures for the keys
and references to the extension of one or more classes are crucial for efficient hand-
ling of larger sets of objects, especially for searching.

o4

Object Oriented Approaches

24 Button

i B = (el E

[_ O]

gaDemenel Object Driented

3.4 Encapsulated Database Access

(=]

=1 E3

@ [Miederisterreich
[} ponauregion
@ [Industrieviertal

1 Regianen 3 kategarien
[Burgeniand o [Fertigprodukte
D Central-Finland ® [Getranke
o [Karmten @ [JHochprozentines
[Kuopia @ [Brande
[ki & [Likor
0 Lappi °] ﬁ Schnaps
[Mikkeli © [J5afte
o [Jweine

o [CJ Handwerk
O [CJ Rohprodukts
o [Sonstiges

@ [Mostriertel

o Cdvieh
© [J Aigelsbach

o [Amstetien
Nachnarme Varname © [Anstetten
intar Eii © [Blindenmarkt
Schacherrnayver Maria 2 g EE:;Z?;; —
Schachermayer hiaria
Schachermayer hiaria
Schachermayer hiaria
Schachermayer hiaria
Schachermayer hiaria DOfATTE Habensiem wWelsthkenibrand
Funz Johann Gaerenberg 22 StGeorgenfleys Birnen-Edelbrand =
Funz Johann Gaerenberg 22 StGeorgenfleys Fwetschken-Edelbrand
Obermiller Johann Kniebherg 7 Yhbsitz Birnenhrand
Obermiller Johann Kniebherg 7 Yhbsitz Kricherlbrand |
Obermiller Johann Khieberg 7 ‘hbsitz Ohsthrand =

Figure 3.5: Geographical Selection with Java.

e Lazy instantiation of objects saves resources on the client side. Often the container
object can be enhanced to hold one or two attributes of a complete database table.
This often prevents the application from instantiating all the objects of a class for
the mere purpose of user interface representation of one or two attributes. The
container holds enough information for the user interface objects to enable a user
to browse and select items. Only the really necessary objects are instantiated
afterwards. Hence, the container objects are a special form of database access
controllers.

e All database access controllers together encapsulate the relational database access.
In typical information systems this encapsulation provides sufficient secrecy between
the object oriented world and the database world.

e In this case the relational database was already available from the pure HTML
approach but the relational database would normally have to be designed concur-
rently using classic semantic data design methods, e. g. entity relationship diagrams.
Methods are available to translate an object model into an entity relationship model
and vice-versa using meta-models [BPS94].

To further enhance efficiency with an intelligent preloading mechanism, different classifi-
cation methods of data resulting from database queries are firstly introduced:

55

Object Oriented Approaches 3.4 Encapsulated Database Access

goals, actors

use cases and relations
between them

Q (external view) \
object model .
class diagram sequence diagrams

specification

-

state diagrams for
some objects

-

persistence objects

-

implementation

Figure 3.6: Roadmap through the Rational Objectory Design process.

Reuse Data typically often reused (like the geographical selection in previous examples)
versus data needed only once (like a particular search result).

User Interface Complete object data needed for interaction of business objects versus
partial object data merely used for user interface presentation.

Size Large data versus small data, required to compute a particular result.

Using these classification criteria, a preload mechanism can further reduce the average
response time of the user interface: Initially, the applet loads small data often typically
used for browsing and selecting of information. During runtime a branch prediction task
using probability observes the user interface actions and makes a prediction of what data
will be needed next. Divided by the size of data to be preloaded, a first assessment
is made to determine whether it is worthwile to preload this data. Furthermore, it is
determined whether this data will be needed more often for other results or just once
for one result. The expectations for the frequency of usage of this data is multiplied by
the former value. This value is finally compared to a threshold, to determine if the data
has to be preloaded or not. All data which is not preloaded can, of course, be loaded on
demand when necessary (like a cache miss in hardware caches).

56

Object Oriented Approaches 3.5 Persistence Frameworks

Starting from an algorithmic (causal) definition of branch probability and reuse expecta-
tion value, an intelligent mechanism could learn during runtime and modify these values.
This is a typical task for software agents (see chapter 4). Sending these values back to
the server before termination of the applet could result in a long-term improvement of
this preload method according to the average user.

Usually the applet caching does not introduce the same problems as for instance with
multiprocessor hardware caching, because in the case of typical information systems it
does not matter whether the underlying information changes slightly during browsing
and selecting of information or not. However, the application must at least be resilient
to such changes and should not result in behaviour which is confusing for the end user.

If an application does require exact caching methods the publisher subscriber pat-
tern [Joh95] can be used to implement a bus snooping protocol similar to hardware
caches. Database triggers (active databases) help to implement such a system.

3.5 Persistence Frameworks

For large projects a persistence framework can solve the problem. Persistence frameworks
try to achieve the best possible secrecy® between the business objects and the database:
The idea is that the business objects can be designed with (almost) no knowledge of
persistence. Some special methods are introduced to instantiate an object from the
database or to commit a transaction. The database access is now encapsulated within
the framework.

The framework described in [Vio96] has been partly implemented with the same prototype
implementation used for the pure HTML approach. The key features are mirror objects
that accompany the business objects and handle the database transactions without the
knowledge of the business objects themselves. The following experiences have been made:

e The implementation is more extensive, because for each business class a mirror class
has to be implemented. However, this was easily done following the design rules
given in [Vio96].

e Changing the database structure requires a reimplementation of the database ob-
jects but leaves the business objects unchanged. A redesign of the business ob-
jects may also result in a reimplementation of the database objects but leaves the
database unchanged. The encapsulation therefore works.

e Difficulties arise with database queries resulting in more than one tuple. The frame-
work provides no support for such a situation, it has to be implemented manually
within the database objects’ methods.

8Secrecy (a means of encapsulation) is one of the most important features in achieving the advantages
of object orientation.

57

Object Oriented Approaches 3.6 Orthogonal Persistence

e Due to the strict secrecy, it is not possible to just select a list of table attributes
for presentation purposes and forward it to the user interface. The complete set of
objects always has to be instantiated resulting in far more objects than the approach
in section 3.4.

e This is, on the other hand, an advantage, because the application can be designed
with pure object oriented design methods without being disturbed by persistence
consideration. Persistence is first introduced during the implementation of the
database objects.

e For Web based applications it is useful to leave the database objects on the server
side (more efficient for multiple-tuple-operations) while the business objects may
reside on either the client or server side. A thick client may take some load off the
network and the server.

e As already mentioned, Java implementation (application or servlets) on the server
side tends to be slow with regards to database connection. The integration of the
Java Virtual Machine (JVM) into the database kernels will provide better perfor-
mance and eventually replace the current procedural database languages.

Java Relational Binding [Gre98, =-02] is another middleware product especially designed
for Java applications: From the description of a set of classes a relational schema and
methods of reading and writing objects in the database are generated. This eliminates
the design discontinuity as all the relational parts are generated by the tools. On the
other hand, this leaves no possibility for applying this method to already existing schemas
of legacy systems. An object cache is used to improve the otherwise poor performance of
object relational mappings. This lack in performance is also addressed by [=Persistence].
The key ideas are to optimize business object mapping and to perform object cache
management.

3.6 Orthogonal Persistence and Object Oriented
Databases

For object oriented applications the best approach — at least with respect to design —
is orthogonal persistence in object oriented databases. Literature about object oriented
databases [Heu97, SST97, Sch97, LV96| differentiates between three main streams:

1. Enhancement of object oriented programming languages (GemStone [=GemStone],

ObjectStore [=ODI], POET [=POET] and others).

2. Enhancement of relational database systems (Postgres [=Postgres], Informix
[=Informix] and others)

3. Completely new (Oy [=02], ITASCA [=IBEX], Jasmine (with promising multi-
media features) [KDM98, HFPH98| and others).

58

Object Oriented Approaches 3.7 Comparison

Another possibility to differentiate between different object oriented databases is by the
support features for multi media content [Die98]. In order to standardize object oriented
databases and to bring these different approaches together, the Object Data Management
Group has released the ODMG 2.0 standard 1997 [=ODMG, Cat97a]. The Object Query
Language (OQL) standard also emerges [Eva98].

Client-server distribution of object oriented applications can be done in various ways.
With a pure Java solution the communication between client and server can be imple-
mented with a proprietary protocol, or — more efficiently — with Remote Method Invoca-
tion RMI [Mer97, = Java|, or by using the Common Object Request Broker Architecture
CORBA [Say97, =OMG]. In both cases objects send messages to remote objects as if
they were local. RMI is tailored towards Java, as it is smaller and more efficient, while
there are CORBA IDL (Interface Description Language) mappings available for Java and
many other object oriented programming languages. Hence RMI is the method chosen in
a pure Java environment while CORBA is the solution for heterogeneous environments.

If a thick client is used (business objects on the client side, at least partially), a check-
out/check-in mechanism has to be used in order to check objects out of the database for a
long-lasting transaction and check them in again later. This is typical for object oriented
databases.

For Java the most interesting approach in this area is the PJama project [=PJama] at
the University of Glasgow:

“PJama is an experimental persistent programming system for the Java
programming language, that embodies the notion of orthogonal persistence:
an approach to making application objects persist between program execu-
tions with the minimum possible effort required from the application programs
themselves.

PJama supports the programming environment for Java being developed
by the Forest [=SunLabs] Project. This project takes the position that the
persistence and tool integration mechanisms of traditional operating systems
are a major limiting factor in the development of powerful, multi-user software
development environments. The intent is to replace the use of file systems
and ad hoc persistence mechanisms with typed, persistent objects.”

This is the most promising approach for object oriented pure Java applications.

3.7 Comparison

Figure 3.7 concludes this chapter with a comparison of the reasonable combinations of
client-server and persistence tradeoffs from the previous sections. The main decision
criteria is whether an information system or a processing system has to be designed®:

9This is not an exact definition. There are systems which fall into both categories and there are
design methods suitable for both categories. However, it has proven to be useful as a rough differenti-

59

Object Oriented Approaches 3.7 Comparison

1
cul HTML
client-side

functionality

network HTTP

server-side CGlI
functionality PL/SQL

database RDBMS

HTML solution Java GUI SQL access object persistence pure object
to the RDBMS in RDBMS oriented solution
4—. —>
« information systems « client-server applications
objectoriented_ = _ | « simple functionality » complex functionality
relational « simple data structure « complex data structure
« large amount of data » small/medium amount of data
* semantic data design (ER) « object oriented design (UML)

Figure 3.7: Comparison of the most reasonable approaches.

processing system: Client-server applications with typically complex structured data,
complex functionality but usually small to medium amount of data (CAD systems,
client-server games, etc.). Also, the server can play an active role and trigger
events on the client side (which is not possible in number 1 and 2). Object oriented
techniques and UML (Unified Modeling Language) can be used to design these
systems.

information system: Large databases of simply to complex structured data but with
only simple functionality for finding, retrieving and editing the stored data.

The techniques numbers 3, 4 and 5 show different structures of processing systems. They
differ in their database integration: In number 3 controller objects access the database
directly via SQL, which means a discontinuity in the design between the application
and the database. The controllers provide a means of separation between database and
business objects but they can also establish interaction between GUI and DB without
business objects inbetween for better performance. This technique can be used for both
small processing systems and information systems with a thicker middleware. One as-
pect of when to choose this approach to design an information system might be that a
connection to another object oriented application is required via RMI or CORBA.

In number 4 a relational database is used to make the objects persistent through a
special framework, hence the application design is homogenous object oriented. These

ation criteria. More recently the term ‘Web-based Information System’ (WIS) has been introduced in
literature [IBV9S].

60

Object Oriented Approaches 3.7 Comparison

approaches have their roots in a period of time where object oriented programming and
design were already widely used but object oriented databases were in their early research
stages. For new applications that do not have to connect to legacy database systems,
object oriented databases nowadays provide a better possibility for orthogonal persistence.
For pure informational systems, on the other hand, the larger design effort is often not
worthwhile. In number 5, finally, a pure object oriented approach achieves orthogonal
persistence through an object oriented database.

Of course, HTML is not an option for object oriented client-server applications. But
this thesis has its focus on information systems. Numbers 1, 2 and 3 show different
structures of information systems. Numbers 1 and 2 are passive systems, where the
server cannot trigger events on the client side!’. Number 2 is the Java alternative of the
pure HTML design: Each object has its own database connection — there is no secrecy
between database and objects.

In numbers 2 and 3 Java is used for more ‘intelligence’ on the client side to take some load
off the server and the network, thus making Java applets more efficient for long lasting
transactions. Moreover, there is additional functionality, especially for the user inter-
face. Despite its indisputable benefits, there are some drawbacks: to implement servlets
(number 3) efficiently, the virtual machine must be integrated with the database kernel.
Only a few database companies have announced this so far. Even more importantly, an
applet must be downloaded to the client first. This is no problem for intranets. However,
the internet has a smaller bandwidth, especially in Europe. For typical Internet appli-
cations consisting of just a few client-server interactions, the long download—time at the
beginning is often annoying.

A quantitative analysis in section 5.3 compares the Java and pure HTML approaches
from 1 and 2 with each other based on the use of typical end user profiles observed
during the pilot phase of our real-life applications. A unique design model for both
techniques (number 1 and 2) gives us the possibility to offer both user interfaces with the
same functionality leaving the last choice to the user. A qualitative analysis to compare
the Java and the pure HTML approach with each other based on typical end-user profiles
observed during the pilot phase of the prototype implementations gives initial results:

User interface: With pure HTML the user interface lacks the possibility of constraints
and event handling: An HTTP session has to be performed before functional de-
pendencies or restrictions can affect other inputs. To achieve this HTTP session,
a submit button has to be pressed explicitly. It does not usually suffice to fill an
input field or make a selection. Thus the user interface cannot react directly on
user input. JavaScript on the other hand provides one possibility of implementing
constraints and event handling into a HTML user interface: As far as JavaScript
becomes standardized [=JS, =ECMA] and widely implemented this disadvantage
disappears. On the other hand HTML has the advantage over Java of easy layout
and page design, eg. with style sheets. Recently, this advantage has shrunk: The
Java swing classes — part of the Java Foundation Classes (JFC) contained in the

10Netscape’s proprietary channels provide a possibility for active servers with pure HTML. It is,
however, not encouraged to use such proprietary solutions in general design methods

61

Object Oriented Approaches 3.7 Comparison

Java Development Kit (JDK) 1.2 — provide the possibility of a rich user interface
for the first time. However, the design of an HT'ML page remains much easier.

Performance: With pure HT'ML, each user interaction results in an HT'TP interaction
with the server, which in turn has to deliver a whole HTML page. Less client-server
connections are necessary with Java because menues and other Ul elements (like
hierarchical selections) can be downloaded at once and then kept on the client side
(but we have to take care about database updates in the meantime). In addition,
less data has to be transmitted with each connection because only the data has to
be transmitted without the HTML code. Unfortunately the Java applet has to be
downloaded first, which can be annoying on slow network connections. We have
observed that with our pilot implementation the download of the Java applet is
not worthwhile (in terms of performance) if less than 200-300 user interactions take
place (see section 5.3). In our pilots most user session have fewer interactions which
is why we keep the pure HTML interface available: It is obviously faster than the
Java version which also requires more computing power on the client side.

Server load: With pure HI'ML more capacity is required on the server side: the size of
the dynamic session state information — corresponding with the number of concur-
rent sessions — adds to the database’s size. The larger the database compared to
the session state information the less this matters.

Browser compatibility: can easily be achieved with pure HTML. With Java it has
to be tested carefully but is still possible - at least as long as the pure HTML
alternative is available for older browsers.

Design methods: In both cases the functionality is designed with PHC/DL thus re-
stricting the Java variant to a subset of its possibilities to be compatible with the
pure HTML approach. PHC/LL and the Java GUI have to be designed separately
based on the same PHC/DL. The user interface layout can easier be designed with
HTML by designing static pages first and then enhancing them to PHC/LL.Without
our design tools the direct implementation of the PL/SQL code is error prone and
maintenance is difficult: The direct implementation of PL/SQL without any tools
is therefore only recommended for medium sized application.

Multi media integration: Images and other Multimedia content can be integrated into
both approaches: The advantage of Java is: There is no need for a proprietary
installation of Pluglns. Moreover Java objects are available for playing almost any
multimedia format available on the Internet.

File upload: The upload of files from the local file system to the server is not possible
with Java due to the restrictive security model. A workaround is to build a com-
bination of a server side Java listener-application and CGI perl-scripts to integrate
the usage of a small HTML frame with a form upload into the Java applet in an
almost homogenous way.

Server events and collaboration: For collaboration it is necessary that the server can
trigger an event on the client side. With HTML Netscape has developed some

62

Object Oriented Approaches 3.7 Comparison

extensions (server push, channels) to implement active servers, but these are pro-
prietary and not widely used. On the other hand, using Java servlets (number 3

in figure 3.7) an active server can be implemented (remote method invocation over
sockets without HTTP).

Database transactions: With pure HTML (even with cookies) the connection to the
database is stateless, resulting in complex state handling and timeout mechanisms
which also compromise the security of such a system. With JDBC or RMI connec-
tion orientation can easily be achieved, thus guaranteeing safe and secure transac-
tions. Performance considerations can be found in [Dic97].

63

Chapter 4

Searching in Database Backed Web
Applications

As different as they are in design and implementation, relational databases and the Web
also differ considerably in the ways they can be searched. This chapter firstly gives
an overview of the current status on searching in these two worlds and then introduces
several approaches for combining these methods to provide efficient search capabilities
for database backed Web applications.

4.1 Search on the Web and in Relational Databases

In talking about the Web we cannot ignore the question of how to search and find relevant
information. On the Web itself one can find a lot of research dealing with this question.
Recent work and a good overview can be found in [=SoS]|. The research on how to find
relevant information in hypertext systems is in fact far older than the Web. Recent work
on information retrieval can be found in [=IBIS].

On the other hand, there is also a long history of research on how to retrieve information
from relational databases. The classical built-in method are, of course, relational query
languages [UlI88] like SQL (Structured Query Language) or QBE (Query By Example).
All the major commercially available relational database products implement these, or
similar, query languages. However, the disadvantage with this is that one has to know
the eract names of the tables and the attributes, the exact relational topology (e.g.
foreign key structure) and the semantic meaning of this structure (e. g. entity relationship
diagram) to formulate a useful query to the database.

An interesting approach to overcome some of this deficiencies are ‘Universal Relation’
query languages, a short citation from [UlI89], p.1026 explains the key ideas:

“A universal relation is an imaginary relation that represents all of the data
in the database. A query language that lets us refer to the universal relation,
rather than to the actual database scheme, can be much simpler than typical

64

Searching 4.1 Web versus Relational Databases

relational query languages, because we need to mention only attributes, rather
than attribute-relation pairs. As an especially important example, a natural-
language interface to a database is designed for use by people who understand
little or nothing of the scheme. All natural-language interfaces efficiently refer
to the universal relation, and queries about the universal relation must be
translated by the system into queries about the existing scheme. Interpreting
queries over a universal relation is an admittedly difficult task. Yet it is one
that must be performed if we are to have natural language interfaces...”

One remaining problem is that of naming: During design great attention has to be paid
to the naming of attributes: Attributes representing the same thing in different relation
schemes have to be given the same name, attributes representing different things have to
be given different names. This guarantees globally unambigous attribute names.

The supporters and opponents of universal relations fight a constant battle. Some of the
arguments against universal relations are:

e The universal relation does not always result in a reasonably interpretable repre-
sentation of the data.

e The natural join is not always the best solution.

e If the data structure is cyclic', which path should be taken? Normally the shortest
path is selected, leaving the question open as to whether the user’s intuition matches
that of the system’s designer. Hence some systems provide an interactive method,
leaving the final choice of the correct path to the user.

To cite [UlI89],p.1030 once again: “However, the real counterargument is that there ain’t
nothing better.” However, as will be shown later, universal relations are not the best
solution for searching in database backed Web applications, but the idea of a path through
the database will be used for the approach proposed here.

Whereas universal relations never got further than university research, the first natural
language interfaces (NLIs) for databases for the English speaking community became
commercially available about 18 years ago. Some of them use universal relations, others
directly translate a subset of a natural language into SQL statements using similar tech-
niques. In the meanwhile NLIs for other languages (including German) have followed.
Common requirements of NLIs include [TB90]:

e No formal training required to use these systems.

e The acceptable language subset must be large enough to allow for natural commu-
nication.

e Handling: Recognition of proper names, automatic spelling correction, efficient
starting phrase skipper and an abbreviation and pattern recognizer. Hence the
system needs at least a basic vocabulary of words, patterns and phrases.

IThis is the most common case: Almost no real-life design is acyclic.

65

Searching 4.2 Natural Language Interface

e Accessibility: For every possible formal SQL query there exists at least one natural
language query.

e Habitability: User is able to judge which natural language utterances are acceptable
for the system.

e Portability: With respect to different hardware, operating systems, database man-
agement systems, domain knowledge, data models and connectivity to other soft-
ware components.

On the Web — and hence also for database backed Web applications — only two methods
of querying are realistic — keywords and NLIs (nobody would expect the average Web
user first to learn the scheme of the underlying database and then to formulate a proper
query directly with SQL.):

Keywords are the usual method of searching on the Web’s search engines. Usually
the boolean operators AND, OR and NOT can be used to combine keywords. Also
inclusion /exclusion methods are usual, where some keywords are marked as required
and others as not allowed. Interactive iterative refinement methods further improve
this sort of querying by including or excluding associated keywords.

Natural Language is rarely seen on the Web nowadays, but would certainly be appre-
ciated by the average Web user.

4.2 A Natural Language Interface for Database
Backed Web Applications

This section introduces a heuristic straight-forward approach, usable with both keyword
search and natural language query. The key idea is to differentiate between the struc-
tural and contextual meaning of keywords. The structural keywords are used to select
a path within the database topology (i.e. a particular attribute of a table or a whole
SQL statement). A full-text search then detects the occurance of the contents keywords
within the preselected path. Similar ideas — called ‘keyword separation’ — can also be
found to search static hypertext systems [Zen98]. Other papers suggest rich links [Oin98|
or metalevel links [Tak98] for better navigation and queries. Yet compared with linked
hypertext structures, the structure of a relational database (and especially the seman-
tically richer ER description) contains even more information. With natural language
utterances we use a starting phrase skipper, but then use the same simple method as
with keywords.

The base is a configuration repository (stored as relational data structure) which defines
a semantic metadata model of the database: The database dictionary is the basis for the
metadata model. In addition to the dictionary it defines which tables, attributes and
relations are visible under what names (implicit renaming) to the search interface. A list
of uninteresting ‘filling’ words and starting phrases is used to eliminate information not

66

Searching 4.2 Natural Language Interface

used as keywords. The core of the model is a table structure, each entry consists of the
following attributes:

e A list of structural keywords. These keywords are used to select a set of paths.

e A set of SQL statements (called ‘paths’ according to the definition for universal
relations) which take the content keywords as parameters (marked with $$). There
can be simple select statements from just one table or complete paths of joins
through a part of the database.

SELECT aNachname, aBezeichnung

FROM tPerson, tAnbieter, tAnbot

WHERE (tPerson.aPersId = tAnbieter.aPersId)
AND (tAnbieter.aPersId = tAnbot.aPersId)
AND (tAnbot.aProdId = tProdukt.aProdId)

AND (tAnbot.aBezeichnung = $$)

The usage of the SQL clauses like and sounds can be used to further improve
the search results. The rules for output and anchor (see next two items) can use
both the found value ($$) and the selected attributes from the SQL statement (e. g.
$aNachname).

e A definition of how to format the output of the SQL query for the user: This
includes the usage of more descriptive names than the names of the tables and
attributes or the output of additional information from the appropriate path. This
decouples the names used for design from the names used for querying and result
output and hence, in contrast to universal relations, takes some pressure off the
naming rules for design.

e A URL? to jump into the application, which takes the name and values of the found
attributes as parameters. If complex session state information has to be built in
order to reach an appropriate entry point, an additional function may be required
within the database application.

Finally, for each table the following additional information is provided (for an unstruc-
tured search): Which attributes to use for content search and which attributes from those
results to use for presentation purposes and link generation. A parameterized URL (or
even a set of URLs) is provided to jump into the right entry point of the application.

The algorithm: First, the starting phrase and uninteresting ‘filling’ words are eliminated.
Then the query input is searched for structural keywords. For each keyword found, the
other keywords are treated as content keywords and the following steps are performed.

2There could also be the necessity for more than one URL. In this case, each result is provided with

both links.

67

Searching 4.2 Natural Language Interface

1. The appropriate path® is selected from the repository. The parametrized SQL
statement is filled with the content attributes and executed as often as necessary.

2. The results are formatted according to the presentation rules of the respective path.

3. These results are links. The anchor tags are built from the URL definitions filled
with the names and values of the attributes found.

4. A click on one of these results brings the user directly to a point within the database
application that reflects the query results.

If no structural keyword is found, an unstructured search is performed: All keywords are
treated as content keywords and are searched within all visible attributes. For each table,
one or more URLs are defined as starting points of the application, which take the name
and value of the found attribute as parameters. The main difference to universal relations
is that there is no need to calculate or guess the right path: All paths are predefined and
assigned to their appropriate keywords.

The repository is defined in cooperation with test users in a brainstorming process and
can continously be refined during the operation of the system (e.g. from user feedback).
This is no self-learning, solving-the-problems-of-the-world solution, but it has proven to be
successful in the prototype implementations and it can be applied to any Web application
based on relational databases by simply constructing an appropriate repository. It is the
author’s opinion that a decent organizational solution on hand is always better than
a wonderful technical solution which is not yet available*. Moreover, in this case, the
task of the search interface is to bring the user into the right starting point within the
application rather than giving him a perfectly precise search result: The user can then —
with the possibilities of the application itself — proceed further to the desired information.
Hence it is only important to place the user somewhere near the desired results within
the application.

At this point it also becomes clear why universal relations are not the best solution for
searching in database backed Web applications: Even if the ‘right’ path can be found, how
can the appropriate entry point of the application be determined? The query interpreter
would have to know how the application works. Thus the idea of paths is used, but within
the scope of a fixed configuration rather than a runtime interpretation.

Figure 4.1 shows a user request “I want to buy a flan”®. First the starting phrase “I

want” and the filling words “a” and “to” are eliminated, resulting in two keywords “buy”
and “flan”. The word “buy” is now detected as a structural keyword. The respective
statement is called with “flan” as its parameter and delivers some offers of flans from
the database. Figure 4.2 shows the answer — the output has been prepared according to
the definition from the repository: Each line refers to a result and the link provides the

3There might also be more than one path for a structural keyword. The algorithm is simply repeated
for each and the results are combined.

4Which of course does not mean that it is not worth working towards the ideal solution. ..

5There is only a german implementation as yet. To be multilingual, one repository has to be set up
for each language provided.

68

Searching 4.3 Agent Interface

Suche

Eitte geben Sie Thre Anfrage als lurzen Satz oder in Form einzelner Suchbegniffe ein

IIch will Torten kaufen Stal‘tl " debug Layout & uszer Layout

Figure 4.1: Sample query for the natural language interface.

Suchergebnis fiir "Ich will Torten kaufen"

s Torten von Franz u. Marianne Thier aus Hiom

* Torten von Franz u. hMarianne Thier aus Hiirm

* Torten von Franz u. Marianme Thier aus Hilrm

Ergebnis der Volltextsuche:

s Produkt Torten in Subkategorie Mehlspeisen

Figure 4.2: Results from the sample query in figure 4.1.

possibility of directly entering the application at a point that reflects the query results.
Figure 4.3 finally shows the entry point of the application: The product selection and the
geographical selection are already opened according to the search result and the upper
right-hand frame shows all the offers of “flans”. The search sentences have to be short of
course, otherwise many structural and content keywords would be combined with each
other out of context in an almost random way.

If we consider a simple keyword search instead, e.g. “Torten Niedertsterreich”, which
means we are searching for flans or for anything in Niederdsterreich, no structural words
could be found. Hence an unstructured search throughout all visible attributes of the
database delivers the search result in figure 4.4. Now we can see different kinds of results,
each of them with its own predefined, intuitive link into the database.

4.3 An Agent Interface for Database Backed Web
Applications

One of the most common ‘buzz’ words of recent years is ‘Agent’. Almost everything is
named an agent and agents appear to be almost everywhere. Despite the fact that it
is an emerging technology, the truth is that — following a more strict definition — there

69

Searching 4.3 Agent Interface

DEMEMET - Netscape

File Edit “iew Go Communicator Help

D The Net for Rural Areas - Das Neiz fiir lindliche Regionen - Maaseudun tietoverkke
m [Demenet] [Home | [Produlkte] [Tounsmus| [Information]| [Sprache | [Anmelden]| [Begnnermodus | [Hilfe
=HE ol 4
it aichen 7 Eintriige fir Torten in der Region Fiirm
: 2 a Auswihlen des Produlcts durch klick auf den Embcaufewagen
Torten in der Region Filrm
Die Dratenbank enthalt 7 passende Eintrige
B 1= Torten
Franz u. Mananne Thier, Hirm @f
Regionenauswahl Ltz . ;
By i Produktpalette erweiterr 2= Torten
S-EQI0T ETWELLETT Franz u. Mananne Thier, Hiirm ﬁ, |
;@ Uhersicht E@ Ubersicht 2 ;
Burgenland ED Fertigprodukte 3. %ucheq X i
D Central-Finland D Baclowraren Eranz u. Marianne Thier, Hirm @f
& Kémten a Gerduchertes | R T e, FEETL:
Euopio ED Mehlspeisen 1 il §7M°ﬁen£°{ﬁ? Thier i ’—‘
: Kymi ; @ Andere Mehlspeiser | S @f LI
;"DLapp_i o ol
B Dstue Warenkorb
L Miederasterreich 23
DD - PE Totten
P Dw ¢ B yofimett Thr Warenkorb ist derzeii leer
B ndustrieviertel " m@ :
5@ A e vom Vieh
1 E O Getranke
Aigelsbach 0 Handwerk
D Amstetten @ Rohprodukte
-@ Attstetten | Sonstiges
O pindenmars ® O ien
D Eschenau
-@ Euratsfeld
D Frankenfels
O Futy
D Gresten LI

| Documernt: Do

Figure 4.3: Destination point of search result link.

are not very many agents available. A recent overview is given in [KZ98] — important
research groups are located at [=MIT, =UMBC]. There are also some synonyms, some-
times even used with different meanings: ‘Intelligent agents’ is the most general term,
an intelligent agent is not necessarily a piece of software (e.g. a smart battery systems,
smart airbags). Software agents are software implementations of intelligent agents. A
very general definition of software agents is provided in [Cho98]:

“Agents are a new software paradigm. They are relatively small pieces of
autonomous software that act in various roles on behalf of a specific function
or user. [...] The agent may reside on the user’s machine and be transmitted
to distant computers where it carries out its functions. Or it may reside
at network nodes. In the one as in the other case, the artifact will move
autonomously. This [...] is one of the basic characteristics distinguishing an
agent from other chunks of software.

To its end user, or master, the agent is a personal assistant — his corre-
spondent within the computer’s communications and software landscape in
which it works. It is a proactive artefact that can perform fairly sophisticated

70

Searching 4.3 Agent Interface

Suchergebnis fiir "Torten Niederdsterreich"

Ergebnis der Volltextsuche:

s Torten von Franz u. Marianne Thier aus Hiirm

* Torten von Franz u. Marianne Thier aus Hiirm

* Torten von Franz u. Marianme Thier aus Hiirm

Ergehnis der Volltextsuche:

* Produkt Torten in Sublkatesorie Mehlspeisen

Ergebnis der Volltextsuche:

* Provinz Niederdsterreich

Figure 4.4: Search result of unstructured keyword search.

tasks and can also exhibit learning abilities. The agent:
e Knows about the user, his or her wishes and preferred model of operation

e [s informed about other correspondent agents, including their profiles
and work patterns

e [s able to collect, handle, and present information to its master’s satis-
faction

e Can structure system elements as required to tailor solutions to real-time
users’ needs

Should the agent be enriched with artificial intelligence (AI)? The majority
of experts in this field say Yes!”

[Cho98] provides an extensive overview of state-of-the-art agent technology. A shorter
definition comes from Prof. Pattie Maes who defines a software agent as “a process that
lives in the world of computers and networks and that can operate autonomously to
fulfill a set of tasks.”. Ergo agents have a task and do not implement an algorithm. Their
behaviour is often teleological, not causal and hence not predictable. And they have a
sort of self-awareness [=MIT].

The key idea in providing an agent interface for a database backed Web application is
to encapsulate the search functionality described in the previous section within an agent
called ‘database guardian’. In the first approach this piece of software is not an agent
in the strict sense, because it is configured with the repository and has no learning ca-
pabilities. It should at least be able to talk to other agents, either with short messages,

71

Searching 4.3 Agent Interface

x

Agent Ul |

visiting ||
Agent

Test Ul

database

visiting dialog —> DB. 0BG
Agent guardian otadata
A repository
Aglet Server \ —_————
Web UI HTTPD fe' == 2 .
JRE

Figure 4.5: Agent environment for database backed Web applications.

or with an intelligent language like KQML (Knowledge Query and Manipulation Lan-
guage) [Cho98, CHI98, =UMBC]. From the other agent’s view this version of the natural
language interface would look as if the guardian knows the database application and can
hence communicate it to others. A personalized agent with a particular task can now
migrate on its own through the Web and eventually find our database, communicate with
our guardian and — in the case of success — report back home on what it has found.

Figure 4.5 shows an example of an agent environment using IBM’s Aglets [=IBM]: The
aglet server is a Java application and hence needs the Java Runtime Environment (JRE)
for execution. The aglet server now provides a platform for aglets: One aglet is the
database guardian which implements the search functionality. The other aglet might
be a visiting agent, sent from somewhere, which has a particular question to ask our
guardian. These two aglets can now communicate with each other. For testing purposes,
a local user interface to the guardian is provided. In addition, the Aglet server provides
a Web interface to the guardian, hence users without the possibility to send an agent can
communicate directly with the guardian over the Web.

This approach provides the following advantages over classical client-server applications:

e The agent is self-migrating and might, therefore, eventually meet the database
guardian despite the user not even knowing the database: The agent was just given
a task and was sent away.

e The agent is self-learning and will also learn how to communicate efficiently with
the database guardian. The agent will meet other agents and tell them about the
database and what to find there.

72

Searching 4.4 Robots and Search Engines

e Agent communication is rather robust: What cannot be understood will simply be
ignored. No error messages occur like in classical client-server protocols.

e Hence the implementations of both sides are almost decoupled.

e Independent from network protocols: The agent servers care for the travelling of
the agents.

e With IBM’s Aglets even the server itself is platform independent, because it is
implemented with Java.

One obvious enhancement of this agent approach is to allow agents not only to search
for information, but also to provide information. In this scenario the guardian has to be
extended to be able to insert information into the database. Finally, the database itself
could send out agents — either to provide the contained information actively, e.g. to meet
information seeking agents at virtual marketplaces [GMMO98], or to seek new information
to be stored in the database.

4.4 A Robot Interface to Enable Database Backed
Web Applications for Search Engines

Search engines use programs — called robots, wanderers, spiders or crawlers — to index
the whole Web [=OUC, =IBIS, Tan96, Gra97]. The problem with search engines and
database backed Web applications is that the latter need links with lots of parameters in
their URLs, which the former simply ignore. Hence we need static pages which the search
engines can bookmark. The first straight-forward approach is to generate one large static
page which includes all the keywords both in its META tags and in the contents. The links
from these keywords then point directly to the application. Such a page can be directly
generated from the repository described in section 4.2. The disadvantage, however, is
that for a very large database this would mean loading the textual representation of the
whole database over the Web. Even for a few megabytes (which database experts would
call ‘small’) this is not reasonable.

The alternative is to repetitively build a static hypertext tree from the database, following
the entity relationship structure. First, all m:n relations have to be transformed into 1:n
relations, possibly introducing new entities [HeuS97]. An HTML page is then generated
for each entity instance and for each 1:n relation a list of links to the related entity
instances is included into the page belonging to the entity instance at the 1-side of the
relation.

Afterwards the following simple heuristic algorithm determines a reasonable small start
page from which all other pages can be reached:

1. All entities which are at the n-side of 1:n relations, but have no other relations, are
removed including all relations of these entities.

73

Searching 4.4 Robots and Search Engines

2. Step 1 is repeated until there are no more entities with only 1:n relations.

3. Now entities with 1:n and other relations are removed one by one. The entity with
the most 1:n relations is always removed first.

4. If there are no more 1:n relations, the same is continued with the is-a relations
removing all the specialized entities in one step.

5. Finally, the entities with 1:1 relations are removed one by one until there are only
entities left but no more relations.

6. For each entity left, a static page with a list of links to the entities’ pages is now
built.

7. Finally a root page is built, which contains the links to the previously mentioned
lists.

This root page is the starting point for the generated hierarchical hypertext tree. The
algorithm eliminates in each step only entities that can be reached from another entity,
because it eliminates only entities with relations. The order of the steps tends to leave
the smallest number of entities at the end, but it is possible to construct ER diagrams
for which this does not hold.

An exact algorithm can be applied using graph theory: First the ER-diagram is converted
into a directed graph. The entities become nodes and the relations edges. All the 1:n
relations are directed from the 1-side to the n-side, all is-a relations are directed from
the general side to the special side and all 1:1 relations are directed arbitrarily. Now in
general a cyclic directed graph is built. The next step is to calculate the condensation
of this graph by reducing the strong (cyclic) components (subgraphs) to nodes. The
resulting graph is acyclic, hence all the nodes, to which an edge points, can be deleted
because they can be reached from somewhere else. Finally from each of the remaining
strong components one node is chosen arbitrarily, which gives the entities that can be
reached directly from the root page. This algorithm is mathematically proven in [Har74].

The root page can now be added manually to a search engine (e.g. AltaVista [=Alta]),
the rest of the pages will then be retrieved automatically. For a multilingual system it
is reasonable to build one tree for each language. The contents of the generated pages
is derived from the same repository as described in section 4.2, especially from the part,
where the entry points for single tables are defined.

e What attributes are shown as contents of the anchor tags
e What additional information is displayed

e The URLs pointing into the database application

Within all the pages, the META tags description and keywords are also filled with
attribute values from the database and with keywords associated with the appropriate
tables (defined in the repository), e.g.

74

Searching 4.5 Future Work

<META name="keywords” content="flan, cake’>

A short explanation on each page will prevent the user from following the static link
structure and instead encourage him to use the links pointing into the database applica-
tions. Tricks to hide the misleading static links are strongly discouraged by the providers
of the search engines. Such tricks could be to use invisible links (using the background

color) or to define the META tag

<META http-equiv="refresh” content="0; URL=http://database?entry=point’>

to cause an immediate timed refresh to directly jump into the database application.
[=Alta] for example does not bookmark pages, which use such tricks.

This method enables the bookmarking of the whole database contents by any search
engine with reasonably small pages and the possibility to jump into the dynamic appli-
cation. This method can also be applied with intelligent agents, that expect a static
hypertext tree to traverse.

4.5 Future Work

The following ideas may provide hints for future work:

e Better linguistic analysis as in [TB90] with more powerful assignment of the appli-
cation entry points. Usage of associative and related terms including a probability
estimation. Context grouping for long sentences.

e Semantic description of the application’s entry point to enable a more flexible de-
tection of the right entry point from a search result.

e Learning abilities to extend the repository during runtime, e. g. what queries belong
to which tables and attributes and — perhaps — which entry points. The questions
here involve: How can the guardian be trained? How should an efficient internal
knowledge representation look like? Research results in the areas of Al and expert
systems should be applied to the database guardian.

75

Chapter 5

Results and Conclusion

Evaluation of the design and implementation methods has been done by real implemen-
tations. It is the author’s opinion that there is no better way to show that it works.
This chapter presents two successful pilot implementations: A product marketing and
tourism information system for the project DEMETER and a Web accessible interac-
tive database training server. A quantitative comparison between the Java and the pure
HTML versions is provided. The chapter concludes with references to related work, a
short summary and suggestions for future work.

The development environment of the pilot implementations is an Oracle Server 7.3.3 on a
Windows NT 4.0 and on a Sun SPARC Solaris 2.5 Server. The implementation language
is PL/SQL 2.3 [Stii96] at the server side. For a Web server the Oracle Web Listener 2.1
and 3.0 [=Oracle] are used. At the client side either pure HTML or Java is used.

5.1 DEMENET - The DEMETER Project

The first pilot implementation is a product marketing and tourism information system for
the DEMETER project. The project DEMETER! is funded by the European Commission
under the 4® Framework Programme TURAZ2. It is specifically tailored to farmers’ needs,
aimed at enhancing their quality of life and finding new sources for additional income.

The project contributes in several ways to rural development and enhancement of living
conditions for farmers throughout Europe. Currently the flexible technical infrastructure

— called DEMENET — offers a framework which provides

e Telematics courses in computer and telecommunications.

e Access to individualized courses in food technology, gardening, new European stan-
dards for food processing and other farming specific courses.

IDistance Education, Multimedia Teleservices and Telework for Farmers
2Telematics for Urban and Rural Areas

76

Results and Conclusion 5.1 DEMENET - The DEMETER Project

e Information systems for rural areas.

Database for product marketing (regional, national and international)
e Tourism and village information systems.

e Management guidance and counseling (forms, accounting,...).

other farming specific information, according to user needs.

The project also encourages the users to build their own contribution to a decentralized
common European DEMENET structure. DEMENET is designed as a tool for all inter-
ested farmers, an easy to use, low cost system (implementation and participation) that
provides ample possibilities for rural development. Currently, it is in the pilot phase.

The database for product marketing and tourism information was designed to meet the
following requirements:

e The standard user interface has to work with almost any, inclusing older, browsers
and platforms and should not depend on proprietary nonstandard extensions like
Plug—Ins or Active—X. Thus the implementation is restricted to pure HTML.

e Decentralized global area distribution. The decentralized structure of the imple-
mentation must be extendable.

e At the moment, especially in Europe, the performance bottleneck of every Web
based application over the Internet is the latency of the net itself. Despite that,
this application has to run at a reasonable speed over the Internet.

e Multilingual: The system must be available in different languages. It must be
possible to change the language at any time during use in a transparent way.lt
must also be possible, of course, to edit the system on a multilingual base: The
multilingual user interface as well as the content must be editable and translateable
during runtime.

e When speaking of the Internet we cannot ignore problems concerning security:
This is a general problem and standard solutions e. g. secure sockets layer (SSL) or
integrated SmartCard [DMG96, MGD97] solutions will be used.

The DEMENET application has been implemented successfully using the techniques de-
scribed in this thesis both with pure HTML and with Java. Details about this application
can be found in [RGR97|. Everyone is invited to visit the pilot server, and to understand
how this actually works. Its URL is http://land.ict.tuwien.ac.at/?. Currently the
system is being evaluated by a group of test users throughout Europe, mainly to improve
the layout and the database structure. The first feedback from our users looks promising.

3This serves as a redirection URL to the current implementation.

77

Results and Conclusion 5.2 Web Database Training

5.2 Web Accessible Interactive Database Training

Distance education, in most cases now ODL (Open and Distance Learning) has been
proven by modern research to be the most efficient method to enable growing numbers of
students especially to get engineering education most quickly and to the highest standard
possible [Gas95, FW94, Ren95, Dav95]. Creating interactive simulations and laboratories
further enhances the efficiency of the learning process significantly. As one possible im-
plementation of these concepts a Web accessible tutorial for interactive database training
is presented. First results show that organizational and educational advantages can be
obtained, e. g. better student lecturer interaction and personalized access to information
combined with interactive simulation systems. With this approach to engineering educa-
tion we hope to create the most efficient learning and teaching environments, fostering
creativity and excellence in order to be prepared for the already enhanced international
competition.

If hypertext material is to be successful, it is not enough just to translate the paper
version of the lecture notes to the Web, but it is necessary to take advantage of the full
range of hypertext features. The main attraction of the Web is interactivity, leading to
the design of an interactive laboratory following the rules of open and distance learning
concepts. This laboratory accompanies the lecture “Databases on the World Wide Web”:
Within the laboratory the students have the following tasks: Design of a small database
with ER and implementation with SQL. Some queries with SQL. Design of a small doc-
ument collection including a homepage. Connecting the database to the Web, creating
some dynamic HTML documents from the database on the fly and doing some update
operations in the database using the HTML FORM-interface.

The first part of the laboratory is an interactive SQL-tutorial: Each group of four students
receives an example where 15 queries have to be solved on a given data structure. On
the welcome screen the data structure is shown, including all base relations and a short
description. After reading and understanding the data structure, the student can proceed
to the first query task, where the expected results are also shown. The first SQL query
is then entered.

If the try was syntactically correct but not a solution to the given problem, an error
message is obtained. After entering the correct SQL statement the student receives a
confirmation. If a syntactically incorrect statement is entered, the error message from
the database is forwarded. To determine, if the student has entered a correct solution,
the server does not parse the SQL input but rather compares the result of the student’s
SQL request with the result of the predefined correct SQL solution statement executed
on the same data. If the student has already solved the task, the alternative correct
solutions are provided afterwards.

This provides the possibility of misuse, when a student enters an SQL statement which
is tailored towards the expected results but only works on the actual data. The system
does determine this statement as correct and provides the alternative results, but every
SQL statement which leads to a correct response is saved into a log file which can later
be evaluated, if someone tried to cheat.

78

Results and Conclusion 5.3 Quantitative Analysis

The second part of the laboratory is to design and implement a small database and to
implement database interaction from the HT'ML user interface, e. g. to insert a form input
into the database or to generate a Web page dynamically from the database contents.
The implementation is done through PL/SQL programs located in the database. To
complete the second laboratory part another Web interface is provided, which allows the
execution of any SQL statement to create and modify the data structure, the editing of
the student’s database contents, the uploading and compilation of the PL/SQL code and
the uploading of static HTML pages and pictures. Again, the only thing needed at the
client side is a Web browser.

The outstanding feature of this laboratory is that there is no need to be present at the
institute, which is unusual at the Vienna University of Technology. Advanced students
(tutors) give assistance mainly through a mailing list. Once a week the office is open for
personal contact. Thus the lab can be accessed from anywhere on the Internet, with just
a Web browser at the client side. For the students this gives the possibility of learning
at their own speed, when and where they want (student centered learning).

The laboratory itself is implemented as a database backed Web application, using the
techniques described in this thesis to generate the Web interface pages automatically from
the database contents and to compute the user input data. The only difference from the
students’ implementation is, that the laboratory implementation uses dynamic embedded
SQL rather than static embedded SQL, since it has to pass the students’ SQL statements
to the database and then include the results in dynamically generated HTML pages.
Thus the meta-level of tutorial implementation uses essentially the same technologies as
the students have to use when completing the tutorial. As an alternative implementation
technique the same functionality for the two parts of the laboratory has been provided
with two Java applets. The resultant differences are described in chapter 3.

The complete laboratory is available at http://aki.ict.tuwien.ac.at/ in both English
and German, details can be found in [GR98, GRRF98, RGM97]. Only the second part of
the laboratory is restricted to authorized access, the first part and the demo application
are available without restriction and anyone is invited to visit them.

The feedback of the students was consistently positive: The vast majority of the students
(97%) liked the ability to work at the laboratory anytime and anywhere, only 3% felt
insecure and would have prefered a more restrictive course. However, the prototype
implementation worked satisfactorily and the performance was good. With 90 engineering
students having worked with the application for two months, the implementation method
has gone through its baptism of fire.

5.3 Quantitative Analysis

This section introduces a decision criteria which helps to decide whether a pure HT'ML or
a Java implementation performs better in terms of network traffic. The presented results
are derived from measuring the prototype implementations both in their pure HTML

79

Results and Conclusion 5.3 Quantitative Analysis

form and in their Java form. Firstly, the measuring method is shown and the results are
discussed.

There are different methods of measuring the network traffic of a server application:

e The application itself can be modified to record the data sent to or received from a
client. The advantage is, that the data can easily be prepared in a useful structure.
However, the disadvantage is, that the application is changed. This might also affect
the measuring itself, but the greatest problem is that for repetitive measuring during
development the measuring has always to be adopted.

e A task is programmed that observes the network connection of the server. The
application itself is no longer affected by the measuring because of this, but the
normal network daemons have to be replaced by tasks that also record the network
data. This might affect the speed of the server’s network connection.

e Another network node is introduced in the form of an observer PC. The disadvan-
tage is, that more resources are needed (additional PC, repeater hardware) and
the reconstruction of the interesting data transfers from the network traffic is more
complicated. However, the advantage is, that the measured system is not affected?.

For its advantage of not affecting the normal operation of the measured server, the third
method has been used. Figure 5.1 shows an overview of the measuring environment.
Normally a network card discards all received frames but those addressed to the MAC
(Medium Access Control IEEE 802.3 [Tan96],p.280) address of the card or to a group the
card belongs to (multicast) or broadcast frames. Hence the network card of the observer
PC (an Intel EtherExpress Pro 100 in this special case) is switched to promiscuous mode
to record all frames on the network. The network is not affected, because the network
card sends nothing in promiscuous mode. A sniffing tool is used to communicate with
the card and to record all the frames into a raw text file. This file grows rather fast and
can easily reach a size of more than 100MB within an hour. Of course this depends on
the server traffic.

Therefore, the raw data file is directly streamed into a filter that eliminates all the frames
not needed. Perl [WSCP96| has been used as implementation language, because it has
proven to be very useful for the text detection and replacement operations needed. This
filter eliminates wrong ports, e.g. 110 (Post Office Protocol POP 3) or 139 (NetBios
Session Service) [WE96], reducing the size of the file to typically tens of megabytes.

During the next step a preprocessor loads the data into a database, stripping everything
but the TCP and IP protocol headers and the contained data. The database size of
one measurement is typically a few megabytes. The database contains one table for
sockets, each with a unique socket identifier as primary key, ordered by the time the
sockets were opened. This table also contains the number of frames and the complete
amount of data transferred within this socket. A second table contains all the frames
tagged with a serial number (in the order of their appearance) and a foreign key to the

4Only the repeater may introduce a not recognizeable latency in the network traffic.

80

Results and Conclusion 5.3 Quantitative Analysis

results

database interactive

analysis

preprocessing ‘

filtered data

raw data

filter

observer I

100MBit Ethernet

Figure 5.1: Quantitative analysis measurement environment.

socket to which the frame belongs, ordered by the socket identifier first and then by the
frame number within each socket. Each socket contains at least three frames for the TCP
connection setup at the beginning, then the data and finally typically two frames for the
TCP connection closedown. The frames for Java and HTML can be differentiated by
their port. Identification of parallel sessions is done with session identifiers.

To compare Java and HTML applications with each other we have to face the problem,
that HTML opens a socket for each HT'TP connection, whereas Java applications typically
open a small number of sockets for the connection oriented JDBC connections. What
we finally require to compare is the number of transferred data over the number of
user interactions for the same application implemented both with Java and HTML. With
HTML each user interaction leads to a HTTP connection and hence the number of sockets
roughly”® equals the number of user interactions. Apparently, this is not true for Java.

Therefore typical use cases observed from user profiles of pilot users are taken and syn-
chronization points are defined within them, such that the number of user interactions
between two synchronization points is well defined (and equal for both the Java and
HTML implementation) and the synchronization point itself can easily be detected from

5 Additional sockets are opened for each image contained in the HTML pages. With the applications
discussed here, almost all images are downloaded at the beginning and stored in the browser cache. If
this does not hold for another application, the number of sockets has to be divided by the average number
of images per page to receive the number of user interactions.

81

Results and Conclusion 5.3 Quantitative Analysis

data T

————— original HTML

- == original Java

stretched Java

stretchening of the
synchronization
points

/. sockets
user interactions

»
>

sync 0 sync 1 sync 2 sync 3 sync 4

Figure 5.2: Stretching of the Java curve.

data transferred over the network (e.g. a typical SQL statement). These synchronization
strings are also stored in the database, as pure ASCII text for Java and with encoded
entity references for HTML. The intent is, to use the synchronization points of the HTML
curve (data over sockets respectively user interactions) to stretch the original Java curve
(data over sockets), such that the Java synchronization points meet the HTML synchro-
nization points. Hence the strechted Java curve finally shows data over user interactions.
Figure 5.2 shows this method: The original HT'ML curve shows data over sockets. As
previously mentioned, this equals roughly to data over user interactions. The original
Java curve data over sockets apparently uses far less sockets. Finally the Java curve is
stretchened with respect to the synchronization points, receiving a Java data over user
interaction curve (interpolation).

A second run of the preprocessor searches the frame data for the predefined synchroniza-
tion points and marks the frames where a synchronization point has been detected. Also
with the second run the cumulative number of transferred bytes so far is stored for each
frame. Interactive analysis tools can now operate on this database, or the database can
be exported into an MS Excel spreadsheet.

Figure 5.3 shows the result measurement: Java needed 20 sockets, HTML 369. Hence the
Java curve is stretched with the help of eight synchronization points. The Java applet is
loaded up until the first synchronization point as is some data from the database. With
HTML, due to the image loading, more data is transferred before the first synchronization
point than afterwards too. From the first synchronization point both curves are almost
linear. HTML shows a higher gradient, because a complete HTML page (approximately
1.8kB) has to be loaded for each user interaction, whereas with Java only a small amount
of data from the database has to be transferred (approximately 0.6kB). Figure 5.4 shows
the difference between the two curves. For more than 200-300 user interactions Java typi-

82

Results and Conclusion 5.3 Quantitative Analysis

800 kB
700 kB
600 kB L —
500 kB Java fj”fﬁ?@
] I SYN

400 kB // —— HTML
| HTML ——JAVA

300 kB / -

200 kB /

100 kB /1

0 kB

data

39 87 135 183 231 279 327 369
sockets

Figure 5.3: Java versus HTML: Transferred data over user interactions.

100 kB

50 kB %//
o1E 39 87 135 183 231 27 327 369

-50 kB /

-100 kB \ / B SYN

-150 kB \ // —— DIFF

-200 kB \ f
-250 kB \Li/
-300 kB

-350 kB

data difference

sockets

Figure 5.4: Java versus HTML: Difference of transferred data over user interactions.

83

Results and Conclusion 5.3 Quantitative Analysis

HTML Java

image caching user
16% interaction
36%

user applet download and
interaction data preload 64%
84%

Figure 5.5: Java versus HI'ML: Download at the beginning.

data T

average data loaded
on demand per user
interaction

-7 stretchened Java
data preload -

-7 average HTML
- page size

applet -

images
g { sockets -
user interactions ~

Figure 5.6: Rule whether Java or HTML performs better.

cally performs better than HT'ML in terms of network traffic. Finally, figure 5.5 shows the
different percentage of data downloaded at the beginning (until the first synchronization
point) and during the user interactions.

Based on the previous measurement, the following rule of thumb gives a rough criteria
to determine whether Java or HTML is better in terms of network traffic for a particular
application. Given an applet size D apper and a data amount Dp,eioaq to be preloaded,
both in bytes, and an average data amount dj,,, per user interaction loaded on demand
from the Java applet compared to an average size dgrr, of the dynamically generated
HTML page, both in bytes per user interaction, the following formula gives the number
of user interactions U, where Java outperforms HTML (see figure 5.6):

D e D reloa
U — Appl t+ preload (51)
dHTML - dJava

The size of the images does not count because both implementations load them once
and afterwards hold them in the cache. However, to determine more exactly which

84

Results and Conclusion

,ﬂ_:r Unbenannt - analyse
File Edit BRecord WYiew Window Help

5.4 Related Work

IS[= E3

s EEE R]

SERVER
IPADDRESS |125.130080.008 HTMLPORT [4717 | JavaPORT [i521
CLIEWNT

IP ADDRESS |128.13D.DBD.DB2 FILE MAME IC.\TEMF‘\IF’DUMF’.TXT

SCAN |>> SYNCHRONIZE |>> STRETCH |>>

QuUTPUT |

SYNCHROMIZATION POINTS

ID |1—

IS I N S RELC TIME |
I |

HTML ISELECT+Name+FF|DM+Kunden+WHEF|E+Drt°/=3D%2?8[3222?+DHDEH+BY+Name

JAMA ISELEET Mame FROM Kunden WHERE On="Graz' ORDER BY Mame

SLIM/FRAME DIFF
702
_,..-—""'""-F-
561
[
,,_F--""_'_J /
.-—-—"''d_'r'_
471
260 / //
140 y
39 87 135 183 231 279 327 369
Ready [[NOM >

Figure 5.7: User interface of the analysis tool.

implementation is better, the presented measurement method has to be applied to the

particular application implemented in both Java and pure H

TML observed with typical

user behaviour. The analysis tools developed for this purpose are described in [Kam98|

and figure 5.7 shows an impression of the user interface.

5.4 Related Work

The large software companies adopt their powerful design

and implementation tools

to generate large scale Web applications, e.g. Oracle Designer/2000, Oracle Devel-

oper/2000 [=Oracle], Web Objects Framework [=WOF],
AS400 [Hub98]. These work well, but they are expensive,

SAPQWeb [=SAP], IBM

not very easy to use, and

mostly oriented towards the needs of the Intranet, not the Internet. Moreover, they have

85

Results and Conclusion 5.5 Summary

a long history in the area of classical programming paradigms and are thus not perfectly
suited for designing Web applications. Some of them lack functionality and have un-
necessary restrictions. However, they can be the best method anyway, if a company is
already running one of these systems.

On the other hand, many freeware solutions exist but they have performance problems
with large scale applications. Most of them have a short live-span, no technical support,
and are not, suitable for commercial products. Perhaps some solutions based on the Linux
OS will become interesting in the next time, for example PHP3, a scripting language
embedded into HTML with some features for database integration of many different
database types [=PHP].

A lot of research work is done on static hypertext documents as automatons [SFC98] and
about enhancements of HTML with additional tags and meta-tags to generate large static
document trees from a concise functional description embedded into HTML code [BS98|.
These work well — as long as there is no need to integrate a database.

Research on the integration of databases and HTML mainly focuses on forms [=-heitml],
whereas this thesis proposes mainly the use of links for interaction with the database. So
far no research work could be found that uses a systematic model and a design language
for application generation of link based interaction between databases and the Web.

5.5 Summary

The aim of this thesis was to make the design of database backed Web applications
easier and the implementation less prone to error. In the opinion of the author this
goal has been reached, as the two real-life applications both of which were implemented
successfully with pure HTML and Java show. The feedback from the first users was
positive. The inherent difficulties of the integration of relational databases and the Web
could be overcome. This also allows the connection of legacy relational database systems
to the Web with similar functionality as in classic implementations.

The finite state machine model, well known from static hypertext documents, could be
remodelled to suit dynamically generated hypertext. Groups of links are mainly used
instead of forms to interact with the database. An object based client-server model
was presented to design the user interface layout, the middleware functionality and the
database transactions in a homogenous way. The actual implementation of such a system
was then composed from several parts with potentially different techniques, e.g. pure
HTML, Java or VRML. A toolset was implemented to generate the different applica-
tions automatically from the PHC/DL and PHC/LL descriptions. The toolset itself is
a Web application fostering unlimited Web collaboration. The tools were designed from
scratch, closing the current gap between research theory and the market. They are es-
pecially suited to the needs of the Web without overhead caused by classic programming
paradigms.

By using this technique it was shown how to build complete information systems, includ-
ing logical page flow and bidirectional crosslinks, multi language support and frames with

86

Results and Conclusion 5.6 Future Work

different window modes. The design methodology further guarantees stable and robust
applications with sophisticated user interactions, compatible with almost any browser,
and flexible layout design separated from the application functionality. The approach
is Internet—oriented and deals with the problems of wide area distribution with small
bandwidth connections. It relies on the proven technology of relational databases.

The usability of Java was compared with the pure HI'ML approach, investigating dif-
ferent client-server tradeoffs and persistence frameworks. Object oriented design and
implementation has some drawbacks with typical information systems — it was shown
how Java can supplement the HTML approach but not supplant it. A quantitative anal-
ysis showed that pure HTML typically outperforms Java in terms of network traffic for
less than 200-300 user interactions.

As different as they are in design and implementation, relational databases and the Web
also differ considerably in the ways they can be searched. Universal relations and natu-
ral language interfaces known from database theory have been combined with keyword
searches known from the Web to define a metadata model for searching a database backed
Web application. The key idea here was the separation of structural and content meaning
of words. Based on this idea generic interfaces for both Intelligent Software Agents and
robots from search engines were implemented.

Despite the limits of pure HTML, a sophisticated user interface could be designed, which
mainly uses links for interaction but no JavaScript, Plug-Ins or Active-X. With the
framework tools, a novel design and implementation technique for Web based distributed
information systems was implemented. It is now possible to generate the different imple-
mentations automatically from the design language. With this development framework,
the design and implementation of various database powered Web applications is easier,
faster and less prone to error.

5.6 Future Work

The following suggestions for future work are summarized from the previous chapters:

e A completely object oriented graphical version of the design language PHC/DL
including tool support [ISB95].

e Object oriented notation, also for the PHC/LL, possibly using the Extensible
Markup Language XML or another subset of SGML. Object oriented approaches
like [BS98, =-heitml] will be evaluated with respect to their usability as PHC/LL
replacement.

e Enhancement of the generator tools to provide Java (see section 3.3) and VRML as
alternative user interface implementations. The object relational successors of the
current relational systems will provide better integration possibilities for Java.

87

Results and Conclusion 5.6 Future Work

e Enhancement of the pure HTML interface with a scripting language as soon as it
becomes clear which one will be the major client side scripting language on the Web
(Netscape’s JavaScript or Microsoft’s VBscript).

e Integration of a security framework into the PHC approach.

e Usage of the connection oriented successors of the HI'TP as far as they become
widely available.

e With different generator backends, it will be possible to generate PHC applications
for different database management systems because the whole design methodology
is not dependent on a particular product, as long as the database understands

standard SQL.

e Enhancements of the search interface with better linguistic analysis as in [TB90]
with more powerful assignment of the application entry points. Usage of associative
and related terms including a probability estimation. Context grouping for long
sentences.

e Semantic description of the application’s entry point to enable a more flexible de-
tection of the right entry point from a search result.

e Learning abilities for the database guardian agent to extend the search repository
during runtime.

88

Appendix A

More PHC Examples

The following examples show more sophisticated features of both the design and the lay-
out language. The syntax definitions can be found in appendix B. Figure A.1 shows the
PHC/DL description of a more sophisticated version of the geographical selection. The
enhancements can be found in the three lists where the cursor loops are now explicitly
defined. Within these cursor loops various IF statements define different PRINT, IMAGE
and GOTO clauses depending on the boolean value of the respective condition. This exam-
ple also shows the definition of conditions with the CONDITION clause. Figure A.2 shows
the usage of these conditions in PHC/LL in detecting, where a sublist has to be placed
in a list resulting in a browser view similar to a file explorer as shown in figure A.3.

With slight modifications (as shown in figure A.4) the first layout description remains
valid and now generates the same output from the enhanced version of the PHC/DL.
Alternatively, if SelList is kept within the enhanced version of the PHC/DL, the first
PHC/LL description remains valid even in an unchanged form. The generated code
becomes slightly larger in this case, but the performance of the final application is the
same.

To show the possible variations which PHCI enables a third layout is presented for the
same PHC/DL. Figure A.5 shows the PHC/LL description and figure A.6 shows an
example of a browser view in state S3.

The PHC ’Selection’ in figure A.7 shows the possibility of more complex local variables: In
this case two temporary tables are built and used for the output of the element "Matches’.
This PHC is also an example for a PHC with just one state and thus declared as ’stateless’
with the NOSTATE clause in the interface part. Thus the programmer can use states, but
he does not have to.

The GOTO clause in the element 'Show’ gives an example of a state manipulation message
sent to another PHC: The PHC "Result’ is set to the state S1 and eight public session
state parameters of this PHC are set to the given values. The PAGE clause defines the
page Result as the new active page.

The PHC ’Result’ in figure A.10 shows a list containing more than one element within
its query. The elements refer to the attributes of the query by the cursor name defined

89

pI°AI9NQSTQ = IDTAISTA WYY LIS €S OLOD
!1pesOTOI EOVWI
} @stE {
‘zs 0109
{1usdoy EOWNI
{pe3oeTes NOILIANOD
} ((€5 == &I¥IS) ANV (I9TI3STA WY¥Yd == PI'AIendSTq)) 4T
‘oweN" AToN0STA INI¥A
)

43sTI634, ST sweu 3TOTTAWT// INZWATH

‘uothbay Wyyvd = pIboye EMEHM
SpuTaWeHl WOdd
PI SY DIuTawepe ‘sweN Sy bunuyorezage IDITES
ST Ax9n0STA X¥ENO
€5'2S HIVLS
f{ ‘TI0N } TS'0S EIVIS
) 3STISTQ 1SIT

{€pPISOTOF HOVWI
0 =izuy // STE
{1pesoT0F EDWAI
(0 == zuy) 41
‘zs 0109
} asta {
ZpesoToI EOWHI
pe3deTas 3IDTIAISTA // ESTH
‘zuedoy FOVNI
(zs == BI¥LS) dI
0 =i zuy // STE
{Tuedoy EDYWI
(0 == zuy) 41
‘15 0109
pe30913s NOILIANOD
} ((1s =i HI¥IS) QNY (0S =i HIVIS) QNY
(uotTbay Wy¥¥d == pI’Aron0bay)) 41
{pI-Azendbey = pIbede EHAHM
SpuToWSDI HO¥A
ZUY OINI (x)INNOD IDETES)

43sTI634, ST sweu 3TOTTAWT// INZWATH

/20UTAOId WYYYd = PIAOIJe UOTHeY3 HYHHM
uoTheyl Wodd
‘uotbey Wvdvd 1ES } PI S¥ pIbSeye
{INI¥d } ewey sy bunuyorezege IDATHS
SI Azenpbay x¥EN0
€5'25'TS AIVLS
A 710N} 0S EIVLS
) 3sTIBAY ISIT

! €pesOTDF EDVWI
0 =i zuy // STE
{TpesSOTDF FDWWI
(0 == zuy) 4I
‘1S 0109
} @s1aE |
!ZpesoTo3 HEOWWI
pojos1es uotbey // ASTA
‘fgusdoy EOWWI
(IS == HIVLS) 4T

More PHC Examples

0 =i zuy // 3ST3
{Tusdoy EDYWI
(0 == zuy) 4I
10s 0109
{p910973s NOILIANOD
((0S =i 3IYLS) ONY (9PUTAOId WYd¥d == PIA0Ige AIenpaoid)) dI
‘praoxde-Arenpbey = PIAOIde HJHHM
uotbay] WO¥d
ZUY OINI (x)INNOD IDATES)

3STTA0Id, ST Sweu 3TOTTAWT// INAWATH

{ZuTAOId} WO¥A
{!9ouTr0Id WVHVA 1¥S } pIaoide
‘{ ‘INT¥4 } Bunuyorszage IDFTES
ST A18N0A0Id A¥END
SAUMTY
) 35T1801d ISIT

{ ‘20T13STA WYY INI¥d } ¥IHIO AIVLIS
f{ ‘770N INT¥A } ¢S'TS'0S HIVLIS
f{ ‘TION 0109 } SAYMTY

) 3°TIISTA INEWETE

‘{ ‘uothsy WY¥Yd INI¥d } YFHIO HIVLS
{TION INI¥d } TS'0S EIVIS
f{ 'zs 0109 } SAUMTY

) uoThad INAWHTH

{ ‘eoutnro1d WydVd INI¥d } ¥HHIO AIVLIS
f{ ‘770N INI¥E } 0S HIVIS
f{ '15 0109 } SAUMTY

) 2oUTAOId INEWETE

‘{ ‘zs 0109 } €S FIVLS

“{ ‘15 0109 } S FIVIS

“{ *0S 0109 } 1S'0S HIVIS

{{!1dn3 FOWWI !,ToAST UOTHEX IoUBTY, INTEd } SAUMTY
) dnauo INIWATH

£{ ‘0s 0109 !gI3A0F EOWWI !,MSTAISAO, ININd } SKYMTY
) MSTAISAQ INAWZTA

YINI zZuy
giA
NIDEE

NOILVINIWATINT

P2303T9s IDTIIPTP// ‘€S

pe3oeres uotbex// ‘zs

pajos1es soutaoxd// ‘1S

93e3s 3Ie3S BY3 ST 23e3IS 3ISATI 9Y3 'pe3dsres butyjzou// ‘oS

ALYLS

{98TTSTQ ‘1STTI6RY ‘3STTAOCIA
1SIT

1307T238TQ ‘uoTtbey ‘soutaoid ‘dpsup ‘MSTAISAQ
INZWETH

{!WydYd = PIUTSWSD® FYAHM SPUTEWSHI WO¥d Bunuyorezege IDETES) ININA
QIMOY DITENd IPTIISTA
! [p1baye] bunuyotazage uoThayl INTHd
aImMo¥ DITEnd uothey
! [pIAOage] BunuyoTezege ZUTAOIAY ININA
QIMO¥ DITENd 32UTACId
WYaYd

HOVANELNT

z uotsaaa //
uot3osres Teotydeabosb //

099 DHA

Alternative PHC/DL description for PHC Geo with more complex features.
90

Figure A.1

More PHC Examples

<TABLE WIDTH=360 BORDER=1>

<TR><TD WIDTH=150 ALIGN=center><CENTER>Region selection</CENTER>

<!--$PHC IMAGE (Geo.OneUp); -->

<!--$PHC PRINT (Geo.OneUp); -->
</TD></TR>
<TR><TD ALIGN=left VALIGN=top><!--$PHC IMAGE (Geo.Overview) ;-->
<!--$PHC PRINT (Geo.Overview); -->

<!--$PHC FOR prov IN Geo.ProvList LOOP
IMAGE (prov) ; PRINT (prov); -->

<!--$PHC IF prov.selected BEGIN
FOR reg IN Geo.RegList LOOP -->

<!--$PHC IMAGE (reg); PRINT(reg); -->

<! --3$PHC IF reg.selected BEGIN

FOR dis IN Geo.DisList LOOP -->

<!--$PHC IMAGE (dis); PRINT(dis); -->

<!--$PHC END LOOP;
END;
END LOOP;
END;
END LOOP; -->
</TD></TR>
</TABLE>

Figure A.2: PHC/LL description to PHC/DL from figure A.1.

after the keyword QUERY. The element Caddy of this list shows the usage of a functional
message sent to another PHC. Figure A.13 shows the respective METHOD declarations as
part of the PHC description of ’Basket’.

Also the PAGE attribute determines that the active page will remain the same but the
REFRESH clause determines that the ouput of the page Shopping Basket will eventually
change. Thus this page has to be reloaded, if currently shown in one frame. Figures A.11
and A.12 show the PHC/LL description and the resulting browser view belonging to this
PHC.

91

More PHC Examples

ol
You are searching for
all i the region Artstetten
The database containg 17 Matches
Zhow them
Region selection Product-selection
Elextend region level Eextend product field
@ overview E@ Ov¥erview
D Burgenland =3 Finished products
D Central Finland (] Beverage
9 Kirnten] Handycraft
@ Fuopio 3 Raw products
: DI_Cm 'Dm
DL&M D Livestock
O Ml

E—‘ D Wiederdsterreich

- @ Dionauresion

: & Industrewiertel
= @ Ilostviertel

@ pigelshach
D Amstetten

a Artstetten

ﬁ Verein Berghaue...
] ﬁ OKO-Vermarktung.
O Bindenmarkt
D Farhanan

Figure A.3: Browser view of PHC Geo version 2 in state S3.

<TABLE ALIGN="right" WIDTH=115 BORDER=0>
<TR><TD ALIGN="center" VALIGN=top>Region selection</TD></TR>

<TR><TD><!--$PHC PRINT (Geo.Overview); --></TD></TR>
<TR><TD><!--$SPHC PRINT (Geo.OneUp); --></TD></TR>
<TR><TD><!--$PHC PRINT (Geo.Province); --></TD></TR>
<TR><TD><!--$PHC PRINT (Geo.Region); --></TD></TR>
<TR><TD><!--$PHC PRINT (Geo.District); --></TD></TR>
<TR><TD ALIGN=center><HR></TD></TR>
<!--$PHC IF (Geo.STATE == S1) BEGIN FOR item IN Geo.ProvList LOOP -->
<TR><TD ALIGN="right"><!--$PHC PRINT (item); --></TD></TR>
<!--$PHC END LOOP; END; -->
<!--$PHC IF (Geo.STATE == S2) BEGIN FOR item IN Geo.RegList LOOP -->
<TR><TD ALIGN="right"><!--$PHC PRINT (item); --></TD></TR>
<!--$PHC END LOOP; END; -->
<!--$PHC IF (Geo.STATE == S3) BEGIN FOR item IN Geo.DisList LOOP -->
<TR><TD ALIGN="right"s><!--$PHC PRINT (item); --></TD></TR>
<!--$PHC END LOOP; END; -->
</TABLE>

Figure A.4: PHL/LL for PHC Geo version 2: Old layout from new PHC/DL.

92

More PHC Examples

<TABLE ALIGN="left™"
<TR><TD

<FONT COLOR="gre
<TR><TD WIDTH=33% ALIGN=

<!

<! --$PHC IF item.

<! --$PHC

<! --$PHC

<! --$PHC

<! --$PHC

<! --$PHC

<! --$PHC END ELSE

<! --$PHC PRINT (it

<! --$PHC END; -->

<!--$PHC END LOOP; -->

</TD><TD

<!--$PHC

<! --$PHC IF item.

<! --$PHC

<! --$PHC

<! --$PHC

<! --$PHC

<! --$PHC

<! --$PHC END ELSE

<! --$PHC PRINT (it

<! --$PHC END; -->

<!--$PHC END LOOP; -->

</TD><TD ALIGN=left VALI

<!--$PHC

<! --$PHC IF item.

<!--$PHC

<! --$PHC END ELSE

<! --$PHC PRINT (it

<! --$PHC END; -->

<!--$PHC END LOOP; -->

</TD></TR>

</TABLE>

WIDTH=100%
COLSPAN=3 ALIGN="center">Region selection

<!--$PHC PRINT (Geo.Overview) ;

FOR item IN Geo.DisList LOOP

BORDER=3>

en"><!--$PHC PRINT (Geo.OneUp) ;
left VALIGN=top>

--$PHC FOR item IN Geo.ProvList LOOP -->

selected BEGIN -->

-->

--></TD></TR>

IF (Geo.STATE == S1) BEGIN -->

END; -->

PRINT (item); -->

IF (Geo.STATE == S1) BEGIN -->

END; -->

BEGIN -->
em); -->

WIDTH=33% ALIGN=left VALIGN=top>
FOR item IN Geo.RegList LOOP -->

selected BEGIN -->

IF (Geo.STATE == S2) BEGIN -->

END; -->

PRINT (item) ; -->

IF (Geo.STATE == S2) BEGIN -->

END; -->

BEGIN -->

em); -->

GN=top>
-=>
selected BEGIN -->

PRINT (item) ;

BEGIN
em) ;

-->

-->
-->

Figure A.5: Yet another PHC/LL to the same PHC/DL for Geo.

93

More PHC Examples

Figure A.6: Browser view of PHC Geo with alternative layout from figure A.5 in state
S3.

Region selection

Overview
extend region level

Burgenland Donauregion Ligelsbach
Central-Finland Industrieviertel Amstetten
Earnten Mostvierte] m= - Artstetten
Euopio Waldwiertel Blindenmarlt
Elyrmu Weinviertel Eschenau
Lappi Euratsfeld
Ifilclceli Frankenfels
Miederésterreich = Furth
Morth-Carelia m
Oberdsterreich Hanfeld
Crul Hofstetten
Salzburg Hirm
Stetenmarle @
Tirel Eirchberg
Turku and Pori Loich
Tusinaa M
Vansa Michelbach
Voratlberg Oberndort
e Purgstall

Eabenstein

R armcan

94

uoTIDS[S// aANAE

H
‘3Tnsay HEOVd
A10B93€) " poId WY¥Yd =: A10693e) WYdv¥d I3S
'3eDqNS "POId WYIVYd =: 3eddns WvY¥vd IIS
'30NpoId " PoId WY¥¥d =: 3IONPOId WY¥¥d LIS
'HIVLS POId =i 23e3SpOoAd WYYVd LES
‘woﬁﬂ\yOMm.OwO WYJVYd =: 9DUTAOId WVYVd I1dS
‘uotbsy 0%H WYYYd =: UOTHSY WY¥vd IIS
‘10TIISTA 09D WYAVd =: IOTIISTA WYIYd LIS
'HLYLS 09D =: 93e3509D WYYVd IES

3INs8y NI IS 0L0D
f,wey3l Moys, ININd |

Moys LNAWATH

uﬁ
{TION 0109
‘Tyezuy INI¥d

m*

! (30Npoad ‘pord WY¥YV¥d) SHNTYA

(3onpoxad) porddwal YYA OINI I¥IASNI
pe3oeTes 3onpoad // v €S HSYD

'

{

{3eD0NS ' PoId WYMYd = PIIRqNSe INpoIdl HYTHM

3NPOId3 WOYd PIPOIdE’IMNPOIdI IDETES

(3onpoxad) porddwal YYA OINI I¥IASNI
pejosTes Axobejeoqns // } zS ESYD

“{

{4£10623€) ' POId WYY = PIeye’sTIobajexqnsy aNv

PIjesqnse 9TI0693e3qnsd = PIILHANSE INPOId] HATHM
e110693e3qNS3 ' IYNPOIdd WO¥A PIPOAJeR’ INPOAdd LJETHES

(3onpoxd) poxgdwel YA OINI IMHASNI
pe3osTes Axobs3ed // } 1S ASYD
B
£33NpPoIdl3 WO¥d PIPoide IDHETHS
(3onpoxd) poxgdwsl JIYA OINI IMHASNI
ps3oeTes butyiou // } 0S ASYD
} (3I¥1S°POad) HOLIMS

&

! (30TIISTQ 09D WYIVYd) SHNTVA

(301235TQ) STQdwel ¥YYA OINI IMHASNI
pe3deTes 3I0TIASTP // } €S ASYD

‘uothbey 09D WYYd = PIbeye HIFHM

!T=3Te1RgboNgIO R e ANY PIPOide’dy=pIpoide dqe aNy
pISIade e=pIsisde’qe ONY PIUTOWSDE BY=pIuTswsne e FYFHM

SPUTaWSD] WOYA PIUTS[WSDe " spuUTawWw=D3 ILDATHS
(301235TQ) STadwel JYYA OINI IMHASNI

More PHC Examples

TURZUY OINI (x)INNOD IDATAS

}

SOUDIBN INAWATE
H

£{ ‘30npoid poid Wvdvd INIMd } €S ASYD
£{ ‘3eDqng pord WYd¥d INI¥d | ¢S HSYD
{{ tAz0be3€D POId WYIYd INI¥d | TS HSYD
f{ f.TTR. ININA | 0S ESWD
(2LY1S POId) HOLIMS
{TION 010D

}

poaguoIess LNIWATH

£{ 130T135TQ 0°D WYIVd INIMd } €S HASYD
{{ ‘uotbey 09D WVIVd INIM¥d } ¢S ASYD
{{ !eouTAOIg-0®D WYIVd INI¥d | IS HSYD
f{ t,uotBex Aue, INT¥d } 0S HSYD

} (AI¥IS 09D) HOLIMS

{TION 010D

}

STAYPIess INHWATH

ssydjew moys //

dy poxgdwsl ¥yyA ‘Py stqdwel Y¥A ‘ge 3Joquyl ‘e I9ISTUYI WONA 2303198 uothex // } s ASWD

!90UTAOIJ 099 WYJ¥d = PIAOIJe UOTHIYI ANV
pIbsye-uotbey) = pIbsye spuTswsHl HYEHM

QOﬂW@Mu ‘SputsweHl WO¥A pIUTSWSDHe SpuTaweDl IJHATHS

(301235TQ) STQdwel ¥YA OINI IYASNI
pajoares soutsoxd // } 1S ESYD
{
9puTswenl] WOYA pIuUTSwWSHe IDHTHS
(3011351d) sTadwsl JYA OINI IIFASNI
ps3oeTes buryzou // } 0S ASYD
} (31¥1S'0®D) HOLIMS

(sse0/yo3aTMs) so9TIeNb JUSISIITP 9T IO sa1qed Arexodwsy z // }

YINI TURZUY
{ a1moy 30mpoid } ove poigdwsi

Juswsleds T0S INI¥d Teuotado // !{ QIMOY¥ 19TIASTA } Hvd sTadwsL

YA
NIDdd

NOILVINAWHTIWI
‘HIYISON

‘moys ‘ssydle 'porduyoaess ‘stgyoaess
LNANATH

HOVANHALNT

UOTIDSTSS DHA

PHC/DL description of PHC Selection.
95

Figure A.7

More PHC Examples

<TR><TD COLSPAN=2 HEIGHT=100 ALIGN=centers
You are searching for

<!--$PHC PRINT (Selection.SearchProd); -->

in the region

<!--$PHC PRINT (Selection.SearchDis); -->

The database contains <!--$PHC PRINT (Selection.Matches); --> Matches
<!--$PHC PRINT (Selection.Show); -->

<IMG SRC="show_image?pname=yel arrow" ALT="Show them" HEIGHT=20 WIDTH=30
BORDER=0 ALIGN=MIDDLE>
</TD></TR>

Figure A.8: PHC/LL description to PHC/DL from figure A.7.

You are searching for
aif in the reglon Artstetten
The database contains 17 Matches
show them

Figure A.9: Browser view of PHC Selection.

96

More PHC Examples

Jnsay// aNg

{TION INT¥d
{
{3oyseg burddoys HSEYATA
SIHL EDYd
(pI3oquye-Axeng 3Tnsay <= prioquyd) sAowSI19}sed HOVSSHW
NNMSMMEHM HOYWI
} d@sTa
{
{3eyseg butddoys HSEYARY
B SIHL HDYd
(p130quye-A19ny 3TNSaY <= prioquyd) TTT3"393sed HOYSSHN
‘gnexuts AOYWI
} (0 == ¥o1d) a1
!prioquye’ 190y I[NSSY = PIIOQUY FTIHHM
S19330°39}sed WYNYd WOMA ¥OTd OINI TUeZUY LDATAS
fo=:301d
} Apped INAWATHE
{
‘z77ge Axend 3Tnssy =: 9BLTTTA WY¥Yd LES OFJUISBRTTTA NI 0S 00D //
_ !TI0N 0509
£330 A79N) 3TNSSY INT¥d
} ssaappy Emzmqw
B ‘oJul EHVA
pIioquye-A1and 3TNS9Y =: PIIOAUY WYEYd LIS
OFuUT_MOUS NI OIO0D
!punuyoTazage A1anyd 1TNS9Y INI¥d
} 19330 INEWATE
{
{SWOH ADYA
pIsiade’A1ond 3[nsey =: pISIad WY¥¥d LES
SWOH MOUS NI 0L0D
{sweuyoeNe - A19ny 3TnsSY| |, | |sweuzope’ Axeny ITNSSY INTE
} swon .Hszmqw
{TION 010D
{qUnod INT¥d
!1+3UNOD=":3UNOd
} 123UNOD INAWATA

‘eweuyoeNe e ig ¥AQYO T=3TexIeqbeniispe’de ANV
pIuTewspe’ B=pIutewspe e ANV PIpoide’dy=pIpoide’de ANV
PpISIade e=pIsisde’qe QNY PIUTSWSDe BY=pIuTswape e HYFHM
dy poxgdwsl ¥¥A ‘By sTqdwsl IYA
‘qe joquyl ‘5 spurewenl ‘e I93TUYM WOUA
JTexIRgBaNI IS R R
‘punuyoTezage ge ‘PIIOqUYE e’ PIPOIde’qe ‘110 SY Bunuyortezaege'b
‘ssseajsee ‘grdee ‘sweuydeNe’e ‘SWeUulIOoAe’e ‘pIsisde’e IDHTHS
SI Azend 3Tnsay XIAND
{ ‘o=:3unoo }
TS d1V¥LS
f{ !TION } 0S HIVIS
19yseq burddoys oyj 103 SSTIJUS 3D3TSS O3 UYOTUM WOxF //) ISTT 3TNSaY ISIT

R
3
(3onpoad WY¥vYd) SHNTYA
(3ompoad) poaddwel ¥YA OINI IJESNI
pejoeres 3ompoad // } €S ASYD

{

f3eD0NS WYdYd = PIILqnse 33npordl HIFHM
3MNPOIdl WOJd PIPOIde’ Inpoidl ILDHTES
(3onpoad) poagdwsl JIVA OINI IJISNI
ps3osTes Azobsjeoqns // } zs dASYD
!A106938) WYd¥d = pIdeye aTIobsieyqnsy Eﬁm
pIlexanse oTIobe3eNdNSy = PIILYANSE INPOIdI HUTHM
eTI0B697e3aNSY /3YNPOIdl WOA PIPOIde’IYNPOIdl IDFTES
(3onpoad) poaddwsl YA OINI IISNI
pe3joetes Axobeien // } 1S ESWD
4
£23NpoIdl WO¥A PIpoide IDHETHES
(3onpoad) poaddwsl YA OLNI IYASNI
pe3osTes butyjou // v 0S dSYD
v (®3e3spoad) HOLIMS

{

{
Y (IDTIISTA WYEVYd) SENTVA
(301135T@) sTadWSL WYA OINT INHSNT
P9309T9s 3IDTIISTP // } €5 ASWD
]
3
‘uothey Wy¥vd = pIboye HIHHM
sputswsHl WOYd pIuUTSWSHe ' spuTtswenl IDHTHS
(3012351a) sTQWSL ¥WA OINI I¥ESNI
pa3osTes uotbex // v 28 dSYD
!90UTAOId WY¥Yd = PIAOIJe UOTHaN] DZM
pIboye uoTbeyy = pIBSye SpUTSWSHI HITHM
uotheyl ‘eputewspl WON¥A PIUTSWSHE SpuTswedl LDFTES
(3012351q) STQIWSL YYA OINI INESNI
pa10a1as soutacad // } TS ESWD
4
!opuTowsn] WO¥d PIUTSWSDHE IDATHS
(30113s10) sTQdWSl WA OINI I¥ESNI
pejosTes bBurtyaou // v 0S8 dS¥D
} (e3®3502D) HOLIMS

(esed/yo3tms) satxenb jusis3zyTp 9T I0 so9Tqel Axexodwsy z // }
1S dI¥LS

{INI 3unoo
{INT 3Td
{ aImoy 3onpoid } ovd poagdusy
+{ ammoy 30o1138TQ } DYE stadwer
A
NIDIEE

NOILVINAWATINT
‘18 '0S EIVIS

£3STT 3Tnssy
ISIT
{Appe) ‘I83UNO) 'SSBIPPY 'I9IJ0 'SWOH
INAWATE
‘aImoy Azobajen
{qIMO¥ 3eDANs
{QIMOY 39NPOoid
‘ELYLS 93e3SPOId
!QIMOY ®oUTAOId
{qImMo¥ uothbsy
{qIMOY 39TIISTA
{4I¥LS 2383509D
WYYd

HOVAIILINT

3TNS3Y DHA

PHC/DL description of PHC Result.
97

Figure A.10

More PHC Examples

<TABLE Border=0>
<!--$PHC FOR row IN Result.Result_ List LOOP -->
<TR ALIGN="left">
<TD VALIGN=top >
<!--$SPHC PRINT (row.Counter); -->

</TD>
<TD>
<!--$PHC PRINT (row.Offer); -->

<!--3$PHC PRINT (row.Home); -->, <!--$PHC PRINT (row.Address); -->

</TD>
<TD>
<!--$PHC PRINT (row.Caddy); -->
</TD>
</TR>
<!--$SPHC END LOOP; -->
</TABLE>

Figure A.11: PHC/LL description to PHC/DL from figure A.10.

1 Schafmilch
Sudliches Waldwiertel OK O-Vermarktung, Artstetten

2 Schafmilchioghurt
Sudliches Waldwiertel O O-WVermarktung, Artstetten

3w Schafmischlkeéise
Sudliches Waldwiertel OF O-Vermarktung, Artstetten

4 m=— Schlagobers
Sudliches Waldwiertel OF O-Vermarktung, Artstetten

S Waldwertler Fnschicaserolle-Eolling
Sudhiches Waldwertel OF O-Vermarktung, Artstetten

& Schaflosse-Schmittkdse-Peconine
Sudliches Waldwiertel OK O-Vermarktung, Artstetten

A & E W E |

Figure A.12: Browser view of PHC Result.

98

More PHC Examples

PHC Basket
INTERFACE

PARAM
Waren BAG {aAnbotId ROWID, aAnzahl INT};

IMPLEMENTATION

METHOD fill (pAnbotId ROWID DEFAULT NULL)
VAR

check anz INTEGER;
BEGIN

SELECT COUNT (*) INTO check anz FROM PARAM Waren WHERE Waren.aAnbotId=pAnbotId;

IF (check _anz == 0) then // not yet contained

INSERT INTO PARAM Waren (aAnbotId,aAnzahl)
VALUES (pAnbotId, 1) ;

END;

METHOD remove (pAnbotId ROWID DEFAULT NULL)
BEGIN
DELETE FROM PARAM Waren WHERE Waren.aAnbotId=pAnbotId;
END;
METHOD change (pAnbotId ROWID DEFAULT NULL, pAnzahl INT DEFAULT 1)
BEGIN
UPDATE PARAM Waren hw SET aAnzahl=pAnzahl WHERE hw.aAnbotId=pAnbotId;
END;
BEGIN

END //Basket

Figure A.13: PHC/DL description of PCH Basket, method part.

99

Appendix B

PHC Language Syntax Definition

This appendix summarizes the grammar rules of PHC/DL and PHC/LL. A detailed de-
scription of both languages and their implementation can be found in [Fal98]. Information
concerning language design, Backus Naur Form (BNF) and compiler implementation can
be found in [Sch85, ASU88]. As a convention the non-terminal symbols consist of lower-
case characters and the keywords of upper-case characters. Identifiers have the suffix

_name and constants have the suffix _const. The initial symbol is the symbol start in
rule D1.

B.1 Design Language

The following rules show the syntax of PHC/DL:

D1

start

49<PHC)% phc_namelﬂ interface_deflﬂ implement def P

100

PHC Language Syntax Definition B.1 Design Language

D2

interface def

4 element_def|4444

list def

param_def

var_def

INTERFACE

i

state_def

4 start state def F

4|no_state_def F“*
4 method def F““*

D3

element def

()
N\
49<ELEMENT element name

D4

list def

4%<?IST list name

D5

param def

(X
N\
49<PARAM param item

D6

param_item

I{DEFAULTH literal h
| J |

4% param_name | 1 datatypel

101

PHC Language Syntax Definition B.1 Design Language

D7

datatype

A FLOAT)
 STATE)

INT

CHAR

4%;<VARCHAR> —

var_item

DS

print decl

select stmt P<:>9<E>
outattrib_ name P(:)ﬂ keyattrib_name P<:>J>

D10

var_ item

‘f%(DEFAULT)ﬂ literal F\L
|

4% var_namel% datatype |

D11

state def

(X
)
4%(STATE state_name

102

PHC Language Syntax Definition

D12

start state def

49<START)9<STATE)% state name P(:)%

D13

no_state_ def

D0

D14

method def

Y
)
4%(METHOD method name

D15

implement def

{IMPLEMENTATION method BEGIN)

B.1 Design Language

D16

method

O

action

list stmt

o/
j%<bEFAULf)% literal}*l
%(METHODH method name var_name H datatype I)

D17

block

oL Ealo A

103

PHC Language Syntax Definition

D18

action

state_action

D19

element

j%lelement_name}ﬁ\ ‘
%(ELEMENT ’ block

o

D20

state_action

block

B.1 Design Language

[orace senc }

state_ stmt

D21

element_stmt

RE=a i
(

element_ stmt

‘fﬂ element_namelﬁl
—{ ELEMENT) % block F

D22

state_stmt

4% state Plblock P

D23

state

ALWAYS

(X
>

state name

STATE

104

PHC Language Syntax Definition B.1 Design Language

OO

D25

inline query

query name

select_stmt

D26

query

4%(@UER?)% query_name P(::)ﬂ select stmt P(:)%
D27

stmt

4 print_stmt|444

4 goto_set_stmt F

— cond_stmt —

4 image stmt F“*
4 switch stmt F‘*

4 assign_ stmt F‘*

‘I message_stmt Ii

4 select stmt F‘*
- delete_stme [—
- insert_stme [—

105

PHC Language Syntax Definition B.1 Design Language

D28

print stmt

string expr

—{ PRINT)

D29

string expr

(LXK
L

string const

(oo er}—

var ref

D30

set stmt

‘f9<::>4 scalar_exp|ﬁ\
49<SET)9(?ARAM)% param_namel ><z>9

&

pppppppp

S.
(zazcer)
- —o e
1
IO

D32

image stmt

4%(iMAGE)% string expr P(:)%

D33

if stmt

w compare_exp o

106

PHC Language Syntax Definition B.1 Design Language

D34

compare_exp
/I compare_exp compare_exp |—\
*I compare_exp P(AND)%' compare_exp |>

%{NOT)%' compare_exp I

D35

switch_ stmt

e

l state_name '

SWITCH literal

D36

cond_stmt

%(CONDITION)%' condition name P@%

D37

assign_stmt

VAR

e (O 1O

D38

message_stmt

page_name

‘ A TARGET Pl frame_name I—\

(X
N\
%(MESSAGE var_name var_name ’L@ @

D39

delete_ stmt

I{WHEREH search condition h
—(pELETE)5(FROM 1| table | O

107

PHC Language Syntax Definition B.1 Design Language

D40

insert stmt

()

VALUES

select_stmt

‘%(ﬁNSERi)@(ﬁNTQ)% table

attrib name

D41

select_stmt

DISTINCT

4% SELECT}

ENES'0

(X
W O
|
select_item
©

D42

select item

“ alias name h
select_expi }4>
table name P(:)%(E)

D43

table_exp

ERE SRoup cotum_ret P (Eavine){ searcn condition] >(omomm (eotomn zez |
%l from clause

D44

from_clause

49<FROM tableref

D45

tableref

4% tablelﬂ opt_alias P

108

PHC Language Syntax Definition B.1 Design Language

D46

table

ﬂ schema_name P@—\ @

% table_namel

e

% bag_namel

subquery

D47

dblink

jr%£<:>ﬂ domain name Pﬁl‘lf%<:>ﬂ connection_namelﬁl
4% database nameI

D48

column_ref

‘fﬂ schema_name P(:}ﬁl

J

S\

table name P<:>*\
|

1 column_name P

D49

search condition

/I search condition search condition |—\

4 search_condition.P(AND)% search condition F

‘(NOT)% search_conditionl

4<:)% search condition P(Z)

4 comparison predicate F
4|between_predicate F“*

4|like_predicate F““‘*

*4 test_for_nulli

4|in_predicate F“““‘*

4 all or any predicate F

\lexistence_test F““‘

109

PHC Language Syntax Definition B.1 Design Language

D50

comparison predicate

scalar_ exp

4% scalar_exp P(COMPARISON

D51

between predicate

4% scalar_expl ><BETWEEN)% scalar_exp P(AND)% scalar_exp P

D52

like predicate

NOT <j%(ESCAPE)% atomlﬁl
I ><ﬁIKE)% atoml

4% scalar_exp |

D53

test for null

4% scalar_exp P(EE) A NULL >

D54

in predicate

,
|

4% scalar_ exp

D55

all or any predicate

4% scalar_ exp P(COMPARISON subquery P

110

PHC Language Syntax Definition B.1 Design Language

D56

existence test

49<EXISTS)% subqueryl%

D57

subquery

ALL

UNION
INTERSECT

l
¢

subquery_select|*1
49<:>% subquery_selectl :{ZD%

D58

subquery_select

()
~
DISTINCT select_item
4% SELECT}
©

D59

scalar_exp

scalar_exp P(:)% scalar_exp F\
scalar_exp P(:)% scalar_exp F*
scalar_ exp P(:)% scalar_ exp F*
scalar_exp P(:)% scalar_exp F*
scalar_exp P(::)% scalar_exp F

scalar_exp F—————————*

—

1

B N

atom

oo

4 column_ref |

4 function_ref |

PARAM

param_ref

\<:>% scalar_exp P<:>444444444*

e

111

PHC Language Syntax Definition B.1 Design Language

D60

select exp

/lselect_exp P(:)% select exp F\
4 select_exp P(:)% select_exp F*
4|se1ect_exp P(:)% select_exp F*
4|select_exp P(:)% select exp F*
4 select_exp P(::)% select_exp F

select exp F““““‘*

4 atoml
|

4 column_ref |

4 function_ref |

\<:>% scalar_exp P<:>444444444*

D61

exp

Lexe (D exp |
Lexe PO exp |
{exe PO exp]
Lexe PO ex |

exp

- o
e

var_name
4|param_ref|
O
STATE

4 literall
O

112

PHC Language Syntax Definition B.1 Design Language

D62

atom
II
USER

D63

param_ref

e
4% PARAM > |

1 param_ name P

D64

var_ref

[meme WO

% var name F

D65

literal

string const

int_const

float const

D66

function ref

CDIORIN Dy

% scalar_exp

D67

proto_name host_domain_name f@\ : param_name P@el value name
- -] — L]

dir_file name

113

PHC Language Syntax Definition B.2 Layout Language

B.2 Layout Language

The following rules show the syntax diagrams of PHC/LL:

L1

start
statement list
window_ stmt

L2

window_ stmt

4 language_stmt F

4 frameset stmt F

4 frame_ stmt F“*

L3

root stmt

4%(?00?)% application name P(:)%

L4

language_stmt

(X
N\

DEFAULT
|
| ()

A%CLANGUAGES language_name

114

PHC Language Syntax Definition B.2 Layout Language

L5

mode_ stmt

()

)
DEFAULT
49<MODES mode_namel ><z>%

L6

frameset_stmt

O Ty

P

mode_name

frame_name

%(FRAMESET)%' frameset_name

f{FULLSCREEN)?l frame_name h O

J

L7

frame_stmt

4%(?RAME)% frame_ name P(:)%

L8

page_stmt

I mode_name l

> FULLSCREEN }% frame_name }—\

|
PAGE 3 page_name

O

L9

block

/f% statement_list|ﬁ\
—{ BEGIN) A END P>

L10

statement list

=

115

PHC Language Syntax Definition B.2 Layout Language

L11

statement

print stmt

L12

print stmt

49<PRINT)9<:>% string exp P(:)%

L13

image_ stmt

4%(iMAGE)%<:>% string exp P(:)%

L14

string exp

D)

string const

loopvar name

L15

phc_ref

O
H element name |%
(=)

L16

for loop

4%(FOR)% loopvar name P(::)% phc_ref P(LOO?)% statement list P(END)%(LOOP)%

116

PHC Language Syntax Definition B.2 Layout Language

L17

if stmt

. condition_name I{ELSEH block h
@ block
O)

L18

exp

state_name

state_name

OOOOYO0

[@) =]
= ®=]

NOT exp

a exp)

L19

state_ref

%l phc_name P@%(STATE)%

117

List of Figures

2.1 State machine modelo oo
2.2 Browser view of the PHC 0o o
2.3 Geographic Selection L
2.4 PHC Object e
2.5 PHC interaction
2.6 PHC interaction
2.7 PHC/DL structure
2.8 PHC/DL description
2.9 PHC/LL description
2.10 HTML code of Geo during state S2
2.11 Browser view of Geo during state S2
2.12 PHC/LL for framesets and pages
2.13 ‘Expert’ mode page and frame definition
2.14 Design and implementation: interpretation and generation
2.15 Interpreter and repository Lo
2.16 Generator and runtime repository, pages as templates
2.17 Generator and runtime repository, pages as procedures

2.18 Look-ahead link generation

3.1 Client-server model
3.2 Different persistence approaches
3.3 Object oriented design and PHCs
3.4 Design and implementation with Java

3.5 Geographical Selection with Java

11
11
14
15
17
18
20
21
26
26
27
30
31
34
36
38
39
42

47
49
52
53
50

List of Figures

3.6 Rational Objectory Design process 56
3.7 Comparison of the most reasonable approaches 60
4.1 Sample query for the natural language interface 69
4.2 Results from the sample query 69
4.3 Destination point of search result, 70
4.4 Unstructured keyword search 71
4.5 Agent environment Lo e 72
5.1 Quantitative analysis measurement environment 81
5.2 Stretching of the Java curve oL 82
5.3 Transferred data over user interactions 83
5.4 Difference of transferred data over user interactions 83
5.5 Download at the beginning 84
5.6 Rule Java versus HTML 84
5.7 Toolinterface 85
A.1 PHC/DL Geo version 2. i 90
A.2 PHC/LL for PHC Geo version 2 91
A.3 Browser view of Geo version 2 during state S3 92
A.4 Old layout from new PHC/DL (Geo version 2) 92
A.5 PHC/LL alternative layout 93
A.6 Browser view of Geo during state S3 94
A7 PHC/DL Selection 95
A.8 PHC/LL for PHC Selection 96
A9 Browser view of PHC Selection 96
ATOPHC/DL Result00 oo 97
A.11 PHC/LL for PHC Result 98
A.12 Browser view of PHC Result 98
A.13 PHC/DL methods of Basket 99

119

Bibliography

[AB87] Atkinson, M.; Bunemann, O.: Types and persistence in database programming
languages. ACM Computing Surveys, Volume 19, Nr. 2, pp. 105-190, Juni 1987.

[Adi97] Adida, B.: It all starts at the server. IEEE Internet Computing, Vol. 1, Nr. 1,
pp. 75-77, 1997.

[Adi97a] Adida, B.: Taking Web clients to the next level. IEEE Internet Computing,
Vol. 1, Nr. 2, pp. 65-67, 1997.

[Adi97c] Adida, B.: Database-backed Web sites. IEEE Internet Computing, Vol. 1, Nr.
6, pp. 78-80, 1997.

[AM95] Atkinson, M.; Morrison, R.: Orthogonally persistent object systems. The VLDB
Journal, Volume 4, Nr. 3, pp. 319-401, Juli 1995.

[AMO98] Arocena, G.; Mendelzon, A.: Viewing Web Information Systems as Database
Applications. Communications of the ACM, Vol.41, No.7, July 1998.

[ASU88] Aho, A.; Sethi, R.; Ullman, J.: Compilerbau. Addison-Wesley, 1988.

[BBB+95] Bergner, K.; Bartsch, W.; Braun, P.; Molterer, S.; Teubner, G.: Pflegeleicht:
Einbindung relationaler Datenbanken ins Web. iX Mutliuser-Multitasking Magazin,
November 1995.

[BDK92] Bancilhon, F.; Delobel, C.; Kanellakis, P. (Editor): Building an
Object-Oriented Database System - The Story of Os. Morgan Kaufmann, San
Mateo, CA, 1992.

[Beh98] Behme, H.: Hilfe fiir die Verwaltung von WWW-Inhalten. iX
Mutliuser-Multitasking Magazin, Juni 1998.

[Boo94] Booch, G.: Object-oriented Analysis and Design. With Applications.
Benjamin/Cummings Publishing, 2nd edition, 1994.

[Bor98] Born, A.: Chancenlos: Kein Durchbruch fir NCs. iX Mutliuser-Multitasking
Magazin, August 1998.

[BPS94] Blaha, M.; Premerlani, W.; Shen, H.: Converting OO Models into RDBMS
Schema. IEEE Software, pp. 28-39, May 1994.

120

Bibliography

[Bra97] Bradley, N.: The concise SGML companion. Addison-Wesley Longman, 1997.

[Bru98] Brutzman, D.: The Virtual Reality Modeling Language and Java.
Communications of the ACM, Vol.41, No.6, June 1998.

[BS98] Barta, R.A.; Schranz, M.W.: JESSICA: an object-oriented hypermedia
publishing processor. 'Proceedings of the 7th International World Wide Web
Conference’ in Computer Networks and ISDN Systems, Volume 30, Numbers 1-7,
pp- 281-290, Elsevier, 1998.

[BSWO98| Beutelsbacher, A.; Schwenk, J.; Wolfenstetter, K.: Moderne Verfahren der
Kryptographie. vieweg, Braunschweig, 2. Auflage, 1998.

[BW98] Behbehani, A.; Wartala, R.: VRML-Welten dynamisch generieren. iX
Mutliuser-Multitasking Magazin, August 1998.

[Cat94] Cattell, R. (Editor): The Object Database Standard: ODMG-93. Morgan
Kaufmann, San Mateo, CA, 1994.

[Cat96] Cattell, R.G.G., Editor: The Object Database Standard: ODMG-93, Release
1.2. Morgan Kaufmann Publishers, San Francisco, CA, 1996.

[Cat97a] Cattell, R.G.G., Editor: The Object Database Standard: ODMG 2.0. Morgan
Kaufmann Publishers, San Francisco, CA, 1997.

[Cat97] Catarci, T.: Interacting with Databases in the Global Information
Infrastructure. IEEE Communications Magazine, Vol. 35, Nr. 5, pp. 72-76, 1997.

[CDK94] Coulouris, G.; Dollimore, J.; Kindberg, T.: Distributed Systems.
Addison-Wesley, 1994.

[CH98] Caglayan, A.; Harrison, C.: Intelligente Software-Agenten. Carl Hanser Verlag
Miinchen Wien, 1998.

[Che76] Chen, P.: The Entity-Relationship Model - Toward a Unified View of Data.
ACM Transactions on Database Systems, Volume 1, Nr. 1, pp. 9-36, 1976.

[Cho98] Chorafas, D.N.: Agent Technology Handbook. McGraw-Hill, 1998.

[Cla97] Clark, D.: CISCO connect online: It’s Good for Business. IEEE Internet
Computing, Vol. 1, Nr. 6, pp. 55-58, 1997.

[Cod70] Codd, E.F.: A relational model for large shared data banks. Communications of
the ACM, Volume 13, Nr. 6, pp.377-387, 1970.

[Con98] Connolly, D. (Interview): Architecture of the Web. IEEE Internet Computing,
Vol.2, No.2, March/April 1998.

[DaD97] Date, C.J.; Darwen, H.: A Guide to the SQL Standard. Addison-Wesley,
Reading, MA, 4th ed, 1997.

121

Bibliography

[Dat87] Date, C.: A Guide to INGRES. Addison-Wesley, Reading, MA, 1987.

[Dav95] Davis, N.: Telematics in Education: The UK Case. In: Veen, W.; Collis, B.; et
al.: Telematics in Education: The European Case, Academic Book Centre, ABC,
de Lier, the Netherlands, 1995.

[DD95] Demuth, F.; Dierks, J.: Entscheidungskriterien zur Auswahl von
4GL-Systemen. iX Mutliuser-Multitasking Magazin, S. 38-51, Janner 1995.

[Dic97] Dicken, H.: Formel SQL: Performance von Datenbankabfragen aus Java. iX
Mutliuser-Multitasking Magazin, Dezember 1997.

[Die98] Diercks, J.: Am Anfang war das BLOB: Datenbanksysteme mit neuen
Fihigkeiten. iX Mutliuser-Multitasking Magazin, August 1998.

[EGH+92] Engels, G.; Gogolla, M.; Hohenstein, U.; Hiilsmann, K.; Lohr-Richter, P.;
Saake, G.; Ehrich, H.-D.: Conceptual modelling of database applications using an
extended ER model. Data & Knowledge Engineering, North-Holland, Volume 9, Nr.
2, pp. 157-204, 1992.

[EN94] Elmasri, R.; Navathe, S.: Fundamentals of Database Systems.
Benjamin/Cummings, Redwood City, CA, 2.Auflage, 1994.

[ES97] Ensor, D.; Stevenson, I.: Oracle8 Design Tips. O’Reilly 1997.
[Eva98] Evans, D.: The OQL Standard Emerges. Byte Magazine, March 1998.

[Fal98] Falb, J.: A State Machine Based Generator for Database Powered Web
Applications. Diploma Thesis at the Institute of Computer Technology of the
Vienna University of Technology, Vienna 1998.

[F1la97] Flanagan, D.: JavaScript: The Definitive Guide. O’Reilly, 2nd edition, 1997.

[FWO94| Field, M.; Weedon, R.: Professional training in computing: The UK Open
University-s Computing for Commerce and Industry Programme. In: Open and
Distance Learning - Critical Success Factors, International Conference, Geneva,
10-12 Oct. 1994, Proceedings, Berne 1995.

[Gas95] Gastkemper, F.: Pedagogy. In: Open and Distance Learning - Critical Success
Factors, International Conference, Geneva, 10-12 Oct.1994, Proceedings, Berne
1995.

[GIM91] Ghezzi, C.; Jazayeri, M.; Mandrioli, D.: Software Engineering. Prentice-Hall,
1991.

[GMM98] Guttman, R.; Moukas, G.; Maes, P..: Agent-mediated Electronic Commerce:
A Survey. Knowledge Engineering Review [=MIT], June 1998.

[Gog94] Gogolla, M..: An extended Entity Relationship Model. Fundamentals and
Pragmatics. Lecture Notes in Computer Science, Band 767. Springer-Verlag,
Berlin, 1994.

122

Bibliography

[Gra96] Graham, I.: The HTML Sourcebook. Wiley & Sons, Inc., New York, 2nd edition
1996.

[Gra97] Graham, I.: The HTML Sourcebook. Wiley & Sons, Inc., New York, 3rd edition
1997.

[Gre97] Greenspun, P.: Database Backed Web Sites. Ziff-Davies Press, Macmillan
Computer Publishing, Emeryville, CA, USA, 1997.

[Gre97a] Greenwald, R.: Using Oracle Web Application Server 3. QUE, 1997.
[Gre98] Grehan, R.: Object Marries Relational. Byte Magazine, March 1998.

[GRI95] Gabriel, R.; Rohrs, H.: Datenbanksysteme: Konzeptionelle Datenmodellierung
und Datenbankarchitekturen. Springer-Verlag, Berlin, 1995.

[GSS94]| Gottlob, G.; Schrefl, M.; Stumptner, M.: Datenbanksysteme: Skriptum zur
Vorlesung. Institut fiir Informationssysteme, Abteilung fiir Datenbanken und
Expertensysteme, Technische Universitdt Wien, 1994.

[Hal98] Halter, C.: Durchsuchen Datenbank-basierter Web-Applikationen mit Robots
und Agents. Diploma Thesis at the Institute of Computer Technology of the
Vienna University of Technology, Vienna 1998.

[Hal97] Hall, B.: Web-Based Training Cookbook. John Wiley & Sons, 1997.
[Har74] Harary, F.: Graphentheorie. R.Oldenburg Verlag Miinchen Wien, 1974.

[HE92] Hohenstein, U.; Engels, G.: SQL/EER: Syntaz and Semantics of an
Entity-Relationship-Based Query Language. Information Systems, Volume 17, Nr.
3, pp. 209-242, 1992,

[Heu97] Heuer, A.: Objektorientierte Datenbanken - Konzepte, Modelle, Standards und
Systeme. Addison-Wesley, 2., aktualisierte und erweiterte Auflage, 1997.

[HeuS95] Heuer, A.; Saake, G.: Datenbanken: Konzepte und Sprachen. International
Thomson Publishing, Bonn, 1995.

[HeuS97] Heuer, A.; Saake, G.: Datenbanken: Konzepte und Sprachen. International
Thomson Publishing, Bonn, 1.korrigierter Nachdruck, 1997.

[HFPH98] Heuer, A.; Flach, G.; Post, K.; Hein, O.: Jasmine: OO-Datenbank fiir
multimediale Anwendungen. iX Mutliuser-Multitasking Magazin, August 1998.

[Hir95] Hirohido, H.: Ezperimental Analysis of User’s Behaviour in Hypermedia CAI
Systems. In: Liberating the Learner, WCCE 95. Proceedings, Birmingham 1995.

[HNS86] Hohenstein, U.; Neugebauer, L.; Saake, G.: An Fztended Entity Relationship
Model for Non-Standard Databases. In: Proc. Workshop ,,Relationale
Datenbanken®, Bericht Nr. 3-86, S. 185-211. Lessach, 1986.

123

Bibliography

[HNSE87] Hohenstein, U.; Neugebauer, L.; Saake, G.; Ehrich, H.-D.: Three-Level
Specification of Databases Using an Extended Entity Relationship Model. In: Proc.
GI-Fachtagung , Informationsermittlung und -analyse fiir den Entwurf von
Informationssystemen®, Informatik-Fachberichte, Band 143, S. 58-88.
Springer-Verlag, Berlin, 1991.

[Hoh93] Hohenstein, U.: Formale Semantik eines erweiterten
Entity-Relationship-Modells. Teubner-Verlag, Stuttgart, Leipzig, 1993.

[Hol98] Holzner, S.: XML complete. McGraw-Hill, New York, 1998.

[HU96] Hopcroft, J.; Ullman, J.: Einfihrung in die Automatentheorie, Formale
Sprachen und Komplezititstheorie. Addison-Wesley, 3., korrigierte Auflage 1994 /
1., korrigierter Nachdruck, 1996.

[Hub98] Hubertz, J.: Ins Allerheiligste: AS400 sicher im Internet. iX
Mutliuser-Multitasking Magazin, Janner 1998.

[IBVI8] Isakowitz, T.; Bieber, M.; Vitali, F. (guest editors): Web Information Systems.
Special Section in Communications of the ACM, Vol.41, No.7, July 1998.

[Int89] International Organization for Standardization (ISO): Database Language SQL.
Document ISO/TEC 9075:1989, 1989.

[Int92] International Organization for Standardization (ISO): Database Language SQL.
Document ISO/TEC 9075:1992, 1992.

[ISB95] Isakowitz, T.; Stohr, E.; Balasubramanian, P.. RMM: A Methodology for
Structured Hypermedia Design. Communications of the ACM, Vol. 38, Nr.8, pp.
34-44 1995.

[ISO95] International Organization for Standardization (ISO) - American National
Standards Institute (ANSI): Working Draft Database Language SQL
(SQL/Foundation SQL3). Part 2, X3H2-94-080 and SOU-003, 1995.

[Iye97]| Iyengar, A.: Dynamic Argument Embedding: Preserving State on the World
Wide Web. ITEEE Internet Computing, Vol. 1, Nr.2, pp. 50-56 1997.

[Jel98] Jelliffe, R.: The XML and SGML Cookbook. Prentice-Hall 1998.

[JH98] Jones Jr., IL.R.; Heuring, V.P..: Modeling and simulating optical computing
architectures. Systems Implementation 2000, Chapman & Hall, IFIP 1998.

[Joh95] Johnson, R.: Design Patterns - Elements of Reusable Object-Oriented Software.
Addison-Wesley 1995.

[Kam98] Kampichler, W.: Performance Analysis of Database Backed Web Applications.
Diploma Thesis at the Institute of Computer Technology of the Vienna University
of Technology, Vienna 1998.

124

Bibliography
[KDM98] Khoshafian, S.; Dasananda, S.; Minassian, N.: The Jasmine Object Database.
Morgan Kaufmann Publishers, 1998.

[KM97] Kristol, D.; Montulli, L.: HTTP State Management Mechanism.
draft-ietf-http-state-man-mec-02.ps on [=W3C], 1997.

[KZ98| Kiniry, J.; Zimmerman, D.: A Hands-on Look at Java Mobile Agents. IEEE
Internet Computing, Vol. 1, Nr. 4, pp. 21-30, 1998.

[LLOW91] Lamb, C.; Landis, G.; Orenstein, J.; Winreb, D.: The ObjectStore Database
Systems. Communications of the ACM, Volume 34, Nr. 10, pp. 50-63, 1991.

[LV96] Lausen, G.; Vossen, G.: Objekt-orientierte Datenbanken: Modelle und Sprachen.
Oldenburg, Miinchen, 1996.

[Mer97] Merkle, B.: In die Ferne schweifen: Verteilte Java-Objekte mit RMI. iX
Mutliuser-Multitasking Magazin, Dezember 1997.

[Mai83] Maier, D.: The Theory of Relational Databases. Computer Science Press,
Rockville, MD, 1983.

[MD92] McGoveran, D.; Date, C.J..: A Guide to Sybase and SQL Server.
Addison-Wesley, Reading, MA, 1992.

[Mis95] Misgeld, W.: SQL: Einstieg und Anwendung. Carl Hanser Verlag, Miinchen,
1995.

[MP97] Musella, D.; Padula, M.: Step by Step Toward the Glovbal Internet Library.
IEEE Communications Magazine, Vol. 35, Nr. 5, pp. 64-70, 1997.

[MS98] Manninger, M.; Schischka, R.: Adapting an Electronic Purse for Internet
Payments. Information Security and Privacy, Lecture Notes in Computer Science,
Vol. 1438, pp. 205-214, Springer, Berlin, 1998.

[Mus97] Musciano, C. and Kennedey, B.: HTML: Das umfassende Referenzwerk.
O’Reilly, Koéln 1997.

[Obj93] Object Design Inc.: ObjectStore User Guide, Release 3.1. December 1993.

[Oin98] Oinas-Kukkonen, H.: What is Inside a Link? Communications of the ACM,
Vol.41, No.7, July 1998.

Ove97| Overbeck, J.: Objektorientierte Systeme und relationale Datenbanken. Lecture
)] Y
notes at the Vienna University of Technology, Institute of Information Systems,
1997.

[Pet91] Petkovié¢, D.: INFORMIX. Das relationale Datenbanksystem mit INFORMIX
OnLine. Addison-Wesley, Bonn, 1991.

[Pet92] Petkovi¢, D.: INGRES. Das relationale Datenbanksystem mit Knowledge-Base
und Object-Base. Addison-Wesley, Bonn, 1992.

125

Bibliography

[Rad98] Radinger, W.: Object Oriented Approaches for Database backed Web
Applications Implemented in Java. Diploma Thesis at the Institute of Computer
Technology of the Vienna University of Technology, Vienna 1998.

[RCK98] Rada, R.; Cargill, C.; Klensin, J.: Consensus and the Web. Communications
of the ACM, Vol.41, No.7, July 1998.

[Ren95] Renwick, W. L.: Organisational Strategies. Open and Distance Learning -
Critical Success Factors, International Conference, Geneva, 10-12 Oct.1994,
Proceedings, Berne 1995.

[Ros98] Rosenberg, D.: Bringing Java to the Enterprise: Oracle on Its Java Server
Strategy. IEEE Internet Computing, Vol.2, No.2, March/April 1998.

[Rut98] Rutkowski.: Dimensioning the Internet. IEEE Internet Computing, Vol.2,
No.2, March/April 1998.

[Saa93] Saake, G.: Objektorientierte Spezifikation von Informationssystemen.
Habilitationsschrift, Teubner-Verlag, Stuttgart/Leipzig, 1993.

[Sau92] Sauer, H.: Relationale Datenbanken: Theorie und Prazis inklusive SQL-2. Band
2. Addison-Wesley, 1992.

[Say97] Sayegh, M.: Corba: Standard, Spezifikation, Entwicklung. O’Reilly, Kéln, 1997.

[Sch97] Schader, M.: Objektorientierte Datenbanken. Die C++-Anbindung des
ODMG-Standards Springer-Verlag, Berlin, 1997.

[Sch85] Schreiner, A.; Friedman, G.: Compiler bauen mit UNIX — Eine Einfihrung.
Carl Hanser Verlag Miinchen Wien, 1985

[SFCI8| Stotts, D.P.; Furuta, R.; Cabarrus, C.R.: Hyperdocuments as Automata:
Verification of Traces-Based Browsing Properties by Model Checking. ACM
Transactions on Information Systems, Vol. 16, No. 1, pp. 1-30, January 1998.

[Smi98] Smith, R.: Internet-Kryptographie Addison-Wesley Longman, 1998.

[SSTI7] Saake, G.; Schmitt, I.; Tiirker, C.: Objektdatenbanken International Thomson
Publishing, Bonn, 1997.

[Stii93] Stiirner, G.: Oracle 7. Die verteilte semantische Datenbank. dbms publishing,
Weissach, 2.Auflage, 1993.

[St1i96] Stiirner, G.: Oracle 7. Die verteilte semantische Datenbank. Release 7.3. dbms
publishing, Weissach, 4.Auflage, 1996.

[SW74] Steinbuch, K.; Weber, W.: Taschenbuch der Informatik — Band I. Springer
Verlag, 3.Auflage, 1974.

[Tak98] Takahashi, K.: Metalevel Links: More Power to Your Links. Communications
of the ACM, Vol.41, No.7, July 1998.

126

Bibliography

[Tan96] Tanenbaum, A.S.: Computer Networks. Prentice-Hall, 3rd edition, 1996.

[Tha95] Thalheim, B.: Fundamentals of Entity-Relationship Modeling. Springer-Verlag,
Berlin, 1995.

[TB90] Trost, H.; Buchegger, E.: Datanbak-DIALO: how to communicate with your
database in German (and enjoy it). Austrian Research Institute for Artificial
Intelligence, Butterworth-Heinemann, 1990.

[Tol96] Tolksdorf, R.: Die Sprache des Web: HTMLS3. dpunkt Verlag, Heidelberg,
2.Auflage 1996.

[UlI88] Ullman, J.: Principles of Database and Knowledge-Base Systems, Volume 1.
Computer Science Press, Rockville, MD, 1988.

[UlI89] Ullman, J.: Principles of Database and Knowledge-Base Systems, Volume 2.
Computer Science Press, Rockville, MD, 1989.

[Vio96] Viola, J.: Extrovertierte Objekte. Datenbank Fokus, pp. 43-47, 7/1996.
[Wal81] Walter, I.: Adalbert Stifter — Werke., Verlagsgruppe Kiesel, Salzburg, 1981.

[WE96] Washburn, K.; Evans, J.: TCP/IP - running a successful network.
Addison-Wesley, 1996.

[WM97] Williamson, A.; Moran, C.: Java Database Programming: Servlets € JDBC.
Prentice Hall Europe, 1997.

[WSCP96] Wall, L.; Schwartz, R.; Christiansen, T.; Potter, S.: Programming Perl
(Nutshell Handbook). O’Reilly, 2nd edition, 1996.

[Zen98] Zeng, C.: Using Keyword Separation to Improve Searching on the Web.
Proceedings of the ISCA ’International Conference on Computers and Their
Applications’, pp.430-435, Honolulu, Hawaii, USA, Mar 25-27, 1998.

[Z6197] Zoller, M. (Hrsg.): Informationsgesellschaft — Von der organisierten
Geborgenheit zur unerwarteten Selbstindigkeit. VI. Kongrefl Junge
Kulturwissenschaft und Praxis, Essen, 21.-23.Mai, Hanns Martin Schleyer-Stiftung
1997.

References on the Web (URLs)

References about the Web — with its high momentums and rapid changes — cannot
solely be based on paper material. The following references thus point to the Web
itself. However, the URLs are not too detailed and show instead the most
important entry points. The author’s homepage [=Goeschka] provides more
detailed and up-to-date links to Web references.

[=Alta] http://www.altavista.com/ Alta Vista search engine.

127

Bibliography

[=Any| http://www.anybrowser.org/campaign/ Campaign for a Non-Browser
Specific WWW,

[=ECMA]| http://wuw.ecma.ch/ ECMA - European association for standardizing.

[=FCGI] http://www.fastcgi.com Open Market, FastCGI.

[=GemStone] http://www.gemstone.com GemStone.

[=Goeschka] http://www.ict.tuwien.ac.at/goeschka/, Homepage of Karl M.
Goeschka with references to online ressources.

[=-heitml] http://www.h-e-1i.de/, heitml extends and anhances the functionality of
HTML by defineable tags and full programming features.

[=IBEX] http://www.ibex.ch/, ITASCA database system.

[=IBIS] http://nestroy.wi-inf.uni-essen.de/Lv/, Internetbasierte
Informationssysteme.

[=IBM] http://www.trl.ibm.co.jp/aglets/, IBM Aglets Software Development Kit.

[=ICT] http://www.ict.tuwien.ac.at/, Vienna University of Technology, Institute
of Computer Technology.

[=Informix] http://www.informix.com/, Illustra.

[=ISAPI] http://www.microsoft.com/msdn/sdk/
platforms/doc/sdk/internet/src/
isapimrg.html Microsoft Internet Server API.

[=Java] http://java.sun.com/, The original source for information about Java.

[=JS] http://developer.netscape.com/
library/documentation/
javascript.html JavaScript.

[=MIT] http://agents.www.media.mit.edu/groups/agents/ Massachusetts
Institute of Technology, Software Agents Group, Media Laboratory.

[=MS] http://www.microsoft.com/ Microsoft.

[=News| news:comp.infosystems.www.*, N ewsgroups dealing with themes related to

the Web.
[=NS] http://www.netscape.com/ Netscape.

[=NSAPI] http://www.netscape.com/
newsref/std/server_api.html Netscape Server API.

[=NW] http://www.nw.com/ Network Wizards.

128

Bibliography

[=02] http://www.o2tech.fr or http://www.o2tech.com O2 Technology: Java
Relational Binding.

[=ODI] http://www.odi.com Object Design Inc.: ObjectStore PSE/PSE Pro for Java
Tutorial Release 2.0 from April 1998.

[=ODMG] http://www.odmg.org Object Data Management Group: The Standard for
Storing Objects (ODMG 2.0).

[=OMG] http://www.omg.org Object Management Group: CORBA2.2 (Feb-1-1998)
and UML1.1 (Nov-17-1997).

[=Oracle] http://www.oracle.com Oracle Web Application Server and Web request
Broker.

[=OUC]| http://www.ouc.bc.ca/libr/connect96/search.htm Okanagan University
College, Library, Workshop about Search Engines on the Web.

[=Persistence] http://www.persistence.com Persistence Software Inc., Architecting
OO applications for high performance with relational databases (White Paper).

[=PHP] http://www.php.net/ PHP3.

[=PJama] http://www.dcs.gla.ac.uk/ University of Glasgow, Department of
Computing Science: The PJama Project.

[=POET] http://www.poet.com POET.
[=Postgres| http://wuw.postgresql.org Postgres9s.

[=Rational] http://www.rational.com Rational Inc., The Rational Objectory
Process.

[=RIPE] http://www.ripe.net Réseaux IP Européens - Network Coordination Centre
RIPE NCC: European Hostcount.

[=RFC] ftp://ftp.univie.ac.at/netinfo/rfc/, Requests for Comments (RFCs).
[=SAP]| http://wuw.sap.com/ SAP: SAPQWeb.

[=SoS] http://www.sci.ouc.bc.ca/libr/connect96/search.htm Sink or Swim:
Internet Search Tools and Techniques.

[=SunLabs| http://www.sunlabs.com/research/forest/ SunLabs: Project Forest.

[=UMBC] http://www.cs.umbc.edu/kqml/ University of Maryland, Baltimore
County: Knowledge Sharing Effort.

[=W3C] http://www.w3.org/, World Wide Web Consortium, the basic starting point
for everything concering the Web.

[=WOF] http://www.apple.com/webobjects/, WebObjects Framework.

129

Publications

[Goe93] Goschka, K.: Microcompiler Design Language. Diploma Thesis at the Vienna
University of Technology, Vienna, Austria, 1993.

[Goe95a] Goschka, K.: Generation of firmwarecompilers. Presentation at the
’21st Euromicro Conference — Design of Hardware/Software Systems’, Como, Italy,
Sept 4-7, 1995.

[Goe95b] Goschka, K.: MDL — Microcompiler Design Language. Eine Methode zur
hardwaregesteuerten Generierung von Firmwarecompilern. Elektrotechnik und
Informationstechnik (ISSN 0932-383X EIEIEE 112), Volume 112, Number 12/95,
pp.659-661, published by Springer Verlag, Vienna, Austria, 1995.

[Goe95¢c] Goschka, K.: Firmware Compiler Generation. Diploma Thesis at the Vienna
University of Technology, Vienna, Austria, 1995.

[DMGO96] Dietrich, D.; Manninger, M.; Goschka, K.: Internet und Smart Card.
Proceedings of the "ASA Konferenz 1996°, Vienna, Austria, Sep 24, 1996.

[Goe97] Goschka, K.: Generation of firmwarecompilers. Journal of Systems
Architecture (ISSN 1383-7621/0165-6074), Volume 43, Numbers 1-5, pp.99-109,
published by Elsevier Science, North-Holland, 1997.

[RGR97] Riedling, E.; Goschka, K.; Ramharter, R.. DEMENET - The DEMETER
Project. Proceedings (ISBN 87 7432 465 9) of the 'First European Conference for
Information Technology in Agriculture’, pp.167-170, Copenhagen, Denmark,
June 15-18, 1997.

[MGD97] Manninger, M.; Goschka, K.; Dietrich, D.: Die Smart Card im Internet.
Praxis der Informationsverarbeitung und Kommunikation (ISSN 0930-5157),
Volume 20, Number 3/97, pp.148-154, published by K.G.Saur Verlag, Munich,
Germany, 1997.

[RGMI7] Riedling, E.; Goschka, K.; Manninger, M.: Education at the Vienna
University of Technology: Traditional Lecture Based Education vs. Telematics
Based Education. Proceedings (ISBN 1-885189-03-6) of the 'International

Conference on Engineering Education: Progress Through Partnerships’,
pp.717-725, Chicago, Illinois, USA, August 13-15, 1997.

130

Publications

[GRI7] Goschka, K.; Riedling, E.: Development of an Object Oriented Framework for
Design and Implementation of Database Powered Distributed Web Applications
with the DEMETER Project as a Real-Life Example. Short Contributions
Proceedings (ISBN 0-8186-8215-9) of the '23rd Euromicro Conference — New
Frontiers of Information Technology’, pp.132-137, Budapest, Hungary, Sep 1-4,
IEEE Computer Society, 1997.

[Goe98a| Goschka, K.: Design and implementation of database powered web systems —
experiences from the DEMETER project. Proceedings (ISBN 0-412-83530-4) of the
IFIP WG2.4 ’Systems Implementation 2000 Conference’, pp.333-344, Berlin,
Germany, Feb 23-26, Chapman & Hall, 1998.

[Goe98b] Goschka, K.: Internet Software Engineering: Design and Implementation of
Interactive Web Applications. Proceedings (ISBN 1-880843-23-4) of the ISCA
'International Conference on Computers and Their Applications’, pp.5-8, Honolulu,
Hawaii, USA, Mar 25-27, 1998.

[GF98] Goschka, K.; Falb, J.: Ezperiences from Design and Implementation of
Real-Life Database Backed Web Applications. Proceedings (ISBN 4-931474-00-4) of
the 'IEEE 20th International Conference on Software Engineering’, pp.122-126,
Kyoto, Japan, Apr 19-25, IEEE Computer Society, 1998.

[GRRF98] Goschka, K.; Riedling, E.; Radinger, W.; Falb, J.: Using Database Backed
Web Applications for the Implementation of Interactive Tutorials on WWW.
Proceedings of the 'International Conference on Engineering Education’, Rio de
Janeiro, Brazil, Aug 17-20, 1998.

[GFRI8] Goschka, K.; Falb, J.; Radinger, W.: Database Access with HTML and Java —
A Comparison Based on Practical Ezperiences. Proceedings of the 'TEEE 22nd
International Computer Software and Applications Conference’, Vienna, Austria,
Aug 18-21, IEEE Computer Society, 1998.

[GRI8] Goschka, K.; Riedling, E.: Web Access to Interactive Database Training: New
Approaches to Distance Laboratory Work at the Vienna Unwwversity of Technology.
Proceedings of the "Teleteaching 98’ as part of the "15th IFIP World Computer
Congress’, Vienna, Austria and Budapest, Hungary, Aug 29-Sep 6, 1998.

[GM98] Goschka, K.; Manninger, M.: Database Powered Web Applications for Internet
Marketing and Commerce. Full day workshop at the '15th IFIP World Computer
Congress’, Vienna, Austria, Aug 30, and Budapest, Hungary, Sep 5, 1998.

[GF98a] Goschka, K.; Falb, J.: New Architectures for Database Backed Web
Applications. Proceedings of the "AACE WebNet98 World Conference’, Orlando,
Florida, USA, Nov 7-12, 1998.

131

Curriculum Vitae

Karl M. Géschka

Vienna University of Technology
Institute of Computer Technology
Gusshausstrasse 27-29 /384

A-1040 Vienna, Austria

Email: goeschka®@ict.tuwien.ac.at

Jan 17, 1967
9/73 —6/77
9/77 —5/85

June 7, 1984

May 29, 1985
June 14, 1985
July 10, 1985

9/85
10/85 — 9/86
10/86 — 6/94
10/87 — 4/95
'89 — 94

7/94 — present

Born in Vienna, Austria
Primary School

High School

1st prize at the 15th Austrian Mathematical Olympiad
Graduation from High School with ‘distinction’

1st prize at the 16th Austrian Mathematical Olympiad

3rd prize at the 26th International Mathematical Olympiad
Software Engineer, Bank Austria

Military Service, Austria

Diplom-Ingenieur (M.Sc.) in Electrical Engineering with ‘distinc-
tion’. Thesis: ‘Microcompiler Design Language’, awarded by the
annual ‘GIT-Férderpreis’ of the ‘Osterreichischer Verein fiir Elek-
trotechnik’ on Nov 23, 1994

Diplom-Ingenieur (M.Sc.) in Computer Science with ‘distinction’.
Thesis: ‘Firmwarecompiler Generation’

Software Engineer (during vacations), Siemens Austria: De-
velopment of firmware, computer architecture, compiler imple-
mentation.

Research Assistant, Institute of Computer Technology, Vienna
University of Technology, Austria.

Main research area: Design and implementation of database
backed Web applications, information engineering and multi me-
dia protocols, security concerns.

Lecturing: Graduate course on ‘Web databases’, Supervision of 23
Masters students in thesis research.

Industry projects: Coordinator of a cooperation with Ericsson
Austria about wireless Intranet communication services. Deve-
lopment of database powered Web applications for the project
DEMETER funded by the European Commission. Several small
projects with Siemens Austria.

Administration: Design and maintenance of the institute’s LAN,
Oracle database and Web-Server.

132

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

